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Chapter 1

Introduction

This thesis summarizes my work on complex systems for quantum technologies

at the Quantum Optics Theory group at ICFO. It contains the results published

in the references [Braungardt et al., 2011b,Braungardt et al., 2011a,Braungardt

et al., 2008,Braungardt et al., 2007,Pons et al., 2007] along with some unpublished

results. This chapter introduces the general context and summarizes our main

results.

1.1 General Context

Historically, the great majority of computers are based on the von Neumann

architecture, in which explicit instructions are processed one at a time. How-

ever, alternative computing paradigms, more suitable to tackle certain classes of

problems, are receiving increasing attention.

One alternative approach to computation has evolved from efforts to model the

storage and processing of information in biological systems and resulted in ar-

tificial neural network science. In a neural network, the information is encoded

in the stable states of a complex system, composed of a large number of simple

interacting units. Complex systems typically exhibit properties that emerge from

the interactions of the units, and that are not inherent to the individual compo-

nents themselves. In neural networks, a typical way to attain robustness to noise

in the manipulation of data is to store the information in a distributed way in
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the stable states of the system. Neural networks have been shown to be capable

of recognizing even distorted patterns and process information with a high level

of noise.

Another novel approach to information processing is quantum computation, which

makes use of quantum superpositions and entanglement of states to improve the

computing efficiency in certain classes of problems. The implementation of a

quantum computer requires a controlled engineering of the quantum states in-

volved. In particular, the preparation, manipulation and detection of the states

have to be achieved with high fidelity. Despite the great achievements that have

been made towards experimental realization of a quantum computer, one of the

major challenges is the noise management in the devices.

The aim of this thesis is to explore the possibility of using some of the features of

classical neural networks to attain a higher level of noise resistance for the storage

and processing of quantum information. Inspired by classical neural networks,

where the existence of stable states that behave as attractors is essential, we study

quantum mechanical many-body systems with long range interactions, which

typically can have many stable (or metastable) states.

The first part of the thesis presents our proposal for an implementation of a

neural-network-like system for quantum information processing realized in a chain

of trapped ions. Trapped ions are highly controllable quantum systems, where

individual ions can be addressed by laser fields. Long range interactions can be

achieved through the coupling of the ions via the vibrational modes of the trap.

In principle, the implementation of distributed quantum information in an ion

trap allows for the preparation and manipulation of quantum information with

high error resistance. However, to date, the system’s size is limited to relatively

small numbers of ions, and decoherence is a major problem.

Optical lattices, in contrast, allow to build up very large systems with relatively

long decoherence times. It has been theoretically predicted, that a rich energy

landscape with a large number of metastable states can be achieved with dipolar

atoms or molecules in optical lattices. Despite the great progress that is being

made, the experimental control of the long-range interactions and the detection

of the states is still challenging. Any application based on complex quantum

systems realized in optical lattices requires a high fidelity read-out of the state of

the system.
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The second part of the thesis focuses on the detection of various many-body quan-

tum systems, that could be used for distributed quantum information processing,

by analyzing their counting distributions. We are particularly interested in study-

ing the detection of complex quantum many-body systems with metastable states

as well as systems that exhibit emergent behavior like phase transitions, which

can involve entanglement at the many-particle level. In quantum optics, photon

counting is of major importance for the detection of different quantum states of

light. Analogously, atom counting provides insight into the quantum properties

of systems of ultracold atoms.

1.2 Main Results

Chapter 3, presents our proposal [Pons et al., 2007,Braungardt et al., 2007] for

an implementation of a device for distributed processing of classical and quantum

information in a chain of trapped ions. The distributed information encoding

leads to a high robustness against noise. We conclude that:

• Quantum states can be prepared and manipulated with high fidelity.

• A universal set of quantum gates can be implemented through adiabatic

passage of external fields.

• The system is resistant to errors, both local and global ones.

In Chapter 4, we review the theory of photon- and atom-counting and extend

it to time- and space dependent fields. The quantum theory of photon count-

ing was initiated with the Glauber-Mandel formula, which gives a full quantum

description of the interaction between the incoming light and the detector for

short detection times. Longer detection times are treated perturbatively, such

that the absorption at the detector in one time interval does not depend on the

previous ones. For a single-mode field, a formula that does include the backaction

of the detector on the field has been derived. We discuss the validity and limits

of the existing approaches of particle counting for given experimental setups. We

conclude that experimental situations with time- and space-dependence, in gen-

eral, cannot be treated within the existing formalism. We present a derivation

of a formula for the counting distribution for time-dependent systems that are
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registered at spatially confined detectors. Our derivation is based on the master

equation that models the interaction between the system and the detector, and

includes the effects of absorption of particles during detection. Our main results

are the following.

• We derive a formula which is formally equivalent to the Glauber-Mandel

formula, where the intensity is written in terms of modified field operators

that include the absorption at the detector.

• The modified field operators follow the Schrödinger equation with an imag-

inary potential.

• In the limit where the dynamics of the system are slow compared to the

detection process, the formalism simplifies and reduces to the formalism

discussed in the literature.

Chapter 5 contains our work in [Braungardt et al., 2008] and [Braungardt et al.,

2011a], where we illustrate the power of the method of particle counting by study-

ing a paradigmatic model of a system of strongly correlated fermions that exhibits

rich behavior such as a quantum phase transition and fermion pair formation.

The system is equivalent to the anisotropic quantum XY-model via the Jordan

Wigner transform. We show that the many-body features of the system can be

characterized by particle counting. We address the issue of thermal noise by con-

sidering the system in thermal equilibrium at different temperatures. This is of

fundamental importance, as quantum phase transitions are defined only at zero

temperature, whereas in real experimental situations effects of temperature are

unavoidable. We study the traces of the quantum effects that are visible at finite

temperature. Furthermore, we analyze the thermalization of the system when

coupled to a heat bath. Here, the dynamics are much slower that the detection,

such it is not necessary to use the full time-dependent formula. Our main results

are:

• The quantum phase transition of the model is clearly visible in the first

cumulants of the counting distribution.

• For high detection efficiencies, the formation of fermionic pairs is reflected

in the full counting distribution. For lower efficiencies it is no longer visible.
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• The overall behavior of the system does not depend strongly on the anisotropy

parameter. This is expected as the systems are in the Ising universitality

class.

• The signatures of the quantum crossover are visible in the cumulants of the

counting distribution for low temperatures and disappear as the tempera-

ture is of the order of the system energies.

• The breaking of fermionic pairs by thermal noise is reflected in the counting

distribution. The temperature at which the pairs are broken is proportional

to the binding energy.

• The thermalization of the system due to an exchange of quasi-particle ex-

citations with a heat bath can be monitored through particle counting.

• The coupling of the quasi-particle excitations in the thermalization is non-

local. We show that the non-local coupling translates to a local coupling of

the particles of the system.

Chapter 6, exposes our findings in [Braungardt et al., 2011b], where we study

the counting statistics of a system of atoms that are released from an optical

lattice and fall in the gravitational field. We analyze the effect of the expansion

of the atoms on the counting statistics. As the particles expand, the initial modes

interfere and the correlations are, in principle, accessible by particle counting. We

consider a momentary detection process, in which the dynamics of the system are

slow compared to the detector opening time. This formalism is valid for most

experimental situations. We find that:

• The Mott insulator phase is distinguished from the superfluid phase in the

counting distribution of the expanded atoms.

• In the Mott phase, the counting events at two detectors are correlated. As

the distance between the two detectors increases, the correlations are no

longer visible.

• For appropriately chosen detector geometries, the correlations between dif-

ferent sites can be inferred from the counting distribution after the expan-

sion. In principle, this allows for distinguishing different metastable states
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within the insulating regime. In order to use such states for distributed

quantum information processing, the detection is essential.

Chapter 7 illustrates the effect of the absorption at the detector for the detection

of an expanding Bose-Einstein condensate (BEC). Here, the timescale of the

system dynamics and the counting process coincide. We thus apply the full

time- and space- dependent formalism derived in Chapter 4. Furthermore, we

consider a solution obtained through the Born approximation, which includes

the backaction of the detector on the field up to second order. We compare our

formalism to the second-order approximation and the Glauber-Mandel formula

and discuss the limits of the two approaches. In summary:

• Our formalism correctly describes the situation even for long detection

times, whereas the Glauber-Mandel formula is limited to short detection

times.

• The Born approximation gives valid results for low detector efficiencies.

For high efficiencies, both for the Born approximation and for the Glauber-

Mandel formula, the particle number is overestimated.
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Chapter 2

Background

The field of Quantum information has attracted much attention in the last

decades, and remarkable experimental advances towards the implementation of

a quantum computer have been achieved. However, whereas the control of sys-

tems of a small number of qubits has been demonstrated, the scalability to larger

systems is challenging. In this context, one of the main challenges is the suscep-

tibility of quantum states to errors.

Complex systems, in particular neural network models, play an important role for

the processing of classical information. The network consists of a large number

of interconnected neurons. In neural networks, the information processing takes

place on the level of the whole network. A high level of error resistance is achieved

by storing the information distributed over all nodes.

The goal of our work is to transfer some of the features that lead to robustness

in classical neural networks to quantum systems. We therefore study complex

quantum systems consisting of strongly correlated quantum particles. We con-

sider two main approaches to the realization of such systems: 1) Ions in a trap,

where long range interactions are mediated by the vibrational modes. 2) Atoms

or molecules in optical lattices, where long range interactions can be achieved

through dipole-dipole interactions. In Fig. 2.1, we illustrate the analogy between

the systems.

In order to implement a quantum computing device, it is essential to prepare,

manipulate and detect the quantum information in the system. In Sect. 2.1, we
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recall some basic facts about quantum computation. In Sect. 2.2, we shortly

review the Hopfield neural network model and discuss some of the emergent

global properties of classical neural networks and their use for the processing

and storage of classical information. Sect. 2.3 deals with the possible physical

systems that could be used to implement some of the advantageous features of

complex systems for the manipulation of quantum information. In particular, we

consider systems with long-range interactions implemented in trapped ions and

bosons, fermions and spins in optical lattices. In Sect. 2.4, we review methods

for the detection of strongly correlated atomic systems.

2.1 Quantum Information Processing

The idea behind the quantum computer is to design a computational device

based on quantum mechanics. It is somewhat natural to wonder about the role

of quantum physics in computation, as the size of circuitry placed on computer

chips rapidly decreases. Once the size of individual elements reach a certain

critical level, their behavior and properties are no longer governed by classical

physics, but rather by quantum mechanics. Another motivation was put forward

by Richard P. Feynman [Feynman, 1982], who was among the first to explore

the idea of computation based on quantum mechanics. He observed that the

only way to effectively model a quantum mechanical system would be by using

another quantum mechanical system. Since then, quantum simulators have been

studied with great success both theoretically and experimentally and may become

a reality in the near future, for a review see [Lewenstein et al., 2007,Buluta and

Nori, 2009].

The first quantum algorithm, that outperforms any classical computational de-

vice for a given task, was devised by Deutsch [Deutsch, 1985] and generalized

in [Deutsch and Jozsa, 1992]. The major breakthrough of quantum computation

was Peter Shor’s discovery of a quantum algorithm for factoring large integers into

its prime factors [Shor, 1997]. The algorithm is significant, because most cryptog-

raphy schemes rely on the difficulty of finding the prime factors of large numbers.

On classical computers, the time of factorization increases exponentially as the

number grows large. In contrast, Shor’s algorithm can factor numbers, and thus

crack the cryptography system, in polynomial time. Another quantum algorithm
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Figure 2.1: We explore the possibility of exploiting some characteristics of classi-

cal neural networks for quantum information tasks in complex quantum systems.

Therefore, we compare the system properties of a simple model of a neural net-

work (first column) to a chain of trapped ions with long range interactions (second

column) and atoms in optical lattices (third column). Fig. a)-c) show the respec-

tive physical implementations. Fig. d) depicts a toy model of four neurons, which

are connected by the synaptic efficacies Jij . Fig. e) displays a schematic view of

ions in a trap, which realize an effective spin-model with long-range interactions

mediated by the vibrational modes of the string of ions. Fig. f) illustrates a sys-

tem of atoms in an optical lattice, where the interactions are determined by the

hopping J of particles between neighboring sites and the on-site interactions U .

The respective Hamiltonians are depicted in the lower part of the figure. Source:

Fig. b): R. Blatt group. Fig. c): I. Bloch group
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with potential applications was invented by Lov Grover in 1996 [Grover, 1997].

Grover’s algorithm searches an unsorted database with quadratic speed up with

respect to any classical method.

In this section, we briefly review some of the characteristics of quantum informa-

tion processing and highlight the differences to classical computation. In Sect.

2.1.1, we consider the qubit as the basic unit of quantum information. Follow-

ing the rules of quantum mechanics, the qubit manipulation is achieved through

quantum gates that are composed of unitary operations. In Sect. 2.1.2, we review

a set of one- and two-qubit gates that allow for universal quantum computing. As

opposed to classical computation, one of the main challenges in quantum compu-

tation are errors. In Sect. 2.1.3, we resume the main differences between classical

and quantum error correction.

2.1.1 The Qubit

The indivisible unit of classical information is the bit : an object that can take

either one of two values: 0 or 1. The corresponding unit of quantum information

is the quantum bit or qubit represented by any two level quantum system. One of

the differences between bits and qubits is that a qubit can be in a superposition

of states, i.e. a linear combination |Ψ〉 = α |0〉+β |1〉, where α and β are complex

numbers with |α|2 + |β|2 = 1.

Another difference between classical and quantum bits is related to the readout

of information. For a classical bit, we can determine if it is in the state 0 or 1

from just a single copy. However, even for a pure quantum state α |0〉 + β |1〉,
the values of α and β cannot be determined if only a single copy is available.

Quantum mechanics only allows for acquiring much more restricted information:

When measuring a qubit in the computational basis {|0〉 , |1〉}, one gets either

the result |0〉, with probability |α|2, or the result |1〉, with probability |β|2.

In classical computation, a two bit system can have four possible states, 00, 01,

10 and 11. Correspondingly, a two qubit system has four computational basis

states |00〉, |01〉, |10〉 and |11〉. The state of the two qubit system is given by a

superposition of these four states, |Ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉
with |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. Similar to the case for a single qubit,

the measurement result |xy〉 occurs with probability |αxy|2, where x, y can take
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the values 0 or 1.

Experimentally, a qubit is realized by a two-level quantum system, such as the

two spin states of an electron, two perpendicular polarizations of a photon or two

different energy levels of an atom. In our work, we consider systems of trapped

ions and atoms in optical lattices. In trapped ions, qubits are commonly realized

either using two hyperfine or Zeeman sublevels in the electronic ground state, or

a ground state and an excited level. For neutral atoms in optical lattices, the

qubit can be realized in two hyperfine states of the atoms.

2.1.2 Quantum Gates

In classical computers, the information is manipulated through logic gates. Sim-

ilarly, in most schemes for quantum information processing, the manipulation of

information is performed by quantum gates, which are realized by unitary trans-

formations. As in classical information, all qubit operations can be composed of

one-qubit and two-qubit gates. In the following, we recall the most important

examples of classical and quantum gates.

The only non-trivial example of a classical single bit gate is the NOT gate, which

takes 0 → 1 and 1 → 0. Its quantum counterpart clearly takes |0〉 → |1〉 and

|1〉 → |0〉. There are, however, two important differences between classical and

quantum single qubit gates:

Firstly, quantum gates can not only operate on the basis states |0〉 and |1〉 but

also on superposition states α |0〉+ β |1〉. As the quantum mechanical evolution

is linear, the quantum NOT gate acts linearly on the superposition state: α |0〉+
β |1〉 → α |1〉+ β |0〉.

Secondly, the NOT gate is not the only that gate can be constructed. Any unitary

matrix specifies a valid quantum gate.

An important example for such a single qubit gate is the Hadamard gate, which

maps the qubit-basis states |0〉 and |1〉 to two superposition states, with equal

weight:

|0〉 → |+〉 ≡ |0〉+ |1〉√
2

, |1〉 → |−〉 ≡ |0〉 − |1〉√
2

.. (2.1)

Many quantum algorithms use the Hadamard transform as an initial step, since
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it maps N qubits initialized to |0〉 to a superposition of all 2N orthogonal states

that can be formed by combinations of |0〉, |1〉, with equal weight. The resulting

state allows the parallel manipulation of all the superposed states. This so called

quantum parallelism is vital for almost all quantum algorithms.

Let us now focus on two qubit gates, i.e. gates that act on two input states.

In classical computation, the AND, OR and XOR gates are examples of two

bit logical gates. In the classical case, the two-bit gates take two input bits

and produce one output bit. Any function on bits can be obtained from the

composition of the NOT gate and the AND gate: the gates form a universal set

of classical gates.

For the two qubit gates, the generalization to the quantum case is not quite as

straightforward as for the case of the NOT gate. The reason is that unitary

quantum gates are always reversible, since the inverse of a unitary matrix is also

a unitary matrix, and thus any quantum gate can always be inverted by another

quantum gate. The classical gates, on the other hand, are not reversible. An

example for a quantum two qubit gate is the CNOT gate that takes one of the

input qubits as a control qubit and the other one as a target qubit. If the value of

the control qubit is 0, the target qubit is not changed. If the control qubit is set to

1, the target qubit is flipped: |00〉 → |00〉 ; |01〉 → |01〉 ; |10〉 → |11〉 ; |11〉 → |10〉.

In Chapter 3, we will consider another example of a two qubit gate: the so called

Bell gate, which acts as

|00〉 → |00〉+ |11〉√
2

, |11〉 → −|00〉 − |11〉√
2

,

|01〉 → |01〉+ |10〉√
2

, |10〉 → −|01〉 − |10〉√
2

. (2.2)

A universal set of quantum gates can be constructed from a two qubit gate,

such as the CNOT gate or the Bell gate, along with single qubit gates [Deutsch

et al., 1995,DiVincenzo, 1995]. Any multiple qubit logic gate may be realized by

combinations of these gates.

2.1.3 Quantum Memory and Error Correction

For classical information, storing devices such as CDs are susceptible to bit flip

errors. That means that single bits of information can change their value. A
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simple error correction scheme to protect the information is given by redundant

information encoding, for example 0 → 000 and 1 → 111. If one bit is flipped,

this can clearly be detected when looking at the three bits, and the erroneous bit

can be flipped back. Encoding the information in more than three copies saves

the information from more than one bit flips.

In the context of error resistance, the no-cloning theorem [Wootters and Zurek,

1982] implicates an important difference between classical and quantum compu-

tation. Whereas in classical computation the information can easily be copied, it

is impossible to generate a copy of an unknown quantum state. The no-cloning

theorem is of fundamental importance for the robustness to errors both in the

storage and the processing of quantum information.

We illustrate the main differences between the treatment of errors in classical

and quantum computation using the simple (and by far not the most efficient)

example of classical error correction mentioned above.

• Classical error correction uses copies of the bit for redundant encoding. In

contrast, quantum information cannot be copied (no cloning theorem)

• Even if quantum information could be redundantly encoded, measuring a

quantum state causes its disturbance. A simple classical error correction

scheme measures the bits in the code to detect and correct the errors, which

is not possible for qubits.

• Quantum information has more possibilities to become faulty than classi-

cal information. In addition to bit flip errors described above, which in the

quantum case are given by |0〉 → |1〉 |1〉 → |0〉, there can also be phase

errors, |0〉 → |0〉 |1〉 → − |1〉, which have serious impacts on the infor-

mation, as they can transform a state 1√
2
[|0〉+ |1〉] to the orthogonal state

1√
2
[|0〉 − |1〉].

• Quantum information evolves ideally by unitary transformation and is con-

tinuous. If a qubit is intended to be in the state a |0〉+ b |1〉; an error might

change a and b by an amount of order ε, and these small errors can accu-

mulate over time. The classical method is only designed to correct large

(bit flip) errors.
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In order to achieve reliable results in quantum computing, tools to correct errors

and to perform computation that can handle a certain level of errors are needed.

Several approaches to quantum error correction and fault tolerant quantum com-

putation have been proposed. There are two conceptually different approaches to

confront the problem: additional error correction and intrinsic noise resistance.

The first approach includes protocols for quantum error correction [Shor, 1995],

[Steane, 1996]. They are somewhat similar to the classical case in that the er-

ror correction is performed by additional operations. Fault tolerant quantum

computation has been introduced by Peter Shor [Shor, 1996]; a review is given

in [Gottesman, 1997]. The protocols make reliable quantum information process-

ing possible in principle. Yet, depending on the complexity of the calculation, a

huge overhead of computation time and resources arises.

The second approach relies on an intrinsic resistance to errors inherent to the

physical hardware. As an example, Kitaev proposed a model for fault-tolerant

quantum computation using topological features [Kitaev, 1997]. In Chapter 3,

we propose an implementation of a universal set of quantum gates in a trapped

ion chain. In our approach, a high resistance to errors is achieved intrinsically by

encoding the information in a distributed way.

2.2 Classical Neural Networks

Neural Network science grew out of attempts to mimic biological neural systems

by modeling the structure of the human or animal brain. The first Artificial Neu-

ral Networks is dated back to 1943, when Warren McCulloch and Walter Pitts

constructed a simple neural network with electrical circuits. During the following

years, research effort within the field was directed towards an artificial modeling

of the human brain. As the ambiguous goal could not be achieved, Neural Net-

work science experienced a regression that lasted until the 1980s. In 1982, John

Hopfield gave new impulses to Artificial Neural Network science, focusing on the

development of useful devices based on Neural Networks [Hopfield, 1982,Amit,

1989]. Instead of attempting to model the full human brain, he introduced a

model of a physical system which exhibits some of the properties of the classi-

cal information processing in the brain. Before discussing the Hopfield model of

neural networks, we review a few basic characteristics of the brain.
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2.2.1 Neurophysiological Background

The brain is principally composed of a very large number of massively inter-

connected neurons. Each neuron is a specialized cell which can propagate an

electrochemical signal. The neuron has a branching input structure (the den-

drites), a cell body, and a branching output structure (the axon). The axons of

one cell connect to the dendrites of another via a synapse. When a neuron is

activated, it fires an electrochemical signal along the axon. This signal crosses

the synapses to other neurons, which may in turn fire. The neurons can thus in-

terchange signals even between distant parts of the brain. A neuron is activated,

if the total signal received at the cell body from the dendrites exceeds a certain

level determined by the firing threshold. The strength of the signal received by

a neuron depends on the efficacy of the synapses. The efficacy characterizes the

connection between the neurons. If one neuron is activated and thus fires a sig-

nal, the synaptic efficacies determine how much of it will be received by every

connected neuron. Even though the real brain is highly complicated, even with

simple models one can recover some of the features of the information processing

and storage.

2.2.2 Modeling of the Brain

Among the various models in neural network science, an important group are

attractive networks, where the network has stable states that are attractors.

When the system is in such a stable state, it dissipates back into the state after

an outer disturbance. A pattern is recalled, if under the influence of a stimulus

the Artificial Neural Network drifts rapidly into an attractor such as a fixed

point. When the network reaches a fixed point, it remains in the same state in

every cycle. The neurons go on firing, but the synaptic efficacies reproduce the

same list of active and inactive neurons. The rapid arrival at the fixed point can

be identified as a recall from memory of the pattern corresponding to the state

which is fixed. This state is recalled by its similarity to the external stimulus.

The fixed point is the simplest kind of attractor. It ”attracts”, in the sense that

the dynamics cause the trajectories from many initial points to flow into it. An

attractor state can be illustrated by means of the motion of a ball in a landscape

(see Fig. 2.2). In this analogy, the recognition pattern is identified with the
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Figure 2.2: The pattern recognition in an associative memory can be visualized

by an energy landscape: The local minima illustrate the stored patterns. In the

picture, the ball is placed on a slope, which corresponds to a not yet recognized

pattern. The arrow indicates the recognition process, in which the ball is pulled

into the closest valley.

location of each bottom of the valleys, whereas the not yet recognized patterns

are visualized as the position of a ball on slope or the top of a hill. During the

recognition process, the ball is pulled into the closest valley.

A physical system can be used as associative memory if any prescribed set of

states can be turned into stable states of the system. In the analogy of the

landscape picture, the requirement translates to the possibility of shaping the

landscape. All significant cognitive events, such a retrieval from memory and

recognition, take place on the level of the network. Summarizing, there are

three conditions for an associative memory: 1) The system has stable states that

model a memory. 2) The stable states are attractors, which models the capacity

of recognition. 3) The ”energy landscape” of network states can be modified,

which models the process of learning in the sense of building up new memories.

In the following section, we discuss how these requirements are implemented in

the Hopfield model of neural networks.

2.2.3 The Hopfield Neural Network model

John Hopfield proposed a model for information processing on a network of a large

number of simple equivalent components [Hopfield, 1982]. The Hopfield Neural

Network is constructed from identical neurons which can be in either one of the

two possible states: firing, or not firing, described by the variable S = ±1, where

S = +1 stands for a firing neuron, and S = −1 for a resting one. The firing state is

activated if the action potential in the neuron reaches a given threshold. The state
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of a neuron i changes in time depending on the incoming potential, which depends

on all incoming signals. In order to calculate the potential that reaches neuron

i, one has to consider two facts: Firstly, which ones of the connected neurons

are active and thus fire an electrochemical potential. Secondly, the synaptic

efficacy of the connection that determine what fraction of the signal reaches each

connected neuron. The synaptic efficacy is described by the parameter Jij , which

determines the amount of post-synaptic potential that would be added to the

neuron i if channel j were activated. In Fig. 2.1 d, we show a schematic view of a

Hopfield network consisting of four neurons. The black and white dots represent

the neurons that are in one of the two possible states. The connection between

the neurons is described by Jij.

In a given time slice, it can be registered which neuron is carrying an action

potential and is thus in its firing state and which is not. The distribution of firing

neurons at any moment determines the synapses which will receive a signal. The

list of synaptic efficacies determines how much of the signal every neuron receives.

This is the essential information needed by a neuron in order to compute its next

state - either firing or not firing - which is what keeps information processing

going.

The Hopfield model assumes symmetric efficacies, Jij = Jji and the absence of

self-interaction, Jii = 0. An energy function H is introduced as

H = −1

2

N
∑

i,j

JijSiSj + h
N
∑

i

Si, (2.3)

where the first term describes the dynamics of the system and the second term

represents external inputs. The function is called ”energy”, as the network state

keeps changing until a local minimum of the energy function is reached.

The learning, or storage of information in the system is achieved, if the stored

states are stable under the dynamics and correspond to a so called attractor state.

The stored patterns are N -bit words, denoted by {ξµ
i } = ±1.
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We illustrate some possible patterns for a toy system of four neurons. Again, the

black and white dots represent the state of the neuron.
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In total, there are 2N different combinations {ξµ
i }. The storage prescription in

the Hopfield network is based on the so called Hebb rule [Hebb, 1949] and is given

by (see e.g. [Amit et al., 1985])

Jij =
1

N

p
∑

µ=1

ξµ
i ξµ

j . (2.4)

The Hopfield network with the Hebb rule has a maximum storage capacity of

p = 0.14N [Amit et al., 1985]. It is probably the simplest example of a binary

model which describes some of the characteristic properties of neural networks,

such as attractor states and finite storage capacity.

In this thesis, we explore the possibility of taking advantage of some of these

features for quantum information tasks. We study mechanisms to encode infor-

mation and quantum fluctuations in many-body quantum systems that exhibit

global emergent behavior. For this purpose, we study systems with long range

interactions.

2.3 Complex Quantum Systems

One of the characteristic properties of the couplings given by the Hebb rule in Eq.

2.4 is their long-range nature. Indeed, the existence of many metastable states

in the Hopfield neural network is a consequence of the long-range couplings. Let

us therefore discuss two different approaches for the realization of many-body

quantum systems with long range interactions: A chain of ions in a trap and

atoms or molecules in an optical lattice. Furthermore, we study other complex

quantum systems with no long-range interactions that exhibit paradigm behavior
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Figure 2.3: First vibrational modes for a chain of eight ions in a linear trap: a)

Center of mass mode, b) breathing mode, c) Egyptian mode. The arrows indicate

the motion of the ions. In the center of mass mode, the ions oscillate collectively

around their equilibrium position. In the breathing mode, the left half of the

ions moves in the directions contrary to the right half. In the Egyptian mode,

the outer four ions move in the opposite direction of the central ones.

such as quantum phase transitions.

2.3.1 Trapped Ion Chain

Trapped ions play an important role in the experimental realization of quan-

tum computers [Häffner et al., 2008] and quantum simulators [Porras and Cirac,

2004b,Porras and Cirac, 2004a,Friedenauer et al., 2008,Hauke et al., 2010]. Typ-

ically, the ions are trapped in a linear trap, where the trapping potential along

one of the three trap axes is much weaker then along the other two, such that the

ions arrange in a string. In Fig. 2.1 e, we give a schematic view of a trapped ion

chain. The ions are subject to two main forces: the trapping potential and the

Coulomb repulsion. The competition between harmonic squeezing and Coulomb

repulsion results in oscillations of ions around its equilibrium positions. In Fig.

2.3 we illustrate the three lowest vibrational modes: The center of mass mode,

the breathing mode, and the so called Egyptian mode.

Trapped ions allow for a high level of control of individual ions. The states of the
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ions can be initialized with nearly perfect fidelity in a particular electronic state

via optical pumping techniques. The detection of individual ions is performed

with high fidelity by shining an appropriately tuned laser beam on the ion and

detecting the fluorescence signal.

In our work, we are interested in spin systems with long range interaction and

metastable states. Two internal states of a trapped ion can realize an effective

spin 1/2 system, and the vibrational motion provides a coupling between the

different spins. A realization of an effective spin-system with long range inter-

actions in a chain of trapped ions has been proposed [Mintert and Wunderlich,

2001,Wunderlich, 2002, Porras and Cirac, 2004b,Deng et al., 2004] and experi-

mentally demonstrated [Friedenauer et al., 2008].

The internal states of the ions are coupled to the motion by placing the ions in

an off-resonant standing wave, such that they experience a state-dependent a.c.

Stark shift. As a result, the system can realize an effective spin-spin Hamiltonian

with long range interactions mediated by the collective motion of the ions,

H = −1

2

∑

α,i,j

Jα
ijσ

α
i σα

j +
∑

α,i

Bα
i σα

i , (2.5)

Here, the coefficient α = x, y and z denote the spatial directions, i, j label the

ions and σ are the Pauli matrices. The coefficients Jα
ij depend on the forces

between the atoms, the mass of the ion and the amplitude and frequency of the

vibrational mode.

The interactions Jα
ij in Eq. (2.5) are given by

Jα
ij =

(F α
ij)

2

m

∑

n

Mα
i,nMα

j,n

ω2
α,n

, (2.6)

with α = x, y and z being the spatial directions, i, j labeling the ions, F α
ij the

forces in the α direction with which the j-th atom acts on the i-th one, m the

ion mass, and ωα,n the angular frequency of the nth vibrational mode. Mα
i,n are

the unitary matrices that diagonalize the vibrational Hamiltonian:

Mα
i,nκα

i,jM
α
j,m = ω2

α,nδnm, (2.7)

where κα
i,j are the elastic constants of the chain. The coefficient Mα

i,n gives the

scaled amplitude of the local oscillations of ion i around its equilibrium position
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when the collective vibrational mode n is excited. Thus, the eigenvectors of M

describe each ion’s contribution to a given vibrational mode, while the eigenvalues

provide the oscillation frequencies, ωα,n, of the collective modes (see Fig. 2.3).

The formal similarity of the Hamiltonian in eq. (2.5) to the Hopfield Hamiltonian

eq. (2.3) is evident. In Chapter 3, we propose the implementation of a classical

error resistant memory in the spirit of the Hopfield net in a trapped ion chain.

Furthermore, we consider a modification of the system of trapped ions that allows

for the manipulation of quantum states. We show that a set of quantum gates

can be realized, where the information is distributed over the whole system.

2.3.2 Bosons in Optical Lattices

In the previous section, we have discussed a trapped ion chain as an implementa-

tion of a many-body quantum system that can be used for the storage and pro-

cessing of quantum information in a global, distributed way. Another approach

to the experimental realization of controllable quantum many-body systems are

atoms in optical lattices. Optical lattices are realized by the interference patterns

of laser beams propagating in different directions. The atoms are trapped by op-

tical dipole forces and, depending on the detuning, are confined to the regions

with maximum or minimum laser intensity of the standing wave. That way, one

obtains a highly regular and controllable crystal of atoms. In Fig. 2.1 f, we depict

a schematic view of a system of atoms in an optical lattice.

Optical lattices are of interest for a wide range of applications, such as the study of

many-body effects in condensed matter physics or the implementation of devices

for quantum computing. For our purposes, dipolar atoms or molecules are of

particular interest, as long-range interactions can be achieved by dipole-dipole

forces. It has been demonstrated theoretically that such systems with long range

interactions have a great variety of metastable states. These systems could work

as quantum multimode memory when mapping the fluctuation of light on the

atoms via the Faraday effect.

In comparison to the system of ions, optical lattices have the advantage that

very large systems can be created relatively easily [Bloch, 2008]. The control

and manipulation of single atoms within the system is challenging, however, the

detection of single atoms has been achieved recently [Bakr et al., 2010, Sherson
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et al., 2010]. In the second part of the thesis, Chapters 4-7, we consider the

detection and characterization of strongly correlated quantum systems by particle

counting. In the remaining part of this section, we recall some of the properties

of particles in optical lattices.

The Bose-Hubbard Model

We describe the Bose-Hubbard model as a paradigmatic model for the study of

strongly correlated systems in optical lattices. Fermionic particles in an optical

lattice can be described in a similar way. The dynamics of the atoms in the

lattice are determined by the tunneling rate between two sites and the on-site

interaction energy. The system is described by the Bose-Hubbard Hamiltonian,

H = −J
∑

〈i,j〉
a†iaj +

U

2

∑

i

n̂i(n̂i − 1)− µ
∑

i

ni. (2.8)

Here, a†i and ai are the bosonic creation and annihilation operators at site i,

ni is the associated number operator, µ is the uniform chemical potential and

〈i, j〉 stands for the nearest neighbor pairs. The strength of the tunneling term is

characterized by the hopping amplitude J . The interaction between two atoms

on a single site is described by the the on-site interaction U .

For shallow lattice potentials, i.e. in the limit J ≥ U , where the tunneling

term dominates the Hamiltonian, the system is in a superfluid (SF) phase. The

ground-state energy is minimized if the single-particle wavefunctions are spread

out over the entire lattice. The many-body ground state is then given by

|ΨSF 〉 ∝
(

M
∑

i=1

a†i

)N

|0〉, (2.9)

where N is the number of atoms and M is the number of lattice sites. This state

is characterized by a long-range phase coherence throughout the lattice.

For deep lattice potentials, i.e. in the limit U ≫ J , where the on-site interactions

dominate, the system is in a Mott-insulating (MI) phase. The ground state

consists of localized atomic wave functions with a fixed number of atoms per site.

The many-body ground state is a product of local Fock states, given by

|ΨMI〉 =
∏

i

|ni〉 .
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Here, |n〉 is the n-particle Fock state, defined as

|n〉 =
1√
n!

(a†)n|0〉. (2.10)

As the ratio U/J between the on-site interactions and the tunneling rate changes,

the system undergoes a quantum phase transition from the SF to the MI phase

[Fisher et al., 1989, Jaksch et al., 1998]. Experimentally, it was observed for the

first time by analyzing the interference pattern after an expansion of the atoms

released from the lattice [Greiner et al., 2002].

Metastable States

In the Bose-Hubbard-Hamiltonian in eq. (2.8), only interactions between neigh-

boring sites are considered. It was observed that when introducing long range

interactions between the atoms, new phases appear, both in the SF [Batrouni

and Scalettar, 2000, Sengupta et al., 2005] and MI [Kovrizhin et al., 2005,Góral

et al., 2002] region of the phase diagram. Such long-range interactions can be

induced by dipole-dipole interactions Udd. This is true because the dipole-dipole

potential decays as Udd ∝ 1/r3, whereas the van der Waals potential is propor-

tional to 1/r6. In [Menotti et al., 2007,Trefzger et al., 2008] it was shown that for

dipolar atoms or molecules in a two dimensional optical lattice, the long range

interactions induced by the permanent dipole moment of the atoms provide the

system with a rich phase diagram with a large number of metastable states that

are local energy minima. These metastable states typically consist of localized

atoms following a specific pattern, where the average number of atoms per site

in general is not integer. An example is the so-called checkerboard phase, where

the sites are alternately empty and occupied.

In order to make use of the characteristic features of such systems, it is essential to

develop methods to experimentally prepare and detect these metastable states. In

[Trefzger et al., 2008] it was shown, that the states with the desired configuration

can be prepared by using superlattices, where the dipole-dipole interactions allow

for a stable configuration even after removing the superlattice. Furthermore,

the transfer from one metastable configuration to another can be achieved in

a quantum controlled process using superlattices. For a review over the recent

experimental and theoretical advances, see [Lahaye et al., 2009].
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The detection of the different metastable states can be achieved by analyzing

the spatial noise correlations in the time of flight images (see Sect. 2.4.1). This

method in principle allows for the characterization of the geometry of the density

pattern in the lattice as well as the presence of defects in the pattern. However,

the required signal to noise ratio for the detection of defects is beyond present

experimental possibilities. In our work, we explore the possibility of detecting

the metastable states by particle counting (see Chapter 6).

The recent development of the quantum gas microscope technique allows for the

detection of atoms at single sites [Bakr et al., 2009, Sherson et al., 2010]. This

technique could, in principle, be used to observed the density distributions of

different metastable states.

2.3.3 Anisotropic Quantum xy-Model

Apart from systems with long-range interactions and metastable states, we con-

sider other systems that present paradigm models in many-body quantum me-

chanics. Spin models play an important role in a variety of research fields of

physics. They are of fundamental interest to describe phenomena in condensed

matter physics [Schollwöck et al., 2004], and are of great importance for quantum

information science. The connection between entanglement and dynamic many-

body properties like quantum phase transitions (QPTs) has attracted much in-

terest [Osterloh et al., 2002, Plenio and Virmani, 2007], and a wide range of

proposals for quantum computing concern spin models (see e.g. [Briegel et al.,

2009,Micheli et al., 2006]).

In Chapter 5, we consider the anisotropic XY spin model [Katsura, 1962,Pfeuty,

1970, Barouch et al., 1970, Barouch and McCoy, 1971a, Barouch and McCoy,

1971b] as a paradigmatic model for a many-body quantum system that exhibits

a quantum phase transition. In particular, we are interested in the detection of

the many-body properties of the system by spin counting. The Hamiltonian is

given by

Hxy = −J
N
∑

j=1

[

(1 + γ)Sx
j Sx

j+1 + (1− γ)Sy
j Sy

j+1 + gSz
j

]

, (2.11)

where Sα
j are the spin 1/2 operators at site j, J is the coupling strength, 0 < γ < 1

is the anisotropy parameter, and g is the parameter of the transverse field. The
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case γ = 1 corresponds to the Ising model in a transverse field. For γ = 0, the

system corresponds to the isotropic XY-model or XX-model. It is well known that

the system exhibits a quantum phase transition driven by the transverse magnetic

field g [Sachdev, 2001]. The extreme cases g = 0 and g = ∞, correspond to

systems with no external field and with no interactions, respectively. The phase

transition between the states with different orientations of the magnetization

takes place at g = 1. For small transverse fields, g < 1, the ground state has

magnetic long-range order and the excitations correspond to kinks in domain

walls. For high transverse fields, g > 1, the system is in a quantum paramagnetic

state.

The special cases γ = 0 and γ = ±1 can be realized with single species bosons

in the hard core (i.e. strongly repulsive) bosons limit [Sachdev, 2001,Lewenstein

et al., 2007]. Another possibility is to use a chain of double-well sites filled with

bosons interacting via weak dipolar forces [Dorner et al., 2003]. In general, one

should use a two-component Bose-Bose or Fermi-Fermi mixture in the strong

coupling limit, and in the Mott insulator state with one atom per site. The

two components provide then the two components of (pseudo) spin-1/2. Spin-

spin interactions are induced by exchange mechanism via virtual tunnelings of

atoms [Auerbach, 1994,Anderlini et al., 2007,Trotzky et al., 2008]. The system is

then described by an asymmetric (XXZ) Heisenberg model (see e.g. [Lewenstein

et al., 2007,Wehr et al., 2006]) in the Z-oriented field. By appropriate tuning of

the scattering lengths via Feshbach resonances, one can set the Sz
j+1S

z
j coupling

to zero, i.e. achieve the XX model in the transverse field. In order to achieve the

asymmetry γ, one should additionally introduce tunneling assisted with a laser

or microwave induced double spin flip. For this aim, one should make use of

the resonance between the virtual on-site two atom “up-up” and “down-down”

states, without disturbing “up-down” configurations.

The anisotropic XY model eq. (2.11) can be transformed to a system of non-

interacting fermions by the Jordan-Wigner transformation [Jordan and Wigner,

1928, Sachdev, 2001], followed by Fourier and Bogoliubov transformations. Let

us outline the basic steps. First, the spin operators are written as

Sx
j =

1

2
(b†j + bj), Sy

j =
1

2i
(b†j − bj), Sz

j = (b†jbj −
1

2
),

where the operators bi are defined in terms of the Fermi operators (ci, c
†
i) in the
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following way:

bj = exp(−πi

j−1
∑

k=1

c†kck)cj, b†j = c†j exp(πi

j−1
∑

k=1

c†kck). (2.12)

Let us note that the Jordan-Wigner transformation works for open chains, and in

particular for an infinite chain. We will nevertheless assume periodic boundary

conditions. For large N , this procedure gives the right leading behavior.

Inserting eqs. (2.12) and (2.12) into eq. (2.11), we obtain the fermionic Hamil-

tonian

Ĥ = −J
N
∑

j=1

(ĉ†j ĉj+1 + γĉ†j ĉ
†
j+1 + h.c.− 2gĉ†j ĉj + g). (2.13)

Here, ĉ†j denotes the creation of a fermion on site j, N is the number of sites, J

is the energy associated to fermion tunneling to nearest-neighbor lattice sites, g

is proportional to the chemical potential of the system and γ accounts for the

formation of pairs between consecutive sites.

Performing a Fourier transform,

ĉ†k =
1√
N

N
∑

j=1

exp(ijΦk)ĉ
†
j , (2.14)

the Hamiltonian eq. (2.13) reads

H =
J

2

∑

k

2(g − cos(Φk)c
†
kck)− iγ sin(Φk)(c

†
−kc

†
k + c−kck), (2.15)

where Φk = 2πk/N . Finally, eq. (2.15) is diagonalized by a Bogoliubov transfor-

mation. The Hamiltonian reduces, up to a zero energy shift, to the noninteracting

fermionic Hamiltonian

Ĥ =

N/2
∑

k=1

Ĥk =

N/2
∑

k=1

Ekn̂
d
k, (2.16)

where

n̂d
k = d̂†kd̂k + d̂†−kd̂−k (2.17)

d̂k = ukĉk − ivkĉ
†
−k, d†k = ukĉ

†
k + ivkĉ−k, (2.18)

uk = cos θk

2
, vk = sin θk

2
, (2.19)

Ek = J
√

(cos Φk − g)2 + γ2 sin2 Φk, (2.20)

tan θk = γ sin Φk

cos Φk−g
, (2.21)
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In order to recover the Hamiltonian (2.13), for (cos Φk−g) < 0 the solution of eq.

(2.21) is taken from the (π
2
, 3π

2
)-branch of the tangent, whereas for (cos Φk−g) < 0

it is taken from the (−π
2
, π

2
)-branch.

It can be seen from eq. (2.19) that the coefficients u2
k and v2

k change their roles

at the phase transition such that on one side of the critical point, the number

operator of the quasiparticles d̂†kd̂k corresponds to ĉ†kĉk, whereas on the other side

it corresponds to ĉkĉ
†
k.

From eqs. (2.12)-(2.12) it is clear that, up to a constant, the spin operator Sz
j

corresponds to the number operator for the fermions c†jcj. This allows us to

use the formalism for fermion counting to study the spin counting statistics. In

Chapter 5, we show that the quantum phase transition is visible in the mean and

variance of the spin counting distribution of Sz
j .

2.3.4 Fermions in Optical Lattices

In the previous section, we considered the Jordan Wigner transform, which de-

scribes a mapping between spins and fermions. The anisotropic XY model is

mapped onto a system of strongly correlated fermions described by the Hamil-

tonian eq. (2.13). The study of strongly correlated fermions in optical lattices

is of great interest, as they provide highly controllable systems that resemble

correlated electron systems in condensed matter.

Quantum degenerate fermionic atoms trapped in optical lattices [Jördens et al.,

2008] may become superfluid if there are attractive interactions between atoms

trapped in two different hyperfine states [Chin et al., 2006]. Attractive fermions

form pairs analogous to Cooper pairs in superconductors. A one component sys-

tem of fermions trapped in the same hyperfine state may also become superfluid

though not in s-wave configurations. Such a system, in the 1D case, can be de-

scribed by the Hamiltonian eq. (2.13), where the term proportional to γ describes

the pairing of particles.

One way to realize such Hamiltonians with ultracold atoms is to use a Fermi-

Bose mixture in the strong coupling limit. In this limit, the low energy physics is

well described by fermionic composites theory [Lewenstein et al., 2004], in which

fermions form composite objects with a certain number of bosons, or bosonic



2.4 Detection of Quantum Many-Body Systems 28

holes repectively. The fermionic composites undergo tunneling and interact via

nearest neighbor interactions, which may be repulsive or attractive, weak or

strong, depending on the original parameters of the system, such as scattering

lengths, etc. In the case of weak attractive interactions, the system undergoes, at

zero temperature, a transition into a “p-wave” superfluid, described well by the

Bardeen-Cooper-Schrieffer (BCS) theory [Leggett, 2006], corresponding exactly

to the Hamiltonian (2.13).

In Chapter 5, we study the quantum many-body properties of the fermionic

system eq. (2.13) by fermion counting. In particular, we are interested in the

effect of temperature. We show that the phase transition is visible when the

temperature is small compared to the system energy. Furthermore, we show

that the breaking of fermionic pairs as temperature increases is reflected in the

counting distribution.

2.4 Detection of Quantum Many-Body Systems

In this Section, we review some of the main methods for the detection of quantum

many-body systems.

We first discuss the time of flight (TOF) absorption imaging, which gives access to

the first-order correlation functions. The detection of strongly-correlated systems

requires the measurement of second or higher order correlation functions, which

can be experimentally accessed through noise interferometry. Further methods

for the detection of strongly correlated systems are modulation- and Bragg spec-

troscopy. Finally, we discuss experimental techniques for particle counting.

In Chapter 4-7, analyze the detection of various cold atomic systems by particle

counting. As a well known example, photon counting has been a key element for

the characterization of the quantum properties of light. As for the case of photons,

interesting quantum properties of atomic systems can be detected by particle

counting. In particular, the counting statistics give insight into the characteristic

many-body behavior of strongly correlated systems.
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2.4.1 Time of Flight Absorption Imaging

The TOF absorption imaging is used routinely in experiments with cold atoms.

The atomic cloud is imaged after a free ballistic expansion. The spatial density

distribution of the cloud is measured by illuminating it with resonant laser light,

which is absorbed by the cloud and the shadow can be measured with a charge

coupled device (CCD) camera. Properties of the system which are related to

phase correlations appear as spatial structures after the TOF expansion and can

usually be measured very well with this kind of imaging technique [Fölling, 2008].

The TOF absorption imaging gives access to phase correlations between lattice

sites. In the Mott Insulator regime, where particles at different lattice sites are

uncorrelated, the TOF distribution is determined by the on-site properties of the

atoms in the lattice. All atoms from each site are released fully independently

of all other sites, and the image is a featureless Gaussian. However, each single

shot image exhibits significant fluctuations around the average value. In the SF,

the fourier transform of the zero momentum distribution is reflected in the TOF

absorption image.

2.4.2 Noise Interferometry

The analysis of the image noise can reveal higher order interference patterns orig-

inating from the spatial ordering in quantum systems. Noise interferometry was

proposed in [Altman et al., 2004] as a means to study the properties of strongly

correlated systems of ultracold atoms. A well known example for the spatial

correlations of atoms after a TOF period is the Hanbury Brown-Twiss (HBT)

effect [Hanbury-Brown and Twiss, 1956a,Hanbury-Brown and Twiss, 1956b]. In

their original work, Hanbury Brown and Twiss observed photons emitted from

a star using two detectors. They found that when a photon was detected on

one of the detectors, it was highly likely that at the same time a photon would

be detected at the other one. This ’bunching’ is characteristic for all bosonic

particles, whereas for fermions an ’antibunching’ is observed.

In optical lattices, the second order correlations reflect the spatial distribution

of the atoms inside the lattice and have been experimentally measured for the

first time in the atom shot noise of the two dimensional density distribution

measured by TOF absorption imaging in [Greiner et al., 2002]. In [Rom et al.,
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2006], the antibunching of free neutral fermionic atoms was demonstrated using

noise interferometry for a degenerate single component Fermi gas released from

a three dimensional optical lattice potential. The detection of the metastable

states of systems with dipolar atoms or molecules in optical lattices using noise

interferometry was proposed in [Trefzger et al., 2008].

2.4.3 Modulation- and Bragg Spectroscopy

Bragg spectroscopy has been proposed and applied as a method for probing many-

body quantum systems. The method can be considered as an analog to inelastic

neutron scattering for solids. In [Rey et al., 2005] and [van Oosten et al., 2005],

Bragg spectroscopy of ultracold atoms is proposed for probing the excitation

spectrum in the Mott-insulator phase in a one-dimensional (1D) optical lattice.

It is shown that Bragg spectroscopy is an experimental technique with the po-

tential to thoroughly characterize the Mott phase. In the experiment in [Ernst

et al., 2010], see also [Moritz, 2010], the evolution of the quasiparticle spectrum

for a superfluid system is monitored as the system is tuned from the weakly to

the strongly interacting regime, where they achieve access to the whole excita-

tion spectrum by momentum-resolved Bragg spectroscopy. The recent advances

show, that Bragg spectroscopy can contribute to the understanding of strongly

correlated quantum systems.

Using modulation spectroscopy [Kollath et al., 2006, Jördens et al., 2008], the

system is probed by applying a periodic modulation of the lattice potential. The

thereby induced double occupancies are used to infer the state of the system.

2.4.4 Atom Counting

Particle counting gives access to high order quantum correlations. The counting

technique has been applied extensively to characterize different quantum states

of light, and recent experimental advances open new possibilities to access the

counting statistics of massive particles. As for the case of photons, the count-

ing statistics can reveal the quantum properties of many-body systems and can

be applied as a further method for detecting strongly correlated systems. The

counting of many-body systems can be performed in-situ inside the lattice, or
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Figure 2.4: Sketch of the experimental setup used in the experiment by Bakr et

al. At the bottom, atoms (shown in red) are trapped in a lattice. The atoms are

imaged in situ in the lattice by a high-resolution imaging system. Source: M.

Greiner Lab.

after opening the potential and letting the particles fall onto a detector, such as

a micro-channel plate.

The in-situ detection of individual atoms in optical lattices has recently become

available [Sherson et al., 2010,Bakr et al., 2010]. Single-site resolution is achieved

by fluorescence imaging using a high-resolution objective functioning as a micro-

scope (Fig. 2.4). With these techniques provide direct access to the counting

statistics of the atoms in the lattice. In the experiment of [Sherson et al., 2010],

high resolution imaging of strongly interacting bosonic Mott insulators in an

optical lattice with single-atom and single-site resolution is achieved. In the ex-

periment of [Bakr et al., 2010], single atom and single lattice site imaging is

applied to investigate the Bose-Hubbard model on a microscopic level. A space-

and time-resolved characterization of the number statistics across the superfluid-

Mott insulator quantum phase transition is obtained. The experiment of [Gericke

et al., 2008] provided the first experimental demonstration of single-site address-

ability in a sub-micrometre optical lattice. In [Gemelke et al., 2009], the density

profiles of a of a two-dimensional ultracold atomic gas that crosses the superfluid

to Mott insulator transition are obtained by direct in-situ imaging. In [Campbell

et al., 2006] the SF-MI transition was probed by using microwave spectroscopy.
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Sites with different occupation numbers are distinguished and are directly im-

aged for occupation numbers from one to five. In [Cheinet et al., 2008], the atom

number distribution of an ultracold degenerate cloud of 87Rb in the superfluid or

strongly interacting regime of a Mott Insulator is fully determined by observing

the interaction blockade-induced tunneling resonances.

The first precise detection experiments were performed in an expanding cloud

of metastable atoms that fall onto a micro-channel plate. The experimental

progress was stimulated by the observation of a Bose-Einstein condensate in a

dilute gas of metastable Helium [Pereira Dos Santos et al., 2001]. In the exper-

iment in [Schellekens et al., 2005], the Hanbury Brown Twiss effect is observed

for a thermal cloud of ultracold bosons after a free expansion. In the experiment

in [Jeltes et al., 2007] (see also [Lewenstein, 2007]), the Hanbury Brown-Twiss

effect for bosons (4He) and fermions (3He) is compared in the same apparatus.

In their experiment, a cold cloud of metastable helium atoms is released from a

magnetic trap. The cloud expands and falls under the effect of gravity onto a

time-resolved and position-sensitive detector (micro-channel plate and delay-line

anode) that detects single atoms (See Fig. 2.5). In principle, the experimental

data allows for the reconstruction of the complete counting distribution of the

atoms.

In [Öttl et al., 2005], the full counting statistics of single atoms extracted from

a weakly interacting Bose-Einstein condensate of 87Rb atoms is measured. The

detection takes place in a high-finesse optical cavity, where single atom transits

are identified (See Fig. 2.6). In that way, the bosonic counting statistics and the

bosonic Hanbury Brown Twiss effect are measured.

2.4.5 Spin counting

Furthermore, we are interested in the counting statistics of the total spin for atoms

with spin or pseudospin degrees of freedom. The spin counting can be achieved

via quantum nondemolition polarization spectroscopy (QNDPS). The idea relies

on the coupling between the z-component of the total atomic spin, Sz , and the

z-component Jz of the Stokes vector of the light (see e.g. [Julsgaard, 2003]). The

coupling is based on the quantum Faraday effect: a polarized light beam that

passes through the atomic sample undergoes a polarization rotation. The atomic
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Figure 2.5: Sketch of the experiment by Jeltes et al. A cold cloud of metastable

helium atoms is released from a magnetic trap. The cloud expands and falls in the

gravitational field onto a microchannel plate and delay-line anode that detects

single atoms. The inset illustrates the interference between the two 2-particle

amplitudes that lead to bunching or antibunching. Source: [Jeltes et al., 2007]
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Figure 2.6: Sketch of the experimental setup by Öttl et al. A weak continuous

atom laser beam is released from a Bose- Einstein condensate and enters a high-

finesse optical cavity, where single atoms in the beam are detected. Source: [Öttl

et al., 2005]

fluctuations thus leave a measurable imprint on the quantum fluctuations of the

light, and vice versa. The idea has been experimental demonstrated in [Sørensen

et al., 1998]. The method works also for degenerate atomic gases [Eckert et al.,

2007] and allows for spatial resolution, when standing laser beams are employed

[Eckert et al., 2008] (See Fig. 2.7).
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Figure 2.7: Sketch of the proposal of Eckert et al. The spins are trapped in an

optical lattice (red) and are detected in situ in the lattice using a standing wave

(yellow). The polarization of the light rotates due to the coupling to the atomic

spins. The polarization rotation, proportional to the atomic spin, is measured

using a homodyne detector. Source: [Eckert et al., 2008]
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Chapter 3

Neural Network Models in a

Trapped Ion Chain:

Manipulation of Classical and

Quantum Information

In this chapter, we propose to make use of the many-body features of a trapped

ion chain for the error resistant storage and processing of information - both

classical and quantum.

In Sect. 3.1, we focus on the implementation of a classical neural network in a

trapped ion chain. We study the error resistance of the model and show that

different patterns of the spin system can be stored with high fidelity.

In Sect. 3.2, we propose the implementation of a device for quantum computing

in a chain of trapped ions. We discuss the implementation of the system and

show that one-qubit and two-qubit gates can be performed. Furthermore, we

study the effects of noise on the system and show that the gate protocols are

resistant to high levels of noise.
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3.1 Classical Neural Network in Trapped Ion

Chain

Ions in a trap allow for the implementation of a pseudo spin-1/2 system with long

range interactions (see Sect. 2.3.1). In this section, we propose an implementation

of a neural-network like system for the storage of classical information and show

that the system is resistant to a high level of noise.

3.1.1 Implementation

Our aim is to realize the Hopfield Hamiltonian eq. (2.3) with a trapped ion chain.

We consider a system of the form of eq. (2.5), where we choose a confining

potential that is much weaker in one of the three directions, ωx,1 = ωy,1 ≫
ωz,1, such that the ions crystalize in a linear chain in z-direction. We consider

external forces that act only on the z-axis and assume zero magnetic fields Bi = 0.

Furthermore, the Pauli matrices are substituted by classical Ising spins S = ±1,

where the effective spin corresponds to the internal state of the ion. The system

Hamiltonian thus reads

H = −1

2

∑

i,j

JijSiSj , where Jij =
(Fij)

2

m

∑

n

Mi,nMj,n

ω2
n

(3.1)

and Mi,n denotes the scaled amplitude of the local oscillations of ion i around its

equilibrium position when the collective vibrational mode n is excited. Eq. (2.3)

with the interactions given by eq. (2.4) and (3.1) are of the same form and the

possibility to implement a classical neural network using a linear chain of ions

arises. We analyze the possibility of storing certain spin patterns as stable states

in the system.

The initial spin configuration is fixed by mimicking the signs of a given vibra-

tional mode. As illustrated by the arrows in Fig. 2.3, in the center of mass mode

the ions all move in the same direction. We thus chose an initial spin pattern in

which all the spins point in the same direction, |↑↑ ... ↑〉 and |↓↓ ... ↓〉. For the

breathing mode, the right half of the ions move in a direction opposite to the left

half, such that the spin patterns are given by |↑↑ ... ↑↓↓ ... ↓〉 and |↓↓ ... ↓↑↑ ... ↑〉
The patterns to be stored must have large basins of attraction, i.e. they should
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correspond to sufficiently different configurations of spins, so that each configu-

ration is dynamically recovered even if several spins are randomly flipped.

Before discussing the error resistance of the stored patterns, we point out some

important differences between the interactions Jij in the Hopfield model eq. (2.4),

and the spin model eq. (3.1). Let us recall that in the Hopfield model, the

interactions are determined by the patterns to be stored, {ξµ
i } = ±1, where each

pattern µ is an N -bit word with entries −1 and 1. In contrast, in the trapped ion

chain, the interactions are fixed by the vibrational modes and are not necessarily

equal to ±1. Furthermore, for the Hopfield network, the number p of stored

patterns in eq. (2.4) is bounded from above by p = 0.14N [Amit, 1989]. In

the ion chain model, the sum in the term Jij in Eq. (3.1) extends over all N

vibrational modes.

Another important difference is given by the fact, that in the Hopfield model all

the patterns have the same weight, while in the ion chain each vibrational mode

is weighted by 1/ω2
n. In [Pons et al., 2007] we show that the model depends

crucially on ratio of the frequencies of the vibrational modes.

The spectrum of the vibrational modes can be modified by changing the trapping

potential. For the harmonic trapping potential, the ratio between the first vibra-

tional mode (center of mass mode) and the second vibrational mode (breathing

mode) is given by ω2/ω1 =
√

3 [James, 1998], such that the requirement of degen-

eracy is not met. However, for the first two vibrational modes, the requirement

can be fulfilled using a modified trapping potential of the form V ∝| x |γ. In Fig.

3.1 a) we plot the ratio between the frequencies of the second and the first mode,

ω2/ω1, as a function of γ for the case of 20 ions. For N ≥ 20, this ratio does not

depend on the number of ions. For γ < 0.8, the ratio is close to one, such that we

choose the exemplary value of γ = 0.5 to implement the Hopfield neural network

on the chain or trapped ions.

3.1.2 Error Resistance of the Model

We probe the stability of the system by analyzing its response to external per-

turbations, such as spin flips. We first calculate the phonon spectrum, impose

the learning rule, and then probe the correlation between the dynamically stable

configurations and the stored ones.
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The first step consists in finding the equilibrium positions of the ions and calcu-

lating the vibrational modes and frequencies by using a standard diagonalization

procedure. Once the complete vibrational spectrum of the system is known, the

interactions among spins Jij are calculated, and the energy of the system is eval-

uated. The dynamical thermalization of the system is simulated using standard

Monte Carlo techniques.

Starting with the initial spin configuration, r spins are randomly flipped and

the system then evolves towards the equilibrium situation assuming a noiseless

scenario. If the system recovers the initial configuration, the configuration is

stable under the flip of r spins. The number of initial spin flips determines the

initial overlap, defined as mi = (N − r)/N . After dynamical evolution, the final

overlap is given by mj = (N−s)/N where s is the number of spins that differ from

the initial configuration. This process is repeated over M initial different random

r spin flips to evaluate statistically the final overlap with the initial configuration:

mf = (
∑N

j=1
mjnj)/M , nj being the number of times that the system reaches the

mj configuration. The value of the initial overlap for which significant decrease

of the final overlap occurs, is a good measure of the size of the basin of attraction

of the corresponding pattern. In Fig. 3.1 b), we plot the final overlap mf as

a function of the initial overlap mi for a system of N = 40 spins. We consider

the patterns corresponding to the first two vibrational modes. We show that the

fidelity is close to unity up to mi ≃ 0.8, which corresponds to eight spin flips.

The system does not always recover the initial pattern but instead sometimes

reaches a slightly deformed configuration, which differs only in one spin flip from

the original one.

3.2 The Quantum Neural Network Model

Let us now study a model of a Quantum Neural Network (QNN), which is based

on the classical neural network model discussed in the previous section. We show

that such a system could be used for the manipulation of quantum data. Just

like in classical neural networks, where the classical information is encoded in

distributed metastable minima of the whole network, the quantum information

is encoded in the patterns of the spin system. We are particularly interested in

the robustness to noise that results from the distributed information encoding.
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Figure 3.1: a) The ratio between the frequencies of the second and first vibrational

modes of the chain of trapped ions is determined by the exponent of the trapping

potential. In order to reproduce the Hopfield Neural Network model, the ratio

is required to be close to one. For a system of 20 Ca+ ions, the requirement is

fulfilled for ω2/ω1 < 0.8. The grey bar at γ = 1 marks the region where ω2/ω1

is not well defined since the second mode does not exist because of the constant

character of the force produced by the external potential. b) The associative

memory implemented in a trapped ion chain is probed by determining the rate

of recovery of the stored states from initially distorted states. For a system of

40 ions in a potential V = ρ|x|0.5 with ρ = 6.6 × 10−20J/m1/2, we plot the final

overlap averaged over 500 initial configurations as a function of the initial overlap,

for the spin pattern where all spins point in the same direction (blue squares)

and where the right half of the spins point in the opposite direction of the left

half (red circles). Up to a value of mi ≃ 0.8, which corresponds to eight spin

flips, the state is recovered with near unit fidelity.
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The qubit operations are implemented by adiabatically changing magnetic fields.

Below, it will be shown that quantum computing in a system described by the

QNN Hamiltonian is resistant to a high level of noise. The noise resistance is

achieved by encoding the quantum information distributed in the eigenstates of

the whole system.

Before discussing the implementation of the quantum neural network model, let

us note that adiabaticity has been proposed for quantum information processing

in the context of ”adiabatic quantum computation” (see [Farhi and Gutmann,

1998,Farhi et al., 2000,van Dam et al., 2001,Aharonov et al., 2007] and references

therein). However, the main difference between the above mentioned works and

our approach is that adiabatic quantum computation typically considers a certain

quantum algorithm, and depending on the algorithm, a certain Hamiltonian is

chosen. In our work, there is one single quantum Hamiltonian, that will be shown

below to be enough for all quantum algorithms, as the Hamiltonian implements

universal gates, which can be applied to simulate arbitrary quantum algorithms.

Let us now turn the discussion to our QNN model. Firstly, we describe the system

and define the qubit encoding. Secondly, we describe the gate implementations

and finally, we consider the robustness to noise.

3.2.1 The Quantum Neural Network Hamiltonian

We consider a system consisting of eight spin-1/2 particles with long range inter-

actions, that are subject to slowly changing external magnetic fields. As discussed

in Sect. 2.3.1, such a system can be implemented with ions in a trap, where two

internal states of each ion serve as the ”up” and ”down” states of the spin-1/2

particles, see [Mintert and Wunderlich, 2001,Wunderlich, 2002,Porras and Cirac,

2004b,Deng et al., 2004]. As in the classical case discussed in the previous section,

we assume F x
ij = F y

ij = 0 in eq. (2.6). The Hamiltonian then describes an Ising

interaction, which, in principle, can be long-range. The fields Bα
i in eq. (2.5) re-

main as external parameters that can be manipulated by the experimenter. Here,

we consider two time dependent fields: One in z-direction and one in x-direction.

We expand the system in the vibrational modes and keep the first three terms
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(see Fig. 2.3). The Hamiltonian reads

H(t) = −λ
[

r1

(

8
∑

i=1

σz
i

)2

+ r2

(

4
∑

i=1

σz
i −

8
∑

i=5

σz
i

)2

+ r3

(

2
∑

i=1

σz
i −

6
∑

i=3

σz
i +

8
∑

i=6

σz
i

)2

+A(t)(
8
∑

i=1

σx
i ) + B1(t)(

4
∑

i=1

σz
i ) + B2(t)(

8
∑

i=5

σz
i )
]

, (3.2)

where the term proportional to ri corresponds to the ith vibrational mode and

the ± signs indicate the movement of the particles with respect to each other, see

Fig. 2.3. The overall factor λ has the units of energy and makes the rest of the

parameters in the Hamiltonian dimensionless. The parameters A(t), B1(t) and

B2(t) correspond to the external magnetic fields. For the gate transformations

we consider below, the external fields are depicted in Fig. 3.2 a).

The time evolution of the system is given by the time dependent Schrödinger

equation,

i~
d

dt
|Ψ(t)〉 = H(t) |Ψ(t)〉 , (3.3)

The evolution is considered adiabatic, if the change of the Hamiltonian is small

compared to the gap g(s) between the energy levels, where we introduce the scale

factor s = t
T
. More precisely, the adiabatic condition is given by

T ≫ ~
‖ d

ds
H(s) ‖

g(s)2
, (3.4)

where ‖ A ‖ is the operator norm of A, defined as the square root of the maximal

eigenvalue of A†A. For the fields depicted in Fig 3.2 a) the dynamics of the five

lowest energy eigenvalues are shown in 3.2 b) for the indicated values of r1, r2 and

r3. The energy gap g(s) is defined as the minimum distance between neighboring

energy levels.

As discussed in Sect. (3.1), the Hamiltonian of the system depends crucially on

the geometry of the external trapping potential. For the case of a harmonic trap,

r1 is typically much greater than r2 and r3 and the terms corresponding to ri

for i > 3 are even smaller. However, for trap potentials of the form |x|γ , with

γ ≈ 0.5, one obtains a situation when r1 ≈ r2 ≫ r3. This latter case can be used

for implementing both one qubit and two qubit gates, as will be shown in the

following sections.
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Figure 3.2: a) The one-qubit H gate and the two qubit Bell gate are implemented

by an adiabatic change of the external fields in the Hamiltonian Eq. (3.2). We

plot the fields A(t), B1(t) = 10−5B(t) and B2(t)λ = 10−6B(t) in units of 1/λ. TH

corresponds to the time at which the fidelity of the H gate reaches its maximum

when the parameter r3 = 0 in Eq. (3.2). The adiabaticity condition requires

TH ≫ 7× 106
~/λ. b) Distribution of the five lowest energy levels of the Hamil-

tonian Eq. (3.2) for the time evolution given in Fig. a). Note that in the figure,

the energy gap between the ground state and the first excited state, as well as

that for the second excited and third excited state, are scaled up by a factor of

300 for better visibility.
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We implement the qubits as patterns of the spin system, where we define the |0〉
as the configuration for all spins ’up’, and det 1 as all spins ’down’,

|0〉 = |↑ ... ↑〉 |1〉 = |↓ ... ↓〉 , (3.5)

Initially, we fix the parameters of the external fields in such a way, that the four

lowest energy levels at t = 0 are given by

|G(0)〉 = |↑↑↑↑↑↑↑↑〉 , |E1(0)〉 = |↓↓↓↓↓↓↓↓〉 ,
|E2(0)〉 = |↑↑↑↑↓↓↓↓〉 , |E3(0)〉 = |↓↓↓↓↑↑↑↑〉 , (3.6)

where G denotes the ground state and E1, E2 and E3 the first, second and third

excited state. Starting from the initial configuration given in eq. (3.6), the qubit

gates are performed by adiabatically changing the external fields.

3.2.2 Gate implementations

The gates are implemented through an adiabatic evolution of the system Hamil-

tonian. The quantum adiabatic theorem [Born and Fock, 1928,Messiah, 1958]

states, that a physical system that is initially in one of its nondegenerate eigen-

states will remain in the corresponding instantaneous eigenstate, provided that

the Hamiltonian is varied sufficiently slowly. Likewise, a superposition of differ-

ent eigentstates results in a superposition of the adiabatically transferred states.

The adiabatic transfer gives rise to a phase Φ, that is composed of the dynami-

cal and the Berry phase [Pancharatnam, 1956,Berry, 1984,Shapere and Wilczek,

1998,Messiah, 1958], such that

|G(0)〉 → eiΦ0 |G(T )〉 |E1(0)〉 → eiΦ1 |E1(T )〉 ... (3.7)

Here, → denotes the adiabatic time evolution. The phases Φi are given by the

sum of the dynamical and Berry phases for the corresponding eigenstates. The

eigenvectors of the Hamiltonian that are relevant in our gate transformations

are all real in at least one basis. Consequently, the corresponding Berry phases

vanish. Therefore, the total phase is given by the dynamical phase:

Φi = −
∫ T

0

Ei(t)dt, i = 0, 1, 2, . . . . (3.8)

The gate transformations are performed by adiabatic passage from an initial state

|Ψ(0)〉 to a final state at |Ψ(T )〉, where the time evolution is given by the time
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dependent Schrödinger equation 3.3. The input state of the gate is determined

by the initial spin patterns at t = 0, whereas the output of the gate is determined

by the spin patterns at the time t = T .

One-qubit gate:

We implement a one-qubit gate which is, up to a phase, equal to the Hadamard

gate eq. 2.1 and which we denote by H. The gate transformation reads

|0〉 → |+〉 , |1〉 → − |−〉 (3.9)

To demonstrate the gate transformation for the H-gate defined in eq. (3.9), we

use a qubit encoding in which each qubit consists of eight spins:

|0〉 = |G(0)〉 = |↑↑↑↑↑↑↑↑〉 |1〉 = |E1(0)〉 = |↓↓↓↓↓↓↓↓〉 (3.10)

To implement the H gate, a qubit that is initially in the state |Ψ(0)〉 = a0 |0〉+

a1 |1〉 should evolve into the H rotated state

|ΨH〉 = a0

|G(0)〉+ |E1(0)〉√
2

− a1

|G(0)〉 − |E1(0)〉√
2

, (3.11)

where a0 and a1 are complex numbers, with |a0|2 + |a1|2 = 1. Using the encoding

in Eq. (3.10) for the input state, the adiabatic time evolution is given by

|Ψ(0)〉 = a0 |G(0)〉+ a1 |E1(0)〉 → |Ψ(T )〉 = a0e
iΦ0 |G(T )〉+ a1e

iΦ1 |E1(T )〉 .
(3.12)

Our aim is to change the fields in such a way, that the time evolved state |Ψ(T )〉 =

a0e
iΦ0 |G(T )〉+a1e

iΦ1 |E1(T )〉 is ”as close as possible” to the H rotated state |ΨH〉
given by eq. 3.11.

The measure of closeness is the fidelity of the gate, defined as the overlap between

the required output state of the gate and the time evolved state, averaged over

the Hilbert space of input states |φ〉. For the H-gate, the fidelity is given by

fH =

∫

d (|φ〉) | 〈Ψ(T )|ΨH〉 |2. (3.13)

Two-qubit gate:

We implement the two-qubit Bell gate introduced in eq. (2.2). To demonstrate

the implementation of the Bell gate, the encoding is given by

|00〉 = |G(0)〉 = |↑↑↑↑↑↑↑↑〉 |11〉 = |E1(0)〉 = |↓↓↓↓↓↓↓↓〉
|01〉 = |E2(0)〉 = |↑↑↑↑↓↓↓↓〉 |10〉 = |E3(0)〉 = |↓↓↓↓↑↑↑↑〉 (3.14)
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The gate transformation is performed by adiabatic passage, where the initial state

|Ψ(0)〉 = a00 |00〉+a11 |11〉+a01 |01〉+a10 |10〉 should evolve into the Bell rotated

state

|ΨBell〉 = a00

|G(0)〉+ |E1(0)〉√
2

− a11

|G(0)〉 − |E1(0)〉√
2

+a01

|E2(0)〉+ |E3(0)〉√
2

− a10

|E2(0)〉+ |E3(0)〉√
2

. (3.15)

Using the encoding in Eq. (3.14), the adiabatic evolution is given by

|Ψ(0)〉 = a00 |G(0)〉+ a11 |E1(0)〉+ a01 |E2(0)〉+ a10 |E3(0)〉 →
|Ψ(T )〉 = a00e

iΦ0 |G(T )〉+ a11e
iΦ1 |E1(T )〉+ a01e

iΦ2 |E2(T )〉
+a10e

iΦ3 |E3(T )〉 . (3.16)

As for the H-gate, the fidelity of the Bell gate is defined as the overlap between

the time evolved state at t = T and the Bell rotated state,

The fidelity thus reads

fBell =

∫

d (|φ〉) | 〈Ψ(T )|ΨBell〉 |
2. (3.17)

The integration is performed numerically using Monte Carlo methods. We com-

pare the fidelity to the ”classical” fidelity, which can be understood in the follow-

ing context: Suppose that a quantum gate takes d level quantum systems at its

input. Consider a situation where, instead of using the quantum gate, one uses

the strategy of measuring the input (thus making the information in the quantum

input as classical), and then preparing an output from the information obtained

from the measurement on the input. The maximal fidelity that is obtainable in

this way is said to be the classical fidelity of the gate. Note that the only param-

eter of the quantum gate that is used here is the dimension of the input space of

the gate. The classical fidelity of a quantum gate that takes d level systems as

its input is (see e.g. [Horodecki et al., 1999])

2

d + 1
.

Let us now consider the time evolution of the system.
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3.2.3 Noise Resistance of the QNN

We study various noise models to demonstrate that our QNN model shows a high

robustness to noise.

We first consider a model for distributed noise, i.e. noise that arises globally in

the system. Second, we will discuss a ”local noise”, i.e. noise that acts as local

perturbations.

In order to define the distributed noise, let us recall that the terms proportional

to r1, r2, and r3 in the quantum neural network Hamiltonian H(t) eq. (3.2) stem

from the first, second, and third vibrational modes of the trapped ion chain. For

the case where r1 ≈ r2 ≫ r3, one can consider the r3 term as distributed noise in

the system. This noise model is motivated by taking into account the following

points:

(i) Increasing the effect of the third vibrational mode, which in the undisturbed

case is much smaller than the first and second ones, covers inaccuracies in

the trapping potential.

(ii) Moreover, decreasing the eigenfrequency of the third vibrational mode (i.e.

increasing r3) introduces a disturbance in the motion of the ions.

(iii) In addition, this introduces noise in the spin, as it is the phonon modes

that are the carriers of interaction between the effective spins.

In Fig. 3.3, we plot the fidelity of the H-gate (Fig. 3.3 a) and the Bell gate

(3.3 b) as a function of time. Let us recall that the gates are implemented

by adiabatically changing the system Hamiltonian. As time evolves, the initial

state of the system is transformed towards the required output state of the gate.

We consider the influence of distributed noise and show that even substantial

increases in the noise level do not change the fidelity very much.

Let us now consider our model of local noise, which accounts for local pertur-

bations to the state of the system. We study imperfections to the initial state

of the system by superposing it with the states where one spin is flipped. Let

us illustrate this for the ”all down” state, |↓↓↓↓↓↓↓↓〉, where we consider the

transformation

|↓↓↓↓↓↓↓↓〉 → |↓↓↓↓↓↓↓↓〉+ ε |W8〉 , (3.18)
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Figure 3.3: Fidelity of the one qubit H gate (a) and the two qubit Bell gate

(b), implemented in a chain of trapped ions, as a function of time. The fidelities

are shown for the indicated values of the global noise parameter r3. The fidelity

does not change appreciably with the increase of the distributed noise level r3

up to r3 = 0.5r1 for the Bell gate (b) and r3 = 0.9r1 for the H gate (a). We

use the parameters r1 = 10, and r2 = 9.5, and the (parallel and transverse)

fields for which the calculations are performed are depicted in Fig. 3.2 a. The

maximal fidelities are obtained shortly after t = T/2. T is a time that satisfies

the adiabaticity condition Eq. (3.4), which with our chosen parameters means

T ≫ 7 × 106
~/λ. The dip in the fidelity curve for the Bell gate (b) around

t = 3T/4 for the very high noise (r3 = 0.9r1) case, is due to the fact that the

energy gap between the 1st excited state and the 2nd excited state becomes

comparable to that between the 3rd and the 4th. The horizontal lines at 2/3 and

2/5 denote the limit above which the gate fidelity is quantum.
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Figure 3.4: Fidelity of the one qubit H gate, as a function of time: a) Effect of

local noise. The fidelities are calculated for r1 = 10, r2 = 9.5, and r3 = 0, for

the indicated values of the local noise parameter ε. The maximal fidelities are

obtained a little after t = T/2, where T is a time that satisfies the adiabaticity

condition Eq. (3.4), which with our chosen parameters mean T ≫ 7 × 106
~/λ.

The fidelity does not decrease dramatically as the level of local noise ε increases.

b) Combined effect of distributed and local noise. We plot the maximal fidelity

at TH of the H gate as a function of the local noise parameter ε for the indicated

values of the parameter of distributed noise r3. The horizontal line at 2/3 denotes

the limit above which the gate fidelity is quantum.

as a model of noise. Here |W8〉 is the eight spin W-state, defined as the normalized

symmetric superposition of all states with one spin up and the rest spins down

[Dür et al., 2000]. The parameter ε is the strength of the perturbation.

In Fig. 3.4 a, we show the fidelity of the H gate for different levels of local

noise. Again, we observe a high level of error resistance. Moreover, there is a

large region of the time axis where the fidelity is larger than the classical limit

2/3 ≈ 0.667. In Fig. 3.4 b, we consider the two sources of noise simultaneously.

We show that even substantially increasing both the noise levels does not affect

the fidelity in a dramatic way.

In all the above figures, the curves for the fidelities have small curvatures at and

around the positions of maximum fidelities. This implies that in an implementa-

tion of the presented protocols, small errors in the time of measurement do not

affect the gate fidelities appreciably.

Let us note that the gate fidelities as shown in Figs. 3.3 and 3.4 are for the case
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when r1 ≈ r2 ≫ r3. This requirement cannot be met in a harmonic confinement

of the ions. However, many experimental setups use harmonic confinement, in

which case one has r1 ≫ r2, r3 . Let us note that one can implement a noise

resistant H gate in such a trap, whereas the implementation of two qubit gates

is not possible [Pons et al., 2007,Braungardt et al., 2007].

The time at which the maximal gate fidelity is reached is denoted by TH : The

maximal fidelities of both the gates are attained approximately at the same point

of time. The avoided crossing is approximately at 3TH/4. Adiabaticity demands

that

TH ≫ 7× 106
~

λ
. (3.19)

3.3 Summary and Outlook

In this chapter, we have proposed the implementation of a neural-network-like

device for the manipulation of classical and quantum information, where we make

use of the many-body properties of a chain of trapped ions. The trapped ions al-

low for the realization of an effective spin 1/2 system with long-range interactions

mediated by the vibrational modes.

We have shown that a Hopfield-like classical neural network can be implemented,

where certain spin patterns can be stored with high robustness to spin flips.

Furthermore, we have analyzed a neural-network-like system for the processing

of quantum information. The qubits are encoded in the low energy levels of the

whole system. The realizations of one and two qubit quantum gates occurs via

adiabatic passage of the system from a set of energy eigenstates to another set of

corresponding eigenstates. The adiabatic transfer is effected by a slow change of

parallel and transverse fields.

We have shown that the system is robust to a high level of local noise as well

as globally distributed noise. We have thus achieved an error resistance that is

intrinsic to the system.

However, the scalability to larger systems is typically challenging for ions in

a trap. One way towards scalable quantum neural network models would be

to increase the number of ions in the trap. In this context, segmented trap
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designs [Kielpinski et al., 2002] or microtrap arrays [Chiaverini and Lybarger, Jr.,

2008,Schmied et al., 2009] could be potential candidates. Another way to achieve

scalable complex quantum systems with metastable states useful for quantum

information processing could be to design implementations with atoms in optical

lattices.

It has been shown [Menotti et al., 2007,Trefzger et al., 2008] that using dipolar

atoms or molecules in optical lattices, a large number of metastable states can

be achieved. A controlled transfer between different states can be achieved by

going to the superfluid region of the phase diagram. Such systems are therefore

promising candidates for distributed quantum information processing, where the

information could be stored in the metastable states, and simple quantum gates

could be performed by transferring between different states.
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Chapter 4

Detection of Quantum Systems

via Particle Counting

Photon counting has been used as an important tool in quantum optics since

its beginnings. Experimental access to the properties of a light field is typically

achieved by measuring the number of photons that arrive at a photodetector

during a given time interval.

The counting process is described by the interaction between the photons and the

detector. One has to distinguish between counting in open and closed systems.

In open systems, particles that are not absorbed at the detector typically propa-

gate away, such that the back-action of the detector on the field is not relevant.

For closed systems, the absorption of particles at the detector can significantly

decrease the number of particles that is available for detection at later times and

has to be taken into account.

Our aim is to use atom counting statistics for the detection of strongly correlated

many-body systems, typically realized with atoms in optical lattices. In particu-

lar, we are interested in the detection of occupation patterns that could be used

to realize a quantum neural network as discussed in the previous chapter. In

order to describe experimentally relevant situations, we are interested in giving

a full time- and space-dependent description of the counting process.

In the Sect. 4.1, we review some important results for the statistics of photon

counting. In Sect. 4.2, we discuss the applicability of the formalism for photon
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counting to describe atomic systems. In Sect. 4.3, we present our derivation of a

formula for the counting distribution of time- and space-dependent fields.

4.1 Photon Counting

The detection of photons in a photodetector is based on the photoelectric effect:

Light falls on the detector surface and the electrons that are released can be de-

tected by placing a positively charged electrode near the photoemissive cathode

and measuring the electric current that is generated in response to the incident

light. The photoelectric current can be amplified by a photomultiplier. A similar

process takes place in semiconductor detectors such as an avalanche photodiode.

In order to give a theoretical description of the counting process, it is of fun-

damental interest to derive a formula for the probability of detecting a certain

number m of photons during a time interval τ .

4.1.1 The Mandel Formula

A semiclassical formula for the probability p(m) of counting m particles was

first derived by Mandel, Sudarshan and Wolf in 1964 [Mandel et al., 1964], see

also [W. E. Lamb and Scully, 1969]. The so called Mandel formula reads

p(m, t, τ) = 〈 1

m!
(

∫ t+τ

t

I(t′)dt′)m exp(−
∫ t+τ

t

I(t′))〉, (4.1)

where the intensity I =
∫

Ω
ǫV ∗(r, t)V (r, t)dr is defined in terms of the analytic

signal V (r, t), where the integration is performed over the detector volume Ω and

ǫ denotes the quantum efficiency of the detector. Here, the field is treated as

classical and the photoelectrons are treated quantum mechanically. Essentially,

the field can be seen as an external potential disturbing the bound electrons in

the photocathode.

4.1.2 The Glauber-Mandel Formula

A quantum version of the formula for the photon counting distribution was first

derived from semiclassical arguments by Mandel [Mandel, 1958, Mandel, 1959,
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Mandel, 1963]. A full quantum mechanical derivation of the so called Glauber-

Mandel formula was presented by Kelley and Kleiner in 1964 [Kelley and Kleiner,

1964] and by Glauber in 1965 [Glauber, 1965]:

p(m, t, τ) = 〈T :
(ǫ

∫ t+τ

t
Î(t′)dt′)m exp(−ǫ

∫ t+τ

t
Î(t′))

m!
:〉 (4.2)

Here T and :: stand for time and normal ordering, respectively. The intensity

operator Î(t) is defined in terms of the positive and negative frequency parts

V̂ ±(r, t) of the field operators by Î(t) =
∫

D
V̂ −(r, t)V̂ +(r, t)dr. The normal

ordering reflects the fact that the photons are annihilated at the detector. For a

single mode field, the formula reads

p(m, τ) =

∞
∑

n=m

(

n

m

)

(ǫτ)m(exp(−λτ))n−m〈n|ρ|n〉. (4.3)

The derivation of the Glauber-Mandel formula is based on a perturbative ap-

proach for short detection intervals. The counting distribution for the full detec-

tion time τ is obtained by dividing it into small subintervals ∆τi and treating the

measurement in the full interval as a number of successive independent measure-

ments in each interval. The approach thus describes a sequence of measurements,

where the field evolves as in the absence of the detector. The method is based

on the assumption, that the detection in one subinterval is independent of the

detection in the previous subintervals. For the case of a light beam falling on a

photo detector, it is argued [Mandel and Wolf, 1995, p. 723] that each element of

the optical field interacts with the detector only briefly. The response time of the

detector is short and the energy of the electron state is well defined (each electron

is either free or bound) after an interaction time ∆τi. For such a system where

the unabsorbed photons escape, there is no need to consider the measurement

back-action.

The Glauber-Mandel formula does not apply to closed systems. In this case, the

light interacts continuously with the detector and the back-action of the detector

on the field has to be taken into account, as the total number of particles decreases

due to the absorption process. There has been some confusion [Srinivas and

Davies, 1981,Mandel, 1981,Srinivas and Davies, 1982] about the applicability of

the Glauber-Mandel formula (4.2) and it is important to keep in mind, that it

describes open quantum systems where the detector does not change the field. In

particular, the Glauber-Mandel formula becomes meaningless if ǫτ ≫ 1, when it
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can result in negative probabilities or unlimited mean number of counted photons

as t tends to infinity. These limitations of the Glauber-Mandel formula were first

pointed out by Mollow [Mollow, 1968]. However, note that ǫ denotes the efficiency

per atom, which means that for systems with large numbers of particles the

Glauber-Mandel formula typically gives a reasonably well approximation for the

usual detection times.

4.1.3 The Back-action of the Detector on the Field

A formula taking into account the back-action of the detector on the field was

derived by considering the evolution of the system composed of the detector and

the field [Mollow, 1968,Scully and W. E. Lamb, 1969,Selloni et al., 1978]. Using

different approaches, the authors arrive at the result of a photon counting formula

for a single-mode free field,

p(m, t, τ) =
∞

∑

n=m

(

n

m

)

(1− e−ǫτ )m(exp(−ǫτ))n−m〈n|ρ|n〉. (4.4)

The formula is formally equivalent to the Glauber-Mandel formula for a single-

mode free field, eq. (4.3). However, the term ǫτ is substituted by 1 − eǫτ . For

ǫτ ≪ 1, the two formulas are equivalent. The formula in eq. (4.4) does not exhibit

the problems that were outlined for the Glauber-Mandel formula. The mean

number of photons counted is bounded for τ →∞ and no negative probabilities

occur.

In 1981, Srinivas and Davies present an approach to photon counting [Srinivas and

Davies, 1981] based on continuous measurements over an extended period of time.

In particular, they apply the theory of continuous measurement to the problem of

photon counting of a single mode field and obtain the formula in eq. (4.4), which

was previously derived in [Mollow, 1968, Scully and W. E. Lamb, 1969, Selloni

et al., 1978]. In contrast to the former derivations, they derive the counting

formula from a full quantum mechanical description of the measurement process

at the detector. In their approach, the coupling is assumed to be sufficiently

small, such that in an infinitesimal time interval, at most one photon is detected.

They thus define a one-count superoperator to describe the absorption of photons

at the detector,

Jρ = βaρa†, (4.5)
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where β characterizes the coupling between the detector and the field. Between

the counts the density operator evolves according to the no-count superoperator

St

Stρ = exp (−iω +
β

2
a†at)ρ exp (iω − β

2
a†at) (4.6)

After measuring an event corresponding to one of the operators J (one-count) or S

(no-count), the density operator is ρ(t′) = Jρ(t)/Tr(J) and ρ(t′) = Sρ(t)/Tr(S),

respectively. Here t denotes the time before the measurement, and t′ the time

after the measurement.

Whereas the operators J and S are postulated in the model by Srinivas and Davies

(SD model), Imoto and coworkers derived a microscopic theory of the continuous

measurement of the photon number [Imoto et al., 1990]. The no-count and one-

count operators are derived microscopically, taking into account the interaction

of the photons with the detector using the Jaynes-Cumming Hamiltonian for the

field of a two-level atom. They identify the parameter β in (4.5) as β = g2(t− t′),

where g describes the atom-field coupling.

The dynamics of the counting process described by the one-count and no-count

operators can be described by the master equation

ρ̇ = εâρâ† − ε

2
â†âρ− ε

2
ρâ†â, (4.7)

where a† and a are the creation and annihilation operator of the particle to be

counted. Performing a rotation of the density matrix, ρ(t) = e−
ε

2
tâ†âρ̃(t)e−

ε

2
tâ†â,

and using the relation

eγABe−γA = B + γ[A, B] +
γ2

2!
[A, [A, B]] + ..., (4.8)

we obtain
˙̃ρ(t) = εâe

−ε

2
tρ̃â†e

−ε

2
t = εe−εtâρ̃â†. (4.9)

This equation can be solved using perturbation theory such that, after transform-

ing back the rotation, we obtain

ρ(t) = e−
ε

2
tâ†â(ρ̃(0) +

∫ t

0

εe−εt′ âρ̃(0)â† + ...)e−
ε

2
tâ†â.

Using the cyclic properties of the trace, the probability p(m, τ) of counting m

particles in the time τ can be written as

p(m, τ) = Tr[ρ(0)a†m
(
∫ τ

0
dt′εe−εt′)m

m!
e−εta†aam].
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This is equal to the normally ordered expression

p(m, τ) = 〈: (1− e−ετ )m (â†â)m

m!
e−(1−e−ετ )â†â :〉, (4.10)

which holds because

: (â†â)me−(1−e−εt)â†â := â†m : e−(1−e−εt)â†â : âm

= â†me−εtâ†ââm.

For a single mode field, eq. (4.4) is recovered.

In 2007, Dodonov et. al proposed an alternative model for photon counting

[Dodonov et al., 2007] based on the SD model. As opposed to the model in Ref.

[Srinivas and Davies, 1981], they define a one-count operator which does decrease

the mean number of photons by exactly one, whereas the no-count operator leaves

the number of photons constant.

In Ref. [Häyrynen et al., 2010], the results of the SD model and the model by

Dodonov, denoted by E model, are analyzed by considering a detection model

consisting of three parts: The light field to be measured, an atom, and the

detector. The field is coupled to the atom with coupling constant g and the atom

is coupled to the detector with coupling constant λ.

They numerically solve the master equation that describes the coupling and com-

pare the results to the SD model as well as to the model proposed by Dodonov

et al. They show how each of them is obtained as an asymptotic limit of the

detection probability: The SD model coincides exactly with the solution of the

master equation for λ ≫ g, whereas the E model describes the average behavior

of the field correctly for g ≫ λ. They point out that in most of the practically

relevant situations (e.g. photon counting with photomultiplier tubes), a strong

atom-detector coupling (λ ≫ g) can be assumed, such that the SD model gives

a correct description.

It is interesting to note that the one-count measurement does not necessarily

reduce the mean number of photons in the field. The mean number of photons

immediately after a one-count process is given by

〈n(t′)〉 = Tr(ρ(t′)a†a) = 〈n(t)〉 − 1 +
[∆n(t)]2

〈n(t)〉 , (4.11)

where ∆n(t) = n(t) − 〈n(t)〉. From eq. (4.11) it is clear that the mean number

of photons after the measurement depends on the photon statistics of the state
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before the measurement. For a system originally in a Fock state, the factor [∆n(t)]2

〈n(t)〉

vanishes and the mean number of photons is reduced exactly by one. For an initial

Poissonian statistics, the mean number of photons after the one-count process is

equal to the one before the measurement. For a thermal state, the mean number

of photons after the measurement doubles the mean number of photons of the

pre-measurement state. This result is to some extend counterintuitive and has

been addressed in Ref. [Ueda et al., 1990]. The authors observe that the apparent

paradoxe is removed when taking into account the back-action of the detector

on the field. They illustrate this with the simple example of the initial state

ρ = 1/2(|0〉〈0| + |100〉〈100|), with an average photon number of 50. When one

photon is detected, the probability that the initial state was |0〉〈0| vanishes. It

can thus be concluded that the original state was |100〉〈100| and that the state

after the one-count process is |99〉〈99|, such that the mean photon number has

increased by 49.

Recently, the action of the annihilation operator on different states of light has

been implemented and measured experimentally [Parigi et al., 2007]. It was

shown that a substraction of one photon from a thermal field state can increase

the expectation value of the number of photons, as was theoretically predicted

in Ref. [Ueda et al., 1990] using the SD model. In [Häyrynen et al., 2009],

it is pointed out that the experimental results of Ref. [Parigi et al., 2007] agree

with the prediction of the SD model. Their discussion is based on the observation

[Häyrynen et al., 2009], that the experiment in [Parigi et al., 2007] can be applied

to test the SD model even though the experimental detection scheme is different.

The previous discussion suggests, that the SD model is a valid description for

the photon counting process based on continuous measurements. However, a

closed formula, eq. (4.4), is derived only for the case of a single mode field.

The application of the formula to real experimental situation is therefore limited

[Mandel, 1981,Fleischhauer and Welsch, 1991]. In 1987, Chmara derived a general

formula for the photon counting distribution for a multimode field [Chmara, 1987]

by applying the photon counting approach by SD to an open system. He derives

the so called Chmara counting formula,

p(m, t, τ) = 〈: (
∫ t+τ

t
Ĩ(t′)dt′)m

m!
exp(−

∫ t+τ

t

Ĩ(t′)dt′) :〉. (4.12)

The formula is formally very similar to the Glauber-Mandel formula. However,
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the time dependent intensities Ĩ(t) do not evolve according to the Heisenberg

equation, but to a non-Hamiltonian evolution. While the formula is in principle

applicable to a wide class of systems, to our knowledge, no practical case where

the time dependent intensities have been calculated has been reported.

4.2 Atom Counting Formalism

We apply the theory of particle counting to study strongly correlated systems of

atoms in optical lattices. The counting statistics of atoms depend on the kind of

particles that are considered and on the type of measurement that is performed.

In order to formally transfer the results for photon counting to the case of the

detection of massive particles, the actual detection process has to be taken into

consideration.

As was outlined in Chapter 2.4, the detection of atoms is typically achieved either

directly using microchannel plates [Schellekens et al., 2005,Jeltes et al., 2007], or

through the interaction with light, where the light is detected on a charge-coupled

device (CCD).

In typical experimental situations, the atoms are either detected inside the optical

lattice or in a time of flight measurement after their expansion from the lattice.

The on-site detection has recently become available through fluorescence spec-

troscopy [Bakr et al., 2010, Sherson et al., 2010]. For spins, an on-site detection

can be achieved by using QNDPS (see Chapter 2.4) to measure the distribution

of Ŝz, or even its spatially resolved version Ŝeff
z [Eckert et al., 2008]. Particle

counting after a time of flight period can be achieved by absorption imaging, or

by letting the particles fall on a microchannel plate.

Both for atom and for spin counting, the detection process is analogous to the one

of photodetection: For atoms, detectors based on ”absorption” or ”destruction” of

an atom (at the multichannel plate) are sensitive to normally and apex ordered

correlation function of atomic creation and annihilation fields. The situation

is the same in the spin measurements using QNDPS, since the spin lowering

and raising operators couple directly to the photon annihilation and creation

operators, respectively, which then are measured by the standard photodetectors.

Furthermore, one has to distinguish between bosons and fermions. For the case
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of bosons, the results for photon counting can be transferred almost immedi-

ately. For the case of fermions, a similar formalism was established in [Cahill and

Glauber, 1999].

Throughout our work, we use the formalism of generating functions, which was

developed for bosons in [Glauber, 1965] and for fermions in [Cahill and Glauber,

1999]. In this formalism, the counting distribution is described by the derivatives

of a generating function Q,

p(m) =
(−1)m

m!

dm

dλm
Q

∣

∣

∣

λ=1

, (4.13)

where the generating function is given by

Q(λ) = Tr(ρ : e−λI :). (4.14)

Here, I is the intensity of particles that are detected. As was discussed in the

previous section, the intensity depends on the counting process. In the Glauber-

Mandel formula eq. (4.2), the intensity evolves as in the absence of the detector.

In the formulations by Srinivas and Davies, the absorption of particles at the de-

tector is taken into account, however, the counting formula (4.4) does not include

time- and space dependence. In order to correctly describe a given experimental

situation, it is important to understand both the effect of the back-action of the

detector and the time and space dependence.

The formalism is easily generalized to the case of detection with multiple detectors

[Arecchi et al., 1966]. For detection with M detectors, the generating function

reads

QM (λ1, λ2, .., λM) = Tr(ρ : e−
∑

i
λiIi :), (4.15)

where Ii denotes the single detector intensity for at the ith detector. The counting

distribution at each detector is calculated using eq.(4.13) For a configuration with

two detectors, the joint probability distribution of counting m atoms in detector

1 and n atoms in detector 2 is given by

p(m, n) =
(−1)m+n

m!n!

dm+n

dλm
1 dλn

2

Q2

∣

∣

∣

λ1=1,λ2=1

. (4.16)

We study the correlations corr(m, n) between the counting events detected at each

detector by observing the ratio between the covariance and the single detector

variances σ2,

corr(m, n) =
cov(m, n)

σ2(m)σ2(n)
, (4.17)
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where cov(m, n) =
∑

m,n mnp(m, n)− m̄n̄.

4.3 Particle Counting of Time and Space De-

pendent Fields

The time- and space-dependent counting process can be described by a master

equation similar to eq. (4.7), where the operators a, a† are replaced by the time

dependent field operators Ψ(r, t). Furthermore, we take into account the finite

size of the detector, such that the interaction between the detector and the field

is restricted to a given volume, which we describe by a function Ω(r). The master

equation then reads

ρ̇(t) = ǫ

∫

drΩ(r)Ψ(r, t)ρΨ†(r, t)

− ǫ

2

∫

drΩ(r)Ψ(r, t)†Ψ(r, t)ρ− ǫ

2

∫

drΩ(r)ρΨ(r, t)†Ψ(r, t). (4.18)

The first term of Eq. (4.18) corresponds to the number of quantum jumps in the

detector volume. The two remaining terms represent the damping of the field

due to the absorption at the detector.

In order to solve the master equation eq. (4.18) we first eliminate the damping

terms proportional to ǫ
2

by defining the operator ρ̃ through

ρ(t) = F (t)ρ̃(t)F †(t), (4.19)

where the operator F (t) is defined as

F (t) = T e−ǫ/2
∫

t

0
dt′

∫

dr′Ω(r′)Ψ†(r′,t′)Ψ(r′,t′) (4.20)

Here, the term T on the left side of the operator denotes time ordering, whereas

it denotes opposite time ordering on the right side of the operator.

We use the relation eq. (4.8) and the commutation relations

[Ψ(r, t), Ψ†(r′, t)] = δ(r, r′), [Ψ(r, t), Ψ†(r′, t′)] = G0(r, r
′|t, t′), [Ψ(r, t), Ψ(r′, t′)] = 0.

where G0 is the propagator for the time evolution of in absence of a detector,

Ψ(r, t) =

∫

dr′G0(r, t|r′, t0)Ψ(r′, t0) (4.21)
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to get the time derivative

˙̃ρ(r, t) = ǫ

∫

dr′Ω(r′)Ψ̃(r, t)ρ̃Ψ̃†(r, t), (4.22)

where we have defined

Ψ̃(r, t) = F−1(t)Ψ(r, t)F (t). (4.23)

Eq. (4.22) can be solved using perturbation theory (note that ρ̃(0) = ρ(0)).

ρ̃(t) = ρ̃(0) + ǫ
∫ t

0
dt′

∫

dr′Ω(r′)Ψ̃(r′, t′)ρ(0)Ψ̃†(x′, t′) (4.24)

+ǫ2
∫ t

0
dt′

∫ t′

0
dt′′

∫

dr′
∫

dr′′Ω(r′)Ω(r′′)Ψ̃(x′, t′)Ψ̃(x′′, t′′)ρ(0)Ψ̃†(x′′, t′′)Ψ̃†(x′, t′) + ...

It is important to note that the perturbation theory is applied to the operator

ρ̃, which take into account the damping of the field due to the absorption at the

detector. In contrast, the Glauber-Mandel formula performs perturbation theory

in terms of the operator ρ [Mandel and Wolf, 1995, p. 724]. This means that

in the Glauber-Mandel formula, time is divided into short intervals which are

treated as independent. The alteration of the field due to the absorption at the

detector is neglected. In our treatment, the operators Ψ̃(x′, t′) take into account

the absorption. In order to get the probability distribution, we use the inverse of

eq. (4.19) to transform ρ̃ in eq. (4.25) back to ρ. We use the cyclic properties of

the trace to calculate the probability p(m, τ) of finding m particles in the detector

opening time τ and get

p(m, τ) = 〈ǫ
∫ τ

0

dt′
∫ t′

0

dt′′
∫

dr′
∫

dr′′Ω(r′)Ω(r′′)...

...Ψ̃†(x′, t′)Ψ̃†(x′′, t′′)...F †(τ)F (τ)...Ψ̃(x′′, t′′)Ψ̃(x′′, t′)〉 (4.25)

In eq. (4.25) we have normal ordering with respect to the operators Ψ̃. In general,

this does not imply normal ordering with respect to the operators Ψ, however, in

our case they are linear combinations of Ψ̃ so the normal order is conserved.

The term F †(τ)F (τ) is not normally ordered. We define a function g(Ψ, Ψ†, τ)

such that

F †(τ)F (τ) =: g(Ψ, Ψ†, τ) : . (4.26)

Inserting eq. (4.26) into eq. 4.25, and using the requirement that the sum over the

probabilities p(m, τ) has to be one, we get g(Ψ̃, Ψ̃†) = e−ǫ
∫

dt
∫

drΩ(r)Ψ̃†(r,t)Ψ̃(r,t)dt

and the probability distribution is given by

p(m, τ) = 〈: (I(τ))m

m!
e−I(τ) :〉, (4.27)
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where the intensity is given by

I(τ) = ǫ

∫ τ

0

dt

∫

drΩ(r)Ψ̃†(r, t)Ψ̃(r, t) (4.28)

In eq. (4.27) together with eq. (4.28), we have thus derived a formula for the

counting distribution which is formally equal to the Glauber-Mandel formula eq.

(4.2). However, eq. (4.27) is expressed in terms of the modified field operators

Ψ̃(r, t), which are related to the system operators Ψ(r, t) by eq. (4.23). The

difference between our counting formula eqs. (4.27) and (4.28) and the Glauber-

Mandel formula arises due to the damping terms in the master equation (4.18),

which are implicit in the modified field operators Ψ̃(r, t). In order to calculate

the counting distribution, the time evolution of the operators Ψ̃(r, t) has to be

expressed in terms of the system operators Ψ(r, t).

Let us now derive an expression for the modified field operators Ψ̃(r, t) given by

eq. (4.23). Defining ∆t = t/N , the time integration in the operator F (t) in Eq.

4.20 can be written as a sum, such that

F (t) =
∏

i

F i(ti), (4.29)

with F i(ti) = e−
ǫ

2
∆t

∫

dr′Ω(r′)Ψ†(r′,ti)Ψ(r′,ti), and we get

Ψ̃(r, t) = F 1(t1)...F
N(tN)Ψ(r, t)F N(tN )...F 1(t1). (4.30)

We evaluate the expressions by using the commutation relations eq. (4.3), the

properties of the propagator eq. (4.21) as well as the relation eq. (4.8). We start

with the inner term,

F N(tN )Ψ(r, t)F N(tN) = e−
ǫ

2
∆tΩ(r)Ψ(r, tN ). (4.31)

The second term thus reads

e−
ǫ

2
∆tΩ(r)F N−1(tN−1)Ψ(r, tN )F N−1(tN−1) =

e−
ǫ

2
∆tΩ(r)

∫

dr′e−
ǫ

2
∆tΩ(r′)G(r, r′, tN − tN−1)Ψ(r′, tN−1) (4.32)

The successive terms are calculated analogously, and we get

Ψ̃(r, t) =

∫

dr′ 〈r| e−i(t−t0)(H0+i ǫ

2
Ω(r′)) |r′〉Ψ(r′, t0). (4.33)
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We have thus obtained an expression for the modified field operators Ψ̃r, t) in

terms of the operators Ψ(r′, t0). Together with the counting formula eq. (4.27),

this allows us, in principle, to calculate the counting distribution for time depen-

dent systems with arbitrary detector geometries. However, solving eq. (4.33) is

in general a highly non-trivial task.

In the following chapters, we will encounter various experimental situations,

where the detection process is fast compared to the time evolution of the system.

In this case, we can neglect the part corresponding to the Hamiltonian H0 in eq.

(4.33) and get

Ψ̃(r, t) =

∫

dr′ 〈r| e− ǫ

2
Ω(x′))(τ−t0) |r′〉Ψ(r′, t0)

= e−
ǫ

2
Ω(x)(t−t0)Ψ(r′, t0). (4.34)

The intensity (4.28) thus reads

I(τ) = λ

∫

dr(1− e−ǫΩ(r)τ )Ψ†(r, t0)Ψ(r, t0), (4.35)

which is a generalization of the formula eq. (4.10) considering finite detector

volumes. For ǫτ ≪ 1, eq. (4.35) reduces to the Glauber-Mandel formula eq.

(4.2) for time independent systems.

In the remaining part of the thesis we apply the counting formalism discussed

in this chapter to a wide range of systems of atoms in optical lattices. Here, we

distinguish between systems whose dynamics are on the time scale of the counting

process and such systems, which evolve slowly compared to the counting process,

such that they can be treated as time independent.

In Chapter 5, we consider the detection of strongly-correlated systems of fermions

and spins in an optical lattice by particle counting. We show that the counting

statistics allow for the detection of quantum-many-body effects such as a quantum

phase transition and fermion pairing. We show that the method is successful

even at finite temperature. Furthermore, we study the time evolution of the

system when coupled to a heat bath. The dynamics of the thermalization are

slow compared to the detection process, such that the counting distribution is

described by the time formalism of Srinivas and Davies.

In Chapter 6, we consider the counting of particles after their expansion from the

lattice. The particles are released and fall onto a spatially confined detector. We
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show that by choosing appropriate detector geometries, the counting distribution

in principle allows for the characterization of different metastable states of the

system. The detection process is typically short compared to the dynamics of

the expansion, such that the detection of the expanding atoms takes place mo-

mentarily and the generalization of the formalism of Srinivas and Davies to finite

detectors can be applied.

In Chapter 7, we illustrate the full time dependent formalism developed in Sect.

4.3 by applying it to the detection of an expanding Bose-Einstein-condensate. We

analyze the effect of the back-action of the detector on the field by comparing the

counting distribution obtained by the applying the time-dependent formalism to

the Glauber-Mandel formula.
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Chapter 5

Counting of Fermions and Spins

in Strongly Correlated Systems

In this chapter, we apply the method of particle counting to study the detection

of the system of strongly correlated fermions in an optical lattice described by

the Hamiltonian eq. (2.13),

Ĥ = −J
N
∑

j=1

(ĉ†j ĉj+1 + γĉ†j ĉ
†
j+1 + h.c.− 2gĉ†j ĉj + g). (5.1)

As was discussed in Sect. 2.3.4, the system exhibits rich many-body behavior

such as a quantum phase transition and the formation of fermion Cooper-like

pairs. The system is equivalent to the anisotropic XY-spin-model.

We consider the detection of the particles in-situ in the lattice. For the fermionic

system, a detection process with single site resolution in the spirit of the ex-

periments in [Sherson et al., 2010,Bakr et al., 2010] could be applied. For the

spin system, the spin counting could be performed via quantum nondemolition

polarization spectroscopy (see Sect. 2.4.5).

In Sect. 5.1, we consider the counting statistics of a system at zero temperature

and show that particle counting allows for the detection of these many-body

phenomena.

In real experimental situations, the detection of these many-body quantum prop-

erties is always obscured by unavoidable noise and thermal effects. The effects of

temperature are of particular interest, as quantum phase transitions are only well
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defined at zero temperature. Thermal fluctuations lead to an exponential decay

of the order parameter and only a crossover between phases remain [Sachdev,

2001]. In Sect. 5.2, we analyze the effects of temperature on the system. We

show that even at finite T , the counting statistics reflect the signature of the

quantum phase transition. Furthermore, we show that the breaking of fermion

pairs by thermal fluctuations is observed in the counting distribution.

In Sect. 5.3, we to study the dynamics of the system during the thermalization.

The remarkably long time scales in ultracold atom experiments allow to monitor

the dynamics of the system directly. We study the atom counting statistics during

a dynamic evolution, where the system is subject to some perturbation and then

approaches a stationary state. In this context various fundamental questions can

be addressed. For instance, does the system, which can be very well regarded

as closed, thermalize after initial perturbation (sudden quench) [Deng et al.,

2010, Cramer et al., 2008, Manmana et al., 2007, Sengupta et al., 2004, Bañuls

et al., 2010]? What is the difference between thermal and non thermal dynamics?

What kinds of interesting dynamical processes involving a coupling to a specially

designed heat bath can be realized? Can one realize state engineering using open

system dynamics [Diehl et al., 2008,Kraus et al., 2008,Verstraete et al., 2009]? In

particular, we compute the atom counting distributions as a function of time when

the analyzed 1D system of fermions approaches the quantum Boltzmann-Gibbs

thermal equilibrium state at certain T > 0. We show how the thermalization

process can be monitored by observing the cumulants of the counting distribution.

In principle, the methods allows thus to distinguish thermal dynamics from non-

thermal one. The time evolution during thermalization is much slower than the

counting process. This allows us to apply the formalism eq. (4.10) developed by

Srinivas and Davies.

5.1 Counting Statistics at Zero Temperature

We consider a system of strongly correlated fermions described by the Hamilto-

nian eq. (5.1), which is equivalent to the anisotropic quantum XY -model eq.

(2.11). The system exhibits a quantum phase transition at T = 0. Furthermore,

the term proportional to γ in the Hamiltonian eq. (5.1) describes the formation

of fermionic pairs between consecutive sites. In this section, we study these quan-
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tum phenomena by particle counting for an ideal system at zero temperature. We

show that that the counting distribution and its moments reflect the quantum

phase transition as well as the pair formation. Finite temperature effects are

discussed in the following section.

5.1.1 The Counting Distribution at T=0

Let us now derive the counting distribution for the system described by eq. (5.1).

The Hamiltonian (5.1) does not depend on time, such that the counting distri-

bution is obtained by eq. (4.10), which for a system of N fermions reads

p(m, τ) = 〈:
(κ

∑N
j=1

ĉ†j ĉj)
m

m!
e−κ

∑N
j=1

ĉ†
j
ĉj :〉, (5.2)

The counting distribution eq. (5.2) can be written in a compact way using the

formalism of generating functions eq. (4.13),

p(m) =
(−1)m

m!

dm

dλm
Q
∣

∣

∣

λ=1

, (5.3)

where Q is given by

Q(λ) = Tr(ρ : e−λI :) (5.4)

and

I = κ
∑

j

ĉ†j ĉj (5.5)

The intensity I describes the intensity of fermions that are registered during

the detection process. In the following, we express the local fermi operators ĉl

in terms of their Fourier transforms ĉk and finally in terms of the Bogoliubov

excitations d̂k. This way, the the system Hamiltonian eq. (5.1) is diagonal and

the trace in eq. (5.4) can be calculated easily. However, note that the particles

that are actually detected are the local fermions described by the operators ĉl.

Let us now write the generating function in terms of the operators ĉk in momen-

tum space and use the anticommutation relations for fermions to obtain

Q(λ) = Tr(ρ

N/2
∏

k=1

(1− λκĉ†kĉk)(1− λκĉ†−kĉ−k)). (5.6)
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We express eq. (5.6) in terms of the fermionic excitations dk defined in eq. (2.18).

The dynamics mix only k and −k fermionic excitations and the density matrix

ρ can be written as ρ =
∏

k ρk, such that we obtain

Q(λ) =

N/2
∏

k=1

(

1− λκAk + λ2κ2Bk

)

, (5.7)

where

Ak = Tr(ρk

[

u2

kn̂
d
k + v2

k(d̂kd̂
†
k + d̂−kd̂

†
−k)

]

)

Bk = Tr(ρk

[

u2

kd̂
†
kd̂kd̂

†
−kd̂−k + v2

kd̂−kd̂
†
−kd̂kd̂

†
k

]

). (5.8)

We have omitted the terms that do not conserve the particle number, as they do

not appear in the trace.

Using (5.3), the counting distribution reads

p(m) =
(−1)m

m!

dm

dλm

[

N/2
∏

k=1

(

1− λκAk + λ2κ2Bk

)

]

λ=1

. (5.9)

We derive a recurrence relation to calculate the distribution for (M + 1) modes,

given the distribution for M modes by using the generalized Leibniz rule,

dm

dλm

N
∏

k=1

fk(λ)

=
∑

n1+...+nN=n

(

n

n1, n2, ..., nN

) N
∏

k=1

dnk

dλnk
fk(λ),

where the generalized Newton’s symbol is given by
(

n

n1, n2, ..., nN

)

=
n!

n1!n2!...nN !
.

The distribution function p(m, M) for M modes is given by

p(m, M) =
(−1)m

m!

∑ m!

l1!l2!...lN !

M/2
∏

j=1

dlj

dλlj
(1− 2λκv2

k + λ2κ2v2
k),

(5.10)

where the summation runs over l1, . . . , lM such that l1 + · · · + lM = m, where

lj = 0, 1, or 2, for j = 1, . . . , M . We can now derive the recursive relation

p(m, M + 1) =

2
∑

i=0

Pip(m− i, M) (5.11)
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where

P0 = 1− κAM+1 + κ2BM+1,

P1 = κAM+1 − 2κ2BM+1,

P2 = 1− P0 − P1 (5.12)

are the probabilities of detecting 0,1, or 2 particles in the modes M + 1 and

N −M − 1. Using the recursive relation eq. (5.11), the counting distribution for

an arbitrarily large system can be calculated from the counting distributions of

a two mode system. We thus only need to calculate the expressions Ak and Bk

in eq. (5.8) and use Eqs. (5.11) and (5.12) to obtain the counting distributions

of the fermionic system eq.(5.1) with an arbitrary number of sites.

We obtain a better understanding of the properties of the counting distributions

by looking at the mean and variance. We derive a recurrence relation for the

mean and variance from the recurrence relation given in eq. (5.11):

mM+1 = mM + 2κv2

M+1, (5.13)

σ2

M+1 = m2
M+1

−mM+1
2

= σ2
M + 4κ2v2

M+1(1− v2
M+1) (5.14)

The relation (5.13) is obtained by multiplying both sides of the recurrence (5.11)

by m, summing over m, and performing some further simple algebraic manipu-

lations. Relation (5.14) is obtained similarly by a multiplication of m2 on both

sides of eq. (5.11). Since m1 and σ2
1 can be trivially calculated, the mean and

variance can be obtained by these relations for an arbitrary number of modes.

The recurrences imply that the mean mN ≤ κN ; we find the typical value of

mN indeed to be of order of κN . On the other hand, the variance σ2
N ≤ κ2N .

Both quantities show singular behavior in the thermodynamical limit at criti-

cality. In particular, for the transverse Ising model (γ = 1), near the critical

point g = gc ≡ 1, the mean m can be written in terms of elliptic integrals of

first and second kind, and can be expressed as [Gradshteyn and Ryzhik, 2000]

(see [Sachdev, 2001,Barouch et al., 1970] and references therein)

m ≈ − 1

2π
(g − gc) ln |g − gc| −

1

π
,

so that

dm/dg ≈ −(ln |g − gc|+ 1)/2π.
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Since all models with γ 6= 0 belong to the same universality class, they all present

the same singular behavior [Sachdev, 2001]. This is contrasted with the case of

XX model, which belongs to a different universality class.

As the fermionic operators are related to spin operators by the Jordan-Wigner

transform, the fermion counting distribution is, up to a constant, equivalent to

the counting distribution of the spins in z-direction in the transverse XY-model

in eq. (2.11).

5.1.2 Detection of Quantum Many-Body Phenomena

We are mainly interested in the quantum phase transition as well as the formation

of pairs.

In Fig. 5.1, both effects are illustrated for exemplary system parameters: In Fig.

5.1 a), we plot the counting probability distribution for the Ising model γ = 1 at

zero temperature with no transverse field g = 0 and perfect detection efficiency.

We consider a system with zero excitations and N = 1000 sites. The probability

distribution is centered around a mean value m̄ = 500 = N/2 particles and its

standard deviation σ = 50 such that σ2 = N/4. For perfect detection efficiency,

the pairing that is present in the system hamiltonian eq. (5.1) only allows for

the detection of pairs of particles and thus leads to a zero probability of finding

an odd number of particles. In this section, we discuss the detection of fermionic

pairs for detectors with efficiency κ < 1.

In Fig. 5.1 b, we plot the mean m̄ and variance σ2 of the counting distribution as

a function of the transverse field g. The mean number of particles increases with

increasing transverse field g. The variance is constant with g up to the critical

point, when it decreases with increasing g. The phase transition at g = 1 is

clearly visible both in the mean and in the variance. We study the behavior of

the counting distribution for different values of the anisotropy parameter γ.

In Sect. 5.1.3, we consider the counting statistics when the particles are counting

particles with spatial resolution.
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Figure 5.1: a) Counting probability distribution p(m) of finding m particles as

a function of m for the fermionic system eq. (5.1) with γ = κ=1, g = 0 and

N = 1000. At T = 0 and unit efficiency, the fermion pairing is reflected in the

counting distribution, as the probability of finding odd numbers of particles is

zero. b) Mean m̄/N (blue squares) and variance σ2/N (red circles) of the counting

distribution as a function of the transverse field g. At T = 0, the quantum phase

transition at g = 1 is clearly visible in the mean and variance.

Detection of Pairs

Let us consider the detection of fermion pairs. Fig. 5.1 a depicts the counting

distribution for the detection with unit detection efficiency. In this ideal case,

the counting distribution is exactly zero for odd numbers of particles. The pair

formation is thus reflected in the counting distribution. However, in real experi-

mental systems, the detection efficiency is typically limited. In Fig. 5.2, we show

the counting distribution for a detection efficiency at 99.9%. We observe that

the distributions oscillate between higher probabilities for even, and lower prob-

abilities for odd number of counts. This behavior is very strongly affected by κ,

since at finite efficiency, one may easily miss single atoms from the Cooper pairs,

and obtain odd counts. Similarly, the even-odd asymmetry is strongly affected

by the finite size effects - for a given value of κ < 1 it is visible only for N small

enough. For the parameters shown in Fig 5.2, the splitting between the count-

ing probabilities of even and odd counts is observed for a system of N = 1000

particles, whereas for N = 5000 it is no longer visible. Similar behavior has also

been observed in [Cherng and Demler, 2007]. Note that the effect is determined

by the counting process, and is not inherent to the system. In Chapter 5.2, we
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Figure 5.2: Finite size effects for the even versus odd splitting for κ = 0.999 in the

Ising model γ = 1 at T = 0. For N=1000 (a) and (b) the probability distribution

splits up, whereas for N=5000 (c) and (d), there is virtually no splitting.

consider the effect of temperature on the fermion pairs and show that the pairs

are broken as temperature increases.

Detection of the Quantum Phase Transition

In Fig. 5.1 b, we showed that the phase transition is clearly visible in the mean

and variance of the counting distribution for unit detection efficiency. In Fig.

5.3, we plot the mean and variance of the counting distribution as the efficiency

decreases. We show that the curves smooth out as the detector efficiency de-

creases. However, the signatures of the singularities are clearly visible even for

low detection efficiencies.

In Fig. 5.4 a-c, we plot the mean and variance for different values of γ. For

finite values of γ, the variance shows a jump in the first derivative, while the first

derivative of the mean tends to infinity at gc. This behavior is seen more clearly

in the derivatives of m and σ2 (see Fig. 5.4 d-f). As γ → 0, the variance tends to

zero as the particle number is conserved in the symmetric XX model. The mean

has a diverging derivative for g < gc, and is constant for g > gc.

Let us note that in all considered cases so far, the variance σ2 < m, i.e. all

distributions are sub-Poissonian. It is interesting to note that going from the

anti-ferromagnetic to the ferromagnetic case, we do observe a transition from

sub-Poissonian behavior at small g, to super-Poissonian for large g. This is true
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Figure 5.3: As the detection efficiency decreases, the kink in the mean and vari-

ance at the quantum phase transition becomes less pronounced. We plot the

mean m/N (blue squares) and variance σ2/N (red circles) of the fermion count-

ing distribution at T = 0 as a function of g for γ = 1 (Ising model), and the

indicated values of the detection efficiency κ. Even for low detection efficiencies,

the phase transition is visible in the mean and variance.

because the variance remains equal to the anti-ferromagnetic case, whereas the

mean is replaced by m/N → (1/2−m/N).

5.1.3 Counting Spatial Fourier Components of the Fermion

Density

Finally, let us point out that the methods proposed in [Eckert et al., 2008] allow

for measurements of various kinds of Fourier components of the total spin. For

the spatially resolved QNDPS, I = κ
∑N−1

j=0
σ†jσj cos2(kLrj), where kL is the wave

vector of the standing wave used for detection, and rj is the position of the j-th

site. In terms of particle counting, these methods allow, for instance, the counting

of particles in every second, every third site, etc. Our theory is easily generalized

to such situations.

When we counting every second fermion, we express b†2jb2j = c†2jc2j in terms of

the quasiparticles d. A calculation analogue to the one in Sec. 5.1 leads to the

generating function

Q(λ) =

N/4
∏

k=1

(

1− 2λκv2

k + λ2κ2v2

k

)

, (5.15)

which is of the same form as eq. (5.4), with the product restricted to N/4 terms.

We then easily derive analogous recurrences as in the cases considered so far. Fig.
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Figure 5.4: The behavior of the mean and variance depends on the anisotropy

parameter γ. In graphs a)-c) we plot the mean m/N (blue squares) and variance

σ2/N (red circles) of the fermion counting distribution at T = 0 as a function of

g for κ = 1, and the indicated values of the anisotropy parameter γ. The effect

is more clearly seen from the derivatives of the mean (blue squares) and variance

(red circles), plotted in the graphs d)-f).
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Figure 5.5: Particle counting allows for the detection with spatial resolution. We

plot the mean m/N (blue squares) and variance σ2/N (red circles) of the fermion

counting distribution, where every second site is counted, as a function of g for

γ = 1 (Ising model) and T = 0. The detection efficiencies are given by a) κ = 0.1,

b) κ = 0.5 and c) κ = 1. For high detection efficiencies, a crossover from sub- to

super-Poissonian behavior at g = 0.5 is clearly visible.

5.5 shows the behavior of the mean and the variance, when counting every second

spin, in the transverse Ising model. Note that the traces of singular behavior at

g = gc persist. Interestingly, there is a crossing from sub- to super-Poissonian

behavior at g = 0.5. For γ → 0 the point of crossing moves to zero as the variance

approaches zero.

5.2 Finite Temperature Effects

Let us now study the properties of the system at finite temperatures at thermal

equilibrium. The effect of thermal fluctuations is two-folded. On the one hand,

thermal fluctuations induce the breaking of fermionic pairs. On the other hand,

the quantum phase transition reduces to a crossover between different regions of

the phase diagram. We will show that both effects are visible in the counting

distribution functions.

5.2.1 Counting Statistics

In this section, we derive the counting distribution for a system at finite temper-

ature T using the canonical ensemble, ρ = 1

Z
e−βĤ , where β = 1

kBT
. The partition
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function is given by Z = Tr
(

e−β
∑

k Ĥk

)

. The finite temperature T determines the

average number of quasiparticle excitations d̂k. In order to calculate the terms

Ak and Bk defined in eq. (5.8), we write ρk = 1

Zk
e−βĤk where Zk = Tr

(

e−βĤk

)

and we take the trace in the basis {|00〉|01〉|10〉|11〉}. We obtain

Ak =
2κ

Zk

(v2

k + e−βEk + e−2βEku2

k)

Bk =
κ2

Zk
(v2

k + e−2βEku2

k) (5.16)

Zk = 1 + 2e−βEk + e−2βEk (5.17)

For a given value of the transverse field g, we fix the temperature and obtain the

number Nd =
∑N/2

k=1
Nd

k of fermionic excitations

Nd
k = Tr

(

ρkn̂
d
k

)

. (5.18)

As explained above, we use Ak and Bk to obtain the recursive formula for the

counting distribution.

5.2.2 Pair Breaking

Thermal fluctuations induce the breaking of pairs. For increasing temperature,

the pairing of fermions, whose binding energy is proportional to γ in eq. (5.1),

is suppressed. In Sect. 5.1.2, we discussed the splitting of the counting distribu-

tion between values with even and odd particle numbers. For perfect detection

efficiency, the probability of finding an odd number of particles was shown to be

zero at T = 0. The pair breaking due to temperature effects is reflected in the

counting distribution, where the counting probability for odd numbers of particles

becomes non-zero. In Fig. 5.6, we illustrate the effect of thermal fluctuations on

the fermion pairing. We plot the probability of counting the exemplary odd value

of m = 499 particles as a function of temperature. As temperature increases, the

pairs are destroyed and we observe a transition from zero probability to a finite

value. We compare a system with small interaction strength γ = 0.01 (Fig. 5.6

a) to the case of γ = 1 (Fig. 5.6 b). In the insets, we compare the counting

distribution for each system at zero temperature and at higher temperatures.

We observe that the splitting between even and odd particle numbers disappears

as the temperature increases. Note that here we consider a perfect detection



5.3 Counting Statistics during Thermalization 79

process. For lower detection efficiency, the splitting is not visible, as was shown

in Sect. 5.1.2. For small interaction strength γ, the counting distribution is nar-

rower, while higher binding energies γ imply broader atom number distribution

functions.

5.2.3 Criticality of the System

Let us now turn our discussion to the influence of temperature on the criticality

of the system. As was seen above for the case of zero temperature, the phase

transition is visible in the mean and variance of the distribution. This behavior

is even more evident in the derivatives of the mean and variance. In Fig. 5.7,

we plot the derivative of the means and variances with respect to g at different

temperatures T . The criticality is no longer visible when the temperature is of

the order of the energies of the system kBT ∼ Ek. At high temperature, the

mean and variance become independent of the transverse field value g and take

a constant value of 0.5N and 0.25N , respectively.

5.3 Counting Statistics during Thermalization

The long decoherence times of experiments with ultracold atoms allow to study

the real time quantum dynamics of the system. The dynamics of an open system

coupled to a heat bath have recently aroused much interest [Diehl et al., 2008,

Kraus et al., 2008,Verstraete et al., 2009] as one can use dissipation for quantum

state engineering. By tuning the properties of the reservoir, thermalization can

drive the system to a steady state which has the desired properties and can e.g. be

used to encode quantum information. Here, we consider the thermalization of the

system hamiltonian eq. (5.1), when it is coupled to a heat bath. We start from

the ground state at T = 0 and let the system evolve to the thermal Boltzmann-

Gibbs equilibrium state. In this sense, we analyze the counting statistics in a

temperature quench. The coupling to the heat bath is described the quantum
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Figure 5.6: The formation of fermionic pairs is reflected in the counting distri-

bution, as the probability of counting odd numbers of particles is zero for unit

detection efficiency. We plot the exemplary value of m=499 of counting an odd

number of particles as a function of the temperature T . As T increases, the

pairs are broken, such that the probability of detecting odd particle numbers is

no longer zero. The interaction strength γ determines the temperature at which

the pairs are broken. For γ = 0.001 (Fig. a), the pairs are broken at temper-

atures around 0.002kBT/J , at γ = 1 (Fig. b), the pairs are broken at around

0.05kBT/J . The insets show the counting distribution for T=0 and T=0.01 in

Fig. a) and for T=0 and T=0.2 in Fig. b).
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Figure 5.7: The signature of the quantum phase transition is reflected in the

mean and variance of the counting distribution even at finite temperatures. We

plot the derivatives of the mean m̄/N (blue squares) and the variance σ2/N (red

circles) of the counting distribution of the fermionic system eq.(5.1) with γ = 1

as a function of the transverse field g. When the temperature is comparable to

the energies of the system (Fig. d), the quantum phase transition at g = 1 is no

longer visible.
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master equation [Breuer and Petruccione, 2002]

d

dt
ρ(t) =

γ0

∑

k

(
Nd

k

2
+ 1)

[

d̂kρ(t)d̂†k −
1

2
d̂†kd̂kρ(t)− 1

2
ρ(t)d̂†kd̂k

]

+γ0

∑

k

Nd
k

2

[

d̂†kρ(t)d̂k −
1

2
d̂kd̂

†
kρ(t)− 1

2
ρ(t)d̂kd̂

†
k

]

, (5.19)

where γ0 is the coupling strength and Nd
k in eq. (5.18) accounts for the mean

number of fermions in the kth mode at a certain temperature T . This open system

dynamics assures that the system approaches thermal equilibrium towards the

Boltzmann-Gibbs state.

At this point, we would like to clarify an important point in relation to particle

counting of a dynamical system. The system is governed by two different dynamic

processes, one is the coupling to the heat bath described by eq. (5.19), the other

one is the detection by particle counting described by eq. (4.7). We assume that

the coupling of the system to the heat bath occurs on a time scale much slower

than the counting process. The counting is thus performed in a time interval

in which the coupling to the bath does not affect the system, so that it can be

considered time independent. Below we show how the counting statistics change

during thermalization of the system with the heat bath. However, each of the

distributions is registered at the detector in a time interval in which no change

occurs.

5.3.1 Coupling to the Excitations

In order to calculate the counting statistics of the system coupled to a heat bath,

we calculate the terms Ak and Bk as given in eq. (5.8), which now depend on

time. From the master equation (5.19), the time dependent mean excitation

number is obtained as

〈n̂d
k(t)〉 = e−γ0t〈n̂d

k(0)〉+ Nd
k (1− e−γ0t). (5.20)

We start with the system initially in the vacuum state and use

〈d̂†kd̂kd̂
†
−kd̂−k(t)〉 = 〈d̂†kd̂k〉t〈d̂†−kd̂−k〉t
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Figure 5.8: When the system is coupled to a heat bath, the criticality at g = 1

gets washed out in the counting distribution as the coupling time increases. We

plot the derivatives with respect to g of the mean (blue squares) and variance

(red circles) for γ = 1 for increasing coupling time with γ0=1 and kBT = 0.1.

a) Initial time when the system is not coupled to the bath. b) t/J = 1 and c)

t/J = 10.

to calculate the time dependent terms Ak(t) and Bk(t) for a system in a heat

bath

Ak(t)

κ
= u2

kN
d
k (1− e−γ0t) + v2

k(2−Nd
k (1− e−γ0t))

Bk(t)

κ2
= u2

k

(Nd
k (1− e−γ0t))2

4

+v2

k(1−Nd
k (1− e−γ0t) +

(Nd
k (1− e−γ0t))2

4
).

In Fig. 5.8, we plot the derivatives of the mean and variance with respect to the

transverse field g at different times t at a fixed coupling rate γ0 = 1 and at fixed

temperature of the bath kBT = 0.1. At the initial time t = 0, the mean and

variance correspond to those of the zero excitation state, ground state at zero

temperature (Fig. 5.8 a). The phase transition is clearly visible in the derivative

both of the mean and the variance. Due to the coupling of the system and the

bath, already for intermediate times (see Fig. 5.8 b), the characteristic behavior

of the mean and variance in the critical region washes out. For long coupling

time, as shown in Fig. 5.8 c), the behavior is completely determined by the bath.

In Fig. 5.9, we plot the mean and variance as a function of time t for a system

coupled to a heat bath at very high temperature kBT = 100. Here, the transverse

field g is fixed. For no transverse field g = 0 (Fig. 5.9 a), both the mean and

the variance are constant as the coupling increases. At the critical point g = 1

(Fig. 5.9 b), the variance is constant and the mean decreases as the coupling time
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Figure 5.9: Mean (blue squares) m̄/N and variance σ2/N (red circles) of the

counting distribution as a function of the coupling time t/J (γ = γ0 = 1). In

Fig. a), g = 0. In Fig. b), g = 1 and in Fig. c), g = 2.

increases. For high transverse field g = 2 (Fig. 5.9 c), the mean decreases until

reaching the value of 0.5N and the variance increases up to the value 0.25N .

5.3.2 Local Representation of the Coupling

The master equation eq. (5.19) that we use to describe thermalization shows two

aspects. On the one hand, it is physically meaningful to describe the coupling to

the bath in terms of an exchange of quasiparticles d̂k, because the Hamiltonian

eq.(5.1) conserves the number of quasiparticle excitations. On the other hand, it

may look non-physical because the exchange between the system and the bath

is non-local. The aim of this section is to show that the master equation can be

rewritten in terms of local fermions ĉl and in principle it could be realized using

reservoir designs [Diehl et al., 2008,Kraus et al., 2008,Verstraete et al., 2009].

At high temperatures and in the absence of a transverse field (g = 0) at any

temperature, the number of excitations Nd
k in the bath is constant with k. In
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this case, the master equation (5.19) in terms of the local operators ĉl reads

d

dt
ρ(t) =

γ0(
Nd

N
+ 1)

∑

l,m

[Fu(l −m)ĉlρĉ†m + Fv(l −m)ĉ†l ρĉm − Fuv(l −m)(ĉ†l ρĉ†m − ĉlρĉm)

−1

2
(Fu(l −m)ĉ†l ĉmρ + Fv(l −m)ĉlĉ

†
mρ− Fuv(l −m)(ĉ†l ĉ

†
mρ− ĉlĉmρ))

−1

2
(Fu(l −m)ρĉ†l ĉm + Fv(l −m)ρĉlĉ

†
m − Fuv(l −m)(ρĉ†l ĉ

†
m − ρĉlĉm))]

+γ0

∑

k

Nd

N

∑

l,m

[Fu(l −m)ĉ†l ρĉm + Fv(l −m)ĉlρĉ†m − Fuv(l −m)(ĉ†l ρĉ†m − ĉlρĉm)

−1

2
(Fu(l −m)ĉlĉ

†
mρ + Fv(l −m)ĉ†l ĉmρ− Fuv(l −m)(ĉ†l ĉ

†
mρ− ĉlĉmρ))

−1

2
(Fu(l −m)ρĉlĉ

†
m + Fv(l −m)ρĉ†l ĉm − Fuv(l −m)(ρĉ†l ĉ

†
m − ρĉlĉm))],(5.21)

where we define the functions

Fu(l −m) =
1

N

∑

k

u2

ke
iΦk(l−m)

Fv(l −m) =
1

N

∑

k

v2

ke
iΦk(l−m)

Fuv(l −m) =
i

N

∑

k

ukvke
iΦk(l−m),

which depend on the distance l −m between two sites l and m and are related

to the correlation length of the quasiparticles and the pairs. In Fig. 5.10, we

plot the behavior of the functions Fu, Fv and Fuv as the distance between the

sites increases. We plot Fu, Fv and 1

i
Fuv for different values of g and γ/J and

show that the functions Fu, Fv have their maximum at zero distance and decay

rapidly as the distance increases. The function Fuv, which corresponds to the

pair correlations, has its maximum at the nearest neighbor term l −m = 1. We

observe that for large transverse field g ≫ 1, and γ/J → 0, the only non-zero

term corresponds to Fv(0) = 1. In this case, the XY model behaves like a free
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Figure 5.10: Locality of the coupling: Fu (a), Fv (b) and Fuv (c) as a function

of distance between sites (l −m) for γ = 1 and g = 0 (blue line/circles), g = 1

(green line/squares) and g = 10 (red line/diamands). The functions Fu, Fv and

Fuv decay rapidly as the distance between the sites increases. From Eq. (5.21) it

is clear that the coupling to the particles is practically local.

fermi gas and the master equation (5.19) reduces to

d

dt
ρ(t) =

γ0(Nd/N + 1)
∑

l

[ĉ†l ρĉl −
1

2
ĉlĉ

†
l ρ−

1

2
ρĉlĉ

†
l ]

+γ0Nd/N
∑

l

[ĉlρĉ†l −
1

2
ĉ†l ĉlρ−

1

2
ρĉ†l ĉl].

Note that for these parameters, the quasiparticles d̂k → ĉ†k. Thus at high T and

high transverse field g the bath and the system exchange fermionic particles.

Another interesting limit occurs at any T when g → 0 and γ/J = 1. We see in

figure 5.10, that in this case, the functions Fu, Fv are of order 0.5 for the same

site and Fu, Fv and Fuv are of the order of ±0.25 for neighboring sites. The

master equation eq. (5.21) has contributions from exchange of on-site fermions

and an additional term that corresponds to neighboring particles. Also, there is
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exchange of not only on-site particles and holes but also fermionic pairs. This is

expected as in this regime g ≪ γ, J the pair creation dominates in Hamiltonian

eq. (5.1).

For low temperatures and at g 6= 0, the number of quasiparticles Nd
k is not

constant with k and the master equation cannot be written in the form eq. (5.21).

However, as Nd
k is small for low temperatures, the non-local terms are negligible

and the equation as a whole remains local.

5.4 Summary

We have studied a strongly correlated system of fermions in an optical lattice by

using particle counting. At zero temperature, the quantum phase transition of

the model is clearly visible in the mean and variance of the counting distribution.

Furthermore, we have shown that for high detection efficiencies, the formation of

fermionic pairs is visible in the counting distribution. For lower efficiencies the

effect is obscured.

We have analyzed the effects of temperature on the counting distribution. Ther-

mal fluctuations induce pair breaking in the superfluid fermionic system. We

show that this is reflected in the particle number distribution function, which

becomes non-zero for odd numbers of particles for a temperature proportional

to the pair formation strength. Also, thermal fluctuations reduce the quantum

phase transition into a crossover between different regions of the phase diagram.

We have found that at low temperatures, the mean and variance of the counting

distribution reflect the critical behavior at the crossover between different phases.

This effect is obscured with increasing temperature and when the temperature

is comparable to the eigenergies of the system, the cumulants of the counting

distribution no longer reflect the critical behavior.

Furthermore, we have shown that the number distribution functions can be used

to monitor the quantum dynamics of the system. We have studied the thermal-

ization of the system, initially at zero temperature, when it is coupled to a heat

bath at finite temperature. This process is analogous to a temperature quench.

The temperature determines the number of delocalized excitations in the system

at equilibrium. For high temperatures and high transverse fields, the exchange of
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excitations between system and bath can be mapped into the exchange of local

fermions. For zero transverse field, we have shown that the exchange of local

excitations corresponds to the exchange of local particles and nearest neighbor

pairs. We have assumed that the counting process occurs at a different time scale,

much faster than the exchange of excitations between the system and the bath.

We have shown that the mean and variance of the counting distribution can be

used to map the thermalization process.
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Chapter 6

Instantaneous Detection of

Atoms Falling from a Lattice

In this Chapter, we study the particle counting statistics for the detection of a

system of bosons after time-of-flight expansion from the lattice. Here, the parti-

cles are released from the lattice and fall onto a detector such as a microchannel

plate (see Sect. 2.4.4). In such a setup, the geometry of the detector is controlled

by post-selecting the desired region of the microchannel plate after the detection

process. We are interested in detecting the initial correlations between particles

at different sites after the expansion from the lattice. Propagation in the gravita-

tional field mixes the initial modes of the atoms, such that the counting statistics

in the lattice, and after propagation are not expected to be the same. We show

that the mixing of the initial modes during the expansion becomes evident in

the counting distribution when the detector is small compared to the size of the

expanded wave function. Interestingly, in this case metastable states with dif-

ferent occupation patterns that appear in systems of dipolar atoms or molecules

in optical lattices can be distinguished. We consider initial Mott insulator (MI)

and superfluid (SF) states, as well as states with different occupation patterns in

the insulating regime and supersolid states with different density distributions.

We calculate both the counting probabilities at a single detector and the joint

probabilities at two detectors as a function of the horizontal distance between

them. We show that a SF and MI state can be readily distinguished from their

counting statistics. The detection of the short range correlations appearing in

insulating states is more challenging and requires detector sizes of the order of
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the correlation length, which is enlarged due to propagation in the gravitational

field. We show that a suitable choice of the detector geometry allows for the

detection of different occupation patterns in the insulating regime and different

supersolid states.

In Sect. 6.1 we review the propagation of the atomic wave functions when the

atoms are released from the optical lattice. In Sect. 6.2 we discuss the effect

of expansion on the counting distribution and analyze the intensities of particles

arriving at the detector. We show that the detection of long-range correlations

can be achieved with detectors whose size is of the order of the expanded wave

function. In contrast, the detection of different occupation patterns requires

small detector sizes. In Sect. 6.3, we show that particle counting with large

detectors allows for the detection a SF and MI states. We further show that

using appropriately chosen detector geometries, states with different occupation

patterns in the insulating regime as well as different supersolid states can be

detected.

6.1 Description of the System

We consider neutral bosonic atoms trapped in an optical lattice. The system

can be described using the Bose-Hubbard model eq. (2.8), which includes the

hopping of the particles between neighbouring sites and the on-site two-body

interactions. At zero temperature, the two limiting cases of the phase diagram are

the superfluid state, where the hopping term dominates, and the Mott insulator

state, where local interactions are dominant. The field operator of the many-body

system Ψ(r, t) can be expanded into the N modes ai

Ψ(r, t) =
∑

i

φi(r, t)ai. (6.1)

For atoms trapped in an optical lattice, ai describes the destruction of a particle

on site i. The corresponding initial wave functions are Wannier functions which

can be approximated by Gaussian functions centered at ri

φi(r, t = 0) =
1

(πω2)3/4
e−(r−ri)

2/2ω2

, (6.2)

where the width ω is chosen such that the initial wave functions at different sites

i do not overlap. Throughout this work, we consider a lattice spacing of a0 = 266
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nm.

The atoms are released from the optical lattice and expand in the gravitational

field. The expansion is illustrated in Fig. 6.1. At finite t, we can apply the

single-particle expansion

φ(r, t) =

∫

dr′K(r, r′, t)φi(r
′, 0) (6.3)

where the propagator for the free expansion in the gravitational field reads

[Kramer et al., 2002]

K(r, r′, t) =
( m

2πi~t

)3/2

e
im(r−r

′
)
2

2~t
− imgt(z+z′)

2~
− im2g2t3

24m~ . (6.4)

The full propagated wave function is then written as

φi(r, t) =
e−

im2g2t3

24m~

π3/4(iωt + ω)3/2
e
−

(r−ri)
2

2(ω2
t
+ω2) e

−i
(r−ri)

2ωt

2ω(ω2
t
+ω2) , (6.5)

where and rt = r+zt, with zt = (0, 0, gt2/2) and we have used that |rt−ri| ≫ ω.

Note that in the limit of ωt >> ω, the expanded wave function is, up to a phase

factor, a Gaussian function centered around zt with a width ωt = ~t/(mω).

6.2 Effect of Expansion on the Counting Distri-

bution

Let us now discuss the counting process for the detection of atoms expanding

in the gravitational field. We consider a momentary detection process, such

that the dynamics of the measurement are fast in comparison to the dynamics.

For simplicity and with no loss of generality, we consider the detection time

td =
√

2z0/g which is the time when the center of the cloud arrives at the

detector. For a detector located at a distance z0 from the lattice, the intensity

I of atoms registered at the detector, eq. (4.35), is determined by the expanded

field operator Ψ(z0, td) of the atoms at the time td of detection and takes the form

I =
∑

ij

Aija
†
iaj , (6.6)

where

Aij(z0,Ω, κ) = κ

∫

Ω

drφ∗i (td)φj(td). (6.7)
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Figure 6.1: The initial Wannier functions of the atoms in the lattice are approx-

imated by Gaussian functions of width ω. Initially, the wave functions do not

overlap. During the expansion, the wave functions spread and are described by

Gaussian functions of width ωt that overlap. As this chapter will show, the in-

terference between the initially separated modes plays an important role for the

detection of different occupation patterns of atoms in the lattice.

The elements of the correlation matrix Aij defined in eq. (6.7) describe the

interference and auto-correlation terms between different modes registered at the

detector. The diagonal terms represent the on-site correlations, whereas the off-

diagonal terms represent the crossed-correlations between single particle modes

initially located at different sites with distance |i− j|.

Before studying the full counting distribution, let us consider the correlations

given by the matrix elements Aij . Using eq. (6.5) and assuming ωtd ≫ ω, the

auto-correlation elements are given by

Aii = κ

∫

Ω

dr
1

π3/2ω3
td

e
−

(r−ri)
2

ω2
td . (6.8)

For expanded wave functions at r ≫ ri, the auto-correlations become all equal

and independent of the original lattice site i. The crossed-correlations are given

by

Aij = κ

∫

Ω

dr
1

π3/2ω3
t

e
−

(r−ri)
2

ω2
t e

−i
r(ri−rj )

ωωt (6.9)

The ratio between the crossed correlations and the auto-correlations depend cru-

cially on the geometry of the detector.
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Figure 6.2: The ratio between the on-site-correlations and interference terms

depend on the size of the detector. We plot the on-site-correlations (blue squares)

and the interference terms with respect to the detector size ∆z. For detectors

of size comparable to the expanded wave function ∆z ≃ ωt (Fig. a), the on-

site correlations are dominant. For ∆z ≪ ωt (Fig. b), the interference terms

are of the order of the on-site correlations. The interference terms are plotted

as Ai,i+1 (green circles), Ai,i+2 (red diamonds), and Ai,i+3 (light blue triangles).

Parameters used: z0 = 1cm, ∆x = ∆y = 1cm and κ = 1.

In Fig. 6.2, we show the on-site correlations eq. (6.8) and the interference terms

eq. (6.9) in function of the size of the detector. We consider a one dimensional

array in z-direction and plot the correlations registered by a cubic detector with

edges ∆x,∆y,∆z located at a distance z0 from the lattice center. We consider

a fixed detector size in the x-y-plane, ∆ = ∆x = ∆y and vary its width ∆z in

z-direction. Depending on the geometry of the detector, the whole cloud or a

fraction of it is registered. For z0 = 1 cm, the size of the expanded single-particle

wave function at the detector is ωtd = 0.8 mm. In Fig. 6.2 a, we show that

for detectors of size ∆z > 0.2 mm, the interference terms are negligible. This

is easily understood from eq. (6.8), as the auto-correlations are given by an

integral over the detector volume around the center of a Gaussian function. For

detectors that are large compared to the size of the cloud, the on-site correlations

approach unity. In contrast, the interference terms eq. (6.9) are given by the

integral over a Gaussian function multiplied by a highly oscillating phase, such

that they approach zero as the size of the detector increases. Therefore, for on-

site counting and for detectors which are larger than the size of the cloud, the

crossed correlations disappear, Aij ≃ 0 for i 6= j, while the auto-correlations
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approach Aii ≃ κ.

As we show in the following section, the detection of the auto-correlations be-

tween different modes is sufficient to distinguish the long-range correlations in

the system. In particular, we show that a MI state can be distinguished from a

SF.

On the contrary, as the auto-correlation terms for different sites are equal, dis-

tinguishing states with different occupation patterns cannot be achieved in this

limit. Fig. 6.2 b shows that for small detector sizes, the interference terms are

of the order of the on-site correlations. We will show that in this limit, different

occupation patterns are distinguishable from the counting distribution.

6.3 Detection of Initial States by Particle Count-

ing after Expansion

Let us now consider the counting distributions measured at the detector after the

expansion for different initial states of the system of atoms in the lattice.

6.3.1 Superfluid state

First, we focus on a SF state, ground state of the Bose-Hubbard model for very

shallow lattices. We derive the counting distribution using the Gutzwiller ansatz

[Krauth et al., 1992] for the wave function which assumes that it is a product of

on-site coherent states. The initial state of the atoms in the lattice with N sites

then reads:

|ψ〉 =

N
∏

i

|αi〉i , (6.10)

where |αi〉i is the coherent state on site i,

|αi〉i = e−|αi|2/2

∞
∑

n=0

αn
i√
n!
|n〉i (6.11)
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and |n〉i = (ai)
n |0〉 is a Fock state with n particles. Note that |ψ〉 is an eigenstate

of the annihilation operator Ψ(r, t) of the expanded atoms,

Ψ(r, t) |ψ〉 =
∑

i

φi(r, t)αi |ψ〉 , (6.12)

where φi is given by eq. (6.2). The state |ψ〉 is thus an eigenstate of the

expanded field operator Ψ(r, t) and we can write the generating function as

Q(λ) = e−λ
∑

ij α∗i αjAij . Using eq. (4.13) the counting distribution p(m) reads

p(m) =

(

∑

ij α
∗
iαjAij

)m

m!
e−

∑

ij α∗i αjAij , (6.13)

where Aij is given by eq. (6.7).

For a homogeneous superfluid with equal mean number of particles per sites,

αi = α for all i, and in the limit of large detectors, where the diagonal elements

of the matrix Aij are much bigger than the off-diagonal elements, the counting

distribution of the SF simplifies to

p(m) =
(N |α|2Ad)

m

m!
e−N |α|2Ad, (6.14)

which corresponds to a Poissonian distribution with mean (and thus also variance)

m̄ = σ2(m) = N |α|2Ad.

6.3.2 Mott Insulator state with one particle per site

Let us now consider the Mott insulating regime. We first study a Mott insulator

state with one particle per site, |ψ〉 = |11..11〉. In this case, the generating

function eq. (4.14) reads

Q(λ) = 〈11..11| : e−λκ
∫

Ω
drΨ†(r,td)Ψ(r,td) : |11..11〉

= 1− λ
∑

i

Aii + λ2
∑

i<j

(AiiAjj + |Aij|2)− .... (6.15)

We can rewrite eq. (6.15) using the minors of the matrix A,

Q(λ) = 1 +
N
∑

k=1

(−1)kλkM+(A, k), (6.16)
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where M+(A,m) denotes the permanent perm(A) =
∑

σǫSn
Πn

i=1Ai,σ(i) of the cor-

ner blocks of size m of the matrix A. Note that M+(A, k) is closely related to

the principal minors of the matrix, which are defined as the determinant of the

respective block matrices. The counting distribution p(m) can then be calculated

using Eqs. (4.13) and (6.16).

As was outlined above, in typical experimental situations the detector is far

away from the lattice and much larger than the cloud, such that the off-diagonal

elements of Aij are negligible and the diagonal elements Aii are equal for all i. In

this case the generating function Q for the Mott insulator state with unit filling

is given by

QMI(λ) =

N
∑

k=0

(

N

k

)

(−λAd)
k = (1− Adλ)N , (6.17)

where Ad denotes any of the (equal) diagonal elements. The counting distribution

p(m) is then given by

p(m) =

(

N

m

)

Am
d (1−Ad)

N−m (6.18)

This corresponds to the distribution of a fock state. The mean m̄ and variance

σ2(m) of the distribution are given by

m̄ = NAd σ2(m) = NAd(1− Ad) (6.19)

6.3.3 Detection of a Mott Insulator and Superfluid State

In Fig. 6.3, we plot the counting distributions for a SF and a MI state at different

distances between the detector and the lattice. We show that the two states

can be distinguished by observing their counting distributions. With increasing

distance from the detector, a smaller fraction of the expanded wave function is

registered. The difference between the MI and the SF becomes less visible, and

the mean decreases. In Fig. 6.4, we plot the normalized mean and the variance

of the counting distributions for the SF and the MI state registered at a detector

with fixed size at different distances z0 from the lattice.

Let us further consider the counting statistics of the MI and SF state using two

detectors and study the correlations between the counting events. For the MI

state, the joint counting distribution pMI(m,n) of counting m particles at one
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Figure 6.3: The probability distributions for a Mott insulator (black bars) and

superfluid (white bars) state released from a 3x3x3 are clearly distinguishable.

The particles are registered after expansion at a detector of fixed size at a distance

of a) z0 = 1cm, b) z0 = 3 cm, and c) z0 = 5 cm. Parameters used: ∆x = ∆y = 2

mm, ∆z = 2 cm, κ = 1.

detector and n particles at the other is given by eq. (4.16), where the generating

function for two detectors is given by

Q2 =

N
∑

k=1

(−1)kMinors*±(λ1A
(1) + λ2A

(2), k). (6.20)

For detectors that are located symmetrically with respect to the origin in the

x-y-plane, in typical experimental situations the off-diagonal elements of Aij are

neglected and the diagonal elements Ad are all equal for both detectors, A
(1)

d =
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Figure 6.4: Mean m̄ and variance σ2(m)/N of the counting distribution for an

expanded MI and SF state with respect to the distance from the detector z0.

For the SF state, the mean and variance are equal and are given by the green

circles. For the MI state, the mean (green circles) and variance (blue squares)

are different. ∆x = ∆y = 2 mm, ∆z = 2 cm, κ = 1.

A
(2)

d = Ad. The generating function thus simplifies to

QMI(λ1, λ2) =

N
∑

k=0

(

N

k

)

(−Ad)
k(λ1 + λ2)

k

= (1− Ad(λ1 + λ2))
N , (6.21)

and the counting distribution is given by

pMI(m,n) = (−1)n+m(1− 2Ad)
Np−m−n ×

(−Ad)
m+n Np!

m!n!(Np−m−n)!
(6.22)

For the SF state, the joint counting distribution pSF (m,n) is the product of the

two single detector distributions p(m) and p(n) given by Eq. (6.13). The counting

events are thus not correlated.

We consider two detectors of the same size that are placed symmetrically at a

distance x1 = (xd, 0, z) and x2 = (−xd, 0, z) from the lattice center. Fig. 6.5

shows the counting distributions for two overlapping detectors (left column) and

for two detectors separated by 2xd = 1cm (right column). For the MI state, shown

in the upper row in fig. 6.5, we observe a squeezed distribution, indicating the

correlations of the atoms counted at the two detectors. Note that the squeezing
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is less pronounced when increasing the distance between the detectors. For the

SF state, shown in the lower row of fig. 6.5, the joint counting distribution is

Gaussian for both cases. This is expected, as the joint counting distribution Eq.

(6.13) is a product of the single detector counting distributions.

The correlations in the system can be seen more clearly when looking at the

correlation function eq. (4.17). Note that for the superfluid state, there is no

difference between the joint counting distribution and the product of the single

particle distributions. For the Mott state, we study the correlations for varying

distance between the two detectors xd. In Fig. 6.6, we show how the correla-

tions decrease when increasing the distance between detectors xd. Note that the

distance xd denotes the distance between the center of the tow detectors. For

xd = 0, the detectors fully overlap, and for xd > ∆ the detectors are completely

separated.

6.3.4 Detection of Insulating States with Different Occu-

pation Patterns

Let us now consider the different occupation patterns that arise in the strongly

correlated regime. In particular, we focus on such states where at most one

particle occupies each site. The generating function is then calculated by eq.

(6.16), with a correlation matrix A′, composed of the elements of the correlation

matrix A in eq. (6.7) multiplied by the occupation numbers ni and nj of the

involved sites,

A′ = ninjAij . (6.23)

As discussed above, in order to detect the different patterns, the crossed-correlations

have to be of the order of the auto-correlations. This is clear as away from the

lattice, all the on-site correlation terms become equal. Let us discuss the exam-

ple of a checkerboard state, where every second site is occupied, and a state with

stripes, where every second line is occupied. For the striped state, the leading

crossed-correlation terms eq. (6.9) are the ones that correspond to the nearest

neighbors. For the checkerboard state, where neighboring sites are not occupied,

the leading terms are the ones that correspond to diagonally adjacent sites. In

order to distinguish the different patterns, it is thus essential that these two lead-

ing crossed-terms are sufficiently different and at the same time comparable to



6.3 Detection of Initial States by Particle Counting after Expansion 100

0
5

10
15

0

5

10

15

0

0.02

0.04

m

n

p
(m

,n
)

a)

0
5

10
15

0

5

10

15

0

0.02

0.04

m

n

p
(m

,n
)

b)

0
5

10
15

0

5

10

15

0

0.01

0.02

m

n

p
(m

,n
)

c)

0
5

10
15

0

5

10

15

0

0.02

0.04

m

n

p
(m

,n
)

d)

Figure 6.5: Joint probability distribution of an expanded Mott insulator (upper

row) and a superfluid state (lower row) in a 4x4 lattice with two symmetrically

placed detectors. In fig. a) and c), the two detectors overlap at the center of

the lattice in x-y direction. The joint probability distribution for the MI state is

squeezed, indicating the correlations the detection events at the two detectors,

whereas for the SF states the events are uncorrelated. In fig. b) and d) the

detectors are separated by d = 1 cm. The squeezing of the distribution for

the MI state is less pronounced. Parameters used: z0 = 1cm, ∆z = 2 mm,

∆x = ∆y = 2 cm, κ = 0.5.
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Figure 6.6: Correlations of the joint probability distribution of an expanded

MI (upper row) and a SF (lower row) in a 4x4 lattice with two symmetrically

placed detectors. The correlations between detection events at the two detectors

decrease as the distance between the detectors increases. z0 = 1cm, ∆z = 2 mm,

∆x = ∆y = 2 cm, κ = 0.5

the on-site correlations. From Fig. 6.2, we see that this implies that the limit of

small detectors has to be considered. However, if the detector is very small, all

the terms are equal and the patterns are not distinguishable. One should thus

consider an intermediate detector size.

In Fig. 6.7, we illustrate the effect for a 1D system of N = 12 particles. We com-

pare the counting distributions of a checkerboard-like state, where every second

site is occupied, and a state where a block of six sites is occupied and a block of

six sites is empty. In order to distinguish the two states, from Fig. 6.2, we choose

a detector size of ∆ = 0.02 mm, such that the ratio of the crossed-correlation

terms between neighboring sites and the auto-correlations is 0.6. Fig. 6.7 shows

that the different occupation patterns are reflected in the counting distribution.

Finally, let us consider a symmetric superposition of all possible states with filling

factor Np/Ns, where Np is the number of particles, Ns denotes the number of sites

and Np ≤ Ns, the generating function reads

Q = 1 +
∑

m

(−1)mλmFMI(A,m,Np, Ns), (6.24)
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Figure 6.7: The counting distribution of an expanded one dimensional checker-

board (black bars) and striped insulating pattern (white bars) can be clearly

distinguished. Parameters used: z0 = 1 cm, ∆ = 0.1 cm, ∆z = 0.02 mm, κ = 1

where

FMI(A,m,Np, Ns) =

(

Ns−m
Np−m

)

(

Ns

Np

) M+(A,m)

+

(

Ns−2m
Np−m

)

(

Ns

Np

) 2mK(m), (6.25)

where K(m) is defined as the mfold product over the sum with non-repeated in-

dices of the real part of Aij ,
∑

i<j Re(Aij) . For m = 2, e.g. M+ =
∑

i<j(AiiAjj +

|Aij|2) and K(m) = Re(Aij)Re(Akl) with k, l 6= i, j.

6.3.5 Detection of a Supersolid state

As for the detection of states with different occupation patterns in the insulating

regime, the detection of supersolid states requires the limit where the crossed-

correlation terms for neighboring sites are comparable to the auto-correlation

terms. We consider a supersolid state with N sites and mean density α2i = β

and α2i−1 = γ. For the limit where the crossed-correlation terms for neighboring

sites are the only non-negligible interference terms, the counting distribution eq.

(6.13) is given by a Poissonian distribution with mean

m̄ =
N

2
Ad(β

2 + γ2) + 2NANNβγ, (6.26)
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Figure 6.8: The counting distribution of an expanded supersolid state with |β|2 =

0.5 and |γ|2 = 1.5 (black bars) and an expanded superfluid state |α|2 = 1 (white

bars) can be clearly distinguished. Parameters used: z0 = 1 cm, ∆ = 1 cm,

∆z = 0.02 mm, κ = 1

where Ad denotes the diagonal elements corresponding to the on-site correlations

and ANN denotes the nearest neighbor crossed-correlation terms. Let us compare

this to a superfluid state with a homogeneous density per site, |αi|2 = |β|2+|γ2|
2

for all i. The counting distribution eq. (6.13) is thus given by a Poissonian

distribution with mean

m̄ =
N

2
Ad(β

2 + γ2) +NANN (β2 + γ2). (6.27)

From eqs. (6.26) and (6.27) it is clear that a supersolid state can be distinguished

from a superfluid state by particle counting. In Fig. 6.8 we illustrate this by

comparing a supersolid state with |β|2 = 0.5 and |γ|2 = 1.5 to a superfluid state

with |α|2 = 1.

6.4 Summary

We have studied the counting distributions of atoms falling from an optical lattice

and propagating in the gravitational field. The intensity of atoms recorded at a

detector located far away from an optical lattice can be decomposed into auto-

correlation and crossed-correlations between the expanding modes. The ratio

between these terms depends crucially on the geometry of the detector. In the

limit when the detector is large compared to the expanded modes, the crossed-

correlation terms are negligible and only long-range correlations of different states
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can be distinguished. In this limit a SF state has a poissonian number distribution

while a MI has subpoissonian number distribution for a detector of finite size

located at a distance z0 from the lattice. Only in the limit of very far detection

for a finite sized detector both number distributions become equal. The two

states can also be readily distinguished from the joint probability distribution of

counting the particles at two detectors. In the SF regime, the joint probability

distribution is a product of the two independent number distributions while in

the MI regime, the distributions are highly correlated.

When the detector is small compared to the expanded wave function, the crossed-

correlation terms for adjacent sites are of the order of the auto-correlations. We

have shown that by choosing the size of the detector in an appropriate way, differ-

ent occupation patterns can be distinguished by particle counting after expansion

both in the insulating as well as in the superfluid regime.
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Chapter 7

Detection of an Expanding BEC:

Effect of Absorption at the

Detector

In the preceding chapters, we considered the detection of different strongly-

correlated systems by particle counting. We observed that for a wide range of

experimental situations, the system dynamics are short compared to the count-

ing process and the counting distribution is obtained from standard methods.

In this chapter, we consider the detection of an expanding bose-einstein conden-

sate, where the detector is located on-site or at some distance from the BEC.

The atoms are counted while during the expansion of the cloud, such that the

dynamics of the system are of the same order as the dynamics of the detection

process.

We apply the formalism developed in Chapter 4.3, which gives a time- and space-

dependent description of the counting process, taking into account the back-

action of the detector on the field. Let us recall that in the Glauber-Mandel

formula (4.2), the intensity at the detector is not affected by the absorption of

particles at the detector. In this chapter, we illustrate the effect of the absorption

by considering the counting distribution for an expanding BEC.

In Sect. 7.1, we describe the system and derive the counting distributions in the

time and space dependent formalism. In Sect. 7.2, we discuss an approximate

solution using the Born approximation. In Sect. 7.3, we present our results.
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7.1 Description of the System

We study the counting statistics of a freely expanding Bose Einstein condensate.

For simplicity, we consider a one dimensional system with a point-like detector

located at a distance z0 from the condensate. The detection time is of the order of

the system dynamics, such that we calculate the full time- and space dependent

generating function given by eq. (4.14), where the intensity is given by eq. (4.28).

For a point-like detector modeled by a delta-function δ(z − z0), the intensity eq.

(4.28) reads

I =
∫ t

0

dt′Ψ̃†(z0, t
′)Ψ̃(z0, t

′), (7.1)

where the time evolution of the operators Ψ̃(r, t) is described by eq. (4.33). For

the detection of a BEC at a point-like detector, the time evolution is given by

φ̃(z, t) =

∫

dz′GS(z, z
′, t, t0)φ(z

′, t0), (7.2)

where Ψ̃(z, t) = Nφ(z, t)a, N denotes the number of particles and a is the anni-

hilation operator.

GS(z, z
′, t, t0) = 〈z| e−i(t−t0)(H0+i ǫ

2
δ(z−z0)) |z′〉 (7.3)

The counting distribution is then obtained from eq. (6.13), which for the case of

a condensate with N particles is given by

p(m) =

(

Nǫ
∫

dtφ̃†(z0, t)φ̃(z0, t)
)m

m!
e−Nǫ

∫

dtφ̃†(z0,t)φ̃(z0,t), (7.4)

In order to calculate the counting distribution eq. (7.4), we solve eq. (7.2). We

approximate the initial wave function φ̃(z, 0) by a Lorentzian function,

φ̃(z, 0) =
√
Γe−Γ|z|, (7.5)

In Sect. 7.1.1, we directly solve the time dependent Schrödinger equation to get

an analytic solution for the time evolved function φ̃(z, t). In Sect. 7.1.2, we solve

eq. 4.33 for detectors that are placed at a distance z0 from the condensate.
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7.1.1 On-site Detection of an Expanding BEC

In this section, we calculate the counting distribution p(m) for an expanding

BEC, where the detector is located in the center of the cloud at z0 = 0. To this

end, we solve the time dependent Schrödinger equation (~ = m = 1),

i
˙̃
φ(z, t) = −1

2

∂2

∂z2
φ̃(z, t)− i

ǫ

2
δ(z)φ̃(z, t) (7.6)

with the initial condition given by eq. (7.5).

We write Eq. (7.6) in terms of the fourier transform. From eq. (7.1) is is

clear that for a detector placed at z0 = 0, we are only interested in φ̃(0, t) =
1

2π

∫∞

−∞
dkφ(k, t), which we denote by S(t). The fourier transformed equation is a

differential equation with variable coefficients and can be integrated by standard

methods [Bronstein et al., 2002]. We get

S(t) = S0(t)−
ǫ

2

∫ t

0

κ(t− t′)S(t′)dt′, (7.7)

where S0(t) =
1

2π

∫

dke−ik2t/2φ(k, 0) and κ(t, t′) = 1

2π

∫∞

−∞
dke−ik2(t−t′)/2 = (1−i)

2
√

π
√

t−t′

We take the Laplace transform of eq. (7.7) and use the convolution theorem

[Abramowitz and Stegun, 1965, 29.2.8] to obtain

S(s) =
S0(s)

1 + ǫ
2
κ(s)

. (7.8)

The term S0(s) is calculated by using the residue theorem and using the method

of partial fractions the expression for S(s) is written in the form A√
s+a1

, such that

the inverse Laplace transform is given by.

S(t) = φ̃(0, t) =

√
Γ(e

1

2
iΓ2tΓErfc(1+i

2
Γ
√

t) + i
2
e−

1

8
itǫ2ǫErfc( (1−i)ǫ

4

√
t))

(Γ + i ǫ
2
)

(7.9)

The probability distribution p(m) can then be calculated by eq. 7.4.

7.1.2 Detection at a Distance z0

In this section, we solve eq. (7.2) for a detector placed at a distance z0 from the

condensate. We follow the treatment in [Kleber, 1994] to derive an exact solution

for the propagator eq. (7.3) that describes the whole system evolution including
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the absorption at the detector. The effective Hamiltonian Heff = H0 + H1

is composed of two parts: the free particle Hamiltonian H0 and a part H1 =

i ǫ
2
δ(z − z0) corresponding to the detection process, which acts as an imaginary

potential. The propagator GS(z, z
′, t) can be written in an iterative way using the

Lippmann-Schwinger equation, which for a point-like detector Ω(z′) = δ(z′ − z0)

reads

GS(z, z
′, t) = G0(z, z

′, t)− ǫ

2

∫ t

0

dt′G0(z, z0, t− t′)G(z0, z
′, t′). (7.10)

The propagator G0(z, z
′, t) for the free expansion is known to be

G0(z, z
′, t) =

√

1

2πit
exp(

i|z − z′|2
2t

). (7.11)

We perform a Laplace transform of eq. (7.10) and use the convolution theorem

to get

G̃(z, z′, s) = G̃0(z, z
′, t)− ǫ

2
G̃0(z, z0, s)G̃(z0, z

′, s) (7.12)

From eq. 7.1, we observe that we are only interested in the propagator at z = z0,

such that

G̃(z0, z
′, s) =

G̃0(z0, z
′, t)

1− ǫ
2
G̃0(z0, z0, s)

. (7.13)

The Laplace transform of the free propagator G(z0, z
′, s) is given by

G̃(z0, z
′, s) =

√

1

2is
exp(−

√

2s

i
|z0 − z′|). (7.14)

The inverse Laplace transform of G̃(z, z′, s) can be performed by standard meth-

ods [Abramowitz and Stegun, 1965], such that the propagator is given by

G(z0, z
′, t) = G0(z0, z

′t) +
iǫ

4
ei( ǫ

2
d+( ǫ

2
)2

t

2
)erfc(

√

1

2i
(d/
√

t− ǫ
√

t

2
)), (7.15)

with d = |z − z0|+ |z0 − z′|.

The function φ̃(z0, t) is then calculated by eq. (7.2). The result can be written

in a simple form using the Moshinsky function [Kramer and Moshinsky, 2005]

M(k = −iΓ, t, z = 0), where

M(k, t, z) =

∫ 0

−∞

dz′
1√
2πit

exp

(

ikz′ + i
(z − z′)2

2t

)

=
1

2
exp

(

ikz − 1

2
k2terfc(e−iπ/4 z − kt√

2t
)

)

(7.16)
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Figure 7.1: |φ̃(z0, t)|2 with respect to time for z0 = 0 (blue squares), z0 = 0.1/Γ

(green circles), z0 = 1/Γ (red diamonds), z0 = 10/Γ (light blue stars). As the

distance z0 between the center of the cloud and the detector increases, the wave

function spreads and long detector opening times are required to achieve non-

trivial intensities. ǫ = 1.

We thus get

φ̃(z0, t) =
√
Γ[M(−iΓ, t, z0) +

ǫ

2(2iΓ− ǫ)
M(−iΓ, t, z0)−

ǫ

2(2iΓ + ǫ)
M(−iΓ, t,−z0) +

2iΓǫ

4Γ2 + ǫ2
M(− ǫ

2
, t, z0) +

ǫ2e−Γz0

4Γ + ǫ2
M(− ǫ

2
, t, 0)− 2iǫe−Γz0

√
Γ(4Γ2 + ǫ2)

M(−iΓ, t, 0)]. (7.17)

Using eq. (7.17), we can calculate the counting distribution p(m) given in eq.

(7.4). The counting statistics are determined by the time integral over the square

of the wave function, φ̃∗(z0, t)φ̃(z0, t). Fig. 7.1 shows the square of the wave

function with respect to time for different distances z0. As the distance increases,

the wave function spreads in time. In order to obtain non-trivial results, long

opening times are required.

7.2 Born Approximation

In the previous section, we solved the exact Lippmann-Schwinger equation (7.10).

In this section, we use the Born approximation in order to derive an expression for

Ψ̃(z, t) in terms of the known propagator G0. In the second order approximation,

we obtain

GS(z, z
′, t) = G0(z, z

′, t)− i
ǫ

2

∫ t

0

dt′G0(z, z0, t− t′)G0(z0, z
′, t′). (7.18)
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This implies that up to second order, the solution to eq. (7.2) is given by

Ψ̃(z, t) = Ψ(z, t)− i
ǫ

2

∫ t

0

dt′
∫

dz′G0(z, z0, t− t′)G0(z0, z
′, t′)φ(z′, t0).

=
√
Γ(M(−iΓ, t, z0)−

ǫ

2

∫ t

0

dt′
√

1

2πit′
M(−iΓ, t′, z0)) (7.19)

Eq. (7.19) describes the evolution of the wave function, where the absorption at

the detector is taken into account up to second order. In Sect. 7.3, we show that

the second order approximation describes the situation more accurately than

the Glauber-Mandel formula. However, the effect of the absorption is under-

estimated.

We get the higher order Born approximation by writing eq. (7.19) in exponential

form,

φ̃(z, t) =
√
ΓM(−iΓ, t, z0)e

−ǫ/2
∫

t

0
dt′
√

m

2πit′
M(−iΓ,t′,z0)/M(−iΓ,t,z0) (7.20)

7.3 Comparison of the Approximate and Exact

Solutions

Let us now analyze the effect of the back-action of the detector on the field.

From eq. (7.4) it is clear that the important quantities to study are the square of

the wave function, φ̃∗(z0, t)φ̃(z0, t), its time integral, as well as the full counting

distribution. We discuss the limits in which the Glauber-Mandel formula and the

Born approximation give valid results, and study the limits of the approximative

solutions.

In Fig. 7.2 a, we plot the square of the wave function with respect to time, and

compare the exact solution to the solutions obtained by the born approximation

and the Glauber-Mandel formula. We chose an exemplary value of ǫ = 0.5. Note

that the exact solution decays more rapidly, as the absorption at the detector is

considered. The Born approximation underestimates the decay of the wave func-

tion and thus the absorption, however, it describes the behavior more accurately

than the Glauber-Mandel formula, where absorption is not considered.

The effect is seen more clearly when studying the time integral
∫ τ

0
dtφ̃∗(z0, t)φ̃(z0, t).

In Fig. 7.2 b, we plot the the integral with respect to the detection time τ . For
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Figure 7.2: a) |φ(0, t)|2 with respect to t. b)
∫ τ

0
dt|φ(0, t)|2 with respect to τ . We

compare the exact solution (blue squares), Born approximation (red diamonds)

and the Glauber-Mandel formula (green circles). Note that for long detection

times, the exponential Born approximation (light blue stars) reaches an asymp-

totic value, whereas the second order approximation (red diamonds) diverges.

ǫ = 0.5

short detection times, the exact solution and the approximate solutions coincide.

As the detection time increases, the intensity of particles is overestimated both

for the Born approximation and for the Glauber-Mandel formula. Note that for

long detection time, it is seen that second order Born approximation diverges,

whereas the exponential Born approximation reaches an asymptotic value.

Finally, we compare the counting distributions obtained by the exact solution

eq. (7.2) to the solution obtained by the Glauber-Mandel formula and the Born

approximation. The effect of absorption is clearly visible in the counting dis-

tribution, where the approximate solutions deviate increasingly from the exact

solution as the measurement time increases (Fig. 7.3). Let us note that the time

is given in units of m/(~Γ2). For a BEC with initial size of the order of 10µm,

the counting distributions in Fig. 7.3 correspond to timescales of the order of

milliseconds. The effect of absorption at the detector can be estimated from Fig.

7.2 b, where the typical time scales of expanding BECs of around 20ms corre-

spond to a value of around 5. The counting distribution calculated with the full

formalism including detection is clearly different from the approximated solution.
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Figure 7.3: Counting distribution p(m) obtained from exact solution (blue

squares), Born approximation (red diamonds) and the Glauber-Mandel formula

(green circles). For short detection times (Fig. a) the approximations agree rea-

sonably well with the exact solution. For longer detection times (Fig. b), the

approximations are no longer valid. z0 = 0, ǫ = 0.5.

7.4 Summary

We have illustrated the effect of the back-action of the detector on the field for

the free expansion of a Bose Einstein condensate. We showed that for typical

experimental situations, the full time- and space dependent formalism has to

be applied. An approximate solution using the Born approximation describes

the behavior of the system more accurately than the Glauber-Mandel formula.

However, for typical detection times of expanding BECs, the effect of absorption

is under-estimated significantly both by the Glauber-Mandel formula, as well as

the Born approximation.
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Chapter 8

Conclusions and Outlook

We have explored the possibility of using many-body features of complex quan-

tum systems for quantum technological applications. In particular, in analogy

to classical neural networks, we focused on strongly correlated systems with a

large number of metastable states to achieve robust storage and processing of

information. Such complex quantum systems with many metastable states can

be achieved with trapped ions or using atoms or molecules in optical lattices. Let

us summarize our main findings:

The first part of the thesis shows that a quantum neural network model can be

implemented with a system of trapped ions. The system allows for the process-

ing of quantum information with high error resistance. The error resistance is

achieved by distributing the information over the whole system.

The second part of the thesis addresses the scalability to larger systems and de-

velops a formalism for the detection of many-body systems of atoms in optical

lattices by particle counting. Our work is based on the formalism for photon

counting, which has been used extensively since its development in the 1960s.

We analyze the possibilities and limits of the formalism when applied to atoms

in optical lattices. In particular, we have shown that particle counting allows

for the detection of characteristic many-body features like quantum phase transi-

tions and fermionic pair formation in strongly correlated systems. The formalism

allows for the detection of the signatures of these effects at finite temperature.

Furthermore, we have considered particle counting after a time of flight expan-

sion for bosons that are released from an optical lattice. We have shown that



114

in the insulating regime, the occupation patterns of different metastable states

can be distinguished from the counting distribution with detectors that are small

compared to the expanded wave function. Likewise, supersolid states with dif-

ferent density distributions can be detected by particle counting after expansion

from the lattice. The existing formalism for particle counting fails to describe

experimental situations, in which the timescale of the system dynamics is compa-

rable to the timescale of the counting process. We have derived a formula for the

counting distribution of time- and space dependent fields, taking into account the

back-action of the detector on the field. For the detection of an expanding con-

densate, the effect is visible at typical time-scales, such that the Glauber-Mandel

formula does not fully describe the situation.

Making use of the many-body properties of complex quantum systems can result

in advantages for quantum information processing. Based on our findings for

quantum computing with ions, we are confident that further applications for

quantum state engineering can be developed in complex quantum systems. In this

context, dipolar atoms or molecules in optical lattices are promising candidates.

The detection of such systems is of primary importance for the development of

useful applications of quantum technologies. In order to use particle counting as

a detection method, it would be of great interest to further study the effect of

the back-action of the detector in time- and space dependent fields.
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