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Abstract

This thesis addresses the problem of automatic scene text understanding in unconstrained conditions.
In particular, we tackle the tasks of multi-language and arbitrary-oriented text detection, tracking, and
recognition in natural scene images and videos. For this we have developed a set of generic methods
that build on top of the basic assumption that text has always some visual key characteristics that are
independent of the language or script in which it is written.

Scene text extraction methodologies are usually based in classification of individual regions or patches,
using a priori knowledge for a given script or language. Human perception of text, on the other hand,
is based on perceptual organisation through which text emerges as a perceptually significant group of
atomic objects. In this thesis, we argue that the text extraction problem could be posed as the detection of
meaningful groups of regions.

We address the problem of text segmentation in natural scenes from a hierarchical perspective, making
explicit use of text structure, aiming directly to the detection of region groupings corresponding to text
within a hierarchy produced by an agglomerative similarity clustering process over individual regions. We
propose an optimal way to construct such an hierarchy introducing a feature space designed to produce
text group hypotheses with high recall and a novel stopping rule combining a discriminative classifier
and a probabilistic measure of group meaningfulness based in perceptual organization.

We propose a new Object Proposals algorithm that is specifically designed for text and compare it with
other generic methods in the state of the art. At the same time we study to what extent the existing
generic Object Proposals methods may be useful for scene text understanding.

Then, we present a hybrid algorithm for detection and tracking of scene text where the notion of region
grouppings plays also central role. A scene text extraction module based on Maximally Stable Extremal
Regions (MSER) is used to detect text asynchronously, while in parallel detected text objects are tracked
by MSER propagation. The cooperation of these two modules goes beyond the full-detection approaches
in terms of time performance optimization, and yields real-time video processing at high frame rates even
on low-resource devices.

Finally, we focus on the problem of script identification in scene text images in order to build a multi-
language end-to-end reading system. Facing this problem with state of the art CNN classifiers is not
straightforward, as they fail to address a key characteristic of scene text instances: their extremely vari-
able aspect ratio. Instead of resizing input images to a fixed size as in the typical use of holistic CNN
classifiers, we propose a patch-based classification framework in order to preserve discriminative parts of
the image that are characteristic of its class. We describe a novel method based on the use of ensembles of
conjoined networks to jointly learn discriminative stroke-parts representations and their relative impor-
tance in a patch-based classification scheme. Our experiments with this learning procedure demonstrate
the viability of script identification in natural scene images, paving the road towards true multi-lingual
end-to-end scene text understanding.
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Chapter 1

Introduction

Reading is the complex cognitive process of transforming forms
(letters and words) into meanings [94] in order to understand and
interpret written content. Since ancient times1, written language has 1 The use of ideographic symbols

(proto-writing) is traced to 6000 bce.
Surviving evidences of today’s in-use
scripts, as the one shown in Figure 1.1,
date from three centuries bce.

been the most important form of nonverbal communication, infor-
mation storage, and sharing of ideas for humankind. Reading is
therefore considered a basic skill for humans which allows them ac-
cess to vast amount of knowledge available through text.

Figure 1.1: Cippus Perusinus, Etruscan
writing near Perugia, Italy. The begin-
ning of the writing with the Latin al-
phabet, 3rd or 2nd century bce.

In the field of human-machine interfaces, the idea to equip com-
puters with reading capabilities is as old as computer science itself.
It arose as a natural way to acquire data from non-digital written
content and to automate tasks related with text processing.

With its roots in the first Optical Character Recognition (OCR)
systems developed around the 60’s, Document Image Analysis is
nowadays a mature research field in the crossroads between Pat-
tern Recognition and Computer Vision. It is considered one of the
most fruitful areas of Computer Vision, and off-the-shelf OCR so-
lutions available today are extremely efficient in documents created
with modern printers and standard font types. However, research in
document analysis has still many open challenges that involve read-
ing tasks in non-optimal conditions, e.g. handwritten text, historical
and/or deteriorated documents, complex layouts, etc.

Although the majority of humans’ reading activity is carried out
over text written on paper or electronic display devices, texts may
also appear written on objects around us: text on street signs, a motto
painted on a wall, and even text produced by arranging small stones
on the sand. This type of text, from now on referred as “scene text”,
is an important source of information in our daily life.

Scene text is ubiquitous in man-made environments and most of
our everyday activities imply reading and understanding written in-
formation in the world around us (shopping, finding places, viewing
advertisements, etc).

The automated recognition of scene text in uncontrolled environ-
ments is an open Computer Vision problem. At its core lies the
extensive variability of scene text in terms of its location, physical
appearance, and design (Figure 1.2).
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Figure 1.2: The extensive variability of
scene text in terms of its location, physi-
cal appearance, and design makes auto-
mated recognition of scene text a chal-
lenging problem.

1.1 Scene text understanding tasks

Scene text reading systems typically follow a two-step pipeline de-
sign: first applying an algorithm to detect (localize) text regions in
the input image, and then performing the actual text recognition
into the previously localized regions. These two well differentiated
tasks (localization and recognition) have been traditionally treated as
isolated problems by the researchers, each one having its own evalu-
ation framework. A frequent intermediate task is the pixel-level seg-
mentation of text components, also known as text extraction, that,
when attainable, would allow the use of document-oriented OCR
techniques in the recognition step.

When a method is designed to do both localization and recogni-
tion tasks at once we call it an “end-to-end” reading system. We
refer to the task of end-to-end word spotting when the recognition is
constrained to a relatively small list of given words (queries).

The automated understanding of textual information in natural
scene images has received increasing attention from computer vision
researchers over the last decade. Text localization, extraction, and
recognition methods have evolved significantly and their accuracy
has increased drastically in recent years [78, 112, 60, 57]. However,
the problem is far from being considered solved. The best perform-
ing methods in the last ICDAR Robust Reading Competition achieve
only 69%, 74%, and 70% recall in the tasks of text localization, seg-
mentation, and end-to-end recognition respectively. Moreover, al-
though standard benchmark datasets have traditionally concentrated
on English text that is well-focused and horizontally-aligned, new
datasets have recently appeared covering much more unconstrained
scenarios. These include incidental text [57], i.e. text appearing in the
scene without the user intention, multi-script and arbitrary oriented
text [143, 68].

If one considers multi-language environments, script and language
identification become also crucial tasks for reliable scene text under-
standing. Since text recognition algorithms are language-dependent,
detecting the script and language at hand allows selecting the correct
language model to employ [130].
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(a) (b) (c) (d)

Figure 1.3: Complexity of natural
scene images: (a) cluttered background,
(b) occlusions, (c) shadows and high-
lights, (d) perspective distortions.

1.2 Challenges

Most of the difficulty in scene text understanding comes from the fact
that we have virtually no any restriction on how scene text can ap-
pear within an image. Thus, the first big challenge we face, is to deal
in a robust way with high variability in font type, size, color, orien-
tation, and alignment of text. See for example Figure 1.2. Other no-
table challenges stem from the intrinsic complexity of natural scene
images (Figure 1.3), and from certain disadvantages inherent to the
capturing technology of camera based systems (Figure 1.4).

There exist many aspects of scene text that makes its recognition
a totally different problem to the one that OCR systems solve for
scanned documents. Complex backgrounds and occlusions are diffi-
cult challenges to address in a completely uncontrolled environment.
Low-contrast and uneven lighting, that can appear in the form of re-
flections and shadows, can make things even worse. The projective
nature of camera based imaging makes the planar text in natural
scenes to appear with perspective distortion, other kind of distor-
tion arises when text appears in non-planar and non-rigid surfaces
or when using wide-angle lenses.

Regarding the inherent challenges of digital camera imaging, in
general, images with low resolution make difficult any task of text
segmentation and at the same time are not well posed input for the
final OCR step in the system. The same applies for blur and uneven
focus that can appear in the image in situations where we are shoot-
ing moving objects, the camera is not static, or the light is low, if
the sensor is not fast enough to maintain an optimal shutter speed.
Color quantization performed in low-profile cameras makes a high

Figure 1.4: Examples of inherent
challenges of digital camera imaging:
(a) uneven focus, (b) motion blurring,
(c) image compession artifacts.

(a) (b) (c)
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coloring difference when comparing a scanner obtained image and a
digital camera one, sensor noise tends to also be a common problem
in consumer-grade imaging devices. Another important challenge of
digital camera imaging is that often one must work with compressed
images without access to the raw data.

Finally, if one considers portable devices as the final target for
automated text reading systems, another important challenge to have
in mind is the necessity for fast algorithms, as limited computing
resources are often available on the device.

1.3 Applications and socio-economic impact

We live in the days of mobile and wearable computing revolution.
Billions2 of pervasive, personal, and portable devices, equipped with 2 Global camera phone sales

reached 1 Billion in 2011.
http://www.strategyanalytics.

com/default.aspx?mod=

reportabstractviewer&a0=6216

integrated built-in digital cameras, flood our streets and have become
indispensable in our daily life. At the same time, our strongly net-
worked society produces such amount of digital media data per day
that was unimaginable just one decade ago. Providing those, already
ubiquitous, imaging devices with automatic image understanding
capabilities is a primary goal for the Computer Vision community. A
field that is certainly being revolutionized these days.

Possible applications of scene text understanding are countless.
Being able to automatically read scene text in any conditions would
enable new and exciting applications such as automatic translation,
way-finding and navigation aid, support tools for elderly and vi-
sually impaired persons, or contextual image indexing and search
among many others.

Assisted navigation and translation tools are an important kind of
applications with recurrent appearance in the literature [48, 148, 46,
83, 109, 7]. On one side elderly and visually impaired persons and on
the other foreigner visitors can take advantage of these technologies
to access textual information or text present in urban environments
that would otherwise be unreadable for them.

Nowadays there exist reliable translation applications that are al-
ready in the hands of millions of users3 [7]. However, such real world

3 WordLens, Google Translate, and Mi-
crosoft Translator services are exam-
ples of a real applications of end-to-
end scene text detection and recogni-
tion that have acquired market-level
maturity.

applications are limited to very well delivered conditions, e.g. hor-
izontally oriented and well focused bi-level text, and often require
the user to specify the location and the original language of the text
to be translated. Figure 1.5 show common errors found in existing
image-based text translation applications. Also, in some cases they

Figure 1.5: Existing image-based text
translation applications, (a) Google
Translate, (b) Word Lens, (c) Microsoft
Translator, are still limited to well de-
livered conditions. Common errors
of such applications include incorrect
recognition for out-of-dictionary words,
missing detections in non-bilevel or
blurred text, and false detections in
textures. Images from Neumann and
Matas [101].

(a) (b) (c)

http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=6216
http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=6216
http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=6216


introduction 5

rely on large-scale data center infrastructure. Thus, there is still room
for research on more robust and efficient methods.

Similarly, while there exist pre-market prototypes of what would
be the future of assisted reading technology for visually impaired
persons4, reliable applications are still designed to perform specific 4 http://www.orcam.com/

tasks, e.g. as traditional OCR engines for camera based devices5, 5 http://www.knfbreader.com/

rather than providing an anytime/anywhere real solution.
On a different sort of things, robust scene text reading systems can

provide an important source of information for automatic annotation
and indexing of images and videos.

Digital media archives (e.g. from broadcast channels, or film in-
dustry agents) have been densely annotating their databases tradi-
tionally by hand in order to make them searchable. Automatic algo-
rithms to help or replace humans on such an effort are highly desir-
able and will certainly have a direct impact in industry. Nowadays,
text-based image retrieval [91, 51, 38] is already a viable solution for
searching in large scale collections of unlabeled data.

Other possible applications in this line include the use of textual
information to improve lifelog photo stream analysis, automatic cap-
tioning algorithms, and on-line image search engines. The list can
be increased with countless ad-hoc applications addressing specific
purposes, like for example in forensic investigations of digital me-
dia6. 6 TRAIT-2016 is an open challenge for

text detection and recognition algo-
rithms to support forensic investiga-
tions. The presence of text may al-
low a location to be identified or to
generate leads.http://www.nist.gov/
itl/iad/ig/trait-2016.cfm

Other possible applications of scene text understanding for di-
verse automated systems include reading license plates, address num-
bers, gas meters, cargo container and warehouse codes, or athlete
bibs in images and videos. In a similar manner, text data could also
provide useful information to mobile robots and intelligent vehicle
systems.

1.4 Objectives and research hypotheses

The main goal of this thesis is to contribute to the state of the art
of automatic scene text understanding in unconstrained conditions.
We put the focus in the most challenging scenario, when there is
not any prior information about the kind of text that may be present
in a given input image. In particular, we tackle the tasks of multi-
language and arbitrary-oriented text detection, tracking, and recog-
nition in natural scene images and videos.

For this we have developed a set of generic methods that build
on top of the basic assumption that text has always some visual key
characteristics that are independent of the language/script in which
they are written. As can be appreciated in Figure 1.6 text instances in
any language are always formed as groups of similar atomic parts,
being them either individual characters, small stroke parts, or even
words. This observation is central in the development of the work
drawn in this thesis.

The primary research hypothesis of this thesis is that reliable scene
text detection and tracking methods must take advantage from this

http://www.orcam.com/
http://www.knfbreader.com/
http://www.nist.gov/itl/iad/ig/trait-2016.cfm
http://www.nist.gov/itl/iad/ig/trait-2016.cfm
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Figure 1.6: The observation that all text,
independently of its language/script,
has common visual key characteristics
is central in the development of this the-
sis.

holistic (sum-of-parts) based perspective. Thus, we pose the prob-
lem of scene text localization as the detection of groups of regions,
as opposed to the traditional classification of individual regions or
image-patches as text or non-text entities by himself. Something that
we consider not feasible because individual text components (e.g. a
single character or stroke) lack any semantic information, and many
times their shapes resemble other objects or object parts that are fre-
quently found on scene images.

Throughout this thesis we make extensive use of Hierarchical Clus-
tering algorithms in order to generate a hierarchy of groupings pro-
posals that emerge bottom-up from an initial set of image regions
that are agglomerated by their similarity. However, as we will see
in the following chapters, the definition of such similarity measure
is not trivial for scene text components. For example, while in gen-
eral using color similarity may seem adequate, in some cases a given
scene text instance may be composed by components with large color
disparity, either by design or because it suffers from illumination
highlights or shadows. Indeed, in natural scenes a relevant group-
ing may appear as the result of combining several grouping cues
together. In this context, we will name "similarity heterarchy" to the
ensemble of hierarchies generated by grouping the initial regions in
a number of different ways. Such similarity heterarchies can be effi-
ciently exploited for multi-script scene text understanding tasks.

Since the algorithms build on top of our primary hypothesis are
designed with multi-language environments in mind, we further ex-
pand the research scope of this thesis to the task of script identifi-
cation in the wild. For this, however, we turn our main intuition
the other way around: while our claim is that for the detection and
tracking tasks we will benefit from taking a holistic approach, in the
case of script identification we put the focus back on the parts.

Examining text samples from different scripts in Figure 1.6, it is
clear that some stroke-parts are quite discriminative when it comes to
classify text instances by their script, whereas others can be trivially
ignored as they occur in multiple scripts. Our research hypothesis
here is that once we have identified a group of text components as a
text instance, being it a single word or a text line, the ability to dis-
tinguish these relevant stroke-parts can be leveraged for recognizing
the corresponding script.

1.5 Contributions

The following is the list of contributions that we have made through-
out this Thesis:
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Contributed data

In Chapter 3 the ICDAR Robust Reading datasets are detailed. The
author of this Thesis has contributed in the design of the evaluation
protocol and in coordinating the labeling efforts of the Reading Text
in Video challenge. In the same Chapter we introduce the Multi-
Lingual end-to-end (MLe2e) dataset. MLe2e is the first multi-lingual
dataset for the evaluation of scene text end-to-end reading systems
and all intermediate stages. It is thus an important contribution of
this Thesis that has been made public for the research community.

The use of Perceptual Organization for text detection

In Chapter 4 we present a novel text extraction method based on per-
ceptual organization laws. For this we pose that the fact that a re-
gion can be related to other neighboring ones (by similarity and/or
proximity laws) is central to classifying the region as a text part. We
claim that this is in-line with the essence of human perception of text,
which is largely based on perceptual organization. We make use of
a state of the art perceptual organization computational model to
assess the meaningfulness of different candidate groups of regions.
These groups emerge naturally through the activation of different
visual similarity laws in collaboration with a proximity law.

Efficient analysis of similarity hierarchies for text detection

Chapter 5 presents a text detection method that efficiently exploit the
inherent hierarchical structure of text. The main contributions of this
chapter are the following: First, we learn an optimal feature space
that encodes the similarities between text components thus allow-
ing the Single Linkage Clustering algorithm to generate text group
hypotheses with high recall, independently of their orientations and
scripts. Second, we couple the hierarchical clustering algorithm with
novel discriminative and probabilistic stopping rules, that allow the
efficient detection of text groups in a single grouping step. Third, we
propose a new set of features for text group classification, that can
be efficiently calculated in an incremental way, able to capture the
inherent structural properties of text related to the arrangement of
text parts and the intra-group similarity.

Text specific Object Proposals

In Chapter 6 we explore the applicability of Object Proposals tech-
niques in scene text understanding, aiming to produce a set of word
proposals with high recall in an efficient way. We propose a simple
text specific selective search strategy, where initial regions in the im-
age are grouped by agglomerative clustering in a hierarchy where
each node defines a possible word hypothesis. We evaluate different
state of the art Object Proposals methods in their ability of detecting
text words in natural scenes. We compare the proposals obtained
with well known class-independent methods with our own method,
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demonstrating that our proposal is superior in its ability of produc-
ing good quality word proposals in an efficient way.

Group-based text tracking

Chapter 7 introduces our method for tracking of text in video se-
quences. The novelty of the proposed method lies in the ability to
effectively track text regions’ groupings (establishing a pixel level
segmentation of constituent text parts in every frame), not merely
their bounding boxes as usually done in state-of-the-art tracking-by-
detection algorithms. The contribution of this chapter is mainly on
the methodological aspect, presenting a simple but effective method
for text detection and tracking suitable for devices with limited com-
putational power. We demonstrate how a reasonably fast text detec-
tion method can be efficiently combined with tracking to give rise to
real-time performance on such devices.

Part-based script identification in the wild

Finally, in Chapter 8 we describe two different patch-based methods
for script identification of scene text instances. We develop the idea
that applying holistic CNNs to the problem of script identification is
not straightforward, because the aspect ratio of scene text instances is
largely variable (i.e. from a single character to a whole text line). The
key intuition behind the presented methods is that in order to retain
the discriminative power of small stroke patches we must rely in
powerful local feature representations and use them within a patch-
based classifier. We demonstrate that patch-based classifiers can be
essential in tasks where scaling the input image to a fixed size is not
feasible.

1.6 Publications

Articles published in conferences and workshops:

• Gómez, Lluís, and Dimosthenis Karatzas. "Multi-script text ex-
traction from natural scenes." Document Analysis and Recogni-
tion (ICDAR), 2013 12th International Conference on. IEEE, 2013.

• Gómez, Lluís, and Dimosthenis Karatzas. "Demonstration of a
Human Perception Inspired System for Text Extraction from Nat-
ural Scenes." CBDAR-Demos.

• Gómez, Lluís, and Dimosthenis Karatzas. "MSER-Based Real-
Time Text Detection and Tracking." Pattern Recognition (ICPR),
2014 22nd International Conference on. IEEE, 2014.

• Gómez, Lluís, and Dimosthenis Karatzas. "Scene Text Recogni-
tion: No Country for Old Men?." Computer Vision-ACCV 2014

Workshops. Springer International Publishing, 2014.
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• Gómez, Lluís, and Dimosthenis Karatzas. "Object Proposals for
Text Extraction in the Wild." Document Analysis and Recognition
(ICDAR), 2015 13th International Conference on. IEEE, 2015.

• Gómez, Lluís, and Dimosthenis Karatzas. "A Fine Grained Classi-
fication Approach to Scene Text Script Identification." DAS (2016).

Journal articles under review:

• Gómez, Lluis, and Dimosthenis Karatzas. "A fast hierarchical
method for multi-script and arbitrary oriented scene text extrac-
tion." Submitted to IJDAR (2015).

• Gómez, Lluís, Anguelos Nicolaou, and Dimosthenis Karatzas. "Boost-
ing patch-based scene text script identification with ensembles of
conjoined networks." Submitted to Pattern Recognition (2016).

Non first authorship but related with this thesis’ work:

• Karatzas, D., Shafait, F., Uchida, S., Iwamura, M., Gómez i Big-
ordà, L., Robles Mestre, S., ... , de las Heras, L. P. (2013, August).
ICDAR 2013 robust reading competition. In Document Analysis
and Recognition (ICDAR), 2013 12th International Conference on
(pp. 1484-1493). IEEE.

• Karatzas, Dimosthenis, Sergi Robles, and Lluis Gómez. "An on-
line platform for ground truthing and performance evaluation of
text extraction systems." Document Analysis Systems (DAS), 2014

11th IAPR International Workshop on. IEEE, 2014.

• Jon Almazan, Suman K. Ghosh, Lluís, Gómez, Dimosthenis Karatzas
and Ernest Valveny. "A Selective Search Framework for Efficient
End-to-end Scene Text Recognition and Retrieval." Technical Re-
port (2015).

• Dimosthenis Karatzas, Lluis Gómez-Bigordà, Anguelos Nicolaou,
Suman Ghosh, Andrew Bagdanov, Masakazu Iwamura, Jiri Matas,
Lukas Neumann, Vijay Ramaseshan Chandrasekhar, Shijian Lu,
Faisal Shafait, Seiichi Uchida, Ernest Valveny. ICDAR 2015 ro-
bust reading competition. In Document Analysis and Recognition
(ICDAR), 2015 13th International Conference on. IEEE.





Chapter 2

Related Work

In this Chapter we review the state of the art for all tasks
related to the work presented in this thesis. At the same time we
put in context our work by explicitly comparing with existing ap-
proaches.

First, in Section 2.1 we focus on methods for scene text detection
in still images, while Section 2.3 presents the most relevant works
for text detection and tracking in video sequences. In Section 2.2, we
review generic object proposals methods that releted to our work,
and compare them with our approach for text specific regions pro-
posals. Section 2.4 is dedicated to end-to-end scene text recognition
methods, where we also review works tackling the specific task of
word spotting. Finally, in Section 2.4 a we review recent approaches
for script identification in the wild.

2.1 Scene text localization and extraction

The automatic understanding of textual information in natural scenes
has gained increasing attention over the past decade, giving rise to
various new computer vision challenges. Ye and Doermann [145]
offer an exhaustive survey of recent developments in text detection
and recognition in imagery, while Jung et al. [56] and Liang et al. [75]
have published corresponding surveys of early works on camera-
based document and scene text analysis.

Scene text detection methods can be categorized into texture-based
and region-based approaches. Texture-based methods usually work
by performing a sliding window search over the image and extract-
ing certain texture features in order to classify each possible patch as
text or non-text. Coates et al. [17], and in a different flavour Wang
et al. [137] and Netzer et al. [95], propose the use of unsupervised
feature learning to generate the features for text versus non-text clas-
sification. Wang et al. [135], extending their previous work [136], have
built an end-to-end scene text recognition system based on a sliding
window character classifier using Random Ferns, with features orig-
inating from a HOG descriptor. Mishra et al. [90] propose a closely
related end-to-end method based on HOG features and a SVM clas-
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sifier. Texture based methods yield good text localisation results,
although they do not directly address the issue of text segmentation
(separation of text from background). Their main drawback com-
pared to region based methods is their lower time performance, as
sliding window approaches are confronted with a huge search space
in such an unconstrained (i.e. variable scale, rotation, aspect-ratio)
task. Moreover, these methods are usually limited to the detection of
a single language and orientation for which they have been trained
on, therefore they are not directly applicable to the multi-script and
arbitrary oriented text scenario.

Region-based methods, on the other hand, are based on a typi-
cal bottom-up pipeline: first performing an image segmentation and
subsequently classifying the resulting regions into text or non-text
ones. Yao et al. [143] extract regions in the Stroke Width Transform
(SWT) domain, proposed earlier for text detection by Epshtein et
al. [27]. Yin et al. [146] obtain state-of-the-art performance with a
method that prunes the tree of Maximally Stable Extremal Regions
(MSER) using the strategy of minimizing regularized variations. The
effectiveness of MSER for character candidates detection is also ex-
ploited by Chen et al. [13] and Novikova et al. [105], while Neumann
et al. [98] propose a region representation derived from MSER where
character/non-character classification is done for each possible Ex-
tremal Region (ER).

Most of the region-based methods are complemented with a post-
processing step where regions assessed to be characters are grouped
together into words or text lines. The hierarchical structure of text
has been traditionally exploited in a post-processing stage with heuris-
tic rules [27, 13] usually constrained to search for horizontally aligned
text in order to avoid a combinatorial explosion of enumerating all
possible text lines. Neumann and Matas [98] introduce an efficient
exhaustive search algorithm using heuristic verification functions at
different grouping levels (i.e. region pairs, triplets, etc.), but still
constrained to horizontal text. Yao et al. [143] make use of a greedy
agglomerative clustering where regions are grouped if their average
alignment is under a certain threshold. Yin et al. [146] use a self-
training distance metric learning algorithm that can learn distance
weights and clustering thresholds simultaneously and automatically
for text groups detection in a similarity feature space.

There exist two main differences between current state-of-the-art
approaches and the methods proposed in this Thesis. On one side,
methods relying on learning processes [135, 137, 17, 95, 136, 90] are
usually constrained to detect the single script which they have been
trained on. The feedback loop between localization and recognition
they propose, although performing well on certain tasks (e.g. detect-
ing English horizontal text), contradicts with the human ability to
detect text structures even in scripts or languages never seen before.
In comparison, the methodology proposed here requires no training,
and is largely parameter free and independent to the text script.

On the other hand, there is an important distinction between the
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way the grouping is used by existing methods [144, 27, 13] and the
way perceptual organisation is used in Chapter 4. In past work,
grouping is used solely as a post-processing step, once the text parts
have already been identified as such, the main reason being to ad-
dress the results / ground truth semantic level mismatch mentioned
before. As a matter of fact, we also use a post-processing step to
enable us to evaluate on standard datasets. However, crucially, in
our approach perceptual organisation provides the means to perform
classification of regions, based on whether there exists an interpreta-
tion of the image that involves their participation to a perceptually
relevant group.

In Chapter 5 we present a novel hierarchical approach in which re-
gion hierarchies are built efficiently using Single Linkage Clustering
in a weighted similarity feature space. The hierarchies are built in
different color channels in order to diversify the number of hypothe-
ses and thus increase the maximum theoretical recall. Our method is
less heuristic in nature and faster than the greedy algorithm of Yao et
al. [143], because the number of atomic objects in our clustering anal-
ysis is not increased by taking into account all possible region pairs;
besides our method uses similarity and not collinearity for grouping.
Yin et al. [146], make use of a two step architecture first doing an au-
tomatic clustering analysis in a similarity feature space and then clas-
sifying the groups obtained in the first step. The method presented
here differs from such approaches in that our agglomerative cluster-
ing algorithm integrates a group classifier, acting as a stopping rule,
that evaluates the conditional probability for each group in the hier-
archy to correspond to a text group in an efficient manner through
the use of incrementally computable descriptors. In this sense our
work is related with Matas and Zimmerman [81] region detection
algorithm, while the incremental descriptors proposed here are de-
signed to find relevant groups of regions in a similarity dendrogram
instead of the detection of individual regions in the component tree
of the image. There is also a relationship between our method with
the work of Van de Sande et al. [131] and Uijlings et al. [129] on using
segmentation and grouping as selective search for object recognition.
However, our approach is distinct in that their region grouping algo-
rithm agglomerates regions in a class-independent way while our hi-
erarchical clusterings are designed in order to maximize the chances
of finding specifically text groups. Thus, our algorithm can be seen
as a task-specific selective search. This idea motivates our work in
object proposals for text detection and will be discussed further in
chapter 6.

2.2 Object proposals

Over and obove the specific problem of scene text detection the use of
Object Proposals methods to generate candidate class-independent
object locations has become a popular trend in computer vision in
recent times. A comprehensive survey can be found in Hosang et
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al. [49]. In general terms, we can distinguish between two major
types of Object proposals methods: the ones that make use of ex-
haustive search to evaluate a fast to compute objectness measure [1,
15, 151], and the ones where the search is segmentation-driven [128,
79, 65].

In the first category, Alexe et al. [1] propose a generic objectness
measure for a given image window that combines several image
cues, such as a saliency score , the color contrast to its immediate
surrounding area, the edge density, and the number of straddling
contours. Computation of these features is made efficient by using
integral images. Cheng et al. [15] propose a very fast objectness score
using the norm of image gradients in a sliding window, with a suit-
able resizing of windows into a small fixed size. A different sliding
window driven approach is given by Zitnick et al. [151], where a box
objectness score is measured as the number of edges [22] that are
wholly contained in the box minus those that are members of con-
tours that overlap the box’s boundary. Using efficient data structures
they manage to evaluate millions of candidate boxes in a fraction of
second.

On the other hand, selective search methods make use of image’s
inherent structure through segmentation to guide the search. In this
spirit, Gu et al.[47] make use of a hierarchical segmentation engine [4]
and consider each node in the hierarchy as an object part hypothe-
sis. Uijlings et al.[128] argue that a single segmentation and grouping
strategy is not enough to generate high quality object locations in any
conditions, and thus propose a selective search algorithm that uses
multiple complementary strategies. In particular, they start from su-
perpixels using different parameter settings [31] for a variety of color
spaces, and then produce a set of hierarchies by merging adjacent re-
gions using different complementary similarity measures. Another
method based on superpixels merging is due to Manen et al.[79],
using the connectivity graph induced by the segmentation [31] of an
image, with edge weights representing the likelihood that two neigh-
boring pixels belong to the same object, their Randomized Prim’s
algorithm generate proposals by sampling random partial spanning
trees with large expected sum of weights. Finally, Krähenbühl et
al. [65] compute an oversegmentation of the image using a fast edge
detector [22] and the Geodesic K-means algorithm [108]. Then they
identify a small set of seed superpixels, aiming to hit all objects in
the image, and object proposals are identified as critical level sets
of the Geodesic Distance Transforms (SGDT) computed for several
foreground and background masks for these seeds.

The use of Object Proposals techniques in scene text understand-
ing has been exploited very recently in two state-of-the-art word-
spotting methods [51]. Jaderberg et al. [51] propose the use of a
generic Object Proposals algorithm [151] and deep convolutional neu-
ral networks for whole word recognition.

In the method proposed in Chapter 6 initial regions in the image
are grouped by agglomerative clustering, using complementary sim-
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ilarity measures, in hierarchies where each node defines a possible
word hypothesis.

2.3 Scene text detection and tracking in video sequences

While most of the recently published state-of-the-art text detection
methods focus on still images, many authors have also addressed
the task of text detection and tracking in digital video sequences. A
comprehensive survey dedicated exclusively to video processing is
presented by Zhang and Kasturi [150].

Relevant work on video based text detection and tracking can be
categorized into batch-processing and online-processing methods.
Within the former category, Li et al. [73] proposed a text tracking
scheme where a SSD (Sum of Squared Differences) based correla-
tion module was used to track the detected text between adjacent
frames. Crandall et al. [19] proposed a method for caption text extrac-
tion where the motion vectors encoded in MPEG-compressed videos
were used for tracking. Gllavata et al. [40] take advantage of tem-
poral redundancy for detecting challenging text displayed against a
complex background, by building a multi-frame clustering. Myers
and Burns [93] propose a method to track planar regions of scene
text with arbitrary 3-D rigid motion by correlating small patches and
computing homographies on multi-frame blocks simultaneously. All
the aforementioned text tracking methods were designed for off-line
video processing, and thus are not directly applicable to a real-time
system.

Regarding online-processing, Kim et al. [64] proposed a method
that analyses the textural properties of text in images using a slid-
ing window based classifier, and then locates and tracks the text re-
gions by applying the continuously adaptive mean shift algorithm
(CAMSHIFT) [9] on the texture classification results. Merino and
Mirmehdi develop in [82] a real-time probabilistic tracking frame-
work based on particle filtering, where SIFT matching is used to
identify text regions from one frame to the next. Their region based
text detection method is further extended in [83], where the authors
present a head-mounted device for text recognition in natural scenes.
A similar wearable camera system for the blind is presented in the
work of Goto and Tanaka [46] where text strings are extracted using
a DCT-based method [45] and then grouped into temporal chains
by a text tracking method also based on particle filter. Minetto et
al. [87] propose a method combining a region-based text detection al-
gorithm [86] with a particle filter tracking module. Fragoso et al. [35]
have developed an Augmented Reality (AR) see-through text trans-
lator where the initial text detection is done with help of the user,
which has to tap on the screen near the center of the word of inter-
est, then the plane in which text stands is tracked in real-time using
efficient second-order minimization (ESM). Petter et al. [109] have ex-
tended this application with automatic text detection (not requiring
the user interaction) based on Connected Components analysis on
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the Canny edge detector output.
From the methods described, only [82] [46] and [109] report com-

parable frame rates to the method detailed in Chapter 7 (between 7

fps. and 10 fps.), but in [82] and [46] processing times are calculated
in a standard PC and not in low-resource devices. The key difference
is that [82] and [46] make use of a full-detection strategy, performing
a full text detection on every frame, in order to provide observations
to the tracking system, while in our method the detection module
is only performed periodically in a subset of the incoming frames.
On the other hand, although [73] and [87] use a similar strategy to
combine and merge text detections and tracked text regions, in our
method the detection algorithm is executed asynchronously in a sep-
arate thread, thus not affecting to the overall speed of the system. An
analogue multi-threaded tracking solution is also used by Takeda et
al. [126] in a document retrieval AR system to display relevant in-
formation as an image superimposed in real-time over the camera
captured frames.

Another important difference between the work presented here
and the ones in [87, 73, 64, 35] is that our system is able to obtain an
updated segmentation of tracked characters at every frame, despite
not doing a full detection. Since we are not tracking just bounding
box information but the text-regions themselves, we can take advan-
tage of several segmentations of each character that would eventually
lead to improved recognition accuracy.

Finally, while most of the described methods are constrained to
detect horizontally aligned text [82] [46] [87] [109], and pure trans-
lational movement models [87] [73] [19], our method can deal with
multi-oriented text and is able to track it under scale, rotation, and
perspective distortions.

2.4 End-to-end methods

Table 2.1 summarize several aspects of language models used in ex-
isting end-to-end approaches for unconstrained recognition, and a
more detailed description of such methods is provided afterwards.
Table 2.1 compares the use of character/word n-grams (as well as
their sizes), smoothing, over-segmentation, and dictionaries (here
the "Soft" keyword means the method allow Out-Of-Dictionary word
recognition, while "Hard" means only "In-Dictionary" words are rec-
ognized).

Method Dictionary Char Word Smoothing Over-
n-gram n-gram segmentation

Neumann et al. [96, 97, 98, 99] Soft (10k) bi-gram No No Yes
Wang et al. [137] Hard (hunspell) No No No Yes
Neumann et al. [100] No 3-gram No No Yes
Yao et al. [142] Soft (100k) bi-gram No No No
Bissacco et al. [7] Soft (100k) 8-gram 4-gram Yes Yes

Table 2.1: Summary of different lan-
guage model aspects of end-to-end
scene text recognition methods.
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In [96] Neumann and Matas propose the classification of Maxi-
mally Stable Extremal Regions (MSERs) as characters and non char-
acters, and then the grouping of character candidates into text lines
with multiple (mutually exclusive) hypotheses. For the recognition
each MSER region mask is normalized and resized to a fixed size
in order to extract a feature vector based on pixel directions along
the chain-code of its perimeter. Character recognition is done with a
SVM classifier trained with synthetic examples. Ambiguous recogni-
tion of upper-case and lower-case variants of certain letters (e.g. "C"
and "c") are tackled as a single class, and then differentiated using
a typographic model that also serves to split the line into words.
Finally, a combination of bi-gram and dictionary-based language
model scores each text line hypothesis individually and the most
probable hypothesis is selected. The authors further extended the
text detection part of their method in several ways [97, 98], increas-
ing their end-to-end recognition results. In [99] they add a new in-
ference layer to the recognition framework, where the best sequence
selection is posed as an optimal path problem, solved by a standard
dynamic programming algorithm, allowing the efficient processing
of even more segmentation hypotheses.

Wang et al. [137] propose the use of Convolutional Neural Net-
works together with unsupervised feature learning to train a text de-
tector and a character recognizer. The responses of the detector in a
multi-scale sliding window, with Non-Maximal Suppression (NMS),
give rise to text lines hypotheses. Word segmentation and recogni-
tion is then performed jointly for each text line using beam search.
For every possible word the character recognizer is applied with an
horizontal sliding window, giving a score matrix that (after NMS)
can be used to compute an alignment score for all words in a small
given lexicon. Words with low recognition score are pruned as be-
ing "non-text". Since the method is only able to recognize words in
a small lexicon provided, in order to perform a more unconstrained
recognition the authors make use of an off-the-shelf spell checking
software to generate the lexicon given the raw recognition sequences.

In a very related work to the one presented in this paper Milyaev
et al.[84] demonstrate that off-the-shelf OCR engines can still perform
well on the scene text recognition task as long as appropriate image
binarization is applied to input images. For this, they evaluate 12

existing binarization methods and propose a new one using graph
cuts. Their binarization method is combined with an AdaBoost clas-
sifier trained with simple features for character/non-character clas-
sification. And the components accepted by the classifier are used
to generate a graph by connecting pairs of regions that fulfill a set
of heuristic rules on their distance and color similarity. Text lines
obtained in such way are then split into words and passed to a com-
mercial OCR engine1 for recognition. 1 OCR Omnipage Professional, avail-

able at http://www.nuance.com/In [100] Neumann and Matas propose the detection of constant
width strokes by convolving the gradient image with a set of bar
filters at different orientations and scales. Assuming that charac-
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ters consist in a limited number of such strokes a set of candidate
bounding-boxes is created by the union of bounding boxes of 1 to 5
nearest strokes. Characters are detected and recognized by matching
the stroke patterns with an Approximate Nearest Neighbor classifier
trained with synthetic data. Each candidate bounding box is labeled
with a set of character labels or rejected by the classifier. The non
rejected regions are then agglomerated into text lines and the word
recognition is posed as an optimal sequence search by maximizing
an objective function that combines the probabilities of the character
classifier, the probability of the inter-character spacing difference of
each triplet, the probability of regions’ relative positioning, and the
characters adjacency probability given by a 3-gram language model.

Yao et al. [142] propose an arbitrary oriented scene text detec-
tion and recognition method that extracts connected components in
the Stroke Width Transform (SWT) domain[27]. Component analy-
sis filters out non-text components using a Random Forest classifier
trained with novel rotation invariant features. This component level
classifier performs both text detection and recognition. Remaining
character candidates are then grouped into text lines using the al-
gorithm proposed by Yin et al. [146], and text lines are split into
words using the method in [27]. Finally, the authors propose a mod-
ified dictionary search method, based on the Levenshtein edit dis-
tance but relaxing the cost of the edit operation between very similar
classes, to correct errors in individual character recognition using a
large-lexicon dictionary2. To cope with out-of-dictionary words and 2 Word list is provided by the

Microsoft Web N-Gram Service
(http://webngram.research.
microsoft.com/info/) with top
100k frequently searched words on the
Bing search engine.

numbers, n-gram based correction [122] is used if the distance with
closest dictionary word is under a certain threshold.

Bissacco et al. [7] propose a large-scale end-to-end method using
the conventional multistage approach to text extraction. In order
to achieve a high recall text detection the authors propose to com-
bine the outputs of three different detection methods: a boosted
cascade of Haar wavelets [133], a graph cuts based method simi-
lar to [107], and a novel approach based on anisotropic Gaussian
filters. After splitting text regions into text lines a combination of
two over-segmentation methods is applied, providing a set of pos-
sible segmentation points for each text line. Then beam search is
used to maximize a score function among all possible segmentations
in a given text line. The score function is the average per-character
log-likelihood of the text line under the character classifier and the
language model. The character classifier is a deep neural network
trained on HOG features over a training set consisting of around 8

million examples. The output layer of the network is a softmax over
99 character classes and a noise (non-text) class. At test time this clas-
sifier evaluates all segmentation combinations selected by the beam
search. The language model used in the score function to be opti-
mized by the beam search is a compact character-level ngram model
(8-gram). Once the beam search has found a solution the second
level language model, a much larger distributed word-level ngram
(4-gram), is used to rerank.

http://webngram.research.microsoft.com/info/
http://webngram.research.microsoft.com/info/
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As a conclusion of the state of the art review we can see that the
majority of reviewed methods make use of similar language mod-
els, based on a dictionary of frequent words and a character n-gram
(usually a bi-gram). A much stronger language model has been pro-
posed by Bissacco et al. [7]. On the other hand, while the system
in [7] makes use of three different detection methods combined with
an independent recognition module, in other cases both detection
and recognition are treated together, e.g. using the same features
for detection and recognition [142] or using multiple character de-
tections as an over-segmentation cue for the recognition [97], giving
rise to more compact and efficient methods.

2.5 Script Identification

Script identification is a well studied problem in document image
analysis. Gosh et al. [37] has published a compehensive review of
methods dealing with this problem. They identify two broad cat-
egories of methods: structure-based and visual appearance-based
techniques. In the first category, Spitz and Ozaki [124, 123] pro-
pose the use of the vertical distribution of upward concavities in
connected components and their optical density for page-wise script
identification. Lee et al. [70], and Waked et al. [134] among others
build on top of Spitz seminal work by incorporating additional con-
nected component based features. Similarly, Chaudhuri et al. [12]
use the projection profile, statistical and topological features, and
stroke features for classification of text lines in printed documents.
Hochberg et al. [55] propose the use of cluster-based templates to
identify unique characteristic shapes. A method that is similar in
spirit with the one presented in Chapter 8, while requiring textual
symbols to be precisely segmented to generate the templates.

Regarding segmentation-free methods based on visual appearance
of scripts, i.e. not directly analyzing the character patterns in the doc-
ument, Wood et al. [139] experimented with the use of vertical and
horizontal projection profiles of full-page document images. More
recent methods in this category have used texture features from Ga-
bor filters analysis [127, 106] or Local Binary Patterns [32].

All the methods discussed above are designed specifically with
printed document images in mind. Structure-based methods require
text connected components to be precisely segmented from the im-
age, while visual appearance-based techniques are known to work
better in bilevel text. Moreover, some of these methods require large
blocks of text in order to obtain sufficient information and thus are
not well suited for scene text which typically comprises a few words.

Contrary to the case of printed document images, research in
script identification on non traditional paper layouts is scarce, and
has been mainly dedicated to video overlaid-text until very recently.
Gllavatta et al. [39], in the first work dealing with this task, proposed
a method using the wavelet transform to detect edges in overlaid-text
images. Then, they extract a set of low-level edge features, and make
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use of a K-NN classifier.
Sharma et al. [113] have explored the use of traditional docu-

ment analysis techniques for video overlaid-text script identification
at word level. They analyze three sets of features: Zernike moments,
Gabor filters, and a set of hand-crafted gradient features previously
used for handwritten character recognition. They propose a number
of pre-processing algorithms to overcome the inherent challenges of
video overlaid-text. In their experiments the combination of super
resolution, gradient features, and a SVM classifier perform signifi-
cantly better that the other combinations.

Phan et al. [110] propose a method for combined detection of video
text overlay and script identification. They propose the extraction of
upper and lower extreme points for each connected component of
Canny edges of text lines and analyse their smoothness and cursive-
ness.

Shivakumara et al. [118, 119] rely on skeletonization of the dom-
inant gradients They analyze the angular curvatures [118] of skele-
ton components, and the spatial/structural [119] distribution of their
end, joint, and intersection points to extract a set of hand-crafted fea-
tures. For classification they build a set of feature templates from
train data, and use the Nearest Neighbor rule for classifying scripts
at word [118] or text block [119] level.

As said before, all these methods have been designed (and eval-
uated) specifically for video overlaid-text, which presents in general
different challenges than scene text. Concretely, they mainly rely in
accurate edge detection of text components and this is not always
feasible in scene text.

More recently, Sharma et al. [114] explored the use of Bag-of-Visual
Words based techniques for word-wise script identification in video-
overlaid text. They use Bag-Of-Features (BoF) and Spatial Pyramid
Matching (SPM) with patch based SIFT descriptors and found that
the SPM pipeline outperforms traditional script identification tech-
niques involving gradient based features (e.g. HoG) and texture
based features (e.g. LBP).

Singh et al. [120] propose a closely related approach where densely
computed (SIFT) local features are pooled to encode mid-level rep-
resentations of the scripts.

In 2015, the ICDAR Competition on Video Script Identification
(CVSI-2015) [115] challenged the document analysis community with
a new competitive benchmark dataset. With images extracted from
different video sources (news, sports etc.) covering mainly overlaid-
text, but also a few instances of scene text. The top performing meth-
ods in the competition where all based in Convolutional Neural Net-
works, showing a clear difference in overall accuracies over pipelines
using hand-crafted features (e.g. LBP and/or HoG).

The first dataset for script identification in real scene text im-
ages was provided by Shi et al.in [117], where the authors propose
the Multi-stage Spatially-sensitive Pooling Network (MSPN) method.
The MSPN network overcomes the limitation of having a fixed size
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input in traditional Convolutional Neural Networks by pooling along
each row of the intermediate layers’ outputs by taking the maximum
(or average) value in each row. Their method is extended in [116] by
combining deep features and mid-level representations into a glob-
ally trainable deep model. They extract local deep features at every
layer of the MSPN and describe images with a codebook-based en-
coding method that can be used to fine-tune the CNN weights.

Nicolaou et al. [103] has presented a method based on texture fea-
tures producing state of the art results in script identification for both
scene or overlaid text images. They rely in hand-crafted texture fea-
tures, a variant of LBP, and a deep Multi Layer Perceptron to learn a
metric space in which they perform K-NN classification.

In Chapter 8 we propose a patch-based method for script iden-
tification useing convolutional features, extracted from small image
patches, and the Naive-Bayes Nearest Neighbour classifier (NBNN).
We also present a simple weighting strategy in order to discover the
most discriminative parts per class in a fine-grained classification ap-
proach.

We take inspiration from recent methods in fine-grained recogni-
tion. In particular, Krause et al. [66] focus on learning expressive ap-
pearance descriptors and localizing discriminative parts. By analyz-
ing images of objects with the same pose they automatically discover
which are the most important parts for class discrimination. Yao et
al. [141] obtain image representations by running template matching
using a large number of randomly generated image templates. Then
they use a bagging-based algorithm to build a classifier by aggregat-
ing a set of discriminative yet largely uncorrelated classifiers.

Our method resembles [141, 66] in trying to discover the most
discriminative parts (or templates) per class. However, in our case
we do not assume those discriminative parts to be constrained in
space, because the relative arrangement of individual patches in text
samples of the same script is largely variable.

Also in Chapter 8 we extend this patch-based methodology it two
ways: On one side, we make use of a much deeper Convolutional
Neural Network model. On the other hand, we replace the weighted
NBNN classifier by a patch-based classification rule that can be in-
tegrated in the CNN training process by using an Ensemble of Con-
joined Networks. This way, our CNN model is able to learn at the
same time expressive representations for image patches and their
relative contribution to the patch-based classification rule.

From all reviewed methods the ones proposed in this thesis, along
with [114] and [120], are the obnly ones based in a patch-based clas-
sification framework. While [114] and [120] make use traditional im-
age recognition techniques, our method tries to combine the stregh-
ness of CNN representations and patch-based frameworks. Our intu-
ition is that in cases where holistic CNN models are not directly ap-
plicable, as in the case of text images (because of their highly variable
aspect ratios), the contribution of rich parts descriptors without any
deterioration (either by image distortion or by descriptor quantiza-
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tion) is essential for correct image classification. In the experimental
section we demonstrate that our approach improves the state-of-the-
art in the SIW-13 [116] dataset for scene text script classification by
a large margin of 5 percentage points, while performs competitively
in the CVSI-2015 [115] video overlaid-text dataset.



Chapter 3

Datasets

Standardized datasets and evaluation frameworks offer us
with the possibility to measure our research’ progress in a quantita-
tively way, putting our work in context with existing methods. Pub-
lic scene text datasets constitute also an invaluable source of training
data that we have used extensively in our work.

In this Chapter we offer a description of all datasets that are used
throughout this thesis. We start in Section 3.1 with details of the dif-
ferent datasets that are part of ICDAR Robust Reading Competitions
series. These include the earliest scene text dataset from 2003, its
respective revisions, and the newly added video, and incidental text
datasets. Then, we give details of several multi-language datasets for
scene text detection and script identification in Sections 3.2 and 3.3
respectively. In Section 3.4 we introduce the Multi Language end-to-
end dataset (MLe2e) that has been build by us. Finally, Section 3.5
shortly describes the on-line platform for ground truthing and per-
formance evaluation of text extraction systems that was developed
for the organization of the ICDAR Robust Reading competition and
has been made public.

3.1 The ICDAR Robust Reading Competition

The series of Robust Reading Competitions addresses the need to
quantify and track progress in the domain of text extraction from ver-
satile text containers like born-digital images, real scenes, and videos.
The competition was started in 2003 by Simon Lucas initially focus-
ing only in scene text detection and recognition [78]. In 2011, the
competition introduced a new challenge on the text extraction from
born-digital images [112][58]. The 2013 edition of the Robust Read-
ing Competition [60], further integrated the two challenges on real
scenes and born-digital images, unifying their performance evalua-
tion metrics, ground truth specification, and the list of offered tasks.
Also in 2013 a new challenge was established on text extraction and
tracking from video sequences, introducing a new dataset, tools and
evaluation frameworks. In its latest edition (2015) a new dataset on
Incidental Scene Text has been made public, and the task of end-to-



24 exploiting similarity hierarchies for multi-script scene text understanding

end recognition has been introduced for all existing datasets.

Focused Scene Text dataset

In its original version, created for the ICDAR 2003 Robust Reading
competition [78], the Scene Text dataset contains 509 images, splitted
in a training set of 258 and a test set of 251, with resolutions varying
from 640× 480 to 1280× 960. During the different editions of the
competition, in 2005, 2011, and 2013 the dataset was revamped to
remove duplicated images, and to improve the quality of the anno-
tations. In its last version the ICDAR2013 dataset [60] contains 462

images, from which 229 comprise the training set and 233 images the
test set.

While covering only English and horizontally aligned text, this
dataset represents the reference benchmark up to date for the evalu-
ation of scene text understanding related tasks: localization, segmen-
tation, and recognition.

Initially the Focused Scene Text dataset was designed to evaluate
three different tasks: scene text localization, words recognition, and
character recognition. For the task of text localization the dataset has
ground-truth defined at the word level with axis oriented bounding
boxes and the proposed evaluation framework is detailed by [78] for
the 2003 version and by Wolf and Jolion [138] for the all the following
editions since 2005. For the tasks of word and character recognition,
the cropped (pre-segmented) words/characters images are provided
and it is required to provide a unique word/character transcription
for each one.

For the task of text segmentation, introduced in 2013, the dataset
has ground-truth defined at the pixel level in the form of binary
masks. The evaluation framework for this task is defined in [16] by
Clavelli and Karatzas.

Finally, the end-to-end task, introduced in 2015, evaluate the abil-
ity of scene text reading systems to jointly detect and recognize text
in the dataset full images. The evaluation protocol proposed by
Wang [135] is used which considers a detection as a correct if it over-
laps a ground truth bounding box by more than 50% and their tran-
scriptions match, ignoring the case. At test time end-to-end methods
can make use of a list of provided lexicon to improve their recogni-
tion. This way methods are evaluated in different tables depending
on the size of the lexicon used: strongly contextualized recognition, Figure 3.1: Sample images from the IC-

DAR 2003/2013 dataset.
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weakly contextualized recognition, or generic recognition.

Reading Text in Video

The ICDAR 2013 Robust Reading competition established a new
challenge on text extraction from video sequences, introducing a new
dataset, tools and evaluation framework. The Reading Text in Video
dataset responds to the necessity of adapting to a new format. Text
understanding in video sequences differs from still images in many
aspects and it is not a straightforward assumption that a method de-
vised and trained on static text images would be applicable to video
sequences.

A key characteristic of those video sequences is the temporal re-
dundancy of text, which calls for tracking based processes taking
advantage of past history to increase the stability and quality of de-
tections. Keeping constant track of a text object throughout all the
frames where it is visible is desirable for example to ensure a unique
response of the system (e.g. translation, or text to speech conversion)
for each distinct text, and also to be able to enhance the text regions,
or to select the best frames in which they appear, before doing the full
text recognition. Moreover, one can take advantage of the tracking
process in order to obtain a real-time system, under the assumption
that the scene does not change much from frame to frame.

The released dataset provides a total of 49 annotated video se-
quences, 25 videos in the training set and 24 in the test set, with du-
ration between 10 seconds and 1 minute long. The video sequences
represent real-life applications in both indoor and outdoor scenarios,
and were recorded using different devices including mobile phones,
hand-held cameras and head-mounted cameras. Figure 3.2 show
some frames extracted from the dataset videos.

The competition task requires that words are localized and recog-
nized correctly in every frame and tracked over the video sequence,
and thus an evaluation procedure has been designed in those terms.
From the numerous evaluation frameworks proposed for multiple
object tracking systems, we selected to use the CLEAR-MOT [6] and
VACE [61] metrics adapted to the specificities of text detection, recog-
nition, and tracking, extending the CLEAR-MOT code provided by
Bagdanov et al. [5].

Figure 3.2: Sample images from the IC-
DAR 2015 Scene Text video dataset.
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Figure 3.3: Sample images from the IC-
DAR 2015 Incidental Text dataset.

Incidental Scene Text

The ICDAR 2015 competition introduced a new challenge on In-
cidental Scene Text detection and recognition, based on a dataset
of 2000 images (splited into equal size sets for training and test).
All images were acquired with wearable devices in a variety of in-
door/outdoor scenarios and have a resolution of 1280× 720 pixels.
Sample images of this dataset are shown in Figure 3.3.

Incidental scene text refers to text that appears in the scene with-
out the user having taken any specific prior action to cause its ap-
pearance or improve its positioning or quality in the frame. While
focused scene text (see Section 3.1 ) is the expected input for appli-
cations such as translation on demand, incidental scene text covers
another wide range of applications linked to wearable cameras or
massive urban captures where the capture is difficult or undesirable
to control.

Similarly as in the case of Focused Scene Text, the dataset id de-
signed to evaluate different tasks: localization, word recognition, and
end-to-end, but not pixel-level segmentation. The ground truth is
defined again at the word level, but in this case using arbitrary ori-
ented bounding boxes (described by their four points coordinates).
The evaluation framework for the localization and end-to-end tasks
is based on a single Intersection-over-Union criterion, with a thresh-
old of 50%, similarly to standard practice in object recognition and
Pascal VOC challenge [29].

3.2 Multi-language scene text detection

KAIST

The KAIST dataset [71] comprises 3000 natural scene images, with a
resolution of 640x480, categorized according to the language of the
scene text captured: Korean, English, and Mixed (Korean + English).
Images were obtained with digital camera and mobile phone from a
variety of scenarios (indoor and outdoor) and the type of text found
is similar as in the ICDAR Focused Scene Text. Sample images are
shown in Figure 3.4. This dataset does not provide a fixed split for
training and test, in our experiments we use only 800 images for
testing corresponding to the Mixed subset in accordance to other
reported results.

The dataset provides ground-truth annotations for the tasks of
text localization and segmentation. For localization the grountruth
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Figure 3.4: Sample images from the
KAIST dataset.

is defined at the levels of word and individual characters, and the
evaluation framework is the same as for the ICDAR Focused Scene
Text dataset.

For the segmentation task the ground-truth is defined at the pixel
level in the form of binary masks. The evaluation metrics precision
p and recall r are defined as p = |E ∩ T|/|E| and r = |E ∩ T|/|T|,
where E is the set of pixels estimated as text and T is the set of pixels
corresponding to text components in the ground truth.

MSRA-TD500

The MSRA-TD500 dataset [144] contains arbitrary oriented text in
both English and Chinese and is proposed as an alternative to the
ICDAR2003 [78] dataset where only horizontal English text appears.
The dataset contains 500 images in total, with varying resolutions
from 1296× 864 to 1920× 1280. Images are taken from indoor (of-
fice and mall) and outdoor (street) scenes using a packet camera and
depict typically well focused text. Sample images are shown in Fig-
ure 3.5. Ground truth annotations are defined at the text-line level
with oriented rectangles defined by their axis oriented version and
the rotation angle.

The evaluation is done as proposed in [144] using minimum area
rectangles. For an estimated minimum area rectangle D to be con-
sidered a true positive, it is required to find a ground truth rectangle
G such that:

A(D′ ∩ G′)/A(D′ ∪ G′) > 0.5, abs(αD − αG) < π/8

where D′ and G′ are the axis oriented versions of D and G, A(D′ ∩
G′) and A(D′ ∪ G′) are respectively the area of their intersection
and union, and αD and αG their rotation angles. The definitions Figure 3.5: Sample images from the

MSRA-TD500 dataset.
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Figure 3.6: Sample images from the
MSRRC dataset.

of precision p and recall r are: p = |TP|/|E|, r = |TP|/|T| where
TP is the set of true positive detections while E and T are the sets of
estimated rectangles and ground truth rectangles.

ICDAR2013 Multi-Script Robust Reading Competition

A competition to detect mixed text in Kannada and/or English from
scene images was organized by the MILE1 Lab in 2013. The moti- 1 http://mile.ee.iisc.ernet.in/

mrrc/vation was to look for script-independent algorithms that detect text
and extract it from scene images, which may be applied directly to
an unknown script.

The Multi-Script Robust Reading Competition (MSRRC) dataset [68]
comprises 334 camera-captured scene images, 167 in the training and
167 in the test set respectively, with sizes around 1.2MP, annotated
for text localization and segmentation tasks, as well as for cropped
word recognition. It covers Latin, Chinese, Kannada, and Devanagari
scripts, and includes text with multiple orientations. Sample images
are shown in Figure 3.6.

For the localization task the ground-truth is defined at the word
level with axis oriented bounding boxes and the proposed evaluation
framework is by Wolf and Jolion [138]. For the segmentation task the
ground-truth is defined at the pixel level in the form of binary masks
and the evaluation metrics are the same as explained in Section 3.2
for the KAIST dataset.

3.3 Scene Text Script Identification

ICDAR2015 Competition on Video Script Identification

The CVSI-2015 [115] dataset comprises pre-segmented words in ten
scripts: English, Hindi, Bengali, Oriya, Gujrathi, Punjabi, Kannada,
Tamil, Telegu, and Arabic. The dataset contains about 1000 words
for each script and is divided into three parts: a training set ( 60% of
the total images), a validation set (10%), and a test set (30%). Text is
extracted from various video sources (news, sports etc.) and, while it
contains a few instances of scene text, it covers mainly overlay video
text. Sample pre-segmented words are shown in Figure 3.7(a).

http://mile.ee.iisc.ernet.in/mrrc/
http://mile.ee.iisc.ernet.in/mrrc/
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(a)

(b)

Figure 3.7: Sample images from the
CVSI-2015 (a) and SIW-13 (b) datasets.

Script Identification in the Wild (SIW-13)

The SIW-13 dataset [116] comprises 16291 pre-segmented text lines
in thirteen scripts: Arabic, Cambodian, Chinese, English, Greek, He-
brew, Japanese, Kannada, Korean, Mongolian, Russian, Thai, and Ti-
betan. The test set contains 500 text lines for each script, 6500 in total,
and all the other images are provided for training. In this case, text
was extracted from natural scene images from Google Street View.
Sample text lines are shown in Figure 3.7(b).

3.4 MLe2e multi-lingual end-to-end dataset

This section introduces the Multi-Lingual end-to-end (MLe2e) dataset
for the evaluation of scene text end-to-end reading systems and all
intermediate stages: text detection, script identification, and text
recognition. The MLe2e dataset has been harvested from various
existing scene text datasets for which the images and ground-truth
have been revised in order to make them homogeneous. The original
images come from the following datasets: Multilanguage(ML) [107]
and MSRA-TD500 [143] contribute Latin and Chinese text samples,
Chars74K [20] and MSRRC [68] contribute Latin and Kannada sam-
ples, and KAIST [71] contributes Latin and Hangul samples.

In order to provide a homogeneous dataset, all images have been
resized proportionally to fit in 640× 480 pixels, which is the default
image size of the KAIST dataset. Moreover, the ground-truth has
been revised to ensure a common text line annotation level [59]. Dur-
ing this process human annotators were asked to review all resized
images, adding the script class labels and text transcriptions to the
ground-truth, and checking for annotation consistency: discarding
images with unknown scripts or where all text is unreadable (this
may happen because images were resized); joining individual word
annotations into text line level annotations; discarding images where
correct text line segmentation is not clear or cannot be established,
and images where a bounding box annotation contains significant
parts of more than one script or significant parts of background (this
may happen with heavily slanted or curved text). Arabic numerals
(0, .., 9), widely used in combination with many (if not all) scripts,
are labeled as follows. A text line containing text and Arabic numer-
als is labeled as the script of the text it contains, while a text line
containing only Arabic numerals is labeled as Latin.
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Figure 3.8: Sample images from the
MLe2e dataset.

The MLe2e dataset contains a total of 711 scene images covering
four different scripts (Latin, Chinese, Kannada, and Hangul) and a
large variability of scene text samples. The dataset is split into a
train and a test set with 450 and 261 images respectively. The split
was done randomly, but in a way that the test set contains a balanced
number of instances of each class (approx. 160 text lines samples of
each script), leaving the rest of the images for the train set (which
is not balanced by default). The dataset is suitable for evaluating
various typical stages of end-to-end pipelines, such as multi-script
text detection, joint detection and script identification, end-to-end
multi-lingual recognition, and script identification in pre-segmented
text lines. For the latter, the dataset also provides the cropped images
with the text lines corresponding to each data split: 1178 and 643
images in the train and test set respectively.

While being a dataset that has been harvested from a mix of exist-
ing datasets it is important to notice that building it has supposed an
important annotation effort: since some of the original datasets did
not provide text transcriptions, and/or where annotated at different
granularity levels. Moreover, despite the number of languages in the
dataset is rather limited (only four scripts) it is one of the two first
public datasets (along with ILST [120]) to cover the evaluation of all
stages of multi-lingual end-to-end systems for scene text understand-
ing in natural scenes. We think it is an important contribution of this
paper and hope will be used by other researchers in the community.

3.5 An on-line platform for ground truthing and performance
evaluation of text extraction systems

Coinciding with the 11th IAPR Workshop on Document Analysis
Systems (DAS) the Computer Vision Center has released the CVC
Annotation and Performance Evaluation Platform for Text Extraction
(APEP-te) [59]: a set of on-line software tools that facilitate ground
truthing and streamline performance evaluation over a range of text
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extraction research tasks. The platform supports distributed ground
truthing allowing multiple users to work in parallel, while main-
taining centralized management and quality control of the process.
It supports annotation at different text representation levels, from
pixels to text lines. The platform supports the definition of eval-
uation scenarios for text localization, text segmentation and word
recognition tasks, and brings together implementations of state of
the art performance evaluation algorithms, on-line calculation of per-
formance metrics and per image visualization of results.

The APEP-te platform has been used extensively for ground truth
creation, while it provides the submission management, performance
evaluation and results visualization functionality of the ICDAR 2011

and 2013 Robust Reading competitions. The on-line framework is
available for public use. An installation pack that allows local de-
ployment of the Web portal is available through http://www.cvc.

uab.es/apep.

http://www.cvc.uab.es/apep
http://www.cvc.uab.es/apep




Chapter 4

Scene Text Extraction based on Perceptual Organization

A key characteristic of text is the fact that it emerges as a
gestalt: a perceptually significant group of similar atomic objects.
These atomic objects in the case of text are the character strokes giv-
ing rise to text-parts, be it well-separated characters, disjoint parts of
characters, or merged groups of characters such as in cursive text.
Such text-parts carry little semantic value when viewed separately
(see Figure 4.1(a)), but become semantically relevant and easily iden-
tifiable when perceived as a group. Indeed, it can be shown that
humans detect text without problems when perceptual organization
is evident irrespectively of the script or language - actually they are
able to do so for non-languages as well (see Figure 4.1(b)).

(a) (b)

(c)

Figure 4.1: (a) Should a single character
be considered “text”? (b) An example
of automatically created non-language
text1. (c) Our method exploits percep-
tual organization laws always present
in text, irrespective of scripts and lan-
guages.

1 Daniel Uzquiano’s random stroke
generator: http://danieluzquiano.

com/491
In this sense, text detection is an interesting problem since it can

be posed as the detection of meaningful groups of regions, as op-
posed to the analysis and classification of individual regions. Still,
the latter is the approach typically adopted in state of the art method-
ologies. Some methods do include a post-processing stage where
identified text regions are grouped into higher level entities: words,
text lines or paragraphs. This grouping stage is not meant to facil-
itate or complement the detection of text parts, but to prepare the
already detected text regions for evaluation, as the ground truth is

http://danieluzquiano.com/491
http://danieluzquiano.com/491
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specified at the word or text line level. This mismatch of seman-
tic level between results and ground truth is a recognized problem
that has given rise to specific evaluation methodologies that intend
to tackle the problem [138].

We pose that the fact that a region can be related to other neigh-
boring ones is central to classifying the region as a text part, and
is in-line with the essence of human perception of text, which is
largely based on perceptual organization. The research hypothesis
of this chapter is thus that building an automatic text detection pro-
cess around the above fact can help overcome numerous identified
difficulties of state of the art text detection methods.

To test the above hypothesis a state of the art perceptual organiza-
tion computational model is employed to assess the meaningfulness
of different candidate groups of regions. These groups emerge nat-
urally through the activation of different visual similarity laws in
collaboration with a proximity law.

Similarity between regions is not strictly defined in our frame-
work. This is intentional, as due to design, scene layout, and environ-
ment effects different perceptual organization laws might be active
in each case. Since text is a strong gestalt, a subset of such laws are
expected to be active in parallel (collaborating) at any given instance.
As a result a flexible approach is proposed, where various similar-
ity laws are taken into account and the groups emerging through
the individual activation of each similarity law provide the evidence
to decide on the final set of most meaningful groups. The resulting
method does not depend on the script, language or orientation of the
text to be detected.

4.1 Text Localization Method

We present a region based method where an initial set of image re-
gions are grouped together in a bottom-up manner guided by simi-
larity evidence obtained over various modalities such as color, size,
or stroke width among others, in order to obtain meaningful groups
likely to be text gestalts, i.e. paragraphs, text lines, or words. Fig-
ure 4.2 shows the pipeline of the proposed algorithm for text extrac-
tion where the process is divided in three main steps: region decom-
position, perceptual organization based analysis, and line formation.

Figure 4.2: Text Extraction algorithm
pipeline.
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4.1.1 Region Decomposition

We make use of the Maximally Stable Extremal Regions (MSER) [80]
algorithm for detecting text character candidates in the input im-
ages. The MSER algorithm builds a tree of regions with an extremal
property of the intensity function over its outer boundary, and this
property is normally present in all text parts as they are explicitly
designed with high contrast in order to be easily read by humans.

The resulting MSER tree is pruned by filtering the regions that
are not likely to be text parts by their size, aspect ratio, stroke width
variance, and number of holes.

4.1.2 Perceptual Organization Clustering

The perceptual organization clustering is applied to the entire set of
resulting MSERs in three stages. First we create a number of possi-
ble grouping hypotheses by examining different feature sub-spaces.
Then, these groups of regions are analyzed and we keep the most
meaningful ones, thus providing an ensemble of clusterings. Finally,
those meaningful clusterings are combined based on evidence accu-
mulation [36].

Group Hypothesis Creation

We aim to use simple and low computational cost features describing
similarity relations between characters of a word or text line. The list
of features we use for this kind of similarity grouping are:

Geometrical features. Characters in the same word usually have
similar geometric appearance. We make use of the bounding box
area, number of pixels, and diameter of the bounding circle.

Intensity and color mean of the region. We calculate the mean
intensity value and the mean color, in the L*a*b* colorspace, of the
pixels that belong to the region.

Intensity and color mean of the outer boundary. Same as before
but for the pixels in the immediate outer boundary of the region.

Stroke width. To determine the stroke width of a region we make
here use of the Distance Transform as in [13].

Gradient magnitude mean on the border. We calculate the mean
of the gradient magnitude on the border of the region.

Each of these similarity features is coupled with spatial informa-
tion, i.e. x, y coordinates of the regions’ centers, in order to capture
the collaboration of the proximity and similarity laws. So, indepen-
dently of the similarity feature we consider, we restrict the groups
of regions that are of interest to those that comprise spatially close
regions.

Although it is usually expected that text parts belonging to the
same word or text line share similar colors, stroke widths, and sizes,
the previous assumption does not always hold (see Figure 4.3). This
is why in our method we explore each of the similarity spaces in
parallel.



36 exploiting similarity hierarchies for multi-script scene text understanding

(a) (b) (c)

Figure 4.3: There is no single best fea-
ture for character clustering: Characters
in the same word may appear with dif-
ferent color (a), stroke width (b) or sizes
(c).

We build a dendrogram using Single Linkage Clustering analy-
sis for each of the feature sub-spaces described above. Each node
in the obtained dendrograms represents a group hypothesis whose
perceptual meaningfulness will be evaluated in the next step of the
pipeline.

Meaningfulness Testing

In order to find meaningful groups of regions in each of the defined
feature sub-spaces we make use of a probabilistic approach to Gestalt
Theory as formalized by Desolneux et al. [21]. The cornerstone of this
theoretical model of perceptual organization is the Helmholtz princi-
ple, which could be informally summarized as: “We do not perceive
anything in a uniformly random image”, or with its equivalent “a
contrario” statement: “Whenever some large deviation from random-
ness occurs in an image some structure is perceived”. This general
perception law, also known as the principle of common cause or of
non-accidentalness, has been stated several times in Computer Vi-
sion, with Lowe [76] being the first to pose it in probabilistic terms.

The Helmholtz principle provides the basis to derive a statistical
approach to automatically detect deviations from randomness, cor-
responding to meaningful events. Consider that n atomic objects are
present in the image and that a group G of k of them have a feature
in common. We need to answer the question of whether this com-
mon feature is happening by chance or not (and thus is a significant
property of the group). Assuming that the observed quality has been
distributed randomly and uniformly across all objects, the probabil-
ity that the observed distribution for G is a random realization of this
uniform process is given by the tail of the binomial distribution:

BG(k, n, p) =
n

∑
i=k

(
n
i

)
pi(1− p)n−i (4.1)

where p is the probability of a single object having the aforemen-
tioned feature.

We make use of this metric in the dendrogram of each of the fea-
ture sub-spaces produced in the previous step separately to assess
the meaningfulness of all produced grouping hypotheses. We cal-
culate (4.1) for each node (merging step) of the dendrogram, using
as p the ratio of the volume defined by the distribution of features
of the samples forming the group with respect to the total volume
of the feature sub-space. We then select as maximally meaning-
ful a cluster A iif for every successor B and every ancestor C, it is
BB(k, n, p) > BA(k, n, p) and BC(k, n, p) ≥ BA(k, n, p). Notice that
by using this maximality criteria no region is allowed to belong to
more than one meaningful group at the same time. The clustering
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(a) (b) (c)

(d) (e) (f)
Figure 4.4: (a) A scene image from the
ICDAR2003 dataset, (b) its MSER de-
composition. (c) Dendrogram of the
feature sub-space (x, y coordinates, in-
tensity mean), and (d) the maximal
meaningful clusters found; (e)(f) same
for the feature sub-space (x, y coordi-
nates, stroke width).

analysis is done without specifying any parameter or cut-off value
and without making any assumption on the number of meaningful
clusters, but just comparing the values of (4.1) at each node in the
dendrogram.

Figure 4.4 shows the maximal meaningful clusters detected in a
natural scene image for two of the feature sub-sets defined, in Fig-
ure 4.4(e) image regions are clustered in a three dimensional space
based on proximity and intensity value, while in Figure 4.4(f) they
are clustered based on proximity and stroke width. This behavior,
of arriving to different grouping results depending on the similarity
modality examined is desirable, as it allows us to deal with vari-
abilities in text design, illumination, perspective distortions, and so
on.

Evidence Accumulation

Once we have detected the set of maximally meaningful clusters
Pi in each feature sub-space i ∈ N, the clustering ensemble P =

{P1, P2, P3, ..., PN} is used to calculate the evidence [36] for each pair
of regions to belong to the same group, producing a co-occurrence
matrix D defined as:

D(i, j) =
mij

N
(4.2)

where mij is the number of times the regions i and j have been as-
signed to the same maximal meaningful cluster in P.

The co-occurrence matrix D is used as a dissimilarity matrix in
order to perform the final clustering analysis of the regions, by ap-
plying the same hierarchical clustering process described in section
4.1.2.
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Figure 4.5: Maximally meaningful clus-
ters validated through the Evidence Ac-
cumulation framework.Figure 4.5 shows two examples of the results obtained where the

method exhibits its ability to deal with a flexible definition of what
a text group is: on the bottom row text characters do not have the
same stroke width but they share the same color, while on the top,
on the contrary, text characters do not have the same color but have
similar stroke, size, etc.

As expected, not only text is detected as meaningful, but also any
kind of region arrangement with a text like structure. It is important
however to note at this stage that the algorithm produces relatively
pure text-only clusters, with almost all text parts falling in clusters
that contain virtually no non-text components. In order to filter non-
text meaningful groups we use a combination of two classifiers. First,
each region of the group is scored with the probability of being or
not a character by a Real AdaBoost classifier using features combin-
ing information of stroke width, area, perimeter, number and area
of holes. Then, simple statistics of this scores are fed into a sec-
ond Real AdaBoost classifier for text/non-text group classification
together with same features as before (but in this case for the whole
group and not for independent regions) and a histogram of edge
orientations of the Delaunay triangulation built with the group re-
gions centers. Both classifiers are trained using the ICDAR2003 [78]
and MSRA-TD500 [144] training sets as well as with synthetic text
images, using different scripts, to ensure script-independence.

4.2 Experiments and Results

The proposed method has been evaluated on three multi-script datasets
and one English-only dataset for different tasks, in one hand for text
segmentation on the KAIST and MSRRC datasets, and on the other
for text localization in the MSRA-TD500 and ICDAR2003 datasets
(see Chapter 3 for datasets details).

Text Segmentation

Table 4.1 show the obtained results on the KAIST and MSRRC datasets.
Sample qualitative results are shown in Figure 4.6, where it can be
appreciated the ability of our method to robustly extract regions in
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difficult cases like curved and multi-colored text.

KAIST MSRRC

p r f p r f

Lee et al.[71] 0.69 0.60 0.64 - - -
OTCYMIST [69] 0.52 0.61 0.56 0.50 0.29 0.37

Sethi et al.[68] - - - 0.33 0.72 0.45

Yin et al.[146, 68] - - - 0.71 0.67 0.69

This Chapter 0.67 0.78 0.71 0.64 0.58 0.61

Table 4.1: Scene text segmentation re-
sults in KAIST and MSRRC datasets.

The method presented in this Chapter participated as a competing
entry in the 2013 Multi-script Robust Reading Competition (MSRRC)
reaching the second place. While, as can be appreciated in Table 4.1,
the winner of the competition [146] show better numbers in both
precision and recall metrics, our proposal outperformed the other
two entries with a noticeable margin. Consistently, our method also
outperforms Lee et al. [71] and OTCYMIST [69] methods in KAIST
dataset.

Text Detection

Since the perceptually meaningful text groups detected by our method
rarely correspond directly to the semantic level ground truth infor-
mation is defined in (words in the case of ICDAR, and lines in the
case of the MSRA-TD500 dataset), the proposed method is extended
with a simple post-processing step in order to obtain text line level
bounding boxes.

We consider a group of regions as a valid text line if the mean
of the y-centers of its constituent regions lies in an interval of 40%
around the y-center of their bounding box and the variation coeffi-
cient of their distribution is lower than 0.2. Notice that in MSRA-
TD500, as we are considering text lines at any possible orientation,
the orientation of the group (and consequently the definition of the

Figure 4.6: Qualitative segmentation re-
sults on sample images of the KAIST
(top) and MSRCC (bottom) datasets.
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y-axis) is always defined in relation to the axes of the circumscribed
rectangle of minimum area for the given group. If the collinearity
test fails, it may be the case that the group comprises more than one
text line. Thus in such a case we perform a histogram projection
analysis in order to identify the text lines orientation, and then split
the initial group into possible lines by clustering regions on the iden-
tified direction. This process is iteratively repeated until all regions
have either been assigned to a valid text line or rejected, using the
collinearity test described above, or until no more partitions can be
found.

Table 4.2 show a comparison of the obtained results with other
state of the art methods on the MSRA-TD500 and ICDAR2003 datasets.
Sample qualitative results are shown in Figure 4.7

MSRA-TD500 ICDAR2003

P R f P R f

Chen et al. [14] 0.05 0.05 0.05 0.60 0.60 0.58

Epshtein et al. [27] 0.25 0.25 0.25 0.73 0.60 0.66

Li et al.[74] 0.30 0.32 0.31 0.45 0.80 0.57

TD-ICDAR [144] 0.53 0.52 0.54 0.68 0.66 0.66

TD-Mixture [144] 0.63 0.63 0.60 0.69 0.66 0.67

This Chapter 0.58 0.54 0.56 0.71 0.57 0.64

Table 4.2: Scene text localization results
(precision, recall, and f-score) in MSRA-
TD500 and ICDAR2003 datasets.

While our method is outperformed by TD-Mixture [144] in both
text localization datasets, the most important outcome from the com-
parison in Table 4.2 is that our results are consistent with the claim
of being script and orientation independent. Therefore, we see that
the method presented in this Chapter outperforms other methods in
MSRA-TD500 that are designed with only horizontal text in mind,
despite some of them perform better that us in ICDAR2003.

By analyzing the errors of our method in both localization and
segmentation tasks we have found that in many cases we fail to de-
tect small texts. Something that can be explained by the fact that the
meaningfulness measure does not find those small clusters perceptu-
ally meaningful. On the other hand, we also found that some times
the late fusion of the different similarity modalities through the evi-
dence accumulation algorithm, while helps in finding consensus and
thus in increasing precision by removing duplicate detections, also Figure 4.7: Qualitative localization re-

sults on sample images of the MSRA-
TD500 dataset.
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removes groups that are detected as meaningful only in one of the
similarity cues. This effectively reduces the potential recall rate of
the method. To mitigate this weaknesses in next Chapter we explore
the idea of an early fusion of the similarity modalities, while we also
complement the meaningfulness test presented in this Chapter with
an efficient discriminative classifier.

4.3 Conclusion

In this chapter we have proposed a new methodology for scene
text extraction inspired by the human perception of textual content,
largely based on perceptual organization. The proposed method re-
quires practically no training as the perceptual organization based
analysis is parameter free. It is totally independent of the language
and script in which text appears, it can deal efficiently with any type
of font and text size, while it makes no assumptions about the ori-
entation of the text. Experimental results demonstrate competitive
performance when compared with state of the art.





Chapter 5

Optimal design and efficient analysis of similarity
hierarchies

Hierarchical organization is an essential feature of text. In-
duced by typography and layout the hierarchical arrangement of text
strokes leads to the structural formation of text component group-
ings at different levels (e.g. words, text lines, paragraphs, etc.), see
Figure 5.1. This hierarchical property applies independently of the
script, language, or style of the glyphs, thus it allows us to pose the
problem of text detection in natural scenes in a holistic framework
rather than as the classification of individual patches or regions as
text or non-text.

Hierarchies are well-studied structures in mathematics and com-
puter science, where they are used extensively as data structures.
They have several interesting properties that make them suitable (de-
sirable) for many different tasks, e.g. tree searches, cluster analysis,
knowledge representation, etc. One particularly interesting property
of hierarchies, stemming from their recursive definition, is the inclu-
sion relation that exists between every node and its ancestors on the
hierarchy. This property can be exploited for example to efficiently
update cluster distances at each step of a hierarchical clustering anal-
ysis1 or, in a similar way, for the incremental computation of certain 1 See the Lance–Williams family of ag-

glomerative hierarchical clustering al-
gorithms.

cluster features [81, 131, 98].
In this Chapter we investigate how the recursive nature of hierar-

chical structures can be exploited for scene text detection.

Figure 5.1: A natural scene image and
a hierarchical representation of its text.
Atomic objects (characters) extracted in
the bottom layer are agglomerated into
text groupings at different levels of the
hierarchy.
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Figure 5.2: Individual text-parts are
less distinguishable when viewed sepa-
rately, but become structurally relevant
and easily identifiable when perceived
as a group.

For this, we follow in essence the same intuitions developed on the
previous Chapter: we tackle directly the problem of detecting groups
of text regions, instead of the classification of individual regions, see
Figure 5.2; and the proposed method is again driven by an agglom-
erative clustering process exploiting the strong similarities that are
expected between text components in such groups.

However, we take here a step further on exploiting the hierarchical
structure of text grouping proposals, and make the following contri-
butions in order to build a more robust and faster method: First,
we learn an optimal feature space that encodes the similarities be-
tween text components thus allowing the Single Linkage Clustering
algorithm to generate text group hypotheses with high recall, in-
dependently of their orientations and scripts. Second, we couple the
hierarchical clustering algorithm with a discriminative stopping rule,
that allow the efficient detection of text groups in a single clustering
step. Third, we propose a new set of features for text group clas-
sification, that can be efficiently calculated in an incremental way,
able to capture the inherent structural properties of text related to
the arrangement of text parts and the intra-group similarity. The use
of incrementally computable group descriptors makes possible the
direct evaluation of all group hypotheses generated by the cluster-
ing algorithm without affecting the overall time complexity of the
method.

5.1 Hierarchy guided text extraction

Our hierarchical approach to text extraction involves an initial re-
gion decomposition step where non-overlapping atomic text parts
are identified. These regions are then grouped with an agglomera-
tive process lead by their similarity, producing a dendrogram where
each node represents a text group hypothesis. We can then find
the branches corresponding to text groups by simply traversing the
dendrogram with an efficient stopping rule. Figure 5.3 shows an
example of the main steps of the pipeline.

As in the previous Chapter we make use of the MSER [80] algo-
rithm to get the initial set of low-level text regions candidates.

Recall in character detection is increased by extracting regions
from different single channel projections of the image (i.e. gray, red,
green and blue channel). This technique, denoted MSER++ [97], is a
way of diversifying the segmentation step in order to maximize the
chances of detecting all text regions.
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Figure 5.3: A bottom-up agglomer-
ative clustering of individual regions
produces a dendrogram in which each
node represents a text group hypothe-
sis. Our work focuses on learning the
optimal features allowing the genera-
tion of pure text groups (comprising
only text regions) with high recall, and
designing a stopping rule that allows
the efficient detection of those groups
in a single grouping step.

5.1.1 Optimal clustering feature space

Our agglomerative grouping algorithm is based on the fact that re-
gions belonging to the same word or text line necessarily have some
properties in common that make such a group perceptually mean-
ingful. As in previous Chapter we make use of low computational
cost features to define similarity measures between characters of a
word or text line. The list of similarity measures used here is as fol-
lows: size (major axis of regions’ fitting ellipse), intensity mean of
the regions, intensity and gradient magnitude mean on the border of
the regions.

In addition to those similarity measures we make use of spatial
information, i.e. x and y coordinates of the regions’ centers. This
way we restrict the groups of regions that are of interest to those that
comprise spatially close regions.

Distinctly from previous Chapter, now we consider that it is pos-
sible to weight those simple similarity features obtaining an optimal
feature space projection that maximizes the probabilities of finding
pure text groups (groups comprising only regions that correspond to
text parts) in a Single Linkage Clustering (SLC) dendrogram.

Let Rc be the initial set of individual regions extracted with the
MSER algorithm from channel c. We start an agglomerative cluster-
ing process, where initially each region r ∈ Rc starts in its own clus-
ter and then the closest pair of clusters (A, B) is merged iteratively,
using the single linkage criterion (min {d(ra, rb) : ra ∈ A, rb ∈ B }),
until all regions are clustered together (C ≡ Rc). The distance be-
tween two regions d(ra, rb) is calculated as the squared Euclidean
distance between their weighted feature vectors, adding a spatial
constraint term (the squared Euclidean distance between their cen-
ters’ coordinates ca and cb) in order to induce neighboring regions to
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merge first:

d(ra, rb) = ‖ca − cb‖2
2 +

D

∑
i=1

(wi · (ai − bi))
2 (5.1)

where we consider the 5-dimensional similarity space (D = 5) com-
prising the features described before: mean gray value of the region,
mean gray value in the immediate outer boundary of the region,
region’s major axis, mean stroke width, and mean of the gradient
magnitude at the region’s border. This way, a region (ra ∈ Rc) is
defined by its center coordinates (ca) and its feature vector (a), with
everything being rescaled to the range [0, 1]: dividing the features in
a by the maximum values found in training data, and the coordinates
in ca by the image width/height respectively.

It is worth noting that using the squared Euclidean distance for the
spatial term in equation 5.1, our clustering analysis remains rotation
invariant, thus the obtained hierarchy generates the same text group
hypotheses independently of the image orientation. For example,
rotating the image in Figure 5.4(a) by any degree would produce ex-
actly the same SLC dendrograms shown in Figures 5.4(c) and 5.4(d).
This is intentional as we want our method to be capable of detect-
ing text in arbitrary orientations. In this way, our algorithm deals
naturally with arbitrary oriented text without using any heuristic as-
sumption or threshold.

An alternative formulation for an “orientation dependent” dis-
tance would be to include the center coordinates in the feature vec-
tor, thus allowing the x and y coordinates to weight differently in the
distance sum. We evaluate this approach in Section 5.2 for the case
of horizontally-aligned text datasets.

Given a possible set of weights w in equation 5.1, the SLC algo-
rithm produces a dendrogram Dw where each node H ∈ Dw is a
subset of Rc and represents a text group hypothesis. The text group
recall represents the ability of a particular weighting configuration
to produce pure text groupings (comprising only text regions) corre-
sponding to words or text lines in the ground-truth. Figure 5.4 shows
an example of how different weight configurations lead to different
recall rates.

We make use of a metric learning algorithm in order to learn the
optimal weights w in equation 5.1 and maximize the text group recall

Figure 5.4: (a) Scene image, (b) its
MSER decomposition, and (c,d) two
possible hierarchies built from two dif-
ferent weight configurations, red nodes
indicate pure text groupings.

(a) (b) (c) (d)



optimal design and efficient analysis of similarity hierarchies 47

in our training dataset. For this we define the following loss function:

L(w) = ∑
rq ,rp ,rn

I(d(rq, rp) > d(rq, rn)) (5.2)

where I(g) = 1 if g is true or I(g) = 0 otherwise, and the triplets
{rq, rp, rn} stand for regions inRc with the following relation: {rq, rp}
are two regions that are part of the same text group (i.e. word or text
line), and {rn} is a region that do not belong to their group.

To find the w that minimizes the loss L(w) we use stochastic
gradient descent (SGD) to minimize the convex surrogate LS(w) ≥
L(w):

LS(w) = ∑
rq ,rp ,rn

max(0, d(rq, rp)− d(rq, rn)) (5.3)

Thus, our SGD update rule is:

w← w− λ
∂LS(w)

∂w

∣∣∣∣
rq ,rp ,rn

(5.4)

which evals to:

w i f d(rq, rp) < d(rq, rn)

w− λ[(q− p)◦2 − (q− n)◦2] otherwise
(5.5)

where q, p, n are the feature vectors of regions rq, rp, and rn re-
spectively, and (·)◦2 stands for the Hadamard power (element-wise)
operation.

We have assembled a mixed set of training examples using the
MSRRC and ICDAR training sets, which contain 167 and 229 images
respectively. We have manually separated all text-lines and words in
the ground truth data of these images, giving rise to 1611 examples
of text groups. Figure 5.5 shows the group examples extracted from
one of the training set images. Since MSRRC and ICDAR datasets
already provide pixel level segmentation ground truth, the manual
work performed to get our training data was limited to separate the
individual groups (words and text lines).

The use of a single mixed training set for learning the optimal
weights w is intentional, as we want to capture the importance of
each similarity measure in equation 5.1 in a domain independent
manner.

At training time, we perform SGD over the whole train set in the
following way: at each iteration we randomly pick an image and a
region rq that belongs to a text group (i.e. word or text line) in its
ground-truth annotation. Then, rp is selected as the closest contigu-
ous region in the same text group as rq, and rn is selected as the
region with the smaller distance d(rq, rn) among the MSER regions
extracted from the image that do not overlap with any ground-truth
region in same group of rq. The learning rate λ has been set to a
small value by carefully inspection, in order to not allow the weights
in w reach negative values in any case.
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Figure 5.5: Our training set is as-
sembled by manually separating the
pixel level ground-truth of train images
into all possible text groups (lines and
words).

As discussed before, there is no single best way to define similar-
ity between text parts, hence there is no single best set of weights
for our strategy, instead missing groups under a particular configu-
ration may be potentially found under another. An alternative to
using a single feature space would be to diversify our clustering
strategy, adding more hypotheses to the system by building differ-
ent hierarchies obtained from different weight configurations (sim-
ilarly to what we do with different color channels). As diversifi-
cation strategy, after an optimized set of weights wopt is obtained
we subsequently remove from the training set the groups that have
been correctly detected, and then learn again new optimal weights
(wopt2 , . . . , woptn) with the remaining groups. We evaluate this di-
versification strategy in section 5.2.

At test time, each of the optimal weight configurations is used
to generate a dendrogram where each node represents a text group
hypothesis. Selecting the branches corresponding to text groups is
done by traversing the dendrogram with an efficient stopping rule.

5.1.2 Discriminative and Probabilistic Stopping Rules

Given a dendrogram representing a set of text groups hypotheses
from the SLC algorithm, we need a strategy to determine the parti-
tion of the data that best fits our objective of finding pure text groups.
A rule to decide the best partition in a Hierarchical Clustering is
known as a stopping rule because it can be seen as stopping the ag-
glomerative process. Differently from standard clustering stopping
rules here we do not expect to obtain a full partition of regions in
Rc. In fact we do not even know if there are any text clusters at all
in Rc. Moreover, in our case we have a quite clear model for the
kind of groups sought, corresponding to text. These particularities
motivate the next contribution of this paper. We propose a stopping
rule, to select a subset of meaningful clusters in a given dendrogram
Dw, comprising the combination of the following two elements:
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• A text group discriminative classifier.

• A probabilistic measure for hierarchical clustering validity assess-
ment [11].

Discriminative Text Group Classifier

The first part of our stopping rule takes advantage of supervised
learning, building a discriminative classification model F in a group-
level feature space. Thus, given a group hypothesis H and its feature
vector h, our stopping rule will accept H only if F (h) = 1. We use
a Real AdaBoost classifier [111] with decision stumps. Our group-
level features originate from four different types: 1) Color and edge
intra-similarity statistics, since we expect to see regions in the same
word having low variation in color and contrast to their background;
2) Geometric intra-similarity statistics, same as before for the size
of the regions; 3) Shape similarity of participating regions, in order
to discriminate repetitive patterns, such as bricks or windows in a
building, which tend to be confused with text; 4) Structural collinear-
ity and equidistance features, measure the text-like structure of text
groups by using statistics of the 2-D Minimum Spanning Tree (MST)
built with their regions centers. The list of the 14 used features is as
follows:
Color and edge features:

• Foreground intensities standard deviation.

• Background intensities standard deviation.

• Mean gradient standard deviation.

Geometric features:

• Major axis coefficient of variation.

• Aspect ratios coefficient of variation.

Shape features:

• Stroke widths [13] coefficient of variation.

• Hu’s invariant moments [50] average Euclidean distance.

• Convex hull compactness [98] mean and standard deviation.

• Convexity defects coefficient of variation.

Structural features:

• MST angles mean and standard deviation.

• MST edge distances coefficient of variation.

• MST edge distances mean vs. regions’ diameters mean ratio.

The AdaBoost classifier is trained using the same training set de-
scribed in section 5.1.1. We have two sources of positive samples: 1)
Using each GT group as if it were the output of the region decom-
position step; 2) we run MSER and SLC (wopt) against a train image
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Figure 5.6: Classification accuracies of
the text group classifier using different
features.and use as positive samples those pure-text groups in the SLC tree

with more than 80% match with a GT group. From the same tree we
extract negative examples as nodes with 0 matchings. This gives us
around 3k positive and 15k negative samples. We balance the posi-
tive and negative data and train a first classifier that is used to select
around 500 hard negatives that are used to re-train and improve ac-
curacy.

Figure 5.6 shows the accuracy of the AdaBoost classifier using dif-
ferent features in order to visualize the contribution of each group
feature in the classifier performance. Reported accuracies are ob-
tained by dividing the training samples described before in two sets
for train (80%) and test (20%). The final test accuracy using all 18

group features is 94.25%.
In order to compare our text group classifier with other state of

the art approaches for text classification we evaluate the performance
of the T-HOG gradient-based descriptor [89] using exactly the same
data as in Figure 5.6. In these conditions T-HOG obtains a 94.56% test
accuracy, just slightly better than ours. However, it is very important
to notice here that the computational time needed by T-HOG (as well
as many other descriptors in the literature) makes their use unfeasi-
ble in our pipeline, since its computation cannot be performed in an
incremental way. The processing time needed by T-HOG to evaluate
the whole hypotheses dendrograms in our pipeline was on average
32 seconds, while our method is able to process the same number of
hypotheses in 1.6 seconds. In this sense what makes our classifier a
better choice is not only its discriminative power but also the ability
to be calculated efficiently over the whole set of group hypotheses
defined by the SLC analysis, as will be explained next.

Incrementally computable descriptors

Since at test time we have to calculate the group level features at
each node of the similarity hierarchy, it is important that they are
fast to compute. We take advantage of the inclusion relation of the
dendrogram’s nodes in order to make such features incrementally
computable when possible. This allows us to compute the proba-
bility of each possible group of regions to be a text group without
affecting the overall time complexity of our algorithm.

Group level features consisting of simple statistics over individ-
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ual region features (e.g. diameters, strokes, intensity, etc.) can be
incrementally computed straightforwardly with a few arithmetic op-
erations and so have a constant complexity O(1).

Regarding the MST based features, an incremental algorithm (i.e.
propagating the MST of children nodes to their parent) computing
the MST on each node of the dendrogram takes O(n × log2n) in
the worst case. Although this complexity is much lower than the
O(n2) complexity of the SLC step and thus does not affect the overall
complexity of the algorithm, this has noticeable impact in run time.
For this reason we add an heuristic rule on the maximum size of
valid clusters: clusters with more than a certain number of regions
are immediately discarded and there is no need to compute their
features. By taking the length of the largest text line in the MSRRC
training set (50) as the maximum cluster size, the run-time growth
due to the features calculation in our algorithm is negligible and the
obtained results are not affected at all.

Probabilistic cluster meaningfulness estimation

The way our classifier F is designed may eventually make the dis-
criminative stopping rule to accept groups with outliers. For exam-
ple, Figure 5.7 shows the situation where a node of the dendrogram
consisting in a correctly detected word is merged with a (character
like) region which is not part of the text group (outlier). In order to
increase the discriminative power of our stopping rule in such situ-
ations, we make use of a probabilistic measure of cluster meaning-
fulness [21, 11]. This probabilistic measure, also used in previous
Chapter, provides us with a way to compare clusters’ qualities in
order to decide if a given node in the dendrogram is a better text
candidate than its children.

The Number of False Alarms (NFA) [21, 11], based on the prin-
ciple on non-accidentalness, measures the meaningfulness of a par-
ticular group of regions in Rc by quantifying how the distribution of
their features deviates from randomness.

NFA(H) = BG(k, n, p) =
n

∑
i=k

(
n
i

)
pi(1− p)n−i (5.6)

where n is the number of regions in Rc, k is the number of regions in
the group hypothesis H we are evaluating, and p is the probability
that the feature vector of a randomly selected region from Rc falls
in the volume defined by the distribution of the feature vectors of
the comprising regions (h ∈ H) in the 5−D feature space defined in
Section 5.1.1. The lower the NFA is, the more meaningful H is.

Our stopping rule is defined recursively in order to accept a partic-
ular hypothesis H as a valid group iif its classifier predicted label is
“text” (F (h) = 1) and its meaningfulness measure is higher than the
respective meaningfulness measures of every successor A ∈ suc(H)

and every ancestor B ∈ anc(H) labeled as text, i.e. the following
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Figure 5.7: A node in a similarity den-
drogram consisting in a correctly de-
tected word (H1) is merged with a
cluster consisting of a single region
outlier (H2). Our stopping rule will
not consider valid the resulting clus-
ter H = {H1 ∪ H2} although the clas-
sifier has labeled it as a text group
(F (h) = 1) because NFA(H) is larger
than NFA(H1). The scatter plot simu-
lates the arrangement of the feature vec-
tors of the regions forming H1, H2, and
H in the similarity feature space.

inequalities hold:

NFA(H) < NFA(A), ∀A ∈ suc(H) | F (A) = 1 (5.7)

NFA(H) < NFA(B), ∀B ∈ anc(H) | F (B) = 1 (5.8)

Again it is important to notice that by using this criteria no re-
gion is allowed to belong to more than one text group at the same
time. Thus, the final selection of non-overlapping text clusters that
conform the output of our method is done in a parameter-free pro-
cedure, just by comparing the values of (5.6) at all nodes in the den-
drogram that are labeled as “text” by the discriminative classifier
(F (H) = 1), without making any assumption on the number of de-
sired clusters. Figure 5.8 shows the effect of the NFA selection cri-
teria over the output of the discriminative classifier in a particular
image hypotheses tree. See Figure 5.7 for an synthetic example on
how this stopping rule is able to detect outliers. As a side effect, the
stopping rule is eventually able to correctly separate different words
in a text line.

At this point, applying the method described so far our algorithm
is able to produce results for the scene text segmentation task. The
segmentation task is evaluated at pixel-level, this is the algorithm
must provide a binary image where white pixels correspond to text
and black pixels to background. All segmentation results given in
section 5.2 are obtained with this algorithm, trained with a single
mixed dataset and without any further post-processing, by setting
to white the pixels corresponding to the detected text groups. Fig-
ures 5.9 and 5.11 show segmentation results of our method in the
MSRRC and KAIST datasets.

5.1.3 From Pixel Level Segmentation to Bounding Box Localization

In order to evaluate our method in the text localization task we ex-
tend our method with a simple post-processing to obtain word and
text line bounding boxes depending on the semantic level ground
truth information is defined (e.g. words in the case of ICDAR and
MSRRC datasets, lines in the case of the MSRA-TD500 dataset). This
is because the text groups detected by our stopping rule may corre-
spond indistinctly to words, lines, or even paragraphs in some cases,
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(a) (b)

Figure 5.8: (a) Selective search of text
groups defined by our SLC analysis,
each rectangle represents a text group
hypothesis: in green, groups labeled as
text by the discriminative classifier, in
red, groups labeled as non-text; (b) Text
groups selected with the NFA criteria
over the hypotheses tree.

depending on the particular typography and layout of the detected
text.

First of all, region groups selected as text by our stopping rule in
the different dendrograms are combined in a procedure that serves
to deduplicate repeated groups (e.g. the same group may potentially
be found in several channels or weights configurations) and to merge
collinear groups that may have been detected by chunks. Two given
text groups are merged if they are collinear, and their relative dis-
tance and height ratio are under thresholds learned during training.

After that, if needed by the granularity of the ground-truth level,
we split resulted text lines into words by considering as word bound-
aries all spaces between regions with a larger distance than a certain
threshold, learned during training, proportional to the group’s aver-
age inter-region distance.

5.2 Experiments

The proposed method has been extensively evaluated on three multi-
script and arbitrary oriented text datasets and two English-only datasets
for the tasks of scene text segmentation and localization.

5.2.1 Baseline analysis

We have evaluated different variants of our method in order to assess
the contribution of each of the proposed techniques. This baseline
analysis is performed in the MSRRC test set. The baseline method is
configured by setting all weights to 1 (wI) and accepting all group hy-
potheses which are labeled as text by the classifier (F (H) = 1). We
compare this baseline with the variants making use of the learned
optimal weights wopt, and with including the meaningfulness cri-
teria to our stopping rule. Finally we have evaluated the impact of
different diversification strategies to the initial segmentation, both
in the number of image channels (MSER vs. MSER++), and in the
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number of weight configurations by adding a variable number of
optimal weighted configurations wopt2 , . . . , woptn into the system. Ta-
ble 5.1 shows segmentation results of our method in the MSRRC 2013

test set comparing different variants of our method and different di-
versification strategies. The table includes also two variants of our
previously published work [42] for comparison. We chose to use the
MSRRC dataset for this analysis as it is representative of the targeted
scenario of multi-script and arbitrarily oriented text.

Method Precision Recall F-score

Previous Chapter [42, 68] 0.64 0.58 0.61

Previous Chapter MSER++ 0.50 0.71 0.59

MSER | wI 0.69 0.58 0.63

MSER | wopt 0.69 0.62 0.65

MSER | wI | stop-rule 0.76 0.60 0.67

MSER | wopt | stop-rule 0.77 0.62 0.69

MSER++ | wopt | stop-rule 0.75 0.71 0.73
MSER++ | wopt, wopt2 ,. . . , wopt4 | stop-rule 0.67 0.73 0.70

MSER++ | wopt, wopt2 ,. . . , wopt7 | stop-rule 0.56 0.74 0.64

Table 5.1: Segmentation results compar-
ing different variants of our method.

From the obtained results we can see that the optimized weights
wopt have a noticeable impact in the method recall, while the stop-
ping rule leads to a considerable increase in precision without any
recall deterioration. Regarding diversification, if one wants to max-
imize the harmonic mean between precision and recall, the use of
MSER++ is well justified even though it produces a slight precision
drop. However, examining the effect of further diversification using
more optimal weighting configurations, we can see that the obtained
gain in recall by adding more hypotheses does not help improving
the f-score as it produces a significant precision deterioration. Such
a diversification strategy should be considered only if one wants to
maximize the system’s recall.

5.2.2 Scene text segmentation results

Table 5.2 compares the final results of our method with the state-of-
the-art on the scene text segmentation task in three different bench-
marks (KAIST, MSRRC, and ICDAR2013). A set of example qualita-

Figure 5.9: Qualitative segmentation re-
sults on the MSRRC 2013 dataset.
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tive results are shown in Figures 5.9 and 5.11.

KAIST MSRRC IC13

p r f p r f p r f

Previous Chapter 0.67 0.78 0.71 0.64 0.58 0.61 0.63 0.59 0.61

NUS FAR [60] * - - - - - - 0.82 0.75 0.78
Lee et al.[71] 0.69 0.60 0.64 - - - - - -
NSTextractor [60] - - - - - - 0.76 0.61 0.68

OTCYMIST [69] 0.52 0.61 0.56 0.50 0.29 0.37 0.46 0.59 0.52

Sethi et al.[68] - - - 0.33 0.72 0.45 - - -
TextDetect. [60] - - - - - - 0.76 0.65 0.70

FuStar [146] - - - - - - 0.74 0.70 0.72

Yin et al.[146, 68] - - - 0.71 0.67 0.69 - - -

This Chapter 0.67 0.89 0.76 0.75 0.71 0.73 0.74 0.71 0.73

(Horiz. only) - - - - - - 0.77 0.73 0.75

Table 5.2: Segmentation results in stan-
dard datasets. Methods marked with *
have not been published up to date.

As can be seen in Table 5.2, our method outperforms previous
state-of-the-art in KAIST and MSRRC benchmarks, while providing a
competitive results in the ICDAR dataset. In the case of horizontally
aligned text datasets we also provide results of a specialized version
of our method (Horiz. only) by using the ‘orientation dependent’
distance explained in section 5.1.1 and filtering detections with non-
horizontal orientations.

Figure 5.10: Inverse grade curves
of different methods in the MSRRC
dataset [68].

Figure 5.10 show the inverse grade curves of different methods
in the MSRRC dataset. The inverse grade curve plots the f-score
divided by the ratio of text pixels for each image, and inversely sorts
these values by the amount of text pixels, thus larger values in the
x-axis correspond to images with less text. As can be seen our curve
is the nearest to follow the ground-truth benchmark curve.

The interpretation of the high increase in recall observed in the
KAIST dataset compared to the obtained in MSRRC and ICDAR fol-
lows the fact that in KAIST dataset small text characters are not la-
beled in the ground-truth. These small text components are in gen-
eral the ones more difficult to detect. On the other hand, in some
cases precision suffers when such small text is correctly detected as
it counts as false positive.

Figure 5.11: Qualitative segmentation
results on the KAIST dataset.
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5.2.3 Scene text localization results

Table 5.3 compares the final results of our method with state-of-
the-art scene text localization methods in five benchmarks (KAIST,
MSRA-TD500, MSRRC, ICDAR 2013, and ICDAR2003). A set of ex-
ample qualitative results are shown in Figures 5.12 and 5.13.

KAIST MSRA-TD500 MSRRC IC13 IC03

P R f P R f P R f P R f P R f

CASIA NLPR [60] - - - - - - - - - 0.79 0.68 0.73 - - -
Chen et al. [14] - - - 0.05 0.05 0.05 - - - - - - 0.60 0.60 0.58

Epshtein et al. [27] - - - 0.25 0.25 0.25 - - - - - - 0.73 0.60 0.66

Previous Chapter - - - 0.58 0.54 0.56 - - - - - - 0.71 0.57 0.64

Lee et al.[71] 0.69 0.60 0.64 - - - - - - - - - - - -
Li et al.[74] 0.59 0.79 0.67 0.30 0.32 0.31 - - - - - - 0.45 0.80 0.57

I2R NUS FAR [60] * - - - - - - - - - 0.75 0.69 0.72 - - -
Text Detection [60] - - - - - - - - - 0.74 0.53 0.62 - - -
TextSpotter [60, 98] - - - - - - - - - 0.88 0.65 0.74 - - -
TD-ICDAR [144] - - - 0.53 0.52 0.54 - - - - - - 0.68 0.66 0.66

TD-Mixture [144] - - - 0.63 0.63 0.60 - - - - - - 0.69 0.66 0.67

Yin et al. [146, 68, 60] - - - - - - 0.64 0.42 0.51 0.88 0.66 0.76 - - -

This Chapter 0.71 0.83 0.77 0.69 0.54 0.61 0.63 0.54 0.58 0.78 0.67 0.72 0.74 0.65 0.69
(Horiz. only) - - - - - - - - - 0.80 0.69 0.74 0.75 0.66 0.70

Table 5.3: Scene text localization results
(precision, recall, and f-score) in stan-
dard datasets.

Results in Table 5.3 demonstrate that the method proposed in this
paper outperforms other state-of-the-art methods in KAIST, MSRA-
TD500, and MSRRC datasets, while being competitive with the IC-
DAR2013 robust reading competition results. ICDAR2013 results
have a coherent interpretation as we aim for the highest generality of
our method, addressing the unconstrained problem of detecting text
irrespective of its language, script, and orientation. Contrary to our
method, most methods listed in ICDAR columns of Table 5.3 have
been trained explicitly for horizontally aligned English text and ad-
dress only this particular scenario. In this sense, it is important to
notice that some of the top scoring methods in the IC03 column have
been evaluated in the MSRA-TD500 arbitrary oriented text dataset
with a much worse performance compared to the method proposed
here.

The average time performance of our method using a standard
commodity i7 CPU ranges from 0.5 to 3 seconds depending on the
input image size. This time stamp could be reduced in a factor of ×4

Figure 5.12: Qualitative localization re-
sults on the ICDAR 2013 dataset.
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Figure 5.13: Qualitative localization re-
sults on the MSRA-TD500 dataset.

if each input color channel is processed independently in parallel.

5.3 Conclusions

This Chapter details a novel scene text extraction method in which
the exploitation of the hierarchical structure of text plays an inte-
gral part. We have seen that the algorithm can efficiently detect text
groups with arbitrary orientation in a single clustering process that
involves: a learned optimal clustering feature space for text region
grouping, novel discriminative and probabilistic stopping rules, and
a new set of features for text group classification that can be effi-
ciently calculated in an incremental way.

Experimental results demonstrate that the presented algorithm
outperforms other state of the art methods in three multi-script and
arbitrary oriented scene text standard datasets while it stays compet-
itive in the more restricted scenario of horizontally-aligned English
text ICDAR dataset. Moreover, the presented results in all datasets
are obtained with a single (mixed) training set, demonstrating the
general purpose character of the method which yields robust perfor-
mance in a variety of distinctly different scenarios.

Finally, the baseline analysis of the algorithm reveals that overall
system recall can be substantially increased if needed by using fea-
ture space diversification. Our findings are positioned in line with re-
cent advances in object recognition [129] where bottom-up grouping
of an initial segmentation is used to generate object location hypothe-
ses, producing a substantially reduced search space in comparison to
the traditional sliding window approaches. An intuition that will be
further explored in the next Chapter.





Chapter 6

Text Regions Proposals

Object Proposals is a recent computer vision technique for gen-
eration of high quality object locations. The main interest of such
methods is their ability to speed up recognition pipelines that make
use of complex and expensive classifiers by considering only a few
thousands of bounding boxes. It therefore constitutes an alternative
to exhaustive search, which has many well known drawbacks, and
enables the efficient use of more powerful classifiers in end-to-end
pipelines by greatly reducing the search space as shown in Figure 6.1.

On the other hand, in the context of scene text understanding,
whole-word recognition methods [41, 2, 51] have demonstrated great
success in difficult tasks like word spotting or text based retrieval,
however they are usually based in expensive techniques. In this sce-
nario the underlying process is similar to the one in multiclass object
recognition. It is therefore suggestive for the use of Object Proposals
techniques mimicking the state of the art object recognition pipelines.

Traditionally, high precision specialized detectors have been used
for segmentation of text in natural scenes, and afterwards text recog-
nition techniques applied to their output [98, 137, 142, 43]. But it is
a well known fact that the perfect text detector, able to work in any
conditions, does not exist up to date. In fact, to mitigate the lack of
a perfect detector Bissacco et al. [7] propose an end-to-end scene text
recognition pipeline using a combination of several detection meth-
ods running in parallel. Demonstrating that if you have a robust

Figure 6.1: Sliding a window for all
possible locations, sizes, and aspect ra-
tios represents a considerable waste of
resources. The best ranked 250 propos-
als generated with our text specific se-
lective search method provide 100% re-
call and high-quality coverage of words
in this particular image.
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recognition method at the end of the pipeline the most important
thing in earlier stages is to achieve high recall while precision is not
so critical.

The dilemma is thus to choose between having a small set of de-
tections with very high precision but most likely losing some of the
words in the scene, or a larger set of proposals, usually in the range
of few thousands, with better coverage and then let the recognizer to
make the final decision. The later seems to be a well-grounded pro-
cedure in the case of word-spotting and retrieval for various reasons.
First, as said before, we have powerful whole-word recognizers but
they are complex and expensive, second, the recall of current text de-
tection methods may limit their accuracy, and third, sliding window
can not be considered an efficient option mainly because words do
not have a constrained aspect ratio.

In this chapter we explore the applicability of Object Proposals
techniques in scene text understanding, aiming to produce a set of
word proposals with high recall in an efficient way. We propose
a simple text-specific selective search strategy, where initial regions
in the image are grouped by agglomerative clustering in a hierar-
chy where each node defines a possible word hypothesis. Moreover,
we evaluate different state of the art Object Proposals methods in
their ability of detecting text words in natural scenes. We compare
the proposals obtained with well known class-independent methods
with our own method, demonstrating that our algorithm is superior
in its ability of producing good quality word proposals in an efficient
way.

6.1 Text Specific Selective Search

Here we make use of the same grouping framework developed in
the preceding chapters of this thesis, where a set of complementary
grouping cues are used in parallel to generate hierarchies in which
each node correspond to a text-group hypotheses. Our algorithm is
divided in three main steps: segmentation, creation of hypotheses
through bottom-up clustering, and ranking.

6.1.1 Creation of hypotheses

The grouping process starts with a set of MSER regions and the SLC
algorithm builds a hierarchy of grouping proposals using a certain
distance metric d(ra, rb). Similarly to [128] we assume that there is no
single grouping strategy that is guaranteed to work well in all cases.
Thus, our basic agglomerative process is extended with several di-
versification strategies in order to ensure the detection of the highest
number of text regions in any case. First, we extract regions sepa-
rately from different color channels (i.e. Red, Green, Blue, and Gray)
and spatial pyramid levels. Second, on each of the obtained seg-
mentations we apply SLC using different complementary distance
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metrics:

d(i)(ra, rb) = ( f i(ra)− f i(rb))
2 + (xa − xb)

2 + (ya − yb)
2 (6.1)

where the (xa, ya) and (xb, yb) are the centers of regions ra and rb,
and f i(r) is a feature aimed to measure the similarity of two re-
gions. Here, as in precvious Chaper we make use of the following
features: mean gray value of the region, mean gray value in the
immediate outer boundary of the region, region’s major axis, mean
stroke width, and mean of the gradient magnitude at the region’s
border.

6.1.2 Ranking

Once we have created our similarity hierarchies each one providing
a set of text group hypotheses, we need an efficient way to sort them
in order to provide a ranked list of proposals prioritizing the best
hypotheses. In the experimental section we explore the use of the
following rankings:

Pseudo-random ranking

We make use of the same ranking strategy proposed by Uijlings et
al.in [128]. Particularly, each hypothesis is assigned with an increas-
ing integer value, starting from 1 for the root node of a hierarchy
and subsequently incrementing for the rest of the nodes up to the
leaves of the tree. Then each of this values is multiplied with a ran-
dom number between zero and one, thus providing a ranking that
is randomly produced but prioritizes larger regions. As in [128] the
ranking process is performed before removing duplicate hypothe-
ses. This way if a particular grouping has been found several times
within the different hierarchies, indicating a more consistent hypoth-
esis under different similarity cues, this group is going to have more
probabilities to be ranked in the top of the list.

Cluster meaningfulness ranking

Instead of assigning an increasing value prioritizing larger groups,
we propose here to use the cluster quality measure that we have de-
tailed in section 5.1.2 of previous Chapter. Intuitively this value is
going to very small for groups comprising a set of very similar re-
gions, that are densely concentrated in small volumes of the feature
space. This measure is thus well indicated in the case of measuring
text-likeliness of groups because such a strong similarity property is
expected to be found in text groups. However, the ranking provided
by calculating the NFA (equation 5.6) of each node in our hierar-
chies is going to prioritize large text groups, e.g. paragraphs, rather
that individual words, and thus we multiply the ranking provided by
equation 5.6 with a random number between zero and one as done
before, providing a pseudo-random ranking where more meaningful
hypothesis are prioritized.
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Text classifier confidence

Finally, we propose the use of a weak classifier to ranking text group-
ing candidates. The basic idea here is to train a classifier to discrim-
inate between text and non-text hypotheses and to produce a confi-
dence value that can be used to rank group hypotheses. Since the
classifier is going to be evaluated on every node of our hierarchies,
we aim to use a fast classifier and features with low computational
cost. We train a Real AdaBoost classifier with decision stumps using
as features the coefficients of variation of the individual region fea-
tures f i described in section 6.1.1: Fi(G) = σi/µi, where µi and σi are
respectively the mean and standard deviation of the region features
f i in a particular group G, { f i(r) : r ∈ G}. Intuitively the value of Fi

is smaller for text hypotheses than for non-text groups, and thus the
classifier would be able to generate a ranking prioritizing the best
hypotheses. Notice that all Fi group features can be computed effi-
ciently in an incremental way along the SLC hierarchies, and that all
f i region features have been previously computed.

6.2 Experiments and Results

In our experiments we make use of two standard scene text datasets:
the ICDAR Robust Reading Competition dataset (ICDAR2013) [60]
and the Street View Dataset (SVT) [136]. In both cases we provide re-
sults for their test sets, consisting in 233 and 249 images respectively,
using the original word level ground-truth annotations.

The evaluation framework used is the standard for Object Pro-
posals methods [49] and is based on the analysis of the detection
recall achieved by a given method under certain conditions. Recall
is calculated as the ratio of GT bounding boxes that have been pre-
dicted among the object proposals with an intersection over union
(IoU) larger than a given threshold. This way, we evaluate the re-
call as a function of the number of proposals, and the quality of the
first ranked N proposals by calculating their recall at different IoU
thresholds.

6.2.1 Evaluation of diversification strategies

First, we analyse the performance of different variants of our method
by evaluating the combination of diversification strategies presented
in Section 6.1. Table 6.1 shows the average number of proposals
per image, recall rates, and time performance obtained with some of
the possible combinations. We select two of them, that we will call
“FAST” and “FULL” as they represent a trade-off between recall and
time complexity, for further evaluation.

6.2.2 Evaluation of proposals’ rankings

Figure 6.2 shows the performance of our “FAST” pipeline at 0.5 IoU
using the various ranking strategies discussed in Section 6.1. The
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Method # prop. 0.5 IoU 0.7 IoU 0.9 IoU time(s)

I+D 536 0.84 0.65 0.41 0.26

I+DF 993 0.91 0.78 0.53 0.29

I+DFBGS 1323 0.95 0.86 0.60 0.45

RGB+DF 3359 0.96 0.91 0.69 0.73

RGBI+DFBGS 5659 0.98 0.94 0.75 1.72

P2+RGBI+DFBGS 8164 0.98 0.96 0.79 2.18

Table 6.1: Max recall at different IoU
thresholds and running time compar-
ison of different diversification strate-
gies in the ICDAR2013 dataset. We in-
dicate the use of individual color chan-
nels: (R), (G), (B), and (I); spatial pyra-
mid levels: (P2); and similarity cues:
(D) Diameter, (F) Foreground intensity,
(B) Background intensity, (G) Gradient,
and (S) Stroke width.

area under the curve (AUC) is 0.39 for NFA, 0.43 both for PR and
PR-NFA rankings, while a slightly better 0.46 for the ranking pro-
vided by the weak classifier. Since the overhead of using the clas-
sifier is negligible we use this ranking strategy for the rest of the
experiments.

6.2.3 Comparison with state of the art

In the following we further evaluate the performance of our method
in the ICDAR2013 and SVT datasets, and compare it with the fol-
lowing state of the art Object Proposals methods: BING [15], Edge-
Boxes [151], Randomized Prim’s [79] (RP), and Geodesic Object Pro-
posals [65] (GOP).

In our experiments we use publicly available code of these meth-
ods with the following setup. For BING we use the default parame-
ters: base of 2 for the window size quantization, feature window size
of 8× 8, and non maximal suppression (NMS) size of 2. For Edge-
Boxes we also use the default parameters: step size of the sliding
window of 0.65, and NMS threshold of 0.75; but we change the max
number of boxes to 106. GOP is configured with Multi-Scale Struc-
tured Forests for the segmentation, 150 seeds heuristically placed,
and 8 segmentations per seed; in this case we tried other configura-
tions in order to increase the number and quality of the proposals
without success. For RP we use the default configuration with 4
color spaces (HSV,Lab,Opponent,RG) because it provided much bet-
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Figure 6.2: Performance of our “FAST”
pipeline at 0.5 IoU using different rank-
ing strategies: (PR) Pseudo-random
ranking, (NFA) Meaningfulness rank-
ing, (PR-NFA) Randomized NFA rank-
ing, (Prob) the ranking provided by the
weak classifier.
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Figure 6.3: A comparison of various
state-of-the-art object proposals meth-
ods in the ICDAR2013 (top) and SVT
(bottom) datasets. (left and center) De-
tection rate versus number of propos-
als for various intersection over union
thresholds. (right) Detection rate ver-
sus intersection over union threshold
for various fixed numbers of proposals.

ter results than sampling from a single graph, while being 4 times
slower.

Tables 6.2 and 6.3 show the performance comparison of all the
evaluated methods in ICDAR2013 and SVT datasets respectively. A
more detailed comparison is provided in Figure 6.3. All time mea-
surements in Tables 6.2 and 6.3 have been calculated by executing
code in a single thread on the same i7 CPU for fair comparison, while
most of them allow parallelization. For instance the multi-threaded
version of our method is able to achieve execution times of 0.31 and
0.71 seconds respectively for the “FAST” and “FULL” variants in the
ICDAR2013 dataset.

Method # prop. 0.5 IoU 0.7 IoU 0.9 IoU time(s)

BING [15] 2716 0.63 0.08 0.00 1.21

EdgeBoxes [151] 9554 0.85 0.53 0.08 2.24

RP [79] 3393 0.77 0.45 0.08 12.80

GOP [65] 855 0.45 0.18 0.08 4.76

Ours-FAST 3359 0.96 0.91 0.69 0.79
Ours-FULL 8164 0.98 0.96 0.79 2.25

Table 6.2: Average number of propos-
als, recall at different IoU thresholds,
and running time comparison with Ob-
ject Proposals state of the art algorithms
in the ICDAR2013 dataset.

As can be seen in Table 6.2 and Figure 6.3 our method outper-
forms all the evaluated algorithms in terms of detection recall on the
ICDAR2013 dataset. Moreover, it is important to notice that detec-
tion rates of all the generic Object Proposals heavily deteriorate for
large IoU thresholds while our text specific method provides much
more stable rates indicating a better coverage of text objects, see the
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high AUC difference in Figure 6.3 bottom plots.

Method # prop. 0.5 IoU 0.7 IoU 0.9 IoU time(s)

BING [15] 2987 0.64 0.09 0.00 0.81

EdgeBoxes [151] 15319 0.94 0.63 0.04 2.71

RP [79] 5620 0.02 0.00 0.00 10.51

GOP [65] 778 0.53 0.19 0.03 4.31

Ours-FAST 3791 0.90 0.46 0.03 0.66
Ours-FULL 10365 0.95 0.61 0.06 2.22

Table 6.3: Average number of propos-
als, recall at different IoU thresholds,
and running time comparison with Ob-
ject Proposals state of the art algorithms
in the SVT dataset.

The results on the SVT dataset in Table6.3 and Figure 6.3 exhibit a
radically distinct scenario. While our “FULL” pipeline is slightly bet-
ter than EdgeBoxes at 0.5 IoU, the later is able to outperform both of
our pipelines at 0.7 and our “FAST” variant at 0.5. Moreover, in this
dataset our method does not provide the same stability properties
shown before. This can be explained because both datasets are very
different in nature, SVT contains more challenging text, with lower
quality and many times under bad illumination conditions, while in
ICDAR2013 text is mostly well focussed and flatly illuminated. Still,
the AUC in most of the plots in Figure 6.3 show a fairly competitive
performance for our method.

6.3 Conclusion

In this chapter we have evaluated the performance of generic Object
Proposals algorithms in the task of detecting text words in natural
scenes. We have presented a text specific method that is able to
outperform generic methods in many cases, or to show competitive
numbers in others. Moreover, the proposed algorithm is parameter
free and fits well the multi-script and arbitrary oriented text scenario.

An interesting observation of our experiments is that while in
class-independent object detection generic methods suffice with near
a thousand proposals to achieve high detection recall, in the case of
text we still need around 10000 in order achieve similar rates, indi-
cating there is a large room for improvement in specific text Object
Proposals methods.





Chapter 7

Efficient tracking of text groupings

Text detection in video sequences differs from still images
in many aspects and it is not a straightforward assumption that a
method devised and trained on static text images would be appli-
cable to video sequences. A key characteristic of video sequences is
the temporal redundancy of text, which calls for tracking based pro-
cesses taking advantage of past history to increase the stability and
quality of detections.

Keeping constant track of a text object throughout all the frames
where it is visible is desirable for example to ensure a unique re-
sponse of the system (e.g. translation, or text to speech conversion)
for each distinct text, and also to be able to enhance the text re-
gions [72], or to select the best frames in which they appear, before
doing the full text recognition. Moreover, one can take advantage of
the tracking process in order to obtain a real-time detection system,
under the assumption that the scene does not change much from
frame to frame. This yields an extra speed-up that can be exploited in
see-though applications (e.g. Augmented Reality translation [35, 109]
and augmented documents [126]) or street-view navigation [87].

In this Chapter we develop a real-time scene text detection algo-
rithm that combines the text detection method presented in Chap-
ter 5 with an MSER-based tracking module [24]. As both detection
and tracking modules are based on MSER regions they can be inte-
grated symbiotically, improving robustness and providing a speed
boost to the system. Real-time text detection is simulated by propa-
gating in time the previously detected text-regions, until a new text
detection takes place.

The novelty of the proposed method lies in the ability to effectively
track text regions’ groupings (establishing a pixel level segmentation
of constituent text parts in every frame), not merely their bounding
boxes as usually done in state-of-the-art tracking-by-detection algo-
rithms [140], while providing a considerable speed-up in comparison
to performing a full frame text detection on each frame. Moreover,
the proposed method can deal with rotation, translation, scaling, and
perspective deformations of detected text.
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7.1 Text Detection and Tracking Method

In this Section we proceed to explain the proposed text tracking al-
gorithm, and the way it is integrated with our text detection method.
Figure 7.1 shows a timeline representation of the interations between
detection and tracking modules. The main idea behind our proposal
is that even with a slow text detection method it is possible to achieve
real-time performance by running it periodically while in parallel a
fast tracking module takes care of propagating previous detections
for the frames that are not processed by the detection module. The
overall speed of the process really only depends on the tracking mod-
ule, therefore the system can be real-time. However, the speed of the
text detector is nevertheless important, as it is the only source of
new information to the system, and long times between consecutive
detections could deteriorate substantially the overall performance.

Figure 7.1: Timeline view of the text
detection and tracking modules’ com-
bination. Rectangles represent lasting
processes in time and diamonds are
the output of the system. The detec-
tion module creates the first estimates
of text object positions, which are prop-
agated to subsequent frames by the
tracking module. Each time the de-
tection module provides new results, a
merging mechanism combines the de-
tected and tracked objects in a unique
output (maroon diamonds).7.1.1 Tracking Module

Our tracking module is built upon the framework proposed by Donoser
and Bischof in [24] where tracking of single MSERs in successive
frames is posed as a correspondence problem within a window sur-
rounding their previous location. The component tree of this small
windows can be used as an efficient data structure to solve the corre-
spondence problem: contains all the information needed to search
the best matching region, and obviously can be computed much
faster than for the whole image.

Figure 7.2 shows how finding the corresponding MSER between
two consecutive frames can be done efficiently by constraining the
search in two ways: searching only in the component tree of a small
window (Figure 7.2b), and looking only in a sub-set of the tree levels
(Figure 7.2c). These two constraints define two parameters for the
tracking method: the size of the window (with respect to the query
region size), and the levels interval to look for (with respect to the
level of the query region).

Notice that the search process is done among all the regions in
the component tree and would be able to find correct matches even
when the target region has lost the stability criteria (e.g. appears
blurred) in the consecutive frame.

MSER-tracking has been used effectively for license plate [23] and
hand [25] tracking using a weighted vector of simple features: mean
gray value, region size, center of mass, width and height of the
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(a) (b)

(c)

Figure 7.2: Tracking of text grouping el-
ements posed as search in the compo-
nent tree of a small region of interest.
Given a text regions’ grouping detec-
tion (a) in frame t0, the location of its
constituent elements in the next frame
t1 is constrained to a small regions of
interest around their initial locations at
t0 (b). The structure of the component
tree of this small region (c) can be used
to search for the best matching compo-
nent, and again this search can be con-
strained, e.g. by looking only at cer-
tain levels of the tree that correspond to
components with an intensity (and/or
size) similar to the query.
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bounding box, and stability. A further extension in [26] makes use of
novel shape descriptors in order to increment the robustness of the
tracking by considering shape similarity.

The text tracking module proposed here differs from the work of
Donoser and Bischof in two aspects by considering the specificities
of text regions’ groupings: 1) We use invariant moments as features
to find correspondences, as a tradeoff between the fast computation
of the simple features used in [24] and the robustness of the shape
descriptors in [26]. 2) Here we consider groups of regions (text lines)
instead of a single MSER regions as done in [23] and [25], and thus
we can detect mismatches using RANSAC when they do not fit an
underlying line model.

MSER-tracking with incrementally computable invariant moments

The inclusion relation between regions in the component tree can
be exploited to extract incrementally computable descriptors with-
out any extra computational cost as proposed in [81] [98]. Geomet-
ric moments [50] [33] can be calculated in this way and thus result
in a invariant descriptor that can be used efficiently by the MSER-
tracking algorithm for matching. At each grow step of the MSER
algorithm the raw moments up to order three are updated with con-
stant complexity. Then, when required in order to find correspon-
dences, those raw moments can derive the seven Hu’s moments [50]
and four Affine Invariant Moments [33] again with constant com-
plexity.

Invariant moments have generally robust performance for rigid
objects with simple contour shapes and simple transformations such
as scaling, rotation, and affine transformations [149]. This is the case
for text characters [34], assuming that they do not change much in
shape between successive frames. We consider this compact descrip-
tor to be tradeoff between of the simple feature based analysis in [24]
and the integral shape descriptors used in [26], as they provide a
richer representation than the former while being much less compu-
tationally expensive than the latter.

Moreover, in cases where invariant moments are prone to fail: e.g.
for particularly weak shaped characters (e.g. letter "I"), partial oc-
clusions, or motion blur mismatches, we can take advantage from
two particularities in our scenario: first we have quite a constrained
search along the component tree, and second we can exploit the
group-level (text line) coherence in order to detect and reject mis-
matching correspondences via RANSAC.

Mismatch detection with RANSAC

Fitting a simple linear regression model against individually tracked
MSERs using RANSAC allows to improve the whole text-line track-
ing because false correspondences do not affect the tracking process
as they are eliminated by the RANSAC algorithm consensus set and
thus not propagated to subsequent frames. This way the tracking
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module is able to robustly track text lines even when some of their
characters are not correctly tracked. This outlier detection makes
the method more robust in case of partial occlusion of the text line
tracked.

Notice that RANSAC here is used as an outlier detection mecha-
nism and not as an homography estimator as done in other tracking
algorithms. Regions not correctly tracked are detected as outliers in
a simple linear regression model and removed from the tracking sys-
tem for the following frames. This process allows also to naturally
stop the tracking process when the number of inliers for a text-line
in a given frame is less than 3 regions.

7.1.2 Merging detected regions and propagated regions

Each time the detection module provides new results from a new full
detection a merging mechanism, depicted with maroon diamonds in
Figure 7.1, is needed in order to identify if the newly arrived detec-
tions are the same we are already tracking or not. This matching
is done with the Hungarian algorithm by optimizing the one-to-one
overlapping of the min. enclosing boxes of detected and tracked text
lines.

Matched text lines are updated with the newly detected MSERs,
thus regenerating the tracking process with new evidences, and may
also recuperate regions that have been lost during the tracking pro-
cess (i.e. detected as outliers and removed from the system). Not
matched text-lines are treated as "first time viewed" objects and start
their own tracking process from their initial locations.

7.2 Experiments

We have evaluated our algorithm for the task of text detection and
tracking in a dataset of synthetically generated video sequences. The
dataset contains 10 sequences of 400 frames, with a resolution of
640× 480 pixels, where still images from the ICDAR [60] and MSRRC [68]
datasets are deformed iteratively with random rotation, translation,
scale changes, and perspective transformations. Figure 7.4 shows
two example sequences from the generated synthetic dataset. The
main reason for the use of synthetic data in this series of experiments
is that ground truth data can be created automatically, without any
labelling effort.

Figure 7.3 shows the CLEAR-MOT metrics [62] performance com-
parison of the proposed method against two other approaches: Per-
forming the full-detection on every frame, and MSER-tracking with
simple features as in [24]. We can see how the proposed method
outperforms the others both in tracking precision (MOTP) and accu-
racy (MOTA). MOTP is basically an average measure of the overlap-
ping of correct detections and ground-truth text lines over the whole
video sequence. We can see how this value is lower for the MSER-
tracking with simpler features, indicating that the simple features
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Figure 7.3: Text Detection and Track-
ing performance comparison in the syn-
thetic video dataset.

are not enough to correctly track individual regions and thus pro-
duce less accurate bounding boxes at the text line level. The MOTA
metric accounts for all errors made by the tracker: false positives,
misses, and mismatches, over all the frames in a video sequence.
The lower accuracy for the full-detection approach is due to missing
objects, that the MSER-tracking is able to compensate by correctly
propagating the detections of previous frames. In the MSER-tracking
approaches the main source of MOTA errors are false positive detec-
tions provided by the detection module, which are propagated in
time. On the other hand, the difference in accuracy between the two
MSER-tracking methods indicate that invariant moments are more
robust than the simpler feature vector.

Figure 7.4: Still frame results from two
of the synthetic image sequences (top)
and two of the real scene image se-
quences (bottom) used for performance
evaluation.

We further evaluated our method qualitatively in two sets of real
scene image sequences: a set of 4 videos provided in [82], and a
set of 10 videos obtained by the authors with a mobile device. The
obtained results (see Figure 7.4) show that in general the system is
able to detect and track the targeted text correctly dealing with ro-
tation, translation, scaling, and perspective deformations. There are
however errors of missing text components in the presence of motion
blur and strong illumination changes. Nevertheless it is worth noting
that in such situations the tracking module is still able to propagate
some regions that would otherwise result in missed text by the de-
tection module.
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7.2.1 Time performance

In order to obtain time performance measurements and qualitative
results for the task of text detection and tracking, we have imple-
mented the proposed method using the Android development frame-
work provided by the OpenCV 1 library, and tested it in a tablet 1 http://opencv.org/platforms/

android.htmlcomputer with a 1.5GHz quad-core processor.
Table 7.1 shows average time performance measurements for each

of the method modules. The average frame rate of the system is 15

fps., a value just slightly lower than the achievable from the Android
camera service (without any image processing) for the concrete de-
vice used in the evaluation. Such a fast performance is achieved
thanks to the negligible timestamp of the tracking module (40 ms. in
average). On the other hand, the detection module running in the
background needs about 1 second in average to provide localization
results, this is roughly double the time to do the same processing in
the main thread. Such a relatively low performance affects the sys-
tem with a noticeable delay when new targets appear into the scene
and to recover a missed target.

Android device Standard PC

avg. time fps. avg. time fps.

Text detection module (async.) 1041.01 ms. n.a. 53.45 ms. n.a.
Initial merging and tracking 125.57 ms. 7.96 17.11 ms. 58.44

Text tracking module 40.01 ms. 24.99 6.91 ms. 144.71

Table 7.1: Average time performance
measurements.As shown in Table 7.1 the system has a variable frame rate: it is

able to achieve a really high average frame rate (near 25 fps.) during
the tracking process (this is most of the time), but once the asyn-
chronous detection process finishes (every 1 second in average) the
frame rate slows down to 8 fps. but just for one frame, as the new
detections must be propagated and matched with the existing ones.
All in all, the proposed method demonstrates real-time performance
in low-resource devices with an average frame rate of 15 fps.

Time performance measurements for the tracking module would
increase linearly with the number of tracked regions and the size of
their search windows. In the evaluated sequences the average num-
ber of tracked regions is 21, covering around 10% of the input image
size, which fits well with a realistic scene text detection scenario.

7.3 Conclusion

In this Chapter we have presented a method for detection and track-
ing of scene text able to work in real-time even on low-resource mo-
bile devices. Although far from being a final solution, the proposed
method goes beyond the full-detection approaches in terms of time
performance optimization. The combination of text detection with a
tracker, provides considerable stability, allowing the system to pro-

http://opencv.org/platforms/android.html
http://opencv.org/platforms/android.html
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vide predicted estimates in cases where the detection module itself is
not capable of returning a valid response. The use of MSER-tracking
as an alternative, fast technique to provide simulated text detections
for the frames that are not processed by the full frame text detector
proves to be an adequate solution, providing the system with enough
information to continue tracking until the text detector returns up-
dated positions.

The main limitation of the proposed method is the tracking degra-
dation in presence of severe motion blur or strong illumination changes.

As in all tracking systems, the longer the full frame text detector
takes to provide a result, the higher the uncertainty of the tracker
will grow. At the same time, the response of the full frame text de-
tector will be less reliable as more frames pass since the one being
processed. Therefore, it is important that reasonably fast text detec-
tion methods are used in such a framework to ensure that tracking
does not deteriorate rapidly.



Chapter 8

Scene text script identification

Script and language identification are important steps in
modern OCR systems designed for multi-language environments.
Since text recognition algorithms are language-dependent, detecting
the script and language at hand allows selecting the correct lan-
guage model to employ [130]. While script identification has been
widely studied in document analysis, it remains an almost unex-
plored problem for scene text. In contrast to document images, scene
text presents a set of specific challenges, stemming from the high
variability in terms of perspective distortion, physical appearance,
variable illumination and typeface design. At the same time, scene
text comprises typically a few words, contrary to longer text passages
available in document images.

Current end-to-end systems for scene text reading [7, 52, 102] as-
sume single script and language inputs given beforehand, i.e. pro-
vided by the user, or inferred from available meta-data. The uncon-
strained text understanding problem for large collections of images
from unknown sources (see Figure 8.1) has not been considered up
to very recently [117, 116, 103, 44].

In this Chapter we address the problem of script identification
in natural scene images, paving the road towards true multi-lingual
end-to-end scene text understanding.

Figure 8.1: Collections of images from
unknown sources may contain textual
information in different scripts.
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Figure 8.2: (best viewed in color) Cer-
tain stroke-parts (in green) are discrim-
inative for the identification of a partic-
ular script (left), while others (in red)
can be trivially ignored because are fre-
quent in other classes (right).

Multi-script text exhibits high intra-class variability (words writ-
ten in the same script vary a lot) and high inter-class similarity (cer-
tain scripts resemble each other). Examining text samples from dif-
ferent scripts, it is clear that some stroke-parts are quite discrimina-
tive, whereas others can be trivially ignored as they occur in multiple
scripts. The ability to distinguish these relevant stroke-parts can be
leveraged for recognizing the corresponding script. Figure 8.2 shows
an example of this idea.

The use of state of the art CNN classifiers for script identification
is not straightforward, as they fail to address a key characteristic of
scene text instances: their extremely variable aspect ratio. As can be
seen in Figure 8.3, scene text images may span from single characters
to long text sentences, and thus resizing images to a fixed aspect
ratio, as in the typical use of holistic CNN classifiers, will deteriorate
discriminative parts of the image that are characteristic of its class.
The key intuition behind the methodology proposed in this Chapter
is that in order to retain the discriminative power of stroke parts
we must rely in powerful local feature representations and use them
within a patch-based classifier. In other words, while holistic CNNs
have superseded patch-based methods for image classification, we
claim that patch-based classifiers can still be essential in tasks where
image shrinkage is not feasible.

To test our intuition we build a method for script identification
that combines convolutional features, extracted by sliding a window
with a single layer Convolutional Neural Network (CNN) [18], with
the Naive-Bayes Nearest Neighbor (NBNN) classifier [8], obtaining
promising results. Afterwards, we demonstrate far superior perfor-
mance by extending our previous work in two different ways: First,
we use deep CNN architectures in order to learn more discrimina-
tive representations for the individual image patches; Second, we
propose a novel learning methodology to jointly learn the patch rep-
resentations and their importance (contribution) in a global image
to class probabilistic measure. For this, we train our CNN using an
Ensemble of Conjoined Networks and a loss function that takes into
account the global classification error for a group of N patches in-
stead of looking only into a single image patch. Thus, at training
time our network is presented with a group of N patches sharing
the same class label and produces a single probability distribution
over the classes for all them. This way we model the goal for which
the network is trained, not only to learn good local patch representa-

Figure 8.3: Scene text images with the
larger/smaller aspect ratio available in
three different datasets: MLe2e(left),
SIW-13(center), and CVSI(right).
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tions, but also to learn their relative importance in the global image
classification task.

Experiments performed over three public datasets for scene text
classification demonstrate state-of-the-art results. In particular we
are able to reduce classification error by 5 percentage points in the
SIW-13 dataset.

8.1 Patch-based script identification

Our method for script identification in scene images follows a multi-
stage approach. Given a text line provided by a text detection algo-
rithm, our script identification method proceeds as follows: First we
resize the input image to a fixed height of 64 pixels, but maintain-
ing its original aspect ratio in order to preserve the appearance of
stroke-parts. Second we densely extract 32× 32 image patches with
sliding window. And third, each image patch is fed into a single layer
Convolutional Neural Network to obtain its feature representation.
These steps are illustrated in Figure 8.4 which shows an end-to-end
system pipeline incorporating our method (the script-agnostic text
detection module is abstracted in a single step as the focus of this
Chapter is on the script identification part).

This way, each input region is represented by a variable number of
descriptors (one for each image patch), the number of which depends
on the length of the input region. Thus, a given text line represen-
tation can be seen as a bag of image patch descriptors. However, in
our method we do not make use of the Bag of visual Words model,
as the quantization process severely degrades informative (rare) de-
scriptors [8]. Instead we directly classify the text lines using the
Naive Bayes Nearest Neighbor classifier.

8.1.1 Patch representation with Convolutional Features

Convolutional Features provide the expressive representations of im-
age patches needed in our method. We make use of a single layer
Convolutional Neural Network [18] which provides us with highly

Figure 8.4: Method deploy pipeline:
Text lines provided by a text detection
algorithm are resized to a fixed height,
image patches are extracted with a slid-
ing window and fed into a single layer
Convolutional Neural Network (CNN).
This way, each text line is represented
by a variable number of patch descrip-
tors, that are used to calculate image
to class (I2C) distances and classify the
input text line using the Naive Bayes
Nearest Neighbor (NBNN) classifier.
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Figure 8.5: Convolution kernels of our
single layer network learned with k-
means.

discriminative descriptors while not requiring the large amount of
training resources typically needed by deeper networks. The weights
of the convolutional layer can be efficiently learned using the K-
means algorithm [18].

We adopt a similar design for our network as the one presented
in [17]. We set the number of convolutional kernels to 256, the recep-
tive field size to 8× 8, and we adopt the same non-linear activation
function as in [17]. After the convolutional layer we stack a spatial
average pooling layer to reduce the dimensionality of our represen-
tation to 2304 (3 × 3 × 256). The number of convolutional kernels
and kernel sizes of the convolution and pooling layers have been
set experimentally, by cross-validation through a number of typical
possible values for single-layer networks.

To train the network we first resize all train images to a fixed
height, while retaining the original aspect ratio. Then we extract
random patches with size equal to the receptive field size, and per-
form contrast normalization and ZCA whitening [63]. Finally we
apply the K-means algorithm to the pre-processed patches in order
to learn the K = 256 convolutional kernels of the CNN. Figure 8.5
depicts a subset of the learned convolutional kernels where it can be
appreciated their resemblance to small elementary stroke-parts.

Once the network is trained, we can use it to extract convolutional
feature representations of 32× 32 image patches, after contrast nor-
malization and ZCA whitening.

A key difference of our work with [17], and in general with the
typical use of CNN feature representations, is that we do not aim at
representing the whole input image with a single feature vector, but
instead we extract a set of convolutional features from small parts in
a dense fashion. The number of features per image vary according
to its aspect ratio. Notice that the typical use of a CNN, resizing
the input images to a fixed aspect ratio, is not appealing in our case
because it may produce a significant distortion of the discriminative
parts of the image that are characteristic of its class.

8.1.2 Naive-Bayes Nearest Neighbor

The Naive-Bayes Nearest Neighbor (NBNN) classifier [8] is a nat-
ural choice in our pipeline because it computes direct Image-to-
Class (I2C) distances without any intermediate descriptor quanti-
zation. Thus, there is no loss in the discriminative power of the
image patches representations. Moreover, having classes with large
diversity encourages the use of I2C distances instead of measuring
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Image-to-Image similarities.
All the feature representations of image patches extracted from the

training set images provide the templates that populate the NBNN
search space.

In NBNN the I2C distance dI2C(I, C) is computed as:

dI2C(I, C) =
n

∑
i=1
‖di − NNC(di)‖2 (8.1)

where di is the i-th descriptor of the query image I, and NNC(di)

is the Nearest Neighbor of di in class C. Then the NBNN clas-
sifies the query image to the class Ĉ with lower I2C distance, i.e.
Ĉ = argminC dI2C(I, C). Figure 8.4 shows how computation of
I2C distances in our pipeline reduces to N × n Nearest Neighbor
searches, where N is the number of classes and n is the number of
descriptors in the query image. To efficiently search for the NNC(di)

we make use of the Fast Approximate Nearest Neighbor kd-tree al-
gorithm described in [92].

8.1.3 Weighting per class image patch templates by their importance

When measuring the I2C distance dI2C(I, C) it is possible to use a
weighted distance function which weights each template in the train
dataset accounting for its discriminative power. The weighted I2C is
then computed as:

dI2C(I, C, w) =
n

∑
i=1

(1− wNNC(di)
)‖di − NNC(di)‖2 (8.2)

where wNNC(di)
is the weight of the Nearest Neighbor of di of class

C. The weight assigned to each template reflects the ability to dis-
criminate against the class that the template can discriminate best.

We learn the weights associated to each template as follows. First,
for each template we search for the maximum distance to any of its
Nearest Neighbors in all classes except their own class, then we nor-
malize these values in the range [0, 1] dividing by the largest distance
encountered over all templates. This way, templates that are impor-
tant in discriminating one class against, at least, one other class have
lower contribution to the I2C distance when they are matched as
NNC of one of the query image’s parts.

8.2 Ensembles of conjoined deep networks

In this section we further develop our patch-based method by ex-
tending it two different ways: we use deep CNN architectures for the
individual local descriptors; and propose a novel learning method-
ology to jointly learn the patch representations and their importance
(contribution) in a global image to class probabilistic measure.
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(a) (b)

(c)

Figure 8.6: The original scene text im-
ages (a) are converted to greyscale and
resized to a fixed height (b) in order to
extract small local patches with a dense
sampling strategy (c).

8.2.1 Convolutional Neural Network for stroke-parts classification

Given an input scene text image (i.e. a pre-segmented word or text
line) we first resize it to a fixed height of 40 pixels, but retaining
its original aspect ratio. Then, we densely extract patches at two
different scales, 32 × 32 and 40 × 40, by sliding a window with a
step of 8 pixels. The choice of these two particular scales is justi-
fied as follows: the 40 × 40 patch, covering the full height of the
resized image, is a natural choice in our system because it provides
the largest squared region we can crop; the 32× 32 patches are con-
ceived for better scale invariance of the CNN model, similarly as the
random crops typically used for data augmentation in CNN-based
image classification [67]. Figure 8.6 shows the patches extracted from
a given example image. This way we build a large dataset of image
patches that take the same label as the image they were extracted
from. With this dataset of patches we train a CNN classifier for the
task of individual image patch classification.

We use a Deep Convolutional Neural Network to build the ex-
pressive image patch representations needed in our method. For the
design of our network we start from the CNN architecture proposed
in [117] as it is known to work well for script identification. We
then iteratively do random search to optimize the following CNN
hyper-parameters: number of convolutional and fully connected lay-
ers, number of filters per layer, kernel sizes, and feature map nor-
malization schemes. The CNN architecture providing better perfor-
mance in our experiments is shown in Figure 8.7. Our CNN consists
in three convolutional+pooling stages followed by an extra convo-
lution and three fully connected layers. Details about the specific
configuration and parameters are given in section 8.2.3.

At testing time, given a query scene text image the trained CNN
model is applied to image patches following the same sampling strat-
egy described before. Then, the individual CNN responses for each

conv1 - pool1 conv2 - pool2 conv3 - pool3 conv4 fc5 fc6 fc7

Figure 8.7: Network architecture of the
CNN trained to classify individual im-
age patches. The network has three
convolutional+pooling stages followed
by an extra convolution and three fully
connected layers.
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image patch can be fed into the global classification rule in order to
make a single labeling decision for the query image.

8.2.2 Training with an Ensemble of Conjoined Networks

Since the output of the CNN for an individual image patch is a prob-
ability distribution over class labels, a simple global decision rule
would be just to average the responses of the CNN for all patches in
a given query image:

y(I) =
1
nI

nI

∑
i=1

CNN(xi) (8.3)

where an image I takes the label with more probability in the aver-
aged softmax responses (y(I)) of their nI individual patches {x1, ..., xnI}
outputs on the CNN.

The problem with this global classification rule is that the CNN
weights have been trained to solve a problem (individual patch clas-
sification) that is different from the final goal (i.e. classifying the
whole query image). Besides, it is based in a simplistic voting strat-
egy for which all patches are assumed to weight equally, i.e. no
patches are more or less discriminative than others. To overcome
this we propose the use of an Ensemble of Conjoined Nets in order
to train the CNN for a task that resembles more the final classifica-
tion goal.

An Ensemble of Conjoined Nets (ECN), depicted in Figure 8.8,
consists in a set of identical networks that are joined at their outputs
in order to provide a unique classification response. At training time
the ECN is presented with a set of N image patches extracted from
the same image, thus sharing the same label, and produces a single
output for all them. Thus, to train an ECN we must build a new
training dataset where each sample consists in a set of N patches
with the same label (extracted from the same image).

ECNs take inspiration from Siamese Networks [10] but, instead
of trying to learn a metric space with a distance-based loss function,
the individual networks in the ECN are joined at their last fully con-
nected layer (fc7 in our case), which has the same number of neurons
as the number of classes, with a simple element-wise sum operation
and thus we can use the standard cross-entropy classification loss.

Elementwise ∑

x1

x2

x3

xN

Figure 8.8: An Ensemble of Conjoined
Nets consist in a set of identical net-
works that are joined at their outputs in
order to provide a unique classification
response.



82 exploiting similarity hierarchies for multi-script scene text understanding

This way, the cross-entropy classification loss function of the ECN
can be written in terms of the N individual patch responses as fol-
lows:

E =
−1
M

M

∑
m=1

log( p̂m,lm),

p̂m,k = exp(
N

∑
n=1

xmnk)/

[
K

∑
k′=1

exp(
N

∑
n=1

xmnk′)

] (8.4)

where M is the number of input samples in a mini-batch, p̂m is the
probability distribution over classes provided by the softmax func-
tion, lm is the label of the m’th sample, N is the number of con-
joined networks in the ensemble, K is the number of classes, and
xmnk ∈ [−∞,+∞] indicates the response (score) of the k’th neuron in
the n’th network for the m’th sample.

As can be appreciated in equation 8.4, in an ECN network a single
input patch contributes to the backpropagation error in terms of a
global goal function for which it is not the only patch responsible.
For example, even when a single patch is correctly scored in the last
fully connected layer it may be penalized, and induced to produce a
larger activation, if the other patches in its same sample contribute
to a wrong classification at the ensemble output.

At test time, the CNN model trained in this way is applied to all
image patches in the query image and the global classification rule
is defined as:

y(I) =
nI

∑
i=1

CNN f c7(xi) (8.5)

where an image I takes the label with the highest score in the
sum (y(I)) of the fc7 layer responses of the nI individual patches
{x1, ..., xnI}. This is the same as in Equation 8.3 but using the fc7

layer responses instead of the output softmax responses of the CNN.
Notice that still the task for which the ECN network has been

trained is not exactly the same defined by this global classification
rule, as the number of patches nI is variable for each image and usu-
ally different than the number of conjoined networks N. However, it
certainly resembles more the true final classification goal. The num-
ber of conjoined networks N is an hyper-parameter of the method
that is largely dependent on the task to be solved and is discussed in
the experimental section.

8.2.3 Implementation details

In this section we detail the architectures of the network models used
in this paper, as well as the different hyper-parameter setups that can
be used to reproduce the results provided in following sections. In all
our experiments we have used the open source Caffe [54] framework
for deep learning running on commodity GPUs.
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The basic CNN model for individual image patch classification
described in section 8.2.1 and Figure 8.7 has the following per layer
configuration:

• Input layer: single channel 32× 32 image patch.

• conv1 layer: 96 filters with size 5× 5. Stride=1, pad=0.

• pool1 layer: kernel size=3, stride=2, pad=1.

• conv2 layer: 256 filters with size 3× 3. Stride=1, pad=0.

• pool2 layer: kernel size=3, stride=2, pad=1.

• conv3 layer: 384 filters with size 3× 3. Stride=1, pad=0.

• pool3 layer: kernel size=3, stride=2, pad=1.

• conv4 layer: 512 filters with size 1× 1. Stride=1, pad=0.

• fc5 layer: 4096 neurons.

• fc6 layer: 1024 neurons.

• fc7 layer: N neurons, where N is the number of classes.

• SoftMax layer: Output a probability distribution over class labels.

The total number of parameters of the network is ≈ 24M for
the N = 13 case in the SIW-13 dataset. All convolution and fully
connected layers use Rectified Linear Units (ReLU). In conv1 and
conv2 layers we perform normalization over input regions using Lo-
cal Response Normalization (LRN) [53]. At training time, we use
dropout [125] (with a 0.5 ratio) in fc5 and fc6 layers.

To train the basic network model we use Stochastic Gradient De-
scent (SGD) with momentum and L2 regularization. We use mini-
batches of 64 images. The base learning rate is set to 0.01 and is
decreased by a factor of ×10 every 100k iterations. The momentum
weight parameter is set to 0.9, and the weight decay regularization
parameter to 5× 10−4.

When training for individual patch classification, we build a dataset
of small patches extracted by dense sampling the original training
set images, as explained in section 8.2.1. Notice that this produces
a large set of patch samples, e.g. in the SIW-13 dataset the number
of training samples is close to half million. With these numbers the
network converges after 250k iterations.

In the case of the Ensemble of Conjoined Networks the basic net-
work detailed above is replicated N times, and all replicas are tied at
their fc7 outputs with an element-wise sum layer which is connected
to a single output SoftMax layer. All networks in the ECN share the
same parameters values.

Training the ECN requires a dataset where each input sample is
composed by N image patches. We generate this dataset as follows:
given an input image we extract patches the same way as for the
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simple network, then we generate random N−combinations of the
image patches, allowing repetitions if the number of patches is < N.
Notice that this way the number of samples can be increased up to
very large-scale numbers because the number of possible different
N−combinations is (M

N) when the number of patches in a given im-
age M is larger that the number of conjoined nets N, which is the
usual case. This is an important aspect of ECNs, as the training
dataset generation process becomes a data augmentation technique
in itself. We can see this data augmentation process as generating
new small text instances that are composed from randomly chosen
parts of their original generators.

However, it is obviously non-practical to use all possible combi-
nations for training; thus, in order to get a manageable number of
samples, we have used the simple rule of generating 2×M samples
per input, which for example in the SIW-13 dataset would produce
around one million samples.

In terms of computational training complexity, the ECN has an
important drawback compared to the simple network model: the
number of computations is multiplied by N in each forward pass,
similarly the amount of memory needed is linearly increased by N.
To overcome this limitation, we use a fine-tuning approach to train
ECNs. First, we train the simple network model, and then we do fine-
tuning on the ECN parameters starting from the values learned using
the simple net. When fine-tuning, we have found that starting from
a fully converged network in the single-patch classification task we
reach a local minimum of the global task, thus providing zero loss in
most (if not all) the iterations and not allowing the network to learn
anything new. In order to avoid this local minima situation we start
the fine-tuning from a non-converged network (more or less at about
90/95% of the attainable individual patch classification accuracy).

Using fine-tuning with a base learning rate of 0.001 (decreasing
×10 every 10k iterations) the ECN converges much faster, in the or-
der of 35k iterations. All other learning parameters are set the same
as in the simple network training setup.

Figure 8.9: Validation accuracy for var-
ious number of networks N in the en-
semble of conjoined networks model.

The number of nets N in the ensemble can be seen as an extra
hyper-parameter in the ECN learning algorithm. Intuitively a dataset
with larger text sequences would benefit from larger N values, while
on the contrary in the extreme case of classifying small squared im-
ages (i.e. each image is represented by a single patch) any value of
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N > 1 does not make sense. Since our datasets contain text instances
with variable length a possible procedure to select the optimal value
of N is by using a validation set. We have done experiments in the
SIW-13 dataset by dividing the provided train set and keeping 10%
for validation. Classification accuracy on the validation set for var-
ious N values are shown in Figure 8.9. As can be appreciated the
positive impact of training with an ensemble of networks is evident
for small values of N, and mostly saturated for values N > 9. In
the following we use a value of N = 10 for all the remaining experi-
ments.

8.3 Experiments

In this section we study the performance of the methods proposed
in Section 8.2 and Section 8.1 for the tasks of script identification in
pre-segmented text lines, joint text detection and script identification
in scene images, and cross-domain performance. All reported ex-
periments were conducted over three different datasets, namely the
CVSI-2015, SIW-13, and MLe2e datasets.

8.3.1 Script identification in pre-segmented text lines

Table 8.1 shows the overall performance comparison of our meth-
ods with the state-of-the-art in all datasets for script identification
in pre-segmented text lines. We also provide comparison with three
well known image recognition pipelines using Scale Invariant Fea-
tures [77] (SIFT) in three different encodings: Fisher Vectors, Vector
of Locally Aggregated Descriptors (VLAD), and Bag of Words (BoW);
and a linear SVM classifier. In all baselines we extract SIFT features
at four different scales in sliding window with a step of 8 pixels. For
the Fisher vectors we use a 256 visual words GMM, for VLAD a 256

vector quantized visual words, and for BoW 2,048 vector quantized
visual words histograms. The step size and number of visual words
were set to similar values to our method when possible in order to
offer a fair evaluation. These three pipelines have been implemented
with the VLFeat [132] and liblinear [30] open source libraries.

The method presented in Section 8.2 participated as a compet-
ing entry in the ICDAR2015 Competition on Video Script Identifica-
tion (CVSI-2015) reaching the third place (CVC-2 entry in Table 8.1).
While, as can be appreciated in Table 8.1, the winner of the com-
petition [146] has better accuracy, our proposal was credited as a
very close competitor in the competition report [115], and outper-
formed other entries with a noticeable margin. After the competition
we find that with a more dense sampling strategy (using 8 pixels
step for sliding window instead of 16) our results can be even better
(CNN+NBNN entry in Table 8.1).

However, Table 8.1 indicates a clear weakness of this method when
evaluated in the more challenging datasets of scene text (SIW-13 and
MLe2e). This weakness motivated the extensions of our framework
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Method SIW-13 MLe2e CVSI

This Chapter - Ensemble of Conjoined Nets 94.8 94.4 97.2
This Chapter - CNN (Avg.) 92.8 93.1 96.7
This Chapter - CNN + NBNN 76.9 91.12 97.91

Shi et al. [116] 89.4 - 94.3
HUST [117, 115] 88.0 - 96.69

Google [115] - - 98.91
Nicolaou et al. [103] 83.7 - 98.18

Singh et al. [120] - - 96.70

CVC-2 [44, 115] - 88.16 96.0
SRS-LBP + KNN [104] - 82.71 94.20

C-DAC [115] - - 84.66

CUK [115] - - 74.06

Baseline SIFT + Fisher Vectors + SVM 90.7 88.63 94.11

Baseline SIFT + VLAD + SVM 89.2 90.19 93.92

Baseline SIFT + Bag of Words + SVM 83.4 86.45 84.38

Table 8.1: Overall classification perfor-
mance comparison with state-of-the-art
in three different datasets: SIW-13 [116],
MLe2e, and CVSI [115].

that we have detailed in Section 8.2.
As shown in Table 8.1 the method presented in 8.2 (CNN-ECN

in the table) outperforms state of the art and all baseline methods in
the SIW-13 and MLe2e scene text datasets, while performing compet-
itively in the case of CVSI video overlay text dataset. In the SIW-13

dataset the proposed method significantly outperforms the best per-
forming method known up to date by more than 4 percent points.

The contribution of training with ensembles of conjoined nets is
significant in SIW-13 and MLe2e datasets, as can be appreciated by
comparing the first two columns of Table 8.1 which correspond to the
nets trained with the ensemble (first column) and the simple model
(second column).

Our interpretation of the results in CVSI dataset in comparison
with the ones obtained in SIW-13 and MLe2e relates to its distinct
nature. CVSI overlaid-text variability and clutter is rather limited
compared with that found in the scene text of MLe2e and SIW-13.
As can be appreciated in Figure 8.10 overlaid-text is usually bi-level
without much clutter. Figure 8.11 shows another important charac-
teristic of CVSI dataset: since cropped words in the dataset belong to
very long sentences of overlay text in videos, e.g. from rotating head-
lines, it is common to find a few dozens of samples sharing exactly
the same font and background both in the train and test sets. This
particularity makes the ECN network not really helpful in the case
of CVSI, as the data augmentation by image patches recombination
is somehow already implicit on the dataset.

Figure 8.10: Overlaid-text samples (top
row) variability and clutter is rather
limited compared with that found in
the scene text images (bottom row).
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Figure 8.11: Cropped words in the CVSI
dataset belong to very long sentences of
overlay text in videos. It is common to
find several samples sharing exactly the
same font and background both in the
train (top row) and test (bottom row)
sets.Furthermore, the CVSI-2015 competition winner (Google) makes

use of a deep convolutional network but applies a binarization pre-
processing to the input images. In our opinion this binarization may
not be a realistic pre-processing in general for scene text images.
As an example of this argument one can easily see in Figure 8.10

that binarization of scene text instances is not trivial as in overlay
text. Similar justification applies to other methods performing better
than ours in CVSI. In particular the LBP features used in [103], as
well as the patch-level whitening used in our CNN-NBNN method,
may potentially take advantage of the simpler, bi-level, nature of text
instances in CVSI dataset. It is important to notice here that these
two algorithms, have close numbers to the Google ones in CVSI-2015

(see Table 8.1) but perform quite bad in SIW-13.
Figure 8.12 shows the confusion matrices for the method pre-

sented in Section 8.2 in all three datasets with detailed per class
classification results.

8.3.2 Joint text detection and script identification in scene images

In this experiment we evaluate the performance of a complete pipeline
for detection and script identification in its joint ability to detect text
lines in natural scene images and properly recognizing their scripts.
The key interest of this experiment is to study the performance of the
proposed script identification algorithm when realistic, non-perfect,
text localization is available.

The experiments is performed over the new MLe2e dataset, in
which script identification is performed at the text line level, because
segmentation into words is largely script-dependent, and not mean-
ingful in Chinese/Korean scripts. Notice however that in some cases,
by the intrinsic nature of scene text, a text line provided by the text
detection module may correspond to a single word, so we must deal
with a large variability in the length of provided text lines.

We use the script-agnostic text detection method of Chapter 5 and

Figure 8.12: Confusion matrices with
per class classification accuracy of the
method presented in Section 8.2 in SIW-
13, MLe2e, and CVSI datasets.
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apply the script identification methods presented in this Chapter to
the bounding boxes of detected regions.

For evaluation of the joint text detection and script identification
task in the MLe2e dataset we propose the use of a simple two-stage
evaluation framework. First, localization is assessed based on the
Intersection-over-Union (IoU) metric between detected and ground-
truth regions, as commonly used in object detection tasks [28] and
the recent ICDAR 2015 Robust Reading Competition1 [57]. Second, 1 http://rrc.cvc.uab.es

the predicted script is verified against the ground-truth. A detected
bounding box is thus considered correct if it has a IoU > 0.5 with a
bounding box in the ground-truth and the predicted script is correct.

The localization-only performance, corresponding to the first stage
of the evaluation, yields an F-score of 0.63 (Precision of 0.57 and Re-
call of 0.69). This defines the upper-bound for the joint task. The
two stage evaluation, including script identification, of the proposed
method compared with our previous work is shown in Table 8.2.

Method Correct Wrong Missing Precision Recall F-score

This Chapter - ECN 395 376 245 0.51 0.62 0.56
This Chapter - CNN + NBNN 364 407 278 0.47 0.57 0.52

Table 8.2: Text detection and script
identification performance in the
MLe2e dataset.

Intuitively the proposed method for script identification is effec-
tive even when the text region is badly localized, as long as part of
the text area is within the localized region. To support this argument
we have performed an additional experiment where our algorithm
is applied to cropped regions from pre-segmented text images. For
this, we take the SIW-13 original images and calculate the perfor-
mance of our method when applied to cropped regions of variable
length, up to the minimum size possible (40 × 40 pixels). As can
be appreciated in Figure 8.14 the experiment demonstrates that the
proposed method is effective even when small parts of the text lines
are provided. Such a behavior is to be expected, due to the way our
method treats local information to decide on a script class. In the
case of the pipeline for joint detection and script identification, this
extends to regions that did not pass the 0.5 IoU threshold, but had
their script correctly identified. This opens the possibility to make
use of script identification to inform and / or improve the text local-
ization process. The information of the identified script can be used
to refine the detections.

Figure 8.13: Sample results of our
method for the joint task of text detec-
tion and script recognition in natural
scenes.

http://rrc.cvc.uab.es


scene text script identification 89

Figure 8.14: Classification error of our
method CNN-ECN when applied to
variable length cropped regions of SIW-
13 images, up to the minimum size pos-
sible (40× 40 pixels).

8.3.3 Cross-domain performance and confusion in single-language datasets

In this experiment we evaluate the cross-domain performance of
learned CNN-ECN weights from one dataset to the other. For ex-
ample, we evaluate on the MLe2e and CVSI test sets using the net-
work trained with the SIW-13 train set, by measuring classification
accuracy only for their common script classes: Arabic, English, and
Kannada in CVSI; Chinese, English, Kannada, and Korean in MLe2e.
Finally, we evaluate the misclassification error of our method (trained
in different datasets) over two single-script datasets. For this exper-
iment we use the ICDAR2013 [60] and ALIF [147] datasets, which
provide cropped word images of English scene text and Arabic video
overlaid text respectively. Table 8.3 shows the results of these exper-
iments.

Method SIW-13 MLe2e CVSI ICDAR ALIF

ECN CNN (SIW-13) 94.8 86.8 90.6 74.7 100

ECN CNN (MLe2e) 90.8 94.4 98.3 95.3 -

ECN CNN (CVSI) 42.3 43.5 97.2 65.2 91.8

Table 8.3: Cross-domain performance
of our method measured by train-
ing/testing in different datasets.

Notice that results in Table 8.3 are not directly comparable among
rows because each classifier has been trained with a different number
of classes, thus having different rates for a random choice classifica-
tion. However, the experiment serves as a validation of how good a
given classifier is in performing with data that is distinct in nature
to the one used for training. In this sense, the obtained results show
a clear weakness when the model is trained on the video overlaid
text of CVSI and subsequently applied to scene text images (SIW-13,
MLe2e, and ICDAR). On the contrary, models trained on scene text
datasets are quite stable in other scene text data, as well as in video
overlaid text (CVSI and ALIF).

In fact, this is an expected result, because the domain of video
overlay text can be seen as a subdomain of the scene text domain.
Since the scene text datasets are richer in text variability, e.g. in
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terms of perspective distortion, physical appearance, variable illumi-
nation, and typeface designs, script identification on these datasets
is a more difficult problem, and their data is more indicated if one
wants to learn effective cross-domain models. This demonstrates
that our method is able to learn discriminative stroke-part represen-
tations that are not dataset-specific, and provides evidence to the
claims made in section 8.3.1 when interpreting the obtained results
in CVSI dataset comparing with other methods that may be more en-
gineered to the specific CVSI data but not generalizing well in scene
text datasets.

8.4 Conclusion

In this Chapter we have presented two different patch-based meth-
ods for script identification in natural scene images. One of the meth-
ods combines the expressive representation of convolutional features
and the fine-grained classification characteristics of the Naive-Bayes
Nearest Neighbor classifier. The other is based on the use of ensem-
bles of conjoined convolutional networks to jointly learn discrimina-
tive stroke-parts representations and their relative importance in a
patch-based classification scheme.

Experiments done in three different datasets exhibit state of the
art accuracy rates in comparison to a number methods, including
the participants in the CVSI-2015 competition and standard image
recognition pipelines.



Chapter 9

Applications

In this Chapter we present two end-to-end pipelines that
are build on top the the methods developed thorough this thesis.
Althought beign primarly an engineering work, because we make
use of existing solutions, their results serve as an argument to further
demonstrate the value of the contributions made in this thesis.

In Section 9.1 we build a multi-lingual end-to-end reading system
by combining the scene text detection method presented in Chapter 5

with the script identification methods of Chapter 8 and two different
off-the-shelf OCR engines. Second, in Section 9.2 we apply the text
specific object proposals explained in Chapter 5 with two state of the
art whole-word recognition methods in order to build an end-to-end
word spoting system.

Finally, in Section 9.3 we give detail of all public releases of code,
data, and models developed as part of the work in this thesis. This
includes some parts of the recently developed OpenCV text module.

9.1 Unconstrained Text Recognition with off-the-shelf OCR en-
gines

It is a generally accepted fact that Off-the-shelf OCR engines do not
perform well in unconstrained scenarios like natural scene imagery,
where text appears among the clutter of the scene.

A typical experiment frequently repeated to demonstrate the need
of specific techniques for scene text detection and recognition is to
attempt to process a raw scene image with a conventional OCR en-
gine. This normally produces a bunch of garbage on the recognition
output. Obviously this is not the task for which OCR engines have
been designed and the recognition may be much better if we pro-
vide it with a pixel level segmentation of the text. Figure 9.1 show
the output of the open source Tesseract1 [121] OCR engine for a raw 1 http://code.google.com/p/

tesseract-ocr/scene image and for its binarized text mask obtained with a scene
text extraction method.

Recent work [84, 43, 85] indicates that a conventional shape-based
OCR engine would be able to produce competitive results in the
end-to-end scene text recognition task when provided with a con-

http://code.google.com/p/tesseract-ocr/
http://code.google.com/p/tesseract-ocr/
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Figure 9.1: Off-the-shelf OCR engine
recognition accuracy may increase to
acceptable rates if we provide pixel
level text segmentation instead of raw
pixels.

veniently pre-processed image. In this section we confirm this find-
ing with a set of experiments where an off-the-shelf OCR engine is
combined with our scene text detection framework. The obtained re-
sults demonstrate that in such pipeline, conventional OCR solutions
still perform competitively compared to other solutions specifically
designed for scene text recognition.

While being this primarly an engineering work, we think there
are two important aspects of it that can be of broad interest from a
research perspective: one is about the question of whether pixel-level
text segmentation is really useful for the final recognition, the other
is about how stronger language models affect the final results.

9.1.1 End-to-end Pipeline

In order to build a multi-lingual end-to-end reading system we com-
bine the scene text detection method presented in Chapter 5 with the
script identification methods of Chapter 8 and an off-the-shelf OCR
engine: the open source project Tesseract2 [121]. 2 http://code.google.com/p/

tesseract-ocr/The setup of the OCR engine in our pipeline is minimal: given
a text detection hypotheses from the detection module we set the
recognition language to the one provided by the script identification
module, and we set the OCR to interpret the input as a single text
line. Apart from that we use the default Tesseract parameters.

The recognition output is filtered with a simple post-processing
junk filter in order to eliminate garbage recognitions, i.e. sequences
of identical characters like "IIii" that may appear as the results of
trying to recognize repetitive patterns in the scene. Concretely, we
discard the words in which more than half of their characters are rec-
ognized as one of "i", "l", "I", or other special characters like: punctu-
ation marks, quotes, exclamation, etc. We also reject those detections
for which the recognition confidence provided by the OCR engine is
under a certain threshold.

9.1.2 Experiments

We conduct our experiments on the MLe2e and ICDAR2011 datasets
respectively for multi-linugual and English-only scene text end-to-
end recognition.

http://code.google.com/p/tesseract-ocr/
http://code.google.com/p/tesseract-ocr/
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Figure 9.2: End-to-end recognition
of text from images containing
textual information in different
scripts/languages.

Multi-lingual scene text end-to-end recognition

Table 9.1 shows a comparison of the proposed end-to-end pipeline by
using different script identification modules: the two methods pre-
sented in Chapter 8, and Tesseract’s built-in alternative. Figure 9.2
shows the output of our full end-to-end pipeline for some images in
the MLe2e test set.

Tesseract method in Table 9.1 refers to the use of Tesseract’s own
script estimation algorithm [130]. We have found that Tesseract’s
algorithm is designed to work with large corpuses of text (e.g. full
page documents) and does not work well for the case of single text
lines.

Script identification Correct Wrong Missing Precision Recall F-score

Chapter 8 ECN 96 212 503 0.31 0.16 0.21
Chapter 8 CNN-NBNN 82 211 517 0.28 0.14 0.18

Tesseract 50 93 549 0.35 0.08 0.13

Table 9.1: End-to-end multi-lingual
recognition performance in the MLe2e
dataset.Results in Table 9.1 demonstrate the direct correlation between

having better script identification rates and better end-to-end recog-
nition results.

The final multi-lingual recognition f-score obtained (0.21) is far
from the state-of-the art in end-to-end recognition systems designed
for English-only environments [7, 52, 102]. As a fair comparison, a
very similar pipeline using the Tesseract OCR engine [43] achieves
an f-score of 0.37 in the ICDAR English-only dataset (see next Sec-
tion). The lower performance obtained in MLe2e dataset stems from
a number of challenges that are specific to its multi-lingual nature.
For example, in some scripts (e.g. Chinese and Kannada) glyphs
many times not single-body regions, composed by (or complemented
with) small strokes that in many cases are lost in the text segmenta-
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tion stage. In such cases having a bad pixel-level segmentation of text
would make it practically impossible for the OCR engine to produce
a correct recognition.

Our pipeline results represent the first reference result for multi-
lingual scene text recognition and a first benchmark from which bet-
ter systems can be built, e.g. replacing the off-the-shelf OCR engine
by other recognition modules better suited for scene text imagery.

English-only scene text end-to-end recognition

Table 9.2 shows the comparison of the best obtained results of the
two evaluated OCR engines with current state of the art. In both
cases our results outperform [98] in total f-score while, as stated be-
fore, our detection pipeline is a simplified implementation of that
method. However, it is important to notice that our recall is in gen-
eral lower that in the other methods, while it is our precision what
makes the difference in f-score. A similar behaviour can be seen for
the method of Milyaev et al.[84], which also uses a commercial OCR
engine for the recognition. Such higher precision rates indicate that
in general off-the-shelf OCR engines are doing very good in rejecting
false detections.

Notice that Table 9.2 does not include the method in [7] because
end-to-end results are not available. However, it would be expected
to be in the top of the table if we take into account their cropped
word recognition rates and their high recall detection strategy.

Method Precision Recall F-score

Milyaev et al.[84] 66.0 46.0 54.0
Yao et al. [142] 49.2 44.0 45.4
Neumann and Matas [100] 44.8 45.4 45.2
OpenCV + Tesseract 52.9 32.4 40.2
Neumann and Matas [99] 37.8 39.4 38.6
Chapter 5 + Tesseract 48.1 30.7 37.5
Neumann and Matas [98] 37.1 37.2 36.5
Wang et al. [137] * 54.0 30.0 38.0

Table 9.2: End-to-end results in the IC-
DAR 2011 dataset comparing our pro-
posed pipeline with other state-of-the-
art methods. Methods marked with an
asterisk evaluate on a slightly different
dataset (ICDAR 2003).

Figure 9.3: Qualitative results on
well recognized text using the
CSER+Tesseract pipeline.
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Figure 9.4: Common misspelling
mistakes using the CSER+Tesseract
pipeline are due to missed diacritics,
rare font types, and/or poor segmen-
tation of some characters.

Figures 9.3, 9.4, and 9.5 show qualitative results of the evaluated
pipeline. The end-to-end system recognizes words correctly in a va-
riety of different situations, including difficult cases, e.g. where text
appears blurred, or with non standard fonts. Common misspelling
mistakes are, most of the time, due to missed diacritics, rare font
types, and/or poor segmentation of some characters. Also in many
cases the OCR performs poorly because the text extraction algorithm
is not able to produce a good segmentation, e.g. in challenging situ-
ations or in cases where characters are broken in several strokes.

9.1.3 Discussion

In this section we have seen that pixel level segmentation methods
are still among the best solutions in state of the art end-to-end recog-
nition for focused scene text. It is true however that scene text is not
always binarizable and that in such cases other techniques must be
employed. But current segmentation methods combined with exist-
ing OCR technologies may produce optimal results in many cases, by
taking advantage of more than 40 years of research and development
in automated reading systems, e.g. all the accumulated knowledge
of shape-based classifiers, and the state of the art in language mod-
elling for OCR.

Figure 9.5: Common errors when seg-
mentation is particularly challenging or
characters are broken in several strokes.
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Figure 9.6: End-to-end text recognition
results on the Street View Text dataset.

9.2 End-to-end word spotting

In this section we combine the text specific object proposals explained
in Chapter 5 with two state of the art whole-word recognition meth-
ods [2, 51] in order to build an end-to-end word spoting system.

End-to-end text recognition and image retrieval results

Table 9.3 shows end-to-end recognition F-scores on SVT, ICDAR2003,
and ICDAR2015 datasets.

IC03-50 IC03-Full IC03 SVT-50 SVT IC15-50 IC15-Full IC15

Wang et al.[135] 0.68 0.61 - 0.38 - - - -
Wang and Wu [137] 0.72 0.67 - 0.46 - - - -
Alsharif [3] 0.77 0.70 0.63* 0.48 - - - -
Jaderberg et al.[52] 0.80 0.75 - 0.56 - - - -
Jaderberg et al.[51] 0.90 0.86 0.78 0.76 0.53 0.90** - 0.76

StradVision-1 - - - - - 0.86 0.83 0.70

Deep2Text II-2 - - - - - 0.77 0.77 0.77

Chapter 6 + Almazan et al.[2] 0.82 0.73 - 0.67 - - - -
Chapter 6 + Jaderberg et al.[51] 0.92 0.90 0.75 0.85 0.52 0.85 0.84 0.71

Table 9.3: Comparison of end-to-end
word spotting F-scores on ICDAR2003,
ICDAR2015, and SVT datasets.

9.2.1 Discusion

In this section we described a complete system for robust reading
of text in natural scene images able to perform both end-to-end text
spoting and image retrieval based on textual information. The sys-
tem builds upon two holistic word recognition methods: one is based
on a compact attribute-based word representation that permits to
perform word recognition and retrieval in an unified and integrated
way [2]; the other consists in a deep CNN model trained to recog-
nize words by assigning a label among 90k possible classes. Word
recognition is applied on a set of candidate text boxes returned by
the selective search text localization approach presented in Chapter 6

that generates multiple word hypotheses. Results on the SVT and IC-
DAR datasets show competitive results both for text recognition and
retrieval tasks.
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9.3 Public releases

Open Source algorithm implementations are of great help for new
researchers, they serve as reference baselines to compare against,
and permit to focus research in a certain part of the text extraction
pipeline, while using other “standard” implemented modules, and
analyse the improvement of their work. We strongly believe that
releasing open source implementations of state of the art methods
would help improving the experience of the research community in-
terested in the text extraction problem, as well as having a positive
impact in the quality of new methods to come.

For a long time no such open framework has been made available
but, fortunately things are changing. In the past four years code of
a few text extraction methods has been released to the public (not
necessarily with open source licenses). These include the work of
Kai Wang3, the work of Rodrigo Minnetto4 [88], an implementation 3 http://vision.ucsd.edu/~kai/

grocr/
4 http://www.dainf.ct.utfpr.

edu.br/~rminetto/projects/

snoopertext/

of the Stroke Width Transform [27] in the libccv project5, and our

5 http://libccv.org/

own work in multi-script text extraction and script identification.

Multi-script Text Extraction method

We have released the code of the text extraction method presented
in Chapter4 and published in an ICDAR 2015 paper. The released
code6 allows the recreation of Table 4.1. 6 http://github.com/lluisgomez/

text_extraction

Text Objet Proposals

We have released the code of our text specific object proposals method
detailed in Chapter6. The released code allows the recreation of Ta-
bles 6.2 and 6.3, as well as the plots in Figure 6.3.

Script identification code and CNN models

We have released the code of the two methods for script identification
described in Chapter8. The released code and CNN models allow the
recreation of the results shown in Tables 8.1 and 8.3.

OpenCV Text module

The author of this thesis has been allocated to the Google Sum-
mer of Code (GSoC) program7

2013 and 2014 editions. This has 7 http://www.google-melange.com/

gsoc/homepage/google/gsoc2014supposed an exceptional opportunity to work with members of the
OpenCV8 library development team in order to implement state-of- 8 http://opencv.org

the-art scene text detection and recognition methods [98][42]. The
project, that has produced already some code9 and its development 9 http://docs.opencv.org/trunk/

modules/objdetect/doc/erfilter.

html
is still going on, would hopefully make available to the OpenCV
community a good quality open source implementation of a com-
plete scene text end-to-end understanding system.

http://vision.ucsd.edu/~kai/grocr/
http://vision.ucsd.edu/~kai/grocr/
http://www.dainf.ct.utfpr.edu.br/~rminetto/projects/snoopertext/
http://www.dainf.ct.utfpr.edu.br/~rminetto/projects/snoopertext/
http://www.dainf.ct.utfpr.edu.br/~rminetto/projects/snoopertext/
http://libccv.org/
http://github.com/lluisgomez/text_extraction
http://github.com/lluisgomez/text_extraction
http://www.google-melange.com/gsoc/homepage/google/gsoc2014
http://www.google-melange.com/gsoc/homepage/google/gsoc2014
http://opencv.org
http://docs.opencv.org/trunk/modules/objdetect/doc/erfilter.html
http://docs.opencv.org/trunk/modules/objdetect/doc/erfilter.html
http://docs.opencv.org/trunk/modules/objdetect/doc/erfilter.html




Chapter 10

Conclusion and Future Work

In this thesis we have contributed several methods to the state of
the art of automatic scene text understanding in unconstrained con-
ditions. Our contributions are mainly on the on multi-language and
arbitrary-oriented text detection, tracking, and recognition in natural
scene images and videos.

In Chapter 4 a new methodology for text extraction from scene
images was presented, inspired by the human perception of tex-
tual content, largely based on perceptual organisation. The proposed
method requires practically no training as the perceptual organisa-
tion based analysis is parameter free. It is totally independent of the
language and script in which text appears, it can deal efficiently with
any type of font and text size, while it makes no assumptions about
the orientation of the text.

In Chapter 5 we have detailed a scene text extraction method in
which the exploitation of the hierarchical structure of text plays an
integral part. We have shown that the algorithm can efficiently detect
text groups whith arbitrary orientation in a single clustering process
that involves: a learned optimal clustering feature space for text re-
gion grouping, novel discriminative and probabilistic stopping rules,
and a new set of features for text group classification that can be
efficiently calculated in an incremental way.

In Chapter 6 we have evaluated the performance of generic Ob-
ject Proposals in the task of detecting text words in natural scenes.
We have presented a text specific method that is able to outperform
generic methods in many cases, or to show competitive numbers in
others. Moreover, the proposed algorithm is parameter free and fits
well the multi-script and arbitrary oriented text scenario.

In Chapter 7 we have presented a method for detection and track-
ing of scene text able to work in real-time on low-resource mobile
devices. Although far from being a final solution, the proposed
method goes beyond the full-detection approaches in terms of time
performance optimization. The combination of text detection with a
tracker, provides considerable stability, allowing the system to pro-
vide predicted estimates in cases where the detection module itself is
not capable of returning a valid response. The use of MSER-tracking
as an alternative, fast technique to provide simulated text detections
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for the frames that are not processed by the full frame text detector
proves to be an adequate solution, providing the system with enough
information to continue tracking until the text detector returns up-
dated positions.

In Chapter 8 a patch-based framework for script identification in
natural scene images was presented. The two proposed methods are
based on the intuition that effective script identification must lever-
age the discriminative power of certain small patches of the image.
For this we rely on the use of ensembles of conjoined convolutional
networks to jointly learn discriminative stroke-part representations
and their relative importance in a patch-based classification scheme.
Experiments performed in three different datasets exhibit state of the
art accuracy rates in comparison to a number of methods, includ-
ing three standard image classification pipelines. Our work demon-
strates the viability of script identification in natural scene images,
paving the road towards true multi-lingual end-to-end scene text un-
derstanding.

Future work

Improved text regions proposals. An interesting observation of our
experiments in Chapter 6 is that while class-independent object pro-
posals methods suffice with near a thousand proposals to achieve
high recall rates for object detection, in the case of text we still need
around 10000 in order achieve similar numbers. This indicates there
is a large room for improvement in text specific Object Proposals
methods. One possible direction would be to improve the quality of
the proposals ranking with better classifiers while mantaining low
time complexity. The perceptual organization approach presented in
Chapter 4 opens up a number of possible paths for future research in
object proposals methods, including the higher integration of the re-
gion decomposition stage with the perceptual organisation analysis,
and further investigation on the computational modelling of percep-
tual organisation aspects such as masking, conflict and collaboration.

Integration of script-independent and script-specific approaches.
In Chapter 8 we have seen that script identification is effective even
when the text region is badly localized, as long as part of the text
area is within the localized region. This opens the possibility to
make use of script identification to inform and / or improve the
text localization process. The information of the identified script can
be used to refine the detections with an ad-hoc detection method
specialized in a certain script. On the other hand, end-to-end word
spotting systems like the one built in Chapter 9 may be extended
to multi-linugual environments by training independent per-script
whole word recognizers.
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