
 
 
 
 

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats 
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la 
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita 
de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha 
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción 
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. 
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). 
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus 
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la 
persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability 
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the 
TDX service is not authorized (framing). This rights affect to the presentation summary of the 
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate 
the name of the author 



Univeristat Politecnica De Catalunya

Ph. D. Thesis

Design of Energy Efficient Network
Planning Schemes for LTE and

LTE-Advanced Wireless Cellular
Networks

Author:

Alexandra Bousia

Supervisors:

Luis Alonso, Ph. D.

Associate Professor Universitat

Politecnica de Catalunya (UPC)

.

Christos Verikoukis, Ph. D.

Senior Researcher Telecommunications

Technological Center of Catalonia

(CTTC)

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy in the

Department of Signal Theory and Communications

Univeristat Politecnica de Catalunya (UPC)

Barcelona, November 2015





“Scientists dream about doing great things. Engineers do

them.”

James A. Michener





UNIVERSITAT POLITECNICA DE CATALUNYA

Abstract
Department of Signal Theory and Communications

Doctor of Philosophy

Design of Energy Efficient Network Planning Schemes for LTE-based
Cellular Networks

by Alexandra Bousia

The rapid expansion of mobile services and the emerging demand for multimedia appli-
cations have led to an impressive traffic growth. To this end, Mobile Network Operators
(MNOs) seek to extend their infrastructure by installing more Base Stations (BSs), in
an effort to increase the network capacity and meet the pressing traffic demands. Fur-
thermore, to fulfill the escalated demands, Heterogeneous Networks (HetNets), which
consist of Small Cells (SCs) and the traditional BSs, constitute the new trend of next
generation networks.

The deployed infrastructure implies a rise in the Capital Expenditures and has a direct
impact on the network energy consumption, thus resulting in higher Operational Expen-
ditures. Hence, the investigation of energy efficient solutions will bring down the energy
consumption and the network cost. Since the BS is the most power hungry compo-
nent, the research community has shifted towards the investigation of BS deactivation
schemes. These schemes propose that part of the infrastructure can be temporarily
switched off, when the traffic is low, while the active BSs extend their coverage to serve
the network.

Based on a comprehensive review of the state-of-the-art, a set of research opportuni-
ties were identified. This thesis provides contributions to the field of BS switching off
strategies for wireless macro BSs networks and HetNets of single and multiple MNOs
by proposing mechanisms that enhance different aspects of the network performance.
The BSs deactivation, the innovative trend of infrastructure sharing and the financially
driven collaboration among the involved parties of the current and future networks
promise significant improvements in terms of energy and cost savings. The main thesis
contributions are divided into three parts, described next.

The first part of the thesis introduces innovative BS switching off approaches in single-
operator environments, where only macro BSs are deployed. The proposed strategies
exploit the inherit characteristics of the traffic load pattern (e.g., distribution of the
users, traffic volume, etc.) and the distinctive features of the wireless cellular networks
(e.g., BSs position, topology, etc.). Theoretical analysis and computer-based simulations
show the performance improvement offered by the switching off strategies with respect
to energy efficiency.

The second part of the thesis explores a different challenge in network planning. The
coexistence of multiple MNOs in the same geographical area has motivated a new busi-
ness model, known as infrastructure sharing. A roaming-based deactivation scheme is
proposed, by taking into account the rationality and the conflicting interests of the



MNOs. The proposed game theoretic framework enables the MNOs to take individual
switching off decisions, thus bypassing potential complicated agreements. The theo-
retical and simulation results show that our proposal significantly improves the energy
efficiency, guaranteeing at the same time the throughput in realistic scenarios. More-
over, the proposed scheme provides higher cost efficiency and fairness compared to the
state-of-the-art algorithms, motivating the MNOs to adopt game theoretic strategies.

The third part of the thesis focuses on the exploitation of HetNets and the proposal of
energy and cost effective strategies in SC networks with multiple MNOs. We effectively
address the cost sharing by proposing accurate cost models for the SCs to share the
network cost. Taking into account the impact of the traffic on the cost, we propose
novel cost sharing policies that provide a fair outcome. In continuation, innovative
auction-based schemes within multiobjective optimization framework are introduced for
data offloading from the BSs, owned by the MNOs, to the third-party SC networks.
The proposed solution captures the conflicting interests of the MNOs and the third-
party companies and the obtained results show that the benefit of proposing switching
off approaches for HetNets.

Keywords

[Wireless cellular network, Energy efficiency, Base station switching off, Network plan-
ning, Resource allocation, Green networking, Game theory, Shapley value, Auction the-
ory, Multiobjective optimization]
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Chapter 1

Introduction

“Engineers like to solve problems. If there are no problems handily available, they
will create their own problems.”

Scott Adams

This chapter outlines the context of the problem, the motivation of the proposed
solutions and the organization of the thesis. The structure of the chapter is de-
scribed as follows. Section 1.1 describes the motivation behind the thesis. A
description of the structure of the thesis is presented in Section 1.2. Finally, Sec-
tion 1.3 presents the dissemination of results.

1.1 Context and Motivation

1.1.1 Context

The wireless cellular communications industry witnessed a tremendous growth in
the past. Both Global System for Mobile communications (GSM) and Universal
Mobile Telecommunications System (UMTS) were a worldwide success, adopted
by most countries and Mobile Network Operators (MNOs).

During the last few years, the rapid and radical evolution of mobile telecommuni-
cation services along with the emerging demand for multimedia applications due
to the widespread use of laptops, tablets and smart-phones have led to a growing
demand for data transmission. The traffic load is experiencing a growing increase
by the factor of 10 every 5 years approximately [5], [6]. Overall mobile data traffic
is expected to reach 24.3 exabytes per month by 2019, a 13-fold increase and at a
Compound Annual Growth Rate (CAGR) of 57% from 2014 to 2019. The mobile
applications, in particular, are expected to grow in staggering rates, with mobile
video showing the higher growth and getting up to 66.5%. Thus, the increas-
ingly expanding market of web-enabled mobile devices opens the path towards
a wide range of previously unimagined (data-based) applications and creates the

1
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need for ubiquitous availability of Internet (better coverage) and faster broadband
connections (higher Quality of Service (QoS)) [7].

To meet these demands, the development of new standards and architectures is
more than compulsory. Serious efforts were done in order to improve data trans-
mission capabilities of existing Second and Third Generation (2G and 3G, re-
spectively) technologies. In particular, the Third Generation Partnership Project
(3GPP) introduced High Speed Packet Access (HSPA), an enhancement to its 3G
technology, named UMTS. In parallel, the Institute of Electrical and Electronics
Engineers (IEEE), achieved an important milestone with the introduction of speci-
fications for local and metropolitan wireless area networks, IEEE 802.11 and IEEE
802.16, respectively. Long Term Evolution (LTE) that is the natural upgrade of
UMTS, is an evolving wireless standard developed by the 3GPP as a candidate
Fourth Generation (4G) system, while LTE-Advanced constitutes the most ad-
vanced version of LTE [8], [9]. IEEE 802.16m standard is the 4G system proposed
by International Mobile Telecommunications-Advanced (IMT-Advanced). These
standards are expected to ensure the competitiveness of the 3GPP for the next
15-20 years and guarantee its presence within the umbrella of the Fifth Generation
(5G), which is likely to be deployed around 2020. Fig. 1.1 depicts the evolution
of cellular systems, where the different standards, along with the standardization
groups, are shown.

GSM(3GPP)

P
er

fo
rm

an
ce

UMTS, HSPA (3GPP)

HSPA+, LTE , LTE-
Advanced (3GPP)
802.16e, 802.16m 

(IEEE)

Mid 90s                    2000          2005                    2010             2020

Figure 1.1: Evolution of cellular systems from 2G to 4G and framework for 5G.

4G, and more specifically LTE and LTE-Advanced, have crossed the generational
boundary and the limitations of the previously developed standards, offering the
next generations of capabilities. With their capacity for high speed data, enhanced
data rates for mobile phones and terminals, ubiquitous connectivity, significant
spectral efficiency and adoption of advanced radio techniques, their emergence
is becoming the basis for all future mobile systems. One of the important LTE
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and LTE-Advanced benefits is the ability to take advantage of advanced topology
networks, such as optimized heterogeneous configurations with a mix of macrocells
and low power nodes, such as picocells, femtocells and micro nodes. The 4G
standards further improve the capacity and coverage, ensure user fairness and also
introduce multicarrier to be able to use ultra wide bandwidth, up to 100 MHz of
spectrum supporting very high data rates.

In contrast to 4G that was designed for improving capacity, user data-rates, spec-
trum usage and latency with respect to the previous standard generations, 5G is
not only an evolution of mobile broadband networks [1]. 5G provides significant
development in the capabilities of the telecommunications systems. Some insights
about what 5G is supposed to be, compared to the requirements of 4G are illus-
trated in Fig. 1.2 [1]. 5G brings new unique network and service potentials. It
ensures user experience continuity in challenging situations such as high mobility
(e.g., in trains), very dense or sparsely populated areas, and journeys covered by
heterogeneous technologies. Mission critical services requiring very high reliability,
global coverage and/or very low latency (e.g., public safety), which are up to now
handled by specific networks, are natively supported by the 5G infrastructure.
5G infrastructures are also much more efficient. The enhanced spectral efficiency
enables 5G systems to consume a fraction of the energy that a 4G mobile net-
works consumes today for delivering the same amount of transmitted data, thus,
motivating new business models for consumers but also for new industrial stake-
holders (e.g., industries, novel forms of service providers or infrastructure owners,
third-party companies and providers). At this point, it is highlighted that the
solutions of the thesis can be applied in the current 4G systems and can bring
further enhancement in future 5G networks, as well.

Along with the development of the new telecommunications standards and in order
to tackle with the challenges of future mobile networks and handle the predicted
increase in mobile traffic volume, operators face the need to expand their wireless
infrastructure. The telecommunications companies work towards the massive de-
ployment of their networks. At this point, it is highlighted that there were more
than 8 million Base Stations (BSs) deployed and serving mobile users in 2012 [10].
Let us point out here that the largest mobile telecommunications operators may
maintain approximately 238000 BS sites worldwide [11]. Moreover, the number of
deployed BSs grows as the users requirements increase every year. Furthermore,
Wi-Fi Access Points (APs) and third-party Small Cells (SCs), such as picocells,
femtocells and mircocells, are extensively deployed in public and private areas, such
as university campuses, business parks, and user homes during the last decade,
introducing the trend of Heterogeneous Networks (HetNets). 4G and 5G technolo-
gies support these architectural enhancements and infrastructure expansion. More
specifically, the future infrastructure shall flexibly and rapidly adapt to a broad
range of requirements. The deployment of BSs and SCs is pushed further leading
to ultra dense networks. A typical heterogeneous cellular network architecture is
presented in Fig. 1.3. In this architecture, multiple stakeholders coexist, since the
macro nodes and the smaller cells are owned by different entities, either MNOs
or third-party companies. The various telecommunication nodes, along with the
several technologies that they support, are also illustrated.
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Figure 1.2: Diagram of 5G capabilities in comparison to 4G capabilities [1].

1.1.2 Problem Statement

The challenging capabilities that are attained by the 4G and 5G standards and the
densification of the wireless cellular networks with the massive deployment of BSs
and SCs imply a rise in the Capital Expenditures (CapEx) of the telecommunica-
tion companies. In addition, the augmented number of operating HetNets leads
to an emerging increase of the total network energy consumption, thus resulting
in higher Operational Expenditures (OpEx), as well [12]. In the coming years,
it is widely acknowledged that wireless cellular networks will have even greater
economic and ecological impact.

The numbers and the reports reveal the gravity of the problem. Overall, the BSs
account for 60% of the total energy consumption and carbon emissions caused by
the telecommunication companies [11]. In particular, the use of Information and
Communication Technology (ICT) across a wide range of applications currently
accounts for 5.7% of the world’s electricity consumption and 1.8% of global carbon
emissions [13], [2], something that translates into electricity bills in the order
of $10 billion for the MNOs worldwide [14]. This rather small amount of ICT
carbon emissions is, however, comparable to the total carbon emissions caused by
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Figure 1.3: 5G cellular network architecture.

international air traffic, or one quarter of global carbon emissions by cars [15].
Analyzing the ICT carbon emissions by sector in Fig. 1.4, it can be seen that
the carbon footprint of both telecommunications infrastructure and devices has
been significantly increasing since 2002, in comparison with those of other ICT
sub-sectors like Personal Computers (PCs) and data centers [2]. Peripherals and
PCs are not the fastest growing elements of the footprint. Data centers, as well,
grow slower than other ICT technologies, since their increase is driven only by
the need for storage, computing and other Information Technology (IT) services.
Though as the telecommunications footprint continues to grow (from 0.53 GtCO2e
to 1.43 GtCO2e by the year 2020), data centers represent a smaller share of the
total ICT carbon footprint in 2020, with the telecommunications infrastructure,
mobile devices, PCs and peripherals to account for a larger share.

Also, as it is reported in Fig. 1.5, while the share of fixed narrowband networks has
remained almost constant through years in real values (64 MtCO2e to 70 MtCO2e),
the increasing contribution of wireless networks is expected to dominate the total
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37 14 49 2007 %  of  0 . 83 

25 18 57 2020 %  of  1 . 43 

and devices 
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and printers 

  

Telecoms infrastructure  

Figure 1.4: ICT carbon footprint by sector [2].

telecommunications carbon footprint by 2020. This prediction is mainly based on
the rapid growth of mobile network infrastructure (66 MtCO2e to 179 MtCO2e)
and the increased emissions caused by the augmented number of wireless devices
(18 MtCO2e to 51 MtCO2e). In addition, the global carbon emissions, caused by
fixed broadband is expected to grow from 4 MtCO2e to 49 MtCO2e. Therefore
and by considering the energy waste in numbers, energy consumption is widely
recognized by society as the most important issue for sustainable growth in both
developed and developing countries. To enable the low-carbon economy in Europe,
the European Commission sets ambitious targets in 2008 to reduce greenhouse
gas emissions by 20% and to improve energy efficiency by 20%, both by 2020 [16].
Indeed, the ICT sector can play an important role to meet these challenges by
improving energy efficiency and by developing energy-efficient wireless networking
solutions to reduce the global ICT carbon footprint by 2020.

Apart from the environmental issues, the financial cost increase attracts great
attention among the MNOs and the third-party companies. More specifically,
CapEx for site deployment rapidly rises due to the massive network densification.
In addition, the radio access equipments, including BSs and SCs, account for the
major percentage of the total cost for deploying and operating the network. To
attain further insights on the economic aspects, it is pointed out that the price of
a macro cellular BS equals 20K − 50K e. The price of a micro and pico cellular
SC equals 50% and 15%, respectively, of a macro BS, which is still high [3], [17].
The cost analysis of a BS site is given in Fig. 1.6 and it is clear that the BS
equipments dominate the cost expenses. Thus, the need of cost reduction provides
strong motivation for the network entities, which can be achieved through the
design of cost efficient network planning algorithms.

Summarizing, the great increase in energy consumption, carbon emissions and cost
expenses makes the need of the design of cost efficient and energy effective solu-
tions to become more than compulsory. However, the heterogeneous nature of the
networks, where multiple MNOs, numerous third-parties and independent users
coexist, creates a diversity of conflicting interests and contradictory requirements
that pose great complexity in the design of efficient and feasible solutions. The
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Figure 1.5: Global telecommunications carbon footprint by sub-sector [2].
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Figure 1.6: Breakdown of capital expenditures for a BS site [3].

contribution of the thesis relies on the proposition of novel techniques by account-
ing the different requirements and needs of the current and future networks.

1.1.3 Motivation

Currently operating wireless networks have been mainly designed and deployed to
maximize users performance and QoS related metrics, e.g., throughput, data rates
and reliability, while usually paying less attention to energy efficiency. The future
designs of wireless networks need to consider energy efficiency, since it is now a
priority of the European Commission and the ICT industry to attain energy effi-
ciency gains. Seeing this, a new research discipline called green cellular networks,
concentrating on environmental influences of cellular networks, has been formed
and attracted many researchers. The term green is originally a nickname for the
dedicated efforts to reduce unnecessary green house gases (e.g., CO2) emissions
from industries. For mobile operators and third-party stakeholders in particular,
another motivation and objective of green approaches is to gain extra commercial
benefits, mainly by reducing operating expenses related to energy cost. Hence,
the identification of the main factors of the energy consumption in wireless cellu-
lar networks aims the design of appropriate green solutions.

With currently employed wireless technologies, the main problems of energy con-
sumption can be associated with the two main components operating in wireless
networks: central coordinators (wireless network infrastructure) and wireless de-
vices.

• Infrastructure wireless networks are managed by central nodes, referred to as
BSs in cellular networks or APs in Wireless Local Access Networks (WLANs)
and SCs in HetNets. These central nodes are responsible for coordinating
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backhaul access to one or several transmission channels among wireless user
devices located in their coverage areas. Furthermore, they usually provide
access to the Internet for the connected users through a wired network in-
frastructure.

• Currently, a wide variety of portable devices and user equipments, e.g., lap-
tops, tablets, and smartphones, are equipped with multi-standard radio in-
terfaces, such as UMTS/LTE, Wi-Fi, and Bluetooth, to provide users with
a flexible and powerful wireless connection.

Having identified the main components that consume energy in wireless cellu-
lar networks, Fig. 1.7 depicts the energy consumption breakdown of both users
and network infrastructure. As pointed in Fig. 1.7, the consumed power and the
emitted CO2 by the mobile user devices is significantly lower than the power and
carbon emissions, caused by the wireless network components,e.g., BSs and SCs.
The numbers are revealing, since 4.8 billion subscribers consume only the 0.0001
of the power consumed by the dense HetNets. Thus, the solutions of this Ph.D.
thesis are concentrated towards the energy and cost reduction of infrastructure
wireless networks (by greening the BS and SC nodes), instead of working towards
the greening of the small mobile devices.

Among the diversity of nodes that coexist in HetNets, such as BSs, micro, femto
cells, etc., evidently, due to the size and functionalities of a BS, it is worth-noting
that the BS, in contrast to the SCs, is one of the most power hungry component of
a cellular network. This fact is also pointed out in Fig. 1.8 [4]. In this figure, the
power consumption versus the traffic load is illustrated for both the power-hungry
BSs and the low-powered SCs. The research works focus on reducing the number
of active nodes, when the traffic load is low. From the figure, it can be concluded
that the deactivation of the BSs can lead to greater gains rather than if the SCs
are switched off. Thus, since greater power can be saved through reducing the
number of active BSs, several research works have focused on this direction.

To gain further insight on the direction that the energy efficient designs should
go, the investigation on where the energy is consumed in a BS is necessary. The
BSs energy consumption, in turn, consists of different parts including [18]:

• Energy consumption due to BS baseband (BB) processing, mainly at the re-
ceiver side. The BB engine (performing digital signal processing) carries out
digital up/down conversion, including filtering, modulation/demodulation,
digital pre-distortion (only for large BS types), signal detection (synchroniza-
tion, channel estimation, equalization, compensation of RF non-idealities),
and channel coding/decoding. The silicon technology significantly affects the
power consumption PBB of the BB interface. However, the increasing leak-
age, caused by increasing the active power of the BB, puts a limit on the
power reduction that can be achieved through technology scaling.

• Energy consumption of the BS RF parts, mainly the transmitter Power Am-
plifier (PA). The energy that is consumed is really significant due to losses
within the PA. For a given PA, such losses are at least partly independent of
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Figure 1.7: Mobile communications: where is the power consumed.

the instantaneous output power of the PA and can thus only be avoided by
reducing the PA output power to zero, e.g., essentially turning-off the PA.

• Other parts such as energy consumption due to active cooling and power
supply. Losses incurred by DC-DC power supply, mains supply, and active
cooling scale linearly with the power consumption of the other components.
Note that active cooling is only applicable to macro BSs, and is omitted in
smaller BS types.

The above can be summarized in Fig. 1.9.

From Fig. 1.8 and Fig. 1.9, it can be concluded that the BSs still consume con-
siderable amount of energy, even when the traffic load is significantly low, due
to the power supply and PAs that are always active. More specifically, the fixed
part, including air conditioning and power supply, accounts for around one fourth
of total energy consumption. This amount of energy is wasted when no traffic
is served by the BS, thus its is independent of the traffic load. Hence, the vari-
ations of the load and the traffic pattern play an important role on the energy
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consumption, since it is important to know whether or not the traffic is low for
long periods during the day. Fig. 1.10 shows the weekly traffic profile of a network
operator in Europe in 2012, classified according to different applications including
voice calls and mobile data, e-mail, streaming and so on. It is evident that the
mobile traffic level throughout a day or a week varies periodically with the living
pattern of mobile users. In the daytime on weekdays, people mostly concentrate
in business areas in a city and are more likely to make phone calls. At night or
on weekends, most people move to residential areas. Phone calls are generally
less frequent at night than during the day but larger amount of cellular data is
transmitted because more data-intensive applications such as social networking,
web browsing, video streaming and video chatting are more likely to run [19], [20].
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Figure 1.10: Measured weekly traffic volumes of a mobile cellular network in a busi-
ness area.

Thus, the network planning solutions generally try to save energy by monitoring
the traffic load in the network and then decide whether to turn off (or switch to
sleep mode, also referred as low-power mode or deep idle mode in some literature),
or turn on (or switch to active mode, ready mode or awake mode) certain elements
of the network. Hence, unnecessary energy consumption, e.g., the power consumed
for air conditioning under-loaded nodes, can be avoided by adopting sleep mode
mechanisms. These approaches generally involve switching off certain elements
including but not limited to power amplifiers, signal processing units, cooling
equipments, the entire BSs/SCs, or the whole network, when the traffic load is
low. Most often, sleep mode techniques aim to save energy by selectively turning
off the corresponding nodes during off-peak hours. As shown in Fig. 1.8, BSs
consume significantly higher energy in cellular networks than the low powered
SCs. Thus, the BSs deactivation could lead to great energy savings. Given the
constraint that some macro sites (e.g., a minimum number of BSs) must always
stay on to support the basic operation of the network and avoid any negative



Chapter 1. Introduction 13

impact on the QoS, the remaining active infrastructure components can extend
their coverage range in order to serve the whole network area.

The BSs deactivation is a really appealing solution to reduce the energy consump-
tion and the network costs. However, there are a lot of issues that should be
considered. In a network where only macro nodes exist, the problem of switching
off needs to deal only with the switching off decision, the crucial parameters that
affect this decision and the constraints that follow the deactivation. Nonetheless,
the design of feasible strategies is not that trivial, when the diversity of networks
is taken into account.

In the 4G and 5G networks, several MNOs coexist providing service in the same
geographical area. The traditional intention of the operators is to deploy and
operate their own infrastructure. However, the dense networks with multiple op-
erators challenge the traditional model of single ownership, due to the augmented
CapEx and OpEx and motivate the research community towards a new business
model, known as infrastructure sharing [21]. More specifically, instead of owning
and operating their own network, the MNOs could share their resources. This
new paradigm embraces a set of strategies that enable the MNOs to use their
resources jointly in order to reach their common goal, which is to guarantee cus-
tomer service while achieving energy and cost reduction. Infrastructure sharing
can be classified into three categories [22]: i) passive sharing, limited to the joint
use of sites, masts and building premises among MNOs, ii) active sharing, where
the MNOs share the active network components such as antennas, switches and
backhaul equipment, and iii) roaming-based sharing, where the MNOs share the
cell coverage for a pre-negotiated period of time. Currently, over 65% of Euro-
pean operators are sharing their networks [23]. In addition to the benefits of BSs
deactivation, these techniques can be combined and provide even higher energy
efficiency. The energy and cost gains can be note-worthy, however, infrastructure
sharing requires the MNOs cooperation. Thus, the proposed solutions must take
into account the rationality of the MNOs and their conflicting interests.

In continuation, as discussed before, MNOs seek to extend their infrastructure by
installing more BSs and in an effort to increase the capacity of their network and
meet these pressing traffic demands, they also deploy a large number of SCs or lease
capacity and bandwidth resources from third-parties, who deploy low-powered SC
networks to provide enhanced services via traffic offloading from macro BSs to
SCs during peak hours [24], [25]. Thus, heterogeneous networks were originally
designed to improve the spectral efficiency and bandwidth capacity in cellular net-
works by offloading traffic from classical macro cells during peak hours. In contrast
to conventional homogeneous macro cell deployment, such heterogeneous deploy-
ment improves the users and the network performance by supporting higher data
rates. However, these deployments may lead to increase in energy consumption be-
cause of the extra cells that are also underutilized some hours of the day when the
traffic load is low. Nevertheless, by introducing sleep mode in BSs, heterogeneous
cellular networks can outperform traditional macro-cell-only networks in terms of
energy efficiency. The involvement of various entities of corporate nature with dif-
ferent financial goals (e.g., MNOs, third-parties) generates a new ecosystem with
interesting dynamics to be studied.
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This Ph.D. dissertation provides a contribution to the field of network planning
approaches for current and future wireless cellular systems, for both macro BS
networks and HetNets, deployed by single or multiple operators and third-party
entities. To be precise, various switching off and infrastructure sharing algorithms
are investigated and proposed. Several open issues are addressed and new methods,
guidelines and strategies are devised accordingly. Throughout the research pro-
cess, emphasis is placed on achieving not only effective solutions but also feasible
innovations and several perspectives of the problem are considered. To summarize,
given the aforementioned issues, the main motivation for this work has stemmed
from the following factors:

• the importance of addressing the energy efficiency problem. The emerging
increase in terms of energy consumption is nowadays in the center of attention
and there is significant need to provide solutions in order to reduce the energy
waste, especially during the night, when the networks are underutilized.

• the significance of tackling the increased cost issues. The deployment of
dense network infrastructure and the operation of heterogeneous nodes lead
to rising cost expenditures. In order to decrease the cost and attain financial
gains, novel solutions must be proposed that incorporate the heterogeneous
characteristics of the networks and the coexistence of variable network com-
ponents.

• the importance of addressing the BS deactivation problem from several
perspectives. The tradeoff cost and energy efficiency-QoS is in the center of
attention, but in addition, the increasingly important cost efficiency aspect
is also considered in this thesis. The proposed algorithms aim to lower the
energy consumption and reduce the network costs without degrading the user
services. Switching off strategies and infrastructure sharing techniques are
employed in single and multi operators networks. In addition, the third-party
SC networks provide further opportunities for the proposal of energy and cost
aware solutions, which were not feasible in the networks in past decades.

• the exploitation of deactivation techniques for the BSs in various network
deployments. Regarding this aspect, the main research objective has been
to design effective solutions providing network-specific designs. Real-life net-
works are all different and hence, these various network characteristics can
(and must) be exploited to achieve the maximum benefit. Towards this direc-
tion, the examined networks include single and multi-operator cellular net-
works, with macro BSs and SCs. The coexistence of MNOs and third-party
owners and the dense heterogeneous network configuration can be exploited.

1.2 Scope and Structure of the Thesis

The main research objective of this Ph.D. dissertation is the design of new and
advanced schemes for the energy efficient network planning in the context of the
downlink of realistic 4G (LTE/LTE-Advanced) and 5G deployments. The innova-
tive solutions and the proposed algorithms of this work clearly suggest the different
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guidelines that can be followed, provided the varying nature of the network con-
figuration characteristics and the different aspects of the traffic demand.

The document is composed of seven chapters and two appendices. Among the
next five chapters, one chapter includes the background information of the related
works and the rest four chapters correspond to the core of the Ph.D. disserta-
tion, presenting the research contributions. Each chapter focuses on different, but
interrelated, strategies to optimize the overall performance of network planning
schemes in LTE/LTE-Advanced networks. The last chapter closes the document
with final remarks, conclusions and future research lines.

Chapter 2 provides the necessary background information concerning the descrip-
tion of network planning and switching off approaches presented in the literature.
It starts with the required background knowledge, including a description of the
reference scenarios and architectures. In continuation, a survey of the state-of-the-
art and current trends is given. The chapter examines the energy efficient solutions
that are applied in three different network configurations i) single operator macro
BS networks, ii) multi-operator macro BS networks, and iii) multi-operator Het-
erogeneous Networks (HetNets).

The innovative contributions of the thesis are organized into three parts. The first
part consists of Chapter 3 and is dedicated to the proposal of novel energy effi-
cient solutions in single-operator environments with macro BSs. We incorporate
the traffic demand and network configuration characteristics to propose innova-
tive mechanisms for selecting the most suitable BSs to be switched off. Two
algorithms, namely Distance-aware Switching Off (DSO) and Dynamic Distance-
aware Switching Off (DDSO), are proposed. These policies take into account the
varying characteristics of the traffic pattern for the BSs deactivation. The basic
idea behind DSO is to use the distance between the users and the BSs as the
critical indicator in order to decide the suitable BSs to be deactivated. The BSs
deactivation takes place in a predefined period of time, where the traffic load is
low and the switching off decision is applied during the whole night zone. This
approach is very suitable for scenarios with realistic traffic patterns, where the
users are distributed within the coverage area of the BSs. Furthermore, DDSO
extends the DSO operation by exploiting the dynamic nature of the traffic load,
along with the distance between the users and the BSs, to allow the adequate BSs
to be switched off. The switching off decision adapts to the variations of the traffic
load and the distance along with the users’ requests are examined every hour of
the night zone. In continuation, a more general approach, namely Maximization
Switching Off (MSO), is also given. This algorithm searches the optimal network
configuration of active and switched off BSs. MSO improves the energy efficiency
performance of the network by proposing an optimization technique to maximize
the energy efficiency. Markov chain models are employed to calculate the perfor-
mance metrics (e.g., throughput, energy efficiency, etc.) of the three approaches.
The three novel approaches are able to significantly improve the energy efficiency
without QoS degradation, since the users of the switched off BSs are served by
neighboring cells, which extend their coverage. The analytical and simulation re-
sults show that the suggested algorithms outperform the baseline configurations
and give the incentives for applying the switching off algorithms in current and
future scenarios and networks.
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The second part of the thesis contributions is formed by Chapter 4 and investigates
network planing solutions in networks with multiple operators. The coexistence
of multiple MNOs in wireless cellular networks gives the necessary incentives to
provide deactivation policies that can be applied in multi-operator environments,
by exploiting the inherent characteristics of these configurations (e.g., BSs’ and
users’ positions, dynamic nature of the traffic, heterogeneous configurations, etc.).
More specifically, realistic traffic patterns are used and complex Markov chain
models are employed to calculate the metrics (e.g., energy efficiency, throughput,
network cost, cost gains and cost efficiency) for both the network and the individ-
ual MNOs. Game theoretic approaches are investigated and a new energy aware
scheme, namely Game Theoretic Infrastructure Sharing (GTIS) is presented to
consider the conflicting interests of the existing entities. The performance of the
new GTIS scheme is evaluated by means of theoretical analysis and computer-
based simulations in various scenarios. Important system parameters, e.g., traffic
load, operators’ traffic volumes and roaming cost, are considered for the evalua-
tion and comparison of the GTIS with several state-of-the-art approaches. The
presented results show that the novel algorithm outperforms the state-of-the-art
schemes and provide a wider understanding of intrinsic tradeoffs.

The last part of the thesis, consisting of two chapters (Chapter 5 and Chapter 6),
addresses the issue of network cost sharing, telecommunications companies co-
operation and deactivation of the BSs in HetNets where numerous MNOs and
third-party entities coexist. In Chapter 5, we effectively address the network cost
sharing issue by proposing an accurate cost model for the SCs and employing differ-
ent state-of-the-art techniques, along with our innovative approaches to share the
cost. The analytical models investigated in this chapter are significantly important
for the examination of network planning solutions in dense cellular networks.

In continuation, in Chapter 6, auction theory and multiobjective optimization
tools are employed to provide innovative energy efficient solutions focusing on
the area of HetNets where multiple operators and third-party companies coexist.
We propose a novel approach, namely Multiobjective Auction-based Switching off
(MAS), to foster the opportunistic utilization of unexploited SCs capacity, where
the MNOs lease the resources of third-party SCs to serve their customers and
deactivate their BSs. Motivated by the conflicting interests of the MNOs and
the restricted capacity of the SCs that is not adequate to carry the whole traffic
in multi-operator scenarios, we introduce combinatorial auction frameworks, by
employing multiobjective formulation to provide an energy efficient solution for
the resource allocation problem. Extensive analytical and experimental results to
estimate the gains in energy efficiency, throughput, network cost and attainable
cost savings are provided. In addition, we investigate the conditions under which
the MNOs and the third-party companies should take part in the proposed auc-
tion in order to give the necessary incentives to the involved parties to apply the
proposed solutions. Relevant system parameters, e.g., traffic load, minimum eco-
nomic requirements, bidding behavior and number of bidding levels, are used for
the evaluation and comparison of the proposed strategy with the state-of-the-art
techniques.
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In addition, the document is closed with a high level assessment of the achieve-
ments accomplished through the research presented herein, conclusions and per-
spectives for future works in Chapter 7.

Finally, a set of appendices is provided to i) facilitate the reading and under-
standing of the document and, ii) complement the thesis with additional, but
relevant, background information. More specifically, some background theory and
general concepts of optimization theory are presented in Appendix A, whereas in
Appendix B, the basic concepts, general guidelines and methodologies concerning
the multiobjective optimization techniques are given.

Fig. 1.11 illustrates the structure of the thesis. Some basic ideas and solutions are
indicated for better understanding.

1.3 Dissemination of Results

The novel proposals and innovations presented in this thesis have been dissem-
inated through several research contributions. These publications are grouped
according to the part of the thesis they correspond to.

The publication list includes:

• [J]: 3 journal papers.

• [B]: 2 book chapters.

• [C]: 6 conference papers.

PART I Chapter 3: 1 book chapter and 3 conference papers.

[B1 ] Alexandra Bousia, Elli Kartsakli, Angelos Antonopoulos, Luis Alonso,
and Christos Verikoukis,“Energy Efficient Schemes for Base Station Manage-
ment in 4G Broadband Systems”. Broadband Wireless Access Networks for
4G: Theory, Application and Experimentation, IGI Global publication, 2013,
pp. 101-121, Chapter 6, ISBN13: 9781466648883; EISBN13: 9781466648890.

[C1 ] Alexandra Bousia, Angelos Antonopoulos, Luis Alonso, and Christos
Verikoukis, “Green Distance-Aware Base Station Sleeping Algorithm in LTE-
Advanced,” in Proceedings of IEEE International Communications Confer-
ence (ICC), Ottawa, Canada, June 2012.

[C2 ] Alexandra Bousia, Elli Kartsakli, Luis Alonso, and Christos Verikoukis,
“Energy Efficient Base Station Maximization Switch Off Scheme for LTE-
Advanced,” in Proceedings of IEEE International Workshop on Computer-
Aided Modeling Analysis and Design of Communication Links and Networks
(CAMAD), Barcelona, Spain, September 2012.
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Figure 1.11: Outline of the dissertation.
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[C3 ] Alexandra Bousia, Elli Kartsakli, Luis Alonso, and Christos Verikoukis,
“Dynamic Energy Efficient Distance-Aware Base Station Switch On/Off Scheme
for LTE-Advanced,” in Proceedings of IEEE Global Communications Con-
ference (GLOBECOM), California, USA, December 2012.

PART II Chapter 4: 1 book chapter, 2 journal papers and 1 conference paper.

[B2 ] Alexandra Bousia, Elli Kartsakli, Angelos Antonopoulos, Luis Alonso,
and Christos Verikoukis, “Game Theoretic Infrastructure Sharing in Wire-
less Networks with Two Operators”. Game Theory Framework Applied to
Wireless Communication Networks, IGI Global publication, 2015, pp. TBA,
Chapter TBA, ISBN15: TBA; EISBN15: TBA.

[J1 ] Alexandra Bousia, Elli Kartsakli, Angelos Antonopoulos, Luis Alonso,
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2015.
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Chapter 2

Background and State-of-the-art

“Ask Gandhi, and eye for an eye makes us both blind.....ask an engineer, and the
numbers don’t lie - the first to strike wins.”

Steven Ivy, Attorney Entrepreneur

2.1 Introduction

The rapid growth of wireless cellular networks, along with the extensive increase
in the data traffic demand in the last few decades, raised the need of strong re-
search and standardization efforts driven by academia and industry. These efforts
have been targeted in the design and the optimization of new wireless networking
solutions that support more and more enhanced services. For many years, major
research efforts have been focused on improving throughput, delay and fairness
of wireless networks. However, recently achieving energy efficiency and providing
greener networks attracted significant attention. The greening of the wireless net-
work consists of a topic of great importance, due to the increased energy waste,
augmented CO2 emissions and economic losses. This chapter provides a com-
prehensive review of existing energy efficient network strategies and the relevant
state-of-the-art works. The background information is important, since it facili-
tates the understanding of the contributions of this thesis.

The chapter is structured as follows: Section 2.2 describes the wireless archi-
tectures, along with the reference scenarios, used in the Ph.D. dissertation. In
Section 2.3, an extensive overview of the state-of-the-art approaches is given. The
existing works focus on the deactivation of BSs and the networks sharing in vari-
able network configurations and under different traffic conditions. After presenting
the most common methods and widely used solutions found in the literature, a de-
scription of the research challenges and open issues is given in Section 2.4. Finally,
Section 2.5 concludes the chapter.

20
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2.2 Cellular Network Architectures

The contributions of this Ph.D. dissertation can be applied in various networks
architectures, following the visions and the requirements of the current and future
wireless cellular networks. The proposed solutions take into account the evolution
of the cellular networks and thus, must be adapted to different network configu-
rations. The examined cellular network architectures are depicted in Fig. 2.1 and
include the following:

• Single operator macro BS networks (Fig. 2.1(a)): Infrastructure wire-
less networks, owned by a single MNO or third-party owners, are deployed
in an area to provide service for the users of the operator. The BSs, located
in the center of each macro cell, are interconnected and exchange important
information through the X2 interface. At this point, let us clarify that the
X2 is a logical interface introduced by the LTE radio access network. It
connects neighboring BSs in a peer to peer fashion to assist handover and
provide a means for rapid coordination of radio resources. The X2 interface
supports exchange of information between BSs to perform the following func-
tions: i) Handover: mobility of users between BSs, ii) Load Management:
sharing of information to help spread loads more evenly, iii) Coordinated
Multi-Point transmission or reception (CoMP): Neighboring BS coordinate
over X2 to reduce interference levels, iv) BS configuration update, cell activa-
tion, including neighbor list updates, v) Mobility Optimization: coordination
of handover parameters, vi) General Management: initializing and resetting
the X2.

Fig. 2.2 illustrates some existing and future single-operator network architec-
tures, identifying their characteristics and the possible roles of the relevant
stakeholders.

Standalone: A single operator owns the infrastructure in a geographical
area and serves its own traffic in the same region (Fig. 2.2(a)). The tradi-
tional model of single ownership is widely found in wireless cellular networks,
since it is very common for an operator to fully deploy its network or to en-
tirely lease the infrastructure from a telecommunication company (though
the second option is rare nowadays). The MNO is responsible for the oper-
ation of the network and the increased operational costs. In addition, due
to the monopolies and the oligopolies that exist in the telecommunications
market, MNOs may prefer to work independently towards the greening of
their networks, without any complex agreement among them. The MNO has
the full control of its network, but is also responsible for the network deploy-
ment and operation expenses. The standalone is the most common case in
wireless cellular networks.

Third-Party: The BSs are deployed and owned by an independent third-
party, and the operator, who holds a spectrum license, leases the infrastruc-
ture (Fig. 2.2(b)). This architecture implies lower CapEx for the MNO, who
is only responsible to provide service to its users. However, the OpEx are
increased due to the leasing agreements.
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Figure 2.1: Cellular network architectures: (a) Single operator macro BSs network,
(b) Multi-operator macro BSs network, (c) Multi-operator heterogeneous network.
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Figure 2.2: Single operator cellular network architectures.

• Multi-operator macro BS networks (Fig. 2.1(b)): Infrastructure wire-
less networks, owned by multiple operators or third-party owners, are de-
ployed in an area to provide service for the users of the MNOs. Multiple
MNOs coexist. In addition, due to legal regulations [26], telecommunication
companies are forced to deploy the BSs on the same building or close to each
other, and as a result the multiple BSs cover the same area. In the illustrated
scenario, there exist multiple macro BS networks, serving the same area,
each one owned by a different operator. The additional deployed infrastruc-
ture is responsible for an emerging increase in the CapEx of the MNOs, but
also implies a rise on the total network energy consumption, thus resulting
in higher OpEx as well. Therefore, energy efficient solutions could reduce
the energy consumption and the cost of cellular networks. The increasing
competition, rapid commoditization of telecommunication equipments and
rising separation of network and service provisioning are pushing the opera-
tors to adopt multiple strategies, with network infrastructure sharing in the
core and radio access networks, emerging as a more radical mechanism to
substantially lower network costs. The new business model, known as infras-
tructure sharing [21], [27] is motivated by the coexistence of multiple MNOs
and third-party companies in the same area.

In Fig. 2.3, some of the possible scenarios of the multi-operator network
architectures are presented, whose challenges and traits are discussed below.

Mobile Virtual Network Operators (MVNOs): The spectrum and the
network infrastructure in a given region are deployed and owned by a single
operator (MNOA in the example of Fig. 2.3(a)). All the other operators in
the same area are virtual (MVNOs) and, since they do not own any spec-
trum or network infrastructure, they must lease resources from MNOA in
order to serve their clients. This model, also known as national roaming, has
already been applied successfully in several countries thanks to its simplicity
and its inherent advantages. In particular, the existence of MVNOs may be
beneficial for the end-user, since it promotes the market competition, while,
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Figure 2.3: Multi-operator cellular network architectures.

at the same time, the basic MNO in the area may capitalize the deployed
infrastructure. On the other hand, it is uncertain whether this model can
be compliant with the foreseen traffic demands in cellular networks, which
probably cannot be met using only the existing infrastructure and the limited
amount of resources. Moreover, the high spectrum prices make the operators
more reluctant to share their resources (and the market) with their competi-
tors [28].

Third-Party: The whole infrastructure in a certain area has been deployed
and owned by an independent third-party, and the MNOs, who hold a spec-
trum license, may enter into agreements for the employment of the access
and core network (Fig. 2.3(b)). The main benefit of this model, which is
gaining momentum in many countries (e.g., Spain [29]), is the significantly
lower CapEx for the MNOs, who are not concerned anymore for the mainte-
nance of the hardware infrastructure, being also able to provide their services
dynamically in a given geographic region. However, the lease of the network
implies an increased OpEx, which in the long run may be proven unprofitable
for the MNOs. In addition, the expected participation of many MNOs in fu-
ture cellular networks could potentially result in high leasing prices, raising
additional barriers and challenges for the effective application of this model.

Unique Infrastructure Provider: There is one operator that has deployed
the whole network infrastructure and leases part of it to other interested
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MNOs (Fig. 2.3(c)). This scenario is fueled by the fact that the same spots
(e.g., rooftops) are usually appropriate for all MNOs and, consequently, an
operator that has built out its network is able to capitalize on the potential
interest of other MNOs on the specific location. In addition, this architecture
can be considered as a hybrid model that combines some basic characteristics
of the two aforementioned schemes, having though two main differences: i)
the interested MNOs are not virtual, since they have their own spectrum li-
cense, and ii) the infrastructure owner is an operator and not an independent
entity. In this case, the operator who provides the infrastructure is burdened
with considerably high CapEx and OpEx, which, however, can be depreci-
ated through the efficient network leasing. From the perspective of the other
MNOs, there is a tradeoff between the expected CapEx (lower) and OpEx
(higher), while it should be also taken into account that they rely on a com-
petitive entity rather than a trusted third-party. This architecture includes
stakeholders with different levels of risk and profit, thus raising intriguing
financial challenges, which require explicit models for the accurate analysis
of each entity according to the different profiles.

Standalone: Various MNOs have deployed and run their own network in
the same region (Fig. 2.3(d)). This model currently dominates in cellular
networks, since it encompasses the lowest possible risk for the operators.
Moreover, taking into account the rationality of the operators, along with
the competitive nature of the telecommunications market, it is also very
possible to appear in future architectures, especially in dense areas with high
traffic. In this scenario, the MNOs have full control of their network, thus
being able to estimate the expenses both for the network deployment and
operation.

• Heterogeneous networks (Fig. 2.1(c)): The networks examined so far
refer to networks with single or multiple MNOs, where only macro BSs are
deployed. Nevertheless, in current and more especially in future deployments
the majority of the configurations are HetNets. In HetNets, marco BSs, micro
BSs, pico cells and femto sites, which are deployed more often by third-
party companies, are used to increase the networks capacity, serve users in
cell edges and provide enhanced QoS during high traffic load periods. As a
consequence of the massive deployment of BSs and SCs (the term SC is widely
used to refer to micro, pico and outdoor femto cells, in general), installation
an operational expenses are further augmented and the proposition of cost
and energy efficient techniques is more than compulsory in heterogeneous
configurations.

In Fig. 2.4 some of the possible scenarios of the multi-operator heteroge-
neous network architectures are illustrated, whose challenges and traits are
discussed below.

Standalone: Various MNOs have deployed and run their own network in
the same region, consisting of macro BSs and SC nodes (Fig. 2.3(a)). This
network architecture is found in dense areas with high traffic, when the need
of enhanced capacity is obligatory. In this scenario, the MNOs control their
network at the cost of increased deployment and operational expenses. A
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Figure 2.4: Multi-operator cellular HetNet architectures.
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deactivation policy in each one of the individual networks does not require
any agreement or arrangement between the different involved MNOs.

Standalone and Third-Party: Various MNOs have deployed and run their
own BS network in the same region, while an independent third-party has
deployed its own SC network (Fig. 2.4(b)). Furthermore, the MNOs hold
a spectrum license, in contrast to the third-part that only owns the SC in-
frastructure. In this scenario, the MNOs have full control of their macro
BS network, thus being able to estimate the expenses both for the network
deployment and operation. The MNOs can also lease the SC infrastructure
from the third-party, by proceeding to the corresponding agreements, to in-
crease their bandwidth and provide enhanced services during peak traffic
conditions, especially in dense areas.

Unique Infrastructure Provider: One operator has deployed the whole
network infrastructure, consisting of both BSs and SCs. In addition, the
MNO leases part of its network to other interested MNOs (Fig. 2.4(c)). In
this scenario, the operator who owns the infrastructure has to deal with high
CapEx and OpEx, which, nonetheless, can be compensated through the in-
come of the network leasing. On the other hand, the other MNOs have only
the leasing expenses. The main drawback of this case is that the basic oper-
ator (MNOA in the example) monopolizes the deployed infrastructure and
creates unnecessary competition among the other MNOs. In addition, this
model may not be feasible in future cellular networks, since the infrastructure
owned by one MNO cannot meet the emerging traffic demands.

Depending on the employed architecture, BSs deactivation policies, infrastructure
sharing techniques, financial agreements or a combination of these strategies can be
applied in an effort to provide energy and cost efficiency. Interesting contributions
on the switching off and infrastructure sharing techniques found in the literature
are surveyed in the next section.

2.3 State-of-the-art Solutions

This section describes the most relevant energy efficient switching off strategies
that are related to our work and are available in the literature. More specifi-
cally, Section 2.3.1 describes the state-of-the-art deactivation policies in macro BS
networks, owned by a single operator, whereas the infrastructure sharing and de-
activation algorithms that can be applied in macro BS networks of multiple MNOs
are presented in Section 2.3.2. Finally, Section 2.3.3 includes the cell switching
off works of the literature concerning heterogeneous deployments, where multi-
operator macro networks and SC infrastructure coexist.

2.3.1 Network Planning Algorithms in Single-Operator Environments

The increasing concern about the energy consumption of telecommunication net-
works is driving operators to manage their infrastructure (decide whether to keep
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their BSs active or turn them off) so as to optimize energy utilization without
sacrificing the user experience. Since the cellular networks are dimensioned ac-
cording to peak traffic conditions, part of the BS infrastructure can be switched
off, and a smaller number of active BSs can provide service in the region. The
critical decision relies on the selection of the appropriate BSs to be switched off.

Fig. 2.5 illustrates an example of a switching off process in a single operator en-
vironment, when one MNO controls and operates its own infrastructure (e.g., the
architecture presented in Fig. 2.3(a)). When the BS of a cell is switched off (Cell
B), the neighboring BS remains active (Cell A), then the active cell can extend its
range and serves the users of the switched off BS, along with its own.

Cell A Cell B

UEA

UEA

UEA

UEA

UEA

BSA BSA

Extended range of Cell A

UEA

Figure 2.5: Example of BS switching off in single operator network.

In the context of network planning through BS deactivation, several works have
been proposed in literature. Initial works concerning the BSs switching off dur-
ing low traffic periods were proposed in the context of UMTS cellular networks.
Particularly, in [30], the authors propose to switch off a random number of BSs
and the energy savings are computed by means of simulations for UMTS cellular
networks with a simplified traffic model describing three classes of services. The
limitation of this work is that the switching off phase is based on a random number
of BSs to be switched off. Thus, when the number of switched off cells is small,
the QoS is guaranteed in terms of number of missed calls, but the energy savings
are not significant. On the other hand, when the number of switched off cells
increases, the energy efficiency and the missed calls are increased. The scheme,
however, does not work efficiently as number of switched off BSs becomes higher,
because in this case the remaining active BSs should increase considerably their
transmission power and as a result the energy savings are diminished. In [31], the
same authors provide an improvement of their former work. The enhancement of
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their work is twofold. First, they use a novel traffic model with users generating
sessions consisting of a series of elastic file transfers (voice, video, etc) and second,
the proposed idea of the previous paper about network planning for switching
on/off the BSs considers two scenarios: i) a uniform that considers the existence
of identical cells with regard to traffic load and transmission power, ii) a hierar-
chical scenario, in which one umbrella cell overlaps with six cells. The umbrella
cell guarantees the QoS when the random switch off scheme is applied.

In [32], the authors show how to maximize the energy savings, by assuming that
any fraction of cells can be switched off according to a deterministic traffic variation
pattern over time. They apply their strategy in different network configurations,
including hexagonal, crossroad and Manhattan configurations. The goal of the
paper is to identify the best fraction of time that the BSs should be switched off.
The limitation stands for the fact that the authors can apply their results to spec-
ified cases and the switching off schemes cannot be generalized. In [33], the same
authors study the switching off transients for one cell, investigating the amount
of time necessary to actually implement the switch off, while allowing terminals
to handover to a new BS without overloading the signaling channels. They show
that the switch off times do not reduce significantly the energy savings of sleep
mode approaches. Even though this latter work does not include the proposal of
a novel switching off scheme, its outcome is considered to be fundamental for the
proposition of sleeping algorithms.

The random switching off algorithms presented so far do not consider the daily traf-
fic variations, nor the positions of the users as critical parameters for the switching
off decision. Towards this direction, another research group proposes several algo-
rithms on BSs switching off. In [34], two approaches that achieve energy savings
are proposed: i) a greedy centralized algorithm where the traffic load of each BS
is examined to determine whether it is going to be switched off or not, and ii) a
decentralized algorithm where each BS locally estimates its traffic load and decides
independently whether it is going to be switched off or not. In both algorithms,
the BS with the lowest traffic load concentrates the traffic of the neighboring BSs,
which will be then switched off. In [35], an improved dynamic switching on/off
algorithm based on blocking probabilities is proposed. The BSs are switched off
according to the traffic variation with respect to a blocking probability constraint.
The number of BSs in active mode matches the variation of the network traffic
in time and space domain, while at the same time, a predefined minimum mode
holding time (a BS should be switched on or off for at least a minimum time pe-
riod) is guaranteed without noticeable performance degradation. A similar idea
that exploits the daily traffic load variations is considered in [36] and [37], where
the authors deal with the overlapping coverage areas of the BSs. The authors
in [36] describe a centralized and a distributed algorithm for BSs switching off.
In the centralized algorithm, the BS with the maximum traffic load concentrates
the traffic of its neighboring BSs, which allows the BSs with no traffic load to
be switched off. The same idea is implemented in the distributed strategy where
coordination mechanisms are exploited in order to avoid conflicts. In [37], the au-
thors further analyze the energy saving of self organized networks. The network is
reconfigured in a centralized and in a distributed way, but especially, the authors
present the switching off algorithms in terms of capacity and delay constraints.
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The switching off decision is triggered by the BS with the lowest traffic load. An-
other interesting approach is presented in [38]. The authors propose algorithms
that save energy by switching off BSs based on the traffic demand. In addition,
the energy consumption is minimized by assigning frequencies and powers to the
active BSs while achieving full coverage and adequate capacity. The idea relies on
saving energy through a power control mechanism.

Apart from the previous studies that propose switching on/off algorithms for
UMTS cellular networks, simple analytical models are also introduced for reduc-
ing the power consumption in WLANs, with the traffic demand being the one and
only factor triggering the switching off decision. In particular, in [39] two energy
efficient policies are examined. The first policy is based on the number of users
that are associated with each AP (and is, thus, called association-based), the sec-
ond is based on the number of active users, e.g., users that are generating traffic
(and is, thus, called traffic-based). Both policies can be tailored, by defining a
value of threshold for the activation of additional APs, and a value of hysteresis
to increase the operation stability. In the same context, a switching on/off ap-
proach for dense WLANs based on the number of associated users to each AP is
presented in [40]. In the aforementioned work, the APs with the lowest traffic load
are switched off first. In these works, the traffic load appears to be an appropriate
factor to decide the suitable BSs to be switched off. In [41], the authors examine
the cell switching off problem with the assumption that each user has a minimum
rate requirement, and show that it can be formulated and solved as a binary In-
teger Linear Programming (ILP) problem when interference is considered to be
constant. Their genetic algorithm switches off cells only in increasing order based
on traffic load. A traffic-based switching off strategy is given in [42]. The daily
and weekly behavior of the traffic is considered for the BSs deactivation and the
energy consumption of each BS is the metric, considered for the simulations.

Another fundamental work has been studied in [43]. In this paper, the daily vari-
ations of the traffic and the BSs positions are examined in order to decide which is
the most energy efficient switching off strategy that achieves the maximum energy
saving. The results obtained in the paper show how traffic load and BS density
influence the switching off strategy and the energy savings. In areas where the BSs
are densely deployed, they are switched off with a higher probability. The results
are very promising, even though the maximum number of BSs is not calculated and
the network capacity is not exploited to its end. An optimized network manage-
ment was considered in [44]. The authors propose a centralized network approach
based on traffic load and the users location estimations in order to decide the
appropriate number of APs that should be sited in a given network configuration.
Furthermore, based on the traffic variation the more suitable cell radius is selected.
The energy savings are presented in the context of different traffic patterns and a
thorough survey on deployment strategies is given, but without considering BSs
switching off. The density and the position of the users are considered to be crucial
and the importance of this work is to realize how these parameters can be inves-
tigated for switching off algorithms. An interesting approach is studied in [45],
where the authors propose to divide the network into grids, so that BSs in each
local cell can replace each other when serving user clients. The location profile of
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each BS, along with the traffic load pattern are used to decide the duration of the
deactivation.

Working in a different direction, in [46] the authors provide a technique for BSs
switching off by using the advantages of Store-Carry and Forward (SCF) relaying.
Their algorithm proposes that cooperative relay nodes will route the traffic of low
utilization BSs to neighboring BSs. The routing scheme via the SCF relays allows
the BSs with the lower traffic load to be switched off and their traffic to be served
by the adjacent cells. The switching off decision relies only on the daily traffic load
variations and the scheme does not consider other critical factors of the network.

Another field of studies concerns power adaptation through traffic load balancing.
In [47], the relationship between the power ratio and overall power consump-
tion/savings to determine the optimized number of BSs from the perspective of
energy savings. Eventually, when the power ratio is low, less BSs should be turned
on, whereas more BSs remain active as the power ratio goes high.

In a more recent work [48], the authors take traffic dependent energy consumption
and penetration loss into consideration in an LTE configuration. The authors
integrate sleep/active modes operations with optimization in antenna variables
such as tilt, height, vertical beam-width and transmit power, subject to constraints
in the Signal-to-Interference-plus-Noise-Ratio (SINR), spectral efficiency and user
throughput. An optimized approach based on CoMP is presented in [49] such that
the amount of power saving less extra power consumed in backhaul and signal
processing is maximized, by selecting an optimized set of points for coordination.
CoMP is another feature of LTE standard which can also be utilized for sleep
mode applications. It eliminates the need for increasing transmission power of
active BSs to maintain the coverage of sleeping BSs.

Analytical models to identify optimal fixed BS switch-off times as a function of the
daily traffic pattern are investigated in [50]. The authors compare the cases of only
one switch-off per day versus several progressive switch-offs (switching off certain
number of BSs at a time in increasing order of load) per day. They also argue that
when the number of switch-off configurations per day increases, the complexity
in operation will also increase. By analyzing various network configurations, as
well as a case study given by a realistic cell deployment, they reach the conclusion
that the extra energy saving gained by multiple switch-offs over single switch off
is only marginal. Hence, they recommend limited effort on the side of network
management would be beneficial enough in terms of energy saving. In [51], the
authors propose three strategies for BS sleeping on a queuing model. The three
strategies differ in how BSs detect incoming customers while sleeping. The au-
thors point out that a number of parameters including delay constraint, BS setup
time and pre-determined time length for sleeping would affect the performances
of different strategies. Particularly, if network cost is high enough, more compli-
cated strategies may not necessarily outperform simple strategy even if optimal
switching time is achieved.

The authors in [52] discusse energy efficiency planning of BSs in cellular networks
that would increase potential energy savings. Notably, an analytical method is
presented in the work to approximate real performance in various scenarios. From
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their work, it is concluded that in order to attain optimal savings, the locations
of BSs must be planned carefully. More specifically, parameters including user
density, coverage area of single BS, inter-BS distance, number of active BSs and
energy consumption are interlinked. For example, too high density of BSs would
result in waste of energy while too low density simply would not suffice. A dis-
tributed cooperative framework to solve the optimal BS sleeping problem in green
cellular networking scenario is proposed in [53]. Within this framework, the neigh-
boring BSs cooperate to optimize the switching strategies in order to maximize
the energy saving while guaranteeing users’ minimal service requirements. The
authors formulate the problem of energy saving as a constrained graphical game,
where each BS acts as a game player with the constraint of traffic load.

Given the diversity among existing studies, it is difficult to establish common
points for comparison. In order to gain further insight on the traits of the state-
of-the-art approaches, a categorization given specific criteria could be considered.
Thus, the following criteria are examined:

• Criterion 1 : It indicates the factor for the switching off decision: random,
traffic, BSs and users position, power adaptation, etc.

• Criterion 2 : It indicates the type of tool used in the resolution of the prob-
lem: analytical tools, heuristics, metaheuristics.

• Criterion 3 : It indicates the type of architecture of each proposal: dis-
tributed or centralized.

• Criterion 4 : It indicates whether coverage/outage or similar QoS aspects
are considered. Coverage aspects include a minimum SINR or the receiver’s
sensitivity, e.g., the minimum required power or the transmission power in-
crease.

Table 2.1 shows a comparative assessment based on the previous criteria.

As it can be seen in Table 2.1, the state-of-the-art works examine the BS deac-
tivation in single-operator networks but they show similar behavior concerning
these criteria. More specifically, in the majority of approaches the traffic is the
critical parameter in the switching off decision and the problem of BS deactivation
is solved in a centralize manner. Analytical and heuristic tools are widely used,
however, the QoS requirements are neglected in many cases. Hence, there are still
many challenges and open issues to be studied. There are many parameters apart
from the traffic load that can be used as a crucial factor to decide the appropriate
BSs to be switched off, such as the distance between the users and the BSs, the
diversity of users individual characteristics (Criterion 1). Note that some of the
works propose heuristics to tackle the switching off problem, and sometimes pro-
ceed to analytical formulations used as starting point (Criterion 2). This clearly
indicates the practical approach followed by many authors, in contrast to the vast
majority of resource allocation schemes that rely on optimization formulations.
The heuristic approaches consist of trivial solutions, whereas the analytical for-
mulations consider a variety of simplifications that may create dissimilarities with
the real networks. In addition, as it can be seen from the table, the majority of
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Table 2.1: Summary of state-of-the-art proposals for single operator networks

Criterion 1 Criterion 2 Criterion 3 Criterion 4
Ref. Switching off Tool Architecture QoS aspects

[30] Random Analytical Centralized No
[31] Random Analytical Centralized No
[32] Random Analytical Centralized No
[33] No switch off Analytical Centralized No
[34] Traffic-aware Not specified Centralized/Distributed No
[35] Traffic-aware Analytic Centralized Yes
[36] Traffic-aware Analytic Centralized/Distributed No
[37] Traffic-aware Analytic Centralized/Distributed Yes
[38] Traffic-aware Analytic Centralized No
[39] Traffic-aware Analytic Centralized No
[40] Traffic-aware Not specified Centralized No
[41] Traffic-aware Heuristic Centralized Yes
[42] Traffic-aware Heuristic Centralized No
[43] Traffic/Position-aware Heuristic Not specified No
[44] No switch off Analytical Centralized No
[45] Traffic/Position-aware Heuristic Not specified No
[46] SCF relaying Not specified Distributed Yes
[47] Power adaptation Analytical Centralized Yes
[48] Traffic-aware Heuristic Centralized Yes
[49] Traffic-aware Heuristic Centralized No
[50] Traffic-aware Analytical Not specified No
[51] Traffic-aware Not specified Centralized/Distributed No
[52] Traffic/Position-aware Analytical Not specified No
[53] Traffic/Position-aware Analytical Distributed Yes

schemes require centralized operation (Criterion 3). Regarding this aspect, the
preference of centralized solutions among the works of the literature is explained
given the nature of the switching off problem, e.g, a certain global knowledge is re-
quired in order to determine which BSs can be switched off. Distributed solutions
are more complex, however, they offer certain freedom to the networks. From
the comparative analysis, it is also clear that coverage analysis is often missed
(Criterion 4). It must be ensured that the whole capacity of the network must be
exploited in order to find the maximum number of BSs to be switched off while still
guaranteeing the QoS. The throughput, energy and energy efficiency analysis still
needs a lot of effort and investigation, and it is worth saying that incorporating
the coverage feature into the picture makes the problem more realistic. The open
issues and the research challenges that need to be explored motivate the contribu-
tions of this thesis and through the proposed algorithms, improved solutions are
investigated.

2.3.2 Network Planning Algorithms in Multi-Operator Environments

The aforementioned scheme shed some light on the different switching off solu-
tions that can be encountered in single-operator networks. However, a lot of work
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need to be accomplished in network planning approaches in multi-operator con-
figurations, where sharing agreement between the MNOs can lead to great energy
efficiency improvements. Therefore, an efficient joint resource allocation and net-
work planning during low traffic periods (e.g., night zone) would allow the service
of the traffic by a smaller number of active BS, thus enabling the deactivation of
the remaining unused infrastructure that may belong to different operators. How-
ever, the decision of the particular BSs that should be switched off is not trivial,
as it engages the end user satisfaction, which is of top priority for the telecommu-
nication operators. In addition, this decision is very complicated in multi-operator
environments due to the conflicting interests of the MNOs and the diversity of the
involved parameters.

Fig. 2.6 illustrates three possible cases for the cell operation and switching off in
multi-operator environments, where each operator controls and operates its own
BS (i.e., the architecture presented in Fig. 2.3(d)). In the simple case where all
the BSs are active (Cell A), each operator is responsible for serving the traffic of
its users. In case that all BSs have been switched off (Cell B), the active BSs of
the neighboring cells (Cell A in the example) of each MNO can extend their range
in order to prevent the generation of coverage holes. Finally, in case that only a
subset of the BSs has been switched off (Cell C), their respective traffic can be
roamed to the active BSs of the same cell.
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Figure 2.6: Example of BS switching off in multi-operator network.

The concept of network sharing through BS deactivation in multi-operator en-
vironments have been investigated in the literature. In particular, significant
research attention has been placed on roaming-based infrastructure sharing so-
lutions that consider joint BS switching off among multiple MNOs. In [54], a
non-cooperative game for switching off BSs in a two MNOs network is discussed.
Preliminary results motivate the use of game theoretic tools in switching off pro-
posals in multi-operator environments. The authors do not propose an exact
process for the BS deactivation, neither they investigate the necessary agreements
among the MNOs. However, interesting realistic data traffic patterns are pro-
vided. The authors in [55] propose four cooperative strategies to switch off BSs in
networks with two MNOs, according to the following criteria: i) equal switching
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off time periods, ii) equal roaming costs, iii) equal energy gains, iv) maximum
energy savings. In all cases, the traffic of the switched off BS is roamed to the
collocated BS of the active MNO. In [56], the authors extend the algorithm that
maximizes the energy savings (proposed in [55]) for multi-operator environments
with various traffic types and QoS requirements (i.e., throughput, lost calls). It is
shown that remarkable savings are possible if operators are willing to cooperate.
However, the authors do not examine under which condition the operators could
cooperate. In the same context, the authors [57] study the potential energy sav-
ings that can be achieved by opportunistically switching off part of the network
during low traffic in real-world scenarios. The authors estimate that, by sharing
and cooperating traffic between BSs, the energy savings can be translated to 200
to 375 metric tons of annual carbon dioxide emission or about 42000 dollars to
78000 dollars on the bill for the owners of the BSs. They also suggest in the paper
that cooperation between operators would be even more profitable, particularly
in metropolitan areas where dense deployments are required for every MNO and
thus, further investigation is necessary. The authors in [58] consider three network
planning strategies: i) one minimizes the number of transmitters, namely TX,
ii) another minimizes the power consumption, namely MP, iii) while the last one
is the hybrid strategy, namely H, combining the previous two strategies. While the
TX strategy effectively lowers the CapEx for the MNOs in the BS planning stage,
the MP strategy minimizes the operating expenses by turning under-utilized BSs
into sleep mode to reduce energy consumption. The result shows energy savings
between 11% and 28% are achievable even for already energy efficiency-optimized
BSs deployment. Therefore, by adopting the H strategy, the total expenditure of
the mobile operators could be significantly reduced.

Nonetheless, despite their novel insights in the infrastructure sharing concept, the
aforementioned works study only particular aspects of the problem. In addition,
the consideration of only voice traffic in some works (e.g., [55], [56]) is not realistic,
since data traffic forms a significant part of the total traffic load in current cellular
networks. Last but not least, the assumption of only two MNOs in the network is
a limiting factor for the contribution of the above works, as the most common sce-
narios in European countries involve three to four MNOs [59]. To conclude, open
issues and challenges need to be explored in the field of multi-operator networks.

2.3.3 Network Planning Algorithms in Heterogeneous Networks

The dense HetNets imply a significant increase in the CapEx of the MNOs and
the operation of these networks results in even higher OpEx [60] comparing to
the networks examined so far. Thus, deactivation policies and network sharing
techniques in HetNets have attracted the attention of the research community.

Fig. 2.7 illustrates an example for the cell operation in multi-operator heteroge-
neous environment, where each operator controls and operates its own BS and a
third-party owns a SC network (i.e., the architecture presented in Fig. 2.4(b)). In
the simple case where one MNO keeps its BS active (BSA), whereas the other
operator switches off its infrastructure (BSB). The former operator continues the
network operation. On the other hand, the MNO with the switched off BS roams
its traffic to the SCs, by leasing the capacity from the third-party.
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Figure 2.7: Example of BS switching off algorithm in multi-operator HetNet.

The greening of HetNets through BS deactivation have been throughly examined
by the research community. The use of high temperature electronics, adaptive
power management, new network architectures of high density, low transmit power
microcells and highly efficient PAs are only few of the solutions that lead to energy
consumption reduction. However, higher gains can be achieved by the investigation
of network planning and BS switching off schemes in HetNets.

The authors in [61] consider layouts featuring varying numbers of micro BSs per
cell in addition to conventional macro sites. They introduce the concept of area
power consumption as a system performance metric and employ simulations to
evaluate potential improvements of this metric through the use of micro BSs. The
presented results show that for the studied propagation scenarios and under the
employed power consumption models, the power savings from deployment of micro
BSs are moderate in full load scenarios and strongly depend on the offset power
consumption of both macro and micro sites. The same authors extend their work
in [62], and they provide a framework to evaluate and optimize cellular network
deployments with respect to the average number of micro sites per macro cell as
well as the macro cell size. The simulation results show that deployment of micro
sites allows to significantly decrease the area power consumption in the network
while still achieving certain area throughput targets.

In [63], different deployment strategies are investigated and network configura-
tions with micro BSs are compared to conventional pure macro systems by means
of area power consumption and system throughput. The conclusion of the paper is
that a densification to a certain degree is beneficial, whereas homogeneous micro
deployments can be regarded to be superior. In another work [64], the utiliza-
tion of small, low power BSs is regarded as a promising strategy to enhance a
network’s throughput and to increase the energy efficiency of homogeneous and
heterogeneous networks with regard to traffic load conditions. Different densities
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have been examined and the power consumption of the different configurations
is evaluated. Finally, the authors in [65] develop power models for macro and
micro BSs relying on data sheets of several GSM and UMTS BSs with focus on
component level, e.g., power amplifier and cooling equipment. The authors inves-
tigate the amount of energy consumed in the different states of BS operation. In
all these works the deployment of macro and micro BSs in HetNets is thought-
fully examined, but on the other hand switching off macro and micro BSs is not
considered.

The SCs can be exploited to allow BSs to be switched off [66], [67], [68]. Telecom-
munications companies, such as Nokia Networks [69], are building networks of
interconnected SCs that help operators to add coverage and capacity to existing
macro networks and guarantee the user service when the macro cells are turned off.
An overview of existing energy efficient techniques in the literature is presented
in [70], highlighting the advantages and the shortcomings of the algorithms and
revealing the open issues that should be further studied in the field of HetNets
and operators’ collaboration.

In [71], the application of dynamic sleep mode in BSs with pico cell deployments
is studied. HetNet planning can improve the coverage of the cellular network,
but will likely result in even more severe over-provisioning and thus consume more
energy if the cells are unable to adapt to traffic load. The solution proposed by the
authors is to introduce the dynamic sleep and wake modes in the pico cells. The
result shows that the network with both macro cells and pico cells, where dynamic
sleep mode algorithm is applied in pico cells, consumes less amount of energy than
the network with only macro-cells. The authors in [72] propose an energy model
for heterogeneous cellular network and a cross layer optimization method. Several
pico cells (lower layer) are in the coverage area of one macro cell. The problem to
solve is how to associate users to the group of macro cell and pico cells, so that
energy consumption is minimized after lightly-loaded pico cells turned to sleep.

The authors [73] investigate how Small cell Access Points (SAPs) can play a role
enhancing energy efficiency of heterogeneous cellular networks. Sleep mode of
SAPs actually corresponds to the trade-off between energy consumption and false
alarm rate. The authors note that bursty transmissions from macro-cell traffic,
due to mobility of users, makes duty cycling of sleep mode in smaller cells more
complicated. Poisson Point Process (PPP) is also used to model the locations of
SAPs and macro BSs. A similar sleeping strategy is proposed in [74]. This policy
suggests that femto cells are switched off when the cell itself is not heavily loaded
and the macro cell can serve the overall traffic without deteriorating the QoS.
Based mainly on queuing theories, the work utilizes a Continuous Time Markov
Decision Process (CTMDP), in which states represent load status of each BS.
Every user brings a certain load to its connected BS. Each possible action for
the state and transition probabilities is assigned a value of rewards/cost. The
cost function is defined as an increasing function of energy consumption and a
decreasing function of target throughput, a QoS measure. The switching operation
is added to the state space as a new dimension. Apart from the straightforward
case that BSs have complete information of its associated traffic, optimal solutions
have also been found for partial traffic information (based on Partially Observable
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Markov Decision Process (MDP)) and delayed information (by transforming their
MDPs into equivalent MDPs without delay).

A stochastic analytical framework for BS sleeping in LTE networks with OFDMA
as the physical layer transmission technology is presented in [75]. The authors
investigate the theoretical model quantifying the key metrics of the outage prob-
ability (e.g., SINR) and the average user capacity to account for the effect of BS
sleeping, such that optimal energy saving can be obtained while outage probability
is held constant. Furthermore, the authors propose a modified nonsingular path
loss model appropriate for small distance between the user equipment and the BS,
which is more realistic for micro cells. The authors in [76] consider a scenario
where users in macro cells and micro cells have different traffic patterns. They
assume that micro cells serve hotspots with higher traffic volume. The authors
investigate three energy saving approaches including micro cell BS sleeping and
expansion/shrinking coverage of micro cells (similar to cell zooming). The cover-
age and power consumption of macro cells are held constant. It is shown that each
approach is effective under different traffic conditions. The crucial factor affecting
the performances of different approaches is traffic rate ratio, namely the ratio of
traffic rate per unit area in hotspots to that in non-hotspots.

The previous works propose solutions for single-operator HetNets. However, even
though the opportunistic exploitation of the unused SCs capacity and the deacti-
vation of the redundant BSs in multi-operator HetNets can have significant, very
few research works exist in the literature. The authors in [77] propose an auction-
based offloading scheme for BS switching off, where the operators submit a bidding
value for the requested capacity and a third-party’s income optimization approach
is followed to solve the resource allocation problem. However, only a particular
network configuration is considered, where the SC capacity is sufficient to serve
the traffic of the whole network, allowing the switching off of all the BSs. Despite
the clear benefits of the BSs switching off via offloading, shown by the authors,
the proposed scheme could not be applied in real life scenarios, since the SCs
may not be able to fully support the network traffic, especially when numerous
MNOs are present in the same area [59]. Another limitation of the auction-based
state-of-the-art works [77], [78], [79] suggest that the MNOs propose one bidding
value for the SCs capacity bandwidth based on the maximum predictions about
their traffic that they are willing to offload. However, these predictions do not
correspond always to the real values, which can be significantly lower than the
maximum values, leading to increased costs for the operators and inefficient use
of capacity resources. As an alternative solution, the MNOs could be willing to
request lower capacity resources by paying lower bids, since the capacity that is
needed to serve the actual traffic may be lower than the maximum capacity for
serving the highest traffic predictions, potentially leading to very few unserved
users. However, the energy and financial gains could be significant.

Given the promising results of the state-of-the-art works, along with their short-
comings and limitations, it is evident that the application of switching off algo-
rithms in HetNets, where multiple MNOs coexist, could have great advantages in
terms of energy and cost reduction. In spite, the presence of multiple involved par-
ties and their individual objectives motivates the use of optimization algorithms
and similar methodologies to improve the performance of the HetNets.
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2.4 Open Issues and Challenges

As discussed in previous sections, there have been a considerable number of studies
aiming at improving the energy efficiency of cellular networks by BS sleep mode
techniques. While the contributions and achievements made have been substantial,
certain deficiencies cannot be ignored.

One common problem with current research in this area is that the system, traffic
or energy models are usually oversimplified and some assumptions are too rigid.
Certain conditions that are unrealistic are adopted in the experiments. For exam-
ple, uniform traffic distribution and arrival pattern in all cells at all times, zero or
constant delays in switching operations, energy consumption of BSs only related to
the state of the system (sleep/wake), but not by other factors such as traffic load.
In fact, the activity levels of both BSs and associated mobile users are limited to
only two, e.g., active or sleeping (inactive) in most work. The network configu-
rations examined in some works are trivial and limited scenarios with respect to
number of MNOs, sites deployment, are investigated.

The negative impact on QoS when switching some BSs to sleep mode has also
been ignored in various publications. However, this must be taken into account as
one can always save 100% energy by turning off all BSs without considering the
deteriorated QoS. Especially in rural areas where the layouts of BSs are sparse,
blocking rate will increase significantly as more BSs go asleep [50].

Another problem is a variety of works implicitly assumes that BSs are able to
alternate states between sleeping and active as frequently as possible. Although the
most recent BSs have already been designed for frequently entering sleep modes,
still most of the existing BSs in use today were designed foreseeing only occasional
switch-on and switch-off, otherwise the failure rate of components or BSs would
be increased dramatically. In this regard, the use of sleep modes for these devices
might be restricted [12], [50].

Another important point which has been ignored, due to uncertainties and diffi-
culties in estimation, is the constant and traffic independent energy consumption
(energy consumed in the manufacturing, installation and maintenance process of
the equipment), which actually presents around 30% to 40% of total energy con-
sumption for the lifetime of a cellular BS [80], [81]. As discussed previously, a
denser BS deployment enlarges the potential saving of sleep mode schemes as
more BSs can possibly be switched off under the same amount of traffic, but on
the contrary, the constant energy of a newly deployed BS adds to the total energy.
This arising tradeoff averts from previous suggestions that more energy savings
can be simply achieved with denser BSs deployment with reduced transmission
power and enabled sleep mode. Therefore, the optimal strategy for energy saving
diverts from the case where embodied energy is ignored [52], [81].

Therefore, green technologies need to catch up with these challenges and open
issues. Incorporating different technologies may require significant effort by re-
searchers with a wide range of backgrounds, but the benefit will justify the effort.
In summary, the sleep mode technologies as well as the whole green cellular net-
work are promising areas of research. It will probably remain a popular research
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topic for the coming years, since there are bright prospective as well as issues
waiting to be solved.

2.5 Concluding Remarks

This chapter has provided some background information that is relevant to the
contributions of this thesis, which will be thoroughly presented in the following
chapters. Initially, a set of reference scenarios has been explained. The state-
of-the-art works concerning the network planning algorithms have been discussed
next. The largest section of this chapter has presented the principles, the con-
tributions, but also the limitations of deactivation designs. In continuation, an
overview of the schemes available in the literature by taking into account the solu-
tions that can be applied in single and multi-operator environments and HetNets
was given. Finally, the open issues and challenges to achieve energy efficiency and
savings, cost reduction and financial gains have been summarized.

The remaining of this thesis is organized in three parts. The first part (Chapter 3)
is focused on proposing novel solutions about switching off BSs in single operator
networks. The second part of the thesis (Chapter 4) is oriented to switching off
techniques in multi-operator environments with macro BSs. Finally, in the third
part (Chapter 5 and Chapter 6), switching off solutions are given in HetNets.



Chapter 3

Strategies for Energy Efficient
Network Planning in
Single-Operator Environments

“The problem in this business isn’t to keep people from stealing your ideas; it’s
making them steal your ideas.”

Howard Aiken

3.1 Introduction

Today, nobody can deny the explosive growth of the wireless network industry. The
rising cost of energy and the increased environmental awareness have created the
urgent need for developing green communications. Thus, this Ph.D. dissertation
aims at getting closer to this transversal goal, and consequently to develop energy
saving schemes. This is the case of the switching off proposals presented in this
chapter. Network planning solutions, through BSs switching off, are without a
doubt, among the most promising strategies, and as such, they have captured
great attention in the last few years.

The switching off problem consists in determining the largest set of cells that can
be switched off without compromising the QoS provided to users, keeping in mind
that the power hungry BSs, owned by one operator, can be partly switched off
and cover the whole area.

The aim of this chapter is to provide network planning algorithms for single-
operator cellular networks by proposing BSs switching off techniques. The system
model, the network configuration and the notation used throughout the chapter are
described in Section 3.2. Section 3.3 presents three network planning algorithms,
applied in single-operator networks with macro BSs. The analyticl models for
the calculation of the energy efficiency and the network throughput are given in
the same section. Section 3.4 is devoted to the validation of the models and an
extensive performance assessment. Finally, Section 3.5 concludes the chapter.

41
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3.2 System Model and Operation

3.2.1 Network Configuration

Our system model, depicted in Fig. 3.1, consists of M + 1 macro cells distributed
with in a geographical area with partially overlapping coverage areas. The network
configuration can be viewed as a grid of cells or as a cluster of macro cells. In
particular, either we consider each cell individually or each cluster is formed by
one central cell, surrounded by M peripheral cells, while each cell is covered by
1 BS. Therefore, the term BSm is used to denote the BS in the mth macro cell,
with m ∈ M = {0, . . .M}. As it will be explained in details in the next section,
part of the BS infrastructure in the M + 1 cells may be switched off during low
traffic conditions, while the remaining active BSs can extend their transmission
power and range in order to form wider service cells and cover their area and the
area of the switched off BSs.

...

Cell 0

Cell 1

Cell 2

Cell m

Cell M

BS1
BS2

BS0BSM

BSm

Figure 3.1: Network configuration with M + 1 BSs.

3.2.2 Traffic Load Model

In the network planning policies, described in this chapter, we adopt a realistic
traffic pattern (proposed in [82]) that corresponds to the voice traffic per BS in
a given cell, during the day. In the traffic pattern, depicted in the Fig. 3.2, the
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maximum traffic per hour is expressed as a percentage of the total BS capacity
resources CRBS that is considered same for all cells. We focus on the time zone
during the night, when the traffic demand per BS is relatively low (i.e., less than
10% of the cell’s capacity). The peak hours are observed in the morning and during
early afternoon, while during night hours the traffic is low. The dissimilarity in
traffic load between busy hours and off-peak periods is also reflected on the energy
consumption during high and low traffic periods. Since the network is dimensioned
according to the peak traffic demand of the users, and the network capacity is
adequate for serving the traffic during peak hours, during low traffic periods, the
probability of having the system full is low. Thus, a number of network resources
are redundant. The underutilization of these resources leads to considerable energy
waste.
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Figure 3.2: Voice traffic pattern during the day/night of different BSs for distance-
aware switching off algorithms.

The network traffic, depicted in Fig. 3.2, consists of voice traffic with Constant
Bit Rate (CBR) RV . We assume that for each BSm, voice sessions are Poisson

generated processes every hour, h, with rate λ
(m,h)
V and have exponential service

time, denoted by 1/µ
(m,h)
V . Hence, we model the operation of the node m as an

M/M/c/c multi-server Markov chain, depicted in Fig. 3.3.

0 1 NV-1 NV...

λV
(m,h)λV

(m,h)λV
(m,h)

μV
(m,h) 2μV

(m,h) NVμV
(m,h)

λV
(m,h)

(NV-1)μV
(m,h)

...

Figure 3.3: Markov model’s state transition diagram for DSO.
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Each state of the system is characterized by the number of active data sessions,
denoted by v. The maximum number of simultaneously served sessions is NV =
CRBS/RD for the BSs, given that CRBS is the total bandwidth of a BS. The
balance equation that represents the valid transitions is given by:

p(m,h)
v =


(
λ

(m,h)
V

µ
(m,h)
V

)v

· 1

v!
· p(m,h)

0 , v = 0, 1, ..., NV ,

0 , v ≥ NV ,

(3.1)

where p
(m,h)
0 represents the state probability that the BSm remains idle, and it is

calculated as:

p
(m,h)
0 =

(
NV∑
v=0

(
λ

(m,h)
V

µ
(m,h)
V

)v

· 1

v!

)−1

. (3.2)

Regarding the concept of the QoS, in our work, the main goal is to ensure a high
normalized throughput, defined as the percentage of users that are successfully
served by the system, since we consider that it is a key priority for the operators
to provide service to all their customers. More specifically, we refer to this require-
ment for the normalized throughput as QoS in terms of lost calls. Furthermore,
the normalized throughput is often employed to represent the Grade of Service
(GoS), as explained above.

In addition, we assume that all users in a given cell have the same transmis-
sion rate, which corresponds to the required CBR of the voice applications (i.e.,
64 kbps). Since the focus of all of our works has been to investigate the potential
of BSs deactivation, network planning and infrastructure sharing and motivate
operators to employ this paradigm in order to achieve energy and cost efficiency,
we adopt a simplified approach with regard to resource allocation. In fact, we
have considered the worst case scenario, in which the required resources to guar-
antee the desired CBR are calculated based on the link quality of users at the cell
edge. Specifically, we have calculated the required number of resource blocks that
must be assigned to achieve the desired CBR for a given service class, taking into
account the SNR of the most distant user from the BS (i.e., in the example of Fig.
3.4, this would correspond to SNRA at distance dA). Then, we have considered
that no rate adaptation takes place within the cell and all users in the cell re-
quire this same amount of resources. Note that PBS is the transmission power to
guarantee SNRA at cell edge, whereas P ′BS is the transmission power to guarantee
SNRB = SNRA at cell edge, after range expansion.

The same principle is adopted in the case of range expansion by the cells that
remain active, when some of the BSs are switched off. In the case when some BSs
are switched off, the traffic is served by the corresponding BSs of the neighboring
cells that must increase their transmission power in order to provide service in an
extended area. Hence, the active cells increase their coverage and, as a result, the
cell edge user is now located at a longer distance dB > dA. In order to ensure
that the same resources as before are sufficient to guarantee the desired CBR, we
increase the transmission power of the active BS so as to provide the same SNR
at the cell edge as before (i.e., SNRB = SNRA at the new cell edge dB). Given
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dB

User B

SNRB

Range 
expansion

User A
SNRA

PBS

BS BS

P’BS

Figure 3.4: Network configuration example with increased transmission power

this power increase, we can assume that the same resource allocation is valid for
the extended cell, leading to the same performance as before, with no increase in
latency.

Even though this is the worst case scenario, since some users closer to the BS could
support higher transmission rates or, equivalently, occupy less resource blocks, we
believe that our approach is suitable for our case study. Providing a more realistic
rate adaptation scheme would certainly improve the performance of our system
but would add complexity without affecting the key findings and conclusions of
this work (since it would have the same effect on both our proposal and the state-
of-the-art schemes). Furthermore, we should point out that even though spectral
efficiency is critical during peak traffic hours, during the night zone when the traffic
is low, the allocation of the BS resources is not so crucial to the performance of
the system.
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Finally, it should be noted that this level of simplification is often employed by
works in the literature that are focused on switch off schemes. For instance, a
very similar approach is adopted in [31], where the authors employ a link budget
calculation to estimate the maximum cell radius that can support the required QoS
constraints. In their proposed switched off scheme, the power of a BS must be
sufficiently increased to compensate for the increased path loss to serve the area of
a switched off neighboring cell. To calculate potential energy savings by switching
off schemes, an even higher level abstraction of the resource allocation scheme,
where a given transmission rate achieved through a fixed amount of bandwidth is
allocated to each use, is adopted in several works such as [30], [32] and [36].

3.2.2.1 Notation

A summary of the main parameters employed in the distance-aware switching off
algorithms and the maximization deactivation scheme and their model analysis is
given in Table 3.1.

3.3 Network Planning Algorithms for Single-Operator Net-
works

In this section, the three proposed network planning solutions are described. The
first algorithm, where the BSs are deactivated by taking into account the distance
between the BSs and their users, is given in Section 3.3.1), along with the ana-
lytical models in Section 3.3.1.1. The second scheme considers both the distance
and the traffic load variations and the corresponding analytical models are trans-
formed to take into account these corresponding characteristics (Section 3.3.2 and
Section 3.3.2.1). Finally, a switching off approach that provides an optimal solu-
tion is described in Section 3.3.3 and the analytical models for the this solution
are given in Section 3.3.3.1.

3.3.1 Distance-aware Switching Off Algorithm (DSO)

The first proposed switching off mechanism is based on the fact that the trans-
mission power of a BS depends on its distance from the users. The BSs require in-
creased transmission power to cover extended area and serve distant users. Hence,
the impact of the distance on the transmission power makes it an appropriate indi-
cator for the decision about the BSs that must be turned off. The Distance-aware
Switching Off (DSO) approach proposes to switch off the BS with the maximum
average distance value. Our algorithm leads to energy saving, while guaranteeing
the QoS in terms of achieved throughput and outage probability of the users. The
remaining active BSs extend their coverage to serve the whole network area. In
addition, the remaining active BSs are able to serve all the existing traffic at the
present time in the network.
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Table 3.1: Main Parameters for the DSO, DDSO, MSO model analysis

Symbol Description

BSm BS in mth cell in a the network configuration
CRBS Capacity resources of a BS
E [B] Average transmitted bits of a network

E [BBSm ] Average transmitted bits of BSm in a network
E [E] Average energy consumption of a network

E [EBSm ] Average energy consumption of BSm in a network
E[ηε] Expected energy efficiency of a network

E[η
(BSm)
ε ] Expected energy efficiency of BSm in a network
E [T ] Expected throughput of a network

E [TBSm ] Expected throughput of BSm in a network
h Hour of the day

m ∈M Macro cell in a network
M = {0, . . .M} Set of macro cells in a network, with |M| = M
MOFF ⊆M Subset of BSs that are switched off

MOFF Number of BSs that are switched off
MON ⊆M Subset of cells that remain active
MON,h ⊆M Subset of cells that remain active at hour h
MON Number of BSs that are active
MON,h Number of BSs that are active at hour h
Load Traffic load of a single BS
NV Number of voice calls serves simultaneously

pbl
(m,h) Blocking probability of mth cell in a network

Pconst Power consumed by a BS for cooling and antenna feeding
Pidle Power consumed by a BS when it is idle
Ptx Power consumed by a BS for data transmission

p
(m,h)
v State probability for serving v calls of mth cell in a network
RV Transmission rate of voice calls
thour Duration of hour h
v Voice call
xm Binary decision variable in MSO

λ
(m,h)
V Generation rate of voice calls of mth cell in a network at hour h

µ
(m,h)
V Service of voice calls of mth cell in a network at hour h
ρm, h Traffic load percentage of BSm in a network at hour h

Our research work has two main contributions: i) We consider the distance be-
tween the BSs and their associated users in the switching off decision in order to
minimize the energy consumption of the whole network. ii) We apply our algo-
rithm on the LTE-Advanced standard, whereas most works in this field consider
older technologies.

The DSO algorithm works as follows:

• Step 1: Each BS estimates the distance of its users and obtains the infor-
mation for the distance of users that are associated with its neighboring BSs
through the X2 interface.
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• Step 2: The BSs calculate the average distance based on the results of the
first step and they exchange the outcome among them.

• Step 3: The BS with the maximum average distance is switched off first, if
there is no QoS degradation, and the neighboring BSs deal with the possible
increases in the transmission power. The algorithm is repeated from Step 1,
until the maximum number of BSs is switched off and it is guaranteed that
there is no QoS degradation.

The steps of the DSO algorithm are shown graphically in the flowchart in the
Fig. 3.5.

3.3.1.1 Performance Metrics Analysis for DSO

In this section, we provide the analytical models for the calculation of the network
throughput and energy efficiency, when the DSO is applied.

By employing the steady state probabilities of the Markov chain, we define and
calculate the key performance metrics both for the individual BSs and the whole
network, focusing on the night zone.

Throughput The expected throughput E [TBSm,h] for the BSm at hour h is
defined as the average number (over all possible states of the system) of served
sessions in the system multiplied by the transmission rate of the session and cal-
culated as:

E [TBSm,h] =

NV∑
v=0

v′ ·RV · p
′(m,h)
v , (3.3)

where p
′(m,h)
v are the steady state probabilities for the given traffic load rate λ

′(m,h)
V .

We define as λ
′(m,h)
V the new average traffic load of the BSm, which is equal to the

traffic of BSm and the traffic of the switched off BSs that must be served by BSm.

Assuming that the DSO is applied from h = 22.00 pm until h = 08.00 am, for the
whole night zone, the expected throughput E [TBSm ] for the BSm is:

E [TBSm ] =
08.00∑

h=21.00

E [TBSm,h] . (3.4)

In continuation, we calculate the throughput for the network of MON cells, after
the application of the algorithm. Thus, the total throughput of the network is:

E [T ] =
∑

m∈MON

E [TBSm ] , (3.5)

where E [TBSm ] is the average throughput of the mth BS when it serves the traffic

λ
′(m)
V .
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Figure 3.5: Flowchart of the distance-aware switching off (DSO) algorithm.
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Energy Efficiency The expected energy efficiency E[η
(BSm)
ε ] of a BSm is defined

as the ratio of the average transmitted bits E [BBSm ] over the average energy
consumption E [EBSm ]:

E[η(BSm)
ε ] =

E [BBSm ]

E [EBSm ]
. (3.6)

The average transmitted bits during the night zone can be calculated by multi-
plying the average throughput given in Eq. (3.3) with the duration of the hour
thour:

E [BBSm ] =
08.00∑

h=21.00

E [TBSm,h] · thour. (3.7)

To calculate the average energy consumption, we should take into account the
power consumed by the BS for operation and transmission, consisting of three
components: i) the constant power Pconst, consumed by an active BS for operations
such as cooling, antenna feeding, etc, ii) the idle power Pidle, which is the power
consumed when the BS remains idle, i.e., when it has no ongoing traffic sessions,
iii) the transmission power for serving the ongoing traffic sessions corresponding

to each state p
′(m)
v , considering that Ptx denotes the transmission power for serving

a single data session. Hence, the average energy consumption at hour h is given
by:

E [EBSm,h] =

(
Pconst + Pidle · p

′(m,h)
0 +

NV∑
v=0

Ptx · v′ · p
′(m,h)
v

)
· thour. (3.8)

For the whole night zone, the average energy consumption of BSm is given by the
following equation:

E [EBSm ] =
09.00∑

h=21.00

E [EBSm,h] . (3.9)

Finally, the network energy efficiency is defined as:

E[ηε] =
E [B]

E [E]
, (3.10)

with
E [B] =

∑
m∈MON

E [BBSm ] , (3.11)

and
E [E] =

∑
m∈MON

E [EBSm ] , (3.12)

where E [BBSm ] and E [EBSm ] are the transmitted bits and the energy consumption

of the mth BS, when serving traffic equal to λ
′(m)
V .
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3.3.2 Dynamic Distance-aware Switching Off Algorithm (DDSO)

In the same context, we propose a second switching on/off algorithm that exploits
the traffic load variations during night zone, along with the distance between the
users and the BSs, as a parameter for the switching off decision. Comparing to the
related work presented in Chapter 2, the main contributions of this novel dynamic
distance-aware switching on/off strategy are summarized in the following: i) This
dynamic algorithm is an iterative process and its results vary according to the
time changing conditions. The number of BSs that are switched off is not fixed
and, in particular, the selection of the deactivated BSs depends on traffic pattern
variations and the distance between the BSs and the users. The dynamic nature
of the algorithm leads to the extension of the night zone compared to other works
in the literature. More specifically, the deactivation of the BSs is progressively
occurring as soon as the traffic load decreases and not during a predefined night
zone. ii) In other works in the literature, the schemes were applied in a static
way, with the decision taken at the beginning of the night zone. In contrast, in
this work, our adaptive strategy is applied every hour in the low traffic zone, a
characteristic that differentiates the Dynamic Distance-aware Switching On/Off
(DDSO) scheme from our DSO algorithm, as well. iii) Our proposal is not only to
switch off the BSs, but the BSs are also switched on gradually, according to the
traffic load variations, when the network resources are not sufficient for serving
the existing traffic load.

Our algorithm is divided in two phases: the switching off phase that begins when
the traffic load decreases and the switching on phase that begins when the traffic
demand increases again, early in the morning.

• Switching off phase: The switching off phase starts at 19:00 pm (Fig. 3.2)
and ends at 07:00 am. During these hours, the traffic load is low, and a
reduced number of BSs could be used to serve the existing traffic. In a
wireless network that consists of BSs, our algorithm calculates the minimum
number of BSs that should remain active based on the traffic variations.
Therefore, a maximum number of BSs will be switched off. The algorithm
consists of three steps (same steps as the ones presented in the previous
algorithm and shown in Fig. 3.5) that are repeated every hour during the
switch off phase. The night zone is extended and a greater amount of energy
is saved. Based on the total network capacity and the desired data rate, the
BSs estimate the maximum number of the users that can be served in the
coverage area and they decide if more BSs can be switched off.

• Switching on phase: In a typical traffic load scenario, since the cell load
increases at 08:00 am, the number of active BSs is not adequate for serving
the traffic load. Therefore, the BSs should be switched on gradually in order
to have the appropriate number of BSs to serve the existing traffic load. At
08:00 am the existing active BSs calculate the number of BSs that should
be turned on in order to serve the traffic of the network based on the traffic
requirements and the position of the existing users. The active BSs are
responsible for informing the neighboring non-active BSs to be turned on.
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At 10:00 am when the traffic load reaches its peak, all the BSs should be
turned on.

3.3.2.1 Performance Metrics Analysis for DDSO

In this section, we provide the analytical models for the calculation of the network
throughput and energy efficiency, when the DSO is applied.

Throughput The DDSO is applied from h = 19.00 pm until h = 09.00 am, for
the whole night zone. Hence, the expected throughput E [TBSm ] for the BSm is:

E [TBSm ] =
09.00∑

h=19.00

E [TBSm,h] , (3.13)

where E [TBSm,h] is given by Eq. (3.3).

In addition, we assume that MON,h are the BSs that remain active at hour h.
Hence, after the application of the algorithm, the total throughput of the network
during the time that the algorithm is applied is:

E [T ] =
∑

m∈MON,h

E [TBSm ] . (3.14)

Energy Efficiency The expected energy efficiency E[η
(BSm)
ε ] of a BSm is given

by the following equation:

E[η(BSm)
ε ] =

E [BBSm ]

E [EBSm ]
. (3.15)

The average transmitted bits during the night zone can be calculated by multi-
plying the average throughput given in Eq. (3.3) with the duration of the hour
thour:

E [BBSm ] =
09.00∑

h=19.00

E [TBSm,h] · thour. (3.16)

For the whole night zone, the average energy consumption of BSm is given by the
following equation:

E [EBSm ] =
09.00∑

h=19.00

E [EBSm,h] , (3.17)

where E [EBSm,h] is calculated by Eq. (3.8).

The total network energy efficiency is defined as:

E[ηε] =
E [B]

E [E]
, (3.18)
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with
E [B] =

∑
m∈MON

E [BBSm ] , (3.19)

and
E [E] =

∑
m∈MON

E [EBSm ] , (3.20)

where E [BBSm ] and E [EBSm ] are calculated by Eq. (3.16) and Eq. (3.17), respec-
tively.

3.3.3 Maximization Switching Off Algorithm (MSO)

In the previous sections, we proposed two distance-aware algorithms, while in the
state-of-the-art, traffic-aware schemes were shown. In this section, the problem of
the energy consumption reduction is approached from another perspective. Thus,
we propose an algorithm that finds the optimal number of switched off BSs during
low traffic conditions.

The two previous algorithms presented strategies for switching off different number
of BSs. The objective of the third algorithm is to find the maximum number of
BSs that can be switched off for a network configuration of the hexagonal network.
In this section, we provide an extension of the previous works in order to achieve
this optimization goal. The key point relies on finding the optimal combination of
those BSs to be switched off and those that remain active. The optimal solution
maximizes the energy savings.

The Maximum Switching Off (MSO) algorithm is applied from 22:00 pm until
08:00 am when traffic load is low. Our algorithm is applied in clusters consisting
of M + 1 cells (Fig. 3.1) and follows the next steps:

• Step 1: Each cluster, having information about the traffic pattern given
from Fig. 3.2, computes the average estimated traffic arrival rate for the
night zone.

• Step 2: For any given cluster of M cells, the energy consumption and the
energy efficiency are computed for different combinations of switched off BSs,
using the average estimated traffic rate. We assume that the traffic of a BS
that is switched off is served by the neighboring BS that has the smallest
identification number (the identification numbers appear in Fig. 3.1). The
BSs that remain active increase their transmission power accordingly to keep
the QoS of the overall area.

• Step 3: The combination that gives the maximum energy saving is applied
to our network. The BSs that remain active deal with the transmission power
increases to serve the existing users.

Let us define xm as a binary decision variable that indicates whether the corre-
sponding BS (BSm) will be switched off (xm = 1) or not (xm = 0). The objective
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that we consider is the minimization of the energy consumption and the maxi-
mization of the total energy efficiency. The network energy efficiency is given by
the following equation:

E[ηε] =
E [B]

E [E]
, (3.21)

with,

E[B] =
∑
m∈M

E[BBSm ] · (1− xm) , (3.22)

and,

E[E] =
∑
m∈M

E[EBSm ] · (1− xm) , (3.23)

where E [BBSm ] and E [EBSm ] are the transmitted bits and the energy consumption

of the mth BS, when serving traffic equal to λ
′(m,h)
V . The average transmitted bits

and the average energy consumption are calculated by using the Eq. (3.7) and the
Eq. (3.8) and the Markov chain analysis.

The ILP problem can be formulated as follows:

max

∑
m∈M

E[BBSm ] · (1− xm)∑
m∈M

E[EBSm ] · (1− xm)
(3.24)

s.t.

p
(m,h)
bl = 0,∀m ∈M, (3.25)

xm ∈ {0, 1},∀m ∈M. (3.26)

The p
(m,h)
bl represents the blocking probability of some users to be unserved and is

given below:

p
(m,h)
bl =

(
λ
′(m,h)
V

µ
(m,h)
V

)NV
NV !

NV∑
v=0

(
λ
′(m,h)
V

µ
(m,h)
V

)v
v!

(3.27)

The maximization problem is solved trough an exhaustive search algorithm. The
flowchart of the MSO algorithm is presented in the Fig. 3.6.

3.3.3.1 Performance Metrics Analysis for MSO

In this section, we provide the analytical models for the calculation of the network
throughput and energy efficiency, when the MSO is applied.
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Figure 3.6: Flowchart of the maximization switching off (MSO) algorithm.

Throughput The MSO is applied from h = 22.00 pm until h = 08.00 am, for
the whole night zone. Hence, the expected throughput E [TBSm ] for the BSm is:

E [TBSm ] =
08.00∑

h=22.00

E [TBSm,h] · (1− xm) , (3.28)

where E [TBSm,h] is given by Eq. (3.3).

Hence, after the application of the MSO scheme, the total throughput of the
network during the time that the algorithm is applied is:

E [T ] =
∑
m∈M

E [TBSm ] · (1− xm) . (3.29)
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Energy Efficiency The expected energy efficiency E[η
(BSm)
ε ] of a BSm is given

by the following equation:

E[η(BSm)
ε ] =

E [BBSm ]

E [EBSm ]
. (3.30)

The average transmitted bits during the night zone can be calculated by multi-
plying the average throughput given in Eq. (3.3) with the duration of the hour
thour:

E [BBSm ] =
08.00∑

h=22.00

E [TBSm,h] · thour · (1− xm) . (3.31)

For the whole night zone, the average energy consumption of BSm is given by the
following equation:

E [EBSm ] =
08.00∑

h=22.00

E [EBSm,h] · (1− xm) , (3.32)

where E [EBSm,h] is calculated by Eq. (3.8).

The total network energy efficiency is given by Eq. (3.21).

3.4 Performance Evaluation

In order to evaluate the performance of the proposed switching off schemes and
verify our analytical formulation, custom-made C/C++ simulation tools that exe-
cute the rules of the algorithms have been developed. Monte Carlo methods were
employed to compare our approach to state-of-the-art algorithms. In this section,
the simulation setup is described, followed by a discussion about the obtained
results.

3.4.1 Simulation Scenario

The simulation scenario, where DSO and DDSO schemes are applied, includes
15 cells (i.e., M = 15). However, for the MSO algorithm that clusters of cells
are formed before the application of the switching off strategy (i.e., M = 6), we
focus in a simulation scenario with one central cell and six peripheral cells. In
our experiments, we assume that the BSs have the same traffic volume equal to
ρm · Load, shown in Fig. 3.2 for the case of ρm = 1.0.

To assess the performance of our scheme, we compare the proposed energy effi-
cient switching off strategies (DSO, DDSO and MSO) with two state-of-the-art
approaches: i) a network planning scheme, where a random number of BSs is
selected to switched off, referred as Random Switching Off algorithm (RSO) [30],
and ii) a baseline scenario where all BSs are active and none of the BSs is switched
off, referred as No Switching Off approach (NSO). The RSO algorithm considers
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the selection of a random number of BSs to be switched off and calculates the time
that this fraction of BSs should be switched off.

The simulation parameters are summarized in Table 3.2.

Table 3.2: Simulation Parameters for DSO and DDSO

Parameter Value

Bandwidth, CRBS 115 Mbps
# of cells, M 15, 6
Traffic load, Load Fig. 3.2

Service rate, µ
(m)
V Mean: 1/50 calls/s

Transmission rate, RV 64 kbps
Transmission power, Ptx [1.29, 1.5] W
Idle power, Pidle [0.34 0.95] W
Constant power, Pconst [591 675] W

3.4.2 Analytical Models Validation

In this section, we validate via extensive simulations the analytical models for the
network throughput and energy efficiency for different traffic profiles.

Fig. 3.7(a) and 3.7(b) present the network throughput performance and energy
efficiency, respectively, when applying the DSO algorithm. As we can see, the
experimental results perfectly match the analysis, thus validating the proposed
theoretical expressions. In both figures, we observe that the throughput and the
energy efficiency follow similar behavior with the traffic load model, presented in
Section 3.2.2. The traffic load variations have direct impact on the throughput. In
addition, since the energy efficiency is calculated by the division of the transmitted
bits over the consumed energy, the traffic load variations affect also the behavior
of the energy efficiency. As expected, the two metrics increase with the traffic load
(ρm).

Similar observations are concluded from the Fig. 3.8(a) and 3.8(b), where the net-
work throughput and the energy efficiency are plotted, respectively, for the DDSO
algorithm. Compared to the DSO, we observe that the night zone is extended in
the second approach, due to the dynamic nature of the scheme. More specifically,
the night zone of the former algorithm (DSO) starts on 22.00 pm and ends on
08.00 am, whereas for the DDSO approach, the switching off starts on 19.00 pm
and at 10.00 am, all the BSs are active.

Fig. 3.9(a) and 3.9(b) present the network throughput performance and energy
efficiency, respectively, when applying the MSO algorithm. As we can see, there
is a perfect match between the experimental results and the analytical models
results, thus validating the proposed theoretical expressions. In both figures, we
observe that the throughput and the energy efficiency follow similar behavior with
the traffic load model, presented in Section 3.2.2. Furthermore, throughput and
energy efficiency increase with the traffic load (ρm).
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Figure 3.7: DSO: Analytical models validation under varying traffic load conditions

3.4.3 Numerical Results

This section includes the performance results with regard to energy efficiency for
the DSO, DDSO and MSO algorithms compared to state-of-the-art approaches.

In Fig. 3.10(a), the DSO proposal is compared to the reference scenarios with
respect to energy efficiency. As it was also viewed in the analytical model valida-
tion, it is observed that energy efficiency follows the traffic load variations. When
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Figure 3.8: DDSO: Analytical models validation under varying traffic load conditions

applying the DSO scheme, a fixed number of BSs is switched off, as the switching
off decision is taken in the beginning of the night zone. As a consequence, with
the traffic decrease, fewer bits are transmitted and less energy is consumed. Nev-
ertheless, since energy consumption includes a constant part that is independent
of the traffic, energy decreases at a lower rate with respect to the transmitted bits,
thus leading to a reduced energy efficiency. The opposite happens as the traf-
fic increases. Comparing the DSO switching off algorithm to the state-of-the-art
schemes during the night zone, we observe that the DSO approach outperforms
the RSO scheme in terms of energy efficiency. The throughput of our system is not
degraded in comparison to the state-of-the-art approaches, even though it is not
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Figure 3.9: MSO: Analytical models validation under varying traffic load conditions

graphically presented. Some indicative throughput values are given in Table 3.3.
The comparison between the two different strategies, the DSO and RSO, outlines
that the DSO algorithm that uses distance for the determination of the switching
off BSs gives better performance than the RSO scheme, where a random number
of switched off BSs is selected in the switching off process. Therefore, the selection
of distance as the critical factor in the deactivation policy is well stated as energy
efficient.

Fig. 3.10(b) illustrates the relative energy efficiency gain of DSO and RSO with
respect to NSO, where none of the BSs in the network are switched off. It is
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Figure 3.10: Energy efficiency of DSO compared to state-of-the-art approaches

Table 3.3: DSO: Throughput (Mbps) for ρk = 1.0

Hour of night

Algorithm 22.00 00.00 02.00 04.00 06.00 08.00

DSO 77 52 7 3 3 77

RSO 77 52 7 3 3 77

NSO 77 52 7 3 3 77
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observed that, using DSO algorithm, a better system performance is achieved, as
there is a significant enhancement in energy efficiency of about 91% when com-
paring our approach to the NSO scheme, in contrast to the 15% improvement of
the RSO scheme.

The simulation results of the proposed DDSO algorithm comparing to the state-
of-the-art solutions in terms of energy efficiency are presented in Fig. 3.11(a).
This algorithm improves the energy efficiency to a greater extend by employing an
extended night zone and iteratively applying the switching off policy every hour.
The dynamic nature of the algorithm leads to an increased number of BSs that are
switched off, and thus to increasing energy savings. The energy efficiency follows
the variations of the traffic, while a different number of BSs are turned off each
time during the night zone. During the hours 22:00 pm until 00.00 am, we observe
that the performance of our algorithm is degraded compared to RSO, since less
BSs are switched off through our proposal, in order to carry the traffic, whereas
the RSO switches off a constant number of BSs.

The relative comparison of the energy efficiency is presented in Fig. 3.11(b). In
this figure the relative energy savings of DDSO and RSO algorithms are presented
with respect to the NSO solution. It is worth noting that for low traffic conditions
the energy saving of the DDSO scheme can be significant, of the order of 220%. By
comparing the results of Fig. 3.10(b) to the relative gain of Fig. 3.11(b), we remark
that DDSO algorithm outperforms the distance aware switching off algorithm
(DSO) as well as the previous works appearing in the literature (RSO). Thus, the
distance, along with the dynamic nature of the traffic load variations should both
be taken into consideration in the switching off process.

Fig. 3.12 depicts the number of BSs that remain active (MON). In the dynamic
scheme (DDSO), the number of active BSs decreases gradually after 19:00 pm, as
the switching off scheme is applied at the beginning of each hour and increases
again at 08:00 am, when the switching on strategy is employed. On the other
hand, when applying the RSO algorithm and the DSO algorithm, a fixed number
of the BSs are switched off.

In Fig. 3.13, we compare the average energy efficiency of the two proposed distance-
aware schemes (DSO and DDSO) and the state-of-the-art approaches (RSO and
NSO). The calculated values correspond to an average value of the energy efficiency
during the whole night zone. It is noted that the proposed schemes outperform the
RSO and the NSO. As it is observed, the energy efficiency is increasing for all the
schemes as the traffic load increases, however the relative gain is stable, since the
number of switched off BSs depends also on the traffic variations. Furthermore,
significant higher values in terms of energy efficiency are achieved for the DDSO
proposal.

The performance of the proposed MSO algorithm is shown. More specifically,
Fig. 3.14(a) depicts the energy efficiency of MSO compared to the state-of-the-art
works (RSO and NSO), whereas the relative energy efficiency gains with respect
to NSO are illustrated in Fig. 3.14(b). From Fig. 3.14(a), it is evident that the
energy efficiency of all the illustrated schemes follows the traffic load variations,
an observation that was shown in previous figures (Fig. 3.10(a) and Fig. 3.11(a)).
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Figure 3.11: Energy efficiency of DDSO compared to state-of-the-art approaches

In addition, MSO outperforms the state-of-the-art schemes, since the application
of MSO leads to an optimal number of BSs that are switched off.

Lst but not least, the performance of the MSO scheme is examined. By focusing on
Fig. 3.14(b), it is observed that, using our algorithm, a better system performance
is achieved, as there is a significant enhancement in energy efficiency. The energy
saving is 600% by using our maximization technique. In addition, it is worth
noting that the energy savings that we succeed in terms of the percentage of
energy efficiency are significant compared to state-of–the-art RSO algorithm. The
MSO algorithm outperforms the DSO and DDSO schemes, since it exploits the
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Figure 3.14: Energy efficiency of MSO compared to state-of-the-art approaches

capacity of network in a better way and saves the maximum energy, by finding
the optimal combination between switched off and active BSs.

3.5 Concluding Remarks

The switching off strategies are a paradigm that has gained popularity is the last
few years as it has been shown to be an effective approach to reduce the energy
consumption in wireless cellular networks. By exploiting the different aspects of
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the varying traffic load pattern and the network configurations, novel switching
off approaches have been developed and several aspects of this problem have been
investigated. Our work proved that not only the volume, but also the position of
the BSs and the users plays an important role in the selection of the BSs to be
switched off. In addition, our research has revealed that exploiting the tradeoff
between aggregate network capacity and the number of active cells is a natural
and effective way to reduce the complexity of the energy waste problem. Our
approaches achieve the main goal: reduce energy consumption without penalizing
QoS. The studies have remarked the need for careful calibration as an important
requirement to maximize the profit.

The proposed frameworks have the following desirable features:

• Robustness: We propose solutions that can be applied on various network
topologies. Indeed, they focus on providing low energy consumption to the
areas with high number of BSs. In addition, clusters of cells can be formulated
in order to give optimal solutions.

• Feasibility: The proposed schemes do not require any new additional func-
tionality. The operation could be done in a time scale of tens of minutes or
hours. In addition, integration in existing (operative) networks is transpar-
ent. Information exchange is required, but this can be easily be done through
the X2 interface.

• Real time complexity and scalability: The real time complexity is minimum,
since only some information about the traffic load is required.

The conclusions can be summarized as follows:

• The proposed frameworks define new approaches to analyze the energy con-
sumption problem through switching off the redundant BSs and by 1) ex-
plicitly considering the spatial traffic distribution, 2) taking into account the
time-varying nature of the traffic load, and 3) searching the optimal solution
for the BSs switching off.

• All the proposed algorithms are based on the inherent tradeoff between en-
ergy consumption and aggregate capacity. In this manner, the proposed
methods lead to a reduced number of active BSs, serving the whole network.
The results indicate that the proposed strategies offer a convenient tradeoff
in terms of complexity, performance, and feasibility.

• System level experiments confirm that the performance obtained is excel-
lent. In addition, it clearly outperforms reference schemes both in terms of
achievable gains and feasibility/complexity. Although achievable energy sav-
ings are, in general, network dependent, the proposed frameworks provide
a suitable way to observe the impact of variable parameters such as users’
position and network configuration on the performance of the switching off
strategies.



Chapter 4

Strategies for Energy Efficient
Infrastructure Sharing in
Multi-Operator Environments

“I was originally supposed to become an engineer but the thought of having to
expend my creative energy on things that make practical everyday life even more
refined, with a loathsome capital gain as the goal, was unbearable to me.”

Albert Einstein, The Ultimate Quotable Einstein

4.1 Introduction

The contributions of this chapter are motivated by the emerging demand for mul-
timedia applications and mobile services, along with the rise in the CapEx and
OpEx of the multiple coexisting MNOs and the underutilized infrastructure dur-
ing off-peak hours. A roaming-based infrastructure sharing scheme is proposed,
applicable in multi-operator environments during low traffic periods. Taking into
account the rationality of the MNOs and their conflicting interests, we introduce
a game theoretic framework that enables the MNOs to make individual switch-
ing off decisions for their own BSs, thus bypassing potential complicated service
level agreements among them. Besides the expected energy efficiency benefits,
the proposed scheme allows the MNOs to significantly reduce their financial costs
independently of the strategies of the coexisting MNOs, providing them with the
incentives to participate in the game. Our contributions are summarized as follows:

1. As a part of an integrated roaming-based infrastructure sharing scheme for
multi-operator environments, we introduce a game theoretic switching off
algorithm that aims at minimizing the individual MNO cost in a distributed
manner. We define a realistic cost function that explicitly considers actual
roaming and operational costs for the MNOs. We show that, in the proposed
game, a Dominant Strategy Equilibrium (DSE) can be reached, defined as

67
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the strategy yielding the minimum cost for each MNO, regardless of the other
MNOs’ actions.

2. To address the heterogeneous nature of voice and data traffic in current and
future cellular networks, we design an analytical model, based on a two-
dimensional Markov chain that theoretically estimates the throughput, the
energy efficiency and the cost expenses both for the individual MNOs and
the whole network.

3. We validate the theoretical analysis and assess the effectiveness of the pro-
posed infrastructure sharing scheme with the aid of extensive simulation ex-
periments. We introduce a new performance metric, namely cost efficiency
that connects the network performance with the financial benefits of the
MNOs. The results indicate the potential total energy efficiency gains in the
network and highlight the individual cost and energy gains for the MNOs.

The remainder of the chapter is organized as follows. The system model, the
network configuration and the notation used throughout the chapter are described
in Section 4.2. In Section 4.3, we introduce the infrastructure sharing scheme,
along with the game formulation of the switching off decision. In Section 4.4, we
present the analytical models for the energy efficiency, the network throughput
and the cost metrics. The validation of the model and an extensive performance
assessment are provided in Section 4.5. Finally, Section 4.6 concludes this chapter.

4.2 System Model and Operation

4.2.1 Network Configuration

Our system model, depicted in Fig. 4.1(a), considers clusters of multi-operator
cells. In particular, each cluster is formed by one central cell surrounded by M
peripheral cells, while each cell includes N BSs of different MNOs. Therefore, the
term BSn,m is used to denote the BS of the nth operator in the mth macro cell,
with n ∈ [1, N ] and m ∈ [0,M ]. As it will be explained in detail in the next section,
part of the BS infrastructure in the M surrounding cells may be switched off during
low traffic conditions, motivating the operators to reach roaming agreements and
share the resources of the remaining active BSs in the same cell. In contrast, the
BSs of the central cell always remain active and increase their transmission power
and range to form an umbrella cell, in the extreme case where all the BSs of a
peripheral cell are switched off.

4.2.2 Traffic Load Model

Since the proposed infrastructure sharing scheme is applied during periods of low
network traffic, the selection of an accurate traffic model is quite critical. In this
work, we adopt a realistic traffic pattern [82], [83], [84] that corresponds to the
aggregated voice and data traffic per operator in a given cell, during the night zone.
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Figure 4.1: Scenario and traffic model

In the traffic pattern, depicted in the leftmost part of Fig. 4.1(b), the maximum
traffic per hour is expressed as a percentage of the total BS capacity CRBS that
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is considered same for all cells. We focus on the time zone between 01.00 am and
09.00 am1, when the aggregated traffic per BS is relatively low (i.e., less than 20%
of the cell’s capacity).

In addition, for the sake of generality, we assume that the traffic volumes of dif-
ferent operators may be different, although they follow the same pattern. Hence,
we define ρn ∈ [0, 1] the percentage of each operator’s traffic load with respect to
the maximum traffic for the respective hour. An example is given in the rightmost
part of Fig. 4.1(b), where the traffic of three operators is depicted. In this par-
ticular example, the first operator has the maximum traffic volume (i.e., ρ1 = 1),
whereas the second and the third operator have 70% and 30% (i.e., ρ2 = 0.7 and
ρ3 = 0.3) of the maximum traffic, respectively. Finally, the voice and data con-
nections are served at a Constant Bit Rate (CBR) of RV and RD, respectively.
We consider that no rate adaptation takes place within the cell and all users of a
given service class are allocated the same amount of resources, calculated for cell
edge users. Even though this is the worst case scenario, since some users closer
to the BS could support higher transmission rates or, equivalently, occupy less
resource blocks, we believe that our approach is suitable for our high-level case.
Furthermore, we point out that even though spectral efficiency is critical during
peak traffic hours, during the night zone when the traffic is low, the allocation of
the BS resources is not so crucial to the system performance.

4.2.3 Notation

A summary of the main parameters employed in the gamet theoretic switching off
algorithm and their model analysis is given in Table 4.1.

Table 4.1: Main Parameters for the GTIS model analysis

Symbol Description

A State space of Markov model
BSn,m BS of nth MNO in mth cell
c1 Electricity charge per energy unit

Cconst Fixed operational cost

C
(n,m)
inc Transmission increase cost of nth MNO in the mth cell
Cn,m Cost of nth MNO in the mth cell

C
(n,m)
roam ≈ C

(m)
roam Roaming cost of nth MNO in the mth cell

C
(n,m)
tr ≈ C

(m)
tr Traffic dependent cost of BSn,m

CRBS Capacity resources of a BS
d Data session

E [B] Average transmitted bits of network
E [Bn,m] Average transmitted bits of BSn,m
E[C] Expected cost of a network

E[Cn,m] Expected cost of MNOn

Continued on next page

1Nonetheless, our algorithm can be adapted to different traffic conditions and the selection of the
hours of the night zone may vary according to the variations of the actual traffic.
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Table 4.1 – continued from previous page
Symbol Description

E[CON,ON
i,m ] Expected cost for the case (ON,ON)

E[CON,OFF
i,m ] Expected cost for the case (ON,OFF)

E[COFF,ON
i,m ] Expected cost for the case (OFF,ON)

E[COFF,OFF
i,m ] Expected cost for the case (OFF,OFF)
E [E] Average energy consumption of a network

E [En,m] Average energy consumption of BSn,m
E [ηn,mc ] Cost efficiency of BSn,m
E[ηε] Expected energy efficiency of a network

E[η
(n,m)
ε ] Expected energy efficiency of BSn,m

E [T ] Expected throughput of a network
E [Tn,m] Expected throughput of BSn,m
m ∈M Macro cell in hexagonal cells
MNOn Identification of the nth MNO

M = {0, . . .M} Set of cells in hexagonal grid, with |M| = M
MOFF ⊆M Subset of BSs that are switched off

MOFF Number of BSs that are switched off
MON ⊆M Subset of cells that remain active
MON Number of BSs that are active
n ∈ N Identification of MNO

N = {1, . . . N} Set of MNOs, with |N | = N

N (m)
OFF ⊆ N Subset of MNOs with switched off BSs in mth cell

N
(m)
OFF Number of MNOs with switched off BSs in mth cell

N (m)
ON ⊆ N Subset of MNOs with active BSs in mth cell

NON (m) Number of MNOs with active BSs in mth cell

N (n,m)
roam ⊆ N (m)

OFF Subset of MNOs who roam their traffic to MNOn

Load Traffic load of a single BS
NV Number of voice calls serves simultaneously
Pconst Power consumed by a BS for cooling and antenna feeding
Pidle Power consumed by a BS when it is idle
Ptx Power consumed by a BS for data transmission

p
(k)
v State probability for serving v calls of kth cell in a grid

p(ν,d) State probability for serving v calls and ν data sessions
RD Transmission rate of data sessions
RV Transmission rate of voice calls
Sn,m Set of actions of BSn,m
sn,m Switching off probability of BSn,m
tnight Night zone duration
ν Voice call
α Roaming cost parameter
Γ Non-cooperative game
ϑν,d Characteristic function

λ
(n,m)
D Generation rate of data sessions of BSn,m
λ

(n,m)
V Generation rate of voice calls of BSn,m
µ

(n,m)
D Service of data sessions of BSn,m

Continued on next page
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Table 4.1 – continued from previous page
Symbol Description

µ
(n,m)
V Service of voice calls of BSn,m
ρn Percentage of nth MNO with respect to maximum traffic
ϕν,d Characteristic function

4.3 Infrastructure Sharing Scheme with Game Theoretic
Switching Off Decision (GTIS)

In this section, we introduce the infrastructure sharing framework for multi-operator
environments. The proposed solution consists of two parts: i) an infrastructure
sharing algorithm and ii) a game theoretic switching off decision strategy. To
that end, in Section 4.3.1, we propose the infrastructure sharing algorithm that
defines the rules for the collaboration among the MNOs, given that part of the
BS infrastructure is switched off during the night zone. Then, in Section 4.3.2,
we formulate the BS switching off decision as a game theoretic strategy that en-
ables each operator to determine the best course of action in each cell, in order to
significantly reduce its own cost and energy consumption.

4.3.1 Infrastructure Sharing Scheme

Let us recall that the considered system model (Section 4.2) includes N MNOs
that provide coverage to a cluster of cells formed by one central and M periph-
eral cells. For the low-traffic night zone, a subset of each operator’s BSs in the
peripheral cells is switched off. Once this BS subset is determined (through the
game theoretic algorithm that will be described in the next section), the proposed
infrastructure sharing scheme is applied to determine how the traffic will be served
by the remaining active infrastructure, taking into account the corresponding op-
eration and roaming costs.

The proposed infrastructure sharing algorithm is applied in the network, after the
execution of the independent switching off decisions. According to the outcome of
the decision process, there are three possible outcomes in a given peripheral cell
m:

1. If all the BSs remain active (i.e., N (m)
ON = N ), no infrastructure sharing takes

place in the cell. Hence, each BS consumes energy for operation and service
of its own traffic.

2. If a subset N (m)
ON ⊂ N of the BSs remains active, then they undertake the

service of the traffic of the switched off BSs in the same cell (i.e., N (m)
OFF ). In

particular, the traffic of each switched off BS is roamed to an active BS of the

same cell, selected randomly with equal probability ps from the subset N (m)
ON .
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The MNOs of the deactivated BSs should pay the corresponding roaming
cost to the active operators. However, the increased energy consumption
(due to the higher traffic) of the active BSs implies a higher cost that should
also be considered.

3. If no BSs remain active, (i.e., N (m)
ON = ∅), the BSs of the central cell (BSn,0)

increase their transmission power to cover the area of the peripheral cell. In
this case, there is no collaboration between operators, since the traffic of each
switched off BS is served by the central BS of the same operator. Hence, no
roaming costs are involved, while the operators take into account the extra
cost for the increased power consumption in the central cell.

Having defined the general network operation, each MNOn is able to make an
individual switching off decision without the need of exchanging any information
with the other MNOs and, subsequently, to execute the infrastructure sharing
algorithm (Algorithm 1), illustrated in Fig. 4.2, that determines the traffic flow
in the network. Given the aforementioned three possible outcomes, we have four
different cases that can be distinguished for the MNOn in a given cell m depending
on the state of the MNOn and the state of the rest MNOs in the same cell. More
specifically, the case where a subset N (m)

ON ⊂ N of the BSs remains active is
subdivided in two separate cases depending on the state of the MNO under study.
Thus, we have:

• Case 1 - Operator n is ON and N
(m)
ON = N − 1 operators are ON : The total

cost for the MNOn is Cn,m = Cconst+C
(n,m)
tr , where Cconst represents the fixed

operational cost for the BS and C
(n,m)
tr corresponds to the cost for serving

the BS’s traffic.

• Case 2 - Operator n is ON and N
(m)
OFF > 0 operators are OFF : In this case,

MNOn may have to pay a higher cost due to the increased served traffic (i.e.,
its own traffic along with the roamed traffic of other BSs), while receiving the

corresponding roaming income from each operator MNOi ∈ N (n,m)
roam . More

specifically:

– The total operation cost can be expressed as C
′
n,m = Cconst + C

(n,m)
tr +∑

i∈N (n,m)
roam

C
(i,m)
tr

– The received roaming income by MNOn can be expressed as C
′(n,m)
roam =∑

i∈N (n,m)
roam

C
(i,m)
roam, where C

(i,m)
roam is the roaming cost paid by MNOi and

can be considered as a portion of the total operational cost, i.e., C
(n,m)
roam =

α ·
(
Cconst + C

(n,m)
tr

)
, with α ∈ [0, 1].

Consequently, in this case, the total cost for operator MNOn can be written
as:
Cn,m = Cconst + C

(n,m)
tr +

∑
i∈N (n,m)

roam
C

(i,m)
tr − α ·

(
Cconst ·

∑
i∈N (n,m)

roam
C

(i,m)
tr

)
.

• Case 3 - Operator n is OFF and N
(m)
ON > 0 operators are ON : In this case,

operator n should pay the roaming cost to one operator from the active set
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N (m)
ON randomly selected with equal probability ps = 1/N

(m)
ON . Hence, in this

case, Cn,m = C
(m,m)
roam .

• Case 4 - Operator n is OFF and N
(m)
OFF = N − 1 operators are OFF : In this

case, the cost paid by the MNOn corresponds to the extra energy consump-
tion for the power increase of the central BS (BSn,0), in order to cover the

area of a switched off BS in a peripheral cell. Hence, Cn,m = C
(n,0)
inc .

Algorithm 1 Infrastructure sharing algorithm of BSn,m in peripheral cell m

Require: Switching off decision of all MNOs in cell m
1: for all m ∈M do
2: for all n ∈ N do
3: if

(
(n ∈ N (m)

ON ) & (N (m)
OFF = ∅)

)
then . Case 1

4: Cn,m = Cconst + C
(m)
tr

5: else if
(

(n ∈ N (m)
ON ) & (N (m)

OFF 6= ∅)
)

then . Case 2

6: Cn,m = Cconst + C
(m)
tr

7: for all (r ∈ N (n,m)
roam ) do

8: BSn,m
roam←−−− BSr,m

9: Cn,m = Cn,m + C
(m)
tr − C

(m)
roam

10: end for
11: else if

(
(n ∈ N (m)

OFF ) & (N (m)
ON 6= ∅)

)
then . Case 3

12: Select operator r ∈ N (m)
ON with probability ps = 1/N

(m)
ON

13: BSn,m
roam−−−→ BSr,m

14: Cn,m = C
(m)
roam

15: else if
(

(n ∈ N (m)
OFF ) & (N (m)

ON = ∅)
)

then . Case 4

16: BSn,m
roam−−−→ BSn,0

17: Cn,m = C
(n,0)
inc

18: end if
19: end for
20: end for

4.3.2 Game Theoretic Switching Off Strategy

The proposed infrastructure sharing algorithm defines the rules of agreements
among the operators, taking as an input the subset of switched off BSs in the
peripheral cells. Hence, the individual decisions with regard to the BSs switch-
ing off constitute the core of the proposed scheme and main contribution of our
work. Taking into account the conflicting interests and the interaction among the
different MNOs, as well as the different available courses of action, we propose
a feasible game theoretic switching off strategy for the BSs in the network. In
particular, we model the switching off decision process as a static non-cooperative
game with complete information [85], [86], played by the N operators in each of
the M peripheral cells of a given cluster.
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Figure 4.2: Flowchart of the infrastructure sharing algorithm
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Non-cooperative game theory is a very powerful analytical tool that provides multi-
fold advantages, as it enables us:

• to model the aforementioned conflicting situations between the MNOs with
high accuracy;

• to minimize the exchange of information among the different MNOs. This
is very important, since, in competitive environments, the MNOs may not
be willing to disclose extensive network information to their competitors.
Furthermore, minimizing interactions can reduce the risk of misbehavior,
since selfish operators could choose to modify their statistics in order to
increase their personal benefits;

• to reach distributed close-to-optimal solutions for realistic scenarios. In the
proposed non-cooperative game, a DSE can be achieved, which can be easily
calculated with limited required information. The calculated DSE represents
the solution where each player’s assigned strategy minimizes its cost, regard-
less of the other players’ strategy and, in our formulation, it is very close to
the Pareto optimal solution.

The remaining of this section is divided into three parts. First, the game formu-
lation and the cost matrix are given, followed by the individual cost minimization
analysis in the second part. Finally, the DSE of the game is discussed, along with
some numerical results on the switching off probabilities.

4.3.2.1 Game Formulation

Definition 1. The non-cooperative game Γ can be represented in strategic form
by the triplet: Γ = (N ,Sn,m, Cn,m), with n ∈ N ,m ∈M, where:

• N = {1, . . . , N} is the finite set of players corresponding to the N operators.

• Sn,m = {ON,OFF} is the set of the two possible actions for each MNOn

with respect to the BSn,m, i.e., BSn,m can be active (state ON) or switched
off (state OFF).

• Cn,m : S → R+ is the cost function for player n in the peripheral cell m,
where S = S1,m× · · · ×Sn,m× · · · ×SN,m represents the Cartesian product of
the strategy sets.

The cost function of the game Cn,m has been selected to match the cost paid by
each operator in every peripheral cell, as described in Section 4.3.1. However,
at this point, we can exploit an observation that holds true for the low traffic
conditions that characterize the night zone. In particular, the traffic load variations
during the night have a very small impact on the operational cost of the BS. Hence,
it can be realistically assumed that all operators have approximately the same cost

for serving the traffic in a given cell m, i.e., C
(n,m)
tr ≈ C

(m)
tr . Similarly, the roaming

cost, which is expressed as a function of the operational cost, is also simplified to

C
(n,m)
roam ≈ C

(m)
roam.
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This realistic simplification has two direct implications on the game formulation.
First, the operators can calculate their cost function with considerable accuracy
by using average traffic statistics for a given cell. As a result, there is no need for
information exchange among MNOs (to obtain the actual traffic values) prior to
the application of the game, thus facilitating its implementation and eliminating
any concerns about truthfulness. Second, by simplifying the cost functions, the
MNOs obtain the same payoffs for a given action and, as a result, the outcome of
the game is independent of the identity of the players. Hence, by definition, the
proposed game is symmetric, allowing its formulation as an N -player game with
2 macro-players: i) player A is a given MNOi, with i ∈ N ii) player B is the set
N \{i}, formed by the remaining N − 1 operators, excluding MNOi. The matrix
representation of the game is given in Table 4.2, showing the costs of player A
with respect to the different contingencies of player B.

Table 4.2: Cost matrix of the proposed game

Player B: N − 1 operators in N \ {i}
ON OFF

Player A:
Operator i

ON Cconst + C
(m)
tr Cconst + C

(m)
tr +

(
C

(m)
tr − C(m)

roam

)
·N(i,m)

roam

OFF C
(m)
roam C

(i,0)
inc

The costs in Table 4.2 correspond to the different cases of the infrastructure sharing
algorithm described in Section 4.3.1, after applying the simplification mentioned
above. The formulation of our problem in a strategic form reveals one pure strat-
egy, corresponding to the case where the MNOs switch off in all peripheral cells,
thus minimizing the number of active BSs. However, this strategy would require
major transmission power increase of the central BSs and could lead to lost ses-
sions, since the central cells may not have sufficient capacity to support all the
traffic of the cluster. This limitation of the pure strategy, along with the mo-
tivation of the MNOs to achieve energy efficiency without sacrificing ubiquitous
service in the network, have motivated us to study the problem in the mixed strate-
gies domain, in order to provide feasible and applicable solutions for distributed
systems. Therefore, we proceed to a mixed strategy approach, where the MNOs
randomize over the possible actions with a certain probability distribution. In the
next section, we calculate the strategy that minimizes the cost of each player, and,
then, by exploiting the symmetry of the game, we prove that a DSE is achieved.

4.3.2.2 Individual Cost Minimization Analysis

In this section, we estimate the strategy that attains the minimum individual cost
of each player according to the adopted cost-based functions. The aim of the game
is to calculate the set of the switching off probabilities that minimizes the expected
cost of MNOi, ∀i ∈ N , given by:

E[Ci,m] = E[CON,ON
i,m ] + E[COFF,OFF

i,m ] + E[COFF,ON
i,m ] + E[CON,OFF

i,m ]. (4.1)

To that end, we define as si,m the probability of player A (i.e., MNOi) switching
off the BSi,m. Furthermore, due to the symmetry of the game, the remaining
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N − 1 operators are grouped together into player B, having a common switching
off probability sj,m. Subsequently, the expected costs of player A in each state of
the game are estimated as follows:

1. Case 1 (ON,ON): The expected cost for operator i (player A) is:

E[CON,ON
i,m ] = (1− si,m) · (1− sj,m)N−1 ·

(
Cconst + C

(m)
tr

)
. (4.2)

2. Case 2 (ON,OFF): Each of the N
(m)
OFF switched off BSs randomly selects one

of the N
(m)
ON active BSs of the same cell m with equal probability ps = 1/N

(m)
ON .

The random decision does not affect the outcome of our approach, since the
roaming cost is indifferent to the BS selection. Hence, the number of switched

off BSs that will select operator i to serve their traffic (N
(i,m)
roam) will determine

its actual cost. To calculate the expected cost, all the possible roaming combi-
nations that involve the ith operator must be taken into account. Therefore:

E[CON,OFF
i,m ] =

N−1∑
N

(m)
ON =1

(1− si,m) ·
(

N − 1

N
(m)
ON − 1

)
· (1− sj,m)N

(m)
ON −1 · sN−N

(m)
ON

j,m

·
[ N−N(m)

ON∑
N

(i,m)
roam=0

(
N −N (m)

ON

N
(i,m)
roam

)
· pN

(i,m)
roam

s · (1− ps)(N−N(m)
ON −N

(i,m)
roam)

·
(
Cconst + C

(m)
tr +

(
C

(m)
tr − C(m)

roam

)
·N (i,m)

roam

)]
⇒

E[CON,OFF
i,m ] =

N−1∑
N

(m)
ON =1

(1− si,m) ·
(

N − 1

N
(m)
ON − 1

)
· (1− sj,m)N

(m)
ON −1 · sN−N

(m)
ON

j,m

·
[
Cconst + C

(m)
tr +

(
C

(m)
tr − C(m)

roam

)
· N −N

(m)
ON

N
(m)
ON

]
.

(4.3)

3. Case 3 (OFF,ON): In this case, the traffic of the switched off BSi,m is roamed
to one active BS, with an expected cost:

E[COFF,ON
i,m ] = si,m ·

(
1− (1− sj,m)N−1

)
· C(m)

roam. (4.4)

4. Case 4 (OFF,OFF): The BSs of all operators are switched off and the traffic
is served by the corresponding BSs of the central cell, which increase their
transmission power to cover the peripheral cell, with an expected cost:

E[COFF,OFF
i,m ] = si,m · sN−1

j,m · C
(i,0)
inc . (4.5)
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Substituting Eq. (4.2)-(4.5) to Eq. (4.1), we derive:

E[Ci,m] = si,m · sN−1
j,m · C

(i,0)
inc + si,m ·

(
1− (1− sj,m)N−1

)
· C(m)

roam

+
N∑

N
(m)
ON =1

(1− si,m) ·
(

N − 1

N
(m)
ON − 1

)
· (1− sj,m)N

(m)
ON −1 · sN−N

(m)
ON

j,m

·
[
Cconst + C

(m)
tr +

(
C

(m)
tr − C(m)

roam

)
· N −N

(m)
ON

N
(m)
ON

]
.

(4.6)

Let us recall that the goal of each operator to estimate its individual switching
off probability that minimizes its cost. To that end, the best response of si,m to
the strategy sj,m is given by calculating the roots of the partial derivative of the
expected cost function with respect to si,m:

∂E[Ci,m]

∂si,m
= 0⇒ sN−1

j,m · C
(i,0)
inc +

(
1− (1− sj,m)N−1

)
· C(m)

roam

−
N∑

N
(m)
ON =1

(
N − 1

N
(m)
ON − 1

)
· (1− sj,m)N

(m)
ON −1 · sN−N

(m)
ON

j,m

·
[
Cconst + C

(m)
tr +

(
C

(m)
tr − C(m)

roam

)
· N −N

(m)
ON

N
(m)
ON

]
= 0.

(4.7)

Having provided the analysis for the best response strategy, in the following sec-
tion, we exploit the symmetry of the game to prove that the estimated value for
the sj,m corresponds to the DSE.

4.3.2.3 DSE Characterization and Numerical Results

According to [87][Definition 3.4]:

Definition 2. A strategy profile s∗ = {s∗1 . . . s∗n} ∈ S is the DSE if every element
s∗i of s∗ is a dominant strategy of player i.

Proposition 1. The equilibrium of the game Γ is a DSE and is calculated as:

s∗
N−1 · C(i,0)

inc +
(

1− (1− s∗)N−1
)
· C(m)

roam −
N∑

N
(m)
ON =1

(
N − 1

N
(m)
ON − 1

)

· (1− s∗)N
(m)
ON −1 · s∗N−N

(m)
ON ·

[
Cconst + C

(m)
tr +

(
C

(m)
tr − C(m)

roam

)
· N −N

(m)
ON

N
(m)
ON

]
= 0.

(4.8)

Proof. Going back to Definition 2, we want to calculate the strategy s∗i that min-
imizes the expected cost of player i in the system. Furthermore, the symmetry of
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the game suggests that all MNOs have identical switching off probabilities, i.e.,
si,m = sj,m. By substituting these probabilities in Eq. (4.7), we can obtain the
strategy s∗, thus deriving Eq. (4.8). The roots of Eq. (4.8) correspond to the
strategy of all players that minimizes the individual cost of each player.

According to [87][Definition 3.4]:

A strategy profile s∗ = {s∗1 . . . s∗n} ∈ S is the DSE if every element s∗i of s∗ is a
dominant strategy of player i.

In our particular case, we estimate the solution s∗i of the game, such as:

E[Ci](s
∗
i , s
∗
−i) ≤ E[Ci](si, s

∗
−i)∀i ∈ N . (4.9)

Following this approach, we derive a strategy profile that is common for all opera-
tors, i.e., s∗i = s∗. Each element s∗ is the dominant strategy for a given player, as
it minimizes her expected cost, irrespectively of the strategies of the other players.
Consequently, the solution, calculated in Eq. (4.8), is proven to be a DSE in our
game.

Proposition 2. The DSE of the game Γ is unique.

Proof. Having highlighted the symmetry of the game in Section 4.3.2.3 and by
using the equality si,m = sj,m = s∗, we will show that, under specific conditions
and reasonable assumptions, the proposed game has a unique mixed strategy DSE.
To begin with, Eq. (4.6) is rewritten as follows:

E[Ci,m] = s∗
N · C(i,0)

inc + s∗ ·
(

1− (1− s∗)N−1
)
· C(m)

roam ·
N∑

N
(m)
ON =1

(1− s∗) ·
(

N − 1

N
(m)
ON − 1

)
·

(1− s∗)N
(m)
ON −1 · s∗

N−N(m)
ON ·

[
Cconst + C

(m)
tr +

(
C

(m)
tr − C(m)

roam

)
· N −N

(m)
ON

N
(m)
ON

]
.

(4.10)

Each operator has as an upper goal to estimate its individual switching off prob-
ability that minimizes its cost. To that end, we calculate the roots of the partial
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derivative of the expected cost function with respect to s∗. Thus, we have:

∂E[Ci,m]

∂s∗
= 0⇒ N · s∗N−1 · C(i,0)

inc

+

((
s∗ + s∗ · (N − 1) · (1− s∗)N−2

)
+
(

1− (1− s∗)N−1
))
· C(m)

roam

+

[ N∑
N

(m)
ON =1

(
N − 1

N
(m)
ON − 1

)(
N −N (m)

ON

)
(1− s∗)N

(m)
ON s∗

N−N(m)
ON
−1

−
N∑

N
(m)
ON =1

(
N − 1

N
(m)
ON − 1

)
N

(m)
ON (1− s∗) s∗

N−N(m)
ON

]

·
[
Cconst + C

(m)
tr +

(
C

(m)
tr − C(m)

roam

)
· N −N

(m)
ON

N
(m)
ON

]
.

(4.11)

According to Heine-Borel Theorem [88], there exists a unique solution to our
problem if the cost function is concave, by showing that the second derivative of
Eq. (4.10) is always positive and the first derivative has opposite sign in the limits
of the interval [0, 1]. The second derivative of the expected cost function with
respect to s∗ is derived as follows:

∂E[Ci,m]

∂s∗ · ∂s∗
= 0⇒

N · (N − 1) · s∗N−2 · C(i,0)
inc

+ (1− s∗)N−3 · (N − 1) · (N − 2) · (1 + (N − 3) · s∗) · C(m)
roam

+
N∑

N
(m)
ON =1

(
N − 1

N
(m)
ON − 1

)
· (1− s∗)N

(m)
ON −2 · s∗

N−N(m)
ON
−1

·
[
s∗ ·N (m)

ON ·
(
N

(m)
ON + 1

)
+
(
N −N (m)

ON

)
·
(
N −N (m)

ON − 1
)
· (1− s∗)

·
[
Cconst + C

(m)
tr +

(
C

(m)
tr − C(m)

roam

)
· N −N

(m)
ON

N
(m)
ON

]
.

(4.12)

We examined the estimated derivative of Eq. (4.12) and we found out that it
is positive for the following realistic values of variables: i) N = {2, 3, . . . , 6},
ii) Cconst ∈ [465.1, 598.3]e, iii) C

(m)
tr ∈ [4.8, 591.6]e, iv) C

(i,0)
inc ∈ [5.4, 613.1]e,

and v) C
(m)
roam = α ·

(
Cconst + C

(m)
tr

)
, with α ∈ [0, 1] . Provided that the second

derivative is always positive, the first derivative is an increasing function with a
unique solution for s∗ in the interval s∗ ∈ [0, 1].

Unlike other widely-employed game theoretic concepts (e.g., Nash Equilibrium
(NE)) that require a number of iterations before converging to an acceptable so-
lution [89], [90], [91], DSE can be always achieved in one-shot, something that
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is particularly important in our case. More specifically, such solutions cannot be
adopted due to the particular nature of the problem in our study. The continu-
ous interchangeable switching on and off of the macro BSs is not considered as
an option by the mobile operators [4], [87] and, as a result, even a small number
of iterations would not be a viable solution. However, our practical and realistic
formulation of the game enables the operators to reach the DSE by estimating one-
shot switching off probabilities, which is particularly important in our problem.
Hence, instead of applying an iterative algorithm that follows the best response
dynamics to converge to an equilibrium point, we demonstrate that one operator
can estimate the DSE switching off strategies by knowing only the total number
of operators (N) in the network.

Having derived the theoretical expression for the mixed strategies DSE, we study
the impact of the number of MNOs N and the roaming cost parameter α on the
switching off probabilities through some numerical results, presented in Table 4.3.
The cost values are calculated based on the average traffic volume, given the
Fig. 4.1(b). We consider values from N = 2 up to N = 6 operators, while we
assume five different values for α (α = 0.1, α = 0.3, α = 0.5, α = 0.7 and α = 0.9)
with respect to the definition of roaming cost in Section 4.3.1.

Table 4.3: DSE Switching Off Probabilities

N a = 0.1 a = 0.3 a = 0.5 a = 0.7 a = 0.9

2 0.459 0.377 0.296 0.215 0.133
3 0.679 0.629 0.568 0.486 0.357
4 0.799 0.749 0.675 0.584 0.466
5 0.854 0.826 0.795 0.758 0.713
6 0.880 0.861 0.843 0.819 0.798

Two main conclusions can be derived from Table 4.3. First, the DSE switching
off probabilities increase with the number of MNOs in each cell. In particular, the
coexistence of many operators in one cell motivates a given MNO to switch off its
BS, as it implies a higher probability of having its traffic roamed to a different
MNO. Regarding the second basic observation, as expected, the switching off
probability decreases for higher roaming cost, which is a prohibitive factor for
the BS deactivation. However, it is worth noting that the DSE probability is
severely reduced for higher roaming in networks with few MNOs, due to the risk of
switching off all BSs in the cell. On the other hand, in a network with many MNOs,
where the aforementioned risk is not so evident, the switching off probability for
high a is still significant.

In addition, we compare the DSE to the global optimal solution to provide further
insights for our game formulation. We further analyze how our non-cooperative
solution that obtains the DSE, is compared to a global and centralized solution.
In Fig. 4.3, we illustrate the DSE for different number of MNOs, along with the
global optimal solution (Pareto optimal), that represents the solution with the
minimum expected cost. The DSE switching off probabilities result in low cost
values that are very close to the optimal ones. In addition, it is worth noticing
the difference between DSE and Pareto optimal points varies with the number of
MNOs. In particular, the presence of numerous participants in the network leads
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to higher differences, thus requiring the precise calculation of the DSE in order
to avoid undesirable higher cost. However, in most typical scenarios in European
countries where N = 4 operators are involved [59], our proposed game theoretic
formulation estimates accurate, close to optimal switching off probabilities.
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Figure 4.3: The DSE point and the global optimal solution for different number of
users

4.4 Performance Metrics Analysis

In this section, we provide the analytical expressions and definitions for the cal-
culation of the network throughput, energy efficiency and financial cost, when the
infrastructure sharing algorithm is applied.

As mentioned in Section 4.2, the network traffic consists of voice and data, with
constant bit rates RV and RD, respectively. We assume that for each BSn,m, voice

calls and data sessions are Poisson generated processes with rates λ
(n,m)
V and λ

(n,m)
D

and have exponential service times, denoted by 1/µ
(n,m)
V and 1/µ

(n,m)
D , respectively.

Hence, we model the operation ofBSn,m as a multi-serverM1,M2/G1, G2/N/N1, N2

queue, resulting in a two-dimensional Markov chain, illustrated in Fig. 4.4. Each
state of the system (ν, d) is characterized by the number of active voice and data
sessions, denoted by ν and d, respectively. The state space of this Markov model,
along with the bandwidth restrictions, is:

A = {(ν, d) |0 ≤ ν ≤ NV , 0 ≤ d ≤ ND, ν ·RV + d ·RD ≤ CRBS}, (4.13)

given that CRBS is the total bandwidth of the BS, NV = CRBS/RV and ND =
CRBS/RD represent the maximum number of simultaneous voice calls and data
sessions, respectively.
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Figure 4.4: Two-dimensional Markov state transition diagram for the voice and data
traffic served in a BS

By analyzing the state transition diagram (Fig. 4.4), we can obtain the system of
linear equations for steady state probabilities, p(ν,d). The balance equation that
represents the valid transitions is:

p(ν,d) ·
(
λ

(n,m)
V · ϕν+1,d + λ

(n,m)
D · ϕν,d+1 · ϑν,d+1 + ν · µ(n,m)

V · ϕν−1,d + d · µ(n,m)
D · ϕν,d−1

)
= λ

(n,m)
V · p(ν−1,d) · ϕν−1,d + λ

(n,m)
D · p(ν,d−1) · ϕν,d−1 · ϑν,d

+ (ν + 1) · µ(n,m)
V · p(ν+1,d) · ϕν+1,d + (d+ 1) · µ(n,m)

D · p(ν,d+1) · ϕν,d+1,
(4.14)

where ϕν,d, ϑν,d denote the characteristic functions:

ϕν,d =

{
1, (ν, d) ∈ A
0,otherwise

(4.15)
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and

ϑν,d =

{
1,ν ·RV + d ·RD ≤ CRBS

0,otherwise
(4.16)

The steady state probabilities are calculated given the condition that the sum of
the state probabilities is equal to 1, which must be satisfied:

NV∑
ν=0

bBW−ν·RV
RD

c∑
d=0

p(ν,d) = 1. (4.17)

In continuation, employing the steady state probabilities of the Markov chain, we
define and calculate some key performance metrics both for the individual BSs
and the whole network.

4.4.1 Operator-wide performance metrics

In this section, we analyze the performance of a BSn,m with total bandwidth of
BW , belonging to operator n in a given cell m. We focus on the night zone, with
duration tnight, when voice and data sessions have an average generation rate of

λ
(n,m)
V and λ

(n,m)
D , respectively.

4.4.1.1 Cell Throughput

Definition 3. Cell Throughput: The expected throughput E [Tn,m] for the BSn,m
is defined as the average number (over all possible states of the system) of served
sessions in the system multiplied by the transmission rate of each session (i.e., RV

and RD for voice and data, respectively) and calculated as:

E [Tn,m] =

NV∑
ν=0

bCRBS−ν·RV
RD

c∑
d=0

(ν ·RV + d ·RD) · p(ν,d), (4.18)

where p(ν,d) are the steady state probabilities for the given traffic load rates λ
(n,m)
V

and λ
(n,m)
D .

In addition, a very important metric in our work is the normalized throughput,
defined as the ratio of the served connections to the total existing connections in
the network. This metric is often employed to represent the GoS in telecommuni-
cation systems, showing the level of user satisfaction in the system. Achieving a
normalized throughput of 100% signifies that all users are served, which is a key
requirement for MNOs.
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4.4.1.2 Cell Energy Efficiency

Definition 4. Cell Energy Efficiency: The expected energy efficiency E[η
(n,m)
ε ]

for BSn,m is defined as the ratio of the average transmitted bits E [Bn,m] over the
average energy consumption E [En,m]:

E[η(n,m)
ε ] =

E [Bn,m]

E [En,m]
. (4.19)

The average transmitted bits during the night zone can be calculated by multi-
plying the average throughput given in Eq. (4.18) with the duration of the night
zone tnight:

E [Bn,m] = E [Tn,m] · tnight. (4.20)

To calculate the average energy consumption, we should take into account the
power consumed by the BS for operation and transmission, consisting of three
components: i) the constant power Pconst, consumed by an active BS for oper-
ations such as cooling, antenna feeding, etc, ii) the idle power Pidle, which is the
power consumed when the BS remains idle, i.e., when it has no ongoing traffic
sessions2, and iii) the transmission power for serving the ongoing traffic sessions
corresponding to each state p(ν,d), considering that Ptx denotes the transmission
power for serving a single voice or data session. Hence, the average energy con-
sumption during the night zone tnight is given by:

E [En,m] =

Pconst + Pidle · p(0,0) +

NV∑
ν=0

bCRBS−ν·RV
RD

c∑
d=0

(ν + d) · Ptx · p(ν,d)

 · tnight.
(4.21)

4.4.1.3 Cost

In this section, we provide analytical expressions for the different terms (i.e., Cconst,

C
(n,m)
tr , C

(n,0)
inc , C

(n,m)
roam ) that compose Eq. (4.6), which provides the expected cost

for an operator.

First, Cconst, C
(n,m)
tr and C

(n,0)
inc refer to the costs related to the operation of an active

BS and the service of the existing traffic. These costs depend directly on the energy
that is consumed for the different functionalities of the BSs. Therefore, provided
that c1 is the electricity charge per energy unit, in [e/kWh], the operational costs
of a BS can be expressed as a function of the average energy consumption [92].
Thus, we have:

Cconst = c1 · Pconst · tnight, (4.22)

2The fraction of time that the BS remains idle is expressed by the probability p(0,0) in the Markov
chain (Fig. 4.4).
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C
(n,m)
tr = c1 ·

Pidle · p(0,0) +

NV∑
ν=0

bBW−ν·RV
RD

c∑
d=0

(ν + d) · Ptx · p(ν,d)

 · tnight, (4.23)

C
(n,0)
inc = c1 ·

P ′idle · p(0,0) +

NV∑
ν=0

bBW−ν·RV
RD

c∑
d=0

(ν + d) · P ′tx · p(ν,d)

 · tnight, (4.24)

where P ′idle and P ′tx denote the power consumed when the BS remains idle and the
transmission power for serving a single voice or data session, when the central BS
increases its power.

With regard to the roaming cost, C
(n,m)
roam corresponds to the amount paid when an

operator roams its traffic to the BSs of another operator. In Section 4.3.1, we have

already given the definition of the roaming cost with respect to Cconst and C
(n,m)
tr .

In this subsection, we extend this definition considering the electricity charges for
the operation and the traffic service. Based on the energy consumption of a BS,
E [En,m], the roaming cost is given by:

C(n,m)
roam = α · c1 · E [En,m] . (4.25)

4.4.1.4 Cost efficiency

Having defined theoretical expressions for the network performance and cost, we
introduce a novel metric, namely cost efficiency, that connects the performance
with the total cost for each operator.

Definition 5. Cell Cost Efficiency, measured in [Mbits/e], is defined as the ratio
of the average transmitted bits over the operator’s total expenses. Accordingly, the
cost efficiency of an operator n in a peripheral cell m is expresses as:

E [ηn,mc ] =
E [Bn,m]

E[Cn,m]
. (4.26)

4.4.2 Network-wide performance metrics

In continuation, we calculate the above metrics for the network of N operators
in a cluster of one central and M peripheral cells, for the proposed infrastructure
sharing algorithm. Based on the game theoretic analysis presented in Section 4.3.2,
each operator n may choose to switch off the BS of a peripheral cell m with a
switching off probability s∗. As explained before, depending on the case, the traffic
of each switched off BS is served either by the central BS of the same operator, or
by a different operator of the same cell.

To calculate the global performance metrics of the network, we calculate the aver-
age traffic load that is served by each BS after the application of the infrastructure
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sharing algorithm. We define as λ
′(n,m)
J , J = {V,D} the new average traffic load

of the BSn,m for voice and data traffic, which is equal to the traffic λ
(n,m)
J of the

nth operator plus any additional traffic of a switched off BS that must be served
by BSn,m. We distinguish the cases for the central and the peripheral cells in the
network:

• For each BSn,0 of the central cell:

λ
′(n,0)
J = λ

(n,0)
J +

∑
i∈MOFF

λ
(n,i)
J . (4.27)

• For each BSn,m of the peripheral cells (m ∈ [1,M ]) that remains active:

λ
′(n,m)
J = λ

(n,m)
J +

∑
i∈N (n,m)

roam

λ
(i,m)
J , (4.28)

where N (n,m)
roam is the subset of operators that roam their traffic to BSn,m.

Using these values for the traffic load, the steady state probabilities p′(ν,d) for each
BS are recalculated and employed for the estimation of the key network metrics,
as explained below.

4.4.2.1 Total Network Throughput

Definition 6. Total Network Throughput: The total throughput of the cluster
network, E [T ], is the sum of the average throughput of the active BS in the M
peripheral cells plus the average throughput of the central cell that always remains
active:

E [T ] =
M∑

MOFF=0

(
M

MOFF

)
· s∗N·MOFF ·

(
1− s∗N

)(M−MOFF )

·
N−1∑

N
(m)
OFF=0

(
N

N
(m)
OFF

)
· s∗

N
(m)
OFF · (1− s∗)N−N

(m)
OFF

·
( ∑
m∈MON

∑
n∈N (m)

ON

(
E
[
T ′n,m

])
+
∑
n∈N

·E
[
T ′n,0

])
,

(4.29)

where E[T ′n,m] is the average throughput of an active BSn,m of a peripheral cell and
can be calculated by Eq. (4.18) by taking into account the average traffic load given
by Eq. (4.28). Similarly, E[T ′n,0] is the average throughput of the central BSs, with
average traffic load given by Eq. (4.27).
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4.4.2.2 Total Network Energy Efficiency

Definition 7. Total Network Energy Efficiency: The total energy efficiency E [ηε]
in the cell cluster is calculated as the total number of transmitted bits E[B] divided
by the total energy consumption E[E]:

E [ηε] =
M∑

MOFF=0

(
M

MOFF

)
· s∗N·MOFF ·

(
1− s∗N

)(M−MOFF )

· E[B]

E[E]
. (4.30)

Similarly to Eq. (4.29), the total number of transmitted bits is calculated as:

E [B] =
N−1∑

N
(m)
OFF=0

(
N

N
(m)
OFF

)
· s∗

N
(m)
OFF · (1− s∗)N−N

(m)
OFF ·

( ∑
m∈MON

∑
n∈N (m)

ON

(
E
[
B′n,m

])
+
∑
n∈N

·E
[
B′n,0

])
,

(4.31)

where E[B′n,m] and E[B′n,0] the average transmitted bits for the BSs of the periph-
eral and the central cells, respectively, calculated by Eq. (4.20) for the correspond-
ing traffic (Eq. (4.28) and (4.27)).

Accordingly, the total energy consumption is derived as:

E [E] =
N−1∑

N
(m)
OFF=0

(
N

N
(m)
OFF

)
· s∗

N
(m)
OFF · (1− s∗)N−N

(m)
OFF ·

( ∑
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∑
n∈N (m)

ON

(
E
[
E ′n,m

])
+
∑
n∈N

·E
[
E ′n,0

])
.

(4.32)

4.4.2.3 Total Network Cost

Definition 8. Total Network Cost: The total cost of the network, E[C], is the
sum of the average cost of all operators for the operation of their active BSs and
for the service of the existing traffic load, estimated as:

E[C] = E[E] · c1, (4.33)

where E[E] is calculated by Eq. (4.32) for the average traffic served over a year.
Apparently, the total network cost is not affected by the roaming cost, which only
specifies the amount of money that is going to be exchanged among the operators.
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4.5 Performance Evaluation

We have developed a custom-made C/C++ simulator for the network operation
to validate the analytical expressions and assess the performance of the proposed
infrastructure sharing scheme. In this section, we present the simulation setup
along with the analytical and experimental results.

4.5.1 Simulation scenario

The simulation scenario includes a 7-cell cluster with one central and six peripheral
cells (i.e., M = 6), where each cell is served by N BSs of different MNOs, as
described in Section 4.2. In our experiments, we consider N = {2, 4, 6} in order
to address the impact of the number of MNOs in our proposed framework.

To assess the performance of our scheme, we compare the proposed Game Theo-
retic Infrastructure Sharing strategy (referred as GTIS in the rest of the paper)
with three state-of-the-art approaches [55], [56]: i) a Roaming-to-One scheme
(R-to-1), where the MNO with the highest traffic serves the total traffic in the
network, while the rest MNOs switch off their BSs during the entire night zone,
ii) a Roaming-to-All approach, namely Energy-balanced (E-bal), where the MNOs
switch off their BSs for different portions of time in order to balance their energy
saving, and iii) a Roaming-to-All approach, namely Roaming-balanced (R-bal),
where the MNOs switch off their BSs for different portions of time in order to bal-
ance their roaming costs. In the Roaming-to-All strategies, the MNOs roam their
traffic to all the active networks with a probability proportional to their network
size. Moreover, we consider a baseline approach (No Switch Off), where all BSs
are active. The simulation parameters are summarized in Table 4.4.

Table 4.4: Simulation Parameters for GTIS

Parameter Value

Bandwidth, BW 115 Mbps
# of peripheral cells, M 6
# of operators, N {2,4,5,6}
Traffic load, Load Fig. 4.1(b)
Traffic load ratio, ρn [0.1, 1.0]

Service rates, µ
(n,m)
V , µ

(n,m)
D Mean: 1/50 calls/s

Transmission rates, RV , RD 64, 256 kbps
Idle power, Pidle [0.34, 1.39] W
Transmission power, Ptx, P ′tx [1.29, 1.5] W
Constant power, Pconst [591, 675] W
Cell radius [500, 1500] m
Night zone duration, tnight 9· 3600 s
Roaming cost variable, α [0.1, 1.0]
Electricity charge, c1 0.1 e/kWh
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4.5.2 Model Validation

In this section, we validate via extensive simulations the analytical models for the
network throughput, energy efficiency and network cost for different traffic profiles,
roaming cost values and number of MNOs in each cell. In this set of experiments,
we assume that all operators have the same traffic volume, i.e., ρn = ρ.

Fig. 4.5(a) and 4.5(b) present the network throughput performance for different
traffic profiles and number of operators, respectively. As we can see, the experi-
mental results perfectly match the analysis, thus validating the proposed theoret-
ical expressions. In both figures, we observe that the throughput presents similar
behavior with the traffic load model, presented in Section 4.2. As expected, the
network throughput also increases with the traffic load of each operator (ρ), as
well as with the number of MNOs in each cell (N). It is worth mentioning that
the roaming cost does not affect the throughput performance in the case of N = 4
MNOs, since there are no lost calls in the network. For higher number of opera-
tors, there are missed calls and this impact will be also studied in Section 4.5.4.

Fig. 4.6 illustrates the network energy efficiency achieved by the proposed in-
frastructure sharing policy for different traffic profiles (Fig. 4.6(a)), number of
operators (Fig. 4.6(b)) and roaming cost values (Fig. 4.6(c)), which affect the
switching off probabilities and, consequently, the total energy efficiency. First, the
analytical expressions given in Section 4.4 are again validated, while we observe
a very similar behavior with the throughput case. More specifically, we observe
that the network energy efficiency increases as the network becomes more loaded
(i.e., for heavier traffic loads or higher number of operators). Hence, the proposed
algorithm provides an effective energy efficient solution that encourages the op-
erators to share their infrastructure in order to reduce the energy consumption.
Furthermore, energy efficiency increases as the roaming cost drops, since lower
roaming costs lead to increased switching off probabilities, as seen in Table 4.3,
thus reducing the energy consumption of the network.

In order to gain more insight on the network performance, we have plotted in
Fig. 4.7 the average energy efficiency during the night zone versus different traffic
volumes (Fig. 4.7(a)) and roaming cost values (Fig. 4.7(b)). In Fig. 4.7(a), we ob-
serve that although the absolute value of the network energy efficiency increases
with the number of operators, the relative difference ratio is independent of the
traffic load. More specifically, in all cases (i.e., ρ = 0.1, ρ = 0.5, ρ = 0.9), a net-
work of N = 6 operators is approximately 80% and 280% more energy efficient
compared to networks of N = 4 and N = 2 operators, respectively. This inter-
esting fact can be explained by taking into account that the outcome of the game
theoretic algorithm (i.e., switching off probabilities) is not affected by the traffic
load variations. However, the switching off probabilities are higher as the number
of MNOs increases. This is explained by the fact that the number of BSs is higher
when N = 6 operators exists and thus, there are more than enogh BSs that can
be switched off when comparing to a network with N = 2 operators. Referring
to Table 4.4, we observe that the difference between the constant power and the
transmission power is significant. Thus, small variations on the traffic do not af-
fect the probabilities calculation. On the other hand, as shown in Section 4.3.2.3,
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Figure 4.5: Throughput validation for different (a) traffic profiles, (b) number of
operators

the switching off probabilities strongly depend on the roaming cost value, thus
affecting the network energy efficiency (Fig. 4.7(b)). As also shown in Fig. 4.6(c),
the energy efficiency is reduced as the roaming cost increases, while this impact is
stronger for smaller number (N) of operators. However, the relative difference of
the energy efficiency gain with respect to N increases for higher roaming costs. For
instance, for low traffic loads (α = 0.1), a network of N = 6 operators achieves 36%
higher energy efficiency than a network of N = 4 operators, while this difference
is considerably increased to 174% in case of α = 1.0. This occurs because, even
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Figure 4.6: Energy efficiency validation for different (a) traffic profiles, (b) number
of operators, and (c) roaming cost
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though the switching off probabilities are low for high roaming costs, the presence
of more operators leads to a higher probability of sharing the infrastructure.
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Figure 4.7: Energy efficiency validation for different number of operators and different
(a) traffic profiles, (b) roaming costs

Fig. 4.8 illustrates the aggregated annual cost for different traffic profiles (Fig.
4.8(a)), number of operators (Fig. 4.8(b)) and roaming cost (Fig. 4.8(c)). The
analytical expressions given in Section 4.4 are again validated, while the results
follow a very similar behavior with the throughput and energy efficiency only in the
case of varying traffic profiles. On the other hand, the annual cost decreases with
higher number of MNOs and decreasing roaming cost values. Given the switching
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off probabilities, depicted in Table 4.3, in networks with high number of MNOs,
the switching off probability increases, leading to smaller number of active BSs,
which contribute to the total network cost according to Eq. (4.33). At this point,
it is reminded that the coexistence of many MNOs in a network gives the incentive
to the operators to switch off their BS, since there exists a higher number of BSs
to roam the traffic of the switched off BSs. On the other hand, with increasing
roaming cost, the MNOs are unwilling to switch off their BSs, resulting in higher
aggregate cost.

4.5.3 Roaming Cost Analysis

The analysis and the experiments have revealed the criticality of the roaming cost
parameter in roaming-based infrastructure sharing schemes. Therefore, the selec-
tion of an appropriate range of α for the performance evaluation of our proposal
becomes of paramount importance. To that end, Fig. 4.9 presents the network
energy efficiency achieved by the proposal compared to four schemes for the whole
range of roaming cost values. We compare GTIS with the baseline scenario (i.e.,
No Switch Off) and three state-of-the-art approaches (i.e., R-to-1, E-bal and R-
bal), which do not depend on the roaming cost. As we already mentioned, by
employing the R-to-1, the MNO with heavier traffic load concentrates the traffic
of the whole network, giving the opportunity to the rest of the MNOs to switch
off their BSs. In E-bal and R-bal, the MNOs switch off their BSs for different
portions of time in order to achieve equal energy gains and roaming costs, respec-
tively. As a result, the switching off time of each MNO depends on their traffic
load but is independent of the specific value of the roaming cost. In Fig. 4.9, we
observe that the proposed scheme outperforms the R-bal approach independently
of α, while there is an interesting trade off with regard to the R-to-1 and E-bal
schemes. Our proposed solution achieves higher energy efficiency for low values
of α (i.e., α < 0.5 comparing to R-to-1 and α < 0.78 comparing to E-bal). How-
ever, performance drops as the roaming cost increases and, consequently, R-to-1
and E-bal achieve higher energy efficiency compared to our scheme for high val-
ues of alpha (i.e., α > 0.5, α > 0.78, respectively). When employing GTIS, for
high roaming values, the operators do not have a strong incentive to switch off
their BSs and roam their traffic. Since energy efficiency is one of the key goals of
the proposed GTIS algorithm, we focus on the values of α that ensure enhanced
energy efficiency performance with respect to the state-of-the-art schemes (i.e.,
α ∈ [0, 0.5]). Consequently, we have selected two indicative values of α within this
range (i.e., α = 0.1 and α = 0.5) for the performance assessment of our proposed
infrastructure sharing solution.

4.5.4 Numerical Results

This section includes the performance results with regard to various metrics, either
telecommunication - oriented (network throughput and energy efficiency) or cost
- oriented (annual cost and cost efficiency). In order to generalize the assessment
of our proposal, we consider different traffic volumes for the network operators.
In particular, we assume that MNO1 has the maximum possible traffic load (i.e.,
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Figure 4.8: Annual cost of 7-cell network validation for different (a) traffic profiles,
(b) number of operators, and (c) roaming cost
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Figure 4.9: Energy efficiency versus roaming cost values to select the appropriate α

ρ1 = 1), while the rest MNOs have a common traffic volume ρ, which is a portion
of the maximum load (i.e., ρ2 = ... = ρN = ρ ∈ [0, 1]).

4.5.4.1 Telecommunication Metrics

Despite the importance of estimating the absolute values of throughput in the sys-
tem, the deactivation of BSs in the cells potentially implies loss of connections. To
that end, we consider the normalized thoughput which is an important GoS indi-
cator that represents the percentage of served connections in the system. Fig. 4.10
presents the normalized throughput of the three infrastructure sharing schemes
for different number of operators in the network. In Fig. 4.10(a) (N = 4), we can
see that all schemes guarantee the user service for variable traffic load conditions
(i.e., ρ < 0.8). However, as the traffic volume grows, the R-bal, E-bal and R-to-1
approaches experience small losses (around 2% 3% and 5%, respectively), which
still can be prohibitive for wireless cellular networks, while the proposed GTIS
approach is able to guarantee the service of all the connections in the network.
Hence, our scheme can guarantee the service of all connections for the case of
N = 4 operators, which is highlighted as the most typical scenario in recent stud-
ies [59]. For higher number of operators, our proposal still outperforms the other
three solutions and it guarantees the proper service in the network for traffic vol-
ume values up to ρ = 0.8 (case N = 5) and ρ = 0.7 (case N = 6). The degraded
performance of the R-to-1 scheme is explained by the high number of deactivated
BSs and the traffic service by one MNO only, whereas our approach proposes a
distributed traffic roaming among the coexisting MNOs. In addition, we observe
that GTIS achieves different performance with respect to the varying values of
roaming cost, thus justifying once again the importance of this variable. For rela-
tively small values of α (i.e., α = 0.1), there are less active BSs and as a result the
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number of lost calls increases. However, compared to the state-of-the-art schemes,
the GTIS supports higher traffic without losing any calls. For instance, in the case
of N = 6 MNOs and α = 0.5, the GTIS provides full traffic service, while R-bal
supports up to ρ = 0.6, E-bal up to ρ = 0.5 and R-to-1 only up to ρ = 0.2.

Fig. 4.11 presents the network energy efficiency versus ρ for two different values of
α and N = 4 operators. We observe that all schemes have the same behavior, since
the energy efficiency increases with the traffic load. An important remark is that,
for low roaming cost (α = 0.1), GTIS significantly outperforms the baseline sce-
nario (where no BS is switched off), as well as the three state-of-the art algorithms.
However, for higher values of α, the energy efficiency gain of GTIS compared to
the R-to-1 scheme gradually decreases and, eventually, the two schemes achieve
similar performance for α = 0.5. The increase of α discourages the operators to
apply a switching off stratgy, due to the increased expenses. Even though the
total network energy efficiency performance is the same, it is interesting to study
the individual energy efficiency gains of the different MNOs. To that end, the
individual gains for the specific (but representative) case of ρ = 0.1 and N = 4
are quantified in Table 4.5, where interesting conclusions can be extracted. In
particular, independently of α, the R-to-1 scheme is beneficial only for the group
of operators that switch off their BSs, while the operator with the active BSs faces
important energy efficiency degradation. More specifically, the active operator is
subject to higher energy consumption to serve the traffic of the whole network,
while the rest operators theoretically achieve infinite energy efficiency, as they have
their traffic served at zero energy cost. The proposed GTIS eliminates this unfair-
ness, by guaranteeing energy efficiency gains to all operators, providing them with
extra incentives to switch off their BSs by participating in the game. Comparing
to the also fair E-bal and R-bal that allow all MNOs to switch off their BSs for
different time periods, the respective energy efficiency gains of the GTIS approach
are clearly higher due to the lower number of active BSs.

Table 4.5: Energy Efficiency Gain/Loss with Respect to the No Switch Off Scheme
for ρ = 0.1

α = 0.1 α = 0.5

Scheme MNO1 MNO2 MNO3 MNO4 MNO1 MNO2 MNO3 MNO4

GTIS 93.2 27.1 27.1 27.1 94.2 45.3 45.3 45.3

R-to-1 -82.3 ∞ ∞ ∞ -82.3 ∞ ∞ ∞
E-bal 12.3 15.6 15.6 15.6 12.3 15.6 15.6 15.6

R-bal 11.9 13.2 13.2 13.3 11.9 13.2 13.2 13.2

4.5.4.2 Cost Metrics

The aggregated annual cost of the network and the individual annual gains for
the operators, having as a benchmark the No Switch Off scheme, are presented
in Fig. 4.12(a) and 4.12(b), respectively. With regard to the former, the first
observation is that the total annual cost is not significantly affected by the traffic
load variations, since the fixed cost for the network operation is much higher than
the cost due to the energy consumption in the radio part of the network and the
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Figure 4.10: Normalized throughput for (a) N=4, (b) N=5 and (c) N=6
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Figure 4.11: Energy efficiency for different traffic profiles and variable roaming costs
and comparison to the state-of-the-art schemes

corresponding values are also shown in Table 4.4. In addition, for low roaming
cost values (α = 0.1), GTIS achieves a considerable reduction (around 86%) of
the annual network cost, mainly due to the deactivation of many underutilized
BSs in the network. Regarding the individual revenue of each operator, plotted in
Fig. 4.12(b), we may observe that, similar to the energy efficiency gains, the R-to-1
scheme provides financial gains only to particular operators, and more particularly
for the MNOs that switch off their networks, whereas the economic expenses of the
MNO1 are higher than the expenses of the No Switch Off scheme. On the other
hand, for the proposed GTIS approach, all operators in the network are able to
have higher economic benefits compared to the E-bal and R-bal schemes, since all
MNOs switch off a higher number of BSs. Furthermore, as α increases, the GTIS
algorithm achieves higher financial gains for the operators due to the increased
roaming cost values.

Finally, Fig. 4.13 depicts the cost efficiency of the operators, which is a metric
that provides an indication for the relation between the served traffic with regard
to the financial cost. In Fig. 4.13(a), we illustrate the individual cost efficiency
with respect to different values of roaming cost. The cost efficiency increases
with the lower roaming cost due to the reduced energy consumption. In addition,
Fig. 4.13(b) presents the cost efficiency gains of the infrastructure sharing schemes,
having as benchmark the No Switch Off scheme. The plot in Fig. 4.13(b) verifies
our results so far, as it highlights the great difference in the R-to-1 approach
between the active operator and the rest operators in the system. The proposal of
switching off the whole network that belongs to the MNO with the lower traffic (R-
to-1) results to great cost efficiency for MNO2−MNO4, who do not consume any
energy and are encumbered only with the compensation of the roaming cost to the
active operator. Contrariwise, MNO1 serves the whole traffic of the network and
consumes significant energy, leading to an increased cost that is not compensated
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Figure 4.12: (a) Annual cost of 7-cell network for different traffic profiles and variable
roaming costs and (b) Gain for each operator under variable values of roaming cost

by the received roaming. The proposed GTIS strategy overcomes this issue by
providing cost efficiency gains to all operators, outperforming, at the same time,
the E-bal and R-bal schemes.

4.5.5 Discussion

Based on the analysis in Section 4.5.4 and the analytical results, we have shown
that the proposed GTIS outperforms the state-of-the-art approaches in terms of
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Figure 4.13: (a) Cost efficiency under different traffic profiles (b) Cost efficiency gain
versus No Switch Off

throughput, energy efficiency and annual network cost. In addition, it achieves bal-
anced results for all the MNOs with respect to the individual energy efficiency, cost
gains and cost efficiency. Furthermore, through an extensive assessment, we have
identified the significance of the roaming cost parameter, α. In particular, higher
values of α achieve higher throughput. On the other hand, better performance
results are attained in terms of energy efficiency, aggregate network cost, individ-
ual cost gains and cost efficiency, when lower values of α are chosen. Hence, the
MNOs should choose the suitable value of α depending on their priorities. Thus,
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the motivation is stimulated by the performance results that they want to attain.
For example, if energy efficiency is not priority, each MNO could achieve better
individual performance by setting higher α. On the other hand, lower α leads to
great energy efficiency gains for the network, whereas the individual performance
of each operator is enhanced.

4.6 Concluding Remarks

In this chapter, motivated by the low BSs utilization during the night and the
coexistence of multiple operators in the same area, we proposed a novel infras-
tructure sharing algorithm that achieves energy savings and cost reduction by
encouraging MNOs to share their resources and switch off redundant BSs. We
investigated a game theoretic framework to improve the performance of a multi-
operator environment. Moreover, by employing game theoretic tools and realistic
cost functions, we introduced a novel switching off scheme that allows the MNOs
to reduce their expenditures in multi-operator cellular environments. The energy
efficiency of the wireless network was enhanced by reducing the number of active
BSs, guaranteeing at the same time the network throughput in realistic scenarios
(i.e., up to four MNOs). The proposed scheme has been evaluated in terms of
throughput, energy and cost efficiency for various traffic conditions and roaming
cost values. The results have shown that our proposal can significantly improve
the network energy efficiency. Regarding the financial costs/gains, the proposed
scheme provides higher cost efficiency and fairness compared to the state-of-the-art
algorithms, motivating the operators to adopt game theoretic strategies for their
decisions. After evaluating the merit of the novel strategy, the main conclusions
can be summarized as follows:

• Both network and operator-wise improvements are achievable by switching
off the redundant BSs and by sharing the existing infrastructure.

• A cooperative approach is not feasible to be applied in a competitive envi-
ronment. However, the formulation presented in this chapter captures the
essence of the problem and it takes an operator-oriented approach by focus-
ing on improving the performance of the individual MNO networks, along
with the whole network.

• The use of game theoretic tools in the context of BSs switching off was in-
vestigated. The results and experience obtained during the research indicate
that appropriate calibration results both in effective optimization and good
performance. As it was mentioned earlier, in problems such as the one stud-
ied herein, the use of exact or deterministic optimization techniques is not
possible without relaxing the problem due to the competitive nature of the
involved parties. Thus, in order to keep expressions that capture accurately
the behavior of the MNOs, non-cooperative games has been successfully em-
ployed. The main advantage of the method resides on the fact that fair
solutions are provided and the different tradeoffs on the coexisting MNOs
are considered.
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Finally, it is important to remark that the implementation and use of the solutions
obtained through the novel strategy are transparent in current system such as LTE
and LTE-Advanced. Indeed it does not require either any change with respect to
the current specifications or assume any particular interworking with other network
functionalities. The game theoretic models capture the network geometry and
focus on the optimization of long term traffic conditions, thus, they feature an
attractive tradeoff between performance and feasibility.



Chapter 5

Strategies for Cost Sharing in
Heterogeneous Networks

“A good scientist is a person with original ideas. A good engineer is a person who
makes a design that works with as few original ideas as possible.”

Freeman Dyson

5.1 Introduction

The dense HetNets, which consist of one tier of SCs underlaid in traditional macro
BSs, constitute the new trend of next generation networks for traffic offloading [93].
However, the deployment of additional infrastructure implies higher CapEx and
OpEx for the telecommunication operators, raising at the same time the energy
consumption in the whole network. To that end, there is an entity, known as
third-party, that provides the SCs to the operators [94]. Therefore, leasing the
infrastructure by the third-party, the operators can potentially reduce their fi-
nancial costs, whereas the third-party increases its income, resulting in a win-win
situation.

Even though the potential gains from infrastructure sharing can be easily en-
visioned, as they were also shown in the previous chapter, there are still many
challenges to overcome in order to achieve a viable business model appealing to
the operators [95]. The problem becomes more intense in HetNets, where the
existence of different tiers along with additional stakeholders (e.g., third-party)
further complicates the sharing conditions. Thus, it is very important to compre-
hend the cost models and the conditions that should be taken into account, when
conflicting entities interact.

In this chapter, we focus on a scenario where two operators, instead of deploying
their own SC infrastructure, lease the capacity of a SC network owned by a third-
party. We show that there are different strategies to share the SC cost among the
operators, depending on the volume and the daily patterns of their traffic. The
contribution of this work lies on the following points:

105
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1. We provide an explicit model for the expenditures of the SC network, taking
into account both the CapEx and the OpEx.

2. We study the outcome that different cost sharing policies provide with regard
to the estimated SC cost. We identify the discrepancies of these policies,
highlighting their particular traits.

3. We propose a novel cost sharing policy, called Hybrid-Sharing (HS), that
combines different characteristics of already existing policies. Our proposed
policy considers various aspects of the traffic patterns (i.e., traffic volume and
peak times) for the cost sharing estimation, being less complex compared to
state-of-the-art approaches.

The remainder of the chapter is organized as follows. The system model, the
network configuration and the notation used throughout the chapter are described
in Section 5.2. In Section 5.3, we introduce the model to estimate the total cost of a
SC deployment, along with the model for the SC energy consumption calculation.
Section 5.4 presents cost sharing techniques for the SC networks, when the network
is shared among different MNOs. The validation of the model and an extensive
performance assessment are provided in Section 5.5. Finally, Section 5.6 is devoted
to conclusions.

5.2 System Model

5.2.1 Network Configuration

In this section, we present the network model of our work, along with the different
traffic patterns that will be studied. We consider a set of two operators, denoted
by I = {A,B}, that lease the available resources of a SC owned by a third-party1.
The users of each operator are uniformly distributed within the coverage area of
the SC, as shown in Fig. 5.1.

5.2.2 Traffic Load Model

To quantify the cost of the SC and assess the proposed cost sharing policies, we
consider different cases for the traffic patterns of the operators during the day, as
it is illustrated in Fig. 5.2. In particular, different pricing schemes can move the
traffic peaks in different time periods during the day, while the traffic distribution
is affected by the specific location of the SC. For example, in urban areas, the
traffic follows the typical pseudo-sinusoidal teletraffic pattern, while in places such
as malls or university campuses, the traffic can be extremely bursty during specific
hours within a day. Accordingly, we can distinguish the following cases for the
two operators:

1Even though we only consider two operators in this work, the proposed cost sharing models can also
be applied in large scale networks where more than two operators are present.
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SC

Users of Mobile Network 
Operators (MNOs)

Third-party SC

Figure 5.1: Example of network layout

• Case I (Fig. 5.2(a)): Typical traffic - Peaks at the same time

• Case II (Fig. 5.2(b)): Typical traffic - Peaks at different time

• Case III (Fig. 5.2(c)): Bursty traffic - Peaks at the same time

• Case IV (Fig. 5.2(d)): Bursty traffic - Peaks at different time

From the traffic patters of Fig. 5.2 we can derive the total traffic Λi(T ) of operator
i ∈ {A,B} over a specific time interval t ∈ [0, T ] as:

Λi(T ) =

∫ T

0

λi(t) dt, (5.1)

where λi(t) is the operator’s traffic load at time t.

We also define the parameter a to express the relationship between the total traffic
loads of the two operators A and B:

ΛB(T ) = a · ΛA(T ), a ∈ R+. (5.2)

When the two operators share the SC, their aggregated traffic must not exceed
the total available bandwidth of the SC, denoted by CRSC , in order to guarantee
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Figure 5.2: Daily traffic variations for two operators: (a) Typical traffic - Peaks at
the same time, (b) Typical traffic - Peaks at different time, (c) Bursty traffic - Peaks

at the same time, (d) Bursty traffic - Peaks at different time

service to all users. This condition is expressed as:∑
i∈I

Λi(T ) = ΛA(T ) + ΛB(T ) = b · CRSC , b ∈ [0, 1] . (5.3)

5.2.3 Notation

A summary of the main parameters employed in the cost sharing techniques and
their model analysis is given in Table 5.1.

In the following sections, we introduce a model for the calculation of the total cost
of the SC, taking into account the energy consumption due to the traffic load, and
we study different techniques that share this cost among the operators according
to their traffic patters.
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Table 5.1: Main Parameters for the HS model analysis

Symbol Description

I = {A,B} Set of MNOs
i ∈ I Identification number of MNOs
T Time interval

t ∈ [0, T ] Time
Λi (T ) Total traffic of ith operator over time T
λi (t) Traffic of ith operator at time t
λ (t) Traffic of SC

a Parameter showing the relationship between operators’ traffic
b Parameter showing the relationship between operators’ traffic and the CRSC

CRSC Capacity resources of a SC
CCa CapEx
COp OpEx
CCBS Cost of BS equipment
CCSC Cost of SC equipment
CCSite Cost of site installation and buildout
CCRNC Cost of RNC equipment
CCBT Cost of backhaul transmission equipment
COBT Cost of backhaul and transmission lease
COOM Cost of operation and maintenance
COPw Cost of electric power

CSC (λ (t)) Cost of a SC
c1 Electricty charge per energy unit
c0 Cost of BS equipment

ESC (λ (t)) Energy consumption of a SC
PSC (λ (t)) Power consumption of a SC
Pout (λ (t)) Transmission power of a SC
Pmax Maximum transmission power of SC
P0 Minimum power consumption of a SC
∆p Slope of load-dependent power consumption of a SC
Ci Cost of ith operator
tm Time with maximum aggregated SC traffic

S ⊂ I Coalitions of operators’ set
C (S) Cost of a coalition
φi (C) Shapley value of ith operator

d(C1
i , C

2
i ) Discrepancy between two operators’ costs

5.3 Cost and Energy Consumption Models

In this section, we, first, introduce a model to estimate the total cost of a SC
deployment and, then, we describe a model for the SC energy consumption.

5.3.1 Cost Analysis Breakdown

The cost of a SC consists of the CapEx, for deployment and installation, and
the OpEx for its operation. Chen et al. presented a detailed breakdown of the
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CapEx and OpEx for macrocells in [96]. Following a similar approach and taking
into account the typical cost of SC equipment [97], we have adapted the model in
order to estimate the different costs in the case of a SC.

Table 5.2 shows the CapEx and OpEx breakdown for SCs, whereas the respective
values for the BS case ([96]) are also given for reference. In particular, the CapEx
consists of four factors: i) the cost CC

SC for the small cell equipment ii) the cost
for deployment and installation of the SC, denoted by CC

Site, iii) the cost CC
RNC of

the Radio Network Controller (RNC), and iv) the cost for backhaul transmission
equipment (CC

BT ) that is almost negligible in the case of SCs. The OpEx, on the
other hand, can be broken down to four terms: i) the cost of backhaul transmission
(CO

BT ), corresponding to the bandwidth needed to serve the traffic and calculated
according to a simple leased line pricing, ii) the cost CO

Site for site leasing, iii) the
cost CO

OM for operation and maintenance, and iv) the electric power cost CO
Pw that

depends on the power consumption to serve the traffic λ(t) of the SC.

Table 5.2: CapEx and OpEx breakdown for BSs and SCs

CapEx CCa BS SC

BS/SC equipment CCBS ,CCSC c0 c0/70

Site installation and buildout CCSite c0/4 c0/20

RNC equipment CCRNC 3c0/2 c0/210

Backhaul transmission equipment CCBT c0/4 0

OpEx COp

Backhaul and transmission lease COBT c0/4 c0/20

Site lease COSite c0/4 0

Operation & Maintenance COOM c0/16 9c0/700

Electric power COPw c1EBS c1ESC

In order to calculate a realistic annual SC cost, we assume that the CapEx esti-
mated from Table 5.2 is equally distributed within 5 years. Therefore, the annual
cost of a SC, CSC(λ(t)) is the sum of the CapEx that corresponds to one year and
the traffic-dependent OpEx2:

CSC(λ(t)) = CCa/5 + COp(λ(t)). (5.4)

As shown in Table 5.2, the first seven cost values have been expressed with respect
to the equipment cost of a macro BS c0 measured in e [96]. The last term, i.e., the
electric power, depends on the electricity charge per energy unit c1, measured in
e/kWh, and the energy consumption of a SC ESC(λ(t)), which will be calculated
in the next section. With these relations in mind, Eq. (5.4) is expressed as:

CSC(λ(t)) = 0.0768 · c0 + c1 · ESC(λ(t)). (5.5)
2To calculate the annual cost, the SC traffic λ(t)) must be averaged over a year.
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5.3.2 Energy Consumption Analysis Breakdown

Unlike macro BSs, the SC power consumption is load-dependent. The consumed
energy ESC(λ(t)) over a specific time interval t ∈ [0, T ] can be calculated as:

ESC(λ(t)) =

∫ T

0

PSC(λ(t)) dt. (5.6)

The relationship between the power consumption PSC(λ(t)) of the SC and the
relative transmission power (Pout(λ(t))) can be formulated as a linear function.
To that end, a linear approximation of the power model is adopted, given by [4]:

PSC(λ(t)) = P0 + ∆p · Pout(λ(t)), 0 < Pout ≤ Pmax, (5.7)

where P0 is the minimum power consumption in case of no traffic in the system
and ∆p is the slope of the load-dependent power consumption.

5.4 Cost Sharing Policies and Discrepancies

In this section, we present four different policies for sharing the cost of a SC
owned by a third-party between two operators [98], [99] and we try to quantify
the discrepancies between these methods. In addition, we propose a novel cost
sharing policy, called Hybrid-Sharing, that combines two different strategies in
order to provide a fairer cost distribution according to the particular traits of the
SCs.

5.4.1 Cost Sharing Policies

Traffic-Volume (TV): According to TV, the cost of the SC is shared propor-
tionally to the traffic volumes of the operators. Hence, the cost of operator i
is:

Ci =
Λi∑

j∈I
Λj

· CSC

(∑
j∈I

Λj

)
, (5.8)

where Λi is the total traffic of operator i ∈ {A,B} (Eq.(5.1)) and CSC

(∑
j∈I

Λj

)
the

total cost of the SC (Eq. (5.5)) when serving the aggregate traffic of all operators
in I3.

Operator-Peak (OP): According to OP, the SC cost is shared based on the
traffic peak of the ith operator within a time period t ∈ T , with respect to the
sum of the individual traffic peaks of all operators sharing the SC. Thus, the cost

3Note that for convenience, all time notations have been dropped, when not necessary.
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of operator i is:

Ci =
max
t∈T

λi(t)∑
j∈I

max
t∈T

λj(t)
· CSC

(∑
j∈I

Λj

)
. (5.9)

Aggregate-Peak (AP): In AP, the cost is shared according to the traffic of the
ith operator with respect to the traffic peak of the aggregated SC traffic, which
occurs at a particular time period tm. Consequently, the cost of operator i is:

Ci =
λi(tm)∑

j∈I
λj(tm)

· CSC

(∑
j∈I

Λj

)
. (5.10)

Shapley-Value (SV). Shapley-value is a solution concept in cooperative game
theory employed to predict a unique expected payoff allocation when different
coalitions may be formed among the players. To understand the concept behind
the SV calculation, consider the following example. If a SC is leased by operator
A alone, then A must assume the total CapEx of the SC, as well as the OpEx
that corresponds to its traffic. If B decides to join the SC after A, then B must
only pay the OpEx corresponding to its traffic (i.e., its marginal contribution),
given that A has already covered the remaining SC expenses. Accordingly, the
marginal contribution of operator A would be different if the arrival order of the
two operators in the coalition was changed.

In our specific case, we have S ⊂ I possible coalitions of the two operators. The
set of coalitions is S = {{A}, {B}, {A,B}}, where {A} and {B} are the cases
when each operator owns its own SC and {A,B} is the grand coalition where the
two operators share an SC. The cost of each coalition C(S) is given by Eq. (5.5),
by considering the traffic of operator A, B and the aggregate traffic of both,
respectively. The SV shares the total cost of the SC to the operators in a way
proportional to each operator’s average marginal contribution, after considering all
the possible permutations Π of the operators’ arrival order to the grand coalition.
If π ∈ Π any permutation of operators, we define S (π, i) as the set of operators
that arrived to the coalition before operator i. Then, the Shapley value of the ith
operator, denoted by φi(C), is given by:

φi(C) =
1

|I|!
·
∑
π∈Π

(
C (S (π, i))− C (S (π, i) \ i)

)
, (5.11)

and the cost of operator i is:

Ci =
φi(C)∑

j∈I
φj(C)

· CSC

(∑
j∈I

Λj

)
. (5.12)

The SV is considered the most fair solution for cost sharing but requires high
complexity in terms of computational power (to calculate the marginal costs in all
possible coalitions). To achieve a compromise between complexity and fairness,
we propose a hybrid cost sharing solution, described next.
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Hybrid-Sharing (HS): Let us emphasize that telecommunication operators de-
sign their networks based on the peak traffic utilization, even though the network
remains underutilized during a large part of the day. As a result, the peak traffic
also determines the backhaul equipment that should be employed. Therefore, the
AP policy seems to be the most appropriate technique to share the operational
cost of the backhaul (CO

BT ). On the other hand, the TV method is a simple and
fair way to share the costs that directly depend on the traffic load. Hence, we
propose a hybrid policy (HS) that combines these two methods and calculates the
cost of operator i as:

Ci =
λi(tm)∑

j∈I
λj(tm)

· CO
BT +

Λi∑
j∈I

Λj

· (CCa + CO
Site + CO

OM + CO
Pw). (5.13)

5.4.2 Cost Sharing Policies Discrepancies

Interesting discrepancies are observed among the aforementioned cost sharing poli-
cies, since each of them results in different pricing schemes for the operators.
Hence, we introduce the discrepancy metric, which quantifies the difference in the
operator’s costs when two distinct cost sharing policies are employed. To that end,
the discrepancy of the two policies is defined as:

d(C1
i , C

2
i ) =

C1
i − C2

i

C1
i

· 100%, (5.14)

where C1
i and C2

i denote the costs of operator i ∈ I according to the policy 1 and
2, respectively.

5.5 Performance Evaluation

In this section, we present the scenarios under study along with the analytical
results of the different cost sharing policies.

5.5.1 Simulation Scenario

We consider the scenario depicted in Fig. 5.1, where two operators (A and B) lease
the capacity of a third-party SC. To assess the performance of the cost sharing
algorithms (TV, OP, AP, SV and HS), we consider the four traffic patterns shown
in Fig. 5.2 with varying values of the traffic load volume (i.e., various values for the
parameter a). Table 5.3 summarizes the key parameters employed in the cost and
energy breakdown analysis explained in Section 5.4. Regarding the discrepancies,
SV is used as the reference policy and the most extreme percentage differences of
the other policies with regard to the SV are highlighted in each case. Note that
despite its complexity, SV is assumed as the most fair solution for cost sharing.
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5.5.2 Numerical Results

We begin the performance evaluation by emphasizing the energy efficiency gains
that can be achieved through infrastructure sharing. Even though these gains
are independent of the adopted cost sharing scheme, they can strongly motivate
the operators to cooperate, thus creating the need to select effective cost policies.
Fig. 5.3 depicts the energy efficiency gains achieved through infrastructure sharing
versus the parameter b that determines the SC occupation. More specifically, we
examine two scenarios: i) a scenario where the SC is shared among two operators
(Sharing), and ii) a baseline scenario where each operator owns its own SC (NoS)
and, hence, no cooperation takes place. As we can see, for low SC utilization (i.e.,
b = 0.1), the energy efficiency in shared networks is significantly higher, as we avoid
the deployment of numerous SCs. As the traffic load increases, the percentage of
the gain decreases, but there is no cross point, since sharing is more energy efficient
in all cases. Motivated by these results, in the remainder of the paper, we study
various ways and policies to share the SC cost among operators, focusing on the
applicability, the complexity and the fairness of the different solutions.

Fig. 5.4 illustrates the costs of the operators A and B considering the traffic pat-
terns of Fig. 5.2(a) (Case I), where the traffic patterns follow a typical distribution
and their peaks coincide in time. In this figure, we observe that the discrepan-
cies of the different policies are more intense when the the difference in the traffic
load of the two operators is high (i.e., a = 0.1). As the difference in their traffic
load decreases, the discrepancies fade and, eventually, all policies provide the same
outcome for equal traffic volume (i.e., a = 1). It is also worth noticing that, in
this scenario, OP and AP cannot be distinguished, as the operator and the aggre-
gated peak traffic takes place at the same time. Regarding our proposed policy,
we can see that HS provides costs between TV and OP (or AP), as it combines
the properties of both techniques.

Fig. 5.5 presents the costs for the two operators according to the different policies,
considering a scenario where the traffic follows again a typical distribution, but the
peaks take place at different times during the day (Fig. 5.2(b)). Unlike the pre-
vious case, in this figure, OP and AP sharing policies have distinct performance,

Table 5.3: System Parameters for Cost Sharing Techniques

Parameter Value

SC capacity resources, CRSC 30 Mb/s

Maximum transmission power, Pmax 24 dBm

Minimum power consumption, P0 4.76 W

a, b [0,1]

Cost of BS equipment, c0 20000 e

Electricity charge, c1 0.1 e

Slope of load-dependent power, ∆p 16.15
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Figure 5.3: Total Network Energy Efficiency
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Figure 5.4: Costs of operators given the traffic pattern of Case I (Fig. 5.2(a)) and
cost sharing policies discrepancies in [%]

since the aggregated peak utilization time does not coincide with the maximum
traffic value of each individual operator. In particular, although OP still provides
similar outcome with the TV policy, the discrepancy between AP and SV is ex-
tremely higher. However, similar to the previous case, the proposed HS provides
an intermediate solution by considering different parts of the cost using different
techniques.

In Fig. 5.6 and 5.7, we study the operators cost in case of bursty traffic models
(Fig. 5.2(c) and 5.2(d), respectively). Unlike the previous cases, here we consider



Chapter 5. Strategies for Energy Efficient Cost Sharing in Heterogeneous Networks 116

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

1800

Relative ratio between traffic of operator A and B, a

C
os

t (
eu

ro
s)

Op.B: TV
Op.B: OP
Op.B: AP
Op.B: SV
Op.B: HS

Op.A: TV
Op.A: OP
Op.A: AP
Op.A: SV
Op.A: HS

a=0.1 
Discrepancy (%) CA CB

TV 18.5 60.9
OP 12.1 39.9
AP 26.4 87.1
HS 23.6 77.9

Figure 5.5: Costs of operators given the traffic pattern of Case II (Fig. 5.2(b)) and
cost sharing policies discrepancies in [%]

that the parameter a affects only the high traffic period. For example, when a = 1,
the peak traffic of operator B would be higher than operator’s A peak traffic, since
i) both operators are expected to have the same traffic volume and ii) during the
rest of the day, operator A has slightly higher traffic compared to operator B.

In particular, in Fig. 5.6, we notice again that the OP and the AP policy have the
same outcome, as the peak values coincide in time, despite their different values.
On the other hand, TV and SV exhibit similar performance, converging to the
same point when the traffic volume of the operators is the same (i.e., a = 1).
Our proposed solution (HS) manages to reduce the great discrepancy of OP and
AP, without neglecting the impact of the peak traffic in the system. In Fig. 5.7,
we can see that OP and AP have similar behavior, although the peak times take
place in different time periods during the day. However, HS achieves again lower
discrepancies from both strategies, with regard to the reference policy (SV).

5.5.3 Discussion

Based on the analysis in Section 5.4.1 and the analytical results, we have shown
that the proposed HS policy considers different characteristics of the traffic pattern,
unlike TV, OP and AP, which examine only one aspect (either volume or peak
times). In addition, through an extensive assessment, we have identified significant
discrepancies between the sharing policies and the SV policy, which was used as
a reference strategy. In particular, the TV method shows a steady performance
regardless of the variations in the traffic profile (i.e., its discrepancy remains stable
in all cases). Hence, despite its simplicity, the TV does not seem effective for future
networks, where the different traffic patterns are expected to play a crucial role.
On the other hand, the OP and the AP policies are greatly affected by the adopted
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traffic pattern, especially in bursty traffic conditions, due to the misalignment of
the operators’ peak values.

However, in future wireless networks, where third-parties are expected to offer
services through SCs, a cost sharing policy that considers the individual and spe-
cific needs of the operators is more than necessary. In particular, different traffic
patterns affect the shared costs and, as a result, different factors of traffic, such
as volume, peak times and burstiness, should be taken into account. To that end,
our proposed approach (HS) estimates a cost according to both the traffic volume
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and the peak time traffic, offering a fairer solution to the operators. Therefore, the
discrepancies of the proposed HS policy fluctuate between the discrepancies of the
other policies, independently of the particular scenario. It is worth noting that HS
policy is less complex than SV, as it does not require extra overhead information,
thus being a useful tool for sharing the network cost among the operators in the
near future.

5.6 Concluding Remarks

This chapter was motivated by the traits of the heterogeneous network config-
uration and the low utilization of the BSs and the SCs during the night. The
possibility of a third-party that provides a tier of SCs in HetNets can provide
significant gains in energy efficiency, but at the same time raises important issues
with regard to the SC cost sharing among different operators. In this chapter,
we introduced an accurate cost model for the SCs that takes into account the
traffic load for a precise estimation of the energy consumption. In order to effec-
tively share this cost, we investigated four different state-of-the-art cost sharing
techniques and we introduced a new hybrid policy that achieves a traffic aware
sharing of the total expenses. Our results highlighted the potential energy effi-
ciency gains in the network, along with the fair sharing of the SC cost that can
be achieved through our proposed policy. In our future work, we are planning
to exploit these results by providing the operators with the necessary incentives
to share the SC infrastructure during low traffic periods in order to be able to
switch off the macro BSs, thus reducing further the energy consumption inside the
network.



Chapter 6

Strategies for Energy Efficient
Infrastructure Sharing in
Heterogeneous Networks

“Anything which is physically possible can always be made financially possible;
money is a bugaboo of small minds.”

Robert A. Heinlein, The Moon Is a Harsh Mistress

6.1 Introduction

In this chapter, motivated by the involvement of various entities (i.e., MNOs,
third-party owners) in the dense HetNets, the rising operating costs and the op-
portunities of traffic offloading to the SC networks, we propose a novel energy
efficient solution for dense HetNets, which considers the interests of the involved
parties (MNOs and third-party) and the time-varying traffic characteristics. More
specifically, we introduce an offloading mechanism, where the operators lease the
capacity of an SC network owned by a third-party, in order to be able to switch
off their BSs and maximize their energy efficiency, when the traffic demand is low.
The MNOs request capacity from several SCs and can only switch off their BS if
all their requests are satisfied, enabling them to offload all their traffic to the SC
network.

To that end, the allocation of the SC resources among a set of competing MNOs is
mathematically formulated as an auction. Since the exact resource requirements
of the network are unknown beforehand, the MNOs employ past reports to predict
the maximum expected traffic load. Then, exploiting the fact that, with a high
probability, the actual traffic will be lower than the predicted maximum (especially
during low traffic periods), the MNOs submit a set of bids to the SCs, requesting
for lower capacity resources (with respect to the maximum estimated capacity re-
quirements). With this approach, the SC resources can be more efficiently utilized
and the MNOs are likely to pay a lower price for the leased capacity, taking a

119
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small risk of not being able to serve all users under some circumstances (i.e., when
the traffic approaches the maximum predictions and the leased capacity is not
sufficient). Our key contribution is to study this very interesting tradeoff between
the potential energy and financial gains of this solution and the risk of not fully
satisfying all the network users, thus providing the MNOs with the necessary in-
sights to decide whether it is profitable to participate in the auction, depending
on their tolerance to the potential loss of some users.

In addition, the conflicting interests of the involved parties are also taken into con-
sideration. On the one hand, the MNOs aim to reduce their energy consumption
and expenditures by offloading their traffic and switching off their BS infrastruc-
ture. However, to deactivate a BS, all its traffic should be offloaded to the SC
network (i.e., the MNO should win in all the auctions involving the particular
BS). On the other hand, the third-party wants to maximize its income by leasing
the maximum possible amount for resources to the MNOs. However, the resource
allocation policy that maximizes the third-party income may not enable the op-
erators to switch off their BSs. Our proposed auction-based strategy takes into
account these conflicting interests to achieve a feasible, efficient and energy saving
resource allocation scheme.

Summarizing, the contribution of this chapter is described next:

1. Bidding Strategy. We propose a novel bidding strategy, where operators
submit a set of bids (and not only one bid) to the third-party, requesting
different capacity resources, based on the predictions about their maximum
traffic load. The diversity of bids allows different offloading opportunities,
which is profitable for both the MNOs and the third-party.

2. Auction Design and Switching Off Decision. We design an auction scheme
that enables the efficient usage of SCs resources under low traffic conditions.
Our framework motivates the MNOs to quantify their tolerance about re-
questing less resources and form the different levels of bids. We show that
the proposed auction-based scheme has three desirable properties: i) truth-
fulness, ii) individual rationality, and iii) low computational complexity. The
mechanism is designed based on a multiobjective framework, where the con-
flicting interests of the involved parties are considered, so as to provide the
optimal solution that maximizes the economic profit of both the third-party
and the MNOs and minimizes the network energy consumption at the same
time.

3. Performance Evaluation. We validate the theoretical analysis of the multi-
objective problem by computing the Pareto Front (i.e., the set of optimal)
solutions and assess the effectiveness of the proposed auction-based switching
off algorithm. The analytical and simulation results indicate the potential
energy efficiency and economic gains in the network and give the necessary
insights to the MNOs to decide whether is beneficial to enter in a resource
allocation negotiation with the third-party.

The remainder of the chapter is organized as follows. The system model, the net-
work configuration, the capacity demand model and the notation used throughout
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the chapter are described in Section 6.2. Section 6.3 introduces the auction-based
optimization approach that is used for the switching off decision of the BSs. In
Section 6.4, we present the analytical models for the energy efficiency, the net-
work throughput and the cost metrics. The performance evaluation is provided in
Section 6.5 and, finally, Section 6.6 concludes the paper.

6.2 System Model

6.2.1 Network Configuration

We consider an urban scenario, focusing on an area covered by a macro cell and a
number of uniformly deployed SCs, owned by a third-party. In the macro cell, we
assume that N MNOs provide coverage and services through their BSs, denoted by
BSn, where n ∈ N = {1, . . . , N} characterizes the MNOn. Each SC is represented
as SCf , where f ∈ F = {1, . . . , F}. We assume that the number of SCs is adequate
to cover the area of the macro cell [97]. As it will be explained in detail in the next
section, the operators are motivated to offload their traffic to the third-party SCs
by paying the corresponding price, thus enabling part of the BS infrastructure to
be switched off during low traffic conditions. The network configuration adopted
in this work is illustrated in Fig. 6.1.

...
SC1

...

SCF...

BS1 BSM

Figure 6.1: Network configuration, where 1 macro cell is served by N MNOs and
covered by F SCs.

In order to calculate the adequate number of SCs that are needed to cover the
area of the macro cell, we consider the following analysis. We consider a network
configuration involving NBS macro cells, owned by one operator and FSC SCs,
located uniformly on a coverage area. In the general case, where multiple operators



Chapter 6. Strategies for Energy Efficient Infrastructure Sharing in Heterogeneous
Networks 122

serve the same area, we assume that the BSs of the different MNOs are collocated
in the each one of the macro cells. Assuming that the cell radius of the BSs is
rBS, the cell radius of the SCs is rSC = α · rBS, with α ∈ (0, 1). Respectively, the
number of BSs and SCs are associated with the following equation:

FSC = β ·NBS with β > 1. (6.1)

According to connectivity theory [100] (Eq. (28) from [100]), the probability that
all nodes, NBS, are connected is given by:

Pfc,BS = 1−NBS · e−4·π·r2BS ·ρBS ·
(
1 +O

(
ρ−1
BS

))
, (6.2)

where ρBS is the BSs density and O (·) represent the complexity of the Pfc,BS
calculation. Equivalently, the probability that the SC network, consisting of FSC
SCs, is connected, is denoted by:

Pfc,SC = 1− FSC · e−4·π·r2SC ·ρSC ·
(
1 +O

(
ρ−1
SC

))
, (6.3)

where ρSC is the SCs density.

Our objective is that the two networks should be equivalent and cover the same
area. Thus, we have:

Pfc,BS = Pfc,SC ⇒
1−NBS · e−4·π·r2BS ·ρBS = 1− FSC · e−4·π·r2SC ·ρSC ⇒

α =

√
1

β
·
(

1 +
ln β

4 · π · r2
BS · ρBS

)
⇒

β = −
W
(
−4 · α2 · e−4·π·r2BS ·ρBS · π · ρ2

BS · ρBS
)

4 · π · α2 · r2
BS · ρBS

,

(6.4)

where W (·) is the Lambert-W function, defined as:

W (x) =
∞∑
n=1

(−1)n−1 · nn−2

(n− 1)!
· xn. (6.5)

6.2.2 Traffic Load Model

In this work, we adopt a realistic traffic pattern [82], [84] that corresponds to the
maximum traffic per operator in a given cell, during the night zone. Fig. 6.2(a)
plots the maximum traffic per hour, denoted by Loadmax (h), throughout the day1.
Without loss of generality, we focus on the time zone between 01.00 and 09.00 am,
when the traffic per BS is relatively low (i.e., less than 40 Mbps, which corresponds
to 35% of the cell’s capacity). In addition, we assume that the traffic volumes
of different operators may be different, although they follow the same pattern.
Hence, we define ρn ∈ [0, 1] as the percentage of each operator’s traffic load with

1The parameter h can be dropped for the sake of simplicity.
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respect to the maximum traffic for the respective hour. However, apart from the
maximum traffic volume values, the monthly and annual past reports, available
to the MNOs, can provide further estimations about the minimum and average
traffic load values and the fluctuations of the traffic through time. In this work,
based on real data concerning the traffic load information, we have obtained some
necessary insights about the minimum, maximum and average values of the traffic
load, and we have plotted some indicative numbers in Fig. 6.2(b). Each one of the
six values corresponds to the average traffic load that was observed in different
days during the year. In addition, we express the BS utilization as a percentage of
the total BS’s capacity resources for the extreme cases of minimum and maximum
traffic loads. The two values, Loadmin and Loadmax, are very critical and it is very
important for the MNOs to be able to predict them.

Unlike the existing works in the literature, where each MNO places only one bid
corresponding to the maximum capacity requirements, in our work, we propose
that the MNOs place multiple bids corresponding to different levels of the predicted
traffic load, depicted in Fig. 6.2(b). Thus, given the estimated minimum and
maximum levels of traffic load and assuming that the actual traffic load values
will, most probably, lie between these two extreme values, we are able to calculate
different levels of traffic load. In this work, we consider L+ 1 different traffic load
levels. The number of levels depends on the MNOs’ strategy that will be further
explained in detail in the next sections. Each level l ∈ L = {0, . . . , L} corresponds
to traffic that is equal to:

Loadl = Loadmin +
Loadmax − Loadmin

L
· l =

(
1− l

L

)
· Loadmin +

l

L
· Loadmax.

(6.6)

Evidently, the two extreme values are Load0 = Loadmin and LoadL = Loadmax.
Fig. 6.3 illustrates an example, depicting various traffic levels for a specific hour
(h = 02.00 am). Let us recall that information about the two extreme values are
shown in Fig. 6.2(b).

Based on the aforementioned issues, in the following subsection, we calculate the
capacity that each MNO requests from the third-party network, taking into ac-
count the traffic load variations.

6.2.3 Capacity Demand Calculation

In the proposed auction-based switching off algorithm, a subset of MNOs offloads
all their traffic by leasing bandwidth resources from the SCs, thus being able to
switch off their BSs. In order to calculate the capacity resources that a BS requests
from each SC, it is necessary to determine the traffic demands of the users and
to which SC they will be associated. Thus, we study the downlink transmission
(from SC to the user) with the following assumptions:

• Only one MNO provides service to a particular user.
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Figure 6.2: Traffic pattern scenario and real data traffic values

• Each user can be associated with only one SC. In case that the corresponding
MNO switches off the BS, the user will transmit its data through the SC,
otherwise the user will remain associated with the BS of the MNO.

• We assume that the total transmit power of the BSs and SCs is equally
distributed among its subcarriers.
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Figure 6.3: Traffic pattern during the night zone and different levels of traffic load
estimation

Let us define as Un = {1, . . . , Un} the set of users of each MNO n. We use the
notation ui,n ∈ Un (with i ∈ Un) to represent user i that is being served by the
BS of the nth MNO. Similarly, we denote as ui,n:f the ith user of the nth MNO
that is being served by the fth SC (i.e., after the corresponding BS is switched
off). We assume that user ui,n:f is associated to the SC with the strongest signal,
denoted by the following equation:

arg max
f∈F

(
GSC · gu · Lui,n:f · Pmax

tx,SC

)
, (6.7)

where GSC is the SC antenna gain, gu is the user antenna gain, Lui,n:f denotes
the pathloss between the SC f and the user ui,n:f , and Pmax

tx,SC is the maximum
transmission power of the SCs. We assume that the pathloss is distance-dependent,
and is defined as Lui,n:f = d−γui,n:f , where dui,n:f is the distance between the users
ui,n:f and the SC m, and γ is the pathloss exponent.

Therefore, the SNR received by a user ui,n:f from SC f is given by:

SNRui,n:f =
GSC · gu · Lui,n:f · Ps,SC

Pnoise
, (6.8)

where Pnoise represents the thermal noise and Ps,SC represents the power that is
allocated by the SC to each subcarrier, and is calculated by the following equa-
tion [101], [102]:

Ps,SC = 10 · log

(
Pmax
tx,SC

12 ·Nmax
PRB

)
, (6.9)
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where Nmax
PRB is the maximum number of Physical Resource Blocks (PRBs)2 allo-

cated to the user ui,n:f . Thus, given that the throughput demand of the user ui,n:f

is Rui,n:f , and CRSC is the bandwidth of the SCs, the number of PRBs needed for
the association of the user ui,n:f with the SC m is given by [103]:

NPRBui,n:f
=

Rui,n:f

CRSC · log2

(
1 + SNRui,n:f

) . (6.10)

Consequently, from each SC f , the nth MNO requests a number of PRBs that is
equal to the summation of the PRBs allocated for each one of the users that are
in the coverage area of the fth SC, denoted by:

NPRBn,f =
∑

ui,n:f∈Un

NPRBui,n:f
. (6.11)

Based on this analysis, the number of PRBs that are requested by the nth MNO
for all the different levels of traffic load, defined as N l

PRBn,f
, can be calculated by

employing the aforementioned equations and by using the corresponding parame-
ters for each user.

6.2.4 Notation

A summary of the main parameters employed in the gamet theoretic switching off
algorithm and their model analysis is given in Table 6.1.

Table 6.1: Main Parameters for the MAS model analysis

Symbol Description

BSn BS of nth MNO
Bl
n,f Bid pair of nth MNO for fth SC at lth bidding level
bln,f Bid of nth MNO for fth SC at lth bidding level
blres,n,f Reservation price of nth MNO for fth SC at lth level
CGn Financial profit of nth MNO
CGmin

n Minimum profit of nth MNO
CGSC Financial gain of SC network
CGmin

SC Minimum profit of SC network
CRBS Capacity resources of a BS
CRSC Capacity resources of a SC
CBS BS cost
CSC SC cost
d Data session
D Maximum number of simultaneous sessions for a node
DBS Maximum number of simultaneous sessions for BS

Continued on next page

2It should be mentioned that each PRB consists of 12 subcarriers, with a bandwidth of 180 kHz and
a duration of 0.5 ms.
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Table 6.1 – continued from previous page
Symbol Description
DSC Maximum number of simultaneous sessions for SC
dui,n:f Distance between user ui,n:f and fth SC
E [B] Average transmitted bits of network

E [BBSn ] Average transmitted bits of BSn
E
[
BSCf

]
Average transmitted bits of SCf

E [E] Average energy consumption of a network
E [EBSn ] Average energy consumption of BSn
E
[
ESCf

]
Average energy consumption of SCF

E[ηε] Expected energy efficiency of a network

E[η
(BSn)
ε ] Expected energy efficiency of BSn

E[η
(SCf)
ε ] Expected energy efficiency of SCf

E [T ] Expected throughput of a network
E [TBSn ] Expected throughput of BSn
E
[
TSCf

]
Expected throughput of SCf

f ∈ F Identification of SC
F = {0, . . . F} Set of SCs, with |F| = F

FSC Number of SCs for connectivity analysis
f1 (x) Third-party’s objective
f2 (x) MNO’s objective
f3 (x) Overall objective
gu User antenna gain
GSC SC antenna gain
h Hour of the day
k Identification of a node

l ∈ L Identification of bidding level
L = {0, . . . L} Set of bidding levels, with |L| = L
Load (h) Traffic load of a single BS at hour h
Loadl (h) Traffic load of a single BS for level l at hour h
Loadmax (h) Maximum traffic load of a single BS at hour h
Loadmin (h) Minimum traffic load of a single BS at hour h
Lui,n:f Pathloss between mth SC and user ui,n:f

MNOn Identification of the nth MNO
n ∈ N Identification of MNO

N = {1, . . . N} Set of MNOs, with |N | = N
NBS Number of BSs for connectivity analysis
Nmax
PRB Maximum number of PRBs

NPRBn,f Number of PRBs allocated to nth MNO
NPRBn,f ,lack Number of lacking PRBs of nth MNO
NPRBi,n:f Number of PRBs allocated to user ui,n:f

NOFF ⊆ N Subset of MNOs with switched off BSs
NOFF Number of MNOs with switched off BSs
NON ⊆ N Subset of MNOs with active BSs
NON Number of MNOs with active BSs
Pconst Power consumed by a BS for cooling and antenna feeding
Pidle Power consumed by a BS when it is idle

Continued on next page
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Table 6.1 – continued from previous page
Symbol Description
Ptx Power consumed by a BS for data transmission

p
(k)
d State probability for serving d sessions of kth node

p
(BSn)
d State probability for serving d sessions of BSn

p
(SCf)
d State probability for serving d sessions of SCf
Pfc,BS Connectivity probability
Pnoise Thermal noise power
pln,f Price of nth MNO for fth SC at lth level
P SC
s Power of SC allocated to a subcarrier

Pmax
tx,SC Maximum transmission power of a SC
rBS BS cell radius
rSC SC cell radius
R Bit rate

Rui,n:f Throughput demand of user ui,n:f

SCf Identification of the fth SC
SNRui,n:f SNR received by user ui,n:f

tnight Night zone duration
ui,n ∈ Un User i of MNOn

ui,n:f ∈ Un User i of MNOn associated with fth SC
uln,f Valuation of nth MNO for fth SC at lth bidding level
U ln,f Payoff function
Un Number of users of MNOn

Un = {1, . . . , Un} Set of users of MNOn

xn Binary decision variable of nth MNO
xln,f Binary decision variable of nth MNO for fth SC at lth level(

xln,f
){−i}

Binary decision variable when ith does not participate
y Parameter for SC minimum profit
z Parameter for BS minimum profit
α Parameter for the relationship between BSs and SCs radius
β Parameter for the relationship between BSs and SCs number
γ Pathloss exponent
δ Parameter of satisfaction function

λ(BSn) Generation rate of sessions of BSn

λ(SCf) Generation rate of sessions of SCf
λ(k) Generation rate of sessions of kth node
µ(BSn) Service of sessions of BSn

µ(SCf) Service of sessions of SCf
µ(k) Service of sessions of kth node
ρBS BSs density
ρSC SCs density
ρn Percentage of nth MNO with respect to maximum traffic
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6.3 Multiobjective Auction-based Switching Off Algorithm
(MAS)

In this section, we present the combinatorial auction employed to select the MNOs
that can offload their traffic to the SCs, thus being able to switch off their BSs.
We provide the bidding strategy and we formulate the ILP model which ensures
the optimal allocation and the switching off strategy for the auction. In addi-
tion, to ensure truthful bidding, the Vickrey - Clarke - Grooves (VCG) payment
mechanism [104] is employed.

6.3.1 The Big Picture

By considering the limited capacity of the SCs and the MNOs’ incentive to switch
off their BSs, we use an auction-based mechanism to motivate the operators to
offload the traffic to the third-party SC network. Fig. 6.4 illustrates the main idea
of the scheme. In our proposal, both the MNOs and the third party take part
in the decision process, each one having a separate role in the framework. On
one hand, the MNOs act as buyers, who are willing to lease the SCs resources
and opportunistically offload their traffic. On the other hand, the third party,
acting as seller, collects the bids and, through an auction, the subset of MNOs
that can offload their traffic, is selected. The proposed auction-based switching
off scheme consists of three main steps: bidding, allocation and pricing, whose
process and the respective decision makers (in parenthesis) are presented below:
i) In the bidding phase (MNOs), the MNOs place their bids to the third party
according to the different values of the requested bandwidth. Each bid includes
the information of the requested capacity and the corresponding price that the
MNO is willing to offer. ii) In the allocation step (third party, MNOs), the third
party collects the MNOs’ bids. The selection of the optimal resource allocation
can be derived through the solution of the resource allocation problem. iii) In the
pricing step (third party), the third party decides each winner’s payment price,
based on the resource allocation of the previous step. The winning MNOs offload
their whole traffic to the SCs and switch off their BSs, while the losing bidders
keep their BSs active.

6.3.2 Bidding Strategy

Each SCf of the third-party (seller) has unexploited capacity resources that is
willing to lease to the MNOs. The MNOs (buyers) are willing to offload their
traffic to the SCs by requesting specific capacity resources to lease, based on the
predictions of the traffic load and the number of the PRBs calculated through
Eq. (6.11). The MNOs valuate the requested resources, N l

PRBn,f
at a given price

uln,f , unknown to the third-party and the other bidders, where l is the level of
resources, n ∈ N refers to the corresponding operator and f ∈ F corresponds to
the specific SC that the MNO is interested in leasing the resources from. In the
proposed auction-based scheme, each operator submits a set of bid pairs Bl

n,f =
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Figure 6.4: Auction illustration and proposed algorithm flowchart

(
bln,f , N

l
PRBn,f

)
, representing the price, bln,f ≤ uln,f , that the nth MNO pays for

leasing the capacity N l
PRBn,f

from the fth SC. In general, these two values (i.e,

bln,m, u
l
n,m) may not necessarily be the same. However, in a truthful auction as the

the one that we have (the truthfulness property of the auction will be explained
in Section 6.3.4, it is proved that the private valuation and the bidding price are
equal, and thus, bln,f = uln,f [78], [79]. After receiving the bid pairs, the third-party
proceeds to the selection of the subset of the MNOs, whose traffic can be offloaded
to the corresponding SCs.

To gain further insights on the proposed bidding strategy, let us consider the
following example. We assume that, given the predicted expectations about the
traffic load, each MNO f submits multiple bids, b0

n,f , b
1
n,f , . . . , b

l
n,f , . . . , b

L
n,f , indi-

cating the offered price for the requested number of PRBs. Through the different
bid pairs, the MNOs actually reveal their outage probability tolerance. In particu-
lar, by leasing the maximum calculated number of PRBs (NL

PRBn,f
) for the highest

bid bLn,f , the MNOs guarantee service to all their users. On the other hand, by

obtaining a smaller number of PRBs (e.g., N l
PRBn,f

with l < L), the operator
will pay a smaller price at a risk of leaving some users in outage. The minimum
number of requested PRBs N0

PRBn,f
constitutes an upper bound of the operator’s

outage tolerance. Another parameter determined by each MNO is the number of
levels. A higher number of levels results in more bid pairs, thus increasing the
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performance of the auction (since more offloading options become available) while
inducing more communication overhead and higher computational complexity.

To flexibly model the MNOs’ outage tolerance, we introduce a satisfaction function
which represents the bidding value that the MNO is willing to pay for leasing
specific bandwidth. To that end, we define the number of lacking PRBs as the
difference between the maximum number of required PRBs minus the actually
obtained PRBs allocated the MNO, given by:

N l
PRBn,f ,lack

= NL
PRBn,f

−N l
PRBn,f

. (6.12)

The satisfaction function is determined by the requested capacity of each MNO and
is monotonically decreasing with the number of lacking PRBs. We also consider
that for each MNO there is a lower bound for the minimum number of requested
PRBs, which minimizes the MNO’s satisfaction. This bound indicates that for less
PRBs the MNO will not participate in the auction. Fig. 6.5 shows three examples
of the outage tolerance function. Three bidding values are emphasized in the plot:
the highest bid bLn,f , corresponding to the maximum requested capacity, NL

PRBn,f

(with N l
PRBn,f ,lack

= 0), the lowest bid b0
n,m, and an intermediate value bln,f . As the

number of lacking PRBs increases (depicted by the arrow direction in Fig. 6.5), the
bid values decrease and, as a consequence, losses in terms of the served users may
be observed. If the number of lacking PRBs exceeds N0

PRBn,f ,lack
, the MNO will not

participate in the auction and, thus, no bid lower than b0
n,f will be submitted. The

three points (A, B and C) marked in Fig. 6.5, correspond to the different tolerance
functions of three operators. An outage-tolerant MNO (point C) requests for less
bandwidth for the same bidding value, bln,f , compared to a non-tolerant MNO
(point A) that still requests high capacity from the third-party. Hence, the non-
tolerant MNO places higher priority on guaranteeing user service, whereas the
outage-tolerant MNO is willing to sacrifice some resources in order to increase its
probability of winning the auction and switching off its BS, thus enhancing energy
efficiency. Finally, point B corresponds to an intermediate bidding strategy defined
by a linear function between the two examined parameters.

The user outage tolerance function is modeled as:

bln,f = bLn,f −
bLn,f − b0

n,f

NL
PRBn,f

−N0
PRBn,f

·
(
N l
PRBn,f

)δ
. (6.13)

The values of b0
n,f and bLn,f will be calculated in details in the following section,

where the constraints and requirements posed by the MNOs and the third-party
are given within the optimization framework.

The distinctive cases for the satisfaction curves are given below:

• Non-tolerant MNO (Point A). For the non-tolerant MNO, the outage toler-
ance function is convex, with δ < 1.

• Average-tolerant MNO (Point B). There is a linear relation between the
bidding strategies and the outage-tolerance of the MNOs, by substituting
δ = 1 in Eq. (6.13).
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Figure 6.5: Bidding strategy versus tolerance function

• Tolerant MNO (Point C). For the tolerant MNO, the satisfaction function is
concave, with δ > 1.

The parameter δ may obtain a wide range of values. The selection of a value
equal to δ << 1 corresponds to a strictly non-tolerant MNO, who decreases its
bid requests very fast. In contrast, a very high value of this indicative parameter
(i.e., δ >> 1) would lead to very slowly decreasing bidding values, and thus, to a
very tolerant operator.

6.3.3 Auction Formulation

By employing the properties of combinatorial auction theory, we formulate the
problem of the opportunistic offloading as an auction. Each MNO n ∈ N places the
corresponding bid pairs, Bl

n,f . Having received the bids, the third-party selects the
subset of MNOs that maximizes the desired goals of all the involved participants
in the auction. We define xln,f as a binary decision variable that indicates whether

the corresponding bidder (MNO n) is winner (xln,f = 1) or not (xln,f = 0) in the
corresponding SCf and for the lth bidding value.

The cost of using the SC infrastructure and the increased energy consumption,
are the main objectives that should be investigated: the maximization of the
profits (the economic objectives of both the third-party and the MNOs), and the
minimization of the energy consumption (the energy objective). The interaction
of these competing objectives motivates the use of an auction mechanism. In
continuation, a detailed analysis of the objectives of each party is presented.
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6.3.3.1 The third-party’s objective:

The third-party aims at maximizing its profit by leasing high volumes of SCs
capacity at increased prices. The profit is defined as the difference of the MNOs’
winning bids minus its expenses (CapEx and OpEx). We define the financial gain
of the SC network, CGSC , as:

f1 (x) = CGSC =
∑
n∈N

∑
f∈F

∑
l∈L

xln,f · bln,f − F · CSC , (6.14)

where CSC is the cost of a SC, corresponding to the sum of its CapEx and the
traffic-dependent OpEx. For the calculation of the cost of the SCs, the cost model
presented in Section 5.3.1 is employed.

To ensure its objective, the third-party introduces a minimum profit, which is
described as a function of its total costs:

CGmin
SC = y · F · CSC , y > 0. (6.15)

Given the minimum profit, calculated by Eq. (6.15), we estimate the reservation
price, which is defined below:

Proposition 1. The reservation price is defined as the minimum price that a
seller would be willing to accept for leasing the corresponding bandwidth:

blres,n,f =
N l
PRBn,f

Nmax
PRB

· y · F · CSC . (6.16)

Proof. The third-party is willing to share its resources among the MNOs based
on proportional fairness. However, the third-party also wants to ensure that a
minimum profit gain will be achieved. To that end, it calculates a reservation
price, which is the minimum price that the third-party will accept from an MNO
to lease a specific bandwidth. The maximum number of PRBs that the nth MNO
can offload to the fth SC of the third-party is given by:

N l
PRBn,f

=
blres,n,f · xln,f∑

n∈N

∑
l∈L

blres,n,f · xln,f
·Nmax

PRB. (6.17)

Finally, by using the Eq. (6.15) and the Eq. (6.17) in the Eq. (6.14), the reservation
price for offloading traffic and using NPRBln,f

is calculated.

The reservation price in Eq. (6.16) is not the price that the MNOs will propose
to lease their requested capacity, though it is a threshold price that the third-
party uses in order to eliminate all the offers that are less than the accepted.
The reservation price can either be announced or be unknown to the MNOs. The
reservation price means that the seller would rather withhold the capacity if the
proposed bids are too low (i.e., lower than the reservation price) and given this
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price the auction process can be accelerated, since the set of prices that are lower
than the reservation price can be discarded.

6.3.3.2 The MNOs’ objective:

The objective of each MNO is the maximization of its financial profits. The max-
imization of the profits of the nth MNO is defined as the revenue from switching
off its BS minus the winning bids for leasing the requested capacity from the
third-party. Therefore, the profit (cost gain) can be written as:

f2 (x) = CGn = CBS · xn −
∑
f∈F

∑
l∈L

xln,f · bln,f , (6.18)

with,

xn =
∏
f∈F

∑
l∈L

xln,f ,∀n ∈ N , (6.19)

and CBS being the cost of a BS, whose model is also presented in Section 5.3.1,
provided that: ∑

l∈L

xln,f ∈ {0, 1},∀n ∈ N , ∀l ∈ L. (6.20)

At this point, let us recall that an operator is able to switch off its BS, if it wins
in an auction in all the SCs, a condition that is represented by the product in
Eq. (6.19). The product is equal to 1 when the nth MNO wins in F auctions in
the equally numbered SCs, otherwise it is 0.

The MNOs are willing to participate in the auction and lease bandwidth resources
from a third-party, if they guarantee a minimum profit gain, at the same time.
Consequently, they introduce a minimum profit, which is described as a percentage
of their total costs:

CGmin
n = z · CBS, 0 < z < 1. (6.21)

The bidding strategy of the MNOs, along with the proposed bids, depend on the
minimum profit gain and the operation costs of the BSs. However, the cost gain
can be attained, if and only if, the nth MNO wins in F auctions and is able to lease
the requested capacity. In addition, since we consider uniform traffic in the macro
cell, we conclude that the bids in the different SCs must be equal and proportional
to the corresponding traffic. Thus, the maximum bid price for offloading the traffic
in the fth cell is calculated as:

bLn,f =
(1− z) · CBS

F
. (6.22)

Similarly, the minimum bidding price is a proportional value of the maximum one,
given by the following equation:

b0
n,f = v · (1− z) · CBS

F
, (6.23)
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where v ∈ (0, 1). The bidding values of the remaining L−1 levels can be calculated
based on Eq. (6.13), depending on the maximum bid value and the relation between
the outage tolerance of the MNOs and the discount they can be offered for the
lower requested bandwidth.

6.3.3.3 Overall objective:

The overall objective of the network is the minimization of the energy consumption.
This can be attained by reducing the number of active BSs, given that the BSs are
responsible for the major part of energy consumption in the network. We define
the network energy consumption, E[E], as follows:

f3 (x) = E[E] =
∑
n∈N

E[EBSn ] · (1− xn) + F · E[ESC ], (6.24)

where E[EBSn ] and E[ESC ] represent the BS and SC energy consumption, respec-
tively.

The combinatorial auction formulation should include all the objectives of the
participating entities. In order to capture the tradeoff between the objectives,
multiobjective optimization [105] is employed. Multiobjective optimization is the
discipline that focuses on the resolution of problems involving the simultaneous
optimization of several objectives. The target is to find a subset of acceptable
solutions according to a set of objectives. In general terms, the objectives may be
conflicting, and consequently, a single global optimum may not exist. Hence, the
notion of an optimum set x∗ becomes very important. Some relevant definitions
are given next.

Definition 1. Given the three objectives, f1 (x), f2 (x), and f3 (x), and provided
that x1 and x2 are two decision variables, then x1 is said to be the Pareto dominant,
and is denoted as x1 � x2, if and only if fi (x1) ≥ fi (x2), ∀i ∈ {1, 2, 3}, and
fj (x1) > fj (x2), for at least one index j ∈ {1, 2, 3}

Definition 2. x∗ is said to be Pareto optimal (or non-dominated), if there is no
other x, so that x dominates x∗. The set of all Pareto optimal solutions in the
decision space is called the Pareto optimal set and the image of the Pareto optimal
set in the objective space is called the Pareto optimal front.

Provided the aforementioned definitions, the ILP multiobjective optimization prob-
lem can be formulated as follows.

Definition 3. The allocation problem is to determine the optimal solution {xln,f},
∀n ∈ N , ∀f ∈ F , and ∀l ∈ L that maximizes the distinctive incentives of the
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involved parties in the auction formulation, subject to capacity and offloading tar-
gets:

P1: max
[
CGSC , CGn, − E[E]

]
(6.25)

s.t.∑
n∈N

∑
l∈L

xln,f ·N l
PRBn,f

≤ Nmax
PRB, ∀f ∈ F , (6.26)∑

l∈L

xln,f ∈ {0, 1},∀n ∈ N ,∀f ∈ F , (6.27)

bln,f ≥ blres,n,f ,∀n ∈ N ,∀f ∈ F ,∀l ∈ L, (6.28)

xln,f ∈ {0, 1},∀n ∈ N ,∀f ∈ F , ∀l ∈ L. (6.29)

The constraint in Eq. (6.26) ensures that the total number of allocated resources
does not exceed their availability, constraint (6.27) ensures that only one bid of
the nth MNO in the fth SC can be the winning bid among the l different ones,
constraint (6.28) ensures that the bids are higher than the reservation price and
the constraint (6.29) ensures the integrality of the binary variable. The objec-
tives of the proposed optimization formulation are contradictory. For example,
the maximization of the third-party income does not imply the BSs switching off,
whereas the energy consumption objective does not ensure the third-party’s inter-
ests. In addition, the maximization of the third-party financial gains may lead to
additional economic losses from the MNOs’ perspective, since the maximization
of this objective may lead to a resource allocation that does not imply the BSs
deactivation.

Exploiting the fact that the BSs are responsible for the major part of the en-
ergy consumption, the third objective of the problem, f3 (x), can be transformed
into a constraint. Hence, energy consumption is minimized when the maximum
number of MNOs are able to switch off their BSs after winning in M auctions, a
condition represented by the product in Eq. (6.19). Thus, the problem P1 is trans-
formed into a simpler formulation in Eq. (6.30) and, at the same time, the energy
consumption objective is not neglected, in contrast to former works [77], where
only the maximization of the third-party’s income is considered. The equivalent
problem is shown below:

P2: max
[
CGSC , CGn

]
(6.30)

s.t. ∏
m∈M

∑
l∈L

xln,f ∈ {0, 1},∀n ∈ N , (6.31)∑
n∈N

∑
l∈L

xln,f ·N l
PRBn,f

≤ Nmax
PRB,∀f ∈ F , (6.32)∑

l∈L

xln,f ∈ {0, 1},∀n ∈ N ,∀f ∈ F , (6.33)

bln,f ≥ blres,n,f ,∀n ∈ N ,∀f ∈ F ,∀l ∈ L, (6.34)

xln,f ∈ {0, 1},∀n ∈ N ,∀f ∈ F ,∀l ∈ L. (6.35)
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The objective function (6.30) aims at maximizing the financial gain of both the
third-party and the MNOs. Constraint (6.32) ensures that an operator either
wins in one auction in the F SCs (and switches off its BS) or loses in all the
auctions (keeps its BS active). Thus, this constraint ensures the minimization of
the energy consumption given by the Eq. (6.24), since the third-party selects the
resource allocation that leads to the highest number of switched off BSs, while at
the same time, achieves the increase of its income. Constraints (6.32),(6.33), (6.34)
and(6.35) are the same as constraints (6.26), (6.27), (6.28) and (6.29), respectively.

The multiobjective problem P2 belongs to the class NP-Complete since it is equiv-
alent to the 0-1 knapsack problem, which is a well-known problem in combinato-
rial optimization. For the NP-hard problems, an optimal solution is difficult to be
found due to the large number of variables [105]. In order to overcome the high
complexity of multiobjective problems, metaheuristic methods have become a very
active research area and several algorithms have been proposed. Through the use
of metaheuristcs, the problem can be solved efficiently and quickly for a relatively
small number of MNOs and SCs [106]. In the investigated network configuration
with 5 MNOs and 15 SCs [59], the solution is found very quickly. The meta-
heuristic algorithm (also sometimes called genetic) that finds the Pareto optimal
solution for our multiobjective optimization problem works on a set of possible
combinations of the decision variables [105]. The basic definition of the Pareto
Front is that it consists of exactly those point solutions that are not dominated
by any other point. The different objectives cannot be optimized simultaneously.
Thus, first the solutions that maximize the MNOs’s income and the third party’s
economic gains are calculated separately. Obviously, these solutions that maxi-
mize the cost gains of the MNOs and the third-party always belong to the Pareto
Front, and in fact, they are its endpoints. A simple algorithm to find the other
solutions (if any) on the Pareto Front begins by sorting the solutions according
to one of the objectives - e.g., third party’s income. The algorithm then starts
with the point with the maximum gain for the third party and continues to the
successive solutions in order of increasing third party’s cost until the solutions
with higher cost gain value for the operators is found. This solution is then added
to the Pareto Front and the search is restarted from it.

6.3.4 Pricing Strategy

Having defined the ILP model, we now illustrate the payment rule, which is of
crucial importance for the realization of the auction for the third-party. The VCG
payment induces all the users to reveal their actual valuations for the requested
bandwidth. In VCG mechanism, the third-party charges the bidders (MNOs)
with a price for the requested capacity. For example, an MNO who requires large
bandwidth will have to pay a high price, since its request results in dissatisfying
other MNOs who lose in the auction because of the limited capacity resources and
will not be able to offload their traffic.

Let us denote by pln,f the price paid by the MNO n to the third-party for the
allocated capacity of the fth SC. Thus, the payoff function for bidder n that
represents the difference between the price paid by bidder n and its true valuation
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can be expressed by:

U ln,f =

{
uln,f − pln,f , if MNO n is selected,

0, otherwise.
(6.36)

The payment rule for each MNO i ∈ N can be formally defined as follows:

pli,f =
∑

n∈N\{i}

∑
f∈F

∑
l∈L

(
xln,f

){−i} · bln,f − ∑
n∈N\{i}

∑
f∈F

∑
l∈L

xln,f · bln,f , (6.37)

where the first term is the aggregate valuation of the allocated resources,
(
xln,f

){−i}
,

when MNO i does not participate at all in the auction. The second term is
the aggregate valuation of the allocation xln,f of all MNOs other than i, when i
participates in the auction.

Next, we prove that our optimized auction mechanism possesses three important
properties: i) truthfulness, ii) individual rationality, and iii) low computational
complexity.

Proposition 2 (Truthfulness). The payment rule defined in Eq. (6.37) satisfies
the individual rationality property.

Proof. To prove the truthfulness, we compare two cases: Case 1, where the MNO
i bids bli,f = uli,f and the solution of the problem (6.30) is xli,mf , and Case 2,

where the MNO i bids
(
bli,f
)′

=
(
uli,f
)′

and the corresponding solution is
(
xli,f
)′

.

In addition, let
(
xln,f

){−i}
denote the solution to the same problem, considering

that MNO i does not participate in the auction, thus forcing xli,f = 0, ∀f ∈ F in

the problem. Note that
(
xln,f

){−i}
=
((
xln,f

){−i})′
.

Given the Eq. (6.36) and (6.37), the utility of i, when it bids uli,m, is equal to:

U l
i,f =

∑
n∈N\{i}

∑
f∈F

∑
l∈L

xln,f · uln,f −
∑
n∈N

∑
f∈F

∑
l∈L

(
xln,f

){−i} · uln,f , (6.38)

whereas, when the MNO declares
(
uli,f
)′

, the utility is equal to:(
U l
i,f

)′
=

∑
n∈N\{i}

∑
f∈F

∑
l∈L

(
xli,f
)′ · (uln,f)′ −∑

n∈N

∑
f∈F

∑
l∈L

(
xln,f

){−i} · uln,f . (6.39)

Since, xln,f is the solution that maximizes the objective function (6.30), we have:∑
k∈N\{i}

∑
f∈F

∑
l∈L

xlk,f · ulk,f ≥
∑

k∈N\{i}

∑
f∈F

∑
l∈L

(
xlk,f

)
·
(
ulk,f

)′
, (6.40)

thus, U l
i,f ≥ (Ui,f )

′, and the MNO i cannot increase its utility by bidding unilater-

ally untruthfully. Therefore, bidding uli,f is always a weakly dominant strategy.
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Proposition 3 (Individual Rationality). The payment rule defined in Eq. (6.37)
satisfies the individual rationality property and all bidders are guaranteed to obtain
non-negative utility.

Proof. As we have proved that our scheme is truthful, bln,f = uln,f , ∀n ∈ N , and

the utility of a winning operator is U l
n,f = 0, which is always a non-negative value,

proving the individual rationality.

Proposition 4 (Low Complexity). The allocation optimization problem can be
solved in polynomial time.

Proof. In Section 6.3.3, we have shown that our auction-based problem can be
solved in polynomial time, either for small networks through the resolution of P1
and P2 problems.

6.4 Performance Metrics Analysis

In this section, we provide the analytical models for the calculation of the network
throughput and energy efficiency, when the auction-based switching off algorithm
is applied.

The network traffic is depicted in Fig. 6.2(a) and consists of data traffic with
constant bit rate R. We assume that for each node k (BSn or SCf )

3, data sessions
are Poisson generated processes with rate λ(k) and have exponential service time,
denoted by 1/µ(k). Hence, we model the operation of the node k as a Markov chain.
Each state of the system is characterized by the number of active data sessions,
denoted by d. The maximum number of simultaneously served data sessions is
DBS = CRBS/R and DSC = CRSC/R for the BSs and the SCs, respectively,
given that CRBS and CRSC refer to the BS and SC bandwidth, respectively. By
defining D = {DBS, DSC}, the balance equation is:

p
(k)
d =


(
λ(k)

µ(k)

)d
· 1

d!
· p(k)

0 , d = 0, 1, ..., D,

0 , d ≥ D,

(6.41)

where p
(k)
0 represents the state probability that the node k remains idle, and it is

calculated as:

p
(k)
0 =

(
D∑
d=0

(
λ(k)

µ(k)

)d
· 1

d!

)−1

. (6.42)

In continuation, employing the steady state probabilities of the Markov chain, we
define and calculate the key performance metrics for both the individual nodes
and the whole network. We focus on the night zone, with duration tnight.

3We assume that k corresponds to a BSn or a SCf . Thus, k = {BSn, SCf}.
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6.4.1 Throughput

The expected throughput E [TBSn ], E
[
TSCf

]
, for the BSn and SCf , respectively,

is defined as the average number (over all possible states of the system) of served
sessions in the system multiplied by the transmission rate of the session and is
calculated as:

E [TBSn ] =
DBS∑
d=0

d ·R · p(BSn)
d , and (6.43)

E
[
TSCf

]
=

DSC∑
d=0

d ·R · p(SCf)d . (6.44)

where p
(BSn)
d , and p

(SCf)
d are the steady state probabilities for the given traffic load

rate λ(BSn), and λ(SCf), respectively.

In continuation, we calculate the throughput for the network of N MNOs and the
M SCs, after the application of the algorithm. We define as λ

′(SCf ) =
∑

i∈NOFF
λ(i),

with NOFF ⊆ N , the subset of operators that switch off their BSs, the new average
traffic load of the SCf , which is equal to the traffic of the switched off BSs that
must be served by SCf . Thus, the total throughput of the network is:

E [T ] =
∑
n∈N

E [TBSn ] · (1− xn) +
∑
f∈F

E
[
T ′SCf

]
, (6.45)

where E
[
T ′SCf

]
is the average throughput of the mth SC when it serves the traffic

λ′(SCf ).

6.4.2 Energy Efficiency

The expected energy efficiency E[η
(BSn)
ε ] of a BSn is defined as the ratio of the

average transmitted bits E [BBSn ] over the average energy E [EBSn ]:

E[η(BSn)
ε ] =

E [BBSn ]

E [EBSn ]
. (6.46)

The average transmitted bits during the night zone can be calculated by multi-
plying the average throughput given in Eq. (6.43) with the duration of the night
zone tnight:

E [BBSn ] = E [TBSn ] · tnight. (6.47)

To calculate the average energy consumption, we should take into account the
power consumed by the BS for operation and transmission, consisting of three
components: i) the constant power Pcnst, consumed by an active BS for operations
such as cooling, antenna feeding, etc, ii) the idle power Pidle, which is the power
consumed when the BS remains idle, i.e., when there are no ongoing traffic sessions,
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iii) the transmission power for serving the ongoing traffic sessions corresponding to

each state p
(BSn)
d , considering that Ptx denotes the transmission power for serving

a single data session. Hence, the average energy consumption during the night
zone tnight is:

E [EBSn
] =

Pcnst + Pidle · p(BSn)
0 +

DBS∑
d=0

Ptx · d · p(BSn)
d

 · tnight. (6.48)

Accordingly, the expected energy efficiency E[η
(SCf)
ε ] for the SCf is defined as:

E[η
(SCf)
ε ] =

E
[
BSCf

]
E
[
ESCf

] ,with (6.49)

E
[
BSCf

]
= E

[
TSCf

]
· tnight, and (6.50)

E
[
ESCf

]
= PSC · tnight, (6.51)

where the power of a SC, PSC , is slightly dependent on the traffic, in contrast
to the power of a BS that is significantly dependent on the traffic load. Thus, a
constant value for the SC power is employed.

Finally, the total network energy efficiency is defined as:

E[ηε] =
E [B]

E [E]
,with (6.52)

E [B] =
∑
n∈N

E [BBSn ] · (1− xn) +
∑
f∈F

E
[
B′SCf

]
, (6.53)

and
E [E] =

∑
n∈N

E [EBSn ] · (1− xn) +
∑
f∈F

E
[
E ′SCf

]
, (6.54)

where E
[
B′SCf

]
and E

[
E ′SCf

]
are the transmitted bits and the energy consump-

tion of the fth SC, when serving traffic equal to λ′(SCf ) =
∑

i∈NOFF
λ(i).

6.5 Performance Evaluation

This section is composed of three parts. In the first subsection, we explain the sim-
ulation scenario employed both for the multiobjective optimization and the system
level simulations. The second subsection presents the results regarding the esti-
mation of the Pareto Front for the multiobjective optimization solved by using the
Matlab tools and, finally, the last part shows a performance comparison between
the proposed scheme and two state-of-the-art proposals with the development of
a custom-made C simulator for the network operation.
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6.5.1 Simulation Scenario

The simulation scenario corresponds to a dense HetNet deployment, such as a
university campus or an urban area. More specifically, our scenario focuses on a
cell served by the BSs of N = 5 MNOs [59] and M = 15 SCs that cover the whole
cell area and are uniformly distributed. In our experiments, we consider various
scenarios, where the operators have different traffic volumes (i.e., ρ), different bid-
ding strategies (i.e., non-tolerant, linear and tolerant), different cost requirements
(i.e., z), and different bidding levels (i.e., L). The system level simulations are
based on Monte Carlo experiments and the presented results focus on the night
zone for the duration of one year. Note that the results are calculated for the case
of one macro cell, but they can be easily extended to more extended configura-
tions. Furthermore, we consider the period of one year, since during the duration
of a year the traffic load of a MNO is considered to be stable [107]. The set of
parameters used in simulations is provided in Table 6.2.

Table 6.2: Simulation Parameters for MAS

Parameter Value

Number of MNOs, N 5
Number of SCs, F 15
Traffic load, Load Fig. 6.3
BS antenna gain, GBS 14 dBi
SC antenna gain, GSC 5 dBi
Pathloss exponent, γ 4
Noise power, Pnoise -174 dBm/Hz
BS transmission power, Pmaxtx,BS 46 dBm

SC transmission power, Pmaxtx,SC 30dBm

Maximum number of PRBs, Nmax
PRB 50

BS bandwidth, CRBS 20 MHz
SC bandwidth, CRSC 5MHz
δ [0.5, 1.5]

To assess the performance of our scheme, we compare the proposed Multiobjective
Auction-base Switching off strategy (referred as MAS in the rest of the paper),
to two benchmark solutions: i) an auction-based switching off scheme, where the
income of the third-party is the one and only objective to be maximized (referred
as ISO) [77], and ii) a baseline scenario with Full Operational Topology (FOT),
where none of the BSs is switched off.

6.5.2 Estimation of the Pareto Front

In this section, we present the Pareto Front analysis. In this set of experiments, we
assume that the five operators have the same traffic volume equal to the maximum
possible traffic load, i.e., ρn = 1. In addition, we assume that each MNO submits
three different bids, corresponding to L = 2, to the third-party.
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Fig. 6.6 illustrates the Pareto Front solutions achieved by solving the proposed
multiobjective problem for different minimum financial gains with the same bid-
ding strategy (Fig. 6.6(a)) and different bidding strategies with the same minim
profit requirement (Fig. 6.6(b)). In both figures, the third-party’s annual financial
gain that can be attained by leasing its resources to one MNO is represented in
the x-axis and the annual economic profits of one MNO are given in y-axis.
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In Fig. 6.6(a), the set of non-dominated solutions is shown for linear bidding strat-
egy. Note that the stochastic search performed by means of the genetic algorithm
succeeds in estimating a full Pareto Front for the given parameters of the studied
problem. As expected, in all the different cases, the higher the third-party’s in-
come (f1 (x)), the lower the financial gain of the MNOs (f2 (x)). Thus, the Pareto
Front is monotonically decreasing, meaning that the improvement of one objec-
tive leads to deterioration of the other objective, and there is no feasible solution
that leads to the maximization of all the objectives. A second observation relies
on the motivation of the MNOs to maximize their economic gains, a fact that
can be explored through the parameter z that reflects the requirements of the the
minimum profit gain of an operator, denoted in Eq. (6.21). As it is plotted in
the figure, the greedy behavior of the MNOs for higher cost gains (case: z = 0.5)
leads to lower income for the third-party and at the same time, fewer solutions
can be achieved. This result is of significant importance, since a greedy behavior
from the MNOs’ perspective will produce lower bids that may not be accepted by
the third-party, and thus, the MNOs will not be able to offload their whole traffic.
Hence, a switching off strategy will not be achieved and both the MNOs and the
third-party will suffer with economic losses and inefficient use of capacity. The se-
lection of a proper value of the parameter z helps the operators to decide whether
it is profitable for them to bid or not, by taking into account their financial needs,
and by observing Fig. 6.6(a), we conclude that lower values of z lead to higher
income for the two involved parties. To provide further insights for our approach,
let us add at this point that in a realistic scenario with a large number of macro
BSs, the cost gains for the MNOs and the third-party are significantly higher. For
example, in the central area of London [108], where 500 BSs are deployed and
owned by one MNO, when we apply our proposed switching off technique, the
economic gain may reach up to ∼ 12.500 e for the MNO and up to ∼ 25.000 e for
the third-party.

In continuation, Fig. 6.6(b) illustrates the Pareto Front by examining different
bidding strategies for the case of z = 0.1. Again, we observe that the attained
solutions are decreasing monotonically, thus, proving the contradiction between
the objectives. In addition, as we can see, the more tolerant the bidding strategy
of the MNOs, the higher financial gains for the involved parties. This important
insight can be easily explained by taking into account the fact that a non-tolerant
MNO is more greedy, and thus, it offers lower bids for the requested capacity than
a tolerant one, as illustrated in Fig. 6.5. As a consequence, the third-party may
lose its incentive to lease the offered bandwidth, and the economic benefits will be
reduced for the operators and the SC network. It is worth noting that the tolerant
bidding strategy offers better solutions due to the leasing of more resources and the
switching off of higher number of BSs, while the linear bidding strategy implies an
intermediate solution between the extreme cases. Hence, along with the minimum
guaranteed profit, the bidding strategy is also an important indicator that affects
the decision of MNOs on bidding.
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6.5.3 Numerical Results

This section includes the performance results with regard to telecommunication -
oriented (network throughput and energy efficiency) and cost - oriented (annual
cost and income gains) metrics. In this set of experiments, we study a more
realistic scenario, where the operators have different traffic volumes and, thus,
different requirements and outcomes, when our proposed algorithm is applied.
According to recent studies by Marsan and Meo [59], in most European countries,
there are usually up to two telecommunication companies holding the major part
of the market share, up to two smaller operators serving an intermediate portion
of the users, and finally, up to one smaller company with a very small slice of the
market. By exploiting these interesting findings, we consider the scenario, where
two MNOs (i.e., BS1 and BS2) are fully loaded (ρ1 = ρ2 = 1.0), two operators
(i.e., BS3 and BS4) have relatively lower traffic with ρ3 = ρ4 = 0.7, and the fifth
MNO (denoted by BS5) has very low traffic (ρ5 = 0.3). The results presented
below, are calculated for an operating point on the Pareto Front that is assumed
to satisfy all the involved parties in the auction. We would like to highlight that
the selection of a solution among the Pareto Front solutions either can be derived
through agreements between the involved parties or another distinguished entity
may select the operating point among the Pareto Front solutions.

6.5.3.1 Telecommunication Metrics:

Fig. 6.7 presents the network energy efficiency versus L for a tolerant (Fig. 6.7(a))
and a non-tolerant (Fig. 6.7(b)) bidding strategy. The number of switched off
BSs of every algorithm is also shown in the plot (right y-axis), along with the
percentage gains in terms of energy efficiency of our approach compared to the
state-of-the-art works. First, we observe that the energy efficiency achieved by
the MAS scheme increases with the number of levels for tolerant and non-tolerant
bidding, since a biggest variety of the proposed bids (higher number of levels)
implies a higher number of choices for the resource allocation. Another important
remark is that MAS significantly outperforms the baseline scenario, FOT, (where
no BS is switched off), as well as the ISO algorithm. The gains compared to the
ISO scheme are remarkably high, reaching up to 1499% and 160% for tolerant
and non-tolerant bidding, respectively. Compared to the FOT, the gains are even
higher. The better performance of our proposal in terms of energy efficiency is
justified by the higher number of switched off BSs, as this is highlighted also in the
plots. As we have already mentioned in Section 6.3.3, the goal of our proposal lies
in maximizing the energy efficiency, an objective neglected in the auction-based
works of the literature, where only the maximization of the third-party’s income
was considered. The optimal resource allocation implemented by the third-party
takes into account the constraint of the energy consumption minimization that
eventually leads to a lower number of active BSs. Comparing the behavior of our
algorithm in the two figures, it can be observed that the tolerant bidding strategy
achieves more considerable gains with respect to the non-tolerant bidding, mainly
due to the deactivation of many underutilized BSs in the network. These results
emphasize the role of the bidding strategy and the number of bidding levels on the
achievable energy efficiency, thus providing the necessary insights to the MNOs in
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order to select the most appropriate strategy based on their interests. In Fig. 6.8,
the conclusions of Fig. 6.7(b) and in Fig. 6.7(a) are better illustrated, since the
comparison between the three schemes and the different bidding strategies is more
clearly shown. Finally, we should mention that the results of linear bidding are
not shown here for simplicity, given that the achieved gains range between the two
aforementioned cases. Finally, we should mention that the results of linear bidding
are not shown here for simplicity, given that the achieved gains range between the
two aforementioned cases.
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Figure 6.7: Annual network energy efficiency for z = 0.1 and different bidding strate-
gies
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Figure 6.8: Annual network energy efficiency for different bidding levels and strategies

Along with the total network energy efficiency performance, it is interesting to
study the individual energy efficiency gains of the different MNOs. To that end,
the individual gains for the specific (but representative) case of z = 0.1 and the
two different bidding strategies are quantified in Table 6.3, where interesting con-
clusions can be extracted. In particular, independently of the bidding strategy and
the number of L, the ISO scheme is beneficial only for the group of operators that
switch off their BSs, which are always the same (MNO1 and MNO2), while the
rest of the operators always keep their BSs active. More specifically, the MNOs
that switch off their BSs theoretically achieve infinite energy efficiency, as they
have their traffic served at zero energy cost, whereas the active operators serve
their own traffic without improving their situation. The proposed MAS eliminates
this unfairness, by offering the chance to more MNOs to switch off their BSs, pro-
viding them with extra incentives to participate in the auction. The individual
gains are remarkable and show how our proposal can benefit both the MNOs,
along with the whole network.

Despite the importance of the energy efficiency results, the deactivation of the
BSs in the network and the traffic offloading to the SCs potentially implies loss of
connections. To that end, we study the normalized throughput that represents the
percentage of served connections in the system. Fig. 6.9 presents the normalized
throughput of the auction-based switching off schemes for different number of bid-
ding levels and different bidding behaviors. It can be observed that, as the number
of switched off BSs increases, the MAS approach experiences small losses (around
5% and 3% for tolerant and non-tolerant bidding, respectively). The degraded
performance is explained by the high number of deactivated BSs, leading to the
service of all the traffic mainly by the SC network (since at most one BS remains
active). The MNOs are able to decide whether the throughput performance can
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Table 6.3: Operator Energy Efficiency with Respect to the FOT Scheme for z = 0.1

Tolerant bidding

Algorithm MNO1 MNO2 MNO3 MNO4 MNO5

MAS-L = 3 ∞ 3 · 104 ∞ ∞ ∞
ISO-L = 3 ∞ ∞ 2.2 · 104 2.2 · 104 1 · 104

MAS-L = 7 ∞ ∞ ∞ ∞ ∞
ISO-L = 7 ∞ ∞ 2.2 · 104 2.2 · 104 1 · 104

Non-tolerant bidding

Algorithm MNO1 MNO2 MNO3 MNO4 MNO5

MAS-L = 3 ∞ 3 · 104 2.2 · 104 ∞ ∞
ISO-L = 3 ∞ ∞ 2.2 · 104 2.2 · 104 1 · 104

MAS-L = 7 ∞ 3 · 104 ∞ ∞ ∞
ISO-L = 7 ∞ ∞ 2.2 · 104 2.2 · 104 1 · 104

be sacrificed to achieve energy efficiency, or even small losses are prohibitive (and,
thus, a tolerant strategy is not acceptable).
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Figure 6.9: Normalized throughput for different bidding levels and strategies

The results in terms of lacking PRBs are given in Fig. 6.10. As it is observed, a
larger number of PRBs are lacking, when MAS strategy is applied. In our case,
there are different reasons for the degraded throughput performance. The unserved
users are either because lower bids (thus, fewer PRBs) are selected or the overall
PRBs are not adequate for the total offloaded traffic. However, the impact on the
throughput is negligible, as it was shown also in Fig. 6.9.
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Figure 6.10: Number of lacking PRBs

6.5.3.2 Cost Metrics:

The total annual network cost and the individual annual gains for the operators
and the third-party, compared to the state-of-the-art algorithm and having as a
benchmark the FOT scheme, are presented in Fig. 6.11 and Fig. 6.13, respectively.

The annual network cost is given versus the different number of bidding level
values and for the tolerant (Fig. 6.11(b)) and non-tolerant (Fig. 6.11(a)) bidding
strategies, respectively. The total cost of the network is the sum of the average cost
of all operators and the third-party for the operation of the whole infrastructure
(i.e., the active BSs and SCs). The first observation is that the network cost is the
same for level pairs (l = 3 and l = 5) and (l = 7 and l = 9) for the MAS algorithm,
due to the number of switched off BSs that is the same for the two cases. The
MAS scheme achieves a considerable reduction up to 94% and 96% for tolerant
bidding, when compared to ISO and FOT schemes, respectively, mainly due to the
deactivation of many underutilized BSs in the network. For the case of non-tolerant
bidding strategy, the cost reduction is lower. This result is explained by the fact
that MNOs are more greedy and, in their attempt to increase their economic gains,
they do not offer high bids for the requested capacity. As a consequence, the third-
party does not accept the allocation of resources to low prices and therefore, some
BSs may not be switched off. Concerning the ISO scheme, we observe that the total
annual cost is not affected by the different bidding levels, since, in ISO auction,
only one bid is offered based on the maximum traffic load expectations and fewer
BSs are deactivated.

A clear comparison between MAS, for tolerant and non-tolerant bidding, and ISO
is given in Fig. 6.12, where the annual network cost behavior is highlighted.
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Figure 6.11: Annual network cost for z = 0.1 and different bidding strategies

The individual revenue of each operator and the third-party is plotted in Fig. 6.13.
We may observe that, similar to the energy efficiency gains, the ISO scheme pro-
vides financial gains only to particular operators (MNO1 and MNO2), and espe-
cially to the MNOs that switch off their networks, whereas the economic gains of
the remaining operators are zero compared to the FOT scheme, since these MNOs
keep their BSs active and serve their own traffic without having any benefit from
the auction. On the other hand, for the proposed MAS approach, more opera-
tors are able to have economic benefits, independently of the particular number
of levels due to the optimal resource allocation that is attained by our solution,
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Figure 6.12: Annual network cost for different bidding levels and strategies

which gives more opportunities to the majority of the MNOs to participate in
the auction. Furthermore, as the number of bidding levels increases, the MAS
algorithm achieves higher financial gains for the operators due to the higher num-
ber of combinations of bids offered. In addition, for the tolerant bidding strategy
(Fig. 6.13(a)) the economic gains are higher compared to the non-tolerant behavior
(Fig. 6.13(b)).

6.5.4 Discussion

Based on the analysis in Section 6.5.2 and 6.5.3, we have shown that the proposed
MAS scheme outperforms the state-of-the-art approaches in terms of energy effi-
ciency (network and individual), annual network cost and individual cost gains.
In addition, it achieves balanced results for the MNOs with respect to the in-
dividual energy efficiency and cost gains. Furthermore, through a performance
assessment, we have identified the significance of the bidding behavior, the num-
ber of levels and the parameter z. In particular, higher values of z achieve lower
gains for both the MNOs and the third-party. In addition, better performance
results are attained in terms of energy efficiency, aggregate network cost, and in-
dividual cost gains, when higher number of levels are chosen and through tolerant
bidding strategy. Hence, the MNOs should choose the suitable values of L and
the bidding strategy depending on their priorities. Finally, we should highlight
that, even though minor losses may appear in terms of throughput, the attained
benefits with respect to energy efficiency, individual and network cost gains are
remarkable and are adequate for giving the necessary incentives to the MNOs and
the third-party to apply the proposed auction-based switching off strategy.
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Figure 6.13: Annual cost gain for z = 0.1 and different bidding strategies

6.6 Concluding Remarks

This chapter was motivated by the traits of the heterogeneous network configura-
tion and the low utilization of the BSs and the SCs during the night. In addition,
the coexistence of multiple operators and third-party networks led to proposing
novel switching off algorithms that achieve energy savings and cost reduction.
This goal was attained through the deactivation of the underutilized BSs and the
auction-based traffic offloading to the SCs. Firstly, we investigated solutions to
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share the cost of the SC network. These cost sharing techniques provided pre-
liminary results that aim the investigation of switching off solutions. Secondly,
by employing an auction-based framework and by exploiting multiobjective tools,
we introduced a novel switching off scheme that allows the MNOs reduce their
expenditures and achieve significant energy savings. The proposed scheme has
been evaluated in terms of throughput, energy and cost efficiency for various traf-
fic conditions and bidding strategies. The results have shown that our proposal
can significantly improve the network energy efficiency. Regarding the financial
costs/gains, the proposed scheme provides higher cost efficiency and fairness com-
pared to the state-of-the-art algorithms, motivating the operators to adopt game
theoretic strategies for their decisions and proceed to leasing agreements with a
third-party. After evaluating the merit of the novel strategy, the main conclusions
can be summarized as follows:

• The involved parties (MNOs, and third-party) achieved notable improve-
ments by switching off the redundant BSs and offloading the traffic to the
SCs.

• The individual objectives of the operators and the third-party are considered
in the problem formulation. Thus, our auction-based scheme that is resolved
by using multiobjective tools is feasible in competitive environments.

• The use of game theoretic tools in the context of BSs switching off was in-
vestigated. The results and experience obtained during the research indicate
that appropriate calibration results both in effective optimization and good
performance. Thus, in order to keep expressions that capture accurately
the behavior of the MNOs, non-cooperative games has been successfully em-
ployed. The main advantage of the method resides on the fact that a good
picture of the tradeoffs and fair solutions are provided.



Chapter 7

Final Considerations, Conclusions
and Future Work

“Projects we have completed demonstrate what we know – future projects decide
what we will learn.”

Dr. Mohsin Tiwana

The emerging data traffic demand is one of the main concerns of wireless cellu-
lar networks. More BSs, data centers and other network equipment are such as
microcells, femtocells and picocells are required to support the growth in mobile
traffic. Since BSs consume more than half of the total energy in a typical cellular
network, the increase in the number of BSs has a significant impact in overall
energy consumption. In addition, due to the introduction and popularization of
HetNets expenses related to deployment and energy consumption now comprise a
large proportion of capital and operational expenditures for service providers and
telecommunication companies, in general. It is widely acknowledged that cellular
communication networks will have greater economic and ecological impact in the
coming years. Seeing this, innovative energy and cost efficient solutions are pro-
vided, concentrating on environmental influences of cellular networks, while at the
same time these solutions guarantee seamless coverage and excellent QoS to the
users.

In current and future cellular technologies, such as LTE and LTE-Advanced, it has
been observed that the networks are significantly underutilized during some hours
of the day (i.e., especially during the night), and thus, switching off the redundant
nodes of the networks has been identified as a key framework to meet the challenges
posed by future green networks. Therefore, the objective of this Ph.D thesis has
been to make a solid contribution to the theory of switching off strategies and
their feasibility for implementation in real-world cellular deployments. Based on
the study of the state-of-the-art works, a set of opportunities were identified, and
consequently, new methods of analysis, game theoretic strategies, optimization
techniques, and guidelines have been presented with the goal of improving the
energy efficiency. The current dissertation contributes with solid arguments and
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novel optimization schemes to make switching off more appealing. The research
methodology comprised a combination of mathematical models, game theoretic
tools, optimization techniques, and system level simulations.

The novelties presented in this Ph.D thesis include not only the development of
energy-aware switching off mechanisms for creating greener networks, but also,
efforts towards cost reduction. Thus, the frameworks developed have been suc-
cessfully applied to investigate robust scenarios under variable conditions and de-
ployments, such as single-operator and multi-operator networks with macro BSs
and dense HetNets.

7.1 Summary and Conclusions

This thesis focus on contributing to the global goal of green ICT by improving
the energy efficiency of wireless networks. The focus has been put on the design
and performance analysis and evaluation of new energy-efficient switching off al-
gorithms for single-operator, multi-operator and heterogeneous wireless networks.
The thesis have been divided into one preliminary part and three main parts:

• A preliminary part comprised of Chapter 1 and Chapter 2.

• A first main part comprised of Chapter 3.

• A second main part comprised of Chapter 4.

• A third main part comprised of Chapter 5 and Chapter 6.

The contributions and conclusions of the three main parts are summarized in the
following section.

7.1.1 Towards the greening of single-operator networks

The research work presented in this Ph.D. thesis started by investigating energy
efficient and flexible algorithms and study the performance and feasibility of three
switching off schemes in wireless cellular topologies. The proposed analytical mod-
els take into account the network geometry and the traffic load pattern character-
istics to decide the switching off behavior of the BSs. The first two mechanisms
exploit the impact of the distance parameter between the users and the BSs,
along with the traffic load volume to allow the decision of the adequate BSs to
be switched off. By means of these two methods, we studied the performance
of the network in terms of energy and throughput efficiency in realistic network
topologies, without the need for computationally-heavy system level simulations,
since simple analytical models are proposed. Significant energy efficiency gains
were identified that give the necessary incentives to extend the research analysis
in further and more complex network configurations.
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Besides the proposal of the simple switching off schemes, there was the need for
optimization techniques in realistic deployments. Indeed, the knowledge of net-
work configurations with the static positions of the BSs, along with the predictions
and the expectations of the traffic load patterns, provide the necessary incentives
to propose centralized optimization solutions. Thus, a novel switching off scheme
was proposed. Through the innovative mechanism, the energy efficiency was max-
imized. The results were of significant importance and proved how fundamental
is the application of an optimization technique.

7.1.2 Towards the greening of multi-operator networks

The coexistence of multiple operators in the same geographical area motivated
the thesis research to shift towards the investigation of deactivation techniques in
environments with BSs, belonging to different MNOs.

The aforementioned issues inserted a new business model, known as infrastruc-
ture sharing. Thus, we proposed a roaming-based infrastructure sharing scheme,
applicable in multi-operator environments during low traffic periods. Taking into
account the rationality of the MNOs and their conflicting interests, we introduced
a game theoretic framework that enables the MNOs to make individual switching
off decisions for their own BSs, thus bypassing potential complicated service level
agreements among them. The employed analytical models were based on realistic
assumptions about the network configuration and the traffic patterns. The pro-
posed scheme has been evaluated in terms of throughput, energy and cost efficiency
for various traffic conditions and roaming cost values. The results have shown that
our proposal can significantly improve the network energy efficiency, guarantee-
ing at the same time the network throughput in realistic scenarios (i.e., up to four
MNOs). Regarding the financial costs/gains, the proposed scheme provides higher
cost efficiency and fairness compared to the state-of-the-art algorithms, motivat-
ing the operators to adopt game theoretic strategies for their decisions. In our
future work, we plan to elaborate on cooperative game theoretic schemes in order
to investigate the potential trade offs.

7.1.3 Towards the greening of heterogeneous networks

In the last part of this Ph.D thesis, we investigated the energy and cost efficient
solutions that can be applied in heterogeneous environments, where third-party
companies and multiple MNOs coexist. The possibility of a third-party that pro-
vides a tier of SCs in HetNets can provide significant gains in energy efficiency,
but at the same time raises important issues with regard to the SC cost sharing
among different operators. Thus, we introduced an accurate cost model for the
SCs that takes into account the traffic load for a precise estimation of the energy
consumption. In order to effectively share this cost, we investigated four different
state-of-the-art cost sharing techniques and we introduced a new hybrid policy
that achieves a traffic-aware sharing of the total expenses. Our results highlighted
the potential energy efficiency gains in the network, along with the fair sharing of
the SC cost that can be achieved through our proposed policy.
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In continuation, we proposed a novel auction-based offloading and switching off
algorithm that achieves energy savings and cost reduction by encouraging MNOs
to offload their traffic to the SCs, and switch off the redundant BSs. Moreover, by
employing auction tools and novel bidding strategies, we introduced a switching
off scheme that allows the MNOs to reduce their expenditures in multi-operator
cellular HetNets. The proposed scheme has been evaluated in terms of energy
efficiency and cost metrics for various conditions (different bidding levels and be-
haviors). The results have shown that our proposal can significantly improve the
network energy efficiency, guaranteeing at the same time the network through-
put under strict requirements. Regarding the financial costs/gains, the proposed
scheme provides higher cost benefits and fairness compared to the state-of-the-art
algorithms, motivating the operators to participate in an auction-based offloading.
we provided also interesting insights concerning the rules and behaviors that the
MNOs should follow when they participate in an auction strategy.

7.2 Future Research Lines

The greening evolution of wireless networks consists of the main contribution of
this thesis. However, this Ph.D dissertation is the starting point of many open
topics that have not been covered in the state-of-the-art, but they have been
identified through the course of the thesis.

In the current context of exponential grow in mobile data traffic, there is a con-
sensus about the next challenge, increasing capacity in a factor 1000x. Among
the different challenges that this goal has, providing enhanced user experience and
greener and high-quality networks still is a priority. Switching off mechanisms
should be extended to fit in the new technological developments.

In the light of the conclusions, future research items with respect to the first part
of the thesis on network planning solution in singe-operator marco BSs networks
include:

• The theoretical analysis of the proposed switching off algorithms applied
in the single-operator environments have been developed considering the
Markov chain model for users that generate voice traffic. Therefore, the
development of more advanced analytical models considering other classes
of traffic (e.g., video, data) would provide a better knowledge of the perfor-
mance of the proposed algorithms.

• The analysis provided in this thesis has mostly considered homogeneous traf-
fic and static users. Nevertheless, in a realistic scenario, individual charac-
teristics (e.g., position, channel quality) may not be the same for all users
or they may change over time. In order to fully exploit the potential of the
proposed schemes, it would be necessary to design adaptive algorithms for
changing conditions.
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• The design of the maximization switching off scheme in Chapter 3 could be
optimized to include more parameters and details. The optimization frame-
work could provide solutions in terms of different constraints and restrictions
to provide a wide range of insights about the BSs behavior.

• Related to the previous points, so far, the performance of the switching off
solutions, presented in Chapter 3, has been evaluated through analytical
framework and with the help of extensive simulations through custom made
C simulation environments. An important step forward would be the imple-
mentation of the switching off approaches in more sophisticated simulators
and testbed frameworks. This would allow a comprehensive performance
evaluation in more realistic scenarios, it would permit the practical selection
of several parameter values and would, without a doubt, open the road to
many interesting experiments.

There are also several open issues regarding the second part of this thesis, focused
on infrastructure sharing solutions in multi-operator macro BS networks:

• The game theoretic algorithm proposed in Chapter 4 has shown outstanding
gains for the low traffic conditions in multi-operator environments. Apart
from the non-cooperative game framework, another possible line of research
(i.e., cooperative games) could be investigated. In addition, a different game
theoretic utility function that includes the QoE requirements could be exam-
ined.

• In line with the previous switching off idea, the analysis and performance
evaluations of the GTIS scheme have considered an hexagonal topology with
the presence of multiple operators. Thus, further analysis and performance
evaluations need to be carried out in more complex topologies, where random
deployed BSs are deployed and the proposed mechanism may need some
refinements to work well in these scenarios.

Future challenges and open issues concerning the third part of the thesis are sum-
marized in the following key points:

• Concerning the cost sharing techniques, presented in Chapter 5, the robust-
ness of the proposed hybrid solution could be studied and more advanced
mechanisms could be proposed to take into account the different parame-
ters and factors of the network topologies and traffic patterns. The fairness
indicator can be used to show the importance of the different cost sharing
schemes.

• Finally, cooperative solutions, along with the auction-based formulations,
should be examined for the switching off algorithms, given in Chapter 6.
This idea has not be widely investigated in the literature. Therefore, we could
focus on the design of new mechanisms that optimally combine power saving
strategies along with the economic reduction of all the involving parties of
the HetNets in a cooperative framework.
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• The presented results have shown that the proposed network planning algo-
rithms in HetNets can generally improve the energy efficiency of the involved
parties but there is still a margin for performance improvement. Future work
can be focused on the effort to increase efficiency by further reducing the en-
ergy and cost expense through mechanisms such as cooperative sharing or
more intelligent resource allocation strategies. Different policies can also be
employed for fairness among operators and third-party companies.

• Due to their dense deployment, not all SCs are expected to have a direct
connection to the core network. As a result, some SCs will forward their
traffic to the neighboring SCs until they reach the core network, thus forming
a multi-hop backhaul network. Due to the large number of backhaul links,
the backhaul is expected to be one of the main challenges that future HetNets
will have to face in the decision of the appropriate BSs to be switched off.

In the three parts of the thesis, we focused on obtaining energy savings, through
BS switching off and infrastructure sharing during periods of low activity. Even
though, we focused on the future challenges of each part separately, the general
goals for future work can be summarized as follows:

• The issue in dynamic BS switching is the temporal granularity. While most of
the early work in this area has primarily focused on switching off BSs once a
day, it remains to be seen whether finer-grained operation (e.g., on an hourly
or even more frequent basis) can improve energy efficiency, particularly in
scenarios where traffic patterns are not predictable from day to day. However,
this may require more active online monitoring of traffic and increase the
complexity of coordination with other cells to ensure coverage.

• Another related question is whether it is more profitable for the BSs to
be switched off in a distributed manner or through centralized approaches.
The levels of coordination can affect different tradeoffs, such as complexity,
information exchange and efficiency of the BS deactivation policy.

• Another novel approach that can play a role in the greening of the networks
is the adoption of new technologies that are provided in the 4G and 5G
standards. For example, CoMP that has been developed in the context of
LTE-Advanced cellular networks could by used for coverage extension when
the BSs are turned off.

• In our simplified estimate of energy savings, we considered uniform cell sizes.
In 4G/5G systems, because of the required high data rate, cellular towers
will be more dense and have varying coverage, with more heterogeneous cells,
such as microcells, picocells, and femtocells. While most existing deployment
strategies focus on QoS during peak periods, energy savings during off-peak
periods should also be taken into account. The concept of heterogeneous
nodes can potentially be exploited for energy efficiency, since in the case of
light load we can turn off (most of) the SCs. On the other hand, considering
energy efficiency introduces additional complexity in network planning and
deployment, and thus needs to be further studied.
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Concluding, this thesis has advanced the state-of-the-art first by presenting switch-
ing off schemes, second, by introduction infrastructure sharing solution and, third,
by providing cost and energy effective agreements between different involved par-
ties for various network configurations and scenarios. The three parts of the thesis
have provided valuable lessons on green network planning. Even though they have
been treated independently throughout this dissertation, it is possible to envision
a network were all parts can be combined. The road ahead lies open for further
research following the new lines of investigation that have been identified.



Appendix A

Optimization Theory:
Background Information

In this Appendix, we present some background theory and general concepts of
optimization theory.

Optimization theory is a branch of mathematics which encompasses many diverse
areas of minimization and maximization. Optimization theory is the more modern
term for operations research and includes the calculus of variations, control theory,
convex optimization theory, decision theory, game theory, linear programming,
Markov chains, network analysis, optimization theory, queuing systems, etc. The
area of optimization has received enormous attention in recent years, primarily
because of the rapid progress in computer technology.

Optimization is central to any problem involving decision making and entails
choosing between various alternatives. This choice is governed by the desire to
make the best decision. The measure of goodness of the alternatives is described
by an objective function. Optimization theory and methods deal with selecting the
best alternative in the sense of the given objective function. our focus is the opti-
mization problems solved formulated and solved through the methods of Integer
Linear Programming (ILP).

The goal of ILP is to determine the values of decision variables that maximize or
minimize a linear objective function, where the decision variables are subject to
linear constraints. A linear programming problem is a special case of a general
constrained optimization problem. In the general setting, the goal is to find a
point that minimizes the objective function and at the same time satisfies the
constraints. We refer to any point that satisfies the constraints as a feasible point.
In a linear programming problem, the objective function is linear, and the set of
feasible points is determined by a set of linear equations and/or inequalities.

161



Appendix A. Optimization Theory: Background Information 162

An ILP in canonical form is expressed as:

max
∑
j∈J

cj · xj (A.1)

s.t. ∑
j∈J

ai,j · xj = bj,∀i ∈ I, (A.2)

xj ≥ 0,∀j ∈ J , (A.3)

xj integer,∀j ∈ J . (A.4)

A pictorial representation of a simple linear program with two variables (2 - di-
mensional representation) and seven inequalities (seven sides of the polygon) is
given in Fig. A.1. The set of feasible solutions is depicted in green and forms a
polygon. The linear cost function is represented by the red line and the arrow.
The red line is a level set of the cost function, and the arrow indicates the direction
in which we are optimizing.

Figure A.1: General representation of an ILP program.

Several variations to the above problem are possible; for example, instead of min-
imizing, we can maximize, or the constraints may be in the form of inequalities.
In the following sections, we will employ the properties of ILP in order to pro-
vide a maximization solution to the problem of energy waste in wireless cellular
networks.



Appendix B

Multiobjective Optimization
Theory: Background Information

In this Appendix, we present some background theory and general concepts of
multiobjective optimization theory.

Many fields of science have to deal with large scale problems in which acceptable
solutions involve simultaneous optimization of several conflicting criteria or objec-
tives. Multiobjective optimization is the discipline that focuses on the resolution
of these problems [105].

The target of multiobjective optimization is to find a subset of good solutions (X ∗)
from a set X according to a set of criteria F , with cardinality greater than one,
typically expressed as mathematical functions, the so-called objective functions.
Thus,

F = {fi (x) : Rn → R, i = 1, 2, . . . ,m}, (B.1)

where, fi represents the ith objective function and x ∈ Rn is the optimization
vector containing the n design variables. Therefore, every single x ∈ X is a
solution of the multiobjective problem that in general, is defined by:

• A set of n design variables (x1, x2, . . . , xn) subject to optimization such that
∀x ∈ X , x = [x1, x2, . . . , xn].

• The domain of each design variable (X1,X2, . . . ,Xn) such that xi ∈ Xi and
X = X1×X2× . . . x×Xn. The set X is also known as search space or feasible
set.

• Constraints among design variables.

• An objective space defined by a function f : X → Rm such that for each
x ∈ X , f (x) = [f1 (x) , f2 (x) , . . . , fn (x)].

It might well happen that the objectives are in conflict. In this case, improving
one of them implies worsening another. It makes no sense talking about a single
global optimum, and for this reason, the notion of an optimum set (X ∗) acquires
especial relevance in the context of multiobjective optimization.
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A central element in the theory of multiobjective optimization is the concept of
Pareto efficiency. A solution x∗ is element of the set X ∗, i.e., it is Pareto efficient,
if and only if, there does not exist a solution x ∈ X , such that x dominates to
x∗ in the Pareto sense. A solution x1 dominates in the Pareto sense (is preferred
to) another solution x2, (x1 � x2), if x1 is better than x2 in at least one criterion
(objective function) and no worse with respect to the remaining ones. In global
optimization, it is a convention that optimization problems are defined as min-
imizations problems [106], and hence, if one criterion f needs to be maximized,
then f is redefined as −f . Thus,

x1 � x2 ⇔ fi (x1) ≤ fi (x2) ∧ ∃j|fj (x1) < fj (x2) . (B.2)

In this manner, the notion of optimality in the multiobjective context can be
formalized as follows: a solution x∗ features Pareto efficiency (is Pareto optimal),
and hence, element of X ∗, if and only if, there does not exist a solution x ∈ X ,
such that x dominates x∗. Thus,

x∗ ∈ X ∗ ⇔6 ∃x ∈ X |x � x∗. (B.3)

The set X ∗ of Pareto optimal solutions is called optimal nondominated set and its
image is known as the optimal Pareto Front. When a multiobjective problem is
solved, it is unusual to obtain the optimal Pareto Front due to problem complexity,
instead a set of near-optimal solutions is found. Hereafter, for the sake of clarity,
it should be understood that the set X ∗ contains such near-optimal solutions,
and hence, its image, the corresponding Pareto Front, is an estimation of the
optimal Pareto Front. These ideas are illustrated in Fig. B.1 for the case where
f = [f1 (x) , f2 (x)].
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Figure B.1: A representation of the Pareto Front.
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Any solution in X ∗ is optimal in the sense that no improvement can be made on
a component of f without worsen at least another of its components. Given this,
the estimation of the set X ∗ provides a complete picture of the tradeoffs among
objective functions, which is desirable in problems such as the optimization of BSs
switching off, where reducing the energy consumption and cost expenses always
comes at the expense of QoS.

Multiobjective optimization problems, in general, can be expressed in the following
form:

min f (x) = [f1 (x) , f2 (x) , . . . , fn (x)] (B.4)

s.t.

x ∈ X . (B.5)

Solving problems such as the one show in Eq. (B.4) is very difficult for the following
reasons:

1. As it was shown, the definition of optimality in multiobjective optimization
only allows establishing a partial order [109] between the solutions, which
complicates the design of resolution algorithms.

2. The vast majority of multiobjective problems are NP-hard [110].

3. The cardinality of the set X ∗ grows exponentially with the number of objec-
tives.

Problem in Eq. (B.4) can be solved encoding the solutions either with real-valued
variables (continuous optimization problems) or discrete variables (combinatorial
optimization problems). The following discussion applies to both types of prob-
lems. The approaches to solve this problem can be classified as follows:

• Pareto approaches. The search and selection of solutions is based on the
concept of Pareto efficiency. This chapter focuses on this strategy because
multiobjective optimization evolutionary algorithms are also based on this
approach.

• Non-Pareto and non-scalar approaches. These methods use operators to
deal with the objective functions separately. Few works have employed this
approach. Examples include parallel [111] and lexicographic [112] selection.

Multiobjective (combinatorial or not) optimization problems typically belong to
the class NP-Complete [110], and hence, optimality cannot be guaranteed in poly-
nomial time. Therefore, deterministic methods for finding optimal solutions are
not an option. Moreover, multiobjective problems with objective functions de-
pending on many (independent) design variables often results in large n-dimensional
objective spaces, full of local optima and discontinuities [106]. In the particular
case of switching off optimization, n would be proportional to the network size (the
number of cells, number of MNOs), which is considerably high even in deployments
covering small cities.
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Certain algorithms such as gradient based methods are susceptible to be trapped
in local optima, while other optimization techniques such as Sequential Quadratic
Programming (SQP) based methods [113] require convexity (a very strong assump-
tion in this context) to guarantee convergence. In addition, traditional constrained
optimization, in which only one objective function is optimized subject to a set of
constraints on the remaining ones, has the drawbacks of 1) limiting the visibility
of the whole objective space, and 2) reducing the output to one single network
configuration.

Summarizing, the problem under consideration requires of an optimization tool
fulfilling the following features:

• It must be able to find good (near-optimal) solutions by efficiently exploring
the search space.

• It should operate in an effective manner with multiple criteria and a large
number of design variables.

• It should not require strong assumptions on the objective functions such as
linearity, convexity, continuity, or differentiability.

Multiobjective optimization evolutionary algorithms [114] fulfill the previous re-
quirements, and hence, their use in cell switching off optimization for large and
irregular networks is investigated. Multiobjective optimization evolutionary algo-
rithms are population based metaheuristics that simulate the process of natural
evolution. The main advantages of these algorithms are: 1) their black box nature
makes them suitable to deal with many practical problems as only few assumptions
need to be made on the objective functions, and 2) they incorporate important
features such as elitism, convergence, and distribution.

The solution of multiobjective optimization problems has always been of great
interest for scientist and engineers working on operations research. Several exact
methods have been proposed for solving problems involving two objectives and a
small number of design variables such as branch and bound [115] and dynamic pro-
gramming [116]. However, these methods are not effective for large scale problems
with more than two criteria and a high number of design variables. Indeed, for
more than two criterion, there are not useful procedures due to the multiobjective
nature of the problems and the NP-Complete difficulty [114].

Thus, heuristic methods have become a very popular approach to solve problems
involving a large number of design variables and multiple objective functions.
These strategies do not guarantee to find the optimal Pareto Front, but a good
approximation of it. In this context, the methods can be grouped into two types:
on the one hand, the heuristic based algorithms that are problem-specific (heuris-
tics), and on the other hand, high level strategies that can be applied to a large
number of multiobjective problems (metaheuristics).

An heuristic can be considered as a part of an iterative optimization algorithm
that uses available information to determine 1) which solution candidate should
be tested in each iteration, and 2) how next candidates must be produced [106].
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However, as heuristics are problem type dependent, they have been used as means
to solve specific problems.

A metaheuristic is a method for solving more general classes of problems. They
combine objective functions and heuristics in an abstract and hopefully efficient
way, usually without utilizing deeper insight into their structure, i.e., by treating
them as black-box-procedures [106]. Due to this versatility, metaheuristics have
become a very active research area and several algorithms have been proposed.
Popular ones include adaptations of classic (single objective) schemes such as
Tabu Search [117], Simulated Annealing [118], Particle Swarm Optimization [119],
and Evolutionary Algorithms [114]. For instance, a simulated annealing based
multiobjective optimization algorithm can be found in [120]. A summary of the
methods for solving MO problems is shown in Fig. B.2. A complete and in-depth
discussion of metaheuristics and evolutionary computation can be found in [121]
and [114].

Multiobjective Optimization strategies

Exact algorithms Heuristic-based methods

Branch and Bound 
Dynamic 

Programming

Specific heuristics Metaheuristics

Simulated Annealing
Tabu Search
Particle Swarm Optimization
Evolutionary Algorithms
Scalar methods
Non-Pareto, non-scalar methods
Pareto methods

Figure B.2: Methods for solving multiobjective optimization problems.
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