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Inclusion bodies are formed during overproduction of proteins, especially of those with

114,221

mammalian or viral origin . These aggregates are visible by phase contrast

microscopy few hours post-induction of gene expression'**, showing variable size and

200202 £rom an industrial point of view, we should consider that many

morphology
proteins forming inclusion bodies have been excluded from the biotechnological and
pharmaceutical market. In consequence, in the last years, different approaches have
been developed to reduce inclusion body formation and, hence, increase the recovery
of soluble and active protein. To achieve this goal successfully, it must be considered
that the extent of protein aggregation is determined, at least partially, by a wide
number of parameters such as media composition, growth temperature, gene dosage,
promoter strength, mRNA stability, codon usage, fusion tags, protein sequence and

availability of heat shock proteins'®*>*17*

. However, the control of these parameters
does not usually permit to obtain high amounts of native-like, soluble protein and,
therefore, other approaches are required. To date, one of the main strategies utilised
to recover functional, properly folded, soluble protein is the use of in vitro refolding

. . . . . . 1221
procedures with pure inclusion bodies as starting material

. Another commonly used
approach for this purpose has been the coproduction of chaperones, during protein
production, a group of proteins with folding, holding and aggregation prevention
properties. Even though many efforts have been addressed to achieve desirable yields
of native, soluble protein, the strategies mentioned above often lead to inconsistent

and discouraging results>160181,313,314

. Thus, any of these approaches cannot be taken
as universal and the general strategy has to be adapted for each protein in each new
situation, becoming a trial-and-error process.

Although there is a considerable number of publications which have characterized

315,316

inclusion body formation in bacteria , just a few of them mentioned the presence

317,318 Therefore, we

of biological activity in proteins embedded in these aggregates
considered interesting to study in detail the biological activity associated to these
protein deposits. For this, VP1LAC and VP1GFP, consisting of VP1 protein of foot and
mouth disease virus fused to either the amino-termini of [3-galactosidase or green
fluorescent protein respectively, have been used as model proteins. Moreover, these

proteins form inclusion bodies in all the selected strains.
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V.1 DnaK is essential for Escherichia coli B-galactosidase folding

DnaK and its cochaperones Dnal and GrpE are cell elements critical for the proper
folding of misfolding-prone proteins in Escherichia coli*®, Additionally, although
inclusion bodies formed in cells devoid of functional DnaK are larger than in a DnaK"
background319’320, there is still a low but significant yield of proteins remaining in the
soluble fraction®™. In this context, our results show that, indeed, the absence of DnaK
promotes VP1LAC aggregation and prevents proper folding (paper 1 and annex I1.B),
the remaining soluble protein being poorly active (paper 1 table 1 and annex II.B table
2) and less stable (paper 1 figure 5) than their counterparts produced in wild type cells.
Specifically, wild type cells display an enzymatic activity between 9 and 15 times higher
than mutant cells deficient in DnaK (paper 1 table 1). Moreover, protein stability
shown by cells expressing DnaK is almost two-fold higher than that found in a DnakK’
background (paper 1 figure 5). Therefore, we can conclude that DnaK folding activities
are limiting in the conformational surveillance of a misfolding-prone [(-galactosidase
fusion protein, being such activities not complemented by other elements of the heat-
shock response. In fact, in agreement with these findings, it has been previously
described that DnaK is necessary for the interactions between complementing
fragments that take place in the a-complementation of Escherichia coli -

galactosidase®”

. Therefore, we propose DnaK as a key element involved in promoting
the tetrameric disposition needed for the complete activation of Escherichia coli -
galactosidase enzyme®®*.

Summarizing, in the dnak mutant, the folding of VP1LAC is only partially achieved,
indicating that folding-assistant proteins alternative to DnaK are only moderately
efficient (paper 1 and annex II.B). Thus, considering that DnaK is a critical element for
proper folding and which activity cannot be completely complemented by other
chaperones, we could partially explain the variable success under the coexpression of

. -1:..,174,178,314
chaperones as a strategy to improve solubility*’**"83%4,
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V.2 Improving solubility in late exponentially phase protein
production

The use of bacteria for the production of foreign recombinant proteins usually results
in a poor vyield of soluble, functional proteins. This phenomenon is especially evident
when protein production is driven at high rates. The study in which we compared the
soluble VP1LAC activity as well as its stability in DnaK™ and DnaK" backgrounds (paper
1), shows that there are clear differences when gene expression is induced at the
beginning or at the end of the stationary phase. Even though the thermal stability of
the soluble protein produced in the dnaK mutant is two-fold lower than that found in
their counterparts in wild type cells (paper 1 figure 5), we have also observed that,
surprisingly, under late induction conditions, the half-life of the soluble VP1LAC is
enhanced about two times, irrespective of the chaperone DnaK (paper 1 figure 5).
Additionally, in DnaK™ cells not only is the soluble protein stability improved, but also
the [-galactosidase enzymatic activity is doubled (paper 1 figure 3b). Moreover,
interestingly, in both strains, the specific activity measured in old cultures is improved
between 2 and 3-fold more that when produced in young cultures (paper 1 table 1).

Taking all these data and also considering that the fraction of soluble VP1LAC in the
dnak mutant increases from 13.9 + 0.5 % in young cultures to 29.3 + 0.9 % in old ones
(data not published) and in wild type cells from 11.8 + 1.6 % to 80.7 + 7.5 % (data not
published), this clearly means that protein production at late exponential phase is
favoring protein folding as well as solubility. These results could be explained by the
reduced biosynthesis of recombinant proteins in old culture, as it has been previously

181,323-325

described in our group®*?, which might favour proper folding in a context of a

low substrate load for the cell chaperones.
As mentioned in the introduction, there is a wide number of strategies used to

improve solubility and functionality in protein production processes (section [1.4).

14,156-158,326

These strategies include gene expression at low temperatures , the use of

weak promoters'®®, Escherichia coli genetically modified strains”'”'’?, and the

162,171

modification of media composition and cultivation strategies , among others. In
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this context, we put forward gene expression in recombinant Escherichia coli at late

exponential phase, to improve DnaK-independent folding processes.

V.3 Inclusion bodies: a new biological concept

V.3.1 Biological and structural composition of inclusion bodies

Even though it has been widespreadly believed that the aggregation process is mainly
promoted by a high substrate load of the quality control system, in fact, the biological
meaning of aggregation is still controversial.

In the last decade, inclusion body definition has dramatically changed. Until the last
years, it was generally accepted that inclusion bodies were deposits of misfolded
polypeptides that have escaped from the quality control system*®***'8 hecoming

biologically inactive particles from which individual proteins cannot be recovered™’,

On the other hand, the literature**

also described inclusion bodies as protease-
resistant aggregates formed through a nonspecific process. However, an increasing
number of studies has proved that, contrary to what has been accepted, proteins
embedded in these protein aggregates precipitate through a sequence specific

143,144,166,204,327

pathway?'! and are accessible to proteolysis , this proteolysis being not

327,328

surface restricted”® and occurring as a cascade process . Additionally, although
some authors still consider the biological activity associated to the proteins embedded
in inclusion bodies as a mere contamination®”,it is becoming more evident that
inclusion bodies formed by recombinant enzymes are capable to retain enzymatic

317-319

activity Complementarily to this fact, pioneering studies in the early

211331 guggest that proteins

1990s°%3%33% 35 well as more recent investigations
packaged as bacterial inclusion bodies adopt different conformational states ranging
from native or native-like to enriched B-sheet structures (stabilized by a network of
hydrogen bonds). In this context, our results not only support the presence of a well-
defined molecular architecture and a noted biological activity, which contributes to the
total activity (paper 1) associated to inclusion bodies (papers 2, 3 and 4), but also

clearly prove that this phenomenon is general and not a mere contamination of

soluble, functional protein that have unspecifically coaggregated. Analyzing four
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structurally different proteins (VP1LAC, hDHFR, VP1GFP and AP42(F19D)-BFP), we
found that inclusion bodies formed in all these cases display a significantly important
specific activity (paper 2 table 1). Although the percentage of activity present in the
aggregated form relative to that of the soluble fraction varies depending on the
protein (6 % in hDHFR, 20 % in VP1GFP, 31 % in AB42(F19D)-BFP and 166 % in VP1LAC)
(paper 2 table 1), it is considerably high in all the cases. Complementarily to this
observation, the micrographs of the strains overexpressing the fluorescent proteins
(VP1GFP and AB42(F19D)-BFP) clearly represent the noticeable fluorescence present in
these inclusion bodies (paper 2 figure 2, paper 3 figure 1 and paper 4 figure 3).
Moreover, when analyzing in detail the IB-fluorescence distribution, we found a
heterogeneous fluorescence distribution, being the core of such aggregates, but not
the surface layer, particularly rich in active protein forms (paper 3 figure 1). This
particular fluorescence distribution pattern is found in VP1GFP inclusion bodies growth
at 37, 30, 25, 20 and 16°C (paper 3 figure 1 and annex | -Authors correction and figure
1-). As shown by immunodetection, the distribution of VP1LAC*®® and VP1GFP (annex |
figure 2) proteins in inclusion bodies is rather homogeneous. Therefore, the
fluorescence distribution cannot be accounted by a variable protein density in
inclusion bodies. To explain this fact, we propose the occurrence of an unbalanced
equilibrium between protein deposition and removal'**'*. Whereas protein
aggregation involves both functional and misfolded poIypeptidesZ6°'329'331'333, we
suggest a more selective process removing specially misfolded polypeptides at the
inclusion bodies surface by the disaggregating chaperones (Dnak, ClpB and small heat

. 2,94,334
shock proteins)®%2433433

. However, a recent work of our group, in which this
phenomenon has been studied in detail, supports an alternative hyptothesis based on
a spontaneous in situ DnaK-dependent folding or refolding of inclusion body proteins
(annex 11.C). The structural reorganization of proteins within inclusion bodies suggested
in this recent publication (annex II.C) is in agreement with other works in which a
structural reorganization of other type of aggregates has been described?**>*°.

Our group and others have recently published other examples of enzymatically active
inclusion bodies occurring not only in the cytoplasm®*®>*’ but also in the periplasm®*®

(table 6). On the other hand, it has also been proposed that the final amount of active
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349
. Hence,

protein in inclusion bodies depends on how fast the aggregation takes place
the longer the time that proteins remain in the soluble fraction before aggregation, the
higher the activity found associated to these aggregates is. In this context, proteins
that remain longer in the soluble fractions can fold better and become functional prior
to aggregation.

Besides, we have also demonstrated that the existence of native-like structures in

260331333 i not anecdotic (paper 2 figure 1 and paper 4 figure 1) and

inclusion bodies
that in this kind of aggregates both properly folded polypeptides and enriched p-sheet
structures coexist in a natural way (paper 2 figure 1, paper 4 figure 1, annex II.B and
[1.C). Analyzing the results obtained with the Fourier transform infrared spectroscopy
(FTIR) (paper 2 figure 1), the presence of a peak at around 1620 cm™ in the amide I
region makes evident the presence of a tightly packed, extended intermolecular j3-
sheet architecture, an observation which is in agreement with what has already been

21331 (annex I1.B and I1.C) or other

described in other works in which inclusion bodies
aggregates with a predominant -sheet architecture such as amyloid fibrils**° have
been analyzed from a structural point of view. When analyzing the secondary structure
of different mutants deficient in the main proteases and chaperones of the quality
control system, we observed again the existence of a consistent pattern of secondary
structure characteristic of amyloid depositions (paper 4 figure 1). Interestingly, in this
case, a progressive downshift in the B-sheet peak (from 1627cm™ to around 1623 cm™)
shown by all the strains devoid of functional chaperones and proteases, when
comparing with the wild type strain (paper 4 figure 1), indicates a tendency of all the
mutants to form more compact B-sheet structures. Therefore, our data, together with
other observations, indicate that, despite the intermolecular B-sheet-rich structure,
aggregation as inclusion bodies does not necessarily disturb the conformation and,
thus, the functionality, of all protein domains embedded in these aggregates (table 6).
To explain this phenomenon we propose the following hypothesis: considering that
enzyme active sites or fluorophores involved in the intermolecular [-sheet
organization cannot be functional themselves, these functional sites must be located in

properly folded molecule segments, distant from the aggregation-prone regions. This
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hypothesis clearly supports the possible coexistence of active and inactive (B-sheet
structure) molecules in a single aggregate unit. In fact, the variable extent of protein
activity in our model proteins (paper 2 table 1) depends on the ratio of polypeptides
forming native-like structures versus those organized as intermolecular 3-sheet. One
of the parameters favoring the loss of [-sheet pattern at expenses of native-like
structure is a decrease in the growth temperature®*>*,

Interestingly, it has also been described that, within inclusion bodies, there are sub-
classes of aggregates with distinctive

204327 Therefo re,

proteolytic sensitivity
we suggest that, whereas proteins or
protein segments in native conformation
would be the protease-sensitive nuclei of

inclusion bodies, enriched [-sheet

polypeptides or polypeptide regions

Figure 11. Schematic model of subclasses of

aggregates. The set of colours shows the range  could constitute the protease-resistance
of heterogenicity (e.g. in dark grey protease-

resistance, enriched B-sheet polypeptides and in  sub-classes described by Carrié and
light green protease-sensitive, native proteins). coworkers23?7 (figure 11).
To sum up, and against the previous view, inclusion bodies are protein reservoirs
formed in a specific manner with a surprisingly high conformational flexibility and
biological activity, rather than being “molecular dust-balls” in cells overexpressing

recombinant proteins.
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Table 6. Inclusion body protein activity and structure.

Inclusion body protein

Green- and blue-

Biclogical activity

High inclusion body

Paper 2 / paper 3 / paper 4 / M6nica Martinez-Alonso et af.
(2007) FEMS Microbiology Letters vol.273(2): 187-95/ Andrea

fluorescent protein fluorescence emission invive | Vera et al. (2007) Biotechnology and Bieengineering vol. 96(6):
fusions and in vitro 1101-6 / Kouhei Tsumoto et a/. (2003) Biochemical and
Biophysical Research Communications vol. 312(4): 1383-6.
Paper 1 / paper 2 fannex I.B and IL.C/
[-galactosidase . . A . D Margaret Worrall and Neil H. Goss (1989) Austrafian Joumal
High specific activity in purified

and [-galactosidase € pinclusion br(t)\:“esp of Biotechnology vol. 3(1): 28-32 / Kyung-Hwan lung et al.

fusion proteins (2008) Journal of Industrial Microbiology and Biotechnology in

press.

Endoglucanase D

High activity in purified
inclusion bodies

Kostas Tokatlidis et of. (1991) FEBS Letlersvol. 282(1): 205-8.

Low activity in purified

Inclusion body protein

Interieukin-1 3

Structure

Inclusion bodies with native-

Dihydrofolate reductase inclusion bodies Paper3
pactamase Detectable activity in purified Dorota Kuczynska-Wisnik et af. (2004) Acte Biochimica Polonica
inclusion bodies vol. 51(4):92531.
i Detectable activity in purified Dorota Kuczynsica-Wisnik et ai. (2004) Acte Biochimica Polonica
ei e f se inclusion bodies vol. 51{4):92531.
High activity in purified Jozef Nahilka et a/. (2006) Artificial Cefls Blood Substitutes and
Polyphosphate kiness inclusion bodies Biotechnology vol. 34(5): 515-21.
D-amino adld oxidase High activity in purified lozef Nahilkaand Bernd Nidetzky (2007) Biotechnology and
fusion protein inclusion bodies Bioengineering vol. 97(3): 454-61.
h M::Trmr" High activity in purified Jozef Nahalka (2007) fournaf of fndustrial Microbiology and
phosp ase inclusion bodies Biotechnology in press.
prateln
slalic acid aldolase fusion High activity in purified Jozef Nahdlka et o/, (2008) Journal of Biotechnology vol. 134{1-
protein inclusion bodies 2): 146-153.

Reference

Kjell Oberg et al. (1994} Biochemistry vol. 33(9): 2628-34.

like secondary structure (FTIR)

like secondary structure {FTIRY)
w-helix-rich Inclusion bodies with native-
hyperthermophilic like secondary structure (FTIR, Mitsuo Umetsu et al. (2004) FEBS Letters vol. 557(1-3): 49-56.
prateins NMR?, CD3)
TEM Inclusion bodies with native- Todd M. Przybycien et /. (1994) Protein Engineering vol. 7{1):
Bactamas like secondary structure (FTIR) 131-6.
. Inclusion bodies with native- . . N
Lipase like secondary structure (FTIR) Diletta Ami et of. (2005) FEBS Letters vol. 579(16): 3433-6.
Human granulocyte- Inclusion bodies with native- Simona Jevsevar et ol. (2005) Biotechnology Progress vol.
colony stimulating factor like secondary structure (FTIR) 21(2).632-9.
Human growth h Inclusion bodies with native- Diletta Ami et af. (2006) Biochimica et Biophysica Acta vol.

1764(4); 7939,

Human interferon o 2[5

Inclusion bodies with native-
like secondary structure (FTIR)

Diletta Ami et af. (2006) Biochimica et Biophysica Acta vol.
1764{4): 793-9.

ITIR: Fourier transformed Infrared speciroscopy.

VIR Nudear magnelic resonance.
3¢D: draular dydhrokm.
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V.3.2 Inclusion bodies as biocatalysers

Inclusion body formation has always been seen as one of the main drawbacks in the
biotechnological and pharmaceutical industry, with many aggregation-prone proteins
being discarded for commercialization. However, contrarily to this view, our data
(paper 2, 3 and 4), together with other recent insights, draw inclusion bodies as active
particles with an important extent of native-like form®? and significant amounts of

317,318,340-343,345-347

functional polypeptides . Consequently, we propose the potential use

of inclusion bodies as catalysers in bioprocesses as an economical alternative to the

3221 1o test this inclusion

time-consuming, expensive protein refolding procedures
bodies application, we have analyzed the behavior of enzymatic bioprocesses driven by
VP1LAC and hDHFR proteins (paper 2 and 3). Our results show that [3-galactosidase
substrates (ONPG and CPRG) are efficiently hydrolyzed by a suspension of purified
VP1LAC inclusion bodies (paper 2 figure 3 and paper 3 figure 2); in fact, inclusion body-
embedded VP1LAC enzymes perform the substrate hydrolysis faster than that
mediated by the same amount of soluble VP1LAC protein (paper 2 figure 3a).
Additionally, the conversion of NADPH into NADP® by hDHFR enzyme was also
monitored and, although the substrate processing is slower when performed by
inclusion bodies than by the soluble counterpart, it is high enough to consider inclusion
body-embedded enzymes as efficient catalysts for enzymatic reactions (paper 2 figure
3b). In addition, inclusion bodies are a source of relatively pure polypeptides'*® (which

114,315

can even reach 90 % of the total embedded polypeptides ), with a porous and

202,204 +hat would facilitate the substrate diffusion. Hence,

highly hydrated architecture
the biological activity associated to the enzyme-based inclusion bodies, together with
its homogeneous, porous and hydrated structure, makes these aggregates a very
attractive candidate to perform a wide number of bioprocesses.

To further investigate the process by which inclusion bodies perform bioreactions, we
have deeply analyzed the hydrolysis reaction mediated by VP1LAC fusion protein
(paper 3 figure 2). Firstly and interestingly, upon inclusion body resuspension, we

observed an immediate release of functional protein to the solvent. Therefore, we

decided to quantify not only the activity but also the amount of protein in both
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inclusion bodies and soluble fraction. Specifically, even though between 7 and 8 % of
the enzymatic activity is localized in the soluble fraction immediately upon inclusion
body resuspension, only a very low amount of protein (lower than 0.0002 %) was
found in this fraction, leading to a really high specific activity associated to the
solubilised protein (paper 3). This phenomenon could be easily explained considering
that, despite the nuclear localization (paper 3 and annex | figure 1), active forms might
be exposed to the solvent due to the highly porous architecture and hydrated nature

20229 0On the other hand, when following

of these particular protein aggregates
kinetically the substrate hydrolysis in an inclusion body suspension, we observed a
time-dependent increase of the enzymatic activity linked to solubilised protein (paper
3 figure 3a and 3b). However, when comparing the inclusion body behavior in the
presence (paper 3 figure 3a) or absence (paper 3 figure 3b) of substrate (ONPG), we
can point up that there is an almost significative (p=0.057) substrate-mediated
modulation of the activity-fractioning. In consequence, the release of active,
aggregated polypeptides could be improved due to a protein conformational
modification that seems to be substrate-dependent. In agreement with this
observation, during the kinetics, the total enzymatic activity decreases more than
sixfold in absence of substrate (paper 3 figure 3b), while the decrease is only moderate
when the substrate is present (paper 3 figure 3a).

Though it is widely accepted that chaperones are tightly associated to inclusion

20835335 ' more research is needed to clarify if the observed protein release is

bodies
modulated by them or is rather a mechanical process.

In conclusion, the catalytic properties of porous, highly hydrated inclusion bodies open
intriguing possibilities for a new industrial market of enzymatically active inclusion

bodies. While the protein in vitro refolding procedures using these aggregates as a

|356-359 |3,221

starting materia are in general expensive, complex, unsuccessfu and need to
be adapted for each specific protein, the direct use of inclusion bodies as biocatalyers
is a particularly appealing alternative. Although hormones and other drugs to be used
in vivo would still require in vitro solubilisation®®, all the enzymes produced to be used
in biotechnological processes could be immediately employed skipping any refolding

step, because of the porous nature of these aggregates allowing substrate and product



111
Discussion

diffusion. Therefore, after a rapid purification from disrupted cells, inclusion bodies
can be resuspended in the desired reaction buffer and, once the reaction is
accomplished, they can be easily removed from the reaction mixture by low speed
centrifugation. In fact, several studies where inclusion bodies are used as biocatalysers
have just been published®?**3*  In one of them, D-amino acid oxidase from

361-363

Trigonopis variabilis , an enzyme of industrial relevance, is produced as insoluble

inclusion body particles**, as an efficient alternative to the immobilized whole cells or

364

enzymes commonly used in bioprocesses™ . In another one, the authors overproduce

polyphosphate kinase obtaining high amounts of surprisingly active inclusion bodies

345, Moreover, these

which they immobilize and efficiently use in ATP/NTP synthesis
authors describe an effective way to produce activated sugar monomers by using
Pyrococcus furiosus maltodextrin phosphorylase entrapped as inclusion bodies®’.

365366 an industrial enzyme used

Finally, this group also synthesizes sialic acid aldolase
for neuraminic acid production, as active insoluble inclusion bodies trapped in alginate
beads**®. The results mentioned above, in agreement with our hypothesis, show that
the use of inclusion bodies as biocatalysts is a powerful alternative to the technologies
used up to now. Intriguingly, the results obtained show that all the used enzymes
exhibit a high specific activity, and a long operational stability, being possible to use
these aggregates repetively in different conversion cycles 343,345-347

Our studies also show that activity and size of inclusion bodies can be modulated by
choosing the appropriate strain (paper 4 and annex I.B) and the specific

environmental conditions>*34%3>! (

paper 1). In that way, highly active inclusion bodies

with the desired size can be obtained for immediate use.

V.3.3 Biological activity: inclusion bodies and soluble protein versions

To better understand the biological meaning of the biological activity and native-
secondary structure found in the inclusion body-embedded proteins, we have also
compared what occurs in these aggregates and in the corresponding soluble
counterpart concerning activity and molecular organization (paper 2). An interesting
result is the occurrence of VP1LAC inclusion bodies with a higher specific activity

(1162.5 + 256 enzymatic units/mg) than that found in the soluble fraction (698.3 +
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153.0 enzymatic units/mg) (paper 2 table 1). This finding can be partially explained
taking into account the occurrence of soluble but inactive proteins, a phenomenon
that has already been described by other groups®*. The so-called “soluble aggregates”
are clusters of soluble but biologically inactive protein which might be inclusion body
precursors®>> and which can be responsible for reducing the average specific activity in
the soluble cell fraction. This could explain our results as well as the variability in the
specific activities observed in different soluble enzymes when produced under
different environmental conditions (paper 1 and annex II.B)165’367'368.

Therefore, whereas in the biologically active inclusion bodies both properly folded and

B-enriched polypeptides coexist, the structural and functional composition of the

soluble fraction might also be diverse.

V.4 Solubility and conformational quality are not coincident
events

The occurrence of active polypeptides and native-like structures in inclusion bodies
indicates that the conventional model regarding recombinant protein production, in
which active proteins are localized in the soluble cell fraction and inactive, misfolded
polypeptide chains are aggregated as inclusion bodies (figure 12), is not appropriate.
This model (figure 12) assumes that protein misfolding prevents both solubility and
functionality, becoming solubility an indicator of conformational quality. Nevertheless,

as mentioned above, we observed that

o O . O o O O protein solubility and conformational
) : quality are not matching properties

O © 00 O O o e (paper 1, 2, 3 and 4). In this regard,
O © O O o Chiti and co-workers also described,

Figure 12. Conventional model. Soluble, functional
proteins (green spheres) and insoluble, inactive
proteins (red spheres) (annex Il.A figure 1a).

through an exhaustive mutational
analysis, that determinants of protein

%9 Therefore, to develop a new, suitable

misfolding aggregation are not coincident
model, in first term, we have considered that physiological aggregation as inclusion

bodies does not split protein population into active and inactive fractions (paper 1, 2, 3
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and 4). Additionally, the coexistence of aggregation patches*’® with native-like regions

352

in inclusion bodies (papers 1, 2, 3 and 4)™° must be taken into account. Besides, this

#172225 i the soluble

model should also support the existence of “soluble aggregates
cell fraction, a protein population with a lower activity than the equivalent “true”

soluble species observed in the production of proteins such as glutathione

372 373,374

transferase®’?, [B-galactosidase®™“ and maltose-binding protein . Considering all
these observations, we have developed a new model that fits in this new concept
(figure 13), in which both solubility and functionality are not necessarily associated
events and in which protein quality of inclusion body protein is representative of that

found in the whole cell.

" o000 O _ iy Jl?_‘;l{j- 'ﬁff}_o =
O O, o © . o () © T e
e o ©60 O © 0 o X
© 90 o0 ¢ © %0 0o &N
*09 00p ¢ "09 00g o

Figure 13. New model: A (favorable conditions), B (unfavorable conditions). Soluble, functional
proteins (green spheres) and insoluble, inactive proteins (red spheres) (annex II.A figure 1b and 1c).

In this context, the divergence between solubility and conformational quality shown in
figure 13 is also illustrated by the negative relationship between the occurrence of
soluble species and their specific emission (paper 4 figure 6a). The variability in the
occurrence of functional protein (compare figure 13 A and B) can be partially due to
environmental parameters. For example, conditions such as reduced culture growth

137> and the coexpression of critical chaperones®* favors proper folding,

temperature
therefore, increasing the yield of active protein present in both soluble and insoluble
cell fractions (figure 13A). On the other hand, disfavoring conditions like growth at high
temperatures and low levels of chaperones, among others, reduce in parallel the
conformational quality of proteins localized either in the soluble fraction or in inclusion
bodies (figure 13B). In consequence, contrary to what has been generally believed,
solubility does not appear to be an all-or-nothing attribute and polypeptides might

exhibit a continuum of folding states in both soluble and insoluble cell fractions (figure

13), between which they can be transferred with the assistance of cellular folding
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modulators such as chaperones and cochaperones'*®. Moreover, the specific activity of
soluble and inclusion body-embedded proteins can be, at least in some cases, quite
similar (paper 1 and figure 13)**, especially in absence of functional DnaK (paper 1
table 1 and annex II.B). DnakK, through the selective removal of active species from
inclusion body superficial layers (paper 4), might be involved in the portioning of
functional proteins between soluble and insoluble cell fractions. This phenomenon is in
accordance with the DnaK inclusion body surface localization?® as well as with the
absence of functional proteins in the external layers of these aggregates (paper 3).

To sum up, we can conclude that solubility (resulting from the combination of the
protein folding process and an overcommitted, highly selective proteolysis) should be
seriously reconsidered as a protein quality universal indicator, being biological activity
a most convenient reporter of the conformational quality (section V.4). Consequently,
the discrimination between conformational quality and solubility would help in the
optimization of production processes to recover higher yields of functional

polypeptides.

V.4.1 GFP: a protein quality indicator

As mentioned above biological activity is a convenient protein quality indicator.

Because of the fact that GFP is only fluorescent if the chromophore has been properly

formed’® and the whole polypeptide has reached the mature structure®*"%3"7 it is

an excellent candidate to determine protein conformational quality. In accordance

342,378,379

with this fact, our data (paper 2 and paper 4) as well as other works show that

GFP emission is really a good reporter of protein folding-misfolding.
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V.5 Escherichia coli quality control apparatus

It is becoming more obvious that inclusion bodies, apart from sharing a wide number
of characteristics with amyloid depositions*'!, are partially formed by biologically

317318340347 (haper 2, 3, 4, annex I1.B and 11.C) with important

active polypeptides
extents of native-like secondary structure®? (paper 2, annex I1.B and 1.C). However,
nowadays, it is still not known how this fact is regulated by the cell. The complex
protein quality control system of all living organisms, essentially composed by
chaperones and proteases, controls protein folding and the degradation of folding-

. . . . 75,1 42 -
reluctant species, therefore, preventing protein aggregation’>!3>31%3338038 11

e
action of the quality control machinery is especially relevant under conformational
stress situations such as high temperature growth or high rates of protein synthesis*.
Even though protein conformational quality and solubility have been traditionally
assumed to be intimately connected, considering that solubility is indicative of
conformational quality, this view has dramatically changed in the last few years
(section V.4). In order to explore the eventual divergent control of these
distinguishable protein properties within the cell, we studied in detail both the
distribution of biological activity between the soluble and insoluble fractions and the
aggregation propensity of a fluorescent recombinant protein in different mutants
devoid of the main cytosolic chaperones and proteases (paper 4). Analyzing the results
obtained we observed that, as expected, the total or partial disruption of different
arms of Escherichia coli quality control apparatus results in more protein aggregation
(paper 4 figure 2a and 2b). Nevertheless, all the tested strains, except IbpAB’, produce,
surprisingly, much more functional proteins than wild type strain (paper 4 figure 2c, 2d
and table 1), being the gain in the total fluorescence due to, in most of the cases, an
increase in the fluorescence of both soluble and insoluble fractions (paper 4 figure 4a
and 4b). Interestingly, fluorescence was considerably intense in genetic backgrounds
with high aggregation (figure 14 and paper 4 figure 2 and 4). This phenomenon was
especially appealing in cells lacking functional DnaK, where inclusion bodies are

319,320

extremely big and fluorescent (paper 4 figure 3).
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On the other hand, we also observed high amounts of recombinant protein in all the

mutant strains, excluding IlbpAB’

800 (paper 4  figure 5a). This

p = 0.0033 . .
700 r=08554 enhancement in VP1GFP yields

600 1 perfectly correlates with an increase
in proteolytic stability in the

500 A

absence of relevant chaperones or

400

proteases (paper 4 figure 5b),

300 A o

Fluorescence (fluorescence unit/OD-ml)

indicating that the diminished

200 T T T T T
1000 1500 2000 2500 3000 3500 4000

Inclusion body VP1GFP (ng/op i) fluorescence emission in wild type

strain is not due to a saturation of

Figure 14. Pair-wise comparaison of inclusion body-
embedded VP1GFP and the total cell fluorescence in
different producing strains.

the folding machinery but a
consequence of a low protein

stability (paper 4 figure 5).

V.5.1 Proteolysis mediated by DnaK

While in Escherichia coli protease deficient cells (Lon’, ClpP" and ClpA™ -ClpP ATPase
subunit-) proteolysis is widely minimized for most recombinant proteins'*®38438¢
leading to an important yield of stable protein, proteolysis inhibition is not evident in
mutant strains deficient in chaperones such as GroES, GroEL, ClpB and DnaK (paper 4
figure 5b), although it has been previously reported that in DnaK™ cells recombinant
proteins are proteolytically more stable®. Particularly, VP1GFP half-life in DnaK or
ClpB’ is not only noteworthy but close to that shown in absence of Lon, ClpP or ClpA
(paper 4 figure 5b), the main cytosolic proteases degrading recombinant proteinsl49’386.
Therefore, all these data indicate that both DnaK and ClpB positively mediate
proteolysis, indicating that chaperones and proteases play interconnected roles.
Specifically, our results suggest that in cells with a fully functional quality control
system, ClpP and Lon proteases, directed by DnaK in association with ClpB, degrade
aggregation-prone but functional (or suitable to be activated) proteins by an

overcommitted activity that, while minimizing aggregation, dramatically reduces the

cellular amounts of functional protein species. There are some reports indicating that
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DnaK could be involved in degradation by delivering folding intermediates to

96,146,387,388

proteases and, moreover, a recent publication of our group describes a

physical interaction between DnaK and VP1GFP through which the recombinant

341
d

protein is inactivated™ . However, in spite of these evidences, further investigation is

required to elucidate the precise mechanics of this DnaK-dependent proteolysis.

V.5.2 |IbpAB: antagonist in the proteolysis

On the other hand, while most of the tested mutants seem to be involved, at least
partially, in protein degradation, recombinant proteins produced in cells devoid of the
small heat shock chaperones IbpA and IbpB are not more stable than those produced
in wild type cells (paper 4 figure 5b). This behavior is in agreement with the fact that
IbpAB, which acts in cooperation with DnaK and ClpB chaperones, seems to display a
protective role against proteolysissgg, therefore acting as an antagonist in the

proteolysis mediated by DnaK-ClpB.

V.5.3 Divergent role of the quality control system

Analysing the positive, significative correlation between the specific fluorescence of
soluble and insoluble cell fractions of the strains used in paper 4, we can conclude that
conformational quality control system acts irrespectively of protein solubility (paper 4
figure 6b). Even though both slopes are similar (0.0906 -upper line- and 0.0767 -lower
line-), Dnak’, CIpA’, ClpB and ClpP inclusion bodies show higher specific fluorescence
than GroEL, GroES, IbpAB™ and Lon™ (paper 4 figure 6b); this interestingly means that
DnaK, ClpA, ClpB and ClpP are elements of the protein quality control that actively
participate in the discrimination of functional species between soluble and insoluble
fractions.

Besides, our results also illustrate that the bacterial quality control promotes solubility
instead of conformational quality, through an overcommitted proteolysis of
aggregation-prone polypeptides (paper 4). In this context, it has also been described
that solubility, yield and conformational quality of soluble proteins cannot be favoured
simultaneously (annex 11.D). Therefore, to date, the mechanics of this quality control

has been largely misunderstood, because, contrary to what has been widely believed,
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recombinant protein conformational quality and solubility show a divergent control. In
this context, the proposed divergence is supported by the negative relationship
between solubility and the specific fluorescence of the soluble cell fraction (paper 4
figure 6a). Additionally to this fact, our group has also described that, under low
growth temperature conditions, VP1GFP conformational status of soluble and

insoluble proteins is improved in paraIIeI342

, supporting the idea that virtual cell
compartments do not have very much sense regarding protein quality. In agreement
with this fact, we have also observed, specially in cells devoid of DnakK, that VP1LAC
specific activity is quite similar in both soluble fraction and inclusion bodies (paper 1
table 1 and annex II.B table 2). Moreover, the specific fluorescence emission of soluble
and inclusion body VP1GFP behave exactly in the same way along protein yield and

DnaK availability ranges341

. Thus, considering the role of the chaperones and proteases
concerning solubility and conformational quality (paper 4), the coexpression of these
elements of the conformational quality control apparatus to optimize the production
and recovery of soluble, functional polypeptides, should be reconsidered. In fact, this
new concept might partially explain the inconsistent results obtained upon

coexpression of chaperones to gain squbiIity16°’178’39°.

V.5.4 Inclusion bodies: protein reservoirs integrated in the protein
quality system

It is generally believed that proteins

% localized in inclusion bodies are
p = 0.5907
451 r=0.2083 . ; ic160
N . protected against proteolysis™.
2 % However, our results, in agreement with
2 . ] °
5" N other reports*?”3%%1  noint out that
0 254 [ ]
. . inclusion body size is highly regulated by
151 . proteolysis (paper 4) and, consequently,
10 T T T
2 a 6 s these aggregates are completely

150 (h)
integrated in the cell protein quality

Figure 15. Pair-wise comparaison of VP1GFP half control. When analyzing the possible
life (t50) and solubility in different producing
strains.
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existence of a correlation between protein solubility and half-life, we do not observe a
positive correlation or a negative one either (figure 15). Therefore, the fact that less
protein solubility does not correlate with higher half-life indicates that proteolytic
resistance drives to aggregation and not the opposite. Additionally, inclusion body
formation is not only proteolytically regulated, but also completely integrated in the

conformational quality control (paper 4 figure 6b).
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1. The enzymatic activity of an aggregation-prone [-galactosidase (VP1LAC) produced
in wild type Escherichia coli cells is between 9 and 15 times higher than in mutant
cells deficient in DnaK. Moreover, the stability of soluble VP1LAC in a DnaK
background is almost two-fold lower than that found in their counterparts in DnaK*
cells. Therefore, since the soluble protein produced in absence of DnaK is less active
and less stable than that produced in wild type cells, we can affirm that DnaK is
critical in the conformational surveillance of aggregation-prone proteins, which
folding cannot be totally complemented by other elements of the heat-shock
response.

2. The specific activity and also the half-life of the soluble VP1LAC produced in old
batch cultures is about two fold higher than that produced in young cultures,
irrespective of the chaperone DnaK. Additionally, VP1LAC solubility in both strains
when produced at late exponential phase is between 2 and 7 fold higher than that
found in young cultures. In consequence, recombinant gene expression at late
exponential phase favors protein folding, stability and solubility, probably due to the
reduced biosynthesis of recombinant proteins that improve DnaK-independent
folding.

3. The biological activity of hDHFR, VP1GFP, AB42(F19D)-BFP and VP1LAC present in
inclusion bodies relative to that of the soluble fraction is variable but significant (6 %,
20 %, 31 % and 166 %, respectively). Consequently, the presence of biological
activity associated to inclusion bodies is not anecdotic but a general event.
Therefore, enzymatically active inclusion bodies, due to its easy obtention, purity,
porous nature and highly hydrated architecture, might be used as catalysers in
bioprocesses, as an economical alternative to the time-consuming and expensive
protein refolding procedures

4. Fourier transform infrared spectroscopy (FTIR) of inclusion bodies formed in a wide
number of Escherichia coli strains showed a peak at around 1620 cm™ in the amide I
region, characteristic of the intermolecular B-sheet architecture. Moreover, in
strains devoid of functional chaperones and proteases, there is a downshift from
1627cm™ to around 1623 cm™ in the -sheet peak compared with the wild type

strain, indicating a tendency to form more compact B-sheet structures. Therefore,
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native-like polypeptides coexist with enriched B-sheet structures in inclusion bodies,
without compromising the functionality of properly folded polypeptides.
Consequently, the ratio of properly folded polypeptides with native-like structure
versus those organized as intermolecular B-sheet structures would define the

specific biological activity associated to inclusion bodies.

. VP1GFP and APB42(F19D)-BFP inclusion bodies are highly fluorescent. In this context,

the core of VP1GFP aggregates at 37, 30, 25, 20 and 16°C is fluorescent, while the
surface layer is poor in active proteins forms. Besides, VP1LAC and VP1GFP
immunodetection analyzed by transmission electron microscopy reveals a
homogeneous inclusion body protein distribution in both cases. Therefore,
functional polypeptides are not surface-limited contaminants of inclusion bodies but

true structural components.

. VP1LAC inclusion bodies, once resuspended in PBS buffer, release functional protein

to the solvent in a time-dependent way and such protein release, that has not been

observed in VP1GFP inclusion bodies, is substrate-mediated.

7. The specific activity of VP1LAC protein aggregated as inclusion bodies is almost two-

fold higher than in the corresponding soluble counterpart. Hence, this fact supports

the occurrence of biologically inactive proteins in the soluble fraction.

. Escherichia coli cells devoid of GroEL, GroES, ClpA, ClpB, Lon, ClpP or Dnak,

overproducing VP1GFP, are more fluorescent than wild type cells. Besides, most of
these strains, when compared to wild type, show an enhanced fluorescence in both
soluble and insoluble fractions, an increased protein aggregation and enhanced
amounts of recombinant protein. Interestingly, the most fluorescent strains were
those in which aggregation was higher and backgrounds with improved VP1GFP
yields show an increase in proteolytic stability. Consequently, the total or partial
disruption of different arms of Escherichia coli quality control apparatus results in
proteins with a high conformational quality and more stable than those obtained in

wild type cells, irrespective of their solubility state.

. VP1GFP half-life in DnaK or ClpB’ strains is similar to that observed in absence of the

main cytosolic proteolytic apparatus formed by Lon, ClpP and ClpA. Therefore, it

seems that ClpP and Lon proteases, directed by DnaK in association with ClpB,
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degrade aggregation-prone but functional (or suitable to be activated) proteins by
an overcommitted activity that, while minimizing aggregation, dramatically reduces
the cellular amounts of functional protein species.

10. As an exception, VP1GFP stability in cells devoid of IbpA and IbpB is close to that
found in the wild type strain. Consequently, while the other tested chaperones and
proteases seem to be involved in proteolyisis, the small heat shock chaperones are
not involved in this phenomenon.

11. There is a positive correlation between the specific fluorescence in soluble and
inclusion body fractions, being DnakK’, ClpA, ClpB and ClpP" the strains with the
highest specific fluorescence in the aggregated fraction. Therefore, the
conformational quality control system acts irrespectively of protein solubility.
Moreover, DnaK, ClpA, ClpB and ClpP are those elements of the quality control
machinery specifically involved in the fractioning of functional species between
soluble and insoluble fractions.

12. Solubility and conformational quality of recombinant proteins are not matching
properties and the physiological aggregation as inclusion bodies does not split
protein population into active and inactive fractions.

13. The quality control machinery acts irrespectively of protein solubility, improving or
deteriorating conformational status of soluble and insoluble proteins in parallel.
Moreover, this system promotes solubility instead of conformational quality,
through an overcommitted proteolysis that results into a divergent control of
conformational quality and solubility.

14. Solubility should be seriously reconsidered as a universal indicator of protein quality,

being biological activity a most convenient reporter of the conformational quality.
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AppUED axp Evvigossestal Microsioveoy, Mar, 2008, p. 1960 WVl T4, Mo, 6
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AUTHOR’S CORRECTION

Localization of Functional Polypeptides in Bacterial Inclusion Bodies

Elena Garcia-Fruitds, Anna Aris, and Antonio Villaverde

feestitud ofe Biotecnolopin § de Biomedicing and Departaeient de Cenética | de Microlviodogia, Usiversital Autanoma de Barcelova,
Bellaterra, 08193 Barcelona, Spain

Volume 73, no. 1 po 280204, 2007, Page 290: The confocal micrascopy pictures of incluzion body-producing cells shown in Fig.
I correspond 1o LS-pm sections instead of (L04-pm sections as indicated in the text. VPIGFP inclusion bodics analyeed through
0Li8-pm sections (the minimal thickness technically feasible for bacterial cells with the wsed cquipment) offered a lavered and
concentric distribution of fluorescence similar to that shown i the published material. Therefore, all the conclusions of our work

are perfectly valid.

Ll
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Figure 1. Metamorph image analysis of VP1GFP inclusion bodies formed at 37°C analysed through
0.08 um serial sections. The color scale is despicted at the right.
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Figure 2. In situ immunolocalization of GFP in VP1GFP-producing Escherichia coli MC4100 cells (A), and
in the derivatives DnaK™ (B) and ClpP" (C, D). Samples were obtained upon the induction of VP1GFP
gene expression as described previously in paper 3. At 3h after induction of gene expression, cells were
harvested by centrifugation and fixed with 4% (v/v) paraformaldehyde (EM grade, Merck) in 0.1 M
phosphate buffer (PB) pH=7.4. Later, samples were rinsed with PB, incubated in 20 mM glycine solution
to quench the free aldehyde groups and embedded in 12% (w/v) gelatine, cryoprotected in 2.1 M
sucrose solution and cryofixed in liquid nitrogen. All sections were cut at -1202C with a
cryoultramicrotome (Leica Ultracut UCT, Vienna) and deposited onto formvar coated Cu/Pd grids.
Ultrathin sections were initially blocked in PBS containing 1 % (v/v) BSA, incubated with a primary
polyclonal antibody anti-GFP (sc-8334 Santa Cruz Biotechnology, Inc., 1/50 dilution) for 40 minutes.
After washing in PBS, sections were incubated with gold-labelled protein A (Utrech, 10 nM). Following
the final washes with PBS, samples were fixed with 1% glutaraldehyde and washed with distilled water.
Samples were finally mounted in metilcelulose-uranyl acetate and visualized in a transmission electron
microscope Hitachi H-7000.
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VIII.1 Annex II.LA

Recombinant protein solubility-does more mean better?

Nuria Gonzalez-Montalban*, Elena Garcia-Fruités* and Antonio Villaverde

Nature Biotechnology, Vol. 25 No. 7, July, 2007

*Contributed equally to this work
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Nevertheless, some areas merit further
amention. A first problem is that the mapority
(o= 70 af stuclics on GM rice have been
conducted under laboratory conditions,
These studies have limited predictive abiliny
regarding large-scale, long-tevm effecs
in the field. For this reason, the impact of
human activities and agriculral practices
omn CiM rice performance has not been
achespuately incorparsted into the Chinese risk
assessment provess, For example, although
there is a consderable amount of ressarch
o matural pollen digpersal in China, unsder
certain conditions human-mediated seed
dispersal may have a stronger influence
o the risks assockated with gene fow®, To
ashilresa suich isves China should consader
winkertaking something similar to the ‘farm-
scale evaluations’ undertaken in the United
Kingdomy, the resulis of which were published
in 2003 {ref. o).

Furthermore, relatively few data have been
gathered oa the development of resistance by
nsects and pathagens o Bt nce or Xe2l nce
in China Assessment of these issues should be
wrrdertaken before commercialization of GM
rice in the couniry,

Third, socieeconomic considerations
need 1o be considered concerning the actual
and potential consequences of adoption
of M roe, such as the potential imipact
on farmers' incomies and welfare, cultural
practioes, community well -beirg, traditional
crops and varietics, roral employment,
trade and comyetition, ethics and religson,
consumer benefits and jdess about agricalinare,
techmeslopy and society, Taking such

comsiderations inbo acoount durmg the nsk
%ﬂmm process is neet kegally required in

Cluina, But expericnce has shown they are
imiportant Exctors in Ching; for coample,
several empirical economic studies on cotton
have revealed income gains for small Birmers
who plant fir cotton seeds”, More attention
neods to be pard to this issue 1if GM rice 5 to be
commercialized in a sustainable manner,

Foairth, China’s sheer size poses a headache
for compliance and risk management, Any
coordinmed management ¢ffon mus oversse
millions of Gurms, One repsort assessing
the productivity and health effects of twe
inseot-resistant transgenic rice varictics®
highligheed the fact than farmers wene
cultivating GM rece withaoul the assistance of
knowledgeable technicians. This assessment
methesd vas comtrary 1o that set dovwn in the
2000 regulations and raises questions about
implementation of repulations and whether
the safeguards 1o prevent G contamination
are effective™”,

Duestions have alsa been rased about the

EA L

extent that Earmers are using Givi rice illegally,
and the significant inernational consequences
of posssible ‘comtamination” of the Chinese
rice supply, The Minstry of Agrculiure
has conducted a series of investigaions and
charifications! 1, saing The Gaedelines of
Brosrfety Investignbior on Field- Testing of Gd
Craps in May 2006 to clarify legal requirements
fior fiicld eesting of GM crops. Even so, as the
experience with ilkegal use in India, Argentina
and Brazil and admixture in the United States
have demonsatrated, dlegal use and maxing
M aned non-GM staples in the foeod supply
are likely to be ongoing problems. Clearly,
greater awareness about the requirements
of the regulations among farmers using G
crops would be helphal, Greater vigilance by
the Ministry of Agricultune 12 also needsd, [
compliance problems persist, then stronger
sanciiens will noed to be considered, But aza
first step, a maore independent investigation of
compliance and illegal vse is warranted in China,
W conchade thar Chinese scientists are
using procedures (o assess the risks associated
with GM rice that meet international
standards, Even so, more attention needs
o be paid to some critical areas, such as
field testing, scienific uncertainty and
socipecosomic considerations. Comparative
amd collaborative studies with other countries
wothd be helphul in developing better
procedures, Perhaps the most pressing issue
though is addressing compliance issues and
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the illegal use of GM crops, The need for a
mone independent evaluation of these issucs
ischear
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Recombinant protein solubility—
does more mean better?

Ta the editor:

Singe the incepion of recombanant INA
technodopy, maximizing the solubility of 2
heterologous protein has been the goal of
Large-scale biomanufaciure’. In bacterial

cell Bacborics, recombinant proteins usually
fail to feld properhy and accumatlane as
refractive, insoluble partickes called inclusion
bodies. Higher vields of sduble proteins

have been pursued either by reducing

the culture temperature, enginecring the
proiein sequence, adding fusion panners or
coprosducing scdected chaperones”, Tn general,
these approaches have been rather hit-or-miss
arl have prowen bo be particularly mefficien
with respect to both membrane proteins and
other difficult-to-express proteins, In the haste
1o imiprove selubility, conformational qualicy
has often been disregardied or assumed 1w be
intimately hinked to sobability (Fiyg. 1a), Here,

VOLLIME 25 NUMBER 7

we summnariee evidence that challenges the
broasdly wccepted motioan that low recombinant
protein solubility is indicative of poor
conformational quality and compromised
biclogical activity. On this basis, we suggest
recombinant profeins cxpressed as inchasion
bodies in bacteria could retain biclogical
activity amd thus be of gremer potentizl
baotechnological utility tan previousdy
appreciated,

Inchusion bodics have long been regarded
as clusters of polypeptides unable 1o reach
nalive comforrmation that are deposiied as
imert reservoirs sequestered from protesse
activity, An increasing number of reports
indicate that bacterial inchasson bodies
comprise proteins in different conformations,
a significant proportion of which may be
beologically acive. For example, a pioneering
study in 1989 by Worrall and Goss® showed

IULY 20T MATURE BIOTECHNOLOGY
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2 that inchusion bodies formed by Eschericlia

g ooli f-galactosidase exhibit specific activities
arounsd ane-third of thase shown by soluble
enzyme, Caher enzymecs, produced alone or as
fusion proteins, forn inclusion bodies that are
aley bdologically active {fora review, see relL4).

@ Our growg and others® have demomirted
this ocours not only in the cytoplasm, ban also

3n the periplasm if socreted. In some cases, the

specific activitics of the aggregatad and soluble
enEyme versions are very close®. Similarly,
work by our group®” and others” at the
Istitute for Biotechnology and Blomedicine
has showm that fluorescent proteins (e.g., green
fleorescent protein (GFP), bloe fluorescent
protein and derived fusions) form inclusion
Prredics thaat remain highly Auorescent.

This evidence of bislogical activity in
inchushon bodies indicaes that aggregation of
recombinant prodeins in bacteria can be drven
by specific imteractions between solvent-
exposed hvdrophobéc stretches in partially
stmpctured species that are ot necessarily
invodved in, or critical bo, the Tormatn of
the active site or chromophore, Our group™
heis samggrested that the: mteractions between
the aggregation medifs, theowgh cross [i-
sheet-based mtermodecular interactions,
susiain the particular amyloid-like molecular
architeciure of inclusion badies. The evidence
fromm functional analysis is corroborated by

structural analyses that show mclusion bodies
cani be highly enriched in natve-like secondary
structure {reviewed by A Ventura and AV in
ref. 4},

The occurrence of active polvpeprides as
structural components of nclusion bodies
imclicates that solubality and fuscriosaling
are not neccssarily assoceted, In o 1999
stuly, Walde and coworkers' analyzed
the Buoeescenoe of 20 diffesent GFP
fusion proteins, For nine of them, the weal
fluorescence of producing cells correlated
weell with the solubility of the nonfused
heterologous partner, indicating that the
aggregation tendency of the aggregation-
prone domain modulated the conformational
status of the chromophore in the whole Rsion.
Similarty, collaborarors a1 our insine® have
recently described how 20 amyloid bea 42
pepride (AR II=GEFF fusions containing
singde point matations in A2 show
variabde specific fluorescent emission when
deposited as inclusion bodics, Interestingly,
Thsorescende ol thise inclusion badies is
inversehy dependent on the aggregation rates
prrecicted for the protein varants, indcating,
that the conformational quality of inclusion
browlies depends om how fast the aggznegation
occurs after protein synthesis. Unfortunately,
ihe study by Waldo and colleapes' did
it imvestigate the sobubility of the GFP
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Figure 1 The funclionality of recombinant proleins
sgpeegatad & inclusisn badies. () Comentianal
mioddel of recombinant protein fractioning in
incluzion body-leemnimg cells, whars funchional
species (green sphenes] occor in the solubile celi
frmetian, whereas. inactive, misiolded polypaplides
{red sphenes] ane deposited in inclusion bodies,
Aceording te this model, protein mistolding
prewerts both sclubility and biclogical activity,
Thaseioe, solubility woald be a strasghtiorsad
indicator of conlormaltaanal quality (and msalubility
an indecaior of poor prodein qualityh. In this moded,
salubility and biclogical activity arg to all intents
and puarposes. all-or-nathing properties. (bl The
niw madel, which represents inclusion bodies

a5 misfoiding-prome recombenant palypaptides
clustered in spetific cell locatons, in the case
under candibions [+) that fawor proper foldeng.

fe] The rew misdel, bud this time under condilions
i1 that disfver proper fokling. In b and ¢, the
biclogeeal acthvity of recamBinant probeins rangas
{ram no detectable sctivity to 100% specdic
activity, and misfolded peoteirs might exist along
a continuwm of lorms, Irom Tully soluble versicos
Ao true refractile inclusion bodies. Because
solubility and biclogical acthity are thenslore

nal malching evenls, matures of aclive protain
species (exhibiiling & considerable amouwnt ol
natre-|ike socondary structune) and non-lunctional
palypaptedes comast i both solubde and irsclubde
cal| fractions. The averags confonmal icnal dquality
al mehasion baily probein s representalive al thal
fownd in the whale cell.

fusions themselves nor the contribution of
their inclusion body versions o total <2l
Huorescence,

Looking at the problems from another
perspective, our work at the instinate™! 12
T sheoin theat the specific activities of
eneyines or fuomescence conission propenics
of fluorescent reporter proteins present as so-
called salubde aggregates (oligomeric versions
of recombinant protains) anc highly varialble,
depending on the production conditions and/
of the host cell genetic background. A recent
structural analysis of solubde GEF fusions has
shown that that they assume a wide spectrum
of forms, ranging from amorphous particles
tar true fibsers' ., These ohservations indicate
that the solwble cell Fraction contains inactive
of partially sctive protein forms that might be
related 1o the soluble speregates.

The combinad occurrence of functional
protein in inchsion bodies and mactive
protein versions in the soluble cell fraction
(Fig. 1byc) resulis in very similar specific
activities when comparing seluble and
inclusion body protein forms™!, especially
in the absence of functional Drak', This
chaperone controls the partitioning of
fumctional proteins between soluble and
insoluble cell fractions, probably through
the selective removal of active, better-folded

speckes from imclusion bodies, Although
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CORRESPONDENCE

other explanations are also plavsible, we have
posited that this hypothesis is compatible

wilh the stroag affinity shown by Dnakl for
the wchssion body surface (AN and MM,
Carrio') and the abnce of functional
pratein in the external lavers of these
aggrepates [AV,, EG.-F & A. Aris™). Although
in wild-type cells, the specific activity (or
flwarescence emission) of soluble proteins is
uge der caghit tirmes hagher thaon that of profeins
in inlusion bodies (stll surpnismngly dosel,
siich values tend ta be equal in Dnak-deficient
cells 112,

As our recent results have revealed that
the conformational quality and functionality
of protein—whether soluble or insoluble—
mncrease in parallel to reduced culiure growth
temperature or o levated mtracelhular
concentrations of critical chaperones™'®,
recombinant proteins expressed in inclusion
bodies are representative of the average
protein guality in heterslogous cells ( Fig.
1b.c). lov this context, as protein qualiny
correlates only posarly with sccurrence
in the seluble fraction, solubility should

be reconsidened as a universal indicatar

of protein quality. What's more, greater
juelicions discrimanation beltween
conformational quality and solubility would
likely benefic the optimization of production
processes for higher yields of functional
polypeptides.
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Abstract

Background: The molecular mechanics of inclusion body formation is still far from being
completely understood, specially regarding the occurrence of properly folded, protein species that
enchibic natural biclogical activities, We have here comparatively explored thermally promaoted, i
vive protein aggregation and the formation of bacterial inclusion bodies, from both structural and
functional sides. Alse, the status of the soluble and insoluble pracein versions in both aggregation
systems have been examined as well as the role of the main molecular chaperones GroEL and Dinak
in the conformational quality of the margee polypeptide.

Results: Yhile thermal denaturation resules in the fermation of heterogeneous aggregates that are
rather stable in composition, protein deposition as inclusion bodies renders homogenous but
strongly evolving strectures, which are progressively enriched in the main protein species while
gaining native-like structure. Although both type of aggregates display comman features, inchusion
body formation but not thermal-induced agaregation involves depasition of functional polypeptides
that confer biclogical activity to such particles, at expenses of the average conformational qualicy
of the protein population remaining in the scluble cell fraction. In absence of Dnak, however, the
activity and conformarional nativeness of inclusion body proteins are dramatically impaired while
the soluble protein version gains specific activity.

Conclusion: The chaperone Dnak controls the fractioning of active protein between soluble and
insoluble cell fractions in inclusion body-forming cells but not during thermally-driven protein
aggragation. Thiz cell protein, probably through diverse activities, is respanzible for the occurrence
and enrichment in inclusion bodies of native-like, functional polypeprides, that are much less
representad in other kind of protein aggregates.
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Background

In bacteria, formation of inclusion bodies is common
during overexpression of plasmid-encoded recombinant
genes, and this fact represents an imponant matter of con-
cern in biotechnology [1]. Like in mammalian aggre-
somes, inclusion body formation is stimulated when
protealyvzis is impaired in protease-deficient mutants
[2.3]. and these protein deposits act s reservoirs of mis-
folded polvpeptide chains |4) for their further refolding or
protealysis | 3,5.6). Bacterial inclusion bodics are dynamic
structures, they grow resuliing from an unbalanced equi-
librium between constant protein deposition and removal
that is lost in absence of protein synthesis [4.7], Intngu-
inglv. they comain significant amounts of protein in a
native-like form [8-12], a face that is reflected by the
impartan extent of biological activity exhibited by inclu-
sion bodies formed by very different target proteins | 13-
15]. Why active protein is found ininclusion bodies is stll
controversial, and the mechanics of the aggregation proc-
eos that involves  properly  folded  poelypeplides  [or
polvpeptides with propedy folded domains eritical for
activity) remains obscure, In this context, it has been
recently proposed that protein aggregation in bacteria is
not an all-or-nothing process | 16]. since the quality of
recombrinant pﬂ“?-ll'lﬁ extends over a comtinuum of con-
formaiional forms [17], that include soluble aggregaies
[18.19] and active protein entrapped in true, refractile
inclusion bodies |9,13]. The conformational staus of the
inclusion body protein is influenced, among others, by
environmental facors such as the growth wemperatne
|20] and the gene expression strategy [21], bt linde is
known about the role of cellular factors on the quality of
protein species in both soluble and insoluble cell frac-
Lo,

In this work, we have explored the occurrence of active,
praperly folded polypeptides in incusion bodies and in
thermally driven aggregates formed by the same protein
species, and the influence of the main chaperones Dnakl
and CroEl in the quality of the deposited polypepides
but also of those remaining in the soluble fraction.
Intriguingly, while both type of aggregates display a few
common physiological raits, the occurrence of active pro-
tein apecies is much higher in inclusion bodies, a
expenses of a poorer quality (when compared 1o thermal
aggregates) of the protein population remaining in the
soluble fraction. Also, the chaperone Dnak has a main
role in the distribution of active polypeptides between
soluble and insoluble cell fractions in inclusion body
forming cells bui not during thermally driven proiein

aggregation,

hitp: s microbialcelitactonies. comvcontent/S/ 1/28

Results

Composition of Fgaloctosidase-based thermal aggregates
and inclusion bodies

E. coli fegalaciosidase is a huge, homoetrameric enzyme
formed by the lace gene product, When overproduced in
bacteria, the enzyme remains soluble in the cell cnaplasm
and is clearly functional. In an engineered version of the
erayme, the VPTLAC fusion, the presence of a small viral
capsid protein at the amino terminus promotes aggrega-
tion as cytoplasmic inclusion bodies, and VP1LAC is dis-
tributed in the soluble and insoluble cell fractions at
comparable proportions |22], Interestingly,  VPLLAC
inclusion bodies are ensymatically active [ 13] atan extend
not much different than that found in the soluble protein
version [21]. To compare the peformance of the enzyme
in either thermal aggregates and inclusion bodies, we have
used a particular thermo-inducible expression system that
enables a comparative study. Expression of both fec? and
VPILAC genes was miggered from a wemperaturesinduci-
ble plasmid vector enceding a temperature  sensitive
lambda repressor, essentially inactive an 42° [23]. The
temperature shift from 28 w0 427 induced efficient recom-
binant protein production [without signs of cell toxicity)
(Figure 1A), The lower amounts of f-galactosidase com-
pared to that of VP LLAC [ Figure | B) were probably caused
by a slightly higher proteclviic sensitivity of the parenial
protein as previously reported |24), Under this condi-
tions, cells undergo a mild hear shock that resulis in ther-
mal denamration and aggregation of cellular proeins. In
particular, the production of the misfolding  prone
VIMTLALC resulved in its accumulation as inclusion bodices
|4]. Also, a small part of the recombmant B-galactosidase
present in the cells (up to around 5%) was found in the
insolulle cell fraction as pan of thermal aggregates, and
this figure remained nearly constant throughout the heat
shock (Figure 2A). In contrast, a progressively higher frac-
tion af VPILAC (up to 45% at 3 h) occurred as inclusion
hodies (Figure 2A4). Despite ar 42°C the recombinant -
galactosidase is the most abundandy produced procein in
the cell, the enzyme only represented around 3% of the
protein species found in the insoluble cell fraction, while
VP ILAC accounted for 90% of the inclusion body mate-
rial (Figure 2R). During the experiment time, inclusion
bodies were steadily enriched with VP1ILAC species and
therefore their homogeneite dramatically increased, while
the F-palactosidase fraction in thermal aggregates ran-
domly fluctuated bertween 1.5 and 3%. These results are
compatible with the seeding process recently shown o
drivee inclusion body formation [9] and indicate that, in
contrasi, thermal aggregation does not involve interaction
between homologous protein patches and itis not, at least
strictly, sequence-specific. On the other hand, polypep-
tides embedded in hoth kinds of aggregates undergo
imponant changes in their global secondary siructure
[Figure 3; Table 1], through the continuous formation of

Page 2 of 9
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A Cell growrh measured through optical density for
MC4100 cultures producing either [--galactosidase (black
symbols) or ¥ LAC (white symbols). Time 0 represents the
temperature up shift. B. Total yield of B-galactosidase (black
bars) and VP ILAC (grey bars), as measured by Westarn blat
densitomenric units.

extended, intermolecular B-sheet structure, being maore
pronounced in inclusion bodies than in thermal aggre.
gatex, This waz deduced from the evolution of the bands
at 1627 cmc? and 1692 cme? [[-sheet) relative o that at
1652 cm! [disordered and/or a-helix) (Table 1). The pres-
emce of a band at 16381640 em?, even il nol well
resolved, can be awribued 1w the ocourrence of some
imramolecular f-sheet. This band appeared only in aged
inclusion bodics and it was absent in thermal aggreganes,
According o previous analvsis [9] this peak corresponds
1o native-like species, that could be accounted by B-galac-
tosidase molcties.

Impact of Dnak and GroEL in fLgalactosidose aggregation
and activity

The formation of B-galactosidase thermal aggregates and
VAL inclusion bodies was explored in abhsence of the
main cytoplasmic chaperones, either Dnak or GroEL, I
has been previously reported that when Dnak is not avail-
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Figure 2

A, Fraction of the produced recombinant polypedptides
found in protein deposits, either thermal aggregates of [i-
palactosidase (black bars) or VPILAC inclusion bodies (grey
bars). B. Percentage of [i-palactosidase (black bars) and
WPILAC (grey bars) found in thermal aggregates and inclu-
sion bodies respectivaly.

able. inclusion bodies are larger than in the wild wpe
strain and the amounts of soluble VPLAC much lower
[25]. Such aleration in inclusion body formation can be
accounted for by two described Dnak acivities, namely
preventing aggregation | 26] or actively disaggregating pro-
peins | 27-29], bath done in combination with other chap-
erones and small heat shock proteins. As observed inthe
Dnak: backgronnd  (Figure 4). the deposition of the
recombinamt eneyme was enhanced in both wypes of
aggregaies, alithough the negative impact on solubility was
dramatically higher in those formed by the parental form
of the engyme, The parallel stimulation of aggregation
would indicate thar Dnak s managing bhoth thermal
aggregates and inclusion bodies, although the chaperone
could be more active in controlling deposits of denatured
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Figure 3

FTIR aof J-galactosidase aggregates (top) and YPILAC inclu-
sion bodies (bottom) formed during either | (continuous), 3
(doteed) or 5 (dashed) howrs, The vertical line at 1640 e
indicates the position of the band that can be attribured o
intramalecular [-sheet.

polyvpeptides. This is suggested by the fact that the amouant
of msaluble VPULAC 15 not even doubled inois absence,
while the increase of aggregated fpalaciosidase is nine
fold higher than that of the wild type eneyme. The pres-
ence of a non-functional form of the chaperone GrolL
(GraEL44 ), anly had a minor, non-significant impact an
protein solubility in both aggregation conditions [ Figure
4). The comparative ATR-FITR of both types of aggregates
formed in the mutant strains indicated a different stmic.
tural panern compared to the wild vpe (Figure 5). For
VPLLAC in inclusion bodies, the absence of GroEL resulis
in a significant enrichment of native like intramolecalar -
sheet struciures [ peaking at 1638=1640 cme'). In the case
of thermal aggrepates the absence of either Dnak or GroEL
resulis in more complex FIIR spectra relative o that
recorded for the aggregates formed in the wild-tvpe strain,
reflecting a higher degree of conformational heterogene-

ity.

hittp:ffwnse. microbialcelifactones com/content/S/1/26

Table 12 Tinee evolution of the secondary structure in bath [5-
galactosidase thermal aggregates and YPILAC inclusion badies

a5 measured by FTIR peak ratios.
Probein Time (h) PRato 16I7/1651  Ratio 1692716520
f-galserexidaze | .31 0,432
3 1.53 040
5 143 .52
WRILAC I 1.3 054
3 114 Q.83
5 121 0.%

"Diata are fram Figure 3

HPoaks at 1627 el and 1692 ome! can be attributed to extended
nbermreleculer fesheet whals that ot 1652 e daordered structure
andlor i-helix,

As it has recently been proven that deposition as bactenal
inclusion bodies does not necesaarily represent functional
protein inactivation [13], the specific activity of bhaoth
model proteins was investigated in wild wpe cells and in
absence of either Dnak or functional CroEL, As expecied
(Table 2), the soluble -galaciosidase was more active
(from 2 1o 8 fold) than the soluble VI'LLAC, Despite this
fact, prowin apgregated as inclusion bodies was much
more active than that oocurring in thermal aggregates (up
o 10 fold in wild wype cells), mdicating a higher ocour-
rence of praperly folded protein, While GroEL secms to be
poorly relevane, this fact s dearly depending on Dnalk,
since im [GT20, insaluble VPTLAL s around 10 fold less
active than insoluble f-galactosidase.
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Figure 4

Fercentage of the recombinant protein found in protein
deposits, either thermal aggregates of -galactosidase (black
bars) or ¥PILAC inclusion bodies (grey bars), in MC4100
{wild type). |GT20 (Dnak) and BB4565 (GroEL<44) strains,
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Figure 5

FTIR of f-palactosidase aggregares (top) and VP ILAC inclu-
sion bodies (bottom) formed in MOC4 100 (continuous),
JGT20 (domed) and BE4565 (dashed) strains, Vertical lines at
1628 and 1640 cov! indicate intermalecular [lsheer and
intramolecular [-sheet, respectively,

Physislogical disintegration of thermal aggregotes and
inclusion bodies

The kinetics of physiological disimegration of inclusion
hodies and thermal aggregates were compared upon arrest
of protein synthesis 1w investigate the cell ability o proc-
ess both kinds of struciures when chaperones and pro-
teases brcome available. As shown in Figure 6, the protein
removal process is similarly efficient on both apgpregae

Table I: Specific activity (in Wing) of [i-galactosidase and its
derivative WP ILAC praduced in different strains, in the soluble

and insaluble esll feacrians.

Serain Solubde fraction Irsclisble fracricn
M IO RIC e BIE.7 % 408 L1201
IS4 | VWP | LA 1340 + 529 651 % |94
BB4565pfCOH6 HBY.T + 1649 616+ 22
BE45&5/ WP I LALC 1302 £ 25.7 1396 £ 459
JET2NpCO4E HEE9 + 1793 1752 & 14%
JGTIW VP ILAC 125 & 3B 103 +E£3
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Figure &

A, Amount of f-galactosidase (black bars) or WPILAC (grey
bars) rewined in the inscluble cell fraction after arrest of
protein synthesis, a3 decermined by ‘Western blot densito.
merric units. B. Representation of che above values referred
oo the starting insaluble material amount.

tvpes, although melusion body disintegration maght be
slightly delayed from 3 hours on, with respect o the dis-
integration of denatured protein clusters.

Discussion

Linder mild heat-shock conditions, most af a recom-
hinan l-galaciosidase produced in B coli remains in the
soluble cell fraction, while an engineered derivative con

faining an aggregation-prone viral peptide [(VP1LAC),
forms cytoplasmic inclusion bodies. Up 1o around 45% ol
the produced VP1LAC is found trapped in such structures
(Figure 2], When comparing with thermal aggregation,
the formation of bacwerial inclusion bodies appears as a
highly specific event, that renders homogenous panicles
species regarding composition [90% punty in inclusion
bodies versus 5% in thermal aggregates, Figure 2). The
heterogeneous natre of i vivo formed thermal aggregates
was not unexpected as many termolabile cellular proteins
are deposited as misfolded versions at high temperatures
[30]. The high purity of inclusion bodies, however, is
reached only 3 hours after inducing gene expression and
hefore thar, these pamicles are progressively  gaining
homogeneity (Figure 27, In agreement 1o previous obser-
vations |4,5,7|, this fact reflects the dwmamic nature of

Page 5of 9
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imclusion bodies versus the poor evolution of f-galacosi-
dase present in thermal aggregates. despite this proiein is
much more abundant in the cell than any of the ather
deposited species. The seeding mechanics of inclusion
body formation [2] and the sequence-dependent aggrega-
tion determinanis acting there [9,31] have not been
described inthermal aggregation, and their absence could
account for the differemt time-dependent composition
patterns.

However, ATR-FIIR analysis shows that  polvpeptides
embaedded in both kinds of aggregates undergo a strue-
tural evolution during formation {Figure 3, Tahle 1) that
can be seen as a continuous formation of new, non-native,
extended imermolecular fsheet sinucture, more pro.
nounced in inclusion bodies than in thermal aggregates,

The presence of mative-like intramolecalar f-sheet strue
ture in inclusion bodies aged 3 and 5 b, and absent in the
thermal aggregats (peaking at 1638- 1640, Figure 3),
wollld be indicative of the presence af a fraction of prop-
erly falded proteing or protein domains, in agreement
with  previous structural  analysis |8 10:12,32). Also,
although aggregation reduces the f-galaniosidase activicy
in hoth fgalactosidase and VPULAC (Table 2), many
descriptions of biological activity in siracturally different
inclusion body proteing [13-15,21,33,34] indicate that
the presence of active protein could be a general wain of
such protein deposits. In fact, we prove here that inclusion
body protein is 10-fold more active than s thermally
denaturated counterpart [Table 2). On the ather hand, the
disintegration of inclusion bodies and thermal aggregates
upon arrest of protein synthesis shows comparable rates
{ Figure a). This fact indicates that both aggregate types are
under the suveillance of disaggregating chaperones |27-
29,35,36] and/for proteases | 3,4]. Protein removal in both
kind of agerepates also suggests that physiological disag-
gregation is non specifically involving residual native.like
structure, as it occurs also on hear denaurated proein in
which the presence of properly folded polypeptide back-
bones cannot be detected [Figure 3], Contrarily, the pos-
sibility of reflolding (or digestion) specilically targeted
towards misfolded polypepiides needs w be exploned.

Interestingly, the lack of either GroEL or Dnak major
oytosalic chaperones globally enhances the activity of the
aggregated proteins in both thermal deposits and inclu-
sion bodies (Table 2). The comparative FITR analysis of
both type of aggregates formed in the mutant strains indi-
cates a different general siructural patiern compared o ihe
wild type (Figure 5). Aggregates formed in the absence of
chaperones are more heterogeneous than those in the
wild 1ype strain, The presence of native-like imramolecu.
lar fi-sheet struciure | peaking ar 1638- 1640 cmet), corre.
sponding 1o nativelike VIP1LAC in inclusion bodies is

http:fwwew. microbialee factonies comicontent's/ 1726

enriched specially in the absence of functional GroEL,
This coincides with an increased activiiy of this aggregaies,
suggesting that this signal corresponds o the accumula-
vion of native and funciional fegalactosidase | 9], For ther.
mal aggregates, the presence of a band in the region
assignable 1o intramalecular Bsheet conformations is
also deteced in the absence of both chaperones,
Although, due to the heterogeneous composition of this
apgprepates, the band cannot anributed 1o a unigue protein
specivs, the significant increased eneymatic activity exhib-
ied by thermal aggregaies produced in the absence of
chaperones suggests that native functional f-galactosidase
contributes, at least partially, o this band in the FITR
SPECITA,

Onthe other hand, the specific activity of soluble VP LAC
is between 2 and 3 fold lower than that of the parenial
enevme [for wild tvpe and GroEL44 strains), as it would
be expected for a fusion protein, However, in absence of
Dk, solulle VirLAC (but not F-galactosidase) is much
mane inactive, indicating that this chaperone importantly
pariicipates in the VIPTLALC (but not B-galactosidase) fold-
ing process as previously suggested [21) Also, the specific
activity of inclusion body YP1HLAC is surprisingly higher
than that of denamwrated B-galactosidase, only when Dnak
is present [Table 2). This intriguing observation indicates
an ennichment of inclusion body active species in which
Dnakl might have a positve role, It cannot be discarded
that Dnak, acting as a disaggregase at inclusion body's sur.
face |37), could selectively remove inactive (misfolded)
protein. Alwematively, Dnak could preferentially prevent
the ncorporation of mactive proteimn mto mclusion baod-
ies. In the case of fgalactosidase, the presence of Dnak
modulates the deposition of the emeyme under heat siress,
as shown by the nine fold increase of B-galaciosidase n
the aggregated fraction in the absence of this chaperone,
The loew activity and amount of f-galactosidase in thermal
aggregates suggest tha they are formed by highly aggrega.
tion-prone protein conformations which escape Dnakl
contral, Ina Dmaks background, this control does not
longer exist and a more heterogeneous set of polypeptide
conformations, including some funclional or partially
functional ones, can aggregate as thermal deposits, This is
in accordance both with the higher conformational hever-
openeiy, as seen by FUTR, and the higher activity of ther-
mial aggregates in the absence of Dnak.

Altogether, these observations point om significant differ-
ences between inclusion body formation and in vive ther-
mal aggregaiion, as revealed by a convenieni comparative
expression system. While both types of aggregates are con-
trolled by the quality cell system. inclusion bodies are
homogeneous and highly arganized simuciores progres.
sively enriched in properly folded versions of the main
PrOUEin component,

FPage & of &
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Conclusion

The formation of both protein deposits induced in bacte-
ria by heat shock and inclusion bodies is negatively con-
rrolled by Dnak, and both tvpe of ageregaes efficiently
disintegrare when the conformatonal siress s owver,
Despite such similarities, inclusion bodies are more
homogeneois in composition and result progressively
enriched i native-like forms of the taget protein doring
their construction, what resulis in a detectable evolution
of the global secondary structure of the embedded  pro-
ieins, In this regard, precipitation as inclusion bodies
keeps the tanget protein in a more functional form than in
thermal aggregates. b only when Dinak is present, Inger-
estingly. the biclogical activity of the soluble counterpars
is especially poor when inclusion bodies are more active,
suggesting that active polypeptides from the saluble cell
fraction are used for inclusion body construction. There-
fore, this particular chaperone s imporant to ensare the
biological activities of inclusion body polypeptides tha
are nod conserved in other aggregation conditions, by con-
tralling the distribution of functional protein specices
between soluble and insoluble cell fractions. Pratein
packaging as bacterial inclusion bodies is then a cell
driven deposition process.

Methads

Bacteriol strains, plasmids, proteins and gene expression
conditions

Recombimant proteins were produced in Escherichia coli
MCAN00 arald139 AfargF-dac) (169 mpsLis0 relAd
MBBR530T dealT pral25 sk, and their derivatives GroEL44
grobldd zdp-Tald zpecckan (BB4565) and Dnak- dnak’
thrTdd (ITG20). Plasmid plCO46 encodes a soluble,
pseudo-wild wype £ coli B-palaciosidase, and the cosely
related pIVPLLAL, a derivative B-galactosidase fusion pro-
tein containing the aggregation-prone V'L capsid protein
of foot-and-mouth disease virus joined at the amino ter-
minus [22]. The presence of the viral protein segment pro.
motes aggregation of the whole fusion and under our gene
expression conditions, approximately 50% of VP LLAC is
found as covioplasmic inclusion bodies. Both lacZ and
VIPILAC genes are under the control of tandem lambda
P byt promoters and repressed by a plasmid-encoded
and constinively expressed temperature-sensitive Cl857
reprossor, Bacterial cells were culwured in shake Nasks up
an O, of 0.3, in Luna-Bertam (LB] rich medium [38]
with 100 pg/ml ampicillin. Then, the expression of both
frcit and VIPHLAC genes was wiggered by temperature up-
shift from 28 w 42°C. When regquired, protein synthesis
wis arresied by adding chloramphenicol at 200 pg/ml
and the cultures were further incubated at 28°C, Usually,
data were oblained from three or more independent
E‘Ipf“"l’l’ll‘]"ﬁ.
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Quantitative protein analysis

samples of bacterial cultures (10 ml) were low-speed cen-
trifuged (15 minat 12000 g) and cell pellets resuspended
in denatring buffer. For the analysiz of soluble and insol.
uble cell fractions, samples were resuspended in 300 pl of
£ buiffer without f-mercaprocthanaol |39) with one wabler
of protease inhibitor cockiail [(Roche, ref. 1 836 170) per
10 ml buffer, Such maxtures, once jacketed inowe, were
sonicated for a minimum of 5 min at 50 W under 0.5 =
cycles, and centrifuged for 15 min at 12000 g, Soluble and
inscluble fraciions were separately resuspended in dena-
turing buffer [40] for Western Blot and Coomassie hlue
staining. After boiling for 200 min, small sample volumes
were loaded onto gels. For Western blot, a rabbit ami -
galacosidase sera was vsed o immunodetect both i
galacwosidase and VP1LAC proteins. Full-length forms of
WPLAC and iis major proteolysis fragmenis {both know
to be functional) were considered in the analvsis, Dried
pels and Blos were scanned a0 high resolution and bands
quantified by using the Quantity One soltware of Bio Rad,
All determinations were done at least in quadraplicate,

Conformational analysis by ATR-FTIR spectroscopy

For ATR-FTIR spectroscopy analysis, inclusion bodies and
thermal aggregates were purified from cell extracs by
repeated detergent washing as described [41], Then, both
kinds of aggregates were dried for two hours ina Seed-Vac
svatem before analysis 1o reduce water imerference in the
infrared specira. A Bruker Tensor 27 FI-IR Spectrometer
{ Broker Optics Inc.] with a Golden Gate MEI ATR Jcces-
sory [Specac) was emploved for ATR FT-IR experiments.
Each spectrum comprises 16 scans measured at a spectral
resolution of 4 cm!in the J000-600 cm-! range. Speciral
data were acquired with OPUS MIR Tensor 27 software
version 4.0 ( Broker Opiics Inc.). All the absorbance spec-
tra were normalized 1o commect for concentration depend-
ent effects and the second derivatives of the amide | band
spectra were used 1o determine the frequencies a which
the different speciral components were located.

Determination of the specific activity

To determine ithe specific activily of both soluble and
apgregated Jepalaciosidase and VP1LAC proteins, 2.5 ml
culwire samples were dismipred by sonication as described
[42] and centrifuged for 15 min at 15000 g The soluble
fraciion was directly used for the analysis, and inclusion
bodies and thermal aggregates were punficd from cell
extracts by repeated detergenmt washing [41]. Subsirate
hydrolysis was guantified espectrophotometrically as
described [21] and the amounts of recombinani protein
either soluble or within the aggregates, was specifically
determined by Western blot as indicated above, by using
serial dilutions of a commercial f-galaciosidase of known
concentration as patermn, All determinations were done in
triplicate.

Page 7 of 9
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Abbreviations
ATR Attenuated total reflection

FTR Fourier ransformed infrared
LB Luria-Bertani
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ABSTRACT: Hecent observations indicate that bacterial
inclusion bodies formed in absence of the main chaperone
Diak result lrgely enriched in (unctional, properly
fodded recombinant proteins. Unfortunately, the molecular
basis of this intriguing fact, with obviows bivtechnological
interest, reimains unsolved, We have explored here two non-
excluding physiological mechanismes that could account for
this observation, namely selective removal of inactive poly-
pephides from inclusion bodies or 0 situ functional sctiva-
tion of the embedded proteins, By combining structural and
functional analysis, we have not observed any preferential
selection of imactive and misfolded protem specics by the
dissagrepating machinery during inclusion body disintegra-
ticiy, Instead, our data ﬂmngl-,.- support that folding inter-
mediotes aggregated s inclusion bodies could complete
their natural folding process once deposited in protein
clusters, which conduces to significant functional activation,
In additien, in situ folding and protein activation i inclu-
sion bodies is negatively regulated by the chaperone Dnak.,
Biotechnol, Bioeng, 2008xxx Sxx-xxs.

& 2008 Wiley Periodicals, Tnc.

KEYWORDS: inclusion bodies; protein folding: Dnaks
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Intreduction

Bacterial inclusion bodies (1Bs) are amyloid-like protein
aggregates usually formed during the overexpression of
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foreign genes (Villaverde and Carrio, 2003). Since 1Bs are
built wp as a result of sceding-driven, sequence-specific
protein deposition  processes (Carmio et al, 2005) they
are highly pure and composed almost exclusively by the
recontbinant protein itself [Carrio et al. 1998), While for
long time these aggregates were believed to be uniquely
formed by misfolded versions of recombinant proteins, recent
structural data has revealed, for many model proteins, the
presence of significant proportions of native-like secondary
structure [ Ami et al., 2003, 2005, 2006; Goozalez-Montalban
et al, 2006; Oberg ct al. 1994; Prevbycien ot al, 19940 In
parallel, the analysis of the biological propertics of 1Bs formed
by endymes and fluorescent  proteing reveal enzymatic
activitics or strong fAuorscence respectively  (Arie o al,
200 Garcia-Fruitos ot al, 2005k Kuceynska-Wismk et al.,
200d: Tokatlidis et al, 1991: Worrall and Goss, 1989),
Therefore, 135 are composed, at least partially, by functional
polypeptides, whose deposition i necessarily driven by
discrete aggrezation determinants, that act irrespective of the
glohal folding state of the protein (Gonzalez-Montalban
et al, 2007). The prevalence and extent of biclogical activity
of 1B proteins is variable depending on the protein itself,
the genctic background of the producing cells and the
profein production conditions (Garcia-Fruitos et al., 2005a,b;
Gonzalez-Montalban et al,, 2006). Intriguingly, functional
polypeptides seem to be excluded from the [Bs surface
{Garcia-Fruitos 1 al., 2007a).

In some cases, the specific activity or specific Muorescence
emission observed in [Bs is very similar to that found in
the soluble protein versions (Garcia-Fruitos et al., 2005b;
Gonzalez-Montalban et al., 2006). This fact results from the
combination of highly active [B proteins and the presence,
in the soluble cell fraction, of mactive protein forms, that
might be related to the occurrence of the so-called “soluble
ageregates’ (de Marco and Schroedel, 2005). In particular,
the differences in the biological activity (either enzymatic

Biotechaology i Decengineering, Yol, xux, Mo, xxs, 7008 1
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activity or fluorcseence) of soluble and 1B proteins are
extremely minimized in cells devoid of the main chaperone
Dnak {Garcia-Fruitos et al, 200%a; Gonzale:-Montalban
et al, 2006), and in this genetic background, green
fluorescent  protein aggregated as [Bs exhibit specific
fluorescence values even higher than those shown by the
soluble counterpart [ Garcia-Fruitos et al, 2007b). Dnakl, an
homalogous of the cukarvotic Hapa0, has several recognized
activities in 1B-forming cells, namely preventing aggrega-
tion, folding and r-:ft:ldil:lg, of misfolded species and protein
dissagregation (Gragerov et al., 1992 Langer et al.,, 1992
Mogk er al., 2003ab; Schlicker et al, 2004; Thomas
and Baneyx, 1996). The possibility of obtaining highly
active 1Bs in Dnak™ backgrounds is very attractive since it
might be a straightforward source of pure, naturally
immobilized enevmes ready for catalytic processes [Garcia-
Fruitos et al., 2005h, 2007a), However, the molecular basis
of the high relative biological activity of 1Bs in absence of
Dnak remains unexplored. Since during active protein
production  1Bs are under continuous  reconstruction
(Carrio and Villaverde, 2000, 2002; Hoffmann et al,
20011; Rinas et al., 2007 ), one possibility would be a selective
release of highly functional, better folded species by Dnak
and their parners in the disaggregase complex, ClpB and
lbpAB (Mogk et al, 2003a). This would account for the
similar activity of 16 and soluble protein versions in absence
of Dnak and for the extermal layver of non-functional
SPECIes OCCURTING on the 1Bs surface (Garcia-Fruitos ¢t al.,
2007a), were Dnak abounds (Carrio and Villaverde, 2005),
However, the present amalysis, designed to address this
question, does instead support an altermative hypothesis
Based on the in situ folding or refolding of inclusion body
proteins, a process inowhich Dnakl seems o act as a negative
miodulator.

Materials and Methods

Bacterial Strains, Plasmids, and
Purification of Protein Aggregates

Recombinant proteins were produced in Escherrefira coli
MCA100 arald ) 39 AlargF-lac) U1e9 rpsl i 50 relA 1 (IbB5300
ol praf25 ehalt (Sambrook ¢ al., 1989), used as wild-tvpe
(wt), and in its derivative Dok (drakl theeToli, FTG20)
(Thomas and Baneyx, 1998). Plasmid p]CO46 encodes a
soluble, pseudo-wt E coli B-galactosidase, and the closely
related vector plVPILAC, a B-galactosidase fusiom protein
containing the aggregation-prone VP capsid protein of
foot-and-mouth disease virus (Corchere and Villaverde,
1998). The presence of the viral protein promotes ag-
gregation of the whale fusion and under our gene expression
conditions, approximately 50% of VPILAC is found as
oytoplasmic inclusion bodics. Both facd and VPILAC
genes are under the control of tandem lambda pLpR
Iytic promoters and  repressed by a plasmid-encoded
and constitutively expressed temperature-sensitive CIB57

2 Iaotechnedogy and Hivengineering, Yol xxx Mo xxx, 2008

repressor (Corchero and Villaverde, 1998), Bacterial cells
were cultured in shake flasks up an OD5., of 0.3, in Luria-
Bertant (LB) rnich medivm {Sambrook et al., 1989) with
100 ppfmL ampicilline The expression of both JneZ and
VPILAC genes was then triggered by temperature up-shift
from 28 1o 42°C. When required, protein synthesizs was
arrested by adding chloramphenicol ar 200 pg/ml and the
cultures were further incubated at 28°C. Data abtained from
three or more independent cultures was used for further
analysis. [Bs were purified by repeated detergent washing as
deseribed (Carrio et al., 20000 and properly stored ar —20°C
until use,

Quantitative Protein Analysis

Samples of [Bs deriving from 1 ml of culture were
resuspended in denaturing bulfer (Sambrook ¢ al., 1989)
for Western Blot, After boiling lor 20 min, appropriate
sample velumes were loaded onto SDE—palvacrilamide gels.
A rabbit anti-B-galaciosidase serum was used o immuno-
detect and quantify both B-galactosidase and VPILAC
proteins, by comparing to serial dilutions of a commercial
[-galactosidase of known concentration. Full-length forms
af VPILAC and its major protealysis fragments (both know
to be functional) were considered in the analysis. All
determinations were done at least in quadruplicate,

Determination of §-Galactosidase Activity

The analysis of total B-galactosidase activity in inclusion
Iodies was performed through a variant of Miller's protocol
[ Willer, 1972) in absence of toluene. Briefly, inclusion bodies
weere resuspended in 1 mL 2 buifer (0,06 M Na,HPO, 0,04 b
MaHPOy 001 M OKCL 1 mM MgS0,) and 1000 pl of
the samples were taken and resuspended again in | mL of
£ buffer. Then, 200 pl of 4 mg'ml o-nitrophenyl-fB-n-
galactopyranoside (ONPG) were added in cach sample and
the mixture incubated at 28°C until yellow color was apparent
(usually a few min. The reaction was stopped with 500 pL
I M MNaCO, and the amount of colored product was
determined spectophotomerrically ar 420 nm, Enzvmatic
units were finally caleulated according to Miller's (1972)
equation. The specific B-galactosidase activity was obtain-
ed by dividing enzymatic units by the amounts either
B-galactosidase or VPILAC found in cach sample and the
final, shown value is the average of those oltained from three
or more independent experiments.

FT-IR Measurements

Cells or 1Bs were extracted from 25 ml-culture samples
(for 1-h sample) or from 10 mL-samples (for other samples)
amd were resuspended in 30 or 200 pL distilled water
pespectively, Between 5 and 15 pLoof these suspensions were
deposited on a BaF, infrared support. After 20 min at room



temperature, the water evaporated resulting in hydrated
films of cells or 1Bs. The FT-1R absorption of these films was
measured from 4000 to 200 cm !
mode by an UMA 500 infrared microscope (Orsini et al,,
2000) coupled woa FTS 404 spectrometer (both from Bio-
Rad, Digilab Division, Cambridge, MA), under conditions
previously described (Ami et al, 2005). Concerning the
reproducibility of the data (see also Supplementary Figs, 1
and 2), we performed at least three independent cultures
(five in many cases) and cach cell and extracted 1B samples
wiere measured at least three times, for a total of more than
200 produced spectra.

in the transmission

FT-IR Spectral Analysis

The second derivative of the absorprion spectrum was
obtained to resolve the broad Amide 1 band, which consists
of the overlapping of several components, each due to the
C=0 absorption in the different secondary structures and
aggregates. The negative bands in the derivative spectrum
allow identifying the Amide I components (Susi and Byler,
1986). Their relative intensity enables also to evaluate the
extent of each component (Dong et al, 1992), For the
kinetics studies of 1B aggregation and disruption in intact
cells, we followed the FI-IR methed recently reported
{Ami et al., 2003, 2005). Briefly, FT-1R absorption spectra of
imtact cells taken from the culture broth were examined
ar different times, during 5 h after induction. The kinetics
of aggregation was then monitored within intact cells by
evaluating in the second derivative spectra the time depen-
dence of the aggregation band intensity at 1,630 con™' (Ami
et al., 2005). The spectra of intact cells from wit and Dnak
straing were examined after normalization ar the tyrosing
band (1,517 cm™ '), in order to compensate possible dif-
ferences in the optical paths and in the toal protein content
of the samples,

The aggregation percentage was calculated in each strain
fram the intensity value of the negative band shoulder at
1,630 em " in the intact cell second derivative spectra {Ami
et al., 2005), The highest aggregation percentage, namely
100%, was attributed 1o the highest intensity, so that the
lowest aggregation percentage was the lowest intensity valug
at 1,630 cm™' during the culture induction time. Every
strain  percentages were  calculated  from the  intensity
absolute values, alter normalization at the tyrosine band
(1517 cm ")

Results and Discussion

To check any biased removal of inclusion body polypeptides
by the disaggregases of the quality control system, we
monitored the sccondary structure of [Bs formed by the
IIIi&fUMiIIB—PIﬂIIE ﬂ-gu!ul.‘l!us:id:lw pratein VPILAC (Carrio
et al, 2005), during their disintegration in presence and
absence of Dnak, after arrest of protein synthesis (Carrio
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the [-shaat inanmedeselar basd around 1630 em ' in the second denvtive of the cell
Bbodplion Specrk Teme Dinds Mt chioramphanicol sbEtan. B Sacond donmvalive of
FT-MA absorpaion spectra of |Bs oxtracied from wt [Bopl and Dnak (hotiom) strains,
st balara [contmuous el and 2 h alter chiotamphamcol addiban (dolled boel, Al
The direyalivie Spechia e maahized 51 1he hyiosei Biad (15T cm I]

and Villaverde, 2000). Under these circumstances, cell
chaperones promate the physiological dissolution of [Bs in
a few hours (Carrio and Villaverde, 2001, 2003). If DnakK-
mediated protein removal were preferentially targeted o
better folded species we should observe a reduction of
mative-like secondary structure in [Bs from wt but not
Dnakl” cells. By Fourier transform infrared spectroscopy
methodologies adapted to in vivo 1B analysis (Ami et al.,
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Onak  cels can be lound elsewhere (Gonsala:-Meniskan et al, 70085

2003, 2005, 2006}, we observed a rapid decrease of the
amount of 1B protein immediately after chloramphenicol
addition in £ coli wt cells but not in the Dnak™ strain
(Fig. 1A). A finest comparative analysis of 1B protein
secondary structure was done on 1Bs purified before and
after arresting protein synthesis, In both wt and Dnakl eclls,
the second derivalive absorption spectra of such [Bs
(Fig. 18} displayed two bands at approximately 1,651 and
1,697 cm ", due o the amiparallel B-sheet intermolecular
interaction that characterizes amyloid-like protein aggreg-
tion in IBs (Carrio et al. 2005), In Dpak™ cells, the
1,631 em ' aggregation band was more pronounced and the
wavenumber downshified of about 3 em ', indicative of a
more compact [B architecture, This was accompanied by less
evident native-like structure (Fig, 15, battom ], represented
by a band at around 1,658 cm ™" (a-helical and unordered
structures) and a shoulder at around 1,640 cm™" ({intra-
molecular B-sheet of the native protein, previously found
1o corralate with the enzymatic activity of 1Bs (Gongalez-
Maontalban et al,, 2006)),

In absence of protein synthesis and contrarily 1o what
we initially expected, the extent of residual native-like
structures at around 1,658 and 1,640 cm ' increased in
both wt and Dnak™ cells, while the aggregation peak at
1,631 cm ' decreased moderately and shifted towards
higher wavenumbers (of about 1-2 cm =13, These Facts
indicated a tendency to form native-like secondary struc-
ture, what was contrary o the hypothesis of a preferential
removal of functional species.

On the other hand, since no protein release from 1Bs was
detected in Dnakl ™ cells (Fig. 1A), any structural modifica-
tion observed in 165 should be attributed 1o internal
mudecular reorganizations. Any structural contribution to
[Bs architecture of soluble polypeptides newly deposited
in absence of protein synthesis should be in principle
dizcarded, since in absence of Dnak, the amounts of solulile
VPILAC are mepligible (Carrio and  Villaverde, 2003).
Therefore, since these results strongly suggested a sponta-
neous in situ folding of 1B polypeptides in absence of Dnak,
we explored potential changes in the specific activity of [B

q Bloweckoulogy and Bioeagiocoing, Vol s Ho, oo, 2008

polypeptides, at different times after protein synthesis arrest,
This was done by determining both B-galactosidase activity
and VPILAC protein amounts by standard eneymatic
assays amd quantitative Western blot analysis as previously
described (Garcia-Fruitos et al, 2005b), After the arrest
of protein synthesis, the specific activity of VPILAC 1Bs
formed in wt cells remained nearly constant  while
interestingly, they undergone a significant activation up
to more than 30% in absence of Dnak (Fig. 2A). This
observation was indeed fully compatible with in situ protein
folding of the aggregated B-galactosidase in Dnakl cells,
To additionally confirm these data, we monitored the
specific f-galactosidase activity of [Bs once purified, during
incubation for 2 h in a physiological buffer (Garcia-
Fruitos ¢t al., 2007a) at 37°C. Again, in vitro, the specific
B-palactasidase activity of [Bs from Dnak ™ cells significantly
increased around 500 (Fig. 2B), in a spontancous process
that did not require any soluble cellular factor,

Altogether, results presented in Figure 1 prove an in situ
folding of 1B proteins in absence of [nak, and strongly
supggested that this process also occurs in wt cells, However,
only in absence of Dnak it conduces to enzyime activation
(Fig. 2). lm this comtext, we have recently shown that a
molar excess of Dnak inactivates both soluble and insoluble
recombinant protein forms in [B-forming E cofi cells
(Martinez-Alonso et al,, 2007). This is not caused by a
cascade effect of Dnak activities but by a direct interaction
Iretween Dinak and partially folded protein species, Since the
release of Dnak from folding polypeptides is required for a
complete refolding w native state (Thomas and Baneys,
1996, the high concentration of Dnakl molecules at the 1Ds
surface might inhibit protein folding. The slight eneymatic
activation of wi [Bs once puri fied, mot seen in viva, could be
due 1 a lost of surface-attached Dnak molecules (Carrio
and Villaverde, 2005) during purification.

Very recently, we have shown a dramatic inhibition
of recombinant protemn degradation in DnaK™ cells that
permits @ massive deposition of misfolded protein specics
targeted for proteases (Garcia-Fruitos et al., 2007b). If
folding  intermediates are among those targets, their



deposition in |B, that are highly hydrated and porous
aggregates might allow them to continue their natural
folding process. In combination with the extended half-life
and enhanced aggregation of functiomal  proweins, the
ahgence of Dnak acting also as a molecular inhibitor of
IB protein activation explains both the similar specific
activity of soluble and IB enayme versions (Gareia-Fruitos
et al., 2005a) and the high specific fluorescence (of GFP
and BFP) found in Dnakl”™ when comparing o wt cells
(Garcia-Fruitos et al,, 2007h),

Finally and very interestingly, the structural reorganiza-
tion of proteins within bacterial [Bs, which we report here
for the first time, seems to be a feature common to protein
aggregates, even of different types and from different origins.
Indeed, it has been described that the amyloid structures
of Sulfolobus solfataricns acylphosphatase arise from the
malecular reorganization of previously formed aggregates,
without disaggregation and re-nucleation of the initial
protein assemblies (Plakowrsi er al, 2005). Also thermal
ageregates of bovine carbonic anhydrase were found 1o
undergo structural reorganization upon cooling, as probed
by a fluorescent dye binding investigation (Kundu and
Guptasarma, 2002). Similarly, when thermal aggregates are
coaled, a downshift of the infrared aggregate band (around
1,628-1,620 cm ') are often observed, as for instance in the
case of recombinant human factor X111 {Dong et al., 1997
and of Camdida rigesa lipase 1 ({Natalello et al,, 2005) and
data not shown). This downshift indicates the occurrence
of protein reorganizAaion e strong  protein-proten
interactions, Owverall, these results indicate an unexpected
conformational plasticity of aggregated  proteing, with
important biotechnological and medical implications.
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Abstract

Many enzymes or fluorescent proteins produced in Escherichia coli are
enzymatically active or fluorescent respectively when deposited as inclusion
bodies. The occurrence of insoluble but functional protein species with native-
like secondary structure indicates that solubility and conformational quality of
recombinant proteins are not coincident parameters, and suggests that both
properties can be engineered independently. We have here proven this
principle by producing elevated yields of a highly fluorescent but insoluble
Green Fluorescent Protein (GFP) protein in @ DnaK™ background, and further
enhancing its solubility through adjusting the growth temperature and GFP gene
expression rate. The success of such a two-step approach confirms the
independent control of solubility and conformational quality, advocates for new
routes towards high quality protein production and intriguingly, proves that high
protein yields dramatically compromise the conformational quality of soluble

VErSIons.
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3% Introduction
3 Very often, the bacteral production of recombinant proteins results in the
40 formation of insoluble protein aggregates known as inclusion bodies (Villaverde
41 and Carrio 2003). Improving solubility has been a main goal in protein
42 production, and a spectrum of genetic, process engineering and
43  physicochemical approaches have been explored with relative degree of
44  success (Sorensen and Mortensen 2005b). In particular, the co-production of
45 appropriate sets of chaperones along with a misfolding-prone protein results in
46 enhanced solubility ratios (de et al. 2007) although, at least in some cases, in
47  clearly lower protein yield and stability (Garcia-Fruitos et al. 2007).
48  Recently, by using FourierTransform-InfraRed (FTIR) spectroscopy procedures
49 (Ami et al. 2005; Oberg et al. 1994; Ami et al. 2006), it is being recognized that
50  inclusion bodies contain important extents of properly folded, functional
51  polypeplides (Ventura and Villaverde 2008), and that prolein aggregation in
52 recombinant Escherichia coli does not necessarily imply loss of biological
53 activity, neither in the cytoplasm (Garcia-Fruitos et al. 2005b) nor in the
54  periplasm (Arie et al. 2006). The cccurrence of functional protein versions in
55  inclusion bodies seems to be inversely dependent on the aggregation rate (de
56  Groot and Ventura 20086). Interestingly, specific activity or fluorescence
57 emission of recombinant enzymes and fluorescent proteins respectively is
58 similar when companng soluble and inclusion body versions (Gonzalez-
59 Montalban ef al. 2006; Martinez-Alonso ef al, 2007; Garcia-Fruitos et al. 2005a).
6} This might result from a combination of functional protein species forming
61  inclusion bodies as mentioned above and the occurrence of soluble aggregates
62 (de Marco and Schroedel 2005) that might contain, at different extents,
63  misfolded and non functional proteins. Therefore, enhancing the solubility of a
64 recombinant protein, irrespective of the used procedure, does not necessarily
65  enhance the yield of functional versions (Gonzalez-Montalban et al. 2007).
66 Since conformational quality and seolubility are not completely matching protein
67  properties, we wondered if both parameters might be modulated by selectable
68 conditions to enhance the yield of soluble but also biologically efficient protein.
69 By using a misfolding-prone Green Fluorescent Protein (GFP) variant we show
70 here that the total cellular amount of functional protein can be dramatically
71 enhanced by producing it in a Dnak™ background, although it occurs as large
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inclusion bodies. In absence of Dnak, solubility of such functional polypeptides
can be estimulated by appropriately adjusting growth temperature and gene
expression rate. The success of such a combined, two-step (genetic and
process) approach proves that solubility and conformational quality can be
independently engineered, offering new strategies to optimize protein
recombinant production processes, The results presented here indicate,
however, that high protein yield dramatically compromises the confarmational
quality of the soluble product versions, being both parameters mutually
exclusive. Therefore, recombinant production processes should be designed on

the basis of the preferential outcome regarding yield and functionality.
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82 Materials and methods
3
84  Strains and plasmids
85  Escherichia coli pseudo wild type strain MC4100 (araD139 A(argF-lac) U169
86 rpsL150 relA1 fibB5301 deoC1 plsF25 rbsR)(Sambrook et al. 1989; Gonzalez-
47  Montalban ef al. 2007) and its derivatives JGT3 (AclpB::kan), JGT4 (clpA: kan),
88  JGTE (zjd-Tn10 groES30), JGT17 (Aibp:kan), JGT19 (clpP:cat), JGT20
89 (dnak?56 thr:Tni0)(Thomas and Baneyx 1996), BB4564 (groEL 740 Zid::Tn1d
90  zje:QdSpcd/Sir) (Ziemienowicz ef al 1993) and BB2395 (Alon146::miniTn10)
91  (Tomoyasu ef al. 2001) were used in this work, All these strains were
Y2 transformed with plasmid pTVP1GFP (Garcia-Fruitos et al. 2007), which was
93 used to drive the expression of a GFP fusion protein (mGFP) containing the
94  aggregation-prone VP1 capsid protein of the foot-and-mouth disease virus. The
95 chimerical VWP1GFP gene is under the control of the ITPG-inducible Irc
96 promoter.
97
9%  Culture and gene expression conditions
Y Bacterial strains were cultured at 37°C and 250 rpm in shake flasks, in Luria-
100 Bertani (LB) rich medium with 100 pg/ml ampicillin, up to an ODsg of 0.4. Then,
101 the expression of the recombinant gene was triggered by addition of IPTG at
102 different final concentrations (0.01mM, 0.1 mM or 1 mM) and aliquots of the
103  culture were submitted then at different growth temperatures (16°C, 22°C, 27°C,
104 32°C, 377°C ar 427C). Samples for analysis were taken when the culture reached
105  an ODssgg around 3. All experiments were performed in triplicate.
106
107 Protein analysis
108 Samples of bacterial cultures (15 ml) were centrifuged (for 15 min at 15000 g) to
19 harvest cells, and pellets were resuspended in 2 ml of Phosphate-Buffered
10 Saline (PBS) with one tablet of Protease Inhibitor Cocktail (Roche, ref. 1 836
111 170) per 10 ml of buffer. For analysis of the soluble fraction, 1 ml-aliquots of the
112 resuspended cells were ice-jacketed and sonicated for a minimum of 5 min at
113 50 W under 0.5 s cycles, or longer when required for total disruption of the cells
114  (Feliu et al. 1998). After centrifugation for 15 min at 15000 g, the supemnatant,
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corresponding to the soluble fraction, was mixed with denaturing buffer
(Laemmli 1970) at appropriate ratios for further Westermn Blot analysis.

The remaining 1 ml-aliquots were used to purify inclusion bodies by repeated
washing with detergent as described (Carrio et al. 2000) and resuspended in
denaturing buffer. Samples were boiled for 20 minutes, and appropriate
volumes were loaded onto denaturing gels for Western Blot analysis. mGFP
was immunodetected using a rabbit polyclonal antibody against GFP (Santa
Cruz Biotechnology, Inc.). Blots were scanned at high resolution and bands
guantified using Quantity One software from Bio Rad, using different amounts of
commercial GFP as standards. Determinations were always done in triplicate
and within the linear range, and they were used to calculate the specific activity

values.

Fluorescence determination

Soluble cell fraction samples were appropriately diluted in PBS and their
fluorescence measured without any further treatment, Inclusion bodies were
purified as described above, and resuspended in PBS for fluorescence analysis.
Determinations were carried out using a Cary Eclipse Fluorescence
Spectrophotometer (Vanant) and under continuous stirring. Excitation
wavelength was 450 nm, and measures wera taken at 510 nm. All experiments
were performed in triplicate. The obtained data, combined with mGFP protein
amounts determined by immunoanalysis, were used to calculate the specific

fluorescence emission of both soluble and mGFP inclusion bodies.
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138
13%  Results
140 E. coli genetic background and yield of active protein
141  GFP fusions are excellent models to monitor conformational quality, as the
142 proper conformation for fluorescence emission is reached during the last folding
143 steps (maturation) of GFP (Herberhold et al. 2003; Zhang el al 2006;
144  Scheyhing et al. 2002). In a recent study, we have observed that E. cali mutant
145  cells deficient in different chaperonas or proteases were more fluorescent than
146 wild type cells when producing an aggregation-prone GFP (mGFP) (Garcia-
147  Fruitos et al. 2007). We explored here the fluorescence distribution between
148 soluble and insoluble cell fraction in these mutants to select one with higher
149 total fluorescence per cell. For further engineering attempts, and to explore up
150  to what extent solubility and functionality can be modulated, we were interested
151  in strains with the fluorescent protein population being mainly insoluble. As
152 observed (Table 1), DnakK’', ClpB’, Lon™ and ClpP" mutants produced significantly
153 higher fluorescence emission than wild type cells. Interestingly, in all these
154 cases, most of the fluorescent GFP accumulated as inclusion bodies, a fact that
155 has been associated to a strong inhibition of DnaK-surveyed proteolysis of
156 functional protein species (Garcia-Fruitos et al 2007). Interestingly, among
157 these highly fluorescent mutants, Dnak’ cells showed the lowest ratio between
158 soluble and insoluble fluorescence (0.8 versus 8.0 in the wild type). Hence, we
159  decided to use this mutant to explore if conventional methods to enhance
160 solubility could promote a more favourable distribution of functional protein
161  between inclusion bodies and the soluble cell fraction, thus enhancing the
162 occurrence of both soluble and fluorescent GFP.
163
164 Impact of temperature and gene expression rates an protein solubility and
165  conformational quality
l66  Therefore, we analyzed the fluorescence emission in DnaK’™ cells producing
167  mGFP at different temperatures, from 16 to 42 °C. As observed (Figure 1a),
168  both the total fluorescence per biomass and the particular fraction of emission
169 associated with inclusion bodies increased with temperature, showing a sudden
170 up-shift between 27 and 32 *C. However, the fluorescence associated with
171 soluble protein only slightly decreased at the same temperature range, proving
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a positive effect of temperature on the absolute yield of functional and insoluble
{but not soluble) protein. In this context, the ratio between scluble and insoluble
fluorescence significantly increased at low temperatures, reaching 4.2 at 16°C
{and dropping to 0.6 at 42°C). At 27 “C or below, the prevalence of soluble
fluorescent protein was then more than 4 times higher than at 32 *C or higher
temperatures.

With regard to protein production at each growth condition, we observed that
while the amount of soluble mGFP showed a slight peak at 27 °C, amounts of
both total and inscluble mGFP increased with temperature (Figure 1b). This
resulted in a strong dependence of solubility (from 19.5 to 54 %) on
temperature. Altogether, these data suggested important differences in the
temperature-mediated evolution of protein quality, depending on the soluble-
insoluble protein status. In agreement (Figure 1c), the specific emission of
insoluble mGFP was poorly affected by temperature, although a minimum was
observed at 27 *C. However, the conformational quality of total mGFP
increased with decreasing temperatures in an exponential pattern what was
essentially accounted by the soluble fraction, since the specific fluorescence of
aggregated mGFP was unaffected by temperature. At 27 *C then, the soluble
fluorescence was slightly higher than at other temperatures (Figure 1a),
probably because quality and solubility were both favoured and yield was still
high when compared to that obtained at lower temperatures (Figure 1b).

We used then this intermediate growth temperature to analyze the effects of the
IPTG concentration on solubility and protein quality in the range of doses
commonly used for recombinant gene expression. As observed (Figure 2a),
total fluorescence per biomass was significantly lower at 0.01 mM than at the
other tested concentrations (namely 0.1 and 1 mM), that produced very similar
values. However, protein yield was strongly dependent on IPTG concentration
(Figure 2b). When combined with fluorescence data, these results suggest
dramatic effects of IPTG on protein quality. This was indeed confirmed when
determining the specific fluorescence of produced mGFF as distributed among
different fractions (Figure 2c). Medium IPTG values (0.1 mM) resulted in higher
quality protein than that obtained at 1mM. This fact accounts for the similar
fluorescence per cell observed at these two IPTG doses (Figure 1a) even when
the higher protein yield was obtained at 1 mM IPTG (Figure 2b).
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206
207
208 Discussion
209 Solubility has been universally considered as the best indicator of recombinant
210 protein guality. Therefore gaining solubility is a main goal in protein production
211 processes, and numerous strategies have been tested in this regard (Sorensen
212 and Mortensen 2005b). Many of them are based on the production of
213 chaperones along with the target protein, since they are believed to be limiting
214  for recombinant protein folding. The selection of appropriate combinations of
215 chaperones has resulted in higher solubility values (Nishihara et al. 1998; de ef
216 al 2007), in general expressed as the percentage of soluble over total protein.
217 However, a detailed analysis of published data suggests that at least in some
218  cases, increasing seclubility through chaperone co-production would reduce the
219 final protein yield. This concept has been clearly shown by the co-production of
220 the DnaK-Dnad pair, which dramatically reduces the proteolytic stability and
221  vyield of an |B-forming GFP (Garcia-Fruitos et al. 2007). In fact, a
222 comprehensive genetic analysis of protein production in E. coli has recently
223 indicated that cell mutations increasing solubility minimize the conformational
224 quality of the soluble protein (Garcia-Fruitos et al. 2007). This fact, and other
225 findings relevant to functionality of soluble and insoluble polypeptides in
226 recombinant bacteria clearly prove that solubility and conformational quality are
227  non matching (and potentially divergent) protein properties (Gonzalez-
228 Montalban et al. 2007),
229
230 For industrial processes requiring functional products, the production of highly
231  active polypeptides (irrespective of their sclubility) would be more appealing
232 than high percentages (but poor yields) of soluble and moderately active
233 polypeptides. However, solubility is obviously required for applications such as
234 crystallographic determination or in vivo protein delivery for therapeutic
235 purposes among others. In this work, we have explored how solubility of highly
236 functional proteins (produced in a cornvenient Dnak background) can be
237  successfully manipulated through process engineering by manipulating growth
238 temperature and gene expression rate. In this regard, temperature, in the
230 physiclogical ranges between 16 and 42°C has a positive and progressive

[
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impact on the total yield of mGFP. This is exclusively accounted for by an
increase in the amount of aggregated protein since the yield of the soluble
varsion is only slightly affected (Figure 1b). The total fluorescence per call
undergoes an up-shift above 27°C, but again it is accounted for exclusively by
the insoluble cell fraction (Figure 1a). Finally, the conformational guality of
soluble mGFP is dramatically and progressively impaired by temperature while
specific fluorescence of IB mGFP remains nearly constant (Figure 1¢). The
influence of IPTG concentration is mare modest regarding the variation range of
the studied parameters, which follow a less progressive pattern than the one
defined by temperature. However, the divergent evolution of yield (and total
fluorescence) and the functional quality of the soluble protein version is also
evident (Figure 2). Importantly, by combining the appropriate temperature
(27°C) and IPTG dose (0.1 mM), the distribution of fluorescence between
soluble and inscluble shifted from 0.8 (Table 1 and Figure 1a) to 2.1 (Figure
Za). Of course, better distribution values can be reached at 1 mM IPTG (3.5),
but at the expense of protein quality measured by specific fluorescence (Figure
2c).

More intriguingly, the data presented here indicate that vield, solubility and
conformational quality of soluble proteins cannot be favoured simultaneausly in
recombinant E. coli. This fact must be seriously considered in protein production
processes, since the production strategy should be clearly targeted to either
protein yield, solubility or product quality. In this regard, many of the non-
coincident reports regarding the success of given strategies for improved
protein production (Sorensen and Mortensen 2005a; de Marco et al. 2000; de
and De, V 2004; de et al. 2007; Schultz et af. 2006; Baneyx and Palumbo 2003;
Baneyx and Mujacic 2004) and the unpredictability and product-dependence of
the chaperone co-production approach (de 2007; de et al. 2007) are probably
accounted for (at least in many cases) by the different parameters through
which process success are measured, namely solubility, yield or functionality.
While evidences that enhancing solubility does not imply better protein quality
are now stronger (Gonzalez-Montalban et al. 2007), the results presented here
furthermore indicate that conditions promoting high protein yield and high
soluble yield are clearly adverse for conformational quality (Figure 3). In this

context, the distribution of fluorescence between soluble and insoluble cell
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274 fractions (Figure 3a) and the specific fluorescence of soluble mGFP (Figure 3b)
275  are negatively affected by the total production of mGFP. Likewise, the lower the
276 yield of soluble mGFP, the higher its conformational quality is (Figure 3c),
277  strongly supporting the concept that gaining yield and quality cannot be reached
278 simultaneously.
274
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283
286 Legends for Figures
287
288 Figure 1. Effect of growth temperature on the fluorescence per cell biomass
289 (A), yield (B) and specific fluorescence of mGFP (C). The ratio of soluble and
200  insocluble fluorescence (panel A) and mGFP solubilty (panel B) are also
M1 indicated for each temperature,
292
293 Figure 2. Effect of IPTG concentration on the fluorescence per cell biomass (A),
204  yield (B) and specific fluorescence of mGFP (C). The ratic of soluble and
205  insoluble fluorescence (panel A) and mGFP solubility (panel B) are also
296 indicated for each dose.
297
298 Figure 3. Influence of total (A and B) and soluble (C) mGFP yield on
200 solublefinsoluble fluorescence ratio (A) and specific fluorescence of soluble
300 mGFP (B and C). All the conditions shown in Figure 2 and 3 were used in this
301 analysis. In all cases, the data set also fited to exponential decay, single, 2
302  parameter equations (not shown) with important extents of statistic significance
303 (A, p=0.1209; B, p=0.0444; C, p=0.0292).
304
305
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306 Table 1. Fluorescence emission observed in the soluble and inclusion body fractions in
307  mGFP-producing cells

308
Total fraction Soluble fraction Inclusion bodies
Ratia of
Phenatype unitsron® T units'oD T unitsoD o solublelB SDIF,:;IM
fluorescence®

wi

(MC4100) 4056+13.1 100 3AM.0+71.6 100 40.9+20.3 100 a0 40.8+11 1
Dnak- BAT.3x77.9 13492102 20062337 &0.6z10.2 2358425 57565321038 0.8 20734
GroEL140 3479+353 845487 PAS2+238 TF41xT2 47.1=7.5 114 996184 52 30.2:54
ClpB- 5156224 4 1271280 072249 938475 23182253 5B5B70:819 1.3 I2+118
Clpa- 54314455 133.9211.2 46,9271 14,1221 BE.2+1868 161.662445.5 0.7 44,2499
GroES- 4a0 2253 108.5+1.3 AT P+159 1145248 105.1+13.0 2567261318 38 2T 1278
IbpAB- 03 2+16.1 Td T O 2613457 THBO+138 GE 983 153 62222 8 4.1 A0 188
ClpP- SE2 AL 2 12BTLTT 431.0:38.0 130.2:11.4 237.8:292 580302714 18 25.0:8.7
Lon~ GEE. 4409 168.2+10.1 400.7+21.8 121.0:6.5 2619125 630.428:305 1.5 14.6+3.5
3049

310 " Total leorescence data in this sirain sel have been oblained and shown in a previous
311 study (Garcia-Fruitos et al. 2007).

312 " Quotient between soluble and insoluble fluorescence in a given sample.

313 © Amount of soluble mGFP relative to its total amount in the cell.
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algun dels moments més gratificants que mai he viscut. L’ajuda, la comprensio i els
consells sén només algunes de les infinites coses que tinc per agrair-li a ’Anna, una
“aplicada” molt especial en la meva vida i que ha estat un pilar clau durant aquesta
etapa, tan a nivell laboral com personal. Les coca-coles fresquetes de I’Andrea, una
amiga sempre a punt per donar un cop de ma, han aportat moments molt refrescants

Ill

al nostre dia a dia. El “salero” de la Nuria i la Rosa han convertit el laboratori en “algo”
molt més especial que un simple lloc de treball. A totes dues, companyes de travessa,
els hi voldria dir que aquests anys al laboratori amb elles han estat una experiencia
Unica que mai oblidaré. A la Nuria m’agradaria agrair-li 'oportunitat que m’ha ofert de
compartir amb ella moments fantastics durant aquests quatre anys, aixi com el fet
d’haver pogut anar descobrint al seu costat els secrets que guardaven els nostres
estimats cossos. La paciencia i el gran cor de la “Rouse” m’han ajudat molt a superar
les situacions dificils i a gaudir de manera molt especial els bons moments viscuts

durant aquest viatge per la ciéncia. A I'Escar vull agrair-li molt sincerament el seu

recolzament, la seva comprensid, els seus petits detalls i el fet d’haver estat un
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exemple de constancia i dedicacié. A les resta de membres del “super equipo
d’aplicats”: moltes gracies per la vostra ajuda, especialment durant el frenetic periode
d’escriptura de la tesi. Neus, Monica, Esther, Rosa, Vero, Pepe, Joan i Fela, amb tots
vosaltres ha comencat una nova etapa al laboratori, una etapa de noves cares, de nous
projectes, pero sobretot de grans moments. A més a més de tots vosaltres no puc
oblidar a la Pili i els seus eppendorfs aprofitats fins el darrer mil-limetre rotulable, al
David, que amb la seu taranna, va aportar una mica de seny en un galliner de nenes i a

I’Edu per la seva ajuda amb els clons.

Més enlla de les parets de Micro Aplicada, voldria agrair-li al Sergi el seu ajut en els
moments de crisi davant de I'ordenador i la seva companyia durant el dinars al bar de
ciencies. Tampoc puc oblidar mencionar I'enorme vitalitat i I'ajuda de I’Almu que fan la
nostra feina molt més facil cada dia. | dins I'ambit de I'IBB vull donar les gracies a tots
aquells que heu format part dels records viscuts durant aquests anys, molt

especialment als nostres veins d'Immuno.

Molts dels experiments no haguessin estat el mateix sense el suport i la companyia del
Salva durant les multiples estones que he passat davant del fluorimetre i del
microscopi. La Monica sempre m’ha ajudat amb el confocal, transmetent-me en tot
moment interés per la meva feina. | I’Alex, que durant aquest darrer any ha fet un gran
esfor¢c posant a punt la técnica de TEM, m’ha encomanant el seu entusiasme i m’ha

mostrat que amb perseveranca i paciéncia tot s’acaba trobant.

Fora de I'ambit de la universitat, vull agrair als meus pares la seva comprensié front les
meves decisions i el seu suport incondicional al llarg de tots aquests anys. Trobar-me
cadascun dels meus articles impresos sobre la taula cada cop que han estat publicats i
el vostre interés per un moén tan diferent han estat el millor regal que em podieu haver
fet mai. Mare, evidentment no podria deixar d’agrair-te tots els tuppers que m’han fet
el dia a dia molt més facil! A la meva germaneta li vull donar les gracies per ensenyar-
me a veure les coses des d’un punt de vista tan diferent (i per haver portat amb ella de

Sevilla el meu nebodet “el patxu”, I'alegria de la casa). Els avis, tot i sentir parlar d’'un
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mon tan estrany, sempre m’han ajudat i recolzat, especialment I'avi Joan que m’ha
escoltat sempre que ho he necessitat. El suport dels tiets i cosins, que durant algun
moment han sentit a parlar dels meus experiments, ha estat també molt important.
Diuen que desconnectar una mica sempre va bé per comencar amb més ganes i, la
veritat, és que el dinars familiars amb els petits de la casa (el Lluc, la Laia i el Biel) han

estat una manera de fugir durant unes horetes d’aquesta ultima etapa de nervis.

La companyia insubstituible del Marcel i el simple fet de formar part de la meva vida
han fet que tot plegat fos molt més facil i, senzillament, millor. Sempre a punt per
escoltar com m’ha anat el dia, per entendre la importancia dels experiments acabats
amb éxit i per ajudar-me a minimitzar la importancia dels fracassos. Gracies per estar
durant tots aquests anys al meu costat, formant part activament d’aquest projecte tan

important per mi.

Tampoc podria deixar passar I'oportunitat de dedicar unes paraules d’agraiment a tota
la familia de Can Castellet, particularment per l'interés mostrat per la meva feina

durant aquests anys.

No podria acabar aquests agraiments oblidant-me de les meves nenetes (i els seus
nenets)! Anneta, Maria, Marteta i Laia amb elles vaig descobrir i compartir la meva
passio per la Biologia i allo d’alguna manera va ser el proleg d’aquest projecte, durant
el qual sempre han estat al meu costat. Anneta, la meva Anneta, sempre ha cregut en
mi i aix0 estic convenguda que m’ha ajudat a arribar fins aqui! Els cafetons i les
xerrades amb la Maria m’han aportat aire nou als moments dolents. Al Marc li voldria
donar les gracies per la seva paciéncia i per deixar-me “robar-li” la Maria de tant en
tant. Ja veus el que es pot arribar a fer amb els papus, una tesi! A la Laia, voldria agrair-
li 'enorme paciéncia escoltant les meves histories sobre la tesi. | Marteta, gracies per

sempre estar pendent de com em van les coses.

Evidentment, voldria dir-li a I’Arantza que ha estat genial poder compartir esmorzars i

xerrades amb ella. Amb el Gamito i les seves visites al laboratori he viscut moments
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molt divertits. Al Javi voldria dedicar-li un agraiment especial pel seu suport

incondicional durant tots aquests anys.

Amb la Nadia i Montse he compartit moltes experiéncies i per mi ha estat molt
gratificant poder compartir aquesta darrera etapa de la meva vida amb elles. Noies,

gracies!

Finalment, vull dedicar unes gracies molt sinceres al Lluis i a la Sara simplement per ser

al meu costat en tot moment.

Ich mochte die Kollegen von Wien fiir die herzliche Aufnahme im BOKU Labor danken.
Ich habe viel bei Thnen gelernt und eine sehr schdone Zeit verbracht. Besonders méchte
ich Didi dafiir danken, dass er mir die Chance gegeben hat, bei ihm im Labor zu
arbeiten. Ich bin ihm auch sehr dankbar fiir seine Hilfe in diesen Jahren. Zum schluf3
mochte ich Nicole fir ihre Hilfe mit dem cytometer und Michael fiir seine
Unterstitzung danken. Vielen Dank allerseits!

Voglio inoltre ringranziare Minoska per il suo grande aiuto durante il mio soggiorno a
Vienna. E una buona compagna di lavoro, ma soprattutto una buona amica. Grazie

mille per tutto!





