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3.5. Article 5 

 

DnaK/DnaJ-assisted recombinant protein production in Trichoplusia ni larvae. 

Mónica Martínez-Alonso, Silvia Gómez-Sebastián, José M. Escribano,                          

Juan-Carlos Saiz, Neus Ferrer-Miralles, Antonio Villaverde. 

Applied Microbiology and Biotechnology (Epub ahead of print, October 2009). 

 

Since bacterial folding modulators proved to have a positive effect on recombinant 

proteins produced in cultured insect cells, we were interested in determining whether 

this would be maintained in a larvae system of use as a biofactory but where protein 

yields are usually reduced due to aggregation of the target protein. 

For that purpose, we infected insect larvae with our baculovirus vectors for 

expression of recombinant GFP either alone or coproduced with the bacterial 

chaperones DnaK and DnaJ. Soluble yields (but not total) were increased in presence of 

the bacterial chaperones, which in turn resulted in enhanced solubility of the 

recombinant protein. Although conformational quality declined, this was not 

unexpected as it was again in agreement with the proposed principle for bacterial 

systems by which enhancing protein yields results in quality impairment. Thus, this 

principle may prove a general rule for protein production in recombinant systems. 
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Discussion 

The aim of any research and industrial process involving the production of 

recombinant proteins is obtaining the highest possible yield of soluble and functional 

product. Since the cost of the process is always intended to be kept at minimum, 

expression systems based on prokaryotic hosts are usually the first choice, and 

Escherichia coli is without a doubt the most widely used organism for heterologous 

expression of recombinant proteins [15]. However, heterologous proteins produced in E. 

coli are often obtained, partially or totally, as insoluble inclusion bodies [189], which 

represents one of the major drawbacks of the system. Although soluble protein can be 

recovered from inclusion bodies [219], the required procedures are complex and 

inefficient and therefore many IB-forming proteins are often excluded from the market 

and produced in other expression systems. Nonetheless, production in E. coli still has 

many advantages, such as the high protein yields obtained from fast and easy to handle 

procedures, and for this reason great effort has been made to overcome the formation 

of inclusion bodies and promote the soluble version of the target proteins. While the 

deep knowledge of E. coli genetics has allowed approaches such as host strain 

engineering or tight control of mRNA stability and codon usage, other common 

strategies are based on adjusting process parameters like growth media or cultivation 

temperature [27;28]. Folding modulators have also been broadly tested to enhance 

protein folding since they are thought to be limiting in recombinant cells [75;112;237].  

The success of these strategies is usually assessed by measuring solubility, yield or 

functionality of the recombinant product, and because soluble species have traditionally 

been considered to be properly folded and fully functional, solubility has often been 

used as a universal indicator of protein quality. Likewise, inclusion bodies were regarded 

as insoluble deposits of misfolded and inactive protein but this view is no longer 

supported by the current data that pictures inclusion bodies as rich in functional 

polypeptides with native-like secondary structure [201;203;212]. Moreover, soluble 

aggregates have also been found in the soluble population of recombinant proteins 

[354]. All these data compromise the assumption that solubility is linked to quality of 

recombinant proteins. In addition, the non coincidence between solubility and quality 

may explain the inconsistent results obtained from the different strategies used to 

minimise inclusion body formation, where solubility, yield and functionality have been 

used as equivalent parameters to monitor the procedure.  

On this background, we decided to explore the conditions that would enhance 

simultaneously these three relevant parameters (yield, solubility and protein quality) 

and further investigate the functionality of the soluble version of recombinant proteins. 
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Moreover, we were also interested in testing whether our findings would be applicable 

to eukaryotic systems. For this purpose, we have used a model protein consisting of the 

aggregation-prone VP1 capsid protein of foot-and-mouth disease virus fused to the 

amino terminus of GFP as a reporter of protein aggregation and conformational quality. 

This protein, termed VP1GFP or mGFP, forms fluorescent inclusion bodies when 

produced in E. coli (annex II) and also resulted in protein deposition as insoluble and 

fluorescent clusters when produced in a eukaryotic insect cell system (article 4). 

 

4.1. Independent control of protein yield and quality 

The observations that point out solubility and conformational quality as non 

coincident events (annexes I, II, [208;242]) also suggest that these parameters may be 

engineered independently. Thus, we chose a DnaK-deficient genetic background that 

favoured the deposition of our mGFP model protein in the form of large but highly 

fluorescent inclusion bodies (article 1, Table 1) to explore the effects of growth 

temperature and expression rate on both the distribution and functionality of the 

protein.  

The results obtained show divergent effects of temperature on the yield of 

functional protein depending on its soluble or insoluble status. While insoluble but 

functional protein is enhanced at higher temperatures, the yield of soluble and 

functional protein remains fairly constant along the range of physiological temperatures 

tested, showing only a slight decrease parallel to the temperature rise (article 1, Figure 

1A). Regarding protein production, although both soluble and insoluble protein amounts 

were increased with temperature, the effect was much more pronounced in the protein 

present in the insoluble fraction, which resulted in solubility being highly dependent on 

the growth temperature (article 1, Figure 1B). Since growth temperature correlates with 

the total yield of mGFP, solubility is then ultimately dependent on the protein’s own 

yield, which is in agreement with our previous data (annex I, Figure 4). Altogether, this 

translated in protein quality being differently affected by temperature depending on the 

soluble or insoluble status of the protein. Although conformational quality of the 

insoluble protein (evaluated through its specific fluorescence emission) was almost 

unaffected by temperature, the quality of the soluble fraction was impaired by 

increasing temperatures (article 1, Figure 1C). This is in contrast to the effect of growth 

temperature on a related recombinant GFP produced in a wild-type strain, where a 

parallel evolution of conformational quality in soluble and insoluble protein populations 
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was observed [208]. This might be explained by the fact that inclusion bodies produced 

in a DnaK- background are richer in correctly folded species than those produced in wild-

type strains [209]. Thus, temperature effect would be much more evident on inclusion 

bodies with less native-like structures, the formation of which would be enhanced at 

lower temperatures promoting the increase in conformational quality of the protein. 

Besides, a parallel evolution of conformational quality in soluble and insoluble protein 

species has also been observed when mGFP is produced in wild-type cells, which in fact 

is impaired by a DnaK excess (annex I, Figure 5). Finally, our data indicates that gene 

expression rate strongly affected the yield of the recombinant protein (article 1, Figure 

2B) but not its fluorescence (article 1, Figure 2A), which resulted in protein quality being 

highly dependent on expression rate and favoured by medium levels (article 1, Figure 

2C).  

Our results show how solubility can be effectively enhanced by selecting the 

appropriate growth temperature, in agreement with previous reports [355-357], and 

then protein quality can be regulated by adjusting the expression levels, which is in 

agreement with our previous work (annex I, Figure 5). The success of this two-step 

approach proves that solubility and protein quality are independently controlled, which 

is in agreement with a recent genetic study that linked mutations promoting solubility 

with a decrease in conformational quality of the protein (annex II). This is relevant in the 

context of protein production in industry, as obtaining high yields of functional protein 

should be more desirable than high solubility values corresponding to poor yields. Of 

course, the need of soluble proteins for crystallographic procedures or as therapeutics 

for the biopharmaceutical industry is also evident, and therefore enhancing 

simultaneously protein yield, solubility and quality would be the most appealing 

scenario. However, a global analysis of our data indicates that conditions favouring total 

yield of the recombinant protein result in more aggregation and decreased 

conformational quality of the soluble protein (article 1, Figure 3A and 3B). In the same 

way, enhancing the yield of soluble protein seems not to be possible without impairing 

its quality (article 1, Figure 3C). Accordingly, different protein species in the soluble 

protein population of mGFP produced in E. coli display a functional profile that does not 

match the protein distribution, and where higher protein amounts again result in 

impaired protein quality (article 2, Figure 1A and 1B). Moreover, when mGFP was 

produced in insect cells, conditions favouring higher protein yields (in this case, 

coproduction of bacterial chaperones) resulted in impaired conformational quality of the 

recombinant protein (article 4, Figure 2B and 2C), and the same was observed for mGFP 

production in insect larvae (article 5, Figures 1B, 1C and 3B). 
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Therefore, we propose a principle stating that yield, solubility and quality of soluble 

proteins cannot be favoured simultaneously during recombinant protein production. 

This has already been proven both for prokaryotic (E. coli) and eukaryotic systems 

(cultured insect cells and larvae) suggesting that it is not restricted to specific production 

platforms, and thus we suggest that it should be regarded as a general event during 

recombinant protein production. 

Again in the context of industrial protein production, our results indicate that the 

unfeasibility of promoting simultaneous yield, solubility and quality of the target protein 

must be taken into account when designing the strategy of the process, which should be 

clearly addressed to the most relevant feature for the intended use of the recombinant 

product. Also in this line, the indistinct use of any of these three parameters to evaluate 

the success of a production process is probably the reason for many of the inconsistent 

results reported from the multiple studies aimed to improve protein production 

[12;75;83;84;230;231;234;358;359]. 

In summary, while it is now clear that solubility is not a good indicator of protein 

quality because aggregation does not split the protein population into active and 

inactive species (articles 1, 2, 3, 4, 5, annexes I and II, [209;214;217;242;360])  it is also 

evident that the ideal outcome of protein production (high yield, solubility and protein 

quality) is unrealistic. Therefore, production processes should be monitored through the 

most relevant parameter for the final use of the protein. 

 

4.2. Functional status of soluble protein 

Evidences that solubility and quality of recombinant proteins are divergent 

parameters (annex II) compromise the traditional view by which soluble proteins are 

pictured as highly functional species folded in their native conformation. Moreover, the 

presence of aggregates in the soluble version of recombinant proteins has also been 

reported [354;361-363]. When we explored the molecular organisation of the soluble 

population of our recombinant mGFP by subjecting it to density gradient centrifugation, 

we found that the protein dispersed along the gradient indicating the presence of 

different aggregation states (article 2, Figure 1A). In addition, the fluorescence profile of 

the gradient was not coincident with the protein distribution (article 2, Figure 1A). This 

indicated that the soluble protein population displayed a variable conformational 

quality, which was confirmed by determining the specific fluorescence along the 
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gradient (article 2, Figure 1B). This variable functional status of the soluble protein is 

against the conventional model that assumes soluble species to be folded in a unique 

and fully functional native conformation. In fact, the soluble fraction shows a 

heterogeneous functional status that depends on the size of the aggregates. Since 

protein species are separated according to mass along the density gradient, the most 

functional species would then correspond to the smaller aggregates (article 2, Figure 

1B). This is in agreement with the observation that soluble species usually display 

specific activities higher than those of their insoluble counterparts (article 1, annexes I 

and II) [208;209;214;217]. The protein fraction displaying the highest conformational 

quality was isolated from the gradient, further purified and analysed by transmission 

electron microscopy. Soluble GFP aggregates of different sizes and morphologies were 

still present in this fraction (article 2, Figure 2A), again evidencing the heterogeneity of 

the soluble protein population. Moreover, the soluble aggregates were also 

heterogeneous regarding their secondary structure (article 2, Figure 1C). While mGFP 

inclusion bodies are rich in intermolecular β-sheets and only contain native-like 

structures to a minor extent, soluble aggregates display a wide set of native-like 

conformations rich in α-helix and native-like β-sheets, as well as non-native 

intermolecular β-sheets and unfolded conformations. Thus, the higher extent of native-

like structures that characterises the soluble aggregates also accounts for the better 

conformational quality observed in soluble species. 

These data now evidence that the soluble protein population is in fact comprised of 

a wide set of differently functional species that are not free from aggregation. Then, 

recombinant proteins can be pictured as “a continuum of forms” [354] where inclusion 

bodies represent only a minor subset of the population, which is also the most 

homogeneous regarding functionality and structural features. Moreover, the structural 

homogeneity of inclusion bodies is further enhanced by the fact that protein species can 

complete their folding once trapped in inclusion bodies [364]. In this model, quality of 

soluble protein forms can no longer be defined by the presence of a homogeneous 

population of protein species folded in their native conformation, but is rather seen as 

an average resulting from the prevalence of active over inactive species found in the 

soluble form, or vice versa. This scenario also explains reports of inclusion bodies 

displaying higher specific activities than their soluble versions [217], and would also 

account for the enhancement in protein quality observed for different GFP derivatives 

produced at suboptimal growth temperatures (article 1, Figure 1C) [208]. By producing 

the protein at reduced temperatures, inactive GFP species present in the soluble fraction 

are allowed to maturate, thereby increasing the conformational quality of the protein. 
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Accordingly, different production conditions or genetic backgrounds for protein 

production would act on protein quality by altering the balance of active and inactive 

protein species, irrespective of their presence in the soluble or insoluble virtual cell 

compartments [212]. 

 

 
 

Figure 20. Distribution of protein 
forms in a recombinant cell. Soluble 
species, including differently sized 
soluble aggregates, and inclusion 
bodies are depicted in the image. 
Conformational quality is determined 
as the average of active (light blue) 
and inactive (dark blue) protein 
species.  

Adapted from Nat Biotechnol. 2007 
Jul;25(7):718-20. 

 

 

4.3. Bacterial folding modulators for eukaryotic systems 

The use of folding modulators in bacteria has been a common approach to improve 

protein production in recombinant cells, but this strategy has been scarcely explored in 

other production platforms such as the insect cell-baculovirus system, even when 

aggregation has been reported to be a problem that reduces the yield of soluble protein 

that can be recovered [19;20]. In fact, the high protein levels obtained in the baculovirus 

system by using strong promoters comes together with host protein production being 

essentially shut down following baculovirus infection [365;366]. Since this may result in 

reduced availability of molecular chaperones, coproduction of folding modulators could 

help to overcome this limitation. Indeed, moderate enhancement of soluble protein 

production has been reported upon coproduction of human Hsp70 and Hsp40, 

homologs of the DnaK and DnaJ cytosolic chaperones [367-369]. 

In E. coli, the chaperone DnaK has been found to promote gains in solubility upon 

coproduction with target proteins [370]. However, this results from cooperation of DnaK 

with bacterial proteases Lon and ClpP, which degrade aggregated polypeptides to 

increase solubility at expenses of total protein yields (annex II). Because it would be 



 

111 
 

Discussion 

interesting to keep the folding activities of DnaK but at the same time exclude the 

associated proteolysis, we devised a system to uncouple DnaK from the bacterial 

proteases by rehosting the chaperone to insect cells. Moreover, since DnaK belongs to 

the Hsp70 family, which is present in all kingdoms of life and highly conserved in terms 

of evolution, the chaperone was expected to maintain its folding activity when produced 

in insect cells. In addition, the baculovirus system provides a certain flexibility regarding 

the choice of host, which can be either cultured cells or living insects. Therefore, our 

approach allowed us to test the effect of bacterial folding modulators in a eukaryotic 

system both in vitro and in vivo. 

Baculovirus vectors were constructed to produce our mGFP model protein either 

alone or together with the bacterial chaperone pair DnaK and DnaJ upon infection of 

cultured insect cells or larvae. The ability to encode all three proteins in the same 

baculovirus vector for coproduction experiments ensures that every infected cell will be 

producing all the required proteins, and eliminates the need of superinfection with 

chaperone-encoding vectors to guarantee their presence in all cells producing the target 

protein [17]. Although expression of all three proteins is controlled by strong promoters 

(polyhedrin or p10) in our recombinant baculovirus, the temporal expression of genes 

encoded under the control of these promoters is not simultaneous because in the 

baculovirus life cycle polyhedrin expression precedes that of P10 protein. Thus, by 

placing the dnaK gene under the control of the polyhedrin promoter we ensure that 

DnaK will already be available by the time that mGFP is synthesised, this one being 

under control of the p10 promoter. Guaranteeing chaperone availability before target 

proteins are synthesised has proven to be an effective strategy to improve production of 

soluble target proteins in recombinant E. coli cells [371] and overall activities in insect 

larvae [372]. Moreover, since DnaJ is under control of the p10 promoter its expression is 

delayed respect to that of DnaK, and therefore the higher DnaK to DnaJ ratio at any set 

time mimics (at least partially) that observed in their natural E. coli host  [373]. 

Cell culture experiments allowed us to observe the distribution of mGFP in infected 

Sf9 cells (article 4, Figure 1). Production of mGFP resulted in aggregation of the protein 

as insoluble but fluorescent clusters, remarkably similar to the inclusion bodies that it 

forms in bacterial cells (annex II, Figure 3). The presence of active polypeptides in the 

insoluble deposits is in agreement with reports of active inclusion bodies obtained in 

bacterial systems [217;243;245] and again points out solubility as an inadequate 

parameter to evaluate successful protein production [242]. Chaperone coproduction 

resulted in a reduction in the number of insoluble deposits observed in cells (article 4, 
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Figure 1), as well as an increase in fluorescence (article 4, Figure 1B and 2A) that was 

more homogeneously distributed in the cytoplasm (article 4, Figure 1) and parallel to the 

significant rise in protein yield (article 4, Figure 2B). However, although soluble protein 

was enhanced about two-fold, most mGFP still remained insoluble (article 4, Figure 2B). 

The yield increase for mGFP was associated to enhanced stability of the protein when it 

was coproduced with DnaK and DnaJ (article 4, Figure 2B), which indicates improved 

folding mediated by the chaperone pair without the linked proteolysis, as well as 

protection of mGFP from degradation by host cell proteases. This contrasts with the 

negative role of DnaK on mGFP stability when produced in E. coli, where it drives a 

reduction of the protein half-life by delivering misfolded species to Lon and ClpP 

proteases (annex II). Thus, this divergent effect of DnaK in bacteria and insect cells 

confirms the success of our strategy to promote protein folding without activating 

proteolysis.  

Protection from proteolysis in presence of the chaperones was also evident when 

mGFP was produced in vivo by injecting T. ni insect larvae with our recombinant 

baculoviruses (article 5, Figure 1A). Yield of soluble protein increased parallel to the 

infection dose, so the highest dose was chosen as a model for the rest of the 

experiments. When mGFP was produced alone, between one and two thirds of the total 

protein was obtained as insoluble (article 5, Figure 1B and 1C). Once more, active 

protein was deposited in the insoluble fraction, as evidenced by fluorescence levels 

being higher in the total than in the soluble fraction (article 5, Figure 3A). When DnaK 

and DnaJ were coproduced with mGFP total protein levels were not significantly 

affected, but soluble protein amounts represented almost the total of the produced 

protein (article 5, Figure 1C). Indeed, upon chaperone coproduction solubility was higher 

than 90% by three days post-infection (article 5, Figure 2). Harvest at earlier times 

reduced significantly the amounts of both soluble and total protein, as well as solubility 

(article 5, Figures 1B, 1C and 2), highlighting the importance of selecting the optimal 

harvest time.  

Evaluation of the conformational quality of the protein was in agreement with our 

proposed principle by which an increase in protein yield necessarily results in quality 

impairment (article 1). However, especially for the soluble fraction obtained in cultured 

cells, this effect seemed to be much more moderate than the quality impairment 

observed in bacterial cells (compare Figures 2B and 2C in articles 1 and 4 and Figure 3B 

in article 5). Although in insect larvae overall fluorescence levels decreased in presence 

of DnaK and DnaJ (article 5, Figures 3A and 4), this only affected the insoluble version of 
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mGFP (article 5, Figure 3A) and thus did not result in an impairment of soluble protein 

quality, which was reduced only as a consequence of the higher amounts of soluble 

protein obtained upon chaperone coproduction. Although soluble protein of very high 

quality can be obtained already without chaperone coproduction (article 5, Figure 3B), 

this would represent about an eight-fold reduction of the production yield (article 5, 

Figure 1C). This stresses the importance of taking into account the final use of the 

protein when designing the production process, as although higher protein activity could 

be preferred to elevated yields for reducing therapeutic doses of protein-based drugs, 

these reduced yields would be a clear disadvantage for applications such as protein 

crystallography, where very high amounts of protein are needed. 

Since the bacterial chaperones proved to have positive effects on mGFP production 

in the baculovirus system, we decided to explore whether this could be extended to 

other proteins expressed in Sf9 cultured cells. Coexpression of the DnaKJ chaperone pair 

with either foot-and-mouth disease virus VP1 capsid protein or human α-galactosidase 

did not reduce protein yields significantly, indicative of absence of DnaK-associated 

proteolysis (article 4, Figure 3A and 3B). For these proteins, both soluble yield and 

solubility were enhanced. Degradation of the protease sensitive α-galactosidase was 

also minimised, which indicated protein stabilisation promoted by DnaKJ coproduction. 

For a third protein, VP2 from the capsid of foot-and-mouth disease virus, there was no 

improvement in protein yield or solubility, but the quality of the protein was clearly 

enhanced. VP2 has a tendency to form unwanted oligomers, and these were cleared 

almost completely in presence of the bacterial chaperones (article 4, Figure 3C). 

The case of α-galactosidase deserves further consideration, since the baculovirus 

vector encoding this protein was designed for protein secretion to the culture medium. 

Although our protein remained intracellular due to the limited secretion capability of Sf9 

cells [374], it would still have been directed to the secretion pathway. Proteins entering 

the secretion pathway are translocated across the endoplasmic reticulum (ER) 

membrane either co- or post-translationally. Thus, the positive effect of cytosolic 

chaperones such as the DnaKJ pair would not be a straightforward assumption. 

However, the improvement of solubility and soluble yield that we have observed for α-

galactosidase upon coproduction of cytosolic chaperones is in agreement with a 

previous report where human Hsp70 promoted an increase in soluble intracellular levels 

of IgG [367]. In this case, coproduction of the ER resident Bip chaperone, another 

member of the Hsp70 family, also promoted a solubility enhancement. However, while 

Bip acts on processed heavy and light immunoglobulin chains, the effect of cytosolic 
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Hsp70 is on the light chain precursor. Therefore, in the case of α-galactosidase the 

chaperone pair DnaKJ seems to be promoting solubility by binding to the protein prior to 

its translocation to the ER, probably keeping it in an unfolded or translocation 

competent state and thus reducing protein aggregation in the cytosol. 

Taken together, our results prove that bacterial chaperones are functional in the 

baculovirus eukaryotic system. We have shown positive effects of DnaK and DnaJ 

chaperones on protein yield, solubility, proteolytic stability and overall biological 

activity, as well as a reduction of the negative effects on protein quality that are usually 

observed in bacterial systems. This has been achieved as a result of the function 

selection accomplished by rehosting the chaperones to a eukaryotic host where the 

undesirable effects of the multifunctional chaperone pair have been excluded. 

Therefore, bacterial chaperones can expand the catalogue of folding modulators 

available for eukaryotic systems by including well characterised chaperones or 

chaperone sets of bacterial origin for high quality protein production. 

 

 

 
 

 

 

 

Figure 21. Model of DnaK and 
DnaJ differential action in bacterial 
and eukaryotic systems. By 
rehosting the chaperones to a 
system lacking orthologs of the 
bacterial proteases Lon and ClpP 
proteolysis can be avoided while 
keeping the conserved foldase 
activity of the DnaKJ pair. 
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Conclusions 

1. Protein yield and quality are antagonistic parameters which cannot be favoured 

simultaneously in production processes. 

2. Conditions promoting high total or soluble protein yield are adverse for the 

conformational quality of recombinant proteins. 

3. Production processes should be targeted to yield, solubility or functionality of the 

recombinant protein depending on the final use of the product. 

4. The soluble protein population of mGFP does not present a homogeneous molecular 

organisation, but is instead characterised by the presence of soluble aggregates.  

5. Soluble protein species are highly heterogeneous in terms of structure and 

conformational quality. 

6. Recombinant proteins can be regarded as a “continuum of forms” where inclusion 

bodies represent only a narrow subset of protein species that is also the most 

homogeneous regarding structure and functionality. 

7. Protein quality is defined statistically by the relative abundance of the active and 

inactive protein species rather than by the prevalence of a canonical native 

structure. 

8. Functional polypeptides are deposited in insoluble clusters both in prokaryotic and 

eukaryotic systems. 

9. Undesired proteolytic activity linked to bacterial chaperones can be avoided by 

rehosting them to insect cells or larvae by means of the baculovirus expression 

system. 

10. The conserved foldase activity of bacterial chaperones allows high quality 

recombinant protein production in insect cells or larvae. 

11. Bacterial folding modulators are functional in eukaryotic systems. 

12. Bacterial chaperones can be included in (and therefore expand) the catalogue of 

folding modulators which can be used in eukaryotic systems. 
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