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Abstract

Mechanical resonators based on graphene and carbon nanotubes have recently attracted
considerable attention, due to the great wealth of remarkable properties that they ex-
hibit. Their intrinsically low-dimensional nature qualify them as ideal systems to study
mechanics at the nano-scale. Their mass is so low that they are extremely sensitive to
external forces and attached mass, which holds promise for sensing applications. In addi-
tion, these systems can vibrate at the GHz regime while their resonant frequencies can be
widely tunable. Moreover, they exhibit strong mechanical nonlinearities and among their
intriguing properties is the efficient coupling of their mechanical vibrations to electrons
in the Coulomb blockade and Quantum Hall regimes.

However, working with these devices requires high level of control over the nanofabri-
cation technologies as well as efficient readout and control of their motion. In this Ph.D
thesis we address these requirements by fabricating and investigating various nanome-
chanical resonators based on graphene and carbon nanotubes, while exploring different
techniques for the transduction of their motion.

We firstly study coupled mechanical resonators based on graphene and carbon nan-
otubes. We succeed to push the limits of modern nanofabrication techniques by realizing
complex fully suspended structures that consist of two graphene membranes coupled by
a multi-wall carbon nanotube. We employ electrical mixing transduction techniques to
extensively characterize the complex vibrational dynamics of these systems at cryogenic
temperature. Interestingly, we observe nonlinear coupling between the eigenmodes of the
structures, highlighting the crucial role of nonlinearities in such nano-scale systems.

We then investigate the noise dynamics of singly-clamped carbon nanotube resonators,
at room temperature, with very high sensitivity, by coupling their motion to the focused
electron beam of a scanning electron microscope. This transduction scheme enables us
to detect their motion in real-time and present a detailed analysis of the two-dimensional
noise trajectories both in space and time. We show that these tiny objects behave as Brow-
nian particles evolving in a two-dimensional harmonic potential. Moreover, we demon-
strate phase-coherent measurements by implementing a phase-locked loop that allows
us to track their resonant frequency in real-time, paving the way for high performance
sensing applications.

Finally, we present the first steps towards studying suspended singly-walled doubly-
clamped carbon nanotube resonators as hybrid nano-optomechanical systems, where the
optical degrees of freedom are embedded inside the nanotube’s structure. We develop a
low temperature micro-photoluminescence setup to investigate the coupling between the
mechanical vibrational modes and the localized zero-dimension excitons of the nanotubes.
Additionally, we develop a chemical vapor deposition growth process for up to 10 µm long,
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narrow diameter, suspended nanotubes.
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Abstracto

Los resonadores mecánicos basados en grafeno y nanotubos de carbono han atráıdo re-
cientemente una considerable atención, debido a la gran variedad de propiedades extraor-
dinarias que exhiben. La reducida dimensión intŕınseca a su naturaleza hace de estos
materiales candidatos ideales para el estudio de la mecánica en la nano-escala. Su re-
ducida masa les hace extremadamente sensibles a fuerzas externas y masas adsorbidas,
lo cual es prometedor para su uso como sensores. A ello se suma que estos sistemas
pueden ajustar ampliamente su frecuencia de vibración llegando hasta GHz. Además,
muestran fuertes efectos no lineales y entre sus interesantes propiedades está el eficiente
acoplamiento de sus vibraciones mecánicas con los electrones en los reǵımenes de bloqueo
de Coulomb y de efecto Hall cuántico.

Sin embargo, trabajar con estos dispositivos requiere un alto nivel de control de las
técnicas de nano-fabricación aśı como de una eficiente lectura y control de su movimiento.
En esta tesis abordamos estos requisitos fabricando e investigando diversos nano-resonadores
mecánicos basados en grafeno y nanotubos de carbono, mientras exploramos diferentes
técnicas para la transducción de su movimiento.

Primero estudiamos resonadores mecánicos acoplados basados en grafeno y nanotu-
bos de carbono. Logramos superar los ĺımites de las técnicas de nano-fabricación mod-
ernas creando estructuras completamente suspendidas consistentes en dos membranas de
grafeno unidas por un nanotubo de carbono multi-capa. Utilizamos técnicas de demodu-
lación de corrientes eléctricas como transducción para caracterizar la compleja dinámica
de las vibraciones en estos sistemas a temperatura criogénica. Observamos, de manera
interesante, acoplamiento entre los modos principales de vibración de las diferentes estruc-
turas, resaltando la importancia de las no linealidades en estos sistemas en la nano-escala.

Más tarde, investigamos la dinámica del ruido de resonadores basados en nanotubos
de carbono fijados en uno de sus extremos, a temperatura ambiente, con una gran sensi-
bilidad, acoplando su movimiento al foco de un rayo de electrones de un microscopio de
electrones. Este esquema de transducción nos permite detectar su movimiento en tiempo
real y presentar un análisis detallado de la trayectoria dos-dimensional del ruido en espa-
cio y tiempo. Aqúı mostramos que estos diminutos objetos se comportan como part́ıculas
Brownianas moviéndose en un potencial harmónico de dos dimensiones. Además, de-
mostramos medidas coherentes en fase implementando un lazo de seguimiento de fase
(PLL) que permite monitorizar la frecuencia de resonancia en tiempo real, abriendo el
camino a aplicaciones como sensores de alto rendimiento.

Finalmente, presentamos los primeros pasos hacia el estudio de resonadores basa-
dos en nanotubos de carbono mono-capa, suspendidos y anclados en ambos extremos
como sistemas h́ıbridos nano-optomecanicos, en los cuales el grado de libertad óptico está
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integrado dentro de la estructura del nanotubo. Hemos desarrollado un equipo de micro-
fotoluminiscencia a baja temperatura para investigar el acoplamiento entre los modos
de vibración mecánicos y los excitones localizados de cero dimensiones de los nanotu-
bos. También, hemos desarrollado un proceso de deposición qúımica de vapor (CVD)
para hacer crecer nanotubos de carbono suspendidos, de hasta diez micras de longitud y
diámetro reducido.
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Chapter 1

Introduction

1.1 Introduction to nanotechnology
Nanotechnology is science, engineering, and technology conducted at the nanoscale. In
other words it is all about understanding, controlling, and manipulating objects or mate-
rials with dimensions up to few hundreds of nanometers.

Back in December 1959, at an American Physical Society meeting at the California In-
stitute of Technology (CalTech), Richard Feynman gave a visionary talk entitled “There’s
Plenty of Room at the Bottom”, defining the ideas and concepts behind nanotechnology
and nanoscience, long before these terms were actually used. In his talk, Feynman de-
scribed a process in which scientists would be able to manipulate and control individual
atoms and molecules. Over a decade later, in 1974, Norio Taniguchi coined the term
nanotechnology to describe semiconductor processes such as thin film deposition and ion
beam milling exhibiting characteristic control on the order of a nanometer. It wasn’t un-
til 1981 though, after the development of the scanning tunneling microscope which could
”see” individual atoms, that modern nanotechnology began.

Nowadays, more than 50 years after the famous Feynman’s talk, a broad spectrum of
scientific and technological fields of nanoscience and nanotechnology are very well estab-
lished. Techniques like electron-beam and ion-beam lithography, molecular-beam epitaxy,
nano-imprint lithography, atomic force microscopy (AFM), scanning electron microscopy
(SEM), atom-by-atom manipulation, allow scientists to control and study mater at a scale
of 10−9 meters. From the fundamental science point of view, these developments have led
to systems that are so small that even quantum mechanics starts to play an important
role. From a technological point of view, nanotechnology has pushed industry to produce
innovative systems with complex structures and functionality, in a very small area. A
typical example is a computer chip, such as the one illustrated in Figure 1.1(a), where
4.2 billions of transistors with channel length of 22 nm are interconnected and packed in
an area of no more than 650 mm2.

Nanoelectronics was arguably the field of nanotechnology that demonstrated the high-
est advancements in the recent years, pushing forward fabrication techniques from mi-
crometer scales to deep sub-micron. Nonetheless, we are only at the very beginning of
Feyman’s vision of assembling complex multifunctional multicomponent systems, atom
by atom, utilizing not only electrical but also optical an mechanical properties of na-
ture. In this direction, other new nanotechnology fields have emerged in recent years, like
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1.2. NANOMECHANICAL RESONATORS

(a) (b) (c)

Figure 1.1: Examples from various fields of nanotechnology and nanoscience. (a) Image of IBM
Power8 processor that consist of 4.5 billion transistors occuping an area of just 650 mm2. (b)
False color scanning electron microscope image of an IBM chip showing blue optical waveguides
transmitting high-speed optical signals and yellow copper wires curring high-speed electrical
signals. (c) Multiple gear speed reduction unit nanomechanical system fabricated at Sandia
national laboratories.

nanophotonics (see Figure 1.1(b)) or nanomechanics (Figure 1.1(c)). The latter consists
the topic of this Ph.D thesis.

1.2 Nanomechanical resonators
Nanomechanics is the scientific field of creating and controlling the motion of nano-scale
objects. This field emerged as a natural evolution from Micro-Electro-Mechanical sys-
tems (MEMS), as nanofabrication techniques allowed the transition to nanometer scale
of precision.

One of the types of micro- nanomechanical systems that have attracted considerable
scientific and technological attention are the resonant nanomechanical systems or simply
nanomechanical resonators 1. A mechanical resonator is the mechanical manifestation
and the most intuitive realization of the simple physics textbook example of a harmonic
oscillator, one of the very common phenomena observed in nature, and has been an object
of scientific research throughout history. One of the first scientists that systematically
study them was Robert Hooke, who published a book with the basic principals of elasticity
in 1676 [1, 2]. Another famous example is the Foucault pendulum which was used by Léon
Foucault in 1851 for the first simple proof of earth’s rotation. Nowadays, mechanical
resonators have been used in a variety of fields both in science and technology, ranging
from micron-scale cantilevers used in atomic-force microscopy, to meter-scale mechanical
oscillators in the form of interferometer mirrors intended for probing gravitational waves.

During the last decades, there has been an increasing scientific and technological in-
terest in the miniaturization of mechanical resonators, initially in micron-meter scales,
driven by the MEMS field, and more recently in nanometer scales. Their dimensions and
mass reduction, naturally leads to higher sensitivity to external forces that are acting
on them, making nano-scale resonators very interesting systems for mass, charge, and

1Resonator is a system that exhibits resonant behavior, that is, it naturally oscillates at some frequen-
cies with greater amplitude than at other. These frequencies are called resonant frequencies. A physical
system can have as many resonant frequencies as it has degrees of freedom; each degree of freedom can
vibrate as a harmonic oscillator.
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1.3. TOP-DOWN VERSUS BOTTOM-UP FABRICATION APPROACHES

force sensing experiments and applications ([3, 4, 5, 6]). Furthermore, there is an in-
creasing technological necessity for integrating systems in small dimensions, like on-chip
nanomechanical resonators for RF signal filtering, sensing or frequency reference. From
the fundamental research point of view, nanomechanical resonators have been used for
observing quantum phenomena at a macro-scale 2, allowing the detection of their zero-
point fluctuations [7, 8, 9], the demonstration of quantum backaction noise [10], or the
creation of non-classical optomechanical states [11].

1.3 Top-down versus bottom-up fabrication approaches

There are mainly two different approaches that researchers and engineers follow to fabri-
cate these nanoscale mechanical resonators, the top-down and the bottom-up. Top-down
approach is the most broadly used and the one that is predominately used for large scaled
integrated systems, such as the computer chip previously illustrated in Figure 1.1(a). The
basic concept is the following: the process starts from bulk material and after a sequence
of lithographic patterning steps and other nanofabrication techniques, it is patterned into
functional elements which could be for example transistors, waveguides, solar cells or
mechanical systems. In other words, it is a process of sculpting a bulk material into a
functional shape. In Figure 1.2(a-c) examples of nanoresonators that have been fabricated
with top-down approach are illustrated. The geometries vary from doubly-clamped nano-
beams (Figure 1.2(a)) to cantilevers (Figure 1.2(b)) or examples of even more complicated
structures like coupled nanobeams (Figure 1.2(c)).

The advantage of top-down approach relies on that most of the processes are based
on the very well established and mature CMOS processes. At the same time, it enables
easy large scale integration by patterning several structures in parallel on the same bulk
material. Nonetheless, few important short-comings exist. Firstly, there is a natural limit
on the highest achievable lithographic resolution and the smallest possible feature size.
Moreover, all the physical and chemical processes, which are taking place to give shape
on a device, introduce defects on the surface. As the devices are getting smaller and
smaller, the relative amount of these defects is increasing. Consequently, below a certain
size limit, the electrical, optical, and mechanical properties of the materials begins to
degrade, which imposes limitions on the minimum size of these structures.

However, in recent years there have been an increasing scientific interest in using
bottom-up nanofabrication techniques for the implementation and studying of nanome-
chanical systems. The bottom-up approach starts with intrinsically nanoscale materials
and builds them up into functional nanodevices. While this approach is less suitable for
large scale integration, it demonstrates some notable advantages: The produced systems
are free of defects and imperfections that characterizes the top-down fabrication meth-
ods, maintaining their intrinsic physical properties at the nanoscale. Among the various
nanoscale materials, graphene and carbon nanotubes are especially promising.

2Nanomechanical resonators are very small but still orders of magnitude bigger than single molecules.
Thus, can be considered as a macro-scale object in comparison to single atoms.
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Figure 1.2: Examples of various nanomechanical resonators. (a) Scanning electron microscope
image of a doubly-clamped, top-down fabricated, silicon carbide with aluminum on top mechan-
ical resonator, from Roukes group at Caltech. (b) Scanning electron microscope image of a
nanocantilever made out of a 100 nm silicon nitride membrane, from Roukes group at Caltech.
(c) Scanning electron microscope image of silicon based doubly-clamped coupled nanoresonators
[12]. (e,f) Scanning electron microscope images of doubly clamped graphene and carbon nan-
otube resonators [13].

1.4 Graphene and carbon nanotube mechanical res-
onators

Mechanical resonators based on graphene and carbon nanotubes have recently attracted
considerably attention. Graphene is a truly two-dimensional (2D) crystal of carbon atoms
and carbon nanotube is its one-dimensional (1D) counterpart. A typical example of
such systems in doubly-clamped configuration is illustrated in Figure 1.2(e,f), while other
configurations like drums-shaped graphene or singly-clamped nanotubes are also common.

The high strength, low mass, and high chemical stability of these materials, combined
with their also exceptional electrical properties, allows for the realization mechanical
resonators with outstanding performance3. Their mechanical resonant frequencies can
reach the GHz regime [14, 15], their quality factor can be very high [16, 13, 17], and their
resonant frequency exhibit extremely high tunability [18, 19]. Moreover, these systems
can be used as sensors of mass [20, 21] and force [22, 23] with unprecedented sensitivity.

Apart from their high performance, the most fascinating aspect these systems is that
they represent the ultimate one-dimensional and two-dimensional limit that can be found
in nature. Studying nanomechanics in this regime could lead to new unexpected phe-
nomena and novel systems with unique proprieties. Interesting properties like the effi-

3More detailed information on the graphene and carbon nanotubes structure and properties will be
given in chapter 2.
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cient coupling of their mechanical vibrations to electrons in the Coulomb blockade and
the quantum Hall regimes [24, 25, 26, 27, 28] or their strong mechanical nonlinearities
[13, 29, 30] qualify graphene and carbon nanotube resonators as very intriguing systems
to investigate nanomechanics at the ultimate scaling limit.

1.5 Thesis motivation and outline
While mechanical resonators based on graphene and carbon nanotubes exhibit a breadth
of remarkable properties, the full exploitation of their potential inevitably requires further
investigation on the nanofabrication and motion transduction schemes.

In this direction, the present Ph.D thesis targets on exploring nanomechanics at the
extreme scaling limit of these one- and two-dimensional mechanical resonators. One the
hand, by improving nanofabrication technologies, and on the other hand, by exploring
the detection sensitivity limits, utilizing and optimizing various transduction schemes. To
do so, I worked in various experiments using different experimental techniques. In this
manuscript I describe the results of the three main experiments I worked on during my
Ph.D studies. An outline is given below:

• Chapter 2 gives a brief introduction on the electrical, optical, and mechanical prop-
erties of graphene and carbon nanotubes.

• Chapter 3 gives a brief introduction on the main theoretical concepts that are nec-
essary to understand the basic dynamical properties of nanomechanical resonators.

• Chapter 4 briefly describes the various transduction schemes that exist for graphene
and carbon nanotube resonators.

• Chapter 5 describes the development, fabrication and characterization of coupled
graphene mechanical resonators, where we observed nonlinear coupling between the
eigenmodes in these systems.

• Chapter 6 presents our study on the Brownian motion of carbon nanotubes in real
time, at room temperature, using a focused electron beam of a scanning electron
microscope.

• Chapter 7 presents the first steps towards studying suspended single-walled car-
bon nanotubes as hybrid nanomechanical resonators, by investigating the coupling
between the energy level of localized excitons and the mechanical degrees of free-
dom of the nanotubes. For this purpose we developed a low temperature micro-
photoluminescence setup.
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Chapter 2

Graphene and carbon nanotube
properties

In this chapter we will give an overview on the physical properties of graphene and
carbon nanotubes. In the first section we will give a brief introduction to the history
of these materials. We will then describe their properties as defined from their unique
crystallographic structure, starting from their electronic properties, continuing with their
optical properties, and ending with their mechanical properties. If necessary, additional
information will be given in each chapter separately.

2.1 Introduction
Graphene is an atomic-layer of covalently bonded carbon atoms arranged into a honey-
comb lattice (Figure 2.1(a)), a truly two-dimensional crystal and the very first observed
in nature [31]. Remarkably, all the existing graphitic materials of all other dimensionali-
ties have graphene as the basic building block. For instance, 0D fullerenes, such as C60
(buckyball) (Figure 2.1(b)), are essentially graphene which is wrapped up into spheres,
carbon nanotubes are graphene which is rolled up into thin cylinders (Figure 2.1(c)),
while bulk 3D graphite consist of many graphene layers stacked together (Figure 2.1(d)).
Interestingly, for more than 70 years it was widely believed that 2D crystals are thermo-
dynamically unstable and thus could not exist in nature [32]. It wasn’t until very recently
that two scientists from Manchester, thanks to their ”Friday night experiments” in 2004,
demonstrated that this 2D crystal can actually be isolated on top of silicon substrate [31].
Shortly afterwards it was shown that it can be also obtained in liquid [33] or as suspended
membrane [34]. These developments catalyzed an enormous effort of the scientific com-
munity to study this material and other 2D crystals, rewarding the two scientists, Dr.
Andre Geim and Dr. Konstantin Novoselov, the Nobel Prize in physics in 2010.

Already before the discovery of graphene, carbon nanotubes have been an object of
intense research after their experimental discovery by Iijima et al. (1991) [35]. These one-
dimensional crystals can be separated into two categories: single-walled carbon nanotubes
(SWCNTs) and multi-walled carbon nanotubes (MWCNTs). SWCNTs are typically 1-2
nm in diameter and several µm in length. MWCNTs essentially consist of concentric
SWNTs (or shells) stacked together. Their diameter range from 5 to 50 nm and they are
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(a)

(b) (c) (d)

Figure 2.1: Graphene as the basic building block of all carbon materials of other dimensionalities.
(a) Graphene 2D atomic structure. (b) Graphene wrapped up into 0D fullerene. (c) Graphene
rolled into nanotube. (d) Graphene layers stacked in to graphite. Figure adapted from [32].

typically several tens of µm in length.
To thoroughly understand the dynamics, the interaction with the environment, and

the motion transduction mechanisms of mechanical resonators based on these nano-scale
materials, it is very useful to understand their physical properties, which are very much
interrelated since graphene is the basic building block of carbon nanotubes. Therefore,
their main electrical, optical, and mechanical properties will be briefly presented in the
following sections.

2.2 Electrical properties of graphene and carbon nan-
otubes

The electrical properties of graphene are very much defined by its unique crystallographic
structure. The | 2s〉 and the in-plane | px〉 and | py〉 orbitals of its carbon atoms, hybridize
to form a strongly bound σ system which is called sp2 hybridization. As a result, atoms
in graphene condense in a honeycomb lattice. Three electrons per atom are involved in
strong σ bonds, and one electron from the perpendicular to the graphene plane | pz〉
orbital yields the π bonds. The electronic properties of graphene at low energies are
defined by the π electrons, whereas σ electrons form an energy band far away from the
Fermi energy.

The honeycomb network of graphene can be described as a triangular (or hexagonal)
lattice with a basis of two atoms (Figure 2.2(a)). The primitive unit-cell spanned by these
vectors is a rhombus with a side length of a = 0.246 nm and a carbon-carbon distance of
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aC−C = 246 nm/
√

3 = 0.142 nm. The lattice vectors can be written as

a1 =
(
a

0

)
and a2 =

( 1
2a
√

3
2 a

)
, (2.1)

and the reciprocal lattice vectors are given by

b1 =
( 2π

a

2π√
3a

)
and b2 =

( 0
√

4π√
3a

)
. (2.2)

The first Brillouin zone is constructed as the Wigner-Seitz cell of the reciprocal lattice
and has the shape of a hexagon (Figure 2.2(b)). As it was mentioned earlier, the low
energy electronic properties of graphene are governed by the valence | pz〉 electrons.
Following a tight-binding approximation on the wavefunction of these electrons, their
energy dispersion in the lattice of graphene can be calculated [36, 37]. The valence band
and the conduction band touch at six points, the so-called Dirac or neutrality point. For
symmetry reasons, these six points can be reduced to the two inequivalent corners of the
Brillouin zone, K and K’ (Figure 2.2b). Their position is given by

K = 2π
a

( 1
3
1√
3

)
and K ′ = 2π

a

( 2
3

0

)
. (2.3)

The energy dispersion for the valence and the conduction band is given by

E(k) = ±γ0

√
1 + 4 cosαkx2 cos

√
3aky
2 + 4 cos2 akx

2 , (2.4)

where γ0 = 2.8 eV denotes the nearest hoping integral [37], and ki(i = 1, 2) the components
of the wavevector in the x,y directions. Decisive for the understanding of graphene’s
electronic properties is the dispersion relation at the Dirac points in the vicinity of the
Fermi energy. A linear expansion of equation (2.4) gives a quasi-linear energy dispersion
around K and K’

E(k) = ~uF|k|, (2.5)

with constant Fermi velocity uF =
√

3aγ0/2~ = 106 m/s. As a consequence, electrons in
these states behave as massless particles like relativistic Dirac Fermions. The energy band
can be seen as two cones touching at EDirac (Figure 2.3), which means that graphene is a
zero band-gap semiconductor. The symmetry of the band structure suggests that electrons
and holes have the same properties.

Thanks to the massless behavior of electrons and the high Fermi velocity, graphene
exhibits outstanding transport properties. In particular, electron mobilities of up to
106 cm2/Vs have been observed at low temperatures [38, 39, 40]. In the ballistic transport
regime, carriers can move with the Fermi velocity. Furthermore, graphene exhibits strong
ambipolar electric field effect [31] with very high transconductance both in DC and high
frequency AC electric fields [41]. In the context of nanomechanics, this property allows
the use of suspended graphene sheets in transistor configuration in order to electrically
read out its mechanical vibrations (see chapter 4).
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Figure 2.2: Graphene crystal lattice unit cell and Brillouin zone. (a) Graphene lattice with two
triangular sub-lattices A and B. Each red parallelogram represents a unit cell, with side-width
a = 246 nm, containing one A and one B carbon atom. (b) Brillouin zone of the hexagonal
reciprocal space. The Dirac cones are located at the two equivalent points, K and K’.

Figure 2.3: Electronic dispersion in the honeycomb lattice of graphene. Left: three-dimensional
band structure of graphene. Right: zoom in of the energy bands close to one of the Dirac points.
Figure adapted from [37].
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Figure 2.4: Single-walled carbon nanotube chiralities. (a) A particular spiece of single-walled
nanotube is defined when a grpahene sheet is rolled up allong the chirality vector Ch = n1a1 +
n2a2, where θ is the chiral angle, (n1, n2) are the chiral indices, and T the vector parallel to the
nanotube’s axis. (b) The three geometric classes of SWNTs determined by the special symmetry
directions along the graphene lattice, including armchair (n, n), zigzag (n, 0) and the general
case chiral (n1, n2).

As it was mentioned earlier, single-walled carbon nanotubes can be seen as rolled up
graphene. Effectively these are one-dimensional (1D) objects with axial symmetry. De-
pending on the different orientations of the graphene lattice with respect to the nanotube
axis, which is called chirality, carbon nanotubes can exhibit different properties. The
chirality vector is defined as Ch = n1a1 + n2a2 and the integer pair (n1,n2) uniquely
determines the diameter and the chiral angle θC and therefore their electronic properties
(Figure 2.4(a)). Moreover, they can be divided in three geometrical classes determined
by the special symmetry directions along the graphene lattice, including armchair (n,n),
zigzag (n, 0) and the general case chiral (n1,n2). An illustration of the different SWNT
groups is given in (Figure 2.4(b)).

Following similar methodology as in the case of graphene, and by imposing the peri-
odical boundary conditions that arise from the chirality vector, it is possible to calculate
the electronic properties of single walled carbon nanotubes [42]. Impressively, depending
on their chirallity, sinlge-wall carbon nanotubes could either behave as semiconductors
or metals [42]. The discrimination can be achieved by evaluating mod(2n1 + n2, 3) 1.
For mod1 or mod2 the nanotube is semiconducting and mod0 is metallic (Figure 2.5).
The transport of carriers occurs only along the axis of the nanotube, essentially making
a CNT an 1D conductor. The bandgap energy of semiconducting nanotubes depends on
their diameter and is given by Eg = 0.7 eV/D(nm) ([43]).

Based on the exceptional transport properties of graphene, single-walled carbon nan-
otubes also present high electron mobility in the order of 104 cm2/Vs at room tempera-
ture [44] as well as strong ambipolar field effect. Similarly to graphene resonators, these
properties allow for the implementation of single-walled carbon nanotubes in a transistor
configuration and electrical read out of their motion (see chapter 4).

1This function yields the residual of dividing 2n1 + n2 by 3. We notate modN when the value of the
residual is N
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Figure 2.5: Single-walled carbon nanotube band structured inferred from graphene. Figure
adapted from [45].

2.3 Optical properties of graphene and carbon nan-
otubes

The optical properties of graphene and carbon nanotubes are also a field of intense research
for both technological and fundamental purposes. It has been predicted theoretically [46]
and obtained experimentally [47] that the high-frequency (dynamic) conductivity G of
graphene should be a universal constant equal to e2/4}. This would mean that graphene’s
optical transmittance T and reflectance R are also universal and given by

T ≡ (1 + 2πG/c)−2 = (1 + 1
2πa))−2 ≈ 0.977 and R ≡ 1

4π
2a2T, (2.6)

for the normal light incidence, where a is the fine structure constant. Thus, a single mono-
layer graphene should transmit ∼ 97 % of the incident light and absorb ∼ 2.3 % [47, 48]
(Figure 2.6), independent of its wavelength, while the reflectivity is very low (< 0.1 %).
Deviations were only observed in far-IR and UV. The origin of these optical properties
lies in the two-dimensional nature and zero band gap electronic spectrum of graphene.
Its low absorption and reflectivity suggest that the optical readout of a nanomechanical
system based on graphene is a challenging process. Nonetheless, the first experimental
demonstration of graphene vibrations was achieved employing optical interferometry [22].

The rich optical properties of single-walled carbon nanotubes arise from electronic
transitions within the density of states in their band structure (Figure 2.7). Although
both metallic and semiconducting nanotubes allow for the investigation of Raman scat-
tering, the observation of visible to near infrared photoluminescence (PL) is limited to
semiconducting single-walled nanotubes with large enough band-gaps. Attributed to the
1D nature of carbon nanotubes, the so-called van-Hove singularities appear on the valence
and conduction band edges [42]. These are illustrated in Figure 2.7), where optical tran-
sition are labeled as ENN (N = 1, 2, 3...). In a typical photoluminescence experiment an
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(a) (b)

Figure 2.6: Light transmition in graphene. (a) Light scan profile shows the intensity transmission
of white light in single layer and bilayer graphene. (b) Transmittance spectrum of single-layer
graphene. Figure adapted from [47].

Figure 2.7: Density of states in single-walled carbon nanotubes. The so-called van-Hove singu-
larities arise at the band edges due to the 1D nature of carbon nanotubes. The conduction and
valence bands are label as cN and vN (N = 1, 2, 3...) respectively. The optical transition are
denoted as ENN . Figure adopted from [49].

electron hole-pair is created by optically exciting its E22 or E33 transition. Through var-
ious decay mechanisms eventually light is emitted from its E11 transition. Interestingly,
the optical transition energies depend on the chirality of each nanotube. As a result, a
resonant excitation of the E22 transition together with the E11 emission is a fingerprint
of a given nanotube specie.

2.4 Mechanical properties of graphene and carbon nan-
otubes

The mechanical properties of graphene and carbon nanotubes are no less interesting com-
pared to their electronic or optical properties. Due to the high strength of the hybridized
sp2 bonds between carbon atoms, their intrinsic strength exceeds this of any other ma-
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(a)

(b)

(c)

Figure 2.8: Lee et al. (2008) [55] measured the stiffness of grpahene using an AFM tip. (a)
Scanning electron microscopy image of a graphene flake spanning an array of circular holes of
1− 1.5 µm diameter. (b) Schematic of nanointentation on suspended graphene membrane. (c)
Histogram of measured elastic stiffness. Figure adapted from [55].

terial [50]. Combined with their very low mass density2 and high chemical stability,
graphene and carbon nanotubes qualify as ideal materials for implementing nanomechan-
ical systems.

The experimental investigation of the mechanical properties of these materials, like
the Young’s modulus E, the Poisson ration ν, the breaking strength σint and strain εint,
and the bending rigidity B, is a very challenging process mainly due to their very low
dimensions. Their Young’s modulus is very high, E = 1 TPa 3, and already known indi-
rectly from experiments done on graphite [51, 52]. As expected, the same value was later
confirmed in experiments performed directly on suspended multi-walled nanotubes using
an AFM tip [53], on single-walled nanotubes by measuring their transport properties[54]
or mechanical vibrations [18], and on graphene using an AFM tip [55] (also see Figure 2.8).
In addition to their very high Young’s modulus, their breaking strength is measured to
be σint ∼ 40 Gpa [56, 55] which corresponds to a strain of εint ∼ 0.25 or 25 %, entitling
them to be among the strongest materials in the world.

A very challenging to estimate property of two-dimensional materials like graphene is
the bending rigidity B. Since this material is only one atom thick, this value is an intrinsic
property of the material and will depend only on the interaction of π and σ bonds while
bending. This will give much lower values compared to continuum mechanics calculations.
According to molecular dynamics calculations, this value is estimated to be B = 1 eV
[57].

2The two-dimensional mass density of graphene is ρG = 7.7 × 10−7 Kg/m2 and if it is rolled up into
a single-walled nanotube with a typical radius of 1.5 nm, results to a three-dimensional mass density of
ρCNT = 1350 Kg/m3.

3Assuming that the thickness of graphene is 0.34 nm, its two-dimensional Young’s modulus will be
340 N/m.
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Chapter 3

Nanomechanical resonators

In this chapter we will introduce the main theoretical concepts that are necessary to
comprehend the basic dynamical properties of nanomechanical resonators. If necessary,
depending on the studied system, additional theoretical considerations will be given in
each chapter separately.

We will first introduce the simple harmonic oscillator. We will then study its response
to incoherent fluctuating thermal forces and to coherent external driving force. Finally,
we will discuss the duffing oscillator with and without including nonlinear damping.

3.1 Introduction
Modern micro- and nano-mechanical resonators are fabricated from a range of different
materials and in various forms, such as singly-clamped cantilevers, doubly-clamped beams,
drums made of 2D nanomaterials, like graphene, or other more complicate structures like
arrays of coupled systems. Mechanical motion in these systems results from their intrinsic
elasticity and extrinsic clamping conditions, which lead to a restoring force towards a given
equilibrium position. The motion is characterized by a set of orthogonal eigenmodes each
having a distinct resonance eigenfrequency and displacement shape, which are obtained
by solving the characteristic elastic equations [58]. For simple geometries, such as a
singly-clamped or doubly-clamped beam, analytic solutions can be found. For instance,
the displacement shape of their first three flexural modes are depicted in Figure 3.1. In
the case of carbon nanotubes and graphene resonators, analytical solutions can also be
found by treating them as one-dimensional strings and as two-dimensional membranes
respectively, while finite-element numerical simulation can be employed to identify the
eigenfrequencies and eigenshapes for geometrically more complex nanoresonators.

As long as the different mechanical eigenmodes of a nanoresonator are spectrally well
isolated from each other and no mode-coupling [60, 61] effects exist, the one-dimensional
harmonic oscillator can be used as a prototype for each one. This allows to phenomeno-
logically describe such systems with very few parameters, while additional terms can be
added to describe more complex nonlinear phenomena. This is the approach that has been
predominantly followed for the studied systems that are presented in this thesis. In the
following sections we are going to develop the basic theoretical concepts and formalism.
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Figure 3.1: Schematic of the first three flexural modes of a singly-clamped beam (left) and a
doubly clamped beam (right). Figure adapted from [59].

3.2 Harmonic oscillator
A simple harmonic mechanical oscillator without driving or damping 1 follows Hook’s law

F = −kx(t), (3.1)

where x(t) is the displacement in time domain and k the spring constant of the system.
According to Newton’s second law

F = meff
d2x

dt2
= −kx(t)⇒ meff

d2x

dt2
+ kx(t) = 0, (3.2)

where meff is the effective mass of the nanomechanical resonator. In reality, the effective
mass is lower than the actual physical mass of the system, depending on the system’s
geometry and on the shape of each mechanical mode. The solution to the lossless equation
(3.2) can be written in a complex notation as

x(t) = x0 exp(−iω0t+ iϕ), (3.3)

where ω0 is the mechanical angular resonance frequency of the oscillator, given by ω0 =√
k

meff
. The phase angle ϕ and amplitude x0 are determined by the initial conditions.

So far we haven’t included any interaction of the resonator’s mass with the environ-
ment, like friction, noise or external driving. We can achieve this by adding a time-
depended force term Fenv(t). The equation of motion will then become

meff
d2x

dt2
+ kx(t) = Fenv(t). (3.4)

Forces which arise from the environment can be represented with two different terms in the
equation of motion. The first one is the dissipation term which is typically proportional

1We will define and include damping on a later stage of the analysis.
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to the velocity, dx/dt. The second term represents all the driving forces applied on the
resonator which can be simply expressed with a time-depended force term F (t). For
example F (t) can be a random noise force or a coherent oscillating force. Equation (3.4)
can be then written as

meff
d2x(t)
dt2

+ kx(t) +meffγm
dx(t)
dt

= F (t), (3.5)

where the constant γm relates the linear mechanical dissipation rate to the average veloc-
ity. Both ω0 and γm are given in radial units. To present the experimental data of this
thesis, in most of the cases we will be using the ordinary frequency f0 = ω0/2π, given in
Hz units.

The dissipative term in (3.5), meffγm
dx(t)
dt , is essentially the one that couples the

mechanical oscillator to the environment, while γm is defining the rate of the energy
exchange between them. A figure of merit to quantify this damping is the dimensionless
quality factor Q, which is defined as

Q = 2π
(

Total energy

Energy lost in one cycle

)
. (3.6)

In the limit of small damping rate, γm � ω0, the quality factor can be approximated by
Q = ω0/γm. Essentially, the quality factor gives the number of cycles that are needed
for the system to loose its energy to the environment. This means that the oscillator’s
energy exponentially decays with a characteristic time ω0τ = 1/Q.

Very often it is convenient to study a mechanical oscillator in the frequency domain.
For this aim, we perform a Fourier transform 2 of (3.5) to obtain:

x(ω) = χ(ω)F (ω). (3.7)

This expression describes the linear response of the mechanical oscillator in the frequency
domain, where a force F (ω) leads to a mechanical response x(ω), which is defined by the
mechanical susceptibility χ(ω) that is given by

χ(ω) = 1
meff [ω2

0 − ω2 − iγmω] . (3.8)

Experimentally though, we usually do not measure the susceptibility of an oscillator
directly. A common method is to record the power spectral density spectrum Saa(ω) of a
signal a(t) that contains the information of the x(t) trajectory. The nature of this signal
depends on the motion transduction mechanism and the experimental setup 3. Power
spectral density essentially describes how the power of the quantity a(t) is distributed in

2For the transform we are using the following convention x(ω) =
∫
dt x(t) eiωt and x(t) =

1
2π

∫
dω x(ω) e−i2πt.

3For instance, a(t) can be the electrical signal at the output of a photodetector when the mechanical
motion is detected optically, or the current that is flowing through a nanotube or graphene when their
motion is detected electrically. More information on the various motion transduction techniques is given
in chapter 4.

29



3.2. HARMONIC OSCILLATOR

frequency space 4. The autocorrelation function of a(t) is defined as

Ca(τ) = 〈a(t)a∗(t+ τ)〉, (3.9)

where 〈...〉 denotes the statistical mean. The Wiener-Khintchine theorem states that
the autocorrelation function of Ca(t) and the power spectral density Saa(ω) of a(t) are a
Fourier transform pair [62]. This means that the power spectral density of a(t) is given
by the Fourier transform of equation (3.9)

Saa(ω) =
∫ ∞
−∞

d(τ)〈a(t)a∗(t+ τ)〉e−iωτ . (3.10)

Saa(ω) is in units of [a2/Hz], where [a] is the unit of the measured quantity a(t) 5.
Moreover, it can be shown that the variance of the quantity a(t) is the area under the
one-sided power spectral density

〈a2〉 = 1
2π

∫ +∞

0
dωSa(ω) =

∫ +∞

0
dfSa(f). (3.11)

If the Fourier transform of a(ω) is already known we can then obtain from (3.10)

Saa(ω) = 〈a(ω)a(−ω)〉. (3.12)

By plugging (3.7) into (3.12) we obtain

Sxx(ω) = |χ(ω)|2SFF (ω), (3.13)

where SFF (ω) is the power spectral density of the force acting on the mechanical oscillator.
Going back to equation (3.5), we can now estimate the response of a damped harmonic

oscillator for driving force F (t) of various origins.

3.2.1 Response to incoherent, fluctuating thermal forces
A fundamental force acting on a mechanical oscillator is the thermal force, which is a
random fluctuating force δF th(t). The interaction of this force with a damped mechani-
cal oscillator, as described by equation (3.5), will lead to its motion the so-called thermal
or Brownian motion. Essentially, the thermalization process of a resonator with its en-
vironment happens due to the dissipative term, meffγm

dx(t)
dt . This is a phenomenon that

was quantitatively described for the first time by Einstein in 1905 and can be generalized
through the fluctuation-dissipation theorem [63]. In thermal equilibrium, fluctuation-
dissipation theorem relates the fluctuating thermal forces to the dissipative part in the
equation of motion (3.5) of a mechanical oscillator. Using this theorem and by following

4To avoid any confusion, Saa refers to double-sided power spectral density, meaning that contains
information for both negative and positive frequencies around DC, while Sa refers to the single-sided and
contains only the positive frequency components. It is true that Sa(ω > 0) = 2Saa(ω > 0). Practically,
a typical spectrum analyzer equipment, usually records only single-sided spectra because the spectrum
of a real-world signal is symmetrical around DC

5For instance, the experimental data recorder from a spectrum analyzer will be in units of [V2/Hz] and
with the correct calibration process the data could be converted in units of actual displacement [m2/Hz].
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the linear response theory [64], we get the single-side thermal force noise power spectral
density

Sth
F (ω) = −4kBT

ω
Im
( 1
χ(ω)

)
. (3.14)

In the weak damping limit, γm � ω0, the last expression can be written as

Sth
F (ω) = 4meffγmkBT. (3.15)

The thermal force spectrum is white 6 and depends on the ambient temperature of the
oscillator as well as on its dissipation rate γm, while it scales with the effective mass
meff . This result resembles the expression for the Johnson-Nyquist noise [65] of voltage
fluctuations δu(t) across a resistor R, Su = 4kBTR. Both phenomena are related and
can be explained with the fluctuation-dissipation theorem. The thermal power spectral
density Sth

x (ω) of the mechanical oscillator can be then written as

Sth
x (ω) = 4γmkBT

meff [(ω2
0 − ω2)2 + (γ2

mω
2)] . (3.16)

In thermal equilibrium, the mean mode energy of the harmonic mechanical oscillator,
〈E〉, is given by

〈E〉 = 1
2meff〈 ˙xth

2〉+ 1
2k〈x

2
th〉, (3.17)

which should be equal to 〈E〉 = kBT . From the equipartition theorem we get individual
equilibration of the kinetic and the potential energies:

1
2meff〈ẋ2

th〉 = 1
2k〈x

2
th〉 = 1

2kBT. (3.18)

Using the last equation and k = meffω
2 we get

〈x2
th〉 = kBT

meffω2
0
. (3.19)

Furthermore, from equation (3.11) we obtain that the area under the single-sided me-
chanical thermal noise spectrum of a mechanical harmonic oscillator equals the variance
of its displacement

〈x2
th〉 =

∫ ∞
0

1
2πdωSx(ω) = kBT

meffω2
0
, (3.20)

as illustrated in Figure 3.2.

6White noise is a random signal with constant power spectral density.
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Figure 3.2: Noise spectrum of damped harmonic oscillator in thermal equilibrium.

3.2.2 Response to a coherent driving force
We now want to analyze the response of the damped harmonic oscillator to a coherent
driving force. To do this, we solve the equation of motion (3.5) driven by a coherent force
F (t) = F0 cos(ωdt),

meff
d2x(t)
dt2

+ kx(t) +meffγm
dx(t)
dt

= F0 cos(ωdt), (3.21)

where F0 is the driving amplitude and ωd is the drive frequency. Working in the frequency
domain, the amplitude x(ωd) is given by

x(ωd) = F0/meff√
(ω2

0 − ω2
d)2 + (γmωd)2

, (3.22)

and the phase φ(ω) by

φ(ωd) = arctan
(

γmωd
(ω2

0 − ω2
d)

)
. (3.23)

By applying an inverse Fourier transform, we can also obtain the displacement in time
domain

x(t) = ω0

γm

F0

meffω2
0

sinωdt = Q
F0

meffω2
0

sinωdt. (3.24)

On resonance (ωd = ω0), the motion is π/2 out of phase with the driving force (see
Figure 3.3), and the motional amplitude is getting maximum, while it is proportional to
the quality factor Q.
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Figure 3.3: Amplitude and phase response of damped harmonic oscillator as a function of a
sinusoidal driving force frequency. On resonance (ωd = ω0), the motion amplitude is maximum
and π/2 out of phase with the driving force.

3.3 Duffing oscillator
So far we have assumed that nanomechanical resonators can be described by the harmonic
oscillator model, where the restoring force scales linearly with position, obeying Hooke’s
law. Usually this is a very good approximation since most of the materials that are
used in nanomechanical systems, can sustain very high deformation before their linear
strain-stress dependency breaks down. However, when driving mechanical resonators at
large displacement amplitudes, very often nonlinearities appear in the restoring force of
the harmonic oscillator model, much before the intrinsic limit of the materials that are
made of. This behavior can be modeled by adding in the equation of motion a restoring
force term that is proportional to the cube of the displacement. This is called the Duffing
oscillator model and is written as

meff
d2x(t)
dt2

+ kx(t) +meffγm
dx(t)
dt

+ αx(t)3 = F (t), (3.25)

where α is the dimensionless nonlinear Duffing coefficient. Solving this equation in fre-
quency space, we obtain the displacement amplitude

x(ωd) = F0/meff√
(ω2

0 + 3
4αx(ωd)2 − ω2

d)2 + γ2
mω

2
d)

(3.26)

and the phase

φ(ωd) = arctan
(

ω0ωd
ω0
γm

(ω2
0 + 3

4αx(ωd)2 − ω2
d)

)
. (3.27)

Figure 3.4 illustrates the nonlinear amplitude and phase response of a duffing damped
driven oscillator. At low drive force, the amplitude scales linearly with the drive force, as
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Figure 3.4: Amplitude and phase response of duffing oscillator to external sinusoidal driving force,
for sequence of increasing values of the drive amplitude. Solid curves indicate stable solutions
of the response function, while dashed curves indicate unstable solutions. Figure adapted from
[67].

in a linear harmonic oscillator. As the driving force is increasing, the oscillator tends to
get stiffer, and the resonance peak shifts towards higher or lower frequencies, depending
on the sign of α. After a threshold on F0, the displacement amplitude equation x(ωd) has
three solutions. The solution for intermediate amplitude is unstable, leaving the resonator
bistable, oscillating between the two other solution. This phenomenon also appears as a
hysteresis in its response, depending on the direction that the driving frequency is swept.
The phase response also exhibits bistability and hysteresis.

The Duffing nonlinearity has various origins: It can be geometrical, especially in
doubly-clamped beams, due to nonlinear external potentials, or due to nonlinearities in
the transduction scheme. In general, duffing nonlinearity is a nuisance for practical ap-
plication of nanomechanical resonators, mainly because it tends to decrease the dynamic
range of these systems [66]. On the other hand, it can lead to systems with very rich
dynamical behavior. For instance, coupled resonating systems [60] belong to this category
and are part of extensive study in this Ph.D thesis, the results of which are discussed in
chapter 5.

3.4 Nonlinear damping

Apart from the nonlinearity that appears in the restoring force of a mechanical resonator
(conservative nonlinearity), nonlinearities often appear in the damping mechanisms that
accompany every physical resonator (non-conservative nonlinearity), due to various phys-
ical mechanisms. This behavior is sufficiently modeled by adding, in the equation of
motion, a term ηx(t)2 dx(t)

dt . Eventually, the equation of motion that includes both duffing
nonlinearity and nonlinear damping will be given by

meff
d2x(t)
dt2

+ kx(t) +meffγm
dx(t)
dt

+ αx(t)3 + ηx(t)2 dx(t)
dt = F (t), (3.28)
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where η is the coefficient of nonlinear damping. Solving this equation in the frequency
space [67], we obtain the displacement amplitude

x(ωd) = F0/2meffω
2
0√

(ωd−ω0
ω0

− 3αx(ωd)2

8meffω2
d

)2 + ( γeff
2ω0

+ ηx(ωd)2

8meffω0
)2

(3.29)

and the phase

φ(ωd) = arctan
(

meffγeff
2 + ηx(ωd)2

8

meff(ωd − ω0)− 3αx(ωd)2

8ω0
)

)
. (3.30)
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Chapter 4

Transduction techniques

In this chapter we will give an overview of the main transduction techniques that are
commonly employed in graphene and carbon nanotube mechanical resonators. Some of
them have been used and further developed during this thesis.

We will first start with the electrical transduction schemes1. We will discuss the ac-
tuation, the read out, and we will emphasize on the widely used, also in chapter 5 of
this thesis, electrical frequency mixing techniques. We will additionally present the direct
transduction schemes as well as a superconducting cavity-based scheme that we devel-
oped for graphene resonators and is reported in Ref. [68]. We will then discuss the optical
transduction schemes as implemented for graphene or carbon nanotube resonators, and fi-
nally we also discuss various microscopy techniques. More details on specific transduction
schemes will also be included in specific chapters of this thesis.

4.1 Introduction
The motion transduction of nanomechnical resonators is one of the field’s central chal-
lenges. The exploitation of the potential of these devices inevitable requires accurate
read-out and external control of their motion. Therefore, several actuation and detection
schemes have been developed and utilized in various vibrating nanomechanical systems.
For instance, optical [69], magnetomotive [70, 71], piezoelectric [72], piezoresistive [73],
and electrostatic [18, 74, 75] techniques. Nonetheless, due to the intrinsic low dimen-
sionality of resonators which are based on graphene and carbon nanotubes, the efficient
actuation and detections of their motion is even more challenging and not all the above
techniques are suitable. In this chapter, an overview of the state of the art of the trans-
duction techniques for graphene and carbon nanotube resonators will be presented and
analyzed.

4.2 Overview of electrical transduction techniques

1We will emphasize on the electrical transduction schemes as there are the most widely utilized for
carbon nanotube and graphene resonators, and were extensively employed in chapter 5.
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Figure 4.1: Schematic of a 3-terminal-configuration graphene/nanotube resonator. To optimize
the electrical transduction efficiency of graphene’s or nanotube’s motion, the parasitic capaci-
tances Cs and Cd should remain minimum with respect to the graphene/nanotube capacitance
Cg to the gate.

4.2.1 Electrical actuation
A typical configuration of a graphene/nanotube mechanicalresonator, where electrical
transduction techniques can be utilized, is illustrated in Figure 4.1. It is a three-terminal
configuration, similarly to a transistor, where graphene/nanotube acts like the conducting
channel, while it is suspended and free to mechanically vibrate. The graphene/nanotube
is contacted by the source and drain electrodes while suspended above a gate, which could
either be a local electrode or just the highly doped silicon substrate which is acting as
a global back gate. By applying a DC bias to the back gate, the graphene/nanotube is
statically deflected towards it. The device is actuated, at this equilibrium position, by
applying an additional oscillating potential at frequency ω to the back gate. This will
lead to an oscillating force

F = −1
2
∂Cg

∂z
(Vg + δVg)2 ⇒ δF ≈ C

′

gVgδVg, (4.1)

where z is the distance and Cg the capacitance between the graphene/nanotube and
the gate electrode. At resonance, graphene/nanotube vibrates around its static position
and the system acts as a simple harmonic oscillator with restoring force F = −kδx and
resonant frequency f0 = 1

2

√
k

meff
, where meff is the effective mass. This driving scheme

can be used in conjunction not only with electrical but with optical read-out as well.

4.2.2 Electrical readout
The electrical readout is based on the field-effect and capacitive characteristics of these
devices. The conductance of graphene and semiconducting nanotubes depends on their
charge, which depends on the position z, due to the change of the capacitance Cg, and on
the gate voltage Vg, due to the field-effect. Expanding around Vg and x, small changes of
conductance in time can be expressed as
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G(Vg, x) = G(Vg) + dG

dVg
δVg + dG

dz
δz ⇒ δG(t) = dG

dVg
δVg(t) + dG

dz
δz(t). (4.2)

The first term is purely electrical, standard transition gating effect, while the second
term is mechanical and appears only if the graphene/nanotube is moving. This allows
the transduction of their motion into a time varying current at their drain:

δI(t) = VsdδG(t). (4.3)

The dependence of the conductance on the deflection of the graphene/nanotube can be
expressed as

dG

dz
= dG

dQ

dQ

dz
. (4.4)

The dependence of the conductance to the charge is given by
dG

dQ
= dG

dVg

dVg

dQ
= dG

dVg

1
Cg
, (4.5)

and the dependence of the charge to the deflection is given by
dQ

dz
= ∂Q

∂z

dz

dz
+ ∂Q

∂Vg

dVg

dz
= ∂(CgVg)

∂z
= Vg

∂Cg

∂z
= Vg

∂Cg

∂z

⇒ dQ

dz
= VgC

′
g. (4.6)

Using equations (4.5) and (4.6) the conductance on the deflection is given by

dG

dz
= Vg

C ′g
Cg

dG

dVg
. (4.7)

Equation (4.3) can be then expressed as

δG(t) = dG

dVg
δVg(t) + Vg

C ′g
Cg

dG

dVg
δz(t) (4.8)

As a result, the total time-depended current measured at the drain is given by

Id(t) = Vsd [G(Vg) + δG(t)] (4.9)

⇒ Id(t) = Vsd G(Vg) + Vsd
dG

dVg
δVg(t) + Vg

C ′g
Cg

dG

dVg
δz(t). (4.10)

The first term corresponds to the DC current, which depends on the source and the
DC gate biasing, while the second term is a time-varying component purely electrical
due to the small time-varying changes at the back gate biasing. The last term is elec-
tromechanical and depends on the time-varying deflection of the graphene/nanotube. For
high electron mobility graphene or nanotube tube devices, where the transconductance
(dG/dVg) is very large, the electromechanical current can be significant compared to other
nanoresonators with similar dimensions made out of materials with much lower transcon-
ductance. In reality though, the ability to read it out is restricted by the relative low
bandwidth of the transistor based layout of these devices (see more details in the next
section), mainly due to the very high parasitic capacitances, and the difficulty to match
their electrical impedance characteristics. Additionally, Johnson-Nyquist noise further
reduces the read out sensitivity depending on the experimental temperature.
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4.2.3 Readout bandwidth

Taking as an example a graphene resonator, assuming that graphene acts as a ballistic
conductor, it can be simply modeled with one contact resistor and one parasitic capacitor
to the gate, for each of the source and drain electrodes (Figure 4.1). The resistor and the
capacitor at the drain of the device forms a low pass filter, with a cut-off frequency which
defines the available readout bandwidth in which we can detect the electromechanical
signal. The cut-off frequency is given by the expression

fcutoff = 1
2πRdCd

. (4.11)

Assuming a device with 2-point resistance in the order of 20 KΩ and assuming that this
is shared symmetrically between the source and the drain, this gives Rd = 10 KΩ. For a
device with a global back gate, the parasitic capacitance of each electrode can be simple
calculated with a parallel plate capacitor model

C = ε0εA

d
, (4.12)

where ε0 is the dielectric permitivity of vacuum, ε the relative permitivity, A the area of
the capacitor, and d the distance between the two plates of the capacitor. For electrodes
of 250 µm x 250 µm and SiO2 dielectric of 435 nm thickness, the parasitic capacitor for
the drain electrode is Cd = 62.5 nF. Using equation (4.11) the cut-off frequency for this
specific graphene device is estimated to be at 3.2 MHz. The typical graphene resonators
that were investigated during this thesis had resonance frequencies ranging from few tens
to few hundreds of MHz, and hence very difficult to detect their motion. Most of the
high frequency signal would be lost into the parasitic capacitances. For carbon nanotube
devices where the contact resistance is on average higher compared to graphene, the cutoff
limit can be even lower. Furthermore, the extra parasitic capacitances due to the wiring
of the measurement system, can even further decrease the estimated cut-off limit.

4.2.4 Frequency mixing techniques

The limited available bandwidth is very common obstacle in nano-scale electron devices,
therefore various techniques have been developed to overcome it. One approaches is to
parametrically down-convert the high frequency signal below the cut-off frequency of the
device. This method has been used in a nanomechanical resonator coupled to a single
electron transistor [76] and later on in doubly-clamped carbon nanotube and graphene
resonators [18, 19].

The basic idea is to make use of the non-zero transconductance dG/dVg of graphene or
nanotube devices, and utilize them as frequency mixers of different oscillating potentials
that are applied at the ports of the device. This way it is possible to encode the vibration
information of the device at new frequency, which can be below the cut-off limit of the
device. Different versions and variants of the frequency mixing techniques exist, all of
them sharing the same philosophy. The most broadly used versions and systemically
employed during this thesis are the two-source mixing, the amplitude modulation (AM)
mixing, and the frequency modulation (FM) mixing.
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Two-source mixing technique

Sazonova et al. [18] was the first to demonstrate an electrical motion transduction of a
double clamped semiconducting carbon nanotube using the two source mixing technique,
while Chen et al. [19] used the same method to firstly demonstrate the motion transduc-
tion of a double clamped graphene resonator. The layout of this transduction scheme is
depicted in Figure 4.2.

To realize the two-source frequency mixing technique, a Vg + δVg cosωt potential is
applied at the gate, and one that is detuned by ∆ω, δVsd cos((ω + ∆ω)t), at the source.
Similarly as in equation 4.9, the time dependent current at the output can be expressed
as

Id(t) = V ω+∆ω
sd [G(Vg) +Gω] (4.13)

= V ω+∆ω
sd G(Vg) + V ω+∆ω

sd Gω (4.14)

The first term of the last expression describes the current at the frequency of the V ω+∆ω
sd

potential, while the second term is responsible for the mixing process since components
of ω and ω + ∆ω are mixed together:

V ω+∆ω
sd Gω = δG cosωt · δVsd cos((ω + ∆ω)t) (4.15)

= 1
2 δG δVsd · [cos(2ωt) + cos(∆ωt)]. (4.16)

After the mixing process, the current at the drain of the device has two more frequency
components, one at 2ω and one at ∆ω. The mixing current at ∆ω is given by

I∆ω
d (t) = 1

2 δG δVsd cos(∆ωt) (4.17)

= 1
2δVsd · [

dG

dVg
δVg + Vg

C ′g
Cg

dG

dVg
δz(t)] cos(∆ωt) (4.18)

⇒ I∆ω
d (t) = 1

2δVsd
dG

dVg
· [δVg + Vg

C ′g
Cg
δz(t)] cos(∆ωt) (4.19)

The first term of this expression is purely electrical and contains no information on
the mechanics. The second term though, directly depends on the amplitude of the
graphene/nanotube motion δz(t), enabling the detection of the high frequency mechani-
cally oscillation by monitoring the current at the mixing frequency ∆ω. This frequency
can be selected as small as it needed in order to be below the cutoff of frequency of the
device. By using lock-in techniques it is possible to detect I∆ω

d with very high sensitivity,
avoiding the direct pickup of the RF capacitive background.

Amplitude modulation mixing technique (AM)

Another way to achieve similar results to the two source mixing is to apply an amplitude
modulated (AM) oscillating potential at the source of the device, and a static potential
at the gate (Figure 4.3). The AM modulation of an arbitrary signal δV cosωt is defined
as

V AM(t) = [1 +m cos(∆ωt)] ·A cos(ωt) (4.20)

= δV cos(ωt) + δV m

2 [cos((ω + ∆ω)t) + cos((ω −∆ω)t)], (4.21)
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Figure 4.2: Two-source mixing transduction scheme.

where ω is the carrier frequency, m the modulation strength, and ∆ω the modulation
frequency. The AM signal consists of three frequency components, one at ω and two
sideband frequencies at ω ±∆ω, which are enough to provide both the driving and the
conductance modulation needed for the readout. In this case the graphene/nanotube
doesn’t act as a mixer but as a demodulator of the already modulated signal. This
technique, in terms of the resulting mixing current, is equivalent to a two source mixing
where

δVg = Vsd cos(ωt) (4.22)
δVsd = δV AM

sd m cos((ω + ∆ω)t). (4.23)

Consequently the drain current at ∆ω is given by

IAM ∆ω
d (t) = m

2 δVsd
dG

dVg
· [δVg + Vg

C ′g
Cg
δz(t)] cos(∆ωt). (4.24)

Frequency Modulation mixing technique (FM)

Frequency modulation (FM) mixing has been employed both in carbon nanotubes and
on graphene resonators [77, 78, 13]. As the AM technique, it is a single-source, where a
frequency modulated oscillating potential is applied at the source and a static potential
at the gate (Figure 4.3). A frequency modulated signal is defined as

V FM(t) = δV cos(ωt+ (ω∆/ωL)sin(ωLt)), (4.25)
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Figure 4.3: AM/FM mixing transduction scheme.

where ω is the carrier frequency, ω∆ the frequency deviation, and ωL the modulation
frequency. The resulting low frequency mixing current at the drain is given by

IFM ∆ω
d (t) = 1

2
dG

dVg
Vg δVg

C ′

C
ω∆

∂

∂ω
Re[δz(t)] (4.26)

where Re[x0] the real part of its vibration amplitude.
An advantage of the FM mixing technique, in comparison to the AM and to the two-

source, is that more efficiently rejects the undesirable electrical background noise and
keeps only the signals that originates from the mechanical motion. Indeed, according
to equation 4.26 the measured signal lacks any pure electrical term and contains only
electromechanical terms. The down-mixed current is proportional to the derivative of
the real part of the complex Lorentzian response function of the resonator. As a result,
the measured lineshape is not Lorentzian and the absolute value of it shows two minima
(Figure 4.4(b)). For a weakly damped linear resonator, the separation of these minima,
∆f , coincides with the mechanical bandwidth defined as FWHM for the squared modulus
of the motional amplitude (time-averaged mechanical energy stored) and allows to extract
the quality factor Q in a simple manner from the relation ∆f = f0/∆f [77, 13].

Other electrical mixing transduction techniques

Another variation of the mixing transduction techniques has been used by Moser et al.
[23, 17] to measure the thermal vibration and perform force sensitivity experiments on
ultra high quality factor nanotube resonators at cryogenic temperature. The schematic of
the setup is illustrated in Figure 4.5. A weak oscillating potential Vsd(ωmod) is applied on
the source electrode, few tens of kilohertz away from the resonance frequency, in order to
parametrically down-convert the signal that is measured at the output/drain of the device
and avoid bandwidth issues, in a similar manner as the previously described down-mixing
techniques. The resulting current fluctuations on the drain electrode are described by

δI |ω−ωmod|(t) = V ωmod
sd δG = V ωmod

sd
dG

dVg
Vg

C ′g
Cg

δz(t) cos(ωmodt). (4.27)

The current fluctuations δI(t) at the output are converted to voltage fluctuations δVR(t)
across a resistor R. The novelty of this technique is that this signal is split and amplified
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Figure 4.4: AM-FM mixing techniques measurement examples. (a) Mechanical resonance mea-
sured using the AM mixing technique. Figure adapted from [28]. (b) Mechanical resonance
measured using the FM mixing technique. Figure adapted from [77].
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Figure 4.5: Cross-correlation measurement scheme.
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Figure 4.6: Rectification transduction scheme.

by two independent low-noise amplifiers and then cross-correlated using an Fast Fourier
spectrum analyzer. This method cancels out the voltage noise of the amplifiers and
considerably increases the signal-to-noise ratio of the setup.

A transduction scheme that resembles mixing techniques has been used by Hüttel et al.
(2009) [16] to detect the vibrations of carbon nanotubes at low temperatures. Essentially,
this technique parametrically down-converts signal from MHz range to DC, therefore the
carbon nanotube resonator acts as rectifier. The layout of this scheme is illustrated in
Figure 4.6. A micro-antenna close to the device electrostatically actuates it, while DC
bias is applied at the source and at the gate. The crucial point of this technique is that the
nanotube is in the coulomb blockade regime and its transconductance is highly nonlinear
in the vicinity of the coulomb oscillations. Hence, on the contrary to the aforementioned
mixing techniques, higher order terms in the Taylor expansion of the conductance cannot
be neglected. It can be shown that by including the second order terms there is a DC
component at the drain current which directly depends on the motion of the nanotube
and is given by

IDC
d (t) = 1

4Vsd
d2G

dV 2
g

(VgC
′
g

Cg

)2
d2x(t). (4.28)

Similarly to the mixing techniques, the mechanical vibration can be detected, bypassing
the bandwidth limitations of the devices, by measuring the DC current at the drain.
Another advantage is that there is no need for high frequency cabling connected directly
to the device and this way heating at low temperature is minimized. The shortcomings are
related to the necessity of devices with very nonlinear transconductance, as a nanotube
in the coulomb blockade regime, and to the existence of higher 1/f noise at DC.

Another version of the mixing techniques has been developed by Schneider et al.
(2014) [79] to perform ring-down measurements for the first time. The nonlinearities of
nanotube’s transconductance at low temperatures allow to mix an actuation oscillating
potential and a local oscillator, which are applied at the bagk-gate and are 7 MHz detuned,
resulting in a downmixed electromechanical signal at the detuning frequency. This rela-
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tively high mixing frequency in addition to a High Electron Mobility Transistor (HEMT)
amplifier at the drain, provides enough bandwidth to perform ring-down experiments.

4.2.5 Direct electrical transduction
Mixing techniques have been used with great success in investigating the fundamental
properties [18, 24, 25, 13] and exploring the sensitivity limits [20, 23] of these nano-scale
objects. Nonetheless, the process of down mixing results in a great reduction of the
available bandwidth which is a drawback for applications requiring real time detection,
like high speed sensing or signal processing. Xu et al. [80] have shown that it is possible
to directly read out the motion of a graphene resonator without any parametric down-
conversion processing. To achieve this, they employed devices with local gate structure
on a highly resistive substrate in order to minimize their parasitic capacitances. This
allowed for a direct readout using a vector Network analyzer (VNA) in a circuit layout
which is shown in (Figure 4.7). The RF current through the device is given by

IRF
d (t) = j2πfCg(Ctot

Cg
δVg − Vg

C ′g
Cg
δz(t)) + Vd

dG

dVg
(δVg − Vg

C ′g
Cg
δz(t)), (4.29)

where Cg is the capacitance between the graphene and the local back gate, and Ctot the
total capacitance of the device including the parasitic capacitances. The first parenthesis
of equation 4.29 contains the capacitive terms, where the first term is pure electrical while
the second is electromechanical. The second parenthesis contains terms that arise from
the transconductance properties of graphene, where the first is purely electrical and the
second electromechanical. On the contrary to Si-based MEMS where the main signal
comes from the capacitive terms, due the their large area, in graphene the majority of
the signal arises due to the high transconductance of graphene.

4.2.6 Cavity-based electrical transduction schemes
Apart from the direct transduction scheme, which we described in the previous section,
another way to avoid parametrical down-conversion of the electromechanical signal is to
capacitively couple the motion of a mechanical resonator to the energy that is stored
in a microwave or an RF cavity resonator. Such systems have been used in the field
of optomechanics [81] in order to study mechanical motion in the quantum regime [8],
offering very high readout sensitivity and bandwidth.

In our work [68], we demonstrated an integrated system where a graphene mechanical
resonator is capacitively coupled to a superconducting microwave cavity (Figure 4.8).
A superconducting cavity can be modeled as RLC-circuit where the resonant angular
frequency is given by

ωc = 1√
LCtot

, (4.30)

where L is the total inductance and Ctot is the total capacitance of the superconducting
cavity. In the design process, these values are usually selected to give resonant frequency
of few GHz, which provides enough bandwidth to readout graphene’s motion in real-
time, while the photon occupation is low at mK temperatures (~ωc < kBT ), which is
critical for optomechanical experiments [81]. For the device that is depicted in Figure 4.8,
Ctot ≈ 90 fF and L ≈ 6.3 nH result in a cavity resonant frequency of ωc/2π ≈ 6.7 GHz.
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Figure 4.7: Direct RF transduction scheme.

The total capacitance Ctot = C+Cext +Cm(z) effectively consists of a cavity capacitance
C, a contribution Cext from the external feedline, and importantly, a contribution Cm(z)
that depends on the graphene position z, which arises from the graphene acting as a
moving capacitor plate. A small displacement z therefore produces a shift in ωc quantified
by the coupling G0 = ∂ωc

∂z . As a result, the interaction between the mechanical resonator
and the superconducting cavity can be described by the Hamiltonian Hint = ~G0npz [8]
with np the number of pump photons in the cavity. The characteristic coupling at the
level of the zero-point motion zzp =

√
~/2meffωm is given by the so-called single-photon

coupling g0 = G0zzp, with meff the effective mass and ωm/2π the resonance frequency of
the mechanical mode of interest.

In order to detect the vibrations of the graphene resonator, the open-end of the super-
conducting cavity is coupled to a microwave transmission line through the capacitance
Cext. The transmission line is used to pump the superconducting cavity at frequency
ωp/2π with input power Pp,in. The transmission line is also employed to measure the
output power Pout of the cavity at the frequency ωc/2π. Pout is amplified at 4 K by
a high-electron-mobility transistor (HEMT) with a noise temperature of about 2 K and
measured in a spectrum analyzer (see schematic in Figure 4.8(d)).

The principle of the vibration readout is analogous to Stokes and anti-Stokes Raman
scattering. By pumping the cavity at ωp, sidebands in energy are created at ωp ± ωm
due to the coupling of the photons with the mechanical motion. If the pump is detuned
such that the upper sideband frequency is matched with the cavity resonance frequency
ωc = ωp + ωm (see Figure 4.8(e)), the anti-Stokes scattering is resonantly enhanced. If
ωm is significantly larger than the linewidth κ of the cavity, the rate of the anti-Stokes
scattering per phonon is given by Γ+ ≈ 4npg

2
0/κ, with np ∝ Pp,in(ωp) the number of

photons in the cavity. The mechanical vibrations can be detected by recording the output
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Figure 4.8: Graphene drum resonator coupled to a superconducting cavity. (a) False color SEM
image of a circular graphene resonator capacitively coupled to a cavity electrode (red). The
graphene sheet is clamped inbetween cross-linked PMMA (blue) and graphene support electrodes
(yellow). (b,c) Optical microscope images of the superconducting cavity (red), two electrodes
contacting the graphene flake (yellow, situated on the right-side of b and c), and a capacitively
coupled transmission line (yellow, situated at the top in b and c). (d) Measurement schematic
for the detection of the mechanical motion. Coherent pump ωp and drive ωd fields are applied to
the transmission line and the graphene mechanical resonator, respectively. A constant voltage
V DC

g is applied to the graphene. The microwave signal from the cavity is amplified at 4 K with a
HEMT amplifier and recorded at room temperature with a spectrum analyzer. (e) If the pump
frequency is detuned such that ωp = ωc − ωd, anti-Stokes scattering with phonons at rate Γ+
leads to a detectable photon population at ωc.

power at ωc, which is given by

Pout = Pp,in
κ2
ext

κ2 + 4(ωc − ωp)2 4 g
2
0
κ2

〈
z(t)2〉
2z2

zp
. (4.31)

The graphene resonator can be actuated by applying a constant voltage V DC
g and

an oscillating voltage with amplitude V AC
g at a frequency ωd/2π close to ωm/2π so that

ωd = ωc − ωp. As a result, the graphene resonator vibrates at z(t) = ẑ cos (ωdt+ φ) with
φ the phase difference between the displacement and the driving force.

Figures 4.9(b,c) show the resonance of the driven vibrations for the fundamental modes
of two different devices, A and B. Modes at higher frequencies are observed as well, but
they are hardly detectable. For device A the mechanical quality factor is Qm = ωm/γm ≈
100, 000 from the linewidth of the resonance γm/2π = 575 Hz. The photon number for
this measurement is np = 8000, so that Γopt/2π ≈ 0.12 Hz. With these parameters, the
measurement imprecision, estimated to be 2.5 pm/

√
Hz, and is limited by the noise of

the low-temperature HEMT amplifier.
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Figure 4.9: Detecting graphene’s motion using a superconducting cavity. (a) Measurement
scheme: If the pump frequency is detuned such that ωp = ωc − ωm, anti-Stokes scattering
with phonons at rate Γopt leads to a detectable photon population at ωc. (b),(c) Sideband
measurement of the mechanical motion for device A with V DC

g = −2.894 V and V AC
g = 190 nV,

and for device B with V DC
g = 3.405 V and V AC

g = 4.3 µV. Red lines are Lorentzian fits to the
data which yield a mechanical quality factor of Qm = 100, 000 in device A and Qm = 17, 700 in
device B. The calculated motional rms amplitude z is plotted on the right scale.

Similar transduction schemes for graphene resonators have been demonstrated by
[30, 82, 83].

4.3 Overview of optical transduction techniques
The motion transduction of carbon nanotube resonators using a optical means represents
a great challenge due their sub-wavelength dimensions which results into a poor overlap
with an optical beam [84]. Nonetheless, Sawano et al. [85] showed that is possible
to measure the vibration of nanotube cantilevers in water using an optical detection
transduction scheme. Later, Stapfner et al. [86] succeeded to resolve the thermal motion
of a doubly-clamped nanotube resonator optically at room temperature, by placing it
inside a fiber-based, high-finesse optical microcavity (Figure 4.10 (a)). The cavity is
pumped using a stabilized diode laser at 780 nm while the nanotube is placed at the
slope of the cavity resonance. The nanotube vibrations are analyzed by probing the
reflected optical noise with a photo-diode where a spectrum analyzer is plugged at its
output(Figure 4.10 (b)).

On the contrary, the transduction of graphene’s motion with optical means is a very
common approach [22, 87, 88, 78, 89, 90]. The majority of the transduction schemes are
very similar to the experimental setup used by Bunch et al. [22] (see Figure 4.11), which
is the first study where vibrations of suspended graphene were detected. In an optical
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(b)(a)

Figure 4.10: Illustration of the experimental setup used by Stapfner et al. to resolve the thermal
motion of a doubly clamped carbon nanotube resonator [86]. (a) Schematic view of cavity
and sample chip with the carbon nanotube introduced into the cavity mode. (b) Nanotube’s
thermal noise peak with Lorentzian fit (black) and data points calibrated to Brownian vibrational
amplitudes.
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Figure 4.11: Graphene vibrations detection with optical interferometry. (a) Schematic of the
optical transduction scheme used by Bunch et al. to detect the motion of graphene resonators.
(b) Amplitude versus frequency taken with optical drive for the fundamental mode of the single-
layer graphene resonator. A Lorentzian fit of the data is shown in red. Figure adapted by
[22].

transduction scheme, the graphene’s motion actuation can be done either capacitively,
as described in the previous section, or optically. The optical actuation is based on a
laser beam which is focused on the membrane with intensity which is modulated on the
driving frequency. Due to the photo-thermal effect the graphene is contracting/expanding
periodically which leads to a driving force and consequently to its motion. A second laser,
that is focused on the graphene, is responsible for its motion detection. The graphene
acts as the one end of a low-finesse Fabry-Perot cavity, while the substrate as the other
end. As the graphene membrane vibrates it modulates the light intensity that is comes
back from the cavity. This light is detected by a fast photo-diode and by recording its
output with a signal analyzer, it is possible to spectrally resolve graphene’s motion.
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Figure 4.12: Detection of carbon nanotube vibrations using the tip of a scanning force microscope,
done by Garcia-Sanchez et al. in 2007. Figure adapted from [91].

4.4 Microscopy techniques
Apart from the commonly used electrical and optical transduction schemes, microscopy
techniques have also been utilized for the detection of graphene or nanotube mechan-
ical vibrations. For instance, Garcia-Sanchez et al. showed that is possible to detect
the vibrations of carbon nanotube resonators using Scanning Force Microscopy (SFM)
techniques [91] and later on the same was demonstrated for graphene [92]. The princi-
ple of operation is illustrated in Figure 4.12. The nanotube (or graphene) is actuated
capacitively by applying an oscillating potential at the back gate VAC(ω) while the SFM
is imaging in tapping mode. When the driving force reaches the resanace frequency of
the tube, the detected amplitude from the SFM is maximizing. Because the resonance
frequency the SFM cantilever fcantilever is much lower compared to the nanotube, the
applied driving force is 100% modulated. This allows the SFM tip to essentially sense
the modulation envelope of the vibrations (Figure 4.12). For increasing the signal the
modulations frequency fmod can be set equal to the resonance frequency of the SFM tip.

Another way to detect the vibrations of carbon nanotubes is by using electron mi-
croscopy techniques. Treacy et al. [93] measured the Young’s modulus of carbon by
imaging their thermal vibration with a Tunneling Electron Microscope (TEM). The av-
erage statistics of their thermally driven motion appears as blurring on the TEM image
and increases with temperature (Figure 4.13(a)). In a similar way, Babić et al. [94] im-
age the thermal motion of doubly clamped carbon nanotubes using a Scanning Electron
Microscope (Figure 4.13(b)).

As we will demonstrate in chapter 6, it is also possibly to resolve the real-time me-
chanical vibration of carbon nanotube resonators by using a focused electron beam.
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(a) SEM image of a vibrating SWNT grown over a

Figure 3. (a) SEM image of long (
grown over a slit in a Si
simultaneously. Only the middle one is vibrating. A white circle
indicates branching of the lower NT into two NTs.

(a) (b)

Figure 4.13: Imaging carbon nanotubes thermal vibrations usign electron microscopy techniques.
(a) Bright-field EM micrographs of free-standing carbon nanotubes shown the blurring at the
tips due to the thermal vibration. Figure adapted from [93]. (b) Imaging the thermal vibration
of a doubly-clamped carbon nanotube using a SEM. Figure adapted from [94].

4.5 Read-out schemes comparison
During this chapter the majority of the available motion transduction techniques for
graphene and carbon nanotube resonators were presented. In an effort to qualitatively
compare their performance, we can conclude that electrical schemes are primarily suitable
for cryogenic temperatures where the electronic noise is much lower and the transconduc-
tance of the devices higher. The limitations on the bandwidth of such systems can be
overcome by the use of frequency mixing techniques, however, in such a case real-time
detection is not possible. High bandwidth measurements can be performed in graphene
resonators using localized gates in order to minimize parasitic capacitances, or by coupling
their motion to a superconducting cavity.

Optical techniques are more suitable for room temperature detection and in particular
for graphene resonators where their surface is large. The optical detection of carbon
nanotubes represents a very challenging task due to the relatively small interaction overlap
between the optical beam waste and the nanotube. In chapter 6 we overcome this issue
by coupling a focused electron beam to their motion. The spot sized of a focused ebeam
is in the nanometer range offering significant interaction overlap to the motion of the
nanotubes. This detection scheme allowed us to detect the thermal fluctuation of carbon
nanotube resonators in real-time. Finally, microscopy techniques are more suitable for
imaging the vibration of such systems and extracting information on their spatial averaged
statistics and on their eigenmode shapes.
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