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ABSTRACT

The conclusions from randomized clinical trials (RCT) rely on the primary endpoint (PE), which is

chosen at the design stage of the study; thus, it is of utmost importance to select it appropriately. In

RCT, there should generally be only one PE, and it should be able to provide the most clinically relevant

and scientific evidence regarding the potential efficacy of the new treatment.

Composite endpoints (CE) consist of the union of two or more outcomes and are often used in RCT.

When the focus is time-to-event analysis, CE refer to the elapse time from randomization until the first

component of the CE. In oncology trials, for instance, progression-free survival is defined as the time

to disease progression or death.

The decision on whether to use a CE versus a single component as the PE is controversial. The

advantages and drawbacks regarding the use of CE have been extensively discussed in the literature.

Gómez and Lagakos develop a statistical methodology to evaluate the convenience of using a relevant

endpoint RE versus a CE consisting of the union of the RE plus another additional endpoint (AE). Their

strategy is based on the value of the asymptotic relative efficiency (ARE), which relates the efficiency

of using the logrank test based on the RE versus the efficiency based on the CE. The ARE is expressed

as a function of the marginal laws of the time to each component RE and AE, the probabilities of ob-

serving each component in the control group, the hazard ratios measured by each component of the

CE between the two treatment groups, and the correlation between components.

This thesis explores, elaborates on, implements and applies the ARE method. We have also devel-

oped a new online platform named Comp ARE that facilitates the practical use of this method. The

ARE method has been applied to cardiovascular studies. We have made further progress into the the-

oretical meaning of the ARE and have explored how to handle the probability and the hazard ratio of a

combination of endpoints.

In cardiovascular trials, it is common to use CE. We systematically examine the use of CE in this

field by means of a literature search and the discussion of several case studies. Based on the ARE

methodology, we provide guidelines for the informed choice of the PE.

We prove that the usual interpretation of the ARE as the ratio of sample sizes holds and that it can

be applied to evaluate the efficiency of the RE versus the CE. Furthermore, we carry out a simulation

study to empirically check the proximity between the ratio of finite sample sizes and the ARE.

We discuss how to derive the probabilities and hazard ratios when they come from a combination

of several components. Furthermore, it is shown that the combined hazard ratio (HR*) is, in general,
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not constant over time, even if the hazard ratio of the marginal components are. This non-constant

behaviour might have a strong influence on the interpretation of treatment effect and on sample size

assessment. We evaluate the behaviour of the HR* in respect to the marginal parameters, and we study

its departure from constancy, depending on different scenarios.

This thesis has implemented the ARE methodology on the online platform Comp ARE . Clinicians

and biostatisticians can use Comp ARE to study the performance of different endpoints in a variety of

scenarios. Comp ARE has an intuitive interface and it is a convenient tool for better informed deci-

sions regarding the PE. Results from different parameter settings are shown immediately by means of

tables and plots. Comp ARE is extended to quantify specific values for the combined probability and

hazard ratios. When the user cannot anticipate some of the needed parameters, Comp ARE provides

a range of plausible values. Moreover, the departure from constancy of a combined hazard ratio can

be explored by visualizing its shape over time. Sample size computations are implemented as well.



RESUMEN

Los eventos compuestos consisten en la unión de dos o más eventos, y son utilizados usualmente en

ensayos clínicos aleatorizados. A menudo, los análisis se basan en el tiempo hasta que se produce

el evento de interés; en ese caso hablaríamos del tiempo hasta el primero de los componentes. En

ensayos oncológicos, por ejemplo, la supervivencia libre de progresión se define como el tiempo hasta

la progresión o la muerte.

La decisión entre utilizar un evento compuesto o un componente de este como variable principal

es controvertida. Gómez y Lagakos desarrollan una metodología estadística para evaluar la convenien-

cia de utilizar un evento relevante frente a un evento compuesto consistente en la unión del evento

relevante más un evento adicional. Su estrategia se basa en el valor de la eficiencia relativa asintótica

(ARE, usando el acrónimo en inglés), la cual relaciona la eficiencia de utilizar el test logrank basado

en el evento relevante frente a la eficiencia basada en el evento compuesto. La ARE se expresa en fun-

ción de las leyes marginales correspondientes al tiempo hasta cada componente relevante y adicional,

las probabilidades de observar cada componente en el grupo control, los hazard ratios medidos para

cada componente del evento compuesto entre los dos grupos de tratamiento y la correlación entre los

componentes.

Esta tesis explora, profundiza, implementa y aplica la metodología ARE. También hemos creado

una nueva plataforma en línea, Comp ARE , que facilita el uso práctico de esta metodología.

Examinamos sistemáticamente el uso de eventos compuestos en ensayos cardiovasculares a partir

de una búsqueda en la literatura existente y discutimos diferentes casos. Basándonos en la metodología

ARE, aportamos guías para la elección informada de la variable principal.

Probamos que la interpretación usual de la ARE como el ratio de los tamaños de muestra se sus-

tenta y puede ser aplicado para evaluar la eficiencia del evento relevante frente al evento compuesto.

Asimismo, llevamos a cabo una simulación para estudiar empíricamente cuán cerca está el ratio de

tamaños de muestra finitos de la ARE.

Discutimos cómo derivar las probabilidades y hazard ratios cuando provienen de una combi-

nación de varios componentes. También mostramos que el hazard ratio combinado es, en general,

no constante a lo largo del tiempo, incluso cuando los hazard ratios de los componentes marginales

lo son. Este comportamiento no constante puede tener una gran influencia en la interpretación del

efecto del tratamiento y en el cálculo de los tamaños de muestra. Evaluamos el comportamiento del
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hazard ratio combinado respecto a los parámetros marginales y lo estudiamos para diferentes esce-

narios.

En esta tesis se ha implementado la metodología ARE en la plataforma en línea Comp ARE . Clíni-

cos y bioestadísticos pueden utilizar Comp ARE para estudiar el comportamiento de diferentes even-

tos en un gran abanico de escenarios. Comp ARE contiene una interfaz intuitiva y es una herramienta

conveniente para tomar una mejor decisión informada sobre la variable principal. Los resultados

provenientes de diferentes escenarios son mostrados instantáneamente a partir de tablas y gráficos.

Comp ARE se ha ampliado para cuantificar valores específicos para la probabilidad combinada y el

hazard ratio. Cuando el usuario no puede anticipar alguno de los parámetros necesarios, Comp ARE

facilita un rango de valores posibles. Asimismo, el hazard ratio puede ser explorado visualizando su

forma a lo largo del tiempo y, por lo tanto, proporciona una ayuda gráfica para posibles desviaciones

de proporcionalidad de los hazards. Cálculos sobre el tamaño de muestra también han sido imple-

mentados en la plataforma.



RESUM

Els esdeveniments compostos consisteixen en la unió de dos o més esdeveniments, i són utilitzats

usualment en assajos clínics aleatoritzats. Sovint, les anàlisis es basen en el temps fins que es produeix

l’esdeveniment d’interès; en aquest cas parlaríem del temps fins al primer dels components. En as-

sajos oncològics, per exemple, la supervivència lliure de progressió es defineix com a temps fins a la

progressió o la mort.

La decisió entre utilitzar un esdeveniment compost o un component d’aquest com a variable prin-

cipal és controvertida. Gómez i Lagakos desenvolupen una metodologia estadística per avaluar la

conveniència d’utilitzar un esdeveniment rellevant enfront d’un esdeveniment compost consistent

en la unió de l’esdeveniment rellevant més un esdeveniment addicional. La seva estratègia es basa

en el valor de l’eficiència relativa asimptòtica (ARE, fent servir l’acrònim en anglès), la qual relaciona

l’eficiència d’utilitzar la prova logrank basada en l’esdeveniment rellevant enfront de l’eficiència basada

en l’esdeveniment compost. L’ARE s’expressa com a funció de les lleis marginals corresponents al

temps fins a cada component rellevant i addicional, les probabilitats d’observar cada component en

el grup control, els hazard ratios mesurats per a cada component de l’esdeveniment compost entre els

dos grups de tractament i la correlació entre els components.

Aquesta tesi explora, aprofundeix, implementa i aplica la metodologia ARE. També hem creat una

nova plataforma en línia, Comp ARE , que facilita l’ús pràctic d’aquesta metodologia.

Examinem sistemàticament l’ús d’esdeveniments compostos en assajos cardiovasculars a partir

d’una recerca en la literatura existent i en discutim diferents casos. Basant-nos en la metodologia ARE,

aportem guies per a l’elecció informada de la variable principal.

Provem que la interpretació usual de l’ARE com la ràtio de les mides mostrals se sustenta i pot ser

aplicada per avaluar l’eficiència de l’esdeveniment rellevant enfront de l’esdeveniment compost. A

més, portem a terme una simulació per estudiar empíricament com n’està, de prop, la ràtio de mides

mostrals finites respecte de l’ARE.

Discutim com es poden derivar les probabilitats i els hazard ratios quan provenen d’una combi-

nació de diversos components. També mostrem que el hazard ratio combinat és, en general, no con-

stant al llarg del temps, fins i tot quan els hazard ratios dels components marginals ho són. Aquest

comportament no constant pot tenir una gran influència en la interpretació de l’efecte del tractament

i en el càlcul de les mides mostrals. Avaluem el comportament del hazard ratio combinat respecte dels

paràmetres marginals i l’estudiem per a diferents escenaris.
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En aquesta tesi també s’ha implementat la metodologia ARE en la plataforma en línia Comp ARE .

Clínics i bioestadístics poden utilitzar Comp ARE per estudiar el comportament de diferents esdeveni-

ments en un gran ventall d’escenaris. Comp ARE conté una interfície intuïtiva i és una eina convenient

per prendre una decisió informada millor sobre la variable principal. Els resultats provinents de difer-

ents escenaris són mostrats instantàniament a partir de taules i gràfics. Comp ARE s’ha ampliat per

quantificar valors específics per a la probabilitat combinada i el hazard ratio. Quan l’usuari no pot

anticipar algun dels paràmetres necessaris, Comp ARE facilita un rang de valors possibles. A més, el

hazard ratio pot ser explorat visualitzant-ne la forma al llarg del temps i, per tant, proporciona una

ajuda gràfica per a possibles desviacions de la proporcionalitat dels hazards. Càlculs sobre la mida

mostral també han estat implementats en la plataforma.
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1
INTRODUCTION. STATE OF THE ART AND MAIN

OBJECTIVES

1.1 Background

The broad aim of clinical drug development is to find out whether a treatment can be shown to be si-

multaneously safe and effective, to the extent that the risk-benefit relationship is acceptable. At phase

III of treatment development, randomized clinical trials (RCTs) are commonly designed to demon-

strate or confirm any therapeutic benefit (ICH, E8, E9).36 The conclusions from RCTs rely on the pri-

mary endpoint, which is chosen at the design stage of the study, and thus it is of utmost importance

to select it appropriately. In these trials, there should generally be only one primary endpoint, and

it should be able to provide the most clinically relevant and convincing evidence directly related to

the primary objective of the trial. In two-arm clinical trials, primary endpoint observations from con-

trol and treatment group are compared in order to provide scientific evidence regarding the potential

efficacy of the new treatment after a follow-up period (see Figure 1.1).

Composite endpoints (CEs), also referred as combined outcomes, consist of the union of two or

more outcomes and are often used as the primary endpoint in RCTs. Many trials measure dichoto-

mous (binary) endpoints and combine them into a single composite outcome which is considered to

have occurred if any of the individual outcomes is observed (Meinert, 2012; Neaton, 2005).44, 46 For ex-

ample, in the HIV field, the binary composite endpoint consisting of the observation of CD4 cell count

< 250 cel l s/µL or need for antiretroviral therapy (ART) is used as primary endpoint to prove treatment

efficacy (Reynolds, 2012).58 Total scores and health indices, based on rating scales, are also referred to

as composite endpoints (Chi, 2005).6 For instance, the Hamilton Depression Rating Scale (HAMD) is

based on multiple items and is a composite endpoint commonly used in depression trials.

1
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TOTAL PATIENTS
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Treatment
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results
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results

Figure 1.1: Scheme of a randomized confirmatory clinical trial.

When the focus is time-to-event analysis, composite endpoints use the time from randomization

until the time that the first CE component occurs. For example, progression-free survival is defined

as a time to disease progression or death in cancer studies. In cardiovascular trials, it is common to

use CEs as primary endpoints. They usually incorporate either terminal outcomes such as death from

any cause or cardiovascular death, and non-terminal outcomes such as myocardial infarction, stroke

and hospitalization. Time to the composite endpoint Major Adverse Cardiovascular Event (MACE), for

example, is generally defined as the time to cardiovascular death, myocardial infarction, target vessel

revascularization or stroke, whichever occurs first.

1.2 Main arguments in favor and cautions in the use of composite

endpoints in clinical trials

The decision on whether to use a composite endpoint versus a single component as the primary end-

point in RCTs is controversial. The pros and cons regarding the use of CE have been extensively dis-

cussed in the literature, as described in depth by the European Network for Health Technology Assess-

ment (EUnetHTA, 2013)13 guidelines. We summarize the main arguments discussed by several authors

(see Table 1.1).

Main arguments in favor

Although a simple endpoint has the advantage of simplicity, one of the major arguments for using

CEs is the need to combine multiple measurements into a single CE when a single primary variable

cannot be selected from several outcomes that are associated with the primary objective, as stated

in the guidelines for the International Conference on Harmonisation of Technical Requirements for
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Use of composite endpoints

Main arguments in favor
Combination of several outcomes of equal importance in one primary endpoint
Net clinical treatment benefit estimation
Multiplicity is adequately addressed without type I error adjustments
Avoids the problem of bias associated to competing risks
Event rate incrementation

Cautions
Need for homogeneity between components (similar clinical importance and expected effects)
Improvement can be driven by less important components
Interpretation problems regarding the the global effect of the CE
Multiplicity adjustments when reporting component results
Significance of CE does not imply significance of components
Including inappropriate components may lead to a loss of power in the CE

Table 1.1

Registration of Pharmaceutical for Human Use (ICH).36 Composite endpoints may help investigators

who are having difficulty in deciding which outcome to select as primary endpoint, especially when

they are of equal importance (Ferreira-González, 2007; Freemantle, 2003; Ross, 2007)15, 19, 59 or when

no single event alone could be considered an adequate primary endpoint. Composite endpoints can

also be useful when an outcome is considered a poor surrogate for the principal outcome of the study.

As stated in Amir 2012,2 progression free survival (PFS), a CE consisting of death and progression,

might sometimes be a valid surrogate for overall survival (OS), due to the high correlation between

them. Hence, PFS would be an alternative to testing the overall clinical effect of treatment.

The problem of multiple comparisons (multiplicity) is also addressed. Since only one outcome is

used as the primary endpoint for statistically testing the treatment effect, there is no need to adjust for

the type I error (Kleist, 2006; Wittkop, 2010).39, 80

Another major argument is to avoid the problem of competing risks, especially when the target

of a treatment is to reduce non-fatal events for diseases in which a fatal event might preclude their

observation (Cook, 2007). Thus, endpoints which do not include the mortality component are prob-

lematic, since patients who died before the endpoint of interest are likely to not have the same risk as

the survivors.

One more rational argument is that the use of CE assures higher event rates. The improvement

of treatments and population health in the society fortunately leads to declining event rates. Conse-

quently, a larger number of patients or longer follow-up period is needed in order to detect treatment

differences. Using CEs for a fixed sample size and follow-up period, the number of outcome observa-

tions (event rates) increases, and this might hopefully lead to an increase in the statistical efficiency of

the trial.

Cautions

Despite the rationale of using a composite endpoint as described above, several authors have cau-

tioned against their use and interpretation since they do not always prove useful and informative for

clinical decision making (Montori, 2005).45 It is well established that a CE in an RCT should only be
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used if the individual components are clinically meaningful and of similar importance to the patient

(Tomlinson, 2010);72 the expected effects on each component are similar based on biological plausi-

bility; and the more important clinical components should -at the very least- not be affected negatively

(Kleist, 2007).38

Composite endpoints can be used to describe an overall disease process (van Leth, 2003)76 or a

complex disease. However, the interpretation of the global effect of a CE might be confounding when

components are quite heterogeneous and do not move along the same lines as each other (Freemantle,

2003).19 Moreover, the treatment benefit with a CE in which the component endpoints have very dif-

ferent clinical importance can be problematic, because the treatment might have beneficial effects for

only the less important endpoints and thus give a misleading impression (Neaton, 2005).46 As stated in

Ferreira-González (2007),14 the main results of their systematic review show that less important com-

ponents had higher event rates and larger treatment effects, whereas the most important components

(mainly mortality outcomes) provided the lowest event rate and showed the smallest treatment effects.

As several authors propose, the results of each CE component should be reported individually.

They should be presented as secondary outcomes, and report the primary CE results that clearly fol-

low the CONSORT guidelines.8 Some methodologies take into consideration the importance of the

CE components, such as those based on priority ranking outcomes (Rauch, 2014).54 These methods

consider endpoints of different scale levels that assign higher weight to the most clinically relevant

endpoints. In Pocock (2012),52 the authors propose using the "win ratio", a measure that takes into

account the clinical importance of each component. However, this method does not actually use the

precise times from randomization to event occurrence, but only considers whether the outcome is

observed sooner in one patient than in another patient with a similar profile.

It has also been discussed that statistical treatment significance on the CE does not imply statisti-

cal treatment significance for each component. One way to overcome this problem is to analyze all the

composite components separately. However, this would lead to a problem of multiplicity. Consistency-

adjusted methods for type I error are proposed to test the efficacy of both the CE and the main compo-

nent (Rauch, 2014)57 although it comes with a loss in power. Another strategy is to test the superiority

of the CE and the non-inferiority of each one of the components in order to guarantee the overall clin-

ical relevance of the result (Rauch, 2013).55

Another rationale in literature for using CE instead of a single event as primary endpoint is the

reduction in sample size due to the increase of the event rates (Tomlinson, 2010).72 Hence, investiga-

tors hoping to increase the efficiency of the test can be tempted to add endpoints that will give them

a higher number of observed events, such as hospitalizations. In the case of time-to-event endpoints,

this increase is expected to be achieved by including component endpoints that occur with higher

frequency and/or earlier than the main events of interest (Freemantle, 2003).19 However, it has been

discussed (Montori, 2005)45 and demonstrated in Gómez and Lagakos (2013)27 that adding inappro-

priate components to the relevant endpoint might actually lead to a loss of power in detecting the true

treatment differences, consequently leading to a larger chance of failure in detecting any real effect of
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the treatment under study.

Another crucial aspect is referred to the joint probability law of the CE. It is the basis for computing

the needed sample size in order to detect a prespecified treatment effect size for a specified nominal

α-level for a given power. However, due to the complexity of the composite endpoint definition, a

straightforward derivation of the associated joint distribution cannot be based solely on the marginal

laws of their multiple single endpoints. The final law for the composite endpoint and, hence, the ef-

ficient evaluation of the treatment effect are influenced by: the distribution of every component of

the composite endpoint, the probability of observing the outcome in the control group, the expected

treatment effects given by the hazard ratio between the two treatment groups, the correlation between

the components and, to a lesser extent, the joint distribution between the components.

In the following sections we describe how to assess the statistical treatment effect in clinical trials

that involve time-to-event analysis, and the statistical methodology developed by Gómez and Lagakos

(2013) for deciding when it would be more appropriate to use a CE instead of a single endpoint.

1.3 Testing the statistical treatment effect of the Primary Endpoint

1.3.1 The logrank test

The logrank test, also known as the Mantel-Cox test, is commonly used in time-to-event analysis for

comparing treatment effects between groups. Assume that we have a two-arm study that involves

either a random assignment to an active (X = 1) or a control treatment (X = 0) that aims to prove

the efficacy of the new active treatment. The effect of treatment is evaluated based on the time T ( j )

to an endpoint E , where the superscript j indicates the treatment group ( j = 0 for the control group

and j = 1 for the treatment group). Let λ( j )(t ) and S( j )(t ) denote the hazard and survival functions of

T ( j ) ( j = 0,1), respectively. The null hypothesis of no treatment effect is given by H0 : S(0)(t ) = S(1)(t ),

or equivalently by H0 : HR(t ) = λ(1)(t )/λ(0)(t ) = 1, where HR(t ) is the hazard ratio. The alternative

hypothesis that the new treatment improves survival is given by Ha : HR(t ) < 1.

Consider the observed failure times t1 < t2 < ·· · < tl . At each time ti (i = 1,2, . . . , l ) we observe d (0)
i

events and R(0)
i individuals at risk in group 0 (control), and d (1)

i events and R(1)
i individuals at risk in

group 1 (treatment).

Group Observed to fail at ti (events) Not fail at ti At risk

Control d (0)
i R(0)

i −d (0)
i R(0)

i

Treatment d (1)
i R(1)

i −d (1)
i R(1)

i

Total di Ri −di Ri

Table 1.2
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Note that conditioned on the four marginal totals, d (1)
i defines the whole table (1.2). Under the null

hypothesis H0 of no treatment effect, d (1)
i follows a hypergeometric distribution. That is:

P (d (1)
i = d) =

(
di

d

)(
Ri −di

R(1)
i −d

)
/

(
Ri

R(1)
i

)
,

where d takes values d = max(0,di −R(0)
i ), . . . ,mi n(di ,R(1)

i ).

Therefore, the mean Ei and variance Vi of d (1)
i under H0 are:

Ei =
(

R (1)
i

Ri

)
di ,

Vi = Ri−R (1)
i

Ri−1 ·R(1)
i

(
di
Ri

)(
1− di

Ri

)
.

The logrank test is constructed by comparing the observed event minus the expected number of events

in one group. In our case, we denote:

O =∑l
i=1 d (1)

i (total failures in group 1),

E =∑l
i=1 Ei ,

V =∑l
i=1 Vi ,

and define the logrank statistic as: Z = O−Ep
V

=
∑l

i=1(d (1)
i −Ei )√∑l

i=1 Vi

.

It is known that under the null hypothesis H0 of no treatment effect, the test statistic Z follows a stan-

dard normal distribution (Z ∼ N (0,1)) (Cox, 1972),9 or equivalently Z 2 ∼ χ2
1. Hence, we would reject

the null hypothesis in favor of the alternative for large values of Z .

1.3.2 Testing treatment effect using the relevant endpoint and the composite endpoint

Consider that the effect of treatment is to be evaluated based on the time T ( j )
R to a relevant event ER ,

where the superscript j indicates the treatment group ( j = 0 for the control group and j = 1 for the

treatment group). Assume now that an additional endpoint EA is considered as a component of the

primary endpoint and the composite endpoint E∗ = ER ∪EA is to be used instead, in order to prove the

efficacy of the new treatment. The effect of treatment would then be evaluated with the time T ( j )
∗ to

E∗, where T ( j )
∗ = min{T ( j )

R ,T ( j )
A }, and T ( j )

A stands for the time to EA for each group. We will also assume

that end-of-study censoring at time τ is the only non-informative censoring cause for both groups; this

assumption indirectly implies that the censoring mechanism is the same for both groups.

Let λ̃( j )
k (t )(k = R, A) denote a marginal or cause-specific hazard for the relevant endpoint(k = R) or

the additional endpoint (k = A), such that λ̃( j )
k (t ) = λ( j )

k (t ) are the marginal hazards of T ( j )
k when there

are no competing causes, and λ̃
( j )
k (t ) = λ

( j )
C k (t ) denote the cause-specific hazards of T ( j )

k when either

T ( j )
R is a competing cause for T ( j )

A , or T ( j )
A is a competing cause for T ( j )

R .

If we were to use the relevant endpoint as primary endpoint in a clinical trial, the treatment effect

would be tested with the logrank test, being the null hypothesis of no effect given by H0 : HRR (t ) =
λ̃(1)

R (t )/λ̃(0)
R (t ) = 1 and the alternative that the new treatment improves survival by Ha : HRR (t ) < 1.
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Analogously, if we were to use the composite endpoint as primary endpoint, the treatment effect would

be tested with the logrank test to compare H∗
0 : HR∗(t ) =λ(1)

∗ (t )/λ(0)
∗ (t ) = 1 versus H∗

a : HR∗(t ) < 1.

1.4 The Asymptotic Relative Efficiency (ARE) of two tests

A statistical test is more efficient against another if for a given significance level the former leads to a

higher power. However, for any fixed alternative to a null hypothesis, say H0 : θ = θ0, the power of any

test will typically go to 1 if the number of observations is sufficiently large (Noether, 1954).48 Pitman

defines a sequence of alternatives hypotheses around the null with asymptotic power converging to

some number less than 1, as n → ∞, to compare the efficiency of two tests. Pitman alternatives are

given by:

Ha,n : θn = θ0 +k/
p

n, for any fixed k.

Since these alternatives change with n they form a sequence of alternatives. And since θn → θ0 as

n →∞, it is called a sequence of local alternatives or contiguous alternatives to the null.

Assume we have two tests based on statistics T1n and T2n which follow a normal distribution

N (µ1n(θ),σ2
1n(θ)) and N (µ2n(θ),σ2

2n(θ)), respectively. We want to test the null hypothesis H0 : θ = θ0

against the alternatives Ha,1n : θ1n = θ0 + k1/
p

n1 and Ha,2n : θ2n = θ0 + k2/
p

n2 for T1n and T2n , re-

spectively, with k1 > 0 and k2 > 0. The power of T1n and T2n for a given statistical significance α is,

respectively, given by:

Π1n(θ1n) = P (T1n ≥ zα|Ha,1n),

Π2n(θ2n) = P (T2n ≥ zα|Ha,2n),

where zα is the standard normal quantile corresponding to the right tail probability α.

We define the relative efficiency of T2n with respect to T1n as the ratio of sample sizes n1/n2 that are

required to achieve the same power for the same alternative hypothesis for a given significance level

(Lehmann and Romano, 2005).41 For large values of n, Pitman defines the asymptotic relative efficiency

as:

ARE(T2n ,T1n) = n1

n2
= lim

n→∞
µ

′
2n(θ0)/σ2n(θ0)

µ
′
1n(θ0)/σ1n(θ0)

= lim
n→∞

R2
2n(θ0)

R2
1n(θ0)

,

where µ
′
i n(θ0) = ∂µi n(θ0)/∂θ for i = (1,2) and R2

1n(θ0), R2
2n(θ0) are called the efficacies of the test T1n

and T2n , respectively. Therefore, the ARE(T2n ,T1n) is given by the limit of the ratio of the efficacies of

the two tests, which is equivalent to the limit of the corresponding ratio n1/n2.
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1.5 The ARE method by Gómez and Lagakos

Gómez and Lagakos (2013) develop a statistical methodology that helps to decide between using a

relevant endpoint ER instead of a composite endpoint E∗, consisting of the union of ER plus another

additional endpoint EA , to evaluate the effect of a treatment. Their strategy is based on using the value

of the asymptotic relative efficiency to assess the efficiency of the logrank test ZR , which is based on

the relevant endpoint, and comparing it with the efficiency of the logrank test Z∗, which is based on

the composite endpoint.

Endpoints ER and EA may or may not include terminating events, also called fatal events. This

leads to four different censoring situations, referred to as Cases 1, 2, 3 and 4 (see Table 1.3):

Case 1: Neither of the two endpoints (ER , EA) includes a terminating event. We observe T ( j )
k (k =

R, A) if Ek occurs before the right-censoring time τ.

Case 2. The relevant endpoint does not include a terminating event while the additional endpoint

does. Hence, we observe T ( j )
R if T ( j )

R < min{T ( j )
A ,τ}, and we observe T ( j )

A if T ( j )
A < τ.

Case 3. The relevant endpoint includes a terminating event, but the additional endpoint does not.

Thus, we observe T ( j )
R if T ( j )

R < τ, and we observe T ( j )
A if T ( j )

A < min{T ( j )
R ,τ}.

Case 4. Both endpoints include a terminating event. We observe T ( j )
R if T ( j )

R < min{T ( j )
A ,τ}, and we

observe T ( j )
A if T ( j )

A < min{T ( j )
R ,τ}.

Relevant endpoint Additional endpoint

Case 1 NT NT
Case 2 NT T
Case 3 T NT
Case 4 T T

Table 1.3: Four possible combinations depending on whether the relevant endpoint or the additional endpoint
includes a terminating event (T). NT stands for non-terminating event.

Consider the marginal or cause-specific hazard function λ̃(0)
R (t ) of the relevant endpoint in the

control group as fixed and define a sequence of alternatives Ha,n that consist of instantaneous haz-

ard functions that are close enough to λ̃(0)
R (t ); for instance, by taking λ̃(1)

R,n(t ) = λ̃(0)
R (t )eg (t )/

p
n for some

g (t ) function. Logrank ZR is asymptotically N (0,1) under the null hypothesis of no treatment dif-

ference (H0 : HRR (t ) = λ̃(1)
R (t )/λ̃(0)

R (t ) = 1); and under the sequence of alternatives Ha,n it is asymp-

totically normal with unit variance and mean µR given in equation (1.1)(Schoenfeld, 1983).64 Anal-

ogously, the hypothesis of no treatment effect when using the composite endpoint E∗ is stated as

H∗
0 :λ(1)

∗ (t )/λ(0)
∗ (t ) = HR∗(t ) = 1, and the sequence of alternatives H∗

a,n : HR∗,n(t ) = eg∗(t )/
p

n for a given

function g∗(t ). The statistic Z∗ is asymptotically N (0,1) under H∗
0 and asymptotically normal with unit

variance and mean µ∗ given in equation (1.2) under the sequence H∗
a,n . The asymptotic means of ZR
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and Z∗, called the non-centrality parameters, are given by:

µR =
∫ ∞

0 g (t )p(t )[1−p(t )]PrH0 {U ≥ t }λ̃(0)
R (t )d t√∫ ∞

0 p(t )[1−p(t )]PrH0 {U ≥ t }λ̃(0)
R (t )d t

, (1.1)

µ∗ =
∫ ∞

0 g∗(t ))p∗(t )[1−p∗(t )]PrH∗
0

{U∗ ≥ t }λ(0)
∗ (t )d t√∫ ∞

0 p∗(t )[1−p∗(t )]PrH∗
0

{U∗ ≥ t }λ(0)
∗ (t )d t

, (1.2)

where U = min{TR ,τ} (in Cases 1 and 3), U = min{TR ,TA ,τ} (in Cases 2 and 4) and U∗ = min{T∗,τ}

denote the observed outcome; τ denotes the censoring time; p(t ) = PrH0 {X = 1|U ≥ t } and p∗(t ) =
PrH∗

0
{X = 1|U∗ ≥ t } are the null probabilities that someone at risk at time t is in treatment group

1; PrH0 {U ≥ t } and PrH∗
0

{U∗ ≥ t } are the null probabilities that someone is still at risk at time t and

PrH0 {U ≥ t }λ̃(0)
R (t ) and PrH∗

0
{U∗ ≥ t }λ(0)

∗ (t ) correspond to the probabilities, under the null hypothesis,

of observing events ER and E∗, respectively, at time t .

To evaluate the difference in efficiency between using the logrank test with the relevant endpoint

based on ZR versus with the composite endpoint based on Z∗, Gómez and Lagakos base their strategy

on the behavior of the ARE of Z∗ versus ZR given by:

ARE(Z∗, ZR ) =
(
µ∗
µR

)2

, (1.3)

where µR and µ∗ are to be replaced by expressions (1.1) and (1.2).

Gómez and Lagakos derive an expression of the ARE based on parameter values that can be an-

ticipated at the design stage of a clinical trial. Next, we describe the assumptions established and the

anticipatable1 parameters needed to compute ARE .

1.5.1 Assumptions

Censoring

The end-of-study censoring at time τ (τ= 1 without loss of generality) is the only non-informative

censoring cause for both groups. This assumption implies that the censoring mechanism is the same

for both groups.

Proportional hazards

The hazard ratios between T (0)
R and T (1)

R and between T (0)
A and T (1)

A are constant, that is, HRR(t ) =
λ̃(1)

R (t )/λ̃(0)
R (t ) = HRR and HRA(t ) = λ̃(1)

A (t )/λ̃(0)
A (t ) = HRA for all t . Note that although we are assuming

that the hazard functions λ̃( j )
R (t ) and λ̃

( j )
A (t ) ( j = 0,1) are proportional, this does not imply the pro-

portionality of hazards λ(0)
∗ (t ) and λ(1)

∗ (t ) for the composite endpoint T∗ (see Figure 1.2). Indeed, the

hazard ratio is only constant for specific scenarios, as we will describe further in another chapter of

this thesis.

1Anticipatable: capable of being anticipated (Source: http://www.collinsdictionary.com).
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Figure 1.2: Hazard ratios HRR , HRA and HR∗ of the relevant, additional and composite endpoint; and survival
functions S(0)

∗ (t ) and S(1)
∗ (t ) of the composite endpoint for each group. Marginal Weibull distributions are assumed

for the times to the relevant and additional endpoints.

Copula assumptions

We can approach the bivariate distribution (TR ,TA) by decoupling the joint survival of (TR ,TA) into

univariate components using a copula model. Gómez and Lagakos consider a Frank Archimedean

survival copula (Trivedi PK and Zimmer DM, 2005),73 given by:

C (tR , tA ;θ) =−1

θ
log

{
1+ (e−θtR −1)(e−θtA −1)

e−θ−1

}
,

where θ(−∞< θ <∞) is an association parameter between TR and TA . Perfect positive and negative

dependence between marginals are achieved when θ tends to ∞ and −∞, respectively. When θ tends

to 0, TR and TA are close to being independent. Other copulas could also be considered (Plana-Ripoll

and Gómez, 2015).51 The association parameter θ is biunivocally related to Spearman’s rank correla-

tion ρ(−1 < ρ < 1) given by ρ = ρ(θ) = 1− 12
θ [ 1

θ

∫ θ
0

t
e t−1 d t − 2

θ2

∫ θ
0

t 2

e t−1 d t ].
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Spearman’s correlation

The spearman rank correlation ρ between TR and TA is given by (Schweizer, 1981):66

ρ(TR ,TA) = 12
∫ +∞

0

∫ +∞

0
(F (tR , tA)−FR (tR )FA(tA))dFR (tR )dFA(tA), (1.4)

where FR (tR ) and FA(tA) are the distribution functions of TR and TA , respectively, and F (tR , tA) is the

joint distribution function of (TR ,TA).

The joint survival probability is given by:

S(tR , tA) = P (TR > tR ,TA > tA) = 1−FR (tR )−FA(tA)+F (tR , tA) = SR (tR )+S A(tA)−1+F (tR , tA), (1.5)

where SR (tR ) = 1−FR (tR ) and S A(tA) = 1−FA(tA) are the survival functions of TR and TA , respectively.

It follows from (1.5)

F (tR , tA) = S(tR , tA)−SR (tR )−S A(tA)+1,

and

F (tR , tA)−FR (tR )FA(tA) = S(tR , tA)−SR (tR )−S A(tA)+1−(1−SR (tR ))(1−S A(tA)) = S(tR , tA)−SR (tR )S A(tA).

Hence from (1.4), we can express ρ(TR ,TA) in terms of the survival functions as follows:

ρ(TR ,TA) = 12
∫ +∞

0

∫ +∞

0
(S(tR , tA)−SR (tR )S A(tA))dSR (tR )dS A(tA). (1.6)

We can also define ρ in terms of the survival copula CS(SR (tR ),S A(tA)) = S(tR , tA) as:

ρ(TR ,TA) = 12
∫ +∞

0

∫ +∞

0
(CS(SR (tR ),S A(tA))−SR (tR )S A(tA))dSR (tR )dS A(tA).

If we make the substitution u = SR (tR ) and v = SR (tA), the ρ(TR ,TA) simplifies to:

ρ(TR ,TA) = 12
∫ 1

0

∫ 1

0
(CS(u, v)−uv)dud v.

Spearman’s ρ can be as well defined in terms of the probability of concordance and discordance of

two vectors (Nelsen, 2006).47 Let (TR1,TA1), (TR2,TA2) and (TR3,TA3) be three independent random

vectors with common joint distribution function F (tR , tA). The population version of ρ is defined to

be proportional to the probability of concordance minus the probability of discordance for the two

vectors (TR1,TA1) and (TR2,TA3) as:

ρ(TR ,TA) = 3(P [(TR1 −TR2)(TA1 −TA3) > 0]−P [(TR1 −TR2)(TA1 −TA3) < 0]).
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Joint distribution of (T ( j )
R , T ( j )

A )

Assuming equal association parameter θ for groups 0 and 1, the joint survival and joint density for

(T ( j )
R , T ( j )

A ) (j=0,1) are given by:

S( j )
(R,A)(tR , tA ;θ) =−1

θ
log

{
1+ (e−θS( j )

R (tR ) −1)(e−θS( j )
A (tA) −1)

e−θ−1

}

f ( j )
(R,A)(tR , tA ;θ) = θe−θ(S( j )

R (tR )+S( j )
A (tA))

(1−e−θ)e−2θS( j )
(R,A)(tR ,tA ;θ)

[ f ( j )
R (tR )][ f ( j )

A (tA)], (1.7)

where S( j )
R (tR ) and f ( j )

R (tR ), S( j )
A (tA) and f ( j )

A (tA) are the survival and marginal densities of T ( j )
R and T ( j )

A ,

respectively. The survival function of T ( j )
∗ = mi n{T ( j )

R ,T ( j )
A } is given by:

S( j )
∗ (t ;θ) = P (T ( j )

∗ > t ) = P (T ( j )
R > t ,T ( j )

A > t ) =C (S( j )
R (t ),S( j )

A (t );θ) = S( j )
(R,A)(t , t ;θ).

Marginal laws of T ( j )
R and T ( j )

A

Regarding the marginal laws of T ( j )
R and T ( j )

A , the Weibull distributions are chosen since they are

widely used in survival analysis due to their flexibility, allowing decreasing, constant and increasing

hazard functions. Hence, for both treatment groups ( j = 0,1) the survival function is given by

S( j )
k (t ) = exp{−(t/b( j )

k )β
( j )
k } (k = R, A),

where b( j )
k and β

( j )
k are the scale and shape parameters, respectively, for T ( j )

k . The shape parameters

are chosen equal for both groups, that is β(0)
k = β(1)

k = βk , so that the assumption of proportionality of

the hazards holds.

Denoting by pR and p A the probabilities of observing ER and EA in group 0, respectively, they are

related to the marginal law of T (0)
R ,T (0)

A and the bivariate law of (T (0)
R ,T (0)

A ) as follows:

pR =
Pr{T (0)

R < 1} = 1−S(0)
R (1) Cases 1,3

Pr{T (0)
R < min{T (0)

A ,1}} = ∫ 1
0

∫ ∞
u f (0)

(R,A)(u, v ;θ)d vdu Cases 2,4

p A =
Pr{T (0)

A < 1} = 1−S(0)
A (1) Cases 1,2

Pr{T (0)
A < min{T (0)

R ,1}} = ∫ 1
0

∫ ∞
v f (0)

(R,A)(u, v ;θ)dud v Cases 3,4 ,

where f (0)
(R,A)(u, v ;θ) is the joint density of (T (0)

R ,T (0)
A ) and is defined in (1.7).
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The scale parameters b(0)
k (k = R, A) are derived as follows:

Case 1: b(0)
k = 1

(− log(1−pk ))1/βk
.

Case 2: The scale parameter b(0)
R is a function of the joint density f (0)

(R,A)(·, ·;θ), and it is found as the

solution of equation pR = ∫ 1
0

∫ ∞
u f (0)

(R,A)(u, v ;θ)d vdu. The scale parameter b(0)
A is a function of p A and

βA , and it is given by b(0)
A = 1

(− log(1−p A))1/βA
.

Case 3: b(0)
R = 1

(− log(1−pR ))1/βR
and b(0)

A is a function of the joint density f (0)
(R,A)(·, ·;θ) and it is found as

the solution of equation p A = ∫ 1
0

∫ ∞
v f (0)

(R,A)(u, v ;θ)dud v .

Case 4: The scale parameters b(0)
k are functions of the joint density f (0)

(R,A)(·, ·;θ) and are found as the

simultaneous solution of equations pR = ∫ 1
0

∫ ∞
u f (0)

(R,A)(u, v ;θ)d vdu and p A = ∫ 1
0

∫ ∞
v f (0)

(R,A)(u, v ;θ)dud v .

The scale parameters b(1)
R , b(1)

A are computed so that the assumption of proportionality of the haz-

ards holds, that is, b(1)
R and b(1)

A are such that HRR = λ(1)
R (t )

λ(0)
R (t )

and HRA = λ(1)
A (t )

λ(0)
A (t )

for Cases 1 and 3; and

λ(1)
C R (t ;θ)

λ(0)
C R (t ;θ)

= HRR and
λ(1)

C A (t ;θ)

λ(0)
C A (t ;θ)

= HRA for Cases 2 and 4 (we refer to the the original publication (Gómez and

Lagakos, 2013)27 for further details).

Under the above assumptions, expression (1.3) for Cases 1 and 3 becomes

ARE(Z∗, ZR ) =
(∫ 1

0 log
{
λ(1)
∗ (t )/λ(0)

∗ (t )
}

f (0)
∗ (t )d t

)2

(
log

{
HRR

})2 (
∫ 1

0 f (0)
∗ (t )d t )(

∫ 1
0 f (0)

R (t )d t )
,

and for Cases 2 and 4

ARE(Z∗, ZR ) =

(∫ 1
0 log

{HRRλ
(0)
C R (t )+HRAλ

(0)
C A (t )

λ(0)
C R (t )+λ(0)

C A (t )

}
f (0)
∗ (t )d t

)2

(log{HRR})2(
∫ 1

0 f (0)
∗ (t )d t )V

,

being

V =
∫ 1

0

e−HRA
∫ t

0 λ
(0)
C A (u)duS(0)

∗ (t )λ(0)
C R (t )

e−
∫ t

0 λ
(0)
C A (u)duπ+e−HRA

∫ t
0 λ

(0)
C A (u)du(1−π)

d t ,

where f (0)
R (t ) and f (0)

∗ (t ) are the density functions of T (0)
R and T (0)

∗ , respectively; S(0)
∗ (t ) stands for the

survival of T (0)
∗ ; and π stands for the probability, under the null hypothesis, of being in group 1.
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1.5.2 The ARE expression as a function of anticipatable parameter values

Gómez and Lagakos express the ARE function in terms of a list of parameter values that trialists might

anticipate at the design stage of the trial. These parameter values are:

1. The probabilities pR , p A of observing the ER and the EA , respectively, in the control group,

2. the relative treatment effects given by the hazard ratios HRR and HRA ,

3. the Spearman correlation coefficient ρ between ER and EA ,

4. decreasing, constant or increasing hazard rates given by the shape parameters βR and βA for the

Weibull marginal distribution for TR and TA , respectively, and

5. the probability π, under the null hypothesis, of being in group 1 (only needed for Cases 2 and 4).

The above parameters are all easily interpretable for physicians and investigators. Interpretability

is important because researchers will have to decide, a priori, which are the most plausible anticipated

values in a study design of a clinical trial; then, based on those chosen values, the decision to adopt or

not a composite endpoint will have to be made on the ARE results. In cases where investigators cannot

specify the exact value of some parameter, they can consider a range of values to evaluate whether the

ARE affects their decision. The rule for deciding whether or not the composite is recommended will

be based on the following:

• When ARE(Z∗, ZR ) > 1 ⇒ the composite endpoint should be used instead of the relevant.

• When ARE(Z∗, ZR ) ≤ 1 ⇒ the relevant endpoint alone should be used.
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1.6 Goals and thesis structure

The proper choice of the primary endpoint is crucial to achieve the main objectives in a randomized

clinical trial. The asymptotic relative efficiency provides a method on which base the decision on the

primary endpoint. Practical guidelines from the methodology can be of great help for trialists in their

field of research. Furthermore, computational tools that facilitate the use of methodological develop-

ments for a specific study might significantly help clinicials in the design of the study.

The present work is organized as follows:

In chapter 2, we carry out a a systematic search for the use of composite endpoints in the cardiovas-

cular field. Based on randomized clinical trials published in 2008, the ARE method is applied in order

to set general recommendations. This research gave rise to a publication in the journal Circulation:

Cardiovascular Quality and Outcomes (Gómez, Gómez-Mateu and Dafni, 2014).26

In chapter 3 we prove that the usual interpretation of the Asymptotic Relative Efficiency holds when

two different sets of hypotheses are set. This result implies that the ARE can be interpreted as the

ratio of the required sample sizes when using the relevant or the composite endpoint as the primary

endpoint. A publication in SORT (Gómez and Gómez-Mateu, 2014)24 presents these developments as

well as a simulation for empirically analyzing how close we are to the limiting relationship between the

ARE and the required sample sizes for a finite number of patients.

In chapter 4 we describe CompARE,28 a web-based platform that we have developed as a tool for

making the methodology widely applicable within the scientific community. It is of great help when

planning a clinical trial, since it quantifies how efficient a relevant subset of outcomes is with respect

to a larger subset of outcomes. CompARE is a user-friendly, free tool and, although it is programmed

internally in R, users need no knowledge of R, nor do they need to install it on their computers. Com-

pARE is currently accessible at the following website: https://cinna.upc.edu/compare.

Chapter 5 provides practical solutions for assigning anticipated probabilities and hazard ratios

when the relevant or the additional endpoints consist of several components. This is an important

issue in practice, since investigators may know the anticipated probabilities and hazard ratios of each

one of the components rather than the combined probabilities and hazard ratios. A letter to the editor

in Statistics in Medicine (Gómez, Gómez-Mateu, 2016)23 is published based on the evaluation of the

ARE depending on the choice of different combined parameter values.

In chapter 6, we present preliminary extensions of CompARE. Specifically, some settings assumed

by default in Chapter 4 are extended: i) we allow to assume Weibull distributions with decreasing or

increasing hazard rates, different correlations and copulas other than Frank’s, ii) possible values for

the combined probabilities and hazard ratios are also included in the platform when the relevant or

the additional endpoints consist of several components, iii) computations where both the relevant and

additional endpoint include death, and iv) sample size computations for achieving a specific power at

a fixed significance level when using the relevant or the composite endpoint.
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Finally, in the closing chapter 7 we describe new lines of research.

The complete list of references used in the literature search in chapter 2, the R code to perform the

computations of the ARE , some methodological details of chapter 5 and the publications derived from

this thesis are included in the Appendix.
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2
THE COMPOSITE ENDPOINT IN THE CARDIOVASCULAR

AREA

Composite endpoints are commonly used in randomized clinical cardiovascular trials to assess the

efficacy of a new treatment. In this field, the often rare event of the relevant primary endpoint (indi-

vidual or composite), such as cardiovascular death, myocardial infarction, or both, is combined with

a more common secondary endpoint, such as target lesion revascularization, with the aim to increase

the statistical power of the study. This increase, in the case of time-to-event endpoints, is expected to

be achieved by the inclusion of component endpoints that occur with higher frequency or earlier than

the main events of interest.19 However, in some scenarios, adding specific components might in fact

lead to loss of power to detect the true treatment differences.

The objective of the present study is to examine systematically the use of composite endpoints (CE)

in cardiovascular randomized clinical trials (RCT), to illustrate the ARE method by means of case stud-

ies, and to use it to provide guidelines for the informed choice of the primary endpoint in the context

of cardiovascular clinical trials.

17
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The contents of this chapter have been published in26 (See Appendix):

Gómez G, Gómez-Mateu M, Dafni U. Informed Choice of Composite End Points in Cardiovascular

Trials (2014). Circulation. Cardiovascular Quality and Outcomes, 7, 170–178.

This chapter is based on the above paper after excluding the introduction because its content has

been detailed in the previous chapter. The notation used here is coherent with the rest of this thesis,

and differs slightly from the one used in the paper.

In this chapter we have updated the computations of the ARE values for case study 2 in section 2.3.2

and figure 2.5, as well as part of the writing from the published one. After the publication of the paper,

we were aware of a misspecification in the R code when calculating the survival of the composite end-

point in control group for Case 2, which has been corrected. Luckily, the specific recommendation for

the case study have not changed and also the general recommendations with the computed scenarios

remains similar except that correlation is not affecting with the same strength.

Guadalupe Gómez, Moisés Gómez-Mateu and Urania Dafni
Informed Choice of Composite End Points in Cardiovascular Trials

Print ISSN: 1941-7705. Online ISSN: 1941-7713 
Copyright © 2014 American Heart Association, Inc. All rights reserved.

Greenville Avenue, Dallas, TX 75231
is published by the American Heart Association, 7272Circulation: Cardiovascular Quality and Outcomes 
 published online January 14, 2014;Circ Cardiovasc Qual Outcomes. 
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2.1 Background

2.1.1 Composite endpoints in cardiovascular research

In the past 15 years, many authors have addressed the issue of using and interpreting CEs in the cardio-

vascular research area. In what follows we present a brief summary of relevant readings. Freemantle

et al19, 20 examine the use of CE in major clinical trials, by means of a selection of 167 RCT (with a total

of 300,276 patients), that include a primary CE incorporating all-cause mortality, assess the arguments

for and against CE, and provide guidance on their applications and reporting. He acknowledges the in-

adequate reporting of CEs used as primary outcome measures in randomized trials, concluding that,

often, the reported results apply to the individual components of the CE rather than to the overall CE.

Ferreira-González et al14–16 use MEDLINE to conduct 2 systematic reviews to investigate the ra-

tionale, potential problems and solutions of using CEs. They point out that the CE, by capturing the

net benefit of the intervention, could give a more appropriate reflection of the clinical spectrum of im-

portant outcomes associated with the disease being treated than would any component alone. In the

conclusions, it is stated that the use of CE is often complicated by the magnitude of the effect of treat-

ment across component endpoints and by the relative importance of the different components for the

patients. The reader is referred to Huque et al35 for an excellent introduction together with some key

considerations for using a CE. They present as well some solutions through applications of multiple

testing strategies.

2.2 Survey of use of composite endpoints in the cardiovascular literature

2.2.1 Identification of published clinical trials that used composite endpoints

We explore the use of CE in recent literature through a systematic Medline search covering the 2008

publication of RCTs in 6 high impact medical journals (Table 2.1). Medline search was restricted to

randomized controlled trial and human subjects publications, including the terms coronary artery

disease, valvular heart disease, arrhythmia, cardiomyopathy, congestive, heart failure, cardiovascu-

lar, or cardiovascular disease in the abstract, title, or keywords. The systematic search resulted in 216

publications. The ones that mentioned in the abstract, title, or keywords, a composite or combined

endpoint, or the specific endpoints of MACE, or Net Adverse Clinical Events (NACE) were selected (87

of 216). Studies that dealt with other diseases, or looked at subgroup, or nonrandomized comparisons,

or did not use time-to-event endpoints were excluded (26 of 87). A total of 61 clinical trials were con-

sidered for exploring the use of a CE (Figure 2.1). The breakdown by journal is presented in Table 2.1.

The complete reference list is available in the Appendix.
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Abstracts screened (n=216)

Not including CE 
(n=129)

Trials including CE (n=87)

Did not deal with CV diseases, did not preserve randomized
allocation, reported on a subgroup analysis or did not use
time to event endpoints (n=26)

Cardiovascular RCT including CE 
(n=61)

CE as primary endpoint (n=47)

Not including Death (n=1)

Including Death in the CE (n=46)

With relative frequency higher than 
20%  (n=3)

CE as primary including Death
(high probabilities excluded) (n=43)

CE as secondary endpoint (n=14)

Not including Death 
(n=10)

Including Death 
(n=4)

Figure 2.1: Flow chart for systematic review of cardiovascular (CV) randomized clinical trials (RCTs). CE indicates
composite endpoint.

Journal (Papers and RCT) Total Articles % CE RCT %
NEJM 46 21% 17 28%
The Lancet 36 17% 13 21%
European Heart Journal 54 25% 12 20%
Circulation 53 25% 10 16%
JAMA 24 11% 9 15%
Annals of Internal Medicine 3 1% 0 0%
Total RCT 216 100% 61 100%

Table 2.1: Summary of Medline search, for cardiovascular terms, for 2008 Publication of RCTs.
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2.2.2 Information abstracted from each RCT

The following information was abstracted from each of the published articles: time to follow-up, sam-

ple size, components of each primary and secondary endpoint, frequency of occurrence of each end-

point (CE and components of interest), the corresponding HRs and p-values between groups com-

pared in the trial.

2.2.3 Method to set the recommendations

From the information abstracted for each trial together with previously examined scenarios in Gómez

and Lagakos,27 we establish all the possible parameter combinations. However, because not all the

combinations of frequencies (control group) and relative treatment effects (pR , HRR ) or (p A , HRA)

were found in the studied RCTs, we did restrict our computations to published pairs of values (p, HR).

The ARE is computed for each of a total of 320 combinations to provide recommendations for the

cardiovascular area trials. In all cases, computations have been done assuming that death is part of

the RE, modeling the marginal laws of the times to RE and AE as Weibull, representing decreasing,

constant and increasing hazard functions, combining each scenario with different degrees of depen-

dence between times to RE and to AE and using HR = 0.99 to represent relative treatment effects of no

interest.

Values of ARE > 1 are in favor of using the CE instead of the RE. However, because the advantage of

one endpoint over the other is small in the vicinity of 1, we follow, as Gómez and Lagakos did, a general

rule to use the CE instead of the RE if ARE > 1.1 and to retain the RE if ARE ≤ 1.1.

2.3 Case studies

Interesting cases of trials leading to a significant result for the RE whereas nonsignificant for the CE,

significant for the CE driven by the effect on the RE and nonsignificant for the RE whereas significant

for the CE are described next, the first two with greater detail.

2.3.1 Case study 1: treating patients after an acute coronary syndrome with

Succinobucol

An RCT to assess the effects of the antioxidant succinobucol (AGI-1067)70 on cardiovascular outcomes

in patients with recent acute coronary syndrome already managed with conventional treatments, uses

as PE, denoted by CE, the composite of RE (time to first occurrence of cardiovascular death, resusci-

tated cardiac arrest, MI, stroke), and AE (unstable angina or coronary revascularization; Figure 2.2).

A total of 6144 patients having experienced an acute coronary syndrome ≤ 1 year before recruitment

were randomized to receive succinobucol (n=3078) or placebo (n=3066), in addition to standard of

care. A beneficial effect of succinobucol on RE was found (207 events: succinobucol versus 252 events:

placebo; HR = 0.81; p-value=0.029). The less important but frequent outcomes (ie, hospitalization
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for unstable angina and coronary revascularization) were included in the primary CE. The expecta-

tion would be that by the inclusion of these outcomes, the resulting increase in the number of CE

events observed would lead to an increase in study power. On the contrary, these endpoints did not

differ significantly between the 2 treatment groups, and their contribution of a high relative number

of events in the primary CE led to the disappearance of the statistically significant benefit of the ac-

tive treatment on the important outcomes RE. Thus, the primary CE was not found to be significantly

different between treatment groups (530 events: succinobucol versus 529 events: placebo). We have

that the probability of observing the RE in control group is pR =8.2% with observed HRR =0.81, whereas

the probability of observing the AE in control group is p A=10.4% with HRA=1.05 (it corresponds to

coronary revascularization, whereas observed HR for unstable angina is 1.10).

RELEVANT

ENDPOINT

CV death

Myocardial infarction

Stroke

Res. cardiac arrest

ADDITIONAL 

ENDPOINT

Unstable angina

Coronary revascularization

COMPOSITE  ENDPOINT

Figure 2.2: Pictorial representation of the construction of a composite endpoint as the union of the relevant end-
point and the additional endpoint based on Tardif ’s randomized clinical trial. CV stands for cardiovascular and
Res. stands for resuscitated.

The ARE is explored for these parameter values. For all different shapes of the time-to-event distri-

butions (9 combinations including increasing, constant, and decreasing hazard functions) and corre-

lation values ranging from 0.15 to 0.75 (63 scenarios), it is found that the ARE is always <1.1. Following

the rule of Gómez and Lagakos, the benefits of using the CE over the RE are marginal and probably too

small to justify adding the AE.

The use of CE would be justified in the case that HRA ≤ 0.85, for all other parameters fixed (ie,

pR =8.2%; HRR =0.81; p A=10.4%; Figure 2.3). However, if HRA ≥ 0.95 not even an expected frequency

of 20% for the AE would justify the use of CE. If HRA=0.9, CE would only be justified if p A ≥ 20%, and

the association between RE and AE is weak (not shown). Thus, under these circumstances, the addi-

tional components of coronary revascularization or hospitalization for unstable angina on the primary

endpoint (PE) would had only been recommended if the expected beneficial effect of succinobucol on

these components would have been approximately as strong as the expected effect on cardiovascular

death, resuscitated cardiac arrest, MI, or stroke (Figure 2.4).
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0.15 0.25 0.35 0.45 0.55 0.65 0.75

 HRA = 0.81

 HRA = 0.85

 HRA = 0.9

 HRA = 0.95
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Spearman 
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Figure 2.3: Asymptotic relative efficiency (ARE) of composite versus relevant endpoint (CE and RE, respectively)
for a range of Spearman correlation coefficients and different values of the hazard ratio of the additional endpoint
HRA for the parameters of case study 1 (pR =0.082; HRR =0.81; p A=0.104) and marginal increasing hazards. HRR

stands for the hazard ratio of the RE; and pR and p A indicates the probability of RE and additional endpoint in
control group, respectively.

Recommendations from case study 1: 
 
• Use Composite Endpoint when having high treatment effect on AE (HRA ≤ 0.85). 
 
• Use Relevant Endpoint when having very low treatment effect on AE (HRA ≥ 0.95), or low 

treatment effect (HRA = 0.9) except for high frequency of AE (pA ≥ 20%) and very weak 
correlation between endpoints. 

Figure 2.4: Summary of recommendations for case study 1 as a guide to decide between using composite endpoint
(CE) or relevant endpoint (RE) as primary endpoint (PE). Values of treatment effect on RE and relative frequency
of RE and AE in control group (HRR =0.81; pR =8.2% and p A=10.4%) are fixed in advance and correspond to Tardif
randomized clinical trial.
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2.3.2 Case study 2: treating hemorrhagic complications during primary percutaneous

coronary intervention in acute MI

The Harmonizing Outcomes with Revascularization and Stents in the Acute MI (HORIZONS-AMI)69

study is a prospective, open-label, randomized, multicenter trial in patients with ST-segment–elevation

MI presented within 12 hours after the onset of symptoms. In this study, 3602 patients were assigned to

treatment with heparin plus a glycoprotein IB/ IIa inhibitor (n=1802) or the alternative treatment of bi-

valirudin alone (n=1800). The interest lies on whether hemorrhagic complications are reduced, when

using bivalirudin alone. Two primary 30-day endpoints were prespecified: (1) major bleeding, denoted

by RE and (2) NACE, denoted by CE, a composite of major bleeding and MACE. MACE, denoted by AE,

is composed, in this trial, of death, reinfarction, target vessel revascularization for ischemia and stroke.

In this case, while major bleeding is the relevant event of interest, the composite CE takes into account

all other additional adverse clinical events, including death. According to the results, MACE is almost

identical in the 2 groups (98 versus 99 events; p-value=0.95), whereas major bleeding is statistically

significantly lower in the bivalirudin-alone group (89 versus 149 events; p < 0.001). The comparison

of NACE (166 versus 218 events; p-value=0.005) between treatment groups is found statistically signif-

icant, and as mentioned by the authors, this is entirely driven by the effect on major bleeding. The risk

taken by the researchers of combining the endpoint of interest with an endpoint on which treatments

have no differential effect is demonstrated using this study.

The probability of observing a major bleeding event (RE) in control group, is pR =8.3% with HRR =0.6,

whereas the probability of observing a MACE event, AE, is p A=5.5% with HRA=1. MACE is occurring

with smaller frequency than the RE and in addition the treatment does not have an effect on it. Under

these parameter values the ARE is examined, as above, for 21 scenarios, corresponding to different

shapes of time-to-event distributions (including decreasing, constant, and increasing hazards) and

correlation values ranging from 0.15 to 0.75. In all those cases, the ARE between a major bleeding

event and a MACE event is <1.1, meaning that the use of the CE (NACE) is not recommended.

Other scenarios were also explored under all above combinations of distributional shapes and cor-

relation values. First, for higher values of the probability of observing a MACE event (5.5% ≤ p A ≤ 80%),

the same situation occurs, that is, NACE is neither recommended for any of the cases. Second, the ARE

was also explored for larger beneficial effects on MACE (0.3 ≤ HRA ≤ 0.9), and the ARE value is >1.1

whenever the treatment effect on the additional endpoint is high (HRA ≤ 0.7). Figure 2.5 illustrates

the ARE s for the values of the parameters of this clinical trial (pR =8.3%; HRR =0.6; p A=5.5%) and for

marginal increasing hazards. We find that the ARE is always <1.1 for HRA ≥ 0.8, indicating that low to

weak effects on MACE are not enough to prefer NACE (irrespective of the correlation). However, high

or strong beneficial effects on MACE (HRA ≤ 0.7) would advocate for the use of the CE, NACE.
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Figure 2.5: Asymptotic relative efficiency (ARE) of composite versus relevant endpoint (CE and RE, respectively)
for a range of Spearman correlation coefficients and different values of the hazard ratio of the additional endpoint
HRA for the parameters of case study 2 (pR =0.083; HRR =0.6; p A=0.055) and marginal increasing hazards. HRR

stands for the hazard ratio of the RE; and pR and p A indicates the probability of RE and additional endpoint in
control group, respectively.

It is clear that the chosen PE, NACE, for the efficacy of bivalirudin alone in this study gave unex-

pected good results and that it was a matter of luck not to have a diluted effect in NACE because the

ARE can be as low as 0.51, meaning that major bleeding as a PE can be twice as efficient as NACE.

One could wonder under which circumstances the composite NACE would have been a better,

more efficient choice, and by running all the ARE computations for different values of the frequency

of observing an AE, we find that for the composite NACE to be justified, at least high treatment effect

on MACE (HRA ≤ 0.7) with low probability (p A = 0.055) or a treatment effect HRA ≤ 0.8 with high

frequency (p A ≥ 0.4) is needed.

2.3.3 Case Study 3: testing Fondaparinux in patients with ST-segment–elevation MI

In the clinical trial testing fondaparinux in patients with ST-segment–elevation MI,50 the RE of death

and the AE of myocardial reinfarction at 30 days occurred in 12.5% (pR =0.125) and 3.7% (p A=0.037) of

control patients, respectively. The CE occurred in 15.1% of control patients, indicating a weak corre-

lation between RE and AE. The corresponding HRs (HRR =0.83 and HRA=0.66) were both not signifi-

cantly different than 1. The increased number of events for the CE and the same direction of benefit

for both components led to a statistically significant HR with respect to CE of 0.80. In this trial, the use

of the CE is clearly indicated by the ARE in 100% of the scenarios.

2.3.4 Case study 4: prevention studies

A prevention study assessed the benefit on the risk of cardiovascular disease of low-dose aspirin in

the prevention of atherosclerotic events in patients with type 2 diabetes mellitus.49 Composite PE

was defined as fatal and nonfatal ischemic heart disease, fatal or nonfatal stroke, and peripheral arte-
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rial disease. This trial could be considered an outlier because of the combination of a low frequency

of fatal cardiovascular events (pR =0.008), yet significantly different between groups (HRR =0.10; p-

value=0.0037). The CE occurred in 6.7% of control patients, indicating a weak correlation between

RE and AE, leading to a hazard ratio for the CE (HR*) of 0.80 but not statistically significant.

Under these extreme conditions, the use of the RE would have been justified based on the low HRR ,

whereas the use of the CE would have been justified based on the low frequency of events. The ARE

points to the clear choice of the CE for anticipated strong effects of the aspirin on the nonfatal events

(HRA ≤ 0.2) and the clear choice of the RE for moderate effects (HRA ≥ 0.8), whereas for HRA values

between 0.2 and 0.8, the CE is recommended as HRA increases for progressively higher values of the

frequency of nonfatal events. In this particular situation, the choice of the CE based on an assumption

of a treatment effect at such an extreme value would be difficult to justify at the design stage although

it could be taken under consideration for the next trial designed on this question.

2.4 Results and recommendations

A CE was used as PE for 47 of the clinical trials and as secondary for the remainder of 14 clinical trials.

The frequency of use of different CEs, as well as of each individual component, for the 47 cases that

CE is the PE, is presented in Table 2.2. MI and stroke were encountered as components of the CE in

over half of these clinical trials (66% and 55%, respectively), Hospitalization and target vessel revascu-

larization are AE in 30% and 13%, respectively, whereas death is encountered in all of them but 1 (46 of

47). In addition, among the 14 trials with an individual PE, in 13 of them death is either the RE (in 4) or

used as an AE (in 9).

Endpoint Death MI Stroke Hospitalization TVR N with additional N Total (%)
combinations endpoints
1 X X X ... ... 8 14 (30%)
2 X X X X ... 5 8 (17%)
3 X ... ... X ... 1 6 (13%)
4 X X ... ... ... 2 5 (11%)
5 X ... ... ... ... 5 5 (11%)
6 X X ... ... X 2 4 (9%)
7 X ... X ... ... 2 2 (4%)
8 X ... ... ... X 1 1 (2%)
9 X ... X ... X 1 1 (2%)
10 ... ... X ... ... 1 1 (2%)

98% 66% 55% 30% 13% 28 47

Table 2.2: Frequencies for different combinations of endpoints for 47 RCTs with composite endpoint as primary
endpoint. MI indicates myocardial infarction; and TVR, target vessel revascularization. RCT stands for random-
ized clinical trial.

For all the trials, including death (46 out of 47), the frequency of death was relatively low (median

4%), with the exception of 3 trials where death was frequent (>20%). The observed relative frequencies

of death among the 43 low-frequency studied trials were between 0.002 and 0.15 (Table 2.3). The ob-
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served relative frequencies of the AEs (MI, stroke, hospitalization, and target vessel revascularization)

were between 0.002 and 0.31. Concerning the relative treatment effects, it was found that some of the

component endpoints had an observed HR >1 (17 of 43). Among the clinical trials with HR<1, we have

found relative treatment effects for death as small as 0.1 and as large as 0.98 and between 0.35 and 0.94

for the AEs (Table 2.3).

In the reviewed studies, specific combinations of the control group frequencies for the RE (pR ) and

AE (p A) with corresponding HR values emerged. The ARE of a CE with death as a RE adding MI, stroke,

or hospitalization as AE is computed for different shapes of time-to-event distributions and a range of

correlations between times to RE and AE and is described next to serve as a guide for the design of

future trials.

Death plus MI

For the relatively low frequency of MI (AE; ≤ 12%) for all HR combinations found in the trials, the CE

of death and MI is almost always justified based on the ARE except for the case where death and MI

present with the same frequency and the beneficial effect on death is higher than on MI (HRA>HRR ).

Death plus Stroke

For particularly low frequency of stroke found in the trials (0.5%), the CE of death and stroke is always

justified in the cases that the beneficial effect on stroke is higher than on death (HRA<HRR ). The same

is true for the higher frequency of stroke (12%), whereas the CE is also justified when the beneficial

effect on stroke is slightly less than on death, but death presents with lower frequency.

Death plus Hospitalization

The CE is justified in the cases that the HR for death is >0.8, or equal to 0.70 coupled with low frequency

of death (pR =3%), whereas the HR for hospitalization is <0.9. For a substantial benefit on death cou-

pled with low frequency (HRR =0.5; pR =6%), when the frequency of hospitalization is high (p A=39%)

even for a smaller benefit for hospitalization (HRA=0.70), the CE is justified.

The CE is not justified when, even for a substantial benefit on death (HRR ≈ 0.5), low frequency of

death (pR ≈ 6%), and high frequency of hospitalization (p A ≈ 39%), the benefit for hospitalization is

small (HRA>0.90). The CE is neither justified when HRA>HRR provided that the frequency of death is

higher (pR =12%).

2.4.1 Death from cardiovascular or death from any cause as the individual primary or

co-PE

In only 4 trials, death from cardiovascular or death from any cause was used as the individual primary

or co-PE.7, 30, 34, 60 The frequency of cardiovascular death or any death in 2 of the trials7, 34 on patients

with New York Heart Association class II–IV Chronic Heart Failure, or Atrial Fibrillation and New York

Heart Association class II or IV heart failure, was 25% and 29%, respectively. In such cases of high

death frequency, the use of the CE is justified only when the anticipated treatment benefit for the AE

is similar or higher than the one for survival. Such is the case in the trial exploring the effect of n-3
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polyunsaturated fatty acids in patients with chronic heart failure,7 where the use of the CE of death

and admission to hospital for cardiovascular reasons as co-PE would be fully supported by the ARE .

2.4.2 Recommendations for cardiovascular clinical trials

We present recommendations for future design choice between RE and CE for cardiovascular clinical

trials that use CEs as an option for the PE, include death as the RE, and add other nonfatal endpoints,

such as MI, hospitalization. We discuss the recommendations in terms of the values of the anticipated

hazard ratios HRR and HRA , and, when needed, in terms of the anticipated probabilities of occurrence

pR and p A . These guidelines have been based on the scenarios explored by Gómez and Lagakos and

on the 43 clinical trials of the 47 (Table 2.2) having death (observed control group frequency ≤ 15%)

as RE and stroke, MI, hospitalization, and target vessel revascularization as AE. Table 2.3 shows the

observed relative frequencies and relative treatment effects of death and the AEs , and Table 2.4 the

possible pairs (p, HR) for RE and AE, after excluding pairs with HR ≥ 1 (17 of 43).

Keeping in mind that the specific decision for a given trial has to be based on a thorough study as

has been shown in the case studies and the Results section of this chapter, a set of recommendations

on whether to use the RE or the CE is outlined below (Figures 2.6 and 2.7):

• HRA<HRR : the relative treatment effect is greater on the AE than on the RE ⇒ CE should always

be used.

• HRA=HRR : RE and AE have approximately the same relative treatment effect ⇒ CE should al-

most always be used. Only in those cases where the anticipated probability for AE has a low

frequency (p A ≤ 0.06) and the frequency for RE is between 2 and 5 times the frequency of the

other endpoints (2 < pR /p A < 5), RE could be a better choice.

• HRA=HRR +0.1: AE has a slightly smaller effect on treatment than RE ⇒ RE should always be

used if pR /p A ≥ 3 and CE should always be used if pR /p A ≤ 0.25. Whenever 0.25 < pR /p A < 3

the decision will depend on the anticipated values of the relative treatment effect, the frequency

of observation of either endpoint along with its correlation and to a lesser extent on the shape of

the marginal density.

• HRA=HRR +0.2: AE has a smaller effect on treatment than RE ⇒ RE should almost always be

used except when the relative frequency of the AE is extremely higher than that of the RE (pR /p A

≤ 0.06).

• HRA ≥ HRR +0.3: AE has a much smaller effect on treatment than RE ⇒ RE should always be

used.

• HRA close to 1 and p A ≤ 0.005 ⇒ RE should always be used.
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One has also to keep in mind that the association between time to RE and time to AE could play

an important role (ARE decreases when the correlation between the 2 endpoints increases) and that

decisions based on hazard plots as the ones in Figures 2.3 and 2.5 are recommended (ARE decreases

when the relative effect of treatment on the AE is smaller). Furthermore, the recommendations are to

be taken cautiously because infrequent events (p in the order of 0.005), frequencies of death with order

of magnitude larger than the frequency of AE (pR /p A > 12), and unlikely frequent endpoints (p > 0.35)

could reverse the direction of the recommendation.

Relative frequency Hazard Ratio
Endpoint Min. Median Max. Min. Median Max.

Death 0.2% 3.8% 15% 0.1 0.83 0.98
Myocardial Infarction 0.2% 3.7% 11.3% 0.35 0.78 0.92

Stroke 0.4% 2.2% 4.7% 0.52 0.83 0.89
Hospitalizations 0.3% 3.6% 31% 0.59 0.75 0.94

TVR 0.7% 7.3% 16.2% 0.79 0.79 0.83

Table 2.3: Summary of observed relative frequencies and relative treatment effect among clinical trials with ob-
served frequency of death < 20%. Hazard ratios restricted to clinical trials with HR<1. TVR indicates target vessel
revascularization.

Probability in control group
HR 0.005 0.03 0.06 0.09 0.12 0.15 0.18 0.27 0.39 0.48
0.3 AE ... ... ... ... ... ... ... ... ...
0.4 RE ... ... ... ... ... ... ... ... ...
0.5 AE ... RE ... ... ... ... ... ... ...
0.6 AE AE ... ... ... ... ... ... ... ...
0.7 ... RE RE RE ... ... ... ... AE ...

AE
0.8 AE RE RE ... RE RE ... ... ... ...

AE AE AE
0.9 ... AE RE RE RE ... AE AE ... AE

AE AE
0.99 RE RE RE ... RE ... ... ... ... ...

AE AE AE AE

Table 2.4: Chosen pairs of values (p, HR) for RE (Death), and AE (Stroke, Myocardial infarction, Hospitalization,
and Target Vessel Revascularization) used for the recommendations. p stands for the anticipated probability of ob-
serving the event in control group, and HR the corresponding hazard ratio. Clinical trials with HR>1 are excluded.
AE indicates additional endpoint; and RE, relevant endpoint.
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HRR HRR - 0.1 HRR - 0.3 HRR + 0.2 HRR + 0.3 

RE RE* RE if pR / pA ≥ 3 
CE if pR / pA ≤ 0.25 

CE* CE CE 

HRA HRA 

Higher beneficial effect on the 
additional endpoint 

Lower beneficial effect on the 
additional endpoint 

HRR + 0.1 HRR - 0.2 

CE 

Figure 2.6: The horizontal axis represents the values of the hazard ratio HRA of additional endpoint (AE) as a
function of the HRR of relevant endpoint (RE). Each tick summarizes several scenarios, corresponding to different
shapes of the marginal hazards and different degree dependences between RE and AE. For each tick, we indicate
whether it is advisable to adopt composite endpoint (CE) in preference to RE. See explanation in text for scenarios
with CE* and RE*.

Use Composite Endpoint when: 
• Treatment effect on AE is higher than on RE. 
• Same treatment effect between endpoints except for low frequency of AE (pA ≤ 0.06) and 

ratios between frequencies (pR /pA) between 2 and 5. 
• Slightly smaller treatment effect on AE and small ratio of frequencies (pR /pA ≤ 0.25). 
 
Use Relevant Endpoint when: 
• Slightly small treatment effect on AE and high ratio of frequencies (pR /pA ≥ 3). 
• Smaller treatment effect on AE (HRA = HRR + 0.2) except for small ratios between 

frequencies  (pR /pA ≤ 0.06). 
• Much smaller treatment effect on AE (HRA ≥ HRR + 0.3). 
• Very small treatment effect on AE and low frequency on treatment (HRA ≈ 1 and pA ≤ 

0.005). 

Figure 2.7: Summary of recommendations as a general guide for using composite or relevant endpoints (RE) as
primary endpoint in cardiovascular clinical trials. AE indicates additional endpoint; and HR, hazard ratio.
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2.5 Discussion

The use of composite PE in cardiovascular randomized trials has been addressed by many authors who

have discussed, among other issues, the suitability of components that are clinically less important

and the difficulties in interpreting results. Our study helps the trialist, in the design of a future trial,

to choose in an objective manner between candidates of PE, by computing the ARE based on the

anticipated values of the control group frequency and HR of each candidate endpoint.

It is clear that in the cardiovascular context, the CEs under consideration overwhelmingly include

a terminal event either as a RE or as an AE. This chapter explores under which circumstances adding

other endpoints to a RE of death would result in a more efficient choice. It is clear from our results

that, contrary to a common belief, adding a frequent event to a RE of death does not always help

and, indeed, may even prove harmful. The fact that the CE increases the number of events, does not

mean, even in the case of a common event rate and similar magnitude of the treatment effects, that

the required sample size of a trial is reduced because, depending on the strength of the association

between RE and AE, the ARE is not necessarily >1.

It is important to point out that the ARE method is intended for the planning phase of the RCT. The

reader should be aware of the presence of competing risks and how the analysis should appropriately

take care of this issue. Chi6 describes how to properly analyze a RCT based on CE. They recommend to

use all-cause mortality instead of cause-specific mortality to prevent from informative censoring, and

although not strictly necessary if the CE is valid, to analyze separately the individual components, and

to gain a more accurate assessment and interpretation of the clinical benefits and risks involved. They

propose 2 basic formats for the presentation of trial data and the results of the analysis.

Finally, although the ARE method has been developed with a RCT in mind, well-planned obser-

vational studies, viewed as conditionally randomized experiments could take advantage of an appro-

priately adjusted version of the ARE method. Recommendations about reporting completely and ac-

curately an observational study have been developed by the Strengthening the Reporting of Obser-

vational Studies in Epidemiology (STROBE) initiative.78 The explanation of how the study size was

arrived at is among the requirements included in the STROBE Statement Checklist.77 Admittedly, the

importance of sample size determination in observational studies depends on the context. When plan-

ning a new study, formal, a priori calculation of sample size is useful, especially for studies that will

gather new data and will be planned for the purpose to overcome potential problems with previous

reports. There is even a call for registration of observational studies on a World Health Organization-

compliant registry before they begin to lend greater credibility to the study findings.12 In the case of

large, hypothesis-driven cohort studies, there is no doubt that a solid protocol, including sample size

and power justification, is required, and in that context, the ARE method is as useful for the informed

choice of the endpoint as for any well-designed RCT.

As a conclusion, if a well-defined experiment is conducted and if the censoring patterns of both

groups can be considered similar, the ARE method could be a valid option to discriminate between a

RE and a CE.
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3
RELATIONSHIP BETWEEN THE ARE AND SAMPLE SIZES

The purpose of this chapter is to prove that the usual interpretation of the asymptotic relative efficiency

(ARE), as the ratio of sample sizes, n and n∗, needed to attain the same power for a given significance

level, still holds even though two different sets of hypotheses (H0 versus Ha and H∗
0 versus H∗

a ) are

compared, where H0, H∗
0 and Ha , H∗

a are the null and the alternative hypothesis of no treatment effect

evaluated on ER and on E∗, respectively.

To clarify the purpose of our investigation consider the following. If we were to test H0 versus Ha

with two different test statistics Sn and Tm , Pitman’s relative efficiency would be defined as the ratio

m/n, where n and m are the required sample sizes for Sn and Tm , respectively, to attain the same

power for a given significance level. Furthermore, if both Sn and Tm are asymptotically normal with

unit variance and means µS and µT , it can be proved that Pitman’s ARE corresponds to the squared

of the ratio of the noncentrality parameters, that is (µS/µT )2. Gómez and Lagakos’ method compares

the logrank statistics Z and Z∗, derived for two different set of hypotheses H0 versus Ha and H∗
0 versus

H∗
a and do so using, as definition of the ARE, the ratio (µ∗/µ)2 where µ and µ∗ are, respectively, the

asymptotic means of Z and Z∗, under alternative contiguous hypotheses to H0 and H∗
0 .

We carry out a simulation to study under which conditions and for finite sample sizes, the relation-

ship ARE(Z∗, Z ) = (µ∗/µ)2 = n/n∗ holds where n and n∗ are the needed sample sizes for Z and Z∗,

respectively, to attain the same power for a given significance level.

33
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The contents of this chapter have been published in24 (see Appendix):

Gómez G, Gómez-Mateu M. The Asymptotic Relative Efficiency and the ratio of sample sizes when

testing two different null hypotheses (2014). SORT, 38, 73–88.

This chapter reproduces the paper after excluding the introduction because its content has been

detailed in previous chapters. The notation used here is coherent with the rest of this thesis, and differs

slightly from the one used in the paper.
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Abstract

Composite endpoints, consisting of the union of two or more outcomes, are often used as the

primary endpoint in time-to-event randomized clinical trials. Previously, Gómez and Lagakos

provided a method to guide the decision between using a composite endpoint instead of one

of its components when testing the effect of a treatment in a randomized clinical trial. Consider

the problem of testing the null hypotheses of no treatment effect by means of either the single

component or the composite endpoint. In this paper we prove that the usual interpretation of

the asymptotic relative efficiency as the reciprocal ratio of the sample sizes required for two test

procedures, for the same null and alternative hypothesis, and attaining the same power at the

same significance level, can be extended to the test procedures considered here for two different

null and alternative hypotheses. A simulation to study the relationship between asymptotic relative

efficiency and finite sample sizes is carried out.
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1. Introduction

In clinical trials research, one of the most important issues that investigators have

to solve at the design stage of the study is the appropriate choice of the primary

endpoint. Composite endpoints (CE) consisting of the union of two or more outcomes

are commonly used as primary endpoints. For example, in the cardiovascular area the
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3.1 Notation, the logrank test and the asymptotic relative efficiency

3.1.1 The logrank tests for the relevant and for the composite endpoints

Assume that we have a two-arm study involving random assignment to an active (X = 1) or control

treatment (X = 0) aiming to prove the efficacy of the new active treatment. The effect of treatment is

to be evaluated on the time T ( j )
R to a relevant event ER , where the superscript j indicates the treatment

group ( j = 0 for the control group and j = 1 for the treatment group). Let λ( j )
R (t ) denote the hazard

function of T ( j )
R ( j = 0,1). The null hypothesis of no effect is given by H0 : HRR (t ) = λ(1)

R (t )/λ(0)
R (t ) = 1

and the alternative that the new treatment improves survival by Ha : HRR (t ) < 1. The logrank test Z is

used to test that the new treatment improves survival.

Assume now that an additional endpoint EA is considered as component of the primary end-

point and the composite endpoint E∗ = ER ∪ EA is to be used, instead, to prove the efficacy of the

new treatment. The effect of treatment would then be evaluated on the time T ( j )
∗ to E∗ where T ( j )

∗ =
min{T ( j )

R ,T ( j )
A } and T ( j )

A stands for the time to EA ( j = 0,1). Let λ( j )
A (t ) and λ

( j )
∗ (t ) denote, respectively,

the hazard functions of T ( j )
A and T ( j )

∗ ( j = 0,1). The treatment effect on E∗ would then be tested with

the logrank test Z∗ to compare H∗
0 : HR∗(t ) =λ(1)

∗ (t )/λ(0)
∗ (t ) = 1 versus H∗

a : HR∗(t ) < 1.

We assume that the additional endpoint does not include a terminating event, which corresponds

to Case 1 when neither the relevant nor the additional endpoint includes a terminating event, and Case

3, when the relevant endpoint includes a terminating event.

Schoenfeld (1981)65 studies the asymptotic behaviour of the logrank statistic and proves that un-

der the null hypothesis of no treatment difference, the logrank is asymptotically N (0,1) and, under a

sequence of alternatives contiguous to the null, the logrank is asymptotically normal with unit vari-

ance and finite mean. Gómez and Lagakos apply Schoenfeld’s results and proceed as follows. They

consider λ(0)
R (t ) as fixed and define a sequence of alternatives Ha,n consisting of instantaneous haz-

ard functions close enough to λ(0)
R (t ), for instance taking λ(1)

R,n(t ) = λ(0)
R (t )eg (t )/

p
n for some g (t ) func-

tion. These sequence of alternatives, formulated equivalently as HRR,n(t ) = eg (t )/
p

n , include propor-

tional hazard alternatives, i.e, taking g (t ) = β for a fixed real value β. Logrank Z is asymptotically

N (0,1) under the null hypothesis of no treatment difference (H0 : HRR (t ) = 1) and asymptotically

normal with unit variance and mean µ given in equation (3.1) under the sequence of alternatives

Ha,n : HRR,n(t ) = eg (t )/
p

n < 1. Analogously, fix λ(0)
∗ (t ) and define H∗

0 : HR∗(t ) = 1 and the sequence

of alternatives H∗
a,n : HR∗,n(t ) = eg∗(t )/

p
n < 1 for a given function g∗(t ). It follows that Z∗ is asymptot-

ically N (0,1) under H∗
0 , and asymptotically normal with unit variance and mean µ∗ given in equation

(3.2) under the sequence H∗
a,n . The asymptotic means of Z and Z∗ are given by

µ =
∫ ∞

0 g (t )p(t )[1−p(t )]PrH0 {U ≥ t }λ(0)
R (t )d t√∫ ∞

0 p(t )[1−p(t )]PrH0 {U ≥ t }λ(0)
R (t )d t

, (3.1)

µ∗ =
∫ ∞

0 g∗(t ))p∗(t )[1−p∗(t )]PrH∗
0

{U∗ ≥ t }λ(0)
∗ (t )d t√∫ ∞

0 p∗(t )[1−p∗(t )]PrH∗
0

{U∗ ≥ t }λ(0)
∗ (t )d t

, (3.2)
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where U = min{TR ,τ} (in Cases 1 and 3) and U∗ = min{T∗,τ} denote the observed outcome; τ denotes

the censoring time; p(t ) = PrH0 {X = 1|U ≥ t } and p∗(t ) = PrH∗
0

{X = 1|U∗ ≥ t } are the null probabilities

that someone at risk at time t is in treatment group 1; PrH0 {U ≥ t } and PrH∗
0

{U∗ ≥ t } are the null proba-

bilities that someone is still at risk at time t and PrH0 {U ≥ t }λ(0)
R (t ) and PrH∗

0
{U∗ ≥ t }λ(0)

∗ (t ) correspond

to the probabilities, under the null hypothesis, of observing events ER and E∗, respectively, by time t .

3.1.2 Asymptotic Relative Efficiency

Efficiency calculations throughout this chapter will assume that end-of-study censoring at time τ (τ= 1

without loss of generality) is the only non-informative censoring cause for both groups; this assump-

tion indirectly implies that the censoring mechanism is the same for both groups. It is as well as-

sumed that the hazard functions λ( j )
R (t ) and λ

( j )
A (t ) ( j = 0,1) are proportional, that is, HRR(t ) = HRR

and HRA(t ) = HRA, for all t , where HRR(t ) = λ(1)
R (t )/λ(0)

R (t ) and HRA(t ) = λ(1)
A (t )/λ(0)

A (t ) are the hazard

ratios between T (0)
R and T (1)

R and between T (0)
A and T (1)

A , respectively. Note that although we are as-

suming that the hazard functions λ( j )
R (t ) and λ( j )

A (t ) ( j = 0,1) are proportional, this does not imply the

proportionality of hazards λ(0)
∗ (t ) and λ(1)

∗ (t ) for the composite endpoint T∗ (see Figure 3.1).
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Figure 3.1: Survival and hazard ratio for the relevant endpoint (RE), TR , for the additional endpoint (AE), TA and
for the composite endpoint (CE), T∗ = min{TR ,TA}. TR ∼ Weibull with shape parameterβR = 2 (increasing hazard)
for treatment groups 0 and 1 and TA ∼ Weibull with shape parameter βA = 1 (constant hazard) for treatment
groups 0 and 1. Scale parameters for TR and TA have been calculated such that Pr{TR observed in group 0}=0.1,
Pr{TA observed in group 0}=0.25, HRR = 0.5, HRA = 0.9 and Spearman’s ρ(TR ,TA) = 0.45 assuming Frank’s copula
between TR and TA . Considering the RE as a terminating event (case 3), in this setting ARE(Z∗, Z ) = 0.21.

To assess the difference in efficiency between using logrank test Z , based on the relevant endpoint

ER , and logrank test Z∗, based on the composite endpoint E∗, Gómez and Lagakos27 base their strategy

on the behaviour of the asymptotic relative efficiency (ARE) of Z∗ versus Z . The ARE is a measure of

the relative power of two tests that can be interpreted, when the two tests are for the same null and

alternative hypothesis, as the ratio of the required sample sizes to detect a specific treatment effect
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to attain the same power for a given significance level (Lehmann and Romano, 2005).41 In this case,

a value of ARE = 0.6 would mean that we only need 60% as many cases to reach a given power if

we use ER as we would need if we used E∗. Whenever the tests under consideration, Z and Z∗, are

asymptotically N(0,1) under H0 and H∗
0 , respectively, and asymptotically normal with variance 1 under

a sequence of contiguous alternatives to the null hypothesis, a different definition for Pitman’s relative

efficiency as the square of the ratio of the non-centrality parameters µ and µ∗ is appropriate

ARE(Z∗, Z ) =
(
µ∗
µ

)2

, (3.3)

where µ and µ∗ are to be replaced by expressions (3.1) and (3.2).

Before providing the expression that is being used to evaluate the ARE , and for the sake of clarity,

we enumerate the assumptions that have been taken into account:

• End-of-study censoring at time τ is the only non-informative censoring cause for both groups.

• The additional endpoint does not include a terminating event.

• The hazard ratios between T (0)
R and T (1)

R and between T (0)
A and T (1)

A are proportional, that is,

HRR(t ) =λ(1)
R (t )/λ(0)

R (t ) = HRR and

HRA(t ) =λ(1)
A (t )/λ(0)

A (t ) = HRA for all t .

• Effect of treatment on ER is tested establishing H0 : HRR = 1 versus a sequence of alternatives

Ha,n :λ(1)
R,n(t ) =λ(0)

R (t )eg (t )/
p

n for some g (t ) function. Note that g (t )/
p

n = log{λ(1)
R,n(t )/λ(0)

R (t )}.

• Effect of treatment on E∗ is tested establishing H∗
0 : HR∗(t ) = 1 versus a sequence of alternatives

H∗
a,n : HR∗,n(t ) = eg∗(t )/

p
n < 1 for a given function g∗(t ). Note that g∗(t )/

p
n = log{HR∗,n(t )}.

Under the above assumptions, expression (3.3) becomes

ARE(Z∗, Z ) =
(∫ 1

0 log
{
λ(1)
∗ (t )/λ(0)

∗ (t )
}

f (0)
∗ (t )d t

)2

(
log

{
HRR

})2 (
∫ 1

0 f (0)
∗ (t )d t )(

∫ 1
0 f (0)

R (t )d t )
, (3.4)

where f (0)
R (t ) and f (0)

∗ (t ) are the density functions of T (0)
R and T (0)

∗ , respectively.

Remark: The density function f (0)
∗ (t ) is the density of the T (0)

∗ = min{T (0)
R ,T (0)

A }, computed from the

joint density between T (0)
R and T (0)

A , which itself is built from the marginals of T (0)
R and T (0)

A by means

of a bivariate copula.
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3.2 Relationship between ARE and sample sizes

We start establishing that if the hazard ratios for T ( j )
R ( j = 0,1) and for T ( j )

A ( j = 0,1) approach the unity

as n gets large, so does the hazard ratio of the minimum T ( j )
∗ between T ( j )

R and T ( j )
A ( j = 0,1).

Lemma 1 Given two sequences of hazard ratios {HRR,n(t ) =λ(1)
R,n(t )/λ(0)

R (t )} and {HRA,n(t ) =λ(1)
A,n(t )/λ(0)

A (t )},

both converging uniformly to 1 as n → ∞, the sequence corresponding to the hazard ratio of T ( j )
∗ =

min{T ( j )
R ,T ( j )

A }, namely {HR∗,n(t ) =λ(1)
∗,n(t )/λ(0)

∗ (t )}, tends to 1 as n →∞. In particular, this lemma holds

whenever log(λ(1)
k,n(t )/λ(0)

k (t )}) = O(n−1/2), which in turn, is true if log(λ(1)
k,n(t )/λ(0)

k (t )}) = gk (t )/
p

n, for

any bounded real function gk (t ) (k = R, A).

Proof 1 It follows immediately that for fixed t , limn→∞λ(1)
R,n(t ) = λ(0)

R (t ) and limn→∞λ(1)
A,n(t ) = λ(0)

A (t ).

Furthermore, it follows that the corresponding densities and survival functions f (1)
R,n(t ), f (1)

A,n(t ), S(1)
R,n(t )

and S(1)
A,n(t ), converge to f (0)

R (t ), f (0)
A (t ), S(0)

R (t ) and S(0)
A (t ), respectively. Taking into account that the sur-

vival function of the minimum, S(1)
∗,n(t ) is expressed in terms of the marginal survival functions S(1)

R,n(t )

and S(1)
A,n(t ) of T (1)

R and T (1)
A via a copula C , that is,

S(1)
∗,n(t ) =C (S(1)

R,n(t ),S(1)
A,n(t )), it remains to prove that limn→∞ S(1)

∗,n(t ) = S(0)
∗ (t ). This result will imply that

limn→∞ f (1)
∗,n(t ) = f (0)

∗ (t ), limn→∞λ(1)
∗,n(t ) =λ(0)

∗ (t ) and hence the sequence HR∗,n(t ) → 1 as n →∞, as

we wanted to prove.

The convergence of S(1)
∗,n(t ) to S(0)

∗ (t ) is guaranteed by the convergence of S(1)
R,n(t ) and S(1)

A,n(t ) to S(0)
R (t ) and

S(0)
A (t ), respectively, together with the fact that bivariate copulas C are bivariate distribution functions

with uniform marginals. The reader is addressed to Lindner and Szimayer (2005)42 for the corresponding

technical proofs.

Proposition 1 Consider two test proceduresφn andφ∗
n to test H0 : HRR (t ) = 1 against Ha,n : HRR,n(t ) < 1

and H∗
0 : HR∗(t ) = 1 against H∗

a,n : HR∗,n(t ) < 1, respectively. Let n and n∗ be the sample sizes required

for φn and φ∗
n , respectively, to have power at least Π at level α. Assume the sequences φ = {φn} and

φ∗ = {φ∗
n} are based on the logrank statistics Z and Z∗, respectively, converging, to Normal (µ,1) and

Normal (µ∗,1) with µ and µ∗ given in (3.1) and (3.2), under sequences of local alternatives HRk,n(t )

(k = R, A) converging uniformly to 1 as n →∞. Given 0 <α<Π< 1,

lim
HRR,n (t )→1
HRA,n (t )→1

n

n∗
= ARE(Z∗, Z ).

The usual interpretation of the ARE as the reciprocal ratio of the sample sizes holds even when two

different sets of hypotheses (H0 versus Ha,n and H∗
0 versus H∗

a,n) are tested. As a consequence of this

proposition, the interpretation of the ARE is the following. If ARE(Z∗, Z ) = 0.7, then, asymptotically, we

only need 70% as many cases to attain a given power if we use Z as we would need if we used Z∗.

Proof 2 By Lemma 1, uniform convergence to 1 of {HRR,n(t )} and {HRA,n(t )} imply that limHR∗,n(t ) →
1. Under the sequence of contiguous alternatives to the null, Ha,n : {HRR,n(t ) = λ(1)

R,n(t )/λ(0)
R (t )} → 1
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and H∗
a,n : {HR∗,n(t ) = λ(1)

∗,n(t )/λ(0)
∗ (t )} → 1, both Z and Z∗ are asymptotically N (µ,1) and N (µ∗,1),

respectively. The power function for a one-sided test with size α is therefore given, respectively, by

ΠR = lim
n→∞Prob{Z < z1−α|Ha,n} = 1−Φ(−z1−α+µ)

Π∗ = lim
n→∞Prob{Z∗ < z1−α|H∗

a,n} = 1−Φ(−z1−α+µ∗) (3.5)

where Φ is the distribution function of the standard normal and z1−α is the standard normal quantile

corresponding to the left tail probability α. It immediately follows that ΠR =Π∗ is equivalent to µ= µ∗,

given by (3.1) and (3.2). Equivalently

(
µ∗
µ

)2

= 1 ⇐⇒


∫ ∞

0 g (t )p(t )[1−p(t )]PrH0 {U≥t }λ(0)
R (t )d t√∫ ∞

0 p(t )[1−p(t )]PrH0 {U≥t }λ(0)
R (t )d t∫ ∞

0 g∗(t )p∗(t )[1−p∗(t )]PrH∗
0

{U∗≥t }λ(0)
∗ (t )d t√∫ ∞

0 p∗(t )[1−p∗(t )]PrH∗
0

{U∗≥t }λ(0)
∗ (t )d t


2

= 1. (3.6)

Since

p(t ) = PrH0 {U ≥ t |X = 1}π

PrH0 {U ≥ t }
= PrH0 {U ( j ) ≥ t }π

PrH0 {U ≥ t }

where π= PrH0 {X = 1}, we have

p(t )(1−p(t ))PrH0 {U ≥ t } = PrH0 {U (1) ≥ t }πPrH0 {U (0) ≥ t }(1−π)

PrH0 {U (0) ≥ t }(1−π)+PrH0 {U (1) ≥ t }π
.

Based in the stated assumptions, because T ( j )
R is right-censored by the end-of-study at time τ, and under

the null hypothesis of no effect (S(0)
R (t ) = S(1)

R (t )), we have PrH0 {U ( j ) ≥ t } = S(0)
R (t )1{[0,1]}(t ), for j = 0,1.

Replacing in (3.1), the noncentrality parameter µ becomes

µ=
p
π(1−π)

∫ 1
0 g (t )S(0)

R (t )λ(0)
R (t )d t√∫ 1

0 S(0)
R (t )λ(0)

R (t )d t
=

p
π(1−π)

∫ 1
0 g (t ) f (0)

R (t )d t√∫ 1
0 f (0)

R (t )d t

where f (0)
R (t ) is the marginal density function for T (0)

R . Analogously, it can be seen that

µ∗ =
p
π(1−π)

∫ 1
0 g∗(t ) f (0)

∗ (t )d t√∫ 1
0 f (0)

∗ (t )d t

where f (0)
∗ (t ) is the density function for T (0)

∗ . The reader is addressed to the online supporting material

of Gómez and Lagakos paper for other technical details.

If we would replace g (t ) and g∗(t ) by
p

n log

(
λ(1)

R,n (t )

λ(0)
R (t )

)
= p

n log(HRR) and
p

n∗ log

(
λ(1)
∗,n (t )

λ(0)
∗ (t )

)
, respec-

tively, equality (3.6), after cancelling π(1−π), becomes equal to

lim
HRR,n (t )→1
HRA,n (t )→1

p
n∗p
n

∫ 1
0 log

{
λ(1)
∗ (t )/λ(0)

∗ (t )
}

f (0)
∗ (t )d t√∫ 1

0 f (0)
∗ (t )d t

log(HRR)
√∫ 1

0 f (0)
R (t )d t

= 1
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which in turn is equivalent to

lim
HRR,n (t )→1
HRA,n (t )→1

n

n∗
=

(∫ 1
0 log

{
λ(1)
∗ (t )/λ(0)

∗ (t )
}

f (0)
∗ (t )d t

)2

(
log(HRR)

)2 (
∫ 1

0 f (0)
∗ (t )d t )(

∫ 1
0 f (0)

R (t )d t )
(3.7)

and it follows that ARE(Z∗, Z ) = lim
HRR,n (t )→1
HRA,n (t )→1

n

n∗
, as we wanted to prove.

Note that (3.7) implies(∫ 1
0 log

{
λ(1)
∗ (t )/λ(0)

∗ (t )
}

f (0)
∗ (t )d t

)2

(
log(HRR )

)2
(∫ 1

0 f (0)
∗ (t )d t

)2 = lim
HRR,n (t )→1
HRA,n (t )→1

n(
∫ 1

0 f (0)
R (t )d t )

n∗(
∫ 1

0 f (0)
∗ (t )d t )

≈ expected number ER

expected number E∗

and whenever λ(1)
∗ (t )/λ(0)

∗ (t ) is approximately constant and equal to HR∗, we would have(
1

log(HRR )

)2

(
1

log(HR∗)

)2 = lim
HRR,n (t )→1
HRA,n (t )→1

n(
∫ 1

0 f (0)
R (t )d t )

n∗(
∫ 1

0 f (0)
∗ (t )d t )

≈ expected number ER

expected number E∗
.
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3.3 Simulation

3.3.1 Simulation

Our next aim is to simulate data to empirically check how close we are to the limiting relationship

n/n∗ = ARE(Z∗, Z ) when ΠR = Π∗ for different finite sample sizes. To conduct the simulations we

will assume, as Gómez and Lagakos did, that T ( j )
R and T ( j )

A follow Weibull distributions. Weibull dis-

tributions are chosen for their wide use in the field of survival analysis due to its flexibility, allowing

decreasing, constant and increasing hazard rates. The corresponding shape and scale parameters are

denoted byβk and b( j )
k ( j = 0,1, k = R, A) (shape parameters for both groups are taken equal so that the

assumption of the proportionality of the hazard ratios holds). To establish the bivariate distribution of

(T ( j )
R ,T ( j )

A ), we consider Frank’s Archimedean survival copula, again as Gómez and Lagakos did. Other

choices of copulas would be possible, although main conclusions and recommendations will not differ

(Plana-Ripoll and Gómez, 2015).51 Frank’s copula depends on the association parameter θ( j ) between

T ( j )
R and T ( j )

A . We assume equal association parameter θ = θ(0) = θ(1) for both groups 0 and 1, which is

biunivocally related to Spearman’s rank correlation ρ. Different scenarios will be simulated according

to several choices of (βR ,βA , p(0)
R , p(0)

A ,HRR ,HRA ,ρ), where p(0)
R and p(0)

A are the probability of observing

events ER and EA , respectively, for treatment group 0, and HRR , HRA are the relative treatment hazard

ratios of T (1)
k versus T (0)

k (k = R, A, respectively).

Given a set of values for (βR ,βA , p(0)
R , p(0)

A ,HRR ,HRA ,ρ), for a given powerΠ and a significance level

α, the simulation steps are the following:

1. Computations for the relevant endpoint ER . The scale parameters b(0)
R and b(1)

R and the proba-

bility p(1)
R of observing the relevant endpoint in group 1 are derived as:

b(0)
R = 1

(− log(1−p(0)
R ))1/βR

b(1)
R = b(0)

R

HR(1/βR )
R

p(1)
R = 1−e−(1/b(1)

R )βR

2. Computations for the additional endpoint EA. The scale parameter b(0)
A is derived as:

b(0)
A =


1

(− log(1−p (0)
A ))1/βA

for Case 1

∗ for Case 3

∗ For Case 3, b(0)
A is found as the solution of equation p(0)

A = ∫ 1
0

∫ ∞
v f (0)

(1,2)(u, v ;ρ)dud v , where

f (0)
(1,2)(·, ·;ρ) is the joint density between T (0)

R and T (0)
A .
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3. Computation of sample sizes n and n∗

a) Compute n (per group) following Freedman (1982)18 formulas as follows

n = E

p(0)
R +p(1)

R

, (3.8)

where

E = (HRR +1)2(z1−α+ zΠ)2

(HRR −1)2 . (3.9)

b) Compute ARE(Z∗, Z ) based on (βR ,βA , p(0)
R , p(0)

A ,HRR ,HRA ,ρ).

c) Compute n∗ = n/ARE(Z∗, Z ).

d) Compute N = max{n,n∗}.

4. Simulation of T (0)
R ,T (1)

R ,T (0)
A ,T (1)

A ,T (0)
∗ ,T (1)

∗

Simulate 1000 samples of size N for the 4 endpoints T ( j )
k from Weibull (b( j )

k ,βk ) ( j = 0,1, k = R, A).

Compute T ( j )
∗ = mi n{T ( j )

R ,T ( j )
A }.

5. Computation of empirical powers Π̂R and Π̂∗
For each sample of size n (n∗), compute the logrank statistic Z (Z∗) to compare the treatment

effect between T (0)
R and T (1)

R ( T (0)
∗ and T (1)

∗ ). For a given significance level α, the rejection region

comprises all observed Z (Z∗) such that Z < z1−α (Z∗ < z1−α) where z1−α is the standard normal

quantile corresponding to the left tail probability α. The empirical powers, denoted by Π̂R (Π̂∗),

are calculated as the proportion of samples for which Z < z1−α (Z∗ < z1−α).

We note here that whenever n∗ < n, we only use, for each sample, the first n∗ simulated values

to compute Π̂∗, while when n < n∗, we only use the first n simulated values to compute Π̂R .

6. Comparison between Π̂R and Π̂∗
For each scenario (βR ,βA , p(0)

R , p(0)
A ,HRR ,HRA ,ρ), we compare the differences between the two

empirical powers Π̂R and Π̂∗ obtained from the 1000 simulations.
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3.3.2 Results

We setΠ= 0.9 andα= 0.05 (other values would not provide additional information). We choose mean-

ingful values for (βR ,βA , p(0)
R , p(0)

A ,HRR ,HRA ,ρ), based on those arising in cardiovascular clinical trials

(Gómez, Gómez-Mateu, Dafni, 2014)26 (see Table 3.1). We restrict our simulation study to 624 scenar-

ios corresponding to ARE(Z∗, Z ) ≤ 10 and sample sizes smaller than 1100 patients per group. These

scenarios yield ARE(Z∗, Z ) values between 0.20 and 9.93; sample sizes, n, for the relevant endpoint

between 142 and 1081; and, n∗, for the composite endpoint between 53 and 1077 (see Table 3.2).

Parameters

βR =βA 0.5 1 2
(p(0)

R , p(0)
A ) (0.05, 0.01) (0.05, 0.15) (0.05,0.35) (0.1, 0.01) (0.1, 0.15) (0.1,0.35)

(0.15, 0.01) (0.15, 0.15) (0.15,0.35) (0.35, 0.01) (0.35, 0.15) (0.35,0.35)
ρ 0.15 0.45 0.75

(HRR ,HRA) (0.5, 0.3) (0.5, 0.7) (0.5, 0.9) (0.6, 0.3) (0.6, 0.7) (0.6, 0.9)
(0.7, 0.3) (0.7, 0.7) (0.7, 0.9) (0.8, 0.3) (0.8, 0.7)

Total number
of cases 624

Table 3.1: Values of parameters βR , βA , p(0)
R , p(0)

A , HRR , HRA and ρ used for the simulations. There are 624
different configurations, excluding those yielding sample sizes larger than 1100 and ARE(Z∗, Z ) > 10.

min median max

n 142 509 1081
n∗ 53 398 1077

ARE(Z∗, Z ) 0.2 1.04 9.93

Table 3.2: Computed values of n, n∗ and ARE(Z∗, Z ) in step 3 of the simulation based on the parameter values
given in Table 3.1.

The empirical powers Π̂R in our simulation study resulted in powers between 0.87 and 0.94, with a

median of 0.91. A slightly higher median was found for scenarios with low hazard ratios. This finding

is acknowledged as well by Freedman (1982)18 .

Table 3.3 provides the percentiles for the absolute value differences between Π̂∗ and Π̂R . We ob-

serve that in 75% of the cases the difference is smaller than 2.3%, and among cases with ARE as large

as 3 the difference shrinks to 1.9%. There are, however, few instances, where this difference can be as

large as 6%, and they deserve a closer look.

Figure 3.2 plots the differences Π̂∗−Π̂R as a function of the ARE(Z∗, Z ) values. The behaviour is re-

markably different when ARE(Z∗, Z ) ≤ 3 or ARE(Z∗, Z ) > 3. Whenever ARE(Z∗, Z ) ≤ 3, Π̂∗ fluctuates

around Π̂R , within a range of 4%. However, when ARE(Z∗, Z ) > 3, corresponding mostly to scenar-

ios where treatment has an stronger effect on the additional endpoint than on the relevant endpoint

(HRA ≤ HRR−0.2) and the anticipated number of events in the control group is larger for the additional

endpoint than for the relevant (p(0)
A ≥ p(0)

R ), the empirical power Π̂∗ of the logrank test based on the CE
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min w0.1 w0.25 w0.5 w0.75 w0.9 max

For all ARE 0 0.002 0.004 0.010 0.023 0.036 0.062
ARE(Z∗, Z ) ≤ 3 0 0.002 0.004 0.008 0.019 0.033 0.062
ARE(Z∗, Z ) > 3 0.001 0.009 0.016 0.026 0.038 0.046 0.062

Table 3.3: Percentiles of |Π̂∗− Π̂R | as a function of ARE values, where wi indicates the corresponding percentile.

never achieves the same power as the logrank test for the relevant endpoint would get. In these cases

the interpretation of the ARE(Z∗, Z ) as the ratio of the sample sizes, n/n∗, is not as straightforward.

Nevertheless, this does not mean that the recommendation of using the CE does not have to be fol-

lowed since larger values for n∗ needed to attain the same power as n does, would reduce the ARE

value but not as much as to cross the “1” border that would imply to use the relevant endpoint instead

of the CE.

‐0.1 ≤ HRA – HRR ≤ 0.1
HRA – HRR ≥ 0.2
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Figure 3.2: Differences between empirical powers Π̂∗− Π̂R as function of ARE(Z∗, Z ) and in terms of HRA −HRR .

If we analyze the differences between Π̂∗ and Π̂R as a function of the differences between the two

hazard ratios (HRA−HRR ), we observe that when the two hazard ratios are very close, the two empirical

powers are as well very close. Whenever HRA−HRR ≤ 0.2, not only ARE(Z∗, Z ) values tend to be higher,

but also Π̂∗ < Π̂R . (see Figure 3.2).

Taking into account that absolute differences between powers smaller than 5% could be considered

irrelevant, we conclude that the asymptotic relationship ARE(Z∗, Z ) = n/n∗ is valid in the majority of

scenarios.

All computations in this chapter have been implemented in R and are available under request to

either author.
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3.4 Discussion

Pitman’s relative efficiency is defined as the limiting ratio of sample sizes to give the same asymptotic

power under sequences of local alternatives. Given two asymptotically standard normal tests Sn and

Tm under the same null and alternative hypotheses, the alternative definition ARE = (µS/µT )2 can be

used because the equality of the powers holds if m
n = ( µS

µT
)2.

Gómez and Lagakos’ method uses the alternative definition of ARE to develop all the computations

for the two corresponding logrank tests. Our goal has been to check that the relationship between

(µS/µT )2 and the ratio of sample sizes still held when the two hypotheses under test were not the same

(H0 versus Ha and H∗
0 versus H∗

a ).

It is important to keep in mind that these two hypotheses tests are by no means equivalent. For

instance, to check whether treatment has a beneficial effect, we might use ER or we might add endpoint

EA and use E∗. As it is shown in Gómez (2011),21 even if we assume that the times to ER and to EA are

independent, a beneficial effect on E∗ can occur simultaneously with a beneficial effect on ER and a

harmful effect on EA and not finding a beneficial effect on the composite event E∗ is no guarantee of

not having some effect on the individual events ER or EA .

The main result of this paper proves that ARE(Z∗, Z ) coincides with n/n∗, being n and n∗ the

sample sizes needed to detect specific alternatives HRR and HR∗ to attain power Π and for the same

significance level α. Therefore, we can use and interpret ARE in its usual way.

The simulation study has been conducted in such a way that for fixed values n and ARE(Z∗, Z ),

the sample size n∗ is calculated as n∗ = n/ARE(Z∗, Z ). Hence, an approximate equality of the empir-

ical powers Π̂R , of logrank test Z for H0 versus Ha,n , and of Π̂∗ of logrank test Z∗ for H∗
0 versus H∗

a,n ,

indicates that the relationship ARE(Z∗, Z ) = n/n∗ holds. Main results from our simulations show that

the absolute differences between Π̂R and Π̂∗ are most of the times less than 2.5%, hence the usual

interpretation between (n,n∗) and ARE(Z∗, Z ) holds for finite sample sizes.

For those scenarios under which ARE(Z∗, Z ) > 3, we observe that the empirical power of the test

based on E∗ never achieves the empirical power that the logrank test based on ER would get. Conse-

quently, larger values of n∗ would be needed to attain the same power as n does. In these instances,

even though the relationship ARE(Z∗, Z ) = n/n∗ is not necessarily true, the recommendation to use

the composite endpoint E∗ instead of the relevant endpoint ER will still be valid because very rarely a

value of ARE(Z∗, Z ) > 3 would go down to less than 1. However, caution will be needed if one wants to

use the relationship ARE(Z∗, Z ) = n/n∗ to compute the required sample size n∗ if ARE(Z∗, Z ) > 3. In

these cases, a different formulation should be seek.
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4
CompARE. AN ON-LINE PLATFORM AS A DECISION

TOOL FOR INVESTIGATORS

CompARE is an online web-based platform that provides efficient measures for discerning between

possible time-to-event endpoints when evaluating the efficacy of a treatment. In the design phase of

a clinical trial, clinicians, biostatisticians, and other members of the team can use CompARE to study

the performance of different endpoints in a variety of scenarios. CompARE has an intuitive interface

and it is a convenient tool for a better informed decision on the primary endpoint.

Users introduce the information needed in CompARE by means of intuitive web-page forms, such

as the list of candidate endpoints, together with the anticipated parameter values. The information,

which is saved in trackers, is used to run the code written in R, statistical software that is widely used in

the field of statistics (see the schematic in Figure 4.1). It is not necessary to install R to run CompARE,

nor is knowledge of R required. Furthermore, all the itnputs and outputs are presented in HTML format

and are compatible with any web browser.

In this chapter we detail the software we used to build CompARE and the basic features of this

platform, describing step by step how to access, register, run it and get the results. We illustrate one

of the capabilities of CompARE using the ARE method to quantify how efficient is a relevant subset of

outcomes with respect to a larger subset. Results from different scenarios, depending on the parameter

values, are shown immediately by means of tables and plots such as survival and hazard ratio curves.

Moreover, conclusions and recommendations are provided in written form as an aid. A complete on-

line user’s guide is also available. CompARE is currently accessible as a beta version at the following

website: https://cinna.upc.edu/compare.
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Input information
(HTML forms)

Information processed
on the server

Execution of R code
(plugin R)

Results shown on
the Web

USER
Web interface

Internal results
saved in trackers

https://cinna.upc.edu/compare

Figure 4.1

In Chapter 6, we extend CompARE to develop different advanced options. Among other features,

we detail how to specify different marginal distribution laws, copulas and correlations between times.

Sample size calculations based on these parameters are calculated as well. CompARE is also extended

to accommodate the computation of combined probabilities and combined hazard ratios, based on

the marginal components. For non-proportional hazards, CompARE visualizes how the hazard ratios

of the components depart from constancy by depicting the corresponding values during the follow-up

period for different scenarios.



4.1 SOFTWARE USED TO BUILD CompARE 49

4.1 Software used to build CompARE

The web-based platform CompARE was built using the free software Tightly Integrated Knowledge In-

frastructure (Tiki Wiki CMS/Goupware).79 Free software is widely used and is commonly developed

with volunteer computer programmers, guaranteeing that every user has equal rights of access. It

allows any programmer to study the source code, modify it, and share it (FSF).17 Moreover, online

graphic interfaces based on free software leads to collaboration synergies between partners from dif-

ferent areas such as informatics, biology or statistics.

We chose Tiki because the majority of other interface web programs that include the use of R rou-

tines present problems in the short or medium term (de Pedro and Sánchez, 2010).11 Some of the

reasons might be because either they do not work with free software, they are not updated or they

are too complex to be used by most professionals who are not involved in web computing. Moreover,

Tiki is safe and updated periodically by their community members, who add new features, fix bugs

and patch security holes. It is constantly maintained under the license LGPL (Lesser General Public

License). Repositories are used for the version control system.

Other remarkable features of Tiki are the use of standard codes and its flexibility. Web standard

codes such as HTML, PHP and javascript are used. It allows to design entry forms on the web through

the use of trackers that save the data collected in items. Due to its flexibility, these parameter values can

be used to execute other applications through the use of plugins (see Sapir (2010) for more details63).

By means of the pluginR,71 developed by de Pedro and Sánchez,11 it is possible to execute the ARE

method in R in CompARE.

The Tiki software is installed in a virtual machine at the Universitat Politècnica de Catalunya. It

runs under a Linux server Ubuntu 12.04 LTS with a total of 32GB of RAM, 2 Quad Core Processor and

2x1TB of disk space.

Initially, before designing Comp ARE , the code to execute the ARE method was written in MAPLE

by Gómez G. The code was programmed to run scenarios where both the relevant endpoint (RE) and

the additional endpoint (AE) does not include a terminating event (Case 1) or either the relevant or

additional endpoint includes a terminating event (Cases 2 and 3). We adapted the code in R because it

is free software and because of its the great capabilities and flexibility. Moreover, it is compatible with

the software used in Comp ARE . We also extended the R code to Case 4, where both the RE and the AE

includes a terminating event, and it is described in Chapter 6.
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4.2 CompARE step by step

Access and registration

CompARE is a completely free tool. You can access CompARE by means of any standard web

browser such as Mozilla Firefox, Internet Explorer or Google Chrome by clicking on the following link:

https://cinna.upc.edu/compare.

Figure 4.2

Only a quick registration is needed from the main web page. The system asks you for a username

and a password, which will be used to enter the application under your own session (see Figure 4.3).

For security reasons, an e-mail is required. You will have to accept the registration from your own e-

mail. In order to avoid spam registrations, you need to correctly introduce a captcha code (Completely

Automated Public Turing test to tell Computers and Humans Apart). The web administrator accepts

the registration as a final step.

Figure 4.3
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Running CompARE. Information about all the candidate endpoints

Once you are logged in to CompARE, you can get to the input grid of information by clicking on

the "Start" button from the main web page (see Figure 4.4). Then, enter the information about the

endpoints you might plan to use as the primary endpoint in your randomized clinical trial. Place the

cursor over each header as an aid for getting a quick definition of each concept:

1. In the first column, write the name of each endpoint. Indicate whether each endpoint is ter-

minating (i.e., when the occurrence of it precludes the observation of other endpoints, as for

example Death).

2. Specify the expected probabilities of observing the event in the control group during the follow-

up period. By default, when the relevant or the additional endpoints consist of several compo-

nents, CompARE will use their maximum probability to calculate the ARE values. In Chapter 5,

we discuss how to assign the specific value or range of plausible values for this combined prob-

ability by means of the marginal information of each component.

3. Indicate the anticipated treatment effect in terms of the hazard ratios between groups (constant

hazard ratios are assumed). By default, when the relevant or the additional endpoints consist of

several components, CompARE will use the average hazard ratio to calculate the ARE values. As

for the combined probability, in Chapter 5 we discuss how to assign the specific value or range

of plausible values of this combined hazard ratio by means of the marginal information of each

component.

4. Select whether the endpoint is a component of the relevant or the additional endpoint.

5. In the last column, select those candidates that form the composite endpoint. Note: unselected

endpoints will be excluded from the current analysis.

6. At the bottom, click on "Remove executions history" to delete previous analyses you may have

done before.

7. When ready, click on the "Run" button to execute the process.
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Figure 4.4

By default, exponential distributions and the Frank copula relationship between marginal times

with moderate correlations is assumed. In Chapter 6, among other developments, we extend CompARE

in order to allow users to modify these assumptions.

As an example, in Figure (4.4) we consider the union of Cardiovascular Death + Myocardial Infarc-

tion as the relevant endpoint (RE), and the union of Stroke + Hospitalization as the additional endpoint

(AE). The union of the RE and the AE forms the composite endpoint (CE).
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Results

Once the program executes the computations, an output screen that is divided into four tags appears

at the top:

• Results (see Figure 4.5): In this tag, a table specifies the parameter information set by the user

together with the exact value of ARE. When ARE > 1, the composite endpoint should be used.

That is, a smaller sample size would be required, using the composite endpoint as primary rather

than the relevant endpoint (Gómez and Gómez-Mateu, 2014)24 . Otherwise, the relevant end-

point will be advisable to use as primary endpoint. A paragraph below the table shows a detailed

recommendation written in text.

Figure 4.5
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• Other scenarios (see Figure 4.6): Several scenarios depending on different correlations and haz-

ard ratios for the additional endpoint are detailed in a table.

Figure 4.6
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• Graphical outputs (see Figure 4.7): The results from the previous tag are shown graphically here.

Also, a plot with survival distributions and hazard ratios is shown at the bottom. The "end of

study" time point corresponds to the follow-up period of your clinical trial.

Figure 4.7
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• Recorded results (see Figure 4.8): In this tag, the user can see the history of results performed in

previous analyses.

Figure 4.8

In our example, the use of the composite endpoint is clearly advisable, since the ARE is higher than

1 (ARE = 2.1). That is, by considering moderate correlations between endpoint times, we would need

less than half of the sample size when using the CE as primary instead of the RE. As we see in Figure (4.7,

top), the decision remains the same irrespective of the correlation. However, note that if the expected

hazard ratio for the additional endpoint was 0.8 instead of 0.7 (i.e., a smaller expected effect of the AE),

the use of the relevant endpoint would be recommended when having a strong correlation between

marginal times.
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4.3 Summary

CompARE provides investigators a free online tool that can be used at the design stage of randomized

clinical trials. One of the capabilities of CompARE is to help in deciding whether the primary endpoint

should consist of a composite of several components, or of a smaller subset that forms the relevant

endpoint. In this chapter we have shown some illustrations and the basic functionality of the platform.

CompARE is permanently extended with new functionalities and features, and we are constantly

improving it thanks to the feedback of colleagues from different national and international universities,

institutions and companies. In Chapter 6 we detail several improvements, such as the possibility of

assuming other distribution laws, copulas or correlations. Sample size calculations will also be tackled.

An important issue to address is the assignment of the combined probability and hazard ratio when

having several components in the relevant or the additional endpoint, as seen in the example in Figure

4.4. By default, CompARE assigns the maximum value of the marginal probabilities and the average of

the marginal hazard ratios. The assignment of these combined outcomes is of paramount importance,

because it might affect the decision regarding the primary endpoint and also regarding sample size

calculations. In the next chapter, we develop practical solutions for calculating a specific value or

assigning a plausible range of values for the combined probability and combined hazard ratio. We

apply this development in CompARE and describe it in Chapter 6.
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5
PRACTICAL ISSUES TO ASSIGN COMBINED

PROBABILITIES AND HAZARD RATIOS

When the relevant and/or the additional endpoint consist of a composite of several components, in-

vestigators may anticipate the probabilities and hazard ratios of each one of the components instead

of the combined probabilities and hazard ratios. For example, consider the relevant endpoint as a

composite of stroke and myocardial infarction. While the marginal parameter values for stroke and

myocardial infarction might be anticipated by trialists (ex. the LIFE trial10), the specific parameter

values for the union of stroke+myocardial infarction could be more difficult to specify (see Figure 5.1).

Since the computation of the ARE needs specific values for the probability (in the control group)

and hazard ratio of both the relevant and additional endpoints, we will discuss in this chapter how

to derive these quantities based on the marginal values. We propose solutions to assign combined

probabilities and combined hazard ratios from any pair of endpoints E1 and E2. These two endpoints

might refer either to the marginal components of the relevant endpoint or the additional endpoint.

In this chapter, we will use the term combined endpoint instead of composite endpoint in order

to avoid confusion with the definition used by Gómez and Lagakos of E∗ as the union of the rele-

vant endpoint ER and the additional endpoint EA . We restrict to combined endpoints with only two

components although some of the results of this chapter could be extended to more than two compo-

nents. The development of the practical implementation has been incorporated in CompARE and is

described in chapter 6.
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A letter to the editor in Statistics in Medicine is published based on the evaluation of the ARE de-

pending on the choice of different combined parameter values23 (See Appendix) :

Gómez G, Gómez-Mateu M. Comments on "Use of composite endpoints in clinical trials" by Abdul J.

Sankoh, Haihong Li and Ralph B. D’Agostino, Sr (2016). Statistics in Medicine, 35, 317–318.

Letter to the Editor

(wileyonlinelibrary.com) DOI: 10.1002/sim.6483 Published online in Wiley Online Library

Comments on ‘Use of composite endpoints
in clinical trials’ by Abdul J. Sankoh,
Haihong Li and Ralph B. D’Agostino, Sr

From: Guadalupe Gómez
Moisés Gómez-Mateu
Department of Statistics and Operations Research,
Universitat Politècnica de Catalunya,
Barcelona, Spain
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5.1 Combined probability

In this section we study how to assign the combined probability p∗ of observing the combined end-

point E∗ = E1 ∪E2 when having two marginal components E1 and E2 . The value of p∗ depends on the

marginal probabilities p1 and p2 together with the correlation between E1 and E2 (Bahadur, 1961).4

Hence, whenever the correlation is anticipated, the value of p∗ is univocally determined by p1 and p2.

Otherwise, a range of plausible values can be proposed.

COMPOSITE ENDPOINT

RELEVANT ENDPOINT

p1

p2

Stroke

Myocardial Infarction

pR

ADDITIONAL ENDPOINT

pA HRAHospitalizations

Combined 

probability

Combined 

hazard ratio

HRR(t)

HR1

HR2

Figure 5.1: Combined probability pR and hazard ratio HRR (t ) of a combined endpoint consisting of the union
of Stroke and Myocardial infarction that forms the relevant endpoint. p1, p2 and HR1, HR2 corresponds to the
probability and hazard ratio of each component. p A and HRA stands for the probability and hazard ratio of the
additional endpoint.

5.1.1 Boundaries for the combined probability

Consider that we have two endpoint components E1 and E2 belonging to the combined endpoint E∗ =
E1 ∪E2. Let p1, p2 and p∗ be the probability of observing E1, E2 and E∗, respectively.

Proposition: The probability p∗ is bounded by:

max(p1, p2) ≤ p∗ ≤ p1 +p2. (5.1)

Proof:

p∗ = P (E1 ∪E2) = P (E1)+P (E2)−P (E1 ∩E2) = p1 +p2 −P (E1 ∩E2). Since 0 ≤ P (E1 ∩E2) ≤ mi n(p1, p2),

we have

p1 +p2 −mi n(p1, p2) ≤ p∗ ≤ p1 +p2, which implies

max(p1, p2) ≤ p∗ ≤ p1 +p2, because p1 +p2 −mi n(p1, p2) = max(p1, p2).
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In case of independence between E1 and E2, that is if P (E1 ∩ E2) = P (E1) · P (E2), we have p∗ =
p1 +p2 −p1p2.

Corollary: Let p1, ..., pm be the probabilities of observing each component E1, ...,Em , respectively, and

define p∗m = P (E1 ∪ ...∪Em). Bounds from (5.1) are straightforwardly generalized as:

max(p1, p2, ..., pm) ≤ p∗m ≤ p1 +p2 + ...+pm .

5.1.2 Expression of the combined probability p∗ as a function of the correlation

coefficient

Given two Bernoulli random variables X1 and X2 with pk = P (Xk = 1) > 0 (k = 1,2), it is possible to

calculate the specific combined probability from the marginal probabilities and a correlation coeffi-

cient. Following Bahadur,4 the joint probability of two correlated Bernouilli variables is determined

by the marginal probabilities p1, p2 and the second order correlation coefficient δ (Pearson product-

moment correlation coefficient) given by

δ= E [Z1 ·Z2],

where Zk = (Xk −pk )/
√

pk (1−pk ), (k = 1,2).

The joint probability function can be expressed as

P (X1 = x1, X2 = x2) =
2∏

k=1
pxk

k ·q (1−xk )
k (1+δ · z1 · z2) ,

where zk = xk−pkp
pk qk

and qk = 1−pk , (k = 1,2).

Hence, the combined probability p∗ of observing at least one response is given by:

p∗ = 1−P (X1 = 0, X2 = 0) = 1−q1q2 −δpp1q1p2q2.

Unlike in the continuous data case, the correlation δ is not free to range over (-1,1) (see Bahadur(1961)

and Sozu(2010) for more details).4, 68 The correlation coefficient δ is bounded by:

max

{
−

√
p1p2

q1q2
,−

√
q1q2

p1p2

}
≤ δ≤ mi n

{√
p1q2

q1p2
,

√
q1p2

p1q2

}
.

Note that given p1 and p2, the higher (positive) correlation, the lower the combined probability p∗
is. In Table 5.1 we indicate the possible range of values of the combined probability and correlation

depending on the marginals p1 and p2. For example, if we assume the two relevant marginal proba-

bilities p1 = 0.1 and p2 = 0.2, the possible values of the combined probability p∗ will range over the

interval (0.2, 0.3) whose probability boundaries will correspond to the correlation coefficients δ equal

to 0.67 and -0.17, respectively. In case of independence between X1 and X2, then p∗ = 0.28. When

p1 = p2 = 0.5, it leads to the widest correlation’s interval (−1,1) and the widest probability interval

(0.5,1).



5.1 COMBINED PROBABILITY 63

0,
01

0,
02

0,
02

0,
05

0,
06

0,
06

0,
1
0

0,
11

0
,1
1

0
,2
0

0
,2
1

0
,2
1

0
,5
0

0
,5
1

0
,5
1

0
,6
0

0
,6
0

0,
6
1

0
,9
0

0
,9
0

0
,9
1

1
,0
0

1
,0
0

1
,0
0

1,
00

0
-0
,0
1

0,
44

0
-0
,0
2

0,
30

0
-0
,0
3

0
,2
0

0
-0
,0
5

0,
1
0

0
-0
,1
0

0,
0
8

0
-0
,1
2

0
,0
3

0
-0
,3
0

0
,0
0

0
-0
,3
1

0,
05

0,
06

0,
06

0,
05

0,
10

0,
10

0,
1
0

0,
15

0
,1
5

0
,2
0

0
,2
4

0
,2
5

0
,5
0

0
,5
3

0
,5
5

0
,6
0

0
,6
2

0,
6
5

0
,9
0

0
,9
1

0
,9
5

1
,0
0

1
,0
0

1
,0
0

0,
44

0
-0
,0
2

1,
00

0
-0
,0
5

0,
69

0
-0
,0
8

0
,4
6

0
-0
,1
1

0,
2
3

0
-0
,2
3

0,
1
9

0
-0
,2
8

0
,0
8

0
-0
,6
9

0
,0
1

0
-0
,1
4

0,
10

0,
11

0,
11

0,
10

0,
15

0,
15

0,
1
0

0,
19

0
,2
0

0
,2
0

0
,2
8

0
,3
0

0
,5
0

0
,5
5

0
,6
0

0
,6
0

0
,6
4

0,
7
0

0
,9
0

0
,9
1

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0,
30

0
-0
,0
3

0,
69

0
-0
,0
8

1,
00

0
-0
,1
1

0
,6
7

0
-0
,1
7

0,
3
3

0
-0
,3
3

0,
2
7

0
-0
,4
1

0
,1
1

0
-1
,0
0

0
,0
1

0
-0
,0
9

0,
20

0,
21

0,
21

0,
20

0,
24

0,
25

0,
2
0

0,
28

0
,3
0

0
,2
0

0
,3
6

0
,4
0

0
,5
0

0
,6
0

0
,7
0

0
,6
0

0
,6
8

0,
8
0

0
,9
0

0
,9
2

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0,
20

0
-0
,0
5

0,
46

0
-0
,1
1

0,
67

0
-0
,1
7

1
,0
0

0
-0
,2
5

0,
5
0

0
-0
,5
0

0,
4
1

0
-0
,6
1

0
,1
7

0
-0
,6
7

0
,0
2

0
-0
,0
6

0,
50

0,
51

0,
51

0,
50

0,
53

0,
55

0,
5
0

0,
55

0
,6
0

0
,5
0

0
,6
0

0
,7
0

0
,5
0

0
,7
5

1
,0
0

0
,6
0

0
,8
0

1,
0
0

0
,9
0

0
,9
5

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0,
10

0
-0
,1
0

0,
23

0
-0
,2
3

0,
33

0
-0
,3
3

0
,5
0

0
-0
,5
0

1,
0
0

0
-1
,0
0

0,
8
2

0
-0
,8
2

0
,3
3

0
-0
,3
3

0
,0
3

0
-0
,0
3

0,
60

0,
60

0,
61

0,
60

0,
62

0,
65

0,
6
0

0,
64

0
,7
0

0
,6
0

0
,6
8

0
,8
0

0
,6
0

0
,8
0

1
,0
0

0
,6
0

0
,8
4

1,
0
0

0
,9
0

0
,9
6

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0,
08

0
-0
,1
2

0,
19

0
-0
,2
8

0,
27

0
-0
,4
1

0
,4
1

0
-0
,6
1

0,
8
2

0
-0
,8
2

1,
0
0

0
-0
,6
7

0
,4
1

0
-0
,2
7

0
,0
4

0
-0
,0
3

0,
90

0,
90

0,
91

0,
90

0,
91

0,
95

0,
9
0

0,
91

1
,0
0

0
,9
0

0
,9
2

1
,0
0

0
,9
0

0
,9
5

1
,0
0

0
,9
0

0
,9
6

1,
0
0

0
,9
0

0
,9
9

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0,
03

0
-0
,3
0

0,
08

0
-0
,6
9

0,
11

0
-1
,0
0

0
,1
7

0
-0
,6
7

0,
3
3

0
-0
,3
3

0,
4
1

0
-0
,2
7

1
,0
0

0
-0
,1
1

0
,0
9

0
-0
,0
1

1,
00

1,
00

1,
00

1,
00

1,
00

1,
00

1,
0
0

1,
00

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1,
0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0,
00

0
-0
,3
1

0,
01

0
-0
,1
4

0,
01

0
-0
,0
9

0
,0
2

0
-0
,0
6

0,
0
3

0
-0
,0
3

0,
0
4

0
-0
,0
3

0
,0
9

0
-0
,0
1

1
,0
0

0
0
,0
0

p
1

   
   

0
,0

1
0

,0
5

0
,1

0
0

,2
0

0
,0

1

0
,0

5

0
,1

0

0
,2

0

0
,5

0

0
,6

0

0
,9

0

0
,9

9
9

0
,9

0
0

,9
9

9

p
2

0
,5

0
0

,6
0

Table 5.1: Range of combined probability values (grey shadow) and the corresponding correlation coefficient
(below, in italics) depending on the marginal probabilities p1 and p2.
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5.1.3 Expression of the combined probability p∗ as a function of several parameters.

Time-to-event data

We follow analogous steps that Gómez and Lagakos did to develop the ARE method, to calculate the

combined probability. Considering time-to-event data, we can express the p∗ in terms of several pa-

rameters depending on joint and marginal distribution assumptions.

Some notation

Define T1 and T2 as the marginal times to E1 and E2, respectively. The time to the combined end-

point E∗ is given by T∗ = mi n(T1,T2). Assuming that τ is the only non-informative censoring time, the

combined probability p∗ of observing the combined endpoint during the follow-up period is given by:

p∗ = P ((T1 < τ)∪ (T2 < τ)) = P (T∗ < τ) = 1−S∗(τ),

where S∗(τ) is the survival function of the combined endpoint at time τ.

We can approach the bivariate distribution (T1,T2) decoupling the joint survival of (T1,T2) into

univariate components using a copula model given by.

S∗(t ) =C (S1(t ),S2(t );θ),

where S1(t ) and S2(t ) are the marginal survival functions for E1 and E2, respectively; and θ is the asso-

ciation parameter between T1 and T2, which is biunivocally related to Spearman’s rank correlation ρ

(−1 < ρ < 1) (1). Therefore, the probability p∗ for a follow-up period τ is in terms of the marginal laws

of T1 and T2, the chosen copula for the joint distribution of (T1,T2), and θ:

p∗ = 1−S∗(τ) = 1−C (S1(τ),S2(τ);θ). (5.2)

Expression of p∗ depending on whether E1 or E2 includes terminating events

The values of S1(τ) and S2(τ) depend on whether the relevant components include a terminating

event since the observation of one component might preclude the observation of the other component

(Cases 1,2,3 and 4 in Gómez and Lagakos27). We next derive the expression of S1(τ) and S2(τ) for each

Case separately.

• Neither E1 nor E2 includes a terminating event (Case 1)

The expression of the marginal survival functions at time τ is given by:

S1(τ) = 1-p1,

S2(τ) = 1-p2.

Hence, from (5.2) the expression of p∗ in Case 1 is given by:

p∗ = 1−C (1−p1,1−p2;θ). (5.3)

1See more details in the Appendix. Other copulas could also be considered (Plana-Ripoll O. and Gómez G., 2015).51
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• Either E1 or E2 includes a terminating event (Cases 2 and 3)

In these cases, the occurrence of one endpoint might preclude the observation of the other. Consid-

ering E2 as the terminating event (Case 2), the occurrence of E2 precludes the observation of E1 when

T1 > T2 (see Figure 5.2). Hence, S1(τ) has to be derived in terms of the probability p1 plus another

unobservable probability U1:

S1(τ) = 1− [p1 +P (T1 > T2,T1 < τ)] = 1− [p1 +U1]

S2(τ) = 1−p2,

where U1 =
∫ τ

0

∫ u
0 f(1,2)(u, v)d vdu, and f(1,2)(u, v) is the joint density of (T1,T2).

Thus, from the expression 5.2, p∗ in Case 2 is given by:

p∗ = 1−C (1−p1 −U1,1−p2;θ). (5.4)

In Case 3, the occurrence of the terminating event E1 precludes the observation of E2 when T1 < T2

(see Figure 5.2). Thus, S2(τ) is function of the probability p2 plus another unobservable probability U2:

S1(τ) = 1−p1

S2(τ) = 1− [p2 +P (T2 > T1,T2 < τ)] = 1− [p2 +U2],

where U2 =
∫ τ

0

∫ v
0 f(1,2)(u, v)dud v . Hence, p∗ in Case 3 is given by:

p∗ = 1−C (1−p1,1−p2 −U2;θ). (5.5)

If we assume a Frank’s Archimedean survival copula, the joint density of (T1,T2) is given by

f(1,2)(t1, t2;θ) = θe−θ(S1(t1)+S2(t2))

e−2θS(1,2)(t1,t2;θ)(e−θ−1)
[ f1(t1)][ f2(t2)]. (5.6)
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• Both E1 and E2 include a terminating event (Case 4)

In Case 4, both marginal survival functions are in terms of the unobservable probabilities U1 and U2

(defined previously for Cases 2 and 3):

S1(τ) = 1− [p1 +U1],

S2(τ) = 1− [p2 +U2].

Therefore, from (5.2), p∗ in Case 4 is given by:

p∗ = 1−C (1−p1 −U1,1−p2 −U2;θ). (5.7)

Note that the expression of p∗ can be simplified as p∗ = p1 +p2.

Proof:

We have that p∗ = P (mi n(T1,T2) < τ). In Case 4, the observation of E1 precludes the observation

of E2, and vice versa. Thus, p∗ = P (T1 < τ,T1 < T2)+P (T2 < τ,T1 > T2) = P (T1 < mi n(T2,τ))+
P (T2 < mi n(T1,τ)) = p1 +p2.

It is important to take into account whether each endpoint includes a terminating event. As com-

mented in Rauch56 and Gooley,31 the calculation of the probabilities via 1 − S(τ) ignoring that one

event is censoring the other might lead to inflated values above the true event probability. That is,

ignoring the probabilities U1 and U2 might inflate the values of S1(τ) and S2(τ) for Cases 2, 3 and 4.

Summarizing, for Case 4 the combined probability p∗ can be calculated as the sum of the marginal

observed probabilities p1 and p2 (see Table 5.2). For Case 1, p∗ can be calculated straightforwardly

from expression (5.3) given p1, p2 and the association parameter θ for any copula, regardless of the

marginal distribution laws of T1 and T2. For Cases 2 and 3, we also need to set the laws for T1 and T2 in

order to calculate the joint density f(1,2)(t1, t2) for a chosen copula (expressions for Weibull distribution

are detailed in the Appendix).

p∗
Case 4 p1 +p2

Case 3 1−C (1−p1,1−p2 −U2;θ)
Case 2 1−C (1−p1 −U1,1−p2;θ)
Case 1 1−C (1−p1,1−p2;θ)

Table 5.2: Expression of the combined probability p∗ for each Case. p1 and p2 stands for the probability of observ-
ing E1 and E2, respectively; θ is the association parameter between the time T1 and T2 to E1 and E2, respectively.
U1 and U2 are the unobservable probabilities. C indicates the copula.



5.1 COMBINED PROBABILITY 67

τ

T2

T1

Case 1

S1 (τ) = 1 – p1 S2 (τ) = 1 – p2

τ

T2

T1

Case 2

S1 (τ) = 1 – (p1 + U1) S2 (τ) = 1 – p2

τ

T2

T1

Case 3

S1 (τ) = 1 – p1 S2 (τ) = 1 – (p2 + U2)

U1
(T2 < T1)

T1

T2τ

T1

T2τ

T1

T2

U2
(T1 < T2)

τ

T2

T1

S1 (τ) = 1 – (p1 + U1)

U1
(T2 < T1)

S2 (τ) = 1 – (p2 + U2)

T1

T2

U2
(T1 < T2)

τ

τ

Case 4

Figure 5.2: Calculation of the marginal survival functions S1 and S2 of the endpoints E1 and E2 at the end-of-
study time τ for each Case in terms of the observable probabilities p1 and p2 and the unobservable probabilities U1

and U2. The green/red shadows represent the observable/unobservable combinations of times T1 and T2. In Case
1, T1 and T2 will be always observable until τ. In Case 2, the observation of T2 precludes the observation T1 when
(T1 > T2). In Case 3, the observation of T1 precludes the observation T2 when (T1 < T2). In Case 4, the observation
of T1 and T2 precludes the observation of T2 and T1 when T1 < T2 and T1 > T2, respectively.
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5.2 Combined hazard ratio

The combined hazard ratio HR∗(t ) is defined as the ratio of the hazard functions λ(1)
∗ (t ) and λ(0)

∗ (t ). In

this section we propose a practical solution to assign HR∗(t ) values in terms of the marginal hazard

ratios. The specific expression for the combined HR∗(t ) can be derived in terms of several parameter

values. In cases where the HR∗(t ) is constant over time, we can calculate the specific HR∗(t ) in terms

of these parameter values. Otherwise, since some of these parameters are difficult to anticipate by

trialists, and since the HR∗(t ) is not always constant over time, we propose to use a range of plausible

values.

5.2.1 Notation and assumptions

We denote by T ( j )
1 and T ( j )

2 the marginal times to the endpoint components E1 and E2, respectively, for

both groups j ( j = 0,1). Define the time to the combined endpoint E∗ = E1 ∪E2 as T ( j )
∗ for each group

j . We assume for the remainder of this section:

• Censoring: The end-of-study censoring at time τ is the only non-informative censoring cause

for both groups.

• Proportional hazards: The hazard ratios between T (0)
1 and T (1)

1 and between T (0)
2 and T (1)

2 are

constant. That is, HR1(t ) =λ(1)
1 (t )/λ(0)

1 (t ) = HR1 and HR2(t ) =λ(1)
2 (t )/λ(0)

2 (t ) = HR2 for all t . Note

that although we are assuming that the hazard functions λ( j )
1 (t ) and λ( j )

2 (t ) ( j = 0,1) are propor-

tional, this does not imply the proportionality of the combined hazards λ(0)
∗ (t ) and λ(1)

∗ (t ) for the

combined endpoint E∗ (see Figure 5.3, right).

• Copula assumptions: We consider a Frank’s Archimedean copula relationship between T (0)
1 and

T (0)
2 , which is in terms of an association parameter θ(0), and between T (1)

1 and T (1)
2 , which is in

terms of an association parameter θ(1). We assume equal association parameter θ = θ(0) = θ(1) for

both groups 0 and 1, which is biunivocally related to Spearman’s rank correlation ρ (−1 < ρ < 1)

(see Appendix for more details). Other copulas can also be used (Plana-Ripoll O. and Gómez G.,

2015).51

• Marginal laws: We assume Weibull distributions for T ( j )
1 and T ( j )

2 ( j = 0,1) with scale and shape

parameters b( j )
1 , b( j )

2 and β( j )
1 , β( j )

2 , respectively. The shape parameters are chosen equal for both

groups, that isβ(0)
k =β(1)

k =βk (k = 1,2), so that the assumption of proportionality of the marginal

hazards holds.
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Figure 5.3: Values of the combined hazard ratio HR∗(t ) over time assuming constant hazard ratios HR1 = 0.7 and
HR2 = 0.95, with a probability p1 = 0.15 and p2 = 0.15 of observing the marginal component E1 (terminating)
and E2(non terminating), respectively. We assume Weibull distributions with constant hazard rates for E1 and
increasing hazard rates for E2 with correlation ρ = 0.95 (right); and constant hazards with null correlation (left).

5.2.2 Expression of HR∗(t ) as a function of several parameters

The expression of the combined hazard ratio is given by:

HR∗(t ) = λ(1)
∗ (t )

λ(0)
∗ (t )

=
f (1)
∗ (t )

S(1)
∗ (t )

f (0)
∗ (t )

S(0)
∗ (t )

, (5.8)

where f ( j )
∗ (t ) and S( j )

∗ (t )( j = 0,1) are the density and survival functions of T ( j )
∗ , respectively.

In the same way that Gómez and Lagakos did to derive the hazard ratio for the composite endpoint

of the relevant and the additional endpoint, we can derive the combined HR∗(t ) from the following

parameters:

• The marginal hazard ratios HR1 and HR2,

• the probabilities p1 and p2 of observing each component E1 and E2 in control group,

• the shape parameters β1 and β2 for E1 and E2, respectively,

• and the correlation ρ between the two components.

The expression of HR∗(t ) also depends on whether the E1 or E2 has a terminating event or not (Cases

1,2,3 and 4).
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5.2.3 Scenarios with constant HR∗(t )

We next describe how to calculate the combined hazard ratio HR∗(t ) when it is constant over time (see

Figure 5.3, left). In section (5.3) we will describe some practical solutions in order to supply a value for

HR∗(t ) when the proportionality of the hazards for the combined endpoint does not hold (see Figure

5.3, right). A brief summary of the results is shown in Table 5.8.

a) Null treatment effect on E1 and E2 (HR1 = HR2 = 1) implies HR∗(t ) = 1.

If there is no treatment effect on the marginal components (HR1 = HR2 = 1), then there is no treatment

effect on the combined endpoint (HR∗(t ) = 1). That is, if the null hypotheses of no treatment effect of

E1 and E2 are true (H0 : HR1 = 1 and H0 : HR2 = 1, respectively) , it implies that the null hypothesis of

no treatment effect of E∗ (H0∗ : HR∗(t ) = 1) is also true.

Proof:

The expression of S( j )
∗ for each group j is given by:

S( j )
∗ (t ) =C (S( j )

1 (t ),S( j )
2 (t )), (5.9)

where C indicates the copula model between the marginal times.

If HR1(t ) =λ(1)
1 (t )/λ(0)

1 (t ) = 1, then λ(0)
1 (t ) =λ(1)

1 (t ). Since the hazard function characterizes the law

of the random variables, we have that S(0)
1 (t ) = S(1)

1 (t ). Analogously, if HR2(t ) = 1, we have S(0)
2 (t ) =

S(1)
2 (t ). Therefore, from (5.9), S(0)

∗ (t ) = S(1)
∗ (t ) and hence f (0)

∗ (t ) = f (1)
∗ (t ) . Thus,

HR∗(t ) =
f (1)
∗ (t )

S(1)
∗ (t )

f (0)
∗ (t )

S(0)
∗ (t )

= 1.

Note that it also applies to any marginal distribution, copula model, and correlation between marginal

times.

b) Null correlation between marginal times when λ(0)
2 (t )/λ(0)

1 (t ) is contant implies constant HR∗(t ).

When assuming null correlation, the combined HR∗(t ) is constant when the ratio of the baseline haz-

ard functions λ(0)
1 (t ) and λ(0)

2 (t ) is as well constant (Gómez G., 2011).21 The expression of this ratio is

given by:

λ(0)
2 (t )

λ(0)
1 (t )

= HR1 −HR∗(t )

HR∗(t )−HR2
. (5.10)

Proof:

The expression of the survival function S( j )
∗ (t ) for each group j = 0,1 is given by:

S( j )
∗ (t ) = P (T1 > t ∩ T2 > t ).
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Assuming independence between times (and hence ρ = 0 for Spearman’s correlation), S( j )
∗ (t ) is given

by

S( j )
∗ (t ) = P (T ( j )

1 > t ) ·P (T ( j )
2 > t ) = S( j )

1 (t ) ·S( j )
2 (t ).

The expression of the density function f ( j )
∗ (t ) for each group j is given by:

f ( j )
∗ (t ) = −∂S( j )

∗ (t )

∂t
= −∂(S( j )

1 (t ) ·S( j )
2 (t ))

∂t
= f ( j )

1 (t ) ·S( j )
2 (t )+S( j )

1 (t ) · f ( j )
2 (t ).

Hence, from (5.8) we have:

HR∗(t ) = f (1)
∗ (t )/S(1)

∗ (t )

f (0)
∗ (t )/S(0)

∗ (t )
=

[
f (1)

1 (t ) ·S(1)
2 (t )+S(1)

1 (t ) · f (1)
2 (t )

]
/S(1)

1 (t ) ·S(1)
2 (t )[

f (0)
1 (t ) ·S(0)

2 (t )+S(0)
1 (t ) · f (0)

2 (t )
]

/S(0)
1 (t ) ·S(0)

2 (t )
.

We express f ( j )
1 (t ) =λ( j )

1 (t ) ·S( j )
1 (t ), and f ( j )

2 (t ) =λ( j )
2 (t ) ·S( j )

2 (t ):

HR∗(t ) =
[
λ(1)

1 (t ) ·S(1)
1 (t ) ·S(1)

2 (t )+S(1)
1 (t ) ·λ(1)

2 (t ) ·S(1)
2 (t )

]
·S(0)

1 (t ) ·S(0)
2 (t )[

λ(0)
1 (t ) ·S(0)

1 (t ) ·S(0)
2 (t )+S(0)

1 (t ) ·λ(0)
2 (t ) ·S(0)

2 (t )
]
·S(1)

1 (t ) ·S(1)
2 (t )

=

=
S(1)

1 (t ) ·S(1)
2 (t ) ·

[
λ(1)

1 (t )+λ(1)
2 (t )

]
·S(0)

1 (t ) ·S(0)
2 (t )

S(0)
1 (t ) ·S(0)

2 (t ) ·
[
λ(0)

1 (t )+λ(0)
2 (t )

]
·S(1)

1 (t ) ·S(1)
2 (t )

.

After canceling the survival functions, we have:

HR∗(t ) = λ(1)
1 (t )+λ(1)

2 (t )

λ(0)
1 (t )+λ(0)

2 (t )
.

Therefore, since λ(1)
1 (t ) = HR1 ·λ(0)

1 (t ) and λ(1)
2 (t ) = HR2 ·λ(0)

2 (t ):

HR∗(t ) = HR1 ·λ(0)
1 (t )+HR2 ·λ(0)

2 (t )

λ(0)
1 (t )+λ(0)

2 (t )
. (5.11)

The previous equality can be expressed as:

λ(0)
2 (t )

λ(0)
1 (t )

= HR1 −HR∗(t )

HR∗(t )−HR2
.

If λ(0)
2 (t )/λ(0)

1 (t ) = c (c constant), then

c · (HR∗(t )−HR2) = HR1 −HR∗(t ).

Hence, we have:

HR∗(t ) = HR1 + c ·HR2

c +1
.

Since HR1 and HR2 are constant, it implies that HR∗(t ) is constant.

This result applies to any marginal distribution and copula model.
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c) Null correlation when HR1 = HR2 = k implies HR∗(t ) = k.

Proof:

Assuming ρ = 0, from (5.11), if HR1 = HR2 = k, we have:

HR∗(t ) = k ·λ(0)
1 (t )+k ·λ(0)

2 (t )

λ(0)
1 (t )+λ(0)

2 (t )
= k.

This result applies to any marginal distribution and copula model.

d) Null correlation and Weibull distributions with (β1 =β2 =β) implies constant HR∗(t ).

When the marginal laws of T1 and T2 are Weibull with equal shape parameters (β1 = β2 = β) for both

components E1 and E2, the combined HR∗(t ) is constant and given by:

HR∗(t ) =
HR1 +HR2

(
b(0)

1

b(0)
2

)β
1+

(
b(0)

1

b(0)
2

)β . (5.12)

Proof:

The ratio of the baseline hazard functions λ(0)
1 (t ) and λ(0)

2 (t ) is given by:

λ(0)
2 (t )

λ(0)
1 (t )

=
f (0)

2 (t )

S(0)
2 (t )

f (0)
1 (t )

S(0)
1 (t )

.

Since we assume Weibull distributions with equal shape parameters (β1 = β2 = β), from expressions

(B.6) and (B.7) (Appendix), we have:

λ(0)
2 (t )

λ(0)
1 (t )

=
β

(b(0)
2 )β

· t (β−1)

β

(b(0)
1 )β

· t (β−1)
=

(
b(0)

1

b(0)
2

)β
. (5.13)

From expressions (5.10) and (5.13), we can express the following equality:

(
b(0)

1

b(0)
2

)β
= HR1 −HR∗(t )

HR∗(t )−HR2
.

Solving the equation for HR∗(t ), we have:

HR∗(t ) =
HR1 +HR2

(
b(0)

1

b(0)
2

)β
1+

(
b(0)

1

b(0)
2

)β .

This result applies to any copula model.
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e) Null correlation, Weibull distributions with (β1 = β2 = β) and p1 = p2 for Case 1 implies HR∗(t ) =
(HR1 +HR2)/2.

If the probability of observing both endpoints is the same (p1 = p2) with no competing events (Case 1)

and equal shape parameters (β1 =β2 =β), then the combined HR∗(t ) is equal to the mean of HR1 and

HR2.

Proof:

The equality of the marginal probabilities p1 and p2 of observing E1 and E2 in group 0 at censoring

time τ, respectively, for Case 1, implies that:

S(0)
1 (τ) = S(0)

2 (τ).

Since we assume Weibull distributions, we have:

e−(τ/b(0)
1 )β = e−(τ/b(0)

2 )β ,

which implies that

b(0)
1 = b(0)

2 = b(0).

Hence from (5.12),

HR∗(t ) =
HR1 +HR2

(
b(0)

b(0)

)β
1+

(
b(0)

b(0)

)β = HR1 +HR2

2
.

This result applies to any copula model.
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5.3 Practical solutions to assign combined hazard ratios

5.3.1 General behavior of the HR∗(t ) over time

In the previous section 5.2 we have seen that it is possible to calculate the specific value of the com-

bined HR∗(t ) when investigators can anticipate all the required parameters. The main objective of

this section is to assign a specific value HR∗(t ) among all the values that the HR∗(t ) can take over time

when it is not constant or when investigators cannot anticipate all the needed parameters. To do so,

a range of values for the combined hazard ratio will be calculated over the follow-up period from ex-

pression 5.8 and the assumptions detailed in subsection 5.2.1. For example, in Figure 5.4 (top left), we

represent a specific scenario where the combined hazard ratio HR∗(t ) ranges from 0.75 to 0.89.

We analyze how the combined HR∗(t ) behaves taking the marginal HR1 and HR2 as fixed refer-

ences. That is, the HR∗(t ) interval, consisting of the minimum and maximum HR∗(t ) over time, might

have both boundaries inside the marginal hazard ratios, both outside or either one outside (see Figure

5.4). We consider multiple scenarios consisting of different parameter value combinations. Aggregated

results will give us a general idea of how the HR∗(t ) behaves depending on different parameter values.

Thus, when investigators cannot anticipate all the needed parameter values (such as the correlation),

they will be able to calculate a range of plausible values of HR∗(t ) and act accordingly.
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Figure 5.4: Behaviour of HR∗(t ) over time with respect to the marginal hazard ratios HR1 and HR2. That is,
HR∗(t ) can remain inside, outside or cross the marginal hazard ratios. Parameter values used to depict these plots
belong to the parameter value setting used for the executions except for the plot "Both below", with which negative
correlation is used only for illustration purpose.
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Parameter setting

We choose a wide range of values for each parameter in order to cover a wide range of scenarios (see

Table 5.3). These chosen parametric values lead to 117,855 different scenarios and can be somehow

understood as if we took a huge representative sample from the universe we want to study. We set a

study duration from time t = 0 to t = 1 divided into intervals of width 0.1.

Only positive correlations and equal shape parameters β1 = β2 = β were included because they

represent more realistic situations in clinical trials. Hazard ratios higher than 1 were excluded since in-

vestigators are not likely to include components with harmful effects at the design stage. Moreover, the

ARE methodology is applied considering an alternative hypothesis of no treatment effect with hazard

ratios lower than 1. We excluded probabilities larger than 0.5 and extremely low or high correlations

in Cases 2,3 and 4. These excluded scenarios led to very low survival values (in the order of 10−16) for

some parameter value combinations at some time t < τ= 1, indicating that the support of T∗ was not

[0,1].

Note that since we are not including scenarios with neither HR1 = HR2 = 1 nor ρ = 0 (although

they are very near 1 and 0, respectively), all the computed HR∗(t ) lead to non-proportional hazards, as

shown in section (5.2.3).

Parameters

Case 1
p1, p2 0.01 0.05 0.1 0.5 0.9 0.95 0.99
ρ 0.01 0.1 0.5 0.9 0.99

Cases 2,3,4
p1, p2 0.01 0.05 0.1 0.5
ρ 0.1 0.25 0.5 0.75 0.9

HR1,HR2 0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
β1 =β2 =β 0.5 1 2
Time points 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Number Total Case 1 Case 2 Case 3 Case 4
of scenarios 117,855 59,535 19,440 19,440 19,440

Table 5.3: Parameter settings to compute the combined hazard ratios HR∗(t ) for each parameter value combi-
nation. HR1, p1 and HR2, p2 stands for the marginal constant hazard ratio and probability in control group of
each endpoint E1 and E2, respectively. ρ stands for the Spearman rank correlation between endpoint times. β1

and β2 are the shape parameters. For computational reasons, we use the values 0.01 and 0.99 instead of 0 and 1,
respectively, for the hazard ratios and probabilities; 0.49 instead of 0.5 in Case 4 for the probabilities; and 0.0001
instead of 0 as the first time point.
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Results

Behaviour of HR∗(t ) with respect to HR1 and HR2

For every pair of marginal hazard ratios we study when the different values of the HR∗(t ) fall inside

the area delimited by HR1 and HR2. Whenever the HR∗(t ) is outside this area for some t , we study the

nature of the distinct departures (see Figure 5.4). Since Case 1 consists of a different parameter setting

than Cases 2,3,4, we split the results by Cases. Due to their symmetry, we merge Cases 2 and 3 because

they lead to the same aggregated results of HR∗(t ).

In 73% of scenarios, the combined HR∗(t ) always remains between the marginal hazard ratios

(see "Inside" in Table 5.4). For the rest of cases, we observe 5% of scenarios where the HR∗(t ) crosses

both the upper and lower marginal hazard ratios (which we call "Across"); 18% of scenarios where the

HR∗(t ) crosses or remains above the upper marginal HR ("Above"+"Both above"), and 5% of scenarios

where the HR∗(t ) crosses the lower marginal HR ("Below"). Note that the situation where the HR∗(t )

remains below the lower marginal HR for all t never occurs in our setting. We executed some scenarios

with negative correlations, and some cases led to this latter behaviour in the HR∗(t ) (see bottom right

in Figure 5.4).

Global Case 1 Cases 2&3 Case 4 HR1 6= HR2 HR1 = HR2

Inside 73% 67% 79% 80% 82% 0%
Across 5% 8% 1% 2% 0% 41%

Both above 7% 3% 10% 10% 0% 59%
Above 11% 14% 8% 7% 12% 0%
Below 5% 8% 2% 1% 5% 0%

Both below 0% 0% 0% 0% 0% 0%

Table 5.4: Table representing the range of possible values of HR∗(t ) over the follow-up time in relation to the
marginal hazard ratios HR1 and HR2. Whenever HR1 ≤ HR2, we distinguish situations according to whether
maxt {HR∗(t )} ≤ HR1 (both below), mi nt {HR∗(t )} ≥ HR2 (both above), HR1 ≤ HR∗(t ) ≤ HR2 ∀t (inside), as well
as three other combinations. Analogously, the same is applied whenever (HR1 ≥ HR2).

Whenever HR1 = HR2, since we are excluding scenarios with ρ = 0 (and hence non-constant

HR∗(t )), none of the scenarios will fall between the marginal hazard ratios for all t . In those cases,

HR∗(t ) either always remains above the marginals (59%) or crosses the marginal hazard ratio (41%)

(see the last column in Table 5.4). Whenever HR1 6= HR2, the HR∗(t ) either is inside the marginals for

all t (82%), or crosses one marginal hazard ratio (17%).

The correlation ρ between endpoint times plays an important role. The lower correlation, the

higher percentage of scenarios where the combined HR∗(t ) remains between the marginal hazard

ratios for all t (see Table 5.5). Indeed, as stated in Gómez G.,21 when having null correlation (ρ = 0),

the constant combined HR∗(t ) lies always between HR1 and HR2. That is, the treatment effect on

the combined E∗ lies between the treatment effect on E1 and E2. Whenever HR1 6= HR2, the HR∗(t )

remains always inside HR1 and HR2 for low correlations (ρ ≤ 0.25), and remains inside in the vast

majority of cases whenever the correlation is moderate or high (0.5 ≤ ρ ≤ 0.75).
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ρ Global Case 1 Cases 2&3 Case 4 HR1 6= HR2

0.01 89% 89% - - 100%
0.1 89% 89% 89% 89% 100%

0.25 89% - 89% 89% 100%
0.5 86% 84% 87% 87% 96%

0.75 72% - 71% 74% 81%
0.9 51% 42% 60% 62% 58%

0.99 30% 30% - - 34%

Global 73% 75% 89% 90% 82%

Table 5.5: Scenarios with HR∗(t ) inside the marginal hazard ratios HR1 and HR2.

Summarizing, we observe that although HR∗(t ) is not constant, their range of values lies between

the marginal hazard ratios in 73% of cases, with this proportion reaching to almost 90% if the two

components are close to be independent, and almost 100% whenever HR1 6= HR2 with moderate or

low correlations. This behaviour informs the investigators about the plausible values for HR∗(t ), and

hence to know that the assigned HR∗(t ) might be between the marginal hazard ratios in the majority

of scenarios, specially when having medium or low correlations.

Departure of HR∗(t ) with respect to HR1 and HR2

We now study the behaviour of HR∗(t ) whenever it is outside the interval [HR1, HR2](27% of sce-

narios). In particular, we analyze the departure of HR∗(t ) from HR1 and HR2 for t such that HR∗(t ) ∉
[HR1, HR2]. In Figure 5.5, the distribution of the maximum distances between the marginal bound-

aries and the combined HR∗(t ) is shown by means of a table with the percentiles in cases where the

combined hazard ratio falls above or below the maximum and minimum marginal hazard ratios, re-

spectively. We observe that these distances are very small in the majority of scenarios. Only 1% of

scenarios reach distances above 0.05 and 0.07 in the upper and lower boundary. Therefore, given

HR1 ≤ HR2, the general combined HR∗(t ) interval given by [HR1 − 0.07, HR2 + 0.05] would cover all

the plausible HR∗(t ) values over time in the 99% of the scenarios. Whenever HR1 6= HR2, this inter-

val shrinks to [HR1 −0.01, HR2 +0.03]. The interval is also shrunk when having low correlations (not

shown). Scenarios reaching the widest interval consist of scenarios with HR1 = HR2 and high correla-

tion.
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Percentiles Global Case 1 Cases 2&3 Case 4 HR1 6= HR2 HR1 = HR2
Minimum 0 0 0 0 0 0
P50 (Median) 0.002 0.001 0.003 0.004 0.002 0.002
P90 0.02 0.01 0.02 0.02 0.01 0.02
P99 0.05 0.05 0.05 0.06 0.03 0.06
Maximum 0.09 0.09 0.07 0.08 0.05 0.09

Percentiles Global Case 1 Cases 2&3 Case 4 HR1 6= HR2 HR1 = HR2
Minimum 0 0 0 0 0 0
P50 (Median) 0.001 0 0.001 0.002 0.001 0
P90 0.01 0.01 0.01 0.02 0.01 0.02
P99 0.07 0.07 0.02 0.09 0.01 0.08
Maximum 0.15 0.15 0.02 0.11 0.04 0.15

Figure 5.5: Illustrative examples, histograms and percentiles of the maximum distances between the HR∗(t ) and
the marginal hazard ratios HR1 and HR2 when HR∗(t ) falls outside the marginal hazard ratios at some t. All
the numbers are > 0 althought we do not specify all the decimals in order to make the table easier to read. Values
in upper plot: (HR1, HR2) = (0.1,0.95), (p1, p2) = (0.05,0.1). Values in bottom plot: (HR1, HR2) = (0.9,0.75), p1 =
p2 = 0.99. In both plots: Case 1 with β1 =β2 = 1 and ρ = 0.99.

Departure from constancy of HR∗(t )

Finally, we analyze r = maxt {HR∗(t )}−mi nt {HR∗(t )} (see Figure 5.6) to assess how the HR∗(t )

departs from being constant. In Figure 5.6 we depict the distribution of this measure by means of

a histogram and we split in tables the median and maximum values by correlation and by absolute

difference between the marginal hazard ratios (|HR1−HR2|). We observe that the larger the correlation

and larger differences between marginal HR, the larger the distance r we get, and hence the larger

departure from constancy of HR∗(t ). We remark that although these departures are close to zero in

median, we have to take into consideration that small changes in hazard ratios might have a great

impact in sample size calculations, as it is commented in Chapter 7 as future research.
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0.01 0 0.02 - - - -

0.1 0.003 0.04 0.002 0.04 0.002 0.04

0.25 - - 0.005 0.11 0.006 0.09

0.5 0.011 0.21 0.012 0.22 0.015 0.19

0.75 - - 0.023 0.33 0.03 0.31

0.9 0.017 0.42 0.035 0.41 0.05 0.4

0.99 0.017 0.47 - - - -

Global 0.004 0.47 0.01 0.41 0.012 0.4

Global

Med. Max.

HR1 = HR2 0.002 0.22

|HR1 −HR2| ≤ 0.1 0.002 0.07

0.1 < |HR1 −HR2| ≤ 0.25 0.007 0.26

0.25 < |HR1 −HR2| ≤ 0.5 0.011 0.37

0.5 < |HR1 −HR2| ≤ 0.75 0.015 0.39

|HR1 −HR2| > 0.75 0.017 0.47

Global 0.007 0.47

Figure 5.6: Illustration of the range of HR∗(t ) (top left) and histogram (top right). Descriptive results are split

in tables according to the values of the correlation ρ and differences between the marginal hazard ratios (|HR1 −
HR2|). Med. and Max. stand for median and maximum values, respectively. All the numbers are > 0 althought

we do not specify all the decimals in order to make the tables easier to read. Values used in the top-left plot:

(HR1, HR2) = (0.5,0.95), p1 = p2 = 0.1,β1 =β2 = 2,ρ = 0.9 (Case 3).
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5.4 Example from the cardiovascular area

The Losartan Intervention For Endpoint reduction in hypertension study (LIFE) trial (Dahlöf et al.,

2002)10 was performed to test the efficacy of Losartan-based antihypertensive treatment in patients

with hypertension. The primary composite endpoint was composed by cardiovascular death, my-

ocardial infarction and stroke. Cardiovascular death + myocardial infarction are considered the most

clinically important components (Sankoh et al., 2014),62 and hence we refer to them as the relevant

endpoint ER , and stroke as the additional endpoint EA (see Table 5.6).

Endpoint Type Control treatment Hazard ratio
Probability (n) (CI, 95%)

Cardiovasc. mortality E1 0.05 (234) 0.89 (0.73 – 1.07)
Myocardial infarction E2 0.04 (188) 1.07 (0.88 – 1.31)

Stroke EA 0.07 (309) 0.75 (0.63 – 0.89)
E1 ∪E1 ∪EA Composite 0.13 (588) 0.87 (0.77 – 0.98)

Table 5.6: Probabilities in control group and hazard ratios of each endpoint from the LIFE trial. E1 and E2 stand
for relevant endpoint component 1 and 2 respectively; EA stands for additional endpoint; and CI stands for the
confidence interval.

The probability of observing the two components of the relevant endpoint E1 and E2 in control

group is p1 = 0.05 and p2 = 0.04, respectively. We assume exponential distributions for each compo-

nent and a hazard ratio of Cardiovascular death and Myocardial infarction of HR1 = 0.75 and HR2 =
0.9, respectively.

Following the calculations described in this chapter for the LIFE study, we observe that the plau-

sible values for the combined probability, in terms of the correlation, would range between 0.05 and

0.09 (see Figure 5.7, left), and the possible values of the combined HRR (t ) would range from 0.82 to

0.88 (see Figure 5.7, right).

Whenever the investigator cannot anticipate the correlation, we can consider to use either the low-

est, the average or the highest plausible values of pR and HRR (t ). We illustrate the results combining

these possibilities in Table 5.7 which includes the Asymptotic Relative Efficiency (ARE) values for each

scenario. Based on the ARE method, we observe that the decision of using the composite endpoint is

always recommended since the ARE is always greater than 1. However, note that the required sample

size can triple if we compare the smallest value of ARE (2.12) versus the highest (6.28).



82 CHAPTER 5 PRACTICAL ISSUES TO ASSIGN COMBINED PROBABILITIES AND HAZARD RATIOS

[0.82]
[0.82 , 0.84]
[0.82      ,    0.88]

 0.4 ≤ ρR < 0.7

HRR(t)

pR

0.05
δR = 0.89

0.09
δR = -0.05

HR1 = 0.75 HR2 = 0.9max(p1, p2) (p1 + p2)

 ρR ≥ 0.7

 0 ≤ ρR < 0.4

Figure 5.7: Boundaries for the combined probability pR and hazard ratio HRR (t ) in terms of Pearson’s correlation
δR and Spearman’s correlation ρR , respectively. p1 and p2 stand for the marginal probability of observing the
relevant component E1 and E2 in control group, respectively. HR1 and HR2 stand for the marginal hazard ratio of
each component. We assume constant hazard rates (exponential distributions) for each component. Component
parameter values are taken from the LIFE study.

pR HRR (t ) ARE

0.05 0.82 3.34
0.05 0.85 4.42
0.05 0.88 6.28
0.07 0.82 2.55
0.07 0.85 3.26
0.07 0.88 4.48
0.09 0.82 2.12
0.09 0.85 2.64
0.09 0.88 3.52

Table 5.7: Asymptotic Relative Efficiency (ARE) by different values of the probability pR in control group and
hazard ratio HRR (t ) of the relevant endpoint. Exponential distribution and moderate correlation (ρR A = 0.5) is
assumed between the relevant endpoint and additional endpoint (do not confuse with ρR , which corresponds to
the correlation between the components of the relevant endpoint). With respect to the additional endpoint, we fix
the probability in control group p A = 0.07 and the hazard ratio HRA = 0.75.

A letter to the editor in response of Sankoh’s paper is published. We discuss other scenarios which

would have led to different results of ARE depending on different parameter combinations (Gómez

and Gómez-Mateu, 2016).23
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5.5 Conclusion

The ARE method is based on the assumption that, even when the relevant endpoint consist of several

components, the combined probability in control group and the combined hazard ratio can be antici-

pated by researchers. Analogously, the same is assumed with respect to the additional endpoint. Since

investigators may know the anticipated probabilities and hazard ratios of each one of the components

rather than the combined probabilities and hazard ratios, we have discussed in this chapter how to

derive these quantities based on the marginal components.

Based on binary data, the combined probability p∗ can be calculated in terms of the probability p1

and p2 of observing the components E1 and E2, respectively, given the Pearson’s correlation δ between

endpoints. It is also possible to calculate the combined probability values based on time-to-event vari-

ables. However, the calculation of the combined probability is based on several assumptions and on

some parameter values that trialists might not known. It is for that reason that we would recommend

to assign the combined p∗ in terms of the Pearson correlation, except for Case 4, since p∗ is straight-

forwardly calculated as p∗ = p1 + p2. Whenever investigators cannot anticipate the correlation, we

propose to assign a value among the plausible range of values that the combined probability can take

as it is developed in 5.1.

Under some assumptions, the combined HR∗(t ) can be derived in terms of the marginal hazard

ratios HR1 and HR2, the probabilities of observing E1 and E2 in control group, and the correlation

ρ between endpoint times. Whenever the combined HR∗(t ) is constant over time and investigators

can anticipate all the required parameter values, a HR∗(t ) can be specifically calculated. In particular,

when having null correlation (ρ = 0), the combined hazard ratio is constant and lies between HR1 and

HR2. In some specific scenarios, the combined HR∗(t ) corresponds to the mean of HR1 and HR2.

In cases where the HR∗(t ) is not constant over time or trialist cannot anticipate all the parameter

values, we propose to calculate the range of plausible values that the HR∗(t ) can take as it has been

described in this chapter. Among these range of values, trialists might have to assign a specific HR∗(t )

that they consider appropriate based on their experience. We have seen that the interval range of

values of HR∗(t ) given by the general interval [HR1−0.07, HR2+0.05] (HR1 ≤ HR2) would cover almost

all of the scenarios considered in our work. Whenever HR1 6= HR2 or for low correlations, this interval

is narrower.

The more information that investigators can anticipate (such as the correlation), the more precise

the assignment of the combined hazard ratio will be. We briefly summarize in table 5.8 the values and

range of values of HR∗(t ) depending on several parameters.

Special attention must be taken for scenarios with high correlation because they might lead to large

departure from constancy of HR∗(t ) and consequently they will have an important impact in sample

size assessment. As a matter of fact, even small departures from constancy might have a considerable

impact on sample size. We are working on that issue and it is detailed in the future research of this

thesis.
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We have implemented in CompARE, as advanced options, the practical solutions developed in this

chapter. When possible, CompARE will calculate the specific values p∗ and HR∗(t ) when having sev-

eral components in the relevant endpoint or in the additional endpoint. Whenever a parameter value,

such as the correlation, is unknown, or whenever the HR∗(t ) is not constant over time, CompARE will

recommend a range of plausible values of p∗ and HR∗(t ). Hence, CompARE will help investigators to

choose a plausible value of p∗ and HR∗(t ) to calculate the corresponding ARE values for the choice of

the primary endpoint of a clinical trial.

Whenever ρ = 0 HR∗(t )

λ(0)
2 (t )

λ(0)
1 (t )

= c HR∗(t ) = HR1+c·HR2
c+1

HR1 = HR2 = k k

Weibull with β1 =β2 =β HR∗(t ) =
HR1+HR2

(
b(0)

1

b(0)
2

)β

1+
(

b(0)
1

b(0)
2

)β
Weibull with

β1 =β2 =β & p1 = p2 HR∗(t ) = HR1+HR2
2

Whenever ρ > 0 Range of values of HR∗(t )*

Global [HR1 - 0.07, HR2 + 0.05]
HR1 = HR2 = k [k - 0.08, k + 0.06]

ρ ≤ 0.1 [HR1 - 0.02, HR2 + 0.01]
0.25 ≤ ρ ≤ 0.5 [HR1 - 0.07, HR2 + 0.04]

0.75 ≤ ρ ≤ 0.99 [HR1 - 0.08, HR2 + 0.06]

Table 5.8: Combined hazard ratio HR∗(t ) depending on the parameter values. HR1, HR2, p1, p2, β1,β2 and
b(0)

1 ,b(0)
2 stand for the hazard ratio, probability in control group, shape and scale (control group) parameters of

endpoints E1 and E2, respectively. ρ stands for the correlation between the two endpoints. * Corresponding inter-
vals in 99% of scenarios executed in section 5.3 (that is, until percentile 99 for each cut). We consider HR1 ≤ HR2

to determine the intervals; analogously, the same applies for HR1 ≥ HR2.
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6
APPLIED EXTENSIONS IN COMPARE

Throughout the previous chapters, we have seen that the efficiency of a composite endpoint can be

evaluated in terms of several parameter values. In some cases, changing one of these parameters might

influence the choice of the primary endpoint and might also have influence in the required sample size

of the trial. Furthermore, some of the needed values to anticipate might be unknown by the investiga-

tors, specially when consisting of a union of several marginal components.

In the current chapter, we have extended Comp ARE to accommodate the comparison of distinct

scenarios that could represent other realistic situations in the design of a clinical trial. First, the user

can choose different marginal laws for the time to each endpoint, different degrees of correlation as

well as different copulas. Second, Comp ARE has been extended to compute ARE values in cases

where both the relevant endpoint (RE) and the additional endpoint (AE) include a terminating event.

Third, Comp ARE has been also extended to quantify specific values for the combined probabil-

ity and hazard ratios whenever it comes from a combination of several components. When the user

cannot anticipate some of the needed parameters, Comp ARE provides a range of plausible values.

Moreover, the departure from constancy of a combined hazard ratio, which might have a strong influ-

ence in treatment effect interpretation and in sample size assessment, can be explored by visualizing

its shape over time for different scenarios. Finally, sample size computations based on the chosen

scenarios are implemented as well in Comp ARE .
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6.1 Extended options to change parameter values

By default, Comp ARE assumes exponential distributions for the time to the occurrence of the relevant

endpoint (TR ) and for the time to the additional endpoint (TA), moderate correlation (ρ = 0.5) and

Frank’s copula relationship between times. We next detail how to modify these assumptions.

We have extended Comp ARE to allow different distributions, other than exponential, whenever

investigators assume increasing or decreasing hazards of endpoints over the follow-up period of the

trial (see Figure 6.1).
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Figure 6.1: Hazard rate functions from Weibull distributions W (β,b) with increasing (β = 2), constant (β = 1)
and decreasing shape parameter (β= 0.5) and scale paremeter b = 1.

From the drop-down menu in the advanced features box, the user can choose between the follow-

ing options (see Figure 6.2, top):

• Weibull distribution with decreasing hazard rate (β= 0.5),

• Weibull with constant hazard rate (β= 1) (Exponential distribution),

• Weibull distribution with increasing hazard rate (β= 2),

where β is the shape parameter and the scale parameter b is derived automatically. The density and

survival functions used in Comp ARE are parametrized as follows:

f (t ) = β

(b)β
tβ−1e(−(t/b)β)

S(t ) = e(−(t/b)β).
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Figure 6.2
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As we have seen previously in this thesis, the correlation might play a crucial role. Trialist might

need to compare the efficiency of one endpoint over the other in terms of the strength of the associa-

tion between the relevant endpoint and the additional endpoint. Therefore, we have incorporated in

Comp ARE the possibility to change Spearman’s correlations as follows (see figure 6.2, middle):

• Very Strong (ρ = 0.9),

• Strong (ρ = 0.7),

• Moderate (ρ = 0.5),

• Weak (ρ = 0.3),

• Very Weak (ρ = 0.15),

• No correlation (ρ = 0),

where ρ indicates the Spearman correlation coefficient.

We have also implemented an extension of the methodology to allow to other copulas binding the

relevant and the additional endpoint. The methodology was extended by Plana-Ripoll O. and Gómez

G.51 That is, the joint distribution of (TR ,TA) can be derived in Comp ARE by means of the following

copulas (see Figure 6.2, bottom):

• Frank,

• Gumbel,

• Clayton,

• GM,

• Normal,

• T,

• Galambos,

• HuslerReiss,

• Tawn,

• Tev,

• Plackett.
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6.2 Computation of HR and probability for combined endpoints

CompARE is also extended to accommodate the computation of combined probabilities and com-

bined hazard ratios based on the marginal components.

When the RE or the AE consist of several components, the user can specify each marginal endpoint

in the input grid (see Figure 6.3, top). In this example, the union of cardiovascular death ER1 and my-

ocardial infarction ER2 forms the relevant endpoint. The marginal probabilities and hazard ratios of

each component ER1 and ER2 are (0.05, 0.75) and (0.04, 0.9), respectively. By default, Comp ARE uses

the maximum probability and the average hazard ratio to calculate the ARE values (see chapter 5 for

the rationale of this default choice). Alternatively, Comp ARE proposes a range of plausible values of

the corresponding combined probability and combined hazard ratio (for the latter case, only imple-

mented for two components so far). Based on this range of values, the user can introduce a specific

value for the combined parameters by means of the advanced features box (see Figure 6.3, bottom).

Figure 6.3
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In order to visually evaluate the departure from constancy that the combined hazard ratio might

have, Comp ARE depicts the shape of the hazard ratio over time (see Figure 6.4)
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Figure 6.4: Marginal constant hazard ratios (HR RE1) and (HR RE2) of the relevant endpoint, and combined
hazard ratio (HR RE) over time.
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6.3 Sample size

Comp ARE has also been designed to incorporate sample size computation. We start noticing that in

survival analysis the power of the test depends on the number of events rather than on the needed

sample size. The sample size, as we develop below, depends heavily on the allocation rate of patients

into the RCT and the patterns of censoring including the loss to follow-up.

Required number of events

We define α as the significance level, and Π = 1−β as the statistical power, where β is the type II

error. We assume proportional hazards for the marginal hazard ratio of the relevant endpoint RE, i.e.

HRR (t ) = HRR , and we consider the logrank test to compare treatment effects. We assume that the

end-of-study censoring at time τ is the only censoring cause in both groups.

Based on the asymptotic behaviour of the logrank statistic, Schoenfeld65 estimate the required

number of events eR,S given by:

eR,S =
4(zα+ zβ)2

(ln(HRR ))2 ,

where zα and zβ are the standard normal quantiles corresponding to the left tail probability α and β,

respectively.

Another approach was developed by Freedman.18 The number of events eR,F is estimated by means

of the expected value and variance of the logrank statistic, and assuming that the ratio of the number

of patients at risk in each group just before the event is equal to 1. The expression of eR,F is given by:

eR,F = (HRR +1)2

(HRR −1)2

(
(zα+ zβ

2
p

HRR

HRR +1

)2

.

Taking the coefficient 2
p

HRR
HRR+1 as approximately equal to 1 (it approaches 1 when HR → 1), the expres-

sion becomes

eR,F = (HRR +1)2(zα+ zβ)2

(HRR −1)2 .

Required number of patients

If we assume that patients are randomized to receive one of the two treatments in the ratio (1 :

A), for example treatment group triples the control group (A = 3), the required number of patients is

derived as follows (Machin, 1997):43

NR = (1+ A)eR

p(0)
R + A(p(1)

R )
,
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where eR is the required number of events; and p(0)
R , p(1)

R are the probability of observing the relevant

endpoint in control and treatment group, respectively. Thus, the required number of patients to be

recruited to the control and treatment group is N (0)
R = NR /(1+ A) and N (1)

R = NR A/(1+ A), respectively.

If we assume equal allocation between groups, that is A = 1, the total number of required patients NR

is given by:

NR = 2eR

p(0)
R +p(1)

R

.

Censoring due to loss to follow-up might affect the estimation of the required number of patients.

Given an anticipated withdrawal proportion W , the required number of patients must be increased to:

NR,W = NR

(1−W )
.

Different accrual rates and the duration of the trial will also affect sample size estimation and will be

developed in future research.

In a recent article published by Abel et al. (2015),1 the authors compare Schoenfeld and Freedman

approaches. They state that, in terms of number of events, Schoenfeld’s formula would be preferable

because eR,S < eR,F . Indeed, the ratio r = eR,S /eR,F may be considerably lower than 1 for low and high

(above 1) values of HRR . Whenever HRR approaches 1 (low treatment effect), the ratio r approaches

1, and hence both formulas would lead to similar number of events. The simulations included in their

paper show that special attention must be taken whenever we have small sample sizes. In those cases,

Schoenfeld’s formula would lead to an overestimation of power, while the Freedman approach under-

rates the power by almost the same absolute amount. Furthermore, loss of power may occur in case of

deviations from the assumed distributions.

We remark that the formulas to calculate the number of events are based on the assumption that

the HRR (t ) is constant over time. Whenever we do not have proportional hazards, the previous formu-

las are not appropriate.

Sample size for the composite endpoint

Assume that the hazard ratio of the additional endpoint is constant, i.e. HRA(t ) = HRA . As co-

mented in Chapter 3, given the asymptotic relative efficiency ARE(Z∗, ZR ) of the logrank statistics Z∗
and ZR of the composite endpoint and the RE, respectively, the required number of patients N∗ for the

CE can be estimated as:

N∗ = NR

ARE(Z∗, ZR )
.

Based on the previous formulas, Comp ARE computes the sample size for each specific scenario and

shows the results written in text (see Figure 6.5). The user can modify the parameter values to eval-

uate how the sample size changes depending on the different value sets. By default, Comp ARE uses
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Schoenfeld’s approach, equal allocation and no withdrawals to make the computations. We are ex-

tending the platform to derive sample sizes whenever the user considers other choices, and it is de-

scribed in chapter 7 as future research.

Figure 6.5
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6.4 Computations when both the relevant and additional endpoints

include terminating events

As already mentioned in Chapter 4, before designing the platform Comp ARE , the code to execute the

ARE method was written in MAPLE by Gómez G. to run scenarios where both the RE and AE do not

include a terminating event (Case 1) or either RE or AE includes a terminating event (Cases 2 and 3).

As part of my thesis work, I have adapted the MAPLE code to R and I have programmed, from scratch,

the code for Case 4, where both the RE and the AE includes a terminating event.

The extension to Case 4 has not been straightforward because of the simultaneous solution of the

following double integrals to derive the scale parameters b(0)
R and b(0)

A in control group for the RE and

the AE, respectively:

pR =
∫ 1

U L

∫ V L(0)(x)

0
g (x, y)d yd x

p A =
∫ 1

V L

∫ U L(0)(y)

0
g (x, y)d xd y,


where

• pR and p A are the probabilities of observing the RE and the AE in control group, respectively,

• U L = exp
{− (

(b(0)
R )−βR

) }
,

• V L(0)(x) = exp
{
− (b(0)

R )βA (−l og x)βA /βR

(b(0)
A )βA

}
,

• V L = exp
{− (

(b(0)
A )−βA

) }
, and

• U L(0)(y) = exp
{
− (b(0)

A )βR (−log y)βR /βA

(b(0)
R )βR

}
.

The function g (x, y) is given by:

g (x, y) = θ(1−e−θ)exp{−θ(x + y)}

(e−θ+e−θ(x+y) −e−θx −e−θy )2
,

where θ the association parameter between TR and TA .

The code in R used to compute the ARE values is included in the Appendix.
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FUTURE RESEARCH

New lines of research are open after the development of this thesis. As a member of the research groups

GRBIO33 and GRASS,32 we are collaborating with other partners and researchers of other groups in

order to achieve new goals that might contribute in the improvement of trial designs.

7.1 Extension of the ARE method

The methodology of Gómez and Lagakos is based on several assumptions described in Chapter 1. We

aim to relax some of these assumptions and to study the robustness of the method when some of the

assumptions do not hold.

The lifetimes of the outcomes are assumed to be distributed as Weibull, because they are widely

used in survival analysis. However, other distributions with different features could be applied. For

example, the lognormal distribution has been applied successfully in cancer studies (like in chronic

leukemia40) due to its pronounced right asymmetry. Other distributions like the log-logistic are some-

times preferred since the survival function is mathematically more tractable than the lognormal.37

So far, the method has been developed under the assumption that the end-of-study time is the

only non-informative cause of censoring. Moreover, it is also assumed that the censoring is the same

in both groups. Other types of censoring, even different in each group, could be implemented, such as

that derived from loss to follow-up or withdrawals.

Equal Spearman’s rank correlation ρ is assumed between the marginal times of the relevant and the

additional endpoints for both groups. This assumption might sometimes lead to unlikely scenarios for

some parameter value combinations that might not be realistic for the design of the study. We want to

relax this assumption to analyze how the ARE values would change whenever the correlations are not

equal.

97
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The ARE methodology is also being extended to dichotomous variables (Gómez and Ayestaran,

2014;22 Gómez, Gómez-Mateu and Bofill, 201625). We want to extend the methodology to binary data

with more than two components, perform an exhaustive literature search in several fields, and carry

out simulations to confirm the interpretation of the ARE as the ratio of sample sizes for finite sample

sizes.

Observational studies are commonly conducted whenever the exposure of interest cannot be ran-

domized, such as smoking, or the goal of the trial is to detect a rare or late adverse treatment effect.78

The ARE method can be extended to observational cohort trials, as it has been discussed in a recent

paper (Gómez, Plana-Ripoll and Dafni, 2016).29 They apply the methodology to a cohort of adults with

coronary heart disease to study the effect of concurrent depression and stress. We plan to accommo-

date different censoring patterns and extend further the ARE method for observational studies.

7.2 Non-proportional hazards and alternative measures

As we showed in Chapter 5, most of the times the hazard ratio of a composite endpoint is not constant

over time. Based on the ARE method, from the sequence of contiguous alternatives to H0 when using

composite endpoints given by H1,n : λ(1)
R,n(t ) = λ(0)

R (t )eg (t )/
p

n , we have that g (t ) ≈ log

(
λ(1)

R,n (t )

λ(0)
R (t )

)p
n is

proportional to the log of the hazard ratio for sufficiently large n. Thus, g (t ) allows us to evaluate the

behaviour of the ARE when the hazard functions for the two groups are non-proportional.

The non-proportionality of the hazards may lead to difficulties in its interpretation as a measure of

treatment effect. It may also have a great influence in ARE computations and hence, in sample size.

Together with professors G. Gómez and K. Kim (University of Wisconsin-Madison), we are studying the

different patterns and shapes that the composite hazard ratio HR∗(t ) follows when it is not constant

over time for realistic clinical trial scenarios. A study on the changes in sample size depending on how

HR∗(t ) departs from constancy will be of great help for the design of clinical trials.

We will also analyze the impact of non-proportionality on sample size whenever the investigator

erroneously assumes constant hazard ratio. We will simulate scenarios where the HR∗(t ) is clearly non

constant and compare the required sample size using the commonly used formulas such as Shoenfeld’s

versus the corresponding sample size using the ARE method.

Alternative measures to assess treatment effects not relying on the proportionality of the hazards

have been proposed (Uno et al, 2015).75 The absolute and relative risk difference, derived from the

difference in event rates at some fixed time point, provides a clinically interpretable comparison be-

tween groups. It is an appropriate measure for quantifying relatively long-term survival benefits. The

difference and ratio of percentiles can also be considered as another plausible measure, since it has a

simple mathematical interpretation. However, except for the median, it may not be as much intuitively

interpretable to investigators or patients. Furthermore, whenever the event rate is relatively low, the

censoring is high, or the follow-up is short, this measure might not be estimable from the observed

data. Another alternative measure is the restricted mean survival time (RMST), which provides a clin-
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Figure 7.1: Estimated hazard ratio (low dose over high dose) over time (left) with the corresponding 0.95 point-
wise confidence band, and restricted mean survival time (right, blue area) with data from the Eastern Cooperative
Oncology Group E4A03 study81 up to 40 months for the low-dose group. Adapted from Figure 1 in Uno H, 2014.74

ically meaningful summary of treatment effect and gives more stable estimates than the differences

of percentiles. It is defined as the expected event-free survival time experienced during a specified

time, and it is estimated by the area under the survival curve up to that time point (see Figure 7.1,

right). The RMST of a random variable T is the mean of the survival time Y = min(T,τ) limited to the

time-to-follow up τ of the study (Royston, 2013).61 Its expression is given by:

RMST = E(Y ) =
∫ τ

0
S(t )d t ,

where S(t ) is the survival function.

Alternatively, we could consider the restricted mean time lost (RMTL), corresponding to the area

above the survival curve up to τ. It can be interpreted as the life lost during the follow-up of the study.

The Restricted Average Log Hazard ratio (RALH) can also be considered as an alternative measure

of the effect. Its expression derives from the sample size n∗ required to achieve a given power for a

significance level α. For Cases 1 and 3 (the additional endpoint is not terminating), n∗ is given by:

n∗ = 1

π(1−π)
· (zα+ zβ)2p(0)

∗
R ALH 2 ,

where π is the percentage of patients allocated to the control group, p(0)
∗ is the probability of observing

the CE in control group, zα and zβ are the standard normal quantiles corresponding to the left tail

probability α and type II error β, respectively, and RALH is given by

R ALH =
∫ 1

0 log(HR∗(t )) f (0)
∗ (t )d t

p(0)
∗

,

where f (0)
∗ (t ) is the density function of the time T∗ to the CE in control group.
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We consider to use the logrank test specifying the null and alternative hypothesis in terms of the

RALH and derive the needed sample size based on that measure.

We plan to carry out a research based on the convenience of using the aforementioned measures,

specially when the proportionality of the hazards does not hold. We will study the impact of the non

proportionality of the HR versus the rest of measures for plausible scenarios with considerable depar-

ture from constancy.

The time to follow up τ is also crucial to assess treatment effect, and it does not affect equally on

the results for each measure. Results based on HR might show different effects depending on τ. As an

illustrative example, in Figure 7.1 (left) we see that the estimated HR remains below 1 during the first

22 months approximately, but it shows no treatment effect afterwards. If we use RMST, the effect on

each arm will always increase or keep constant over time, as it is shown in Figure 7.1 (right). That is, the

longer τ, the longer effect might exist on each group. By means of simulated scenarios, we are studying

how different prespecified τ’s might influence the treatment effect assessment for different measures,

including scenarios with hazard ratios fluctuating over 1.

7.3 Composite endpoints in other medical fields

In the last years, the use of progression-free survival (PFS), defined as the union of death and progres-

sion, has increased in non-small cell lung cancer studies (Booth and Eisenhauer, 2012).5 Progression,

usually considered as the additional endpoint, may have a strong weight in the calculation of the ARE

values, and hence in sample size calculations. However, information about progression in randomized

clinical trials is almost never reported.

Together with professors G. Gómez and U. Dafni (University of Athens), we are carrying out a liter-

ature search based on the lung cancer field, in a similar way that we did in our cardiovascular research

described in Chapter 2, to give general recommendations about the convenience of using PFS, taking

into consideration the plausible values that progression can have. We will also analyze the impact in

sample size and primary endpoint decision depending on variations of the parameter values from the

study, such as the correlation between endpoints. Some case studies will be discussed in depth as well.

Furthermore, we will study alternative methods involving terminating and non-terminating events.

As an example, Potthoff and Halabi53 develop a test based on the time to death if the patient has died

or the time to death based on a pre-specified model otherwise.

Other areas of interest involving the use of composite endpoints, such as HIV-AIDS and oncology

studies, will be considered to our research as well.
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7.4 Future extensions in CompARE

We are working to develop the following extensions in Comp ARE platform:

• We plan to extend computations of sample size. It will incorporate the choice of different accrual

rates, unequal allocation, the duration of the trial and loss to follow-up for different values of the

significance level α to achieve a specific power.

• Computations based on different approaches, such as Schoenfeld’s or Freedman’s, will be imple-

mented.

• We want as well to allow different distributional assumptions. On the one hand, we will allow the

user to specify any value for the shape parameter β of the marginal Weibull distributions, other

than the fixed by default (0.5, 1 and 2), to make the computations. On the other hand, other

choices of distributions will be implemented as well on the platform.

• Based on the methodology for binary data, we will also adapt Comp ARE to make the compu-

tations for clinical trials where the primary endpoint is dichotomous. The platform will also be

accommodated to deal with data from observational studies.

• We will create a new library in R from the code to compute the ARE values so as Comp ARE calls

and keep all the functions updated throughout the on-line repository.

• Other written outputs in text will be incorporated to guide the decision depending on the afore-

mentioned extensions. Moreover, graphical results will be improved by using other applications

such as Shiny,67 which allows to build interactive web applications straight from R, and includes

the use of dynamical plots and instantaneous interaction with the user.
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Weibull distribution laws of T1 and T2 for Cases 2 and 3.

If we assume that the time Tk (k = 1,2) to Ek follows a Weibull distribution, with shape and scale

parameters βk and bk , respectively, the density and survival functions are given by:

fk (t ) = βk

(bk )βk
tβk−1e(−(t/bk )βk )

Sk (t ) = e(−(t/bk )βk ).

Fixing the shape parameters β1 and β2, the scale parameters are derived specifically for each one of

the two cases:

Case 2: The scale parameter b1 is a function of the joint density f(1,2)(t1, t2;θ) (see 5.6) and it is found

as the solution of equation p1 = ∫ τ
0

∫ ∞
u f(1,2)(u, v ;θ)d vdu, where p1 is the probability of observing E1

in control group. The scale parameter b2 is a function of p2 and β2 and given by b2 = 1
(− log(1−p2))1/β2

,

where p2 is the probability of observing E2 in control group.

Case 3: The scale parameter b1 is a function of p1 and β1 and given by b1 = 1
(− log(1−p1))1/β1

. The scale

parameter b2 is a function of the joint density f(1,2)(t1, t2;θ) and it is found as the solution of equation

p2 =
∫ τ

0

∫ ∞
v f(1,2)(u, v ;θ)dud v .
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Copula assumptions

We consider a Frank’s Archimedean survival copula relationship between the marginal times T ( j )
1

and T ( j )
2 ( j = 0,1). The copula is given by:

C (t1, t2;θ) =−1

θ
log

{
1+ (e−θt1 −1)(e−θt2 −1)

e−θ−1

}
, (B.1)

where the association parameter θ is biunivocally related to Spearman’s rank correlation ρ given by

ρ = ρ(θ) = 1− 12
θ [ 1

θ

∫ θ
0

t
e t−1 d t − 2

θ2

∫ θ
0

t 2

e t−1 d t ].

Assuming equal association parameter θ = θ(0) = θ(1) for both groups 0 and 1, the joint survival and

joint density for (T ( j )
1 , T ( j )

2 ) are given by:

S( j )
(1,2)(t1, t2;θ) =−1

θ
log

{
1+ (e−θS( j )

1 (t1) −1)(e−θS( j )
2 (t2) −1)

e−θ−1

}
(B.2)

f ( j )
(1,2)(t1, t2;θ) = θe−θ(S( j )

1 (t1)+S( j )
2 (t2))

e−2θS( j )
(1,2)(t1,t2;θ)(e−θ−1)

[ f ( j )
1 (t1)][ f ( j )

2 (t2)], (B.3)

where S( j )
1 (t1) and f ( j )

1 (t1), S( j )
2 (t2) and f ( j )

2 (t2) are the marginal survival and marginal densities of T ( j )
1

and T ( j )
2 , respectively.

The survival functions of T ( j )
∗ = mi n{T ( j )

1 ,T ( j )
2 } are given by:

S( j )
∗ (t ;θ) = P (T ( j )

∗ > t ) = P (T ( j )
1 > t ,T ( j )

2 > t ) = S( j )
(1,2)(t , t ;θ) =

=C (S( j )
1 (t ),S( j )

2 (t )) =−1

θ
log

{
1+ (e−θS( j )

1 (t ) −1)(e−θS( j )
2 (t ) −1)

e−θ−1

}
. (B.4)

The density function of T ( j )
∗ can be calculated as f ( j )

∗ (t ;θ) =−∂S( j )
∗ (t ;θ)/∂t :

f ( j )
∗ (t ;θ) =

e−θS( j )
1 (t )(e−θS( j )

2 (t ) −1) f ( j )
1 (t )+e−θS( j )

2 (t )(e−θS( j )
1 (t ) −1) f ( j )

2 (t )

(e−θ−1)+ (e−θS( j )
1 (t ) −1)(e−θS( j )

2 (t ) −1)

 . (B.5)
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Marginal laws of T ( j )
k

We assume that the time T ( j )
k to observe each k component for each group j follows a Weibull

distribution, with scale parameter b( j )
k and shape parameter β(0)

k = β(1)
k = βk (so that constant hazard

ratios’ assumption holds). The density and survivals functions are given by:

f ( j )
k (t ) = βk

(b( j )
k )βk

tβk−1e(−(t/b( j )
k )βk ) (B.6)

S( j )
k (t ) = e(−(t/b( j )

k )βk ). (B.7)

Scale parameters for group 0

The scale parameters b(0)
1 , b(0)

2 , for group 0, have to be derived specifically for each one of the four

Cases taking into account whether endpoints E1 and E2 are terminating as it is shown in the equations

below:

Case 1: For k = 1,2, the scale parameter b(0)
k is a function of pk andβk and given by b(0)

k = 1
(− log(1−pk ))1/βk

.

Case 2: The scale parameter b(0)
1 is a function of the joint density f (0)

(1,2)(t1, t2;θ) and it is found as the

solution of equation p1 =
∫ τ

0

∫ ∞
u f (0)

(1,2)(u, v ;θ)d vdu. The scale parameter b(0)
2 is a function of p2 and β2

and given by b(0)
2 = 1

(− log(1−p2))1/β2
.

Case 3: The scale parameter b(0)
1 is a function of p1 and β1 and given by b(0)

1 = 1
(− log(1−p1))1/β1

. The scale

parameter b(0)
2 is a function of the joint density f (0)

(1,2)(t1, t2;θ) and it is found as the solution of equation

p2 =
∫ τ

0

∫ ∞
v f (0)

(1,2)(u, v ;θ)dud v .

Case 4: The scale parameters b(0)
k (k = 1,2) are functions of the joint density f (0)

(1,2)(t1, t2;θ) and are found

as the simultaneous solution of equations p1 =
∫ τ

0

∫ ∞
u f (0)

(1,2)(u, v ;θ)d vdu and

p2 =
∫ τ

0

∫ ∞
v f (0)

(1,2)(u, v ;θ)dud v .

Scale parameters for group 1

The scale parameters for group 1, b(1)
1 and b(1)

2 , are derived in such a way that the marginal hazard

ratio HRk (k = 1,2) is constant and given by

HRk =
λ(1)

k (t )

λ(0)
k (t )

=
(

b(0)
k

b(1)
k

)βk

, (B.8)

where λ(0)
k (t ) and λ(1)

k (t ) are the hazard functions of T (0)
k and T (1)

k , respectively.

Hence, the scale parameters for group 1, b(1)
k , can be expressed as a function of b(0)

k and HRk, that

is, b(1)
k = b(0)

k

HRk

1
βk

.
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APPENDIX: R CODE TO COMPUTE THE ASYMPTOTIC

RELATIVE EFFICIENCY (ARE) VALUES

##################################################################################

# ARE_case1234 . R

##################################################################################

# Computation of the Asymptotic r e l a t i v e E f f i c i e n c y (ARE) values f o r censoring

# cases 1 ,2 ,3 and 4 , f o r s e v e r a l copulas and Weibull d i s t r i b u t i o n s .

#

##################################################################################

#

# CASE 1 : The composite endpoint does not include a f a t a l event ( i . e . Death )

# neither in the Relevant endpoint nor in the Additional endpoint .

#

# CASE 2 : The composite endpoint does not include a f a t a l event

# in the Relevant endpoint but i t does in the Additional endpoint .

#

# CASE 3 : The composite endpoint does include a f a t a l event

# in the Relevant endpoint but i t does not in the Additional endpoint .

#

# CASE 4 : The composite endpoint does include a f a t a l event

# both in the Relevant endpoint and in the Additional endpoint .

#

# Last update : 8 / 03 / 2016

#

# R version : R 3 . 2 . 3

#

# Authors : Moisés Gómez Mateu ( moises . gomez . mateu@upc . edu )

# Oleguer Plana Ripoll ( oleguerplana@gmail . com)

#

##################################################################################
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#

# References :

# − [ 1 ] Gómez G. and Lagakos S .W. ( 2 0 1 3 ) . S t a t i s t i c a l considerations when using a composite

# endpoint f o r comparing treatment groups . S t a t i s t i c s in Medicine , 32 , 719−38.

# − [ 2 ] Gómez G. and Lagakos S . ( 2 0 1 3 ) . Web−based Supporting Materials f o r " S t a t i s t i c a l

# Considerations when Using a Composite Endpoint f o r Comparing Treatment Groups "

# by G. Gómez and S .W. Lagakos .

# − [ 3 ] Gómez G. and Gómez−Mateu M ( 2 0 1 4 ) . The Asymptotic Rel at i ve E f f i c i e n c y and the r a t i o

# of sample s i z e s when t e s t i n g two d i f f e r e n t null hypotheses . SORT. 38 , 73−88.

#

##################################################################################

i f ( "copula" %in% rownames( i n s t a l l e d . packages ( ) ) == FALSE) { i n s t a l l . packages ( "copula" ) }

l ibrary ( copula )

i f ( "numDeriv" %in% rownames( i n s t a l l e d . packages ( ) ) == FALSE) { i n s t a l l . packages ( "numDeriv" ) }

l ibrary (numDeriv)

i f ( " rootSolve " %in% rownames( i n s t a l l e d . packages ( ) ) == FALSE) { i n s t a l l . packages ( " rootSolve " ) }

l ibrary ( ’ rootSolve ’ )

#######################################################################################

# Function : ARE

#

#######################################################################################

# Description : I t computes the ARE value f o r the given arguments

#

# rho0 Spearman ’ s c o e f f i c i e n t between T1 and T2 in control group

# rho1 Spearman ’ s c o e f f i c i e n t between T1 and T2 in treatment group

# beta1 Shape parameter f o r a Weibull law f o r the relevant event

# beta2 Shape parameter f o r a Weibull law f o r the additional event

# HR1 Hazard Ratio f o r a Weibull law f o r the relevant event

# HR2 Hazard Ratio f o r a Weibull law f o r the additional event

# p1 Proportion of Relevant events in control group

# p2 Proportion of Additional events in control group

# case Censoring case −− > 1 ( default ) , 2 , 3 or 4

# copula Copula used :

# Archimedean : " Frank " ( default ) , "Gumbel" or " Clayton "

# E l l i p t i c a l : "Normal" or "T"

# Extreme Value : "Galambos " , " HuslerReiss " , "Gumbel" , "Tawn" or " Tev "

# Others : "FGM" or " Plackett "

#######################################################################################

ARE<−function ( rho0 , rho1=rho0 , beta1 , beta2 , HR1, HR2, p1 , p2 , case = 1 , copula="Frank" )

{

############################################################

###### 0 . WARNINGS AND ERRORS

i f ( rho0>1 | rho0 <(−1)) {

stop ( " correlat ion rho must be a number between −1 and 1" , c a l l .=FALSE)

}

i f ( p1<0 | p2<0| p1>1 | p2>1) {

stop ( " p r o b a b i l i t i e s p1 and p2 must be between 0 and 1 . " , c a l l .=FALSE)

}

case_check<−0

i f ( case ==1| case ==2| case ==3| case ==4) { case_check=1}

i f ( case_check ==0){ stop ( " Please , introduce a v al id Case value : 1 ,2 ,3 or 4 . " , c a l l .=FALSE ) }

# Note : Warning f o r copula validation already implemented . See CopulaSelection function .

############################################################
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############################################################

###### 1 . SELECTION OF THE COPULA

copula0<−CopulaSelection ( copula , rho0 )

theta<−copula0 [ [ 2 ] ]

which . copula0<−copula0 [ [ 1 ] ]

which . copula1<−CopulaSelection ( copula , rho1 ) [ [ 1 ] ]

############################################################

############################################################

###### 2 . SELECTION OF THE MARGINAL DISTRIBUTIONS

MarginSelec<−MarginalsSelection ( beta1 , beta2 ,HR1,HR2, p1 , p2 , case , theta )

T1dist<−MarginSelec [ [ 1 ] ]

T2dist<−MarginSelec [ [ 2 ] ]

T1pdist<−MarginSelec [ [ 3 ] ]

T2pdist<−MarginSelec [ [ 4 ] ]

T10param<−MarginSelec [ [ 5 ] ]

T20param<−MarginSelec [ [ 6 ] ]

T11param<−MarginSelec [ [ 7 ] ]

T21param<−MarginSelec [ [ 8 ] ]

############################################################

############################################################

###### 3 . ARE EXPRESSION FOLLOWING GÓMEZ AND LAGAKOS ( See r e f e r e n c e [ 2 ] , pages 2 and 3 ) .

# Bivariate d i s t r i b u t i o n in control and treatment groups

distr ibut ion0 <− mvdc( copula = which . copula0 , margins = c ( T1dist , T2dist ) , paramMargins = l i s t (T10param , T20param ) )

distr ibut ion1 <− mvdc( copula = which . copula1 , margins = c ( T1dist , T2dist ) , paramMargins = l i s t (T11param , T21param ) )

i f ( case ==1| case ==3) {

# Inside the i n t e g r a l in the numerator ( See r e f e r e n c e [ 2 ] , page 2 ) .

inside _ i n t e g r a l <− function ( t ) {

Sstar0<−Sstar ( x=t , d is t1 =T1pdist , dist2 =T2pdist , param1=T10param , param2=T20param , d i s t _ biv= distr ibut ion0 )

Sstar1<−Sstar ( x=t , d is t1 =T1pdist , dist2 =T2pdist , param1=T11param , param2=T21param , d i s t _ biv= distr ibut ion1 )

f s t a r 0<−(−grad ( Sstar , x=t , d is t1 =T1pdist , dist2 =T2pdist , param1=T10param , param2=T20param , d i s t _ biv= distr ibut ion0 ) )

f s t a r 1<−(−grad ( Sstar , x=t , d is t1 =T1pdist , dist2 =T2pdist , param1=T11param , param2=T21param , d i s t _ biv= distr ibut ion1 ) )

Lstar0 <− ( f s t a r 0 / Sstar0 )

Lstar1 <− ( f s t a r 1 / Sstar1 )

HRstar <− ( Lstar1 / Lstar0 )

logHRstar <− log ( HRstar )

return ( logHRstar * f s t a r 0 )

}

# I n t e g r a l in the numerator

i n t e g r a l<−integrate ( inside _ integral , lower =0 ,upper=1 , subdivisions =1000 , stop . on . error = FALSE)

numerator<−( i n t e g r a l $value )^2

# Denominator

Sstar0 _1<−Sstar ( x =1 , dist1 =T1pdist , dist2 =T2pdist , param1=T10param , param2=T20param , d i s t _ biv= distr ibut ion0 )

ST10_1 <− 1−do . c a l l ( T1pdist , c (q=1 ,T10param ) )

denominator <− ( ( log (HR1) ) ^ 2 ) *(1−Sstar0 _ 1) *(1−ST10_ 1)

# ARE value

AREstarT <− ( numerator / denominator )

# I f the i n t e g r a l i s not computed , we assign a missing value

i f ( i n t e g r a l $message ! ="OK" ) { AREstarT <− NA}

} else

i f ( case ==2| case ==4) {

# Computation of the s c a l e parameter values b10 , b20

i f ( case ==2) {

# Compute b20

b20 <− 1 / (− log(1−p2 ) ) ^ ( 1 / beta2 )
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# Compute b10

Fb10<−function ( b10 , p1 ) {

i n t e g r a l<−integrate ( function (u) {

sapply (u , function (u) {

integrate ( function ( v ) ( ( theta *(1−exp(− theta ) ) *exp(− theta * (u+v ) ) ) / ( exp(− theta )+ exp(− theta * (u+v ) )

− exp(− theta *u)−exp(− theta *v ))^2 ) , lower =0 , upper= exp ( ( b10*(− log (u) ) ^ ( 1 / beta1 ) ) ^ beta2 * log(1−p2 ) ) ) $value

} )

} , lower= exp(−1 / b10^beta1 ) , upper=1)$value

return ( integral−p1 )

}

l i m i t s <− c (0.00001 ,10000) # The f i r s t and the l a s t values must be in opposite s igns f o r the function

b10 <− uniroot ( Fb10 , i n t e r v a l =l imits , p1=p1 ) $root # Find the root ( value which equals the function to zero )

}

i f ( case ==4) {

# We need to c r e a t e x [ 1 ] and x [ 2 ] to run ’ multiroot ’ function ( l i b r a r y : rootSolve ) (NA’ s i n i t i a l l y assigned )

x<−NA

y<−NA

x [ 1 ]<−x

x [ 2 ]<−y

# We need to change the name of variables as ( b10=x [ 1 ] , b20 = [ 2 ] ) to execute ’ multiroot ’

# Compute b10

Fb10<−function ( b10 , b20 , p1 ) {

b10−>x [ 1 ]

b20−>x [ 2 ]

i n t e g r a l<−integrate ( function (u) {

sapply (u , function (u) {

integrate ( function ( v ) ( ( theta *(1−exp(− theta ) ) *exp(− theta * (u+v ) ) )

/ ( exp(− theta )+ exp(− theta * (u+v ) ) − exp(− theta *u)−exp(− theta *v ))^2 ) , lower =0 ,

upper= exp ( ( x [ 1 ] *(− log (u) ) ^ ( 1 / beta1 ) ) ^ beta2 * ( −1/ ( x [2]^ beta2 ) ) ) ) $value

} )

} , lower= exp(−1 / x [1]^ beta1 ) , upper=1)$value

return ( integral−p1 )

}

# Compute b20

Fb20<−function ( b10 , b20 , p2 ) {

b10−>x [ 1 ]

b20−>x [ 2 ]

i n t e g r a l<−integrate ( function ( v ) {

sapply ( v , function ( v ) {

integrate ( function (u ) ( ( theta *(1−exp(− theta ) ) *exp(− theta * (u+v ) ) )

/ ( exp(− theta )+exp(− theta * (u+v))−exp(− theta *u)−exp(− theta *v ) ) ^ 2 ) , lower =0 ,

upper=exp(−((((− log ( v ) ) ^ ( 1 / beta2 ) ) * x [ 2 ] ) / x [ 1 ] ) ^ beta1 ) ) $value

} )

} ,

lower= exp(−(1 / x [ 2 ] ) ^ beta2 ) , upper=1)$value

return ( integral−p2 )

}

model <− function ( x ) {

c ( Fb10 ( x [ 1 ] , x [ 2 ] , p1 ) , Fb20 ( x [ 1 ] , x [ 2 ] , p2 ) )

}

( sol <− multiroot ( f = model , s t a r t = c ( 1 , 1 ) ) )

sol<−as . data . frame ( sol [ 1 ] )

b10<−sol [ 1 , ]

b20<−sol [ 2 , ]

}
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## Computation of the numerator

# Note : Only marginal Weibull d i s t r i b u t i o n s f o r fT10 , fT20 , ST10 , ST20 .

fT10 <− function ( t ) {

( beta1 / b10 ) * ( ( t / b10 ) ^ ( beta1−1) ) * ( exp(−( t / b10)^ beta1 ) )

}

ST10 <− function ( t ) {

exp(−( t / b10)^ beta1 )

}

fT20 <− function ( t ) {

( beta2 / b20 ) * ( ( t / b20 ) ^ ( beta2−1) ) * ( exp(−( t / b20)^ beta2 ) )

}

ST20 <− function ( t ) {

exp(−( t / b20)^ beta2 )

}

# Sstar0 and f s t a r 0 f o r any copula

Sstar0 <− function ( t ) {

Sstar0<−Sstar ( x=t , d is t1 =T1pdist , dist2 =T2pdist , param1=T10param , param2=T20param , d i s t _ biv= distr ibut ion0 )

}

f s t a r 0<− function ( t ) {

f s t a r 0<−(−grad ( Sstar , x=t , d is t1 =T1pdist , dist2 =T2pdist , param1=T10param , param2=T20param , d i s t _ biv= distr ibut ion0 ) )

}

aux21 <− function ( t , y ) {

theta *exp(− theta * ( ST10 ( t )+y ) ) *(1−exp(− theta ) ) / ( exp(− theta )−exp(− theta *ST10 ( t ))−exp(− theta *y)+exp(− theta * ( ST10 ( t )+y ) ) ) ^ 2

}

aux22<−function (u ) {

integrate ( aux21 , 0 , ST20 (u ) , t=u , subdivisions =10000)$value

}

lambdaC10<−function ( t ) {

aux22 ( t ) * fT10 ( t ) / Sstar0 ( t )

}

lambdaC11<−function ( t ) {

HR1*lambdaC10( t )

}

aux23<−function ( x , t ) {

theta *exp(− theta * ( x+ST20 ( t ) ) ) *(1−exp(− theta ) ) / ( exp(− theta )−exp(− theta * x)−exp(− theta *ST20 ( t ) ) + exp(− theta * ( x+ST20 ( t ) ) ) ) ^ 2

}

aux24<−function (u ) {

integrate ( aux23 , 0 , ST10 (u ) , t=u , subdivisions =10000)$value

}

lambdaC20<−function ( t ) {

aux24 ( t ) * fT20 ( t ) / Sstar0 ( t )

}

lambdaC21<−function ( t ) {

HR2*lambdaC20( t )

}

# EVALUATION OF LambdaC20 BEFORE COMPUTATION ( IT MAY FAIL IN CASES 2 / 4 FOR BETAS = 0.5 BECAUSE IT IS NOT ALWAYS

# EVALUABLE AT T=0)

LambdaC20_check<−tryCatch (

LambdaC20<−function ( t ) {

integrate ( lambdaC20 , lower =0 ,upper=t , subdivisions =10000)$value }

, error = function ( e ) e )
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# WHENEVER LambdaC20 FAILS , WE INCREASE THE LOWER LIMIT OF INTEGRATION

lower_LambdaC20<−0

while ( inherits (LambdaC20_check , " error " )== "TRUE" ) {

lower_LambdaC20=lower_LambdaC20+0.001

LambdaC20_check<−tryCatch (

LambdaC20<−function ( t ) {

integrate ( lambdaC20 , lower=0+lower_LambdaC20, upper=t , subdivisions =10000)$value }

, error = function ( e ) e )

}

LambdaC20<−function ( t ) {

integrate ( lambdaC20 , lower=0+lower_LambdaC20, upper=t , subdivisions =10000)$value

}

# Computation of the hazards f o r both groups

Lstar0<−function ( t ) {

lambdaC10( t )+lambdaC20( t )

}

Lstar1<−function ( t ) {

lambdaC11( t )+lambdaC21( t )

}

# Computation of HRstar

HRstar <− function ( t ) {

Lstar1 ( t ) / Lstar0 ( t )

}

logHRstar <− function ( t ) {

log ( Lstar1 ( t ) / Lstar0 ( t ) )

}

temp3<− function ( t ) {

logHRstar ( t ) * f s t a r 0 ( t )

}

# EVALUATION OF temp4 BEFORE COMPUTATION ( IT MAY FAIL IN CASES 2 / 4 FOR BETAS = 0.5 BECAUSE IT IS NOT

# ALWAYS EVALUABLE AT T=0)

temp4_check<−tryCatch (

temp4<−integrate (temp3 , 0 , 1 , subdivisions =10000)$value

, error = function ( e ) e )

# WHENEVER temp4 FAILS , WE INCREASE THE LOWER LIMIT OF INTEGRATION

lower_temp4<−0

while ( inherits (temp4_check , " error " )== "TRUE" ) {

lower_temp4=lower_temp4+0.001

temp4_check<−tryCatch (

temp4<−integrate (temp3 , lower_temp4 , 1 , subdivisions =10000)$value

, error = function ( e ) e )

}

temp4<−integrate (temp3,0+ lower_temp4 , 1 , subdivisions =10000)$value

numerator<−(temp4)^2

## Computation of PROBT1UNC

PROBT1UNC_temp_num <− function ( t ) {

exp(−HR2*LambdaC20( t ) ) * Sstar0 ( t ) *lambdaC10( t )

}

PROBT1UNC_temp_den <− function ( t ) {
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exp(−LambdaC20( t ) ) *1 / 2 + exp(−HR2*LambdaC20( t ) ) *1 / 2

}

PROBT1UNC_temp <− function ( t ) {

PROBT1UNC_temp_num( t ) / PROBT1UNC_temp_den( t )

}

PROBT1UNC_ i n t _check<− tryCatch ( integrate (PROBT1UNC_temp , lower =0 , upper=1 , subdivisions =10000)$value , error = function ( e ) e )

############################################

############################################

# WE EVALUATE THE FUNCTION PROBT1UNC_ int BECAUSE IT MAY FAIL IN CASES 2 / 4 FOR BETAS = 0.5 PROBABLY DUE

# TO THE LOWER LIMITS OF THE INTERGATES lambdaC20 AND temp4 .

# WHEN IT FAILS , WE SEARCH FOR THE MINIMUM EVALUABLE LIMIT OF INTEGARTION FOR lambdaC20 AND temp4 ;

# AND WE SET A LOWER LIMITS OF 0.001 FOR THE REST OF INTEGRATES TO ENSURE CONVERGENCE.

lower_PROBT1UNC_ i n t<−0

inc _lower<−0

while ( inherits (PROBT1UNC_ i n t _check , " error " )== "TRUE" ) {

lower_PROBT1UNC_ i n t<−0.001

inc _lower<−inc _lower +0.001

aux22<−function (u ) {

integrate ( aux21 , 0 . 0 0 1 , ST20 (u ) , t=u , subdivisions =10000)$value

}

lambdaC10<−function ( t ) {

aux22 ( t ) * fT10 ( t ) / Sstar0 ( t )

}

lambdaC11<−function ( t ) {

HR1*lambdaC10( t )

}

aux23<−function ( x , t ) {

theta *exp(− theta * ( x+ST20 ( t ) ) ) *(1−exp(− theta ) ) / ( exp(− theta )−exp(− theta * x)−exp(− theta *ST20 ( t ) ) + exp(− theta * ( x+ST20 ( t ) ) ) ) ^ 2

}

aux24<−function (u ) {

integrate ( aux23 , 0 . 0 0 1 , ST10 (u ) , t=u , subdivisions =10000)$value

}

lambdaC20<−function ( t ) {

aux24 ( t ) * fT20 ( t ) / Sstar0 ( t )

}

lambdaC21<−function ( t ) {

HR2*lambdaC20( t )

}

LambdaC20<−function ( t ) {

integrate ( lambdaC20 , lower=lower_LambdaC20 + inc _lower , upper=t , subdivisions =10000)$value

}

Lstar0<−function ( t ) {

lambdaC10( t )+lambdaC20( t )

}

Lstar1<−function ( t ) {

lambdaC11( t )+lambdaC21( t )

}

HRstar <− function ( t ) {

Lstar1 ( t ) / Lstar0 ( t )

}

logHRstar <− function ( t ) {

log ( Lstar1 ( t ) / Lstar0 ( t ) )

}

temp3<− function ( t ) {

logHRstar ( t ) * f s t a r 0 ( t )

}

temp4<−integrate (temp3 , lower_temp4 + inc _lower , 1 , subdivisions =10000)$value

numerator<−(temp4)^2
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PROBT1UNC_temp_num <− function ( t ) {

exp(−HR2*LambdaC20( t ) ) * Sstar0 ( t ) *lambdaC10( t )

}

PROBT1UNC_temp_den <− function ( t ) {

exp(−LambdaC20( t ) ) *1 / 2 + exp(−HR2*LambdaC20( t ) ) *1 / 2

}

PROBT1UNC_temp <− function ( t ) {

PROBT1UNC_temp_num( t ) / PROBT1UNC_temp_den( t )

}

PROBT1UNC_ i n t _check<− tryCatch ( integrate (PROBT1UNC_temp , lower =0.001 , upper=1 , subdivisions =10000)$value , error = function ( e ) e )

}

PROBT1UNC_ i n t<−integrate (PROBT1UNC_temp , lower=lower_PROBT1UNC_ int , upper=1 , subdivisions =10000)$value

############################################

############################################

AREstarT <− numerator / ( ( log (HR1)^2) * PROBT1UNC_ i n t * (1−Sstar0 ( 1 ) ) )

AREstarT

}

return ( AREstarT )

}

#######################################################################################

# Function : CopulaSelection

#

#######################################################################################

# Description : Constructs a copula c l a s s o b j e c t from the family given and the

# the corresponding dependence parameter from the given c o r r e l a t i o n

#

# copula Copula given :

# Archimedean : " Frank " ( default ) , "Gumbel" or " Clayton "

# E l l i p t i c a l : "Normal" or "T"

# Extreme Value : "Galambos " , " HuslerReiss " , "Gumbel" , "Tawn" or " Tev "

# Other : "FGM" or " Plackett "

# rho Spearman ’ s c o e f f i c i e n t between the 2 marginal d i s t r i b u t i o n s

#######################################################################################

CopulaSelection <− function ( copula , rho ) {

i f ( copula=="Frank" ) {

theta<−iRho ( frankCopula ( 1 ) , rho )

which . copula <− archmCopula ( family = " frank " , dim = 2 , param = theta )

return ( c ( which . copula , theta ) )

} else

i f ( copula=="Gumbel" ) {

theta<−iRho ( gumbelCopula ( 2 ) , rho )

which . copula <− archmCopula ( family = "gumbel" , dim = 2 , param = theta )

return ( c ( which . copula , theta ) )

} else

i f ( copula==" Clayton " ) {

theta<−iRho ( claytonCopula ( 1 ) , rho )

which . copula <− archmCopula ( family = " clayton " , dim = 2 , param = theta )

return ( c ( which . copula , theta ) )

} else

i f ( copula=="FGM" ) {

theta<−iRho ( fgmCopula ( 1 ) , rho )

which . copula <− fgmCopula (dim = 2 , param = theta )

return ( c ( which . copula , theta ) )

} else

i f ( copula=="Normal" ) {

theta<−iRho ( normalCopula ( 0 . 5 ) , rho )

which . copula <− normalCopula (dim = 2 , param = theta )

return ( c ( which . copula , theta ) )

} else
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i f ( copula=="T" ) {

theta<−iRho ( tCopula ( 0 . 5 ) , rho )

which . copula <− tCopula (dim = 2 , param = theta )

return ( c ( which . copula , theta ) )

} else

i f ( copula=="Galambos" ) {

theta<−iRho ( galambosCopula ( 0 . 5 ) , rho )

which . copula <− galambosCopula (param = theta )

return ( c ( which . copula , theta ) )

} else

i f ( copula==" HuslerReiss " ) {

theta<−iRho ( huslerReissCopula ( 0 . 5 ) , rho )

which . copula <− huslerReissCopula (param = theta )

return ( c ( which . copula , theta ) )

} else

i f ( copula=="Tawn" ) {

theta<−iRho ( tawnCopula ( 0 . 5 ) , rho )

which . copula <− tawnCopula (param = theta )

return ( c ( which . copula , theta ) )

} else

i f ( copula=="Tev" ) {

theta<−iRho ( tevCopula ( 0 . 5 ) , rho )

which . copula <− tevCopula (param = theta )

return ( c ( which . copula , theta ) )

} else

i f ( copula==" Plackett " ) {

theta<−iRho ( plackettCopula ( 0 . 5 ) , rho )

which . copula <− plackettCopula (param = theta )

return ( c ( which . copula , theta ) )

} else { stop ( paste ( "Not implemented for " , copula , "copula . " ) ) }

return ( c ( which . copula , theta ) )

}

#######################################################################################

# Function : MarginalsSelection

#

#######################################################################################

# Description : Returns the family d i s t r i b u t i o n and parameters of the marginals

# (ONLY WEIBULL DISTRIBUTIONS SO FAR)

#

# beta1 Shape parameter f o r a Weibull law f o r the relevant event

# beta2 Shape parameter f o r a Weibull law f o r the additional event

# HR1 Hazard Ratio f o r a Weibull law f o r the relevant event

# HR2 Hazard Ratio f o r a Weibull law f o r the additional event

# p1 Proportion of the relevant event expected in group zero

# p2 Proportion of the additional event expected in group zero

# case Censoring case : 1 ( default ) , 2 , 3 or 4

# theta Dependence parameter f o r the b i v a r i a t e d i s t r i b u t i o n in control group

#######################################################################################

MarginalsSelection<−function ( beta1 , beta2 ,HR1,HR2, p1 , p2 , case , theta )

{

# Scale parameters f o r group 0 b10 , b20

i f ( case ==1) {

b10 <− 1 / ((− log(1−p1 ) ) ^ ( 1 / beta1 ) )

b20 <− 1 / ((− log(1−p2 ) ) ^ ( 1 / beta2 ) )

} else

i f ( case ==2) {

Fb10<−function ( b10 , p1 ) {

i n t e g r a l<−integrate ( function (u) {

sapply (u , function (u) {

integrate ( function ( v ) ( ( theta *(1−exp(− theta ) ) *exp(− theta * (u+v ) ) ) / ( exp(− theta )+ exp(− theta * (u+v ) ) −
exp(− theta *u)−exp(− theta *v ))^2 ) , lower =0 , upper= exp ( ( b10*(− log (u) ) ^ ( 1 / beta1 ) ) ^ beta2 * log(1−p2 ) ) ) $value

} )

} , lower= exp(−1 / b10^beta1 ) , upper=1)$value
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return ( integral−p1 )

}

l i m i t s <− c (0.00001 ,10000) # The f i r s t and the l a s t values must be in opposite s igns f o r the function

b10 <− uniroot ( Fb10 , i n t e r v a l =l imits , p1=p1 ) $root # Find the root ( value which equals the function zero )

b20 <− 1 / (− log(1−p2 ) ) ^ ( 1 / beta2 )

} else

i f ( case ==3) {

b10 <− 1 / ((− log(1−p1 ) ) ^ ( 1 / ( beta1 ) ) )

Fb20<−function ( b20 , p2 ) {

i n t e g r a l<−integrate ( function ( v ) {

sapply ( v , function ( v ) {

integrate ( function (u ) ( ( theta *(1−exp(− theta ) ) *exp(− theta * (u+v ) ) )

/ ( exp(− theta )+exp(− theta * (u+v))−exp(− theta *u)−exp(− theta *v ) ) ^ 2 ) , lower =0 ,

upper=exp(−((((− log ( v ) ) ^ ( 1 / beta2 ) ) *b20 ) / b10)^ beta1 ) ) $value

} )

} ,

lower= exp(−(1 / b20)^ beta2 ) , upper=1)$value

return ( integral−p2 )

}

l i m i t s <− c (0.00001 ,10000)

b20 <− uniroot ( Fb20 , i n t e r v a l =l imits , p2=p2 ) $root

} else

i f ( case ==4) {

# We need to c r e a t e x [ 1 ] and x [ 1 ] (we assign NA’ s )

x<−NA

y<−NA

x [ 1 ]<−x

x [ 2 ]<−y

# We need to change the name of variables as ( b10=x [ 1 ] , b20 = [ 2 ] ) to execute ’ multiroot ’

# Compute b10

Fb10<−function ( b10 , b20 , p1 ) {

b10−>x [ 1 ]

b20−>x [ 2 ]

i n t e g r a l<−integrate ( function (u) {

sapply (u , function (u) {

integrate ( function ( v ) ( ( theta *(1−exp(− theta ) ) *exp(− theta * (u+v ) ) )

/ ( exp(− theta )+ exp(− theta * (u+v ) ) − exp(− theta *u)−exp(− theta *v ))^2 ) , lower =0 ,

upper= exp ( ( x [ 1 ] *(− log (u) ) ^ ( 1 / beta1 ) ) ^ beta2 * ( −1/ ( x [2]^ beta2 ) ) ) ) $value

} )

} , lower= exp(−1 / x [1]^ beta1 ) , upper=1)$value

return ( integral−p1 )

}

# Compute b20

Fb20<−function ( b10 , b20 , p2 ) {

b10−>x [ 1 ]

b20−>x [ 2 ]

i n t e g r a l<−integrate ( function ( v ) {

sapply ( v , function ( v ) {

integrate ( function (u ) ( ( theta *(1−exp(− theta ) ) *exp(− theta * (u+v ) ) )

/ ( exp(− theta )+exp(− theta * (u+v))−exp(− theta *u)−exp(− theta *v ) ) ^ 2 ) , lower =0 ,

upper=exp(−((((− log ( v ) ) ^ ( 1 / beta2 ) ) * x [ 2 ] ) / x [ 1 ] ) ^ beta1 ) ) $value

} )

} ,

lower= exp(−(1 / x [ 2 ] ) ^ beta2 ) , upper=1)$value

return ( integral−p2 )

}

model <− function ( x ) {

c ( Fb10 ( x [ 1 ] , x [ 2 ] , p1 ) , Fb20 ( x [ 1 ] , x [ 2 ] , p2 ) )

}

( sol <− multiroot ( f = model , s t a r t = c ( 1 , 1 ) ) )
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sol<−as . data . frame ( sol [ 1 ] )

b10<−sol [ 1 , ]

b20<−sol [ 2 , ]

}

# Scale parameters f o r group 1 b11 , b21 ( Although we do not need to compute the s c a l e parameters f o r

# group 1 ( b11 , b21 ) to c a l c u l a t e the ARE)

b11 <− b10 /HR1^(1 / beta1 )

b21 <− b20 /HR2^(1 / beta2 )

T1dist<−" weibull "

T2dist<−" weibull "

T1pdist<−pweibull

T2pdist<−pweibull

T10param<− l i s t ( shape = beta1 , scale = b10 )

T20param<− l i s t ( shape = beta2 , scale = b20 )

T11param<− l i s t ( shape = beta1 , scale = b11 )

T21param<− l i s t ( shape = beta2 , scale = b21 )

return ( l i s t ( T1dist , T2dist , T1pdist , T2pdist , T10param , T20param , T11param , T21param ) )

}

#######################################################################################

# Function : Sstar

#

#######################################################################################

# Description : Returns the value of the survival function of S* at point x given the

# marginal d i s t r i b u t i o n s and the b i v a r i a t e d i s t r i b u t i o n s via copula

#

# x Point in which to be evaluated

# d i s t 1 Distribution function of the marginal T1 ( pweibull )

# d i s t 2 Distribution function of the marginal T2 ( pweibull )

# param1 Parameters of the marginal d i s t r i b u t i o n function T1 ( pweibull )

# param2 Parameters of the marginal d i s t r i b u t i o n function T2 ( pweibull )

# d i s t _ biv Distribution function of the b i v a r i a t e d i s t r i b u t i o n via copula

#######################################################################################

Sstar<−function ( x , dist1 , dist2 , param1 , param2 , d i s t _ biv ) {

y <− i f ( length ( x ) == 1) c ( x , x ) else cbind ( x , x )

return (

1

− do . c a l l ( dist1 , c ( l i s t (q=x ) , param1 ) )

− do . c a l l ( dist2 , c ( l i s t (q=x ) , param2 ) )

+ (pMvdc( y , d i s t _ biv ) )

)

}
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Abstract

Composite endpoints, consisting of the union of two or more outcomes, are often used as the

primary endpoint in time-to-event randomized clinical trials. Previously, Gómez and Lagakos

provided a method to guide the decision between using a composite endpoint instead of one

of its components when testing the effect of a treatment in a randomized clinical trial. Consider

the problem of testing the null hypotheses of no treatment effect by means of either the single

component or the composite endpoint. In this paper we prove that the usual interpretation of

the asymptotic relative efficiency as the reciprocal ratio of the sample sizes required for two test

procedures, for the same null and alternative hypothesis, and attaining the same power at the

same significance level, can be extended to the test procedures considered here for two different

null and alternative hypotheses. A simulation to study the relationship between asymptotic relative

efficiency and finite sample sizes is carried out.

MSC: 62N03, 62P10

Keywords: Asymptotic relative efficiency, composite endpoint, logrank test, sample size, simula-

tion, survival analysis.

1. Introduction

In clinical trials research, one of the most important issues that investigators have

to solve at the design stage of the study is the appropriate choice of the primary

endpoint. Composite endpoints (CE) consisting of the union of two or more outcomes

are commonly used as primary endpoints. For example, in the cardiovascular area the
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relevant endpoint of death is often combined with other additional endpoints such as

myocardial infarction, stroke or hospitalization. Pros and cons on the use of CE have

been extensively discussed (Freemantle et al., 2003; Ferreira-González et al., 2007,

among many others). One of the main advantages of using a CE relies in the fact that

by means of a CE the problem of multiplicity is adequately addressed and the bias

associated with competing risks (Wittkop et al., 2010) is avoided. Also, with a CE the

number of observed events will be higher and, hopefully, the power of the test will

increase. However, as it has been discussed (Montori et al., 2005) and shown in Gómez

and Lagakos (2013), adding inappropriate components to the relevant endpoint might

actually lead to a decrease in the power of the test statistic, consequently having a larger

chance to fail in detecting a real effect of the treatment under study.

Gómez and Lagakos (2013) developed a methodology to help to decide when it is

worthwhile to base the analysis on the composite endpoint E∗ = E1 ∪E2 where E1 and

E2 are two candidate relevant endpoints to evaluate the effect of a treatment instead of

sticking to one of them, E1, say. In order to do so, they compared how more efficient than

E1 would E∗ be to justify its use. Let H0 be the null hypothesis of no treatment effect

evaluated on E1 and denote by Ha an alternative hypothesis, for instance, claiming to

delay the event E1. Analogously, define H∗
0 and H∗

a the null and alternative hypotheses

if the treatment effect is to be evaluated on E∗. Since when comparing two treatment

groups based on time-to-event endpoints, the primary analysis would be based, very

commonly, on a logrank test, their method considers the logrank test Z to test H0 versus

Ha and the logrank test Z∗ to test H∗
0 versus H∗

a . The asymptotic relative efficiency

(ARE) of Z∗ versus Z is the measure proposed to choose between E1 and E∗, with

values larger than 1 in favour of E∗. This relative measure can be computed as (µ∗/µ)2

where µ and µ∗ are, respectively, the asymptotic means of Z and Z∗, under alternative

contiguous hypotheses to H0 and H∗
0 . The purpose of this paper is to prove that the usual

interpretation of the ARE, as the ratio of sample sizes, n and n∗, needed to attain the

same power for a given significance level, still holds even though two different sets of

hypothesis (H0 versus Ha and H∗
0 versus H∗

a ) are compared.

To clarify the purpose of our investigation consider the following. If we were to test

H0 versus Ha with two different test statistics Sn and Tm, Pitman’s relative efficiency

would be defined as the ratio m/n, where n and m are the required sample sizes for Sn

and Tm, respectively, to attain the same power for a given significance level. Furthermore,

if both Sn and Tm are asymptotically normal with unit variance and means µS and

µT , it can be proved that Pitman’s ARE corresponds to the square of the ratio of the

noncentrality parameters, that is (µS/µT )
2. Gómez and Lagakos’ method compares the

logrank statistics: Z and Z∗ derived for two different set of hypotheses H0 versus Ha

and H∗
0 versus H∗

a and do so using, as definition of the ARE, the ratio (µ∗/µ)2 where µ

and µ∗ are, respectively, the asymptotic means of Z and Z∗, under alternative contiguous

hypotheses to H0 and H∗
0 .

This paper is organized as follows. In Section 2 the notation, assumptions and

main results from Gómez and Lagakos’ paper are introduced. Section 3 establishes
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the limiting relationship between ARE and sample sizes and proves that the usual

interpretation of the ARE as the ratio of sample sizes holds. Section 4 presents a

simulation to study under which conditions and for finite sample sizes, the relationship

ARE(Z∗,Z) = (µ∗/µ)2 = n/n∗ holds where n and n∗ are the needed sample sizes for Z

and Z∗, respectively, to attain the same power for a given significance level. Section 5

concludes the paper with a discussion.

2. Notation, the logrank test and the asymptotic relative efficiency

2.1. The logrank tests for the relevant and for the composite endpoints

Assume that we have a two-arm study involving random assignment to an active (X = 1)

or control treatment (X = 0) aiming to prove the efficacy of the new active treatment.

The effect of treatment is to be evaluated on the time T
( j)

1 to a relevant event E1, where

the superscript j indicates the treatment group ( j = 0 for the control group and j = 1 for

the treatment group). Let λ
( j)
1 (t) denote the hazard function of T

( j)
1 ( j = 0,1). The null

hypothesis of no effect is given by H0 : HR1(t) = λ
(1)
1 (t)/λ

(0)
1 (t) = 1 and the alternative

that the new treatment improves survival by Ha : HR1(t)< 1. The logrank test Z is used

to test that the new treatment improves survival.

Assume now that an additional endpoint E2 is considered as component of the

primary endpoint and the composite endpoint E∗ = E1 ∪ E2 is to be used, instead, to

prove the efficacy of the new treatment. The effect of treatment would then be evaluated

on the time T
( j)
∗ to E∗ where T

( j)
∗ = min{T

( j)
1 ,T

( j)
2 } and T

( j)
2 stands for the time to E2

( j = 0,1). Let λ
( j)
2 (t) and λ

( j)
∗ (t) denote, respectively, the hazard functions of T

( j)
2 and

T
( j)
∗ ( j = 0,1). The treatment effect on E∗ would then be tested with the logrank test Z∗

to compare H∗
0 : HR∗(t) = λ

(1)
∗ (t)/λ

(0)
∗ (t) = 1 versus H∗

a : HR∗(t)< 1.

Observation of endpoints E1 and E2 depends on whether or not they include a

terminating event and yield four different situations referred, in Gómez and Lagakos

(2013), as Cases 1, 2, 3 and 4. In this paper we assume that the additional endpoint does

not include a terminating event, which corresponds to Case 1 when neither the relevant

nor the additional endpoint includes a terminating event, and Case 3, when the relevant

endpoint includes a terminating event.

Schoenfeld (1981) studies the asymptotic behaviour of the logrank statistic and proves

that under the null hypothesis of no treatment difference, the logrank is asymptotically

N(0,1) and, under a sequence of alternatives contiguous to the null, the logrank is

asymptotically normal with unit variance and finite mean. Gómez and Lagakos apply

Schoenfeld’s results and proceed as follows. They consider λ
(0)
1 (t) as fixed and define a

sequence of alternatives Ha,n consisting of instantaneous hazard functions close enough

to λ
(0)
1 (t), for instance taking λ

(1)
1,n(t) = λ

(0)
1 (t)eg(t)/

√
n for some g(t) function. These

sequence of alternatives, formulated equivalently as HR1,n(t) = eg(t)/
√

n, include pro-
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portional hazard alternatives, i.e, taking g(t) = β for a fixed real value β . Logrank Z

is asymptotically N(0,1) under the null hypothesis of no treatment difference (H0 :

HR1(t) = 1) and asymptotically normal with unit variance and mean µ given in equation

(1) under the sequence of alternatives Ha,n : HR1,n(t) = eg(t)/
√

n < 1. Analogously, fix

λ
(0)
∗ (t) and define H∗

0 : HR∗(t) = 1 and the sequence of alternatives H∗
a,n : HR∗,n(t) =

eg∗(t)/
√

n < 1 for a given function g∗(t). It follows that Z∗ is asymptotically N(0,1) under

H∗
0 and asymptotically normal with unit variance and mean µ∗ given in equation (2)

under the sequence H∗
a,n. The asymptotic means of Z and Z∗ are given by

µ=

∫
∞

0 g(t)p(t)[1− p(t)]PrH0
{U ≥ t}λ(0)1 (t)dt√∫

∞

0 p(t)[1− p(t)]PrH0
{U ≥ t}λ(0)1 (t)dt

, (1)

µ∗ =

∫
∞

0 g∗(t))p∗(t)[1− p∗(t)]PrH∗
0
{U∗ ≥ t}λ(0)∗ (t)dt

√∫
∞

0 p∗(t)[1− p∗(t)]PrH∗
0
{U∗ ≥ t}λ(0)∗ (t)dt

, (2)

where U = min{T1,C} (in Cases 1 and 3) and U∗ = min{T∗,C} denote the observed out-

come; C denotes the censoring time; p(t) = PrH0
{X = 1|U ≥ t} and p∗(t) = PrH∗

0
{X =

1|U∗ ≥ t} are the null probabilities that someone at risk at time t is in treatment group 1;

PrH0
{U ≥ t} and PrH∗

0
{U∗ ≥ t} are the null probabilities that someone is still at risk at

time t and PrH0
{U ≥ t}λ(0)1 (t) and PrH∗

0
{U∗ ≥ t}λ(0)∗ (t) correspond to the probabilities,

under the null hypothesis, of observing events E1 and E∗, respectively, by time t.

2.2. Asymptotic relative efficiency

Efficiency calculations throughout the paper will assume that end-of-study censoring at

time τ (τ = 1 without loss of generality) is the only non-informative censoring cause

for both groups; this assumption indirectly implies that the censoring mechanism is

the same for both groups. It is as well assumed that the hazard functions λ
( j)
1 (t) and

λ
( j)
2 (t) ( j = 0,1) are proportional, that is, HR1(t) = HR1 and HR2(t) = HR2, for all

t, where HR1(t) = λ
(1)
1 (t)/λ

(0)
1 (t) and HR2(t) = λ

(1)
2 (t)/λ

(0)
2 (t) are the hazard ratios

between T
(0)

1 and T
(1)

1 and between T
(0)

2 and T
(1)

2 , respectively. Note that although we

are assuming that the hazard functions λ
( j)
1 (t) and λ

( j)
2 (t) ( j = 0,1) are proportional,

this does not imply the proportionality of hazards λ
(0)
∗ (t) and λ

(1)
∗ (t) for the composite

endpoint T∗ (see Figure 1).

To assess the difference in efficiency between using logrank test Z, based on the

relevant endpoint E1, and logrank test Z∗, based on the composite endpoint E∗, Gómez

and Lagakos base their strategy on the behaviour of the asymptotic relative efficiency

(ARE) of Z∗ versus Z. The ARE is a measure of the relative power of two tests that can
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Figure 1: Survival and hazard ratio for the relevant endpoint (RE), T1, for the additional endpoint (AE),

T2 and for the composite endpoint (CE), T∗ = min{T1,T2}. T1 ∼ Weibull with shape parameter β1 = 2

(increasing hazard) for treatment groups 0 and 1 and T2 ∼ Weibull with shape parameter β2 = 1 (constant

hazard) for treatment groups 0 and 1. Scale parameters for T1 and T2 have been calculated such that Pr{T1

observed in group 0}=0.1, Pr{T2 observed in group 0}=0.25, HR1 = 0.5, HR2 = 0.9 and Spearman’s

ρ(T1,T2) = 0.45 assuming Frank’s copula between T1 and T2. Considering the RE as a terminating event

(case 3), in this setting ARE(Z∗,Z) = 0.21.

be interpreted, when the two tests are for the same null and alternative hypothesis, as

the ratio of the required sample sizes to detect a specific treatment effect to attain the

same power for a given significance level (Lehmann and Romano, 2005). In this case,

a value of ARE= 0.6 would mean that we only need 60% as many cases to reach a

given power if we use E1 as we would need if we used E∗. Whenever the tests under

consideration, Z and Z∗, are asymptotically N(0,1) under H0 and H∗
0 , respectively, and

asymptotically normal with variance 1 under a sequence of contiguous alternatives to

the null hypothesis, a different definition for Pitman’s relative efficiency as the square

of the ratio of the non-centrality parameters µ and µ∗ is appropriate

ARE(Z∗,Z) =

(
µ∗
µ

)2

, (3)

where µ and µ∗ are to be replaced by expressions (1) and (2).

Before providing the expression that is being used to evaluate the ARE, and for the

sake of clarity, we enumerate the assumptions that have been taken into account:

• End-of-study censoring at time τ is the only non-informative censoring cause for

both groups.

• The additional endpoint does not include a terminating event.
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• The hazard ratios between T
(0)

1 and T
(1)

1 and between T
(0)

2 and T
(1)

2 are propor-

tional, that is, HR1(t) = λ
(1)
1 (t)/λ

(0)
1 (t) = HR1 and

HR2(t) = λ
(1)
2 (t)/λ

(0)
2 (t) = HR2 for all t.

• Effect of treatment on E1 is tested establishing H0 : HR1 = 1 versus a sequence

of alternatives Ha,n : λ
(1)
1,n(t) = λ

(0)
1 (t)eg(t)/

√
n for some g(t) function. Note that

g(t)/
√

n = log{λ(1)1,n(t)/λ
(0)
1 (t)}.

• Effect of treatment on E∗ is tested establishing H∗
0 : HR∗(t) = 1 versus a sequence

of alternatives H∗
a,n : HR∗,n(t) = eg∗(t)/

√
n < 1 for a given function g∗(t). Note that

g∗(t)/
√

n = log{HR∗,n(t)}.

Under the above assumptions expression (3) becomes

ARE(Z∗,Z) =

(∫ 1
0 log

{
λ
(1)
∗ (t)/λ

(0)
∗ (t)

}
f
(0)
∗ (t)dt

)2

(
log

{
HR1

})2
(
∫ 1

0 f
(0)
∗ (t)dt)(

∫ 1
0 f

(0)
1 (t)dt)

, (4)

where f
(0)
1 (t) and f

(0)
∗ (t) are the density functions of T

(0)
1 and T

(0)
∗ , respectively.

Remark The density function f
(0)
∗ (t) is the density of the T

(0)
∗ = min{T

(0)
1 ,T

(0)
2 },

computed from the joint density between T
(0)

1 and T
(0)

2 , which itself is built from the

marginals of T
(0)

1 and T
(0)

2 by means of a bivariate copula.

3. Relationship between ARE and sample sizes

We start establishing that if the hazard ratios for T
( j)

1 ( j = 0,1) and for T
( j)

2 ( j = 0,1)

approach the unity as n gets large, so does the hazard ratio of the minimum T
( j)
∗ between

T
( j)

1 and T
( j)

2 ( j = 0,1).

Lemma 1 Given two sequences of hazard ratios {HR1,n(t) = λ
(1)
1,n(t)/λ

(0)
1 (t)} and

{HR2,n(t) = λ
(1)
2,n(t)/λ

(0)
2 (t)}, both converging uniformly to 1 as n → ∞, the sequence

corresponding to the hazard ratio of T
( j)
∗ = min{T

( j)
1 ,T

( j)
2 }, namely {HR∗,n(t) =

= λ
(1)
∗,n(t)/λ

(0)
∗ (t)}, tends to 1 as n → ∞. In particular, this lemma holds whenever

log(λ
(1)
k,n(t)/λ

(0)
k (t)}) = O(n−1/2), which in turn, is true if log(λ

(1)
k,n(t)/λ

(0)
k (t)}) =

= gk(t)/
√

n, for any bounded real function gk(t) (k = 1,2).

Proof 1 It follows immediately that for fixed t, limn→∞λ
(1)
1,n(t) = λ

(0)
1 (t) and

limn→∞λ
(1)
2,n(t) = λ

(0)
2 (t). Furthermore, it follows that the corresponding densities and
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survival functions f
(1)
1,n (t), f

(1)
2,n (t), S

(1)
1,n(t) and S

(1)
2,n(t), converge to f

(0)
1 (t), f

(0)
2 (t), S

(0)
1 (t)

and S
(0)
2 (t), respectively. Taking into account that the survival function of the minimum,

S
(1)
∗,n(t) is expressed in terms of the marginal survival functions S

(1)
1,n(t) and S

(1)
2,n(t) of T

(1)
1

and T
(1)

2 via a copula C, that is,

S
(1)
∗,n(t) =C(S

(1)
1,n(t),S

(1)
2,n(t)), it remains to prove that limn→∞ S

(1)
∗,n(t) = S

(0)
∗ (t). This result

will imply that

limn→∞ f
(1)
∗,n (t)= f

(0)
∗ (t), limn→∞λ

(1)
∗,n(t)=λ

(0)
∗ (t) and hence the sequence HR∗,n(t)→

1 as n → ∞, as we wanted to prove.

The convergence of S
(1)
∗,n(t) to S

(0)
∗ (t) is guaranteed by the convergence of S

(1)
1,n(t) and

S
(1)
2,n(t) to S

(0)
1 (t) and S

(0)
2 (t), respectively, together with the fact that bivariate copulas

C are bivariate distribution functions with uniform marginals. The reader is referred to

Lindner and Szimayer (2005) for the corresponding technical proofs. �

Proposition 1 Consider two test procedures φn and φ∗
n to test H0 : HR1(t) = 1 against

Ha,n : HR1,n(t)< 1 and H∗
0 : HR∗(t) = 1 against H∗

a,n : HR∗,n(t)< 1, respectively. Let n

and n∗ be the sample sizes required for φn and φ∗
n , respectively, to have power at least

Π at level α. Assume the sequences φ = {φn} and φ∗ = {φ∗
n} are based on the logrank

statistics Z and Z∗, respectively, converging, to Normal (µ,1) and Normal (µ∗,1) with

µ and µ∗ given in (1) and (2), under sequences of local alternatives HRk,n(t) (k = 1,2)

converging uniformly to 1 as n → ∞. Given 0 < α< Π < 1,

lim
HR1,n(t)→1

HR2,n(t)→1

n

n∗
= ARE(Z∗,Z).

The usual interpretation of the ARE as the reciprocal ratio of the sample sizes holds even

when two different sets of hypotheses (H0 versus Ha,n and H∗
0 versus H∗

a,n) are tested.

As a consequence of this proposition, the interpretation of the ARE is the following. If

ARE(Z∗,Z) = 0.7, then, asymptotically, we only need 70% as many cases to attain a

given power if we use Z as we would need if we used Z∗.

Proof 2 By Lemma 1, uniform convergence to 1 of {HR1,n(t)} and {HR2,n(t)} imply

that limHR∗,n(t) → 1. Under the sequence of contiguous alternatives to the null Ha,n :

{HR1,n(t) = λ
(1)
1,n(t)/λ

(0)
1 (t)} → 1 and H∗

a,n : {HR∗,n(t) = λ
(1)
∗,n(t)/λ

(0)
∗ (t)} → 1, both Z

and Z∗ are asymptotically N(µ,1) and N(µ∗,1), respectively. The power function for a

one-sided test with size α is therefore given, respectively, by

Π1 = lim
n→∞

Prob{Z < z1−α|Ha,n}= 1−Φ(−z1−α+µ)

Π∗ = lim
n→∞

Prob{Z∗ < z1−α|H∗
a,n}= 1−Φ(−z1−α+µ∗) (5)
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where Φ is the distribution function of the standard normal and z1−α is the standard

normal quantile corresponding to the left tail probability α. It immediately follows that

Π1 = Π∗ is equivalent to µ= µ∗.
The equivalence of powers (Π1 = Π∗) implies that µ = µ∗, given by (1) and (2).

Equivalently

(
µ∗
µ

)2

= 1 ⇐⇒




∫
∞

0 g(t)p(t)[1−p(t)]PrH0
{U≥t}λ(0)1 (t)dt√∫

∞

0 p(t)[1−p(t)]PrH0
{U≥t}λ(0)1 (t)dt

∫
∞

0 g∗(t)p∗(t)[1−p∗(t)]PrH∗
0
{U∗≥t}λ(0)∗ (t)dt

√∫
∞

0 p∗(t)[1−p∗(t)]PrH∗
0
{U∗≥t}λ(0)∗ (t)dt




2

= 1. (6)

Since

p(t) =
PrH0

{U ≥ t|X = 1}π
PrH0

{U ≥ t} =
PrH0

{U ( j) ≥ t}π
PrH0

{U ≥ t}

where π= PrH0
{X = 1}, we have

p(t)(1− p(t))PrH0
{U ≥ t}= PrH0

{U (1) ≥ t}πPrH0
{U (0) ≥ t}(1−π)

PrH0
{U (0) ≥ t}(1−π)+PrH0

{U (1) ≥ t}π .

Based on the stated assumptions, because T
( j)

1 is right-censored by the end-of-study

at time τ, and under the null hypothesis of no effect (S
(0)
1 (t) = S

(1)
1 (t)), we have

PrH0
{U ( j) ≥ t} = S

(0)
1 (t)1{[0,1]}(t), for j = 0,1. Replacing in (1), the noncentrality

parameter µ becomes

µ=

√
π(1−π)∫ 1

0 g(t)S
(0)
1 (t)λ

(0)
1 (t)dt√∫ 1

0 S
(0)
1 (t)λ

(0)
1 (t)dt

=

√
π(1−π)∫ 1

0 g(t) f
(0)
1 (t)dt√∫ 1

0 f
(0)
1 (t)dt

where f
(0)
1 (t) is the marginal density function for T

(0)
1 . Analogously, it can be seen that

µ∗ =

√
π(1−π)∫ 1

0 g∗(t) f
(0)
∗ (t)dt√∫ 1

0 f
(0)
∗ (t)dt

where f
(0)
∗ (t) is the density function for T

(0)
∗ . The reader is addressed to the online

supporting material of Gómez and Lagakos paper for other technical details.
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If we would replace g(t) and g∗(t) by
√

n log

(
λ
(1)
1,n(t)

λ
(0)
1 (t)

)
=
√

n log(HR1) and
√

n∗ log

(
λ
(1)
∗,n(t)

λ
(0)
∗ (t)

)
,

respectively, equality (6), after cancelling π(1−π), becomes equal to

lim
HR1,n(t)→1

HR2,n(t)→1

√
n∗√
n

∫ 1
0 log

{
λ
(1)
∗ (t)/λ

(0)
∗ (t)

}
f
(0)
∗ (t)dt√∫ 1

0 f
(0)
∗ (t)dt

log(HR1)

√∫ 1
0 f

(0)
1 (t)dt

= 1

which in turn is equivalent to

lim
HR1,n(t)→1

HR2,n(t)→1

n

n∗
=

(∫ 1
0 log

{
λ
(1)
∗ (t)/λ

(0)
∗ (t)

}
f
(0)
∗ (t)dt

)2

(log(HR1))
2 (

∫ 1
0 f

(0)
∗ (t)dt)(

∫ 1
0 f

(0)
1 (t)dt)

(7)

and it follows that ARE(Z∗,Z) = lim
HR1,n(t)→1

HR2,n(t)→1

n

n∗
, as we wanted to prove. �

Note that (7) implies

(∫ 1
0 log

{
λ
(1)
∗ (t)/λ

(0)
∗ (t)

}
f
(0)
∗ (t)dt

)2

(log(HR1))
2
(∫ 1

0 f
(0)
∗ (t)dt

)2
= lim

HR1,n(t)→1

HR2,n(t)→1

n(
∫ 1

0 f
(0)
1 (t)dt)

n∗(
∫ 1

0 f
(0)
∗ (t)dt)

≈ expected number E1

expected number E∗

and whenever λ
(1)
∗ (t)/λ

(0)
∗ (t) is approximately constant and equal to HR∗, we would

have

(
1

log(HR1)

)2

(
1

log(HR∗)

)2
= lim

HR1,n(t)→1

HR2,n(t)→1

n(
∫ 1

0 f
(0)
1 (t)dt)

n∗(
∫ 1

0 f
(0)
∗ (t)dt)

≈ expected number E1

expected number E∗

4. Simulation

4.1. Simulation

Our next aim is to simulate data to empirically check how close we are to the limiting

relationship n/n∗ = ARE(Z∗,Z) when Π1 = Π∗ for different finite sample sizes. To
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conduct the simulations we will assume, as Gómez and Lagakos did, that T
( j)

1 and

T
( j)

2 follow Weibull distributions. Weibull distributions are chosen for their wide use

in the field of survival analysis due to its flexibility, allowing decreasing, constant and

increasing hazard rates. The corresponding shape and scale parameters are denoted by

βk and b
( j)
k ( j = 0,1, k = 1,2) (shape parameters for both groups are taken equal so

that the assumption of the proportionality of the hazard ratios holds). To establish the

bivariate distribution of (T
(0)

1 ,T
(0)

2 ) we consider Frank’s Archimedean survival copula,

again as Gómez and Lagakos did. Other choices of copulas would be possible, although

main conclusions and recommendations will not differ (Plana-Ripoll and Gómez, 2014).

Frank’s copula depends on an association parameter θ between T
(0)

1 and T
(0)

2 which

is biunivocally related to Spearman’s rank correlation ρ. Different scenarios will be

simulated according to several choices of (β1,β2, p
(0)
1 , p

(0)
2 ,HR1,HR2,ρ) where p

(0)
1

and p
(0)
2 are the probability of observing events E1 and E2, respectively, for treatment

group 0, HR1 and HR2 are relative treatment hazard ratios for T
(1)
j versus T

(0)
j ( j = 1,2,

respectively) and ρ is Spearman’s rank correlation between T
(0)

1 and T
(0)

2 .

Given a set of values for (β1,β2, p
(0)
1 , p

(0)
2 ,HR1,HR2,ρ), for a given power Π and a

significance level α, the simulation steps are the following:

1. Computations for the relevant endpoint E1. The scale parameters b
(0)
1 and b

(1)
1

and the probability p
(1)
1 of observing the relevant endpoint in group 1 are derived

as:

b
(0)
1 =

1

(− log(1− p
(0)
1 ))1/β1

b
(1)
1 =

b
(0)
1

HR
(1/β1)
1

p
(1)
1 = 1− e−(1/b

(1)
1 )β1

2. Computations for the additional endpoint E2. The scale parameters b
(0)
2 and b

(1)
2

and the probability p
(1)
2 of observing the additional endpoint in group 1 are derived

as:

b
(0)
2 =





1

(− log(1−p
(0)
2 ))1/β2

for Case 1

∗ for Case 3

b
(1)
2 =

b
(0)
2

HR
(1/β2)
2

p
(1)
2 = 1− e−(1/b

(1)
2 )β2
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∗ For Case 3, b
(0)
2 is found as the solution of equation p

(1)
2 =

∫ 1
0

∫ 1
u f

(0)
(1,2)(u,v;ρ)dvdu,

where f
(0)
(1,2)(·, ·;ρ) is the joint density between T

(0)
1 and T

(0)
2 and ρ is Spearman’s

ρ coefficient between T
(0)

1 and T
(0)

2 .

3. Computation of sample sizes n and n∗

(a) Compute n (per group) following Freedman (1982) formulas as follows

n =
E

p
(0)
1 + p

(1)
1

(8)

where

E =
(HR1 +1)2(z1−α+ zΠ)

2

(HR1 −1)2
(9)

(b) Compute ARE(Z∗,Z) based on (β1,β2, p
(0)
1 , p

(0)
2 ,HR1,HR2,ρ).

(c) Compute n∗ = n/ARE(Z∗,Z).

(d) Compute N = max{n,n∗}.

4. Simulation of T
(0)

1 ,T
(1)

1 ,T
(0)

2 ,T
(1)

2 ,T
(0)
∗ ,T

(1)
∗

Simulate 1000 samples of size N for the 4 endpoints T
( j)

k from Weibull (b
( j)
k ,βk)

( j = 0,1, k = 1,2). Compute T
( j)
∗ = min{T

( j)
1 ,T

( j)
2 }.

5. Computation of empirical powers Π̂1 and Π̂∗
For each sample of size n (n∗), compute the logrank statistic Z (Z∗) to compare the

treatment effect between T
(0)

1 and T
(1)

1 ( T
(0)
∗ and T

(1)
∗ ). For a given significance

level α, the rejection region comprises all observed Z (Z∗) such that Z < z1−α
(Z∗ < z1−α) where z1−α is the standard normal quantile corresponding to the left

tail probability α. The empirical powers, denoted by Π̂1 ( Π̂∗ ), are calculated as

the proportion of samples for which Z < z1−α (Z∗ < z1−α).

We note here that whenever n∗ < n, we only use, for each sample, the first n∗
simulated values to compute Π̂∗, while when n < n∗, we only use the first n

simulated values to compute Π̂1.

6. Comparison between Π̂1 and Π̂∗
For each scenario (β1,β2, p

(0)
1 , p

(0)
2 ,HR1,HR2,ρ), we compare the differences

between the two empirical powers Π̂1 and Π̂∗ obtained from the 1000 simulations.
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Table 1: Values of parameters β1, β2, p1, p2, HR1, HR2 and ρ used for the simulations. There are 624

different configurations, excluding those yielding sample sizes larger than 1100 and ARE(Z∗,Z)> 10.

Parameters

β1 = β2 0.5 1 2

(p1, p2) (0.05, 0.01) (0.05, 0.15) (0.05,0.35) (0.1, 0.01) (0.1, 0.15) (0.1,0.35)

(p1, p2) (0.15, 0.01) (0.15, 0.15) (0.15,0.35) (0.35, 0.01) (0.35, 0.15) (0.35,0.35)

ρ 0.15 0.45 0.75

(HR1,HR2) (0.5, 0.3) (0.5, 0.7) (0.5, 0.9) (0.6, 0.3) (0.6, 0.7) (0.6, 0.9)

(HR1,HR2) (0.7, 0.3) (0.7, 0.7) (0.7, 0.9) (0.8, 0.3) (0.8, 0.7)

Total number

of cases 624

4.2. Results

We have set Π = 0.9 and α= 0.05 (other values would not provide additional informa-

tion). We have chosen meaningful values for (β1,β2, p
(0)
1 , p

(0)
2 ,HR1,HR2,ρ), based on

those arising in cardiovascular clinical trials (Gómez, Gómez-Mateu, Dafni, 2014) (see

Table 1). We restrict our simulation study to 624 scenarios corresponding to ARE(Z∗,Z)
≤ 10 and sample sizes smaller than 1100 patients per group. These scenarios yield

ARE(Z∗,Z) values between 0.20 and 9.93, sample sizes, n, for the relevant endpoint

between 142 and 1081, and, n∗, for the composite endpoint between 53 and 1077 (see

Table 2). Similar results were obtained for Case 1, when neither the relevant nor the

additional endpoint includes a terminating event, and for Case 3 when the relevant end-

point includes a terminating event, and we only discuss here Case 1.

Table 2: Computed values of n, n∗ and ARE(Z∗,Z) in step 3 of the simulation

based on the parameter values given in Table 1.

min median max

n 142 509 1081

n∗ 53 398 1077

ARE(Z∗,Z) 0.2 1.04 9.93

The empirical powers Π̂1 in our simulation study resulted in powers between 0.87

and 0.94, with a median of 0.91. A slightly higher median was found for scenarios with

low hazard ratios. This finding is acknowledged as well by Freedman (1982).

Table 3 provides the percentiles for the absolute value differences between Π̂∗ and

Π̂1. We observe that in 75% of the cases the difference is smaller than 2.3%, and among

cases with ARE as large as 3 the difference shrinks to 1.9%. There are, however, few

instances, where this difference can be as large as 6%, and they deserve a closer look.
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Table 3: Percentiles of |Π̂∗− Π̂1| as a function of ARE values,

where wi indicates the corresponding percentile.

min w0.1 w0.25 w0.5 w0.75 w0.9 max

For all ARE 0 0.002 0.004 0.010 0.023 0.036 0.062

ARE(Z∗,Z)≤ 3 0 0.002 0.004 0.008 0.019 0.033 0.062

ARE(Z∗,Z)> 3 0.001 0.009 0.016 0.026 0.038 0.046 0.062

Figure 2 plots the differences Π̂∗− Π̂1 as a function of the ARE(Z∗,Z) values. The

behaviour is remarkably different when ARE(Z∗,Z)≤ 3 or ARE(Z∗,Z)> 3. Whenever

ARE(Z∗,Z) ≤ 3, Π̂∗ fluctuates around Π̂1, within a range of 4%. However, when

ARE(Z∗,Z) > 3, corresponding mostly to scenarios where treatment has an stronger

effect on the additional endpoint than on the relevant endpoint (HR2 ≤ HR1 − 0.2)

and the anticipated number of events in the control group is larger for the additional

endpoint than for the relevant (p
(0)
2 ≥ p

(0)
1 ), the empirical power Π̂∗ of the logrank test

based on the CE never achieves the same power as the logrank test for the relevant

endpoint would get. In these cases the interpretation of the ARE(Z∗,Z) as the ratio of

the sample sizes, n/n∗, is not as straightforward. Nevertheless, this does not mean that

the recommendation of using the CE does not have to be followed since larger values

for n∗ needed to attain the same power as n does, would reduce the ARE value but not

as much as to cross the “1” border that would imply to use the relevant endpoint instead

of the CE.
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Figure 2: Differences between empirical powers Π̂∗ − Π̂1 as function of ARE(Z∗,Z) and in terms of

HR2 −HR1.
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If we analyze the differences between Π̂∗ and Π̂1 as a function of the differences

between the two hazard ratios (HR2 − HR1), we observe that when the two hazard

ratios are very close, the two empirical powers are as well very close. Whenever

HR2 −HR1 ≤ −0.2, not only ARE(Z∗,Z) values tend to be higher, but also Π̂∗ < Π̂1.

(see Figure 2).

Taking into account that absolute differences between powers smaller than 5% could

be considered irrelevant, we conclude that the asymptotic relationship ARE(Z∗,Z) =
n/n∗ is valid in the majority of scenarios.

All computations in this paper have been implemented in R and are available on

request to either author.

5. Discussion

Pitman’s relative efficiency is defined as the limiting ratio of sample sizes to give the

same asymptotic power under sequences of local alternatives. Given two asymptotically

standard normal tests Sn and Tm under the same null and alternative hypotheses, the

alternative definition ARE = (µS/µT )
2 where

√
nµS and

√
mµT are the respective

means under local alternatives, can be used because the equality of the powers holds

if m
n
= ( µS

µT
)2.

Gómez and Lagakos’ method uses the alternative definition of ARE to develop all

the computations for the two corresponding logrank tests. Our goal has been to check

that the relationship between (µS/µT )
2 and the ratio of sample sizes still held when the

two hypotheses under test were not the same (H0 versus Ha and H∗
0 versus H∗

a ).

It is important to keep in mind that these two hypotheses tests are by no means

equivalent, for instance, to check whether treatment has a beneficial effect, we might

use E1 or we might add endpoint E2 and use E∗. As it is shown in Gómez (2011), even if

we assume that the times to E1 and to E2 are independent, a beneficial effect on E∗ can

occur simultaneously with a beneficial effect on E1 and a harmful effect on E2 and not

finding a beneficial effect on the composite event E∗ is no guarantee of not having some

effect on the individual events E1 or E2.

The main result of this paper proves that ARE(Z∗,Z) coincides with n/n∗, being n

and n∗ the sample sizes needed to detect specific alternatives HR1 and HR2 to attain

power Π and for the same significance level α. Therefore, we can use and interpret ARE

in its usual way.

The simulation study has been conducted in such a way that for fixed values n

and ARE(Z∗,Z), the sample size n∗ is calculated as n∗ = n/ARE(Z∗,Z). Hence an

approximate equality of the empirical powers Π̂1, of logrank test Z for H0 versus

Ha,n, and of Π̂∗ of logrank test Z∗ for H∗
0 versus H∗

a,n, indicates that the relationship

ARE(Z∗,Z) = n/n∗ holds. Main results from our simulations show that the absolute

differences between Π̂1 and Π̂∗ are most of the times less than 2.5%, hence the usual

interpretation between (n,n∗) and ARE(Z∗,Z) holds for finite sample sizes.
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For those scenarios under which ARE(Z∗,Z) > 3, we observe that the empirical

power of the test based on E∗ never achieves the empirical power that the logrank

test based on E1 would get. Consequently, larger values of n∗ would be needed to

attain the same power as n does. In these instances, even though the relationship

ARE(Z∗,Z) = n/n∗ is not necessarily true, the recommendation to use the composite

endpoint E∗ instead of the relevant endpoint E1 will still be valid because very rarely a

value of ARE(Z∗,Z)> 3 would go down to less than 1. However, caution will be needed

if one wants to use the relationship ARE(Z∗,Z) = n/n∗ to compute the required sample

size n∗ if ARE(Z∗,Z)> 3. In these cases, a different formulation should be seek.
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1. Introduction

The paper by Sankoh et al. [1] reviews the use of composite endpoints (CE) in randomized clinical trials
and advocates for its use because it leads to higher event rates. They also claim that ‘highly correlated
components do not add trial efficiency regarding gain in the overall event rate compared with disparate
or independent components’.

The purpose of this letter is to illustrate several situations where, in the presence of highly correlated
events, the more efficient primary endpoint (PE) is not always based on one single component. The
efficiency of the CE versus one of its components can be quantified by means of the Asymptotic Relative
Efficiency (ARE) [2] and with the aid of CompARE [3], a new web-based platform. We will base this
illustration on the Losartan Intervention For Endpoint reduction in hypertension study (LIFE) trial [4].

Assume that the PE could be based either on a relevant endpoint (RE) or on a union of a RE and an
additional endpoint (AE). Let TR and TA be the times from randomization to RE and AE, respectively.
Under reasonable assumptions, the ARE, equivalent to the ratio of the sample sizes needed to attain the
same power for a fixed significance level [5], is expressed as a function of the following: (i) the marginal
laws of TR and TA; (ii) the probabilities pR and pA of observing RE and AE in the control group; (iii) the
treatment effects given by the hazard ratios HRR and HRA between the two treatment groups; and (iv) the
correlation between TR and TA. Whenever anticipated values for the aforementioned parameters can be
provided, the ARE can be evaluated and can guide the choice of the PE.

In the LIFE trial, the PE was composed of two clinically important outcomes, cardiovascular death
(CVD) and myocardial infarction (MI), and a softer outcome, stroke (ST). We use the values in Table I
(Table 3 of the original paper [4]) as the feasible anticipated values to study which would have been the
most efficient PE. Assume that, within the Atenolol group, the probability of observing CVD or MI is
pR = 0.06 (note that the probability of observing CVD and MI are, respectively, 0.05 and 0.04) and of
observing ST is pA = 0.07. The plots in Figure 1, which have been computed for the aforementioned
parameter values, illustrate how much more efficient it would be to add ST to CVD or MI. The plots
assume anticipated hazard ratios for CVD or MI equal to HRR = 0.89 (left) or HRR = 0.76 (right),
hazard ratios on ST varying from 0.75 to 0.89, and all possible correlations between (CVD or MI) and
ST. Observe that the ARE value heavily depends on the correlation between CVD or MI and ST, with
highly correlated situations leading to smaller ARE values. When HRR = 0.89, the ARE values are
always larger than 1, even when stroke is highly correlated with CVD or MI, and the recommendation
should have been to include ST into the definition of the PE. If a stronger treatment effect on CVD or MI
is anticipated (HRR = 0.76), and the hazard ratio on ST is smaller than 0.80, the ARE is still > 1 and,
again, ST should be included as part of the PE. However, for hazard ratios larger than 0.80 and moderate
or strong correlation between (CVD or MI) and ST, ARE is smaller than 1 and it would be much wiser
not to include ST into the definition of the PE.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 317–318
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