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Abstract

Critical Real-Time Embedded Systems (CRTES) follow a verification
and validation process on the timing and functional correctness. This
process includes the timing analysis that provides Worst-Case Execu-
tion Time (WCET) estimates to provide evidence that the execution
time of the system, or parts of it, remain within the deadlines. A key
design principle for CRTES is the incremental qualification, whereby
each software component can be subject to verification and validation
independently of any other component, with obvious benefits for cost.
At timing level, this requires time composability, such that the timing
behavior of a function is not affected by other functions.

CRTES are experiencing an unprecedented growth with rising perfor-
mance demands that have motivated the use of multicore architectures.
Multicores can provide the performance required and bring the poten-
tial of integrating several software functions onto the same hardware.
However, multicore contention in the access to shared hardware re-
sources creates a dependence of the execution time of a task with the
rest of the tasks running simultaneously. This dependence threatens
time predictability and jeopardizes time composability.

In this thesis we analyze and propose hardware solutions to be applied
on current multicore designs for CRTES to improve time predictability
and time composability, focusing on the on-chip bus and the mem-
ory controller. At hardware level, we propose new bus and memory
controller designs that control and mitigate contention between dif-
ferent cores and allow to have time composability by design, also in
the context of mixed-criticality systems. At analysis level, we propose
contention prediction models that factor the impact of contenders and
don’t need modifications to the hardware. We also propose a set of Per-
formance Monitoring Counters (PMC) that provide evidence about the
contention. We give an special emphasis on the Space domain focusing
on the Cobham Gaisler NGMP multicore processor, which is currently
assessed by the European Space Agency for its future missions.
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Chapter 1

Introduction

1.1 Critical Real Time Embedded Systems

Real-time Embedded Systems (RTES) are computing systems with a specifically de-
signed function whose correctness does not only rely on their functional correctness
but also on their timing correctness. RTES have to meet the timing restrictions on
the execution time of the system, which are typically represented with a deadline.
RTES are ubiquitous nowadays and can be found embedded in music players, TVs,
cars, airplanes, satellites, spacecrafts (among others). These systems interact with
the physical world, where time is a central property of systems, responsible of the
evolution of its state and dynamics. Inside RTES, we can differentiate an specific
branch of systems called Critical Real-Time Embedded Systems (CRTES) [116].
In this context, criticality relates to safety, security, mission or business aspects
of the system. For instance, a failure or disruption in a mission critical system
will cause a failure to accomplish the mission or goal of the system. Likewise, the
consequences of a failure in a safety critical system involve human injury, environ-
mental harm, or loss or severe damage to equipment/property. As an example,
the guidance and navigation control from a spacecraft, which is in charge of the
correct position and orbit of the spacecraft, involves critical failures if a deadline
is missed, since a wrong position or orbit means the complete loss of the space-
craft, due to loss of power (not pointing to the sun for solar powered spacecrafts)
or communication (antennas are directional and have to be properly oriented).
Other types of CRTES can be found in avionics, space and automotive systems,
among others, such as the brake system in a car or the flight control in an airplane.

CRTES have stringent constraints in terms of size, weight, cost and power con-
sumption, as many embedded systems, but also need to ensure timing correctness
in addition to functional correctness. To do so, CRTES follow a verification and
validation [3] process that provides a high level of assurance on the functional and
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timing correctness. The verification and validation process is specific to each do-
main, usually specified in safety-related standards, such as the ISO26262 [91] in
automotive, DO-178B [152] in avionics or ECSS-E/Q-40 [57, 56] in space. Verifi-
cation is the process used to check that the requirements of a system are satisfied,
which can be classified into functional verification and timing verification. The
former checks that the system is functionally correct while the latter verifies that
timing constraints are met. Validation checks that the system performs what it
purports.

1.2 Timing aspects of CRTES

To guarantee the timing correctness of CRTES, evidence has to be provided that
tasks1 do not overrun their deadlines. However, this is not an easy task since most
programming models used on CRTES, such as C or Ada, do not have the notion of
time [119]. As a result, assigning an execution time to a certain piece of code is not
trivial and depends on many factors, such as programming language, compiler and
ultimately depends on the underlying hardware architecture. For instance, a piece
of code with different execution paths, such as those generated by control-flow
(branch) instructions, may have different execution times depending on the input
data of the software, which modifies the branch condition. On the other hand,
there is a certain variation of the execution time of processor instructions depend-
ing on the input data and the execution history due to the fact that the hardware
is not a stateless resource. For instance, the latency of a division in some hardware
implementations depends on the input data (e.g., if the dividend is zero the result
is delivered quickly) and also most cache memory designs completely depend on
the execution history, which is exactly what they benefit from to obtain perfor-
mance gains by exploiting temporal and spatial locality. As a result, the execution
time of a task is not a fixed value but rather a complex distribution as seen on
Figure 1.1. For that purpose, most systems use the Worst-Case Execution Time
(WCET)2 as an abstraction of the worst timing behavior of a task that reduces
the complexity of providing evidence about the execution time. The WCET, or
more precisely a bound to it (as discussed below) is computed for each software
unit. This estimate is passed as input to the scheduler, which prioritizes the order
of execution of the different software modules with the goal of asserting that from
a timing perspective, the system behaves as expected, with no deadline misses. A
summary of scheduling approaches, and the corresponding schedulability analy-

1In this thesis we use the terms task and application interchangeably. They both represent
stand-alone software components able to run independently on a processor.

2Same for the Best Case Execution Time (BCET), although in this thesis we focus on the
WCET.
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1.2 Timing aspects of CRTES

Figure 1.1: Basic notions concerning timing analysis of systems. Source: [180].

sis techniques, are discussed in [28, 48]. Thus, the WCET must be computed to
guarantee that task’s functionality finishes within its corresponding deadline.

However, the exact WCET is very difficult or even unfeasible to obtain at
all [180], because the test space is too big to be covered with all possible input
sets and/or the system might not be completely predictable. The ability to derive
WCET estimates requires time predictability, which stands for the property of be-
ing able to bound the execution time of a task or a component, so that none of the
possible execution times, exceeds the bound. When the exact bound cannot be
computed, some abstractions are made by the tool or method to be able to have
a time predictable system or component, usually overestimating it by introduc-
ing pessimism. The amount of pessimism depends on the methods used and the
hardware characteristics. For instance, if we consider a cache memory, a possible
abstraction that makes the cache time predictable is to consider all accesses as
cache misses. In that case, the obtained WCET bound is never exceeded because
of the cache effect and we avoid the struggle of knowing the execution history.
However, the pessimism introduced can be too high to be useful since we are com-
pletely removing the performance gains of cache memories in the worst-case. A
better solution might be to lock the cache contents and consider each request as a
hit or a miss depending on the address and not on the execution history [168].

Deriving WCET estimates is a known challenge, for which different methods
have been proposed. These methods can be classified into Deterministic Timing
Analysis (DTA) and Probabilistic Timing Analysis (PTA) [2]. DTA techniques
assume that under the same input data and initial state a piece of software running
on a processor has a defined execution time. Therefore, DTA derives a single
bound for the execution time of each piece of software running on a processor.
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These bounds are used to estimate the WCET for different task fragments, which
can be combined to obtain an estimate of the task’s WCET [180].

PTA [52, 32, 46] has appeared as an alternative to classic timing analysis. PTA
provides probabilistic WCET (pWCET) estimates, such that a WCET estimate
can be exceeded with a given probability, thus leading to a timing failure. Such
probability is called exceedance probability, which can be arbitrarily low (e.g 10−16

per run). PTA extends the notion of system reliability to timing correctness. In
that sense, PTA expresses timing correctness with probabilities of failure, as occurs
with current system reliability of CRTES that is expressed in terms of probabilities
for hardware failures, software functional faults and for the system as a whole. An
example of the outcome of PTA is shown in Figure 1.2 that shows the pWCET
distribution for a task. In this case for different probabilities (e.g. 10−13 or 10−16)
we have different values of pWCET. It is clear that the exceedance probability can
be arbitrarily low which results in bigger pWCET estimates.

Figure 1.2: Basic notions concerning probabilistic timing analysis of systems.

PTA techniques require that execution times have a distinct probability of oc-
currence and are independent and identically distributed (i.i.d), i.e. the observed
execution times are independent among them and must follow the same probability
distribution. The main advantage of PTA is that it is less dependent on execu-
tion history, allowing to significantly reduce the amount of information required to
obtain tight WCET estimates in comparison to classic techniques [175, 2]. Solu-
tions for single-core architectures [110][46] show how processor cores can be easily
adapted to apply PTA techniques.

Both, DTA and PTA, can be applied in a static or measurement-based manner.
Static techniques rely on the construction of a cycle-accurate model of the system

4



1.3 Challenges in future CRTES

under test (not limited to the CPU), and the construction of a mathematical repre-
sentation of the machine code timing behaviour on that model. The mathematical
representation is then processed with linear programming techniques to determine
a safe upper-bound on the execution time. On the other hand, measurement-based
techniques are based on executing the program on the real platform with different
input sets and collecting measurements, which are later operated in order to derive
WCET estimates. In an intent to benefit from both, hybrid approaches try to im-
prove the confidence of measurements by combining them with static information
that gives control flow and coverage information for unobserved execution paths.
An example of a hybrid tool is Rapita Verification Suite [147]. A summary of the
different timing analysis methods is shown in Chapter 2 and can also be found
in [3].

1.3 Challenges in future CRTES

Until recently, CRTES have been designed following a Federated Architectures [49]
approach, in which different functions in a system were assigned different hardware
units where the software component of each function runs. Physical separation
facilitates timing and functional isolation, which allows providers to implement
system functions independently from other suppliers. Despite these properties, as
the number and complexity of functions increases so does the number of hardware
units, reducing the efficiency of the system in terms of size, weight and power
consumption.

CRTES are experiencing an unprecedented growth [10, 35] with rising per-
formance demands to provide more value-added functionality. The need of more
performance is shared across most real-time domains and ultimately results in an
increasing demand for computation power.

• In the automotive domain, future systems will require much more processing
power than current ones [30, 161] to deploy advanced driver assistance sys-
tems. A premium vehicle nowadays contains already more than 100 Million
lines of code [136].

• In the avionics domain, Software is also growing to bring more functional
value [51].

• In the space domain, the complexity and the amount of data to be handled
by on-board software is rising [178] and the fact that space missions are
becoming more autonomous accentuates this trend.

This has motivated several industries from these domains to shift towards an
Integrated Architecture paradigm: a modular approach in which multiple functions

5



Chapter 1. Introduction

are assigned to a single hardware unit. Examples of integrated architectures are
the Integrated Modular Avionics (IMA) [176] in the avionics domain, the Auto-
motive Open System Architecture (AUTOSAR) [18] [49] in automotive or IMA
for space [182] for the space domain. A key design principle for integrated archi-
tectures is the incremental qualification [53], whereby each software component is
subject to verification and validation – including functional and timing analysis –
in isolation, independently of any other component, with obvious benefits for cost,
time and effort. At functional level, this translates into providing mechanisms for
functional isolation, such that no misbehaving function may corrupt the data used
by other functions. At timing level, this requires time composability, such that the
timing behavior of a function is not affected by the execution of other functions.

Time composability is a property that determines that the timing behavior of
an individual component does not change in the face of composition when the
system is integrated, and so, the timing analysis performed in isolation remains
valid at system integration. During system development, time composability en-
ables incrementally integrating applications without the need of regression tests
to validate the timing properties of already-integrated applications, which heavily
reduces integration costs. During operation, time composability enables updat-
ing functions and their associated software without the need for re-analyzing and
re-qualifying the system. This is specially beneficial in domains like space where
systems may operate during dozens of years and whose functionality is usually up-
dated after deployment. Time composability therefore reduces the cost of system
integration and qualification, which is one of the most critical challenges faced by
system developers.

The high performance requirements for CRTES can be met by designing much
more complex processors, e.g. with out-of-order execution, complex branch predic-
tion and higher clock frequencies. However, applying those techniques to CRTES
design is difficult, because such techniques usually have high energy requirements
that affect the low-power constraints of embedded systems. More important for
CRTES is that they complicate the timing analysis, usually requiring a large
amount of information about the system in order to be able to provide reliable or
trustworthy WCET estimates. Also they could introduce timing anomalies [126]
due to their non-deterministic run-time behavior. Timing anomalies occur when a
local worst case does not contribute to a global worst case execution time, which
is counter intuitive and can significantly complicate the computation of WCET
estimates. An example of timing anomalies is shown in [79].

1.3.1 Multicore processors for future CRTES

In this context, multicore processors can satisfy the growing performance require-
ments of CRTES while maintaining a simple core design, free from timing anoma-
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lies and with limited impact on timing analysis. Multicores also have a good
performance-per-watt ratio, allow parallel execution [167] and enable co-hosting
mixed-criticality workloads, i.e. composed of tasks subject to different criticality
levels, which is of paramount importance in the embedded system market because
hardware utilization is maximized resulting in an overall reduction in cost, size,
weight and power requirements.

Mixed-criticality systems [169] can consolidate onto the same hardware appli-
cations with different criticality levels in terms of safety (and security). Safety
standards define multiple safety integrity levels for each domain, e.g. DAL in
avionics [155] and ASIL in automotive [141], in the space domain it is well ac-
cepted that on-board systems comprise two criticality levels [142]. One level covers
control applications, which require real-time execution and are designed to meet
requirements in the worst case. The second covers payload applications that are
high-performance driven and only may have some (soft) real time requirements.

The use of multicores in CRTES is not straightforward. On the one hand,
any application must be prevented from corrupting the state of other applications,
paying special attention to preventing low-criticality applications from affecting
high-criticality ones, providing functional isolation. This can be accomplished
through software isolation [80] and has been done within the space domain [142].

On the other hand, timing behavior of multicore processors brings new chal-
lenges with respect to single-core processors, mainly due to the contention on
the access to shared hardware resources, called inter-task interferences. Inter-task
interferences appear when several tasks in different cores try to access a shared
hardware resource at the same time, thus creating contention, potentially affect-
ing the execution time of running tasks and threatening time predictability. For
instance, if two tasks in two different cores connected by a shared bus try to access
it at the same time, one of them will have to wait while the other one uses the bus.
As a result, the execution time of a task is not independent of the rest of the tasks
running simultaneously on the processor. Providing a meaningful timing analysis
becomes difficult, since all possible interactions of any task in the workload have
to be considered when analyzing a task, which jeopardizes time composability. In
fact, this contention has been identified as one of the most prominent issues when
using multicores on the real-time domain [31]. Examples of shared hardware re-
sources in multicore processors are the interconnection network, shared caches and
shared memory devices.

Despite all theses issues, the real-time industry is facing an increasing pressure
to adopt multicores as its main computing platform because processor vendors are
driven by the high performance demands rather than by the timing requirements
of the comparatively small real-time market. Some available commercial-off-the-
self (COTS) multicore processors considered by the real-time industry so far are:
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the Infineon AURIX platform [84], consisting of three TriCore processor cores used
in the automotive industry. In the avionics domain, the Freescale P4080 [70] has
eight power architecture cores. The Cobham Gaisler NGMP [41] processor is used
in the space domain, which consist of four LEON4 cores. However, none of these
processors have been used for the most critical systems due to its timing analysis
complexity and the lack of a full-fledged WCET estimation solution.

In this respect, multicore timing analysis is still in its infancy, especially for
COTS multicores. The dependence of the execution time of a task running on a
multicore with the rest of the tasks running simultaneously impacts directly on
system design and verification by threatening time predictability and jeopardizing
time composability. Both properties are requirements for the incremental devel-
opment and verification model that contains qualification cost and development
risks for industry. On the contrary, a time predictable and composable multicore
system allows to analyze in isolation each task independently of the rest of the
tasks, which can mitigate the problem of timing analysis in multicore systems.
As a result, the cost of applying multicore solutions for CRTES is reduced. To
that end, the effect of the inter-task interferences (contention) needs to be either
determined or bounded independently of the tasks, so that the WCET analysis of
a task does not depend on the rest of the tasks that may run simultaneously with
the actual task, thus making the WCET estimate independent of the rest of the
tasks.

1.3.2 The case of the space domain

Computing systems used by the European Space Agency (ESA) can be broadly
classified as platform and payload. The former comprise the main functionalities
required by the spacecraft system, such as power management, communication,
guidance and navigation. The latter comprise the systems used for the specific
mission of the spacecraft, such as infrared detectors [97], cryogenic systems [83],
telescopes, etc. There are four different criticalities [58] for software in space, shown
in Table 1.1: A,B,C and D. Criticality A is only used for human spaceflights and
launchers, which can cause human loses if they fail. In a spacecraft, usually two
criticalities are present, which are usually called control and payload [142]. Control
(criticalities B and C) have real-time requirements and payload are performance-
driven having soft real-time or no timing requirements (criticality D). Although
less frequent, some payloads are also designed with high criticality in mind. For
instance, the control of the cryogenic system of Herschel [83] had to keep the
sensors at 1.7 Kelvin degrees for about 3 years. The failure of the payload system
would have compromised the mission, hence making it mission critical. Developing
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software, specially for highest criticality, is pricey3. For that reason, space industry
values solutions that do not require changes in the software stack, i.e., operating
system or applications. The timing analysis is performed using static (SDTA)
along with measurement-based (MBDTA) timing analysis in certain predefined
scenarios.

Table 1.1: Space software criticalities classification [58]

Criticality system failure

A Catastrophic consequences
B Critical consequences
C Major consequences
D Minor or Negligible consequences

ESA is leading the development of LEON processors [38, 44] based on the
SPARC ISA. This enables taking into account space domain specific requirements,
in particular the radiation hardness/tolerance needed to survive the space environ-
ment. Radiation affects silicon and requires countermeasures at all system levels:
architecture, wafer process, cell layout and netlist design [120]. This requires avail-
ability and knowledge of the whole design process of a processor.

Following the same trend in other domains such as avionics, automotive or rail-
way, in the space domain, the complexity and the amount of data to be handled
by on-board software is rising [178]. The fact that space missions are becoming
more autonomous accentuates this trend and ultimately results in an increasing
demand for computation power. For instance, spacecrafts for Active Debris Re-
moval [86], which have to remove space junk autonomously, require a complex
autonomous Guidance and Navigation Control (GNC) system with image process-
ing inside the control loop to be able to determine the rendezvous trajectory. The
GNC system is critical, thus having real-time constraints, while image processing
has high-performance requirements and soft real-time constraints. According to
the requirements of these systems, a simple, cost-effective yet high-performance
computing solution is needed, with a test bed environment that allows verification
and validation of the complete solution. Current solutions for these requirements
require replicating several single-core systems, which leads to more space, weight
and power consumption. For instance, there are 249 high complexity integrated
circuits in Sentinel-2 from which 21 are microprocessors [120].

The current multicore processor design envisaged by ESA and developed by
Cobham Gaisler is called the Next Generation Microprocessor (NGMP). Processors
of the NGMP family, however, still have never been used, apart from research, on
real flights because of the loss of predictability and also missions because of the

3Around Million e depending on criticality and size.
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lack of availability of flight models. Nevertheless, ESA is on a unique position,
with respect to real-time systems, because it is able to influence the design of
future multicore processors derived from the NGMP family.

1.4 Thesis contributions

This thesis proposes hardware designs to improve the timing predictability of
shared resources in multicore processors in order to ease their adoption by the
CRTES industry. This thesis covers solutions for both, deterministic and prob-
abilistic timing analysis techniques. Proposed designs deliver both high average
performance and low WCET estimates, thus increasing the number of functions
that a single system can provide.

Time composability is maintained by all of our proposals, in the sense that the
WCET estimation computed for a task in isolation is not affected by the rest of
the tasks running on the system simultaneously.

The approach followed in this thesis is to bound or reduce the interference (con-
tention) that appears when several cores try to access the same shared resource.
This interference must have a guaranteed maximum impact in order to allow deriv-
ing WCET estimates. We note that the real-time industry has just started using
small multicores with few cores, e.g. the Cobham Gaisler NGMP [42] architec-
ture is four-core, the Infineon AURIX architecture [84] comprises 3 cores and the
Freescale P4080 [70] 8 cores. For these core counts, the main shared resources are
i) the interconnect that connects the core to ii) the shared cache hierarchy and
finally the iii) memory controller that acts as an interface between the processor
and the off-chip memory. On-chip buses suffice to provide the bandwidth needed
in those architectures and provide more efficiency and simplicity than other inter-
connects for a low number of cores. Also several studies show that hierarchical
bus configurations scale quite easily to large systems and provide a good area-
performance trade-off, while retaining many of the advantageous features of sim-
pler bus arrangements [156] and that bus-based networks can significantly lower
energy consumption and simplify network protocol design and verification, with
no loss in performance [166]. Shared caches pose significant challenges for real-
time systems, since running tasks can cause the eviction of cache lines owned
by different tasks. To remove this effect partition mechanisms exist, either hard-
ware [138, 105] or software [122, 131, 103, 172], that remove the cache interference.
In this thesis, we focus on processors that have partitioning mechanisms to remove
the interference on the shared caches. Current CRTES manage large working sets
which requires the use of off-chip memories such as DDR2 and DDR3 [92] mem-
ories. The memory bandwidth, which is arbitrated by the memory controller, is
one of the shared resources with the highest impact on systems’ performance and
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predictability [139, 183].

This thesis focuses on two of the most critical shared resources in multicore pro-
cessors: the interconnection bus [31] and the memory controller [139, 183]. We use
the NGMP processor as reference architecture, acknowledged as one of the multi-
cores that can be used by the ESA. Nevertheless, most solutions can be applied to
other processors and domains, like the Infineon AURIX [84] in automotive or the
Freescale P4080 [70] in avionics. In this thesis, the impact of scheduling aspects
is not considered and does not affect our solutions, in the sense that our solutions
are transparent to them, enabling the time-composable WCET estimates, which
are the input for scheduling algorithms.

More concretely:

• On-chip buses:

– We analyze a specific implementation of a bus architecture, the AMBA
bus, which is one of the most widely used on-chip bus interfaces in em-
bedded processors and provide a classification of its features in terms of
time predictability. We define a new bus based on AMBA which is time
composable by construction, which greatly simplifies timing analysis.

– We analyze and derive analytical models for the most relevant on-chip
bus arbitration policies for real-time systems to be able to compare
them in terms of time predictability and time composability.

• Memory controller:

– In the context of mixed-criticality systems, predictable latencies and
high bandwidth must be satisfied for different tasks at the same time.
We propose a memory controller that can satisfy both requirements.

– We propose a novel contention free memory controller solution able
to simplify timing analysis and reduce pessimism on WCET estimates
introduced by memory accesses.

• Probabilistic Timing Analysis in multicores:

– We enable the use of PTA in multicore systems: In particular, we de-
fine probabilistically-analysable bus and memory controller designs for
multicore processors, show their suitability for PTA and evaluate their
hardware cost.

• Performance Monitoring Counters
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– We propose a new set of Performance Monitoring Counters (PMC) aim-
ing to measure the actual contention in shared resources. These PMCs
provide evidence and allow to verify and test the outcome of the timing
analysis.

– For systems in which hardware cannot be modified, we propose an in-
terference prediction model based on PMC.

As a proof of concept, all the architectural solutions studied and proposed are
tested on a space case-study consisting on a cycle-accurate simulation framework
validated against a real implementation of the NGMP [41] processor and represen-
tative software of the ESA. The results will be used by the ESA to influence the
future design of the NGMP processor.

1.5 Thesis structure

This Thesis is structured as follows:

• Chapter 2 covers the background and state-of-the-art needed for this thesis.

• Chapter 3 explains the methodology followed in this thesis.

• Chapters 4 and 5 cover the on-chip buses. More concretely:

– Chapter 4 proposes an on-chip bus architecture that is time composable
by design.

– Chapter 5 analyzes bus arbitration policies that are appealing for real-
time systems.

• Chapters 6 and 7 cover the memory controller. More concretely:

– Chapter 6 proposes a dual-criticality memory controller.

– Chapter 7 proposes a contention-free memory organization.

• Chapter 8 enables the use of PTA in multicores by evaluating and proposing
new arbitration policies for the bus and memory controller.

• Chapters 9 and 10 improve the timing analysis of multicore processor. More
concretely:

– Chapter 9 proposes a new set of Performance Monitoring Counters that
provide evidence about the contention.

– Chapter 10 proposes a contention prediction model that factors the
impact of contention in the timing analysis.
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Chapter 2

Background and State-of-the-Art

This chapter provides the background and state-of-the-art on timing analysis tech-
niques we build upon, and on the existing hardware solutions to enable timing
analysis of multicore designs.

2.1 Timing Analysis

As mentioned before in this document, two main approaches are currently being
followed [3] to derive WCET estimates: Deterministic Timing Analysis (DTA) [180]
or Probabilistic Timing Analysis (PTA) [4] techniques. DTA derives a single
WCET for each piece of software [180] and PTA generates a distribution func-
tion, or pWCET function, that guarantees that the execution time of a program
only exceeds the corresponding pWCET bound with a probability lower than a
given target probability (e.g., 10−15 per run) [32].

Both, DTA and PTA, can be applied in a static or measurement-based man-
ner. In an intent to benefit from both, hybrid approaches try to combine static
with measurement-based techniques. A summary of the different timing analysis
methods is shown in Table 2.1 [3].

Technique Deterministic Probabilistic
Static SDTA SPTA
Measurement-based MBDTA MBPTA
Hybrid HYDTA HYPTA

Table 2.1: Taxonomy of timing analysis techniques. Taken from [3]
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2.1.1 Deterministic Timing Analysis

DTA is a well-known and studied timing analysis technique, with consolidated
commercial and academic research tools. DTA techniques can be classified in
Static Deterministic Timing Analysis (SDTA), Measurement-based Timing Anal-
ysis (MBDTA) and Hybrid Deterministic Timing Analysis (HYDTA) [3]. SDTA
relies on the construction of a cycle-accurate model of the system under test (not
limited to the CPU), what we call hardware-model, and the construction of a
mathematical representation of the machine code timing behaviour on that model,
called flow-facts, that take care of loop bounds, infeasible paths and annotations.
These mathematical representations are then processed with linear programming
techniques to determine a safe upper-bound on the execution time. The main
advantage of SDTA is that the application of provably mathematical techniques
gives a strong emphasis to the soundness and safeness of SDTA [180], which allow
in principle to meet all the requirements set by the highest criticality standards.
However, the validity of the bounds depends on the correctness of the abstract
models.

Hardware models are difficult to develop and test, specially because of the lack
of information about the processor implementation provided by the manufacturer,
which is usually scarce and not accurate [179]. Even if the chip vendor explicitly
provides this information in the manuals, documentation can be inaccurate or
outdated with respect to the deployed chip implementation [3]. For instance, the
FreeScale e500mc core documentation has already reached the third revision with
details about non-negligible changes across revisions [72]. This forces SDTA to
make assumptions, affecting the accuracy of the estimates and usually including
more pessimism on them. All these difficulties have made that real-time industry
and SDTA tool providers use measurement-based approaches to derive contention
bounds [135]. On the other hand, flow-facts grow linearly/exponentially with code
size and adding annotations is an error-prone process [3]. Only simple software
running on top of simple and consolidated hardware designs have accurate abstract
hardware models that can be subject to SDTA [3]. Examples of deterministic
SDTA tools are aiT [60] and OTAWA [19].

MBDTA is based on executing the program on the real platform with dif-
ferent input sets and collecting measurements, which are later operated in order
to derive WCET estimates. For instance, the outcome of recording the longest
observed execution time and applying an engineering margin can be used as a
WCET estimate. The advantage of MBDTA is that it does not require as much
information as SDTA does which is why industry often relies on MBDTA [3]. In
fact software/hardware testing always implies executing on the real platform even
for functional testing, so measurements are always collected on the actual system
to gain confidence. However, the main drawback of MBDTA is that its trustwor-
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thiness depends on factors such as the test conditions and input set, which cannot
guarantee that they trigger the worst-case scenario, since it is usually not known
and cannot be found due to the large input set space. An example of research on
MBDTA techniques is shown in [177].

Hybrid approaches try to improve the confidence of measurements by combin-
ing it with static information that gives control flow and coverage information for
unobserved execution paths. An example of a hybrid tool is Rapita Verification
Suite [147], which is the one used in this thesis. RapiTime [146] uses path analysis
techniques to build up a precise model of the overall code structure and deter-
mine which combinations of subpaths form complete and feasible paths through
the code. RapiTime combines the measurement and control flow analysis infor-
mation to compute measurement based WCET estimates in a way that captures
the execution time variation on individual paths.

2.1.2 Probabilistic Timing Analysis

PTA generates a distribution function, or pWCET function, that upper-bounds
the execution time of the program under analysis, guaranteeing that the execu-
tion time of a program only exceeds the corresponding execution time bound with
a probability lower than a given target probability (e.g., 10−15 per run). PTA
can be applied either on a Static manner (SPTA) [32] or Measurement-Based
(MBPTA) [46]. PTA requires that the events under analysis, program execution
times for MBPTA or instruction latencies for SPTA, can be modeled with indepen-
dent and identically distributed (i.i.d.) random variables1. Each PTA technique
has its own methods to combine results from different execution paths. We refer
the reader to those methods for further details [32] [46].

SPTA uses very simple processor models, not suitable for more realistic proces-
sor designs [129][9]. In this thesis we focus on MBPTA as it is closer to industrial
practice, and obtained pWCET estimates have shown to be competitive with the
estimates obtained with other timing analysis techniques [175][174]. MBPTA de-
rives probabilities by collecting execution time observations of end-to-end runs of
an application running on the target hardware. The observed execution times ful-
fil the i.i.d. properties if observations are independent across different runs and a
probability can be attached to each potential execution time. Hence, taking mea-
surements from a program is equivalent to rolling a dice, with each face having a
probability of appearance. Making enough rolls is enough to apply MBPTA, which
derives upper-bounds of the execution time distribution by means of the Extreme

1Two random variables are said to be independent if they describe two events such that
the occurrence of one event does not have any impact on the occurrence of the other event.
Two random variables are said to be identically distributed if they have the same probability
distribution function.
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Value Theory (EVT) [115, 46]. The path coverage of MBPTA can be improved
with techniques such as the ones proposed in [111, 190].

Conventional hardware/software platforms fail to provide the features required
by PTA so that pWCET estimates can be computed. PTA has been shown
implementable for single-core processors, either by using random-placement and
random-replacement [110] caches or by using software randomisation that changes
memory allocation at runtime [112] or by using different compiled binaries [113].
Also PTA works with multilevel caches [109], buffer resources [114], shared caches
[163] and faulty caches [162]. Solutions for single-core architectures show how pro-
cessor cores with a similar processor architecture to the LEON3 and LEON4 [81]
can be easily adapted to achieve PTA requirements. In particular, limited modifi-
cations are required in the cache placement and replacement [110] policies to make
them PTA-compliant. PTA has emerged as a recent alternative to DTA, still some
further steps are required before PTA can be used on real products [3].

To the best of our knowledge, no multicore PTA compliant architecture has
been presented so far. In this thesis we propose and evaluate multicore architec-
tures that fulfil PTA requirements.

2.2 Multicores

Providing a meaningful timing analysis in multicores is difficult [106, 128, 3] due
to contention on access to hardware shared resources [65]. A taxonomy of different
works on the subject can be found in [62]. A possibility to deal with contention
is to consider all possible interactions of any task in the workload when analyzing
a task, which is called joint analysis. For instance, in [184, 121, 188, 78] authors
analyze all the possible effects a task may have onto another one in a shared cache.
In [33] they integrate the shared cache and shared bus timing analysis with other
architectural features like the pipeline or branch prediction. In reality, this type
of analysis is complex and requires knowledge of the tasks running on the system,
which breaks the time composability property and increases the complexity of the
analysis [134].

Other solutions propose changes to the hardware that simplify the timing anal-
ysis, for instance [138] uses Round-Robin and [151] TDMA for managing shared
resources. Based on the method in [138], authors in [159] use hardware support
to artificially delay each request when measuring the WCET. The COMPSoC [77]
multiprocessor achieves predictable and composable latencies by using TDMA ar-
bitration and avoiding cache memories. PRET [123] architecture uses scratch-
pad cache memories and TDMA based memory scheduling [148] to achieve a pre-
dictable multicore processor. Also the time-triggered architecture [107] provides
a predictable a composable hardware by making use of a time-triggered schedule,
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similar to TDMA, and global synchronization.
Existing solutions using Commercial-of-the-shelf (COTS) multicore processors

assume the worst-case impact of contention [138], for instance in [135] they propose
a method to compute an interference sensitive WCET and monitor its safeness
at runtime on top of a COTS processor. Also in [63] and [102] the contention
of a COTS multicore is bounded for the bus and the memory respectively. A
methodology that replaces tasks with kernels that mimic their shared resource
usage is used in [21] as a way to reduce the variability and improve measurement-
based analysis. Authors in [64] abstract the contention tasks cause and suffer using
signature and templates that allow bounding the contention [63] suffered by a task
from its contenders.

Finally, is it worth mentioning cache partitioning, either by software [122,
103, 172, 131, 34] or hardware [105, 138], is a common solution in the context
of CRTES [29] due to the complexity of estimating WCET accurately on top of
shared caches. Nevertheless, shared caches can be found in different contexts such
as probabilistically analysable systems [163], static deterministic timing analy-
sis [33], measurement-based techniques on top of COTS processors [61] and the
joint analysis examples cited above.

In this thesis we focus on hardware solutions that simplify the timing analysis
for multicore processors with shared caches partitioned by hardware. In particular,
this thesis focuses on providing solutions for the two following components: bus
and memory controller.

2.2.1 On-chip buses

Buses in real-time systems are used for off-chip and on-chip communication. Ex-
amples of off-chip buses are CAN [90] and FlexRay [66] used in automotive,
Spacewire [55] used in space or the Time-Triggered Architecture [108]. Those
buses are designed to connect different processing units and peripherals. Off-
chip bus contention can be handled with TDMA buses [158] assuming the worst
possible alignment of the task requests with their TDMA slots or with dynamic
arbiters [157] that consider the particular pattern of accesses of each task to the
bus [50]. Transactions on those buses are visible to the software, which enables
scheduling the requests of the different running tasks so that interferences in the
use of the bus can be avoided.

This thesis focuses on on-chip buses, which are used at much lower granularity
than off-chip buses. For instance an on-chip bus is used to communicate cores and
the L2 cache in the NGMP processor [42]. At this granularity, the requests (e.g.,
L2 cache accesses) of the different tasks cannot be efficiently scheduled to prevent
interferences. The responsibility to handle interferences is left to the hardware, in
this case to the arbiter of the on-chip bus.
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Most of the previous work on on-chip bus architectures for real-time multi-
cores like [151, 138] focuses on the bus arbitration policies. These policies vary
from TDMA [151], Round-Robin based [138] or budget schedulers [8]. In [101] they
consider the effect of a shared on-chip TDMA bus on the timing analysis. Also
variations of these policies can be found: in [25, 26] they proposed the MBBA
scheme that uses grouping [138] on a Round-robin policy to reduce WCET esti-
mates. In [160], they use Priority Division arbitration, which behaves like a TDMA
schedule with different priorities on each slot, so that no slot remains empty when
there are requests to be sent. In [159] authors propose a method based to derive
WCET estimates with measurements, when the maximum delay for a round-robin
bus is known [138].

The assumption of a generic simple bus that has a known bounded (or fixed)
transaction latency is common across these works. As we show in this thesis,
this is not always the case in real implementations, as happens for the AMBA
bus. The Advanced Microcontroller Bus Architecture (AMBA) [67] is one of the
most – if not the most – broadly used bus interfaces. AMBA is used in a wide
range of architectures, providing flexibility in the implementation and backward-
compatibility with existing AMBA interfaces. AMBA is increasingly being used
in multicore processors for real-time industry, e.g. LEON3-based GR712RC [36]
and LEON4-based NGMP [42].

To our knowledge, existing studies on AMBA buses focus on RTL models and
efficient implementations of the different AMBA interfaces. As an example, [45]
analyzes several arbitration algorithms for AMBA AHB in terms of latency and
power dissipation. However, no work considers the AMBA specification for real-
time time-composable systems.

In this thesis we evaluate the most appealing bus arbitration policies for CRTES
and propose a time-composable AMBA AHB interface that provides time compos-
ability by design.

2.2.2 Memory controller

Modern DRAM systems [92] comprise a memory controller and DRAM memories,
which are usually organized into SIMM or DIMM modules that contain the DRAM
devices or chips. The memory controller acts as an interface between the DRAM
memories and the processor.

DRAM memories are organized into channels, ranks, banks and arrays. The
processor accesses the memory through one or more independent memory channels
with separated command, control and data buses for each channel. Each memory
channel consists of one or several ranks that can be accessed in parallel through the
same memory bus. A rank consists of several DRAM devices or chips connected in
parallel. Since DRAM devices have narrow data width, several of them are needed
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Figure 2.1: DDRx DRAM memory system.

to provide a wide data bus, e.g. 8x8 bits DRAM chip gives a 64 bit memory bus
width. Every DRAM device contains several memory arrays organized into banks
that can be accessed in parallel. Since memory operations take several cycles,
different banks, as well as different ranks, can be accessed simultaneously, which
is called the Memory Level Parallelism (MLP). An scheme of a DRAM device
organization is shown in Figure 2.1.

DRAM devices require several commands to operate them due to their internal
behavior. To serve a memory request, an entire row from a bank has to be loaded
on the per-bank row buffers, which is done by issuing an activate (ACT) command.
This action is also referred as “opening a row”. Once the row is on the row buffer,
a column read (CAS) or write (CWD) can be issued to get the data. If the next
request targets the same row that is open on the row-buffer, column read or write
commands can be issued directly. Otherwise a precharge (PRE) command needs
to be issued before activating a different row, to write back the open row to the
memory arrays, which is also called “closing the row”. Also, in DRAM memories,
all memory rows need to be periodically read out and restored for data integrity
due to leakage in memory cells. This is done by issuing a refresh (REF) command.
The impact of memory refreshes on execution time is limited and can be bounded
as shown in [17, 20].

There are two different ways to manage memory rows, also called pages, from
the point of view of the row buffer: (1) close-page policy that precharges a row
immediately after the column access and (2) open-page that leaves the row open on
the row buffer to exploit the locality of future accesses, called Row Buffer Locality
(RBL). In a close-page policy, all requests perform the same actions: activate,
column access and precharge. In an open-page scheme, depending on if the access
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is a row-hit or a row-miss, a request behaves differently. If the access is a row-hit
it accesses the same row as the previous access, and hence it can directly perform
the column access. In the case of a row-miss, the request has to precharge the
actual row and activate the new one before performing the column access.

All commands sent to the DRAM devices have to satisfy the timing constraints
specified on the JEDEC standard [96], depending on the type of memory. The
most important timing parameters are the column read latency tCAS, write la-
tency tCWD, activate latency tRCD and precharge latency tRP . Annex II in [95]
provides a detailed list and definition of the timing constraints for a DDR2/DDR3
memory [92] used on this thesis. A complete list of the timing parameters can be
found in [96].

The memory controller is in charge of scheduling the different requests coming
from the same or different processors and translating the requests into the appro-
priate commands. The Memory Mapping Scheme (MMS) defines the mapping of
physical addresses from the processors to the actual memory blocks in the mem-
ory devices. The MMS impacts both MLP and RBL. For instance, if the MMS
maps sequential addresses to the same row, it benefits the RBL. Instead, if it maps
consecutive addresses to different banks, they could be accessed simultaneously,
exploiting the MLP.

Real-time Memory Controllers

The timing analysis of a memory controller depends on three main design choices
that affect a request’s latency: (1) The row-buffer policy, (2) the MMS and (3)
the memory request scheduling policy [92]. Each of these design choices has an
impact on determining the upper bound latency of a memory request, required in
real-time domains. The row-buffer policy states how to take advantage of the row-
buffer locality, which allows consecutive request targeting the same memory row
to have smaller latency. However, when those consecutive request target different
rows, they pay a penalty in terms of latency. The memory mapping scheme defines
how addresses are mapped to physical devices and allows to exploit memory level
parallelism since several memory banks can be accessed in parallel on a memory
system. The scheduling policy defines how to schedule requests from the same or
different requestors and impacts how inter-task interferences appear.

Row Buffer Policy. Most real-time memory controllers [7, 75, 140, 148]
implement a close-page policy as row-buffer policy to ensure that memory banks
are in the same state after every request, independently of the bank and row
previously accessed, reducing the memory jitter. Time predictability provided
by close-page comes at the cost of preventing the exploitation of spatial locality
of multiple requests accessing the same row. In order to address this issue, [74]
presented a variation of the close-page policy, named conservative open-page policy,
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in which multiple requests to the same row are allowed to be issued while the row
is open in a close-page policy. In this case, the locality can be exploited only
during a small time-window in which the close-page policy keeps the row opened
due to timing constraints. The worst-case is not affected, which remains the same
as with normal close-page, thus maintaining the predictability in the worst-case
and increasing the memory bandwidth for the average-case. Open-page, which
exploits row-buffer locality, is also used in real-time systems taking into account
the effect of row-hits and row-misses [139], usually assuming private banks [183],
which remove the dependence from other tasks. Open-page is also used in COTS
processors, that can be analyzed to obtain the worst-case latency [102].

MMS. A common choice in real-time designs is the interleaved bank scheme
[7, 75, 140, 74] in which each request accesses all banks exploiting bank-level paral-
lelism and reducing bank conflicts among memory requests. Private bank schemes
are also used [148, 183], which remove the bank conflicts across requestors.

Memory scheduler. In real-time systems the scheduler is designed to bound
the impact of interferences among memory requests coming from different cores. To
do so, the scheduler is based on the core the request has been issued using CCSP [7],
TDMA [75, 74, 148] or round-robin [140] arbitration policies. All these techniques
allow deriving the maximum delay a request may suffer due to interferences when
accessing the memory. In [102], authors derive bounds on the interference with
FR-FCFS [150] and in [183] they use a FIFO policy instead of FR-FCFS, removing
the reordering effect in order to be able to derive tighter bounds on the request
latency.

In this thesis we propose a memory controller that can provide high perfor-
mance and time predictability for performance-driven and real-time tasks respec-
tively, at the same time. We also explore new solutions that remove contention on
the access to memory by physically separating the data buses.

2.2.3 Accounting for Multicore Contention

Performance Monitoring Counters (PMCs) have been traditionally used to mea-
sure average performance and power consumption [125]. For instance, the IBM
POWER family, starting with the POWER5, have developed a Cycles Per Instruc-
tion (CPI) stack based on PMCs that covers the resources on which each task
spends its cycles. The CPI stack reports the cycles spent in each core resource
such as the load/store Unit (LSU), which happens when a load/store operation is
stalled [98]. One of the few works that addresses contention monitoring between
tasks is [189], which uses cache scouts to monitor contention on shared caches.
In [159] authors use custom PMCs to derive the Worst Contention Delay (WCD)
and WCET estimates with measurement-based timing analysis on a bus-based
system. Authors assume that the WCD for the bus is known, which is not always
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the case in real implementations, as shown for the AMBA AHB bus [94].
The contention in multicore processors has been characterized mostly using

Resource-Stressing Kernels (rsk) [144] that have been used to expose the con-
tention on certain resources of an architecture. In [65] authors use them to char-
acterize the NGMP [40] processor or in [134] to characterize the Freescale P4080.
This approaches based on rsk are criticized due to the low confidence that can be
obtained with rsk [1]. Authors in [63] increase the confidence that can be obtained
with measurements based on rsk.

Authors in [135] propose a runtime monitoring to control the resource usage
of tasks running on a multicore, preventing tasks from having resource usage limit
violations. Authors make use of access count PMCs, such as bus access counts.
However, it has been shown that bus latencies may differ across different types of
accesses and even for the same type [94]. As a result, access counts do not provide
the actual impact of contention time which has to be estimated. The ACD instead
provides in an exact manner contention delay for each task.

This thesis provides means to evidence the contention of the processor based
on a new set of PMC. We also follow the theoretical approach in [64] that proposes
a methodology to obtain the resource access ‘profile’ of a given task that defines
the use of resources that the task makes on a target shared resource. That profile
is used to derive the contention tasks suffer and generate when accessing that
resource.

24



Chapter 3

Methodology

The methodology used along this thesis consists in collecting execution times of
tasks running on the processor and obtaining WCET estimates. For that purpose,
different tools and methods are used. In the following sections we present the main
components that allow to extract this information: the processor, the benchmarks
considered, the simulator and how to obtain WCET estimates.

3.1 The NGMP multicore processor

The Next Generation Microprocessor (NGMP) architecture [42], shown in Fig-
ure 3.1, whose latest implementation is the GR740 [39], is the reference archi-
tecture considered in this thesis. The NGMP is envisaged by ESA as the main
computing platform for its future missions. The NGMP is a quad-core multipro-
cessor system-on-chip (MPSoC), based on the LEON4 SPARCv8 [89] architecture.
The four LEON4 cores are connected with an AMBA AHB bus to a shared level
2 cache. After the L2 cache, the off-chip DRAM memory is accessed through an-
other AHB bus and the memory controller. Some write-buffers exist somewhere,
not specified, in the memory hierarchy of the processor. The rest of the NGMP’s
functional units consists of debug support units and I/O peripherals. In this thesis,
we do not consider I/O related activities, which we assume managed at software
level.

LEON4 core: As shown in Figure 3.2, each LEON4 core comprises a seven-
stage scalar in-order pipeline and private instruction and data first-level caches.
The pipeline consist of 7 stages: fetch, decode, register, execute, memory, exceptions
and commit. Floating point operations are done in a separate functional unit.
The instruction and data caches are accessed by the fetch and memory stages
respectively. Both caches have 4 ways and 16KiB (32 bytes line) and the data
cache is writethrough.
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Figure 3.1: NGMP architecture. Source [42].

AHB Processor Bus: The 128 bit AMBA AHB bus [14] connects the LEON4
cores to the L2 cache and the I/O bridges. The first consideration to make in
the case of the bus is that there are different types of requests that have different
behavior: bus reads (loads) that either hit (l2h) or miss (l2m) on the L2 cache
and bus writes (stores) that either hit (s2h) or miss (s2m) on the L2 cache. These
accesses behave differently because hits hold the bus while they are served. In-
stead, misses wait on a miss queue and are split, i.e. the L2 cache releases the
bus while processing the miss, so that other cores can use the bus. Also writes
are immediately responded by the L2 cache, that keeps them in a queue until
they are processed. In the NGMP, the AMBA AHB bus implements round-robin
arbitration.

L2 cache: The 256 KiB, 4-way, write-back second-level cache is shared across
the four LEON4 cores. In this thesis we use the master-index feature of the NGMP
that partitions the L2 assigning one L2 cache way to each core. Hence, a given core
suffers no contention interference in the L2 due to other cores’ evictions. Each of
the request types identified before (l2h, l2m, s2h and s2m) has its own L2 access
latency. Interestingly, the latency of requests of the same type can be variable.
That is, for each request type access there is jitter, which is caused by the previous
requests, despite they might belong to a different task and hence go to a different
cache partition.

Memory Controller The memory controller acts as an interface between the
processor and the DRAM memory and can be modelled as a FIFO queue that
uses a close-page policy to access the memory. We differentiate two types of
request in the memory: read and write. According to the DRAM protocol, each
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Figure 3.2: LEON4 structure. Source [43].

request has a different latency to be responded depending on whether it is a read
or write request respectively. The off-chip memory used is DDR2 [96] memory.

3.1.1 NGMP implementations

We use two different processor boards, the commercially available GRN2X [41]
and a FPGA prototype of the GR740 [39] which was provided directly by the
designer company. These boards have two different uses, the most important one
is to provide a reference model for the validation of the simulation platform, as it
is explained on Section 3.3.1. The second one is to test and account contention as
shown in Chapters 9 and 10.

To use the boards, the GRMON2 [37] commercial debug tool is used to interface
with the boards and obtain the measurements from the available Performance
Monitoring Counters (PMC).

3.2 Benchmarks

We use three families of benchmarks: representative for the real-time community:
EEMBC [143], real space applications obtained from the ESA and microbenchmark
or synthetic kernels that are designed to stress certain behaviors on the processor.
The individual benchmarks are described in Table 3.1.
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3.2.1 EEMBC automotive benchmark

The EEMBC automotive benchmark suite is a well-known benchmark suite for
CRTES in the automotive domain, and it is particularly useful for evaluating the
capabilities of embedded microprocessors, compilers, and the associated embedded
system implementations. Experiments shown in [143] illustrate the diversity of
the EEMBC benchmark suite as well as the specifics of each workload’s activity.
This diversity ensures that designers can use combinations of EEMBC workloads
to represent most real-world workloads and use this characterization data as a
starting point to make effective design choices.

Table 3.1: Benchmarks used in this thesis

EEMBC Autobench
a2time Angle to Time Conversion
basefp Basic Integer and Floating Point
bitmnp Bit Manipulation
cacheb Cache ”Buster”
canrdr CAN Remote Data Request
aifft Fast Fourier Transform (FFT)
aifirf Finite Impulse Response (FIR) Filter
aiifft Inverse Fast Fourier Transform (iFFT)
aiirflt Infinite Impulse Response (IIR) Filter
matrix Matrix Arithmetic
pntrch Pointer Chasing
puwmod Pulse Width Modulation (PWM)
rspeed Road Speed Calculation
tblook Table Lookup and Interpolation
ttsprk Tooth to Spark
Space applications
obdp Near infrared HAWAII-2RG detector algorithm
aocs Attitude and Orbit Control System (AOCS) from the EagleEye project
debie DEBIE instrument control software from PROBA-1 satellite
vega Thruster vector control of the Vega launcher
Microbenchmarks
rsk Synthethic kernels to trigger different processor behaviors

3.2.2 ESA real applications

As real applications we use some software provided by the ESA. As payload ap-
plications we use the On-board Data Processing (OBDP) and DEBIE benchmark.
OBDP contains the algorithms used to process raw frames coming from the state-
of-the-art near infrared (NIR) HAWAII-2RG detector [97], already used on real
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projects, like the Hubble Space Telescope to detect cosmic rays. DEBIE is the
software that controls an instrument, which was carried on PROBA-1 satellite,
to observe micro-meteoroids and small space debris by detecting impacts on its
sensors, both mechanically and electrically. As control application we use the
Attitude and Orbit Control System (AOCS) from the EagleEye project [23] and
the thruster vector control of the Vega launcher (VEGA). The AOCS contains
the Guidance and Navigation Control system from the spacecraft in charge of the
correct position and orbit of the spacecraft. It is one of the most critical systems
of a spacecraft, since a wrong position or orbit could mean the complete loss of
the spacecraft, due to loss of power (not pointing to the sun for solar powered
spacecrafts) or communication (antennas are directional and have to be properly
oriented).

3.2.3 Microbenchmarks

We use microbenchmarks or Resource-Stressing Kernels (RSK) [144][31] compris-
ing a single loop with instructions of the same type that are chosen to stress a
certain resource: either an instruction or a hardware resource. The reason to use
a loop is to avoid icache misses and exercise the latency or certain behaviors in the
processors long enough to be able to minimize the overhead of instrumenting and
measuring the execution time. Each loop iteration will contain N instructions.
RSKs are designed to reduce the overhead to a minimum by developing them in
assembly code and compiling for bare-metal execution, which means that no OS
is present.

3.3 Simulator

We build a model of the NGMP simulator upon the SoCLib [164] simulation en-
vironment, which we properly modify to resemble the NGMP processor. The
purpose of the simulator is to have a cycle accurate simulator environment, in
order to correctly measure the execution cycles. However, our goal is not to model
all the complexity of the processor, because there is a tradeoff between complexity
(or simulation time) and accuracy. In case some accuracy has to be traded off for
a more simple model, simplicity is achieved by modelling the most common case.

The simulator is conceptually designed to separate the functional part from
the timing behavior, which creates two different design spaces: (1) the functional
emulator (emulator from now on) and (2) the timing simulator. The simulator
structure is shown in Figure 3.3. The emulator part executes the instructions
according to a particular Instruction Set Architecture (ISA) and provides all the
information about an instruction like the instruction address, registers, type, re-
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Figure 3.3: Simulator structure

sults and memory address in case it is a memory operation. The timing simulator
(simulator from now on) simulates the timing behavior of the instruction for a
given hardware implementation, for instance, if it is a cache hit or miss and the
delay introduced by the bus access in case it has to reach a higher level cache or
the memory. The architecture of the simulator serves two purposes: 1) to resemble
the actual processor structure which helps to have a more accurate modeling of its
behavior and 2) to ease implementation of new hardware features such as bigger
caches.

The simulator architecture, as shown in Figure 3.4a, consists of 4 cores with
their respective private caches, connected through a bus to a shared L2 cache and
the shared memory. All the caches are configured to resemble the caches in the
NGMP. The bus behaves as a 128-bit, round-robin AMBA AHB bus. DRAM-
sim2 [171] is used for the memory, which is a well known C-based memory system
simulator developed by the University of Maryland. It is highly configurable, pa-
rameterisable and implements detailed timing models for different types of existing
DRAM memory systems. With DRAMsim2 we model the memory controller and
a 2-GB one-rank DDR2-667 [104] with 4 banks, burst of 4 transfers and a 64-bit
memory data bus, which provides 32 bytes per access, i.e. a cache line, as in the
real processor setup used along this thesis. The internal structure of the core is
depicted in Figure 3.4b, which comprises the 7-stage pipeline with private caches
and a write-buffer. Both pipelines, integer and floating point, are embedded in the
execution stage, that assigns latencies to instructions. The timing of an instruction
consists of the instruction latency, that is defined by the pipeline, and the memory
hierarchy latency for the instruction access and data access, in case of load and
store operations. The memory hierarchy latency includes a third contributor, the
multicore contention, which involves the effect that the rest of the cores can have
on the timing of the core being analyzed, such as waiting for the bus because it is
being used by another core.
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(a) Multicore architecture (b) Single core details

Figure 3.4: Simulator architecture

3.3.1 Validation Methodology

Our validation methodology is based on microbenchmarks or RSK (see Section 3.2.3)
with a tow-fold objective: Providing confidence on the fact that the timing simu-
lator is accurate by comparing their execution time on the simulator and the real
board, and if the execution time is different, it helps adjusting the timing parame-
ters of the simulator to improve accuracy for the specific components used by the
microbenchmark.

General RSK. Each RSK comprises a single loop with instructions of the
same type that are chosen to stress a certain hardware resource or a set of them.
The first step is factoring out the execution time of the loop overhead in both,
the timing simulator and the real board1. This overhead is removed from all the
execution time readings to obtain the exact latency of the operations performed in
the loop body. The latency of the body helps tuning the latencies of the different
parts of the processor with very high accuracy. The loop overhead is measured
with a loop containing only the loop-related instructions, which include roughly
an arithmetic instruction to compute the loop index and a branch instruction,
and also possibly a comparison instruction in other ISA. The latencies of these
instructions can be obtained from the datasheets, if available. Otherwise, they
can be derived empirically. For that purpose, we use a loop containing N times
the instruction whose latency is to be measured, that is programmed in a way
that IL1 misses can only occur in the first loop iteration, i.e. the loop fits in the

1When we talk about real board, a RTL level cycle-accurate simulation could also be used.

31



Chapter 3. Methodology

IL1. This way we can approximate the latency of the instruction analyzed very
accurately, since the overhead of the loop is minimized. Once each instruction
latency is obtained we can set up the simulator with the appropriate latency for
each instruction type.

In terms of implementation, we proceed as follows.

Instruction timing. We (automatically) create a set of RSK, each one having
a different instruction type under analysis in the loop. All instructions are forced
to incur cache hits in order not to include the memory hierarchy latency on the
execution time. First, we measure the execution time of the empty-loop RSK.
This execution time needs to be substracted from the execution time of any of
the RSK that we produce to analyze any instruction. Then, the execution time
difference between the specific RSK and the empty-loop RSK is divided by N ·M ,
where N is the number of instances of the instruction under study in the loop and
M the number of iterations carried out. In order to validate the behavior of each
instruction type, as we will see in the results Section 3.3.2, the execution time of
the loop obtained in the simulator and the real board have to match for each type.

For branch instructions, in case there is a different latency for taken and non-
taken branches, the RSK can be adjusted to use non-taken or taken branches by
setting the branch address to the exactly sequential instruction so that the control
flow is exactly the same and they can be modeled separately. In our case, both
cases behave equally. For input-dependent instruction latencies, as it might be the
case for divisions or multiplications, several tests covering the different cases can
be used to profile the different instruction latencies of that instruction type.

Memory hierarchy. As next step, we address the memory hierarchy by
testing all types of hits and misses on it. For that purpose, the instruction loop
generates hits or misses on the instruction, data L1 and L2 caches. The same pro-
cedure followed here can be extended for processors with more hierarchy levels. All
caches in our processor have LRU replacement policy, which is the most common
in practice. To generate misses we perform W + 1 accesses, being W the number
of cache ways, to the same set on each loop iteration. For instance, in the NGMP,
caches have 4-ways so performing 5 accesses to the same set for different addresses
causes that the first 4 accesses fill the 4-ways of the set and the 5th one evicts the
1st one from the set. When the access sequence repeats, the 1st address misses
and evicts the 2nd address, which misses in turn and evicts the 3rd address and
so on and so forth. The memory accesses systematically evict subsequent data
to be accessed next and thus all accesses miss in the cache systematically. An
easy way to access the same set is making cache accesses have an address offset
equal to the way size of the cache, i.e., for the 16K L1 cache, 16K/4 ways = 4K.
The resulting RSK is shown in Figure 3.5. By doing this we guarantee that we
miss on that cache, but we hit on the bigger next level cache. To generate hits
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Figure 3.5: RSK example with loads with 4K offset

on a certain level of cache, we use the same procedure, making a loop that misses
on the previous level. In the case of the L1 caches, accesses to the same address
generate hits. For instruction misses, we use five branches physically separated by
the required offset that jump sequentially. For data misses we use load and store
operations with the given address offset. This benchmark structure is particularly
devised for LRU and FIFO replacement policies. For other types of replacement
policies similar structures can be built to produce systematic cache misses.

Multicore contention. As last step, we address the multicore contention
on the shared bus. To that end, we use a recently published method [63] that
allows to derive the latency caused by the contention on the bus. This method
allows us to expose the interference that the cores generate for different types of
request in a given shared resource. We use two different RSK at the same time, a
sensitive RSeK and a stressing RStK. Both RSK perform continuous accesses to
the shared resource under analysis by using the same technique presented before
to miss in the appropriate cache levels. The RSeK runs on the core under analysis
and the RStK run on the rest of cores, thus creating a high contention scenario.
The method explained in [63] shows that round-robin arbitration behaves as a
time-multiplexed scheme under a high contention scenario. In this situation, the
access time of the RSeK accesses with respect to the time-multiplexed window
can be varied by inserting a variable amount of nops between RSeK accesses to
the shared resources. For each access time, the interference experienced has a
different value and follows a sawtooth behavior. The maximum interference delay
matches the frequency of the sawtooth. Similar analysis can be carried out in the
memory, however, in our case, the interference occurs mostly on the bus because
the bus serializes the traffic by stalling accesses until the request being processed
is served2.

After the contention on the bus is properly adjusted, we run tests based on a
RSK that uses a large fraction of the L2 cache on each core to create interference

2This is caused because the board used for the experiments does not use split transactions
on the processor bus. Other boards, such as the GR740 [39] use split on the bus. In general, we
assume that the processor uses split on the bus despite such processor was not available for the
validation.
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between the cores. These can be adjusted to interfere only on the bus or the
memory by exceeding L1 and L2 capacity respectively only when run together.
For instance, given N cores, each RSK can be designed so that the cache space
used, Ci, matches the following constraint: L2size

N
< Ci ≤ L2size.

3.3.2 Validation Results

In this section we describe the process followed to adjust the timing parameters
and the validation procedure. The processor we use as real reference, a.k.a. board,
is the commercially available GRN2X [44] board. In order to get an accurate
measure of the execution time, we use hardware PMC that are available in almost
every processor architecture. More precisely we use the “execution time” counter,
which is one of the most common PMCs. Additional counters that are useful are
cache hit and miss counters and cache, bus and memory access counters. These
counters can be read directly using GRMON [37] debug tool from the processor
vendor3. In all cases, we measure the PMC of interest for the execution of the loop,
that is, removing all the overhead of the rest of the program. This can be done by
reading the PMCs strictly before and after the loop. The difference between both
readings corresponds to the value of the loop itself.

Instruction timing

As first step in our methodology we run one RSK for each instruction in the
SPARCv8 ISA in the simulator and the board. Available parameters from the
processor manual [42] have been used to adjust the instruction latencies before
the experiments. We group the instructions according to their different nature:
load, store, integer/float, short/long and branch. Figure 3.6 shows the results of
the instruction validation test for the different instruction types. All results are
normalized with respect to the nop case. We performed tests for all instructions,
except for the ones classified as special due to their complexity, impact or de-
pendency on the processor. Furthermore, special instructions, such as writing into
special processor registers, appear infrequently on a normal execution. We also did
not include the detailed analysis of the floating point instructions since they have
their own hardware component (FPU), present a much more complex behavior
than the rest of instructions and their common-case behavior is well documented
in their specification. We can observe that the simulator can accurately model in-
structions executed within the core incurring all cache hits. There is a significant
difference not shown in the figure for division instructions, classified as int long

3 Note that these types of PMC and mechanisms to access them can be found in most
processor designs, thus allowing to port our methodology to other architectures and processor
models.
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Figure 3.6: Instruction timing

(together with multiplications), due to input data dependencies. In our case we
take the worst-case value, to provide an upper-bound of the execution time, in case
some inaccuracy is introduced. This can also be mitigated, if needed, by building
a table of latencies indexed with the input values for division (i.e. dividend is zero,
divisor is 1). In our case we decided to keep the simulator simple.

Memory hierarchy

In this step we validate the behavior of the memory hierarchy using RSKs that hit
or miss on a given cache level. There are two metrics involved for each memory
hierarchy level: number of accesses, such as hits, misses and bus accesses, which
are used as a sanity check to see that the RSK does what was expected; and latency
measurements used to validate the timing behavior. For the sake of convenience, we
only show the latency analysis but similar analysis was done for the accesses, given
that both analyses provided analogous conclusions. We begin with L1 instruction
and data caches. Figure 3.7a shows the results for load hit and misses in both L1
caches, normalized w.r.t. the execution of nop operations. Store operations in the
L1 data cache, which is write-through, behave exactly the same whether they hit
or miss since data are forwarded to the next level anyway.

There is a source of inaccuracy from our model that can be seen on this figure.
Store operations are not exactly modelled due to the presence of one or more write-
buffers that are not accurately described in the documentation. Nevertheless, most
of the time the latency of a store is equal to a nop operation because the write-
buffer is effectively masking store latency, so we only model one write-buffer.

In the L2 cache, we have four different types of accesses: loads and writes that
either hit or miss. Loads can be instruction or data requests, since the L2 cache is
unified. Figure 3.7b shows the values obtained for the different RSKs that generate
each type of request. We can observe again the difference for store operations. The
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(a) L1 caches access

(b) L2 cache accesses

Figure 3.7: Memory hierarchy timing

L2 cache case is more complicated, since according to the manual [42], L2 latencies
are variable and depend on previous requests that were accessing the L2 cache,
which can come from any of the 4 cores. However, this behavior is complex to
model or test, since requires cycle-level control of the contention on the L2 cache
which is impractical in reality. In this case, we choose to model a fixed latency
that corresponds with the case of no previous request, which reduces the accuracy
but simplifies the L2 model.

Multicore contention

We use the same technique that was presented in [63] to adjust the impact of
contention on the bus. This technique allows to obtain the worst-case interference
for round-robin buses. We applied the technique for each different type of access on
the bus and the memory to obtain the interference delay and adjust the simulator
properly for each request type. Once adjusted, we run experiments to exercise
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(a) Execution times for L2-half benchmark

(b) Execution times for L2-full benchmark

Figure 3.8: Multicore contention with different number of cores

the interference and see the matching. In the actual processor, contention occurs
mainly on the bus due to the lack of split transactions. For that purpose, we
run benchmarks competing with the rest of the cores for the L2 cache to test the
accuracy of the contention modeling. Figure 3.8 shows the normalized increase on
execution time for two benchmarks accessing L2 executed in a different number of
cores. In the case of Figure 3.8a, each benchmark accesses half L2 capacity, and so
contention becomes much more significant when using 3 cores, thus exceeding L2
capacity. In Figure 3.8b, almost all L2 capacity is accessed by each benchmark,
which causes that when executed in 2, 3 or 4 cores, the execution time increases
much more due to the contention. We observe that some inaccuracies, mainly due
to the L2 cache variable latency, are already present.
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Figure 3.9: EEMBC and ESA benchmarks accuracy results.

3.3.3 Final accuracy results

In this section we show how the simulator performs with different benchmarks and
real applications to show its accuracy. For the validation with general benchmarks
we use the EEMBC Autobench suite [143] and the real applications provided by
ESA: AOCS, OBDP DEBIE and VEGA (see Section 3.2).

Figure 3.9 shows the accuracy, at cycle-level, for EEMBC automotive bench-
marks and the four ESA applications. In this chart we can clearly see, that our
simulator offers accurate results, with 3% of error on average. The loss in accu-
racy is caused by the design choices of not exactly modeling some of the behaviors.
For instance the variable integer long instruction latency, variable L2 miss latency
and the write-buffer. Also the difficulties to properly control and measure the
contention in multicore workloads, makes their modeling difficult.

Our simulator is able to reach up to 1 MIPS. If we compare it with the per-
formance of the actual board (around 100 MIPS for the benchmarks), we observe
that the tradeoff between accuracy and performance allows us having a detailed
timing model of the processor at a moderate performance cost. There is still room
to improve the execution time of the simulator by tuning its code, however this is
beyond the scope of this thesis.

3.4 Timing Analysis

In this thesis we use two different techniques to obtain WCET estimates, depending
on whether deterministic or probabilistic methods are used (see Section 2.1 for a
description of both).
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Deterministic Timing Analysis: This thesis uses measurements directly
collected from the simulator or processor boards and RapiTime [146], which com-
bines the measurements with control flow analysis information to compute WCET
estimates.

Probabilistic Timing Analysis: In this thesis we use measurement-based
probabilistic timing analysis (MBPTA) [46], as it is closer to industrial practice.
We collect execution time measurements of end-to-end runs, testing that the data
fulfills the i.i.d properties for random variables using the following tests: the two-
sample Kolmogorov-Smirnov (KS) [59] test evaluates the fulfillment of the identical
distribution property, and the runs-test [27] the fulfillment of the independence
property. Then we apply the MBPTA methodology as explained in [46].

3.5 Summary

This chapter introduced the methodology used along this thesis. The main tool
considered in this thesis is a cycle-accurate simulator to perform the design space
exploration of hardware components. The most important metrics on this thesis
are the WCET and execution time that measure the time that a task spends run-
ning on the processor in the worst-case and average-case respectively. Therefore,
the simulation must be accurate enough so that execution times collected can be
used to derive trustworthy WCET estimates. This thesis also considers real pro-
cessor boards based on ASIC or FPGA technologies to validate the simulator and
evaluate some proposals. The simulator is used to implement custom hardware
features not available on the commercial version of the processor. The software
used corresponds to well-known benchmarks and real applications from the space
domain.
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Time-Composable Bus

4.1 Introduction

One of the most important shared resources in current MPSoC for real-time sys-
tems is the backbone bus that connects the different cores with the memory/cache
subsystem (and possibly other devices or subsystems). The Advanced Microcon-
troller Bus Architecture (AMBA) [67] is one of the most – if not the most –
broadly used bus interfaces. AMBA is used in a wide range of architectures, pro-
viding flexibility in the implementation and backward-compatibility with existing
AMBA interfaces. This chapter focuses on the Advanced High-performance Bus
(AHB), one of the distinct buses defined in the AMBA specification, which aims
at high-bandwidth, low-latency, high-frequency and low-complexity. AMBA AHB
(or simply AHB) is increasingly being used in multicore processors for real-time
industry, e.g. LEON3-based GR712RC [36] and LEON4-based NGMP [42], so
providing tight and time-composable bounds to the access latency becomes a de-
sirable property for AHB to deliver. Unfortunately, AHB was not designed with
time composability in mind that exists when the timing properties of a software
component in isolation, i.e. its WCET estimate, do not change when the system
is integrated. In order to make AHB-based MPSoC systems to fulfill the desired
time composability property, this chapter makes three contributions:

Contribution 1. We provide a detailed analysis of the AMBA AHB features
and their impact on the timing behavior of connected components (i.e. master
and slaves), and by inference, on the applications running on the MPSoC. We
identify the AHB features that affect the timing behavior of applications and how
AHB-compliant masters and slaves can break time composability.

Contribution 2. We propose to use only a restricted subset of the AHB fea-
tures, named restricted AHB (resAHB), such that if master/slaves adhere to it, the
maximum delay that any bus access may suffer due to inter-task interferences can
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be computed, so fulfilling the time-composability property. The main advantage
of resAHB is that it is compliant with the AMBA AHB specification, providing
the same functionality as the original one. Our results show that this solution is
attractive only when the AHB-connected components have a considerably higher
latency than the AHB arbitration itself.

Contribution 3. We extend resAHB by introducing a new set of opera-
tion modes currently not specified in the AMBA AHB specification. We call this
new AHB specification, Advanced High-performance Real-time Bus specification
or AHRB. AHRB efficiently isolates the timing behavior of the different compo-
nents connected to the AHRB, allowing to derive tight and trustworthy WCET
estimates.

AHRB specification ensures that if all connected components follow it, they
will enjoy tight and time-composable bounds for their bus access latency. As a
result, although the timing behavior of any IP component1 may be unknown, its
effect on the bus is bounded under AHRB without any information or requirement
from the component at hardware and software levels because timing requirements
are already included in the specification. This is of paramount importance in the
context of future multi-IP mixed-criticality MPSoC.

AHRB extends AHB by adding master and slave modes that allow specifying
the use of the bus that each master and slave does, in such a way that it can
be taken into account by other master/slaves at design time. This results in
tighter (and bound) access times to the bus, which in turn leads to tighter WCET
estimates for the applications running on the MPSoC.

Our results show that, unlike the original AHB, both resAHB and AHRB
enable obtaining time-composable WCET estimates for all tasks running in the
MPSoC. Those estimates are independent of the other tasks being run simulta-
neously. WCET estimates resultant of using AHRB are tighter than those for
resAHB, reducing WCET estimates by 3.5x on average. We also observe that in
our setup inter-task interferences cause an average performance degradation on
the EEMBC benchmarks ranging from 6% to 35% depending on the workload
when using a conventional AHB bus. Such degradation reduces with resAHB and
AHRB to 1%-5%.

The chapter is organized as follows: Section 4.2 describes AMBA. Section 4.3
analyzes the effects of AMBA AHB features on timing and provides examples of
how AMBA challenges time composability. Sections 4.4 and 4.5 describe resAHB
and AHRB respectively. Section 4.6 shows the experimental results. Sections 4.7
presents the summary of this chapter.

1An IP (intellectual property) component is a block of logic or data that is designed to be
ported and reused across different products (ASIC or FPGA).
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Figure 4.1: AMBA AHB main components: Masters, slaves, arbiter and decoder.
(Picture from AMBA Specification Rev 2.0)

4.2 The Advanced Microcontroller Bus Archi-

tecture

The Advanced Microcontroller Bus Architecture (AMBA) is a standard bus inter-
face for high-performance embedded microcontrollers, aimed at high-bandwidth,
low-latency, high-frequency and low-complexity on-chip communication. Several
studies have shown that hierarchical buses scale, in terms of performance and en-
ergy consumption, to systems with processor counts in the range 32-64 cores [156,
166]. Thus, AMBA is expected to remain in the near future as one of the standard
bus interfaces for real-time MPSoCs.

The AMBA specification [14] defines three distinct buses: the Advanced High-
performance Bus (AHB), the Advanced System Bus (ASB) and the Advanced Pe-
ripheral Bus (APB)2. In this chapter we focus on the AHB, which is used in several
existing architectures such as the Cobham Gaisler GR712RC and the NGMP. AHB
has been designed to be a high-performance backbone bus that efficiently connects
cores, on-chip memories and IP components. The AHB basic architecture, shown
in Figure 4.1, comprises four different components: a set of masters, a set of slaves,
an arbiter and a decoder. These components use or control three main buses: the
address and control (HADDR in the Figure), read data (HRDATA) and write data

2AMBA 3 specification also includes Advanced eXtensible Interface (AXI), an interconnection
protocol independent from the interconnection network topology used. It is later covered in
Section 4.5.5.
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Figure 4.2: AHB transactions consist of an arbitration and a transfer phase. The
latter is divided into beats with an address and control phase and a data phase.

(HWDATA) buses.
Figure 4.2 shows an AHB transaction between a master and a slave. A master

initiates a read/write transaction to a slave by requesting to the arbiter the access
to the address and control bus. During the arbitration phase, the arbiter handles
the contention across masters by granting access to the bus only to one master
at a time according to a predefined arbitration policy (not defined by the AMBA
specification), so that concurrent transfers are not allowed. Once a master is
granted access to the bus by the arbiter, the transfer phase starts. The transfer is
split into several beats if data cannot be sent through the bus all at once (i.e. burst
transfers). For instance, the transfer in Figure 4.2 requires three beats. Every
AHB transfer beat consists of two subphases that overlap across beats, as defined
in the specification: an Address-and-Control phase that lasts for one cycle in the
absence of contention, and a Data phase that lasts one or more cycles (in case the
master/slave cannot provide the data at that moment). The decoder controls the
multiplexers to send the address to the appropriate slave, and two data buses are
used to send/receive data to/from the slave. When the transaction finishes, the
master relinquishes the buses.

4.3 AMBA AHB and Time Composability

As MPSoCs integrate an increasing number of IP blocks coming from different
suppliers and the functionality provided by MPSoCs keeps diversifying, the trend
towards MPSoC comprised of multi-party IPs will further exacerbate. Moreover,
it is also the case that real-time system IPs may be subject to different safety
and security levels. Hence, in order to enable mixed-criticality functionalities to
be run on the same MPSoC, the impact that one IP component can create on
the timing behavior of the others must be limited and this cannot be left to the
IP provider, especially to those subject to less-restrictive criticality levels. The
safety of the integrated system in terms of timing behavior should be provided by
design (construction), in our view, and thus by the bus protocol specification itself.
Since time composability is the central element for reducing timing verification and
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validation costs, it should be provided by design.

Time composability imposes that the maximum time any request of any task
waits to be granted access to the bus is bounded and the bound does not depend on
the particular co-running tasks in the MPSoC [138, 139]. This requires that (1) the
arbitration phase for every transaction is bounded and this bound does not depend
on the behavior of other components; and (2) the duration of the transfer phase
of every transaction is also bounded. Note however, that the arbitration-time and
transfer-time bounds may depend on hardware implementation details, such as
the number of cores contending for the bus. This however does not jeopardize
time composability, since those features are known at design time, when WCET
estimates are computed for each task.

If every access to hardware shared resources fulfills the time composability prop-
erty defined above, WCET estimation for a task, either with static timing analysis
or measurement-based techniques [180], is independent of the accesses that other
co-running tasks may do on the same hardware shared resources. This effectively
enables the computation of WCET estimates for each task in isolation, bringing
the benefits of reducing time validation and verification costs as explained in the
previous section. Unfortunately, at the time AHB was released, time composabil-
ity was not one of its design goals. As a result, AHB-compliant master/slaves
lead to non time-composable behavior that makes difficult analyzing the timing
properties of an AHB-based MPSoC.

In this section we review AHB features and classify them according to their
effect on timing. Table 4.1 summarizes the features we analyze.

1) Number of masters : AHB allows up to 16 bus masters contending in one
bus. The number of masters does not break time composability because it is a
feature known at design time, like the number of cores in a multicore platform.
However, it affects the tightness of WCET estimates. In real-time scenarios, the
worst-case situation to consider happens when, on the event of a master trying to
get access to the bus, all the other masters want to access the bus the same cycle,
all of them having higher priority.

2) Handover : Changing the ownership of the bus from one master to another is
called handover. AHB has a one-cycle master handover, so a master being granted
access to the bus in a given cycle, gets the bus in the next cycle, so the minimum
arbitration time is one cycle. This effect can be taken into account for each request
of a task by adding this extra cycle of delay to the arbitration time. This feature
is time-composable and has negligible effect on timing tightness.

3) Back-to-back execution: Back-to-back execution occurs when two transfers
from different tasks are executed consecutively one after the other, without any
idle cycle in between. This is feasible because of the pipelined execution of AHB,
where address and data phases of different transfers overlap. This feature has
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Table 4.1: List of AHB features analyzed

ID Feature Breaks TC? Affects WCET bounds?

1 Number of Masters No Yes
2 Handover No No
3 Back-to-back No No
4 Burst operation Yes Yes
5 Flow control Yes Yes
6 Split transactions No Yes
7 Locked transfers Yes Yes
8 Bus width No Yes
9 Protection control No No
10 Error response No No
11 Retry response No No
12 Idle transfers No No
13 Early burst termination No No
14 Arbiter Yes Yes

neither an effect on timing nor on time composability.

4) Burst operation: Burst operation allows to perform transactions composed
of more than one beat. AHB allows to have undefined-length bursts, 4-beat, 8-
beat or 16-beat burst transactions. Undefined-length burst can be of any length,
although its limit is constrained by the fact that the address cannot cross a 1 KB
boundary. The burst length affects WCET estimates since, to compute them, it is
needed to assume always the maximum burst length allowed in the system, even
though it might be too pessimistic to be useful.

5) Flow control : Flow control in AMBA AHB can be performed by both the
master and the slave. The slave can extend the data phase of a transfer by inserting
wait states if, for instance, it needs extra time to process the transaction. Similarly,
the master can insert busy transfers with the same purpose of extending the time
between data transfers.

The original AHB specification states that the number of wait states is limited,
but it does not set any specific limit. The absence of a specific limit breaks
time composability because it eliminates the possibility of computing how long
a transaction can take, so how many other tasks in the system can be delayed
because of such transaction. Further note that both, wait states and busy transfers,
increase WCET estimates since for every transaction, the maximum number of
wait states and busy transfers must be assumed.

6) Split transactions : Split transactions provide a mechanism for slaves to
release the bus when they need some more time to respond. This allows other
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masters to get access to the bus rather than waiting for the slave to finish. When
a slave signals a split transaction, the arbiter masks the request of its correspond-
ing master until the slave indicates that the response is ready, so the master is
considered again in the arbitration. Note that the master has to wait again for
arbitration, and only when the arbiter grants the bus access, the slave can respond
to the request. Signaling a split transaction needs a two-cycle response. This
effectively adds two cycles to the size of a transfer for WCET estimates.

Therefore, a split transaction only affects the timing behavior of the master that
received it, as two arbitration phases occur: the first one when the request is issued,
and the second one when the slave is ready to respond. This is not the case for the
rest of masters, in which a split transaction is seen as two independent transactions.
It is important to remark that, although the master can keep the slave component
busy during a split transaction, thus affecting others, this contention is not because
of the bus, but because of the slave.

7) Locked transfers : Locked transfers allow a master to keep the ownership of
the bus until the locked sequence has been completed. Locked transfers ensure
that a transfer is done without disturbance, which is necessary, for instance, in the
case of read-modify-write requests to an AHB connected cache or memory device.
However, locked transfers can be very harmful for time composability, because a
master can issue a locked transfer and keep the bus busy indefinitely, thus affecting
other masters. Section 4.4.1 provides a discussion of how the functionality provided
by locked transfers can be implemented avoiding the issue of affecting the other
tasks in a timing unpredictable way.

8) Bus width: AMBA AHB allows different bus widths: 8, 16, 32, 64, 128, 256,
512 and 1024 bits-wide buses. It is recommended a minimum of 32 bits. This
feature does not affect time composability but it has an effect on timing, because
the wider the bus, the fewer the number of transfers needed. Note that the bus
width is known at design time, like the number of masters.

9) Protection control : AMBA AHB has protection control signals that provide
information about a bus access, to be used by any module that implements some
level of protection. These signals indicate whether the access is instruction or data
access; user or privileged access; bufferable and cacheable. Since no functionality
is attached to these signals, because it is something optional and for higher level
protocols, it is completely harmless for time composability.

10) Error response: A slave can respond to a transfer with an error, to indicate
that something went wrong. Although errors may break timing behavior of a task,
it is a responsibility of the master-slave higher level communication protocols to
take care of errors and it does not affect other masters. Hence, it does not affect
time composability. Errors require two extra cycles for signaling, as in the case of
split transactions.

47



Chapter 4. Time-Composable Bus

11) Retry response: A slave can respond also with a retry response, to indicate
the master to perform the transfer again. Like error responses, retries may also
break timing behavior of a task, but this is again responsibility of the master-slave
higher level communication protocols and does not affect other masters. Hence,
it does not affect time composability. Retries also require two extra cycles for
signaling, as in the case of error responses and split transactions. Retry responses
can also be used as an alternative to split transactions when the slave is unable
to provide the response (e.g., due to its high latency). The difference is that
with retry response, the normal arbitration priority scheme will be maintained.
With split transactions, the arbiter masks the request of the split master until the
slave indicates that the response is ready, which improves performance, since that
master will not be granted access unless the response is ready.

12) Idle transfers : Idle transfers are used to indicate that no data transfer
is required. AMBA uses a default master when all other masters are unable to
use the bus. When granted, the default master must only perform idle transfers.
Idle transfers can also be used in case a master cannot continue a burst. It is
completely harmless for time-composability.

13) Early burst termination: Early burst termination is a mechanism that
allows slaves to detect when a burst transfer is incomplete. If during a burst
transfer, a slave detects an idle transfer or a non-sequential transfer, it means
that the previous transfer finished before it was completed. This may occur if the
arbiter changes the ownership of the bus, or if the master cannot finish the burst.
This feature is completely harmless for time composability.

14) Arbiter : AMBA does not define any restrictions on the arbiter, which
means that any arbitration policy can be used. This can completely break time
composability as we show in the example in Section 4.3.1. The arbitration policy
affects the timing behavior of all masters, because it defines how much time a
master has to wait to be granted access to the bus, which indirectly depends on
the other masters’ behavior.

4.3.1 Example of Non Time-Composable Behavior

Unfortunately, at the time AHB was released, time composability was not one
of its design goals. As a result, AHB-compliant master/slaves lead to non time-
composable behavior that makes difficult analyzing the timing properties of an
AHB-based MPSoC. Figure 4.3 shows an example that illustrates three AHB-
compliant non-time composable behaviors of a master/slave communication. Con-
cretely, it shows the timing diagram of an AHB bus of two masters, M1 and M2,
each sending transactions A and B respectively, both with a burst transfer size of 4
beats. The transfer part of the transaction from master M1 occurs between cycles
n + 2 and n + 6. In those transfers, phases overlap across beats. For instance,
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Figure 4.3: Example of non time-composable behavior.

address phase of transfer A1 overlaps with the data phase of transfer A0 given
that they use separate buses. Non time-composable behaviors are as follows:

a) M1 requests the bus in cycle n + 1 and gets it in cycle n + 2, thus having
an arbitration time of 1 cycle. Master M1 issues a locked transaction at cycle
n + 2. As defined in the AMBA specification the arbiter cannot relinquish the
bus during a locked transaction, so that this transaction from M1 can affect the
timing of other masters in an unpredictable manner potentially preventing them
from using the bus indefinitely (4 cycles in the example). Hence, the existence of
locked transactions is a feature that breaks time composability.

b) Masters can issue unspecified-length burst transfers, which does not allow
bounding the latency of a transaction. For instance, in Figure 4.3, M1 issues a
burst length of 4, which means that for WCET estimation we have to assume that
every possible transaction from M1 is at least 4 beats long. However, if a new
master is connected with a burst-length of 8, it invalidates the previous analysis.

c) Finally and more revealing, AHB specification does not put any requirements
on the arbiter behavior, and only the arbiter interface is specified. For instance,
the arbiter can take away the bus grant from a master, as occurs in cycle n + 2
when M2 is sending a burst transfer and the arbiter changes the bus ownership to
M1. This can happen due to the fact that any arbitration policy to select the next
master to grant access to the bus can be used. Under some arbitration policies,
there may not be an upper bound on the time one master can delay the others to
access the bus, thus, breaking time composability. For instance, if M1 has higher
priority than M2 and both tasks attempt to access the bus simultaneously, M2
is stalled until M1 finishes. However, if before the first request from M1 finishes,
another request from M1 becomes ready, M2 will also wait for the second M1
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request to finish as well. Thus, the bus contention that M2 suffers depends on
M1. Even though this effect can have an upper bound and be computed knowing
M1, it breaks time composability, because if we change M1 behavior (e.g., the
task running on top of such master) it invalidates the timing analysis for M2.

In summary, in order to achieve time composability several features of AMBA
AHB must be either limited or disabled. In particular, unrestricted locked transfers
must be avoided, only time-composable arbitration policies must be considered,
and burst length, wait states and busy cycles must be limited.

4.4 Restricted Time Composable AHB

As shown in previous section, AMBA AHB specification does not guarantee time
composability at bus transaction level. This section defines a restricted usage
of a subset of the AHB features, such that if every master and slave follow this
restricted AHB specification (resAHB), time composability can be guaranteed by
construction at transaction level. The main goal of resAHB is to derive tight
upper bounds for every bus transaction, regardless of the actual behavior of other
master/slaves components, while keeping AMBA AHB functionality.

In order to achieve time composability, the AHB features that must be con-
sidered are burst length, wait states and busy cycles (i.e. flow control), locked
transfers and the arbitration policy.

Burst length: AHB allows defining burst sizes of 4-beat, 8-beat, 16-beat
and undefined length. Undefined burst sizes break time composability as they
prevent bounding the impact of a bus transaction on other transactions belonging
to different tasks. Therefore, we enforce maximum burst length to be 16 beats,
which will be compatible with existing AHB components. Components needing bus
transactions larger than 16 beats must split the transaction in several transactions.
It is important to remark that the burst sizes of undefined length can still be set
assuming any length smaller than 16 beats. If the burst length of an undefined
transaction is above 16 beats, the corresponding master or slave will have to split
the transaction.

Flow control: Flow control defines the number of wait states and busy trans-
fers. As we have seen in the previous section, the original AHB specification states
that the number of wait states has to be limited, recommending not to insert more
than 16 wait states but it does not specify any limit. In order to provide time-
composable AHB transactions, we restrict the number of wait states to 16, which
is the maximum recommended by the specification and corresponds to 16 bus cy-
cles. In case a slave needs more than 16 wait states, it can signal either a split
transaction or a retry (in case the resource is busy).

On the master side, busy transfers need also to be limited. Similar to wait
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states, we enforce masters not to introduce more than 16 busy transfers, which
corresponds to 16 bus cycles. If a master needs more than 16 busy transfers,
e.g. it cannot continue the current transfer, it will have to signal an early burst
termination which releases the bus. The transaction can then be performed once
the master is ready.

It is worth noting that both, wait states and busy transfers, introduce pes-
simism in WCET estimates as the worst-case scenario must be considered, i.e.
every transfer incurs 16 wait states and busy cycles.

Arbiter. The AMBA AHB specification does not put any restriction on the
arbitration; this is not suitable for time composability, so resAHB constraints the
timing behavior of the selected arbiter.

On the one hand, resAHB restricts the arbitration policy to those that allow
to derive upper bounds on the time a master needs to wait to be granted to use
the bus, e.g. TDMA (Time Division Multiple Access) and Round-robin [138]. For
example, under round-robin arbitration policy, in the worst case a master waits
N − 1 rounds of arbitration before it gets the bus, where N is the number of
masters. Hence, the longest arbitration latency a master suffers due to inter-task
interferences is bounded by BoundRR = (N−1)× (ttran−1), where ttran is the bus
transfer time from which one cycle is subtracted because in consecutive transfers
address and data phases overlap. Any other arbitration policy that allows to
derive time composable upper bounds on the arbitration time can be considered.
We elaborate more on this topic in Chapter 5.

On the other hand, the arbiter must not change bus ownership during a trans-
action. That is, under resAHB a master cannot be preempted once it has been
granted access to the bus.

Locked transfers. Under resAHB, locked transfers are not allowed to take
longer than the maximum transaction latency, that is 50 cycles as shown in Sec-
tion 4.4.2. Locked transfers are used to eliminate disturbance when doing an
access or a sequence of accesses. If the accesses can be served with a single trans-
fer, locked transfers are not needed, since, as pointed above, bus transactions are
not preempted, i.e., other masters cannot use the bus until the current transaction
finishes. In the case of a sequence of accesses that require more than one transfer,
e.g. read-modify-write accesses, the atomicity provided for individual transfers
does not suffice to provide the same functionality as locked transfers. In Sec-
tion 4.4.1 we present a mechanism to provide this functionality without requiring
locks.

4.4.1 Providing the same functionality as AHB

resAHB restricts the use of locked transfers to avoid masters to lock indefinitely the
bus, which would simply kill time composability. However, locked transfers provide
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a functionality that may be required by masters. For instance, cores (masters) may
want to perform an atomic operation on a shared memory to enable the use of
higher level locking protocols, like the priority ceiling protocol [145], for which
masters use locked transfers. In order to be able to maintain this functionality, we
propose two different approaches.

The first approach benefits from the fact that under resAHB the arbiter cannot
relinquish the access to a master once it is granted access. Hence, if the sequence of
accesses requiring an atomic operation (e.g rmw) fits within the maximum possible
transaction length (i.e. 50 cycles) it will be carried out correctly. This is normally
the case, since (1) at software level locking time is reduced as much as possible to
improve performance and (2) locked transfers are usually issued to cache memories
which have short latency. Note that the first time the master asks for a data with
an ‘atomic’ request (which can be identified using the HMASTLOCK signal), the
slave has to fetch it, which can take longer than 50 cycles. In that case the slave
simply responds with a split or retry response and starts fetching the data. Once
the datum is cached, the atomic operation can be carried out in less than 50 cycles.

The second approach consists in moving some functionality to the slave com-
ponent (e.g., a cache). For instance, in the case of the SPARCv9 architecture, rmw
operations can be implemented with the compare-and-swap (CAS) operation that
works as follows:

i n t64 CAS ( int64 ∗word , in t64 t e s t va l u e , in t64 new value )
{

i n t64 o ld va lu e ;

atomic {
o ld va lu e = ∗word ;
i f ( ∗word == t e s t v a l u e )

∗word= new value ;
}

return ( o l d va lu e ) ;
}

The core (master) sends a read operation of address ∗word to the cache. While
handling this request, the cache must prevent any other request from accessing
∗word. Once the core receives the answer, i.e. the data in ∗word, it relinquishes
the bus. Then the core compares the content of ∗word with the test value provided
in the CAS operation. In case of match, the core starts a new transfer on the bus
to write the new value to ∗word. Otherwise, if there is no match, the core starts
a new transfer to write the old value to ∗word. The cache will not accept new
accesses to ∗word until the write operation is served. Note that the AHB signal
HMASTLOCK indicates the slave that the transfer is a locked transfer, allowing
the slave to be aware of locked transfers.

In any case, the only restriction is that any locked transaction cannot exceed
the maximum transaction length.
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4.4.2 Deriving bounds to access latency

The resAHB specification allows deriving upper bounds on the time an AHB bus
transaction takes. The upper bound is defined as τ = tarb + ttran, where tarb is the
longest time it takes a master to be granted access to the bus since the cycle in
which it requests access to the bus. ttran is the transfer time, the longest time a
master is entitled to use the bus once it is granted access by the arbiter.

tarb depends on the arbitration policy, the number of masters and the maximum
time each master can use the bus once it is granted access, i.e., ttran. For instance,
for round-robin this time is tarb = 1 + (N − 1)× (ttran − 1), which corresponds to
the bound of round-robin plus one extra cycle needed for the initial handover 3.
ttran is given by the longest possible transfer that corresponds to a 16-beat burst
transfer with 16 wait states and 16 busy transfers. It also includes two extra cycles
for signaling an error/retry/split response. This totals 50 bus cycles, regardless of
the specific hardware and software details of master and slave components . Note
that ttran is decreased by 1 cycle since data and address phases across transactions
overlap in 1 cycle.

For instance, in a 4-master bus with round-robin policy, the maximum, time-
composable arbitration time is tarb = 1+(4−1)×(50−1) = 148. By computing the
WCET estimate for a task assuming this arbitration time, will make its WCET
estimate independent of the other tasks it runs with. This occurs because the
worst effect that other tasks can cause on the bus is already taken into account by
the maximum arbitration time.

4.5 Advanced High-performance Real-time Bus

AMBA AHB can be made time composable by construction by restricting the use
of some AHB features. Though this is an attractive proposition since it keeps com-
patibility with AMBA, it leads to pessimistic WCET estimates. For instance, we
have seen that with 4 masters and round-robin arbitration policy, the arbitration
time that a given request has to assume in order to be time composable is as big
as 148 cycles.

In this section we extend the AHB specification in the form of extra features
that improve AHB time composability properties. Obviously these extended fea-
tures make the new specification non AMBA-compliant. We call our AHB speci-
fication extension AHRB Advanced High-performance Real-time Bus.

3The worst-case corresponds to every master accessing the bus at the same cycle which
requires an initial cycle for handover. The rest of handovers are not consuming any extra cycle
because of the back-to-back execution of requests.
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4.5.1 Master and Slave modes

The focus of AHRB is on reducing τ which in turn requires reducing tarb, the
arbitration time, in order to produce tighter WCET estimates. tarb directly de-
pends on ttran which is the maximum allowed transfer length, which was 50 cycles
under resAHB. ttran depends on the duration of (1) the burst length, (2) the wait
states and (3) the busy transfers that are allowed to be inserted. Busy transfers
and burst length are introduced by the master and depend on the amount of data
to transfer (e.g., a cache line) and the master internal behavior; Meanwhile, wait
states are introduced by the slave and are used to cover the latencies of the slave
components.

If ttran could be determined taking into account the specific timing requirements
of the particular masters and slaves using the bus in terms of their burst lengths,
wait and busy states, the value of ttran would certainly reduce with respect to
the upper bound value used under resAHB. For instance, let us assume a 4-core
processor with a shared L2 cache, 16-byte cache lines and a 128-bit wide bus, so
that each transfer needs 1-beat to send a whole cache line. L2 cache hit latency
is 4 cycles. In this scenario, by defining a maximum transfer length of 1-beat plus
4 wait states to allow the cache to serve the access, we cover all L2 hit accesses
with one transaction with the minimum required length. The maximum transfer
time will be ttran = 1 + 4 + 1 + 1 = 7 cycles4, and the maximum arbitration time
under round-robin policy tarb = 1 + (4− 1)× (7− 1) = 19 cycles. These values are
less pessimistic than the ones we would obtain with resAHB, i.e, tarb = 148, which
significantly improves worst-case performance. In case of a L2 miss, the L2 cache
signals a split transaction, spends all the required latency to bring the data and
pays another arbitration penalty whenever the response is ready. However, if the
access to main memory takes in the order of dozens or even hundreds of cycles,
the relative overhead of two arbitration rounds is low. Moreover, the benefit of
issuing a split transaction for L2 misses is that the bus is free while the miss is
being resolved, enabling other masters to use it. Conversely, putting a lower limit
on the number of wait states, for example only 2, would make that any hit in the
L2 signals a split transaction, since the hit latency is at least 4 cycles. This would
mean that any L2 hit access would have to perform 2 arbitrations, the regular
one and an extra one when the L2 has the data ready to be sent, which would
deteriorate performance, because hits are frequent. In Section 4.6.4 we show this
behavior with experimental results.

Overall, adapting ttran to the specific needs of the masters and slaves reduces
the overhead required to achieve time composability. The challenge lies on defining
in the bus specification a mechanism that allows masters and slaves specifying their

41 cycle to send the address, 4 cycles to read the data from L2, 1 cycle to transfer the data,
and 1 cycle in case the slave asks for retry or signals an error.
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needs in the use of the bus. To that end, we introduce the concept of master and
slave modes, which we will call simply modes. In the AHRB specification we define
modes from 1 to 32, according to the number of busy transfers and burst beats in
the case of the master (up to 16 each), and the number of wait states in the case
of the slave (up to 16).

The arbiter assigns a master and slave mode when granting the bus to a master
that forces the master and the slaves to operate in that mode. Under each master
and slave mode of operation, we can easily derive tight bounds for ttran and hence
tarb. For instance, a master i with master mode 4 (mm(i) = 4) will insert at most
n-beat bursts and m busy transfers where n+m ≤ 4, and slaves with slave mode 4
(sm(i) = 4) will insert at most 4 wait states, plus the two extra cycles for signaling
an error/retry/split response:

ttran(i) = mm(i) + sm(i) + 2 = 4 + 4 + 2 = 10 (4.1)

Under round-robin deriving the maximum arbitration time for a master i,
tarb(i), is straightforward. tarb(i) is the addition of ttran(k) for every master k 6= i,
i.e., with round-robin policy:

tarb(i) = 1 +
N−1∑
k=0
k 6=i

(ttran(k)− 1)

= 1 +
N−1∑
k=0
k 6=i

(mm(k) + sm(k) + 1) (4.2)

4.5.2 Deriving tight WCET estimates

For each task a WCET estimate is computed under (1) each of the modes of the
master and slaves that the task uses and (2) each of the modes the other master-
s/slaves may have. For a task k running on master i, under each combination of

(1) and (2) a different WCET estimate is obtained, WCET
tarb(i),ttran(i)
k .

For instance, Table 4.2 shows ttran and tarb for an example with 4 masters and
a slave where different modes are assumed for each master and slave. In particular
we use 2 modes for the masters, 1 and 4, and modes 2 and 4 for the slave. ttran
and tarb are computed with Equations 4.1 and 4.2 respectively. Obviously, not all
combinations of all potential master and slave modes have to be considered, but
only those combinations with the lowest values that still upper bound the most
common requests.

At integration time, the scheduler selects the mode that each task will have for
each master and slave. Task k does not violate its deadline for any master i such
that:
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Table 4.2: ttran(0)-ttran(1)-ttran(2)-ttran(3)/tarb(0) under different master and slave
modes in a 4-master configuration. tarb(0) is for master 0 and ttran(i) for master i.

Master modes
slave mode 1-1-1-1 1-1-1-4 1-1-4-4 1-4-4-4

2 5-5-5-5/13 5-5-5-8/16 5-5-8-8/19 5-8-8-8/22
4 7-7-7-7/19 7-7-7-10/22 7-7-10-10/25 7-10-10-10/28

WCET
tarb(i),ttran(i)
k ≤ dk (4.3)

where dk is the deadline of task k. Tasks are not allowed to change the mode
of any master or slave. Only the Operating System scheduler is allowed to change
those modes, for which we envisage a privileged instruction such as writing to
a special purpose register. This prevents, tasks with different criticality levels
affecting each other timing behavior beyond the setup set by the scheduler.

Task scheduler and the master/slave modes, an example

The following synthetic example details how the scheduler interacts with the ar-
biter and the master/slave modes. For simplicity we focus on the case in which
each master can be used by only one task. In our example we assume three tasks
(t0, t1 and t2) scheduled in three different cores (masters) and using one or more
slaves. Each master can operate under mode 1 or 4, and all slaves operate always
under mode 2. The deadline and period for all tasks is 2ms. Table 4.3 shows
the WCET estimate in milliseconds for each task under each master/slave mode
combination. For instance, 114-2 corresponds to the case where t0 and t1 operate
in master mode 1, t2 in master mode 4 and the slave in mode 2.

In the example, t0 and t1 send short transfers, so master mode 1 provides them
good performance. Conversely, t2 achieves lower WCET estimates under master
mode 4 since its transfers are longer and master mode 1 produces split transactions.
Therefore, the lowest WCET estimates for t0 and t1 occur under 111-2 modes, and
for t2 under 114-2 modes.

Different approaches can be followed to choose the proper modes for each task.
However, in all cases 441-2 and 444-2 are not eligible because t2 would violate its
deadline (2ms). Out of the other combinations of modes, 114-2 would be the one
minimizing the WCET estimates for all tasks, 1.4+1.4+1.3 = 4.1, hence reducing
the CPU capacity used by those tasks, which can be left to other tasks. 111-2
modes minimize the CPU capacity required by t0 and t1.

Once a particular combination of modes is selected (e.g., 114-2), the arbiter
is in charge of properly configuring masters and slaves on each arbitration every
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Table 4.3: WCET (in milliseconds) for three tasks under several mm/sm

mm/sm modes
Tasks 111-2 114-2 141-2 411-2 144-2 414-2 441-2 444-2

t0 1.2 1.4 1.4 1.4 1.6 1.6 1.6 1.8
t1 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.7
t2 1.7 1.3 1.9 1.9 1.5 1.5 2.3 2.1

time it grants access to a master. For instance, if the master where t0 runs is
granted access, the arbiter sets it to master mode 1 and the slaves as slave mode
2. Similarly, when the arbiter grants access to t2 master, it enforces such master
to operate in mode 4.

In the general case, unlike in our example above where each task is bound to
a master, masters and slaves can be used by several tasks. However, the same
principles drawn in this example rule the allocation of modes to task master and
slaves.

4.5.3 Providing the same functionality as AHB

As shown in Section 4.4.1, only the functionality provided by locked transactions
is affected when using the restricted version of AHB. In AHRB, we keep the same
principle to deal with locked transactions, however, the timing restrictions now
depend on the master and slave modes. This means that any locked transaction has
to fit these restrictions, i.e., a master contribution to a transfer must never exceed
its operation mode limit (the same applies for slaves). The best solution to provide
the same functionality as locked transactions, is to implement the functionality of
atomic operations in the slave, as shown in Section 4.4.1. This occurs because in
order to provide tighter WCET estimates, AHRB may have more severe timing
restrictions that make more difficult to perform locked transactions within the
allowed maximum transaction time.

4.5.4 AHRB architecture

In addition to the AHB architecture shown in Figure 4.1, AHRB needs some extra
hardware support. Every master and slave requires knowing the mode it is allowed
to operate. The arbiter keeps the information about the mode of every master and
the slave mode associated to each master. This information can be changed by
software (in supervisor mode), in order to allow the scheduler to change master
and slaves modes so it can use different WCET estimates for any given task. This
can be done through special purpose registers, which is a common mechanism in
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Figure 4.4: AHRB extended architecture with HMMODE and HSMODE signals.

current processor architectures.

We introduce two new signals that define the master mode, HMMODE, and
the slave mode, HSMODE. These signals are generated in the arbiter and reach the
master or slave component respectively. The extended bus architecture is shown
in Figure 4.4.

4.5.5 AHRB principles in other AMBA specifications

AXI is a specification in AMBA3 which only defines interfaces between (1) the
master and the slave, (2) the master and the interconnect and (3) the slave and
the interconnect, allowing the chip designer to use potentially any interconnect.
On the one hand, in order to determine whether time-composable access delays
for the interconnect can be achieved, a specific interconnect has to be defined and
analyzed. For instance, crossbars are time-composable by design. However, the
fact that AXI does not define the timing aspects in the master-slave-interconnect
communication provides full freedom to define an AXI-compliant time-composable
interconnect (tcAXI ).

In our view, this offers an excellent opportunity to real-time industry to define
a tcAXI enjoying a well-defined and standardized interface such as AXI, while
adding specific restrictions to make it time-composable. The principles that rule
the definition of tcAXI should be in line with those we define in this chapter.

Besides AHB and AXI, the AMBA specification defines other interfaces that
we qualitatively analyze next in terms of time composability.

AHBLite/APB. APB and AHBLite are intended for a single master, which
prevents inter-task interferences and hence the need of time-composable access
delays.

ASB. ASB was designed to be the main system bus, like AHB. However,
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AMBA recommends AHB for all new designs because AHB provides improved
features. Anyway, the same approach explained in this chapter can be carried out
in ASB.

ACE. ACE adds system-level coherence support to AXI, which does not have
any impact on timing.

ATB. ATB is a trace bus for on-chip debug, which is free of real-time con-
straints.

4.6 Evaluation

In this section we quantitatively compare the time composable AHB proposals, re-
sAHB and AHRB against the original AMBA AHB in terms of time composability,
WCET estimates and average performance.

Simulator Setup. We use the simulator, explained in Section 3.3, to model a
multicore architecture with 4 cores connected through a bus to the L2 cache and
a I/O controller.

Each core is a pipelined processor core comprising fetch, decode, execute and
commit stages. Each core has its own private instruction (IL1) and data (DL1)
caches, which is common in current high-performance and real-time embedded
processor designs [42, 84]. 16KB 4-way 16-byte-line IL1 and DL1 caches have
been considered. The shared second level (L2) cache is 256KB with 8 banks, 8
ways and 16-byte lines. IL1 and DL1 hit and miss latencies are 1 and 2 cycles
respectively. L2 hit and miss latencies are 4 and 6 cycles respectively. DL1 is
write-through and L2 write-back. All caches use LRU replacement policy. The
bus connecting the cores to the L2 and the I/O device is 128-bit wide, which means
that a cache line can be transferred in a single-beat transfer and no burst transfers
are needed. The I/O controller has 20 cycle latency.

The L2 cache deploys a cache partitioning technique, way partitioning, that
deals with inter-task interferences [138] and has been implemented in real chips like
the NGMP [42] or the ARM Cortex A9 [15]. For the memory controller we use the
low-overhead solution proposed in [139], which upper bounds the effect of inter-task
interferences on the requests of a core to the memory controller. Overall, the only
source of inter-task interferences that jeopardizes time-composability, potentially
affecting WCET estimation, is the AMBA AHB bus.

Benchmarks. We use the EEMBC Autobench suite [143] as reference pro-
grams (see Section 3.2.1). In particular we use: a2time, aifftr, aifirf, aiifft, basefp,
cacheb, canrdr, idctrn, iirflt, matrix, pntrch, puwmod, rspeed, tblook and ttsprk.

We also develop a set of synthetic kernels that carry out a fixed number of
accesses to the bus, either to the L2 or to the I/O device. We vary the percentage
of accesses of the benchmark to the L2 and to the I/O device, such that, if a kernel
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makes X% of access to the I/O, the remaining 100% −X% of the accesses go to
the L2.

4.6.1 Achieving Time Composability

As MPSoCs integrate an increasing number of IP blocks coming from different
suppliers and those IPs may be subject to different safety and security levels,
enabling mixed-criticality functionalities to be run on the same MPSoC requires
limiting the impact that one IP component can create on the timing behavior of
the others. Leaving this to the IP provider, especially to those subject to less-
restrictive criticality levels, may jeopardize the whole system time composability
property. AHRB is precisely designed to provide trustworthiness in terms of timing
behavior by design (construction), so that any misbehaving IP component does
not affect the time composability of the other components. Hence, we evaluate
our proposal in a setup in which time composability can be broken, as it is shown
to happen with AHB.

In our experimental setup, the I/O controller has 20-cycles latency and, under
AHB, it benefits from unrestricted timing by keeping the bus busy for those 20
cycles when needed. In the case of the time composable AHRB, we configure the
slaves in slave mode 4 (L2 hit latency is 4) and masters in master mode 1 (only
1 beat is required to transfer a cache line), so that all L2 hit requests are served
with only one bus transaction. The I/O component has to relinquish the bus on
each request because the bus is configured in slave mode 4, which means that a
component can only insert 4 wait state cycles, which is less than the latency of the
I/O component (20 cycles). Hence, the I/O component issues a split transaction
on every access, and so every request goes through two arbitrations.

In order to understand the potential contention that a transaction can suffer
in the bus, we run one EEMBC benchmark in one core while the other three cores
run 3 copies of the synthetic kernel that continuously accesses memory and the
I/O controller, so that they affect significantly the EEMBC benchmark execution
time. Different fractions of memory and I/O accesses are considered for this syn-
thetic kernel. Figure 4.5 shows the normalized execution time of each EEMBC
benchmark when running against 3 copies of the synthetic kernel with respect to
its execution time in isolation (running alone in the MPSoC). Results are shown
for both the regular AHB and the time-composable AHRB scenarios. Note that
the execution times in isolation are the same under both setups since cache hits
are handled in one transaction while misses require two transactions using split
transactions. The I/O device is not accessed by EEMBC benchmarks which only
access the L2 cache.

Bars show the results as we increase the percentage of I/O requests sent by the
synthetic kernel. Figure 4.5a shows the results for the standard AMBA AHB. As
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(a) Normal AHB

(b) Time composable AHRB

Figure 4.5: Execution times of EEMBC benchmarks against 3 synthetic kernels
that continuously access memory and the I/O controller for AHB and AHRB. The
percentage indicates the amount of accesses to the I/O controller.

shown, bus contention significantly affects the execution time of EEMBC bench-
marks (6% to 35% in average). This occurs because every I/O access keeps the
bus busy for 20 cycles and as the percentage of I/O accesses grows, this saturates
the bus, thus delaying L2 cache accesses for EEMBC benchmarks due to bus con-
tention. Note that for cacheb, which makes the most intensive use of the bus across
all EEMBC benchmarks, the impact of the synthetic kernels is high (up to 72%)
when the percentage of I/O accesses grows. Eventually, a slave component could
be in place with unspecified or arbitrarily long latency. In such case no WCET
estimate could be provided for any program, or such estimate would be so high
that it would be of no use.
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Figure 4.5b shows the results for the time-composable AHRB. We observe that
bus contention becomes negligible (1% to 5% in average), since I/O accesses be-
come split transactions, thus letting L2 cache accesses of the EEMBC benchmarks
to proceed. As the fraction of I/O accesses of the 3 copies of the synthetic kernel
increases, their bus access frequency decreases. This occurs because for this kernel,
the accesses to L2 frequently hit so they have shorter latency than I/O accesses.
As a result, with low L2 access rate, and hence with high I/O access rate, the
kernel access less frequently to the bus. Hence, in the presence of I/O intensive
kernels, the EEMBC benchmark is granted access to the bus quickly and competes
with fewer requests in memory in case of a L2 miss, thus executing faster. This
effect is particularly noticeable for cacheb and canrdr that have slightly higher
execution time when the kernels execute low percentage of I/O operations.

Our results show that the potential effect that tasks can suffer due to inter-task
conflicts can be reduced using AHRB. AHRB also provides time-composable upper
bounds by construction, without any requirements on the components at hardware
or software level (apart from being compliant with the AHRB specification), which
significantly simplifies WCET estimation. This allows using components that oth-
erwise would degrade significantly WCET estimates or simply would not allow to
obtain such estimates. The main limitation of the standard AMBA AHB is that
WCET estimates depend on the actual behavior of components in place. If such
timing behavior changes, for example due to a firmware update that changes the
I/O component latency to 25 cycles, or simply other applications make a different
use of the component triggering higher latencies, the timing analysis of all tasks
running on the system is invalidated, even if those tasks do not ever use such
component. By putting the timing restrictions on the bus interface instead of on
the components, we avoid this issue because the timing upper bounds are set by
the bus interface itself and not by the IP component.

4.6.2 Average performance

With time composable AHRB, I/O transactions are split into two transactions.
This, on the one hand, increases the latency of each transaction as it has to pay
two arbitration rounds. On the other hand, however, each arbitration round is
much shorter since the bus cannot be locked for long time. Our results show that
the benefits of shorter arbitration rounds largely offset the extra latency due to
the fact that I/O transactions have to pay two arbitration rounds.

Figure 4.5 show that EEMBC benchmarks have higher average performance,
i.e. shorter execution time, under AHRB than under AHB. To complement the
average performance study, we measured the performance of the synthetic kernel
under all percentages of I/O and L2 operations (i.e. 0%, 20%, 40%, 60% and 80%).
Figure 4.6 shows the average throughput improvement of AHRB over AMBA AHB,
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Figure 4.6: Average IPC improvement of AHRB over AHB, for the 3 copies of the
synthetic kernel when running in a 4-workload setup with each EEMBC.

i.e., the average of IPCAHRB/IPCAHB (IPC stands for instructions per cycle) for
all 3 kernels, when they run with each EEMBC under all I/O-L2 percentages.
Results confirm the benefits of short arbitration periods over several arbitration
phases, hence making AHRB to provide higher average performance than AMBA
AHB. These improvements range from 4% to 9%.

4.6.3 WCET estimates

Regular AMBA AHB does not allow deriving time-composable WCET estimates.
Instead, they can only be derived with resAHB or AHRB. For both, resAHB and
AHRB, we have to assume that every access to the bus experiences the maximum
arbitration latency [138] and also every memory access experiences the longest re-
quest inter-task delay [140] (i.e., the maximum possible delay due to requests from
the other cores), since they are the only sources of inter-task interferences in our
platform. For the bus, we take 148 bus cycles as the maximum arbitration latency
for resAHB as explained in Section 4.4.2 and 19 for AHRB, applying Equation 4.2
with master modes being 1 and slave modes 4 (also shown in Table 4.2).

Figure 4.7 shows the normalized WCET estimates of each EEMBC benchmark
with respect to its WCET when running in isolation for both resAHB and AHRB.
It can be clearly seen that AHRB leads to much tighter WCET estimates than
resAHB, in average 3.5x tighter. This occurs because the arbitration latency bound
is high for resAHB, whereas such bound is much tighter for AHRB since we fit the
bound to the master and slave characteristics with the master and slave modes.
Although resAHB allows deriving WCET estimates, those estimates are so high
(above 4x the ones in isolation) that it would be better to use just one core in the
platform to schedule all tasks. Instead, AHRB provides WCET estimates largely
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Figure 4.7: WCET estimates comparison for resAHB and AHRB.

below 4x, thus providing higher guaranteed performance when exploiting the 4
cores in the 4-core platform than when using just one core.

4.6.4 AHRB: Master & Slave modes

In order to show the effect of the master and slave modes on WCET, we compute
WCET estimates for EEMBC under AHRB with different modes. In particular,
we show results for slave modes 2 and 4. With slave mode 4 (equal to the L2 hit
latency) we cover each hit request with one transaction. Instead for the slave mode
2, we need to issue split transactions and pay two arbitrations for every L2 hit.
Hence, in slave mode 2, L2 accesses suffer lower bus contention due to the shorter
transactions in the other cores, but suffer higher arbitration delay in case of a hit
due to the split transaction. Therefore, depending on the L2 access frequency and
L2 hit rate, the net effect in WCET estimates will vary.

The maximum arbitration time also depends on the other masters’ mode. The
lower the other masters’ mode is, the smaller the arbitration time is. In this
evaluation we assume that the master that runs the EEMBC is in master mode 1
and it runs with three other masters, either in mode 1 or mode 4, which correspond
to masters that need only 1 transfer per access (e.g., cache line size matches bus
width) and masters that need 4 transfers per access (e.g., cache line size is 4 times
larger than bus width so a 4-beat burst is needed)5. In this case it is clear that the
lower the addition of the transfer sizes of the other masters, the tighter the WCET
estimate we will be able to derive. The possible combinations and the associated
maximum arbitration time computed with Equation 4.2 are shown in Table 4.2.

Figure 4.8 shows the results of two slave modes (2 and 4) for the EEMBC

5Note that a high master mode might be useful to enable efficient (large) DMA transfers
performed by a DMA master.
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benchmarks, varying the master modes, shown as MM x-x-x-x in Figure 4.8. The
first master, which is used by the EEMBC benchmark, is always in mode 1. We
observe that WCET estimates depend on the rest of the masters modes. The higher
the other master modes, the larger the WCET estimate is. We also observe that
there are benchmarks that are barely affected by the modes, like matrix, because
of the reduced use of the bus, and others are, however, significantly affected like
cacheb. Finally, our results show that under sm 2, WCET estimates increase by
6% to 19% on average for the different master setups, because L2 hits, which are
very frequent for many benchmarks, need 2 transactions to be completed, because
the slave (cache) needs to perform split transactions. For instance, we observe that
cacheb is severely affected when lowering the slave mode to 2 because it makes an
intensive use of the L2 cache. For matrix the effect is negligible because it barely
accesses L2 cache.

4.7 Summary

MPSoCs have become a must in critical real-time embedded systems (CRTES)
since they deliver high performance needed for increasingly computational inten-
sive applications. Integrating different IP components in those processors requires
a standard specification for the communication bus, and AMBA AHB has been
proven to be a suitable interface in embedded systems. Unfortunately, the need
for incremental qualification poses requirements regarding time composability in
the AMBA AHB.

In this chapter we thoroughly review AHB features identifying those that make
AHB fail to provide time composability and those that, although time-composable,
lead to non-tight WCET estimates. Then, we propose a time-composable AHB
(resAHB) specification, which enables computing application’s WCET, though
with large overestimations. Finally, we introduce a new bus specification based on
AHB, AHRB, which achieves both, time composability and tight WCET estimates.
Our experiments show that WCET estimates can be derived on top of resAHB
and AHRB, and AHRB improves WCET estimates by 3.5x w.r.t. resAHB with
negligible average performance degradation over single-core execution.

65



Chapter 4. Time-Composable Bus

(a) Slave Mode 2

(b) Slave Mode 4

Figure 4.8: WCET estimates for AHRB with different master modes (1 and 4)
and slave modes (2 and 4).
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Bus Arbitration Policies

5.1 Introduction

The contention among several cores attempting to access the bus simultaneously,
generates inter-task interferences in the bus that are handled by the arbitration
policy. The choice of the policy affects the whole system because the time a bus
request takes to be completed, depends on the amount of time that the request
waits to be granted access by the arbitration policy, which intrinsically depends
on the other running tasks (or system’s workload). In order to be able to provide
WCET estimates, the effect of inter-task interferences has to be known or, at least,
upper bounded for every possible workload (ideally this bound is independent of
the workload) and introduce as little pessimism in the WCET estimate as possible.
As seen in Chapter 4, if that upper-bound depends on the set of running tasks,
the WCET analysis has to consider all possible interactions within every workload,
thus challenging time composability, which significantly complicates the analysis
and integration of the system. Thus, using an appropriate arbitration policy will
help (1) simplifying WCET analysis for multicore systems and (2) providing tight
WCET estimates.

To our knowledge, two main policies have been proposed to deal with inter-
task interferences on on-chip buses that satisfy these requirements: Time-Division
Multiple Access (TDMA) and Interference-Aware Bus Arbiter (IABA) [138].

TDMA applies time sharing between the requests of the different contenders.
Time is divided into windows, in each of which a contender is assigned a slot.
When a request of a given contender becomes ready in that contender’s slot, the
request gets immediate access to the bus. If the request becomes ready out of the
contender’s slot, it waits until the contender’s next slot. IABA, instead of time-
sharing the access to the bus, allows tasks to contend for the bus using a given
access policy such as round-robin, and bounds the delay that a request can suffer
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due to inter-task interferences under that access policy. This delay is taken into
account when computing WCET estimates for each task, that covers the maximum
effect that inter-task interferences can have on that task, thus providing reliable
WCET estimates.

The main contributions of this chapter are the following: (1) We develop an-
alytical models of the contention delay that each of those techniques introduce,
which potentially affects the WCET of applications. (2) While both techniques
have been widely analyzed in the past [151, 101, 138, 186], no study compares
them. In this chapter we cover that gap by providing the first comparison between
TDMA and IABA. Our study provides means to choose between TDMA and IABA
in early stages of the hardware design, which is attractive to chip vendors given
that buses are widely used nowadays in CRTES, and if both policies are available
in the processor, our study guides software designers to choose the policy that
better fits their needs.

For comparison purposes, we use several key metrics in the design of CRTES:
WCET estimates using a commercial WCET analysis tool, time composability, av-
erage performance, prioritization capabilities and amount of changes required to
the WCET analysis tool. Our results show that IABA represents a better choice
for real-time multicores: IABA requires no changes in the WCET analysis tool,
provides higher average performance and better WCET estimates in those scenar-
ios in which the exact cycle when requests access the bus cannot be determined
by the WCET analysis tool. TDMA, instead, slightly outperforms IABA only if
the exact cycle in which each request accesses the bus can be determined, which
is hard – if at all feasible – to obtain in general.

Given that several real processors deployed by real-time industries use buses as
the main communication channel [84, 42, 54], we believe that our study provides
valuable information for real-time system designers and chip vendors mainly in the
early design stages to choose which policy better fits their needs (more details in
Section 5.5).

The rest of this chapter is organized as follows: Section 5.2 describes both
TDMA and IABA, which are later compared in Section 5.4. Section 5.5 describes
how industry can use the results of this work. Finally, Section 5.6 presents the
main conclusions of this study.

5.2 On-chip Bus Access Policies

When more than one hard real-time task run simultaneously on the processor,
it may happen that two or more requests from different tasks attempt to access
the bus at the same time. In this case, the arbitration policy decides which task
is granted access to the bus and which one has to wait. Hence, the task that is
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granted access to the bus potentially delays other tasks. Under some arbitration
policies, there may not be an upper bound to the time one task can delay the others
to access the bus. For instance, let us assume two tasks, τ1 and τ2, so that τ1 has
higher priority than τ2 and both tasks attempt to access the bus simultaneously.
In this situation, τ2 is stalled until τ1 finishes. However, if before the first request
from τ1 finishes, another request from τ1 becomes ready, τ2 will also wait for the
second request to finish as well. Thus, the upper bound that τ2 suffers due to
inter-task interferences depends on τ1. Even though this upper bound can be
computed knowing τ1 sequence of accesses, it can be too long/pessimistic to be
useful. Moreover, it breaks time composability, the property according to which
the WCET estimate for a task τi can be computed in isolation and it is not affected
by the other tasks that may run concurrently with τi (see Section 5.4.4).

The effect of inter-task interferences, which directly depends on the arbitration
policy and indirectly on the set of running tasks (workload), has to be known or at
least upper-bounded for every request in order to be able to provide safe WCET
estimates. If the upper-bound of that effect depends on the other tasks running
concurrently (as it is the case with the priority arbitration policy), time compos-
ability is broken (see Section 5.4.4). Hence, WCET analysis becomes significantly
more complex – if at all attainable – because it must consider all the possible
interactions within every possible workload.

TDMA and IABA arbitration policies, allow to upper-bound the effect of inter-
task interferences regardless of the workload, for every request of a given task and
provide tight WCET estimates. Both policies simplify the WCET analysis and
allow using existing WCET analysis tools for single-core processors to analyze the
timing of multicores.

We base our study in a multicore architecture in which each core has pri-
vate instruction and data caches, which is the common practice in current high-
performance and real-time embedded processor designs [42, 84]. A bus connects
the cores to the shared L2 cache. Hence, a task (core) sends a request to the bus
on (1) every L1 data cache load miss, (2) L1 instruction cache miss and (3) store
operation since we model a write-through data cache. Memory operations that
miss in L2 cache are sent to the memory controller that is connected to the L2
cache. When a core is ready to send a request to the bus at the beginning of a
given cycle n, it sends a signal to the bus arbiter and if the core is granted access,
it accesses the bus in the next cycle n + 1. Instead, if the core is not granted
access, its request has to wait. The delay a request suffers to get access to the bus
is called Bus Inter-task Delay (BID), being the total time (ti) of a bus request i
to reach the appropriate destination, ti = BIDi + ri, where ri is the actual time
that the request owns the bus, or request latency, which depends on the amount
of data to transfer and the bus characteristics (e.g., width, latency). We will focus
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Figure 5.1: BID figures for a request of core 1 arriving in different cycles under
the TDMA setup: w = 16, Nc = 4, s = 4 and r = 2

on BID, since ri is independent of inter-task interferences, so we assume that ri is
known, or at least, upper-bounded, as it would be in the single-core case.

5.2.1 TDMA

TDMA has traditionally been used to arbitrate communications in distributed
embedded systems (like the Time-Triggered Architecture [107]). Recently, several
studies propose TDMA to be used for communications on MPSoCs. In particu-
lar in [151, 101] TDMA is used as the bus arbitration policy in a bus-connected
multicore processor.

TDMA splits time into windows of size w cycles. Every window is divided into
slots of size s and each contender to the bus (processor cores in our case) is assigned
a slot. During a given slot, only its owner can send requests. If that contender
has no requests to send, the bus will remain idle for that slot, even if there are
requests from other contenders trying to access the bus (non-work-conserving).
Slots can have fixed or variable length. Several approaches have been proposed
to optimize TDMA slot size when TDMA is used in distributed systems [170] or
to connect multiple cores [151] using variable slot length. In this chapter, TDMA
uses equally-sized slots and the TDMA time window configuration chosen is used
for all applications, not to affect systems time composability. We elaborate more
on this point in Section 5.4.4.

Figure 5.1 shows a scenario with Nc = 4 cores, each having a TDMA slot of
length s = 4 processor cycles and a window length w = Nc × s = 16. A task on
core 1 can only access the bus in the second slot (n ∈ [4, 7]). If the task sends a
request when its slot has just elapsed, it has to wait for the rest of other core’s
slots to finish, i.e., (Nc − 1) × s cycles, even if there is no other request pending.
If each request has a latency of r = 2 cycles (obviously, it is always required that
the request fits inside the slot, i.e., s ≥ r) and the request of a task arrives in the
last r − 1 cycles of the task’s slot, it cannot be granted access to the bus since
it would span into the slot of the next core. Indeed, this is the worst situation
in terms of BID, which is given by BIDTDMA

worst = (Nc − 1)s + (r − 1), i.e., 13
in the scenario drawn in Figure 5.1. BIDTDMA

worst could be taken as a safe upper
bound of the inter-task interferences, though it would be often pessimistic (i.e.
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Table 5.1: Arrival times of a bus request

Case Expression
A i < c
B i = c and (s− rc) ≥ r
C i = c and (s− rc) < r
D i > c

overestimated). In reality, the exact effect of inter-task interferences that a given
request from a task suffers, depends on the cycle in which that bus request arrives
with respect to that task’s TDMA slot. Note that in both cases (exact and worst
case), the computation of the effect of inter-task interferences, does not depend on
the other contenders, which allows to derive WCET estimates in isolation for each
task, regardless of the workload.

Let’s assume that a bus request from thread/core c (where 0 ≤ c ≤ Nc − 1),
arrives at the absolute cycle n, measured in processor cycles. The slot i ∈ [0, Nc−1],
in which the request arrives is given by i = bn/sc mod Nc. n translates into
relative cycle rc ∈ [0, s−1] within slot i as rc = n mod s. If i matches the core id,
c then the request has arrived in its core slot. There are four different scenarios for
the computation of the effect of inter-task interferences depending on the relation
between the arrival slot i, the sending core c, and whether the request fits in
the current slot or not. Table 5.1 shows these four cases (A-D). Cases A and D
correspond to issuing the request before and after its own slot respectively; in case
B the request is issued in its slot and has enough cycles left to proceed, and in case
C the request is issued in the correct slot but without enough cycles left. Only in
case B the waiting time is 0 because the request arrives in its corresponding slot
and has enough time to be sent. The time the request has to wait, in cycles, to get
access to the bus depends on the relative cycle, rc, in which the request arrives,
so BIDTDMA

exact is:

BIDTDMA
exact


(c− i− 1) · s+ (s− rc) case A
0 case B
(Nc − i+ c− 1) · s+ (s− rc) cases C,D

(5.1)

Equation 5.1 matches BID values in Figure 5.1, in the scenario explained before.
Figure 5.2 presents a graphical view of the different TDMA BID values. We observe
that BIDTDMA

exact has sawtooth behavior. Also it can be seen that BIDTDMA
worst ≥

BIDTDMA
exact for any given cycle, which shows the pessimism when obtaining WCET

estimates using BIDTDMA
worst instead of using BIDTDMA

exact .
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Figure 5.2: TDMA and IABA results with w = 16, s = 4, Nc = 4 and r = 2.

5.2.2 IABA

IABA is devised to work on top of an existing arbitration policy. In this chapter,
we focus on round-robin because it is a commonly used and simple policy, but
the same analysis can be applied to any arbitration policy that allows to upper
bound the effect of inter-task interferences. Conceptually, in round-robin all con-
tenders have different priorities, and those priorities are rotated across contenders
on every arbitration. Therefore, one core will have the lowest priority in a par-
ticular arbitration, the second lowest in the next arbitration, the third lowest in
the next arbitration, and so on and so forth until it gets the highest priority after
Nc−1 arbitrations. Then, in the next arbitration it gets the lowest priority again.
In this way, if one contender has no pending requests, the next contender will
be served, being the bus idle only when there are no requests (work-conserving).
Under round-robin, the maximum delay a request can suffer due to inter-task in-
terferences (contention) occurs when all the other contenders are trying to access
the bus and have higher priority. This maximum delay is called BIDIABA

worst (which
is called Upper-Bound Delay (UBD) in [138]). BIDIABA

worst is bounded by the max-
imum number of contenders that can send a request at the same time. The latter
is, in turn, bounded by the number of cores (Nc). Overall, BIDIABA

worst is computed
as follows, where r is the request latency:

BIDIABA
worst = (Nc − 1) · r (5.2)

IABA always assumes BIDIABA
worst for every access to the bus, in order to be able

to perform the WCET analysis of any task in isolation, regardless of the workload
(in [47], they reduce the value of BIDIABA

worst based on the possible workloads, how-
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ever this breaks the time composability property). This assumption introduces
pessimism in the WCET estimate but significantly simplifies the analysis.

Let’s assume the same configuration used in Figure 5.1 with Nc=4 and r=2.
Further assume that we use round-robin policy. Under this setup, the maximum
inter-task delay a request can suffer is 6 cycles, i.e. BIDIABA

worst = 6, which is the
delay that corresponds to the accesses of the other 3 cores. BIDIABA

worst is also shown
in Figure 5.2 for this setup. As it can be observed, BIDIABA

worst is constant regardless
of the cycle in which the request arrives, since IABA assumes the worst case for
each request. Hence, with IABA the maximum delay that a request will suffer due
to bus interferences depends on the number of tasks that are going to be executed
simultaneously in the multicore processor, which is bounded by the number of
cores Nc, thus eliminating the dependence on the arrival cycle of requests.

5.3 Analytical comparison of TDMA and IABA

We note that in order to minimize the worst-case value, the best choice for TDMA
is to use the smallest possible slot size, which is s = r, the minimum slot size.
In that case BIDIABA

worst = (Nc − 1) · r and BIDTDMA
worst = (Nc − 1) · r + (r − 1), so

BIDIABA
worst ≤ BIDTDMA

worst , which means that TDMA is never better than IABA.
If for a given application, the exact bus cycle for each access to memory is

known, we can use BIDTDMA
exact instead of the worst-case value. However, BIDTDMA

exact

values can only be determined after all hardware is designed, when the application
binaries can be generated and analyzed on the actual platform (including hardware
and system software). Further, any source of uncertainty in the analysis of any
component has an impact on BIDTDMA

exact accuracy.
Chip vendors decide which arbitration policy to implement, typically without

knowing the applications that will run on top. In order to help a chip vendor to
choose between TDMA and IABA, we can use an expected BID instead of the
exact value for TDMA, by assuming that bus requests distribute uniformly over
the TDMA window. Intuitively this should be the case, as one does not expect
any particular distribution in time at which requests are ready with respect to
the window. We verified this assumption on our processor setup, explained in
Section III over all the EEMBC benchmarks. The difference between the maximum
number of accesses done in any cycle of the window and the minimum number of
cycles done in any other cycle (i.e. min−max

min
) is only: 3.5%, 2.4%, 1.8%, 0.7% and

0.6% respectively for windows of size 128, 64, 32, 16 and 8 cycles. Figures 5.3
show the distribution of accesses per cycle under different TDMA window sizes.

To calculate the expected value of the BID with TDMA, we note that, going
back to Figure 5.2, TDMA windows of Nc×s cycles are comprised of two intervals
in terms of BID: The first one of s−r+1 cycles with BID value 0, which corresponds
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(a) 128-cycle window (b) 64-cycle window

(c) 32-cycle window (d) 16-cycle window

Figure 5.3: Memory accesses histogram inside a TDMA for several window sizes

to the cycles in which the request is in its slot. The second interval, containing the
rest of the cycles, forms a linear decay that goes from the maximum BID value,
i.e., (Nc − 1)s + (r − 1) down to 1. The average expected BID for both intervals
can be expressed as shown in Equation 5.3. In the first addend BID equals 0
for s − r + 1 cycles and the second addend corresponds to the linear decay, both
addends divided by the number of cycles of the window, Nc · s:

BIDTDMA
expected =

0× (s− r + 1) +
(Nc−1)·s+(r−1)∑

i=1

i

Nc · s
(5.3)

Overall, Equation 5.3 allows us to compare IABA and TDMA for any setup
including the core count accessing the bus and the bus latency. As an illustrative
example, Figures 5.4(a)-(d) show different values for TDMA and IABA. Interest-
ingly, in all cases the cross-point between BIDTDMA

expected and BIDIABA
worst occurs when

the slot size s is equal to 2 · r, i.e., TDMA offers better worst-case performance
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(a) Nc = 4, r = 2 (b) Nc = 4, r = 8

(c) Nc = 4, r = 16 (d) Nc = 8, r = 16

Figure 5.4: BID for TDMA and IABA with Nc = 4, 8 and r = 2, 8, 16

than IABA when the TDMA slot size s < 2 · r , as we show in our experiments
later.

5.4 Empirical comparison of TDMA and IABA

In this section we qualitatively and quantitatively compare TDMA and IABA using
different metrics: required changes at hardware and software level (i.e. analysis
tool), WCET estimates obtained, prioritization capabilities, average performance
and time composability.

The quantitative metrics have been obtained using the simulator explained in
Section 3.3. We model four and eight cores architectures in which each core has
private instruction and data caches, which is common in current high-performance
and real-time embedded processor designs [42, 84]. The cache hierarchy comprises
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first-level 4KB instruction cache and 4KB data cache. The shared L2 cache is
256KB in size with 8 banks and 8-way associativity. The cache line size is 16 bytes
in all caches. Hits on the data and instruction caches take 1 cycle and misses 2
cycles. Hits to L2 take 3 cycles and misses 1 extra cycle. The access to main
memory is 100 cycles. The bus request latency is 2 cycles.

With the aim of evaluating TDMA and IABA, we make the bus the only
resource for which tasks in different cores compete. To that end, we deploy existing
solutions that partition the L2 cache. The memory bandwidth is partitioned using
the techniques proposed for the memory controller in [139, 7].

We used twelve benchmarks of the EEMBC Autobench suite [143] as reference
for the analysis of single-path programs. We used: a2time, aifirf, basefp, cacheb,
canrdr, idctrn, matrix, pntrch, puwmod, rspeed, tblook and ttsprk.

5.4.1 WCET analysability: feasibility and required changes
at hardware level and in the WCET analysis tool

Next we show the main changes required by TDMA and IABA when using Static
and Measurement-based timing analysis.

Static Deterministic Timing Analysis (SDTA) SDTA techniques rely on
(1) the construction of a cycle-accurate model of the system and (2) determining a
trustworthy upper-bound on the WCET. At the hardware level, it is necessary for
every resource to have a bounded access latency that is provided as input to the
model. The same principle applies to the bus: On the one hand, the time it takes
a request to access the bus must be boundable, even in the presence of inter-task
interferences. On the other hand, the tighter this bound is, the tighter the obtained
WCET estimates. If the bus uses IABA, no change is required in the SDTA
tool: Basically, the access latency of each request to the bus is augmented with
the BIDIABA

worst . IABA requires changes only in the configuration of the processor
parameters given to the tool but not in the tool itself.

For TDMA, using BIDTDMA
worst as bound is pessimistic since for any given cycle

BIDTDMA
worst ≥ BIDTDMA

exact . If the exact cycle in which each request accesses the bus
could be known by the SDTA tool, we could use for each request its BIDTDMA

exact ,
thus eliminating the pessimism on the estimate. However, imposing that the STA
tool provides the exact cycle in which each bus request occurs is complex [101] or
even unfeasible [165]. In reality, for each request, rather than an exact cycle, it can
be estimated a time interval [101] in which it can access the bus. This inaccuracy
comes from the fact that the structure of the program includes branches, loops,
etc., which complicate the estimation of exact cycles, since the time at which one
request accesses the bus may depend on the path followed to get to the basic block
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in which the request is. Note that as soon as the estimated time interval for a
request to access the bus is longer than the window, the SDTA tool has to use
BIDTDMA

worst as the bound.

Measurement-Based Deterministic Timing Analysis (MBDTA) MBDTA
techniques rely on extensive testing performed on the real system, recording the
so-called high watermark execution time, i.e. the longest observed execution time.
The high watermark observed during this testing phase is multiplied by an en-
gineering margin. The outcome is used as WCET estimate for the task during
deployment time.

Both TDMA and IABA require hardware changes in order to enable the use
of MBDTA tools: With IABA, during the testing phase the program under study
is run in isolation. Every time a request to the bus is ready it is artificially
delayed by the architecture by BIDIABA

worst cycles, which requires changes in the bus
arbiter [138]. From traces obtained during this execution in isolation, a WCET
estimate for the task is obtained. At deployment time, the hardware is instructed
not to introduce any artificial delay. The key point of this solution is that the
artificial delay introduced during testing upper bounds the inter-task interferences
that the task can suffer during deployment time [138].

For TDMA, it is critical that every request gets access to the bus exactly in
the same cycle during both testing and deployment time, otherwise losing trust-
worthiness on the results. One possible solution is to synchronize the start cycle
of a task with a fixed point of the TDMA window in each execution, by means of
some hardware support.

5.4.2 Worst Case Performance

In this chapter we use RapiTime [146], a commercial measurement-based WCET
analysis tool. RapiTime uses path analysis techniques to build up a precise model
of the overall code structure and determine which combinations of subpaths form
complete and feasible paths through the code. RapiTime combines the measure-
ment and control flow analysis information to compute measurement based WCET
estimates in a way that captures the execution time variation on individual paths.

For TDMA, we assume two different scenarios: a scenario (1) in which the
exact cycle of every bus access is known by the SDTA tool and the scenario (2)
in which the exact cycle is unknown and we always have to assume the worst case
to give safe bounds. Note that, these two scenarios do not affect the IABA case,
which always assumes the worst case, but make a big difference in the case of
TDMA.

Case (1) Exact bus access cycle known: Figure 5.5a shows the WCET
degradation (increment) obtained for each EEMBC under a 4-core configuration
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(a) Nc = 4 cores

(b) Nc = 8 cores

Figure 5.5: WCET increment when the bus access cycles are known for every
request

using IABA and different TDMA setups. As a reference case, we use the WCET
estimate obtained when the benchmark runs in isolation in the processor so BID =
0. We observe that some benchmarks are barely affected by the bus policy, like
a2time, aifir, basefp, idctrn, puwmod or tblook due to their low memory traffic
(most of them fit in the L1 caches).
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For the rest of the benchmarks, which show some WCET variability depending
on the slot size, selecting the best TDMA slot size is tricky. A short slot size makes
the overall window size smaller, so regardless of the cycle in which a requests is
ready, it has to wait less to get access to the bus. On the other hand, long slot
sizes favor bursty requests, i.e., several requests one after the other, since they can
be processed consecutively.

In general, TDMA performs better with smaller slot sizes because the access
latencies are smaller. More specifically, when slot sizes are such that s < 2r (as
we have seen in Section 5.3), which corresponds to s = 2 and 4 in our experiment,
the WCET improvement is around 5% for memory-intensive benchmarks.

An interesting case is the matrix benchmark for which with s = 6 its WCET
is 15% worse than when s = 8, s = 2 and s = 4. This high increment can be
explained by the bursty access pattern generated by the benchmark: if more than
one request fits into the slot, when we have a burst of requests the second and
subsequent requests can access the bus immediately after the first one finishes. As
a result, bursty requests take advantage of larger slot size. However, if the second
and subsequent requests do not fit into the remaining cycles of the slot, they have
to wait till the end of current slot and for other core slots, 3 in this case. The burst
pattern generated by matrix fits when the slot size is s = 8, but not for s = 6. This
behavior is magnified by the repetitive nature of the benchmark, exacerbating the
WCET degradation.

We also observe that IABA is close to the best TDMA setup despite the access
time of all requests is known, which is useful for TDMA but not for IABA. On
average TDMA leads to WCET estimates around 2% lower than IABA, being
cacheb the benchmark leading to the highest difference (5.7%).

For the 8-core setup, shown in Figure 5.5b, we observe the same trend. The
main difference with respect to the 4-core setup is that the WCET variations are
greater because of the higher number of bus contenders. We also observe that there
is no benefit of that burst-like behavior mentioned before because the beneficial
effect of augmenting the slot size is masked by the higher latencies due to the longer
window size (now for the same slot size, the window size is doubled in comparison
with 4-cores). We also observe the same trend as for 4-cores that for slot sizes
s < 2r TDMA performs better than IABA. More precisely up to 6% and 17% on
average.

Case (2) Exact bus access cycle unknown: If the cycle in which requests
arrive to the bus cannot be determined, for instance because the SDTA tool cannot
be changed or because it cannot be determined with enough accuracy to provide
any benefit, we have to use BIDworst

TDMA = (Nc − 1) · s + (r − 1) in the case of
TDMA for SDTA. In general, the smaller the value of s is, the better the result.
In the best case, s = r and BIDworst

TDMA is (Nc − 1) · r + (r − 1). For our 4-core
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(a) Nc = 4 cores

(b) Nc = 8 cores

Figure 5.6: WCET increment when the exact bus access cycle is not known.

setup BIDworst
TDMA = 3r + (r − 1) = 4r − 1. With IABA, every request waits for

all the other contenders to access the bus, i.e., 3r. Figure 5.6a shows the WCET
increment for the 4-core scenario. In general, we observe that IABA is better
than TDMA in all cases (7.6% on average), being the improvement in the case of
puwmod, cacheb, canrdr, rspeed and a2time higher than 10%.

For the 8-core setup, the same trend is observed. Figure 5.6b shows that
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Figure 5.7: WCET increment for ttsprk with different percentage of information.

IABA outperforms TDMA by up to 18% and 10% on average. Also for TDMA,
as expected, the smaller the slot size the better since a larger slot size means also
increasing the worst-case BID.

To complete our study, Figure 5.7 shows the WCET increment for the ttsprk
benchmark as the percentage of known bus access times varies. This will be the
case if the WCET analysis tool can not provide the exact bus access cycle for all the
request but only for a percentage of the total number. The 0% case corresponds
to the always worst-case scenario (Figure 5.6) and the 100% one to the exact cycle
known scenario (Figure 5.5). We observe that the WCET increment for TDMA is
inversely proportional to the percentage of access times known. We observe that at
least 50% of the exact access times are needed to obtain some gains with TDMA.
We observed similar trends when analysing the other EEBMC benchmarks.

5.4.3 Time-bounded Prioritization

From Figure 5.5, we observe that some tasks are not affected by the duration of
BID while others are significantly affected. This knowledge can be used to reduce
the WCET estimate for those tasks more affected by BID (e.g. cacheb) by granting
them access to the bus more often, or prioritizing them1. We notice that in this
context, prioritization does not mean to flush or stop in-flight requests, or to obtain
the bus access immediately, it means only to have more resources assigned than
other tasks.

With TDMA, prioritization is done by assigning different slot sizes to each task:
long slots are assigned to the bus-intensive tasks, leaving the rest of tasks with

1This can be done at hardware level identifying each core, which means that we are not
actually prioritizing tasks, but rather cores.
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shorter slots. For example, we can divide the window in one big slot and several
small slots and assign the big slot to a memory-intensive task and the smaller slots
to low memory demanding tasks.

With IABA, the resource management can be obtained by using a hierarchical
round-robin policy, first proposed in [138] and analyzed in [25]: Tasks are divided
into groups and subgroups. For example, if we want to prioritize one task T1 over
other three tasks T2, T3 and T4, we make 2 groups, the first one containing T1, and
the second group containing T2, T3 and T4. Then the arbitration algorithm chooses
one of the groups in a round robin fashion. Inside that group tasks are selected
also using round robin. The result is that, applying the IABA philosophy, the high
priority task, T1 only has to wait for one round to get access to the bus (i.e. it
obtains the bus once every two rounds), and the other three tasks, have to wait
for the accesses of the other two tasks in the second group which are interleaved
between the corresponding three accesses of the high priority task. Hence, T2, T3
and T4 get access to the bus once every six rounds.

Overall, both IABA and TDMA enable thread prioritization. However, TDMA
offers finer granularity than IABA. With IABA tasks can access the bus with a
frequency limited by the number of groups and subgroups, and the number of
tasks in each group and subgroup. For TDMA we can simply adjust the slot size
for each of the tasks, at bus cycle granularity.

5.4.4 Time Composability

In this thesis, we consider time composability in the sense that the WCET estimate
for a task τi can be computed in isolation and it is not affected by the other tasks
that may run concurrently with τi. Note that time composability and prioritization
are somehow opposed metrics. If we prioritize one task’s accesses to the bus, we
make this task faster, but the WCET estimates of the other tasks depend on the
resources allocated to the prioritized task. It is up to the system designer to define
a system cost function to determine which metric is more important, prioritization
or time composability.

With TDMA, if we keep the window size fixed, time composability is not
affected. For example, let’s assume that the case of two tasks, T1 and T2, both
having a slot size (s) of 5. Further assume that the bus latency of 1 cycle (r).
Under this scenario, the worst-case BID is (10 − 5) = 5 cycles, no matter what
is the schedule of the rest of the tasks. However, if the window size depends on
the other tasks’ slot sizes, for example, T2 increases its slot size to 6, which makes
a window of (6 + 5) = 11, then the worst-case BID for T1 is (11 − 5) = 6 which
affects its WCET.

In the case of IABA, if we keep the groups and number of tasks within the
groups fixed, time composability is not affected. Otherwise, for example, if we
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Figure 5.8: Average performance improvement of IABA over TDMA

change one task with one priority for another one with different priority, then the
WCET estimates for the other tasks change, thus losing the time composability.

5.4.5 Average Performance

In order to measure the average performance of IABA and TDMA, we run eight
4-thread randomly generated workloads under IABA and TDMA, comparing the
performance of each benchmark in terms of IPC (Instructions Per Cycle) under
both policies. Note that with TDMA, both at analysis and deployment time
tasks are not allowed to use the bus out of their slots. With IABA, instead, at
analysis time, each bus access of a task is artificially delayed by BIDworst

IABA cycles.
At deployment time, when several tasks run simultaneously, no artificial delay
is introduced. The only delay tasks suffer accessing the bus are due to actual
inter-task interferences.

Figure 5.8 shows the average performance improvement of IABA over TDMA
in terms of the average IPC improvement of all benchmarks in a workload. IABA
provides better performance in all workloads than TDMA because it is a work-
conserving policy. The improvement ranges from 4% to 16% with an average of
10%.

5.4.6 Discussion

Table 5.2 summarizes the different properties analyzed in this chapter for TDMA
and IABA. In this table, we use the following symbols: ++ (very high), + (high),
− (low), and −− (very low).
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Table 5.2: Summary of the properties of TDMA and IABA

WCET Avg Time Priori- HW/SW
tightness perf. compo- tization changes

sability

IABA ++ ++ ++ + +
TDMA + −− ++ ++ -

WCET tightness : Whether the exact cycle of every bus request is known or
not, plays a key role in TDMA tightness, while IABA is insensitive to it. Although
knowing the cycle in which requests are generated has been identified as difficult
– or even impossible – to be obtained by a SDTA tool, we have used it as the best
possible scenario for TDMA. Under this scenario, TDMA slightly outperforms
IABA for small slot sizes, s < 2r, obtaining about 5% lower WCET estimates for
4 cores, for the most memory-intensive benchmarks. We have also seen that, in
order to obtain some gains with TDMA, at least 50% of the bus request arrival
times must be known. In the more feasible case that exact bus arrival cycles are
unknown, IABA largely outperforms TDMA.

Average performance: Since IABA is a work-conserving policy, it achieves sig-
nificantly higher performance than TDMA.

Time composability : Both techniques are equally time composable if no prior-
itization is performed across tasks.

Prioritization: In terms of resource management, TDMA offers better (finer)
management granularity than IABA, because TDMA allows adjusting the slot of
each contender at cycle granularity to match the application’s requirements. Still
IABA can use grouping, which imposes a coarser granularity for prioritization than
that of TDMA.

HW/SW changes : While both techniques require hardware support, IABA
does not require changes on the static timing analysis tools. If those tools have to
provide bus access time intervals for TDMA, they must be deeply changed.

5.5 Benefits for industry

Since several processors use buses as the main communication channel, the study
carried out in this chapter provides valuable information for real-time system de-
signers. In particular, this chapter helps hardware and software designers in early
design steps to choose which policy best fits their needs.

For hardware designers, at the time the chip is being designed, the information
about the target applications may not be accessible. It can also be the case that the
chip targets different real-time markets where applications have different profiles
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in the use of the shared resources including the bus. Our analysis shows that
IABA is the best choice because it provides better results and puts much fewer
requirements on the information needed from the software designer to provide tight
WCET estimates.

If the application environment is known and if software designers can influence
the chip design, software designers can decide whether TDMA or IABA is better.
In particular our study will help them determining whether the WCET estimate
reduction obtained with TDMA (when the exact cycle in which each bus access
occurs) pays off the effort of determining those exact cycles or if, instead, IABA is
accurate enough. The BID (obtained with our analysis) of the arbitration policy
chosen can be provided to the early-stage timing analysis tools, usually called
Code-Level Timing Analysis (CLTA) tools, to determine the WCET tightness
with TDMA and IABA.

5.6 Summary

Bounding the effect of inter-task interferences is of paramount importance to pro-
vide meaningful WCET estimates in multicore processors for CRTES. In this chap-
ter, we have evaluated and compared the two most used bus arbitration policies,
TDMA and IABA, intended to deal with inter-task interferences in On-Chip buses.
Concretely, we have seen that both policies can provide WCET analyzability and
time composability, since WCET estimates for applications can be computed in
isolation regardless of the workload executed concurrently. IABA presents worse
prioritization capabilities and better WCET and average execution time with little
burden for the user.
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Chapter 6

Dual-Criticality Memory
Controller

6.1 Introduction

Multicore mixed-criticality systems [169] can consolidate onto the same hardware
applications with different criticality levels in terms of safety (and security). While
in other domains safety standards define multiple safety integrity levels (e.g. DAL
in avionics and ASIL in automotive), in the space domain it is well accepted
that on-board systems will comprise two criticality levels [142]. One level covers
control applications, which require real-time execution and are designed to meet
requirements in the worst case. Control applications usually have low memory
footprint, in the order of kilobytes, so that if they are provided some cache space,
they incur low number of memory accesses. The second covers payload applications
that are high-performance driven, usually with data footprints in the order of
megabytes, and some (soft) real time requirements.

Contribution: Memory bandwidth, which is arbitrated by the memory con-
troller, is one of the shared resources with the highest impact on systems’ average
and guaranteed performance [139, 183]. In this chapter we tackle the challenge
of handling inter-task interferences, a.k.a contention, in the memory controller in
multicore systems for the space domain. To that end we propose a Dual-Criticality
memory controller DCmc, which provides real-time guarantees for control applica-
tions and high-performance for payload ones. Instead of deploying a single policy
to schedule requests of different types, which inevitably ends up trading off some
performance for real-time guarantees, DCmc virtually divides memory banks into
real-time and high-performance banks that are managed differently by the memory
controller, deploying a different scheduling in each case. For the real-time banks,
DCmc deploys round-robin scheduler across the different requestors to provide
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predictable and tight bounds on the memory latency. For high-performance banks
DCmc deploys a First-Ready First-Come First-Served (FR-FCFS) [150] scheduler,
similar to the one in COTS high-performance processors [102], to exploit locality
of accesses and improve the memory throughput. Further, DCmc prioritizes real-
time requests over high-performance ones, providing high degree of isolation for
critical applications running in dual-criticality workloads. DCmc includes support
to enable the Operating System (OS) to manage the separation of banks dynami-
cally at run-time. This provides flexibility to distribute banks according to tasks’
needs in each system instantiation.

Evaluation: We perform a detailed analysis of the timing behavior of DCmc
and compare it with the state of the art memory controllers both analytically and
quantitatively.

Our results show that for the real-time tasks, tight WCET estimates can be de-
rived with DCmc, regardless of the co-running payload tasks, effectively isolating
them from payload tasks running on the system. These WCET estimates are sig-
nificantly tighter than those obtained with FR-FCFS [102]. Further, DCmc allows
payload tasks to exploit the memory locality, observing a performance degradation
of less than 1% due to the execution of real-time tasks.

Applicability in other domains : DCmc applies to other dual-criticality real-time
domains. There are plenty of systems in cars, planes, etc. related to infotainment
or devised for driver/pilot assistance that are not critical but require high per-
formance, so they can be consolidated onto the same multicore as other critical
real-time functions and so, our solution is completely valid in those domains. For
instance, we completed the DCmc evaluation by using EEMBC benchmarks as
representatives of control real-time applications. Obtained results in terms of real-
time guarantees and high performance follow the same trend as for the space case
study.

The rest of this chapter is organized as follows: Section 6.2 presents an analysis
of the worst-case memory latency under different memory controller setups. In
Section 6.3, the DCmc is proposed and in Section 6.4 it is evaluated. Section 6.6
presents the summary of this chapter.

6.2 Analysis of Memory Access Latency

Once a request arrives at the memory controller, its latency, τ , can be divided
into intrinsic latency and request interference delay. The former accounts for the
time it takes the request to be processed once it is granted access, τreq. The latter
accounts for the impact of contention, ∆:

τ = τreq + ∆ (6.1)

88



6.2 Analysis of Memory Access Latency

There are three main design choices that affect a request’s latency (see Sec-
tion 2.2.2): (1) The row-buffer policy, (2) the memory mapping scheme and (3)
the memory request scheduling policy. As a necessary step towards understanding
DCmc, this section presents the impact that each memory controller design choice
has on determining the upper bound latency of a memory request, required in
real-time domains. All references to the publications used in this section are in
the related work Section 6.5.

6.2.1 Row Buffer Policy

In the absence of interference, the request latency, τreq, depends on the row buffer
policy chosen. It is τclose−req for close-page and τopen−req for open-page. They are
defined as shown in Equation 6.5 and 6.6.

On the event of an access to a non-open row (see Equation 6.3), we need to
activate the row first, with tRCD latency. Once the row is open, the request latency
covers the column access, tCAS or tCWD, and transferring the data, tBURST , which
coincides with the latency of a row-hit. A row-hit, see Equation 6.2, happens when
the requested data is on the open row. Finally, for a row-miss (Equation 6.4), which
happens when a different row is open in the row buffer, the row is first precharged,
with tRP latency, before being activated. These latencies can be expressed as:

τhit−row = max(tCAS, tCWD) + tBURST (6.2)

τclosed−row = tRCD + τhit−row (6.3)

τmiss−row = tRP + τclosed−row (6.4)

τclose−req = τclosed−row (6.5)

τopen−req =


τhit−row if row-hit
τclosed−row if closed-row
τmiss−row if row-miss

(6.6)

Once we have the intrinsic request latency, we derive the interference (delay)
that other requests can generate under the different row buffer policies.

Definition 1 Inter-request worst-case interference under close-page, ∆close. Un-
der close-page row-buffer policy, the worst-case interference that a request suffers
from another request, ∆close, corresponds to the case in which both requests target
the same bank.

Under close-page, a request consists of the sequence of commands ACT, CAS
or CWD, and PRE. Assuming that requests are served consecutively, ∆close is
determined by the ACT-to-ACT time between the ACT commands of the two
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requests and is defined in Equation 6.7. The ACT-to-ACT time can be limited by
the row-cycle constraint, tRC , which defines the interval between ACT to the same
bank. In the case of read requests, the time between CAS and PRE commands
has to satisfy the read-to-precharge constraint, tRTP , and the minimum tBURST to
be able to send the data before precharging. For writes, the write recovery time,
tWR, needs to be satisfied before precharging. Annex I in [95] provides a graphical
description of the ACT-to-ACT latency depending on the type (read or write) of
the previous request.

∆close = max(∆write,∆read) (6.7)

∆write = max(tRCD + tCWD + tBURST + tWR + tRP , tRC) (6.8)

∆read = max(tRCD +max(tRTP , tCAS + tBURST ) + tRP , tRC) (6.9)

Definition 2 Inter-request worst-case interference under open-page, ∆open. The
highest (worst) interference that a request suffers from another request in an open-
page scheme, ∆open, manifests when both are row-misses and the latter hits a dif-
ferent row in the same bank as the former.

∆open maximizes when all accesses are row-misses. In that scenario, every
memory request accesses a row different to the one active in the row buffer, making
each request to send PRE, ACT and CAS/CWD commands. The interference
corresponds to the PRE-to-PRE time, which has the same timing constraints as
the ACT-to-ACT time under close-page. This occurs because the sequence of
commands is essentially the same for close-page and open-page when all accesses
are row-misses. Thus, close-page and open-page policies have the same worst-case
interference [140], i.e. ∆open = ∆close.

6.2.2 Memory Mapping Scheme (MMS)

The MMS defines the banks accessed by a request based on its memory address,
hence impacting the conflicts that requests have in the access to memory banks.
A bank conflict happens when a request waits for another one that is accessing the
same bank. The interference that the former suffers, called intra-bank interference,
manifests when several requests share a bank. When those requests do not share a
bank, they can still have bus conflicts when accessing the memory command and
data buses. In that case, the interference is called inter-bank interference.

In real-time designs, the MMS is selected to reduce the conflicts among re-
quests, and so reduce request’s interference in the access to memory. To do so, one
common choice is the use of a private bank scheme in which each core has exclu-
sive access to certain banks, effectively removing intra-bank interferences across
tasks [148].
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Definition 3 Inter-request worst-case interference under private bank, ∆private.
Under private bank, the worst-case interference that a request from a given task
suffers from a request of a different task, ∆private, is the inter-bank interference on
the access to the command and data buses.

Under private bank, assuming that each request comprises the commands PRE,
ACT, and CAS/CWD(R/W), commands from different banks are scheduled inde-
pendently. The inter-bank interference that such a request suffers can be split into
the interference that each of those commands suffers independently when accessing
the command and data buses [102]:

∆private = ∆PRE + ∆R/W + ∆ACT (6.10)

A PRE command can only be interfered by other commands using the com-
mand bus, which is given by the time between commands, tCMD. A CAS/CWD
command is delayed in the worst-case by another column command sent to another
bank, which corresponds to the write-to-read, tWTR, and read-to-write, tRTRS,
timing constraints. Annex I in [95] provides a graphical description of the ∆R/W

latency. The ACT command is interfered in the worst-case by other ACT com-
mands, due to ACT-to-ACT timing constraints. The time between two ACTs to
different banks is limited by tRRD, and a maximum of four ACTs can be issued
during the tFAW time-frame, to restrict the peak current. In the last case, the
worst-case interference happens when the other command is an ACT command
that is the fourth consecutive ACT so that tFAW does not allow the actual ACT
to be scheduled:

∆PRE = tCMD (6.11)

∆R/W = max(tCWD + tBURST + tWTR, tCAS + tBURST +

tRTRS − tCWD (6.12)

∆ACT = max(tRRD, tFAW − 3tRRD) (6.13)

However, the use of the private bank scheme in shared memory models makes
more difficult the communication among cores. Moreover, with private banks
the memory is partitioned regardless of the specific application requirements, so
applications with very small memory footprint allocate one bank, resulting in a
waste of memory. Finally, the private bank scheme has scalability problems due
to the limiting number of memory banks (up to eight in case of DDR3 memories).
This can be partially mitigated by using more memory ranks, which allows to have
more banks [117].

Under interleaved bank scheme [139, 7], data are mapped across all memory
banks so that every request accesses all banks simultaneously in a pipelined fashion
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exploiting bank-level parallelism, and hence removing bus conflicts, or inter-bank
interference, among memory requests. For example, in a four-bank interleaved
access, four pipelined memory accesses to different banks will be sent per memory
request. This scheme is not optimal when the length of a memory request is smaller
than the bandwidth of all memory banks because all banks are accessed anyway.
We discuss this point in detail in the next section.

Definition 4 Inter-request worst-case interference under interleaved bank,
∆interleaved. Given a request, the worst-case interference that another request gen-
erates on the former in an interleaved bank scheme, ∆interleaved, is given by the
intra-bank interference between command sequences accessing all banks.

In the case of an interleaved bank scheme, every request consists of the same
precomputed sequence of commands that access all Nbanks banks. The interference
that a request generates on another one is given by the time from one sequence
of commands to the next one, i.e., the ACT-to-ACT time from requests going
to the same bank, which matches Equation 6.7. We need to consider also the
timing constraints on the data bus for the different bank access that each request
does, tBURST , and the limitation of ACT commands that is imposed by tRRD.
For illustration purposes, Equations 6.14 and 6.15 show a simplified version of
the exact interference, without considering tFAW , read-to-write and write-to-read
effects. The exact interference can be found in [6, 139]:

∆interleaved = max(∆ACTBNbanks,∆close) (6.14)

∆ACTB = max(tRRD, tBURST ) (6.15)

Definition 5 Inter-request worst-case interference under shared bank, ∆shared.
The worst-case interference that a request suffers from another one in a shared
bank scheme is the intra-bank interference generated by the latter if both share the
same bank, or the inter-bank interference generated by the latter if it goes to a
different bank.

Equation 6.16 defines ∆shared, where ∆inter, the inter-bank interference, is
equivalent to the interference of private bank and ∆intra, the intra-bank inter-
ference, is equivalent to the interference of interleaved bank, considering only one
bank access.

∆shared = max(∆intra,∆inter) (6.16)

∆intra = ∆interleaved(Nbanks = 1) (6.17)

∆inter = ∆private (6.18)
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Note, that ∆shared is the interference caused by only one request. In the case
when several requests can be scheduled concurrently, for instance, requests going
to different banks, the worst-case interference includes both, intra-bank and inter-
bank interference, as we show in Section 6.3.2. In that case, both terms are not
independent between them and depend on the memory scheduler.

6.2.3 Memory Scheduler

The memory scheduler selects the next request to access the memory. It is probably
one of the most important components of the memory controller, and the one
making the difference between real-time and high-performance designs.

In multi-core real-time designs, the scheduler is designed to bound the impact
of interferences across requestors, by using predictable arbitration policies, e.g.
round-robin [140].

Definition 6 Inter-requestor worst-case interference under round-robin scheduler,
∆rr. The worst-case interference that a request from a requestor i, ri, may suffer
from the requests of other requestors under round-robin memory scheduler, ∆rr,
corresponds to the case in which all requestors get a request ready in the same cycle
and ri gets the lowest priority.

Assuming Nreq requestors under round-robin arbitration, a request has to wait
in the worst-case for Nreq − 1 requests, one for each of the other requestors. The
effect that each of these other requests has on the former is given by the inter-
request interference (∆private, ∆interleaved or ∆shared). For instance, with a private
scheme, the worst-case inter-request interference is given in Equation 6.10. For
shared bank and interleaved bank, ∆rr is computed by changing ∆private by ∆shared

and ∆interleaved respectively.

∆rr
private = (Nreq − 1) ·∆private (6.19)

If instead of a real-time amenable scheduler policy, such as round robin, a
high-performance scheduler policy is used, such as FR-FCFS, bounds can still be
derived on the memory latency [102], though these are less tight. It is required a
reordering term to be introduced in Equation 6.20, which in order to be able to
derive meaningful bounds on latency, has to be limited by hardware. In fact, this
is the case for the COTS processor analyzed in [102]. That limit is also useful to
prevent memory performance attacks [130].

∆FR−FCFS = ∆reordering + ∆′intra + ∆′inter (6.20)
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Further, with FR-FCFS the prioritization of ready requests when scheduling
between banks can have unbounded latency, due to an unbounded ∆′inter, as shown
in [183]. For instance, whenever there are two requestors sending write requests
continuously, a read request can have unbounded delay due to the write-to-read
constraint. If the write-to-read constraint is bigger than the write-to-write con-
straint, writes will be ready before the read, thus being sent before the read and
delaying every time the read with the write-to-read, tWTR constraint. In [183],
authors change the FR-FCFS policy with a FIFO policy to remove this effect.

FR-FCFS is a clear exponent of opposing metrics between time-predictability
and high-performance, since it improves performance [150] on the average-case,
however, the effects that it introduces on the interference bounds affect the pre-
dictability of the memory controller in the worst-case.

6.3 Dual-Criticality memory controller (DCmc)

High-performance and real-time behavior are somehow opposing goals, since the
latter requires reserving hardware resources (either temporally or spatially), which
negatively impacts the former. In our space system, these two objectives are struc-
tured hierarchically. DCmc focuses on providing time predictability to real-time
tasks for their correct operation. Once real-time guarantees are satisfied, avail-
able resources are used to maximize the average performance of high-performance
tasks. DCmc design pursues the same two hierarchical goals: providing predictable
and tight memory access-latency bounds for real-time tasks and maximizing the
average memory performance of high-performance tasks.

DCmc is driven by two design principles DP . DP1, reducing the interference
that high-performance (payload) tasks introduce on the real-time (control) tasks.
And DP2, during those periods in which no real-time memory request is processed,
maximize the throughput of high-performance memory requests.

DP1 is achieved by virtually dividing the banks into those serving requests
from/to real-time tasks and the rest which serve high-performance tasks’ requests.
Bank separation between both application types reduces the interference that high-
performance applications introduce on real-time ones. However, bank separation
affects Bank Level Parallelism. Interferences across application types are also
reduced by prioritizing real-time banks over high-performance ones, such that only
if a high-performance request is in-flight by when a real-time request arrives, the
latter is delayed by the former. Other than in this case, high-performance requests
execute transparently, i.e. without delaying, real-time ones.

DP2 is achieved by having a memory controller structure in which, during
those periods where no real-time requests are processed, high-performance requests
can proceed as fast as in high-performance memory controllers, e.g. FR-FCFS.
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Figure 6.1: DCmc architecture. ABSchi stands for Intra-Bank Scheduler for bank
i. EBS stands for Inter-Bank Scheduler. Grey squares show the blocks that
communicates with the OS.

Hence, instead of arbitrating high-performance and real-time requests with a single
scheduling policy, which would trade both metrics, DCmc makes them going to
different banks and hence allowing real-time and high-performance requests to be
scheduled differently.

DCmc architecture is shown on Figure 6.1. The MMS allocates each request
into different per-bank request queues. Each bank is defined as real-time or high-
performance. The intra-bank scheduler (ABsch) determines the particular com-
mands and their schedule for each bank. The inter-bank scheduler (EBsch) grants
access to the memory bus to one intra-bank scheduler at a time. Instead of having
a fix separation of banks among real-time and high performance, which intrinsi-
cally incurs in inefficiencies in real-time guarantees and high performance, DCmc
enables the operating system to configure bank separation at runtime, i.e. to con-
figure each bank as real-time or high-performance. As a result, on each system
instantiation the operating system may distribute banks in a different manner to
increase efficiency.

6.3.1 DCmc: MMS, RBP, and Scheduler

Memory Mapping Scheme. As we have seen on Section 6.2, we can choose
between interleaved, private and shared bank schemes. Equations 6.10 and 6.14
show that private and interleaved bank schemes can reduce the interferences, suf-
fering only from inter-bank or intra-bank interferences respectively. Despite its
advantages, an interleaved scheme is not compatible with the MMS required to
separate the real-time banks from the high-performance ones, since a given request
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would not be able to access all banks, as required in an interleaved scheme. Also,
the interleaved bank scheme is not suitable when the data needed by a request,
usually a last-level cache line, requires only one access to a bank, as it happens
in most systems [102, 42]. In particular, for our system, the NGMP multicore
processor, generates requests of 32 bytes [42] and the DDR2 system used provides
32 bytes per bank. This makes more efficient to access only one bank at a time,
rather than accessing all of them as it would happen with an interleaved scheme.

The hardware-based private scheme lacks scalability due to the reduced number
of banks and also has problems with memory usage and enabling the communica-
tion among cores as stated on Section 6.2.

For DCmc we use a shared bank scheme which is more flexible. With DCmc,
as opposed to what was shown in Equation 6.16, a request suffers both, inter-bank
and intra-bank interferences, since it competes in the intra-bank scheduler and in
the inter-bank scheduler. To be able to enjoy the flexibility of shared bank and the
reduced interference of private bank, DCmc uses software bank partitioning [124]
by exposing the MMS to the OS. This makes the OS aware of the address-to-bank
mapping, which can allocate tasks into a given bank [187, 102] with the help of
an MMU. For instance, in a system with four memory banks, addresses starting
with 0x00, 0x01, 0x10 and 0x11 go to banks 0, 1, 2 and 3 respectively. The OS
will map any real-time application data and code into real-time banks so that they
enjoy predictable latencies. If a single task is assigned to a given real-time bank,
it enjoys the benefits of a private bank scheme. Alternatively, if several real-time
tasks are assigned to a given bank, they have a shared-bank scheme.

Intra-bank schedulers. The intra-bank scheduler selects the order in which
the requests targeting a given bank are prioritized.

For real-time banks we use a policy that allows deriving bounds on the inter-
ference that requests generate on each other. In particular we use round-robin as
in [139], since it is implemented very efficiently on hardware, it has predictable
and composable bounds, as shown on Equation 6.19, with small hardware sup-
port [138] and also is work-conserving, providing better average case performance
than other predictable policies like TDMA [93].

In order to exploit both, Bank Level Parallelism (BLP) and Row-Buffer Lo-
cality (RBL) in high-performance banks, DCmc schedules requests per bank, so
that it can effectively exploit BLP, and prioritize requests that target open rows,
i.e. row hits. Our choice is to use the FR-FCFS [150, 102] as scheduling policy,
which chooses first row hits (First Ready) and then in arrival order (First Come
First Served), that is also used in nowadays COTS processors [102]. This allows
high-performance tasks to benefit from open-page policies, that in turn benefit
from locality of accesses.

Inter-bank scheduler. The inter-bank scheduler is round-robin, which is
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applied across the commands selected by the intra-bank scheduler, having real-
time banks priority over high-performance ones. Round-robin is applied to ready
commands in the case of ACT and PRE commands, but for CAS/CWD commands
it will be applied for all commands, whether they are ready or not, with the
scheduler waiting in the latter case (instead of issuing the next command in case
it was ready). This prevents very high latencies as explained in Section 6.2 and
in [183] for FR-FCFS policy.

Row buffer policy. DCmc uses open-page in both, real-time and high-
performance banks. For high-performance banks, open-page is required to ex-
ploit RBL. For real-time banks, we have seen in Section 6.2 that in the worst-case
open-page and close-page policies are equivalent in terms of interference (see Equa-
tion 6.7). Open-page has predictable latencies and also enables to exploit RBL
when using a private bank scheme. Under a shared bank scheme, for real-time
banks, all accesses need to be assumed as row misses, since a requestor is not able
to know which accesses perform the rest of requestors sharing the bank.

6.3.2 Memory-access latency analysis under DCmc

The ultimate purpose of the real-time banks is to enable deriving WCET estimates
in the presence of contention in the access to memory. This requires being able
to derive upper-bounds on the interference that do not depend on the rest of
requestors (tasks), especially the high-performance ones.

Under DCmc, Equation 6.1 is redefined as shown in Equation 6.21. The la-
tency of a request, τDCmc, is divided into the intrinsic request latency, τDCmcreq ,
and the interference delay, ∆DCmc. The interference delay is further divided into
the interference generated by the real-time banks, ∆rt, and the one generated by
the high-performance ones, ∆hp. The real-time interference can be further split
into inter-bank interference, ∆rr

inter, which manifests in the inter-bank round-robin
(rr) scheduler; and intra-bank interference, ∆rr

intra, in the intra-bank round-robin
scheduler:

τDCmc = τDCmcreq + ∆DCmc = τDCmcreq + ∆rt + ∆hp =

τDCmcreq + (∆rr
inter + ∆rr

intra) + ∆hp (6.21)

The different latencies of a request under an open-page policy are shown in
Equations 6.2, 6.3 and 6.4. In case other requestors use the same bank or when
the analysis tool is unable to analyze the state of the row-buffer, all accesses have
to be considered row-misses. If we denote by NR the number of requestors in the
bank:

τDCmcreq =


τhit−row NR = 1 and row-hit
τclosed−row NR = 1 and closed-row
τmiss−row otherwise

(6.22)
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Following a similar analysis like the one in [102] we upper bound the interfer-
ence that any memory request can have in DCmc. The inter-bank interference
affects the commands sent by the request. In the worst-case, and access consists
of ACT, CAS/CWD (R/W) and PRE commands, which under round-robin sched-
uler, generate a worst-case interference when all the other real-time banks accessing
the memory have higher priority. If we have NB real-time banks, the interference
will be NB − 1 times the interference suffered by each command independently,
equivalent to the interference derived in Equation 6.19:

∆rr
inter = (NB − 1) · (∆ACT + ∆R/W + ∆PRE) (6.23)

The value of ∆ACT , ∆R/W and ∆PRE is the same as the ones derived for private
bank in Equations 6.11, 6.12 and 6.13.

The intra-bank interference is caused by the intra-bank scheduler, that in our
case is round-robin. If we have NR requestors in the bank, for a round-robin
scheduler, the worst-case corresponds to waiting for all the rest of requestors, i.e.,
NR − 1. The worst-case request time that other requests might take is a row-miss
also considering the possible inter-bank interference. We need to take into account
the row-cycle time, tRC , which is the time between ACT commands to different
rows in the same bank, which is also affected by the ∆ACT and ∆PRE inter-bank
interference. That is:

∆rr
intra = (NR − 1)∆lid−req (6.24)

∆lid−req = max((NB − 1)∆ACT + (NB − 1)∆PRE +

tRC ,∆
rr
inter + τmiss−row) (6.25)

With DCmc, high-performance banks incur low interference on real-time banks,
however, a high-performance request can still cause some interference. The worst-
latency, ∆hp, appears when the high-performance memory request is issued just
one cycle before the real-time request arrives. If NB < Nbanks, so there are high-
performance banks, this may happen. ∆hp causes the same inter-bank bank in-
terference as a real-time request but removing tCMD cycles for each command:

∆hp = Q(∆ACT + ∆PRE + ∆R/W − 3tCMD) (6.26)

Q =

{
1 NB < Nbanks

0 otherwise
(6.27)

It is clear that the only input parameters of τDCmc are the number of real-time
banks, NB, and the number of requestors sharing the same bank, NR, which both
are known by the OS at the moment of scheduling the task. It is important to
notice that the request latency bound does not depend on the specific behavior of
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Table 6.1: Worst-case access latencies for a DDR2-667 device (memory cycles).

NR
1 2 3 4

NB

1 27 50 73 96
2 40 70 100 130
3 53 96 139 182
4 56 112 168 224

the rest of contenders, thus enabling deriving time-composable WCET estimates.
In Table 6.1 we derive worst-case latencies for different scenarios of NB and NR,
assuming that all accesses are row-misses.

6.4 Evaluation

In this section, we provide quantitative evidence of the real-time and high perfor-
mance properties of DCmc.

We use the validated simulator presented in Section 3.3 that models the NGMP.
The shared second level (L2) cache is split among cores, each receiving one way of
the L2, so that inter-task contention only happens on the memory controller. DL1
is write-through and all caches use LRU replacement policy. The bus connecting
the cores to the memory controller uses a round-robin arbitration scheme.We model
a 2-GB one-rank DDR2-667 [104] with 4 banks, burst of 4 transfers and a 64-bit
bus, which provides 32 bytes per access, i.e., a cache line.

To derive WCET estimates we use the upper bound delay for the bus, as
presented in [138], and the worst-case latency derived in Section 6.3 for memory
accesses. The memory access latency analysis can be applied either directly with
static timing analysis techniques or by means of a worst-case mode [138] in case
of measurement based techniques. Since the L2 is split among cores, it does not
have any contention.

Space Applications. For the space case study we use a real payload and con-
trol applications. As payload we use the OBDP benchmark. As control application
we use the AOCS benchmark. Both were presented in Section 3.2.2

Automotive Benchmarks. For the evaluation of DCmc in another applica-
tion domains we use the EEMBC Autobench suite [143] (see Section 3.2.1).

6.4.1 Intra-bank scheduler

DCmc uses a different scheduler per bank type. For the high-performance banks
we FR-FCFS, which is deployed in current high-performance architectures due to
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Figure 6.2: Worst-case memory latency, in memory cycles, for tasks under private
bank and sharing bank schemes under different control-task count.

its high average performance benefits [150, 102].

For the real-time banks we evaluate the benefits, in terms of inter-task interfer-
ence memory access bounds, of having a round-robin scheduler w.r.t. the COTS
FR-FCFS controller analyzed in [102]. This evaluation is carried out under private
and shared bank schemes. In this experiment, we consider a pure hard-real time
system in which all tasks are real-time (i.e. there are no high-performance tasks).

The left set of bars in Figure 6.2 shows that the effect of the scheduling under
private bank is the same for FR-FCFS and round-robin. However, when real-time
tasks share banks, FR-FCFS produces high overestimation due to the reordering
effect that can potentially introduce. In our experiment, we assume that the
reordering effect is limited to 12, as shown in [102]. The round-robin scheduler
reduces the effect of interferences by 3.6x on average in the scenarios with 2, 3 and
4 control tasks sharing the same banks w.r.t. FR-FCFS, making it much more
convenient for real-time tasks.

6.4.2 Mixed-criticality in the Space domain

One of the main blocks in DCmc is the second-level scheduling which arbitrates the
requests from/to the banks. The second-level scheduler prioritizes real-time banks
over high-performance ones. The idea behind these priorities is removing as much
as possible interference from high-performance banks over real-time banks, while
enabling high-performance requests to go full-speed when there is no real-time
request to be processed.

100



6.4 Evaluation

Figure 6.3: Normalized WCET under different mixed-criticality workloads under
private and shared banks

We consider three different setups (workloads) for a mixed-criticality system
each with a varying number of real-time and high-performance tasks. We assume
a partitioned system with one real-time partition and one payload partition. Hy-
pervisors such as Xtratum, which has been ported to LEON4 [127], have been
shown to provide time and space partitioning for the space domain [22] similarly
to Integrated Modular Avionics (IMA) in the avionics domain. In each setup the
number of cores assigned to each partition varies from 1 to 3. We have the con-
trol setup with three AOCS control applications and one NIR payload application;
the balanced setup with two AOCS and two NIR; and the payload setup with one
AOCS and three NIR.

Figure 6.3 shows the WCET for one AOCS task in each mixed-criticality work-
load type (when there are several copies of AOCS we observed that all copies
present exactly the same behavior in terms of WCET). Note that all WCET val-
ues are normalized w.r.t. the WCET estimate computed in isolation, i.e. assuming
that only one task runs at a time.

We observe that for private bank, the WCET estimate for the control task
(AOCS) under FR-FCFS is insensitive to the number of real-time (control) tasks.
This is not the case of DCmc since it uses round-robin among control tasks, so that
WCET estimates increase w.r.t the number of control tasks. However, in all cases
the WCET estimates with DCmc improve those obtained with FR-FCFS. On the
shared bank scheme, DCmc is much more competitive, enabling tighter WCET
estimates, than FR-FCFS, which lead to very high WCET estimates when the
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Figure 6.4: Execution time for the payload benchmark under DCmc running along
with real-time tasks with private and shared banks

number of real-time tasks is above one. For instance, for the balanced workload,
DCmc leads to WCET estimates 7.4/1.9 = 3.9x tighter than FR-FCFS.

A problem that DCmc may face is negatively impacting the average perfor-
mance of payload applications. This occurs because real-time memory requests
are prioritized over high-performance ones. Interestingly, the performance that the
high-performance tasks can achieve depends on the resources left by the real-time
applications. Hence, the performance of payload tasks depends on the workload
considered. Figure 6.4 shows the slowdown NIR experiences under each scenario of
increasing number of control tasks, w.r.t. its execution time in isolation. Each pay-
load application has a dedicated bank, which minimizes the interference between
several payload applications running at the same time. The control applications
either have a dedicated bank in the private scheme or share a bank in the shared
scheme. We observe that DCmc slightly affects payload task performance, with
a small increment when the number of control applications increases. We have
observed that the L2 cache efficiently filters most of the load and store operations
issued by the control application, which in this case enables the payload application
to almost fully enjoy the memory system.

6.4.3 Automotive benchmarks

In the next set of experiments, we use EEMBCs Autobench as control applications
and run them against our payload application (NIR). In particular, for each work-
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Figure 6.5: Normalized WCET under different mixed-criticality workloads under
private and shared banks. EEMBC Autobench.

load type, we generate 10 workloads from randomly selected EEMBC Autobench
applications in each of them.

We derive the WCET increment suffered by EEMBC Autobench benchmarks
w.r.t. their WCET estimate computed in isolation, i.e. assuming that only one
task runs at a time. Figure 6.5 shows the average increment across all executed
benchmarks. We observe that, although the particular WCET estimates change
with respect to Figure 6.3, the trends closely follow those observed with the space
control application (AOCS): DCmc improving FR-FCFS mainly for the shared
bank approach with the latter leading to high WCET overestimation.

The impact of EEMBC Autobench benchmarks on the payload application
is roughly the same as the one presented in Figure 6.4 for AOCS. Payload per-
formance depends on the resources left by control applications. We analyze this
trade-off by running real-time applications in a demanding situation and measuring
the performance degradation. For that purpose, we run the EEMBC applications
against high-memory usage synthetic kernels as payload. The number of Memory
accesses per Kilo Instruction (MpKI) of these kernels varies from 150 to 500. We
measure that the performance degradation of the synthetic kernels is up to 2.5%
for the 500 MpKI case and 1.8% on average.
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6.5 Related Work

In this section, we discuss other existing memory controller designs for high-
performance and real-time.

Real-time memory controllers were discussed in Section 2.2.2 and their most
relevant characteristics are summarized in Table 6.2. High-Performance memory
controllers [150, 100, 133] usually implement open-page policy to exploit row-buffer
locality and so provide high memory bandwidth, i.e. once a row is open multiple
requests to the same row can be performed, maximizing the memory bandwidth.
In these systems, the objective of the MMS is to increase bank level parallelism
and exploit row buffer locality in order to increase memory bandwidth. To that
end, high-performance designs implement shared bank schemes in which blocks
of sequential addresses are map into the same row together with open-page pol-
icy, and also these blocks are mapped into different banks, which allows requests
from different or the same contender to access simultaneously different banks, in-
creasing memory bandwidth. The use of open-page policy becomes fundamental
in order to allow multiple memory requests to access the same row, exploiting
spatial locality. The main objective of the memory scheduler is to maintain all
banks occupied in order to improve the overall memory bandwidth. This is the
case of the FR-FCFS [150, 100], in which the intra-bank scheduler prioritizes re-
quests with the row already open, and the inter-bank scheduler prioritizes ready
DRAM commands. Another interesting work is [133] (PAR-BS) in which authors
improve the FR-FCFS algorithm using request-batching to provide fairness and
freedom of starvation and also use a scheduling mechanism aware of the thread
parallelism that tries to maintain the bank-level parallelism and row-buffer locality
when threads are interfering across them.

Table 6.2 summarizes the row-buffer policy, MMS and memory scheduler used
by the related works on memory controllers. We observe that real-time systems
obtain predictable latencies by using scheduling techniques that allow to minimize
the effect of interferences. On the other hand, high-performance systems try to
maximize the Row Buffer Locality and the Bank Level Parallelism using complex
scheduling techniques to increase bandwidth.

For dual-criticality systems, the memory controller has to provide predictabil-
ity for real-time applications, i.e., bounded latencies, and bandwidth for high-
performance applications. As we have seen, both goals can be opposing, especially
regarding memory scheduling policies. Any solution based on a single policy that
tries to cover both will end up in a trade-off between predictability and bandwidth.
DCmc aims at bringing the best of both worlds (real-time memory controllers and
high-performance memory controllers) by using different policies for real-time and
high-performance applications, so that interference that the latter generates on
the former is reduced, thus obtaining tight bounds on the memory latency, and
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Table 6.2: List of memory controllers. RT stands for real time and HP for high
performance.

Type Ref RBP MMS Scheduler

RT

[7] Close-page Intrlvd CCSP
[75] Close-page Intrlvd Reconfig. TDMA
[74] Cons. open-page Intrlvd TDMA
[139] Close-page Intrlvd Round-Robin
[148] Close-page Private TDMA

[183, 117] Open-page Private FIFO
[102] Open-page Private FR-FCFS

HP
[150] Open-page Shared FR-FCFS
[133] Open-page Shared PAR-BS

high bandwidth for applications that do not require bounds on the latency.

6.6 Summary

In the space domain, on-board software will comprise two criticality levels: con-
trol applications, which require real-time execution and are designed to meet re-
quirements in the worst-case; and payload applications that are high-performance
driven. These characteristics are also expected in many systems in other domains
such as, for instance, automotive and avionics. Consolidating applications of both
types on the same multicore hardware is of paramount importance to reduce Size,
Weight and Power. Contention in the use of the memory bandwidth has a large
impact on applications’ execution time and WCET estimates, reducing the benefits
of using multicores in the space domain. DCmc mitigates this effect by dividing
memory banks into real-time and high-performance, providing a different request
scheduler policy to each bank type. DCmc provides tight bounds for memory ac-
cess latency of control applications regardless of the load that payload ones put
on the memory controller. DCmc prevents real-time applications to impact high-
performance ones when the former have no memory requests. Our analysis with a
space case study shows that DCmc achieves both goals, worst-case memory access
latency bounds up to 3.9x smaller than with FR-FCFS with minimum impact on
the average performance of payload tasks.
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Contention-Free Memory System

7.1 Introduction

In high-performance domains, memory systems are usually organized into plug-
gable memory modules which require little space on the motherboard, ease ex-
pansion and allow replacing memory modules in case of failure. The main timing
characteristic of memory modules is that they are divided into several – up to 8
in current designs – ranks that can be exploited to control contention in mem-
ory [117]. However, pluggable memory modules are not common in embedded
real-time systems. For instance, in the space domain, having pluggable elements
would negatively affect reliability due to the harsh conditions in which these sys-
tems are often deployed – e.g. with high vibrations and acceleration. Further,
in many real-time systems, including the space domain, it is infeasible to extend
or replace failing memory modules once the system is deployed, which diminishes
the need for pluggable modules. As a result, memory is usually organized into
different memory chips that are soldered to the board. This memory organization
typically implements a single rank.

Motivation: Our proposal builds on the observation that, when memory is
shared (sliced) in time, the impact of memory contention on WCET estimates is
high. This occurs because in a mixed-criticality environment where tasks are likely
developed by different partners and under different criticality levels, although a
task enjoys exclusive access to the memory bus, when the bus is relinquished and
assigned to a new task, the latter can make no assumption on the state left in
memory by the previous task. For instance, the new task does not know whether
the previous access was a write or a read, and since write-to-read and read-to-write
timing constraints are greater than read-to-read and write-to-write, the new task
has to assume that the previous task made an operation on the opposite direction
(i.e., the previous task carried out a read and the new one a write or vice versa).
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As a result, the new task makes – for each request – worst-case time allowances to
account for the memory state left by the last task using it. This maintains time
composability though increases the allocations made in the new task’s WCET
estimate.

Contribution: Instead of allowing that each task accesses all memory devices
simultaneously to enjoy a wide data bus and time-sharing the memory system,
which leads to pessimistic WCET estimates, our proposal uses narrower data buses
(private to each task) each providing access to different memory devices, while the
address bus is shared. With our space-sharing approach we heavily reduce the
memory contention among tasks by dividing the available memory data bus to
provide independent memory data buses accessing different memory chips that
do not interfere each other. Dividing the data bus requires no changes on the
memory device but only few extra processor pins. This approach requires more
memory transfers to complete a memory transaction which reduces available per-
core bandwidth when compared with wider data buses. However, this penalty
is reduced since the locality of the memory row-buffers is completely exploited
because the extra transfers needed are always sequentially ordered. The net result
is a small reduction on average performance that pays-off for having a heavily
reduced memory contention, leading to tighter WCET estimates. Tight WCET
estimates are key in critical real-time systems, since they are directly related to
hardware provisioning made to ensure that time critical tasks finish before their
deadline.

The main properties of our memory organization are as follows. (i) It sig-
nificantly reduces the impact of memory-contention on WCET estimates, which
are less affected by high core counts and processor frequency in comparison to
time-sharing approaches; (ii) it uses standard memory technology, i.e. commercial
off-the-shelf (COTS) memory chips, deployed in other domains; (iii) it maintains
time composability allowing to use single-core timing analysis tools; and (iv) it
provides flexibility for mixed criticalities such that the memory can be easily con-
figured to satisfy different real-time and performance needs.

We assess the benefits of our proposal and compare it with state of the art
memory controllers both analytically and quantitatively in the context of a space
case study with real space applications on a simulator validated against real boards.
We focus on an on-board-soldered memory setup where chips are organized as a
single rank and are accessed in parallel through a single channel. Our proposal
reduces contention by 35% and 51% with respect to private and shared memory
schemes respectively, having a 2% average performance penalty with respect to
other memory controllers.

The rest of this chapter is organized as follows: Section 7.2 presents the mo-
tivation of our work. In Section 7.3, PDSC is proposed. Section 7.4 presents
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the evaluation. Sections 7.5 and 7.6 explain the related work and the summary
respectively.

7.2 Motivation

Memory modules are usually plugged on the board to reduce the amount of space
on the mother board dedicated for memory while easing memory expansion and
replacement of failing modules. However, memories in real-time systems, as hap-
pens in many space, avionics or automotive systems, are neither designed to be
upgraded nor fixed in case of failure once the system is in operation, so there is no
need for interchangeable modules. Also modules and their connectors suffer me-
chanical stress due to severe vibration/acceleration environments, challenging their
suitability for this kind of systems. As a result, in many real-time systems memory
is not organized into modules but memory chips are directly soldered on the board.
This setup is called memory-down [82] and is shown in Figure 7.1a. Furthermore,
the use of multiple ranks is challenged in embedded memory-down systems since
it requires extra space and weight on the board [88], critical parameters for em-
bedded systems. For these reasons, single-rank memory-down configurations are
used in the space domain which is the focus of this chapter.

In the absence of multiple ranks, we observe bank-conflicts and channel-conflicts.
Bank-conflicts are caused by the timing constraints between commands going to
the same bank, like the act-to-act constraint (tRC), precharge time (tRP ) and by
row-misses when using an open-page policy. Channel-conflicts are caused by the
timing constraints between commands going to different banks in the same devices,
thus, using the same channel. For instance the write-to-read (tWTR) and read-to-
read (tBURST ) constraints affecting the timing of read/write requests even if they
target different banks. When using a shared-bank scheme [140], in which tasks
are mapped into the same banks, bank-conflicts dominate over channel-conflicts.
When using a private-bank scheme, in which tasks use their own banks, as pro-
posed in [183, 148], bank-conflicts are removed. However, the WCET degradation
is still high because of channel-conflicts. Authors in [117] identify the problem
of channel-conflicts and propose a memory controller that reduces them by using
multiple ranks. However, such an approach based on multiple ranks cannot be
applied to many embedded systems using a memory-down setup since they often
implement only one memory rank.

An effective way to remove conflicts would be by deploying a multi-channel
memory system [73] in which each task uses a private channel with different mem-
ory interfaces and devices. In this case, the memory system is neither shared in
time nor in space, since each task uses different interfaces and devices at the same
time. However, such a solution would require hundreds of processor signals to
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have separate memory interfaces. For instance, the NGMP processor [42] uses a
625 pins package, out of which around 300 are usable to manage processor I/O
whereas the remaining pins are devoted to power/ground, etc. A complete multi-
channel solution would require 544 pins which is completely out of reach. Hence,
for scalability reasons, a unique memory interface (channel) needs to be shared be-
tween cores due to the limited amount of processor signals. To reduce the impact
of contention on shared memory interfaces, current solutions time-share it among
the tasks running in the multicore.

7.2.1 Requirements

Memory-down systems face several requirements to enable their safe use in mul-
ticore systems. Although these are presented in a space-centric manner, other
domains such as automotive have similar ones, and hence similar solutions apply.

Tight WCET estimates. As seen before, bank and channel conflicts have
high impact on WCET estimates, specially bank-conflicts. These conflicts should
be avoided in order to derive tight WCET estimates.

Factoring memory contention in WCET estimates. The memory system
has to simplify factoring the impact of memory contention in the WCET estimates
provided by timing analysis tools without requiring the latter to be changed.

Mixed-criticaility. In the space domain, on-board systems comprise two crit-
icality levels [142], control and payload. Control tasks have real-time constraints
and require meeting tight WCET estimates. Meanwhile, payload tasks have soft or
no real-time constraints, which makes them high-performance driven. The memory
design has to provide mixed-criticality flexibility, so that it provides high average
performance when no real-time execution is required and guaranteed performance
for real-time tasks.

COTS technology. In general the use of COTS technology helps reducing
non-recurring costs. In the space domain, while processor design can be changed
to accommodate hardware support for real-time systems [40], non-customised
(COTS) memory devices are preferred in order to reduce costs.

Although these requirements are specific of the space domain, other domains
such as automotive and avionics have similar constraints, thus, similar solutions
apply to all of them.

7.3 Private-Data bus Shared-Command bus

We propose Private-Data bus Shared-Command bus (PDSC) memory organiza-
tion, which removes contention between tasks by dividing the available data bus
into private independent data buses for each task, that target different memory
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(a) Original setup sharing CS and DQS

(b) Proposed setup with different CS and DQS

Figure 7.1: Original and proposed 64-bit memory-down system

devices, while sharing the command bus. PDSC removes contention between tasks
since they are prevented from sharing the same data bus. The split of the data bus
is done in a smart way such that COTS memory chips can be used. In particular,
in our reference processor, comprising four cores and a 64-bit memory interface,
PDSC divides the 64-bit data bus into four 16-bit buses, one for each core. The
command bus is time-multiplexed for the different data buses, which means that
the address and command bus is shared between cores, so that contention, or
inter-task interferences, only happens on the command bus. Such contention is
minimal, since only 1 bus cycle (tCMD = 1) is needed to send commands. Hence
each memory device can receive one command every four cycles.

Dividing the data bus incurs low overhead in memory-down configurations.
The Chip Select (CS) and Data Query Strobe (DQS) signals indicate to a DRAM
device when a command and the data are ready respectively. In the original 64-bit
bus design, one CS and DQS signal is used for all the 4 devices so that they work
simultaneously, as seen in Figure 7.1a. In our 16-bit design with four buses, each
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(a) 64-bit data bus (b) 16-bit data bus

Figure 7.2: Equivalent transfers.

one accessing one memory device, we only require to wire three extra CSi and
DQSi signals, one for each extra data bus added, as presented in Figure 7.1b,
which follow the same physical route as the original CS and DQS signal. These
extra signals require few extra processor pins, that in our case incur a small cost
since the processor we model, the NGMP [42], has about a dozen pins available.
This is in contrast to a complete multichannel solution that in the NGMP would
require 544 user-defined pins, hence making it infeasible.

PDSC requires more transfers to complete a memory transaction: A memory
transaction brings 256 bits, which corresponds to a last-level cacheline, and requires
only one transfer on the 64-bit bus since the memory has a burst of 4, i.e., 4×64 =
256 bits, as seen in Figure 7.2a. With a 16-bit bus PDSC needs four memory
transfers to get the 256 bits, i.e., 4 × (4 × 16) = 256 bits. For instance, with a
64-bit bus we need one transfer to get the 256-bit memory block at 0x00 (bytes
0x00 to 0x1F). With a 16-bit bus we need four transfers, at 0x00, 0x08, 0x10 and
0x18 that bring 64 bits each.

Hence, for every memory transaction, PDSC performs four sequentially ordered
transfers, which allows exploiting the memory locality that offers the row-buffer
using an open-page policy [183]. The first transfer can be a row-hit or row-miss,
depending on the previous transaction, while the following three transfers are
always row-hits. Since they are always row-hits, their latency tCAS = 6 (memory
cycles) overlaps with the first transfer, thus performing those transfers immediately
one after the other. Note that we rely on the fact that any cacheline is mapped
consecutively on a single memory row. In this case, every extra transfer only has to
consider the command bus multiplexing and the transfer time on the bus (tBURST =
2 cycles), since the read or write latency is overlapped between sequential transfers.
An example of these accesses is shown in Figure 7.2b for a read.

The hardware cost of PDSC is similar to most tailored memory controllers [140,
183, 7], also requiring multiple queues and a command translator, which converts
requests into the corresponding commands and keeps track of the open rows and
refresh counters. PDSC deploys a command bus scheduler to share the command
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bus and a command translator to keep track of the open rows for each data bus.
Despite the use of multiple ranks is not common in memory-down setups,

PDSC can also work with multiple ranks. While having ranks reduces channel
conflicts [117] there are still conflicts that are caused because of the rank switching
time. PDSC would allow to further remove contention, while having multiple ranks
on each private data bus, which allows increasing memory bandwidth.

7.3.1 Configuration Options

PDSC can be configured to provide either increased average performance or in-
creased guaranteed performance to respond to the asymmetric needs of mixed-
criticality applications. We propose different configurations (modes) for PDSC,
that use different addressing schemes and are configurable by software: RT, HP
and MIX.

RT uses four independent 16-bit data buses to provide guaranteed performance,
intended for real-time tasks. PDSC causes, in this mode, an average performance
penalty for dividing the data bus as stated before.

In HP the average performance penalty of RT is reduced by interleaving the
four 16-bit data buses [73]. When the four 16-bit data buses are interleaved, the
four accesses needed per transaction are carried out by interleaving one access per
data bus, thus using all of them at the same time. In this scenario, average per-
formance is the same as with the original 64-bit bus, except for the time switching
of the command bus that introduces a small penalty (2% in our setup).

Under the MIX configuration, we can have half of the memory working with
independent channels, and the other half working with interleaved channels, so
that tasks targeting guaranteed performance can be scheduled with tasks targeting
average performance. For that purpose, two of the data buses are accessed as a
private data bus each one, and the other two data buses are interleaved. The latter
two data buses are accessing the same data and suffer interference.

As explained before, the memory space is divided into four equal segments, one
for each data bus in the system. The data bus partitioning is done by software,
similarly to the software bank partitioning [124] and requires a Memory Manage-
ment Unit (MMU). The OS configures the MMU so that each core targets the
appropriate memory region: real-time applications target their own data bus. For
other applications the OS decides which data bus they can access by configuring
the MMU.

The flexibility obtained by interleaving the data buses incurs a small hardware
cost due to the complexity introduced in the data path that connects the data
bus with the corresponding memory request. Further, PDSC modes can be easily
configured at boot time: Each processor instance is used as part of a different
system function. Each of those functions may have different high performance
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and real time requirements that can be accommodated with PDSC through its
modes. PDSC could also be configured dynamically though this would cause data
movement among memory regions.

7.3.2 Scalability

The presented PDSC memory controller fits the needs of our space case study.
Processor designs [99, 137] with higher core counts usually deploy clustered ar-
chitectures, which organize processor resources into “islands of execution”, i.e.,
subsets of processors. In general, clustered architectures provide better scalability
than flat architectures, higher degree of isolation across clusters, which is good for
real-time, and reduced complexity. For this reason, when it comes to scaling to
larger systems, we consider a clustered processor design.

We divide the available memory interface into several data buses and assign
one bus per cluster of cores. Each cluster has a private data bus, so contention
occurs between cores within a cluster but not across clusters. Contention between
cores within a cluster can be handled by using predictable arbitration policies such
as round-robin [140] and reduced by using private-bank schemes [183, 148], since
these techniques are orthogonal to our proposal.

It is worth highlighting that PDSC also applies to other real-time domains,
besides space, with needs for high memory mixed-criticality performance (e.g.
automotive and avionics domains). PDSC, with its flexibility and scalability, would
help handling the memory contention issue.

7.4 Evaluation

We use a solid evaluation setup based on a simulator validated against a real
NGMP implementation (see Section 3.3). We use real space applications, control
and payload [142]. As control application we use the AOCS and as payload we use
the OBDP. For the evaluation in other application domains we use the EEMBC
Autobench suite [143] (all benchmarks are described in Section 3.2).

We derive WCET estimates using measurements with hardware support to
force requests to work on their longest latency for the on-chip bus [138]. The
L2 cache has fixed access times, since it is split among cores. Single-core timing
analysis tools can be used with PDSC since it offers composable memory access
latencies. Thus, the memory has the same behavior as in a single-core system.

Worst-Case Performance. We compare PDSC with the most relevant re-
lated work: a shared-bank approach [140] and a private-bank approach [183] (de-
tails on these approaches are provided later in Section 7.5). We also consider a
multichannel solution in which each core has its own 64-bit memory channel, i.e.,
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Figure 7.3: Normalized WCET for shared-bank, private-bank, private-channel and
PDSC.

private-channel, thus no memory contention (i.e., bank and channel) is observed,
only the bus contention is present. Despite such a solution would require hundreds
of extra processor pins – posing an unaffordable cost for our reference processor
– we use it as an optimal reference design since it removes contention because
channels are completely independent1.

Figure 7.3, shows the WCET normalized with respect to the WCET obtained
with the original memory system, i.e., 64-bit data bus, when running in isolation
without interference. These WCET are obtained in isolation for each task and
take into consideration the worst-case that any workload this task runs in could
generate. Results are shown for AOCS kernel, three representative EEMBC with
varying cache behavior (aifftr with low L2 miss rate, puwmod with high L2 miss
rate and cacheb with a L2 miss rate close to the average) and the average for all
EEMBC benchmark suite. We observe that PDSC obtains 33% tighter WCET
estimates for AOCS in comparison with a private-bank scheme and a 49% with
respect to a shared-bank scheme. In comparison with the private-channel, PDSC
is only 10% worse than this ideal solution. Interestingly private-channel WCET
is 20% bigger than when the application runs in isolation which is caused by the
contention on the on-chip bus. Similar results are obtained for EEMBC on average.
The private-bank suffers a slowdown of 110% because, despite banks are private
to each task (each one pinned to a different core), tasks suffer contention on the
data bus – removed with PDSC.

On average, including all EEMBC benchmarks and AOCS, PDSC leads to 35%
tighter WCET estimates than the private-bank scheme and 51% than the shared-

1Even a 16-bit multichannel solution would require more than hundred pins due to the per-
core 32 bit address and control signals.
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Figure 7.4: Normalized Average Execution Time (AET).

bank. Those WCET estimates are 12% higher than those with the private-channel
solution, which is caused by the command bus multiplexing and the extra transfers
overhead. These overheads have much less impact than bank and channel conflicts
in private- and shared-bank schemes. Overall, PDSC provides tighter WCET
estimates than the other approaches and quite close to the multi-channel solution,
which is the tightest WCET that can be achieved in this case. Our results, not
shown for space contraints, show that the impact of sharing the command bus, as
PDCS does, has a negligible impact on WCET, which justifies not implementing
it.

Average Performance. PDSC has two operation modes involving payload
applications: MIX and HP. We compare these modes with a 64-bit data bus, i.e.,
the setup leading to the highest average performance. For the MIX and HP we
respectively use 2 and 4 interleaved 16-bit data buses.

Figure 7.4 shows that MIX and HP have an average performance overhead
of 5% and 2% respectively on average (for all EEMBCs, AOCS and OBDP) in
comparison to the 64-bit bus solution. The HP scheme is equivalent to the 64-bit
original memory system except for the time switching of the command bus that
leads to a performance loss as low as 2%. For completeness we also included RT
in Figure 7.4, although it is the mode used with real-time applications in which
WCET is the main optimization factor. On average its performance degradation
is 11%.

Scalability. We compare different setups in which the memory bus is split
into a different number of available buses. Buses are assigned to the different cores
according to two possible setups: (1) same number of buses and cores and (2) fewer
buses than cores. We do not consider the case of having more buses than cores,
since this is unlikely to ocurr in reality. In setup (1), each core owns a private data
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Figure 7.5: PDSC scalability results.

bus, while in setup (2), cores are organized into clusters that use a private data bus.
Cores within a cluster use a private-bank scheme that reduces the interferences
among them. In this case, the worst-case latency, derived as in Section 6.2, is used
for each memory access. This latency can be applied either directly with static
timing analysis techniques or measurement-based timing analysis techniques by
means of the worst-case mode [138] in case of measurement based techniques.

For this experiment we use a crossbar interconnect, since the bus becomes a
bottleneck for 16 cores masking memory impact. Hence, in this experiment, in
contrast to previous ones, the increment on WCET estimates is exclusively caused
by the memory contention. Figure 7.5 shows the WCET estimates, on average for
all benchmarks, for 4, 8 and 16 cores normalized to the single-core WCET obtained
with the original memory system, i.e., 64-bit data bus. The X-axis shows two bus
setups, 64b and 128b width. The former is split into 2, 4 and 8 buses and the
latter into 2, 4, 8 and 16 buses. In general terms, we see that for all core counts
(4, 8 and 16) WCET estimates are largely below 4x, 8x and 16x respectively with
respect to the single-core WCET. If this were not the case, the WCET results of
multicores would have diminishing returns due to the memory contention. Instead
we see that with PDSC, WCET shows good scalability for large core counts and
wide buses. Looking at per core-count results we find the following:

– For the 4-core setup, the 4-bus configurations, i.e., 4x16b and 4x32b, are the
best performing ones, since there is no interference on the data bus. Note that the
4x16b configuration is the one analyzed in detail in the chapter.

– For the 8-core setup, 8x8b buses do not improve the 4x16b configuration. This
occurs because the benefit of not having interference on the data bus (since there
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is a private data bus per core in the 8x8b configuration) is outweighed by the
overhead of the extra transfers required. This does not happen for the 8x16b
configuration because fewer extra transfers are required due to the wider data bus.

– For the 16-core case, 8x8b and 8x16b are the best performing ones for 64-bit and
128-bit interfaces respectively. In both cases the contention reduction outweighs
the overhead of the extra transfers required. This occurs because of the large
impact of contention in the 16-core setup. On the other hand, 16x8b configuration
presents diminishing returns, due to the overhead of the extra transfers required.

7.5 Related Work

As shown in Section 2.2.2, several works use a shared-bank scheme in which data
are mapped across all memory banks. To exploit the bank-level parallelism, access
to banks is interleaved so that every request accesses all banks simultaneously in
a pipelined fashion, hence removing bus conflicts among memory requests.

Other works shown in Section 2.2.2 use private-bank scheme to reduce con-
tention by providing each core exclusive access to certain banks, effectively remov-
ing bank-conflicts. Authors in [117] further reduce write-to-read and read-to-write
contention in [183] by switching between several ranks. However, such an approach
based on multiple ranks is not applicable in our case, since only one rank is used.

A similar technique to the bank interleaving is used in [73] to interleave memory
channels in order to exploit channel-level parallelism besides bank-level parallelism.
However, as mentioned in Section 7.2, a multichannel solution is out of reach.
Accessing individual DRAM devices in a memory module instead of all devices at
the same time, has been proposed to improve energy efficiency with a small impact
on system performance [5, 173] or storage efficiency [185]. However, contention is
neither discussed nor evaluated in those works.

7.6 Summary

We have proposed a new memory organization, PDSC, for embedded real-time
systems. PDSC builds on the observations that 1) in the embedded domain mem-
ory is unlikely to be pluggable because of reliability-related issues and due to
the impossibility to upgrade/replace memory once the system is deployed; and 2)
time-sharing memory has poor scalability with the core count and the processor-
to-memory frequency ratio. PDSC uses space-sharing heavily reducing WCET,
while providing enough flexibility to handle heterogeneous, i.e. high average and
guaranteed performance, requirements of mixed-criticality multicore systems. Our
evaluation on a solid space case study proves the benefits of PDSC to produce tight
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WCET estimates, 35% tighter than with private-bank schemes and 51% tighter
than with shared-bank schemes with a minimum impact on average performance
in a 4 core setup. PDSC also presents good scalability with core counts.

119



Chapter 7. Contention-Free Memory System

120



Chapter 8

A Probabilistically Analyzable
Multicore Processor

8.1 Introduction

Probabilistic Timing Analysis (PTA) [46, 32] has emerged as an alternative to
conventional timing analysis. PTA provides WCET estimates with an associ-
ated probability of exceedance, called probabilistic WCET (pWCET) estimates
(see Section 2.1.2). The main advantage of PTA is that it is less dependent on
execution history, allowing to significantly reduce the amount of information re-
quired to obtain tight WCET estimates in comparison to other timing analysis
approaches. PTA can be applied either in a static (SPTA) [32] or measurement-
based (MBPTA) [46] manner. SPTA derives for each instruction a-priori probabil-
ities of its execution time from a model of the system, whereas the second variant,
MBPTA, derives those probabilities by collecting observations of end-to-end runs
of an application running on the target hardware.

PTA techniques, both SPTA and MBPTA, require that the timing events un-
der consideration, i.e. instruction execution times for SPTA and observed program
execution times for MBPTA, have a distinct probability of occurrence and can be
modelled with independent and identically distributed (i.i.d.) variables. Solutions
for single-core architectures [110, 46] show how processor cores such as the Cobham
Gaisler LEON3 and LEON4 [40] can be easily adapted to achieve PTA require-
ments. Unfortunately, to the best of our knowledge, no multicore architecture
has been proven to meet PTA requirements. The main stumbling block in prov-
ing probabilistic bounds to the execution time of applications in multicores is the
deterministic and history-dependent behaviour of shared resources such as bus
and memory access policies, which impede memory operations to have a timing
behaviour that can be modelled with i.i.d. random variables.
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In this chapter, we describe for the first time a complete PTA-compliant multi-
core processor design. In particular, we propose new low-cost PTA-compliant bus
designs that break (1) the deterministic behavior of the bus and (2) the dependence
of a given application execution time’s on the behavior of co-hosted applications by
means of randomized arbitration policies. Analogously, following the same princi-
ples we propose a memory controller design with randomized selection of memory
requests. The contributions of this chapter are as follows:

• Lottery arbitration bus: Under this bus arbitration [118], on every round
the arbiter selects one core to access the bus randomly. This breaks any
dependence between applications, but makes that a request may have to
potentially wait an infinite number of arbitration rounds to be granted access
to the bus.

• Randomized-permutation arbitration bus: We propose this new bus arbi-
tration policy under which every N rounds, where N is the number of bus
contenders, the arbiter generates a random permutation for the contenders.
That sequence determines when each contender can use the bus. This arbi-
tration provides an upper-bound to the number of rounds a request has to
wait and leads to tighter pWCET estimates than the lottery arbitration bus.

• Memory: We identify the two factors that affect the execution time of re-
quests in memory, namely, the memory issue delay and the intrinsic execu-
tion time of a memory request. While the latter can be easily upper-bounded
based on the DRAM memory parameters, the former depends on the num-
ber of cores sending requests to a given memory controller and the arrival
time of requests from all cores. To probabilistically model the effect of the
issue delay, we apply both lottery and randomized-permutation arbitrations
in the policy that selects from which core the next memory request is to be
processed.

Overall, our results prove that our proposed multicore designs (i) fulfil PTA
requirements by using proper independence and identical distribution tests, (ii)
allow deriving pWCET estimates with exactly the same methods and tools as for
single-core processors, thus keeping timing verification costs low, and (iii) achieve
much higher guaranteed performance than single-core processors. In particular,
our sensitivity analysis shows that the hardware block with the largest impact in
guaranteed performance for our multicore architecture is the number of cores that
contend for a memory controller. If the core count per memory controller does not
exceed 4, we can achieve reasonable scalability in guaranteed performance: 2.6x
average (up to 4.0x) in an 8-core architecture and 4.9x (up to 7.9x) in a 16-core
architecture with respect to a single-core baseline architecture.
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The rest of this chapter is organized as follows. Section 8.2 provides back-
ground on PTA and the current hardware designs for single-core PTA-compliant
architectures. Section 8.3 introduces PTA for multicores. Section 8.4 presents our
PTA-compliant bus designs. Similarly, Section 8.5 presents our PTA-compliant
memory controller design. Section 8.6 presents the main results of this chapter.
Finally, Sections 8.7 and 8.8 present the related work and the summary of this
chapter.

8.2 Background

8.2.1 PTA

The probabilistic timing behavior of a program or an instruction (or in fact any
component) can be represented with an Execution Time Profile (ETP). An ETP
defines the different execution times of a program (or latencies of an instruction or a
particular resource) and their associated probabilities. That is, an ETP represents
a probability distribution function, see Equation 8.1, where pi is the probability
of the program/instruction/component to take latency li, with

∑k
i=1 pi = 1.

ETP = {
→
l ,
→
p} = {{l1, l2, ..., lk}, {p1, p2, ..., pk}} (8.1)

The convolution function is used to combine ETPs, leading to a new ETP in
which all possible pairs of execution times from the two ETPs are added and the
probabilities multiplied. For example, let E1 = {(2, 101, 200), (0.1, 0.4, 0.5)} and
E2 = {(2, 101), (0.6, 0.4)} be two ETPs. Then their convolution is:

Er = {{2 + 2, 2 + 101, 101+2, 101+101, 200+2, 200+101},
{0.1×0.6, 0.1×0.4, 0.4×0.6, 0.4×0.4, 0.5×0.6, 0.5×0.4}}.

And given that 101 + 101 = 2 + 200 we collapse duplicate pairs resulting in:

Er = {(4, 103, 202, 301), (0.06, 0.28, 0.46, 0.2)}.

8.2.2 PTA requirements on hardware design

PTA techniques require that the events under analysis, program execution times for
MBPTA and instruction latencies for SPTA, can be modelled with i.i.d. random
variables [32]: two random variables are said to be independent if they describe
two events such that the occurrence of one event does not have any impact on the
occurrence of the other event. Two random variables are said to be identically
distributed if they have the same probability distribution function.
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The existence of an ETP ensures that each potential execution time of the
program (for MBPTA) or instruction (for SPTA) has an actual probability of
occurrence, which is a sufficient and necessary condition to achieve the desired
i.i.d. execution time behavior [32]. A difference between SPTA and MBPTA,
besides the level of abstraction at which ETPs are to be constructed, is that while
SPTA requires ETPs for each instruction to be determined, MBPTA simply needs
those ETPs to exist, but not necessarily to be known. How to use those ETPs in
the context of SPTA and their meaning in the context of MBPTA is beyond the
scope of this thesis. We refer the interest reader to [4] for further details on this
topic.

Summary: Overall, a SPTA- and MBPTA-analyzable multicore must provide
the following properties:

SPTA: SPTA requires the i.i.d. hypothesis to strictly hold at the instruction
level. Hence SPTA requires deriving ETPs for each instruction and that the timing
probability distribution captured by the ETP of an instruction j from a task Tk
(iTkj ) is independent of the behavior of any other instruction from any other task
iTml . If we use the core design in [110], which has been proven to be PTA-compliant,
inter-core resources (e.g. bus and memory controller) have to be designed such
that each potential latency that a memory access may experience must have an
associated probability of occurrence, and this probability has to be independent of
the accesses generated by other tasks.

MBPTA: The observed execution times fulfil the i.i.d. properties if observa-
tions are independent across different runs and a probability can be attached to
each potential execution time. To that end, it is enough if we make the events that
may affect the execution time of a program random events whose probabilities are
independent of the execution of any other program. Hence, taking measurements
from a program is equivalent to rolling a dice, with each face having a probability
of appearance. Making enough rolls is enough to apply MBPTA, which derives
upper-bounds of the execution time distribution by means of Extreme Value The-
ory (EVT) [115, 46]. For MBPTA, it is also enough to show the existence of ETPs
for each instruction, since the existence of the ETPs for each instruction ensures
that any different execution time of the program have an associated probability and
therefore MBPTA can be applied.

ETPs, however, cannot be derived with standard (deterministic) processor ar-
chitectures since events affecting execution time (e.g., bus access policy) on those
architectures cannot be attached a probability of occurrence. In a multicore, ETPs
cannot be obtained due to the deterministic nature of the bus arbitration policy
and the deterministic processing order of requests in the memory controller. This
impedes execution times of memory instructions (e.g. load/store) to be modelled
with i.i.d. random variables, thus preventing the use of PTA. Hence, the focus of
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Figure 8.1: Block diagram of the PTA-compliant core architecture used in [110].

this chapter is devising bus and memory controller designs amenable to PTA.

8.2.3 Single-core Probabilistically analysable hardware de-
signs

The basic principle to design probabilistically analyzable hardware is to control
the sources of execution time variation (i.e. jitter) [32, 46]. Jitterless resources
have a fixed latency, independent of the input request or of the previous history
of requests accessing that resource. Jitterless resources (e.g. integer adders) are
easy to model: its ETP has a single latency with probability 1. Resources with
jitter, or jittery resources have a variable latency. Their latency depends on the
execution history of the program or on the particular request sent to that resource.
Jittery resources have an intrinsically variable impact on the WCET estimate for a
given program. Jittery resources are either (i) enforced to always respond on their
worst-case latency, so their upper-bounded timing behavior also becomes i.i.d., or
(ii) redesigned so that their timing behavior depends on random events.

Following this approach [110] proposes a PTA-compliant single-core pipelined
core architecture, see Figure 8.1. The architecture comprises fetch (F), decode
(D), execute (E) and write-back (WB) stages. In between all stages there are
latches or queues. Additionally, the WB stage comprises a write buffer in which
stores are put until they are sent to cache. Loads are processed in program order
in the execute stage. The accesses to the instruction and data caches happen in
the fetch and execute stages respectively. Note that this pipeline design is similar
to LEON3/LEON4 designs given that core operations have a fixed latency.

Data and instruction caches deploy random placement and random replacement
policies [110] as needed to satisfy PTA requirements. A fixed-latency memory
controller (mc) serves as the bridge between caches and memory.
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8.3 PTA in multicore systems

Multicores offer better performance per watt than single-core processors while
maintaining a relatively simple processor design. Moreover, multicore processors
enable co-hosting applications with different requirements (e.g., high data pro-
cessing demand or stringent time criticality), reducing the overall size, weight and
power costs. Despite these advantages, multicores have not been widely adopted
yet in embedded markets with real-time needs due to the difficulties to analyze the
complex timing behavior of applications on top of multicores. These difficulties
emanate from inter-task interferences when accessing shared resources. Inter-task
interferences appear when two or more threads sharing a hardware resource, access
it simultaneously. An arbitration mechanism determines which contending task is
granted access to the shared resource, which affects the execution time and the
WCET of running tasks.

Our objective is to design a multicore processor in which we can probabilisti-
cally model inter-task interferences as a way to enable probabilistic timing analysis
of multicore processors with the same degree of complexity as in single-core ones.
Therefore, our designs must also work with existing PTA tools [46]. Finally, we
want to maintain simplicity in our hardware designs.

8.3.1 Clustered multicore architectures

Historically, clustered architectures have been considered in computer architecture.
At the processor core level, execution pipelines are split into clusters (e.g. the IBM
POWER7 [98]) to decrease hardware cost while efficiently exploiting instruction-
level parallelism. At the chip level, processor implementations of many-core archi-
tectures (e.g. ARM Cortex A15 MPCore [12]) may group several cores into clusters
as a means to reduce implementation costs. Besides, clusters enable voltage and
frequency scaling as well as power-gating at the granularity of several cores, since
having those mechanisms on a per-core basis has high hardware cost [132, 87].

In both clustered and non-clustered multicores the interconnection network
is one of the most critical resources affecting the performance of tasks. In this
chapter, we use a baseline clustered architecture as shown in Figure 8.2, where
cores are equipped with private data and instruction caches. We evaluate our
designs in a wide range of setups in which we vary the number of clusters and the
number of memory controllers.

8.3.2 Inter-task interferences

In single-core architectures, the execution time of a task is influenced by (1) the
initial processor state when the task starts its execution –which in turn is affected
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Figure 8.2: Baseline multicore architecture considered in this chapter. ‘c’ stands
for core, ‘s’ for switch and ‘mc’ for memory controller.

by previously executed tasks–, (2) the Operating System (OS) interferences, (3)
the input data of the task and (4) the randomization carried out in some processor
resources. The effect of initial conditions can be taken into account by flushing the
state of the stateful resources (e.g., caches) prior to the execution of the task. At
OS level, solutions have been shown to make the OS-induced jitter probabilistically
analyzable [128], hence covering (2). The effect of input data on the execution
paths followed by the program or data-dependent instructions, (3) above, is also
under control by PTA techniques [32, 46]. Analogously, the jitter introduced by the
randomized hardware resources is also taken into account by PTA techniques [32,
46].

In multicore architectures, in addition to all these sources of execution time
variability, an additional one arises: inter-task interferences. In single-core ar-
chitectures, given two instructions ix and iy of the same program, where x and
y determine the order in which each instruction is fetched into the processor, iy
may have a potential impact on the execution time of ix only if y < x, meaning
that iy executes prior to ix. In a multicore, when several tasks run in a multicore
architecture, the execution time of one instruction iT1x belonging to task T1 may be
affected by any other instruction iT2y from a task T2. If there is precedence ordering
in task execution such that T2 executes after T1, then the inter-task interferences
generated by iT2y do not affect iT1x . If there is not precedence execution ordering,
T1 and T2 can execute in any order. In particular, they can execute concurrently
in different cores, so iT2y may introduce inter-task interferences affecting iT1x .

It becomes then evident that we cannot take into account the effect that any
instruction of any task iTkj , may have on any other instruction of any other task
iTml . This would simply make the usage of the probabilistic approach intractable.
To break this dependence we design our multicore such that we make that the
worst effect that one task can have on the execution of any other task due to
inter-task interferences can be probabilistically bounded. This makes our design
time composable, meaning that the pWCET estimate obtained for a given task is
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independent of the tasks that may run concurrently in the processor.

Overall, our multicore platform is designed so that every individual processor
instruction can be characterized by a distinct ETP that has no dependence on
any instruction of any other task. Next, we present the proposed bus and memory
controller designs, which allow deriving an ETP for each instruction independently
of any other task.

8.4 On-chip interconnection network

As we have seen, in the processor core architecture proposed in Section 8.2, core
operations have a fixed latency except for the access to the instruction cache
(IL1). Memory operations, in addition to the execution time variation they have
due to their instruction cache access, are also affected by the access to the data
cache (DL1). For each access to the DL1 or IL1 we can derive a probability of
hit [110]. In general, for a cache with S sets and W ways, given the sequence
< Ai, B1, ..., Bk, Aj >, where Ai and Aj correspond to accesses to the same cache
line and no Bl (where 1 ≤ l ≤ k) accesses the cache line where Aj is, the probability
of Aj to hit in the cache can be approximated as [110]:

PhitAj
(S,W )=

1−
(
W − 1

W

)l=k∑
l=1

PmissBl

·(1−
(
S − 1

S

)k)
(8.2)

Such hit probability is used to compute the ETP of each cache access as follows
where lathit and latmiss are the cache hit and miss latency respectively:

ETPcache = {{lathit, latmiss}, {PhitAj
(S,W ), 1− PhitAj

(S,W )}} (8.3)

On the event of a miss in the instruction or data cache, the missing instruction
generates an access to the shared bus hierarchy. Next, we present several bus
architectures and their corresponding probabilistic analyzes. The resulting ETP
for each bus should be composed with the miss part of the ETPcache. For instance,
if the ETP of the bus is ETPbus = {{l1, l2, l3}, {p1, p2, p3}}, the resulting ETP of
composing cache and bus effects would be:

ETPcache= {{lathit, latmiss + l1, latmiss + l2, latmiss + l3},
+bus {Phit, (1−Phit) · p1, (1−Phit) · p2, (1−Phit) · p3}} (8.4)
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8.4.1 Lottery bus

We define an arbitration round or simply round as the number of processor cycles
that a core needs to send any request to the bus. In this approach, on every round
the arbiter selects one core to access the bus using a random policy. A similar bus
was analyzed in [118]. However, unlike [118] we assume that all bus contenders
have always pending requests, although in a given cycle, only a subset of the
contenders may have pending requests. This assumption makes our design time
composable, and hence independent of the traffic generated by each contender.
Otherwise, ETP for memory operations of one task would depend on the traffic
generated by other tasks, breaking the desired i.i.d. timing behavior.

In a N core single-bus processor, the probability of a request to be selected in
round k + 1 is given by Equation 8.5, where the first element is the probability of
the request not being granted access in the first k rounds and the second element
the probability of being selected in the k + 1 round.

pklotarb =

(
1− 1

N

)k
· 1

N
(8.5)

Blue diamonds in Figure 8.3 show the probability of a bus request not to be
granted access after k arbitration rounds for a bus shared by 4 cores. We observe
that the larger the number of rounds in which a contender participates, the lower
its probability not to be selected. There is a probability the contender not to be
granted access after a large number of rounds. However, this probability decreases
exponentially and more importantly, it is probabilistically computable.

If arbitration rounds have durations longer than 1 cycle, say L cycles, then a
request may become ready in the middle of a round. In that case, the request has
to wait until an arbitration round boundary before it can compete to get access
to the bus.

Equation 8.6 shows the ETP for a bus access. (1) The first element convolved in
the equation is the delay to align the request with the cycle at which the next round
starts. A bus access request is initiated on a miss to the data or instruction cache.
Given that the event ‘cycle in which an access misses in the data or instruction
cache’ is a random event (and hence so is the cycle in which the access to the bus
happens), the probability of a bus request to arrive in a particular cycle can be
computed. In particular, every request to the bus may arrive in any cycle of the
arbitration round (0, ..., L − 1) with a given probability pcyci to arrive in cycle i
with 0 ≤ i ≤ L− 1. Note that for the ETP it does not matter whether pcyci follow
any particular distribution as long as it is probabilistic.

(2) The second element convolved is the number of rounds that the request
waits. Each round has L cycles and Equation 8.5 is used to compute the probability
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Figure 8.3: Probability of not being granted access as a function of the number of
arbitration rounds for a bus with 4 cores.

of a request to be selected in a given round.

(3) Finally, the last element convolved is the actual latency of the bus access
request: it takes L cycles with 100% probability.

ETPbuslot = {{0, 1, ..., L− 1}, {pcyc1, pcyc2, ..., pcycL−1}} ⊗
{{0, L, 2L, ...}, {p0lotarb, p1lotarb, p2lotarb, ...}} ⊗
{{L}, {1}} (8.6)

8.4.2 Randomized permutations

An arbitration window or simply window refers to N consecutive bus arbitration
rounds. Under this arbitration policy, in each window one round is randomly
assigned to each of the N contenders. Each round has a duration of L cycles, the
maximum bus cycles that any request may take. In this approach, at every window
boundary the arbiter generates a random permutation for theN contenders (cores).
This sequence determines the order in which contenders can use the bus.

Analogously to the fact that the arrival cycle of a request in a round follows a
given probability distribution function, there is a probability defining the round in
a window in which requests arrive. This occurs since the accesses to the bus are
initiated on random events: miss to the data or instruction caches. As explained
before, we do not care which particular distribution function this is as long as it is
probabilistic. Without lost of generality and for the purpose of this explanation we
assume that the probability function describing the arrival round of each request is
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uniform, that is, there is a probability 1
N

a request to arrive in a particular round1.
We identify the following extreme cases:

• The shortest delay (0 cycles) occurs when a request becomes ready right
when the core it belongs to gets its round.

• The worst delay occurs when (i) a request belongs to a core that gets the
first round in the current permutation and (ii) the last round in the next
permutation, and (iii) the first round of the current permutation has just
elapsed. In this case, the request should wait 2N − 2 rounds corresponding
to the N−1 remaining rounds of the current permutation and the first N−1
rounds of the next one.

The probability of a request to wait k rounds to get access to the bus, with
0 ≤ k ≤ 2N − 2 is as follows:

pkperarb =
max(N − k, 0)

N2
+

min(N−1,2N−k−1)∑
i=max(1,N−k)

i

N3
(8.7)

The first addend in the equation is the probability of finding the appropriate
round in the remaining part of the current permutation, whereas the second part
stands for the probability of finding the appropriate round in the next permutation
if and only if such round was not found in the current permutation. Figure 8.3
shows the probability of a bus request not to be granted access after k arbitration
rounds. We observe that after 2N − 2 rounds, the probability not to be selected
is 0.

The ETP of the random permutation bus, see Equation 8.8, is obtained as the
convolution of three components, as for the lottery bus. The first component in
the convolution is the time and associated probability to align the request to the
start of the next round; the second one stands for the waiting rounds until the
request is granted access, and the final one stands for the actual bus access latency
of the request.

ETPbusper = {{0, 1, ..., L− 1}{pcyc1, pcyc2, ..., pcycL−1}} ⊗
{{0, L, ..., k · L, ..., (2N−2) · L},
{p0perarb, p1perarb, ..., pkperarb, ..., p2N−2perarb}} ⊗
{{L}, {1}} (8.8)

1With a similar processor setup, our results show that the arrival of bus requests across
rounds in the window is uniform (see Figure 5.3 in Chapter 5).
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Example of ETP computation. Let us assume a configuration with L = 2
cycles and N = 2 cores (c0 an c1 ) and that the probability of a request arriving in
any of both rounds is 0.5 ( 1

L
). Further assume that the probability of the request

to arrive in each of the 2 cycles of the round is also 0.5. In the case the request
arrives in the first cycle of the round, the delay to align with a round boundary
is 0. If it arrives in the second cycle of the round it takes 1 cycle to align with a
round boundary.

The second component of Equation 8.8 corresponds to the number of rounds
that the request will have to wait until being granted access to the bus. Every
time a new arbitration window is generated (once every 4 cycles) one of the two
following window setups is randomly chosen: ws1 = (c0, c1) or ws2 = (c1, c0).
That is, c0 first and then c1 or c1 first and then c0. For the purpose of this
example, we assume that a new request from the core under consideration (e.g.,
c0 ) may arrive at any point in time, so it will arrive at the beginning of a window
(0.5 probability) or when the first round has been elapsed (0.5 probability). In
each of the cases, the probability of being under ws1 or ws2 is 0.5 for each window
setup. This leads to the following 4 cases for the arriving request (from c0 )2:

• It arrives at the beginning of window ws2. It waits 1 round with 0.25 prob-
ability since the probability of arriving at the beginning of a window is 0.5
and the probability of this window being ws2 is 0.5, so 0.5 · 0.5 = 0.25.

• It arrives after one round of window ws2. It waits 0 rounds with 0.25 prob-
ability.

• It arrives at the beginning of window ws1. It waits 0 rounds with 0.25
probability.

• It arrives after one round of window ws1. Its round in this window has
elapsed and will be granted access in next window with 0.25 probability.

– The next window is ws1. It waits 1 round (from the first window) with
0.125 probability (0.25 · 0.5).

– The next window is ws2. It waits 2 rounds (one from the first window
and one from the second one) with 0.125 probability.

Overall, the request is delayed during 0 rounds with 0.5 probability, 1 round
(2 cycles) with 0.375 probability and 2 rounds (4 cycles) with 0.125 probability.

2Note that any probability distribution function (PDF) is acceptable for the events deter-
mining (1) the cycle inside a round and (2) the round inside the window in which a request
arrives. The only requirement is that those events are truly probabilistic. In this example we
have assumed an evenly distributed PDF.
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Finally, the request must also pay the fixed latency of the bus itself, L (third
component in Equation 8.8). The final ETP is therefore:

ETP = {{0, 1}, {0.5, 0.5}}⊗{{0, 2, 4}, {0.5, 0.375, 0.125}}⊗{{2}, {1}} =
{{0+0 +2, 1+ 0+ 2, 0+ 2+ 2, 1+ 2+ 2, 0+ 4+ 2, 1+ 4+ 2} ,
{0.5·0.5, 0.5·0.5, 0.5·0.375, 0.5·0.375, 0.5·0.125, 0.5·0.125}} =
{{2, 3, 4, 5, 6, 7}, {0.25, 0.25, 0.1875, 0.1875, 0.0625, 0.0625}} .

8.4.3 Deterministic bus

Alternatively to time randomized buses, a deterministic bus deploying a pre-
dictable policy, such as round-robin policy could be used. This requires a non
work-conserving approach in which a task is assumed always to suffer the worst
latency when accessing the bus [138]. In the case of a round-robin policy, the worst
scenario implies assuming that whenever a particular core has to access the bus,
its round has just elapsed and has to wait for N − 1 rounds where N stands for
the number of cores. This is safe yet pessimistic to be assumed at analysis time.
At deployment time such a constraint can be removed since the number of actual
rounds that requests will have to wait will never exceed N−1. As a result, the ETP
still remains as a safe upper-bound at deployment time, but average performance
is improved. The ETP for this deterministic bus policy is show in Equation 8.9.
It is analogous to that of randomized buses except for the second term, which is
now fixed: N − 1 rounds of L cycles each with 100% probability.

ETPbusdet = {{0, 1, ..., L− 1}, {pcyc1, pcyc2, ..., pcycL−1}} ⊗
{{(N − 1) · L}, {1}} ⊗
{{L}, {1}} (8.9)

Figure 8.3 shows the probability of a bus request not to be granted access after
a number of arbitration rounds for this arbitration policy (dark red squares) in a
multicore setup with 4 cores. We can see that a particular core is never granted
access at rounds 0, 1 and 2, and it is granted access at round 3.

8.4.4 Hierarchical buses

Based on the ETPs derived for simple buses we can derive the ETP for a hierarchi-
cal bus network. In our bus setup, on the one hand, we have an intra-cluster bus
(“ibus”) per cluster. The ibus is accessed by Nco contenders (cores) and has an ac-
cess latency of Li cycles. Each cluster has a switch that connects the intra-cluster
bus to the inter-cluster bus (“ebus”). This simple switch adds a fixed latency to
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the end-to-end latency of the on-chip interconnection network, S. Finally, the ebus
is connected to each of the Ncl clusters and has a latency Le. Usually, Le ≥ Li as
the ebus is longer than the ibus as the ebus connects distant clusters.

These three resources of the hierarchical bus are accessed serially: ibus, switch
and ebus. The ETPs of each of those resources can be easily composed as shown
in Equation 8.10. Note that the bus ETPs are characterized by parameters L,
latency, and N , number of contenders, as described Sections 8.4.1 and 8.4.2.

ETPhbus = ETPibus ⊗ ETPswitch ⊗ ETPebus (8.10)

ETPibus = ETP (Li, Nco)bus

ETPswitch = {{S}, {1}}
ETPebus = ETP (Le, Ncl)bus

8.5 Design of a Probabilistically Analyzable Mem-

ory Controller

In this chapter, we focus on DDRx SDRAM off-chip memory system which consists
of a memory controller and one or more memory devices (see Section 2.2.2). The
timing behavior of a memory request is characterized by the Request Inter-Task
Delay or tItD, and the Request Execution Time or tRET . The former stands for the
delay the request can suffer – due to interferences with other requests generated
by co-running tasks running on different cores – before being granted access to
the memory device. The latter stands for the time a memory request takes to be
completed, once it cannot suffer interferences from the other threads’ requests.

While tRET delay is fixed (jitterless), and hence taking it into account in the
ETP for the memory is trivial, tItD is jittery and depends on:

• Number of scheduling-rounds: The channel to access the memory device is
shared across all tasks sharing the memory controller so they may interfere
each other. Among the different memory requests in the ready queues, the
memory scheduler is in charge of scheduling the next request. The arbitration
policy implemented in the memory controller and the structure of the internal
queues used to buffer the requests inside the controller determine how many
scheduling-rounds a particular request must wait to be granted access to the
shared memory.

• Duration of each scheduling-round (Issue Delay): The Issue Delay is the time
interval between the issue of two consecutive requests, i.e. from the instant a
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request is issued until the next one can be issued. The Issue Delay depends
on the DRAM device used, on the specific timing constraints, on the Row-
Buffer Management policy and the Address Mapping scheme implemented
in the memory controller [92].

Our goal is to probabilistically model the Request Inter-Task Delay (tItD), so
that by taking it into account during the pWCET analysis of a task, the pWCET
estimates are independent of the rest of the co-running tasks, hence enabling time
composability.

8.5.1 Probabilistically Modelling Inter-Task Delay

The effect of inter-task interferences on average performance has made that high-
performance processors come equipped nowadays with several memory controllers
(or multi-channel memory controllers). For instance, the ORACLE UltraSparc T2
features 2 memory controllers to control two memory channel, the IBM POWER7+
up to 8 memory channels and the Freescale P4080 includes 2 memory controllers
for 8 cores (4 cores per memory controller).

Our memory controller has several request queues (q queues). In particular, in
our design, we assume one request queue per core. When we have several memory
controllers, a given core accesses only one of the memory controllers. For instance,
if we have 16 cores and two memory controllers, each memory controller has 8
request queues (q = 8 for each memory controller). Note that the higher the
number of cores mapped onto a memory controller, the higher the effect of inter-
task interferences on both, pWCET estimates and average performance.

In each request queue, memory requests are kept in order. The memory sched-
uler uses round robin, lottery and random-permutation policies to select the re-
quest queue that is granted access to access memory (i.e. send DRAM commands),
as for the bus.

In [139], authors derived an Upper Bound for the Issue Delay, the Longest
Issue Delay (tLID), that takes into account the Row-Buffer Management policy
and the Address Mapping scheme. Once a memory request is ready, a hardware
mechanism controls that the DRAM commands are not sent to memory until
tLID cycles have elapsed since the last memory request was granted access. Once a
request is granted access to memory, it takes tRET cycles to complete, and the next
request will be granted access tLID cycles after the previous request was issued.

Hence, the maximum memory turn-around time and the ETP for a memory
request can be expressed as tmem = f(tLID, policy)+tRET . The first addend, which
upper-bounds tItD, covers the delay to select the next request from those in the
request queues and depends on the policy (i.e. lottery, random permutation or
round-robin). The second addend is the intrinsic execution time of the memory
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request (i.e. the sequence of DRAM commands generated to serve the memory
request).

The ETP for memory requests is analogous to that for bus requests, but re-
placing L by tLID in the first two components and by tRET in the third component.
For instance, Equation 8.11 shows the ETP for memory requests when we use the
lottery arbitration. It has three components: (1) The first component convoluted
is the delay to align the request with the cycle at which the next round starts.
In this case rounds last tLID cycles. Again, without loss of generality we assume
an even probability distribution function such that there is a probability 1

tLID
a

request to arrive in a given cycle of the round. (2) The second component stands
for the number of rounds that the request may have to wait. Each round lasts tLID
cycles and Equation 8.5 is used to compute the probability of a request to be se-
lected in a given round. (3) Finally, the last component is the actual latency of the
memory access (tRET cycles with 100% probability). For random-permutation and
round-robin policies the process is analogous, just changing the part regarding the
arbitration policy (e.g., using Equation 8.7 instead of 8.5 for random-permutation).

ETPmem={{0, 1, ..., tLID − 1}, { 1

tLID
,

1

tLID
, ...,

1

tLID
}} ⊗

{{0, tLID, 2 · tLID, ...}, {p0lotarb, p1lotarb, p2lotarb, ...}} ⊗
{{tRET}, {1}} (8.11)

8.5.2 Memory refreshes

Data must be periodically read out and restored to the full voltage level with refresh
operations (REF commands) in SDRAM memories for data integrity. Every tREFI
cycles a refresh command (REF) is automatically sent to all banks, refreshing
one row per bank. This operation takes tRFC cycles to be completed. Upper-
bounding the number of refresh operations that can occur during the execution of
a task (taking its pWCET) implies considering both the pWCET without refreshes
(pWCETNOREF ) and the time devoted to refresh operations (NREF · tRFC , where
NREF stands for the maximum number of refresh operations occurring during the
execution of the task). NREF is given by the minimum number of refreshes, Ni

that accomplishes with the following inequation.

⌈
pWCETNOREF +Ni · tRFC

tREFI

⌉
≤ Ni (8.12)

In order to account for the effect of refreshes in the pWCET estimates, we add
the delay suffered due to memory refreshes on top of the estimated pWCET. Thus,
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the new pWCET is computed as: pWCETTOTAL = pWCETNOREF +NREF · tRFC .
Note that some refreshes could have occurred when obtaining measurements for
MBPTA which adds some pessimism since pWCETNOREF would already include
the effect of some refreshes. However, it may be the case that refreshes never
impacted measurements because they occurred during idle rounds in memory.
Thus, we cannot discount the effect of those potential refresh operations from
the pWCET obtained.

8.6 Evaluation

We use a similar simulation framework to the one presented in Section 3.3 to model
the probabilistically analysable processor. Cores are as presented in Section 8.2: 4-
stage pipelined cores with a memory hierarchy composed of separated instruction
and data caches. The size of each cache is 4-KB with 64-byte line size and 4-way
associativity. The latency of the fetch stage depends on whether the access hits or
misses in the instruction cache: a hit has 1-cycle latency and a miss has variable
latency to access to memory. After the decode stage, memory operations access
the data cache so they can last 1 cycle or a variable latency to access memory
in case of a miss. The remaining operations have a fixed execution latency (e.g.
integer additions take 1 cycle).

We use different multicore setups featuring the hierarchical bus architecture
presented in Section 8.4, varying the number of cores from 4 to 16, and the number
of memory controllers (MC). In this study, we have fixed the number of cores per
cluster to 4. However, the trends shown in this section are also observed when
changing the number of cores per cluster. We have used the following setups:
4 Cores with 1 MC setup (4C1MC); 8 Cores with 1 MC (8C1MC) and 2 MC
(8C2MC); and 16 Cores with 2 MC (16C2MC) and 4 MC (16C4MC).

In this study, we have focused on a close-page, interleaved-bank, DDR2-800E
memory setup, because it is the one providing higher flexibility (in terms of address
mapping scheme) and lower tLID, although all other designs are also compliant with
our PTA multicore processor. We assume a CPU frequency of 800MHz, being a
CPU-SDRAM clock ratio of 2. Note that our pWCET estimates provided include
memory refresh delays.

We use the EEMBC Autobench benchmarks suite [143] (see Section 3.2.1). We
used: a2time, aifftr, aifirf, aiifft, cacheb, canrdr, iirflt, puwmod, rspeed, tblook and
ttsprk.
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8.6.1 Actual measurements vs. models

In this section, we show how the analytical ETPs derived for the components
match the timing behavior observed for those components. In particular, we focus
on the lottery-arbitration bus and the random-permutations arbitration bus.

Figure 8.4 shows the observed frequencies (bars that are measured in the sec-
ondary y-axis) in the bus access time and a graphical representation of the ETP
(lines that are measured in the primary y-axis) for a configuration with N = 4 con-
tenders and L = 1 round size. In both cases, lottery and randomized-permutations,
the observed behavior matches the analytical model of Equations 8.6 and 8.8 (note
that Figure 8.3 shows their CCDF instead of the ETPs as in Figure 8.4). Such
match occurs because the arrival time of bus accesses is evenly distributed across
cycles in the round and across rounds in the window. This occurs because (1) cache
misses generating bus accesses are random events and (2) the latency of the in-
structions executed between consecutive bus accesses is large enough with respect
to the window size of randomized-permutations such that two bus requests from
the same core are rarely sent during the same window. In particular, we observed
no meaningful deviation with respect to an even distribution and, if such deviation
existed, it would have no impact on the approach as stated in Section 8.4.2.

8.6.2 Hardware overhead

Lottery bus: The lottery arbitration simply requires dlog2Ne bits to select which
contender is granted access in each round. Given that the number of contenders,
N , is typically a power-of-two, using exactly log2N bits produced by a pseudo-
random number generator (PRNG) is enough to select the particular contender
that is granted access. Note that efficient PRNGs already exist in real processors
implementing, for instance, random-replacement policies in cache [13, 38].

Random permutations: Such arbitration can be also implemented with very
low cost. A randperm register with N · log2N bits is needed. This register keeps
the N identifiers of log2N bits for each of the contenders. In order to generate a
random permutation, N − 1 random bits, called randbits generated by a PRNG
are needed. To that end we swap the identifiers in the randperm register in a
hierarchical way based on the values of randbits. For instance, if N = 4, we
need 3 random bits. The first bit in randbits determines whether the first and
second identifiers in randperm are swapped (1) or not (0). The second random bit
determines whether the third and fourth identifiers in randperm are swapped. The
third random bit determines whether the first pair of identifiers is swapped with
the second pair. If the current state of randperm is ‘00-01-10-11’ (so contenders
order is 0, 1, 2, 3) and randbits is ‘101’, the new permutation will be ‘10-11-01-
00’ (the first and second ids were swapped, and the first and second pair were
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(a) lottery bus

(b) randomised-permutation bus

Figure 8.4: Measured execution times vs. ETPs.

also swapped), so the new contenders order will be 2, 3, 1, 0. It can be seen
that the probability of a particular contender to reach any particular position in
the permutation is exactly 1

N
regardless of its position in the previous permutation

since log2N random bits will determine its new position. It can be also seen that all
permutations cannot be generated. For instance, in the example before contenders
2 and 3 cannot be in different halves of the permutation. However, this is irrelevant
because any particular contender occupies each position in the permutation with
the same probability and the order of contenders in the remaining positions has no
effect on the current contender. For instance, in the example before it is irrelevant
for contender 3 whether the contender in the first position is 0, 1 or 2.
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Benchmarks 4C1MC 8C1MC 8C2MC 16C4MC
a2time 0.25/0.99 0.57/0.67 1.80/0.31 0.82/0.61
aifftr 1.13/0.11 0.60/0.55 0.53/0.29 0.13/0.95
aifirf 0.53/0.72 0.93/0.67 0.33/0.93 1.73/0.23
aiifft 1.27/0.33 0.93/0.51 1.40/0.77 0.80/0.90
cacheb 0.87/0.15 1.47/0.82 0.60/0.82 1.07/0.29
canrdr 1.60/0.61 0.73/0.96 1.60/0.90 0.27/0.61
iirflt 1.53/0.77 0.60/0.96 1.20/0.17 0.47/0.29
puwmod 0.60/0.93 0.40/0.51 1.07/0.96 1.13/0.41
rspeed 0.26/0.37 1.47/0.86 1.53/0.19 0.27/0.17
tblook 0.40/0.67 0.80/0.82 0.47/0.86 1.00/0.23
ttsprk 0.53/0.37 0.40/0.29 0.13/0.96 0.20/0.56

Table 8.1: Independence and identical distribution tests results (outcome indepen-
dence test / outcome i.d test).

8.6.3 Fulfilling the i.i.d properties

Our bus and memory controller designs guarantee that observed execution times
fulfil the properties required by MBPTA given that we are able to derive ETPs.
We contrast this empirically by analyzing whether execution times of EEMBC
benchmarks are independent and identically distributed.

In order to test independence we use the Wald-Wolfowitz independence test [27].
We use a 5% significance level (a typical value for this type of tests), which means
that absolute values obtained with this test must be below 1.96 to prove inde-
pendence. For identical distribution, we use the two-sample Kolmogorov-Smirnov
identical distribution test [24]. For 5% significance, the outcome provided by the
test should be above the threshold (0.05) to indicate identical distribution.

Table 8.1 shows the results of both tests for all EEMBC benchmarks under
several multicore setups implementing random-permutation arbitration, when run-
ning each benchmark 1,000 times. Both tests are passed in all cases. The results
for the configurations not shown in the table also passed both tests.

8.6.4 MBPTA: EVT projections

In this section, we provide pWCET estimates obtained with the MBPTA method
in [46] for EEMBC benchmarks under several multicore setups. In all setups we
deploy random-permutation arbitration in buses and the memory controller, since,
as it will be shown in Section 8.6.5, it outperforms the other policies. Note that
MBPTA has been used so far only on top of single-core architectures. Therefore,
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Figure 8.5: pWCET estimates for canrdr under different multicore setups.

this chapter provides the first multicore designs (i) amenable for PTA and (ii)
analyzable with the same tools as single-core designs.

Following the iterative method of [46] we carried out 1,000 experiments and
used Extreme-Value Theory (EVT) to extract pWCET estimates. As an example,
Figure 8.5 shows the EVT projections for the canrdr benchmark. We consider an
exceedance probability of 10−15 per run. Our selection of the exceedance probabil-
ity, i.e. the probability that an instance of a task misses its deadline, is based on
the observation that for the aerospace commercial industry at the highest integrity
level (DAL-A) the maximum allowed failure rate in a piece of software is 10−9 per
hour of operation [154]. In current implementations, the highest frequency at
which a task can be released is 20 milliseconds (180,000 times per hour) [154].
Hence, the highest allowed failure rate per task activation is 5.56 × 10−15, which
is largely above our exceedance probability.

In Figure 8.5 we observe that the main factor affecting pWCET estimates is
the number of cores per memory controller and not the total number of cores. In
the baseline setup, with only one core in the architecture, canrdr does not suffer
any inter-task delay in the memory controller (tLID = 0). In the set of pWCET
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benchmark 4C1MC 8C1MC 8C2MC 16C2MC 16C4MC
a2time 3.8 8.0 3.4 8.0 3.5
aifftr 3.8 7.6 3.7 7.2 4.0
aifirf 3.1 5.7 2.6 6.8 2.6
aiifft 3.9 7.3 3.9 7.6 3.9

cacheb 4.5 9.0 4.6 9.0 4.2
canrdr 1.9 3.0 1.9 3.1 1.9
iirflt 4.1 8.4 4.7 7.7 4.9

puwmod 1.8 2.8 1.8 2.7 1.8
rspeed 1.9 3.0 1.8 3.0 1.9
tblook 3.3 6.5 3.7 6.6 3.0
ttsprk 2.4 3.9 2.4 3.9 2.4

Table 8.2: pWCET estimate for 10−15 for each EEMBC under all setups w.r.t their
pWCET estimate in single-core.

projections in the middle we have 4 cores per memory controller, which increases
tLID. Note that our design makes the pWCET estimate for a task (canrdr in this
case) to be independent on the particular tasks running concurrently. Finally, the
pWCET estimates on the right of Figure 8.5, are for the setups with 8 cores sharing
each memory controller. Table 8.2 summarises the results for all benchmarks.
In particular, it shows pWCET estimates for each EEMBC under the different
multicore setups in which we have 4 and 8 cores contending in each memory
controller with respect to the pWCET estimate obtained when each benchmark
runs in a single-core setup.

For the configurations in which there are 8 cores sharing a memory controller
(i.e. 8C1MC and 16C2MC), we observe that for some few benchmarks their
pWCET increases more than 8x, meaning that there are diminishing returns in the
use of multicores. For the rest of benchmarks we appreciate that the increment in
pWCET is much smaller than 8x, hence providing benefits. For the configurations
in which there are 4 cores sharing a memory controller (i.e. 4C1MC, 8C2MC and
16C4MC), the benefits are much higher. In some cases, a benchmark suffer an
increment in its pWCET of less than 2x in its pWCET estimate (when in a 8-
core or 16-core configuration) with respect to its pWCET estimate in single core.
As seen on the Freescale P4080, 4 cores per memory controller is a usual choice
for embedded processors, and our results confirm this choice for PTA-compliant
processors.

142



8.6 Evaluation

8.6.5 Comparison of arbitration policies

In this section, we compare random-permutation, lottery and deterministic (round-
robin) arbitration in terms of reduction in pWCET estimates. Section 8.4.2 shows
that the ETP derived for the random-permutation arbitration is better than for the
lottery and deterministic arbitration, i.e. the area below the random-permutation
curve in Figure 8.3 is smaller than for lottery and deterministic arbitrations.

Lottery and deterministic arbitration need N − 1 rounds on average to grant
access to the shared resources, where N stands for the number of contenders.
Conversely, random-permutation arbitration needs around N

2
rounds. For instance,

for 4, 8 and 16 contenders lottery and deterministic arbitration need 3, 7 and 15
rounds on average, whereas random-permutation needs 1.8, 4.2 and 8.8 rounds on
average.

This translates into lower pWCET estimates for the random-permutation ar-
bitration. Figure 8.6 confirms that random-permutation improves over the other
two policies. We observe that pWCET reductions range between 9% and 16%
w.r.t. lottery arbitration and between 5% and 11% w.r.t. deterministic arbitra-
tion. pWCET reductions w.r.t. lottery arbitration are higher because its impact
on average delay is similar to that of deterministic delay, but lottery arbitration
introduces more variability (recall that with lottery arbitration there is a proba-
bility contenders not being granted access after a large number of rounds). Hence,
although the best case of lottery arbitration is better than that of deterministic
arbitration, its worst case is worse than that of deterministic arbitration, thus
leading to worse pWCET estimates.

8.6.6 Guaranteed performance scalability analysis

The ratio executed instructions
pWCET

(where pWCET is expressed in cycles) gives us the

guaranteed performance or guaranteed Instructions Per Cycle (IPC) that an ap-
plication can achieve for a given probability threshold.

We built 11 workloads, each consisting of as many copies of the same EEMBC
benchmark as cores in the multicore setup under study. Note that for any par-
ticular program it is irrelevant which programs are run in the other cores since
pWCET estimates always consider that all contenders are ready to access the par-
ticular shared resource (bus or memory controller) regardless of whether this is
the case in reality. Figure 8.7 shows the addition of the guaranteed performance of
all benchmarks in each workload. We observe a wide range of different behaviors.
Some benchmarks access memory frequently, and hence few copies of them are
enough to saturate memory. As a result, adding more benchmarks in the architec-
ture does not improve the guaranteed performance. This is the case, for instance,
of a2time. Other benchmarks make a moderate use of the memory and hence
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Figure 8.6: pWCET reduction when using randomized permutation arbitration in
the buses and in the memory controller with respect to using lottery and deter-
ministic arbitration respectively.

Figure 8.7: Guaranteed IPC (Instructions Per Cycle) scalability

scale much better with the number of cores, e.g. puwmod.

We average the increase obtained in guaranteed performance in each multicore
setup (with respect to the single-core pWCET) across all the 11 workloads obtain-
ing increases in guaranteed performance of 1.3x, 1.4x, 2.6x, 2.9x and 4.9x for the
4C1MC, 8C1MC, 8C2MC, 16C2MC and 16C4MC setups respectively.
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8.7 Related Work

As presented in Section 2.2, there have been several proposals to enable the
use of multicores in real-time systems. Several of these techniques deal with the
communication bus or with the memory controller. A commonality of all these
proposals is that they are meant to work in conjunction with deterministic timing
analysis techniques and not with probabilistic timing analysis as it is the focus of
this chapter (see Section 2.1).

Regarding probabilistic timing analysis, as seen in Section 2.1.2, several tech-
niques [32, 46] have been proposed to cover PTA’s static and measurement-based
variants respectively. At hardware level, a PTA-compliant single-core architec-
ture is presented in [110]. However, to the best of our knowledge, no multicore
PTA-compliant architecture has been presented so far.

8.8 Summary

PTA enables affordable analysis of complex hardware in safety-critical real-time
systems by reducing the amount of information about the hardware and software
state required to provide trustworthy WCET estimates. Yet, PTA relies on some
properties that existing multicore processors fail to provide. In particular PTA
requires that the execution times of the program on the target platform can be
modelled with i.i.d. random variables.

As multicores become the de facto processor architecture for CRTES given
their simple design and ability to co-hosting tasks with different requirements,
enabling their use in conjunction with emergent timing analysis techniques, such
as PTA, is a must.

We have described for the first time a PTA-compliant multicore design. We
propose new low-cost PTA-compliant bus designs that (1) break the determinis-
tic behavior of the bus and (2) the dependence of a given task execution time
on the behavior of co-hosted tasks by means of randomized arbitration policies.
Analogously, following the same principles, we have proposed a memory controller
design with randomized selection of requests. Our results prove that the proposed
designs (i) fulfil PTA requirements, (ii) can be analyzed with existing PTA tools
for single-core processors and (iii) provide high guaranteed performance.
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Chapter 9

Contention-Aware Performance
Monitoring Support

9.1 Introduction

As part of the validation and verification process of CRTES functional and tempo-
ral requirements need to be assessed to obtain enough evidence about the proper
operation of the CRTES. Testing, which is an integral part of the validation and
verification process, is intended to find both temporal violations (i.e. a function
overruns its assigned time budget) and functional bugs (i.e. a given function does
not perform its work). The absence of errors during the testing phase increases
the confidence had on the system correct behavior. In this chapter we focus on
the temporal validation and verification of CRTES, which requires deriving exe-
cution time bounds for software units – also referred to as WCET estimates. The
most common method used to obtain those bounds is measurement-based timing
analysis [180]. In processor architectures with limited complexity the challenge
lies in finding a set of (program) inputs that lead to the WCET. Tools have been
developed and qualified to help on this task. For instance, Rapita’s Verification
Suite [147] can be used to test the achieved execution-path coverage with the user
provided inputs. Of course, the level of rigour required varies depending on the
criticality defined for the function under analysis (e.g. modified condition/decision
coverage is required for DAL A functions under DO-178C [153]).

In recent years CRTES are witnessing an unstoppable transition towards Mul-
tiProcessors System-on-Chip (MPSoC) – featuring cache memories and multicores
– to respond to the increased performance requirements of CRTES in domains
such as avionics, space and automotive. This, in turn, is required for CRTES to
cope with more sophisticated value-added software functionalities [178]. MPSoC
promised benefits come at the cost of complicating CRTES temporal verification.
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In particular the contention between tasks in MPSoCs hardware shared resources
has been acknowledged as one of the most complex elements for temporal analy-
sis [3, 135]. This occurs because the load a given task puts on hardware shared
resources affects its co-runners and vice versa.

In particular, the estimated bounds for the Worst Contention Delay (WCD)
in hardware shared resources are exposed to several inaccuracies that decrease the
confidence had on them [63]. In this scenario, confidence can only be regained via
proper testing in the validation and verification phase. Whenever a task overruns it
is key determining whether the overrun is caused by the contention on the hardware
shared resources or it is due to the application intrinsic (in isolation) behavior. In
the former case, one would want further information on the resource where the
contention delay is taking place and which of its contenders is causing it. This
would be very valuable information for validation, verification – acknowledged as
time and effort consuming steps – and optimization purposes.

This chapter makes the case for the Actual Contention Delay (ACD) metric
and the Contention Cycle Stack (CCS) approach to improve the temporal-related
testing of MPSoCs. ACD captures the time tasks spend stalled in a shared resource
due to contention with their co-runner tasks. The CCS is a stacked representation
of a task’s ACD to understand the particular contention time the task spends in
each shared resource. For each such resource the CCS also allows determining
the contending task causing the contention. The use of CCS brings benefits at
different abstraction levels, both during the integration tests and once the system is
deployed. This includes (i) determining whether a task overruns due to (unnoticed)
systematic hardware failures or software faults; or (ii) the overrun is caused by
inaccuracy of the WCD used by the timing analysis tool; and (iii) optimizing energy
usage and average performance by scheduling tasks such that ACD is reduced.
Overall, our contributions in this chapter can be summarized as follows:

1. We make an in-depth analysis of the Performance Monitoring Counters
(PMC) provided in several processor chips targeting high-performance and
real-time domains including designs by IBM, Intel, Freescale, ARM and
Gaisler. Rather than providing an exhaustive list of PMCs, we focus on the
events related with contention that PMCs can track. Our analysis reveals
that, despite some of the studied architectures having hundreds of PMCs,
they are not meant to track ACD, which prevents deriving the CCS in a
cost-effective manner.

2. With focus on the GR740 processor – which implements the latest NGMP
– we propose a new set of low-overhead CCS-aware PMCs for the two main
shared resources in the GR740: the AHB AMBA bus and the memory con-
troller (note that the L2 cache is partitioned using the hardware support
provided by the GR740, so tasks suffer no contention delay in this resource).
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3. We evaluate our proposal in two solid setups. First, a highly accurate GR740
simulator (see Section 3.3). And second, the CCS-aware PMCs for the
AMBA bus are implemented in a FPGA with the GR740. For both setups,
our results show that CCS-aware PMCs effectively capture the contention
delay suffered by each task which we present with CCS. We also show that
our proposal incurs low hardware cost since it reuses the available PMC in-
frastructure in the GR740, which is multiplexed for different event counts,
adding only 16 new events and its corresponding wiring on the FPGA.

Overall, CCS increases the confidence on the bounds of tasks’ WCD, and hence
the CCS becomes an instrumental means for the testing of CRTES – arguably the
only way to consider increasing dynamic contention in MPSoCs. In case of a task
overrun, CCS allows to ascertain whether this is due to an inaccuracy in the model
or it is due to other systematic behaviors intrinsic to the task or the hardware.
Finally, CCS also enables other scheduling optimizations.

The rest of this chapter is organized as follows: Section 9.2 presents the prob-
lem attacked and the expected results. Sections 9.3 presents a taxonomy of the
PMC in the architectures studied in this chapter based on the detailed analysis
done in Section 9.6. Section 9.4 shows our proposal of CCS aware PMCs. Sec-
tion 9.5 evaluates our proposal. Section 9.7 presents the most relevant related
work. Finally, Section 9.8 presents the summary of this chapter.

9.2 Introduction to and Applicability of The Con-

tention Cycle Stack

During the analysis phase of the system, bounds are derived to the WCD that a
task can suffer. At deployment (operation) tasks suffer delays due to contention,
which we call actual contention delay (ACD). It is worth nothing that, while several
works focus on deriving bounds to WCD, understanding the ACD that tasks suffer
has been barely studied in the literature. In this chapter we show the benefits that
deriving ACD brings for validation/verification and optimization purposes.

9.2.1 Introduction to the CCS

Figure 9.1 shows a synthetic example of the CCS of a given task1, Task1, derived
for a 4-core processor with a shared bus and memory (the L2 is split per core),
when Task1 runs in a workload with Task2, Task3 and Task4. Under each CCS

1In this chapter, for the sake of simplicity, we consider a correspondence between task and
core, i.e., TaskX runs in CoreX.
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Figure 9.1: Synthetic CCS for a given Task1 on a quad-core. Note that we usually
represent the CCS vertically, though for space constraints this figure presents it horizon-
tally.

component we stack2 all the cycles that Task1 spends on a given resource. The
core component covers the time Task1 spends executing locally in the core (28%
in the example).

For the off-core resources, the CCS breaks down per task the time in each
component. For instance, the bus component covers the cycles, called working
cycles, in which the processor is stalled due to the processing of a request in the
bus, labelled as Task1 ; and the cycles in which Task1 is waiting to get access to
the bus while Task2, Task3 and Task4 are using it, called contention cycles. In the
figure, we observe that Task1 is stalled during 24% of its overall execution time
due to the bus: 4% of the cycles to handle its own requests, while 4% waiting
for Task2, 8% for Task3 and 8% for Task 4. Likewise, the CCS also provides
information about Task1’s working and contention cycles in the L2 cache and
memory controller. The shaded elements in each component represent Task1’s
working cycles, i.e. its behavior in isolation, while the other elements provide
information about the time Task1 spends stalled in each shared resource due to
contention caused by each contending task.

9.2.2 Applicability

Temporal Validation and Verification. Deriving bounds to the contention
delay in MPSoCs, either by building timing models to feed static timing analy-
sis tools or using measurements, is challenging. In both cases the complexity of
MPSoCs affects the confidence one can put on the derived bounds.

For timing models, one could infer the contention that requests accessing a
shared resource cause on each other from the reference documentation. However,
manuals are becoming multi-thousand documents so extracting timing informa-

2Cycles in each component do not occur consecutively during the execution of the task. In
the CCS we stack those cycles (and show them) consecutively.
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tion is an error-prone process. As a matter of example, some parts of the Freescale
P4080 specification have 2,000 pages [71] and the Infineon XMC4500 microcon-
troller documentation has more than 2,500 pages [85]. Even if the chip vendor
explicitly provides this information in the manuals, it is the case that MPSoCs
documentation can be inaccurate or outdated with respect to the deployed chip
implementation [3]. For instance, the FreeScale e500mc core documentation has
already reached the third revision with details about non-negligible changes across
revisions [72]. Similarly, the documentation of processors such as the ARM Cor-
tex R5 – specifically targeting CRTES – have abundant errata [72, 16] despite
being relatively simple. All these difficulties have made that real-time industry
and static timing analysis tool providers use measurement-based approaches to
derive contention bounds [135].

With the goal of deriving bounds to WCD, several measurement-based tech-
niques exist that use specialized kernels, called resource stressing kernels (rsk) [65],
which aim at putting high, ideally the highest, load on shared resources. Those
rsk are used to put a given task under analysis under stressful contention scenar-
ios. When there are several shared resources, it is virtually impossible to design
a rsk that puts the highest load on all of them simultaneously [144]. Hence, it is
hard – if at all possible – to determine from the execution time whether, under a
given workload, a task hits the WCD in one shared resource and not in another
or whether the WCD was not hit for any of the resources.

The CCS allows determining the ACD a task suffers per resource (and per task)
which enables verifying and validating contention bounds by determining how close
is the ACD to the theoretical WCD. The CCS can be used in those scenarios
to provide evidence about the validity of contention time bounds – increasingly
derived with measurements [135, 63] – such that the contention suffered by the
task in the workload matches the worst possible latency it can suffer [138]. Also,
in case a bound is exceeded, the CCS can detect it and identify the reason behind
it. For instance, assuming that Task 1 in Figure 9.1 had an overrun due to Tasks 3
and 4 memory contention, the CCS allows identifying this situation by providing
the information that memory contention is 38%, having Tasks 3 and 4 a 15% of
impact each. CCS also provides the execution time in isolation just by removing
the ACD. For instance, if Tasks 2, 3 and 4 are removed from the CCS in Figure 9.1,
what remains is the execution time of Task 1 when no other core is running.

Optimization. The CCS provides valuable information that can be used for
optimization purposes. For instance, the CCS allows identifying, in the example
in Figure 9.1 that Task 1 spends 43% of its execution time in memory, 30% of
which is due to interference from Tasks 3 and 4. In such a case system designers
can either reduce memory accesses from Task 1 by improving cache locality of
accesses or prevent Tasks 3 and 4 from being scheduled together with Task 1.
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Table 9.1: Analysis of whether each processor contains PMC in each of the cate-
gories identified in our taxonomy (Detailed description provided in Section 9.6).

Cycle Count Event Count Data
Count

Current
Events

Use Busy Idle Use Busy Thld InsT
IBM 3 3 3 3 3 7 3 3 7

Intel 3 3 3 3 3 3 3 7 3

ARM 3 3 7 3 3 7 3 7 7

Freescale 3 3 7 3 3 3 3 7 7

GR740 3 3 3 3 3 3 3 7 7

Such optimizations bring the advantage of having more slack in the schedule, so
that other tasks can also be consolidated onto the same hardware platform, or
some energy can be saved.

To obtain the CCS we need detailed information of the processor events affect-
ing its timing, which is obtained through its PMC. In the next section, we analyze
those PMC available in some MPSoCs useful for measuring contention.

9.3 Taxonomy of PMCs in Real Multi-Core Pro-

cessors

We have analyzed in detail the available information about the PMCs of the IBM
POWER7, the latest Intel architectures, the ARMv7-A, the Freescale P4080 and
the GR740. Our goals are identifying the type of events that can be tracked
with those counters and whether this can be used to build the CCS, rather than
presenting an extensive list of all counters of the analyzed architectures – that in
several cases exceed 500. It is worth noting that, since our focus is on contention
interference effects, we analyze the trackable events on hardware shared resources.
From this perspective, the events happening inside the computing cores private
resources (e.g. pipeline and local caches) are of no interest.

From our analysis we have produced a PMC taxonomy and have derived some
conclusions on PMC that hold across all platforms. For readability reasons, we
defer a detail explanation of the PMC support in each architecture to Section 9.6
and we focus on this section on the result of the analysis, i.e. the taxonomy which
is shown in Table 9.1.

Cycle count. This category covers those counters that measure time (cycles) . This
is further broken down into the following. Use: number of cycles that a resource
is in use; Busy : number of cycles that a resource is unavailable and causes a core
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stall. And Idle: number of cycles that a resource remains unused.

Event count category groups those counters that measure the number of times an
event happens. This category is further divided into the following. Use: number
of times a resource has been accessed; Busy : number of times a resource has been
unavailable because it was busy; Threshold : number of times a set threshold has
been exceeded; And Instructions by type: number of times an instruction of a
given type is executed.

Data count covers the counters that measure the amount of data transferred or
managed.

Current events groups those counters that provide the current status of the pro-
cessor.

We find few counters that help understanding to some extent the effect of
contention interferences:

POWER7 : The PMC PMC-CMPLU-STALL-THRD provides the number of cy-
cles a task is stalled due to inter-task interferences in the reorder buffer (a.k.a. as
Global Completion Table). No information on contention in core-external shared
resources is provided.

Intel: The MEM-TRANS-RETIRED.LOAD-LATENCY counter can be config-
ured to track the number of times memory load operations latencies exceed a user
defined threshold. This allows the user to approximate the worst observed be-
havior, and to upper bound it. However, such counter neither measures actual
contention nor identifies the reasons behind such contention.

GR740 : PMCs can be configured in maximum count mode. While in this
mode, the counter keeps the maximum amount of time the selected event has been
asserted. It is also possible in this mode to count the maximum amount of time
between two event assertions. Maximum count mode might be useful as a first
step to implement CCS PMCs. Using Maximum Count Mode it could be possible,
for example, to count the longest burst of bus cycles, or the longest amount of
time the bus has been without having a read access. As in the case of Intel and
IBM counters, these counters are neither designed to measure actual contention
nor to identify the cause of such contention.

In all the studied architectures, PMCs are used to improve average system
performance by monitoring software execution, characterizing processor behavior,
and/or helping system developers bring up and debug their systems, but their
focus is not monitoring contention or interferences across tasks, so they do not help
deriving the CCS. We note that some information about contention interference
can be derived in controlled scenarios by means of experimentation. For instance,
in a first experiment the program under study is run in isolation recording cycle
count PMC readings. In a subsequent set of experiments the program under study
is run again as part of a workload. By subtracting the PMCs in the first run from
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those in the second run some inter-task interference information can be obtained,
though likely it will not be precise on which shared resource and which task caused
it. Furthermore, this process is complex due to reproducibility issues and, in some
cases, because the system cannot be used to carry out those extra runs. For
instance, if a deadline is missed in a fail-safe system (1) it may be difficult – if at
all possible – to reproduce the scenario that led to the deadline miss and (2) the
system cannot be used to run some experiments because it would jeopardize its
availability given that its operation needs to be quickly resumed.

9.4 PMC proposal for obtaining CCS

The CCS provides a representation of the working and contention cycles of each
task (τi) running in a multicore. Tasks spend some processing cycles at core level3,
pi, and some others accessing core-external hardware shared resources (R) that
cause cores to stall and consume cycles, si. For each shared resource r ∈ R, stall
cycles are broken down into working cycles, wri , and contention cycles, cri . The
former corresponds to the cycles τi spent actually using the resource, as it happens
when running in isolation, i.e. without contention. The latter covers the cycles
in which τi was stalled due to some inter-task (contention) interference activity
generated by another contending task τj. In our reference architecture, the CCS
can be expressed as shown in Equation 9.1:

ti = pi + si = pi +
∑
r∈R

(wri + cri ) (9.1)

Let c(τi) be the (contending) tasks executing at a given point in time with a
given task τi. The number of tasks in c(τi) varies from 0 to Nc−1, i.e. the number
of cores minus one. For τi, its CCS for each resource cri , can be further broken
down so that it provides information about the contention each of its contenting
tasks cause on τi, called cri←j.

cri =
∑

τj∈c(τi)

cri←j (9.2)

By combining Equation 9.2 and Equation 9.1, the CCS can be expressed as
shown in Equation 9.3:

3We include in this category also cycles in which the pipeline is stalled (no instruction can
be fetched) due to a local stall, for instance a floating-point operation blocking the processor due
to its long latency.
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ti = pi +
∑
r∈R

wri +
∑

τj∈c(τi)

cri←j

 (9.3)

In this chapter we explore the cost and benefits of the CCS in the Cobham
Gaisler GR740.

9.4.1 Cobham Gaisler GR740

The GR740 is equivalent to the NGMP described in Section 3.1. The GR740
implements hardware mechanisms to partition the L2 cache so that each core can
only access its assigned cache ways. Hence, there is no contention once a request
arrives at the L2 and all cycles spent in the L2 are working cycles. If the request
misses in L2, it accesses memory. The memory controller behaves as a FIFO queue,
with the request on top accessing memory, i.e., consuming working cycles, and the
other requests in the queue waiting, i.e., consuming contention cycles.

9.4.2 CCS for the GR740

The GR740 comprises three main on-chip hardware shared resources, the memory,
L2 cache and the bus, so R = {mem,L2, bus}. Building the CCS for the GR740
requires deriving the processing cycles (pi) for the core where the task under anal-
ysis is, working cycles (wri ) for each shared resource and contention cycles (cri←j)
for each contending task in the bus and the memory. The L2 cache is a special
case because it is partitioned, which means that contention on the access to it is
removed, i.e., cL2i←j = 0 for all τi, τj.

9.4.3 Processing and stall cycles

We deploy existing PMCs in the GR740 to derive pi. In particular, we use
the execution cycles, ti, and the stall cycles, si to compute processing cycles as
pi = ti − si. Execution cycles ti are obtained from existing PMC (processor event
time:0x15 [39]). When deriving si it is worth noting that the stall cycles are
obtained as a combination of three existing PMCs since the cycles that the pro-
cessor is stalled, si, are caused by the i)IL1, ii)DL1 or iii)the write-buffer when
they wait for a request to be completed outside of the core. These three events
can be directly measured from their respective available PMCs (processor events
ichold :0x02, dchold :0x0A and wbhold :0x10 [39]) and their addition gives si.
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Figure 9.2: CCS module and input/output signals.

9.4.4 Working and contention cycles

Our extension to the GR740 PMC infrastructure consists in adding new low-
overhead PMCs that allow accounting for wri and cri←j for the bus and the memory.
L2 working cycles, wL2i , can be obtained indirectly from available PMCs. Since
hit and miss latencies are known, and available in the documentation [39], an
estimate of the time spent in the L2 cache can be derived using these latencies
and the number of hits and misses, which can be directly measured from their
respective PMCs (events l2hits:0x60 and l2miss:0x61 [39]). If L2 latencies were
not available in the documentation, L2 working cycles could be easily obtained as
the remaining execution time cycles, since all the cycles, except L2 cycles, can be
accurately classified as either core, bus or memory cycles. Note that all L2 cycles
are working cycles, because there is no contention in the L2.

For the bus and the memory, working (and contention) cycles cannot be indi-
rectly obtained from available PMCs. For instance, the GR740 provides PMCs to
count the number of bus accesses, however, since the latency per access is not fixed
– and in some cases depends on other components [94] – working and contention
cycles cannot be derived.

We propose extending the available processor’s statistics unit, called L4STAT
in the GR740, with new events needed by the CCS, called CCS module (CCSm).
Figure 9.2, sketches the CCSm and how it is connected to other hardware blocks
in the GR740. Each shared resource provides two pieces of information to the
CCSm on every cycle: the core that is using the resource, which allows tracking
the working cycles, and the cores that are waiting for the resource, which allows
tracking if a core is interfered and in that case, the actual core using the resource
is designated as the interferer.

It is worth noting that certain resources inside the core, such as the write-
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buffer, can hide the latency of some requests. This makes that even when there are
outstanding requests in the bus or in memory, the processor core is not necessarily
stalled, since the write-buffer can hide that latency. The CCSm requires identifying
the cycles that the processor is stalled to know if it should account cycles in shared
resources, either as working or contention cycles. Otherwise there would be more
accounted cycles than cycles spent in reality, thus reducing the accuracy of the
CCS.4 For instance, if the write-buffer hides the latency of a write request, even if
that request is using the bus, the core is working, thus consuming processing cycles
and those cycles should not be accounted for the bus. For that purpose, the core
should provide a stalled signal to the CCSm, indicating whether the core is stalled
waiting for a request or not. As mentioned at the beginning of this section, the
stalled signal can be easily obtained as a combination of the three trigger signals
for the PMCs that measure the cycles that IL1, DL1 or the write-buffer are waiting
for a request, which correspond to the stall cycles of the core, as seen before.

Although in theory some events could overlap, and so some cycles could be
accounted twice, this occurs seldom in practice. In particular, a core may have
two requests in flight simultaneously (one in the bus and another in the memory
controller). However, this can only happen if the first request is a write operation
– so it does not stall the core – and the second one a read operation. In this case,
since the write operation cannot stall the execution, any stall due to contention or
access delay is accounted to the second request, since it is the only one that can
impact execution time. Still, our results show that the frequency of occurrence of
that combination of events is negligible in practice.

9.4.5 Shared AMBA AHB bus

One of the most important hardware shared resources in the GR740 (and in many
other MPSoC for real-time systems) is the backbone bus, since it connects the
different cores with the memory/cache subsystem (and possibly other devices or
subsystems). The In an AMBA bus (as explained in Chapter 4), a single AMBA
request from a given task can block other tasks’ accesses to the bus for long periods.
This reinforces the need to have the CCS for the bus. In Chapter 4 we also describe
the high cost that changing the AMBA interface would incur, specially regarding
compatibility and development/usage of third-party intellectual-property cores.
Therefore, our PMC support for the AHB AMBA bus must not require any change
in its interface.

Under the AMBA protocol, the arbitration process involves several hardware
blocks (the arbiter and one or several masters) and several signals. We focus on two

4This also stands for the counters that count L2 hit/miss, counting only when the processor
is stalled. Otherwise, original PMCs would account hits/misses for write requests that do not
stall the processor.
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Figure 9.3: Simplified AMBA arbitration process.

of these signals: HBUSREQi and HGRANTi. Master mi asserts HBUSREQi to indicate
the arbiter that it is requesting the bus. The arbiter asserts HGRANTi when it grants
access to mi, according to its arbitration policy (not specified by AMBA protocol,
though in our case is round-robin [39]). As an illustrative example, Figure 9.3
shows one arbitration process5 for m1. Once master (core) 1 is ready to send a
request, it asserts the HBUSREQ1 signal. At that point in time, core 2 is using the
bus, since HGRANT2 is active. In this example, let us assume that core 3 and core
4 are also waiting for the bus (HBUSREQ3 and HBUSREQ4 are active) and according
to the round-robin arbitration policy they both have higher priority than m1 at
this point. The figure shows how the grant is passed from m2 to m3 and m4

respectively. When the arbiter grants access to core 1, it sets the HGRANT1 signal
for m1.

We propose to forward HBUSREQi and HGRANTj signals from the arbiter to the
CCSm. By checking these signals the CCSm infers on each cycle which master
mj is using the bus, thus the working cycles wbusj , and whether another master mi

is waiting for master mj, i.e. the contention cycles cbusi←j. Our proposal maintains
the same bus interface, since no signals are introduced or modified. We simply
forward the existing signals to the CCSm as shown in Figure 9.4. The CCSm has

5The timing on the figure is an abstraction of the real AMBA timing, see section 3.11 of [14]
for details.
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Figure 9.4: AMBA Signals and CCSm.

Nc ×Nc = 16 Bus Contention Counters (bcci,j). bcci,j stores the number of cycles
that (HBUSREQi) & (HGRANTj) holds. bcci,j where i 6= j hold the contention cycles
that master i suffers from master j, i.e. cbusi←j. Counters bcci,i store the working
cycles that master mi uses to process its requests, i.e, wbusi . In the bottom part of
Figure 9.3 we show how cycles are accounted for core 1.

It is worth noting that the HBUSREQi and HGRANTj signals are common to other
bus interfaces such as Wishbone (grant and cycle signals), Avalon (waitrequest and
read/write signals), VCI (valid and acknowledge signals) or CoreConnect (com-
mand and response send and accept signals). For other types of interconnects,
such as as AMBA AXI, similar signals are available that allow to monitor the
interconnect usage.

Overall, our approach to account CCS does not change the AMBA interface or
protocol. Instead we simply snoop the AMBA AHB arbiter signals and with this
information we measure the time that a given task waits for the others when it
tries to get access to the bus and the time that spends using it, so that all types
of accesses are captured [94]. The hardware cost in terms of storage is 16 counters
×32 bits each. That is 64 bytes.

9.4.6 Memory controller

The memory controller comprises a FIFO queue, with one entry per core, the mem-
ory bus and a command translator that translates AMBA requests into DRAM
commands. When a request from a core ci arrives at the FIFO queue, if the queue
is empty, it is put at the top of the queue and accesses the memory immediately.
Otherwise, when other requests are in the queue, it has to wait for them to finish
since the memory bus and memory controller only accept one request at a time.
The former corresponds to the time the request takes to be processed once it is
granted access and it cannot be further delayed by any preceding request. The
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latter is the time the request waits to get access to the memory controller.
At any given cycle, the core using the memory could be determined if informa-

tion is provided about the id of the core that is at the top of the FIFO queue, and
hence whose request is being processed. The id of the requests in a FIFO queue
entry – other than that at the top position – are those cores suffering contention.
Hence, the knowledge of the core id for each request in the FIFO queue is needed.
In the GR740, the id of the core generating a request is kept in the AMBA AHB
as master id. However, once the request accesses the L2 this information is no
longer kept.

Intuitively this would require keeping the core id on every L2 cache line, which
would incur a significant increase in the L2 cache size. However, in reality the
core id is kept in the Miss Status Holding Register (MSHR) of the L2 cache.
The process goes as follows. On the event of an access to the L2, the L2 cache
determines whether that access is a hit or a miss. In case of a miss, the request
is stored in the MSHR with the core id as part of the miss request, to be able to
respond to the appropriate master afterwards.

Our proposal propagates the core id from the MSHR to the memory controller
FIFO queue. When a request is sent from the L2 to the memory controller it is
tagged with the core id. Both the MSHR and the FIFO queue are relatively small
with sizes up to 8/16 entries in general. In our case both have 4 entries. Hence
our proposal incurs an increase in area of 4× log2(Nc = 4) = 8 bits (1 byte).

In terms of logic, each position in the FIFO queue sends a signal to the CCSm
with the core id of the request in that position, if any. The core i at the top of
the FIFO queue, FIFO(0) = i, is the one accessing the memory and the rest of the
cores in the FIFO queue, j ∈ FIFO|j 6= i, are those interfered by i. The CCSm
considers working cycles in memory for core i, those cycles when the core is at the
FIFO’s top entry. If there is any other request from another core j in the FIFO
queue, the CCSm accounts contention cycles in the memory for them caused by
core i.

The CCSm has Nc × Nc = 16 Memory Contention Counters (mcci,j) for the
memory controller with an associated size of 16×32/8 = 64 bytes. Counter mcci,j
stores the number of cycles that (FIFO(0) = i) & (j ∈ FIFO) holds. Counters
where i 6= j hold the contention cycles that core j suffers from core i. Counters
with i = j store the working cycles that core i uses to process its requests.

9.5 Evaluation

We carried out the evaluation of CCS under two different setups, both focusing
on the GR740 [39]. First, we model the GR740 on a simulation tool in which
we implemented the PMCs presented in Section 9.4. In our second evaluation
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environment we focus on an FPGA model of the GR740 in which Cobham Gaisler
implemented the PMCs for the bus, the CCSm and their signals.

Benchmarks. As reference applications we use the EEMBC Autobench suite
[143] (see Section 3.2). In particular we use: a2time, aifftr, aifirf, aiifft, basefp,
cacheb, canrdr, idctrn, iirflt, matrix, pntrch, puwmod, rspeed, tblook and ttsprk. We
also developed a set of synthetic kernels that inject constant high pressure either
on the shared bus or on the shared memory. The Bus-Stressing Kernel, or bsk,
comprises memory read requests that always miss the L1 and hit the L2, thus
maximizing the traffic on the bus. This is done by having 5 memory accesses that
access the same set of the L1 cache, thus exceeding its 4 ways. These accesses hit
on the L2 cache by targeting different sets on the L2 cache. The Memory-Stressing
Kernel, or msk comprises memory read requests that always miss on the L1, but
in this case they also miss on the L2, following the same procedure of targeting
the same set, done for the L1. When our task under analysis runs against three of
these kernels, it finds very high contention on the bus or the memory respectively.

For simplicity, in our experiments we run four-task workloads in which the task
in core 1 (also referred to as task 1) is the task under analysis (TUA) for which
the CCS is derived. The tasks on the other cores are considered contending tasks.

9.5.1 Simulator evaluation

Setup. We model the GR740 [39] running at 200MHz using the validated simula-
tor (see Section 3.3). Each core’s private instruction (IL1) and data (DL1) caches
are 16KB, 4-way with 32-byte lines. The shared second level (L2) 256KB cache is
split among cores, each receiving one way of the L2, so that inter-task contention
only happens on the bus and the memory controller. With DRAMsim2 [171] we
model a 2-GB one-rank DDR2-667 [104] system.

We implemented the CCSm and its signals, as presented in Section 9.4, includ-
ing the PMCs required to directly measure the working and contention cycles on
the bus and the memory controller. With these modifications we build the CCS
directly from the measures obtained from the PMCs in one execution.

Timing Validation. In our first experiment, we use the CCS to cross validate
two different methods deriving bounds to the WCD tasks suffer accessing GR740
shared resources. For that purpose we run each EEMBC benchmark under different
4-task workloads and collect the ACD obtained with CCS and compare it with the
expected WCD.

WCD bounds with measurements. In this case we run each EEMBC against
several copies of the bsk or msk, which are expected to generate high (potentially
the highest) contention in the bus and the memory to the TUA.

Theoretical WCD bounds. In this case, WCD bounds are predicted by multi-
plying the number of accesses the benchmarks does to the bus (and the memory)
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Figure 9.5: EEMBC with different contention workloads.

by the maximum delay each request can suffer – called Upper-Bound Delay or
ubd [138] – in the access to the bus (and the memory). In the case of the bus, as-
suming that all accesses target the L2 cache, ubd-bus is 27 cycles that corresponds
to the latency of three contending cores sending requests that have the highest
latency (9 cycles) in our setup. In the memory case, ubd-mem is 69 cycles that
corresponds with three complete row accesses of the contending cores, i.e. 3 · tRC ,
with tRC = 23.

Figure 9.5 shows the CCS obtained when running each EEMBC benchmark in
isolation (isol); when using the measurement-based WCD model that runs each
EEMBC against either three bsk or msk ; and when using the theoretical WCD
model for which the CCS for ubd-bus and ubd-mem are constructed replacing the
interference on bsk and msk with the theoretical ubd for each resource respectively
or for both in the ubd-bus+mem case. For simplicity, Figure 9.5 shows results
averaged across all the EEMBC Autobench.

We observe that the measurement-based WCD model, even if bsk and msk put
a high load on the resource, never exceeds the bounds provided by the theoretical
ubd -based model. In particular for every shared resource and contending task the
theoretical bounds are higher than the measured ones.

– This experiment shows that the approach based on running each TUA against
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Figure 9.6: cacheb EEMBC in different workloads.

3 copies of msk and bsk does not capture that theoretical bound. For the case of bsk
we observe that these three benchmarks generate some activity in the memory (i.e.
Mem Task2, Mem Task 3 and Mem Task 4 are non zero). This can be the reason
why these benchmarks do not generate maximum contention delay in the bus.
Said that, it is the case that this models approximates quite well the maximum
theoretical value using ubd in both, bus and memory, but not in a combined
manner [144] as shown in the rightmost bar (ubd-bus+mem) of Figure 9.5.

– The result of this experiment also shows that in the experiments done nothing
suggests that theoretical WCD bounds are violated for any of the contender tasks
in any resource. This increases confidence on the validity of those bounds.

Scheduling Optimizations. In our second experiment we show how CCS
could be used to improve other system metrics. For this experiment we choose
cacheb EEMBC benchmark as TUA. Figure 9.6 shows the CCS obtained for the
TUA under different workloads, composed of randomly picked EEMBC bench-
marks. First, we see that most of the interference is suffered on the bus, because
the L2 is filtering the accesses to the memory. We also see that Task2 in workload
2, i.e., (wkld:2,task:2)=(2,2), has high impact of TUA’s execution time due to
the interference on the bus. On the other hand, (2,3), (3,4) and (4,2) have a low
impact on TUA’s execution time. This information can influence the scheduling
decisions, for instance, allocating the tasks with the highest interference, such as
(2,2), into the same core as the TUA so that they do not interfere each other.
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Figure 9.7: r-bsk under analysis against different bus contenders.

9.5.2 FPGA Evaluation

Setup. We implemented the CCS for the AMBA AHB bus on a GR740 FPGA
prototype using a Xilinx ML510 evaluation board. In particular Cobham Gaisler
implemented the bus CCS-aware PMCs proposed by us that measure the working
and contention cycles on the processor AHB bus. We used the commercially avail-
able Cobham Gaisler GRMON2 [37] debug monitor software to directly extract the
CCS from the statistics unit (L4STAT) of the GR740, without affecting execution.
The CCS is directly constructed from the readings obtained in one execution of
the task, i.e, no further post processing is required.

The real cost of the modifications is low since we reuse the available counters
and infrastructure of the GR740 L4STAT unit. Our PMCs just require the wiring
of the AMBA signals, which corresponds to 8 1-bit signals, that is 4 HBUSREQ
and 4 HGRANT signals. The cost of the wiring depends on the target technology,
synthesis tool and design size.

As TUA, we use bare-metal resource stressing kernels that put high load on
the bus using either read or write bus requests, called r-bsk or w-bsk respectively.

Evaluation. To evaluate the design we use different bsk contenders with dif-
ferent type of requests, read or write that either hit (read-hit, write-hit) or miss
(read-miss, write-miss) on the L2. Each type of request causes a different bus
contention due to the different behavior of requests and L2 latencies.

Figure 9.7, shows the CCS when taking as TUA r-bsk against different work-
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Figure 9.8: w-bsk under analysis against different bus contenders.

loads consisting of different types of bsk, shown on the x-axis. We observe that the
worst effect is caused by the read-miss workload, followed by the read-hit. This
happens because read requests that miss on the L2 hold the bus while accessing
memory. On the other hand, read requests that hit on the L2 do not access mem-
ory, thus, requiring less time on the bus. We also see that write-hit and write-miss
workloads have the same effect on the bus, which is smaller than both read work-
loads. This happens because write requests only require an acknowledge and are
immediately responded, even if they miss on the L2.

The rightmost bar in Figure 9.7 shows a mixed scenario, in which Task2 uses
write misses, Task3 read hits and Task4 read misses. The obtained CCS effectively
demonstrates the capabilities to identify the contender with the highest interfer-
ence in a workload in which contenders have different resource usage profiles, Task4
in this case.

Figure 9.8 shows the same contention scenarios using w-bsk as TUA. As shown,
the bus working cycles reduce in comparison with Figure 9.7, because write bus
requests from w-bsk take much shorter time in the bus than read requests due to
the longer L2 cache read hit latency. We observe the same contender behavior
with similar amount of contention, even though w-bsk requires less time on the
bus than r-bsk. This happens because contention mostly depends on the amount
of interfered requests and not on their duration, since once a request accesses the
bus, it cannot be preempted.
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Overall, CCS provides valuable and accurate information to build and validate
timing models and WCD bounds.

9.6 PMC Survey

In this section we provide further details on the PMC support of different archi-
tectures that can be useful to measure contention in shared resources to some
extent.

IBM. The IBM POWER7 [98] is an 8-core multicore in which each core is
4-thread Simultaneous Multithreaded. Each core is divided into two clustered ex-
ecution pipelines, with each one supporting two threads. Program performance
analysis in such an aggressive core architecture with resources shared among differ-
ent threads is complex. The POWER7 processor comprises a Performance Moni-
toring Unit (PMU) with six thread-level PMCs. Four of these are programmable
from software to monitor the desired (four) events at the same time. There are
more than 500 possible performance events that can be read.

Based on our analysis of the POWER7 we identified counters for cycle utiliza-
tion, busy and idle cycles, occurrences of a number of events, instructions of each
type executed, and the amount of data transferred. PMCs in the threshold and
current events were not found.

Intel. Usually Intel processors feature superscalar execution, complex branch
predictors, out of order execution, and several levels of cache memories. Provided
PMCs focus on providing performance metrics for a single process with counters for
analyzing branch predictor effectiveness, cache misses due to speculative execution,
coherence protocol metrics, etc. Most counters can be configured to measure events
for either from a core or all the cores, an agent or all agents, and other kinds of
specific qualifications (such as detection of all events/exclude prefetching events,
or counts for different states for the coherence protocol used). In this work we have
analyzed the PMCs available in the following Intel architectures: Haswell (Xeon
E3-1200 v3), Ivy Bridge (Xeon E3-1200 v2 ), Sandy Bridge (Core i7-2xxx, Core
i5-2xxx, Core i3-2xxx, Xeon E3-1200), Nehalem (Core i7, Xeon 5500 Series), and
Westmere (Xeon E7-xxxx).

Intel’s PMCs are to some extent similar to those of the IBM POWER7 since
both processors are general-purpose high-performance ones. Still, some relevant
differences exist. For instance, Intel processors don’t have explicit support to
measure data transferred. However, Intel’s PMCs include the following counters:
– Threshold exceeding count. These counters measure the number of times a

threshold specified in number of cycles has been exceeded for a given event. The
threshold value is configured by the user.
– Outstanding Requests. This counter measures events such as cache requests, all
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offcore requests, etc. in the moment of reading the counter.

ARM v7. The ARMv7-A architecture [11] provides 6 different 32-bit counters,
which can count any event available. This architecture is used, among other by the
Cortex-A7, Cortex-A9, Cortex-A15 [15] and the big.LITTLE [76] system. ARMv7-
A provides a Performance Monitoring Unit (PMU) with 6 performance counters.
The events counted by ARM architectures are a subset of those available in high-
performance processors such as Intel and IBM ones described before as shown in
Table 9.1. Still this architecture is rich in counters for a number of events such as
miss-predicted branches, number of exceptions, L1 write backs, number of L1/L2
refills, L1 accesses, bus accesses and data memory accesses among others.

Freescale. Freescale P4080 processor hosts eight e500mc [72] cores, which
are superscalar processors that can issue and complete two instructions per clock
cycle. Each core has a private L1 instruction and data cache. It also has a private
L2 unified cache. The eight cores are connected through a proprietary CoreNet
Fabric coherent interconnect with two shared 1MB L3 off-chip caches. Each L3
off-chip cache is connected to a separate DDR memory controller.

The PMC support in the P4080 offers dedicated core and SoC platform coun-
ters [68, 69]. At the core level, the e500mc core allows monitoring 256 different
hardware events, each core being able to monitor 4 different events at a given
time in 4 dedicated 32-bit registers. At the SoC level the P4080 Event Process-
ing Unit (EPU) allows counting SoC platform events of interest. Although some
events across Intel and Freescale processors differ due to their different designs, in
essence, the set of PMCs in both platforms is quite similar as shown in Table 9.1.

GR740. The GR740 is a 4 core LEON4 processor developed at Cobham
Gaisler under contract with the ESA. It contains one or more LEON4 Statistical
Units (L4STAT). The debug driver for L4STAT provides an interface for reading
and configuring the 32-bit performance counters available in a L4STAT core. Each
L4STAT allows configuring any available sixteen events we want to monitor. Each
counter has an associated control register. Both the counters and the control
registers are mapped to the peripheral address space.

The available events can be divided in three different categories, depending on
the component counting the events. Processor events: events generated by the
processor, e.g., pipeline or the L1 cache; bus events: events generated by the bus,
e.g., busy cycles or number of read accesses; and Device specific events: events
generated by other devices such as the L2 or the IOMMU.

Again, although the PMCs across chip vendors do not match, the type of
counters one can find in the GR740 is quite similar to those in the Freescale and
Intel architectures, with the exception of the idle cycle counters that the GR740
does include for the bus.
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9.7 Related Work

Performance Monitoring Counters (PMCs) have been traditionally used to measure
average performance and power consumption [125]. One of the few works that
addresses contention monitoring between tasks is [189], which uses cache scouts
to monitor contention on shared caches. However, with few exceptions [163, 33],
cache partitioning is the common solution in the context of CRTES due to the
complexity of estimating the WCET accurately on top of shared caches. Although
our work could be ported to non-partitioned caches building on [189], we leave this
analysis for future work.

The IBM POWER family, starting with the POWER5, have developed a
Cycles-Per-Instruction (CPI) stack that covers the resources on which each task
spends its cycles. The CPI stack reports the cycles spent in each core resource.
For instance in the load/store Unit (LSU) [98]. This happens when a load/store
operation is stalled. The CCS instead does not focus on the local resources getting
clogged by contention (e.g. the LSU) but the off-core resources identifying where
(and how much) contention occurs and the contending core producing it.

In [159] authors use custom PMC to derive WCD and WCET estimates with
measurement-based timing analysis on a bus-based system. Authors assume that
the WCD for the bus is known, which is not always the case in real implementa-
tions, as shown for the AMBA AHB bus in Chapter 4. Several works derive bounds,
during the analysis phase of the system, to the WCD that a task may suffer in dif-
ferent processor resources assuming static or measurement-based timing-analysis.
We do not detail these works, already explained in Section 2.2, since we focus
on measuring the ACD tasks suffer rather than on making a-priori predictions on
WCD.

The ACD in multicore processors has been characterized mostly using resource-
stressing kernels (rsk) [144, 1], for instance in a previous implementation of the
NGMP [65] or in the Freescale P4080 [134]. However, these approaches provide
neither a breakdown of the ACD nor means to measure it accurately online, while
CCS provides both.

Authors in [135] propose a runtime monitoring to control the resource usage
of tasks running on a multicore, preventing tasks from having resource usage limit
violations. Authors make use of access count PMCs, such as bus access counts.
However, it has been shown in Chapter 4 that bus latencies may differ accross
different types of accesses and even for the same type. As a result, access counts
does not provide the actual impact of contention time which has to be estimated.
The ACD instead provides in an exact manner contention delay for each task.
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9.8 Summary

Obtaining accurate ACD breakdowns in MPSoCs provides evidence about the
trustworthiness of contention bounds and increases confidence on derive execution
time bounds; it is also of prominent importance to detect the reasons for overruns
in a critical system once it has been deployed. It also helps optimizing system’s
performance and improving scheduling decisions based on the knowledge of the
real impact of contenders in terms of execution time. Unfortunately, to the best
of our knowledge no solution exists to measure and classify the ACD in CRTES.

In this chapter we propose the Contention Cycle Stack (CCS), which provides
an effective representation of the ACD that classifies contention per resource and
contending task by means of measurements. The CCS relies on some existing Per-
formance Monitoring Counters (PMCs) and introduces its own-set of low-overhead
PMCs to track the events that allow building ACD per task and shared resource.
Our evaluations for the Cobham Gaisler GR740 (NGMP) show the benefits of the
CCS. In particular CCS enables understanding the source and magnitude of the
actual contention delay (ACD) caused by contending tasks in a MPSoC, which is
crucial to adopt MPSoC in CRTES.
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Chapter 10

Bounding Resource Contention in
the NGMP

10.1 Introduction

In a time-anomaly [149] free multicore system, time composability can be achieved
by modeling at analysis time a scenario in which each access that the task under
analysis (τ) makes to a hardware shared resource suffers the highest contention
possible. For instance, in the case of a round-robin bus accessed by Nc cores this
is equivalent to assuming that each request suffers maximum contention from each
of the remaining Nc − 1 cores. That is, the single-access maximum (contention)
delay, or samd, corresponds to:

samd = (Nc − 1)× Lbus (10.1)

where Lbus is the maximum bus latency for a single request. The resulting
Execution Time Bound1 (ETB) estimate in this scenario is fully time composable
since it accounts for the maximum load that corunner tasks of τ can put (at
operation time) on the target resource. This, though, comes at the cost of inflated
ETB estimates (e.g. up to more than 5x times in a 4-core processor as reported
in [65]). Tighter ETB estimates can be obtained by adjusting the bounds to the
actual load that corunner tasks put on the target resource, which can be abstracted
with an arrival curve [158]. However, time-composability is lost since the ETB for a

1We use Execution Time Bound (ETB) instead of Worst-Case Execution Time (WCET) esti-
mate to refer to the upper-limits derived for tasks execution time in multicore. The reason is that
WCET estimates, as they are commonly understood, establish a single value that upperbounds
program’s execution time under any circumstance. However, since the bounds provided in this
chapter hold only under specific circumstances (subject to the characteristics of the corunners),
we prefer not to use WCET.
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task becomes dependent on its particular corunners. This confronts industry with
the choice of time-composable inflated estimates or tighter non time-composable
estimates.

In this chapter we use measurement-based timing analysis, which a large frac-
tion of safety-related systems resort on [180] – including the space industry. We
propose a contention-prediction model that captures the effect of contention in
the NGMP shared resources. For a given task, τ , our model enables deriving both
fully time-composable bounds to the contention delay suffered by τ or partially
time-composable bounds [61] which depend on the number of requests generated
by τ ’s corunner tasks, Nreq, but not on how they align with τ ’s requests. Derived
bounds are valid for different corunner tasks as long as they generate at most Nreq

requests.

Our approach is motivated by the fact that, while the number of requests that
a task generates can be bound with existing tools like Rapita System’s Verification
Suite (RVS) [147], how τ ’s and its corunners’ requests interleave is hard, if at all
possible, to measure and control. Hence, instead of predicting request interleaving,
our approach derives contention delays for the worst-possible time-alignment of
requests. The main contributions of this chapter are as follows:

1. We make an in-depth analysis of the hardware shared resources in the NGMP,
the way in which requests interact and the delay they may suffer on those
resources.

2. We present a prediction model for the contention delay in the bus and the
memory controller in the NGMP. Our model, which depends on the time
requests take to access shared resources, deals with the case when there are
several types of accesses to a resource and each type causes and suffers a
different delay depending on the contending accesses. For instance, in the
processor AMBA AHB bus, loads missing in the L2 take shorter than loads
hitting in L2. We show how our model handles this case.

3. We evaluate our proposal in a solid setup comprising the GR740 imple-
mented in a FPGA. Our proposal provides tighter ETBs than the fully time-
composable proposal in [65], since it adapts to the contenders’ load on shared
resources in a still partially time-composable and friendly way.

The rest of this chapter is organized as follows: Section 10.5 presents the
related work. Section 10.2 provides information on the GR740. Section 10.3
details our prediction model. Section 10.4 assesses the accuracy of our model.
Finally, Section 10.6 presents the summary of this chapter.
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10.2 NGMP

The NGMP quad-core processor is described in Section 3.1. The NGMP com-
prises 16 Performance Monitoring Counters (PMC) that can be configured with
different events, providing support to measure access counts such in a way that it
facilitates the implementation of our prediction model, more details are provided
in Section 10.3.3. This section provides details on some aspects related to the
contention in the access to NGMP’s shared resources.

10.2.1 AHB Processor Bus

The AMBA AHB bus connects cores to the L2 cache and the I/O bridges2. The
first consideration to make in the case of the bus is that there are different types
of requests that can generate different inter-task contention: bus reads (loads)
that either hit (l2h) or miss (l2m) on the L2 cache and bus writes (stores) that
either hit (s2h) or miss (s2m) on the L2 cache. These accesses behave differently
because hits hold the bus while they are served. Instead, misses wait on a miss
queue and are split, i.e. the L2 cache releases the bus while processing the miss, so
that other cores can use the bus. In the NGMP, the AMBA AHB bus implements
round-robin arbitration.

10.2.2 L2 Cache

In our experiments we use the master-index feature of the NGMP that partitions
the L2 assigning one L2 cache way to each core. Hence, a given core suffers no
contention interference in the L2 due to other cores’ evictions.

Each of the request types identified before (l2h, l2m, s2h and s2m) has its own
L2 access latency. Interestingly, the latency of requests of the same type can be
variable. That is, for each request type access there is a Best-Case (BC) and a
Worst-Case (WC) latency. This jitter is caused by the type of previous requests,
despite they belong to a different task and hence go to a different cache partition.
Our model takes this effect into account by assuming that all latencies suffered
on the experiments have the BC and when computing the contention bounds, we
add a correcting value that adds for each L2 access the corresponding difference
between the WC and the BC. This adds pessimism but its advantage is two-fold:
it is a safe upperbound and it removes the need to track the sequence of accesses
to determine their exact latency.

The WC and BC latencies are obtained from table 40 in [41] and are 8, 13, 6
and 7 for l2h, l2m, s2h and s2m respectively in WC and 5, 6, 0 and 0 for BC.

2In this work, we do not consider I/O related activities, which we assume managed at software
level, so that only accesses to L2 interfere each other.
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10.2.3 Memory Controller

The memory controller acts as an interface between the processor and the DRAM
memory. We differentiate two types of request in the memory: read and write.
According to the DRAM protocol, each request has a latency to be responded
depending on whether it is a read or write request respectively. The latency it
takes the memory to go back into idle state, once a request starts being processed,
is fixed regardless of whether the request is read or write and corresponds to
the time till a new request can be processed. For this chapter, we assume that
the memory controller behaves as a FIFO queue. This is a simplification that
helps upper bounding the memory controller latency though it introduces some
pessimism. Providing a more accurate model of the memory is part of our future
work.

10.3 Prediction Models

Our prediction models use measurement-based timing analysis techniques to derive
a multicore ETB (ETBmc) for a task τi, given its ETB in isolation (ETBisol). To
that end, the models predict the total effect of contention in the access to the
multicore hardware shared resources, called Contention Delay Bound (CDB), and
add it to the ETB in isolation:

ETBmc = ETBisol + CDB (10.2)

In order to derive CDB, we add the contribution of each hardware shared
resource r, CDBr:

CDB =
∑
r∈R

CDBr (10.3)

To derive CDBr, we upper-bound the maximum latency that every access from
τi to r, nri , may suffer from requests generated by τi’s corunner tasks, referred to
as c(τi).

CDBr for τi assumes that each τj ∈ c(τi) performs at most a given number of
accesses (nrj) to resource r. Therefore, ETBmc estimate for τi is composable with
any other task τ ′j ∈ c′(τi) as long as it performs fewer accesses (n′rj ) to the shared
resource than τj ∈ c(τi):

n′rj ≤ nrj (10.4)

In this chapter we follow the theoretical approach in [64] that proposes a
methodology to obtain the resource access ‘profile’ of a given task that defines
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the use of resources that the task makes on a target shared resource. That pro-
file is used to derive the contention tasks suffer and generate when accessing that
resource. In this work, which is a collaboration of end-users in the Space domain
(Airbus Defence and Space and ESA), hardware technology providers (Cobham
Gaisler) and a research institution (Barcelona Supercomputing Center) we assess
the benefits of such an approach on a real platform, the GR740 addressing issues
related to NGMP specific arbitration policies and access types to the different
resources.

10.3.1 Bus Prediction Model

The NGMP comprises three main shared resources in its data path: the bus, the L2
cache and memory. Since the L2 can be partitioned we do not consider contention
of the different tasks in the L2. We start by predicting CDBbus for the bus and
later apply the same approach for memory.

We explain three different ways of upper-bounding CDBbus, which present
represent different trade-offs between information required, such as the number of
accesses of each corunner task, and tightness of the produced bound.

A.1. Theoretical Upper-Bound Delay (UBD)
In this reference model, based on [138], we assume that every single τi request

is delayed by a request from each of the Nc − 1 contenders and that contending
requests cause the highest delay, Lbus. This is the maximum contention scenario
in round-robin arbitration, where the upper-bound delay a request can suffer is
given by:

samd = (Nc − 1)× Lbus (10.5)

Hence, for τi with bi accesses to the bus, CDBbus is presented in Equation 10.6,
where Lbus is the maximum delay any interfered request can suffer from a single
interfering request.

CDBbus = bi × samd = bi × (Nc − 1)× Lbus (10.6)

Since we have four different types of requests with different latencies: ll2h, ll2m,
ls2h and ls2m:

Lbus = max (ll2h, ll2m, ls2h, ls2m) (10.7)

This model is time-composable by definition because it assumes that all bi
are interfered by i) the highest impact request from ii) all corunners. These two
assumptions are sources of pessimism that enable full time-composability.

Interestingly in this model, the worst alignment among the requests of τi and
the requests of its corunners is assumed. In reality, it can be the case that some
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τi requests become ready to be sent to the bus when its contenders requests have
been partially processed so that each τi request suffers a delay smaller than Lbus.
However, predicting how this alignment of requests can happen at operation time
is hard (if at all possible). Any small shift in the execution of tasks can change it.
Hence, this and the following models, provision time in CDBbus for the worst-case
alignment of requests.

A.2. Single-type Model
Analogously to the previous model, the one presented in this section assumes

that every corunners’ request causes a delay of Lbus on τi. Unlike the previous
model, this one takes into account that not all τi requests might be interfered by
one request of its corunner tasks. This usually happens when corunner tasks have
fewer accesses than τi.

Let bj be the number of accesses to the bus that each contender task τj ∈ c(τi)
performs. Given that tasks have different number of accesses, not all of them can
interfere each other. In particular, for a given interfering task τj running in core
j, in the worst-case only the minimum between the number of accesses of τi, bi,
and the number of accesses of the interfering task, bj, suffer a contention delay of
Lbus. That is, no more than bi accesses can be interfered and no more than bj can
interfere. In order to compute the contention on the bus for task τi, we add the
contribution of each interfering task τj:

CDBbus =
∑

τj∈c(τi)

min (bi, bj)× Lbus (10.8)

A.3. Multiple-type Model
The previous model assumes that each interfering request, i.e. those generated

by c(τi), belongs to the worst-interfering type, hence generating Lbus delay on τi.
However, corunner tasks generate requests of different types, each of which incurs
a different interference on τi. This model takes this into account and breaks down
the number of requests of the corunners between l2h, l2m, s2h and s2m:

bj = bl2hj + bl2mj + bs2hj + bs2mj (10.9)

The order of these requests, from most interfering to less interfering is, l2h,
l2m, s2h and s2m (see Section 10.3.3).

To compute the CDBbus, we pair each interfered request (those coming from τi)
with the worst eligible interfering request available from each contending core. We
start pairing the accesses with the most interfering type (l2h) until this interfering
type is consumed. The remaining b′i = max(0, bi− bl2hj ) requests from τi are paired
with the next interfering type (l2m). The remaining b′′i = max(0, b′i − bl2mj ) with
s2h and finally the remaining b′′′i = max(0, b′′i − bs2hj ) with s2m. With this CDBbus

is computed as follows:
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CDBbus =
∑

τj∈c(τi)[ min
(
bi, b

l2h
j

)
× ll2h +

min
(
b′i, b

l2m
j

)
× ll2m +

min
(
b′′i , b

s2h
j

)
× ls2h +

min
(
b′′′i , b

s2m
j

)
× ls2m] (10.10)

It is worth noting that the type of the requests generated by τi are equally
affected by each type of request of its corunner. That is, the interference is deter-
mined by the type of the request of the corunner task τj only.

10.3.2 Memory Prediction Model

To compute CDBmem we apply the same models as for the bus. As explained in
Section 10.2, there are two different types of request in the memory, read and write.
We assume a task τi with mi requests to the memory and contender tasks τj ∈ c(τi)
with mj = mread

j + mwrite
j accesses to the memory each and m′i = max(0,mi −

mread
j ). The highest delay in memory is given by Lmem = max (lread, lwrite).

Under these constraints the theoretical Upper-Bound Delay model is given by:

CDBmem = mi × samd = mi × (Nc − 1)× Lmem (10.11)

The model based on single request types is as follows:

CDBmem =
∑

τj∈c(τi)

min (mi,mj)× Lmem (10.12)

The model based on multiple request types is as follows:

CDBmem =
∑

τj∈c(τi)

min
(
mi,m

read
j

)
× lread +

min
(
m′i,m

write
j

)
× lwrite (10.13)

From previous discussions it follows that our model builds on two pieces of
information: the latency each request uses each shared resource and the number
of accesses performed by each task to each shared resource. We describe both in
the following subsections.

10.3.3 Deriving Access Latencies

Bus. Our model uses as an input the time each request uses each shared resource,
which correspond to the bus and memory in our reference architecture. For the
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bus, in the NGMP, our model requires deriving the bus usage latency of l2h, l2m,
s2h and s2m3. Since documentation typically does not provide this information,
we derived it empirically.

To do so, first we executed a benchmark performing a given type of bus opera-
tions as the Task Under Analysis (tua), or interfered task; against a range of other
benchmarks, or corunner tasks, performing all of them the same type of accesses
(which may be a different type as for the tua). For instance, in one experiment
the tua performs l2h accesses and the corunner tasks s2h accesses.

As a result of performing this process we reached the following three observa-
tions:

1. The execution time of the tua depends on the type of accesses performed by
the corunner tasks. Thus, given a tua, its execution time may not be the
same if corunners perform l2h, l2m, s2h or s2m accesses.

2. The impact of corunner tasks on the tua is linear with the number of corun-
ners. Therefore, if the execution time of the tua in isolation (normalized) is
1, and it grows to 1+K when running against one corunner, then the execu-
tion time against C corunners can be upper bounded as 1 +C ×K (further
considerations on this matter can be found in [63]). In the particular case
where corunner tasks are run in all other cores, the execution time of the tua
is:

1 + (Nc − 1)×K (10.14)

3. The impact of interferences in the execution time of the tua is independent
of the particular access type performed by the tua. Therefore, the execution
time in isolation grows by (Nc−1)×K when all corunners perform the same
type of accesses (i.e. l2m), but K depends solely on the type of accesses of
the corunners, not on the type of accesses of the tua. This can be explained
because the interference on the AMBA AHB bus depends only on the ar-
bitration time (see Chapter 4), which in fact depends only on the time the
higher priority corunners use the bus and not on the interfered request which
is requesting the bus and has to wait the same amount of time regardless its
particular access type.

To infer the latencies we take as a reference the l2h benchmark that constantly
accesses the L2 cache and hence the bus. Further since the benchmark always hits
in L2, each request on the bus has a short turn-around time. This benchmark is

3Please note that these latencies are not the same as those obtained in Section 10.2.2 for the
L2 cache.
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Figure 10.1: Execution time and ETB of l2h benchmark in different workloads

executed as tua in a workload comprising 3 corunner benchmarks, which corre-
spond to the 3 remaining cores. The corunners perform accesses of the same type
to the bus continuously. Hence, there are 4 different workloads depending on the
type of access performed by the other three corunners: l2h, l2m, s2h, s2m.

Figure 10.1 shows the measured execution time for all workloads. To infer the
bus latencies, we divide the execution time overhead of the tua with respect to the
execution time in isolation by the amount of contenders (3 in each case) and then
divide these cycles by the amount of bus accesses performed by each contender.
For instance, given an execution time of Tisol for the tua in isolation and Tl2h for
the tua against 3 l2h corunners, the interference of an l2h access is obtained as
follows where Nreq is the number of l2h requests performed by each corunner:

ll2h =

⌈
Tl2h − Tisol

(Nc − 1)×Nreq

⌉
(10.15)

This way we obtain the number of interference cycles per bus access type: 9, 7,
1 and 1 for ll2h, ll2m, ls2h and ls2m respectively3. With these latencies we compute
CDBbus with Equation 10.6 and build the ETB prediction shown in Figure 10.1,
which is computed using Equation 10.2.

Techniques to improve the confidence on derived bus latencies are proposed
in [63]. Part of our future work consists of integrating those methods on top of our
model and compare them against our method to derive latencies. Nevertheless, our
prediction models are compatible with any method to obtain the access latencies.

Memory. The approach followed to obtain memory latencies is analogous to
that for bus latencies with some small differences. First, instead of using bench-
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marks accessing the bus, we use l2m as tua, which performs memory reads. As
corunner tasks we use first 3 copies of a l2m benchmark, that generates memory
reads. The latency of memory reads obtained in this case is 18 cycles. In the
second experiment we use 3 copies of s2m as corunners. The latency of memory
writes obtained is again 18 cycles because there is no difference between read and
write operations in terms of memory interference since, in both cases, the timing is
defined by the time to open and close the memory page or row, which is identical
for both.

10.3.4 Deriving Access Counts

The NGMP provides 16 PMCs that can be configured with different events and
can be measured using the commercially available tool GRMON2 [37]. Among
other events, we are interested in the per-core bus reads and writes (0x40 - 0x50
in [42]) and per-core L2 hits and misses (0x60 - 0x61).

Bus. The total number of L2 accesses (i.e. hits and misses) corresponds to the
number of bus accesses. However, there is no way to break down L2 hits/misses
into reads and writes, i.e. it is not possible to determine exactly the number of
l2h, l2m, s2h and s2m accesses.

In this scenario our approach is to estimate those values in the most pessimistic
way: Given task τj, we can obtain the number of L2 hits and misses, bhj and bmj ,
and the number of bus read and writes, which is equivalent to the number of L2
loads and stores, blj and bsj . Our goal is to distribute bhj , b

m
j , blj and bsj into bl2hj ,

bl2mj , bs2hj and bs2mj such that their total impact is maximized. For the ll2h, ll2m, ls2h
and ls2m latencies in our reference architecture, the following equations maximize
the impact. First, we assume the maximum amount of requests from the worst
possible interfering request, i.e. l2h:

bl2hj = min(blj, b
h
j ) (10.16)

Then we subtract this value from blj and bhj , obtaining b′lj = max(0, blj − bl2hj ) and
b′hj = max(0, bhj−bl2hj ), and repeat the algorithm with the next worst interferers, i.e.
l2m, s2h and then s2m, with b′sj = max(0, bsj − bs2hj ) and b′mj = max(0, bmj − bl2mj ),
to obtain bl2mj , bs2hj and bs2mj .

bl2mj = min(b′lj , b
m
j ) (10.17)

bs2hj = min(bsj , b
′h
j ) (10.18)

bs2mj = min(b′sj , b
′m
j ) (10.19)

Once we have all accesses properly classified as l2h, l2m, s2h and s2h for each
contending task τj, we can proceed with the model described before.
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Memory. Our current implementation does not provide access counters for
the memory controller. Hence, the exact number of memory accesses cannot be
obtained, even though L2 cache misses are known, since there is no way of ac-
counting indirect memory accesses such as writes generated by evictions of dirty
L2 lines. The actual number of memory accesses can either be estimated using the
number of L2 misses, which is a lower bound of the memory accesses or estimated
with the number of L2 misses and the number of bus writes, which is an upper
bound.

10.3.5 Assumptions

Our model is based on the assumption that the number of accesses of a task is
not affected by the contenders. This happens only if the L2 is partitioned, i.e.
not shared. Otherwise, the number of accesses to the bus or memory for a task
executed in isolation does not match those obtained when running along with other
tasks.

Also our model assumes that no timing anomalies [149] are present. Timing
anomalies is an open research field, and is difficult to prove that a real processor is
time anomaly free [126]. Nevertheless, if timing anomalies can occur, they cannot
trigger a domino effect by construction, i.e. it is a compositional architecture
with constant-bounded effects according to the classification in [181]. In those
architectures, which may experience timing anomalies but no domino effects, the
impact of timing anomalies can be accounted for easily by counting how many
times they can be triggered and padding ETBs by the product of this count and
the maximum impact of one timing anomaly. This approach is fully in line with
our prediction model that accounts for contention in shared resources. Further,
note that our model has no impact on timing anomalies, which occur (or not)
regardless of our model.

10.4 Experimental Results

We evaluate our proposals on a real GR740 [39] FPGA prototype on a Xilinx
ML510 board. We used the commercially available Cobham Gaisler GRMON2 [37]
debug monitor software to directly extract the PMC from the statistic unit of the
GR740, without affecting execution. The model is directly constructed from the
readings obtained in one execution of each task, i.e. no further post processing is
required.
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10.4.1 Bus and memory prediction models

Our first experiments put the shared resources under high pressure to test the
tightness of the bounds obtained with the prediction model. To that end we use
as reference applications a set of synthetic kernels [65] that inject constant high
pressure either on the shared bus or on the shared memory. The Bus-Stressing
Kernel, or bsk, comprises memory read and write requests that always miss the
L1 and hit the L2, thus maximizing the traffic on the bus. This is done by having
5 memory accesses that access the same set of the L1 cache, thus exceeding its
4 ways. The same approach is used for the Memory-Stressing Kernel (msk) that
comprises memory read requests that always miss on the L1 and also miss on the
L2.

In all experiments we use one reference task (tua) and three tasks as corunners.
In particular, as reference task on which ETB is to be derived we use bsk-ld-40%
in which 40% of its instructions are loads that access the bus. As corunner tasks
we use bsk whose frequency of access is 40% and 5%, i.e. 40% and 5% of the
instructions are accesses to the bus. Those bsk used as corunners access the bus
with requests of a different type across experiments: l2h, l2m, s2h, s2m and a mix ,
which consist of a l2h, a l2m and a s2h bsk together.

Figure 10.2a and Figure 10.2b show the result for bsk-ld-40% when the fre-
quency of access of the contenders is 40% and 5% respectively. In both figures we
show the ETB when using the UBD approach [65] or our approach with a single-
type and four types of requests; and the observed execution time. In all cases, the
predicted ETB estimates are above the observed execution time. The UBD model,
since it assumes that every access of the task under analysis suffers samd, leads
to the highest ETBs. Our model, that accounts only for the contention the task
under analysis suffers, tightens the ETB. As presented in the previous sections,
if the method is made aware of the request types and their associated latency (4
types of request) ETBs are further reduced.

In Figure 10.2b, the corunners make fewer accesses than in Figure 10.2a. For
the UBD approach this has no impact since it only focuses on the number of
requests of the task under analysis that remains the same. Instead, our models
reduce ETBs since they effectively capture the fact that the corunners make fewer
accesses.

We performed the same experiment for the memory model, using msk-ld-40%
as tua and corunners with 40% and 5% of memory accesses. In this case, the single
type of request or multiple types of request models are equivalent, since read and
writes to memory have exactly the same impact. The results are analogous to
those obtained for the bus model. Therefore, we omitted the figures since they
provide no further insights.
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(a) contenders-40%

(b) contenders-5%

Figure 10.2: ETB for each bus prediction model: UBD (fully time composable
requests); And our approach with 1 and 4 request types.

10.4.2 EEMBCs

As final evaluation we apply the whole prediction model with the EEMBC Au-
tobench suite [143] as reference applications. We run each EEMBC benchmark
under a relatively high pressure scenario composed of two tasks, one continuously
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Figure 10.3: ETBs for EEMBC when assuming a no cache misses.

accessing the bus (bsk) and the second accessing the memory (msk). In this sce-
nario, neither the bus nor the memory controller suffer the highest pressure, since
that requires all remaining cores accessing simultaneously each resource [144].

No memory accesses. As presented in Section 10.3.4, there is not a specific
PMC to measure the number of accesses to the memory. In order to cancel out
the impact of this, in a first experiment we focus on the case in which the tua is
run twice in a row and measurements are taken during the second run. Due to the
small footprint of EEMBC Autobench, this results in almost zero misses in the
second run.

Under that assumption, we present the results of our model and UBD in Fig-
ure 10.3. Recall that in each workload we run one EEMBC benchmark executed
and the two contenders presented above. Results are normalized w.r.t. the ex-
ecution time of the EEMBC in the workload. We show the execution time in
isolation, the execution time in the workload and the predicted ETB using the
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multiple type of requests prediction model for the bus and memory, as well as the
UBD. We can clearly see that our prediction model reduces the pessimism of the
UBD model by 67% being only 79% higher than the actual execution time. In
Figure 10.2, the observed execution time is much closer to the prediction when
compared with Figure 10.3. This is because the scenario in Figure 10.2 is designed
to experience severe contention, whereas the scenario described here experiences
much lower contention (far below the upper-bounded contention).

General case. Our next step is to evaluate the natural case in which programs
perform memory accesses. According to Section 10.3.4, we can estimate the access
to the memory using the number of L2 misses. The number of L2 misses does not
consider the dirty evictions that generate memory accesses. To take into account
the dirty evictions into the memory accesses we can use either an optimistic lower
bound based on the number of L2 misses or a pessimistic upper bound based on
the number of L2 misses plus the bus writes. To that end, we build three scenarios:

• Pessimistic scenario. We assume that every write operation results in a dirty
eviction, i.e. an access to memory.

• Accurate scenario. In this case, from a simulation tool we derive the exact
number of memory accesses.

• Optimistic scenario. We disregard the dirty evictions and take the number
of L2 misses as memory accesses.

Figure 10.4 shows the results obtained with our model under each of the pre-
vious scenarios and the observed execution time in the workload and isolation.
These results provide a good estimate of the benefits of improving our reference
design with a PMC that explicitly measures memory accesses.

As expected the pessimistic scenario that considers all writes as dirty evictions
is overly pessimistic. In particular it is 138% more pessimistic than the actual
observed execution time. The accurate scenario in which we assume that the
PMC for access count exists leads to very tight estimates, 64% more pessimistic
than the actual observed execution time and less than 0.1% more pessimistic than
the optimistic scenario. This is due to the small memory footprint of the EEMBC
benchmark, that fit on the L2 cache. As a result, the number of dirty evictions is
close to zero in most scenarios.

10.5 Related Work

Contention on the access to hardware shared resources has been thoroughly studied
in the state of the art. A taxonomic summary of the relevant works can be found
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Figure 10.4: ETBs for EEMBC under the optimistic, pessimistic and accurate
scenarios.

in [62]. Several techniques propose means to upper-bound, during the analysis
phase of the system, the samd that a task may suffer on the bus or in memory.
In that line, hardware support has been proposed (though not yet implemented
in any architecture we are aware of) to artificially delay each request a given τ
does by samd cycles [138, 93, 159]. Other approaches derive samd by using a
software-only approach: τ is run against a set of resource stressing kernels that
put high load on the resource [65, 63] making τ ’s requests suffer high contention
delays.

Other techniques like those in [151] for buses rely on detailed information about
resource access latencies and arbitration policies to derive samd. Other works,
due to lack of information in the processor documentation derive samd from mea-
surements and feed it into static timing analysis. In particular [135] applies this
approach to analyze the impact of contention in the P4080. samd can also be

186



10.6 Summary

derived for memory with [140, 7] or without [102] hardware support.

10.6 Summary

In this chapter we present a prediction model of the shared resource contention for
the GR740 that takes into account the number of accesses and their type for a given
task and its corunner tasks, which can be easily obtained with PMCs. The model
abstracts (i.e. makes worst-case provisions) for the way in which requests interleave
in time, which would challenge time composability since such time interleaving
could easily change during operation.

Derived Execution Time Bounds (ETBs) are shown to be accurate and tighter
than fully-time composable ETBs. Those derived estimates are valid for any work-
load in which the task runs as long as the number of accesses (per type) is smaller
than those assumed at analysis. This provides a good balance between tightness
and time composability.
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Chapter 11

Conclusions and Future Work

11.1 Thesis Conclusions

Critical Real-Time Embedded Systems (CRTES) need to ensure timing correct-
ness in addition to functional correctness. To guarantee timing correctness, timing
analysis techniques derive Worst Case Execution Time (WCET) estimates which
are provided as input to the corresponding task scheduler, so that it can be as-
sessed that software runs in its assigned budget. Time predictability, which stands
for the property of being able to bound (in a tight manner) software execution
times, is required to derive WCET estimates. Time predictability depends on the
complexity of the hardware and the software, and the timing analysis technique
(tool) deployed.

Since mid 90’s, CRTES have shifted towards an integrated architecture paradigm
in domains such as avionics: a modular approach in which multiple functions are
assigned to a single hardware unit. A key design principle is the incremental qual-
ification, whereby each component can be subject to qualification in isolation. At
the timing level, this requires time composability so that the timing properties of
a software component in isolation, i.e. its WCET estimate, do not change when
the system is integrated. Time composability therefore reduces the cost of system
development, integration and qualification. It is worth noting that this comes at
the cost of overestimated WCET.

The space industry, as several other CRTES industries, is assessing the use
of multicore processors as their main computing platform to satisfy their growing
performance demands. Multicore processors can provide the performance needed
for future CRTES and bring the potential of integrating several software functions.
However, their use also brings some challenges, from which contention in the access
to shared hardware resources is one of the most prominent. Multicore contention
generated by a task running on the processor impacts the execution time of the
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rest of the tasks running simultaneously. This challenges current timing analysis
techniques by threatening time predictability and time composability.

In this thesis we have accomplished major improvements to handle shared
resource contention in current multicore processors for CRTES improving both
time predictability and time composability. The main approach followed in this
thesis is to bound or reduce the contention that appears when several cores try to
access the same shared resource simultaneously. This bound has been shown to be
independent of the rest of the tasks running simultaneously on the system, hence
enabling time composability.

We have focused on two of the most important shared resources in a multicore
processor: the shared bus and the shared memory. While shared caches challenge
significantly the timing analysis of CRTES, partitioning techniques, already imple-
mented in real processor like the NGMP, remove the interference on shared caches.
In particular, in this thesis:

• We have proposed and showed the benefits of a time composable bus interface
based on AMBA AHB, one of the most broadly used, which provides time
composability by design. We have investigated two options: a restricted
version of AHB, resAHB, that does not change the interface and an improved
version of AHB, AHRB, that requires changes in the interface. Both options
make the timing of the bus independent of the specific behaviors of the
components of the MPSoC, which greatly facilitates the timing analysis of
MPSoCs. Our results show that AHRB offer much tighter WCET estimates
than resAHB with negligible average performance degradation.

• We have provided a meaningful comparison between two of the most used
bus arbitration policies for real-time on-chip buses, TDMA and IABA. Our
results show that both policies offer time predictability and time compos-
ability. Overall, IABA presents worse prioritization capabilities but better
WCET and average execution time with little burden for the user.

• Regarding the memory controller, we have proposed a memory controller,
DCmc, capable of consolidating applications that require real-time execution
with those that are high-performance driven at the same time. Based on the
principle of dividing memory banks into real-time and high-performance,
DCmc uses a different request scheduler policy to each bank type. DCmc
provides tight bounds for real-time applications with a reduced impact on
high-performance ones.

• We have also studied a new memory organization, PDSC, that builds on the
observations that time-sharing memory has poor scalability with the core
count and the processor-to-memory frequency ratio. PDSC divides the data
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bus into narrower independent data buses, thus removing conflicts among
different tasks accessing memory, while sharing the command bus. This
solution heavily reduces WCET, while providing enough flexibility to handle
heterogeneous, i.e. high average and guaranteed performance, requirements
of mixed-criticality multicore systems.

• In the context of PTA systems, we have described for the first time a PTA-
compliant multicore design. We have proposed low-cost PTA-compliant arbi-
tration policies that break the deterministic behavior of the shared resources
in a multicore. Proposed designs fulfill PTA requirements and provide im-
proved guaranteed performance over single-core designs.

We have also provided means to account and predict the contention on the
shared resources. In particular:

• We have presented a prediction model for the GR740 that takes into account
the effect of contention in shared resources to derive Execution Time Bounds
(ETBs). Those ETBs are shown to be accurate and tighter than fully-time
composable ETBs.

• We have also proposed some new low-overhead PMCs to measure the actual
contention caused by contending tasks. We show how these PMCs provide
evidence about the trustworthiness of contention bounds and increase con-
fidence on measurement-based timing analysis, which is a common practice
in CRTES industry. It is also of prominent importance to detect the reasons
for a deadline miss and helps optimizing system’s performance.

In this thesis, we gave an special emphasis on the space domain focusing on
the Cobham Gaisler NGMP multicore processor [42], which is currently assessed
by the European Space Agency for its future missions. As a proof of concept,
the architectural solutions studied and proposed are tested on a space case-study
consisting on a cycle-accurate simulation framework validated against a real imple-
mentation of the NGMP processor and representative software for the European
Space Agency. The results will be used by the European Space Agency to influence
the future designs of the NGMP processor. Nevertheless, other domains such as
automotive and avionics have similar requirements, and hence our solutions are
also applicable.

Overall this thesis paves the way for future works concerning multicore proces-
sors in CRTES and eases their adoption by the CRTES industry.
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11.2 Impacts

The work done in this thesis has been done in direct contact with industry and
also opens several research lines, already pursued by other PhD students in the
Universitat Politècnica de Catalunya, that target new challenges in CRTES.

In particular, the bus and memory controllers organizations proposed on this
thesis have been presented to the European Space Agency (ESA) as a way to
influence the future designs of the NGMP processor. Some of them, are going
to be evaluated by the ESA, whose purpose is to obtain Register Transfer Level
(RTL) models of such architectural solutions. Implementing the bus architectures
proposed in this thesis on real hardware is part of the future work. For instance, in
the scope of the PROXIMA FP7 project (www.proxima-project.eu), Probabilistic
Timing Analysis (PTA) compliant buses for multicores are going to be tested on
a real platform in order to improve the technology readiness level of PTA.

The methods presented in this thesis to account and predict contention on
shared resources, open new research lines to improve and propose new methods
of timing analysis for multicore processors, some of which are already pursued by
other PhD students at CAOS group. Also, a set of PMC similar to those proposed
in this thesis are planned to be included on the implementation of the NGMP
processor by the provider. This open new opportunities to keep improving timing
analysis on top of multicore systems.

11.3 Future Work

As the core count in every new processor generation increases, future research lines
emmanating from this thesis are:

Processor designs with higher core counts (or many-core processors) usually
deploy clustered architectures, which organize processor resources into subsets of
processors with fewer core counts. Our solutions can still be applied for such
processors and also provide a solid ground to continue research on many-core
processors. Of course, such a processor will have new challenges, including other
types of interconnection topology or several memory controllers, that should be
addressed in order to enable time composability.

In this thesis we have considered partitioned shared caches. This has the draw-
back of fragmentation since a fixed amount of space is assigned to each core/task
in the system. One possible solution is enabling shared caches keeping time com-
posability to some extent. The introduction of shared caches in CRTES poses new
challenges that have to be investigated.

In our view, this thesis offers an excellent opportunity for future works to define
a time composable Network-on-Chip (NoC) with a well-defined and standardized
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interface such as AMBA AXI. The NoC can be more complex than a bus, while
adding specific restrictions to make it time-composable. The principles applied
should be in line with those we define in this thesis.

All along this thesis, we have focused on the case in which a single memory
channel is available due to package and pin restrictions. However, multi-channel
memory organizations offer a wide new range of opportunities for CRTES, since
the contention can be effectively reduced. This remains as a very promising future
work.
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[140] M. Paolieri, E. Quiñones, and F. J. Cazorla. Timing effects of DDR memory
systems in hard real-time multicore architectures: Issues and solutions. ACM
Trans. Embed. Comput. Syst., 12(1s), 2013. 22, 23, 63, 90, 93, 109, 112, 114,
187

[141] Parasoft. Iso 26262 software compliance: Achieving functional safety in the
automotive industry. white-paper., 2011. 7

[142] M. Patte and V. Lefftz. System impact of distributed multi core systems.
Technical Report Contract 4200023100, European Space Agency, 2011. 7, 8,
87, 110, 114

[143] J. Poovey. Characterization of the EEMBC Benchmark Suite. North Car-
olina State University, 2007. 27, 28, 38, 59, 76, 99, 114, 137, 161, 183
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Glossary

ACD Actual Contention Delay

AHB Advanced High-performance Bus

AHRB Advanced High-performance Real-time Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ASB Advanced System Bus

AUTOSAR Open System Architecture

AXI Advanced eXtensible Interface

BID Bus Inter-task Delay

BLP Bank Level Parallelism

BSC Barcelona Supercomputing Center

CCS Contention Cycle Stack

CDB Contention Delay Bound

COTS commercial-off-the-self

CPI Cycles Per Instruction

CRTES Critical Real-Time Embedded Systems

CS Chip Select

DCmc Dual-Criticality memory controller

DQS Data Query Strobe
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Glossary

DTA Deterministic Timing Analysis

ESA European Space Agency

ETB Execution Time Bound

ETP Execution Time Profile

EVT Extreme-Value Theory

FR-FCFS First Ready - First Come First Served

GNC Guidance and Navigation Control

HYDTA Hybrid Deterministic Timing Analysis

IABA Interference-Aware Bus Arbiter

IMA Integrated Modular Avionics

IP Intellectual Property

IPC Instructions Per Cycle

ISA Instruction Set Architecture

MBDTA Measurement-based Timing Analysis

MBPTA Measurement-Based Probabilistic Timig Analysis

MLP Memory Level Parallelism

MMS Memory Mapping Scheme

MpKI Memory accesses per Kilo Instruction

MPSoC Multiprocessor System-on-Chip

NGMP Next Generation Microprocessor

NoC Network-on-Chip

PDSC Private-Data bus Shared-Command bus

PMC Performance Monitoring Counters

PTA Probabilistic Timing Analysis
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pWCET probabilistic WCET

RBL Row Buffer Locality

resAHB restricted AHB

RSK Resource-Stressing Kernels

RTES Real-time Embedded Systems

RTL Register Transfer Level

samd single-access maximum (contention) delay

SDTA Static Deterministic Timing Analysis

SPTA Static Probabilistic Timing Analysis

TDMA Time-Division Multiple Access

TUA Task Under Analysis

UBD Upper-Bound Delay

WCD Worst Contention Delay

WCET Worst-Case Execuion Time
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