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“Science never solves a problem without creating ten more” 

George Bernard Shaw 

 

 “Science, my boy, is made up of mistakes, but they are mistakes which it is 
useful to make, because they lead little by little to the truth” 

Julio Verne 

 

 “Touch a scientist and you touch a child” 

Ray Bradbury 
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ABSTRACT 
 

Metabolite profiling is the most challenging approach in NMR spectral analysis. It aims to 

comprehend biological processes occurring in a certain moment through identifying and 

quantifying metabolites present in complex NMR mixtures. An NMR spectrum is composed 

by resonances of a huge number of metabolites, and these resonances often overlap between 

them, shift position depending on the sample pH and can be masked by macromolecules 

signals. All these drawbacks hinder metabolite identification and quantification, so obtaining 

a cured metabolite profile of a sample can be a very big issue even for expert users. 

One single metabolite may present one, two or several resonances in an NMR spectrum, being 

these signals what is called the metabolite signature. Some of these signals can be unique 

according their position or peaks multiplicity, but some others can be easily confused, 

producing false positives. 

To identify a metabolite unequivocally, users should detect all the resonances that belong to 

the metabolite signature, and to do so, 2-dimensional acquisitions are often needed. To quantify 

a metabolite accurately, the best option is to calculate the area under the curve of the less 

congested resonance, provided that the target resonance has enough signal to noise ratio. If this 

resonance is a totally isolated signal, a bucket integration of the signal region is optimal, being 

spectral binning the faster approach to use. But if the resonance is partially masked by 

macromolecules signals or by neighbouring resonances, spectral devoncolution methods are 

needed in order to properly calculate the area under the curve of the resonance. 

In this context, the motivation of this thesis was born with the aim to provide automatisms and 

user-friendly interactive functions for NMR metabolite profiling, improving the quality of the 

results and reducing the time span of the analysis. To do so, several algorisms were 

implemented and embedded into two software packages. 

The first package, Dolphin, aims to profile a fixed set of metabolites in biofluids such as 

aqueous extracts and urine in a fully automated manner. To do so, Dolphin takes profit of the 

2-dimensional JRES spectra, where signals are much less superposed. In those spectra, the 

congestion produced by the multiplicity of signals disappears, since them are projected in an 

orthogonal dimension. The orthogonal cut at the position of the signal of interest allows the 

algorithm to compare the multiplicity and j-coupling of the signal placed there with an internal 
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library, and if all the resonances in the library match with a determined compound, a metabolite 

is considered identified. 

In a subsequent step, Dolphin focalizes the most isolated signal of a targeted metabolite and 

finds the neighbouring signals that can affect its quantification. In this process, Dolphin 

annotates the position, multiplicity and j-coupling of the neighbouring signals in a completely 

automated manner, despite the neighbouring signals identity (known or unknown compounds). 

Finally, it performs a line-shape fitting of that region, adjusting the intensities of all the signals 

present and modelling their shapes as lorentzian-gaussian functions. 

The second package, Whale, aims to profile a flexible set of metabolites in any kind of biofluid 

in a semi automated manner, and allows users approaching metabolomics NMR data in 

different ways depending on the final goal of their studies. 

Whale incorporates several functions for exploring data using fingerprinting techniques, which 

include comparisons between spectra and metadata, finding spectral regions that present 

significant variability between groups and finding spectral regions that are related between 

them. Moreover, it offers up to four different quantification modes in order to optimize the 

time-span of the analysis and gives users the option of manually adjust the quantification 

parameters to test its performance before running an automated metabolite profiling in the 

whole dataset. 

To facilitate metabolite assignments, it offers metabolite suggestions depending on the spectral 

region and the biofluid under analysis, and a repository panel where the user can compare target 

spectra with reference spectra from public databases. Whale outputs allow users to detect where 

the algorithm failed and re-run the analysis only for those spectra where the algorithm failed. 

An evaluation of Dolphin’s strategy and the line-shape fitting algorithm for automated 

quantification included in both tools are presented in this thesis, as well as two full NMR-based 

metabolomics studies where Whale was applied. 
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1.1 METABOLOMICS 

 

Metabolomics is the last of the four most representative “omics” sciences, whereas genomics, 

transcriptomics and proteomics focuses on the study of genes, transcripts and proteins, 

metabolomics is focused on the comprehensive characterization of the metabolites present in 

biological matrices. Metabolites are the intermediates and end products of metabolism, and can 

be defined as any molecule less than 1kDa in size1. However, bigger molecules such as albumin 

and lipoproteins are also included in metabolomics studies of blood serum and plasma2. In 

human-based metabolomics, metabolites can be divided into two major groups, the endogenous 

metabolites, which are produced by the host organism, and the exogenous metabolites3. 

Metabolites of foreign substances such as drugs are termed xenometabolites4.  

Metabolites are involved in a wide range of cellular functions, including cell energetics, system 

defense, signaling, as well as building blocks of structural biopolymers such as proteins and 

DNA5. Endogenous metabolites are often altered in response to environmental factors, disease, 

nutrition and other aspects in an attempt to maintain cellular homeostasis in the organism. 

Obtaining the metabolite profile of a sample at a given time may provide a comprehensive view 

of biochemical reactions and cellular phenotypes. The collection of all the metabolites present 

in a determined biological tissue, organ or organism is called the metabolome5. Metabolomics 

aims to fully understand the magnitude and the interactions of the metabolome in order to 

obtain a comprehensive view of the biological behavior of cells, tissues and organisms. 

Metabolomics is then a key part of the “omics puzzle”, and its integration with genomics, 

transcriptomics and proteomics is needed to perform systems biology studies. In this context, 

the pioneer in applying the scope of systems biology to studies of metabolism was Jeremy 

Nicholson, creating a new approach called metabonomics6,7. Metabonomics is defined as "the 

quantitative measurement of the dynamic multiparametric metabolic response of living 

systems to pathophysiological stimuli or genetic modification"6. 

There has been some disagreement over the exact differences between 'metabolomics' and 

'metabonomics'. While there is still no absolute agreement, there is a growing consensus that 

'metabolomics' places a greater emphasis on metabolic profiling at a cellular or organ level and 

is primarily concerned with normal endogenous metabolism. 'Metabonomics' extends 

metabolic profiling to include information about perturbations of metabolism caused by 

environmental factors (including diet and toxins), disease processes, and the involvement of 



	 29	

extragenomic influences, such as gut microflora. This is not a trivial difference; metabolomic 

studies should, by definition, exclude metabolic contributions from extragenomic sources, 

because these are external to the system being studied. However, in practice, within the field 

of human disease research there is still a large degree of overlap in the way both terms are used, 

and they are often in effect synonymous8. 

Obtaining the metabolic profile of an entire metabolome using only one detection method and 

one protocol is not possible due to the huge number of metabolites present and their chemical 

differences. The most widely used techniques for metabolite detection in metabolomics are 

mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR). While MS 

presents higher sensitivity, NMR is highly quantitative and reproducible. Ultimately, both 

techniques are complementary and allow researchers to obtain more comprehensive metabolic 

profiling9. Moreover, depending on the final goal, different protocols of extraction, ionization, 

isotope labeling, etc… can be performed to obtain a snap-shot covering a certain part of the 

global metabolism. 

The amount of data generated in the metabolomics field has increased during the last years. 

Innovations in instrumentation, data mining and bioinformatic tools are constantly emerging 

with the aim of improving the comprehension of the metabolism of biological organisms10. 

The metabolomics community usually organizes events annually via the metabolomics society, 

dedicated to promoting the growth, use and understanding of metabolomics in the life sciences. 

The Metabolomics Standards Initiative (MSI) helps to coordinate the work and to ensure that 

approaches and data relationships shared by the various working groups are maintained11,12. 

Part of this effort is currently carried out by the coordination of standards in metabolomics 

(COSMOS) initiative. The MetaboLights team is coordinating this consortium of 14 European 

partners, playing a role as repository of metabolomics experiments13,14. A key aspect of this 

effort aims to develop efficient policies ensuring that metabolomics data is encoded in open 

standards, tagged with a community-agreed and complete set of metadata15. 
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1.2 NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY IN 

METABOLOMICS 

 

Nuclear magnetic resonance (NMR) spectroscopy is a quantitative and non-destructive 

technique. It is also a robust and reliable analytical method with paramount reproducibility and 

repeatability16. 

Its physical principle relies on the fact that spins of each molecule within a sample are excited 

by means of a magnetic field followed by a radio frequency pulse that aligns the spins in a 

manner that molecules can be measured. Once the radio frequency is switched off, spins 

recover their initial state at a rate that depends on the molecular weight of the molecule. This 

recovering step is known as relaxation, and the signal obtained between the alignment and the 

total recovery of the spins is called finite impulse decay (FID). The FID shows a decaying 

sinusoid containing all the signals from all the molecules within a sample. The NMR spectrum 

of a given sample is the result of applying the Fourier transformation (FT) to this FID, and it 

provides information of both the environment of the molecule moieties (structure elucidation) 

and the abundance of a given molecule (quantification). 

The main biofluids analyzed in NMR-based metabolomics studies are blood plasma or serum, 

urine, cerebrospinal fluid (CSF) and cell or tissue extracts. Most of these biofluids can be 

obtained quite easily with minimal invasion. Moreover, a high sampling frequency can be 

achieved17. 

The detection limit of metabolite concentration using NMR spectroscopy is of the order of 

micromolar (µM) and the number of observable metabolites in biofluids largely depends on 

the magnetic field strength of NMR spectrometer. Therefore, working at the highest available 

magnetic field is recommended. Generally, 500 or 600 MHz NMR instruments are used in 

metabolomics studies, because these fields are easily accessed. However, the use of 800 or 900 

MHz has already been reported18,19. From the first real application of NMR to the analysis of 

biofluids into the early 80s up to now, the increase in field strength has tremendously improved 

the technique resolution.  

A very important benefit of NMR spectroscopy for metabolic profiling is that it is quantitative 

and does not require time-consuming sample preparation steps, like separation or 

derivatization. Moreover, it does not require a prior knowledge about compounds present in a 
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sample and is thus ideally suited for non-targeted profiling20. 

Figure C1.1 shows the typical processes in NMR-metabolomics workflow, and each of them 

will be detailed in the following subsections. 

 

 

Figure C1.1. NMR-metabolomics workflow. 

 

 

1.2.1 Samples and its preparation 

 

The biological sample must be collected under strict conditions regardless of its type. For 

instance, blood is usually collected by venipuncture into standard vials containing either 

ethylene diamine tetra acetate (EDTA) or lithium heparin as anti-coagulant. When using 

EDTA, the NMR spectrum will show extra resonances. These resonances correspond to 

complexes formed by the EDTA with Ca2+ and Mg2+ ions that are present in plasma21. 

Urine samples need addition of sodium azide to control bacterial growth, while plasma and 

1	Samples preparation 2 NMR	spectral	acquisitions 3	Spectral	pre-processing

5 Data	analysis 4 Spectral	analysis
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serum can be measured directly with minimal sample preparation. Dilution of plasma or serum 

is recommended, since it reduces the sample’s viscosity and releases plasma-protein bound 

metabolites. Both ultra-filtration and solvent precipitation are used for protein removal in 

serum and plasma samples, but recent comparisons between these two methods have 

demonstrated that ultra-filtration is better for metabolic NMR measurement22,23. Filters need to 

be centrifuged with water before usage in order to avoid contaminations due to the presence of 

molecules such as glycerol, which has been found in many commercially available filters. 

As the pH of samples has significant influence on the chemical shifts of the resonances along 

the NMR spectrum, its monitoring is essential in order to expedite metabolite profiling, 

especially in urine samples. Additions of NaOH and HCl may be used to manually adjust the 

pH when analyzing urine24,25, but the most common method to maintain a controlled pH range 

between any kind of samples is by adding a phosphate buffer stock solution with D2O at pH 

7.426. 

Finally, additions of internal standards at known concentrations are typically used for 

referencing purposes in terms of absolute quantification and chemical shifting. The most 

commonly used are the sodium salt of 3-trimethylsilylpropionic acid (TSP), the 2,2-dimethyl-

2-silapentane-5-sulfonate sodium salt (DSS) and the trimethylsilane (TMS) for organic 

solvents. Another strategy is to introduce a synthetic electronic reference signal called 

Electronic Reference to access In vivo Concentrations (ERETIC)27, which substitutes the 

addition of chemical compounds to obtain absolute concentrations in the metabolic profiling. 

In this case, other signals present in the samples have to be used for referencing chemical 

shifting, such as glucose28. 

Detailed procedures to collect, store and measure the mostly studied biofluids have been 

provided in the literature17,26. 

 

 

1.2.2 NMR Spectral acquisitions 

 

The NMR approach allows users to obtain different types of spectral acquisitions by applying 

different pulse sequences. Moreover, a wide variety of spin ½ nuclei such as 1H, 13C, 31P, 15N 
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or 19F can be measured. 

1H-NMR approach is the most used in NMR-based metabolomics due to the natural abundance 

of hydrogen in biological molecules. Most NMR metabolomics experiments, and especially 

those performed on biofluids, depend on effective suppression of the water resonance. The one-

dimensional nuclear Overhauser effect spectroscopy with spoil gradient (1D NOESY) pulse is 

the most popular method for solvent suppression, because of its robustness and ease of 

implementation. All the necessary concepts of parameter optimization and the mechanism of 

1D NOESY for water suppression have already been reviewed29. 

In some cases, as in serum or plasma, obtaining a reliable metabolic profiling of the low-

molecular-weight metabolites (LMWMs) in a 1D NOESY spectrum o is severely compromised 

by the resonances of macromolecules such as lipids and proteins. The most popular method for 

avoiding this macromolecular baseline is to apply the Carr-Purcell-Meiboom-Gill (CPMG) 

filter30, which is able to remove these broad resonances exploiting their shorter transverse 

relaxation rate31. The main problem of working with 1D CPMG spectra is that all the 

resonances, including those of the LMWMs, have been reduced by its own spin-spin relaxation 

time (T2), and obtaining the absolute concentration of the metabolites present in a sample is 

not trivial. While in 1D NOESY spectra the absolute quantification of a metabolite can be 

obtained directly as the ratio between the area of one of its resonances and the area of a 

reference compound32, in 1D CPMG spectra each resonance needs to be corrected by its own 

T2 first. Few studies show T2 factors of some resonances for a subset of metabolites under 

determined conditions, but the reality is that several quantifications of each resonance are 

needed in order to accurately calibrate its T2 decay and obtain its absolute concentration value33. 

Depending on the complexity of the biofluid, 1D spectra are not enough to obtain a large and 

reliable metabolic profiling of the samples due to the high signal overlap. This signal overlap 

masks the resonance structures with all their specific attributes (position, multiplicity and J-

coupling), making very difficult the assignment and quantification of metabolites. There exist 

a lot of two-dimensional (2D) experiments with the aim of contribute with extra information 

about the resonances and their relations, which is very helpful to achieve reliable assignments 

of those resonances to metabolites. 

Homonuclear 2D J-resolved (2D JRES) is very often used in metabolomics studies of 

biofluids34. This approach separates the effects of chemical shift and J-coupling into 

independent dimensions35,36. Another popular homonuclear 2D NMR experiment is the 
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correlation spectroscopy (COSY) sequence, which is used to identify spins which are coupled 

to each other37. Total correlation spectroscopy (TOCSY) creates correlations between all 

protons within a given spin system, not just between geminal or vicinal protons as in COSY. 

Correlations are seen between distant protons as long as there are couplings between every 

intervening proton38. 

Heteronuclear single-quantum correlation spectroscopy (HSQC) detects correlations between 

nuclei of two different types that are separated by one bond. This method gives one peak per 

pair of coupled nuclei, whose two coordinates are the chemical shifts of the two coupled 

atoms39. Heteronuclear multiple-bond correlation spectroscopy (HMBC) detects heteronuclear 

correlations between two nuclei separated by ranges of about 2-4 bounds40. Even if both 

methods can combine different nuclei, 1H and 13C are the most commonly used in NMR-based 

metabolomics studies. 

 

 

1.2.3 Spectral pre-processing 

 

Transformation of the time-domain FID into the frequency domain spectrum by FT is the initial 

step of all NMR analysis in metabolomics. Before FT apodization, a zero filling of FID can be 

applied in order to obtain better spectral resolution. After the FT apodization, the phase is 

corrected to obtain absorption line shape. The software packages provided by the spectrometer 

vendors as well as the freely available NMRPipe41 or commercial such as Chenomx NMR 

Suite42 and MestreNova43 contain numerous spectral processing tools for spectral pre-

treatment. 

A key factor for spectral comparison between samples is area normalization. Signal intensities 

in NMR spectra can be distorted by a great number of factors such as the spectrometer, the 

probe, the NMR pulse sequence, the temperature and the sample itself (relaxation times, J-

couplings, etc.)44. One of the most commonly used normalization method is integral 

normalization, where the spectra are normalized by dividing each signal of a spectrum by the 

total peak areas. This method is called total sum normalization (CSN)45. It assumes that the 

total peak area of a spectrum remains constant across the samples, which is not always the case 

of biological samples. This method can easily fail in metabolomic studies of blood serum and 
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plasma, where molecules such as lipids and proteins are greatly affecting the total area of a 

spectrum. To avoid this kind of deviations, other normalization techniques have been 

developed such as normalization to the creatine concentration46 (commonly used in urine 

samples) or to an internal quantitative reference47 (e.g. TSP or DSS) by which the intensity of 

the spectrum is scaled. 

Before starting the spectral analysis, some other processes are needed in order to accurately 

compare the samples under study. Depending on the quality of the spectra, a baseline correction 

may be necessary to remove certain artifacts or perform spectral enhancement. The most 

popular methods of baseline correction involve fitting a polynomial48–50, fitting a regression 

curve to a spectrum using a penalized least square approach51, using B-splines52 or applying 

mixture models53. Removal such artifacts is critical to yield accurate results by any subsequent 

method of quantitative analysis54.  

The last issue to overcome as a pre-processing step is spectral shifting. Correcting shift 

deviations along large datasets is key in order to facilitate posterior comparisons between data, 

especially in large-scale studies where hundreds or even thousands of spectra may be analyzed 

in high-resolution by pattern recognition analysis. Algorisms to locate and calibrate large 

datasets of complex biofluids such as blood serum and plasma have been already reported28. 

 

 

1.2.4 Spectral analysis 

 

Once all the necessary pre-processing filters have been applied and the spectra are ready, the 

user can start with the spectral analysis. There are two basic different approaches for spectral 

analysis: fingerprinting and profiling. Fingerprinting is the most commonly used method in 

NMR metabolomics and it is based upon the multivariate analysis of a dataset consisting on a 

large amount of sample NMR spectra, where each spectrum can be considered as a fingerprint 

of unassigned signals arising from low molecular weight analytes. Profiling is more 

challenging but ultimately more meaningful approach for analyzing NMR spectra. It is based 

on the analysis of an array of metabolites known to be involved in a given biochemical 

pathway. It does not allow for fast and high-throughput automated measurements since 

considerable human intervention is needed to guide the process of identifying and quantifying 
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metabolites in NMR spectral data, especially when dealing with complex mixtures such as 

biofluids55. Within the profiling approach there exist two different approaches, targeted 

profiling and untargeted profiling. 

 

 

1.2.4.1 Fingerprinting 

 

Metabolite fingerprinting provides a powerful method for discriminating between biological 

samples on the basis of differences in metabolism without entering in details about individual 

metabolites. In this application, statistical analysis of metabolic datasets is used to compare the 

overall metabolic composition of related samples56. This approach is very useful for sorting 

and classifying data into subgroups, enabling conclusions to be drawn about the classification 

of the samples. This kind of analysis can be performed as exploratory analysis in a first step, 

allowing users to focus a posterior metabolic analysis on the variables that are most important 

in achieving these discriminations in a second step. 

The statistical methods used to analyze sets of metabolite fingerprints fall into two main 

categories, unsupervised and supervised methods57. Unsupervised methods classify the spectra 

without the knowledge of the class of biological specimens (such as disease or control) by 

using the NMR frequencies of each sample as input. The most commonly applied unsupervised 

method in multivariate analysis is principal component analysis (PCA)58. In this procedure the 

variation between spectra is reduced to a series of principal components (PCs) and generates 

two classes of descriptors known as scores and loadings. Scores are linear combinations of the 

original spectral variables, and in a score plot each point represents the specified principal 

component of a single fingerprint (spectrum). Loadings describe the weightings that are applied 

to each of the original spectral variables as they are combined to generate each PC and thus 

identify the regions of the spectra responsible for defining the distribution of the samples. Other 

unsupervised approaches, such as nonlinear mapping59 or hierarchical cluster analysis60, may 

be used to explore groupings within the data and to aid their visualization. 

The second main strategy for comparing fingerprints is to use supervised methods that exploit 

information about the grouping of the samples. Supervised techniques can be appropriate to 

force classification (such as in determining which metabolites distinguish between groups) or 
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to regress a pattern against a trend (such as correlating a temporal progression with metabolic 

changes)61. The most commonly applied approaches are those based on partial least squares 

projection to latent structures (PLS)62. PLS derives latent variables, analogous to principal 

components of PCA, which describe the maximum proportion of the covariance between the 

measured data and the response variable, where the latter is the information that is to be 

explained or predicted by the model. This basic approach may be extended in several ways. 

For instance, PLS discriminant analysis (PLS-DA) applies the logic of PLS to discriminate 

between groups of samples that are defined as separate response variables63. Orthogonal PLS-

DA (OPLS-DA) provides a further refinement of this approach in which variation in the 

measured data is partitioned into two blocks: one containing variation that correlates with the 

class identifier (defined by the response variable) and the other containing variation that is 

orthogonal to the first block and, thus, does not contribute to discrimination between the 

defined groupings64. The advantage of this approach is that, by separating between group and 

within-group variation, it permits the contribution of different regions of the spectra to the 

discrimination between classes to be identified, and the source of the independent variability 

between samples to be investigated65. 

 

 

1.2.4.2 Profiling 

 

Metabolite profiling is the most challenging approach in NMR spectral analysis. It aims to 

comprehend biological processes occurring in a certain moment through identifying and 

quantifying metabolites present in complex NMR mixtures. An NMR spectrum is composed 

by resonances of a huge number of metabolites, and these resonances often overlap between 

them, shift position depending on the sample pH and can be masked by macromolecules 

signals. All these drawbacks hinder metabolite identification and quantification, so obtaining 

a cured metabolite profile of a sample can be a very big issue even for expert users. 

Within the profiling, there exist two main approaches, which are targeted profiling and 

untargeted profiling. Untargeted metabolomics studies are global in scope and have the aim of 

simultaneously measuring as many metabolites as possible from biological samples without 

bias. This strategy, known as top-down strategy, avoids the need for a prior specific hypothesis 
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on a particular set of metabolites and, instead, analyses the global metabolomic profile66. 

Conversely, targeted metabolomics studies are hypothesis driven experiments and are 

characterized by the measurement of predefined sets of metabolites, typically focusing on one 

or more related pathways of interest67. 

One single metabolite may present one, two or several resonances in an NMR spectrum, being 

these signals what is called the metabolite signature. Some of these signals can be unique 

according their position or peaks multiplicity, but some others can be easily confused, 

producing false positives. To identify a metabolite unequivocally, the user should detect all the 

resonances that belong to the metabolite signature, and to do so, 2D acquisitions are often 

needed. All these 2D acquisitions decongest the resonances allowing the user to discriminate 

signals in crowded regions. 

There exist public metabolite libraries such as the Human Metabolome Database (HMDB)68, 

the Biological Magnetic Resonance Data Bank (BMRB)69 or the Birmingham Metabolite 

Library (BML)70 where any user can check the metabolite signature of a determined compound 

both in 1D and 2D acquisitions. Moreover, the user can find other relevant information, such 

as the biofluids where metabolite can be found and its estimated average concentration in 

normal conditions. 

To quantify a metabolite accurately, the best option is to calculate the area under the curve of 

the less congested resonance, provided that the target resonance has enough signal to noise 

ratio. If this resonance is a totally isolated signal, a bucket integration of the signal region is 

optimal, being spectral binning the faster approach to use71–74. If the resonance is partially 

masked by macromolecules signals or by neighbouring resonances, spectral deconvolution 

methods are needed in order to properly calculate the area under the curve of the resonance. In 

this sense, two main approaches have demonstrated to provide efficient deconvolutions in 

highly overlapped spectral regions, which are Bayesian decompositions75,76 and constrained 

total line shape fitting (CTLS)77–80. 

Within the CTLS approach, one of the most novel advances is the proposed by Mika Tainen, 

where CTLS is combined with a quantum mechanical (QM) theory. This combination is called 

quantitative Quantum Mechanical Total-Line-Shape (qQMTLS) and has been tested in human 

serum mimics33. The current version demands the support of PERCH NMR Software 

(http://www.perchsolutions.com). 
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Within the Bayesian decompositions approach, there exist two promising bioinformatics tools 

for 1H-NMR spectra profiling. One of them is the Bayesian AuTomated Metabolite Analyser 

for NMR spectra (BATMAN)81,82. It is a free available R package created to quantify a set of 

metabolites in 1D 1H-NMR spectra. It combines Bayesian models with a Markov Chain Monte 

Carlo (MCMC) algorithm to estimate metabolite concentrations. It incorporates an internal 

library of signals associated with metabolites, and users can select the signals they want to 

quantify and some other specific parameters through the R console before starting the analysis. 

The main limitations are that it does not offer any assistance in signal identification and that 

the user interactivity is very improvable. Moreover, the final concentration estimates of each 

compound depend a lot on the parameters set-up, and due to its deconvolution algorithm 

strategy (where the final shape is always 100% filled by the sum of the signals plus the wavelet) 

it can easily produce over-fitting if those parameters are not ideally optimized. 

The other tool is called BAYESIL83. It is a web system based application that automatedly 

identifies and quantifies metabolites in 1D 1H-NMR spectra of ultra-filtered plasma, serum or 

CSF. It uses Bayesian models to match the metabolite signatures of more than 50 metabolites 

of its internal library with the NMR spectrum. The main limitations are that users have to 

collect the spectra in a standardized fashion for Bayesil to perform optimally and that it only 

works for NMR spectra of three ultra-filtered biofluids. 

Actually, there exist some free-available software tools which aim is to automate or assist 

metabolite identification and quantification. Some of them are focused in metabolite 

identification, where tools such as MetaboHunter84 and MetaboID85 use 1D data only and 

CCPN86, COLMAR87 and MetaboMiner88 use 2D acquisitions for this purpose. Some others, 

such as BATMAN and MetaboQuant89, are focused in metabolite quantification, and few try 

to cover the two processes in a unique tool such as Focus90, rNMR91 and BAYESIL. 

Despite the number of free-available tools that have emerged to guide, assist or automate NMR 

data analysis, none of them has been well established yet, and commercial packages such as 

Bioref AMIX (Bruker, GmbH, Silberstreifen, Rheinstetten, Germany) and Chenomx NMR 

Suite (Chenomx Inc., Edmonton, Alberta, Canada) are the most popular tools used in the NMR 

metabolomics field. 

In terms of profiling, AMIX allows to visualize spectra in both 1D and 2D acquisitions and 

manually assign metabolites to signals. One can easily process 1D spectra with ‘bucketing’ 

selection, and not than easily with signal deconvolution. The final output contains the area of 
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each signal in arbitrary units in a matrix format. Chenomx is quite more user-friendly to use, 

and the final output contains the absolute concentrations of each metabolite, which is calculated 

through a reference standard included in the samples (such as TSP). Its strategy consists in 

manually fit reference spectra of pure metabolites stored in its library with the sample spectra. 

However, the vast number of metabolites included in its library can generate confusion in 

metabolite assignments to non-expert users. Recent versions of Chenomx offer automatic 

fitting, but by now they recommend users to manually check its performance due to the poor 

reliability of the fully automatic approach. 

Even combining commercial and free available packages, the challenges for high throughput 

metabolite identification and quantification remain an open topic for research. 

 

 

1.2.5 Data analysis 

 

The analysis of NMR data can be carried out by different approaches, depending on the final 

goal. The unsupervised and supervised methods described in the fingerprinting section are the 

most used methods in profiling as well, but using metabolite concentrations as input instead of 

spectral features. Therefore, PCA and PLS are usually applied to analyze NMR data obtained 

from metabolite profiling. 

Besides PCA and PLS, there are two important methods to analyze NMR data obtained from 

the profiling approach, pathway analysis and time course analysis. Pathway analysis allows 

users to detect the biological mechanisms in which identified metabolites are involved. 

Methods such as over-representation analysis (ORA) and functional class scoring (FCS) are 

the most important within pathway analysis, as well as pathway simulation methods. All these 

methods are core methods currently in use on metabolomics data analysis platforms, such as 

MetaboAnalyst92,93. Detailed explanations of how to apply these three methods have been 

recently reviewed94. 

Finally, basic statistical testing is commonly applied to each individual metabolite in order to 

find significant differences between groups. Normality test such as saphiro-test can provide 

information about the distribution of the target metabolite in the samples, and according to it, 
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the user can apply a parametric test, such as a t-test, or a nonparametric test, such as the 

wilcoxon-mann-whitney test, to obtain its p-value. Besides a p-value list, fold change values, 

heat-maps and boxplots are usually applied to individual metabolites to analyze its importance 

in NMR-based metabolomics studies. 

 

 

1.2.6 Applications 

 

NMR-based metabolomics has a huge number of applications. The high reproducibility of the 

technique gives this method a number of advantages over other analytical techniques in large-

scale and long-term metabolomics studies. 

One of the most important applications is medical research95, which includes human disease 

diagnosis96,97, biomarker discovery98,99, pharmaceutical research100,101 and personalized 

treatments102,103.Moreover, this approach has been used as a potential diagnostic tool for a wide 

variety of human diseases such as cancer104,105, neurological disorders106,107, cardiovascular 

disease108,109 and diabetes110,111. 

Important applications are placed in the food and nutrition field112, which includes wine quality 

analysis113, growth monitoring of animals114 and analysis of storage and processing of food115. 

Moreover, NMR-based is applied in toxicity tests116,117 and forensic science118. 
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1.3 THESIS MOTIVATION AND OBJECTIVES 

 

The doctoral thesis presented in this document is the result of the research conducted in the 

Department of Electronic, Electrical and Automation Engineering at the Rovira i Virgili 

University (URV). The Metabolomics Platform, a joint research facility created by the URV 

and the Spanish Biomedical Research Center in Diabetes and Metabolic Disorders 

(CIBERDEM), has also been involved in this research. The Metabolomics Platform is part of 

the Pere Virgili Health Research Institute (IISPV), a major medical research organization that 

undertakes numerous research initiatives in the country. 

As a metabolomics platform, we have several collaborations with different research groups, 

which means a huge number of NMR datasets to analyze. Metabolic profiles of different 

biofluids including boold plasma and serum, urine, tissue extracts and cell cultures are 

continuously demanded in order to obtain a better understanding of the behavior of the 

metabolome under determined conditions. None of the existing tools was satisfactory enough 

providing users good agreements between interactivity and automation when performing 

untargeted and targeted metabolic profiling in NMR datasets of different matrices. 

In this context, the motivation of this thesis was born with the aim to provide automatisms and 

user-friendly interactive functions for NMR metabolic profiling, improving the quality of the 

results and reducing the time span of the analysis. To do so, we have implemented several 

algorisms that have ended up becoming bioinformatic packages. More concretely, the main 

objectives of this thesis are the following: 

1 Develop and evaluate a set of algorithms able to find and quantify a significant number of 

target signals in a completely automated manner combining 1D (NOESY and CPMG) spectra 

with its own 2D JRES complementary spectra. 

2 Develop and evaluate a collection of algorithms able to allow the user to interact with the 

spectra and to use different automated quantification modes under a user-friendly an intuitive 

GUI, avoiding the necessity of 2D JRES complementary spectra to perform the profiling. 

3 Develop and evaluate a group of functions able to combine fingerprinting approaches and to 

import reference spectra from public databases to perform the most reliable NMR profiling 

minimizing user-subjectivities but avoiding black-box processes at the same time in a useful 

and versatile tool. 
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Apart of these three principal objectives, some secondary objectives were proposed in order to 

enlarge the knowledge acquired in the NMR-based metabolomics field at the end of this thesis, 

such as: 

1 Apply the bioinformatics tools developed to achieve the main objectives of this thesis to 

obtain reliable and biologically contrastable results. 

2 Develop a set of functions able to handle all the main statistical approaches applied in NMR-

based metabolomics to convert metabolic profiles into significant and reliable results. 

3 Participate in the design and development of NMR-based metabolomics studies from the 

initial hypothesis to the discussion and conclusion of the final results. 
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1.4 ORGANIZATION OF THE DOCUMENT 

 

This chapter has provided the objectives of this thesis, a generic introduction to the 

metabolomics field and a more detailed explanation of all processes involved in NMR-based 

metabolomics studies, emphasizing spectral analysis. A brief state of the art of fingerprinting 

and profiling approaches, including an overview of the current available packages to perform 

this kind of analyses, has been exposed. The motivation of this thesis comes from the necessity 

of optimizing spectral analysis in NMR datasets, since none of the current tools is infallible 

and several processes can be improved. In this sense, novel automatic profiling methods and 

strategies for approaching NMR spectral data have been developed during this thesis. 

Chapter 2 presents Dolphin, a tool for automated targeted metabolite profiling using 1D and 

2D 1H-NMR data. The contents of this chapter have been published as a research article in the 

journal Analytical and Bioanalytical Chemistry. It describes a new methodology for automated 

metabolite identification in 2D-JRES spectra and its posterior automated quantification in 1D 
1H-NMR spectra. Briefly, its strategy consists in finding metabolite specific resonances stored 

in an internal library based on their position, multiplicity and j-coupling, and annotate these 

three characteristics of all the signals surrounding the target in order to quantify the target 

resonance using its line-shape fitting algorithm. Dolphin’s performance was evaluated using a 

pull of standards at known concentrations and a spike-in experiment in human urine samples. 

Moreover, its performance in biological samples was compared with two of the most used 

methods for metabolite quantification, manual reference deconvolution and bucket integration, 

represented by two of the most established packages, Chenomx and AMIX respectively. 

Chapter 3 presents Whale, a tool that optimizes metabolite profiling in 1H-NMR datasets 

combining fingerprinting functions and automated quantification methods with user 

interactivity under a user-friendly and intuitive GUI. This chapter contains a description of all 

Whale's functions and two full studies where the tool has been applied. The first of them 

presents a new one-dimensional 1H-NMR approach for 13C stable isotope resolved 

metabolomics called Positional Enrichment by Proton Analysis (PEPA) and has been 

submitted to Angewandte Chemie journal. The second study presents a pilot study where NMR-

based metabolomics has been applied for finding baseline biomarkers able to predict 

immunological CD4+ T-cell recovery after 36 months of virologically successful ART in adult 

HIV-infected patients, and has been submitted to The Lancet Infectious Diseases jornal. 
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Chapter 4 and chapter 5 contain a general discussion and the general conclusions of this thesis, 

and the Annexes section at the end of this document contains the user manual of Whale. 
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2.1 ABSTRACT 

One of the main challenges in nuclear magnetic resonance (NMR) metabolomics is to obtain 

valuable metabolic information from large datasets of raw NMR spectra in a high throughput, 

automated, and reproducible way.  

Although new approaches try to identify and quantify in an automated or semi-automated way, 

they are still a long way from being truly automated. Most of the existing methods can identify 

and fit metabolites contained in their libraries, but they do not properly process the possible 

superposition of “unknown” signals not found in the libraries; these unmatched peaks represent 

a source of noise and often lead to inaccurate fitting results.  

This chapter presents Dolphin, a software package born to achieve the first objective of this 

thesis, which is to develop and evaluate a set of algorithms able to find and quantify a set of 

target signals in a completely automated manner combining 1D (NOESY and CPMG) spectra 

with its own 2D JRES complementary spectra. Dolphin takes advantage of the 2D J-resolved 

NMR spectroscopy signal dispersion to avoid inconsistencies in signal position detection, 

enhancing the reliability and confidence in metabolite matching. Furthermore, in order to 

improve accuracy in quantification, Dolphin uses 2D NMR spectra to obtain additional 

information on all neighboring signals surrounding the target metabolite, considering not only 

those signals present in its library, but also those unknown signals visualized in the 2D 

spectrum. In this way, Dolphin carries out the automated quantification of a fixed target set of 

metabolites in a collection of experimental samples obtaining high throughput target metabolite 

profiling with minimum intervention from the operator. 

In order to evaluate our approach, we used three different datasets to test Dolphin and compared 

them with the results from existing packages. The first dataset contained a pool mixture of 

standard compounds at various concentrations, the second dataset is formed by a collection of 

24 rat liver aqueous extracts and the third dataset consisted in an spike-in experiment using 

human urine samples. We then compared Dolphin’s performance against other NMR 

approaches, namely an integration based quantification method and the commercial package 

Chenomx NMR Suite 7.0, which is a line-fitting and library based approach. 
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2.2 DOLPHIN’S APPROACH AND METHODOLOGY 

 

Dolphin utilizes a 1D line-shape fitting approach supported by a 2D complementary source of 

spectral data. There is a wide range of 2D NMR pulse sequences that address component 

separation in biological samples, such as COSY, TOCSY and HSQC1, each one with its 

particular benefits when performing metabolite profiling. The common drawback of most of 

these 2D pulse sequences is that they require a lot of machine time to be acquired, a situation 

that can severely limit the throughput analysis of huge data sets. Two-dimensional J-resolved 

(2D JRES) NMR spectroscopy2 can acquire a second-dimension spectrum of a metabolite 

mixture with relatively little overlapping of signals. This approach separates the effects of 

chemical shift and J-coupling into independent dimensions3,4. The drawback is that J-coupling 

can only be quantified for narrow signals, and so the use of Dolphin is limited to the automated 

profiling of low molecular weight metabolites in samples free from broad resonances. This is 

less problematic while working with aqueous extracts of biofluids and tissues, since these 

samples are free of broad resonances arising from high molecular weight macromolecules. 

Otherwise, if it is not possible to work with extracts, the dominating broad resonances and 

background signals can be reduced using different NMR pulse sequences and editing 

techniques based on NMR relaxation times5. 

Dolphin’s flowchart is represented in Figure C2.1. The workflow starts by importing the NMR 

experiments and selecting the library to be used (see the next section). The line shape-fitting 

algorithm works optimally when we have a precise referencing between 1D and 2D JRES 

spectra. By default, this referencing uses the alpha-glucose doublet6, but it can be changed to 

the TSP signal or any other peak of interest (in this work we used the default referencing 

option). In addition, during the data import process, the user can choose the data normalization 

method (selected peak, total area, or none). This step is especially important if quantification 

results have to be reported. 
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Figure C2.1. Dolphin’s flowchart. Here we show the process of matching and quantification 

of a metabolite TM with n signals represented as Mi, where i value goes from 1 to n. It is 

important to note that quantification is only performed after a validated match. 

 

After these initial preprocessing steps, the user can run the automated quantification of those 

metabolites selected in the user library. The process works in a two-stage approach detailed in 

the following steps: 

1st: In a first step, Dolphin takes all signals that belong to that metabolite from the library; in 

some cases it could be one (as fumarate or formate) or more than one (as valine or leucine). 

Then, starting with one of them, the software goes to the signal detection step. (Note that the 

number of signals goes from i to n). 

2nd: To detect a signal, the first step is to find a peak in the 1D JRES skyline projection (1D 

SKYLINE pJRES) at the ppm position annotated in the library for our target signal (TMi(pos)). 

If a peak is found, the software goes to the 2D matrix in order to check the multiplicity and j-

coupling of that peak. 

3rd: Each peak in the skyline projection has its multiplicity and j-coupling dispersed in the 2D 
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matrix. To check both features, the software makes a vertical cut in the 2D matrix at the ppm 

position of our candidate peak. If the number of peaks in that cut (multiplicity) and the distance 

between them (j.-coupling) coincide with the multiplicity and j-coupling annotated in our 

library for our target signal (TMi(mul) and TMi(j-c)) the signal is considered as found. 

4th: If all signals belonging to our target metabolite (which means that i=n) are found, the 

software takes one of them and moves to the quantification pre-process. The goal of this pre-

process is the automated annotation of all the signals needed to perform a correct fitting. 

5th: By creating a window around our target signal position, the software looks for 

neighbouring peaks. In case of no neighbouring peaks, the software goes directly to perform 

the line-shape fitting of our isolated signal in our 1D data using the information annotated in 

the library. If neighbouring peaks are found, the software makes a vertical cut in the 2D matrix 

and takes the multiplicity and j-coupling information for each neighbouring peak. All that 

information is then passed automatedly to the line-shape fitting algorithm in order to perform 

a realistic fitting, taking into account all surrounding signals present in the fitting region to 

distribute correctly the 1D data area between them. 

When all the steps are finished, the program displays the measured area, the chemical shift of 

the signal used for quantification, and the fitting error for the region containing the signal of 

interest in the selected sample. This fitting error will give us information on whether the 

modeling of known and unknown metabolites has been successful or not, giving an indicative 

value of the confidence in measurement. Finally, the results for the complete dataset can be 

exported as an Excel file for further analysis. 

As shown in Figure C2.2, the user can verify the fitting performance, both graphically and 

visually, . Dolphin’s user interface plots four figures to show the relevant information for the 

selected sample. The upper graph contains the 1D spectrum plot of the fitting region; the middle 

segment contains the pJRES spectrum, where all signals are unified and displayed as a unique 

singlet, reducing congestions and overlapping; finally, the bottom figure contains the 2D JRES 

matrix contour plot, and the lower-right figure contains the sum projection of the vertical cut 

of the 2D JRES spectrum. 
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Figure C2.2. Image of Dolphin’s isoleucine quantification in STN1. We can see here how 

Dolphin uses its automated signal annotation in 2D data to deconvolve our target signal (second 

doublet from the left of the image, near 1.02 ppm) in the 1D spectra successfully. Dolphin 

detects 5 more signals that may affect our final goal, without previous knowledge of what those 

signals are, just taken them as unknowns. 

 

All the functions are programmed under the matrix calculation platform MATLAB (ver. 7.5.0; 

The Mathworks, Inc., Natick, MA, USA). Dolphin is available by request. 

 

 

2.3 AUTOMATED MATCHING OF TARGET METABOLITES USING 2D-JRES 

 

In order to check for the presence of each target metabolite in a sample, Dolphin looks for a 

subset of its spectral pattern in the 2D-JRES NMR spectra. This characteristic subset of spectral 

resonances is stored in a proprietary library edited specifically for the kind of sample under 

study. The metabolite information about peak positions, signal multiplicity, and J-coupling 

values is included in the library, and is based on public domain databases such as the Human 

Metabolome Database (HMDB)7, the Birmingham Metabolite Library8, and the 

BioMagResBank (BMRB)9, or commercial packages such as Chenomx NMR Suite (Chenomx 

Inc., Edmonton, Alberta, Canada) and Bioref AMIX (Bruker, GmbH, Silberstreifen, 
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Rheinstetten, Germany). 

The spectral pattern of a metabolite can be very complex and, in some cases, we can observe 

more than 10 different types of signals for a metabolite (e.g., glucose); however, most 

metabolites have a fixed pattern of signals that can be used to identify a metabolite in a mixture 

using just one, two, or three of these features since they are unique for that metabolite and have 

a fixed location in the spectrum. 

The information on peak positions (or metabolite chemical shifts) is used in the first step of the 

metabolite match process. In this step, Dolphin matches the chemical shift of a signal annotated 

in the library with a peak in the processed 1D SEM-skyline pJRES spectrum (the 2D-JRES 

data was processed using a combined sine-bell-exponential (SEM) function, and a combination 

of SEM-skyline was applied for the 1D projection of the JRES data (pJRES)10). If a matching 

peak is present in the 2D JRES datasets, the algorithm tries to match the multiplicity and J-

coupling of this signal annotated in the library with that of the vertical cut in the same peak 

position in the 2D JRES matrix. This is one of the main advantages of Dolphin, since all other 

approaches use identifications based only on 1D libraries that can lead to misidentifications. 

 

 

2.4 AUTOMATED QUANTIFICATION OF PEAKS USING LINE-SHAPE FITTING 

 

Dolphin continues with the quantification process only if location, multiplicity, and J coupling 

values match those annotated in the library for a given metabolite. The quantification step is 

carried out by measuring the area under one of the signals of the metabolite in question. The 

library defines which signal is going to be used in the peak quantification step, and a line-shape 

fitting algorithm based on the sum of Lorentzian functions modulated with different Gaussian 

proportions (Voigt profile with up to 10 % of Gaussian shape) is applied to discriminate the 

area of our target signal from other interferences sharing the same spectral region. 

To achieve an optimal fitting, it is important to take into account the proportions between 

Lorentzians conforming the multiplet of each signal. Often, the presence of unknown signals 

surrounding or overlapping the signal of interest makes it difficult to accurately quantify a 

metabolite, especially in congested regions. In Dolphin, the fitting process is improved by using 
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more detailed information from the position and the multiplicity of all the resonances 

surrounding the signal of interest as well. The processed 1D SEM-skyline pJRES spectrum 

gives the position of all the resonances surrounding our signal of interest, whereas the vertical 

cuts at these resonances indicate the multiplicity and J-coupling of all the signals surrounding 

the signal. In this way, the software is aware not only of the resonances included in the 

metabolite library but also of the presence of potential unknown interfering signals that are 

overlapping with the signal in question; taking this information into account results in a more 

accurate fit. 

The implemented line-shape fitting approach is constrained using well-known intensity 

relationships within the singlets, doublets, and triplets. Multiplets, however, are fitted 

according to a sum of singlets. When the position, multiplicity, and Jcoupling values are 

calculated for all signals present in the region to fit, Dolphin is ready to proceed with the 

quantification step. Finally, both fitting errors and intensity values for all targeted metabolite 

quantifications are returned in an excel format file. 

 

 

2.5 COMPARISON OF METHODS 

 

We compared the results obtained with Dolphin’s automated process, with two other 

approaches: one, a widely used integration-based quantification method (in our case we use 

that mode in AMIX) and second, using the commercial package Chenomx NMR Suite 7.0. 

Chenomx is a well-known commercial program that incorporates a large list of compounds in 

its library with the specific resonance signatures for each stored metabolite along the NMR 

spectra. Although there is a semi-automated fitting mode available, the software is mainly 

manually operated and requires expertise to adjust the metabolite peaks correctly. Therefore, 

the process can be considered as “user supervised.” 

Area integration is a standard quantification method, easy to implement with homemade tools 

and often included in commercial packages. It allows the quantification of metabolites by 

means of measuring the area in the spectrum associated with known metabolites. However, 

quantification of crowded regions using this approach might be challenging because of the 

potential unknown contribution from overlapping peaks and unidentified signals in the same 
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segment. 

 

2.5.1 Samples preparation and NMR data acquisition 

 

As a proof of concept, we built a library of 15 hydrophilic metabolites that frequently appear 

in liver aqueous extracts (isoleucine, leucine, valine, β-hydroxybutyrate, alanine, acetate, 

succinate, creatine, glucose, fumarate, tyrosine, phenylalanine, uridine, formate, and 

adenosine). We tested Dolphin quantifying these target metabolites in two different real sample 

sets. The first test set comprised eight standard mixtures (labeled from STN1 to STN8) of pure 

metabolites, at different concentration ranges. The second dataset contained the NMR 

measurements of a set of 24 rat liver aqueous extracts (EXP1 to EXP24). 

Three additional reference mixtures (REF1 to REF3) were also prepared for calibration 

purposes. Each one of the mixtures contained five of the library compounds, chosen to ensure 

a spectrum free of overlapped signals so that all three methods could obtain accurate 

quantification using their individual units of measure. In this manner, we were able to 

normalize each approach for comparison purposes. 

Stock solutions for every single compound were prepared separately in 1 mL tubes with D2O 

solution containing 0.6753 mM trimethylsilylpropionic acid (TSP), and the same D2O solution 

was added to the final mixtures to obtain 700 µL for the NMR measurements. The liver 

extraction protocol was performed as described previously in this other study11. 

Additionally, we performed a spike-in experiment in human urine to test Dolphin’s behavior 

in a more complex matrix. For that purpose, we prepared 5 aliquots of 300µL of human urine 

(SPK0 to SPK4) and added standard compounds to 4 of them (SPK1 to SPK4) at different 

concentration ranges. All the aliquots were filled to a final volume of 600µL with the buffer 

solution. We used a set of 5 compounds present in human urine: lactate, alanine, citrate, taurine 

and glycine. Finally, a tube with standard additions of the 5 compounds at known 

concentrations raised to 600µL with buffer solution was prepared for calibration purposes 

(SPKRef). 

The 1D nuclear Overhauser effect spectroscopy with a spoil gradient (NOESY) was used to 

record 1D 1H NMR spectra using a 600.2 MHz frequency Avance III-600 Bruker spectrometer 
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(Bruker, Germany) equipped with an inverse TCI 5 mm cryoprobe. A total of 256 transients 

were collected across a 12 kHz spectral width at 300 K into 64 k data points, and exponential 

line broadening of 0.3 Hz was applied before Fourier transformation. A recycling delay time 

of 8 s was applied between scans to ensure correct quantification. Two-dimensional J-RES 

spectra were acquired using the standard pulse sequence with pre-saturation and spoil gradients 

(jresgpprqf). Spectral widths of 7.5 kHz in the F2 dimension and 64 Hz in the F1 dimension 

were used; eight scans per increment and 32 increments were accumulated into 8 k data points. 

Zero filled into 16 k points and linear prediction to 128 increments was applied prior to Fourier 

transformation (FT) followed by tilting and symmetrisation. The acquired NMR spectra were 

phased and baseline-corrected using TopSpin software (ver. 2.1; Bruker BioSpin GmbH, 

Silberstreifen, Rheinstetten, Germany). 

 

2.5.2 Equations 

 

Chenomx gives quantification results in terms of the absolute concentration of the metabolite, 

but AMIX and Dolphin report their results in terms of non-normalized area units. Therefore, 

in order to compare the different values, we have to convert each method’s own quantification 

units into absolute concentrations of the metabolite. Assuming zero error when quantifying 

clean and isolated signals in the reference mixtures, for each quantification signal of each 

metabolite we calculate a normalization factor as described in Eq. C2.1, 

(Eq.C2.1)      

where FMm is the normalization factor of the method M for the metabolite m, QMm are the 

quantification units of the method M quantifying the metabolite m, and RCm is the real 

concentration of the metabolite m. 

For the STN set, as we know the real concentration of each metabolite in the sample, we can 

evaluate the accuracy of each one of the methods (M) on every sample (i) for each one of the 

metabolites (m). Eq. C2.2 gives the relative error of quantification of a metabolite m in a sample 

i (EMim), 

 

m

m
m
QM
RCFM =
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(Eq.C2.2)     

 

where QMim is the measured concentration of the metabolite m in the sample i of the method 

M, and Cim is the real absolute concentration of the metabolite m in the STN sample i. 

For the liver aqueous extracts set, the real concentration values in biological samples were not 

known. Therefore, we evaluated the differences of the three methods by comparing their results 

against each other in pairs, using the following relative difference estimation: 

 

(Eq.C2.3)     

 

where DMim ab is the relative difference quantifying a metabolite m in the sample i between 

method a and method b, QMim a is the concentration of this metabolite m estimated by the 

method a in the sample i, and QMim b is the concentration of the metabolite m estimated by the 

method b in the sample i. 

For the urine spike-ins set, we measured the accuracy of each method subtracting the 

metabolite concentration quantified in the tube without additions (SPK0) from the values 

quantified in each spike-in tube (SPK1 to SPK4) and comparing the result to the values spiked-

in. The quantification error, expressed in %, is given by (Eq.4): 

 

(Eq.C2.4)     

where QMim is the measured concentration of the metabolite m in the sample i of the method 

M, QM0m is the measured concentration of the metabolite m in the sample SPK0 and Cim is the 

real absolute concentration of the metabolite m added in the SPK sample i. 

Final concentrations of each metabolite in the biological datasets were obtained converting 

each method values using the normalization factor described in Eq.C2.1. 
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2.6 RESULTS 

 

2.6.1 Targeted profiling in standard pooled samples 

 

All target metabolites were matched and quantified in the standard samples by all three 

approaches. In most cases, the quantifications were in good agreement with the known 

metabolite concentrations used to prepare the samples. When evaluating the results, it is 

important to distinguish those metabolites that can be quantified by an isolated signal from 

those that can be quantified by a signal that is present in overlapping region. For example, the 

region from 1.07 to 0.91 ppm, concentrates 11 peaks, corresponding to six signals (five 

doublets and 1 triplet) from three different metabolites (valine, isoleucine, and leucine). The 

fitting errors bymethods used here in this region are very different and depend on the 

metabolite. The results from Dolphin were in very good agreement with actual concentrations 

in the standard pooled samples, showing very little quantification error for all above 

metabolites, even for the case of overlapped signals. 

The results are summarized in Table C2.1, showing a maximum mean relative error of 

quantification less than 10 % for all those metabolites that are quantified by an isolated signal. 

In this case, none of the methods is better than the other two in precision terms, but Dolphin 

has the advantage of full automation. Focusing on the quantification of areas within the 

overlapped signals, both Dolphin and Chenomx performed similarly with less than 10 % of 

relative error. However, the integration approach performed worse in the overlapped signals 

region, with mean relative errors between 10%and 20 %, with isoleucine as high as 46 %. See 

radar plot in Fig.C2.3 to graphically evaluate relative errors. 

 

Method Chenomx Integration Dolphin All 

Statistic ME SD ME SD ME SD ME SD 

Isoleucine 5 5 46 18 3 2 18 24 

Leucine 9 5 12 7 8 4 10 2 
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Valine 5 2 5 7 4 2 5 1 

DL-β-Hydroxybutirate 5 3 4 3 4 3 4 0 

Alanine 6 4 14 5 5 3 8 5 

Acetate 3 2 6 4 4 4 4 1 

Succinate 7 4 20 8 6 6 11 7 

Creatine 5 4 13 5 7 1 8 4 

Glucose 8 7 7 7 4 3 6 2 

Fumarate 3 1 9 7 3 3 5 3 

Tyrosine 6 3 4 5 2 2 4 2 

Phenylalanine 6 5 5 5 5 4 5 0 

Uridine 6 6 5 4 2 1 5 2 

Adenosine 3 3 7 6 5 4 5 2 

Formate 10 6 6 7 4 2 6 3 

All 6 4 11 7 4 3 7 4 

Table C2.1. Quantification errors (in %) of the three methods in the STN mixtures. The table 

contains both the mean relative error (ME in %) and the standard deviation (SD in %) for every 

metabolite in the STN set. 
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Figure C2.3. Radar plot of the quantification errors (in %) in the STN set. Here we can check 

graphically the performance of the three approaches quantifying metabolites in the STN 

samples. The graph shows the mean quantification error values (in %) of Chenomx, Dolphin 

and the standard integration approach on a logarithmic scale. 

 

2.6.2 Targeted profiling in biological samples 

 

The second dataset was composed by 24 rat liver aqueous extracts, (EXP1 to EXP24). In this 

case, we had no previous information about their metabolite content and, therefore, we did not 

know the correct identifications and quantification values. Absolute quantification errors could 

not be computed in this case and so we used Eq.C2.3 to perform comparisons by pairing 

methods. The main goal of this second study was to evaluate Dolphin’s performance in 

biological samples, where overlapping and base lining problems are more pronounced. 

All 15 target metabolites (those included in this Dolphin library) were matched and quantified 

by all three approaches in all the 24 biological samples. As expected, the quantification 
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differences between methods (summarized in Table C2.2) were higher than in the case of the 

standard mixtures. There was a big difference comparing integration vs. the two fitting 

approaches, but the differences were not so important when comparing between the two fitting 

approaches. Although the mean difference in quantification of the whole set of metabolites 

between Chenomx and Dolphin is around 7 %, the same difference rises to 18 % and 23 % 

when Integration is compared with Dolphin and Chenomx, respectively. While only adenosine 

presents the same difference value between methods (4 %), 12 metabolites present lower values 

when the two fitting approaches are compared. In fact, only in the case of glucose, the 

difference value between the Integration approach and Dolphin (10 %) is lower than the 

difference between Dolphin and Chenomx (23 %). When taking Chenomx as reference against 

Integration, only eight of the whole set present quantification differences under 20 %, 

highlighting a difference of almost 80 % in the case of creatine. The comparisons between 

Dolphin and the Integration method followed a similar pattern, but with lower difference 

values, with the exception of phenylalanine. Figures C2.4 and C2.5 show Dolphin performance 

in biological samples, quantifying signals in crowded regions and baseline produced by 

macromolecule residuals. 
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Method Chenomx vs Dolphin Integration vs Dolphin Chenomx vs Integration 

Statistic MD SD MD SD MD SD 

Isoleucine 5 5 18 13 25 21 

Leucine 8 8 29 15 35 27 

Valine 5 3 9 5 14 9 

DL-β-Hydroxybutirate 3 4 12 9 13 13 

Alanine 3 5 16 5 16 3 

Acetate 5 4 19 10 22 12 

Succinate 6 5 6 6 11 8 

Creatine 4 3 45 12 79 32 

Glucose 23 5 10 5 36 7 

Fumarate 7 6 13 11 14 7 

Tyrosine 8 5 20 13 21 8 

Phenylalanine 10 5 39 15 35 7 

Uridine 4 3 7 6 8 8 

Adenosine 4 2 4 3 4 3 

Formate 8 5 19 9 19 4 

All 7 5 18 9 23 11 

Table C2.2. Quantification differences (in %) of each method vs. the others by pairs in the 

EXP dataset. The table here presents the mean relative difference (MD in %) and the standard 

deviation (SD in %) for every metabolite in the EXP set. 
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Figure C2.4. Image of Dolphin’s isoleucine quantification in EXP1. In this regions the 

metabolite pattern is quite similar to the generated in the STN mixtures, but with an important 

background signal coming from high weight molecular residuals. The results presented in the 

main article prove the accuracy of Dolphin’s deconvoloution algorithm even in such conflict 

situations. 
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Figure C2.5. Image of Dolphin’s β-hydroxybutyrate quantification in EXP1. This region of 

real biological sample contains unknown signals (not included in the library and not used in 

the STN mixtures) surrounding our target which are taken into account in order to perform a 

correct the line-shape fitting. 

 

2.6.3 Targeted profiling in human urine spike-ins 

 

When analyzing the results of this spike-in experiment, is important to take into account that 

all tubes contained human urine of the same stock sample, which produces minimal biological 

variation between samples. In such case, the integration approach is always affected by almost 

the same background signal, so the area difference between samples when integration is used 

is only attributable to the produced by the increment of the compound added, which explains 

why integration is the best approach in most of cases (Table C2.3 and Figure C2.6). However, 

if we focus on the absolute concentrations calculated in SPK0 (Table C2.4), we see that 

integration is always giving higher values than Chenomx and Dolphin, which means that the 

error of quantification of the integration approach is being produced since the biological sample 

without additions and is being masked by this analysis. 
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Focusing now in Dolphin’s behavior, we can see how the results are in very good agreement 

with those present by Chenomx manual fitting. Chenomx gives better results only when 

quantifying Glycine, and with a minimal error difference of 1%. We want to highlight 

Dolphin’s accuracy when catching and quantifying citrate through its shifting doublets with 

roof effect. Figure C2.7 shows Dolphin performance in urine samples. 

 

Method Chenomx Integration Dolphin All 

Statistic ME SD ME SD ME SD ME SD 

Alanine 10 5 6 3 4 2 7 3 

Citrate 7 6 2 2 6 5 5 3 

Glycine 10 4 6 2 11 3 9 3 

Lactate 12 6 4 2 11 8 9 4 

Taurine 6 6 4 4 6 5 5 1 

All 9 5 4 3 8 5 7 2 

Table C2.3. This table shows the relative errors of quantification (in %) of the three methods 

in the SPK additions. The table contains both the mean relative error (ME in %) and the 

standard deviation (SD in %) for every metabolite in the SPK set. 
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Figure C2.6. Radar plot of the quantification errors (in %) in the SPK set. Here we can check 

graphically the performance of the three approaches quantifying metabolites in the SPK 

samples. The graph shows the mean quantification error values (in %) of Chenomx, Dolphin 

and the standard integration approach on a lineal scale. 
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Tube SPK0 SPK1 

Method Spiked Chenomx Integration Dolphin Spiked Chenomx Integration Dolphin 

Alanine 0 0.043 0.093 0.047 0.051 0.100 0.150 0.099 

Citrate 0 0.450 0.671 0.423 0.163 0.586 0.838 0.561 

Glycine 0 0.168 0.482 0.166 0.225 0.380 0.736 0.379 

Lactate 0 0.025 0.081 0.024 0.050 0.078 0.132 0.074 

Taurine 0 0.147 0.368 0.145 0.213 0.360 0.593 0.353 

Tube SPK2 SPK3 

Method Spiked Chenomx Integration Dolphin Spiked Chenomx Integration Dolphin 

Alanine 0.062 0.111 0.166 0.110 0.072 0.113 0.168 0.115 

Citrate 0.195 0.642 0.903 0.636 0.228 0.603 0.896 0.595 

Glycine 0.270 0.426 0.793 0.419 0.315 0.454 0.821 0.454 

Lactate 0.060 0.084 0.147 0.083 0.070 0.091 0.149 0.089 

Taurine 0.255 0.426 0.658 0.402 0.298 0.444 0.675 0.436 

Tube SPK4 

Method Spiked  Chenomx  Integration  Dolphin  

Alanine 
0.082 

0.260 

0.360 

0.080 

0.340 

0.121 

0.681 

0.515 

0.101 

0.501 

0.178 

0.911 

0.857 

0.158 

0.708 

0.127 

0.687 

0.508 

0.101 

0.506 

Citrate 

Glycine 

Lactate 

Taurine 

Table C2.4. This table shows the concentrations of all compounds in each tube, both the 

spiked-in and the calculated by each method. The arbitrary units of Integration and Dolphin 

were converted to absolute concentrations units according to Eq.1 in section 2.4 Comparison 

of methods using the reference signals quantified in SPKRef. 
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Figure C2.7. Image of Dolphin’s performance in taurine’s quantification in SPK0 sample. 

Once again we can see the efficiency of Dolphin’strategy, which is able to automatedly add 

unknown signals surrounding our target in order to improve the fitting. 

 

 

2.7 DISCUSSION 

 

The differences in quantification accuracies for the three options are directly related to the 

approaches used and in the particular signal characteristics in the regions of interest.  

Area integration is a good approach when quantifying isolated peaks with intensities clearly 

higher than background noise; on the other hand, this approach is less accurate when used in 

congested areas or when weak signals need to be measured. These considerations explain the 

method accuracy in the case of metabolites that can be quantified using isolated signals. In fact, 

valine and phenylalanine present the lowest errors in quantification for the STN samples using 
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the metabolite integration approach (see Table C2.1). 

Otherwise, and due to the shape constraints of its spectral library, Chenomx is the tool that 

usually presents higher quantifying errors for these metabolites. Chenomx uses reference 

deconvolutions to adjust the shim for the spectra in its library for all metabolites, but it is only 

effective in removing line-shape distortions that affect all signals in the spectrum equally; in 

addition, there are other factors affecting the shape of he signals12,13, especially if they are 

unusually intense and, consequently, the Chenomx library signals rarely fit accurately such 

peaks present in the real spectrum. This lack of shape flexibility makes it difficult to achieve a 

precise quantification and increases error. 

Dolphin, on the other hand, quantifies using a line-shape fitting algorithm based on the addition 

of Lorentzian signals modulated with a different Gaussian proportion (to correct such problems 

associated with magnetic field inhomogeneity while acquiring data). The results show that this 

option works better in metabolite quantification; in fact, Dolphin presents even lower error 

values compared with the two software tools tested for most of the cases applied (see Table 

C2.1). 

The problem is completely different in the case of areas of the spectra with moderate to high 

signal congestion. It is in these regions where both Dolphin and Chenomx software present 

better results than the integration-based approach. Chenomx, through its manually adjusted fit, 

allows a trained user to solve the fitting puzzle really well, even though its library signals rarely 

fit in an accurate manner for those peaks present in the real spectrum. However, this manual 

approach is time-consuming and prone to subjective quantification. For example, in the 

branched chain amino acids area (from 1.07 to 0.91 ppm) the program presents a list of 21 

possible compounds that may be adjusted for each sample. On the other hand, Dolphin’s line-

shape fitting approach does not require manual supervision since all the necessary information 

to deconvolve the signal of interest is obtained from the 2D JRES analysis. Figure C2.1 

presents the Dolphin analysis of the branched chain amino acids region of one of the STN 

mixtures (Figures C2.4, C2.5 and C2.7 show Dolphin’s performance in the EXP and the SPK 

samples). In this example, we fit the doublet near 1.00 ppm coming from isoleucine to quantify 

this metabolite concentration, and the area that corresponds to the signal is adjusted taking into 

account all neighboring signals as unknowns (five doublets and one triplet, which were 

adjusted automatedly with our line-shape fitting algorithm). Therefore, Dolphin was more 

accurate in these situations, even without human intervention. This enables the user to calculate 
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the concentrations of numerous metabolites in an automated, high-throughput, and accurate 

manner. 

The quantifications carried out by the peak integration method produced several inaccuracies. 

The main problem of this approach was associated with the integration technique, which 

measures the area under the curve assigned to a metabolite, ignoring the interferences generated 

by signals from adjacent overlapped metabolites. The quantification of isoleucine in the STN 

set (see Table C2.1) is a representative example of such a problem; the measured value is 

clearly affected by the amount of valine, which has a signal overlapped with our target signal 

(Figure C2.8). 

 

 

Figure C2.8. Isoleucine quantification behaviour of the three approaches in the STN set. Here 

we can see how Integration of isoleucine signal, which is moderately overlapped with a valine 

signal, follows up an over estimated relative concentration against the REF value. While this 

overestimated trend seems to follow a good correlation with the real Standard, we can observe 

how the high concentration of valine in STN4 and STN5 are distorting this trend. Finally, when 

the concentration of valine decreases, isoleucine recovers the original trend, always with an 

over estimation of its relative concentration. 

It is important to note that Dolphin performed well while quantifying metabolites in the STN 

dataset compared with the other two methods. This fact highlights the combined accuracy of 
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the Chenomx line-fitting approach for congested signals regions and the efficient area 

integration for isolated peaks that are combined in the Dolphin software package. 

 

Dolphin’s quantification accuracy is directly related to the quality of the spectra. In complex 

biological matrices, especially in the presence of inhomogeneities in the samples, some fitting 

errors arise, mostly produced by spectral shapes that are quite far from being Lorentzian (the 

addition of 10 % of Gaussian shape does not resolve this issue totally). 

 

 

2.8 CONCLUSIONS 

 

This work presents a new NMR data processing tool (Dolphin) that assists with identification 

and quantification of target metabolites in an automated manner once datasets are imported 

with the import parameters manually entered by the user. The tool has been compared against 

two popular NMR metabolite quantification approaches. Dolphin quantifications were more 

accurate compared with those obtained with bin integration approaches, and in good agreement 

with the manual line-shape fitting solutions. Our software is based on both the 1D and 2D 

spectra for the same sample, matching data to a library for metabolite identification, and 

automatedly fitting peaks for quantification purposes. One advantage of such workflow is the 

increase in identification confidence. Moreover, this approach takes into account all 

neighboring signals, even if they are unknown, which leads to a more accurate quantification. 

This is especially relevant and useful in very congested regions, where current automated tools 

and methods mostly fail. The maximum number of automatedly identifiable and quantifiable 

metabolites is strongly related to the 2D-JRES spectra resolution and the type of biofluid matrix 

under study. Future versions of Dolphin will incorporate better filters and spectral processing 

routines in order to enlarge the target metabolite list without increasing the processing time 

requirements. 

 

 

 



	 84	

2.9 ACKNOWLEDGEMENTS 

We acknowledge CIBER de Diabetes y Enfermedades Metabólicas, an initiative of ISCIII 

(Ministerio de Ciencia e Innovación) for partially funding this work. 

 

 

2.10 REFERENCES 

 

 

1. Bingol, K. & Brüschweiler, R. Multidimensional approaches to NMR-based 

metabolomics. Anal. Chem. 86, 47–57 (2014). 

2. Aue, W. P., Karhan, J. & Ernst, R. R. Homonuclear broad band decoupling and two-

dimensional J-resolved NMR spectroscopy. J. Chem. Phys. 64, 4226–4227 (1976). 

3. Ludwig, C. & Viant, M. R. Two-dimensional J-resolved NMR spectroscopy: review of 

a key methodology in the metabolomics toolbox. Phytochem. Anal. 21, 22–32 (2010). 

4. Huang, Y., Cai, S., Zhang, Z. & Chen, Z. High-resolution two-dimensional J-resolved 

NMR spectroscopy for biological systems. Biophys. J. 106, 2061–70 (2014). 

5. Tang, H., Wang, Y., Nicholson, J. K. & Lindon, J. C. Use of relaxation-edited one-

dimensional and two dimensional nuclear magnetic resonance spectroscopy to improve 

detection of small metabolites in blood plasma. Anal. Biochem. 325, 260–72 (2004). 

6. Pearce, J. T. M. et al. Robust algorithms for automated chemical shift calibration of 

1D 1H NMR spectra of blood serum. Anal. Chem. 80, 7158–62 (2008). 

7. Wishart, D. S. et al. HMDB 3.0--The Human Metabolome Database in 2013. Nucleic 

Acids Res. 41, D801–7 (2013). 

8. Ludwig, C. et al. Birmingham Metabolite Library: a publicly accessible database of 1-

D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-

NMR). Metabolomics 8, 8–18 (2011). 

9. Doreleijers, J. F. et al. BioMagResBank database with sets of experimental NMR 

constraints corresponding to the structures of over 1400 biomolecules deposited in the 



	 85	

Protein Data Bank. J. Biomol. NMR 26, 139–46 (2003). 

10. Tiziani, S., Lodi, A., Ludwig, C., Parsons, H. M. & Viant, M. R. Effects of the 

application of different window functions and projection methods on processing of 1H 

J-resolved nuclear magnetic resonance spectra for metabolomics. Anal. Chim. Acta 

610, 80–8 (2008). 

11. Vinaixa, M. et al. Metabolomic assessment of the effect of dietary cholesterol in the 

progressive development of fatty liver disease. J. Proteome Res. 9, 2527–38 (2010). 

12. Alam, T. M. et al. Investigation of chemometric instrumental transfer methods for 

high-resolution NMR. Anal. Chem. 81, 4433–43 (2009). 

13. Saude, E. J., Slupsky, C. M. & Sykes, B. D. Optimization of NMR analysis of 

biological fluids for quantitative accuracy. Metabolomics 2, 113–123 (2006). 

	

 

	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 86	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 87	

 
 
 
 

 
 

CHAPTER III 
 
 

DEVELOPMENT AND APPLICATIONS OF 
WHALE: OPTIMIZING METABOLITE 

PROFILING IN 1D 1H-NMR SPECTRA AND 
APPLYING IT TO TECHNICAL AND CLINICAL 

STUDIES 
 

 

 

 

 

 

 

 

 

 

 

 



	 88	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 89	

3.1 WHALE: A PACKAGE COMBINING FINGERPRINTING AND TARGETED 

METABOLITE PROFILING APPROACHES TO IMPROVE THE EXTRACTION OF 

METABOLIC INFORMATION IN 1H-NMR SPECTRA. 

 

3.1.1 Abstract 

 

The complexity of NMR spectra varies a lot depending on the biofluid matrix, the sample 

treatment, the acquisition parameters, and several other factors. In fact, fitting the spectral 

processing parameters to the dataset complexity is an optional strategy to save time in the 

spectral analysis. Moreover, depending on the final goal of the study, different approaches can 

be applied to analyse samples in a dataset. An untargeted analysis of the sample fingerprint can 

be enough to discriminate groups into a study, or very useful for matching spectra with 

metadata values and/or finding 'hot spots' in an exploratory analysis. Otherwise, a targeted 

analysis of the metabolite profile can be performed in order to find molecular patterns of the 

samples under study. 

With the aim to cover the widest range of NMR spectral analysis, we developed and evaluated 

a set of algorithms that have become new functions in a new package called Whale. Actually, 

these new functions cover the second and third objectives of this thesis, which consist in adding 

fingerprinting approaches, importing reference spectra from public databases and allowing 

users to interact with the spectra and to use different automated quantification modes under a 

user-friendly an intuitive GUI. All these improvements allow users to perform the most reliable 

NMR profiling minimizing user-subjectivities but avoiding black-box processes at the same 

time in a useful and versatile tool. 

 

3.1.2 Package overview 

 

Whale has born as an upgrade of Dolphin with the aim to cover a wide range of challenges that 

users may face when analyzing NMR datasets in metabolomics studies. Mainly, it incorporates 

some fingerprint options that allow users to explore data before starting more complex analysis 

and a new strategy for metabolite profiling based on user interaction for signal identification 
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with intelligent assistance and different modes of automated quantification along samples. 

Moreover, it gives the user the option to import reference spectra from public databases and to 

graphically check them with the spectra of the dataset under study. The aim of the tool is to 

provide different ways to obtain reliable results depending on their goal, their experience and 

their necessities. The package has been re-designed to work with NMR datasets of any kind of 

biofluid using Bruker data as input without needing 2D acquisitions to perform the profiling. 

As in the previous version, all functions of the package have been programmed using 

MATLAB (ref matlab) and compiled to work as standalone application. 

 

3.1.3 Inputs and outputs 

 

Inputs and outputs are key elements in NMR spectral analysis tools for metabolomics studies. 

Inputs are very important in order to establish data import parameters that will define the future 

results, and outputs are as important as inputs because they need to be informative, easy to 

interpret and well structured, since in most cases they will be used as inputs for posterior 

statistical analysis. 

Whale uses one input parameters file with some values that need to be filled. The file format 

is detailed in the appendix section 1, and includes some paths, information about importing 

parameters such as spectral referencing and normalization and two quality thresholds that will 

be very important for the analysis. These two thresholds correspond to the minimum ratio of 

'area of the signal of interest / area of the total spectrum in that location' and the maximum 

fitting error calculated as the difference between the real spectrum and the generated by the 

model. They are directly linked to the output files because all the quantifications that do not 

pass these thresholds will generate a figure of the quantification performance in a folder called 

‘Plots2Check’. It will allow users to rapidly check those quantifications that could not be 

reliable, detect the mistake and re-run the analysis only in those cases. 

The package generates different outputs: the already explained ‘Plots2Check’, a file with all 

the quantification values, the exact ppm position where signals have been quantified, the fitting 

error and the ratio 'area of the signal of interest / area of the total spectrum in that location' of 

each case will also been generated. The output format allows easy interpretation of the 

reliability of the results and is easily adaptable to be used as input for posterior statistical 
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analysis in Matlab, R, SPSS, and more. 

 

3.1.4 Fingerprint options 

 

One of the most common ways to approach NMR metabolomics data is to apply fingerprinting 

analysis of the samples in a dataset. Fingerprinting allows users to obtain valuable information 

of a dataset rapidly before starting more complex analysis. We have incorporated a fingerprint 

block into the package with three different functions to give users the possibility to approach 

data in an explorative way.  

 

3.1.4.1 Correlate sample to region 

 

This function allows users to select a region of the spectrum and run a correlation test of that 

region against the rest of spectral points. This correlation test calculates a correlation factor 

from 0 to 1 (R2) and a p-value of the as a result, the fingerprinting panel of the package will 

show a spectrum with the mean intensities of the dataset for each ppm, where spectral points 

will be colored depending on their correlation factor from blue (R2=0) to red (R2=1) and those 

with correlation factors higher than 0.75 and p-values lower than 0.05 will be highlighted with 

grey circles. This kind of correlation is very useful for finding metabolite signatures, since 

under normal conditions, the intensity variation of a resonance of a determined compound 

along samples is in totally agreement with the intensity variation of the rest of resonances that 

belong to the same compound. Moreover, users can find correlations with other spectral 

regions, which can indicate covariation of compounds. Is important to note that signal overlap, 

which is inherent in NMR spectra of complex biofluids, can mask some correlations producing 

false negatives. Figure C3.1 shows an example of this function applied to the creatine singlet 

at 3.04 ppm, where the singlet at 3.93 ppm is highly correlated. 
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Figure C3.1. An example of the function ‘correlate samples to region’. In this example we can 

see how the region selected by the user from 3.03 to 3.05 ppm presents different correlation 

coefficients with all the spectral points in the dataset. In this case, the region corresponds to 

the peak of creatine, which is highly and significantly correlated with itself and another peak 

at 3.93 ppm. This function of the package is suggesting that these two peaks could be 

resonances of the same compound, and indeed they are. 

 

3.1.4.2 Correlate sample to metadata variable 

 

This function is very similar to the previously explained, but in this case each spectral point 

will be correlated with the values of a metadata variable instead of a selected region. Finding 

a correlation between a metadata variable and spectral regions may signify that one or some 

metabolites present in those regions could be related to that variable, which could be a starting 

point to focus a posterior targeted metabolite profile analysis. This function can also be applied 

as quality control between the spectra and the metadata, since in some studies the metadata 

contain metabolite concentrations determined by biochemical parameters of compounds that 
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can be easily profiled in NMR spectra such as glucose. Good correlations between glucose 

concentrations in metadata and the doublet at 5.22 ppm (and several peaks between 3-4 ppm) 

is an indicator of good agreement between the NMR spectra and the metadata of a dataset 

(Figure C3.2). 

 

 

Figure C3.2. An example of the function ‘correlate samples to metadata variable’. In this case 

we looked for spectral correlations with glucose concentrations determined by biochemical 

parameters. High and significant correlations can be found in a lot of points between 3 and 4 

ppm, where most of glucose resonances are placed. As expected, the higher and most 

significant correlations are focused in the doublet at 5.22 ppm, due to be an isolated signal. 

This result suggests that there is a very good agreement between the samples labeling and their 

corresponding NMR spectra. 
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3.1.4.3 Find hotspots between groups 

 

Finding differences in metabolite concentrations between two groups under study is usually 

the main objective in NMR metabolomics studies. Even if for obtaining reliable differences in 

spectra of complex biofluids spectral deconvolution solutions are needed to avoid signal 

overlap distortions, a fast analysis of intensity differences with all the spectral points can give 

valuable information in some cases. This kind of screening analysis helps users to focus the 

posterior deconvolution analysis in regions with more variability in signal intensity. In this 

case, the algorithm will perform a Wilcoxon rank sum test and a fold change test with all the 

spectral points to obtain the significance of the differences found between the two groups. As 

a result, the panel will show a spectrum where the intensity of each point will be the mean 

intensity of the whole dataset multiplied by the fold change factor obtained when comparing 

the two groups and colored by its significance from blue (p=1) to red (p=0). According to that, 

reddish regions will be considered as 'hot spots' to focus further analysis.  
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Figure C3.3. An example of the function ‘find hotspots between groups’. In this case we can 

clearly see the difference between peaks that presented a high fold change ratio and a 

statistically significant p-value in comparison with those that did not. Gathering the results of 

this test with those of the showed above in Figure C3.1 users can foretell that differences in 

creatinine levels between the two groups will be a possible result of the study. 

 

3.1.5 Profiling options 

 

Metabolite profiling techniques are more much complex than fingerprinting techniques, since 

metabolite identification and quantification is severely compromised by the huge amount of 

signals present in NMR spectra of complex biofluids. Moreover, depending on the biofluid 

matrix and its treatment, the processes of identification and quantification will follow different 

strategies in order to optimize the metabolite profiling. For example, in total serum and plasma 

samples there is very low variation in the number of metabolites that can be profiled, and the 

useful resonances where a metabolite can be identified and quantified are in most cases the 

same and do not present shift problems. So in these cases, metabolite profiling can be easily 
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automated with a good deconvolution algorithm able to discriminate between the signals of 

interest and neighboring and background signals coming from other metabolites and 

macromolecule residuals. However, when we talk about urine samples, the problems are totally 

different. In this case, there exist a high variation of the number of metabolites that can be 

profiled depending on the cases under study, where factors such as life style and diet will 

probably influence the metabolic profile of the sample. Moreover, due to the sample pH, ionic 

strength and density, signals may shift a lot between samples. In this case, an agreement 

between automation and user interaction will be the optimal strategy to use. This agreement 

between user interactivity and automation will be also the best way to perform the most 

extended metabolite profile in NMR spectra of tissues and cell extracts. Even if a big subset of 

metabolites and resonances can be easily profiled in these cases, some extra resonances can be 

added to the analysis if the quality of the sample allows it. 

Taking into account all the possible ways to optimize metabolite profiling in any kind of 

biofluid we have equipped Whale with 3 different blocks. One of this blocks is a supporting 

tool for identification purposes. It is called 'Repository', and it launches a panel where users 

can plot reference spectra of pure compounds that can be obtained in public databases such as 

the BMRB and the Birmingham database and compare them with their samples. The most 

important block is called 'ROIs testing'. It launches a panel where users can edit signal 

parameters in order to graphically check the performance of the four automated quantification 

modes that the program offers. The third block is called 'Auto run', and it performs a totally 

automated metabolite profiling along all samples of the dataset. 

 

3.1.5.1 Repository 

 

The repository block allows the user to compare each spectrum of the dataset with reference 

spectra of pure metabolites. It offers the possibility of importing different types of NMR 

acquisitions (1D and 2D) and generating artificial spectra by combining reference compounds. 

Figure C3.4 shows the repository panel in a comparison between a sample spectrum and a 

reference spectrum produced by the combination of three aminoacids. This block is very useful 

to discriminate resonances with the aim to unequivocally identify a metabolite. 
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Figure C3.4. Here in this figure we show the Branched-Chain Amino Acids (BCAAs) region 

in our sample spectra in 1D NOESY (upper-left corner) and 2D JRES (lower-left corner); and 

the superposition of those BCAAs in 1D NOESY (upper-right corner) and 2D JRES (lower-

right corner) using reference spectra stored in the repository. 

 

3.1.5.2 ROIs testing 

 

The ROIs testing block is the core of the package. Its strategy consists in analysing spectra 

through Regions Of Interest (ROIs). We consider a ROI as a region of the spectra that contains 

one or more resonances that are susceptible to be quantified. This block launches a panel where 

users can try and test which quantification mode is the most appropriate in each case before 

applying it along the whole dataset samples. 

The ‘Clean Sum’ mode is very useful for those regions that contain isolated and pure (without 

any baseline) signals because the computation time is severely reduced while the quantification 

remains accurate. 
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A very similar approach is used by the mode ‘Baseline Sum’, but in this case the algorithm 

removes what it considers is not part of the signal. It is almost faster as the ‘Clean Sum’ but 

reduces quantification error in regions with isolated but not pure (contain baseline) signals. 

The ‘Clean Fitting’ mode is able to quantify accurately overlapping signals in regions where 

neither baseline nor broad signals are affecting. 

Finally, the ‘Baseline Fitting’ mode allows to deconvolve targeted signals in regions where 

baseline or broad signals are affecting the final shape of the region. It takes more computation 

time but is the optimal solution in those cases. 

The fitting algorithm is very similar to the previously tested and published in Dolphin (ref25) 

but with some improvements. The panel supports 2D data, which helps users to be sure about 

the signals present in a ROI and perform the most accurate deconvoloution. Moreover, there is 

a function that facilitates metabolite assignments through signal suggestions in each ROI. 

These signal suggestions come from an internal curated database built from public databases 

such as the Human Metabolome Database (HMDB), the Birmingham Metabolite Library 

(BML) and the BioMagResBank (BMRB). The curation is based on the selection of the most 

useful signals of the most relevant metabolites that frequently appear in 1H-NMR spectra of 

biofluids and tissues according to recent literature. 

The user can expand and reduce the library and the number of ROI pattern files, and adjust the 

features within the ROI patterns to the experiment requirements. In the ROIs Testing Panel, 

the user has the option to plot a single spectrum, all spectra or the average spectrum of a ROI, 

which is very useful to check graphically what could be the performance behavior between 

samples. Figure C3.5 shows an example of a ROI testing using the Manual Panel. 
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Figure C3.5. This figure shows the performance of the four modes of automated quantification 

that the package offers. Choosing the most appropriate quantification approach for each ROI 

allows users optimizing the time span in high-throughput analysis without compromising the 

reliability of the results. 

 

3.1.5.3 Auto Run 

 

Once all ROI patterns have been tested and considered satisfactory users can take profit of the 

potential of Whale as a high throughput tool. The auto run block processes all the ROI files 

stored in a folder into all spectra of the dataset, quantifying all the target signals automatedly 

without the user supervision. All the quantifications that have not passed the two quality 

thresholds (previously detailed in section 3.3) will be saved in the folder ‘Plots2Check’, where 

the user can graphically check the result and re-run those which are not satisfactory enough. 
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3.1.6 Applications 

 

Several datasets of different biological matrices have been analyzed using Whale. Actually, the 

package has been developed in parallel to the necessities of expert users during the analysis of 

those datasets. More specifically, the package has been tested using human plasma, human 

urine, rat serum, rat urine, rat liver extracts, rat brain extracts and cell extracts. Depending on 

the final goal of each study, one or several signals per metabolite have been quantified, and the 

libraries extension has been increased with unknown signals. By now, a total number of more 

than 100 resonances belonging to more than 70 metabolites have been successfully profiled 

along these seven matrices. Moreover, some unknown signals, albumin regions and non-

metabolite related signals such as EDTA-Mg and EDTA-Ca have been quantified as well. All 

the functions of the package have resulted useful to explore data and perform a reliable targeted 

metabolite profile analysis. 

 

Next, two full studies will be exposed in order to illustrate the proficiency of the tool. With this 

two studies, the three secondary objectives of this thesis were reached, since the tool was 

applied to obtain the final results of each study, several algorithms able to handle the 

metabolomics data were developed and I could actively participate in each part of each study 

from the beginning to the end. In this two studies, the performance of the tool is referenced as 

Dolphin due to Whale's manuscript is still under development. Both studies are near to be 

published in prestigious journals and the package is a key element for the obtainment of the 

final results. 
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3.2 POSITIONAL ENRICHMENT BY PROTON ANALYSIS (PEPA): A ONE-

DIMENSIONAL 1H-NMR APPROACH FOR 13C STABLE ISOTOPE RESOLVED 

METABOLOMICS 

 

3.2.1 Abstract 

 

A novel approach for NMR-based stable isotope tracer studies called PEPA is presented, and 

its performance validated using human cancer cells. PEPA detects the position of carbon label 

in isotopically enriched metabolites and quantifies their fractional enrichment by indirect 

determination of 13C-satellite peaks using 1D-1H-NMR spectra. In comparison with 13C-NMR, 

TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of 13C positions in 

labelled metabolites and the quantification of the percentage of stable isotope enrichment. 

Altogether, PEPA provides a novel framework for extending the high-throughput of 1H-NMR 

metabolic profiling to stable isotope resolved metabolomics, calling to facilitate and 

complement the information derived from 2D-NMR experiments and expanding the range of 

isotopically enriched metabolites detected in cellular extracts. 

 

3.2.2 Introduction 

 

Nuclear magnetic resonance (NMR) is, together with mass spectrometry, the primary analytical 

tool to profile metabolite levels in biological samples1. However, the steady-state concentration 

of metabolites is not sufficient to study the regulation of cell metabolism. Elucidating the flow 

of chemical moieties through the complex set of metabolic reactions that happen in the cell is 

essential for understanding the regulation of metabolic pathways2. For that, stable isotope tracer 

studies are needed, which usually require model cellular lines that are fed a stable isotopically 

labeled substrate. Due to the unique ability of NMR to characterize isotopomers of metabolites 

by detecting labeling patterns in individual atoms, 13C-NMR in combination with selective 13C-

stable isotope tracers have traditionally been used to analyze 13C enrichment of extracted 

metabolites3, enabling models of metabolic flux to be generated4. The advent of comprehensive 

metabolic profiling technologies has broadened the coverage of these studies allowing for an 
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unbiased mapping of fluxes through multiple metabolic pathways5. The so-called Stable 

Isotope Resolved Metabolomics (SIRM)6,7 has emerged as a powerful untargeted approach to 

classical 13C-NMR-based stable isotope tracing studies. NMR-based SIRM primarily uses 

homonuclear 2D 1H-1H TOCSY (Total Correlation SpectroscopY) and heteronuclear 2D 1H-
13C HSQC (Heteronuclear Single-Quantum Correlation) for analyzing isotopomers in crude 

cell extracts8. However, NMR-acquisition times necessary to obtain suitable TOCSY or HSQC 

spectra for SIRM applications are two to three orders of magnitude higher than 1D-1H-NMR. 

Even so, sensitivity issues with respect to enriched metabolites in complex biological extracts 

and technical complexity in data acquisition and interpretation have prevented many 

researchers from routinely using 2D-NMR for isotope tracer studies. Thus, NMR-based SIRM 

is rather often used to obtain qualitative inputs on one or few samples, whereas quantitative 

information on larger sample sets is obtained via complementary mass spectrometry 

isotopologue analysis5,9. 

 

3.2.3 Methods 

 

3.2.3.1 PEPA approach 

 

To make NMR-based SIRM more accessible to comprehensive metabolic analyses, we have 

developed a new methodology called PEPA (Positional Enrichment by Proton Analysis). 

PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies 

their fractional enrichment in 1D-1H-NMR spectra. In principle, the ability of 1D-1H-NMR to 

observe 13C-satellite peaks makes it suitable for tracer studies. However, direct quantification 

of 13C-satellites in 1D-1H-NMR spectra of cell extracts is generally only possible for a few 

metabolites characterized by well-resolved resonances with recognizable 13C-satellite peaks 

such as lactate and alanine. The vast majority of 13C-satellites remain overlapped by the large 

body of redundant resonances that populate 1D-1H-NMR spectra of biological cell extracts. 

This has prevented the use of 1D-1H-NMR for comprehensive isotope tracer studies. PEPA 

circumvents this limitation by indirectly determining 13C-satellites from the decayed central 

peak area observed in 1D-1H-NMR spectra of biological equivalent replicates of labeled 

experiments as compared to the spectra acquired from unlabeled controls (Scheme 1). 
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According to PEPA, the area of 13C-satellite peaks in 1D-1H-NMR spectra can be indirectly 

determined as detailed in Eq. (1): 

 

Isatellites
[U-13 C] ≈ Icentral peak

unlabelled − Icentral peak
[U-13 C]    (1)  

 

where I represents a central peak area in each biological replicate exposed to labeled substrate, 

and Ī is the mean area of the same central peak from all unlabeled replicates. The fractional 13C 

enrichment for each resonance in the 1D-1H-NMR can be calculated as detailed in Eq. (2): 

 

F = Isatellites
[U-13 C]

Isatellites
[U-13 C] + Icentral peak

[U-13 C]
≈
Icentral peak

unlabelled − Icentral peak
[U-13 C]

Icentral peak
unlabelled    (2)

 

 

Consequently, by indirect determination of 13C-satellites areas, PEPA goes beyond classical 

assessment of labeled metabolites by NMR and it significantly widens the coverage of the 

metabolic network that can be investigated using 1D-1H-NMR. 
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Scheme 1. (A) PEPA’s conceptual framework: 1D-1H-NMR spectral resonance of methyl 

protons in lactate at δ (1.33 ppm) obtained from cell extracts of two identical U2OS 

osteosarcoma cell cultures grown in either unlabeled glucose (black solid line) or [U-13C]-

Glucose (Glc) (red solid line). The latter shows evenly spaced 13C-satellite peaks located at 

±1J(C-H)/2 from the central peak. These 13C-satellite peaks result from heteronuclear (13C-1H) 

scalar couplings due to the replacement of 12C-atoms in the methyl group of lactate by 13C-

atoms from [U-13C]-Glc. The area of 13C-satellite peaks (yellow-shaded) indicates the amount 

of 13C-labeled methyl group in lactate while the area of the central peak (red line) represents 

the amount of unlabeled methyl group left. As the labeled substrate [U-13C]-Glc is metabolized 

into lactate, the area of 13C-satellite peaks increases proportionally with the decay of the central 

peak (red line). The decayed area of this central peak can be quantified from the total pool of 

lactate in unlabeled equivalent samples (black line). (B) PEPA’s workflow: metabolites are 

extracted from replicates (n³3) of unlabeled and 13C-labeled (e.g., [U-13C]-Glc) biologically 

equivalent samples and these measured by 1D-1H-NMR. Next, 1D-1H-NMR spectra are 

profiled and resonances quantified. Significant decayed areas of central peaks in [U-13C]-Glc 

spectra by comparison with non-labeled controls are determined via statistical testing. As an 

example, aspartate β(CH2) resonance at δ(2.82ppm) in three replicates of unlabeled (black) and 

labeled (red) samples provides the mean value of the area (solid line) and standard deviations 

(color shaded).   Significant central peak decay proves 13C-enrichment in this position 

indicating metabolic transformation of glucose into aspartate in U2OS osteosarcoma cell lines. 
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3.2.3.2 Cell Cultures 

 

U2OS-cells human osteosarcoma cell lines were cultured in Dulbeccos modified Eagle 

Medium (DMEM, Invitrogen 41966) supplemented with 10% (v/v) fetal bovine serum (FBS, 

Sigma F7524-500ML) and 100U/ml penicillin/streptomycin (Reactiva 01030311B000). 

Puromycin and Hygromycin were used for selection of stable transformed cells. The cells (in 

duplicated batches) were cultured in a humidified atmosphere at 5% CO2, 37◦C and grown for 

8-9 days in polypropylene bottles; the medium was changed once daily initially and twice daily 

near the end of the growth period. Then, U2OS-cells were seeded on 15-cm tissue culture plates 

in triplicates. During 6 hours, cells were supplemented with DMEM powder without glucose 

and glutamine (Sigma) supplemented with 5 mM glucose and 2 mM L-glutamine that was 

either unlabeled or either [U-13C]-Glucose or [U-13C]-Glutamine labeled (Cambridge Isotope 

Laboratories). After these 6 hours, culture medium was removed and cells were collected by 

trypsinization and 106 cells were pelleted and snap-frozen for further metabolites extraction. 

 

3.2.3.3 Metabolites Extraction 

 

Metabolites were extracted into the extraction solvent by adding 2 mL of a cold mixture of 

chlorofor- m/methanol (2:1 v/v). The resulting suspension was bath-sonicated for 3 minutes, 

and 2 mL of cold water was added. Then, 1 mL of chloroform/methanol (2:1 v/v) was added 

to the samples and bath- sonicated for 3 minutes. Cell lysates were centrifuged (5000 g, 15 min 

at 4◦C) and the aqueous phase was carefully transferred into a new tube. The sample was 

frozen, lyophilized and stored at −80◦C until further NMR analysis. 

 

3.2.3.4 NMR Analysis 

 

For NMR measurements, the hydrophilic extracts were reconstituted in 600 µl of D2O 

phosphate buffer (PBS 0.05 mM, pH 7.4, 99.5 % D2O) containing 0.73 mM of deuterared 

trisilylpropionic acid (d6-TSP). Samples were then vortexed, homogenized for 5 min, and 

centrifuged for 15 min at 14000 g at 4◦C. Finally, clear redissolved samples were tranferred 
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into 5 mm NMR tubes. NMR spectra were recorded at 300 K on an Avance III 600 

spectrometer (Bruker, Germany) operating at a proton frequency of 600.20 MHz and a carbon 

frequency of 150.93 MHz using a 5 mm CPTCI triple resonance (1H, 13C, 31P) gradient 

cryoprobe. One-dimensional 1H pulse experiments were performed using the nuclear 

Overhauser Effect Spectroscopy (NOESY) presaturation sequence (RD-90◦-t1-90◦-tm-90◦-

ACQ) to suppress the residual water peak with mixing time (tm) of 100 ms. Solvent 

presaturation with irradiaton power of 50 Hz was applied during recycling delay (RD = 5 s) 

and mixing time. The 90◦ pulse length was calibrated for each sample and varied from 8.06 to 

10.26µs. The spectral width was 12 kHz (20 ppm), and a total of 256 transients were collected 

into 64 k data points for each 1H spectrum. The exponential line broadening applied before 

Fourier transformation was 0.3 Hz. One-dimensional 13C-NMR spectra were recorded using 

Inverse Gate decoupled 13C pulse experiment and WALTZ-16 scheme proton presaturation and 

a relaxation delay of 10 s. The 90◦ pulse length was 14.75 µs. The spectral width was 36 kHz 

(240 ppm), and a total of 6144 transients were collected into 64 k data points for each 13C 

spectrum. The exponential line broadening applied before Fourier transformation was 1 Hz. 

Two-dimensional TOCSY spectra were recorded using MLEV17 spin lock with 63 ms of 

duration, B1 field strength of 8,33 kHz, and acquisition times of 0.28 s in t2 and 0.071 s in t1. 

The recycling delay was set to 5s, and 64 scans for each transient were collected into 2k of data 

points in t2 and 1024 transients were acquired in t1. Data were zero-filled to 4k points, apodized 

with a shifted Gaussian and a 1 Hz line broadening exponential function in both dimensions 

prior to Fourier transformation. Two-dimensional gradient 1H-13C-HSQC spectra were 

recorded using an acquisition time of 0.128 s in t2 and 0.0084 s in t1 and a recycle time of 1.5 

s, with the 13C GARP decoupling set to 100 ppm, and the evolution delay set for 145 Hz 

corresponding approximately to an average value of JCH coupling constants. The data were 

apodized with an unshifted Gaussian and a 1 Hz line broadening exponential in both 

dimensions prior to Fourier transformation.  

 

3.2.3.5 NMR Metabolite Profiling and Data Analysis 

 

The frequency domain spectra were phased, baseline-corrected and referenced to TSP signal 

(δ= 0 ppm) using TopSpin software (version 2.1, Bruker). Dolphin 1D10 was used to profile 

metabolites identified in the 1H-NMR spectra. Dolphin is a spectral profiling approach based 
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on decomposition of the NMR spectrum as linear combination of a set of individual pure 

reference signals obtained from known compounds in a reference library. Poorly resolved and 

partially overlapped resonances are resolved using line shape fitting and consequently, their 

area can be properly quantified (Figure C3.6). Profiled areas were row-wise normalized using 

ERETIC11 signal. Area of each profiled metabolite in unlabeled experiments were compared 

with the same area in experiments using isotopically enriched substrates using t-test (p<0.05 

were considered for statistical significance). Data analysis was performed using R version 

3.2.0. 
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Figure C3.6: Example of Dolphin profiling in two 1H-NMR different regions of the same U2OS 

cellular extract spectrum highlighting fittings for pantothenate (cyan), leucine (green), 

valine(yellow), isoleucine (pink), glycine(orange) and glycerol(gray). 

 

3.2.4 Results and Discussion 

 

U2OS osteosarcoma cells were used as a cellular model for the implementation of PEPA. 

U2OS cells were subjected during 6 hours to culture medium containing 13C-enriched 
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substrates (either uniformly labeled glucose [U-13C]-Glc or uniformly labeled glutamine [U-
13C]-Gln) or to culture medium with unlabeled substrates (each condition was run in triplicate, 

see Supplementary Information for details). Overall, 84 different resonances underlying 46 

polar metabolites were identified in 1D-1H-NMR spectra. The area of 1D-1H-NMR resonances 

were quantified using DOLPHIN13, a spectral matching and deconvolution tool specially 

developed for quantifying partially overlapped and poorly resolved 1D-1H-NMR resonances 

(Figure C3.6). Among the 84 proton resonances profiled in the 1H-NMR spectra, we 

determined via statistical testing that 37 resonances showed significant decays in the central 

peak area in samples that were fed a stable isotopically labeled substrate. Figure C3.7 depicts 

fractional enrichments calculated according to Eq. 2 for these 37 resonances. According to 

PEPA, metabolic fates of [U-13C]-Glc were found in the riboside C1’, glucose anomeric C1’’ 

and uracil ring C5 and C6 positions of UDP-Glucose, UDP-Glucuronate, UDP-GlcNAc and 

UDP-GalNAc. The C1’-riboside position was also found enriched in cytidine and adenosine 

nucleotides (AXP, where X refers to the number of phosphate groups). AXP, in addition, 

showed 13C-labeling in C2 and C8 positions of the adenine ring. Finally, the metabolic fate of 

labeled glucose was also found in glycine(CH2); glycerol(CH2-OH); guanidoacetate(CH2-OH); 

glutamate γ(CH2); acetates(CH3-); aspartate β(CH2); o-phosphocholine(-CH2-O/CH3-); 

fumarate(CH) and glutathione γ(CH2)-Glu/α(CH) and β(CH2)-Cys. Thus, by using PEPA we 

were able to monitor the carbon flux of [U-13C]-Glc into the glycolysis, tricarboxylic acid 

cycle, pentose phosphate pathway, glycine metabolism, hexosamine pathway and both purine 

and pyrimidine biosynthetic pathways. On the other hand, the main metabolic fates of [U-13C]-

Gln were found in fumarate (CH) and succinate (CH2), both accounting for 99% and 79% 

fractional enrichment in mean, respectively. 13C-atoms from [U-13C]-Gln were also 

incorporated in aspartate β(CH2) and in C5 and C6 positions of uracil in pyrimidine 

nucleotides, proving de novo synthesis of pyrimidine ring from aspartate. Finally, the fate of 

[U-13C]-Gln was detected in glutamate γ(CH2)/α(CH) and glutathione α(CH)/β(CH2), 

indicating activation of glutaminolysis and biosynthesis of glutathione in this cancer cell line. 

 

 

 

 

 



	 110	

 

Figure C3.7. PEPA predicted significant fractional enrichments (F) calculated following Eq.2. 

Red and blue dots represent individual F values calculated for each of the three replicate 

samples using [U-13C-Glc] or [U-13C Gln], respectively. Grey lines indicate standard deviations 

in labeled samples. Black line represents the mean centered deviation about mean in unlabeled 

samples. 
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In order to confirm PEPA’s results, 13C-NMR and 2D-edited NMR experiments (TOCSY, 

HSQC and HMBC) were acquired on representative sample extracts grown either in unlabeled 

or labeled substrates. Figure C3.8 shows the validation by TOCSY analysis of enrichments 

originally detected by 1D-1H-NMR and PEPA in C1’ position of uridine and cytidine, and C5 

position of uridine at δ[5.89-5.93ppm] (Figure C3.8A). In [U-13C]-Glc experiments (Figure 

C3.8B), the cross-peaks patterns around the central unlabeled peaks of H1’-H3’-cytidine (gray) 

and H1’-H2’-uridine (green) correlations, confirmed the predicted isotopic enrichment of such 

metabolites in C1’ position by PEPA. In [U-13C]-Gln experiments, the 13C-cross peak pattern 

around the central H5-H6 correlation peak of uridine in the TOCSY spectrum (Figure C3.8C) 

confirms the isotopic enrichment of C5 position of the uracil ring determined by PEPA. 

Altogether, uridine serves as a good example that dispersal of carbon flux across a range of 

metabolic substructures may determine the regulation of many metabolites that are assembled 

from these substructures14. 
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Figure C3.8. Validation of PEPA using TOCSY (A) 1D-1H-NMR spectral region at δ[5.89-

5.93ppm] shows the deconvolution of overlapping proton resonances in C1’-H position of 

uridine (d,J=4.4Hz, green) and cytidine (d,J=4.1Hz, gray), and C5-H position of uracil in the 

uridine structure (d,J=8.5Hz, brown). (B) Left panel: mean area (solid line) and standard 

deviation (color-shaded) of 1D-1H-NMR spectra acquired on unlabeled (black) and [U-13C]-

Glc (red) cell extracts showing a significant decayed area of C1’-H uridine and cytidine 

doublets. Right panel: TOCSY spectrum shows 13C cross-peaks traced around their 

corresponding central unlabeled signals in green (H1’-H2’ correlation of uridine) and gray 

(H1’-H3’ correlation of cytidine). Additional 13C cross-peaks for H1’-H3’ correlation of 
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adenosine and H1’-H2’ of UDPG-derived compounds are also indicated. (C) Left panel: mean 

area (solid line) and standard deviation (color-shaded) of 1D-1H-NMR spectra acquired on 

unlabeled (black) and [U-13C]-Gln (blue) cell extracts showing a significant decayed area for 

C5-H position of uracil in the uridine structure. Right panel: TOCSY spectrum shows 13C 

cross-peaks traced around the corresponding central unlabeled signal in brown (H5-H6 

correlation of uridine). 

Noteworthy, each of the 37 positional 13C-enrichments observed by PEPA could only be 

confirmed using a combination of 13C-NMR and 2D-edited NMR experiments. Many 

positional enrichments in Figure C3.7 were confirmed using 13C-NMR. The analysis of 

splitting patterns (i.e., multiplicities in 13C-NMR and 13C-cross-peaks in TOCSY) spectra 

serves to highlight a constraint of PEPA, namely, the composition of positional isotopomers 

can not be elucidated using PEPA. For instance, the analysis of 13C-NMR splitting patterns of 

aspartate-β(CH2) and glutamate(γCH2/βCH2) from cells cultured in [U-13C]-Glc revealed 

various 13C-positional isotopomers. This information enables elucidating the number of turns 

of the TCA cycle. It is nonetheless also true that PEPA detected significant 13C-enrichments in 

metabolites with either symmetric or non-correlated protons, including fumarate, succinate, 

guanidoacetate and acetates, an information that can not be otherwise detected using TOCSY 

experiments. The carbon labels of these metabolites were confirmed using HSQC spectra 

acquired on labeled sample extracts and contrasting them with HSQC spectra from unlabeled 

equivalent replicates. Although all positional 13C-enrichments in Figure C3.7 were confirmed 

using 13C-NMR, TOCSY, HSQC or HMBC, the enrichment of the methyl carbon position of 

lactate (d, δ 22.9 ppm) and alanine (d, δ 18.9 ppm) from cells fed with [U-13C]-Glc observed 

in the 13C-NMR spectra were not anticipated using PEPA. Although there was decay of the 

central peak corresponding to the methyl resonances in the 1D-1H-NMR spectra acquired on 

labeled samples relative to unlabeled equivalent replicates, differences did not reach statistical 

significance. Since PEPA relies on statistical comparison of profiled resonances to establish 

whether or not there is 13C-enrichment, the biological variability of the cellular model and a 

limited number of replicates may lead to the conclusion that there is no enrichment in certain 

metabolites. In our experience, increasing the number of cell culture replicates, and 

standardizing cell cultures procedures to reduce biological variability can prevent this. 
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3.2.5 Conclusions 

 

In summary, PEPA takes advantage of the sensitivity, robustness, quantitativeness, high-

throughput capabilities and ease-to-implement of 1D-1H-NMR to study the position of carbon 

labels in large sample sets. Here we proved that PEPA span the range of isotopically enriched 

metabolites detected in cellular extracts over 13C-NMR and 2D-edited experiments in NMR-

based SIRM studies. PEPA greatly simplifies NMR untargeted carbon flux monitoring and 

complements the information derived from 2D-NMR. Altogether, PEPA is called to accelerate 

the implementation of NMR-based SIRM in cell metabolism studies. 
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3.3 BASELINE METABOLOMIC SIGNATURE PREDICTS IMMUNOLOGICAL 

CD4+ T-CELL RECOVERY AFTER 36 MONTHS OF VIROLOGICALLY 

SUCCESSFUL ART IN ADULT HIV-INFECTED PATIENTS: A PILOT STUDY 

 

3.3.1 Abstract 

 

Background Poor immunological recovery in treated HIV-infected patients is associated with 

greater morbidity and mortality. To date, predictive biomarkers of this incomplete immune 

reconstitution have not been established. For this reason, we aimed to discover such biomarkers 

that can identify a discordant response to ART. 

Methods This was a multi-centre, prospective cohort study in ART–naïve and a pre-ART low 

nadir (<200 cells/µl) HIV-infected patients. We obtained clinical data and metabolomic 

profiles for each individual, in which low molecular weight metabolites, lipids and lipoproteins 

(including particle concentrations and sizes) were measured by nuclear magnetic resonance 

spectroscopy. We differentiated patients as individuals who have not arrived to 250 CD4+ T-

cells/µL after 36 months of virologically successful ART against those who have passed this 

threshold. We used univariate comparisons, Random Forest test and ROC curves for baseline 

predictive factors of discordant immunology after treatment. 

Findings HIV-infected patients with a baseline metabolic pattern characterized by high levels 

of large HDL particles, HDL cholesterol and larger sizes of LDL particles had a better 

immunological recovery after treatment. On the contrary, patients with high ratios of non HDL 

lipoprotein particles did not experience this full recovery. Medium VLDL particles and glucose 

increased the classification power of the multivariate model despite not showing any significant 

differences between the two groups. 

Interpretation In HIV- infected patients, pre ART lipid metabolism intermediates, mainly 

HDL-related lipoprotein parameters, and glucose levels can accurately predict immunological 

recovery in treated HIV infection. 
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3.3.2 Introduction 

 

Since the introduction of effective antiretroviral therapy (ART) the fatal course of HIV 

infection has been prevented. ART decreases viral replication, increases CD4+ T-cells count 

and consequently, improves the immune system function15. Unfortunately, 25 to 30% of HIV-

infected patients still fail to restore their CD4+ T-cell number despite optimal treatment and 

sustained virological suppression16. This group of patients is referred to as 

“immunodiscordants” or “immunological non-responders” (INR) and are at a higher risk of 

clinical progression and death17,18.  

Traditional factors associated with poor immune recovery are delayed diagnosis, advanced age, 

co-infection with hepatitis C virus (HCV), thymic dysfunction, immune activation, and genetic 

factors among others. However, none of them provides a full explanation of the lack of total 

immune reconstitution19–21. In addition, no predictive biomarkers of this immunological 

recovery in HIV-infected patients are currently available. 

In the present study, we used a comprehensive metabolomic approach to plasma samples from 

HIV-infected individuals before starting ART with the aim of identifying a “metabolomic 

signature” that might predict immunological recovery measured after 36 months.  

Metabolomics techniques such as nuclear magnetic resonance (NMR) have emerged as a 

powerful method for discovering new biomarkers for disease diagnosis, prognosis and risk 

prediction. One of its most important advantages is that it can be used to identify disease-related 

patterns through accurate detection of numerous metabolic changes in biological samples22,23. 

 

3.3.3 Methods 

 

3.3.3.1 Study Design 

 

This was a multi-centre and prospective cohort study comprising all adult HIV-1 infected 

individuals who started their first ART between 2009 and 2011 and were followed-up at the 

HIV outpatient clinics of the participating hospitals:  Hospital Joan XXIII (Tarragona), 
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Hospital de la Santa Creu i Sant Pau (Barcelona) and Hospital Virgen del Rocío (Sevilla). Of 

the initial cohort (n=491), 98 participants fulfilled the following inclusion criteria: >18 years, 

presence of HIV-1 infection and pre-ART low nadir CD4 counts (<200 cells/µl). Exclusion 

criteria were pre-ART nadir of CD4 counts >200 cells/µl, HCV  co- infection, the presence of 

active opportunistic infections, current inflammatory diseases or conditions, consumption of 

drugs with known metabolic effects, type 2 diabetes mellitus, acute or chronic renal failure, 

pregnancy, history of vaccination during the previous year and plasma C- reactive protein 

>1mg/dL. From those patients who fulfilled the inclusion criteria, we handled a subset of 84 

whose stored plasma samples, drawn when enrolled, were available. In a final step, we 

excluded 20 samples due to their poor spectral quality, which resulted in a final cohort of 64 

patients. Patients were categorized into two groups based on their CD4 T-cell count at 36 

months after ART:  immunological responders (IR group) if their CD4 T-cell count was higher 

than 250 cells/µL or immunological non-responders (INR group) if they did not reach this 

threshold. Figure C3.9 provides a flowchart with patient selection and enrolment. The ethics 

committee from each recruiting centre reviewed and approved this consent procedure before 

the study began, and all volunteers provided their written informed consent. 
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Figure C3.9. Flowchart of patient selection and enrollment. 

 

3.3.3.2 Data Collection 

 

Relevant clinical and demographic data were extracted from electronic predefined database 

specially defined for this study. Fasting venous blood samples were collected in EDTA tubes 

and centrifuged immediately for 15 min at 4°C and 1,500 g. Plasma samples were then stored 

Previously untreated HIV-infected 
patients starting their first ART (n=491) 

Patients that fulfilled inclusion criteria 
(n=98)

Plasma available at baseline (n=84)

Final cohort to perform a reliable 
metabolite profiling (n=64)

Immunological Non-
responders

INR (n=17)

CD4 counts >200 
c/µL (n=252)

Others causes of 
exclusion (n=29)

Maintain first ART  at 36 months (n=379) 

Change or left ART 
before 36 months 

(n=112)

Low spectral quality 
(n=20)

Immunological Responders
IRs (n=47)
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at 80°C until further analysis.  

 

3.3.3.3 NMR Measurements 

 

For NMR measurements, 430 µl of plasma was transferred to 5-mm NMR tubes. A double tube 

system was used. The external reference tube (o.d. 2 mm, supported by a Teflon adapter) 

containing the reference substance (9.9 mmol/l sodium 3-trimethylsilyl[2,2,3,3-d4] propionate 

(TSP), 0.47 mmol/l MnSO4 in 99.9% D2O) was placed coaxially into the NMR sample tube 

(o.d. 5 mm). This double tube system was kept at 4ºC in the sample changer until the moment 

of analysis. 

All 1H NMR spectra were recorded at 310 K on a Bruker Avance III 600 spectrometer operating 

at a proton frequency of 600.20 MHz and using a 5 mm CPTCI triple resonance (1H, 13C, 31P) 

gradient cryoprobe.  

1H spectra of low molecular weight metabolites (LMWMs) were performed using the Carr-

Purcell-Meiboom-Gill sequence (CPMG spin-spin T2 relaxation filter) (RD–90º– [t–180º–t-

n–ACQ FID), with a 0.4 ms of echo time (t) to allow elimination of J modulation and 500 

loops (n) for a total time filter of 410 ms, that attenuate the signals of macromolecules to a 

residual level. Pre-saturation of the water signal was applied during the recycling delay (RD) 

period of 5s. The spectral width was 20 ppm, and a total of 64 transients were 

collected during acquisition time (ACQ) of 2.73 s into 64 k data points for each CPMG 

spectrum. The total CPMG experiment time was 9 min per sample. 

1H spectra of macromolecules were measured using a diffusion-edited pulse sequence with 

bipolar gradients and the longitudinal eddy-current delay (LED) scheme with two spoil 

gradients (ledbpgp2s1d Bruker ® pulse RD-90º-G1-180º-(-G1)-90º-Gs-D-90º-G1-180º-(-G1)-

90º-Gs-τ-90º-acquire FID). The relaxation delay (RD) was set to 2 s, and the FIDs were 

collected into 64K, complex data points. 64 scans were acquired for each sample with a 

gradient pulse strength (G1) of 3.23 Gauss per cm and an eddy current delay (τ) of 5 ms. A 

diffusion time of 116 ms and bipolar sine-shaped gradient pulses of length 2.6 ms were applied 

to obtain the lipoprotein profile without the low-molecular weight metabolites signals. The 

total diffusion experiment time was 4.5 min per sample. 
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The acquired NMR spectra were phased, baseline-corrected, and referenced to the chemical 

shift of the α-glucose anomeric proton doublet taken at 5.233 ppms, except for the diffusion-

edited spectra, in which the spectral reference (SR) offset value from a referenced 1H co-

acquisition on the same sample was used (in diffusion-edited spectra the α-glucose signal is 

attenuated and cannot be used as a reference). Additionally, an electronic reference signal 

ERETIC was introduced for quantification purposes. 

 

3.3.3.4 Quantitative Variables 

 

Lipid concentrations (i.e., triglycerides and cholesterol), sizes, and particle numbers for VLDL 

(38.6–81.9 nm), LDL (18.9–26.5 nm), and HDL classes (7.8–11.5 nm), as well as the particle 

numbers of nine subclasses, namely large, medium, and small VLDL, LDL, and HDL of 

frozen EDTA plasma specimens were measured by nuclear magnetic resonance (NMR) 

spectroscopy using the Liposcale test 24.  This test is based on 2D spectra from diffusion-

ordered NMR spectroscopy (DOSY) experiments. Briefly, cholesterol and triglyceride 

concentrations of the main lipoprotein fractions were predicted using partial least squares 

(PLS) regression models. Then, the methyl proton resonances of the lipids in lipoprotein 

particles were decomposed into nine Lorentzian functions representing nine lipoprotein 

subclasses and the mean particle size of every main fraction (VLDL, LDL, and HDL) was 

derived by averaging the NMR area of each fraction by its associated size. Finally, the particle 

numbers of each lipoprotein main fraction were calculated by dividing the lipid volume by the 

particle volume of a given class and the relative areas of the lipoprotein components used to 

decompose the NMR spectra were used to derive the particle numbers of the nine lipoprotein 

subclasses. 

A target set of eleven low molecular weight metabolites (LMWMs) was identified and 

quantified by NMR spectroscopy in the 1D Carr-Purcell-Meiboom-Gill sequence (CPMG) 

spectra using Dolphin 10,13. Each metabolite was identified by checking for all its resonances 

along the spectra, and then quantified using line-shape fitting methods on one of its signals. 

The quantification units corresponding to the area under the curve of each metabolite were 

normalized by the mean of each of them along all samples, being the final units a reflection of 

the fold change of each sample over the mean of the dataset. In addition to this set, we 

incorporated the measure of a peak related with glycoprotein concentration in blood 25 and the 
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quantification of two EDTA peaks that have been previously reported as indicators of calcium 

and magnesium levels in blood 26,27. 

 

3.3.3.5 Satistical Analyses 

 

A descriptive analysis of patients’ characteristics was carried out using frequency tables for 

categorical variables and median and interquartile ranges for continuous variables. Differences 

in socio-demographic and clinical characteristics between INR and IR groups were assessed 

through the non-parametric Mann-Whitney test for continuous variables and the chi-squared 

test for independence for categorical variables. 

In order to find metabolic differences between the two groups, we compared their metabolic 

patterns at baseline using different methods. Univariate comparisons were made through the 

non-parametric Mann-Whitney U test, where variables with a P-value < 0.05 were determined 

as significantly altered between the two groups. In addition, the fold change of each variable 

was calculated as ‘A/B’, where ‘A’ was the variable mean in the IR group and ‘B’ was the 

variable mean in the INRs group. Multivariate statistics were also used to improve the refining 

and distilling of all the metabolic baseline data and for pattern recognition purposes. In this 

sense, Random Forest analysis was applied, which is a supervised classification technique 

based on an ensemble of decision trees and provides an unbiased selection of variables that 

make the largest contributions to the classification. For this analysis, apart from the metabolic 

variables, the variables of age and CD4+ T-cell count at baseline were included in order to 

evaluate their importance as predictors in the classification between the two groups. Finally, 

logistic regression analysis and receiver operating characteristic (ROC) curves were generated, 

using as input those metabolites considered important discriminators of CD4+ T-cell recovery, 

obtained from the Mann-Whitney U test (P values < 0.05) and the Random Forest analysis 

(largest contributions in the classification model) and adjusted for confounders (age and 

baseline CD4+ T-cell count). The statistical software used included the program ‘R’ 

(http://cran.r-project.org) and the SPSS 21.0 package (IBM, Madrid, Spain). 
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3.3.3.6 Role of the Funding Source 

 

The study sponsors had no role in the study design, data collection, data analysis, data 

interpretation, or writing of the report manuscript. The correspondings authors have full access 

to all the data in the study and had final responsibility for the decision to submit for publication. 

 

3.3.4 Results 

 

After 36 months, 17/64 individuals (27%) did not arrive at 250 CD4+ T-cell count / µL while 

47/64 (73%) reached this threshold. Table C3.1 contains baseline clinical details of the two 

subsets analysed. The differences in age and baseline CD4+ T-cell count between groups, 

despite not being statistically significant, were in agreement with the literature20,21, suggesting 

that older people with a low nadir CD4+ T-cell count are associated with a minor recovery 

capacity. 
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Table C3.1. Baseline characteristics of the HIV-1–infected subjects studied categorized 

according to their immunological response after 36 months of ART. 

Variable 

Study cohort (n=64) 

INR (n=17) IR (n=47) P 

Age (years) 44 (39-55) 38 (34-50) 0.075 

Male (%) 76.5 78.7 1.000 

AIDS (%) 100.0 85.1 0.175 

HIV-1 risk factor (%)    

    Injecting drug user 0.0 8.5 0.566 

    Homosexual 47.1 44.7 1.000 

    Heterosexual 41.2 42.6 1.000 

    Other/Unknown 11.8 4.3 0.285 

CD4+ T-cell count (cells/µL)    

    Baseline 60 (28-122) 92 (48-166) 0.068 

    Current 188 (117-219) 378 (323-469) <0.001 

Plasma viral load (log copies/mL)    

    Baseline 5.5 (4.8-5.7) 5.4 (4.8-5.7) 0.915 

    Current 1.3 (1.3-1.7) 1.3 (1.3-1.6) 0.355 

ART Received (%)    

    2NRTi + NNRTi 47.1 42.6 0.782 

    2NRTi + PI 52.9 57.4 0.782 

 

Quantitative variables are expressed as median (interquartile range). Qualitative variables are 

expressed as percentages. INR, immunological non-responders; IR, immunological 

responders. 
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Figure C3.10A shows a heat map of the fold change of the 40 metabolomic variables used in 

this study. All HDL particles, including HDL cholesterol and HDL triglycerides, were 

incremented in the metabolism of the IR group at baseline point, while all VLDL particles, 

including VLDL cholesterol and VLDL triglycerides, and almost all LDL particles, including 

LDL cholesterol and LDL triglycerides, were incremented in the INR group. This particle 

balance makes the two ratio variables ‘LDL particles / HDL particles’ and ‘Total particles / 

HDL particles’ the most accentuated in the INR group at the baseline point. The size of all 

kinds of particles (HDL, LDL, VLDL) were higher in the IR group. From the LMWM balance, 

the IR group presented a higher concentration of most of the amino acids (histidine, glutamine, 

valine, creatine, tyrosine and leucine), while the INR group showed a higher concentration of 

a few (alanine and isoleucine). All acids (lactate, formate and acetate), the two EDTA peaks, 

the glycoprotein peak and glucose were lower in the IR group. Figure C3.10B presents the 

notched box-plots of the five variables that altered significantly in the metabolism at a baseline 

point in the comparison between groups28. Large HDL particles (p=0.002), LDL particle size 

(p=0.029) and HDL cholesterol (p=0.045) were all significantly higher in the IR group, while 

the ratios of total particles / HDL particles (p=0.029) and LDL particles / HDL particles 

(p=0.049) were incremented in the INR group.  The univariate results therefore suggest that 

high levels of HDL particles (especially the subclass ‘large’) including HDL cholesterol and 

larger LDL particle sizes favoured immunological recovery. On the other hand, high ratios of 

lipid particles, where HDL particles were the denominator, did not. 

Random Forest analysis revealed large HDL particles as the primary differentiator in a ranked 

list of metabolites in order of their importance in the classification scheme (Figure C3.11). It 

is important to highlight that large HDL particles were also the most important variable in the 

univariate test, which suggests they are the most important pre-ART indicator of CD4+ T-cell 

recovery over time. The next three variables in order of importance were: medium VLDL 

particles, glucose and all non-HDL particles, which despite not appearing significantly 

different in the univariate analysis had strong classification power in the multivariate model, 

and thus were selected for the logistic regression and ROC analyses. 

The consequent assessment was the validation of our candidate biomarkers for their clinical 

usefulness. Accordingly, the ROC curve revealed the diagnostic accuracy of these signature 

biomarkers, obtained in the Mann-Whitney and the Random Forest analyses. Our results show 

that the area under the curve (AUC) of each analyte was less than 0.8 (Supplementary 

Material S2). For this reason, we used a multivariate logistic regression model that combined 
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each potential biomarker mentioned before. This model displayed an AUC value of 0.901 and 

correctly classified 84.4% of patients with 80% of sensitivity and 82.4% specificity (Figure 

C3.12, Model A). Moreover, given that age and baseline CD4+ T-cell counts are considered 

confounders, we adjusted their model. In this case, the AUC value increased by only 0.006, 

specificity increased by 5.8% and it did not improve the percentage of classification (84.4%) 

(Figure C3.12, Model B).  We therefore propose the combination of these metabolic variables 

as a possible diagnostic panel for the prediction of immunological recovery. 

 

 

Figure C3.10. A) Fold-change heat map of the relative plasma concentrations of measured 

metabolites at baseline. Positive folding (green) means higher concentrations in the responders 

group, while negative folding (red) means the opposite. The asterisk highlights those variables 

with a significant P-value able to distinguish responders and non-responders HIV-patients. B) 

Notched box-plots of statistically significant altered metabolites, where the notch shows the 

95% confidence interval (CI) for the median, given by m ± 1.58 x IQR/Ön. 
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Figure C3.11. Variable importance plot of the Random Forest analysis resulting from a large 

number of models built around immunological response to ART. The variables are ordered 

top-to-bottom as most-to-least important in classifying between responders and non-

responders. The ranked list of variables tells us the importance of each variable in classifying 

data. The figure shows the top 20 variables in importance of classification from a total of 42, 

including age and CD4+ T-cell count, and only the top four (bold) were considered for the ROC 

curve analysis. 
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Figure C3.12. Using receiver operator characteristic curves, we assessed multi-metabolite 

biomarker models that could accurately predict a discordant response to HIV-infection 

treatment. Model A inputs: Large HDL particles, LDL particle size, Total particles / HDL 

particles, LDL Particles / HDL particles, Glucose, Medium VLDL particles and Non-HDL 

particles. For Model B we used the same metabolomic inputs but the model was adjusted for 

age and baseline CD4+ T-cell count. 

 

3.3.5 Discussion 

 

Our findings reveal that there are metabolomic differences between pre-ART HIV-infected 

individuals with a low nadir of CD4+ T-cell count at baseline and that these differences can 

predict future response after 36 months of treatment. In general, the IR group presents a 

healthier metabolomic profile than the INR group. Even considering that only five 

Figure	4
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metabolomic indicators significantly altered in the univariate test, the fold change of all kinds 

of HDL particles and the size of all the lipoprotein classes are higher in the IR group, while all 

kinds of VLDL and most LDL particles are higher in the INR group. Moreover, the random 

forest test corroborates that large HDL particles and LDL particle size are key metabolomic 

features that differentiate IR and INR. This test also shows that medium VLDL and non-HDL 

particles, despite not being significantly different between groups, contribute to that. Putting 

all of these factors together, we report a multivariate model with all of these variables that can 

accurately predict the immunological recovery in HIV-patients with a low nadir CD4+ T-cell 

count after 36 months of ART.Incomplete immunological recovery during ART is a relevant 

clinical problem; indeed, in our multi-centre, prospective cohort study, 24% of the 64 treated 

HIV-infected patients who had viral suppression were considered INR using a restrictive 

definition (CD4+ T-cell<250 cels/µL after 36 months of successful treatment). Several studies 

have tried to elucidate the impact of HIV-induced immunological changes on metabolism29,30, 

and others focused on finding metabolomic differences between HIV-infected subjects and 

healthy controls29,31. However, only a small number of studies have investigated baseline 

indicators of CD4+ T-cell recovery before ART. In those studies, older age, a lower nadir CD4+ 

T-cell count, higher immune activation, viral load, and HCV co-infection have all been 

proposed as the most relevant predictive factors for a immunodiscordant response even though 

individually they were not able to predict treatment response, so their combined effect remains 

elusive32,33. The present study has included the variables of age and CD4+ T-cell count at 

baseline in the statistical analyses but none of them has presented a significant P-value in the 

univariate comparisons (Table 1), showed importance in the classification between the two 

groups in the Random Forest model (Figure 3) or improved the logistic regression analysis 

model (Figure 4). Consequently, our results suggest that even if differences in age and 

immunological parameters influence the metabolomic profile, such influence is weak enough 

to discard bias. Therefore, there is still the need to identify specific predictive factors for an 

early recognition and classification of immunological discordant individuals in order to 

propose the appropriate therapy to each situation.  

Some studies have characterized the metabolomic profile of HIV/AIDS biofluids using 

metabolomic techniques such as proton nuclear magnetic resonance spectroscopy and mass 

spectrometry and demonstrated the ability to detect metabolites affected by infection and 

treatment34,35. However, none of them have been carried out using metabolism as the target for 

immunological recovery biomarker identification. For this reason, the present study could be 
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considered novel research work aimed at identifying a useful metabolomic signature for the 

early prediction of immune response after ART in HIV-infected patients with a low nadir CD4+ 

T-cell count.   

Most of the metabolomic biomarkers obtained in the present study rely directly on the number 

of HDL particles. The role of HDL in immunity has been studied fairly extensively and several 

beneficial effects have been attributed to this lipoprotein class36,37. Notably, proteomics studies 

have revealed that HDL components exert regulatory functions on the immune system37. 

Accordingly, it has been accepted that HDL has an important role in host defence, contributing 

to both innate and adaptive immunity. As an example, apoliprotein A-I (apoA-I), the principal 

protein of HDL, impairs HIV fusion, thus preventing HIV cell penetration38. Moreover, this 

protein positively correlates with CD4+ T-cell count39. However, the most described function 

of HDL lipoproteins is its anti-atherogenic role due to its ability to transport excess cellular 

cholesterol to the liver for excretion. A number of studies have described HIV-infected patients 

as having lower HDL-C and fewer HDL particles, especially large HDL. On the contrary, 

VLDL and LDL particles have the opposite behaviour, as they contribute to the risk of 

developing cardiovascular disease (CVD), which is higher in subjects with chronic 

inflammatory diseases such as HIV40–42. In this sense, smaller sizes of LDL particles have also 

been linked to a higher risk of CVD in epidemiological studies43–45. This is in accordance with 

our results, since bigger LDL sizes increased further in the IR metabolism at baseline, 

suggesting a relationship between a lower atherogenic lipid profile and the prediction of 

immunological recovery.  

During inflammation and infection, serum triglycerides and VLDL levels increase, which in 

turn has an effect on other lipoproteins, such as an increase in the production of small, dense 

LDL and a decrease in the production of HDL46. This metabolomic mechanism completely 

agrees with our results, showing a positive correlation between the medium subclass of VLDL 

particles and the ratios of ‘total/HDL particles’ and ‘LDL/HDL particles’, high values of which 

are an indicator of non-recovery. Moreover, a meaningful negative link between ‘LDL/HDL 

particles’ ratios and CD4+ T-cell recovery has already been reported in a previous study, in 

which total particles (including VLDL class) were not measured33. Even if several beneficial 

effects to immunity of HDL particles, as well as damaging effects of LDL and VLDL particles 

have already been reported, no predictive role have been attributed to them so far.  
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HIV-infected patients also have alterations in glucose metabolism. Several studies have 

reported glucose-associated disorders including insulin resistance and diabetes mellitus. 

Glucose metabolism plays a fundamental role in supporting the growth, proliferation and 

effector functions of T cells47,48. Several studies have demonstrated that HIV-infected 

patients have an increased glycolytic metabolism in CD4+ T-cells because activated immune 

cells consume glucose at an extremely high rate. Consequently, high plasma levels of this 

metabolite are associated with a low CD4+ T-cell count49–51. Glucose could therefore be a 

confounder to immunological recovery due to its correlation with CD4+ T-cell count.  

In summary, our experimental data establishes that HIV-infected patients with a baseline 

metabolomic pattern characterized by high levels of HDL particles (especially the subclass 

‘large’), including HDL cholesterol and big sizes of LDL particles, will have a better 

immunological recovery after treatment. On the other hand, patients with high ratios of non-

HDL lipoprotein particles, high levels of VLDL particles (especially the subclass ‘medium’) 

and high concentrations of glucose will not fully recover CD4+ T-cells. However, given the 

relatively small sample size in the present study, further studies with larger cohorts are needed 

to confirm the strength of the proposed predictive model.   

 

3.3.6 Conclusions 

 

This study confirms the potential of metabolomics for biomarker discovery in critical illnesses. 

We have identified a metabolomic signature for HIV-infected patients, mainly HDL-related 

parameters such as large HDL particles, that relate to their differential immunological response 

after ART treatment. Therefore, our work links the baseline metabolomic profile to the 

immunological response after ART treatment, suggesting that an adjustment in the baseline 

metabolomic pattern could improve the immunological outcome of HIV-infected patients with 

a low nadir of CD4+ T-cell count.  Accordingly, this study provides new insights into HIV 

pathogenesis and may point the way to the development of new diagnostic, prognostic and 

therapeutic strategies for HIV, such as lipoprotein composition, structure and function. 
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The high complexity of NMR spectra of biofluids difficults metabolite identification and 

quantification tasks. Usually, users have to deal with signal overlapping, signal position 

shifting and distortions in the signal shapes among other characteristic issues inherent in NMR 

spectra of biofluids. Even if all the steps of the NMR-based metabolomics analysis workflow 

previous to the final spectra have been carefully optimized and executed, the final extraction 

of the metabolite profile in NMR samples will present, at least, signal overlap.  

Metabolite identification process is carried out by checking all the resonances belonging to the 

same metabolite signature. Due to signal overlap, some of these resonances can be masked by 

neighboring signals, leading to the loss of their characteristics in the final shape of the spectra. 

Moreover, to quantify a metabolite, the area of one of its resonances has to be calculated, and 

the only way to do so is correctly modelling its shape. In this process, if the most isolated signal 

of a metabolite signature is in a crowed region, bucket integration of the signal region may 

produce quantification errors since the area of other resonances is contributing the final shape, 

and to correctly fit our signal of interest, line-shape fitting algorithms are needed. Due to the 

issues mentioned above, we aimed to design a strategy to achieve the first main objective of 

this thesis, which consisted in developing and evaluating a set of algorithms to match and 

quantify a set of target signals in a completely automated manner combining 1D (NOESY and 

CPMG) spectra with its own 2D JRES complementary spectra. 

Dolphin is a line-shape-fitting package for high throughput automated metabolite profiling in 

NMR spectra. Dolphin takes profit of the 2-dimensional JRES spectra, where signals are much 

less superposed, in order to improve the identification and quantification processes. In those 

spectra, the congestion produced by the multiplicity of signals disappears, since they are 

projected in an orthogonal dimension. The orthogonal cut at the position of the signal of interest 

allows the algorithm to compare the multiplicity and j-coupling of the signal placed there with 

an internal library, and if all the resonances in the library match with a determined compound, 

a metabolite is considered identified. 

In a subsequent step, Dolphin focalizes the most isolated signal of a targeted metabolite and 

finds the neighboring signals that can affect its quantification. In this process, Dolphin does an 

automated annotation of the neighboring signals in terms of position, multiplicity and j-

coupling. This process is done despite the neighboring signals identity (known or unknown 

compounds). Finally, it performs a line-shape fitting of that region, adjusting the intensities of 

all the signals present and modelling their shapes as lorentzian-gaussian functions. 



	 140	

Dolphin’s performance is evaluated comparing its results against two of the most used methods 

in NMR metabolite profiling: reference deconvolution (using Chenomx NMR Suite) and 

bucket integration (using Bioref AMIX). More concretely, we compared their capability to 

correctly profile a set of 15 metabolites in a pull of standards and in liver aqueous extracts of 

rats, and a set of 5 metabolites in human urine samples. 

Results by the automated profiling of Dolphin were in good agreement with those produced by 

the manual profiling using Chenomx. The two packages performed well in regions with signal 

overlap, where bucket integration gave the worst results due to the integration of part of the 

neighboring signals surrounding the signal of interest. However, bucket integration 

successfully quantified isolated peaks with intensities clearly higher than background noise. In 

fact, due to the shape constraints of its spectral library, the reference deconvolution of 

Chenomx failed in most of these cases, while the flexibility of the lorentzian-gaussian 

proportions included in Dolphin's line-shape fitting algorithm shown a better performance. 

In summary, Dolphin has proven to be an excellent solution for the automated profiling of 

metabolites in isolated and partially overlapped regions of NMR spectra of tissue extracts and 

in the same kind of regions in urine. Moreover, it was able to adjust the position of citrate in 

urine samples, which is known for its capacity of shifting position along samples. However, 

the main advantage of Dolphin is also its main limitation, since it needs a 2-dimensional extra 

spectrum for each sample to perform the automated metabolite profiling. Moreover, even if the 

second dimension reduces signal overlapping produced by the multiplicity of resonances, it is 

still very high in regions with a huge number of resonances. To overcome this, more complex 

filters of signal discriminators need to be implemented now that the algorithm's strategy has 

demonstrated to work well. 

Once at this point, we decided to change Dolphin’s strategy to do not depend on extra 

acquisitions and to allow the profiling of metabolites in highly crowded regions, where current 

filters of automated signal annotation using the 2D JRES spectra were not able to solve the 

profiling. To achieve this, we aimed at developing and evaluating a set of algorithms to allow 

the user interacting with the spectra and to use different automated quantification modes under 

a user-friendly and intuitive GUI, avoiding the necessity of 2D JRES complementary spectra 

to perform the profiling. This new strategy includes finding an agreement between editability 

and automation, minimizing user-subjectivities but avoiding black-box processes at the same 

time in a useful and versatile tool. Moreover, we decided to include functions able to combine 
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fingerprinting approaches and to import reference spectra from public databases to perform the 

most reliable NMR profiling. 

Whale is the package version that allows users approaching metabolomics NMR data in 

different ways depending on the final goal of their studies. Whale was born to reach the second 

and third main objectives of this thesis, and it incorporates several functions for exploring data 

and manually adjusting quantification parameters in order to run automated metabolite 

profiling along samples. The core of the tool is based on automated quantification of targeted 

metabolites through easily editable ROI patterns. To facilitate metabolite assignments, it offers 

metabolite suggestions depending on the spectral regions, and a repository panel where the 

user can compare target spectra with reference spectra from public databases. To facilitate 

metabolite quantification in large datasets, it offers up to four different quantification modes in 

order to optimize the time-span of the analysis. It is also easy to interpret Whale outputs, 

allowing users to detect where the algorithm failed and re-run the analysis only for those spectra 

where the algorithm failed. 

All Whale functions were detailed and illustrated with examples, and two studies where the 

tool was applied were exposed. The first presents a novel approach for NMR-based stable 

isotope tracer studies called PEPA. In Whale’s algorithm, each resonance is quantified without 

taking into account the intensity ratios between the other resonances that belong to the NMR 

signature of the pure compound under normal conditions, in contrast with the algorithms that 

are commonly used in other metabolite profiling packages that are based in reference 

deconvolution. In this sense, neither Chenomx nor BATMAN could have performed this 

analysis, since in their strategy all the resonances of a determined compound are necessarily 

linked to each other in terms of intensity signal ratios. Of course, BAYESIL could not be used 

not only for the same reason, but also because is not suited for biofluids that are not ultra-

filtered plasma, serum or CSF. Thus, it is important to highlight that due to the nature of PEPA, 

where the intensity loss of each resonance of a unique compound can be affected by a different 

ratio of proton enrichment, quantification based in reference deconvolution would not have 

worked, being Whale's strategy a crucial part of the process. 

All positional 13C-enrichments calculated by PEPA using Whale quantifications in 1H-NMR 

spectra were confirmed using 13C-NMR, TOCSY, HSQC or HMBC, which endorse the 

capability of Whale to successfully profile metabolites in 1H-NMR spectra. Only two 

enrichments observed in the 13C-NMR spectra were not anticipated using PEPA, due to the 
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differences in the quantifications of these protons did not reach statistical significance. In these 

cases, is important to highlight that the biological variability of the model and a limited number 

of replicates may produce false negatives since PEPA relies on statistical comparisons to 

establish whether or not there is an enrichment. 

The other study consists in a clinical study where NMR-based metabolomics is the 

methodology used for finding novel biomarkers of CD4+ T-cell recovery in adult HIV-infected 

patients with pre-ART low nadir of CD4+ T-cell count after 3 years of successfully ART 

treatment. Even if metabolic data of only 64 patients were used in this study due to the 

exclusion criteria, Whale was used to obtain the metabolite profile of more than 200 human 

plasma samples. Anecdotally, using the function ‘correlate samples to metadata variable’ 

included in the fingerprinting panel of Whale, we detected a labeling error in samples in the 

initial database, that could be corrected taking advantage of the high correlation that normally 

exist between glucose resonances in NMR spectra and glucose levels calculated by biochemical 

parameters in the lab. 

In this case, and due to the low quality of the dataset spectra (human plasma samples without 

any dilution neither centrifugation that came from different hospitals), only eleven metabolites, 

a peak related to glycoprotein concentration in blood and two EDTA peaks previously reported 

as indicators of calcium and magnesium levels in blood were profiled.  

A set of 8 baseline metabolic variables was able to classify patients with pre-ART low nadir of 

CD4+ T-cell count according to their immunological response after 3 years of treatment. The 

fact that none of the metabolic variables presented enough classification power by itself suggest 

that there is a complex panel of metabolic interactions underlying the relation between 

metabolism and immunological recovery. However, the nature of these variables indicates that 

the most important interactions rely on the number of HDL particles and the glucose 

metabolism. 

In our cohort, these metabolic differences resulted more important than two of the most 

reported evidences related to the immune-discordant drug response which are age and number 

of CD4+ T-cell count at baseline. This work was a pilot study where we applied metabolomics 

for the discovery of new biomarkers in diagnosis and prognosis of HIV infection. In that sense, 

we proposed some baseline metabolic variables which in a multivariate model could predict 

the discordant response to ART in adult HIV-infected patients with pre-ART low nadir of CD4+ 

T-cell count. The main limitation of this study is the relatively small size of the cohort used. 
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During this thesis, several algorithms for extracting valuable metabolic information from 1H-

NMR spectra have been developed, evaluated and embedded into two software packages: 

Dolphin and Whale. The first package, Dolphin, aimed to find and quantify a set of target 

signals in a completely automated manner combining 1D (NOESY and CPMG) spectra with 

its own 2D JRES complementary spectra. The second package, Whale, aimed to be an 

interactive package for approaching data using different fingerprinting functions and giving 

users automated modes of signal quantification for metabolite profiling.  

Dolphin’s strategy proved to be an excellent solution for the automated annotation of signals 

present in regions with moderated signal congestion. It was able to discriminate signals 

according to their exact position, their multiplicity and their j-coupling using 2 dimensional 

JRES spectra, and perform an automated annotation of all of them for a posterior deconvolution 

of the region in 1 dimensional 1H-NMR spectra using its line-shape fitting algorithm. It is 

important to highlight that in all this process all signals surrounding the target signal were taken 

into account even if they were unknown compounds. Its quantification accuracy was evaluated 

using a pull of standards at known concentrations and a spike-in experiment in human urine 

samples. Moreover, its performance in biological samples was compared with two of the most 

used methods for metabolite quantification, manual reference deconvolution and bucket 

integration, represented by two of the most established packages, Chenomx and AMIX 

respectively. In all cases Dolphin demonstrated high quantification accuracy, validating in this 

way the power of its line-shape fitting algorithm. However, due to the extremely high 

complexity of some highly congested regions of 1H-NMR spectra, more complex signal 

discriminator algorithms need to be developed and implemented in order to reach the number 

of metabolites that can be manually profiled. 

This necessity of expanding the number of metabolites able to be profiled in an automated 

manner inspired the design of Whale. As an automated annotation of all the metabolites present 

in biological samples was almost impossible to achieve in a short period of time, a new strategy 

was developed and implemented based on automated functions for signal quantification under 

a user-friendly GUI where users could edit profiling options and apply fingerprinting 

approaches. 

In the first study where Whale was applied (chapter 3 section 3.6.1), the package was used to 

develop a new methodology called PEPA, a one-dimensional 1H-NMR approach for 13C stable 

isotope resolved metabolomics. Whale was able to quantify a set of 84 different resonances 
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underlying 46 polar metabolites in 1H-NMR spectra of aqueous extracts of human cancer cells. 

Metabolites were graphically identified by expert users and a total of 55 ROI patterns were 

generated using a mean spectrum before running the quantifications in the whole dataset. The 

images of the spectral deconvolution in each ROI generated by the package allowed users to 

graphically check the capability of the tool to correctly adjust the shape of each resonance. 

Moreover, the results obtained in PEPA using Whale's quantifications were confirmed using 
13C-NMR, TOCSY, HSQC or HMBC. These confirmations demonstrated that Whale is a tool 

able to perform reliable automated quantifications in 1H-NMR spectra using the ROI pattern 

files generated by users in a semi-automated strategy for open-targeted metabolite profiling. In 

this study, PEPA proved to be an excellent approach to study the position of carbon labels in 

large datasets, taking advantage of the easy-implementation of high-throughput analyses using 

only 1H-NMR, instead of other 2D-edited experiments. This new methodology simplifies NMR 

untargeted carbon flux monitoring and can be positioned as a key element of NMR-based 

SIRM in cell metabolism. 

In the second study where Whale was applied (chapter 3 section 3.6.2), the package was used 

to profile low molecular weight metabolites of adult HIV-infected individuals with the aim of 

finding a metabolomic signature able to predict their immunological response to ART. More 

concretely, Whale quantified a target set of 11 resonances underlying 11 metabolites in 1H-

NMR CPMG spectra of human plasma samples. Apart from these 11 metabolites and taking 

advantage of the tool versatility, two EDTA peaks and another peak of interest were also 

quantified. The results obtained using Whale were put together with the results obtained using 

the Liposcale test, and a total number of 40 metabolomic variables were used to perform the 

statistical analyses. For these analyses, several algorithms of univariate and multivariate 

statistics such as fold change calculations, unpaired mann-withney U test, noxched boxplots, 

linear regression models, random forest analyses and ROC curves were implemented in R in 

order to convert metabolite quantifications into significant and interpretable results. Finally, a 

metabolomics signature conformed by HDL-related parameters and glucose, with great 

emphasis in the number of large HDL particles as maximum differentiator, was identified for 

adult HIV-infected patients in relation to their differential response to ART. This study 

confirmed the potential of metabolomics for biomarker discovery in critical illnesses and 

suggested that an adjustment of the baseline metabolomic pattern could improve the 

immunological outcome of adult HIV-infected patients with pre-ART low nadir of CD4+ T-

cell counts. 
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In summary, the algorithms presented in this thesis demonstrated to be necessity to improve 

metabolite profiling in 1H-NMR samples. On one hand, Dolphin presented a new methodology 

for automated metabolite profiling combining 2D JRES data with 1D 1H-NMR data, an original 

approach that can be improved with advances in NMR acquisitions and in algorithmic filters 

able to discriminate signals in highly overlapped regions. On the other hand, Whale presented 

a different strategy based on an agreement between user-interactivity and automatisms with 

promising results for the profiling of metabolites in several datasets of 1H-NMR spectra of 

different biofluids. Future work include coding Whale in R language. 
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ANNEXES 
 

WHALE’S USER’S MANUAL 

 

 

1 Importing data: 

 

1r and 2rr Bruker files can be imported by our tool using the following kind of inputs (all the 
following excel files must have only one sheet): 

 

• Metadata: Excel file with at least 2 columns, the first of which containing the sample 
name and the rest with metadata information about the experiment (use numbers, not 
characters). The first row of each column will be processed as a title. If there is no 
metadata available, the second column has to be filled e.g. with random numbers.  

• Metabolite library: Excel file with 1 column containing the names of target metabolites 
(the package includes different default libraries optimized depending upon the target 
biological matrix, but users can adapt the library to the experiment needs). More 
information in section 4 (Editing libraries and ROI patterns). 

• Folder with ROI Patterns: 1 Excel file per ROI. More information in section 4 (Editing 
libraries and ROI patterns). 

• Parameters: Excel file which contains the necessary parameters to import data 
contained in Bruker files, with additional parameters to fit the tool to users’ needs. This 
file has two columns, the first of which contains the parameter name and the second the 
parameter value filled by users. A more detailed description is shown in Table A1: 

 

 

Parameter   
  

Value of the parameter 

nmr folder path   Path which contains the ‘nmr’ folder where the Bruker 
files are contained. Samples must be contained in a 
folder called ‘nmr’. 

Metadata path (xls format) 
  

‘path\metadata_file_name.xls’ 

1D data index   
  

Number of the data index (10, 11, 12...) 

Library path (xls format)  
  

‘path\library_file_name.xls’ 
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ROI_patterns folder path  Path which contains the ‘ROI_patterns’ folder 

Plots2Check folder path  
  

Path where you want to create the ‘Plots2Check’ folder 

Fitting error threshold (in %) 
  

Error value above which saving an image (10, 20…). 
More info in section 8 (The output). 

Signal area threshold (in %) Percentage of contribution of the signal to the total fitted 
area under which saving an image (30, 50…). More info 
in section 8 (The output). 

Normalization (1=Eretic, 2=TSP, 
3=No)  

Value between 1-3 according to the choice 

Alignment (1=Glucose, 2=TSP, 
3=Formate)  

Value between 1-3 according to the choice 

Suppression (1=Water, 2=EDTA, 
3=Urea, 4=Glucose) 

Value or values (separated by comma) between 1-4 
according to the choice 

Spectrometer Frequency (Hz) Spectrometer frequency value (600, 700…) 

2D-JRES mode (1=No, 
2=One/Sample, 3=One as 
reference) 

Value between 1-3 according to the choice 

2D-JRES data index Number of the data index (10, 11, 12...) 

2D-JRES (2rr file) reference path 
(Only if 2D-JRES mode is set to 
3) 

Path which contains the J-Res-NMR spectrum used as 
reference. 

2D-JRES library path Path where the library of J-Res-NMR spectrum of pure 
compounds is contained. 

1D-HNMR library path Path where the library of 1H-NMR spectrum of pure 
compounds is contained. 

Signals repository path (xls 
format) 

Path where the excel file with a database of signals is 
contained. 

Bucket resolution Bucket resolution (in ppms). 

Table A1: Importing parameters 
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To start running the package, users must press the button ‘IMPORT DATA’ in the main panel. 
Once the browser is open, users must search for the Parameters file and select it (Figure A1). 

 

 

Figure A1: selection of the Parameters file that contains the necessary information. 

 

Once all data have been imported successfully, six new buttons will appear in the main panel 
(‘FINGERPRINT’,’REPOSITORY, ‘ROIs TESTING’, ‘AUTO RUN’, ‘SAVE RESULTS’ 
and ‘EXIT’) (Figure A2) and a new folder called ‘Plots2Check’ in the path selected within the 
parameters file. 

 

 

Figure A2: main panel of the program. 

 

2 Fingerprinting: 

 

The Fingerprint panel allows users to explore data using some options before beginning a more 
exhaustive analysis: 
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• ‘CORRELATE SAMPLES 2 REGION’: This option allows users evaluating if there 
are regions in the spectra with high variance correlation with a region of interest through 
the introduction of the left and right bounds of the region of interest. This is very useful 
for e.g. checking if a signal belongs to a metabolite by its correlation with other signals 
of the same metabolite located in other regions of the spectrum. 

• ‘CORRELATE SAMPLES 2 METADATA VARIABLE’: This option allows users 
evaluating if there are regions in the spectra with high variance correlation with 
metadata selected through the select box on the right. The box on the right contains the 
metadata variables previously imported in the Metadata file (see section 1 Importing 
Data). This is very useful for e.g. checking if there is correlation between glucose 
signals in spectra and glucose quantified by other methods (Figure A3). 

• ‘FIND HOTSPOTS BETWEEN GROUPS’: This option allows users detecting regions 
of the spectrum that present more differences between two subgroups of samples 
selected through the select boxes on the left and the right of the button. The boxes 
contain different groups according to the second column of the Metadata file (see 
section 2 Importing Data). 

 

 

Figure A3: Fingerprint panel. Example of the correlation spectrum of Glucose metadata 
variable with regions of the spectra dataset. 
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3 Repository: 

 

The Repository option allows users comparing 1H-NMR and JRES-NMR spectrum of a sample 
with 1H-NMR and J-RES-NMR spectrum of pure compounds contained in a library. 

Users can choose a sample spectrum through the ‘Sample’ select box and plot the kind of NMR 
spectrum (1H or JRES) in which they are interested in. If they want to zoom a region, they have 
to click the left button of the mouse in the region they want to zoom in or select it. If users want 
to zoom out a region, they have to click Alt and the left button of the mouse. If users want to 
compare the two kinds of spectrum (e.g. for the identification of the kinds of signals behind a 
region of the 1H-NMR spectrum, they have to click both ‘Plot 1H’ and ‘Plot JRES’ buttons and 
select the region of interest. 

Users can plot the 1H and JRES NMR spectra of pure compounds as a reference to compare 
them with a sample spectrum in order to facilitate the identification of signals behind an NMR 
spectrum. They have to select the kind of spectrum they want to use through the ‘HNMR 
Compounds’ and ‘JRES Compounds’ selecting boxes and add other spectra of pure compounds 
to the generated spectrum through the ‘Add 1H Ref’ or the ‘Add JRES Ref’ butons. 

 

 

 

Figure A4: Repository Panel. Example of the Brand-Chained-Amino-Acids (BCAAs) 
region in our dataset (left axes) and the superposition of the reference spectra of those 
three BCAAs (Isoleucine, Leucine and Valine) (right axes). 

4 Editing libraries and ROI patterns: 
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Our package comes with a metabolite library and a set of several ROI Patterns prepared for 
four kinds of matrix: liver extract, brain extract, serum and urine. These libraries and patterns 
have been built through the analysis of several datasets per matrix using both public and private 
databases (such as The Human Metabolome Database –HMDB- and Chenomx) and scientific 
papers (such as The Human Serum Metabolome and The Human Urine Metabolome). Both 
libraries and ROI patterns are easily editable to adapt the parameters to the target biofluid and 
the concrete characteristics of samples. 

The metabolite library consists in an Excel file where the first column contains the names of 
all metabolites that users want to quantify (if users want to quantify different signals of the 
same metabolite, they must give a different name to each one as e.g. Isoleucine1 and 
Isoleucine2). It is very important that the name of all metabolites or signals in the library 
matches exactly with those that appear in the ROI pattern files. The first row will be processed 
as the first metabolite of the library. 

ROI pattern files are also Excel files, one per ROI, which contain some parameters of the 
signals to deconvolve in a ROI. The format of a ROI pattern file is presented in Figure A5. The 
parameters to give to the program are: 

 

 

• Region: Put left and right bounds of the ROI (in ppm and with period as decimal 
separator) separated by comma. It is only necessary to fill the cell corresponding to the 
first signal. 

• Signal: Put the name of the signal or metabolite. Be sure that the name matches exactly 
with the name which is annotated in the library. 

• Position (ppm): Put the signal position (in ppm and with comma as decimal separator). 
• Width: Adjust the value of the width of the signal (arbitrary units, with comma as 

decimal separator). 
• Q Signal: Put 1 if you want to quantify the signal and 0 if you only need it to adjust the 

fitting. 
• Multiplicity: Put the multiplicity of the signal (for now the software supports from 

singlet (1) to quadruplet (4).  
• J-coupling (Hz): Put the J-coupling value (in Hz and with comma as decimal 

separator).  
• Roof effect: Put a roof effect value if it is necessary. In some cases (such as citric acid 

and L-phenylalanine) the signal doesn’t follow the conventional proportions, so a 
positive factor (between 0 and 1) will produce a descending signal and a negative factor 
(between -1 and 0) will produce an ascending signal. 

• Shift rang: Give a window (in ppm and with comma as decimal separator) of deviation 
of the shift from the indicated position. If position is 4 and shift rang 0,005, the program 
will search the signal between 4.0025 and 3.9975 ppms. 

• Q Mode: The package works in four modes: Baseline Fitting, Clean Fitting, Baseline 
Sum and Clean Sum. The “Baseline” mode adjust a putative baseline to perform the 
quantification; the “Clean” mode will adjust only the signals given by users without 
including any baseline approximation. The “Fitting” mode will perform a fit of the 
signals to the spectrum in the determined ROI; the “Sum” mode will integrate the whole 
region. It is only necessary to fill the cell corresponding to the first signal. 
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Figure A5: Example of an ROI pattern file. 

 
 

Users can expand and reduce the library and the number of ROI pattern files, and adjust the 
parameters within the ROI patterns to the experiment needs. We recommend the Sum mode 
for those regions that contain isolated and not mobile signals because the computation time is 
severely reduced. Use the Baseline Fitting mode in regions where baseline or broad signals are 
affecting the final shape of the region. 
 
A Signals Database excel file is provided in order to facilitate editing the metabolite library 
and the ROI Patterns. This excel file contains information of some parameters for each 
metabolite present in the HMDB and information about the common compounds in urine, 
serum, liver extract and brain extract. 
 
The demo also comes with some examples of 1H (‘1D-HNMR-Library’ folder) and J-RES 
(‘2D-JRES-Library’ folder) NMR spectra of pure compounds. More 1H spectra can be found 
in several database websites (BMRB, HMDB, BML-NMR…). More J-RES spectra can be 
found through the BML-NMR website. Please be careful to prepare the same Bruker file 
structure when further NMR spectra are added to the library. 
 
5 Testing patterns with the manual panel (ROIs Testing): 

 

Figure A6 shows an example of an ROI pattern test. On the left-upper corner users can select 
the sample spectrum to test. There is also the option of plotting all spectra, the mean spectrum 
or the median spectrum of the whole dataset, which can be useful to check alignment behavior 
in the importing process. 

After selecting the sample spectrum, users can use the ‘ROI Window’ panel to generate a 
region to plot, or can directly choose an ROI pattern to load on the right of where the sample 
spectrum was chosen. Once a ROI pattern is selected, users can import it through the button 
‘Import ROI’ and both Region and Signal Selection panels will be filled automatically. All 
ROI parameters are the same ones that are contained in the ROI pattern excel files, and are 
explained in detail in section 4 of this document. With the ‘Plot ROI’ button users can plot the 
selected spectrum region. 
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If users are not sure about metabolite assignments, they can test other possibilities through the 
Signal Suggestion button. These suggestions are based on the presence of signals in the same 
region for urine, liver, brain extract and liver extract samples. If users are still not convinced, 
they can check the Signals Database excel file (see Section 4) in order to explore other 
possibilities. 

 

 

 

Figure A6: example of the use of the ‘ROIs Testing’ panel, in this case for the 
quantification of branched-chain amino acids through the ‘Baseline Fitting’ option.  

 

At this point, users can plot the spectra and try which of the four approaches (Baseline Fitting 
–Figure A4-, Clean Fitting, Baseline Sum or Area Sum) is the best option to quantify the signals 
of interest. Users has the option to change any of the parameters in ‘ROI Window’ and ‘ROI 
Parameters’ panels to adjust the pattern interactively, and once the performance is optimized, 
it can be saved through the ‘Save Pattern’ button and applied to other experiments, or to the 
whole dataset through the ‘Apply4All’ button. The changes done interactively through the 
panel will be lost if users changes or reloads the pattern, so we suggest saving those changes 
that are useful for most of the spectra of the dataset in the ROI pattern excel file.  

Those signals which don’t pass the fitting error or signal area thresholds will generate an image 
of the plot which will be automatically saved in a folder with the name of the signal within a 
folder called ‘MANRUN’ within the folder ‘PLOTS2CHECK’. It allows users to check 



	 158	

graphically if the results are reliable or not and gives the chance to recalculate wrong 
quantifications by adjusting some parameters interactively in the ‘ROIs Testing’ Panel. 

 

6 Autorun: 

 

’The package allows users to perform a fully automatic quantification analysis through the 
button ‘Autorun’. This option is only recommended when users experience and the reliability 
of the ROI patterns are high (for example as a second analysis of a dataset previously analyzed 
in a supervised way). Two ‘wait-bars’ will appear giving information about the samples 
analyzed and the metabolites quantified. This automatic run can be stopped closing any of these 
two windows. Those signals which don’t pass the fitting error or signal area thresholds will 
generate an image of the plot which will be automatically saved in a folder with the name of 
the signal within a folder called ‘AUTORUN’ within the folder ‘PLOTS2CHECK’. 

 

7 The output: 

 

Once the analysis has been finished, users can generate an output file just by pressing the button 
‘SAVE RESULTS’, which will open a browser to select the path and the file output name to 
be saved in xls format. The output file consists in 4 sheets (Figure A7); all of them present a 
matrix format with the sample titles in the first column and the signal titles in the first row 
(Figure A7). 
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Figure A7: Example of Excel file saved, with the first column representing the samples 
and the other columns representing the data of every metabolite contained in the library 
Excel file. The sheet represented here is the sheet with the information about the fitting 
error. 

 

The first sheet contains the quantification values of each signal in each sample in arbitrary 
units, corresponding to the area under the curve calculated. The second sheet contains the 
fitting errors of each signal in each sample in percentage and is calculated according to this 
equation: 

 

𝐹𝑖𝑡𝑡𝑖𝑛𝑔	𝐸𝑟𝑟𝑜𝑟 =
(𝑆𝐴 − 𝐹𝐴)0

𝑆𝐴0 · 100 

where SA is the spectrum area in the window where the signal is located and FA is the total 
fitted area in the window where the signal is located. 

The third sheet contains the position of each signal in each sample in ppm units. The last sheet 
contains the percentage of the fitted area that is represented by the fitting of the signal. This 
parameter is calculated according to this equation: 

𝑆𝑖𝑔𝑛𝑎𝑙	𝐴𝑟𝑒𝑎	𝑅𝑎𝑡𝑖𝑜 =
𝑆𝐹𝐴
𝐹𝐴 · 100 
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where FA is the total fitted area in the window of the ROI where the signal is located (contains 
the baseline and all the signals) and SFA is the fitted area of the signal in the window of the 
ROI where the signal is located (does not contain the fitting of the baseline and/or the other 
signals) 

All this information joined to the saved images gives users information about the final results 
that can become useful before entering into statistical analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


