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Chapter 3

A Flexible Estimator for Counts

with a Dummy Endogenous

Regressor!

3.1 Introduction

Count data models try to explain the behavior of discrete and non negative de-
pendent random variables (Winkelmann and Zimmermann 1994, Cameron and Trivedi
1998 provide excellent surveys). Applications of these models include health care utiliza-
tion, recreational demand, number of patents or bankruptcy among others. One of the
most popular models for count data assumes that the discrete variable follows a Poisson
probability function. However, despite its popularity, such a requirement often fails to
hold. Among other features, the Poisson model imposes a restriction of equidispersion
(i.e., the conditional mean should be equal to the conditional variance) which most data
sets fail to accommodate. A popular solution in the literature has been to include a
term which accounts for unobserved heterogeneity. When this random variable follows
a Gamma distribution, such an extension leads to the widely known Negative Binomial
(NB) model (Hausman, Hall and Griliches 1984, Cameron and Trivedi 1986).

Another customary characteristic of count variables is the high relative frequency
of zeros. Unfortunately, the NB distribution does not show enough flexibility to accom-

modate this feature. Therefore the literature has moved to more flexible specifications

!This is a joint work with Andrés Romeu.
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that could solve these problems. A non exhaustive list includes hurdle models (Mullahy
1986, Pohlmeier and Ulrich 1995), semiparametric (Gurmu et al. 1996,1998,1999), finite
class models (Deb and Trivedi 1997), Univariate Poisson Polynomial models (Cameron
and Johansson 1997) and Negative Binomial Polynomial model (Creel 1999). In general,
these estimators have been shown to work better than the standard NB model in terms
of fit and information criteria.

All these approaches do not consider the case when a dummy variable is endoge-
nously determined. Our model tries to combine both the flexibility required to adequately
fit count variables and the problems appearing in the presence of a binary endogenous
regressor. Such a circumstance typically may hold when the unobserved heterogeneity is
correlated with some of the regressors. If it was ignored we may get biased estimates of the
parameters of interest since we cannot isolate the effect of the regressor on the distribution
alone.

The previous literature that has dealt with a dummy endogenous regressor in a
count data setting can be divided in two branches. The first one (Mullahy 1997, Wind-
meijer and Santos Silva 1997) do not need to assume a distribution for the unobservables
and use GMM techniques based on the conditional mean. In order to obtain consistent
estimates, the analyst needs to find a function of the data with conditional expectation
equals to zero.? The only proposed functional form for the conditional mean that seems to
preserve positiveness and allow for such a transformation is the popular linear exponential.
On the contrary, if one specifies the distribution of unobservables, such a transformation
is not needed since the unobservables can be integrated out, and this allows for a variety
of functional forms. Consequently, although these approaches are distribution free, they
need strong assumptions on the functional form of the conditional mean. In light of the
findings of the literature on exogenous regressors, this assumption is likely to be inade-
quate for some datasets, for instance for those with excess of zeros. The second branch
(Terza 1998) also sticks to the linear exponential specification and in addition bivariate
normality is assumed. The framework proposed by Terza allows for a variety of functional
forms specification since the unobservables will be integrated out. However one (TSM) of
the two estimators proposed by Terza (1998) require the linear exponential specification
and the second (WNLS) both the linear exponential mean and the Poisson distribution

of the counts. Winkelmann (1998) also make extensive use of the assumption of bivariate

*Under assumptions regarding the expectation of the unobservable conditional on instruments.
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normality to develop a count data model with endogenous reporting.

The lack of flexibility in the functional form of the conditional mean contrasts
with the importance that has been given to the conditional mean in linear models of
selection. According to Vella (1995) in a survey devoted to selection models: “there is
a growing feeling that the parametric procedures perform well if the conditional mean
of the model is correctly specified”. In fact, Newey et al. (1990) concludes that “the
specification of the regression function and the set of instrumental variables appears to be
more important than the specification of the error distribution for these data”. Newey et
al (1990) and Blundell and Windmeijer (2000) do not find departures from the bivariate
normality assumption and Vella (1995) just finds relatively weak departures with causes
negligible differences in the point estimates.

On the basis of this background, and given the flexibility needed to adequately fit
count data models, there is room for a model that gives enough flexibility to the conditional
mean and other moments when dealing with an endogenous dummy variable, even if the
distribution of unobservables need to be specified. Notice from above that by specifying
the distribution of unobservables, we have access to a wider variety of functional forms for
the model.

However estimation of the model using only some of the first moments, is not
likely to be successful. Heckman et al. (1990) developed a method of moment estimator
for a flexible model, a mixture of exponentials. According to them “alternative methods
based on maximum likelihood appears to be much more promising”. Deb et al. (2000)
replicated the exercise for a finite mixture count data model with identical conclusion. It is
not strange that the first moments give very little information about the data generating
process when one is dealing with a flexible specification. That is why we have chosen
maximum likelihood instead of method of moments.

The starting point is the Terza (1998) model which is introduced for expositional
purposes in section 2. We will concentrate in the specification of the conditional distribu-
tion for the count. Under a Poisson specification, the parameters may be estimated using
full information maximum likelihood (FIML). Since one could be interested in knowing
whether this parametric choice is correct, we also show here how to compute goodness of
fit measures.

In section 3, we introduce flexibility assuming that the count follows a polynomial

expansion over a baseline Poisson density, instead of using a simple Poisson or Negative
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Binomial distribution. This approach extends the flexible model of Cameron and Johans-
son (1997), who in turn adapted the original Gallant and Nychka (1987) model, to deal
with endogenous binary variables. This extension is based on the fact that the baseline
density already accounts for some of the unobserved heterogeneity. Hence, we expect that
a low degree of the polynomial would be enough to provide a good fit. With a linear ex-
ponential conditional mean it is relatively straightforward to recover consistent estimates
of the impact of regressors. This is not the case for polynomial expansions since the first
moment is not log-linear. This is why we also discuss how to recover equivalent estimates
of elasticity measures.

In section 4, we test our model using two data sets already analyzed in the
literature: the first one is a data set on the demand of trips by households, previously
analyzed in Terza (1990, 1998). Here, the Poisson model fails to accommodate the shape
of the empirical distribution mainly for the first counts of the support. Instead, our flexible
model is able to adapt to the observed data and significantly improves the fit. We also
report consistent estimates of the mean effect of the dummy on the counts. The second
example confronts our estimator with data showing an even higher degree of non-Poisson
behavior, evidenced by an important overdispersion and relative excess of zeros. The data
appear in Deb and Trivedi (1997) who analyze the determinants of the number of physician
visits by the elderly using a mixture of Poisson densities. These authors acknowledge that
possibly some of the regressors could be correlated with unobservables but minimize its
impact and do not correct their model accordingly. Our main finding in this case is that
a good fit can also be achieved using a polynomial expansion in a model that explicitly

deals with the endogeneity problem.

3.2 Count data models with endogenous dummy regressors

The baseline model is the one proposed by Terza (1998). The count dependent
variable for the ¢ —th individual, y;, takes only non negative integer values. Its probability
function f(y;|x;,d;,e) depends on a binary variable (d; = 0,1), a vector of covariates
(z;) and a latent random variable e. The model for the binary variable is assumed to
be generated by the process d; = 1 if zjaw + v; > 0 and d; = 0 otherwise where z; is
another vector of covariates for individual ¢, « is a conformable vector of parameters and

v is an error term. It is assumed that conditional on the exogenous variables w = (z, 2),
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the vector (¢, v) follows a bivariate normal distribution with zero mean and covariance
matrix:

0’2 g
5= P, (3.1)

op 1

The joint density for the observations of the pairs (y;, d;) conditional on covariates w; is

given by
—+oo
flys, di|lw;) = f(yilzi, diye) f(di|zi, €)dF (e) = (3.2)
+o0

il o [ ol - [ :f(v\s)dv] aF(c).

Using that v = (p/o)e + u where u ~ N (0, V1o p2) is independently distributed with
respect to € we have that

+o0
fyi, dilwi) - = f(yilwi, diy€) [di®7 (¢) + (1 —dy) (1 = @7 (¢))]dF (e), (3-3)

zia+ (p/a)e]
V1—p?

and ®(.) denotes the cumulative distribution function of a standard normal. In his appli-

where ®* (¢) = &

cation, Terza (1998) performs a two-stage method of moments (TSM) based on deriving
Elyilw;, d;]. He assumes the standard linear exponential specification for the mean of the

count variable, that is,
Elyi|z;, d;, €] = exp{z;B + diy + €}. (3.4)

This moment equation can not be used because of the unobservability of the €. However,
after some algebra an appropriate first order moment conditional on observables can be
derived and a Heckman (1978) type estimator may be computed. Moreover, since the
estimation errors are not homoskedastic Terza (1998) proposes then to use a Weighted
Nonlinear Least Squares (WNLS). This WNLS requires a specific assumption about the
probability function of the count variable loosing some of the robustness in the initial TSM
approach. He presents estimates for the Poisson case, while the negative binomial is also
suggested.

We will use Terza’s model and FIML as a benchmark (say PFIML model), keeping
the assumption of a Poison density, i.e., y;|z;, d;, € ~ P(\;). Although it is computation-

ally harder, this method presents some advantages with respect to TSM and WNLS.
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First, the efficiency gains issue is well known if the restriction on f(yi|z;, d;, €)
is true, since the FIML will asymptotically reach the Cramer-Rao lower bound. Notice
that in the particular case of NWLS, robustness is not a comparative advantage of the
previous since we need to assume a Poisson density for f(y;|zi, d;, €) either.

Second, all the parameters are separately identified, more specifically p and
o. Given that the variance covariance matrix in (3.1) needs to be positive definite, we
reparametrize the model in such a way that we restrict the estimate of p to be between -1
and 1, and standard errors for this parameters can be obtained using the delta method.
This feature was not directly available in the TSM or WNLS approach where parameter
could take values outside the bounds. Doing inference about p is important since a simple
t-test for the exogeneity of the binary variable is readily available and because p may have
an appealing structural interpretation. For instance, if the count variable represents visits
to doctors and the dummy indicates insurance status, then a positive p is an indication
of adverse selection in the insurance market. On the contrary, negative p could indicate
cream skimming by insurance companies (Coulson et al. 1995). Moreover, as we will see
later, the identification of p and o will play a role in obtaining predicted frequencies of
counts.

Third, a formal test for the Poisson assumption, conditional on the other assump-
tions of the TSM model (i.e., the joint normality and the linear exponential specification of
the conditional mean of the count) can be performed. The Poisson FIML provides under
the null hypothesis, the asymptotically efficient estimate required to perform a Haus-
man specification test of the null of Poisson distribution against exponential mean models
where the consistent estimate is given by the TSM. It is also possible to go further and
test jointly all of the distributional assumptions, i.e., the Poisson and the bivariate normal
distributions- through a Hausman test. This could be done using the PFIML and a consis-
tent estimator of the conditional mean of the count obtained by the Generalized Method
of Moments (GMM), as suggested by Windmeijer and Santos Silva (1997), Mullahy (1997)
and Grogger (1990). This test requires the availability of convenient instruments.

Finally, FIML allows one to obtain the expected frequency for different values
of the count variable and compare it with the observed frequencies. This is needed when
building goodness of fit measures that have been used by Gurmu and Trivedi (1996) and
Cameron and Johansson (1997) in models which ignore the problem of endogeneity. This

cannot always be done using the WNLS, since nothing ensures that the estimates of p are
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between -1 and 1. Also this technique is particularly useful to detect the excess of zeros
problem. Moreover, Andrews’ goodness of fit test (Andrews, 1988a, 1988b) can also be
computed on the basis of the differences against fitted and expected frequencies. These
statistics have been used in a count data context without endogenous regressors by Deb
and Trivedi (1997). We will discuss the basic issues here.

Let us partition the range of the count variable in J intervals where ¢; > ¢ >
... > ¢j_1 are the endpoints. The observed frequency p; of the interval j =1, 2, ..., J is
given by

n

1
pj = Ezl[cj <y < ¢l

i=1
where 1[.] is the indicator function. The expected frequency for the interval j, p;, requires
some more computation. If the regressor d; was uncorrelated with the errors £ then
we could use that f(y|lw,d) = [ f(y|w,d,e)dF (¢), to compute the frequency of count j
conditional on regressors and then average. This is not possible any more since under
correlation we need to integrate with respect to the density of conditional also on d;.
Instead of deriving this conditional density a much simpler method is to get the marginal

probability of the count variable as

flylw) = f(y, Hw) + f(y, 0lw). (3-5)

Consequently one would use f(y|w) estimated to add over the range points of y in every
interval j and then average over the whole sample and get p;. With this in mind, a
very simple goodness of fit measure is given by the sum over j of the absolute differences
A; = |pj — pj|- The goodness of fit test is basically a moment conditions test where we
use the fact that A; — 0 almost surely under the law of large numbers (see Andrews
1988a, 1988b for more details). Numerical integration is needed at some steps of the
implementation. The reader interested reader may consult the appendix on computational

methods.

3.3 Polynomial Poisson Full Information Maximum Likeli-

hood (PPFIML)

As we will see later in the examples, FIML estimation using the Poisson is likely

to be inadequate. The consistency of the estimates relies on every one of the four ba-
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sic assumptions: a Poisson density for the distribution conditional on the unobserved
heterogeneity, a linear exponential specification for the conditional mean, the bivariate
normality of the error terms and the linear structure of the model for the binary variable
d. We will concentrate on relaxing the first two assumptions: the Poisson density and the
specification for the conditional mean.

One of the options to relax assumptions about functional forms has been to
perform a series expansion from a baseline density. The use of polynomial expansions
of a normal density was proposed in the continuous dependent variable case by Gallant
and Nychka (1987). Application to a binary choice model has been performed by Gabler,
Laisney and Lechner (1993). In count data settings we must cite the work by Gurmu et al.
(1996, 1998, 1999), Cameron and Johansson (1997) and Creel (1999). We are not aware
of any other application of series expansion in a model with endogenous binary regressor
on a count data context.

Following the approach of Cameron and Johansson (1997) we will use a squared
polynomial expansion over a Poisson baseline probability function. The resulting prob-
ability function is obtained by multiplying the baseline by a squared polynomial in the
dependent variable h?(y, a) of degree K, where a is the vector of coefficients. The polyno-
mial has to be raised to the square in order to preserve the non negativity of the density
function. To ensure that the resulting probability function sums to unity it is necessary
to divide the expression by a normalizing constant WUg(A,a). Following Cameron and

Johansson (1997) we have that

(2, aw')” Plyly

fsnp(ylz,d,e) = Tr(n ) , where (3.6)
_ y
P(y|A) = —exp( y/\') * A and

A = exp(zif+div+e).

Estimation is done by maximum likelihood using (3.3) and (3.6). The estimates
of all parameters are consistent and asymptotically normal distributed with variance com-
puted by the standard sandwich form. As in Cameron and Johansson (1997) or Creel
(1999), we do not consider technical issues on the ability of the expansion to approximate
arbitrarily well any model as long as we let K — oo. The proof for the continuous case
appears in Gallant and Nychka (1987).

Our model differs from Cameron and Johansson (1997) in at least two things:
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first, we take into account endogeneity. Second, we allow that the latent variable enter in
the specification through the baseline density, relieving the adaptative task of the polyno-
mial expansion. We expect that this latter effect helps to get parsimonious results for the
degree of the polynomial. Creel (1999) used a negative binomial as the baseline density
and he found that small degrees of the polynomial expansion sufficed to obtain a good fit.
In fact, the negative binomial can be obtained by integrating out a Poisson density with
a gamma distributed latent variable. Such a latent variable is normally distributed in our
context.

An important issue will be then to determine the order of the polynomial. In
this sense, we must be cautious in order to avoid overfitting. To fix the polynomial degree
we will use the goodness of fit test proposed in the previous section and other statistical
tools: likelihood ratio tests, score tests and information criteria. The information criteria

are defined by

BIC = -=-2In(L)+ PIn(N) and
CAIC = —2n(L)+ P(n(N) +1),

where P represents the number of parameters to be estimate, BIC stands for Bayesian
Information Criteria and CAIC for Consistent Akaike Information Criteria. Gallant and
Tauchen (1995) advise to use the BIC as a parsimonious criteria on the size of the polyno-
mial. The BIC imposes a bigger penalty on the number of parameters than the standard
Akaike, but not as big as the CAIC does. Considering a penalty on the number of param-
eters is interesting, since one would like to avoid overparameterized models.

Contrary to the Poisson-Negative Binomial case, the mean of the count vari-
able conditional on both observable and unobservable variables is no longer given by the

parameterized A. Instead, following Cameron and Johansson (1997), it is given by

E(ylw,d,e) = Z Z aiazmiy;(A), (3.7)

j=0 i=0
where m;(.) denotes the 4" non central moment of the Poisson density and we stress the
dependence on the baseline density mean \. It is clear from (3.7) that the departure form
the standard linear exponential specification of the conditional mean implies that we must
modify the interpretation of the coefficients on the variables. In fact, for the case where
there are no series expansion the expression in (3.7) reduces to A, but in general for the

K > 1 case the coefficients no longer admit an interpretation as elasticities.
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In order to recover an estimate of the impact of covariates in the counts we
should compute E[y|z,d] which is a non-linear function of the parameters of interest. The
derivation of such an expression is a bit more complex than for the K = 0 model. Since

y is a discrete non negative random variable, its mean is given by

E[mwad] = Zy*f(ylw’d)a (38)
y=1

where f(ylw,d) = M

fldlw)
The numerator can be replaced by the estimate of the joint density, and an estimate of
the marginal density of d may also be obtained using
+00
f(dlw) = /_OO [d9* (¢) + (1 d) (1 — & ())]dF(e). (3.9)
Thus, the percentage mean effect of the change given by dummy regressor d can be com-

puted using (3.8), (3.9) and

N

1 E(ylz;,d=1) — E(y|z;,d =0

NE (yls ) (s )*100. (3.10)
i=1

E(yl|zi,d = 0)
Notice that this conditional expectation is a function of the covariates observations. To
summarize this information we will report two different measures. The first one computes
the quantity in (3.10) evaluated at different points of the covariates. We chose three of
these: the mean point, the upper point and the lower point. Here, upper (lower) means
that we choose covariates’ values in the range of the sample space yielding the largest
(smallest) A. If the fit of the PFIML was poor with respect to the Polynomial Poisson at
the left tail of the distribution, then we would also expect larger differences in the mean
effect estimates at these points. The second measure provides the frequency plot of the

computed means.

3.4 Some applications

3.4.1 Data on frequency of recreational trips

Terza (1998) uses data on the number of trips by households (TOTTRIPS) to
specify a model where vehicle ownership (OWNVEH) is included as a potentially endoge-

nous dummy regressor. Table 3.1. describes the variables in the dataset. The variables
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have been divided in two groups attending to its determination status: endogenous (num-
ber of total trips and vehicle ownership) and exogenous (regressors).

We take as given the specification proposed by Terza (1998). In particular, we
exclude the ADULTS variable from the count equation. This constitutes an overidentifying
restriction. Consequently, the identification of the model do not crucially depend on the
non-linear restriction imposed by the bivariate normality assumption.

We will first be concerned with the endogeneity of the OWNVEH variable. It
is likely that unobserved variables as the personal predisposition (or aversion) to travel
may be positively (or negatively) correlated with the decision of purchasing a vehicle. For
instance, an individual may like to travel while detesting traffic jams, and such an aversion
will be negatively correlated with the ownership of a vehicle. If this is the case, we should
be aware of isolating the effect of vehicle ownership on the number of trips induced by this
correlation.

Tables 3.2 and 3.3. show the results of Nonlinear Least Squares (NLS), TSM and
WNLS estimation methods. The last two estimators, TSM and WNLS, have been origi-
nally proposed by Terza (1998). TSM and WNLS correct for endogeneity using a estimator
similar to the one proposed by Heckman (1978) but adapted to the count data setting.
The value of the OWNVEH coefficient estimated with TSM and WNLS increases between
a 75% and a 30% with respect to NLS. This indicates that the sign of the correlation
between ¢ and the endogenous dummy is negative. The WNLS pursues a more efficient
estimation at the price of restricting the parametric family of the conditional counts to be
a Poisson. For instance, a test of the significance of some variables like FULLTIME may
lead to different conclusions under TSM or WNLS. We must take into account that the
Poisson assumption may not verify.

Some descriptive statistics of TOTTRIPS are shown in Table 3.4, where we
include some evidence on the non-Poisson behavior of this variable. The variance exceeds
five times the mean and the number of zeros is up to 17 times greater than expected from
a Poisson with mean parameter equal to the sample mean.

Also the conditional analysis shows that Poisson distribution is not suitable. In
Table 3.5, the Andrews’ test rejects the null of a correct specification at 5% for the K=0
model. Using an informal test, Terza (1998) also found evidence of misspecification for
the Poisson assumption. This motivates the estimation under a more flexible specification

which in principle would allow to test the Poisson against a wider set of alternatives. We
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started with the K=1 specification and sequentially increased the size of the polynomial.
In term of goodness of fit, a considerable gain is obtained by the model with K=2, with
respect to K=0 and K=1. As Table 3.5 and Figure 3.1 show the models with K=0 and
K=1 underpredict the frequency of zeros and overpredict the frequency of counts one and
two, as usually happens when the empirical distribution puts an excess of mass in the zero
counts. In particular, the measure of distance between observed and predicted frequency
decreases considerably and the test does not reject the null for K=2 and higher.

This leads to the problem of taking a decision on where to stop adding new terms
to the polynomial expansion. We used several measures for this: information criteria,
likelihood ratio tests jointly with the goodness of fit measure. The results on Table 3.6
give a strong evidence in favor of the model with two terms on the series expansion. The
log likelihood ratio test strongly rejects the null hypothesis of K=0 and K=1 against the
alternative of K=2. On the other hand, the null hypothesis of K=2 is not rejected against
the alternative of K=3 or K=4, at even 15% of significance level. In terms of information
criteria as shown in Table 3.6, the model with K=2 is the preferred one for any of the
information criteria considered. Given that the first coefficient of the polynomial of the
model (al) with K=2 shows a small significance, it is expected that these results would
improve if we restricted this coefficient to be zero.

Tables 3.7 and 3.8 show that the OWNVEH coefficient moves around 2.2. up to
2.3 for K=2,3,4 to be compared with the 2.05 in the K=0. Although the change is not
important in size, the two coefficient do not have the same structural meaning. In principle
the researcher should not be interested in coefficient by themselves but only on the way
they can affect (cause) the characteristics of the count variable (for instance, its mean).
In order to make comparisons of these mean effects, one should compute the expressions
in (3.10). Table 3.9 shows the change in mean in number of trips due to vehicle ownership
at three different points: the mean of the covariates, the upper point and the lower point
(the exact values of covariates at this point are given in the table). In any case, the
increase in the expected mean induced by OWNVEH is overpredicted by the K=0 model.
Particularly interesting is the difference for the counts at the lower. Here the K=0 model
does not reject the null of a zero impact while the effect is significant for the K=2 model.
This is not surprising if we recall that the Poisson model had a worse fit for lower counts.

Figure 3.2 shows the distribution of the change in the expectation of the number

of trips across individuals. That is, it shows the distribution of (3.10) without averag-
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ing but for every individual in the sample. The covariates are evaluated at the sample
mean. Notice that the Poisson distribution overpredicts the impact of vehicle ownership

by putting more mass on higher percentages.

3.4.2 Data on demand for medical care by the elderly

Deb and Trivedi (1997) consider data from the National Medical Expenditure
Survey (NMES) conducted in 1987 and 1988. We will use a subsample of individuals aged
66 or more in the West part of USA. Table 3.10 describes the variables in the dataset.

Most of the individuals aged 65 or more are covered by Medicare, a public in-
surance that protects again health care costs. In addition, the individuals have the choice
to contract a supplemental private insurance coverage (PRIVINS). The influence of insur-
ance status on the utilization and costs of health care services is a very important topic
in health economics (a non exhaustive list include Cameron et al. 1988, Manning et al.
1987, Coulson et al. 1995, Chiappori et al. 1998, Holly et al.1998, Street et al. 1999 and
Vera-Herndndez 1999). If this utilization were very sensitive to the generosity of insurance,
the potential problems caused by moral hazard could be severe. In fact, Besley (1988)
relates the optimal copayment rate to the compensated elasticity of the demand for health
care with respect to out-of-pocket expenditures.

For studies using non-experimental data, the endogeneity of the insurance status
in the equation for utilization is an important issue (see for example Cameron et al. 1988).
This endogeneity is motivated by the relation between unobservable health characteristics
and insurance choice. If adverse selection is a prevalent feature of the market, the ones
that enjoy a more generous insurance are the ones with poor unobservable health con-
ditions. This would cause a positive correlation between wide coverage insurance status
and unobserved heterogeneity. On the contrary, if private insurance companies are able
to select the most healthy individuals (cream skimming), we would expect the correlation
to be negative. If endogeneity was neglected, the positive correlation will overestimate
the insurance effect, while the negative one will underestimate it. Other studies that do
take into account the endogeneity of insurance status in a count data context are Coulson
et al. (1995) and Vera-Herndndez (1999). In their paper Deb and Trivedi implement no
correction of the endogeneity bias although they acknowledge that it could be present.

As a measure of health service utilization we use the number of physician office

visits (OFP) in a quarter. Other measures like number of hospitalizations or number of
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physician non-office visits were also available. We chose OFP because this measure showed
an accentuated non-Poisson behavior. This is particularly evident in view of Table 3.11.
The variable shows a relative frequency of zeros (75.22) and variance to mean ratio of
overdispersion (7.55) which a Poisson distribution fails to accommodate by far.

For the sake of parsimony, some restrictions were imposed in the specification
of the probit equation. The constant term, the number of chronic diseases, the age, the
sex, the marital status and MEDICAID were excluded after fitting preliminary standard
probit models for the PRIVINS variable. The inclusion of the first five variables might
induce multicollinearity in the probit part while adding low explanatory power (none of
these variable was found to be individually significant at 5% and the Likelihood Ratio test
of joint significance showed a p-value of 0.40), and they were excluded accordingly. On
the other hand, the exclusion of the MEDICAID variable was due to the fact that this
variable was a nearly perfect classifier (84% of individuals had either private insurance
or MEDICAID coverage). For this model, we do not have an overidentifying restriction,
since we did not find a convincing continuous instrument. Therefore, the model is identified
thanks to the distributional assumptions. Finally, seven observations with zero or negative
family income were deleted.

With this specification we calculated the NLS, TSM and WNLS estimators (see
Tables 3.12 and 3.13). None of the TSM coefficients in the count equation except the one
affecting the PRIVINS shows a change of sign. Moreover, this coefficient shows a small
significance in the TSM and WNLS in opposition to the NLS case. However, the fact
that there exist additional changes of sign and significance in the WNLS estimates with
respect to the NLS and TSM may suggest that misspecification bias could be playing an
important role here. The WNLS and the PFIML should approach asymptotically under
a Poisson conditional count. Indeed, the results for the K=0 and the WNLS are similar
for most of the coefficients with no change of sign. However, this is not the case for the
PRIVINS (which is now bigger and significant) and correlation coefficients (which shows
a negative sign).

The comparison of the empirical and predicted probabilities in Table 3.14 and
Figure 3.3 leads us to conclude that the above results could be distorted due to misspec-
ification problems. The fit for the Poisson K=0 model is poor, mainly for the zero, one
and two counts and accordingly, the goodness of fit test rejects the null of a Poisson and

order one polynomial expansion. The fit improves for order two and three polynomials.
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On one hand, the models with K=2 and K=3 show better information criteria than K=0
and K=1 (see Table 3.15). On the other hand, in this case the information criteria do not
discriminate between K=2 and K=3, since the first is favored by the Consistent Akaike
and the second by the Bayesian criteria. We definitely chose the K=3 model since the
order two polynomial is rejected against the order three alternative by the likelihood ratio
test as shown in Table 3.15. We stopped here, but in order to determine if a polynomial
of order four would significantly improve the fit we performed a Lagrange multiplier test.
The advantage of using Lagrange tests in this context is that we do not require to estimate
the unrestricted larger model which in our case requires an important computational effort
(see computational appendix). The test did not reject the null hypothesis of K=3 with a
p- value of 17%.

Once we feel confident on the fit of our model we computed the sensitivity analysis
of the counts to changes in the endogenous dummy. This effect plays an important role
in health economics: it measures the sensitivity of health care utilization due to the
insurance status. Table 3.16 shows the estimation of this effect at three different points.
It is particularly interesting to notice that the impact of insurance is close to zero in size
and significance at the upper point, but not at lower extreme point or mean covariates.
The upper point contain covariates values that indicate poor health conditions while the
lower indicate good ones. Therefore it seems plausible in this case to conclude that office
physician visits by people with poor health conditions is little affected by their insurance
status. Finally, notice that the insurance effect predicted by the NLS is around 40%, very
close to the mean effect at the mean point of covariates in the K=3 model (45%) and not
so much to the mean effect at the lower extreme point (68%). However the NLS estimate
is far away from the upper extreme (2.5%) casting doubts on the NLS when imposing the
restriction of identical estimated percentage change to all of the individuals.

Figure 3.4 shows the distribution of change in the treatment effect due to insur-
ance status across individuals. More mass is put at the 35%-50% interval of the percentage
change for the K=2 model, while the K=0 tends to accumulate on higher values. In gen-
eral, the K=0 tends to overpredict the percentage change.

The coefficient estimates for the K=3 model are shown in table 3.17 and 3.18.
Although our emphasis in the paper is more on the methodology that in the results,
we would like to comment on the results obtained for some variables. The coefficients

of the discrete choice equation for PRIVINS are in Table 3.18. They show that the
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socioeconomic determinants are more important than observable health related variables
for the private insurance choice. Previous literature as Cameron et al. (1988) also find this
result for Australia, as well as we do in the second thesis chapter. Table 3.17 shows the
coefficients for the number of visits equation. In parallel with the literature, the health
related variables are important in determining the number of visits. In particular, the
number of chronic conditions and self-assessment of health are statistically significant at
conventional levels. We do not find a significant effect of age. It might be either because of
our sample size or because we are only considering people over 65. We do not find either
a sex related effect. Among socioeconomic determinants, years of schooling seems to play
an important role, while race, marital status and income do not. The non significant of
the later might be because of Medicaid which covers Medicare copayments of those with
less income. Both PRIVINS and MEDICAID are statistically significant different from
zero at conventional levels.

We would like to highlight the result found above that private insurance status
did not significantly influenced number of visits for people with poor health conditions.
We would like briefly to comment on the implications of this result for the optimal copay-
ment. If health care consumption of unhealthy people is little responsive to copayments,
high copayments put the individual at considerable risk® while not reducing expenditures.
Consequently, if this result was confirmed with a higher sample size, the policy recommen-
dation would be that people with poor health conditions should face smaller copayments.

This obviously limits the role of cost sharing policies as a cost-containment measure.

3.5 Extensions

This paper has focused on a flexible way to simultaneously deal with count data
and a dummy endogenous regressor. The flexibility was given in the count part of the
model, but not in the bivariate normality assumption. While previous literature have
found that this is a plausible assumption, it would be desirable to design a test for it.
This constitutes the mainly methodological extension for the future. A possible way to
deal with it is to expand the bivariate normal and perform a lagrange multiplier test on
the coefficients of the expansion. Another methodological extension would be to compare

the performance of this estimator with the two part model so popular in health economics.

3This assumes that an important part of health care consumption is unpredictable. Notice that, for
instance, routine treatment of chronic conditions do not have this property.
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Allowing the influence of the dummy variable to vary according to covariates
have revealed as fruitful from a policy perspective. More work on this should be done
in order to model this dependence in a more transparent way, possibly using interaction

terms.

3.6 Conclusions

In this paper we propose a way to simultaneously deal with flexible modelling of a
count variable and a dummy endogenous regressor. The framework require distributional
assumptions on the unobservables in order to consider functional forms that departure
from the linear exponential specification. It is natural to consider the departure from the
linear exponential specification given the results on the literature on exogenous regressors.

We propose and estimate a flexible Polynomial Poisson FIML which tries to
deal with those cases where the count variable shows a persistent non-Poissoness even
when we account for unobserved heterogeneity. In addition, we compute measures of fit
and procedures & la Andrews to test the assumptions of the model based on the observed
differences between fitted and empirical frequencies. We test the model using two data sets
on number of trips by households and number of physician office visits, already analyzed
in the literature. The results show that flexible estimation of the conditional probability
function of the count helps to improve significantly the fit of the model. We also find the
largest differences in the estimate of the mean effect can be found when the conditional
density has a relatively low predicted mean. Therefore, the flexibility in the count part is
also important to estimate the treatment effect.

Given the non-linearity of the conditional mean of the count, the dummy endoge-
nous regressor might have different effects depending on the covariates values. We have
shown that this might be important for policy purposes. In particular, we have obtained
that private insurance status do not significantly influence number of visits to doctors for

those with observable poor health conditions.



66

3.7 Tables
Table 3.1. Description of variables. Number of trips by households
Variable | Mean | Std. Description
Endogenous
Tottrips | 4.5511 | 4.9351 | Number of trips by members of the household in 24 hrs.
OwnVeh | 0.8492 | 0.3581 | 1 if household owns at least one motorized vehicle.
Exogenous
WorkSchl | 0.2622 | 0.3278 | % of total trips for work vs. personal.
Hhmem 2.9289 | 1.6127 | number of individuals in the household.
DistoCbd | 0.2887 | 0.4932 | distance to the central business district in kilometers.
AreaSize | 0.3761 | 0.4848 | 1 if area bigger than 2,5 million population.
FullTime | 0.9792 | 0.8475 | number of full time workers in the household.
DistoNod | 2.0272 | 3.1378 | distance from home to the nearest transit node in blocks.
Reallnc 0.8042 | 0.9197 | household income divided by median income of census tract.
Weekend | 0.2236 | 0.4170 | 1 if 24 hours survey period is Saturday or Sunday.
Adults 2.0797 | 0.8978 | number of adults in the household 16 years or older.

Scaling: DistoCbd has

been divided by 30, DistoNod by 5 and Reallnc by 3




Table 3.2. Count equation estimates.

No polynomial models. Number of trips by households

NLS TSM NWLS K=0
Constant 20.600 “1.445 21.005 21.386
nstan 0.225 0.528 0.181 0.217
20.527 20.554 20.363 20.340
Workschl 0.143 0.147 0.128 0.127
R 0.166 0.148 0.134 0.150
€ 0.027 0.031 0.028 0.019
. 20.149 20.268 20.057 20.044
DistoCbd | 146 0.172 0.024 0.043
Arensine 20.034 20.008 0.038 0.049
0.097 0.100 0.085 0.073
. 0.189 0.105 0.220 0.246
Fulltime 0.048 0.101 0.073 0.042
. 0.002 0.021 0.019 0.021
DistoNod | ) 0.012 0.013 0.009
— 0.041 0.020 0.007 0.082
0.048 0.052 0.051 0.030
20.155 20.165 20.029 20.097
Weekend 0.112 0.115 0.080 0.080
Ownvel 1.607 2.796 2.079 2.060
whv 0.185 0.613 0.312 0.256
0.728
g 0.139
20.697
P 0.032

Asymptotic standard errors at the bottom row of each cell.




Table 3.3. Discrete choice equation estimates. No polynomial models.

Number of trips by households

Probit K=0
o | 38| 07T
Workschl | s | o
Hmen | oo | oos
| 12| 1
Areasize -0.206 -0.249

1.242 0.152
e | 01|10
I
e | o0 |00
Readive | yr | g

Asymptotic standard errors at the bottom row of each cell.



Table 3.4. Descriptive analysis. Number of trips by households

Number of observations 577
Mean 4.55
Variance 24.35
Variance to mean 5.35
Empirical to expected kurtosis 3.91
Proportion of zeros to sample size 0.18
Poisson predicted frequency of zeros | 0.01
Ratio real/predicted 17.65

Note: Poisson predictions were computed using the sample mean.

Table 3.5. Fitted vs. empirical frequencies. Number of trips by households

Count Empirical Fitted

K=0 | K=1 | K=2 | K=3 | K=4

0 0.185 0.155 | 0.155 | 0.184 | 0.184 | 0.187

1 0.119 0.157 | 0.157 | 0.124 | 0.125 | 0.1166

2 0.109 0.133 | 0.133 | 0.113 | 0.112 | 0.124

3 0.124 0.108 | 0.108 | 0.105 | 0.104 | 0.114

4 0.091 0.086 | 0.086 | 0.096 | 0.098 | 0.083

5 0.053 0.068 | 0.068 | 0.07 | 0.076 | 0.076

6 0.062 0.054 | 0.054 | 0.066 | 0.067 | 0.055

7 0.053 0.042 | 0.043 | 0.041 | 0.045 | 0.048

8 0.045 0.033 | 0.034 | 0.032 | 0.037 | 0.033

9 0.024 0.026 | 0.027 | 0.027 | 0.022 | 0.033
10 0.024 0.021 | 0.021 | 0.023 | 0.028 | 0.024
>11 0.105 0.109 | 0.109 | 0.104 | 0.105 | 0.108
Sum of differences (z10~%) | 2.9 | 2.8 1.2 | 1.31 1.4
Goodness of Fit (Andrews) | 23.59 | 22.36 | 9.34 | 9.07 | 9.55
P-Value 0.01 | 0.02 | 0.59 | 0.61 0.57




Table 3.6 Information criteria and log-likelihood ratio test. Number of trips by

households
K=1 K=2 K=3 K=4
Number of parameters 22 23 24 25
Sample size 577 577 577 577
~ *In(L) -2.665 -2.655 -2.654 | -2.6522
CAIC 3237.925 | 3233.815 | 3239.374 | 3245.186
BIC 3215.925 | 3210.815 | 3215.374 | 3220.186
Null\Alternative P-Values Log-likelihood ratio tests
K=0 0.0639 0.0005 0.0008 0.00113
K=1 0.0007 0.0013 0.00198
K=2 0.1796 0.18769
K=3 0.21367
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Table 3.7. Count equation estimates. Polynomial models. Number of trips by households

K=1 K=2 K=3 K=4
Constany | 1341 | 2499 | 2411 | -2.638
0.223 0.387 0.404 0.522
20.351 | -0.410 | -0.416 | -0.435
Workschl |49 0.140 0.172 0.159
Hhmem | 0157 0.187 0.194 0.189
0.029 0.028 0.029 0.029
. 0.041 | -0.040 | -0.039 | -0.070
DistoCbd | ) 55 0.082 0.671 0.068
Areasize | 0-061 0.084 0.099 0.063
0.083 0.103 0.159 0.174
. 0.261 0.305 0.313 0.317
Fulltime | 046 0.056 0.081 0.095
. 0.021 0.029 0.028 0.033
DistoNod | 510 | 0011 | 0021 | 0018
Reallnc 0.067 0.114 0.093 0.025
0.025 0.028 0.032 0.041
0.095 | -0.113 | -0.112 | -0.126
Weekend | 70 0.089 0.131 0.099
Ownvel | 2051 2.3074 | 2.282 2.249
0.257 0.299 0.325 0.353
U 0.733 0.934 0.926 0.893
0.141 0.169 0.165 0.194
20.676 | -0.671 | -0.659 | -0.681
p 0.032 0.073 0.063 0.094
" 20.027 | 0.053 0.034 20.188
0.001 0.145 0.149 0.422
I 0.231 0.210 0.643
0.154 0.020 0.664
20.005 | -0.102
a3
0.005 0.163
0.014
ad 0.023

Asymptotic standard errors at the bottom row of each cell



Table 3.8. Discrete choice equation estimates. Polynomial Models.

Number of trips by households

K=1 K=2 K=3 K=4

Constas | 0590 | -0.505 | -0.504 | -0.518
onstant | - 311 0.347 0.778 0.386
0.311 0.317 0.315 0.324

Workschl | 417 0.313 0.477 0.349
Hhmem | 0-048 0.052 0.048 0.051
© 0.069 0.073 0.079 0.114

. 0.669 0.649 0.652 0.665
DistoCbd | 47 0.373 0.865 0.435
Aromsie | 0253 | -0.257 | -0.262 | -0.248
0.155 0.156 0.165 0.183

. 1.004 0.994 0.993 0.987
Fulltime |1 ¢ 0.176 0.193 0.191
0.270 0.251 0.253 0.247

Adults 0.183 0.179 0.313 0.183
. 0.052 0.049 0.050 0.047
DistoNod | 199 0.031 0.034 0.031
Realine 0.351 0.331 0.343 0.373
0.234 0.232 0.316 0.231

Asymptotic standard errors at the bottom row of each cell.



Table 3.9. Conditional mean and change in the expectation of

number of household trips with respect to OwnVeh variable

‘ K=0 ‘ K=2

Upper Extreme Covariates

owveh | g5’ | gug
Not OwnVeh ;890 ﬁg
% Cuange | 4o | oo
Lower Extreme Covariates
owaVel | 4y | o
Not OwnVeh (1)2 ?g
wos | e | o
Mean Covariates
owaveh | 4y | g
Not OwnVeh | 0 sy
o | 1 | 08
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Upper extreme covariates values: Workschl=0, Hhmem=13, DistoCbd=0, Areasize=1, Fulltime=4, DistoNod=10, Reallnc=10,

Weekend=0.

Lower extreme covariates values: Workschl=1, Hhmem=1, DistoCbd=10, Areasize=0, Fulltime=0, DistoNod=0.2, Reallnc=0.02,

Weekend=1.

Mean covariates: Workschl=2.02, Hhmem=2.92, DistoCbd=0.28, Areasize=0.37, Fulltime=0.97, DistoNod=2.02, Reallnc=0.8,

Weekend=0.22.
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Table 3.10. Description of variables. Number of physician office visits

Mean | Std. | Description
Endogenous
Ofp 6.359 | 6.929 | Number of physician office visits in a quarter
Privins 0.778 | 0.415 | =1 if person is covered by private insurance
Exogenous
Exclhlth 0.115 | 0.319 | =1 if self-perceived health is excellent
Poorhlth 0.108 | 0.311 | =1 if self-perceived health is excellent
Numchron | 0.150 | 0.131 | Number of chronic conditions
Adldiff 0.216 | 0.411 | =1 if person has a limiting condition for daily activities
Age 0.741 | 0.065 | age in years
Black 0.054 | 0.226 | =1 if person is African Amercian
Male 0.408 | 0.491 | =1 if person is male
Married 0.574 | 0.494 | =1 if person is married
School 0.575 | 0.190 | Number of years of education
Faminc 0.062 | 0.066 | Family income in $500.000
Employed | 0.118 | 0.323 | =1 if person is employed
Medicaid | 0.120 | 0.325 | =1 if person is covered by Medicaid

Scaling: Numchron has been divided by 10, Age by 100 and School by 20

Table 3.11. Descriptive analysis. Number of physician office visits.

Number of observations 791
Mean 6.3
Variance 48
Variance to mean 7.5
Empirical to expected kurtosis 4.3
Proportion of zeros to sample size 0.13
Poisson predicted frequency of zeros | 0.001
Ratio real/predicted 75.2

Note: Poisson predictions were computed using the sample mean.



Table 3.12. Count equation estimates. No Polynomial Models. Number of physician

office visits

NLS TSM | WNLS | K=0

Constant | 1-069 1.896 1.472 0.650
0.507 0.652 0.706 0.468

20510 | -0.528 | -0.527 | -0.552

Exclhlth 199 0.134 0.144 0.123
0.064 0.035 0.119 0.138

Poorhlth 149 0.131 0.151 0.120
Numehron | 1389 1.407 1.562 1.826
0.274 0.280 0.293 0.264

. 0.119 0.082 0.174 0.173
Adldiff 0.124 0.139 0.142 0.111

Age 20.747 | -0.734 | 0974 | -0.824
0.646 0.644 0.637 0.604

Black 0.082 | -0.230 | -0.051 | -0.089
0.177 0.286 0.411 0.187

Malo 20.011 | -0.012 | 0.003 20.010
0.092 0.091 0.082 0.080

Marriod -0.106 | -0.106 | -0.138 | -0.099
0.094 0.094 0.090 0.085

Sehoo] 0.460 0.627 0.592 0.651
0.218 0.359 0.504 0.259

_— 0.188 | -0.029 | 0.016 20.479
0.475 0.781 0.866 0.605

Employed | 0020 0.016 20.100 | -0.144
0.173 0.174 0.155 0.103

. 0.418 0.408 0.402 0.475
Medicaid | 1og 0.131 0.153 0.129
Driving 0.341 -0.054 | 0.664 1.006
0.111 0.698 0.970 0.203

i 1.083
0.104

-0.447

p 0.122

Asymptotic standard errors at the bottom row of each cell.



Table 3.13. Discrete choice equation estimates. No Polynomial Models

Probit K=0

-0.237 -0.219

Exclhlth ) 16q 0.168
-0.239 -0.204

Poorhlth 14 167 | 0.161
. -0.354 -0.345
Adldiff 0.132 0.125
-1.098 -0.345

Black 0.208 -1.078
1.584 1.514

School 0.154 0.153
Famine 3.464 3.387
1.115 1.169

-0.301 -0.275

Employed | 174 0.173

Asymptotic standard errors at the bottom row of each cell
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Table 3.14. Fitted vs empirical frequencies. Number of physician office visits
Count | Empirical Fitted
K=0 | K=1 | K=2 | K=3
0.1302 0.0985 | 0.0983 | 0.1263 | 0.1257
0.0961 0.1290 | 0.1291 | 0.1024 | 0.1045
0.1062 0.1207 | 0.1209 | 0.0968 | 0.0970
0.0910 0.1022 | 0.1026 | 0.0938 | 0.0929
0.0860 0.0841 | 0.0845 | 0.0864 | 0.0856
0.0746 0.0688 | 0.0693 | 0.0758 | 0.0754
0.0657 0.0565 | 0.0571 | 0.0642 | 0.0643
=7 0.3502 0.3401 | 0.3383 | 0.3543 | 0.3546
Sum of differences(:cl()_4) 1.49 0.37 0.39
Goodness of fit (Andrews) | 21.784 | 2.39 2.52
P-Value 0.0027 | 0.9347 | 0.9254

DU AW NFRO

Table 3.15. Information criteria and Log-likelihood ratio test. Number of physician office

visits.
K=0 K=1 K=2 K=3

Number of parameters 23 24 25 26
Sample Size 791 791 791 791
% In(L) -3.3097 -3.3039 -3.2966  -3.2922
CAIC 5412.46 5410.95 5407.11  5407.76
BIC 5389.46 5386.95 5382.11  5381.76
Null\Alternative = P-Values Log-likelihood ratio tests
K=0 0.00243  0.0000 0.0000
K=1 0.0006 0.0000

K=2 0.0080
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Table 3.16. Conditional mean and change in the expectation

of number of physician office visits with respect to Privins variable

| K=0 | K=3
Upper Extreme Covariates
Privin 30.6 28.8
vins 1.4 0.9
.. 30.9 28.1
Not Privins 2.6 21
-0.9 2.5
% Change 6.6 5 g
Lower Extreme Covariates
Privins 0.8 0.8
Hvi 0.3 0.3
. 0.5 0.4
Not Privins 0.2 0.2
53.2 68.4
% Change | ¢, 24.7
Mean Covariates
.. 6.8 6.6
Privins 0.2 0.2
. . 4.4 4.5
Not Privins 0.4 04
52.0 45.7
% Change | g 15.7

Upper extreme covariates values: Exclhlth=0, Poorhlth=1, Numchron=0.7, Adldiff=1, Age=0.66, Black=0, Male=0, Married=0,
School=0.9, Faminc=0.0001, Employed=0, Medicaid=1.
Lower extreme covariates values: Exclhlth=1, Poorhlth=0, Numchron=0, Adldiff=0, Age=0.96, Black=1, Male=1, Married=1,
School=0, Faminc=0.48, Employed=1, Medicaid=0.
Mean covariates: Exclhlth=0.11, Poorhlth=0.1, Numchron=0.15, Adldiff=0.21, Age=0.74, Black=0.05, Male=0.4, Married=0.57,

School=0.57, Faminc=0.06, Employed=0.11, Medicaid=0.12.



Table 3.17. Count equation estimates. Polynomial Models.

Number of physician office visits

K=1 K=2 K=3
Constant | 072 0.067 | 0.062
0.475 0.561 0.547
20.549 20.650 | -0.634
Exclhtlh 0.117 0.142 0.132
0.146 0.168 0.176
Poorhlth | 147 0.142 0.123
Numehron | 1902 2.144 2.178
0.263 0.321 0.291
. 0.118 0.203 0.149
Adidiff 0.109 0.124 0.128
Age 20.700 20.985 | -0.842
0.605 0.707 0.705
20.178 20.104 | -0.178
Black 0.187 0.215 0.218
Malo -0.033 0.013 | -0.036
0.085 0.093 0.091
. 20.090 0.116 | -0.102
Married 0.082 0.099 0.095
Sehool 0.760 0.801 0.881
0.232 0.321 0.268
armine -0.095 -0.586 | -0.191
0.603 0.674 0.679
Exployed | 0174 0.184 | -0.206
0.104 0.121 0.120
. 0.508 0.561 0.584
Medicaid | 147 0.153 0.152
Privine 0.738 1.167 0.901
0.176 0.231 0.211
1.051 1.323 1.279
7 0.068 0.116 0.069
20.261 0423 | -0.281
p 0.130 0.135 0.148
N 20.0292 | 0.019 20.005
0.0007 0.087 0.079
" 1.191 0.167
0.089 0.009
3 20.0040
0.0001

Asymptotic standard errors at the bottom row of eacl

h cell.
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Table 3.18. Discrete choice equation estimates. Polynomial Models

K=1 K=2 K=3
20233 | -0219 | -0.231

Exclhlth 5 164 0.161 0.163
0225 | 0203 | -0.222

Poorhlth | = yes” | 0161 | 0.165
. 20.349 | -0.345 | -0.349
Adldiff 0.128 0.125 0.127
1.097 | -1.082 | -1.097

Black 0.207 0.202 0.206
1.564 1.512 1.554

School 0.155 0.154 0.155
Famine 3.438 3.404 3.431
1.225 1.172 1.217

Emoloved | 0288 | 0275 | -0.285
POYeE 1 0.177 0.174 0.176

Asymptotic standard errors at the bottom row of each cell.
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3.8 Figures.

Figure 3.1: Empirical versus ..tted frequency of counts. Number of trips by households.
Empirical (__ ), K=0(--), K=2 (. . ).

0.02 0J4 006 008 D10 0.12 B.14 D.16 D.1B 0B.20
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Figure 3.2: Distribution of change in expectation of number of trips due to Own\eh.
Evaluated at mean covariates across the sample. In basis points, K=0 (__ ), K=2 (- -).

nos n12 D.1B 0.20 024

004

o.00



83

Figure 3.3: Emprical vs. ..tted frequency of counts. Number of physician oCce visits.
Empirical (__ ), K=0(--), K=3 (. .).

DOB 008 007 D.OB 0,08 Q.10 4.11 012 0,13 0,14
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Figure 3.4: Distribution of change in expectation in number of visits due to Privins.
Evaluated at mean covariates across the sample. In basis points, K=0 (__ ), K=3 (- -).
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3.9 Computational appendix.

All computations were done using GAUSS 3.2 for MS-DOS in a Pentium IIT
450Mhz. microprocessor. The numerical routine for integration of unobserved hetero-
geneity in (3.3) is based on the Gauss-Legendre quadrature (INTQUAD package). The
procedure requires to define finite upper and lower bounds of integration and the num-
ber of points for quadrature evaluation. This problem was initially solved by setting this
bounds as four times the current standard deviation of ¢.

The objective function was optimized using the Broyden-Fletchell-Golden-Shannon
(BFGS) algorithm. Since local optima is a problem often encountered when using series
expansion we tried several initial conditions. Each run with the BFGS took between some
minutes and two hours, depending on the polynomial degree and the initial condition. In
order to check for global optima, we implemented the Simulated Annealing (SA)*, which
is a robust algorithm designed to find global optima. The SA algorithm is a random search
method which tries to escape from local optima by randomly accepting downhill moves.
The decision to accept downhill moves is made by the Metropolis criteria depending on
two parameters: temperature and strength. Following the advice in Goffe et al. (1994) we
tried initial runs to determine the optimal starting temperature and strength. To avoid
overflow errors we restricted the area of search using wide enough upper and lower bounds
centered around the best BFGS optimum. To ensure that the global optima was found we
put a big number of function evaluations per iteration. Moreover, given the difference in
time for convergence between the BFGS (around a one or two hours for K>0) and the SA
(at least one week) we were also concerned to know whether a global solution could also
be found using derivative-based methods. For the dataset on the number of trips, the SA
algorithm matched the best result obtainned using BFGS. For the dataset on number of
visits, the SA algorthim improved the best result obtainned using BFGS for K=3, while
matched the result for K=1 and K=2. In fact, the abnormally high condition number of
the covariates inner product matrix (1497) can explain why we did not find the global
optima using the BFGS for K=3.

Moreover, we found that the number of visits dataset was more problematic
than the data from Terza. Here we found that the Hessian was ill-conditioned even for

the K=0 case, which is not strange given the condition number mentioned above. This

4using the code written by E.G. Tsionas.
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caused numerical problems: negative eigenvalues appeared and the value of the objective
function at the optimum changed significantly when we moved the bound from plus/minus
four to five standard deviations. Hence, we decided to explore two possible explanations:
a bad performance of the integral and the computation of the Hessian procedure. First,
we decided to replace the normal specification of ¢ by a truncated normal distribution.

€

Doing the appropriate changes of variable (f = \/ia) equation yields (3.3),

+a
£y, dlw) m [ fld,w6)
0222 4 (1 (1 - 0P Y exp( ),

Since is N(0,1/2)we chose a = % This approach allows to fix the bounds of integration
independently of the parameter. We also increased the number of quadrature evaluation
points at the cost of extra computing effort. We also explored the possible instability
induced by the computation of the Hessian. We found that the GAUSS package used a
two steps hessian procedure. We replaced this with a four steps hessian which was found
to be very useful not only for this application but in many other contexts (all codes are
available from the authors on request).

Finally, although we required more computing-time® (using the SA the k=3 case
needed more than two weeks to converge) we found all these patches sufficed to get a

stable numerical procedure).

5The increase in computing time is mostly because of the increase in the integral accuracy.
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