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Abstract 
 
Gene regulation is a complex biological process that requires the 
coordinated interaction of different molecules. The integrity of the 
underlying mechanisms ensures the correct expression of genes that 
maintain cell differentiation and stability in a healthy cell. 
Alterations in the regulatory elements involved can disrupt the 
process and unbalance gene products causing diseases such as 
cancer, cardiovascular problems or autoimmune disorders. 
Although high-throughput sequencing technologies have allowed a 
better understanding of the gene regulatory mechanisms, there is 
still much uncertainty about its role in diseases. In this thesis, I 
present the contributions I have made to the analysis of genomic 
information for the identification of altered regulatory elements in 
disease. I start describing a solution for the fast and easy extraction 
of biological data including regulatory information. Then, I propose 
two different approaches for the analysis and prioritization of 
regulatory elements involved in diseases and, finally, I discuss the 
most relevant implications of this work and how it has evolved 
since their publication. 
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Resum 
 
La regulació gènica és un procés biològic complex que requereix de 
la interacció coordinada de diferents molècules. La integritat dels 
mecanismes subjacents assegura la correcta expressió dels gens que 
mantenen la diferenciació cel·lular i l’estabilitat a una cèl·lula sana. 
Les alteracions als elements reguladors que hi intervenen poden 
pertorbar el procés i desequilibrar els productes gènics causant 
malalties com càncer, problemes cardiovasculars o trastorns 
autoimmunes. Encara que les tecnologies d’alt rendiment han 
permès un millor coneixement dels mecanismes de regulació 
gènica, encara hi ha incertesa sobre el seu paper a les malalties. En 
aquesta tesi, presento les contribucions que he fet a l’anàlisi de la 
informació genòmica per la identificació d’elements reguladors 
alterats en malalties. Començo descrivint una solució per a 
l’extracció ràpida y fàcil de dades biològiques incloent informació 
reguladora.  A continuació, proposo dos mètodes diferents per 
l’anàlisi i la priorització d’elements reguladors implicats en 
malalties i, finalment, exposo les implicacions més rellevants 
d’aquest treball i l’evolució que han tingut des de la seva 
publicació. 
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Preface 
 
The central dogma of biology taught us that that genes are encoded 
in DNA, that DNA is transcribed into messenger RNA, and that 
messenger RNA is finally translated into protein to carry out a 
biological function. Early research in molecular biology discovered 
the basic mechanisms that coordinate and regulate these molecules 
to maintain a healthy cell status. This knowledge has significantly 
grown over the past two decades revealing an unexpected 
complexity behind gene regulation. Epigenetics, transcriptional 
regulation, splicing, transport through the cell, translation or post-
translational modifications are only some examples of the 
mechanisms that the cell can use to control the balance of genetic 
products. 

All these processes are accurately coordinated to keep gene 
expression within tight margins of variability. The integrity of these 
mechanisms will ensure and maintain cell differentiation and 
stability in healthy cells, while deregulation of these processes may 
have pathogenic consequences in the system. 

During the last ten years, high-throughput sequencing technologies 
have allowed the better characterization of these mechanisms, 
however, how deregulation in these processes may lead to disease is 
still not fully understood. This sequencing revolution has also 
boosted the analysis of many samples. The combination of genome 
wide data with previous knowledge in gene regulation is a 
promising way of identifying unregulated mechanisms and 
interpreting the functional consequences in a disease dataset. 
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Chapter 1 
 

INTRODUCTION 
 

 Control	
  of	
  gene	
  regulation	
  1.1

The genome encodes for thousands of genes whose products enable 
cell survival and numerous cellular functions. These genes are 
expressed differently in each cell type due to the action multiple 
factors, such as epigenetic factors and regulatory elements, that 
control gene expression and the generated products. This 
multifactorial control is crucial for the normal development and 
maintenance of healthy cells and tissues. Figure 1 summarizes some 
of the strategies used by the cell to control gene expression. 

 
Figure 1. Steps in the eukaryotic control of gene expression. The eukaryotic 
cell can control gene products at different levels: controlling when and how much 
a gene is transcribed (1), determining the splicing and processing of messenger 
RNAs (mRNAs) (2) and selecting the ones that will be transported from the 
nucleus to the cytoplasm (3). Once in the cytoplasm, a translational control 
checks the integrity of the mRNA (4) and decides whether it should move 
forward in the translation to an active protein (6) or should be degraded (5). 
(c) 2015 from Molecular Biology of the Cell, Sixth Edition by Alberts et al. 
Reproduced by permission of Garland Science/Taylor & Francis LLC. 
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Histone modifications constitute the first level of epigenetic 
regulation. DNA is folded inside the nucleus creating a structure 
called chromatin. The state of chromatin can dynamically change 
from euchromatin, when DNA can be actively accessed and 
transcribed, to heterochromatin, where the DNA is more tightly 
packed impeding other molecules to bind. To create chromatin, 
DNA is wrapped around histone proteins forming small and 
compact structure, called nucleosome. The tails of these histone 
proteins remain exposed and can be modified by different covalent 
post-translational modifications that will dictate the transition 
between chromatin states (Jenuwein & Allis, 2001). 

The next level of epigenetic regulation of gene expression is DNA 
methylation. It has been observed that DNA methylation tends to 
occur, almost exclusively, in the cytosines present in a particular 
genetic pattern (McGhee & Ginder, 1979). This pattern consists of 
a cytosine followed by a guanine (CpG) and it is relatively 
infrequent in our genome. CpG-rich regions, also known as CpG 
islands, can be found particularly in promoters and its methylation 
state has been associated to transcriptional activity (Cedar, 1988). 

Transcriptional initiation is considered one of the most important 
mechanisms of regulation. In this step, DNA-encoded information 
is transformed into messenger RNA (mRNA) after the recruitment 
of the necessary machinery. This stage is regulated by transcription 
factors (TFs) (Lewin et al., 2008), proteins that are able to modulate 
gene transcription by binding to cis-regulatory elements of genes, 
termed transcription factor binding sites (TFBSs) (Elnitski et al., 
2006). The generated mRNAs are capped, polyadenilated and their 
introns are removed. Once processed, the mRNA leaves the nucleus 
and, if it is considered to be stable, translation will be initiated, 
otherwise it will be sent to degradation. Ribosomes are the 
molecular units in charge of translation. They must recognise and 
initiate translation from the correct methionine codon, as failing to 
do so may generate unstable proteins. 
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At post-transcriptional level, a large and growing class of gene 
regulators have been characterized during the last years, called 
microRNAs (miRNAs). miRNAs are short non-coding RNAs that 
negatively regulate gene expression after transcription by either 
destabilizing mature mRNAs or reducing the efficiency of 
translation.  

Although many efforts have been concentrated on the study of gene 
regulation during the last decades, its details still remain poorly 
understood. A better understanding of gene regulation may solve 
some key fundamental questions in biology and shed light on the 
mechanisms that occur in diseases when these processes are 
deregulated. This thesis is focused on the study of TFs and miRNAs 
regulation and how these elements can be involved in disease. 

1.1.1 Transcriptional	
  regulation	
  by	
  transcription	
  factors	
  

In eukaryotes transcription requires from specific molecules to be 
activated. These molecules are, commonly, TFs that act at DNA 
level by binding to the promoter region of the target genes. TFs can 
recognize specific sequences in the promoter region of a gene using 
their DNA-binding domain. This positioning causes the attraction 
of RNA polymerase II at the promoter, which recognises a 
particular motif called TATA box. This interaction will only 
happen if the chromatin is accessible, however, the promoter region 
is likely to be packed in nucleosomes, making the TF and the RNA 
polymerase incapable of accessing the DNA. In this moment, a 
series of chromatin remodelling changes are triggered in the 
promoter moving nucleosomes and making chromatin accessible 
(Li et al., 2007). The bond TF may interact with other proteins 
(termed cofactors) that act as co-activators or co-repressors and 
will, ultimately, determine if transcription is going to be initiated or 
repressed (Latchman, 2001). Additionally, TFs may bind to 
enhancers located in distal regions of the genome by bringing 
upstream regions of the DNA closer. 
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Figure 2. Transcription initiation. Transcription factors promote the 
remodelling of the chromatin to make it accessible. The TF can bind to either 
proximal or distal TFBSs, causing the recruitment of the RNA polymerase and 
other necessary cofactors that will modulate the final outcome of transcription. 
Adapted from Wasserman & Sandelin, 2004. 

In 2009, Vaquerizas and his colleagues carried out a census of the 
human transcription factors and were able to identify 1,391 
sequence-specific DNA-binding TFs (Vaquerizas et al., 2009). 
Nearly four years later, another survey was made in order to 
classify experimentally validated TFs suggesting a slightly bigger 
number, 1,558 (Wingender et al., 2012). Although these numbers 
keep being updated, very little is still known about the specific 
biological processes these TFs are involved in. Vaquerizas work 
showed that there is a substantial amount of publications citing TFs, 
however, these studies seem to be focused on the study of cancer, 
what biases the characterization of the normal processes that TFs 
mediate. 
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The same study also confirmed what was already observed 
previously in yeast (Ghaemmaghami et al., 2003), that the 
expression levels of TFs are significantly lower than the expression 
of other genes. Biologically, this can be explained by the fact that a 
single TF molecule can promote the transcription of multiple copies 
of the same target gene. Moreover, keeping expression low 
increments the specificity of the TF to find the highest affinity 
binding sites, reducing the interactions with non-functional sites. 
Moreover, TFs seem to have an uneven distribution across different 
tissues that correlate with the complexity of the cell type. Some TFs 
tend to be expressed in all or almost all tissues, being also involved 
in a broader number of processes, while other TFs have a more 
specific expression restricted to a single or few tissues with similar 
cellular composition. 

One of the most interesting aspects of TFs is their combinatorial 
effect. The final transcriptional output of a gene is determined not 
only by a TF in isolation but by the coordinated action of different 
TFs. In fact, it is estimated that 75% of TFs heterodimerize with 
other TFs (Walhout, 2006). It is thought that this combinatorial 
activity may be related with a more accurate and flexible regulation 
in different tissues. Ravasi and colleagues began to approach this 
problem by observing how different combinations of TFs can 
determine specific expression in a tissue (Ravasi et al., 2010). They 
concluded that the identity of a tissue could be determined by the 
set of interactions that happen between TFs. 

The whole set of TFs is grouped into families according to their 
DNA-binding domain. Examples of motifs inside binding domains 
are zinc fingers, steroid receptors, Helix-Turn-Helix, Helix-Loop- 
Helix and leucine zippers. Although DNA-binding domains are 
highly conserved regions, the small changes observed on them 
through evolution are considered one of the driving forces that 
shaped eukaryotic evolution (de Mendoza et al., 2013). The three-
dimensional structure generated by the sequence of amino acids in 
the DNA-binding domain is the one in charge of the recognition of 
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TFBSs. The length of the average TFBS is between 5-15 base pairs 
(bp) and they are generally located proximal to the transcription 
start site (TSS). It was previously suggested that these domains 
were able to bind to different sequences in the DNA (Badis et al., 
2009) and this is still a matter of discussion (Morris et al., 2011; 
Zhao & Stormo, 2011). A more recent study concluded that TFs can 
bind to DNA in many different ways and this is due to their ability 
to bind using monomeric and dimeric configurations (Jolma et al., 
2013). 

Many publications in the last years have been focused on the 
identification and characterization of TFBSs. To do so, researchers 
have combined experimental techniques, such as chromatin 
immunoprecipitation combined with microarray technology or 
DNA sequencing (ChIP-chip or ChIP-Seq, respectively), with 
computational methods to find the sequence of nucleotides that 
determines the binding site. The search of TFBSs at a genome-wide 
level has been highly benefitted by computational approaches. 
Databases such as JASPAR (Mathelier et al., 2014) or TRANSFAC 
(Matys et al., 2006) create sequence patterns from experimentally 
characterized binding sites and present collections of DNA-binding 
preferences modelled as matrices. The probability of each of the 
four nucleotides inside the motif sequence is represented by 
position weight matrices, which are used for scanning genomic 
sequences with computational algorithms and record all putative 
genomic positions that can be a binding site for a TF. 

1.1.2 Post-­‐transcriptional	
  regulation	
  by	
  microRNAs	
  

miRNAs are functional short non-coding single-stranded RNA 
molecules with an average length of 22 nucleotides. They represent 
around 4% of the genes in human with 1,881 different sequences 
according to miRBase (Kozomara & Griffiths-Jones, 2014). 
miRNAs act as post-transcriptional negative regulators of the 
expression of their target mRNAs by binding to complementary or 
partial-complementary regions of the sequence of these targets. 
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miRNAs have a peculiar biogenesis (Figure 3) that has been 
extensively described (Filipowicz et al., 2008; He & Hannon, 2004; 
Kim, 2005). The product of the transcription of a miRNA gene, 
called pri-miRNA, folds on itself to form a hairpin structure. Inside 
the nucleus, Drosha endonuclease cleaves the pri-miRNA to create 
the pre-miRNA that is about 70 nucleotides long. Once exported to 
the cytoplasm pre-miRNA is cleaved once again by a helicase 
enzyme, named Dicer. The result is a transient double-stranded 
RNA duplex. Through the association with Argonaute proteins, one 
of the strands of the duplex is coupled into the RNA-induced 
silencing complex (RISC). The miRNA directs RISC to its target 
mRNA which is identified by sequence complementarity. 
Depending on the complementarity between the miRNA and the 
target, regulation over transcripts can be carried out in two different 
ways. miRNAs that bind with perfect (or near) complementarity to 
the seed region, located 6-8 nucleotides at the 5’ end of the miRNA, 
induce target-mRNA cleavage. Otherwise, if complementarity is 
not perfect, the miRNA will tend to bind the 3’-untranslated region 
(3’UTR) of their target gene and, then, block the expression of the 
target gene at the level of protein translation by preventing 60S 
ribosome subunit to join. 

Although some studies have reported that miRNA genes are 
transcribed by RNA polymerase III (Borchert et al., 2006), the 
general rule says that they are transcribed by RNA polymerase II 
(Cai, Hagedorn, & Cullen, 2004; Y. Lee et al., 2004). Interestingly, 
only 50% of the miRNA genes can be found in intergenic regions 
and derive from independent transcriptional units (Saini et al., 
2007). The majority of the other half is located in introns of protein-
coding genes and a small fraction is inside exons (Rodriguez et al., 
2004). It has been shown that the expression of these intronic 
miRNAs correlate with the expression of their host genes, 
suggesting not only a coordinated transcription of both elements 
(Baskerville & Bartel, 2005) but also a common functionality.  
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Figure 3. miRNA biogenesis. Adapted from Filipowicz et al., 2008. 
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Early efforts to clone miRNAs found that only one of the strands of 
the double stranded miRNA (ds-miRNA) was functional while the 
other was simply inert. However, some years later deep sequencing 
showed that this “inert” strand, despite being less abundant in the 
cell, was still accumulated and associated with Argonaute proteins 
with a considerable impact in mRNA regulation (Okamura et al., 
2008). It is yet unknown the mechanism that determines which arm 
of the ds-miRNA is going to be used by the cell but it is believed 
that this switch is probably related with the thermodynamic stability 
of the ds-miRNA (Khvorova et al., 2003). 

From an evolutionary standpoint, miRNAs, like TFs, are very well 
conserved. Some of the most striking examples are miRNA let-7, 
which has been conserved in almost all bilaterally symmetrical 
animals (Pasquinelli et al., 2000); miR-1, a muscle specific miRNA 
conserved in nematodes, flies and mammals (Sokol & Ambros, 
2005); and miR-7, conserved in flies and mammals and located in 
the same intron of the same host gene (Chen & Rajewsky, 2007). 
This high degree of sequence conservation led to the assumption 
that expression was also preserved across species, however, more 
recent studies showed that the expression of the same miRNA can 
vary in different species depending on timing and location (Ason et 
al., 2006). 

The evolution of miRNAs is closely related with the evolution of 
miRNA targets and, more specifically, with the 3’UTR sequences. 
Surprisingly, only 10% of the target regions are conserved across 
species and it has been observed that conserved and non-conserved 
target sites have different expression patterns. Genes with non-
conserved target sites are expressed in tissues where the interacting 
miRNA is not, while genes carrying conserved target regions are 
co-expressed with the regulatory miRNA (Niwa & Slack, 2007), 
what suggests that non-conserved binding sites may not have an 
important role. This relationship between miRNAs, targets and its 
coordinated expression is considered to be a central mechanism for 
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the development and the maintenance of tissue specificity (Bartel, 
2009). 

The function of a miRNA is also determined by the function of the 
genes that it regulates. Since a single miRNA can regulate many 
different targets the functions associated will be broad and varied. 
This phenomenon affects researchers when trying to define the 
function of a particular miRNA. Performing a knockout of the 
regulator will highlight many changes making impossible to 
distinguish direct from indirect effects. The correct approach is to 
block the interaction. This can be achieved using antisense RNAs 
that hybridize with the target 3’UTR preventing the original 
miRNA from binding. Another used technique is creating mutated 
target regions that interfere with the complementary of the regulator 
(Bartel, 2009). 

Since the discovery of miRNAs and the increasing evidence that 
miRNA play critical roles in multiple biological processes 
(Ambros, 2004; Bartel, 2004; Bushati & Cohen, 2007), databases 
related with miRNAs and computational algorithms for the 
prediction of their targets have been rapidly developed. 
Experimental target predictions through classical genetic techniques 
are tedious and slow and, inevitably, many computational 
techniques to determine miRNA targets have been developed. 
These computational approaches generally rely, first, on the 
identification of potential target regions that exhibit a high level of 
complementarity and, then, an exhaustive filtering based, mainly, 
on conservation and RNA structure stability. Some of the most 
popular algorithms for target prediction are miRanda (John et al., 
2004), TargetScan (Lewis et al., 2005), Rna22 (Miranda et al., 
2006), PicTar (Krek et al., 2005) and PITA (Kertesz et al., 2007). 

1.1.3 Latest	
  findings	
  in	
  gene	
  regulation	
  

Next-generation sequencing (NGS) technologies have had an 
unquestionable repercussion on the study of gene regulatory 
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mechanisms. This technological improvement did not only 
revolution the way in which we conduct experiments in molecular 
biology but also dropped the sequencing costs per genome from 
$100 millions, in 2001, to nearly $1,000 nowadays. This fall in 
sequencing prices allowed researchers to include many more 
samples in their studies what increased the reliability of the results. 
At that moment many large scale projects were also launched such 
as the 1,000 Genomes Project (The 1000 Genomes Project 
Consortium, 2012), the Encyclopedia of DNA Elements 
(ENCODE) Project (ENCODE Project Consortium, 2012), the 
Cancer Genome Atlas (Weinstein et al., 2013) or the Roadmap 
Epigenomics (Bernstein et al., 2010), which generated an 
unprecedented amount of genomic data at population level. 

With all this information, novel hypothesis and biological questions 
have been formulated oriented to better understand molecular 
processes and how defects in gene regulation can lead to disease. 
One of the first questions addressed was how well TF binding to 
promoter region could predict gene expression. Ouyang and 
colleagues demonstrated using ChIP-Seq and RNA-Seq data that 
the binding of sequence-specific TFs can successfully predict the 
absolute transcript abundance of the targeted gene and that some 
TFs have dual effect: can activate and also repress different sets of 
genes (Ouyang et al., 2009). They also confirmed the cooperative 
behaviour of TFs supported by the fact that different binding sites 
for different TFs can be found in the same promoter.  

The publications of the findings by the ENCODE Consortium in 
2012 gave a boost to the research in gene regulation with the 
characterization of coding and non-coding regions, TF binding, 
DNA methylation and chromatin accessibility in 82 human cell 
lines and tissues (Qu & Fang, 2013). 119 TFs were deeply studied 
in some of these publications leading to the identification of their 
TFBSs from ChIP-Seq data. In one of the studies, a functional test 
was applied to assess the amount of TFBSs that had a real impact in 
promoter activity (Whitfield et al., 2012). They found that 70% of 
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the 455 putative TFBSs analysed had a verified functional activity 
in, at least, one of the four cell types used. They also concluded that 
functional TFBSs tended to be more conserved and closer to the 
TSS than TFBSs with unverified functionality. 

Wang and colleagues studied the cooperativity of TFs in a 
particular binding site (J. Wang et al., 2012). Two scenarios were 
considered, first, two TFs that bind to neighbouring regions (also 
known as co-binding) and, second, two TFs that interact with each 
other but only one binds to DNA (called tethered binding). 
Experiments showed that both models were real and functional, 
however, tethered binding appeared to be slightly more frequent 
than co-binding. 

Interestingly, the architecture of the human regulatory network 
from a topological point of view was also studied using ENCODE 
data (Gerstein et al., 2012). In this work, researchers added a new 
layer of information to the transcriptional regulatory network by 
including the interactions between TFs and miRNAs and also 
physical protein-protein interactions (PPIs). This topological study 
highlighted the different patterns of co-association between TFs 
when they act in gene-proximal or distal regions. Moreover, TFs 
with more interactions tend to regulate more miRNAs and be more 
regulated from them. 

1.1.4 Effects	
  of	
  the	
  incorrect	
  regulation	
  and	
  diseases	
  

As we have seen, gene regulation is a complex and not fully 
understood process but what is clear about it, is that is an extremely 
important mechanism to guarantee the correct expression of genes 
and, consequently, the integrity of a healthy cell. It is then 
reasonable to think that any alteration in the processes that control 
gene expression could have a negative impact on the cell and, 
eventually lead to diseases such as cancer, cardiovascular problems, 
autoimmune or neurological disorders (T. I. Lee & Young, 2013). 
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Genetic mutations in regulatory elements and regions have been 
previously associated with these disorders as they can modify the 
expression of the genes. The genome instability caused by 
mutations in regulatory elements has been observed in different 
types of cancer (Barbieri et al., 2012; Huang et al., 2013; Jiang, 
2014; Liu et al., 2011; Lubbe et al., 2012). Some publications have 
shown that many TFs are oncogenes and that mutations in TFs can 
contribute to the development of cancer (Furney et al., 2006). The 
TF MYC is a clear example of this. Mutations in this gene can make 
it to be constitutively expressed what leads to an uncontrolled 
amplification of other transcriptionally active genes. This 
misregulation causes pathological growth, proliferation, cell 
transformation and apoptosis (Littlewood et al., 2012). 

Similarly, miRNAs can function as either tumour suppressors or 
oncogenes.  In the first case, the expression of a miRNA that 
regulates an oncogene is reduced or absent, this increases the 
translation of the oncogene leading to tumour formation. In the 
second scenario, the expression of a miRNA that targets a tumour-
suppressor gene is, for some reason, amplified. This inhibits the 
translation of the tumour-suppressor gene causing, eventually, 
cancer (Esquela-Kerscher & Slack, 2006). 

1.1.5 Biological	
  networks	
  

Biological functions, like gene regulation, are generally determined 
by the coordinated and timed interaction of a big number of 
components and molecules. The avalanche of biological data 
generated by the improved sequencing technologies and the 
dropping costs, has provided researchers with a substantial amount 
of information to tackle new hypothesis and unravel the 
mechanisms undergoing in complex systems. Currently, one of the 
biggest challenges of biology is the understanding of the dynamics 
and structure of the intricate collection of molecular interactions 
that prompt to biological functions. 
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Therefore, in the last decade biologists have been forced to move 
towards a different view of biology, a view that does no longer 
investigate one single gene or protein at a time, but tries to 
understand the behaviour of the interaction among multiple 
molecules in a functional system. This more integrative view is 
called systems biology. Some of the benefits of systems biology are 
the flexibility that offers to integrate multiple types of data as well 
as possibility to create computational models of the biological 
processes. These computational models are extremely powerful 
tools for research, not only because they easy the understanding of 
complex systems, but also because they are great instruments to 
predict what happens to the system when perturbations occur 
(Ideker et al., 2003). 

Characteristics	
  of	
  biological	
  networks	
  

In biological networks, interactions can be represented using 
abstract models called graphs or networks, where nodes symbolize 
molecular components and edges the relationships between them. 
Nodes can represent multiple physical entities like genes, RNAs, 
proteins, metabolites or even small molecules. Interactions between 
molecules can be directed or undirected. Directed interactions 
between two nodes are drawn using arrows that show what is the 
directionality of the connection, for example, in a transcriptional 
network the flow would go from the TF to the target gene. 
Undirected interactions, on the other hand, show links between 
nodes and a reciprocal effect is assumed. This is the case of PPIs, 
where two proteins can bind physically without any particular 
directionality. 

During the last decade and due to a massive increase in the 
generated biological data, the assembly of large-scale biological 
networks has been possible. To date, some of them have been 
sufficiently well characterized to understand how they behave and 
how the system is buffered against perturbations. Topological 
studies of different biological networks showed that nodes are not 
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randomly organized but rather follow what is called a scale-free 
configuration (Barabási & Albert, 1999; Barabási & Oltvai, 2004). 
This organization is characterized for having a few nodes with 
many connections and a high number of nodes with few 
interactions. Highly connected nodes are called hubs and are the 
ones in charge of keeping the network together. 

Another important feature of biological networks is modularity. 
Biological functions are carried out by a discrete number of 
elements that work together in a particular time and place, what we 
call functional module (Hartwell et al., 1999). Topologically, 
modules can be distinguished by a high interconnectivity between 
the nodes involved. This connectivity can be measured using a 
topological parameter termed clustering coefficient what can be 
used to find new modules in a biological network when compared 
to randomly expected values. 

These characteristics provide biological networks with a high 
degree of robustness, making the system relatively secure against 
perturbations. The key of their strength lies in the not uniform 
distribution of the interactions. Having a small percentage of nodes 
with a high number of connections reduces the probability that 
these central molecules are altered by random perturbations. It will 
be much more likely that nodes with a small number of interactions 
suffer from random failures, what would keep the main component 
of the network intact. Unfortunately, this configuration is not 
indestructible, if the failure occurs in one of the hub nodes, network 
structure will be entirely affected by the disaggregation of the 
components (Barabási & Oltvai, 2004). 

Research in systems biology started in simpler organisms like 
Escherichia coli and Saccharomyces cerevisiae, and has been 
improving in the latest years to develop human models of different 
biological networks (Barabási et al., 2011). The first map of 
physical PPIs, also called interactome, was generated in yeast (Uetz 
et al., 2000) and, since then, major efforts have been directed to 
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achieve a more comprehensive and curated PPI network in human 
(Kerrien et al., 2012; Licata et al., 2012; Szklarczyk et al., 2015). 
Metabolic networks were the first type of systems studied and they 
are, probably, the most inclusive of all biological networks. Various 
studies have been published offering comprehensive descriptions of 
human biochemical reactions (Duarte et al., 2007; Ma et al., 2007). 
Regulatory networks have been typically centered on the effects of 
TFs over gene expression. However, post-translational 
modifications have recently been included in this model (Barabasi 
et al., 2011; Vidal et al., 2011). miRNA-gene networks did not 
appear until the development of computational algorithms for the 
prediction of targets, as explained in section 1.1.2. 

Gene	
  regulatory	
  networks	
  

In gene regulatory networks (GRN) involving TFs and miRNAs, 
nodes represent different types of molecules: proteins, as TFs; 
DNA, as the TFBS of the target gene; and RNA, as the miRNA and 
its target gene. Fortunately, it is not necessary to explicitly 
represent all these levels of information in the network; the usage of 
a conceptual node that represents the gene is completely 
understandable. Working with different types of biochemical 
interactions and molecules means that the generated networks will 
vary among tissues and time, what adds more accuracy to the 
characterization of the studied phenotypes. 
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 Bioinformatics	
  in	
  gene	
  regulatory	
  networks	
  1.2

Technological advances in the field of genomics have 
revolutionized the way in which we study biological systems. The 
appearance of DNA microarrays more than two decades ago left 
gene-by-gene approaches behind to give way to genome-wide 
strategies. This new generation of analysis opened the doors to a 
completely different way of studying gene regulation. More 
recently, with the arrival of NGS technologies, researchers have 
been able to study GRN in a more accurate and meaningful way. 

This section is an overview of these technologies and how they 
have been applied to the study of gene regulatory networks. It will 
also cover the importance of databases and resources to make an 
integrative understanding of the molecular mechanisms and explore 
some of the statistical methods that have been used in this thesis for 
the study of GRN. 

1.2.1 Genome-­‐wide	
  high	
  throughput	
  technologies	
  
applied	
  to	
  GRN	
  

As mentioned earlier, diverse concentrations of proteins and non-
coding RNAs are crucial to maintain the identity and differentiation 
of cells. The abundance of transcripts derived from genes is 
generally used as a measure of gene expression. This transcriptional 
activity can be used to compare gene expression across different 
tissues, phenotypes, treatments or time points. DNA microarrays 
represented a massive improve by enabling the investigation of 
thousands of genes at the same time and pushing forward the 
characterization of the regulation in gene-expression networks and 
how they malfunction in disease. 
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In an expression microarray (Figure 4) single stranded DNA copy 
(cDNA) from known genes is attached to a solid surface, made of 
glass or silicon. Between 4,000 and 50,000 cDNAs can be fitted 
into a single slide (Butte, 2002). These small cDNAs, also known 
as probesets, have been designed to represent the most unique part 
in a transcript, so even different isoforms from the same gene can 
be detected. RNA is extracted from the biological samples we want 
to study and transformed into cDNA containing a fluorescent label. 
This cDNA is then hybridised with the microarray for a period of 
time and washed to clean any unbound molecules. A laser light 
scans the microarray to measure fluorescence for every probeset. 
Light intensity is used as a measurement of transcript abundance 
(i.e. expression). 

Many computational efforts have been focused on the development 
of reverse engineering methods to reconstruct GRNs since the birth 
of microarrays and, generally, all of them require experimental 

Figure 4. Microarray experimental process. The general protocol for 
the preparation of a DNA microarray requires the isolation of the mRNA, 
transformation of the RNA to cDNA adding a fluorescent label and 
hybridization with the microarray, where thousands of probesets 
representing the genome have been arranged. The microarray is scanned 
using a laser light and intensities are processed by a computer to measure 
transcript abundance. Adapted from (Butte, 2002) 
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information and some prior biological knowledge. In general terms, 
for the generation of GRN, biologists use experimental data from 
systems or pathways to construct preliminary models that match the 
cell in a particular condition. Then, they modify the conditions and 
test the competence of the model under different conditions (W.-P. 
Lee & Tzou, 2009). The model is modified until it fully represents 
the data. Clearly, an automatization of this procedure is essential to 
have a genome-wide representation of cell's regulation. 

According to Schlitt and Brazma (Schlitt & Brazma, 2007), the 
most important models for learning and inference of the regulatory 
structure are linear correlation based methods and probability based 
methods. In linear correlation based methods such as coexpression 
(Tavazoie et al., 1999), connections between genes are built if their 
expression values correlate over a certain threshold. Although this 
is one of most extensively used methods, it is also the one that 
introduces the highest level of confounding. Using coexpression the 
relationship between genes does not generally represent causality or 
direct interaction but corregulation or even noise, moreover, genes 
whose expression is constant or invariable will not be considered. 
Besides, they are only able to measure linear relationships, what is 
not the general behaviour of GRNs, so non-linear associations will 
go unnoticed. On the contrary, probabilistic based methods can 
handle non-linear relationships and deal with noise. Edges in 
probabilistic methods represent causal associations and consider 
directionality in the edge. The most representative methods in this 
group are Bayesian networks (Friedman et al., 2000; Friedman, 
2004; Hartemink et al., 2001; Sachs al., 2005) and mutual 
information networks (Basso et al., 2005; Butte & Kohane, 2000; 
Steuer et al., 2002). 

With time, these entirely computational approaches evolved to 
integrate further relevant regulatory information such as promoter 
information or transcription binding data from ChIP-chip, what 
added more reliability to the results obtained. 
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Ten years ago the first two studies using DNA pyrosequencing 
were published (Margulies et al., 2005; Shendure et al., 2005), 
opening up the doors to a whole new way, more practical and also 
cost-competitive, of studying molecular biology (Shendure & Ji, 
2008). This DNA sequencing technique (called often next 
generation sequencing or NGS) relies on the detection of 
pyrophosphate release during the incorporation of nucleotides 
rather than chain termination with dideoxynucleotides as happens 
with Sanger sequencing. NGS technologies have proven to be 
powerful enough to investigate cell’s behaviour from many 
different angles (see Figure 5) as they can be applied to the study of 
gene expression (RNA-Seq), genetic variants (whole exome or 
whole  genome sequencing, also WES and WGS, respectively), 
protein binding to DNA (ChIP-Seq), DNA (bisulphite sequencing) 
and histone (ChIP-Seq) methylation or three-dimensional genome 
conformation (Hi-C).  

The workflow for the analysis of NGS data starts with the 
preparation of the library, which contains randomly fragmented 
pieces of DNA. These fragments will come from diverse 
experiments depending on the technology we want to apply. For 
example, in whole exome or whole genome sequencing no further 
processing is required apart from the fragmentation of the DNA. In 
RNA-Seq, coding mRNA is separated from non-coding RNA by 
capturing the 3’ polyadenilated tail and then, converted into cDNA 
to be fragmented (Chu & Corey, 2012). DNA fragments in ChIP-
Seq will correspond to the DNA segments that coprecipitate with 
the binding protein (a TF, for instance) using chromatin 
immunoprecipitation. Once the DNA fragments are ready, the 
following steps in the process are very similar among techniques. 
First, common adapters are ligated to both sides of DNA fragments. 
These adaptor sequences contain barcodes and primers that will 
allow the hybridization with a surface, which can be either beats or 
solid plates. Once attached to the surface the DNA is PCR-
amplified in clusters and ready to be sequenced. Sequencing will 
vary depending on the technology but, in general, it consists on the 
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addition of fluorescent nucleotides that emit different colour light as 
soon as they are incorporated to the single stranded DNA by a 
polymerase. A computer records the colour change at each cycle 
associating them to the corresponding nucleotide. The final output 
of the sequencing is a file containing the raw reads of all fragments 
associated to a quality score. These reads are quality controlled and 
aligned into a reference genome. At this stage, different analysis 
methodologies are applied according to the purpose of the analysis.  

 

Figure 5. NGS technologies and their applications. NGS technologies can be 
used to study a wide variety of biological information. Combinations of different 
types of data are used to build integrative models of biological functions. 
Adapted from Shyr & Liu, 2013. 

The NGS technologies that have had the highest influence towards 
the analysis of GRNs have been RNA-Seq, ChIP-Seq with TFs and 
WGS. The first two, RNA-Seq and ChIP-Seq have been extensively 
used in combination to measure gene expression, including the 
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expression of new isoforms, and to build maps of TF binding at a 
genome-wide level (Furey, 2012; Park, 2009; Wang et al., 2009). 

As said before, when a TF binds into the upstream region of a gene 
recruiting all the transcriptional machinery, the target gene can be 
either activated or repressed. Using this information, many studies 
have combined RNA-Seq and ChIP-Seq to assess how useful is TF 
binding to promoter region to predict gene expression by comparing 
the bound and unbound states (Cheng et al., 2011, 2012; Ouyang et 
al., 2009). However, this is not an easy task and Wang and 
colleagues published some of the difficulties of dealing with these 
data (S. Wang et al., 2013). One of the problems lies in the 
difficulty of relating a TF binding with a particular genes’ 
expression since this is not a one-to-one relationship. This happens 
because the gene can be regulated by different TFs and these, in 
turn, are likely to regulate several genes. Moreover, delimiting the 
region where the TF can bind is not straightforward considering it 
can happen between the proximal region of TSS and hundreds of 
kilobases upstream. The last obstacle is the fact that not all TFBSs 
in a ChIP-Seq experiment are functional, what adds noise to the 
experiment. 

The other two technologies that have provided a new dimension to 
the study of GRNs are WES and WGS, which are able to detect any 
genomic variation at exome or genome (including non-coding 
regions) level, respectively. Although regulatory elements like TFs, 
miRNAs and TFBSs are highly conserved regions (Chen & 
Rajewsky, 2007), it is quite common to find variants affecting these 
regions (Garfield et al., 2012; Zheng et al., 2011). Thus, some 
research have been addressed to characterize how vulnerable is 
gene regulation to this changes. In this respect, some authors found 
important consequences of variation affecting binding (Kasowski et 
al., 2010; Zheng et al., 2010), gene expression (Majewski & 
Pastinen, 2011) and also producing disease phenotypes (Manolio, 
2010). However, the one if the biggest challenge when analysing 
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variation in regulatory elements lies in the fact that not all variants 
are going to have a functional effect, as stated in these studies. 

Despite the unquestionable benefits that NGS technologies have 
provided to biological research, the tremendous amount of data that 
they produce difficult the search of causal genes. Technical 
artifacts, neutral variability or poor experimental designs are some 
of the factors that add noise to our study, making hard the 
differentiation between noise and true causal hits. To solve this 
issue, some prioritization strategies are needed. Prioritization is 
generally based on some basic principles; for example, causal genes 
are expected to interact with other disease genes, carry deleterious 
mutations that could affect functionality or be expressed in tissues 
involved in the disease. 

1.2.2 Databases	
  and	
  resources	
  

Research in bioinformatics is often based on public resources and 
datasets, what require from comprehensive and reliable sources of 
information. Large-scale projects like those mentioned in section 
1.1.3 have provided the scientific community with an invaluable 
assortment of data that includes genomic mutations, TF binding, 
expression, histone modifications and copy number variation 
among others. Most of these projects have made public not only the 
raw datasets but also other processed and clean information derived 
from their analysis. Big repositories like Ensembl (Cunningham et 
al., 2014) or the University of California, Santa Cruz (UCSC) 
(Rosenbloom et al., 2014) have integrated this information in their 
databases making it even more easy to query and visualize using 
their genome browsers. In addition to large-scale projects data, 
these repositories include updated annotations of genomic elements 
(e.g. genes, transcripts, SNPs, etc.) and some of their features (e.g. 
nucleotide conservation, variant population frequencies, etc.). 
Merging all this information in a common resource is definitely 
necessary if we want to study GRNs in an integrative way. 
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Databases	
  in	
  GRN	
  

Unfortunately, when talking about GRNs, there is very little 
information that has been included in these big resources apart from 
this coming from large-scale projects, compared to the numerous 
smaller databases that have been created in the last years. One 
example is miRBase (Kozomara & Griffiths-Jones, 2014), the main 
resource for miRNAs with over 17,000 distinct mature miRNA 
sequences in more than 140 species. miRBase contains detailed 
annotations about the primary and the mature forms of miRNAs as 
well as their own computationally predicted miRNA targets and 
cross-references to other databases. Unfortunately, miRBase data 
are not stored in Ensembl. 

Resources storing miRNA targets can be divided in two categories: 
manually curated or computationally predicted. Resources that 
provide targets identified by manual curation are limited, mainly, 
due to the tediousness associated with the collection process. To get 
the curated interactions, researchers need to review hundreds to 
thousands of articles and/or validate experimentally their findings. 
This makes the information extremely valuable but, at the same 
time, limits their growing capacity. On the other hand, 
computational mining sources tend to be larger because they take 
advantage of target finding algorithms (one o combinations of 
them) to automatically screen the genome for miRNA binding sites, 
as explained in section 1.1.2. The main problem of computationally 
predicted interactions is the high rate of false positives generated by 
the algorithm. Although many strategies have been focused on the 
minimization of this rate by using conservation or structural 
information, this is still a concern. Table 1 summarizes some of the 
miRNA target resources. 

Despite some researchers have made big efforts to put together 
information about TF regulatory interactions, databases containing 
TF targets are less abundant than miRNA target resources. Only 
few literature-curated databases stand out in TF research. One of 



 25 

them is ORegAnno (Montgomery et al., 2006), unfortunately, is not 
updated since 2010. PAZAR is also a great resource of curated 
interactions that has been growing since 2007 and, according to the 
latest update contains 708 TFs that regulate more than 1,200 genes 
(Portales-Casamar et al., 2009). A slightly greater curated database 
was published recently containing 748 TFs that regulate nearly 
2,000 genes (Han et al., 2015). Computational resources generally 
rely on the position weight matrices stored in TRANSFAC and 
JASPAR to scan the genome for possible binding sites, however, 
they are not very popular. 

The	
  problems	
  of	
  working	
  with	
  multiple	
  databases	
  

Just dealing with TFs and miRNA we can see that numerous small 
but interesting resources have been created. The same happens with 
other basic and essential types of data like protein information from 
UniProt (The UniProt Consortium, 2014), InterPro (Mitchell et al., 
2014) or PDB (Berman et al., 2000); pathway data from Reactome 
(Joshi-Tope et al., 2005) or KEGG (Ogata et al., 1999); or other 
specialised data like drug targets from DrugBank (Law et al., 2014) 
or gene-disease associations from DisGeNET (Pinero et al., 2015). 

Database Type Last update Reference 
MicroCosm Computational - Unpublished 

miRBase Computational 2014 
Kozomara & Griffiths-
Jones, 2014 

PicTar Computational 2007 Krek et al., 2005 
TargetScan Computational 2015 Agarwal et al., 2015 

miRecords 
Computational 
and curated 

2013 Xiao et al., 2009 

miRNAMap Computational 
and curated 

2007 Hsu et al., 2008 

miRWalk Computational 
and curated 

2011 Dweep et al., 2011 

miRTarBase Curated 2013 Hsu et al., 2014 
Tarbase Curated* 2014 Vergoulis et al., 2012 

Table 1. List of some of the available databases providing miRNA targets. 
The year of the last update is based on the information given in the different 
websites. * Requires licence (free for academy). 
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As mentioned earlier, working with complex diseases requires of a 
whole genome picture of the cell’s state to, ultimately, understand 
the problems underlying, and integrative analysis will definitely 
help in this search. However, the task can become difficult if 
researchers need to query many databases for hundreds of 
thousands identifiers. Downloads containing all the information in 
the database are generally available, so researchers can download 
them and write custom scripts to parse the contents of each 
repository, but this can be sometimes tedious, error prone and time 
consuming depending on the number of resources to query.	
  

One of the biggest issues when dealing with multiple databases is 
handling identifiers. Every database tends to create its own 
identifier what makes difficult the integration process. For example, 
the breast cancer 2 gene in human has an official symbol given by 
The HUGO Gene Nomenclature Committee (HGMD) (Gray et al., 
2015) that is BRCA2, but HGMD also has an identifier for this 
gene, 1101. Ensembl calls this gene ENSG00000139618, for the 
National Center for Biotechnology Information (NCBI) it is 675, 
for UniProt it can be either P51587 or BRCA2_HUMAN and for 
the Online Mendelian Inheritance in Man database (or OMIM) it is 
600185. Many efforts have been directed to cross-reference all this 
resources but dealing with identifiers is still painful. Although some 
of these identifiers have been used widely and have been accepted 
as a standard, such as the HGNC symbol or the Ensembl identifier, 
still many small databases are resistant to use them, at least 
correctly. 

Curated databases are the ones behind in this matter. Since 
researchers need to review old articles, they sometimes annotate 
genes or regulatory features using synonyms or obsolete identifiers. 
miRBase has also added some difficulties to this task by making 
their identifiers change overtime. For example, the current miRNA 
precursor hsa-mir-29b-1 has been also named as hsa-mir-102-7.1, 
hsa-mir-102-2 and hsa-mir-29b-2. A miRNA target database that 
used an older version of miRBase annotation to compute the 
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interactions is likely to have them annotated with an unused 
identifier, what will make impossible the integration with other 
resources unless the correspondences between old names and 
current names are considered. 

The need of exploiting cross-comparisons between large datasets 
motivated the development of standards that provide guidelines 
about the report of interaction networks. This is something the 
community really wanted, as it would foster the reuse, integration 
and exchange of data reducing developing time (Klipp et al., 2007). 
Some standards were then created for pathway analysis such as the 
Systems Biology Markup Language (SBML; Bornstein et al., 
2008), Biological Pathways Exchange (BioPAX, Demir et al., 
2010) or the Cell Markup Language (CellML, Cuellar et al., 2003). 
Unfortunately, almost all of them are based on complicated and 
somehow ambiguous XML formats what makes its implementation 
complicated. Today, very few databases use these standards to 
share their data (Brazma et al., 2006). 

The other big issue is accessibility. When working at genome-wide 
level we want to interrogate databases for information about 
thousands (if not more) of features. For this reason, we need them 
to be programmatically accessible and quick. Thus, repositories that 
offer exclusively online searches are definitely not useful. Other 
databases provide links to text files containing all the information 
stored but can require the user some programming skills to parse 
them. This can be doable when working with a handful of 
repositories, however, trying to parse, restructure and integrate 
more than this, can be time consuming and error prone. 

Ensembl’s BioMart, is an intermediate solution to avoid 
programming and still getting a moderately big amount of data. 
However, searches containing more than a hundred thousand 
queries can become extremely slow. Application programming 
interfaces (APIs) have become a real solution to this problem 
allowing the user to access programmatically to all the resources 
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stored in a repository’s server. Ensembl, for example, provides an 
API written in Perl to query their MySQL biological database. This 
API is quite comprehensive and users can retrieve any biological 
information stored just by writing a piece of code. Nevertheless, for 
some researchers, programming in Perl is still a complicated and 
unknown task. 

At the same time in the area of computer science, the development 
of APIs moved forward with the creation of a software architecture 
suitable for the interchange of big amounts of data, called 
Representational State Transfer (REST). REST is a very simple 
design that takes advantage of Hypertext Transfer Protocol (HTTP) 
to develop web services (WS), so that we can retrieve data using a 
simple URL. This type of WS is called RESTful APIs. Fortunately, 
these technologies are every day more and more integrated in 
biological repositories such as Ensembl, which started providing 
this service in 2014 (Yates et al., 2015). 

1.2.3 Methodologies	
  for	
  the	
  analysis	
  of	
  gene	
  regulatory	
  
networks	
  

High-throughput technologies generally result in a large amount of 
data that needs to be processed and analysed to understand its 
biological meaning. Identifying regulatory elements that could be 
affected in specific phenotypes or conditions is possible using these 
data, and this is one of the purposes of this thesis. This section will 
cover some of the methodologies and strategies used in this thesis 
to tackle the problem. 

Over-­‐representation	
  and	
  set	
  enrichment	
  analysis	
  

These methods were initially used in transcriptomic analysis to 
identify functional categories over-represented in lists of genes. In 
the over-representation analysis a list of genes resulting, for 
instance, from a differential expression (DE) analysis is compared 
against the list of genes involved in a particular biological function 
(for example, a Gene Ontology term). The statistical evaluation will 
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estimate if there is a significant representation of this functionality 
in the DE-genes compared to what is expected by chance. The 
operation is repeated for the rest of terms resulting in a list of over-
represented functions in the problem gene list. Alternatively, we 
can have an input gene list sorted by some criteria like gene 
expression values. In this situation, set enrichment analysis can use 
this ranked information to identify enrichment of biological 
functions in genes located that at the top or bottom of the list 
(Backes et al., 2007). 

These statistical approaches can be applied to the study of GRN. In 
this case, sets of genes are grouped because they share a common 
regulator, instead of a common biological function. In an over-
representation analysis the test in going to check for significant 
enrichment of a particular regulatory element in the input list of 
genes compared to what is expected at genome level. Figure 6 
exemplifies this process. 

 

Figure 6. Over-representation analysis. Our gene list contains targets for 
GATA1 (orange circles) and SP1 (blue circles) transcription factors (TFs). For 
each TF, we extract the proportion of targets in the gene list and in the genome to 
construct the contingency table. Fisher's exact test is used to determine if there is 
a non-random association between the gene list and the specific regulation of a 
TF. 
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Similarly, the set enrichment analysis (Figure 7) will be able to 
detect common of regulatory elements considering the order of the 
input gene list.  

 

Figure 7. Set enrichment analysis. In this 
example, the list of genes comes from a differential 
expression analysis comparing conditions A and B 
where genes have been sorted according to the 
statistical value resulting from the comparison. The 
list is then divided into segments keeping the order. 
In each segment, every regulator (in the example, 
TF1, TF2 and TF3) is tested for over-representation 
in the segment. Here, TF1 is completely 
uncorrelated with the arrangement while TF2 and 
TF3 are clearly associated to a high expression in the 
experimental conditions B and a high expression in 
condition A, respectively. 
 

 
Rare	
  variant	
  analysis	
  

As explained in section 1.2.1, WES and WGS studies have become 
highly popular in the latest years due to their ability to identify any 
genomic variant at a genome-wide level. The application of these 
techniques has proven to be extremely successful in the 
identification of genomic variants associated with traits or diseases. 
These studies have generally analysed the variability found at high 
to moderately high frequency in a population (minor allele 
frequency (MAF) > 5%). Unfortunately, despite the great success of 
these analyses, there is still a very high proportion of the heritability 
in multiple traits and diseases that cannot be explained with the 
results obtained. This missing heritability is thought to be hidden in 
rare (0.5% ≤ MAF < 5%) and very rare (MAF < 5%) variants with 
moderate to low penetrance (Manolio et al., 2009). WES and WGS 
are able to detect variability in this spectrum, and some statistical 
approaches have been put in place to boost these analysis. 
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The low frequency of these variants complicates its study in a one-
by-one basis, as we would need tens to hundreds of thousand 
samples to achieve enough power. Thus, the common strategy 
followed in rare variant analysis tests is the aggregation of variants 
in a region. This way, every defined region is tested for an 
accumulation of rare variants in samples with a given trait or 
disease. There are several types of aggregation tests and each one of 
them assumes different genetic models. Consequently, the power of 
the tests will depend on the way we have decided to filter variants 
and the true disease model underlying (S. Lee et al., 2014). For 
example, burden tests will be more suitable if a large proportion of 
causal variants are expected within the tested region. On the 
contrary, if what we expect is the presence of disease-associated 
and non-associated variants in a region, the best choice is a 
variance-component test (Basu & Pan, 2011; Wu et al., 2011). 
Typically, we have no information on how variants are distributed 
across regions, so the best strategy many times is to try multiple 
methods. 

Visualization	
  

The popularization of experimental techniques for the investigation 
of molecular interactions and the publication of the first interaction 
maps lead to the development of graph viewers that could represent 
biological networks in a simplified way. Network visualization 
cannot be put on the same level as statistical methods, but they 
have, definitely, helped with the interpretation of the results. 
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Chapter 2 

OBJECTIVES 

In the light of the concepts reviewed in the previous chapter, the 
general objective of this work is to provide the scientific 
community with some tools for the analysis of genomic information 
with the objective of identifying altered regulatory elements in 
disease or any other phenotype. More specifically, the main goals 
can be summarized as follows: 

1. Develop a resource that integrates heterogeneous biological
information and allows the efficient and fast retrieval of
data.

2. Implement a tool capable of identifying altered regulatory
elements from a gene expression analysis.

3. Design a methodology for the analysis of the impact of
genomic variants in regulatory regions.
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3.1. CellBase,	
   a	
   comprehensive	
   collection	
   of	
   RESTful	
  
web	
   services	
   for	
   retrieving	
   relevant	
   biological	
  
information	
  from	
  heterogeneous	
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Marta Bleda, Joaquin Tarraga, Alejandro de Maria, Francisco 
Salavert, Luz Garcia-Alonso, Matilde Celma, Ainoha Martin, 
Joaquin Dopazo and Ignacio Medina. 
CellBase, a comprehensive collection of RESTful web 
services for retrieving relevant biological information 
from heterogeneous sources. 
Nucleic Acids Research (2012) 40 (W1): W609-W614 first published 
online June 12, 2012 doi:10.1093/nar/gks575 

Access to full text: http://nar.oxfordjournals.org/content/40/W1/W609.full 
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3.2. Inferring	
   the	
   regulatory	
   network	
   behind	
   a	
   gene	
  
expression	
  experiment	
  

Marta Bleda, Ignacio Medina, Roberto Alonso, Alejandro De 
Maria, Francisco Salavert and Joaquin Dopazo. 
Inferring the regulatory network behind a gene expression 
experiment. 
Nucleic Acids Research (2012) 40 (W1): W168-W172 first published 
online June 11, 2012 doi:10.1093/nar/gks573 

Access to full text: http://nar.oxfordjournals.org/content/40/W1/W168.full 
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   regulatory	
   interactions	
  
for	
  variant	
  and	
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Marta Bleda and Joaquin Dopazo. 
Analysis of high-resolution regulatory interactions for 
variant and gene prioritization. 

This manuscript was under preparation at the time the thesis was 
submitted. 
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Abstract 

Next-generation sequencing can catalogue in detail the genomic 
variation in population samples. However, the amount of variants 
obtained and the poor characterization of some regions of the 
genome, make difficult the evaluation and identification of causal 
variants, particularly in non-coding DNA, where many important 
regulatory regions lie. Moreover, causal variants can be distributed 
across interacting partners making difficult the localization of the 
altered mechanism in a disease. Here, we present a methodology for 
the prioritization of variants and genes based on the analysis of the 
genetic variability observed in regulatory interactions. To avoid the 
lack of power due to scattered variants, we collapse the effect of the 
variants found in interacting regulatory elements. 
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Introduction 

Genome regulation is a complex process that requires the 
coordination of different molecules. The integrity of the steps 
involved in this process is crucial to maintain the stability of a 
healthy cell and its differentiation state. These mechanisms are 
highly conserved and require the appropriate expression levels of 
the genes involved for its correct functioning (T. I. Lee and Young 
2013). Genetic variation can alter the expression of these genes 
either by changing the sequence and the structure of the resulting 
protein or by modifying binding sites involved in the regulation of 
these genes (Dermitzakis 2008). 

Transcription factors (TFs) and microRNAs (miRNAs) are some of 
the main regulatory molecules that orchestrate gene regulation. 
These regulatory elements, alone or in combination with other 
regulators, can control the expression of tens to hundreds of genes. 
TFs interact with the transcriptional machinery by binding to cis 
regulatory elements in the DNA (promoters, enhancers, etc.) and 
altering the rate at which a gene is transcribed (Martinez and 
Walhout 2009). The interaction is mediated by a DNA binding 
domain located at the TF that is able to recognise specific 
sequences in the DNA called transcription factor binding sites 
(TFBSs). The final transcriptional output will also depend on the 
action of other TFs that bind with the first, termed cofactors. The 
combination of TFs that interact is thought to have a main role in 
gene regulation by determining the expression in different tissues 
(Ravasi et al. 2010). miRNAs are small (~22nt long) non-coding 
RNAs that act at post-transcriptional level by hybridizing to 
complementary region located at the 3’UTR of target mRNAs. The 
interaction generally has a repressive effect on the expression of the 
target gene either by destabilizing the RNA or by repressing its 
translation (Filipowicz et al. 2008). 

The high conservation of the interacting regions involved in gene 
regulation by TFs and miRNAs demonstrate the importance of 
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these sites (de Mendoza et al. 2013; Pasquinelli et al. 2000; Sokol 
and Ambros 2005; Chen and Rajewsky 2007). In fact, mutations in 
these binding locations have been associated with pathologies such 
as cancer, cardiovascular diseases, immune and neurological 
disorders (T. I. Lee and Young 2013). 

Next-generation sequencing (NGS) allows the characterization of 
genomic variants across the entire genome what has opened the 
doors to explore new hypothesis about the effect of mutations in 
gene regulatory elements. Unfortunately, the large amount of 
variants that can be found using this technology difficults its 
interpretation and the identification of causal mutations. Many of 
the causal variants in complex disorders with poorly characterized 
heritability are expected to be in a very low frequency, what makes 
impossible for these variants to reach a genome-wide significance 
level in association studies (Manolio et al. 2009). To overcome this 
difficulty, aggregation tests have been suggested as an alternative to 
single variant analysis. In these tests, sets of regions are defined 
(generally, genes) and rare variants found in these regions are tested 
together for association with disease (S. Lee et al. 2014). 

Here, we propose an approach to study the accumulation of genetic 
variants affecting the interaction of regulatory elements. We 
hypothesize that different genomic variants located in interacting 
sites may affect the correct binding and, thus, alter the correct 
regulatory effect producing similar malfunction. At the 
transcriptional level, mutations in TFBSs, DNA binding domains 
and the interacting domains between TFs and cofactors are subject 
of interest. At the post-transcriptional level, mutations that fall in 
miRNAs and inside targets at the 3’UTR region of the transcripts 
regulated by these miRNAs are analysed and considered in the 
affected regulatory network. We suggest that variants found in 
interacting and cooperating regions are likely to have a similar 
impact on the phenotype and should be considered in combination. 
An implementation of this approach is freely available at 
http://bioinfo.hpc.cam.ac.uk/web-apps/regVar. 
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Results and discussion 

As stated earlier, some studies have demonstrated the pathogenic 
effect of individual genomic variants lying in regulatory regions. 
These locations tend to be highly conserved, what suggest the 
importance of their structure and functionality. Although not many 
variants are expected to fall in these sites, some variability can still 
be found in healthy population. Therefore, we speculate that the 
variability observed in healthy individuals is neutral or is, somehow 
buffered. To confirm this assumption, we have compared the effects 
of genomic variants located in regulatory regions from a healthy 
population against mutations found in cancers. 

Assuming that the effect of variants could be distributed across its 
interactors, we have defined a regulatory unit as the minimum set of 
interactions needed for a regulatory event to happen. We have 
created two different types of regulatory units depending on the 
nature of the interactions. The first type is constituted by TFs, 
TFBSs and cofactors. The essential elements in this type of 
interactions are the DNA binding domains of the TF, the TFBS and 
the interacting domains between the TF and the cofactors (Figure 
1A,B). miRNAs and their target binding sites, generally located at 
3’ UTR regions of genes, form the second type of regulatory units 
(Figure 1B). Only variants affecting these essential regions are 
considered in the analysis. 

Figure 8. Essential regions in 
regulatory interactions. For the 
analysis only variants affecting the 
essential sites of regulatory interactions 
are considered for further testing. (A) 
The DNA binding domain of a TF 
interacts with the promoter region of the 
target gene by binding the TFBS. (B) 
Cofactors modulate the final outcome in 
a regulatory event by interacting with 
the TF. This bond only involves specific 
interacting domains of each protein. (C) 
miRNAs bind to target sequences 
located at the 3’ UTR of their target 
genes. Variants located in red coloured 
regions are the ones that are included in 
the analysis. 

A 

B 

C 
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We extracted the regulatory variants observed in all these 
regulatory regions from 1,000 Genomes Project (The 1000 
Genomes Project Consortium 2012) control samples and COSMIC 
(Forbes et al. 2014) cancer dataset to evaluate their neutrality. After 
filtering, we identified 65,530 regulatory variants in healthy 
population and 12,401 variants in cancer samples. The functional 
annotation of the variants showed significantly different results 
(Figure 2). 

 

The majority of regulatory variants in healthy population lay in 
intronic regions without affecting splice sites or miRNAs. Only 
11% of the annotations were located in coding sequence regions in 
controls. Also, healthy samples showed a fraction of annotations 
(6%) representing variants located upstream of the gene but none of 
these appeared to affect a TFBS. In contrast, upstream and missense 
variation appeared over-represented in the cancer dataset. Unlike 
healthy population, cancer variation showed a moderately high 
proportion of annotations related with regulatory effects such as 
non-coding transcript variants, TFBS variants and regulatory region 
variants. Although a minimum fraction of variants was also found 

Figure 9. Results of the annotation of the genomic variation found in regulatory 
units of healthy (A) and cancer (B) samples. Pie charts at left represent all 
annotations and pie charts at right coding annotations. 
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in TFBSs in the healthy dataset, this proportion was significantly 
under-represented compared to the amount in cancer. Interestingly, 
nearly half of the annotations in TFBS were also annotated as TFBS 
ablation. 

We also evaluated the conservation of 
the regulatory variants obtained from 
each dataset (Figure 3). PhastCons 
(Siepel et al. 2005) scores, that 
measure the probability of negative 
selection, were retrieved for all the 
variants located in these regulatory 
regions in both datasets. Regulatory 
variants in the cancer dataset were 
located in nucleotides with a 
significantly (p-value < 2e-16) higher 
selective pressure, suggesting that 
variants in healthy individuals affect 

mainly neutral positions, while most of variants in the cancer 
dataset lie in more evolutionary conserved positions, as expected. 

Data and methods 

Construction of the high-resolution gene regulatory network 

Protein annotations were extracted from UniProt (The UniProt 
Consortium 2014) and the mappings of the domains they match 
were obtained from InterPro v53 (Mitchell et al. 2014). The list of 
genes that act as transcription factors and their DNA binding 
domains was extracted from AnimalTFDB (Zhang et al. 2015), 
which have characterized and curated  the DNA binding domains of 
1,691 human TFs representing 71 animal TF families. Peptide 
positions covered by DNA binding domains were transformed to 
their corresponding genomic locations for each TF protein using 
Ensembl’s REST API (Yates et al. 2015). After merging this 
information, we ended up with 1,317 TFs containing at least one of 

Figure 10. Probability of 
negative selection in healthy 
(1000G) and cancer (COSMIC) 
variants. 
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the DNA binding domains. 86 of these proteins presented two DNA 
binding domains. 

TFBSs were extracted programmatically from CellBase (M. Bleda 
et al. 2012). These TFBSs come originally from Ensembl 
(Cunningham et al. 2014), that provides a processed dataset of 
ChIP-Seq hits from ENCODE (ENCODE Project Consortium 
2012). CellBase associates TFBSs located in the promoter region of 
a transcript (5 kb upstream and 500 bp downstream the 
transcription start site) as putative regulators of the gene. 

Interactions between TFs and cofactors were collected from TcoF-
DB (Schaefer, Schmeier, and Bajic 2011). This database contains 
evidence-based PPIs between TFs and other proteins, where non-TF 
proteins were filtered to keep only those that are likely to act as 
cofactors. INstruct (Meyer et al. 2013) information was used to 
identify the interacting domains in each TF-cofactor interaction. We 
used InterPro to get the peptide regions containing these domains 
and map them to their genomic coordinates. 

We extracted miRNAs and their coordinates from CellBase. These 
miRNAs come originally from miRBase version 21 and were 
mapped to Ensembl’s annotation to get the genomic coordinates. In 
the final dataset we end up with 2,165 miRNAs. miRNA targets 
used for the high-resolution regulatory network were collected from 
UCSC (Karolchik et al. 2004) which contains a filtered dataset of 
conserved miRNA targets sites from TargetScan version 5.1 
(Agarwal et al. 2015) that have been previously mapped to the 
3’UTR region of the target genes. 235 miRNAs were finally used. 
These miRNAs regulate 9,348 genes. 

To build the regulatory units we considered the interactions from 
the sources mentioned above. We recovered 81,903 transcriptional 
regulatory units formed by TFs, TFBSs and cofactors and 92,987 
post-transcriptional regulatory units including miRNA-target 
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interactions. In total, 174,890 regulatory units have been considered 
for this study. 

Healthy and cancer datasets 

Healthy variants were extracted from the 1,000 Genomes Project 
Phase 3 (The 1000 Genomes Project Consortium 2012) 
corresponding to the whole-genome sequencing of 2,504 
individuals. Cancer variants used were obtained from COSMIC 
(Forbes et al. 2014) and include coding and non-coding mutations. 
Both datasets were annotated using the variant annotation 
functionality in CellBase (Bleda et al. 2012). 

Implementation 

We also implemented a standalone program that takes a variant call 
format (VCF) file containing the genotypes of the samples we want 
to study. If a case-control VCF is provided, users must also include 
a pedigree file with the six first columns of a PED file format as 
specified in PLINK (Purcell et al. 2007). For each regulatory unit, 
the tool evaluates if there is an accumulation of variants in cases 
compared to controls by running a burden test, as implemented in 
RvTests (http://zhanxw.github.io/rvtests/). If no PED file is 
provided, it assumes that all samples in the VCF are cases. In this 
scenario, the proportion of variants found in regulatory units is be 
compared against the proportion of variants in 1,000 genomes 
project (The 1000 Genomes Project Consortium 2012) and 
significance is evaluated using a Fisher’s exact test. In both cases, a 
list of significant regulatory units is obtained. A network file is 
generated containing the resulting significant interactions as well as 
the list of enriched functionalities (as Gene ontology terms) in these 
genes. 

Conclusions 

Here we presented an overview of the mutation status in essential 
regions for regulatory interactions by comparing the variants 
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present in healthy and cancer samples. This suggested that although 
some genomic variability is present in regulatory essential sites for 
both datasets, variants in the control dataset have a neutral effect 
while variants present in cancers are damaging. This could mean 
that our catalogue of essential regulatory regions is not completely 
clean and includes non-functional positions. 

We also propose a methodology for the analysis and prioritization 
of regulatory elements affected by damaging genomic variation. 
The methodology has been implemented in a standalone program 
that allows the analysis of standard VCF and provides information 
about the functional impact of the variants observed. 
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Chapter 4 
 

DISCUSSION 
 
This thesis is divided into two main topics that have been covered 
in the results section. First, it shows the development of a biological 
database that includes regulatory information from different sources 
together with a set of WS that speed up the retrieval of the data, as 
is reported in section 3.1. Second, it presents two approaches for the 
detection of putatively damaged regulatory elements or regulatory 
interactions in an expression or variant dataset, corresponding to 
sections 3.2 and 3.3. 

4.1 Development	
   of	
   a	
   high-­‐performance	
   biological	
  
database	
  containing	
  regulatory	
  information	
  

During the last years, the massive growth in data production 
generated by NGS technologies has originated an explosion in the 
number and size of biological databases. As explained in section 
1.2.2, this increase has challenged researchers to join and integrate 
data from different resources, deal with different identifiers and go 
through scalability and performance issues. The project presented in 
section 3.1, called CellBase, proposes a new approach for data 
integration in a single database and introduced a new paradigm in 
the way biological information is queried through the use of 
RESTful WS. 

Currently, RESTful WS are used by many other repositories to 
easily serve their information and have become the preferred option 
to build APIs. However, at the time CellBase was published, this 
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was not a widespread practise in the area of biological databases, 
what makes CellBase one of the pioneers in this field. 

Since its publication, CellBase has been under a heavy development 
what has improved not only the quality and quantity of the 
biological data stored, but also the underlying implementation. 
Currently, after several releases, this is still an ongoing project with 
many users and active developers. CellBase is open-source and 
freely hosted at GitHub under the OpenCB project and contains 
more than 50,000 lines of code. 

One of the biggest improvements carried out during the last year 
has been the migration from a MySQL relational database to a 
document oriented NoSQL database. We chose MongoDB as the 
implementation for the non-relational database. Some of the main 
advantages of NoSQL databases over relational databases are their 
high-performance, scalability, horizontal sharding and the 
flexibility. All more and more necessary nowadays with the 
increase of data and complexity and the need of distributed 
computing. This gain in scalability and performance has made 
easier the addition of new features to CellBase. 

Users can now install a whole instance of CellBase in their servers 
with the newly developed command line interface (CLI). This CLI 
has been written in Java and allow users to download all the data 
source files, build and load the database. New RESTful WS have 
been added and others have been changed to improve the user 
experience and to accommodate new biological data queries. 
CellBase code is stored in GitHub and all these changes have been 
tracked in a GitHub wiki: https://github.com/opencb/cellbase/wiki. 
An updated list of the WS available can be found here: 
http://bioinfo.hpc.cam.ac.uk/cellbase/webservices/. 

As mentioned before, CellBase has also increased the quantity and 
the quality of biological information. Today, data are available for 
36 different species including some plants and bacteria. It contains 
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clinical information about genomic variants from ClinVar 
(Landrum et al., 2014) and systems biology information has been 
updated with data from Reactome (Croft et al., 2014) and IntAct 
(Kerrien et al., 2012). But one of the most important new features is 
the variant annotation functionality. Now, CellBase is able to 
annotate genomic variants using the information stored with a 
99.9997% similarity with Ensembl VEP (McLaren et al., 2010), one 
of the most widely used annotators today, while being about 10x 
faster and adding some extra variant annotation such as genomic 
conservation scores, gene expression or protein variants and 
interactions. 

The design of the API in CellBase makes the development of 
biological applications really easy what has powered its usage over 
time. It was initially used by other projects developed at Dr. 
Dopazo’s department such as Genome Maps (Medina et al., 2013) 
or Babelomics (Alonso et al., 2015). CellBase is also used by some 
other big projects, some of the most important include: 

• The EMBL-EBI European Variation Archive (EVA), a new 
project that aims to store all public variation data for all 
species and where CellBase is used to query genome 
information and annotate variants. 

• The International Cancer Genome Consortium (ICGC), 
whose aim is to obtain a comprehensive description of 
genomic, transcriptomic and epigenomic changes in more 
than 50 different tumor types and subtypes. They use 
CellBase to retrieve genome annotations and the sequences 
of reference genomes. 

• Genomics England (GEL), also known as the 100,000 
genomes project, that aims to sequence this amount of 
genomes from rare diseases and cancer patients. They also 
rely on CellBase to annotate variants. 
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CellBase is probably the achievement in this thesis with the biggest 
impact on the scientific community. Although we have put much 
effort on the design of the WS and the construction of the database, 
this work does not expect to replace other big repositories such as 
Ensembl. On the contrary, we highly depend Ensembl’s data to feed 
CellBase and our aim is to provide a faster and easier programmatic 
access to all their biological information and, at the same time, 
extend their data with other data sources. 

4.2 Detection	
   of	
   putatively	
   damaged	
   regulatory	
  
elements	
  and	
  interactions	
  in	
  a	
  genomic	
  dataset	
  

The introductory chapter of this thesis presents some of the main 
characters involved in gene regulation and how damaged regulatory 
mechanisms compromise the stability of healthy cells with negative 
consequences. It is therefore necessary the development of 
methodologies able to interpret genome-wide data for the 
identification of possible genomic alterations caused by an incorrect 
regulation. For this purpose, it is important the use of regulatory 
data stored in biological databases and its integration with genomic 
information. This integration can benefit research in systems 
biology for complex systems. 

Following these guidelines, the work described in sections 3.2 and 
3.3 proposes two methodologies able to interpret genomic 
information and put them in context of known regulatory 
information. 

First, we suggest a method for the detection of candidate regulatory 
elements likely to be deregulated given a gene expression 
experiment. This methodology, called RENATO, is presented in the 
form of a web tool that facilitates the analysis for the user. In 
addition to the candidate regulatory elements, it offers a useful 
graphical representation of the significant results, what aids in the 
biological interpretation. 
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Second, we propose a different approach designed to prioritize 
regulatory genes and interactions taking into account the 
accumulation of genomic variants. 

The most interesting aspect of this approach lies in the way that 
important genomic locations for gene regulation have been 
considered. In contrast to other methods that use genomic variants 
localized in the whole regulatory element or target, here we only 
take into count genomic variants affecting regions directly involved 
in a regulatory interaction. This adds an extra level of specificity in 
the analysis and benefits the prioritization. Besides, regions are 
aggregated considering gene regulatory partners, what solves the 
problem of the lack of statistical power in association due to the 
scattered distribution of genomic variants. 

The study of variability in the essential regulatory regions in 
healthy and cancer datasets demonstrates the accuracy of these 
regions, but it also reveals the neutrality of part of the positions 
included in the analysis. 
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Chapter 5 
 

Conclusions 
 
The ultimate goal of this thesis was to provide tools and 
methodologies for the analysis of genomic information that aid in 
the identification of altered regulatory elements in disease or any 
other phenotype.  

The main contributions of this thesis can be summarized as follows: 

1. We developed CellBase, a new approach for data integration in 
a single database that introduced a new paradigm in the way 
biological information is queried through the use of RESTful 
WS. 

• Regulatory information from different sources was 
included and integrated with other biological annotations. 

• The usage of a document oriented NoSQL database has 
proven the scalability and efficiency of the design. 

• RESTful WS have facilitated the programmatic retrieval 
of biological information and encouraged the 
development of applications. 

2. We implemented RENATO, a method for the detection of 
candidate regulatory elements likely to be deregulated given a 
gene expression experiment. 

• RENATO is available as a web application and provides 
a useful graphical representation of significant results. 
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3. We developed a methodology designed to prioritize regulatory 
genes and interactions based on the accumulation of genomic 
variants. 

• The subset of essential regulatory regions considered in 
the analysis demonstrated a high accuracy in the 
determination of the functional impact of the variants. 

• The methodology was implemented and is available as a 
standalone program. The implementation can detect a 
significant accumulation of variants in regulatory regions 
from either a case-control or a population experiment. 
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