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Abstract

Network Function Virtualization (NFV) [1] is a promising technology that
proposes to move packet processing from dedicated hardware middle-boxes
to software running on commodity servers. As such, NF'V brings the possi-
bility of outsourcing enterprise Network Function (NFs) processing to the
cloud.

However, for a Cloud Service Provider (CSP) to offer such services, sev-
eral research problems still need to be addressed. When an enterprise out-
sources its NFs to a CSP, the CSP is responsible for deciding: (1) where
initial Virtual NFs (VNFs) should be instantiated, and (2) what, when
and where additional VNFs should be instantiated to satisfy the traffic
changes (scaling), (3) how to update the network configurations with min-
imum impact on network performances, etc. This brings the requirement
of a cloud management framework for VNFs and the cloud infrastructure
related operations: provisioning, configuring, maintaining and scaling of
the VNFs, as well as configuring and updating of the cloud network.

In this thesis we explore three aspects of a cloud management framework
for VNF: (1) dynamic resource allocation, (2) VNFs scaling methods and
(3) dynamic load balancing.

In the context of dynamic resource allocation for VNFs, we explore two
resource allocation algorithms for: (1) the initial placement of VNFs, and
(2) the scaling of VNFs to support traffic changes. We propose two ap-
proximation approaches (heuristic based): (1) Iterated Local Search (ILS)
and (2) Genetic Programming (GP) to implement the resource allocation
algorithms. We compare these heuristic based approaches with a tradi-
tional resource allocation approach: Integer Linear Programming (ILP).
In the context of VNFs scaling methods, we explored three different scaling
approaches: (1) vertical scaling, (2) migration and (3) horizontal. We anal-
yse the three scaling methods in-terms of their practical implementation
aspects as well as the optimization aspects with respect to the manage-
ment. In the context of dynamic load balancing, we explore load balancing

xi



xii Abstract

approaches that maintain affinity and handle states and sessions of the
traffic, so that the requirement of state migration is avoided. We propose
a session-aware load balancing algorithm based on consistent hashing.



Resume

La virtualizacin de funciones de redes (NFV) [1] es una tecnologa prom-
etedora que propone mover el procesamiento de paquetes de cajas inter-
medias de hardware dedicadas al procesamiento especializado de paquetes
a mdulos de software que se ejecuta en servidores no especializados. Como
tal, NFV crea la posibilidad de externalizar de las redes empresariales el
procesamiento hecho por funciones de redes (NFs) a la nube.

Sin embargo, para que un Proveedor de Servicios en la Nube (CSP) ofrezca
tales servicios, todava hay que resolver varios problemas. Cuando una em-
presa subcontrata sus NF a un CSP, el CSP es responsable de decidir: (1)
dnde deben instanciarse las NF virtuales iniciales (VNF), y (2) qu tipo,
cundo y dnde deben instanciarse VNF' adicionales para satisfacer los cam-
bios de trfico (Escalamiento), (3) cmo actualizar las configuraciones de la
red con el mnimo impacto en los rendimientos de la misma, etc. Esto
requiere de un marco de gestin de la nube para VNFs y las operaciones
relacionadas con la infraestructura de nube: provisiona miento, manten-
imiento y escalado de les VNS. As como la configuracin y actualizacin de
la red en la nube.

En esta tesis exploramos tres aspectos de un marco de gestin de la nube
para VNF: (1) asignacin dinmica de recursos, (2) mtodos de escalado para
VNFs y (3) balanceo de carga dinmico.

En el contexto de la asignacin dinmica de recursos para VNFs, explo-
ramos dos algoritmos de asignacin de recursos para: (1) la ubicacin inicial
de VNFs, y (2) la escala de VNF's para apoyar los cambios de trfico. Pro-
ponemos dos mtodos de aproximacin (basadas en heursticas): (1) Bsqueda
Local Tterada (ILS) y (2) Programacin Gentica (GP) para implementar los
algoritmos de asignacin de recursos. Comparamos estos enfoques heursti-
cos con en un enfoque tradicional de asignacin de recursos: Programacin
Lineal Entera (ILP). En el contexto de los mtodos de escalde VNF's, hemos
explorado tres enfoques de escala diferentes: (1) escalamiento vertical, (2)
la migracin y (3) horizontal. Analizamos los tres mtodos de escalado en

xiii



xiv Resume

trminos de sus aspectos de implementacin prctica, as como los aspectos
de optimizacin con respecto a la gestin. En el contexto del balanceo de
carga dinmico, exploramos enfoques de equilibrio de carga que mantienen
la afinidad y manejan estados y sesiones del trfico, de manera que se evita
el la necesidad de migracin del estado. Proponemos un algoritmo de equi-
librio de carga que considera sesiones basado en funciones de hash consis-
tente.

Translated from English by Dr. Jorge Lobo
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CHAPTER 1

Introduction

“A problem well put, is half solved.”

John Dewey

Information Technology (IT) executives of enterprises have always faced
challenges when it comes to delivering the IT services needed to support
changing business goals and demands. But these days they are under more
pressure than ever to keep up with an ever-shifting business environment
that demands agility, reliability, availability, and security - all at the same
time. A big part of the need for the change, focuses on the data center,
or in a larger context, the platforms that run business applications. En-
terprises have always been struggling with finding ways to optimize data
center performance, keep costs down, enhance security, and ensure con-
stant uptime and reliability.

However, the evolution of a sophisticated “as-a-service” mechanism: Cloud
computing, has influence the way enterprises think about their data cen-
ters. Cloud-based services have become so pervasive that, for many enter-
prises, it is difficult to imagine using applications and technology infras-
tructure components without the cloud. Cloud computing, using a grid
of servers to support virtualized infrastructure, platforms, or applications
gives an enterprise the flexibility it never had before, to respond quickly to
opportunities, deploy new applications, or scale up fast to meet growing
customer demand. At the same time, it dramatically reduces expenses for
hardware, maintenance, and IT staffing. The newest addition to the “as-
a-service” of cloud computing is Virtualized Network Functions (VNFs),
where the essential network services such as firewalls, intrusion detection
systems etc. are offered as on-demand services to the enterprises.

The work presented in this dissertation is at the crossroads of cloud com-
puting and offering VNFs as a service in the cloud computing environ-
ment. We now delve into the Introduction chapter of the thesis. First,



2 Introduction

we present the motivation for the research work presented in this thesis,
and then discuss the opportunities and challenges brought by the research
context. Then we introduce the main objectives of the research and high-
light the contributions of the thesis. The concluding section of the chapter
describes the organization of the thesis in detail.

1.1 Motivation

Traditionally, data centers are physical infrastructures used by enterprises
to house computer, server and networking systems and components for the
enterprise’s IT needs, which typically involve storing, processing and serv-
ing large amounts of mission critical data of the enterprise’s clients. A data
center, often requires extensive redundant or backup power supply sys-
tems, cooling systems, redundant networking connections and policy-based
security systems for running the enterprise’s core applications. Therefore,
the data center management involves ensuring the reliability of both the
connections to the data center and the mission-critical information con-
tained within the data center’s storage. It also entails efficiently placing
application workloads on the most cost-effective computing resources avail-
able.

However, with the introduction of the cloud concept, cloud computing
technologies have started to obtain mass appeal in enterprises’s data cen-
ters as they allowed data center infrastructure to be leased profitably in
an on-demand basis to third parties. They enable data centers to oper-
ate like the Internet, through the process of enabling computing resources
to be accessed and shared as virtual resources in a secure and scalable
manner. Cloud computing can be defined as the delivery of computing
services: servers, storage, databases, networking, software etc. over the
Internet on a pay-for-use basis [8]. From the perspective of an enter-
prise, cloud computing provides several benefits. First, cloud computing
provides almost immediate access to hardware resources, with no upfront
capital investments for the enterprise, leading to a faster time to market
in many businesses. Second, cloud computing makes easier for enterprises
to scale their services according to client demands. Since the computing
resources are managed through software, they can be deployed very fast as
new requirements arise or scale resources up or down dynamically through
software APIs. Third, cloud computing is often offered with a pricing
model that lets the enterprise pay as it goes and for just the services that
the enterprise needs [8].

A cloud service is any service made available to users on demand via the
Internet from a Cloud Service Provider’s (CSP) servers as opposed to being
provided from an enterprise’s own on-premises servers [9]. Cloud services
are designed to provide easy, scalable access to applications, resources and
services, and are fully managed by the CSP. A cloud service can dynami-
cally scale to meet the needs of its users, and because the CSP supplies the
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hardware and software necessary for the service, and there is no need for
the enterprise to provision or deploy its own resources or allocate IT staff to
manage the service. Examples of cloud services include online data storage
and backup solutions, web-based e-mail services, hosted office suites and
document collaboration services, database processing, managed technical
support services etc [9].

CSPs such as Amazon, Google, Salesforce, IBM, Microsoft, and Sun Mi-
crosystems have established cloud infrastructures to host cloud services
in various locations around the world to provide redundancy and ensure
reliability in case of site failures [9]. As the cloud computing is enabled
by advances in virtualization, service oriented computing, and utility com-
puting, from the perspective of the CSP, managing a cloud infrastructure
is a challenging task. There are several requirements for cloud computing
to be successful. These include low-cost, Service Level Agreements (SLA)
compliance, security guarantees, high availability, energy efficiency, accu-
rate accounting etc. The key to meeting these requirements is effective
management of the cloud resources and services.

For the past decade, enterprises have been outsourcing their application
services (i.e, web servers, mail servers etc.) to the CSP by requesting phys-
ical resources: Virtual Machines (VMs) to run these services. However, as
well articulated in [10], moving applications from private data centers to
cloud centers is complicated by the fact that many of these applications
require network-based services such firewalls, load balancers, intrusion de-
tection systems, proxies, etc. According to the study done in [6], a very
large enterprise have average of 1946 total middle-boxes and a small en-
terprise have an average of 10.2 middle-boxes that are processing network-
based services. The deployments of these middle-boxes are large scaled
and costly, requiring high up-front investment in hardware: thousands to
millions of dollars in physical equipments. Furthermore, managing these
heterogeneous middle-boxes requires broad expertise and consequently a
large management team. [6] shows that even small networks with only tens
of middle-boxes typically required a management team of 6-25 personnel.
Thus, middle-box deployments incur substantial operational expenses in
addition to hardware costs.

[6] highlights several key challenges that enterprise administrators face
with middle-boxes deployment and maintenance. First, the deployments
of middle-boxes are complex as they involve large number and diverse
types of middle-boxes: a very large enterprise can have average of 1946
total middle-boxes, with seven different types (i.e, firewalls, load bal-
ancers, intrusion detection systems, etc.). Second, the management of
these middle-boxes also a complex task. To maintain a smooth operation
level with the enterprise, administrators must monitor the middle-boxes
24 hours, to identify failures or overloads. Once a failure or overload is
identified, administrators must act accordingly, so that the impact on the
enterprise operations is minimum and damages are minimized. This might
involve finding the cause of the failure, repairing the middle-box or even
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deploying a new middle-box. Furthermore, network administrators often
face problems when upgrading the network with middle-boxes. Deploying
new features in the network entails deploying new hardware infrastructure
and middle-boxes. Each time an enterprise decides for a new deploy-
ment, administrators must select between several offerings, weighing the
capabilities of devices offered by numerous vendors. Administrators must
evaluate, select, purchase, install, and train to maintain new appliances.

So from the perspective of both the enterprise and network administrators,
deploying and managing middle-boxes are very challenging: (1) they are
large deployments with high capital and operating expenses, (2) they have
complex management requirements inflating operation expenses, and (3)
they often cause failures and overload of physical infrastructures. Thus,
the researches argue these factors make middle-boxes good candidates for
the cloud, where both the enterprises and CSPs can get benefits from a
“middle-boxes as-a-service” business model.

There are several advantages that an enterprise can receive when it out-
sources middle-boxes processing to the cloud. First, outsourcing middle-
box processing can reduce hardware costs. Out-sourcing eliminates most
of the infrastructure at the enterprise, and a CSP can provide the same
resources at lower cost due to economies of scale. Second, out-sourcing
eliminates the frequent middle-boxes upgrade problem. Enterprises sign
up for a middle-box service and how the CSP chooses to upgrade hard-
ware is orthogonal to the service offered. Third, out-sourcing gets rid of
the requirement of 24 hours monitoring and recovering from failures and
overloads. The CSP monitors utilization and failures of specific devices,
and reacts to the situation accordingly without the interaction of enterprise
administrators. Fourth, a cloud-based capability to elastically provision
resources avoids overload, by enabling on-demand scaling and resolves fail-
ure with standby devices without the need for expensive over provisioning.
Therefore, from an enterprise perspective, outsourcing middle-boxes can
cut deployment expenses, simplify management for enterprise administra-
tors, and can provide elastic scaling to limit failures.

Network Function Virtualization (NFV) [1] is a promising technology that
proposes to move network-based services from dedicated hardware middle-
boxes to software running on commodity servers: Virtualized Network
Functions (VNFs). NFV technologies decouples the Network Functions
(NFs), such as firewalls, intrusion detection systems, proxies etc., from
proprietary hardware appliances, so that they can be hosted on virtual
machines (VMs). NFV utilizes standard virtualization technologies and
brings several advantages. First it reduces capital investment, energy con-
sumption and time to market a new service. Next, it enables new proper-
ties such as elastic scaling. NFV allows the flexible increase and decrease
of resources (e.g., CPU, memory) allocated to each VNF instance, and the
number of VNF instances to satisfy the dynamic traffic changes.

With all these advantages, NFV technologies and VNFs concept bring a
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great opportunity to CSPs, by opening the path to a new “as-a-service”
business model, where VNF's can be offered as a service to enterprises, on
demand basis. This enhance the business scope of CSPs, as now CSPs can
offer VNFs as a service, along with the application services. The enter-
prises also get the benefits from this “VNF's as-a-service” concept, because
they get the opportunity to out-source their network-based services, which
are currently running as hardware middle-boxes.

1.2 Opportunities and challenges

The concept and collaborative work on NFV was established in 2012 when
a number of the world’s leading Telecommunication Service Providers
(TSPs) (AT&T, BT, Deutsche Telekom, Orange, Telecom Italia, Tele-
fonica and Verizon) started their joint work to develop the required stan-
dards for NFV as well as to share their experiences of its development and
early implementations [1]. They selected the European Telecommunica-
tions Standards Institute (ETSI) to be the home of the Industry Specifi-
cation Group for NFV (ETSIISG NFV) [1]. Even with all the anticipated
benefits, and despite the immense speed at which it is being accepted by
both academia and industry, NFV is still in early stages. Therefore, for
a CSP to offer VNF's as a service, there are many research questions that
need to be addressed and standard practices which should be established.

For a CSP, to achieve the expected benefits from NFV, the physical re-
sources of the cloud infrastructure should be used efficiently. Therefore,
from the CSP’s perspective, the efficient management and orchestration of
VNF's is crucial for the success of the business. This brings the requirement
of a cloud management framework for VNFs and the cloud infrastructure
related operations: provisioning, configuring, maintaining and scaling of
the VNFs, as well as configuring and updating of the cloud network.

Cloud resource allocation process is the most challenging responsibility
of a cloud management platform. The cloud resources allocation includes
allocation of computing resources (i.e, CPU, memory, etc.) and allocation
of network resources (i.e, bandwidth). Existing work on cloud resource
allocation for VMs are not suitable for cloud resource allocation for VNFs
for several reasons [11].

First, traditionally enterprises outsource their application services to the
CSP by requesting physical resources (VMs) to run these services. The
client request comes as number of VMs required along with the required
specifications of the VMs (i.e, CPU and memory needed). Therefore, the
work on the cloud resources management were focused on provisioning of
one or more VMs in the cloud, as requested by the client. However, for
the VNFs, the client request for a VNF comes with the specification of the
expected traffic rate. The CSP is responsible for deciding number of VNF
instances needed to process the expected traffic rate and the specifications
of the VMs that are going to host the VNF instances [9].
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Second, optimizing the placement of VMs in the cloud infrastructure for
the application services tend to be node-centric as VMs are end-points.
But optimizing the placement of VNFs is network-centric as their provi-
sioning are normally large middle points in a network [11]. Third, the
requests of VNF's normally involves service chains of VNFs rather than
individual VNFs. The placement of a service chain requires, initially the
allocation of computing resources (cpu, memory, etc.) for the VNFs, which
is basically selecting servers to place the VNFs. Then the allocation of
network resources (bandwidth) which is basically selecting paths to route
traffic flow from one VNF to next VNF in the chain, within the cloud [11].
More over, most of the existing work on cloud resources allocation, con-
sider only a part of the problem, by optimizing either host or bandwidth
resources, but do not provide an integrated view of multiple optimization
objectives (i.e, computation, storage, networks, energy, etc.) [12].

All these reasons call for efficient resource allocation algorithms for cloud
resources allocation for VNF's, that can optimize different goals of the CSP
such as to maximize resource utilization, maximize number of requests
accepted, minimize energy consumption etc [12]. A popular technique
that has been used for cloud resources allocation is to model the resource
allocation as an Integer Linear Programming (ILP) optimization problem.
There is the intrinsic constraint that ILP optimization is a NP-complete
problem, and even when solutions are obtained for special classes and
smaller networks, it might be too slow for continued adjustments of the
system configuration causing inappropriate hysteresis in the reaction [13,
14]. We believe it is more realistic to look for good feasible configuration
and do not expect to find optimal solutions like the ones returned by ILP.
Therefore, we need to explore approximations techniques: heuristics based
resource allocation algorithms.

Following the initial instantiation, NFV enables new properties such as
elastic scaling: NFV allows the flexible increase and decrease of resources
(e.g., CPU, memory) allocated to each VNF instance, and the number of
VNF instances, to satisfy the dynamic and fluctuating service demands.
From the CSP’s perspective, to take the benefits from the elastic property
of VNF's and offer flexible services to the clients, the CSP should be able to
scale the VNFs and allocate/de-allocate resources dynamically.
This can ensure that the Service Level Agreements (SLA) are not violated
over the unpredictable traffic changes. Despite some initial efforts [15, 16],
scaling of VNF's still presents many open challenges.

One of the main challenge is to monitor the network and computing re-
sources and determine when to scale the VNF's according to the dynamic
traffic changes. Finding the exact VNF(s) or path(s) which are causing
the bottleneck is essential, because of the costs involved in running new
VNFs as well as the impact of reallocating VNFs and traffic flows that
may cause traffic lost [10]. Also, it is important to decide the right type
of the resources (computing and network) and amount of resources to in-
crease/decrease to achieve the demand and avoid the potential for some
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kind of thrashing phenomenon [10].

After deciding, when and what additional VNFs should be instantiated
to satisfy the dynamic traffic changes, the next challenge is the dynamic
resource re-allocation. As it is an on-line version of the resource alloca-
tion problem, we believe that it is more realistic to look for approximation
techniques: heuristics based resource allocation algorithms. The resource
re-allocation for the scaling requirements of existing VNF's happens during
the middle of the operations, where the already deployed VNF's are pro-
cessing traffic. Therefore, the resource re-allocation for the scaling require-
ments of existing VNFs is a time critical on-line problem. The solutions
have to be given in the order of milliseconds, so that the disturbances and
damages to current operations are minimal.

The second challenge is deciding the scaling method: i.e., whether
to use vertical scaling (allocation/release of computing and bandwidth re-
sources to/from a VNF instance) or migration (running VNF's are paused,
serialized and transferred to different servers with more resources) or hor-
izontal (installation/removal of VNF instances) [17]. In the case of hor-
izontal scaling, it needs a gateway and a dynamic load balancer that
distributes the traffic to multiple VNF instances, which makes it resource-
consuming, as well as complex. The third challenge is how to resolve
potentially conflicting optimization objectives: for instance, re-allocating
resources in a way that minimizes changes to current configuration and
therefore current network activities are minimally disturbed, and at the
same time optimize usage of computing and network resources [17].

Finally, for the dynamic resource allocation and dynamic load balancing,
it is important that both computing resources and network configuration
of the cloud infrastructure, should be able to be updated concurrently,
easily and fast [18]. However, dynamic update of network configura-
tion introduces a new challenge to the CSPs, because when updating the
network configuration, the CSPs should try to avoid any inconsistencies
in transient traffic and to minimize traffic lost, so that the SLAs are not
violated. In this context, we believe that use of Software Defined Network
(SDN) infrastructure is a very appropriate approach, as it allows recon-
figure the physical network easily. SDN is a networking technology that
decouples the control plane from the underlying data plane and consoli-
dates the control functions into a logically centralized controller [19]. NFV
and SDN are mutually beneficial, highly complementary to each other, and
share the same feature of promoting innovation, creativity, openness, and
competitiveness [20].

To summarize the challenges that CSPs face when offering VNF's as service,
and managing the cloud infrastructure:

1. Allocating computing and network resources

2. Monitoring the computing and network resources

3. Deciding the scaling requirements of VNFs
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4. Scaling VNFs
5. Dynamic load balancing for VNFs
6. Updating the network configurations

1.3 Research Objectives

As described in the previous section, there are many challenges that CSPs
face when offering VNFs as service; specifically with cloud infrastructure
related operations: provisioning, configuring, maintaining and scaling of
the VNFs, as well as configuring and updating of the cloud network. Each
of these challenges is a broad research topic that can be approached from
a number of perspectives and different academic disciplines. Therefore, it
is necessary to define and delimit the scope of the research presented in
the thesis, while identifying the objectives of the thesis clearly. The broad
objectives of the thesis are listed below:

1. The first objective of the research was to explore resource alloca-
tion approaches for VNFs. We looked into the problem of resource
allocation in two aspects: (1) initial resource allocation for new
VNFs requests and (2) resource re-allocation for scaling require-
ments of existing VNFs.

2. The second objective of the research was to explore VINF's scaling
methods: (1) vertical scaling (allocation/release of computing and
bandwidth resources to/from a VNF instance), (2) migration (run-
ning VNF's are paused, serialized and transferred to different servers
with more resources) and (3) horizontal (installation/removal of
VNF instances). We wanted to explore advantages as well as dis-
advantages of each of the method, in-terms of practicality of the
implementation as well as their effect on the cloud resources opti-
mization.

3. The third objective of the research was to explore on dynamic load
balancing mechanisms that can be used with the horizontal scaling
of VNFs. The concept of horizontal scaling as the is to create/delete
VNFs instances to satisfy the scaling requests, therefore the total
traffic has to be balanced between multiple instances. We wanted
to explore on dynamic load balancing approaches that can be used
in a cloud based infrastructure.

1.4 Research contributions

As explained in the previous section, there were three main objectives for
our research work. Each of the objective is a broad research topic that
can be approached from different perspectives and disciplines. Therefore,
it is essential to highlight the contributions of this thesis clearly, briefly
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describing the approaches we explored to achieve the objectives. The main
contributions of the thesis are described below:

Resource allocation for VNFs

The first set of contributions of this thesis, are to the context of resource
allocation for VNF's, which was the first objective of the thesis.

As mentioned earlier, existing work on cloud resource allocation for VMs
are not suitable for cloud resource allocation for VNFs. Optimizing the
placement of VMs in a cloud tend to be node-centric as VMs are end-
points. Optimizing the placement of VNFs is, in contrast, network-centric
— their provisioning normally involves service chains of VNFs rather than
individual VNFs. The placement of a service chain requires allocation of
server resources (for the VNFs), as well as allocation of network resources
(paths) to route traffic flow from one VNF to next VNF in the chain,
within the cloud. Most of the existing work on placement of VNFs, try
to optimize either host or bandwidth resource, but do not provide an
integrated view of computation, storage and networks optimization [21].
Furthermore, most of the research work on resource allocation focus only
on a part of the problem: resource allocation for the initial placement
of VNFs, but do not consider the resource re-allocation for the scaling
requirements of existing VNFs. Therefore, despite some initial efforts [15,
16, 22] the resource re-allocation for scaling VNFs presents still many open
challenges. For example, one of the challenges is how to achieve scaling:
i.e., whether to use horizontal, vertical or migration scaling technologies.
A second challenge is how to resolve potentially conflicting optimization
objectives: for instance, re-allocating resources in a way that minimizes
changes to current configuration and therefore current network activities
are minimally disturbed, and at the same time optimize usage of server
and network resources [17].

In this thesis, we focused on resource allocation for two situations: the
resource allocation for the initial placement of VNFs and (2) the resource
re-allocation for the scaling requirements of existing VNFs. Once the client
request for a set of VNFs has been accepted, the resource allocation for
the initial placement of these VNF's can be done in the order of minutes,
and then the new VNFs can be deployed accordingly. But the resource
re-allocation for the scaling requirements of existing VNFs happens dur-
ing the middle of the operations, where the already deployed VNFs are
processing traffic. Therefore, it is a time critical on-line problem. The
solutions have to be given in the order of milliseconds, so that the dis-
turbances and damages to current operations are minimal. Therefore, we
specifically explored the resource re-allocation for the scaling requirements
of existing VNF's problem in depth, as it is an interesting on-line resource
allocation problem. There are two aspects to look at the problem of re-
source re-allocation for the scaling requirements of existing VNFs. First,
is to monitoring the network and computing resources and determining
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when to scale the VNFs according to the dynamic traffic changes: scaling
triggers. Second is to re-allocating resource: increase/decrease resources
according to the changed traffic amount with minimal impact to the cur-
rent operations of the cloud. Our work in this thesis is limited to specifi-
cally the resource re-allocation process, we did not explore the problem of
scaling triggering.

We formulated the resource allocation problem as a set of Integer Linear
Programming (ILP) equations; we called it as the Network Function Cen-
ter Resource Management Problem (NFCRMP). It addresses both (1) the
initial resource allocation for new VNF's provisioning, and (2) the resource
re-allocation for the scaling of existing VNF's to support traffic changes.
For resource allocation for new VNFs, the goal was to minimize the re-
quired resources (i.e., number of servers, number of links, and average link
utilization). For resource allocation for scaling of existing VNF's, the aim
was to adjust the resources to satisfy the traffic changes and, at the same
time, minimize the number of configuration changes to reduce potential
service disruptions, and performance degradation.

We explored approximation approaches: heuristic based approaches to im-
plement the resource allocation algorithms that can give reasonable solu-
tions fast. First we used the Iterated Local Search (ILS) approach, be-
cause ILS is one of the most popular single-solution based meta-heuristics
due to its simplicity but at the same time powerful approach [23]. How-
ever, for the ILS based resource allocation algorithms to be more efficient,
they have to be designed with conditions based on the network archi-
tecture. In other words, efficiency of ILS procedure is not agnostic to
the network architecture. Therefore, we propose another heuristic based
approach: Genetic Programming (GP) to implement the resource al-
location algorithms. GP based algorithms are agnostic to the network
architecture, and can be used for any general network architecture. Also,
they are easy to implement and popular in general optimization domain.
Both the ILS and GP processes rely on either (1) a Depth First Search
(DFS) or (2) a random approach to find the initial solution. We compare
the performances of both ILS and GP approaches, using DFS and ran-
dom approaches as the baseline, for three types of network architectures:
4-fat tree [24], BCube [25] and VL2 [26]. We used a more realistic traf-
fic pattern generated based on [27]. To achieve scaling, we adopted to a
simple scaling procedure: first we tried to allocate resources for a vertical
scaling, and if it failed, then we tried to allocate resources for a migration
scaling. Our results showed that both ILS and GP algorithms can decide
server and network allocations for hundreds of policies (around 400 VNF's)
in a 128 server environment and find reasonable solutions in milliseconds.
Moreover, ILS produced better results than GP for all three types of ar-
chitectures. Furthermore, we implemented the ILP formulation of the
NFCRMP in CPLEX [28]. We used the optimal solutions found by ILP
implementation to have a comparison with the solutions provided by the
approximation approaches: ILS and GP. Both the ILS and GP found the
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optimal solutions in a small scaled network in the order of micro-seconds
while ILP took hours.

VNFs scaling methods

The second set of contributions of this thesis, are to the context of VNF's
scaling methods, which was the second objective of the thesis.

As mentioned earlier, the existing research work on scaling of VNFs is
very limited, most of them focus only on the complexities of the scaling
technologies. They do not consider the resource allocation or optimiza-
tion aspects of these scaling technologies. Therefore, we explored different
scaling approaches and the optimization perspectives: (1) vertical scal-
ing (allocation/release of computing and bandwidth resources to/from a
VNF instance), (2) migration (running VNFs are paused, serialized and
transferred to different servers with more resources) and (3) horizontal
(installation/removal of VNF instances).

We conducted experiments to check how the optimization is effected by
the scaling approach and the optimization objectives. We expanded our
ILS algorithms with the three scaling methods. We considered a single
optimization goal: maximize the accepted bandwidth of scaling requests
while ensuring a new constraint: that the delay experienced by each packet
of an accepted scaling request (inside the NFC), does not exceed its rel-
ative deadline. We compared the different characteristics of the solutions
provided by scaling approaches such as accepted bandwidth ratio, resource
utilization etc.

The Vertical scaling approach had the highest percentage of bandwidth
rejection: average of 49.6%, and therefore accepted lowest number of scal-
ing requests. The next was migration scaling approach, with and average
of 3.89% of bandwidth rejection. The horizontal scaling approach had the
lowest percentage of bandwidth rejection: average of 0.12%, and accepted
highest number of scaling requests. Therefore, it can be considered as
the best scaling approach, in terms of the optimization goal of accept-
ing maximum bandwidth requests as much as possible. Our observation is
that vertical scaling is always limited by the spare computational resources
of the VNF’s current server, and therefore, vertical scaling is rarely able
to satisfy the scaling requirements. The Migration scaling and horizon-
tal scaling have more freedom in scaling, and able to satisfy most of the
scaling requirements.

Dynamic load balancing for VNFs

The third set of contributions of this thesis, are to the context of dynamic
load balancing mechanisms, which was the third objective of the thesis.

With VNFs, the load balancing approaches should look beyond the uni-
directional flows and take care of the sessions: which is bi-directional traffic
flows between two nodes. This is because, unlike layer 3 forwarding, many
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VNF's such as firewall, proxy, and VPN perform stateful packet process-
ing: session based packet processing [29]. Therefore, these VNFs require
affinity, where traffic for a given flow must reach the instance that holds
that flow’s state [30]. In such cases, splitting traffic to balance the load, re-
quires extra measures to preserve affinity. Existing solutions that maintain
affinity mostly depend on state migration techniques: moving the relevant
state from one instance to another. However, these systems require that
NF vendors adopt a new programming model or add a non-trivial amount
of code to existing NF implementations. Therefore, we argue that it is
more appropriate to design the load balancing algorithm in a way that the
algorithm itself maintain affinity and handle states and sessions, so that
the requirement of state migration is avoided. We proposed a load balanc-
ing algorithm that controls sessions, using consistent hashing techniques.

We have conducted preliminary experiments for a small scaled network,
to verify the accuracy and basic performances of the algorithm. We have
considered three scenarios: (1) the system starts with more than one VNF
instance, so from the beginning the traffic has to be balanced between
multiple VNF instances, (2) the system starts with more than one VNF
instance, but some VNF instances are removed dynamically, so the load
has to be re-balanced and (3) the system starts with n VNF instances,
but more VNF instances are added dynamically, so the load has to be re-
balanced. Our preliminary results show that the proposed session-aware
hashing algorithm balances load evenly (within 1.5% of ideal) within a
reasonable time frame.

1.5 Organization and thesis outline

The dissertation has seven chapters. Each chapter is written on a major
topic of the thesis and is aimed to be self contained with a short intro-
duction, content, and a summary. The writing style followed in the thesis
is a mixture of both active and passive voice. Most of the dissertation
derives content from published research papers describing the work done
by collaborative teams. Hence, the word “we” refers to the author and
when applicable, additionally includes the co-authors and collaborators in
research papers.

The rest of the dissertation is organized as follows:

Chapter 2 provides an overview of the background material necessary for
the thesis. It introduces a concrete terminology for NFV concepts and
technical concepts useful to understand the thesis work. It then provides
an overview of the state of the art for cloud management and offering
VNFs as a service. The content of the chapter is compiled from several
external sources cited appropriately when necessary.

Before moving to the research aspects of the thesis, Chapter 3 introduces
the experimental environment, data-sets and use cases we used to explore
different management aspects of VNFs. We present our experimental NF'V
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platform: the Network Function Center (NFC) in Section 3.1 and its ar-
chitecture in Section 3.2. Section 3.3 describes the five key modules of
the NFC Management System: (1) Resource Manager, (2) Topology Man-
ager, (3) Flow Manager, (4) Elasticity Manager and (5) Rules Generator.
Each module is responsible for different tasks, such as: resource allocation,
monitor cloud infrastructure, decide scaling requirements, scale VNF's, up-
dates the network configurations, etc. Conceptually, the Resource Man-
ager, Topology Manager, Elasticity Manager and Flow Manager can be
seen as management applications. The Rules Generator as an extension
to the network operating system. Section 3.4 presents the use cases and
data set generation process, that was necessary for design and evaluation
of the algorithms used by the management system.

After the introduction to our experimental environment, Chapter 4 to
Chapter 6 focus on describing our research contributions; specifically on
achieving each objective of the research.

Chapter 4 describes our work on exploring resource allocation approaches
for VNFs. It introduces the Resource Manager module of NFC, which is
respounsible for resource allocation for: (1) provisioning new VNF's requests
and (2) scaling out/in of existing VNFs. Section 4.1 formulates the Net-
work Function Center Resource Management Problem (NFCRMP) as a
set of ILP equations for new VNFs provisioning and dynamic scaling, and
then present the evaluation of the implementation in CPLEX [28]. Section
4.2 and Section 4.3 describe the ILS based and GP based implementations
of the Resource Manager respectively, with a comprehensive analysis for
each approach based resource allocation algorithms. In Section 4.4, we
present an overall analysis for the Resource Manager module, comparing
different approaches: (1) DFS, (2) Random, (3) ILP, (4) ILS and (5) GP.

Chapter 5 discusses our work on exploring VNFs scaling approaches, in-
terms of the practical aspects as well as optimization aspects. We focus
on three different scaling approaches for VNFs including: (1) vertical, (2)
migration and (3) horizontal. Section 5.2.1 presents the extended version
of the ILS based resource allocation algorithm for scaling, with three scal-
ing methods. Section 5.2.3 presents an analysis on how the optimization
of the algorithm is effected by the scaling approach and the optimization
objectives.

Chapter 6 discusses our work on exploring dynamic load balancing ap-
proaches for VNFs, where we propose a load balancing algorithm with
session control, based on consistent hashing techniques. We introduce ba-
sic consistent hashing concepts in Section 6.1 and describe the proposed
session-aware load balancing algorithm in Section 6.2. Section 6.3 and
Section 6.4 present the experimental set-up that we used to evaluate the
proposed session-aware load balancing algorithm and the preliminary re-
sults of the evaluation. Furthermore, Section 6.5 discusses our work on
exploring dynamic network configurations update mechanisms, where we
present two mechanisms found in existing works: (1) configuration rules
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are updated in all switches simultaneously, and (2) versioning tags are
used to maintain per-flow consistency [31]. It provides a simple compari-
son between the two methods, in terms of the packet lost.

Finally, in Chapter 7 we present the overall summary of the thesis, in-
cluding the key results and conclusions, and then discuss possible future
perspectives for offering VNFs as a service as well as managing cloud for
VNFs.

This thesis also contains two appendix sections. In Appendix A, we list
the relevant publications by the author. In Appendix B, we describe the
data modelling process to generate the use cases and data sets, and present
the links to resources of the thesis (data, code, examples).



CHAPTER 2

Background

“I came, I saw, I conquered.”

Julius Caesar

With the introduction of cloud computing technologies, enterprises have
been able to outsource their application services (i.e, web servers, mail
servers etc.) to the CSP by requesting physical resources (VMs) to run
these services. The client request for the VM comes with the specifications
of the VM (i.e, CPU and memory needed). Therefore, the initial work on
the cloud management were focused managing aspects relevant to VMs;
such as provisioning of VMs, balancing the work load among the VMs etc.

However, with the recent developments in NFV technologies, enterprises
are able to outsource their network services too. CSPs are able to of-
fer VNFs as a service to clients. The cloud management for VNFs has
gained a significant attention from both industry and academia in the re-
cent years. The client request for the VNF comes with the specifications
of the expected traffic load, and therefore, based on the traffic load, the
CSP has the flexibility to decide the specifications of the VM that needs
to implement the VNF. Furthermore, over the time, with dynamic traffic
changes, CSP has to allocate/re-allocate resources for the existing VNF's,
or instantiate new VINFs to satisfy the new traffic demand and guarantee
that the SLAs are not broken. Therefore, the research work on cloud man-
agement for VNFs are focused on aspects such as provisioning of VNF's,
scaling of VNFs, traffic load balancing among VNF instances etc.

In this chapter, we provide the necessary research background for under-
standing the work presented in the dissertation. Furthermore, we present
our review of the existing literature related to the cloud management,
specifically for offering applications and VNFs services. Also, we present

15
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a summary of how the work in this thesis is different from the existing
work. The main objectives of this chapter are to:

1. Establish a consistent terminology for VNFs concepts : Section 2.1

2. Describe the technical concepts necessary to understand the algo-
rithms and methods presented in the dissertation: Section 2.1

3. Present an overview of the state of the art for the cloud management:
Section 2.2

4. Discuss the difference between existing work and the work presented
in the thesis: Section 2.3

2.1 Virtualized Network Functions (VNFs)
concepts

The Cloud Computing, often referred to as simply “the cloud”, is the
delivery of on-demand computing resources, everything from applications
to data centers, over the Internet on a pay-for-use basis [8]. Cloud based
applications or Software as a Service (SaaS) run on distant computers
in the cloud that are owned and operated by a Cloud Service Provider
(CSP) and that connect to users’ computers via the Internet and, usually,
a web browser [8]. Platform as a Service (PaaS) provides a cloud based
environment with everything required to support the complete life cycle
of building and delivering web based applications without the cost and
complexity of buying and managing the underlying hardware, software,
provisioning, and hosting [8]. Infrastructure as a Service (IaaS) pro-
vides companies with computing resources including servers, networking,
storage, and data center space on a pay-per-use basis [8]. Therefore, cloud
computing enables many organizations to outsource the management of
the physical infrastructure for their IT needs to CSPs.

Moving applications from private data centers to cloud centers and out-
source them to the cloud, is complicated by the fact that many of these ap-
plications require network-based services such as firewalls, load balancers,
intrusion detection systems, proxies, etc. Network Functions Virtu-
alization (NFV), by making the NF a first-class virtual citizen, holds
strong promises for both enterprise data centers and sophisticated net-
work services. NFV proposes to virtualize the network based services, tra-
ditionally running on proprietary hardware appliances, and instead have
them operate as virtual software components on commoditized hardware:
Virtualized Network Functions (VNFs) [1]. In addition to reduc-
ing costs and time to market, NFV enables new properties such as elastic
scaling: NFV allows the flexible increase and decrease of resources (e.g.,
CPU, memory) allocated to each VM instance, and the number of VM in-
stances, to satisfy the dynamic and fluctuating service demands. As such,
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the enterprises are able to outsource their NFs processing to the cloud and
CSPs are able to offer VNF's as a service to the clients.

To offer VNF's as a service in the cloud and guarantee that the Service
Level Agreements (SLA) are not violated over the traffic changes, the
CSP should be able to scale the allocated resources dynamically. There-
fore, both computing resources and network configuration of the cloud,
should be able to be updated concurrently [18]. In this context, use of
Software Defined Network (SDN) infrastructure is a very appropriate
approach, as it allows reconfigure the physical network easily. In SDN; the
control plane is decoupled from hardware data plane and given to a soft-
ware application called a controller. The controller is the core of an SDN
network and it lies between network devices and applications. Any com-
munications between applications and devices have to go through the con-
troller. A controller uses SDN protocols for the communications between
the controller platform and data plane devices [19, 20]. SDN paradigm
brings several benefits to network management compared to static tradi-
tional methods. It is much easier to introduce new concepts to the network
through the controller, as it is easier to change and manipulate than us-
ing a fixed set of commands in proprietary network devices. With the
centralized approach of network configuration and network management,
operators do not have to configure all network devices individually to make
changes in network behaviour.

Scaling of computing resources for a VNF instance, can be done in dife-
frent ways: (1) vertical, (2) migration and (3) horizontal [7]. Vertical
scaling is allocation/release of host and bandwidth resources to/from
a VNF instance, whereas horizontal scaling is installation/removal of
VNF instances or paths. Vertical scaling is a basic feature of VMs, which
adjusts logical partitions of multiple metrics (i.e. CPU, Memory, Band-
width). So vertical scaling of VNFs can be done adjusting the existing
VNF instance with new metrics of capacities for CPU, Memory and Band-
width. However, horizontal scaling changes the number of VM instances,
which involves running VNF instances on two or more separate VMs hosted
on the same or different servers. Further, live migration of VNF instances
can be employed to scale both bandwidth and host resources. With live
migration of VNFs [32], the running VNFs are paused, serialized and
transferred to a different servers with more resources, where they are once
again scheduled for execution with additional resources.

When considering the real implementation, existing work has shown that
each of the aspects has advantages as well as disadvantages [7]. Vertical
scaling is better than horizontally scaling because: (1) needs less time
for reconfiguration as it needs only metrics adjustment, (2) does not need
additional software licenses, (3) does not affect the quantity of VNF in-
stances and (4) does not introduce a coordination or a traffic distribution
among multiple VNF instances. However, vertical and migration scaling
is limited by capacity of the server or link, because it cannot increase
the resources more than the maximum capacity. Also, the consolidation
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after vertical scaling is more complicated because the fragments caused
by it are likely to be irregular. Even though the live migration of VNFs
is a complex process, it offers many benefits from the resource manage-
ment perspective, enabling global scheduling objectives and consolidating
VNF's on a minimal number of servers. In the case of horizontal scaling, it
needs a gateway and a dynamic load balancer that distributes the traffic
to multiple VNF instances, which makes it resource-consuming, as well as
complex.

2.2 State of the art

After the brief description of concepts and terminologies relevant to the
work presented in this thesis, in this section, we will present our review of
the existing literature related to the offering VNFs as a service and cloud
management.

We have explored existing work on cloud management in two aspects: (1)
resource management for placement and provisioning and (2) load balanc-
ing in the cloud infrastructure. With respect to cloud resource manage-
ment for placement and provisioning, we specifically looked in to following
two aspects: (1) early work on resource management for traditional VM
placement and (2) recent work on resource management for VNFs place-
ment. With respect to load balancing in the cloud infrastructure, we
specifically looked in to following two aspects: (1) early work on cloud
load balancing with SDN and (2) recent work on load balancing between
VNF instances.

In this Section, we describe the existing literature related to the offering
VNFs as a service and cloud management in following aspects:
1. Work on offering VNF as a service: Sub-section 2.2.1

2. Early work on resource management for traditional VM placement:
Sub-section 2.2.2

3. Recent work on resource management for VNFs placement: Sub-
section 2.2.3

4. Early work on cloud load balancing with SDN: Sub-section 2.2.4

5. Recent work on load balancing between VNF instances: Sub-section
2.2.5

2.2.1 VNFs as a service

NFV has gained a significant attention from both industry and academia
along with SDN. [33] and [12] discusses the NEF'V concepts, state-of-the-art
and research directions. Virtualized data centers have become a promis-
ing infrastructure for data storage for large volume of data, and provide
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the platform for deployment of diversified network functions and applica-
tions. They are envisioned to provide better management flexibility, lower
cost, scalability, better resource utilization and energy efficiency [34-36].
With the popularity of virtualized data centers, [6] discusses the possibility
of outsourcing enterprise middle-box processing to the cloud. FeatureAPI
[37] introduces a policy language to map policies onto the underlying cloud
network, so that external feature providers can easily provide NFs to en-
terprises. [38] highlights the customer expectations when they outsource
the NFs. Stratos [10] is the first work that presents a framework for ex-
ternal NF providers. Stratos assumes a cloud service exists and to handle
traffic flows and redirections, it associates each middle-box with a virtual
switch that provides network functionalities.

Traditionally NF's have been implemented as hardware based middle-boxes.
CoMB [39] proposes an architecture which implements these middle-boxes
as software-based, virtualized entities. [40, 41] present platforms to man-
age software-based middle-boxes. Provisioning requests from cloud’s users
involves service chains of VNFs [29, 42-44]. The placement of these VNF
chains in physical machines and use of the network bandwidth are there-
fore crucial for performance of a NFC [45].

Many mechanisms have been proposed to support elasticity of VNF's through
horizontal, vertical scaling and migration techniques. Amazon Auto Scal-
ing Group [46] offers tenant controlled horizontal scaling based on tenant-
defined thresholds. Microsoft Azure [47] adapts the number of instances
based on time, history, or size of workload. CloudScale [48] and PRESS
[49] scale by vertical scale: releasing or allocating CPU resources while
ignoring network resources. However, vertical mechanisms are limited by
the capacities of individual physical machines [50]. Furthermore, changing
memory or computing resources on-the-fly is not supported in most cases.
Therefore, CSPs do not encourage vertical scaling mechanisms. Migration
is a popular technique to achieve elastic VNF placement and better server
and network consolidation. Many studies have assessed the overhead of
live migration [32, 51-53]. More recently, Xen [54] and VMWare [55] have
implemented live migration of VMs that involves extremely short down-
times ranging from tens of milliseconds to a second. [56] pointed out that
migrating an entire OS and all of its applications as one unit allows to
avoid many of the difficulties faced by process level migration approaches,
and analyzed the benefits of live migration.

2.2.2 Cloud resources management for VM placement

Initial work on the cloud resources management were focused on provision-
ing of one or more VMs in the cloud, as enterprises were only outsourcing
their application service to the CSP, not the network services. From the
CSP perspective, optimizing the placement of VMs in the cloud tended to
be node-centric as VMs are end-points. In the very beginning, the work
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on the VM placement problem typically assumed that VMs are assigned
static shares of a server’s managed resources (i.e, CPU and/or memory).

VM placement and provisioning

When a request for the provisioning of one or more VMs is made by a client,
the CSP’s resource management system schedules the VMs by placing
them onto servers. Selection of the servers is decided according to the
CSP’s current management objectives. Given that the initial work on
the problem assumed that VMs are assigned static shares resources, the
placement of VMs onto servers is related to the vector bin packing problem,
which can be used to model static resource allocation problems where the
resources used by each item are additive. To achieve server consolidation,
the optimal placement is one where the items: VMs are packed into a
minimum number of bins: servers, such that the vector sum of the items
received by any bin does not exceed the bins resource limit. The vector
bin packing problem and its variants are NP-hard problems [57]; thus,
heuristic algorithms were proposed [9)].

Most of the proposed heuristics are based on greedy algorithms using sim-
ple rules, such as First Fit Decreasing (FFD) and Best Fit Decreasing
(BFD). [58] explored variants of the FFD algorithm and proposed a new
geometric heuristic algorithm which scales to large data centers without a
significant decrease in performance. [59] proposed a new generic algorithm,
Reordering Grouping Genetic Algorithm (RGGA), which they apply to
VM placement. [60] propose a solution for VM placement that accounts
for the ability of some hypervisors to dynamically allocate a pool of un-
reserved CPU and memory resources between a set of contending VMs.
[61] provides a solution for private clouds in which VMs are placed on
those servers that already host VMs with complementary workloads. [62]
propose a VM placement solution in which multiple VMs are consolidated
and provisioned together, in order to exploit the statistical multiplexing
amongst the workload patterns of the individual VMs.

More recent works have recognized that, provisioning requests from clients
involve sets of VMs, rather than single VMs. In such cases, placement of
the set of VMs is not only constrained by the collated resource require-
ments, but also by a range of possible placement constraints indicated by
the client. [63] consider a range of constraints relating to full deployment,
anti-collocation and security; [64] consider demand constraints (i.e., lower
bounds for VM resource allocations) and placement constraints (i.e., col-
location and anti-collocation); [65] considers similar constraints, adding
some that indicate whether a set of VMs can be deployed across more
than one data center in a geo-distributed cloud environment. [66] assume
elastic services realized by a fixed constellation of VMs, but where the
number of VM instances and their size varies in line with demand. A
different perspective is taken by [67], who outline a solution that focuses
on the resiliency of VMs comprising a multi tiered application, by seeking
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to spread the VMs across as many servers as possible. [68] addressed a
similar problem: that of making VMs resilient to k server failures, so that
if up to k such failures occur in the cluster there is a guarantee that this
VM is relocated to another server without relocating other VMs. [69] uses
an Integer Linear Programming approach (ILP), and takes in the order
of minutes to decide the placement of 1024 VMs in the data center of 16
servers.

Network aware virtual machine placement

VMs access a server’s network interface to communicate with other ap-
plication and system components. Hypervisors treat a servers network
interfaces as unmanaged resources. They do not provide a guaranteed al-
location to individual VMs, relying on the fact that VMs are unlikely to
simultaneously maximize their use of their nominally assigned bandwidth
[70]. However, this means that there is potential for VMs to affect each
others’ performance due to contention for network interface resources [71].
Recent works have addressed how to mitigate this risk by taking this con-
tention into account when placing VMs. [72] applies the Stochastic Bin
Packing problem formulated by [73] for bandwidth allocation to bursty
network traffic flows to VM placement. They treat a VMs demand as a
random variable and propose an online VM placement algorithm where the
number of PMs required to place a set of VMs on is within the optimum.

There is this intuition fact, it is beneficial to place VMs that interact with
each other in closer proximity in the data center network topology. [69]
formulates heuristics that minimize the aggregate traffic rates perceived
by switches in the data center network by placing VMs with large mutual
bandwidth closer to each other. Evaluation results using production traces
show a significant performance improvement. Similar approaches to min-
imizing data center traffic have been proposed [64, 74, 75]. [76] addresses
network-aware VM placement; their Min Cut Ratio-aware VM Placement
(MCRVMP) formulation and heuristics solution incorporate constraints of
complex network topologies and dynamic routing schemes. They also take
into account the time varying nature of traffic demands, so that the place-
ments found have sufficient spare capacity across the network to absorb
unpredicted traffic bursts. [77] addresses data center traffic minimization
via an online algorithm that exploits multi-path routing capabilities and
live migration of VMs. They argue that it is important to not only optimize
the placement of VMs but also jointly optimize the routing between servers
hosting interacting VMs. [78] extends the network-aware VM placement
problem to geo-distributed clouds, proposing algorithms that select which
data center to place a VM in, and, within that data center, which server to
place it on. [79] approaches network-aware placement from the perspective
of a client, who has leased a group of VMs with set inter-VM bandwidth
limits. Their vBundle system facilitates the exchange of bandwidth allo-
cations between VMs in a group as traffic patterns evolve. [80] focuses on
network interface of machines as the network resource to optimize with the
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server resources. They assume that the network interconnecting the ma-
chines has full bisection bandwidth, so that considerations of bandwidth
of the links are put aside.

Dynamic VM placement

Following initial placement, VMs can be re-scaled vertically (allocation
of additional server and network resources), according to the dynamic
changes in the demand for the applications that they host [81, 82]. How-
ever, vertical scaling is limited by capacity of the server, because it cannot
increase the resources more than the maximum capacity. Therefore, a
more powerful method of scaling is, live migration of VMs [32], whereby
running VMs are paused, serialized and transferred to a different servers
with more resources, where they are once again scheduled for execution.
Hence, the dynamic VM placement works focus on finding new placements
for the VMs: servers that satisfy the new demand, so that the existing VMs
can be migrated to the new servers.

Many studies have proposed optimizations for VM migration process [83—
86]. [87] propose a first-fit heuristic that dynamically remaps VMs to
servers in a manner that minimizes the number of servers required to
support a workload at a specified allowable rate of SLA violations. [82, 88]
propose Kingfisher, a set of techniques for VM rescaling, replication and
live migration. They formulate the problem as a set of ILP equations
and propose a greedy heuristic solution. [89] presents a technique that
minimizes the number of VM migrations and migrates VMs with strong
utilization correlation to different servers in order to minimize the risk of
future server overload. [90] proposes a novel formulation of the VM live
migration problem: they cast it as a Stable Marriages problem [91] and
argue that, it is more appropriate than optimization based formulations
that dictate “an arbitrary way of resolving the conflicts of interest between
different stakeholders in order to achieve a global notion of performance
optimality”. They propose a polynomial time algorithm that generates an
egalitarian stable matching between VMs and servers.

From a more practical point of view, researchers have observed that in
public clouds the same VM instance types can exhibit significantly differ-
ent performance levels depending on characteristics (processor, I/O speed
etc.) of the hosting server [92, 93]. Therefore, the heterogeneity should
be taken into account by VM migration optimization approaches. [94]
addresses the use of VM migration in the context of cloud bursting for
enterprise applications, specifically on the decision regarding which VMs
to migrate to an external cloud environment and when. [95] also addresses
cloud bursting; they analyse a more generalised task scheduling problem
formulated as a Markov Decision Process and show that a threshold based
scheduling policy is optimal. [96] addresses VM migration and VM consol-
idation, but from the perspective of how VM migration and VM consolida-
tion are used to satisfy dynamically changing management objectives that
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are enforced via policies. Their study addresses how to change between the
conflicting goals of minimizing SLA violations (by spreading VMs across
more servers) and minimizing power consumption (by consolidating VMs
on fewer servers).

2.2.3 Cloud resources management for VNF placement

As opposed to the traditional VM placement in the cloud, optimizing the
placement of VNFs is network oriented as they are middle points in the
network. Provisioning requests of VNFs involves service chains of VNFs
rather than individual VNFs. The placement of a service chain requires,
first, the allocation of computing resources (cpu, memory, etc. )for the
VNFs, which is basically selecting servers to place the VNFs. Then the
allocation of network resources (bandwidth) which is basically selecting
paths to route traffic flow from one VNF to next VNF in the chain, within
the cloud.

VNF placement and provisioning

The VNF Placement is a NP-hard optimization problem, as it can be
seen as a generalization of the VM allocation problem which is NP-hard
[69]. Execution time is crucial in VNF placement because VNFs deals
with dynamic on-line environments where arrival time of service requests
is not known in advance. Therefore, to avoid delay when solving the VNF
Placement problem, the execution time of the proposed algorithms should
be minimized. Hence, instead of optimal solutions which take long time
to find, heuristic-based solutions are preferred because they try to find
a good solution while keeping execution time low. Similar to the VM
placement problem, the early work on VNF placement considered to be
an off-line problem: a static resource allocation approach that focus only
on the initial placement of VNF's in the cloud [11].

[97] provides an ILP formulation with implementation in CPLEX and a
dynamic programming based heuristic to solve larger instances of the VNF
placement problem. Their model can be used to determine the optimal
number of VNFs and to place them at the optimal locations to optimize
network operational cost and resource utilization. [98] proposes a set of
heuristic algorithms: a greedy algorithm and a tabu search based local
search to solve both the VNF placement VNF scheduling in a coordinated
way. [99] proposes a heuristic based approach to minimize the number of
deployed VNF instances. Their heuristic approach dynamically and effi-
ciently guides the search for solutions performed by ILP solvers in order
to quickly arrive at high quality, feasible ones. The authors of [100] solve
the problem of VNF service chain placement using a mixed ILP and give
insights into trade offs between legacy and NFV based Traffic Engineering
(traffic engineering goal alone and traffic engineering goal combined with
NFV infrastructure cost minimization goal). [101] presents an analytic
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model for the VNFs forwarding graph, with the aim to optimize the exe-
cution time of the deployed network services. [102] presents and evaluates
an energy aware Game Theory based solution for resource allocation of
VNFs within NFV environments. Authors consider each VNF as a player
of the problem that competes for the physical network node capacity pool,
seeking the minimization of individual cost functions. [103] formulates the
problem of composing, computing and networking VNFs to select those
nodes along the path that minimizes the overall latency (i.e. network and
processing latency). The optimization problem is formulated as a Resource
Constrained Shortest Path problem on an auxiliary layered graph accord-
ingly defined. [104] formulates the VNFs composition problem as a non-
linear optimization model to accurately capture the congestion of physical
resources. They also propose a dynamic pricing strategy of network re-
sources, proving that the resulting system achieves a stable equilibrium
in a completely distributed fashion, even when all virtual operators inde-
pendently select their best network configuration. [105] provides a mixed
ILP formulation to determine the placement of services and routing of the
flows, and heuristics to provide the opportunity to perform the placement
incrementally without imposing a significant penalty.

The main contribution of [106] is a deterministic competitive on-line algo-
rithm called ACE (Admission control and Chain Embedding). This work
attends to the problem of admitting and embedding a maximum num-
ber of service chains, i.e., a maximum number of source-destination pairs
which are routed via a sequence of to-be-allocated, capacitate NFs. [107]
presents a joint design which optimally deploys NFs and allocates physical
resources satisfying end-to-end requests with generated routes. They pro-
pose a mixed ILP approach, which simultaneously identifies physical nodes
to be deployed with NFs and generates routes sharing common physical
resources realizing end-to-end requests. [108] proposes two algorithms to
map service function chains to the network infrastructure while allowing
possible decomposition of NFs. The first algorithm is based on ILP which
minimizes the cost of the mapping based on the network service chains
requirements and infrastructure capabilities. The second one is a heuristic
algorithm to solve the scalability issue of the ILP formulation. It targets
to minimize the mapping cost by making a reasonable selection of the
NFs decompositions. [109] formulates the virtual deep packet inspection
placement problem as a cost minimization problem. The cost captures
the different objectives the operator is pursuing (cost for the traffic man-
agement or cyber security targets such as the number of inspected flows
and operational cost constraints such as license fees, network efficiency
or power consumption). [14] proposes rounding-based heuristics to solve
VNFs forward graph embedding, that tries to minimize ISP’s Operating
Expenditures (OPEX). They provide bi-criteria results, approximating the
objective function by a constant factor while violating the size constraint
by a constant factor as well. [110] proposes a mixed ILP formulation to
find its optimal solution in the VNF placement context, and then followed
by a two-player pure-strategy game model which captures the competi-
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tion on physical resources between network function instance allocation
and routing.

Dynamic VNF placement

Similar to the VM placement problem, following initial placement, VNF's
can be re-scaled vertically (allocation of additional computing and network
resources), to offer infrastructure resources for client’s traffic on an on-
demand basis [111]. The work on scaling of VNFs is limited and same
as for the initial placement, existing solutions for scaling also look for
approximations.

[111] introduces the elastic virtual network function placement problem
and presents a model for minimizing operational costs in providing VNF
service. In the proposed model, the elasticity overhead and the trade-
off between bandwidth and host resource consumption are considered to-
gether. They propose a heuristic based solution called Simple Lazy Fa-
cility Location (SLFL) that optimizes the placement of VNF instances in
response to on-demand workload. [15] works with VNF chains and solves
the initial placement problem by iterating over initial input chains. Scaling
is achieved by duplicating full instances of VNF chains and the optimiza-
tion is very dependent on the data center architecture. [16] pushes the
locality to the limit and tries to deal with the optimization of one VNF at
a time, independent of the location in the chain of VNFs. They take as in-
put a set of individual VNFs demands and to achieve scaling, they might
migrate, duplicate or remove VNF instances. [112] presents an on-line
heuristic algorithm to allocate VNF instances effectively, achieving min-
imum overall bandwidth occupancy, VM usage and migration overhead
while accepting as many requests as possible. Their algorithm provide
two alternatives for VNF scaling: (1) an incremental deployment, where
the extra part of traffic is treated as another service chain and (2) an uni-
fied deployment, where the service is treated entirety and reallocate all the
traffic by invoking the heuristics again.

2.2.4 Cloud load balancing with SDN

The initial research on load balancing in cloud infrastructure, was about
balancing the work load across available cloud resources. To alleviate
heavy-traffic network flux and to reduce the risk that a single server (or
VM) will be overloaded, CSPs adopted dynamic load balancing mecha-
nisms and distributed the traffic across multiple servers (or VMs). Cur-
rent dynamic traffic load balancing methods tend to be flow-level based,
where the traffic distribution is decided according to the traffic flows [29].
A traffic flow is a uni-directional sequence of packets sent from a source to
a destination, where one flow is distinguished from another by its header
contents: 5 tuple (source and destination ip addresses, source and desti-
nation port addresses, and the protocol) [29].
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SDN based load balancing has become popular among CSPs, where the
SDN controller acts as the load balancer. There are two main reasons
for the popularity of SDN controller based load balancers. First, with
the SDN concepts, the whole network is managed with a centralized con-
troller, which has the full view of the network, including up to date traffic
statistics. Therefore, a SDN controller can use the traffic statistics and
decide the traffic distribution efficiently [113]. Second, SDN allows easy
re-configuration of the network, therefore the network can be easily con-
figure to route the traffic according to the load balancing decisions [18].

[113] is the first work on SDN controller based load balancers. The authors
present Plug-n-Serve, a module residing within an OpenFlow controller
that is capable of performing load balancing over unstructured networks,
aiming to minimize average response time of HT'TP servers. Plug-n-Serve
load balance HTTP requests by gathering metrics about CPU consump-
tion and network congestion on the network links, which makes its load
balancing algorithm to select the appropriate server to direct requests,
while controlling the path taken by packets on the network. [114] proposed
an OpenFlow based load balancing approach that aims to pro-actively load
balance traffic from clients to servers by slicing the IP address space into
trees that isolates a set of clients to a set of servers. The work uses the
concept of server weighting, which defines a fixed portion of the clients
to a server on the network. To do so, it is proposed the extensive use
of wild-cards, which may reduce forwarding performance and create man-
agement issues, as shown in [115]. Furthermore,the proposed solution
requires that in certain conditions (network topology changes or server
weight updates); a part of the network traffic passes through the con-
troller, which could cause serious scalability problems that may lead the
network controller to collapse. [116] proposed an OpenFlow based load
balancer for Fat-Tree networks that supports multi-path forwarding. Their
proposal aims to recursively find the current best path from a source to a
destination, load balancing the network by enabling the use of alternate
paths at runtime, minimizing network congestion.Their algorithm works
only on networks that operate on the Fat-Tree topology and use network
metrics for choosing the optimal path. The work from [117] proposes an
architecture to enable in-network load balancing of multiple services using
OpenFlow. Their proposal relies on a set of SDN controllers on top of
a Flow Visor instance [118], where each controller is responsible for load
balancing the traffic of a specific service. The authors have focused on the
architecture, so there is no information about particular service implemen-
tation, while the experiment does not fit real-world scenarios. The idea
of using a set of controllers to handle exact services might be interested
in some specific cases, but has the drawback of not permitting multiple
services to be handled by a single controller, which is the most common
situation of SDN deployment.
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2.2.5 Load balancing between VNF instances

Traditionally CSPs have been adopting dynamic load balancing approaches
to reduce the risk of a single server (or VM) being overloaded. They try to
distributed the traffic load across multiple servers (or VMs). In the sim-
ilar manner, there are situations where CSPs should adopt dynamic load
balancing mechanisms for VNFs, to balance the load among multiple VNF
instances. For an example, when using horizontal scaling as the scaling
approach, VNF instances are added /removed to satisfy the scaling require-
ment. However, when new VNF instances are added/removed, the traffic
has to be balanced among the remaining VNF instances dynamically.

As mentioned in previous sub-section, most of the current load balancing
algorithms for cloud are flow-level based, where a traffic flow is a uni-
directional sequence of packets sent from a source to a destination. How-
ever, with VNFs, the load balancing approaches should look beyond the
uni-directional flows and take care of the sessions: which is bi-directional
traffic flows between two nodes. This is because, unlike layer 3 forward-
ing, many VNF's such as firewall, proxy, and VPN perform stateful packet
processing: session based packet processing [29]. Therefore, these VNFs
require affinity, where traffic for a given flow must reach the instance that
holds that flow’s state [30]. In such cases, splitting traffic to balance the
load, requires extra measures to preserve affinity.

Most of the existing solutions that maintain affinity depend on state migra-
tion techniques: moving the relevant state from one instance to another.
Frameworks like Split/Merge [119] and OpenNF [30] facilitate fine-grained
transfers of internal NF state to support fast and safe reallocation of flows
across NF instances. In these frameworks, a scenario-specific control ap-
plication decides: (1) when internal NF state should be moved; i.e., after
a new NF instance is launched; (2) what subset of state should be moved;
this is usually defined in terms of a flow space fspace, i.e., all state per-
taining to flows originating from a particular subnet; and (3) between
which pair of NF instances the transfer should occur. A central controller
then asks the source NF instance to export the state pertaining to flows
in fspace. This state is provided to and imported by the target NF in-
stance. In Split/Merge, the state is transferred directly from source NF
instance to target NF instance, while in OpenNF the state passes through
the controller. Finally, the controller updates the forwarding state in a
SDN switch, such that traffic in fspace is now forwarded to target NF in-
stance. However, the drawback of both of these approaches: Split/Merge
and OpenNF, is NFs must be modified prior to run time to support such
export/import operations. These systems require that NFs vendors adopt
a new programming model or add a non-trivial amount of code to existing
NF implementations. More ever, they require large number of rule sets in
hardware switches.

E2 [120] presents a VNFs scheduling framework that supports affinity
based NF placement while trying to minimize the traffic across switches



28 Background

as well as deploying dynamic scaling of NF instances. The authors intro-
duce a high-performance and flexible data plane where Click [41] modules
(i.e., classifier and TCP re-constructor, etc.) are embedded to accelerate
the packet processing. The VNFs in E2 need to explicitly call the API
exported by the data plane to achieve the benefit from such data paths.
E2 uses a novel migration avoidance strategy in which the hardware and
software switch act in concert to maintain affinity. Their strategy does not
require state migration, and it is designed to minimize the number of flow
table entries used on the hardware switch to pass traffic to NF instances.
They consider a NF with a corresponding range filter [X,Y)— > A. When
A is split into A and A’, the range can be partitioned into [X, M)— > A
and [M,Y)— > A’. Additionally, to maintain affinity, any existing flows in
[M,Y) must also be sent to A. E2 uses a three phase strategy. First, upon
splitting, the range filter [X,Y") in the hardware switch is left unchanged,
and the new filters (two new ranges plus exceptions) are installed in the
E2D of the server that hosts A (i.e., as software defined filters). Sec-
ond, as existing flows gradually terminate, the corresponding exception
rules are removed. Finally, once the number of remaining exception rules
falls below some threshold, the new ranges and remaining exceptions are
pushed to the switch. However, E2 migration scheme works only for NFs
that operate on state that is easily partitioned or replicated across NF
instances; e.g., per-flow counters, per-flow state machines and forwarding
tables. They do not address the consistency issues that arise when global
or aggregate state is spread across multiple NF instances.

2.3 Remarks

So far, in the Background chapter we have discussed the existing work
related to the research work in this thesis in depth and how the work
in this thesis is motivated by the existing work. In this section we will
summarize how the work in this thesis is different from the existing work.

As stated in the Introduction section, the first set of contributions of this
thesis, are to the context of resource allocation for VNFs. As explained in
early sections, existing work on cloud resource allocation for VMs are not
suitable for cloud resource allocation for VNFs.

First, the client request for VMs comes with the specifications of the VM
(i.e, CPU and memory needed), therefore, the resource allocation on the
cloud was focused on provisioning of VMs. On the other hand, the client
request for VNFs comes with the specifications of the expected traffic
load, and therefore, based on the traffic load, the CSP has to decide the
specifications of the VM that needs to implement the VNF, and after that
deploy the VNF's according to the placement decisions.

Second, Optimizing the placement of VMs in a cloud tend to be node-
centric as VMs are end-points. Optimizing the placement of VNFs is,
in contrast, network-centric — their provisioning normally involves service
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chains of VNFs rather than individual VNFs. The placement of a service
chain requires allocation of server resources (for the VNFSs), as well as
allocation of network resources (paths) to route traffic flow from one VNF
to next VNF in the chain, within the cloud. Most of the existing work on
placement of VNFs, try to optimize either host or bandwidth resource, but
do not provide an integrated view of computation, storage and networks
optimization [21].

Third, most of the research work on resource allocation focus only on a
part of the problem: resource allocation for the initial placement of VNF's,
but do not consider the resource re-allocation for the scaling requirements
of existing VNFs. Therefore, despite some initial efforts [15, 16, 22] the re-
source re-allocation for scaling VNFs presents still many open challenges.
For example, one of the challenges is how to achieve scaling: i.e., whether
to use horizontal, vertical or migration scaling technologies. A second chal-
lenge is how to resolve potentially conflicting optimization objectives: for
instance, re-allocating resources in a way that minimizes changes to cur-
rent configuration and therefore current network activities are minimally
disturbed, and at the same time optimize usage of server and network
resources [17].

In this thesis, we focused on resource allocation for two situations: the
resource allocation for the initial placement of VNFs and (2) the resource
re-allocation for the scaling requirements of existing VNFs. Once the
client request for a set of VNFs has been accepted, the resource alloca-
tion for the initial placement of these VNFs can be done in the order
of minutes, and then the new VNFs can be deployed accordingly. But
the resource re-allocation for the scaling requirements of existing VNF's
happens during the middle of the operations, where the already deployed
VNFs are processing traffic. Therefore, the resource re-allocation for the
scaling requirements of existing VNFs is a time critical on-line problem.
The solutions have to be given in the order of milliseconds, so that the
disturbances and damages to current operations are minimal. Therefore,
we specifically explored the resource re-allocation for the scaling require-
ments of existing VNFs problem in depth, as it is an interesting on-line
resource allocation problem.

The second set of contributions of this thesis, are to the context of VNF's
scaling methods. Again, as explained in early sections, the existing re-
search work on scaling of VNFs is very limited, most of them focus only
on the complexities of the scaling technologies. They do not consider the
resource allocation or optimization aspects of these scaling technologies.
Therefore, we explored different scaling approaches and the optimization
perspectives: vertical, migration and horizontal.

The third set of contributions of this thesis, are to the context of dynamic
load balancing mechanisms. With VNFs, the load balancing approaches
should look beyond the uni-directional flows and take care of the sessions:
which is bi-directional traffic flows between two nodes. This is because,
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unlike layer 3 forwarding, many VNFs such as firewall, proxy, and VPN
perform stateful packet processing: session based packet processing [29].
Therefore, these VNF's require affinity, where traffic for a given flow must
reach the instance that holds that flow’s state [30]. In such cases, splitting
traffic to balance the load, requires extra measures to preserve affinity. Ex-
isting solutions that maintain affinity mostly depend on state migration
techniques: moving the relevant state from one instance to another. How-
ever, these systems require that NF vendors adopt a new programming
model or add a non-trivial amount of code to existing NF implementa-
tions. Therefore, we argue that it is more appropriate to design the load
balancing algorithm in a way that the algorithm itself maintain affinity
and handle states and sessions, so that the requirement of state migration
is avoided. We proposed a load balancing algorithm that controls sessions,
using consistent hashing techniques.



CHAPTER 3

Network Function Center
(NFC)

“A man may die, nations may rise and fall, but an idea lives

on.”

John F. Kennedy

With the emerging technologies of NFV, CSPs are able to offer VNF's
as a service to enterprises. However, for a CSP to offer such services,
many research questions still need to be addressed. When an enterprise
outsources its NFs to a CSP, the CSP is responsible for deciding:

e Where the initial VNFs should be instantiated

e What, when and where additional VNF's should be instantiated to
satisfy the dynamic traffic demands (scaling)

e How to update the network configurations with minimum latency,
packet loss, and the impact on network performances

We have built an experimental platform, called Network Function Center
(NFC), to study management issues related to the combined management
of VNFs. The architecture and the complexity of our experimental NFC
platform are assumed to be simpler than those defined by existing stan-
dardization bodies (e.g., ETSI, IETF) [1]. This simplification allowed us
to focus on specific research aspects and conduct experiments.

In this chapter, we introduce our experimental platform: the NFC in fol-
lowing aspects:

1. Description of the overall functionality of the NFC: Section 3.1

31
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2. Description of the NFC architecture, and an overview of the NFC
Management System: Section 3.2 and 3.3

3. Description of the data sets and use cases used to explore different
aspects of VNFs Management: Section 3.4

3.1 NFC Functionality

As shown in Figure 3.1, the main concept of NFC is a cloud infrastruc-
ture and a service provider that offerers VNF's as a service to enterprises.
Therefore, the owner of the cloud infrastructure can be considered as the
cloud service provider of the NFC. The enterprises who are out-
sourcing their network based functions to the NFC can be considered as
the clients of the NFC.

csp

=t

Offer VNFs as a service ~

Clients

ENTERPRISE ENTERPRISE ENTERPRISE ENTERPRISE

Out source NFs
Figure 3.1: NFC business model

Contrary to traditional NFs that are hardware based middle-boxes, de-
ployed at specific locations in the network, NFC assumes a NF to be
implemented by a VM that can be deployed in any server in the CSP net-
work. As shown in Figure 3.2, to receive services from NFC, a client needs
to provide three specifications to NFC:

1. Types of NFs required and interconnectivity between these NFs (i.e,
redundant eliminator - firewall - proxy)

2. Expected traffic load to be processed by these NFs (i.e, 200 GB)

3. Ingress and egress locations (i.e, internet to web server)
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&= _—
Expected traffic: Redundant  Firewall Proxy Web Server
200GB Traffic

Eliminator

Figure 3.2: Example of a client request

The abstractions used to solicit this information from a client will depend
on the NFs. The specification could be complex as a high-level descrip-
tion of a virtualized network where each network’s endpoint is connected
to predefined Virtual Networks [121]; or a simple specification as a set of
NFs chains through which different classes of traffic must go through [29]
(e.g., all traffic from 10.0.0.0/24 must traverse IDS-Firewall-Proxy). The
specifications can be (automatically or semi-automatically) translated into
a collection of Directed Acyclic Graphs (DAG) connecting sources to des-
tinations of data flows in which the intermediate nodes in a graph path
represent NF's that must be applied to the traffic flow going through the
path. The first and the last node in a path are the source and the desti-
nation of the flow and may or may not be hosted inside the NFC. Each
DAG must be accompanied with capacity information for each node (i.e.,
function capacity requirements) and information about traffic character-
istics that will go through the different paths (e.g., traffic class, expected
throughput). As an illustration, we assume a NFC that provides VNFs
represented as chains of services.

As shown in Table 1 of Figure 3.3, the client request comes to the NFC in
the form of:

e Policy (chain of required NF's)
e Ingress and egress locations of client’s traffic flow

e Fxpected volume of the traffic flow
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Table 1

Client | Traffic Flow Policy Expected Traffic
Clientl | 192.168.0.0/24 - *, HTTP Load Balancer — Firewall - Proxy | 200 GB

Client2 | 172.0.0.0/24-178.0.0.0/24, * | IDS — Proxy 300 GB
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Table 2 LB P1

Policy Physical Sequence

Load Balancer — Firewall - Proxy | S1-S3-Svr1-LB-Svrl-FW-Svr1-53-Svr3-P1-Svr3-S3-S2
IDS - Proxy S$1-S4-Svr5-IDS-Svr5-P2-Svr5-S4-S2

Figure 3.3: Network Function Center

Once the client request is accepted by the NFC, the client’s traffic is redi-
rected to the NFC to traverse the NFs. The NFC must guarantee that the
client’s traffic traverse all the NF's in the correct order. In addition, the
NFC is expected to increase/decrease the number of VNFs instances and
paths for the traffic flow according to the application’s dynamic needs and
agreements with the client.

3.2 NFC Architecture

The overall architecture of a NFC consists of two main components: a
physical infrastructure, and a management system for the infrastructure.

The physical infrastructure comprises a network and a server infrastruc-
ture. The network infrastructure provides connectivity for all communi-
cations occurring in the NFC and between the NFC and its users. The
server infrastructure hosts all NFs. Servers in the NFC are used to de-
ploy the virtual machines (VMs) where NFs run. A NF is implemented
as a software on a VM. Similar to recent work in data centers [18], to
make more efficient utilisation of the NFC resources, we allow both com-
puting resources and network configurations to be managed concurrently
and assumes a Software-Defined/OpenFlow infrastructure [122] to easily
reconfigure the physical network.

Figure 3.3 represents a snapshot of a NFC. It depicts the placement of
VNF's to implement the two policy chains in Table 1 of the Figure. Ta-
ble 2 of the Figure shows the physical sequences of switches and VNFs
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the client’s traffic will go through. Client 1 wants his HT'TP traffic flow
coming from 192.168.0.0/24 to any destination to go through the policy
chain of Load Balancer-Firewall-Proxy VNFs. To grant his request a vir-
tual Load Balancer service and a virtual firewall service are implemented
on two VMs at Server 1 and a virtual proxy service is implemented on a
VM at Server 3. Client 2 wants any type of his traffic flow coming from
170.0.0.0/24 to destination 178.0.0.0/24 to go through the policy chain of
IDS-Proxy VNFs. To grant his request a virtual IDS service and a proxy
service are implemented on two VMs at Server 5.

The network architecture depicted in the figure represents a tree-like archi-
tecture typical of datacenters, but our NFC architecture does not assume
any particular network structure. As network element reconfiguration be-
comes a more active part of the management, these standard architectures
may change for the benefit of the management. The management system
for the infrastructure is described in more detail in the next section.

3.3 NFC Management System

The goal of the NFC Management system is to automate arrangement, co-
ordination and management of NFC components to maximize on-demand
client requests whilst guaranteeing QoS. Figure 3.4 gives an overview of
the proposed NFC Management System. The NFC Management System
requires three high-level inputs:

1. Client Requirements given as a set of policies,
2. Topology data and Traffic

3. Resource constraints

Each client’s requirement is annotated with the traffic flow’s ingress and
egress locations, flow properties (source destination IP addresses, source
destination ports), expected volume of traffic traversing each NF in the
policy. Topology data and traffic describes the placement of current VNF's,
paths between servers, links between switches, available capacities of links,
switches and servers. Resource constraints specify (1) server and switch
resources (CPU, memory, TCAM sizes, etc.) and (2) bandwidth capacity
for each link in the topology.

Process of NFC Management System

The process NFC Management System is built around five key modules:
(1) Resource Manager, (2) Topology Manager, (3) Flow Manager, (4) Elas-
ticity Manager and (5) Rules Generator.

Once a new client request is submitted, Resource Manager takes decisions
on the placement of VNFs and paths for the client’s traffic to follow in-
side the NFC, based on the resource optimization goals of the NFC. The
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Figure 3.4: NFC Management System

Resource Manager is also called by the Elasticity Manager. The Elasticity
Manager monitors the resources utilization. According to parameters such
as network traffic, applications’ requirements and agreements with clients,
the Elasticity Manager takes decisions on when to increase/decrease the
instances of VNFs and paths for the traffic flows. Once the Elasticity
Manager makes its decision, the information is passed to the Resource
Manager which then determines the possible changes to the placement of
the VNF's instances and paths, based on the resource optimization goals
of the NFC. The Topology Manager, Flow Manager, and Rules Generator
configure the network according to decisions taken by the Resource Man-
ager and Elasticity Manager. The five key modules are described in the
following sub-sections.

3.3.1 Resource Manager

For each new policy request, the Resource Manager decides the accep-
tance or rejection, based on the current network traffic, topology data,
constraints, client requirements and the resource optimization goals of the
NFC. The server resources requirement for each VNF to serve the expected
traffic rate, can be derived using the expected traffic rate and the resource
profile of the VNF type. A resource profile of a VNF includes:

e Processing capacity of the VNF

e Required minimum number of CPU cores
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e Bandwidth demand transformation by the VNF (compress or am-
plify the traffic)

The bandwidth demand transformations are associated with traffic-scaling
NFs. For an example, certain NFs, such as Redundant eliminators and
Caches compress traffic, while other NF's such as packet multiplication and
encryptions amplify the traffic.

For each VNF in the requested policy, considering the optimization goals
of the NFC, the Resource Manager identifies:

1. Either a non-used VM that can be re-used to run the required NF
or a server where a new VM can be created to run the required NF.

2. A path for traffic flow between every two NF's directly connected
in the policy, based on expected volume of traffic specified in client
requirement and the available bandwidth of links in the NFC.

If the Resource Manager is able to find server and network resources for
all the VNFs in the policy request, then the policy request is accepted.

With respect to the resource allocation decisions, there are many linear
and non-linear factors that might affect the NFC: number of servers used,
links used, links congestion, traffic lost, delay, cost of VNFs software li-
cense and number of policies accepted etc. Therefore, for the new policy
requests provisioning, the resource allocation decisions can be taken with
different optimizing goals, for instance: (1) minimize the server and net-
work resources usage, (2) minimize the overall operational cost and (3)
minimize the number of VNF instances used and (4) maximize the num-
ber of policies accepted etc.

In addition to the new policy requests provisioning, responding to requests
from the Elasticity Manager to scale resources, the Resource Manager
decides a new set of VNF's assignments and paths for new traffic demands
of existing policy requests, based on the resource optimization goals of
the NFC. In NFV context, scaling of a VNF instance can be done as: (1)
vertical, (2) migration and (3) horizontal scaling. In a situation of dynamic
resource allocation for scaling, the transition from one configuration of
VNFs and flow assignment to another could create transient congestion
which could degrade applications performances. Therefore, it introduces
potentially conflicting optimization objectives: for instance, re-allocating
resources in a way that minimizes changes to current configuration and
therefore current network activities are minimally disturbed, and at the
same time optimize usage of server and network resources [17].

The combination of all these factors has to be considered by the Resource
Manager to decide resource allocation. A popular technique that has been
used for VM allocation [69] and network management [29] is to model
resource allocation as a mixed Integer Linear Programming (ILP) opti-
mization problem. There is the intrinsic constraint that ILP optimization
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is a NP-complete problem, and even when solutions are obtained for spe-
cial classes, it might be too slow for continued adjustments of the system
configuration causing inappropriate hysteresis in the reaction. Therefore,
we explored the more realistic approach of looking for a good feasible con-
figuration fast. We have explored approximations techniques, specifically
we have modelled the problem as finding the best fitted solution according
to an Iterated Local Search (ILS) model and a Genetic Algorithmic (GA)
model of the problem. Details of the implementations can be found in
Chapter 4.2 and Chapter 4.3.

3.3.2 Topology Manager

The Topology Manager module is responsible for maintaining up to date
state of the physical infrastructure of the NFC. It keeps an inventory of all
functions running or dormant in the system. It knows about all physical
paths between servers and paths used by all the traffic flows. It also
maintains information about current traffic and service demands. It will
be the source of data for any analytic needed to be done about the NFC.
It is also in charge of the instantiation or re-use of the necessary VNFs
as well as the provisioning needed according to the instructions given by
the Resource Manager. Creation of VNFs may include deploying a VM
in a server, installing the necessary software and starting the necessary
processes required by the VNFs.

3.3.3 Flow Manager

The aim of the NFC is to provide flexibility in regard to VNFs placement
which can be placed anywhere in the network. However, this complicates
the network configuration, because the sequence of switches in the phys-
ical network that the traffic from a client has to follow, may have loops
(the same traffic flow may visit the same server for two different functions
more than once). If so, the combination of original source and destination
information of a packet, is not sufficient to identify the VNF's this packet
has gone through so far. Making the situation more complicated, many
VNFs modify packet headers. Therefore, the original source and destina-
tion information of a packet can be changed during the flow [29]. Hence,
it is essential for the Flow Manager module to find mechanisms to come
up with unique identification for the state of a packet in a flow path. This
identification can be done through tunnelling mechanism [121] or can be
added as a tag into headers of packets going through the VNF.

In the most general case, this traffic identification must be agnostic to
the physical topology of the NFC, so that changes in the topology do not
require changes to the Flow Manager. However, special Flow Managers
could be designed to take advantage of particular classes of topologies. If
the topology has the tree structure similar to current data centers archi-
tectures, identification of flows can be specialized knowing that traffic will
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go up and down the hierarchy. This can reduce the number of identifiers
needed to differentiate the different paths.

3.3.4 Elasticity Manager

One of the main objectives of NFC is to support scaling VNF's according
to the network traffic and dynamic needs of applications. Therefore, the
Elasticity Manager monitors the network and servers to determine when to
scale the resource allocation to meet the traffic demands according to the
SLAs and QoS agreements. Finding the exact VNF(s) or path(s) which
are causing the bottleneck is essential because of the costs involved in
running new VNFs as well as the impact reallocating functions and flow
paths may cause in service quality and traffic lost due to switching delays.
Also, it is important to decide the right type an amount of resources to
increase/decrease to achieve the demand and avoid the potential for some
kind of thrashing phenomenon.

The most basic method to scale is to monitor system-level metrics (server
and links utilization) and determining whether to scale based on a thresh-
old. However, threshold-based algorithms do not capture the complex
interaction among multiple resource parameters (server and links) and the
potential diversity of traffic types. Determining the right set of thresh-
olds for them to simultaneously achieve the right SLA and QoS for each
type of traffic would be difficult. Often the thresholds are set based on
ad-hoc measurements and experiences. This is an obvious situation where
machine learning techniques, in particular reinforcement learning, must
be explored to learn the behaviour of the applications and automatically
adapt to changes. The learning algorithm can be augmented with heuris-
tics to improve the responsiveness and guide the algorithm itself.

3.3.5 Rules Generator

The Rules Generator module generates data plane configuration for the
switches to route traffic through the appropriate sequence of VNFs from
their source to destination according to client requirements. The Rules
Generator is the module that directly takes advantage of SDN and Open-
Flow, therefore, it is as an extension to the network operating system.
Because the NFC controls the switches, routing inside the NFC network is
done entirely using OpenFlow VLAN and MPLS tags adapting the ideas
from [29]. This is done to avoid all the problems that modifications of
packet headers by middle boxes can cause [123]. Rules Generator uses the
identification tag issued by the Flow Manager to infers mappings between
the incoming and outgoing traffic flows of a network service and to identify
the traffic flow that a packet belongs to. Tags are added at ingress point
before the traffic has been gone through any VNF, thus letting the traffic
be identified by the Source and Destination headers and they are removed
at the egress point.
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Furthermore, when updating the network configuration as a result of scal-
ing needs, the Rules Generator follows the per-flow consistency introduced
in [31] to avoid any inconsistencies in transient traffic and reduce traffic
lost. The update mechanism works by stamping every incoming packet
with a version number and modifying every configuration so that it only
processes packets with a set version number. To change from one configu-
ration to next, it first populates the switches in the middle of the network
with new configurations guarded by the next version number. Once that
is completed, it enables the new configurations by installing rules at the
perimeter of the network that stamp packets with the next version num-
ber. This method makes network updates faster and cheaper, by limiting
the number of rules or switches affected.
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3.4 Datasets and use-cases

While exploring management aspects of VNF's, it was important to have
more realistic use cases and datasets that can be used for the design
and evaluation of the algorithms, with respect to the cloud management.
Therefore, we needed data on:

1. Potential NFs chains (policies)
2. Traffic flows passing through these NFs chains
3. Different data center architectures for NFC

However, there are no publicly available real data sets on VNF chains and
traffic that pass through VNF chains. Therefore, we combined a data set
from a study about physical middle-boxes in enterprises [6] to generate
our policies and a data set from a study about HTTP traffic [27] in the
Internet to generate our traffic. Since in this thesis we did not explore
the problem of monitoring the resources and determining when to scale
the VNFs according to the dynamic traffic changes, we used the HTTP
traffic in [27] and replicated the traffic changes over a day with relevant
scaling triggers. We made some assumptions to derive the required data.
We developed four programs to model the gathered data and generated
the required data. All gathered data and data modelling programs are
publicly available at [124].

In this Section we describe the data and use-cases generating process.

Policy requests

When generating policy requests for the NFC, the main factor to be con-
sidered is the type (e.g., small, medium, large size network) of the enter-
prise/user, that is requesting the policies. Depending on the type of the
enterprise/user, the total number of VNF's required, the number of VNFs
in a policy and types of the VNFs in the policy can vary. Also, with this
information, we can calculate the total number of policies requested by
the enterprise/user. The policies used in our experiments are generated
based on a study about physical middle-boxes used in enterprise networks
[6], which includes figures about types of enterprise networks, number and
types of middle-boxes used in them. For our experiments, following statis-
tics given in [6], we have assumed that we are going to provide services
for 4 large enterprise networks, each enterprise network having 100 VNF's.
According to [6], large scaled enterprises, with 10k-100k hosts can have
average: 46 IP Firewalls, 9 Application firewalls, 0 WAN optimizers, 6
Proxies, 3 Gateways, 6 VPNs, 7 Load Balancers, and 23 IDS/IPS with
the total of 100 VNFs. The number of VNFs in a policy follows a trun-
cated power-low distribution with exponent 2, minimum 2 and maximum
7. Therefore, for our scenarios, we derive a set of policies for each en-
terprise, where each set of policies have 100 VNFs and altogether all the
policies of four enterprises have 400 VNF's.
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Traffic flows

When simulating traffic, we need traffic data where owners (enterprises/users)
of the flows can be identified, so that we can differentiate the traffic passing
through each policy. The traffic load that each enterprise/user is expect-
ing can vary according to their target applications [125]. We consider
web-based applications and for the traffic, we rely on empirical data from
previous studies [27]. The data set includes an HTTP traffic breakdown of
30,000 users for a day which is measured at three different vantage points
of an Italian ISP over a period of 24 hours. The traffic breakdown re-
ports traffic for every 2 hours. We focused on the traffic statistics of 4
enterprises: Megaupload, LeaseWeb, Level3 and Limelight.

In a data center, traffic changes happen throughout the day and according
to the amount of these changes, the VINF's should be scaled to satisfy the
current traffic demand. A limitation of the HTTP traffic data we are
using is that, information was collected at every two hours. Therefore, the
first challenge is interpreting the pattern of traffic change over two hours.
According to [2], as shown in Figure 3.5, traffic changes on usual days
happen gradually over time. Even at events where traffic will be increased
in a huge amount (elephant flows), as shown in Figure 3.6, the change
happens gradually over a 15 minutes time period [3]. As such, although
sudden traffic changes may occur within few minutes, we have assumed
a uniform traffic increase/decrease over the 2 hours time intervals and
generated the traffic graph in Figure 3.7. It shows traffic flow for 24 hours
in 10MBps units for each enterprise. To reflect scaling requirements of all
situations, we spread the increase/decrease of number of VNFs (needed
for the full 2 hour traffic change) over 2 hours and increase/decrease the
capacity of one VNF at a time.

Traffic Matrix, Sum of Entries

(GBJs)
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T™M Magnitude

50000 55000 60000 65000 70000 75000

Figure 3.5: Traffic changes of the data center in the magnitude (Time in
seconds) [2]

The second challenge is identifying the policies affected by each enterprise
traffic change. For each enterprise we have x number of policies generated
and each policy has a unique traffic passing through its VNFs. When there
is a change in total traffic for that enterprise, it is very unlikely that traffic
passing through all policies of that enterprise contributed to the change.
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Figure 3.6: Traffic statistics from World Cup 2006 [3]

Therefore, we randomly select a subset of policies from that enterprise, as
the policies affected by the traffic change.

Scaling patterns

After selecting the policies affected by each enterprise traffic change, the
first challenge is deciding which VNF from each policy, needs to be scaled
to satisfy the new traffic demands. An earlier study [10] shows that in
general no two VNF's will be simultaneously and equally bottlenecked and
scaling only the bottlenecked VNFs in the policy at a time is the best
strategy. Hence, assuming the conditions in [10], we randomly select a
VNF from each policy as the bottlenecked VNF for which the resource
allocation needs to be increase/decrease.

The second challenge is, from the identified VNF instance to scale, how
many instances we should add/remove to satisfy the new traffic demand.
The server resources requirement for each VNF to serve a specific amount
of traffic, can be derived using the inbound traffic rate and the resource
profile of each VNF type. A resource profile for each VNF includes: (1)
processing capacity of the VNF, (2) required minimum number of CPU
cores and (3) bandwidth demand transformation by the VNF. Here, we
are making an assumption: the traffic flowing through the VNF instance
is proportional to the capacity of the VNF instance and it is the same
for all types of VNFs. Therefore, the initial capacity unit requirement of
all types of VNFs is assumed to be the same. Also, we assume that the
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Figure 3.8: Data center architectures used for NFC

VNFs do not compress or amplify the traffic, hence, there is no bandwidth
demand transformation by VNFs.

Another study [7] shows that if we add more than one instance at a time,
we are usually adding more than what is needed and wasting resources.
Therefore, we calculated a traffic change threshold to find how many in-
stances we should add/remove to accommodate traffic change, and as ex-
plained earlier, we add/remove one instance at a time. This resulted in 42
significant events over the 24 hours of traffic data. There are two types of
events: (1) when the traffic change has reached the threshold, resources
have to be reallocated to increase/decrease at least one VNF instance or
(2) when the traffic change has not reached the threshold, modify the
bandwidth usages of the links of the paths that were effected by the traffic
change, to reflect the new traffic amount passing by.
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Data center architectures for NFC

We evaluated the performance of the resource allocation algorithm assum-
ing three different data center network architectures for NFC: (1) k fat
tree, (2) VL2 and (3) BCube shown in Figure 3.8.

A k-ary fat-tree network [24] has three layers: a core layer, an aggrega-
tion layer and a Top-of-Rack (ToR) layer. It consists of (k/2)? core layer
switches and k pods of k switches, half of them aggregation switches and
the other half ToR. Each switch in a pod has k ports. The ToR switches
are at the bottom of the pod, and the aggregation switches in the middle.
In one pod, each ToR switch is connected to every aggregation switch.
Each aggregation switch connects to (k/2) switches on the core layer. We
have used a 4 fat-tree architecture, which has 20 switches: 4 pods of 4
switches and 4 switches in the core layer. For a NFC with 64 servers,
8 servers are connected to each ToR switch. The network consists of 96
links and 13770 paths connecting all source destination server pairs with
maximum number of hops for a path of 6.

The VL2 architecture [26] shares many features with a k-ary fat-tree archi-
tecture, but the main difference is the core tier and aggregation tier form
a Clos topology: the aggregation switches are connected with core one’s
by forming a complete bipartite graph. We have used a VL2 architecture
with 12 switches. For a NFC with 64 servers, the network consists of 88
links and 33760 paths connecting all source destination server pairs with
maximum number of hops for a path of 6. In the BCube architecture [25],
servers are considered part of the network infrastructure, i.e., they forward
packets on behalf of other servers.

A BCube is a recursively defined structure. At the level 0, a BCubeg
consists of n servers that connect together with a n-port switch. A BCubey,
consists of n BCube i 1y connected with n* n-port switches. We have used
a BCubey architecture where there are 8 BCubegs, each connected to 8
switches in the next level switches and form the BCube;. Each s server of
BCubegs is connected to switch s of BCube;. For a NFC with 64 servers,
the network consists of 128 links and 7168 paths connecting all source
destination server pairs with maximum number of hops for a path of 4.






CHAPTER 4

Resource allocation for
VNFs

From the perspective of a CSP, offering VNF's as a service includes the pro-
cess of taking decisions on resource allocations, for the new policy requests
provisioning as well as scaling of existing policy requests. Optimizing the
placement of VNF's is network-centric: their provisioning are middle-points
in a network. Provisioning requests of VNFs normally involves service
chains of VNFs and the placement of a service chain requires, first, the al-
location of computing resources (cpu, memory, etc.) for the VNFs, which
is basically selecting servers to place the VNFs. Then the allocation of
network resources (bandwidth) which is basically selecting paths to route
traffic flow from one VNF to next VNF in the chain, within the cloud
[11]. Most of the existing work on placement of VNFs, try to optimize
either host or bandwidth resource, but do not provide an integrated view
of computation, storage and networks optimization [21].

Furthermore, most of the research work on resource allocation focus only
on a part of the problem: resource allocation for the initial placement
of VNFs, but do not consider the dynamic resource re-allocation for the
scaling requirements of VNFs. The resource re-allocation for the scaling
requirements of existing VNFs happens during the middle of the opera-
tions, where the already deployed VINF's are processing traffic. Therefore,
the resource re-allocation for the scaling requirements of existing VNFs
is a time critical on-line problem. The solutions have to be given in the
order of milliseconds, so that the disturbances and damages to current
operations are minimal. Despite some initial efforts [15, 16] the dynamic
resource re-allocation for scaling VNF's presents still many open challenges.
For example, one of the challenges is deciding the scaling method: whether
to use vertical scaling (allocation/release of host and bandwidth resources
to/from a VNF instance) or migration (running VNFs are paused, serial-
ized and transferred to different servers with more resources) or horizon-

47



48 Resource allocation for VNF's

tal scaling (installation/removal of VNF instances). A second challenge is
how to resolve potentially conflicting optimization objectives: for instance,
re-allocating resources in a way that minimizes changes to current config-
uration and therefore current network activities are minimally disturbed,
and at the same time optimize usage of server and network resources [17].

In this thesis, we argue that Integer Linear Programming (ILP), tradition-
ally used to optimize VM allocation and network management in cloud
data centers [69], is not feasable for online scaling of VNFs in response
to traffc changes. This is because solving ILP problems can take hours
[13, 14]. Instead, one can find suitable approximation algorithms for the
optimization. We have looked at two different approximation techniques:
heuristic based approaches that can be used to find a good feasible con-
figuration fast.

First, we investigate our hypothesis, by proposing an Iterated Local Search
(ILS) approach to implement the resource allocation algorithms. ILS is
one of the most popular single-solution based meta-heuristics due to its
simplicity but at the same time powerful approach [23]. However, for the
ILS based resource allocation algorithms to be more efficient, they have to
be designed with conditions based on the network architecture. In other
words, efficiency of ILS procedure is not agnostic to the network architec-
ture. Therefore, we propose another heuristic based approach: Genetic
Programming (GP) to implement the resource allocation algorithms. GP
based algorithms are agnostic to the network architecture, and can be used
for any general network architecture. Also, they are easy to implement and
popular in general optimization domain. Both the ILS and GP processes
rely on either (1) a Depth First Search (DFS), or (2) a random approach
to find the initial solution. We compare the performances of both ILS and
GP approaches, using DFS and random approaches as the baseline. To
achieve scaling, we adopted to a simple scaling procedure: first we tried
to allocate resources for a vertical scaling, and if it failed, then we tried to
allocate resources for migration scaling.

In the proposed NFC Management System, the Resource Manager is re-
sponsible for the resource allocations (server and network resources), for
VNFs in the cloud. In this chapter, we discuss our view of the resource
allocation for VNF's in following aspects:

1. Formulation of the resource allocation problem as a set of ILP equa-
tions and evaluation of the implementation in CPLEX: Section 4.1

2. Description of the ILS based implementation of the Resource Man-
ager with a comprehensive analysis for resource allocation algo-
rithms: Section 4.2

3. Description of the GP based implementation of the Resource Man-
ager with a comprehensive analysis for resource allocation algo-
rithms: Section 4.3
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4. A comparison between (1) ILP, (2) ILS, (3) GP, (4) DFS and (4)
Random based resource allocation approaches: Section 4.4

4.1 Network Function Center Resource
Management Problem (NFCRMP)

From the cloud resource allocation perspective, the NFC Resource Man-
ager module has two main responsibilities:

1. New policy requests provisioning: upon receiving a new set of
policies, the Resource Manager takes into account the physical net-
work, servers constraints, and already allocated resources, to iden-
tify the resources where to instantiate the VNFs of the new policy.

2. Scaling of existing policy requests: upon receiving scaling re-
quests from the Elasticity Manager, the Resource Manager decides
the re-allocation of resources in order to satisfy traffic changes.

We formalize our resource allocation problem: the Network Function Cen-
ter Resource Management Problem (NFCRMP), as a set of ILP equations
for (1) resource allocation for new policy requests provisioning, and (2)
dynamic resource re-allocation for Scaling of existing policy requests to
support traffic changes. For the new policy requests provisioning, the
NFCRMP aims at minimizing the required server and network resources
(e.g., average link utilization.) For the scaling of existing policies, in
addition to minimizing the required server and network resources, the
NFCRMP also aims at minimizing the number of changes in server and
links configurations. Table 4.1 and Table 4.2 provide a description of the
key notations used in NFCRMP.

4.1.1 New policy requests provisioning

Once a new policy request is submitted by the client, the Resource Man-
ager takes decisions on the placement and paths for the VNFs in the new
policy. We call this as the problem of resource allocation for new policy
requests provisioning.

We consider a NFC with M servers and L links. A link [/ connects a
server to a switch, or a switch to another switch. The amount of resource
capacity of server m is denoted H,,, and the network capacity of link [
is denoted K;. A path p between two servers (a source and a destination
server pair), is composed by two or more links. P denotes the set of the
shortest paths between all source and destination server pairs in the NFC.
Given a path p in P, that connects server ml and m2, @, represents the
source server (ml), and R, represents the destination server (m2). The
variable E} indicates whether link [ is used on path p. The definition of
the shortest path can vary based on the network architecture type, as each
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Constants

N No. of VNFs, indexed by n =1,...., N
Sn Server capacity required for VNF n
B, Bandwidth required for VNF n

M No. of servers, indexed by m =1, ...., M
H,, Capacity of server m

L No. of links, indexed by [ =1,...., L
K; Bandwidth of link [

P No. of paths, indexed by p=1,...., P
Oy, No. of paths required by VNF n

Qp Source server of the path p

R, Destination server of the path p

E} Indicates whether the link [ is used on path p, (0,1)
w1, wo,ws  Weighting factors

Dynamic variables

zZm A binary decision for placing VNF n on server m

Ab A binary decision for routing traffic of VNF n on path p
U Average of link capacity used percentages

Gm A binary decision Server m is used/not

X Total servers used

F A binary decision Link [ is used/not

Y Total links used

Table 4.1: Summary of key notations: new policy requests provisioning

of them have different default maximum hop count for a path between two
servers.

The number of VNFs running in the NFC is denoted by N. Each VNF
n is characterized by its resource requirements: (1) the required server
capacity (Sp), (2) the required bandwidth: the expected amount of the
traffic flow (B,), and (3) the required number of paths to route traffic
to its successor(s) (O,). The successor is the next VNF(s) according to
the sequence in the policy chain. The number of paths to route traffic to
its successor, is calculated by considering the required bandwidth and the
current maximum link capacities of NFC. The required server capacity for
each VNF to serve the expected amount of the traffic flow, can be derived
using the inbound traffic rate and the resource profile of each VNF type.
The resource profile of a VNF includes: (1) processing capacity of the VNF,
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(2) required minimum number of CPU cores and (3) bandwidth demand
transformation by the VNF. The bandwidth demand transformations are
associated with traffic-scaling VNF's. For an example, certain VNFs, such
as Redundant eliminators and Caches compress traffic, while other VNFs
such as packet multiplication and encryptions amplify the traffic.

For each VNF n in the new policies, we find a server to place the VNF. The
server must support the physical resource requirements of the VNF. Also,
if the VNF is not the last VNF of the policy chain, we find the required
number of paths to route the traffic of the VNF to its successor(s) in the
policy chain. Links in the selected paths should support the bandwidth
requirements of the VNF. We define Z"* to be a binary variable for placing
VNF n on server m, such that,

m 1 VNF n is placed on server m
VA .
" 0 otherwise

Let G, € {0,1} be a binary variable indicating whether server m is used
in a configuration solution. Therefore, the total number of servers used in
a configuration solution is:

M
X=> Gn

m=1

The traffic flow of VNF n to its successor is represented by the vector B,,.
To configure the routing between VNF n and its successor, we need to
find a path in P, joining the servers where VNF n and its successor reside.
Therefore, we define AP to be a binary variable that indicates if path p is
used to route traffic between VNF n and its successor, that is,

Ar — 1 traffic of n to its sucessor is routed on path p
m 1 0 otherwise

Let F; € {0,1} be a binary variable indicating whether link [ is used in

a configuration solution, and Y be the total number of links used in a
configuration solution:

L
Y=Y F
=1

For link [, the percentage of link utilization is defined as:

> ArE.B,)/K

p=1n=1

Therefore, considering all the links in the configuration solution, the aver-
age percentage of link utilization U, is:
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Z(Z((ZZ ALEY.Bn)/ K1)/ L

=1

The NFC Management System takes decisions on new policy requests pro-
visioning, with the goals of minimizing the average link utilization and the
number of servers used. As the NFC network has more than one path
between most of the (source, destination) server pairs, and these paths
mostly use different links, the NFC Management System tries to maxi-
mize the number of used links, so that the system is encouraged to use
different paths to route traffic between each (source, destination) server
pair. This results in distributing traffic over different paths, and reduces
the average link utilization.

We derive the optimization function as given in the equation 4.1, for NFC
Management System to take decisions on new policy requests provision-
ing. Since U is an average, we normalize the optimization function by
considering the number of servers M, and links L. The objective func-
tion tries to minimize some objectives (average link utilization and the
number of servers used), also to maximize some objectives (the number
of links used), and therefore, the objective function requires a trade-off
between the objectives. We consider the optimization function given in
the equation 4.1 as a Multi-Objective optimization (MOO) and fol-
low a traditional decomposition-based method, specifically weighted sum
method to solve the problem [126, 127]. The weighted sum method for
MOO is used extensively, not only to provide multiple solution points by
varying the weights consistently, but also to provide a single solution point
that reflects preferences presumably incorporated in the selection of a sin-
gle set of weights. Therefore, we introduce weighting factors wy, we, w3 for
optimization function given in the equation 4.1 to allow operators to tune
the trade-offs between the optimization factors.

The NFCMP can be explained as the following constrained optimization:
Minimize:

Ly (4.1)

1
17.X —+ ’(UQ.U + w3(1 — L

Y
Variables:

Z" A binary decision for placing VNF n on server m

AP A binary decision for routing traffic of VNF 7 on path p
U Average of link capacity used percentages

Gy A binary decision Server m is used/not

X  Total servers used

F; A binary decision Link [ is used/not

Y Total links used
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Subject to:
M
>z =1,vn (4.2a)
m=1
N
> 278, < Hy,,¥m (4.2b)
n=1
P
> AL =0,,Yn (4.2¢)
p=1
P N
>N ALEP.B, <K,V (4.2d)
p=1n=1
P M
> AQ, - Z7m=0,¥n (4.2¢)
p=1 m=1
P M
> AP R, - Y Z7m =0,Y(n,n2) (4.2f)
p=1 m=1

Constraints (4.2a) and (4.2b) model the server resource constraints of the
NFCMP. Constraint (4.2a) guarantees that each VNF in a policy is placed
on one and only one server. Constraint (4.2b) guarantees that the total
capacity consumed by all VNFs placed on a server does not exceed total
capacity of that server. Constraints (4.2c) to (4.2f) model the network
resource constraints of the NFCMP. If a VNF is not the last VNF of a
policy, constraint (4.2c) guarantees that the VNF has the required number
of paths to its successors. Constraint (4.2d) guarantees that for each link,
the total bandwidth consumed by the VNFs does not exceed the total
bandwidth of that link. Constraints (4.2e) and (4.2f) guarantee that the
path(s) selected for a VNF to send traffic to its successor, starts from the
server where the VNF resides (source server), and ends in the server where
the VINF’s successor resides (destination server).

4.1.2 Scaling of existing policy requests

After the initial resource allocation for initial placement of VNF's, over
the time, the Resource Manager has to re-allocate the resources to satisfy
dynamic traffic changes. Therefore, the Resource Manager has to find new
placement and paths for the VNFs in the policies that has to be scaled.
We call this as the problem of resource allocation for scaling of existing
policy requests.

We consider a NFC with M servers and L links. A link ! connects a
server to a switch, or a switch to another switch. The amount of resource
capacity of server m is denoted H,,, and the network capacity of link [
is denoted K;. A path p between two servers (a source and a destination
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Constants
N No. of VNFs, indexed by n =1,...., N
Sn Server capacity required for VNF n
B, Bandwidth required for VNF n
M No. of servers, indexed by m =1,...., M
Hy, Capacity of server m
L No. of links, indexed by [ =1, ...., L
K; Bandwidth of link {
P No. of paths, indexed by p=1,...., P
On No. of paths required by VNF n
Qp Source server of the path p
R, Destination server of the path p
EP Indicates whether the link [ is used on path p, (0,1)
N’ Previous state’s no. of VNF's
M’ Previous state’s no. of servers
r Previous state’s no. of links
P Previous state’s no. of paths
(E}Y Previous state’s link [ is used on path p
(Zzmy Previous state’s binary decision for placing n on server m
(AR Previous state’s binary decision for routing traffic of n on path p

wi to ws  Weighting factors

Dynamic variables

zm A binary decision for placing VNF n on server m

AP A binary decision for routing traffic of VNF n on path p
Average of link capacity used percentages
A binary decision Server m is used/not

A binary decision Link [ is used/not

U

Gm

X Total servers used
F

Y

Total links used

C Total servers changed from previous state to current state
D Total links changed from previous state to current state

Table 4.2: Summary of key notations: scaling of existing policy requests
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server pair), is composed by two or more links. P denotes the set of the
shortest paths between all source and destination server pairs in the NFC.
Given a path p in P, that connects server m1 and m2, @), represents the
source server (ml), and R, represents the destination server (m2). The
variable E} indicates whether link [ is used on path p. The definition of
the shortest path can vary based on the network architecture type, as each
of them have different default maximum hop count for a path between two
servers.

The number of VNFs running in the NFC is denoted by N. Each VNF
n is characterized by its resource requirements: (1) the required server
capacity (Sy), (2) the required bandwidth: the current amount of the
traffic flow (B,,), and (3) the required number of paths to route traffic to its
successor(s) (Oy,). Here, the current amount of traffic flow can be different
from the expected traffic flow that was defined at the initial placement of
the VNF, because now the resources are going to be re-allocated to satisfy
the dynamic traffic change. The successor is the next VNF(s) according to
the sequence in the policy chain. The number of paths to route traffic to
its successor, is calculated by considering the required bandwidth and the
current maximum link capacities of NFC. The required server capacity for
each VNF to serve the expected amount of the traffic flow, can be derived
using the inbound traffic rate and the resource profile of each VNF type.
The resource profile of a VNF includes: (1) processing capacity of the VNF,
(2) required minimum number of CPU cores and (3) bandwidth demand
transformation by the VNF. The bandwidth demand transformations are
associated with traffic-scaling VNF's. For an example, certain VNFs, such
as Redundant eliminators and Caches compress traffic, while other VNFs
such as packet multiplication and encryptions amplify the traffic.

For each VNF n in the scaling policies, we find a server to place the
VNF. The server must support the current physical resource requirements
of the VNF. Also, if the VNF is not the last VNF of the policy chain,
we find the required number of paths to route the traffic of the VNF to
its successor(s) in the policy chain. Links in the selected paths should
support the bandwidth requirements of the VNF. We define Z]" to be a
binary variable for placing VNF n on server m, such that,

gm _ 1 VNF n is placed on server m
n 1 0 otherwise

Let Gy, € {0,1} be a binary variable indicating whether server m is used
in a configuration solution. Therefore, the total number of servers used in
a configuration solution is:

M
X=> Gn

m=1

The traffic flow of VNF n to its successor is represented by the vector B,,.
To configure the routing between VNF n and its successor, we need to
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find a path in P, joining the servers where VNF n and its successor reside.
Therefore, we define A? to be a binary variable that indicates if path p is
used to route traffic between VNF n and its successor, that is,

Ar — 1 traffic of n to its sucessor is routed on path p
“ 1 0 otherwise

Let F; € {0,1} be a binary variable indicating whether link [ is used in
a configuration solution, and Y be the total number of links used in a
configuration solution:

L
=2 A
=1
For link [, the percentage of link utilization is defined as:

P N
(ZZ AP B By) /K

Therefore, considering all the links in the configuration solution, the aver-
age percentage of link utilization U, is:

L P N
U=0"(0"> A0Er.B,)/K))/L

In the scaling situations, the optimization needs to consider the previous
configurations of the system, so that we can minimize the disturbances to
the current traffic low when implementing the solutions provided by the
optimization to satisfy the new traffic changes. Therefore, while trying
to minimize the link utilization, and required servers in the optimization
process, we also try to minimize the changes to the previous system.

We use additional variables to represent the previous state of the NFC,
i.e., the state of the NFC before scaling. N’, M’, L' and P’ represent the
previous state’s number of VNFs, number of servers, number of links and
number of paths. (E}), (Z")" and (AP)’ represent whether the previous
state’s link [ is used on path p, the binary decision for placing n on server
m, and the binary decision for routing traffic of n on path p.

Hence, the total number of servers changed, C, and total number of links
changed, D, from the previous state to the current state, is captured by
the following equations:

=D D 1Zr—(Z) I+ N =N
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N L P
D=3 > > | ALE — (A (B |
n=1 =1 p=1
N’ L P

DI S REORE!

n=N+1 =1 p=1

The NFC Management System takes decisions on scaling of existing policy
requests, with the goals of minimizing the server and link changes, in
addition to minimizing the average link utilization and number of servers
used and maximizing the number of links used.

We derive the optimization function as given in the equation 4.3, for NFC
Management System to take decisions on scaling of existing policy re-
quests. Since U is an average, we normalize the optimization function by
considering the number of servers M, and links L. The objective function
tries to minimize some objectives (server and link changes, average link
utilization and the number of servers used), also to maximize some ob-
jectives (the number of links used), and therefore, the objective function
requires a trade-off between the objectives. We consider the optimiza-
tion function given in the equation 4.3 as a MOO and follow a traditional
decomposition-based method, specifically weighted sum method to solve
the problem [126, 127]. We introduce weighting factors w; to wjs for opti-
mization function given in the equation 4.3 to allow operators to tune the
trade-offs between the optimization factors.

The scaling component of the NFCRMP, can therefore be formalised as
the following constrained optimization:

Minimize:

1 1
—-Y)+ w4 .C+ws—.D (4.3)

1

Variables:

Z" A binary decision for placing VNF n on server m

AP A binary decision for routing traffic of VNF n on path p
Average of link capacity used percentages

A binary decision Server m is used/not

Total servers used

A binary decision Link [ is used/not

Total links used

Total servers changed from previous state to current state
Total links changed from previous state to current state

UQ%EINSQQ
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Subject to:
M
>z =1,vn (4.4a)
m=1
N
Z™.S, < Hy,,Ym (4.4Db)
n=1
P
> Ab =0,,Vn (4.4c)
p=1
P N
AP EP.B, < K,V (4.4d)
p=1n=1
P M
> ARQy— D Z7m=0,¥n (4.4e)
p=1 m=1
P M
S ALR, = > Z7m =0,Y(n,n2) (4.4f)
p=1 m=1

Constraints (4.4a) and (4.4b) model the server resource constraints of the
NFCMP. Constraint (4.4a) guarantees that each VNF in a policy is placed
on one and only one server. Constraint (4.4b) guarantees that the total
capacity consumed by all VNFs placed on a server does not exceed total
capacity of that server. Constraints (4.4c) to (4.4f) model the network
resource constraints of the NFCMP. If a VNF is not the last VNF of a
policy, constraint (4.4c) guarantees that the VNF has the required number
of paths to its successors. Constraint (4.4d) guarantees that for each link,
the total bandwidth consumed by the VNFs does not exceed the total
bandwidth of that link. Constraints (4.4e) and (4.2f) guarantee that the
path(s) selected for a VNF to send traffic to its successor, starts from the
server where the VNF resides (source server), and ends in the server where
the VNF’s successor resides (destination server).

Evaluation

We implemented the ILP formulation of the NFCRMP in CPLEX [28]
and carried out 3 set of experiments to calculate the time taken to find a
solution to implement 10, 30 and 50 NF's with ILP approach in the case of
new policy requests provisioning. We considered a small NFC with a k-fat
tree architecture and assumed an environment with 2 pods and 4 servers,
where each pod is connected 2 servers. The experiments were carried out
in a machine with an Intel core i7-4500u processor and 8GB of RAM. ILP
took 2.3, 4.6 and 7.2 hours respectively to find the optimal solution for 10,
30 and 50 NFs.
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4.2 Iterated Local Search (ILS) based
Resource Manager model

The resource allocation for the VNFs, specifically finding an optimal so-
lution for the VNFs placement in the cloud, is a proven NP-hard problem
[13, 14]. Furthermore, as shown in the previous Section 4.1.2, our results
show that finding the optimal solution even for a few NFs with the ILP
Equation (4.1) can take hours and is consequently not suitable to meet
traffic changes in the NFV context. Instead of finding optimal solutions
(e.g., solutions returned by an ILP solver), we believed it is more realistic
to look for good feasible configurations fast. We have explored approxi-
mation techniques: heuristic based approaches that can be used to find a
good feasible configuration fast.

First, we investigate our hypothesis, by proposing an Iterated Local Search
(ILS) approach to implement the resource allocation algorithms. We model
the problem as finding the best fitted solution according to an ILS model
of the problem, after a fixed amount of repeated procedures have been
explored. The two main responsibilities of the Resource Manager module
— new policy requests provisioning, and scaling of existing policy requests
— are implemented independently but both rely on ILS as the mechanism
to allocate resources.

In this Section, we describe the proposed ILS based resources allocation
algorithms in following aspects:

1. Present a description of the two ILS based algorithms for new pol-
icy requests provisioning, and scaling of existing policy requests,
including the local search approach used: Sub-section 4.2.1

2. Present a comprehensive analysis of the performances of the ILS
based algorithms: Sub-section 4.2.2

3. A summary of the performance evaluation: Sub-section 4.2.3

4.2.1 Overview

Iterated Local Search (ILS) is one of the most popular single-solution based
meta-heuristics due its simplicity but at the same time powerful approach
[4, 5, 23]. The essence of the ILS meta-heuristic is, ILS iteratively builds
a sequence of solutions generated by the embedded heuristic, leading to
far better solutions than if one were to use repeated random trials of that
heuristic. ILS extends a problem-specific local search method by introduc-
ing a perturbation at each new local optimal solution, before restarting the
search for a new local optimal solution.

As shown in Algorithm 1, ILS is built through four main steps: (1) Gen-
eration of an Initial Solution, (2) Local Search, (3) Perturbation and (4)
Acceptance Criterion.
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Algorithm 1 Iterated Local Search for the Resource Manager

procedure ITERATED LOCAL SEARCH

So = Generatelnitial Solution
S* = LocalSearch(Sp)

Repeat:

S’ = Perturbation(S*, history)

S* = LocalSearch(S")

S* = AcceptanceCriteria(S*, S* history)
until termination condition met

© X2 NP TR w

ILS aims at avoiding the disadvantages of random restarts by exploring the
region of feasible solutions using a walk that steps from one local optimal
solution S* to a nearby one. Given the current solution S*, a change or
perturbation is first applied leading to an intermediate feasible solution,
S’. Then, a Local Search is applied to S’ to obtain a new local optimal
solution, S*'. If S* passes an acceptance test, it becomes the new current
solution; otherwise, one returns to the previous one, S*.

perturbation

cost

solution space S

Figure 4.1: Pictorial representation of ILS [4, 5]

The Figure 4.1 shows a pictorial representation of ILS. Starting with a
local minimum S*, applying a perturbation leads to a solution S’. Then
the applying a Local Search, leads to a new local minimum S* that may
be better than S*.

The ILS process starts with the first phase of generating an initial feasible
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solution. The Resource Manager selects a server and a path for the VNF,
within the given physical network constraints and previously allocated
resources for the existing policies. The server resources requirement for
each VNF to serve the initial experted traffic rate, is derived using the
inbound traffic rate and the resource profile of each VNF type. A resource
profile for each VNF includes: processing capacity of the VNF, required
minimum number of CPU cores and bandwidth demand transformation by
the VNF. We have considered a simple Depth First Search (DFS) approach
to select this initial server and path. In the DFS method, servers and paths
are selected by searching through the whole search space and selecting the
first solution we come across.

The seconds phase of ILS is the local search, which is very important,
because it must be able to improve the current solution in a very efficient
way. We apply a simple iterative improvement local search, i.e. as soon a
better solution is found, the process will restart using this solution as the
current one. The efficiency of local search depends on the neighbourhood
structures. A blind search on an un-organized neighbourhood structure
may need considerable amount of time to find a better solution. We have
observed that, by defining the search on the neighbourhood structure ac-
cording to the specific network architecture (4-fat tree or BCube or VL2),
helps the ILS process to improve the solution fast. More details on this
can be found on Section 4.2.3.

A neighbourhood for the local search is defined by first choosing a type of
transaction to obtain a new feasible solution from the current one: move,
and then defining the neighbourhood as the set of solutions that can be
obtained from the current one, by applying the same type of move. We
define a simple move, by changing a VNF from one server to another
feasible server: “l-opt-VNF move”, and afterwards changing paths of the
VNF affected.

For each VNF in each policy, its neighbours can be found by applying
“l-opt-VNF moves”. As shown in Algorithm 2, the local search continues
through the neighbourhood, until a better solution is found. It is impor-
tant to remark that the sequence of searching the neighbours heavily affect
the computational performance of the algorithm. An objective function is
used to measure how good a solution is. We use two different objective
functions, one for the new VNFs provisioning: derived from the equation
4.1, and another for the scaling out/in: derived from the equation 4.3. As
these objective functions are minimization functions, a solution is better
only if its objective value is less than the current solution’s objective value.

The main drawback of local search is that it can get trapped in local optima
that are significantly worse than the global optimum. ILS escapes from
local optima by applying perturbations to the current local minimum [4, 5].
Therefore, the perturbation process is the third phase of ILS. Generally,
the local search should not be able to undo the perturbation, otherwise
one will fall back into the local optimum just visited. However, a random
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Algorithm 2 Local Search Procedure

1: procedure LOCAL SEARCH

2:

3: Let S be an untested neighbour of S’
4: If Z(S) < Z(S') then S" = S end if

move in a neighbourhood of higher order than the one used by the local
search process can achieve this and will lead to a satisfactory algorithm.
If the perturbations phase is designed by taking into account properties
of the problem and are well matched to the local search algorithm, better
results can be obtained [4, 5]. However, if the perturbation is too strong,
ILS may behave like a random restart, so better solutions will only be
found with a very low probability. On the other hand, if the perturbation
is too small, the local search will often fall back into the local optimum
just visited and the diversification of the search space will be very limited.

The perturbation process in our ILS based algorithms are implemented
by applying n number of “l-opt-VNF moves”, where 2 < n <<Number
of VNFs. It works by randomly selecting n number of VNFs (in ran-
domly selected policies), and changing each selected VNF from one server
to another feasible server: applying “l-opt-VNF move”, and afterwards
changing paths of the VNF affected.

ILS does a randomized walk in S*: the space of the local minima. The
perturbation phase together with the local search phase defines the possi-
ble transitions from a current solution s* in S*, to a neighbouring solution
s*, which is also in S*. The procedure acceptance criteria then deter-
mines whether s* is accepted or not as the new current solution. The
acceptance criteria procedure has a strong influence on the nature and ef-
fectiveness of the walk in S*. It can be used to control the balance between

intensification and diversification of that search.

As the acceptance criteria of our ILS based algorithms; a solution obtained
after the perturbation and local search is accepted only if it improves the
current solution, according to the previously mentioned objective func-
tions. As the objective functions we have used are minimization functions,
solution is accepted, only if its objective value is less than the current so-
lution’s objective value.

New policy requests provisioning: global ILS approach

For the new policy requests, first, the Resource Manager performs a simple
DFS, and selects a server and a path for each VNF in each new policy
request considering the expected traffic load by the policy, within the
given physical network constraints and previously allocated resources for
the existing policies. In the simple DFS method, servers and paths are
selected by searching through the whole search space and selecting the
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first solution we come across. This is known as the initial solution and is
used as the initial input for the ILS algorithm. Within the local search
procedure, the Resource Manager tries to perform “global ILS approach”
to the given solution, where it applies “l-opt-VNF move”, to all VNF's of
all new policy requests (a standard full local search). In the perturbation
process, “l-opt-VNF move” is applied to randomly selected n number of
VNFs of new policy requests.

In the acceptance criteria phase, the objective function in equation 4.5
(derived from the ILP equation 4.1) is used to measure how good a solution
is. It takes into account: number of servers used, links used and links
congestion. As the objective function is a minimization function, a solution
obtained after the perturbation and local search is accepted only if its
objective value is less than the current solution’s objective value. Unless
specifically mentioned, for all our experiments, we assumed equal weights
for all the parameters in the objective function.

Minimize 1 1
X = No. of servers used Y = No. of links used
M = Total no. of servers L = Total no. of links

U = Avg of link capacity used percentages
w1 to wg = Weighting factors

Scaling of existing policy requests: local ILS approach

For the scaling, the Resource Manager starts with the current state and
search for the re-assignment of resources (servers and paths) for the set of
VNFs that are scaling, using DFS method. In the DFS method, servers
and paths are selected by searching through the whole search space and
selecting the first solution we come across. The current solution that
describes the current state of the system is modified according to the new
servers and paths found. The modified solution is given as the input
to the ILS algorithm. Within the local search procedure, in contrast to
the “global ILS approach”, which is performed during the initial resource
allocation process, when scaling we adopt a “local ILS approach”. Because
we want to minimize the changes to current configurations, local search
and perturbation are carried out only to the VNFs which were changed
because of the scaling (not to the all VNF's of the policies that are scaling).

In the acceptance criteria phase, the objective function in equation 4.6
(derived from the ILP equation 4.3) is used to measure how good a so-
lution is. For the scaling out/in of VNFs, in addition to minimizing the
required server and network resources, the Resource Manager also aims at
minimizing the number of changes to the current server and links config-
urations. As the objective function is a minimization function, a solution
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obtained after the perturbation and local search is accepted only if its
objective value is less than the current solution’s objective value. Unless
specifically mentioned, for all our experiments, we assumed equal weights
for all the parameters in the objective function.

Minimize

1 1 1 1

M L M L
X = No. of servers used Y = No. of links used
M = Total no. of servers L = Total no. of links
C = Total servers changed D = Total links changed

U = Avg of link capacity used percentages
wi to ws = Weighting factors

4.2.2 Evaluation

Experiments results, described in the previous section, show that the ILP
approach is not suitable for large networks with dynamic requirements,
but the ILS approach can find reasonable solutions fast. We have there-
fore conducted a more comprehensive evaluation of the performance of the
NFC Management System when using our proposed ILS approach. The
rest of the Sub-sections focus on this evaluation and specifically on the per-
formance of the Resource Manager module when using the ILS approach
for large networks with dynamic requirements.

Evaluation for new policy requests provisioning

Following sub-sections describe the results of the experiments that were
carried out to evaluate the performances of ILS for one of the main func-
tions of the Resource Manager: new policy requests provisioning. Again,
all experiments were carried out in a machine with an Intel core i3 pro-
cessor and 20GB of RAM. As described in Section 3.4, we assume that
we are going to provide services for policy requests of 4 large enterprises,
therefore the Resource Manager has to handle new policy requests that
consists of a total of 400 VNFs.

Configuration solution improvement by ILS process

The ILS approach takes an initial solution as the input to the local search
process, and tries to improve the given initial solution using local search
and perturbations. Therefore, we can use these initial solutions as the
baseline to compare the solutions given by the ILS process after 20 re-
peated procedures. We carried out our experiments for large networks
with three different architectures (a 4-fat tree, a VL2 and a BCube): 50
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rounds of experiments for each architecture, to explore how the quality of
the initial solution was improved by the ILS process over the repeated pro-
cedures. For each round of experiment, we derived a fixed set of policies
(average of 100 policies) that include a total of 400 VNFs and try to find
the initial solutions with DFS approach in a 128 server environment for
the three architectures separately. In the DF'S approach, servers and paths
are selected by searching through the whole search space and selecting the
first solution we come across. We assumed that each server has an initial
capacity of 1000 units, each link has an initial capacity of 3000 units and
each VNF requires 100 server capacity units.

As the main goal of our optimization is to reduce the average link uti-
lization, so that the network is less congested and future scaling require-
ments are minimized, the results produced by ILS reduced the average
link utilization by 32%, 27.2% and 7% (compared to the DFS solution)
respectively for the three architectures.

Effect of the number of repeated procedures

There is this natural intuition that, if we run the ILS process for more
number of repeated procedures, ILS will be able to improve the quality
of the solution more. To explore the effect of the number of repeated
procedures and how the ILS process improves the initial solution over
the repeated procedures, we conducted 30 round of experiments. For each
round, we derived a new set of policies (average of 100 policies) that include
a total of 400 VNFs.

First, we tried to find the initial solutions with DFS, and then improve the
solution using ILS process. We count the times that the fitness value was
improved during the ILS process. We assumed a 64 server environment in
a 4-fat tree architecture where each server has an initial capacity of 2000
units, each link has an initial capacity of 6000 units and each VNF requires
75 server capacity units. Figure 4.2 shows how the initial objective value
(given by DFS) was improved over the repeated procedures. It reflects the
average objective value of 30 rounds of experiments. The important obser-
vation was that most of the improvements in the objective function (60%
from total number of improvements) happened early on (during first 50
repeated procedures) and after that improvements decreased significantly.

Effect of the number of policies changed in perturbation

To better understand the effect of the number of policies that is allowed
to change in perturbation phase (n), we carried out 4 sets of experiments:
5, 10, 15 and 20 policies were changed simultaneously. We conducted 30
rounds from each type of experiment set-up. We have assumed a 4-fat tree
architecture with 64 servers. For each round of experiments, we used a
fixed set of policy requests that consists of 400 VNFs as the initial policy
requests. We counted the times that the objective value was improved
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Figure 4.2: Improvement of the initial solution over the repeated proce-
dures

during the ILS process. The important observation was that 35% of the
improvements happened when only 5 policies were changed. Only 17% of
the improvements happened when 20 policies were changed.

This is because, changing lots of policies in the perturbation phase caused
the distribution of the VNFs all over the servers and, the chance of recov-
ering from that less optimal configuration was less. Therefore, finding a
better solution in next local search step was difficult. On the other hand,
changing only 5 policies in perturbation cause less distraction and chances
of leading to a better optimal solution were high. As mentioned in the
Section 4.2.1, when the perturbation is too strong (changing lots of poli-
cies), ILS behaved like a random restart, so better solutions were found
with a very low probability.

Effect of the number of servers

To explore how the ILS approach performs for large networks, we have
carried out a set of experiments to calculate the total time taken by the
ILS approach to provide a configuration solution for new policy requests
provisioning (we have used 87 fixed policy requests that consists of 400
VNFs) in large networks. These total times include the time taken by the
Resource Manager: (1) to perform DFS to come up with an initial solution
and (2) to run the ILS process over 20 repeated procedures to improve the
initial solution. As we have observed that even without performing a full
local search, by just performing “1-opt-VNF move” to the 20% of the new
policy requests in each local search round, ILS produced better results, for
these experiments, we have used the same method.
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The effect of total number of servers for the timing has been examined for
three network architectures (4-fat tree, BCube and VL2) separately. We
have conducted 50 rounds of experiments from each type and calculated
the average. We assumed that each server has an initial capacity of 1000
units and each link has an initial capacity of 6000 units. We defined the
capacity requirements of VNF's, in a way that 50% of the server capacities
would be filled.

First, in all three types of architectures, the timings for DFS process is
significantly smaller compared to timings for ILS process. For a network
with 128 servers, timings are: (1) 4-fat tree 7589 us, (2) BCube 7304 us
and (3) VL2 7336 us and growth of the graph with respect to number of
servers is linear.
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Figure 4.3: Factors effecting ILS timing: No. of Servers

Second, in all three architectures, the growth of the time taken for ILS
process is quadratic with respect to the number of servers. This is because,
when we increase the number of servers by one, 2 to 6 paths (depending on
the network architecture) are added to each source destination server pair.
In other words, 2 to 6 paths are created between newly added server and
each of existing servers. Therefore, the number of times the local search
with “l-opt-path move“ is performed for each source destination server
pair, is increased quadratically for each VNF.

Figure 4.3 shows the comparison of time taken for ILS process with 20
repeated procedures in different architectures when there are 16, 32, 48,
64, 80, 96, 112 and 128 servers in the CSP network. Fitting the plots into
a quadratic polynomial of the form “pl x 22 + p2 * x 4+ p3”, we get within
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the 95% confidence bounds the coefficient pl, for k-fat tree to be 1.938
(varying from 1.086 to 2.79), BCube to be 5.998 (varying from 4.899 to
7.097) and VL2 to be 1.309 (varying from 0.2461 to 2.372).

The growth of the graphs are very much similar in 4-fat tree and VL2
architectures where they share similar type of physical topology design.
On the other hand, BCube has a totally different physical topology design
and has a different growth in the timings. Therefore, it is very clear
that the timings are not only depends on the number of servers, but also
depends on the physical topology design, specially number of links and
paths in the network.

Evaluation for scaling of existing policy requests

The second responsibility of the Resource Manager is to find on-line con-
figuration solutions to implement dynamic scaling requirements of existing
policy requests, according to the traffic changes. We have conducted exper-
iments to explore the behaviour of ILS based algorithm that was designed
for resource allocation for scaling requirements of existing policies.

In the algorithm we have adopted to the following scaling procedure. When
there is a requirement for a VNF to be scaled, first we try to do a vertical
scaling. We check whether the server and the path, that is currently used
by the existing VNF instance, can handle the total resource requirement.
If yes, then we do not need to change the current network configurations
(we can use the same path), and we can allocate more resources to the
existing VNF. If not, we try to perform migration scaling: we search for a
new server and a path that can handle the total resource requirement. In
this case, we assume that the existing VNF is migrated [128] to the new
server and allocate additional resources.

The following Sub-sections describe the performance evaluation of the ILS
approach when handling these re-allocation of resources in a NFC with
128 servers.

Effect of the local ILS approach

The “global ILS approach” allows changing configurations of any policy
of the system during the local search and perturbation process, and may
provides solutions with better resource allocations. However, these solu-
tions may require drastic re-arrangements of the current configurations,
disturbing the current workload of the CSP network, making them im-
practical in real scenarios. Instead, we can use this method to provide us
with a baseline to compare against a “local ILS approach” where we limit
changes only to configurations of VNF's that are scaling.

We conducted experiments for both ILS based global and local ILS ap-
proaches to compare performances with respect to the resources alloca-
tion efficiency over several days. As mentioned in Chapter 3.4, since in
this thesis we did not explore the problem of monitoring the resources
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and determining when to scale the VNFs according to the dynamic traffic
changes, we used statistics presented in existing work and replicated the
traffic changes over a day with relevant scaling triggers and events. We
repeated the data for single day for three times to get the data to emulate
3 consecutive days, and therefore we had total of 132 events for 3 days.
There are two types of events: (1) when the traffic change has reached
the threshold, resources have to be reallocated to increase/decrease at
least one VNF instance or (2) when the traffic change has not reached the
threshold, modify the bandwidth usages of the links of the paths that were
effected by the traffic change, to reflect the new traffic amount passing by.

The global ILS approach is considered as the baseline, where it only tries to
minimize the required server and network resources (e.g., links and average
link utilization). For the local ILS approaches, we explore 2 cases. First,
we considered a situation where all parameters of the objective function
are considered: “local ILS approach 1”. In addition to minimizing the
required server and network resources, it also tries to minimize the number
of changes in server and links configurations. Second, we considered a
situation where only the parameters relevant to changes are considered:
“local ILS approach 2”. The local ILS approach 2 strategy represented the
scaling solutions that in theory minimally disturb the traffic (e.g., packet
drops, latency), because it tried to minimize the changes to the servers
and links.The weights of fitness function (given in equation 4.6) in these
cases are shown in Table 4.3.

Fitness Function Usage | wl | w2 | w3 | w4 | wb
Global ILS approach 1 1
local ILS approach 1 1 1
local ILS approach 2 0 0

1 0 0
1 1 1
0 1 1

Table 4.3: Different usages of fitness function given in equation 4.6 for
global vs local ILS approaches (varying the weights)

Once the solutions have been provided for the 132 events for 3 consecutive
days by the ILS approaches (global and two local methods), we manually
calculated the value of the each objective function of the provided solu-
tions, assuming that changes do not count (i.e., making the weights of the
parameters relevant to server and link changes equal to zero) and com-
pared the global and local ILS approaches. For each set of experiments,
we have used a fixed set of policy requests that consists of 400 VNFs. We
have assumed a 64 server network, where each server has an initial capac-
ity of 1000 units, each link has an initial capacity of 6000 units and each
VNF requires 100 server capacity units.

The objective value comparison (an average from 5 sets of experiments)
for scaling events of 3 consecutive days for a 4-fat tree and a VL2 archi-
tecture network are shown in Figure 4.4 and Figure 4.5 respectively. For
k-fat tree architecture, in the beginning, both local ILS approaches pro-
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vided solutions as good as global ILS approach, but over the time, the
global ILS approach produced solutions with better resource allocations
than the other two. For VL2 architecture, from the beginning, global ILS
approach produced better solutions than the other two. However, the local
ILS approaches solutions do not diverge a lot from the global ILS approach
solutions. Furthermore, the figure clearly shows that both local ILS ap-
proaches, followed essentially the same behaviour (modulo a translation in
the y axis) that the behaviour of the baseline: global ILS approach, if we
smooth the curves. For both architectures, local ILS approach 1 produced
better solutions than local ILS approach 2.
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Figure 4.4: Fitness value comparison: KFat tree architecture

As we have shown in the results of both architectures, the objective values
grew during most of the scaling events of each day. The reason is, in the
traffic model presented in [2], the traffic is increasing until late night of
each day. Each architecture’s objective values were effected by different
parameters of the objective function. First, in both architectures, the
number of servers used were very similar while the number of links used
and links utilization made the difference in the objective values. Second,
when we compare the local ILS approaches and the global ILS approach in
4-fat tree as well as VL2 architecture, the difference was on link utilization.
Third, the VL2 architecture’s local ILS approach objective values increased
fast over the days, with respect to the 4-fat tree. This is because, in the
VL2 architecture, servers are located in a more compact manner and it
has fewer paths between servers inside the same pod. Links of these paths
got more congested, and when traffic was increasing the links utilization
also increased fast. In contrast, in the 4-fat tree architecture, servers were
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Figure 4.5: Fitness value comparison: VL2 architecture

not compact and had more paths between each other. Therefore, it was
possible to use more links and made the links less congested. Hence, the
4-fat tree architecture had more smooth effect on the parameters of the
objective function.
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Figure 4.6: Server changes comparison: KFat tree architecture
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Even though the global ILS approach provided better solutions, as ex-
pected, those solutions needed the largest number of changes to the cur-
rent configurations. As shown in the figure 4.6, in the comparison of server
changes needed to the current configuration solutions given by each ILS
approach, the global ILS approach caused changes in the order of mag-
nitude compared to the changes caused by local ILS approaches. The
solutions given by the local ILS approaches had fewer server changes from
their previous configuration because the local ILS approaches performed
local search and perturbation process only on the solutions of policies that
are scaling. In addition, similar to the server changes,the solutions given
by the global ILS approach has most links changes from their previous
configurations.

When we compare the two local ILS approaches, most of the time both
methods had the same number of server and links changes, making the
two methods essentially the same. We have noted that these servers and
links changes are the unavoidable changes due to the scaling requirements,
and not necessarily caused by the local search and perturbation process.
But it is important to note that, local ILS approach 1 (which addition-
ally minimizes usage of servers and links congestion) gave better objective
values than local ILS approach 2 and lead to a better server and network
resources utilization without incurring in a larger number of changes.

4.2.3 Summary

We introduced two new resource allocation algorithms for the Resource
Manager module to: (1) provision new VNF's policy requests and (2) scale
out/in of existing VNFs, based on ILS approach. For the new policy
requests provisioning, we focused on minimizing the required server and
network resources (e.g., average link utilization). For the scaling out/in
of VNFs, in addition to minimizing the required server and network re-
sources, we focused minimizing the number of changes in server and links
configurations.

We explored the evolution of the ILS based algorithms for large networks,
over a full day traffic patterns based on more realistic data. The results
show that, although ILS approach may not provide the optimal solution,
ILS can decide the computing and network allocations for hundreds of poli-
cies (around 400 VNFs) in a 128 server environment and find reasonable
solutions on the order of milliseconds. Most of the improvements in the
objective function (60% from total number of improvements) happened
early on (during first 50 repeated procedures). Moreover, our results show
that the ILS process provided an average objective value improvement
percentage up to 8.45% over the initial solution (the baseline) with a re-
duction of average link utilization up to 32% for the three architectures
(a 4-fat tree, a BCube and a VL2). In the evaluation of the algorithms
over the time, our results show that, the “local ILS approach” provides
reasonable solutions with lesser changes to the current configurations, and
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moreover, they do not diverge from the “global ILS approach” solutions
over time. The figure clearly shows that local ILS approaches (1) and (2),
if we smooth the curves, will follow essentially the same behaviour (mod-
ulo a translation in the y axis) that the behaviour of the baseline: “global
ILS approach”.

As mentioned earlier, the efficiency of local search depends on the neigh-
bourhood structures. A blind search on an un-organized neighbourhood
structure may need considerable amount of time to find a better solution.
We have observed that, by defining the search on the neighbourhood struc-
ture according to the specific network architecture (4-fat tree or BCube or
VL2), helps the ILS process to improve the solution fast. For an instance,
in a 4-fat tree architecture, trying to improve the solution by searching for
a server which is in a different pod (instead of searching for a server that
is in the same pod), allows the ILS to improve the solution fast. This is
because, the use of new paths to cross the pod, helps ILS to distribute the
load over different links and reduces the average link utilization. There-
fore, we can introduce a constraint for the search on the neighbourhood,
so that it only checks for the servers which are in different pods. The def-
inition of the “different pod” and how to identify a different pod, depend
on the network architecture. For an instance, in a 4-fat tree architecture,
if the path between 2 servers has four or more links, the servers are in two
different pods. Therefore, we can define our constraint for the search on
the neighbourhood as “search for servers in which the path from the pre-
vious VNF’s server has four or more links”. In this way, instead of blindly
going through the search space, by introducing constraints based on the
network architecture helps the ILS to improve the solution fast. However,
the limitation of this method is, the implementation of the algorithm de-
pends on the architecture and a change to the network requires a change
in the algorithm implementation.
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4.3 Genetic Programming (GP) based
Resource Manager model

In the previous Section, we introduced an ILS based Resource Manager
model for the resource allocation. However, as we discussed, the pro-
posed ILS based model has a limitation: the efficiency of the local search
phase depends on the efficiency of the search on the neighbourhood struc-
ture, and it is directly related to the network architecture. Therefore, we
wanted to explore more on approximation techniques that are agnostic of
the network architecture, so that the resource allocation algorithms will
be general enough for any type of network architecture. We modelled the
resource allocation with another approximation technique: Genetic Algo-
rithmic (GA), which is a heuristic based approach that is agnostic of the
network architecture. It is general enough, in a way that a change to the
network does not require a change in the algorithm implementation.

Therefore, we model the resource allocation problem as finding the best
fitted solution according to a Genetic Algorithmic (GA) model of the prob-
lem, after a fixed amount of generations have been explored. The two main
responsibilities of the Resource Manager module — new policy requests pro-
visioning, and scaling of existing policy requests — are implemented inde-
pendently but both rely on Genetic Programming (GP) as the mechanism
to allocate resources.

In this Section, we describe the proposed GP based resources allocation
algorithms in following aspects:

1. Present a description of the two GP based algorithms for new pol-
icy requests provisioning, and scaling of existing policy requests,
including the genetic operations used: Sub-section 4.3.1

2. Present a comprehensive analysis of the performances of the GP
based algorithms: Sub-section 4.3.2

3. A summary of the performance evaluation: Sub-section 4.3.3

4.3.1 Overview

GAs are part of evolutionary computing and were introduced as a com-
putational analogy of adaptive systems [129]. They are modelled loosely
on the principles of the evolution via natural selection, employing a pop-
ulation of individuals that undergo selection in the presence of variation,
inducing operators such as mutation and crossover. A fitness function is
used to evaluate individuals, and reproductive success varies with fitness.

GAs can be described by the following five key steps [129]:

1. Generate an initial population F(0) with n full solutions
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2. Compute the fitness value u(f) for each individual full solution f in
the current population F'(¢)

3. Generate the next population F (¢ + 1), by selecting ¢ best full solu-
tions from F(t)

4. Produce offspring by applying the genetic operators to population
F(t+1)

5. Repeat from Step 2 until a satisfying solution

Following the terms used in GA, a possible configuration state of the NFC
(represented by the servers and paths assignments for VNF's) is considered
as a full solution f, if it is an allocation of server and network resources for
all the policies in the system. We call a configuration where only one of
the policies has been allocated resources, a partial solution. If there are m
number of policies in the NFC, then a full solution contains m number of
partial solutions, each representing the allocation of resources (i.e., servers
and paths) for each policy. The population F(¢) consists of n full solutions
which represents different possible configuration states for the NFC.

We have considered two types of genetic operators to produce offspring:
(1) mutation and (2) crossover. The crossover is a convergence operation
which is intended to pull the population towards a local min or max. On
the other hand, the mutation is a divergence operation which is intended
to occasionally break one or more members of a population out of a local
min/max space and potentially discover a better space. Since the end
goal is to bring the population to convergence, crossovers happen more
frequently (typically every generation). The mutation, being a divergence
operation, should happen less frequently, and typically only affects a few
members of a population in any given generation.

In our implementation, mutation is achieved via two independent oper-
ations: re-placement and re-wire. In the re-placement mutation we try
to change the currently allocated server of a VNF — we remove the VNF
from the current server and try to place it in a different server. In our
initial work, we tried to change the server of a single VNF of a selected
policy. However, we have observed that trying to change the placement of
all VNF's of a policy and place them in a different (single) server provides
better solutions than trying to change the placement of a single VNF of
the policy. Therefore, we try to change the server of all VNFs of the se-
lected policy, and try to place all the VNFs of that policy in a different
server. Specifically, we select a random full solution from the population
and randomly pick a partial solution from the selected full solution. We,
then, attempt to find a new server where all VNFs in that partial solu-
tion can be placed on. If a new server is available to place the selected
VNFs, then we find the necessary paths between selected VNF's and their
successors by considering the new placement.
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The next mutation is the re-wiring, where we try to change the path
between two given VNFs and find a different path. Similar to re-placement
mutation, we first select a random full solution from the population and
randomly pick a partial solution from the selected full solution. Then, we
select a random VNF in the partial solution and attempt to find a new
path to its successor.

As for crossovers, we first select two random full solutions from the popu-
lation and randomly pick partial solution from each selected full solution.
Then, we check whether the configuration given in the first partial solution
can be applied to the second partial solution and vice versa. If both ways
are possible, then the configurations of partial solutions will be changed
accordingly.

Each generation of the GP approach goes through mutations and crossovers.
The newly generated solutions are evaluated according to a fitness func-
tion. We use two different fitness functions, one for the new VNFs provi-
sioning: derived from the equation 4.1, and another for the scaling out/in:
derived from the equation 4.3. As these fitness functions are minimiza-
tion functions, a solution is better only if its fitness value is less than the
current solution’s fitness value.

New policy requests provisioning: global GP approach

For the new policy requests, the Resource Manager uses network’s traffic,
topology data, server constraints and the client requirements as inputs.
Within the given physical network constraints and previously allocated
resources for the existing policies, first, for each VNF in each new pol-
icy request, the Resource Manager selects: (1) a server depending on the
server capacity requirement of the requested VNF and (2) a path(s) de-
pending on the expected traffic load for the requested VNF. The server
resources requirement for each VNF to serve the initial experted traffic
rate, is derived using the inbound traffic rate and the resource profile of
the VNF type. A resource profile of a VNF includes: processing capac-
ity of the VNF, required minimum number of CPU cores and bandwidth
demand transformation by the VNF (compress or amplify the traffic).

We have considered two types of initial selections: (1) Depth First Search
(DFS), and (2) Random. In the DFS method, servers and paths are se-
lected by searching through the whole search space and selecting the first
solution we come across. The random method searches servers and paths
randomly anywhere in the network, until a feasible configuration is found.
The configuration state (the servers and paths allocation) that the Re-
source Manager comes up with for a new policy request, i.e, a partial
solution. Combination of all partial solutions (each representing a policy)
forms a full solution.

Second, the Resource Manager applies the fitness functions given in the
equation 4.7 (derived from the ILP equation 4.1), to each full solution.
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Unless specifically mentioned, for all our experiments, we assumed equal
weights for all the parameters in the fitness function. Third, the full so-
lutions that return small values are preferred, and selected as the best
solutions for the next generation population. Fourth, the Resource Man-
ager performs “global GP approach” where it applies genetic operators
(mutations and crossover) on randomly selected partial solutions of ran-
domly selected full solutions to generate offsprings, i.e., new full solutions.
The last three steps are repeated until x number of generations are ex-
plored and the best full solution is selected as the configuration for the
new VNF's provisioning.

Minimize 1 .
X = No. of servers used Y = No. of links used
M = Total no. of servers L = Total no. of links

U = Avg of link capacity used percentages
w1 to wg = Weighting factors

Scaling of existing policy requests: local GP approach

For the scaling, the Resource Manager starts with the current state and
search for the re-assignment of resources (servers and paths) for the set of
VNF's that are scaling, using DFS/random methods. In the DFS method,
servers and paths are selected by searching through the whole search space
and selecting the first solution we come across. The random method
searches servers and paths randomly anywhere in the network, until a
feasible configuration is found. Partial solutions relevant to the scaling
are modified according to the servers and paths found. The fitness func-
tion given in the equation 4.8 (derived from the ILP equation 4.3), is used
to measure how good each full solution is. Unless specifically mentioned,
for all our experiments, we assumed equal weights for all the parameters
in the fitness function.

In contrast to the “global GP approach”, which is performed during the
initial resource allocation process, when scaling we adopt a “local GP
approach”. Because we want to minimize the changes to current configu-
rations, mutations and crossovers are carried out only to the VNFs which
were changed because of the scaling (not to the all VNFs of the policies
that are scaling). As mentioned earlier, the process is continued until x
number of generations are explored and the best full solution is selected
as the configuration for re-assignment of the policy.

Minimize

1 1 1 1
—. X . 1--=-Y —. —.D 4.
wlM —‘rU)QU—ng( 7 )—l—w4MC’—|—w5L ( 8)



78 Resource allocation for VNF's

X = No. of servers used Y = No. of links used
M = Total no. of servers L = Total no. of links
C = Total servers changed D = Total links changed

U = Avg of link capacity used percentages
w1 to ws = Weighting factors

4.3.2 Evaluation

Experiments results, described in the previous section, show that the ILP
approach is not suitable for large networks with dynamic requirements,
but the GP approach can find reasonable solutions fast. We have there-
fore conducted a more comprehensive evaluation of the performance of the
NFC Management System when using our proposed GP approach. The
rest of the Sub-sections focus on this evaluation and specifically on the per-
formance of the Resource Manager module when using the GP approach
for large networks with dynamic requirements.

Evaluation for new policy requests provisioning

In the following Sub-sections, we will describe the results of the experi-
ments that were carried out to evaluate the performances of GP for one
of the main functions of the Resource Manager: new policy requests pro-
visioning. Again, all experiments were carried out in a machine with an
Intel core i3 processor and 20GB of RAM. As described in Section 3.4,
we assume that we are going to provide services for policy requests of 4
large enterprises, therefore the Resource Manager has to handle new policy
requests that consists of a total of 400 VNFs.

Configuration solution improvement by GP process

The GP approach takes an initial solution as the input to the GP process,
and tries to improve the given initial solution using genetic operations.
Therefore, we can use these initial solutions as the baseline to compare
the solutions given by the GP process after 200 generation. We carried
out our experiments for large networks with three different architectures
(a 4-fat tree, a VL2 and a BCube): 50 rounds of experiments for each
architecture, to explore how the quality of the initial solution was improved
by the GP process over the generations. For each round of experiment, we
derived a fixed set of policies (average of 100 policies) that include a total
of 400 VNF's and try to find the initial solutions with DFS approach in a
128 server environment for the three architectures separately. In the DFS
approach, servers and paths are selected by searching through the whole
search space and selecting the first solution we come across. We assumed
that each server has an initial capacity of 1000 units, each link has an
initial capacity of 3000 units and each VNF requires 100 server capacity
units.
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As the main goal of our optimization is to reduce the average link utiliza-
tion, so that the network is less congested and future scaling requirements
are minimized, the results produced by GP reduced the average link uti-
lization by 28.7%, 14.9% and 3.2% (compared to the DFS solution) re-
spectively for the three architectures.

Effect of the number of generations

There is this natural intuition that, if we run the GP process for more
number of generations, GP will be able to improve the quality of the
solution more. To explore the effect of the number of generations and
how the GP process improves the initial solution over the generations, we
conducted 30 round of experiments. For each round, we derived a new set
of policies (average of 100 policies) that include a total of 400 VNFs.

First, we tried to find the initial solutions with DF'S, and then improve the
solution using GP process. We count the times that the fitness value was
improved during the GP process. We assumed a 128 server environment
in a 4-fat tree architecture where each server has an initial capacity of
2000 units, each link has an initial capacity of 6000 units and each VNF
requires 75 server capacity units.
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Figure 4.7: Improvement of the initial solution over the generations

Figure 4.7 shows how the initial objective value (given by DFS) was im-
proved over the generations. It reflects the average objective value of
30 rounds of experiments. The important observation was that most of
the improvements in the fitness function (52% from total number of im-
provements) happens early on (during first 100 generations) and after that
improvements decrease significantly. In fact there were very few improve-
ments after 400 generations: 6% from the total number of improvements.
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Effect of the number of servers and nodes in the NFC
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Figure 4.8: Factors effecting GP timing: No. of Servers

To better understand how the GP approach performs for large networks,
we carried out a set of experiments to calculate the total time taken by the
GP approach to provide a solution for new policy requests provisioning (we
used 87 fixed policy requests that consists of 400 VNFs) in large networks.
These total times include the time taken by the Resource Manager: (1) to
perform DFS to come up with an initial solution and (2) to run the GP
process over generations to improve the initial solution.

With the current implementation of the algorithm, most of the steps of the
DFS process, such as finding a server or a path for a VNF in the policy, are
performed in logarithmic time (the server capacities are stored in a sorted
balanced tree and operations to the tree such as searching and updating
can be done in a logarithmic time). However, in the GP process, when we
perform a genetic operation and try find an improved solution to grow the
population, we keep a copy of the original solution. We observed that the
time taken for the GP process is dominated by this copying process. The
complexity of copying the original solution, depends on the size of data
structures that store servers and links current usage information. In our
implementation, a link is represented as a connection between two nodes,
where a node can be a server or a switch of the NFC. Even though it is not
necessarily that there is a link between each and every node in the network,
we used an 2D array to store links usage information, with a row and a
column representing each node of the NFC. The total number of nodes in
the network depends on two factors: (1) the number of servers in the NFC
and (2) physical topology of the NFC (Section 3.4). When we increase the



4.3. Genetic Programming (GP) based Resource Manager modé1

number of servers, the 2D array that stores links usage information grows
quadratic. Therefore, when we perform genetic operations, timing for the
process of copying the original solution grows quadratic too.

The effect of total number of servers for the timing was examined for
three network architectures (4-fat tree, BCube and VL2) separately. We
conducted 50 rounds of experiments from each type and calculated the
average. We assumed that each server has an initial capacity of 1000 units
and each link has an initial capacity of 6000 units. We defined the capacity
requirements of VNF's, in a way that 50% of the server capacities is filled.

First, in all three types of architectures, the timings for DFS process is
significantly smaller compared to timings for GP process. For a network
with 128 servers, timings are: (1) 4-fat tree 5489 us, (2) BCube 5204 us
and (3) VL2 5236 ps and growth of the graph with respect to number of
servers is linear. Second, in all three types of architectures, the timings for
the GP process is dominated by the process of copying original solution
during genetic operations. Figure 4.8 (Left) shows the comparison of time
taken for GP process with 200 generations in different architectures when
there are 16, 32, 48, 64, 80, 96, 112 and 128 servers in the NFC. We
observed, in all three architectures, the growth of the graph is quadratic
with respect to the number of servers and when they are plotted in the
same figure, three graphs fall on top of each other. Fitting the plots into
a quadratic polynomial of the form “pl x 22 + p2 * x + p3”, we get within
the 95% confidence bounds the coefficient pl, for k-fat tree to be 6.107
(varying from 4.661 to 7.553), BCube to be 5.948 (varying from 5.431 to
6.465) and VL2 to be 3.972 (varying from 2.308 to 5.637).

As we mentioned earlier, the total number nodes in the network depends
on two factors: the number of servers and the physical topology. In a
situation where there are fixed number of servers in the NFC, the total
number of nodes in the NFC will depend on the physical topology. There-
fore, the timings for the GP process with a fixed number of servers in
different network architectures will vary, depending on the total number
of nodes. We explored the time taken for GP process with 200 generations
in different architectures with respect to different number of nodes when
there are 16, 32, 48, 64, 80, 96, 112 and 128 servers in the NFC. In all
three architectures, the growth of the graph is quadratic with respect to
the number of nodes in the network and when they are plotted in the same
figure, three graphs fall on top of each other.

Effect of the state of the NFC

To better understand the effect of the state of the NFC, to the improve-
ments to the solution during the GP process, we carried out 10 set of
experiments in four types of 128 server environments of a data center with
a 4-fat tree architecture network: (1) an environment where 80% of the
server and links capacity is full: Very tight (2) an environment where only
70% of the server and links capacity is full: Tight, (3) an environment
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where only 50% of the server and links capacity is full: Medium and (4)
an environment where only 30% of the server and links capacity is full:
Loose. We assumed that each server has an initial capacity of 1000 units
and each link has an initial capacity of 6000 units. We used 92 fixed policy
requests that consists of 400 VNFs. We count the times that the fitness
value was improved during the GP process.
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Figure 4.9: Improvement of the initial solution over the generations with
respect to different states of NFC

Figure 4.9 shows how the initial objective value (given by DFS) was im-
proved over the generations for each type of environment. It reflects the
average objective value of each 10 sets of experiments. The first obser-
vation is that, in all types of environments, most of the improvements
(80% from total number of improvements) in the fitness function happens
early on (during first 100 generations), and after that improvements de-
crease significantly. The second observation is that, the environments with
loosely tight resource availability get more improvements (33% from to-
tal number of improvements) than tighter environments (15% from total
number of improvements).

Effect of the order of policy requests

Since we are processing policies in a new provisioning request sequentially,
we needed to check the impact of the order policies in the results. We used
fixed 83 policies that includes 400 VNF's and processed them in 100 random
orders for an environment of 128 servers in a 4-fat tree architecture. Our
results showed that the order of the policies does not impact the quality
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of the solution. Only five different fitness function values were obtained
with an average value of 1.072 and a standard deviation of 0.0058.

Evaluation for scaling of existing policy requests

The second responsibility of the Resource Manager is to find on-line con-
figuration solutions to implement dynamic scaling requirements of existing
policy requests, according to the traffic changes. We have conducted exper-
iments to explore the behaviour of GP based algorithm that was designed
for resource allocation for scaling requirements of existing policies.

In the algorithm we have adopted to the following scaling procedure. When
there is a requirement for a VNF to be scaled, first we try to do a vertical
scaling. We check whether the server and the path, that is currently used
by the existing VNF instance, can handle the total resource requirement.
If yes, then we do not need to change the current network configurations
(we can use the same path), and we can allocate more resources to the
existing VNF. If not, we try to perform migration scaling: we search for a
new server and a path that can handle the total resource requirement. In
this case, we assume that the existing VNF is migrated [128] to the new
server and allocate additional resources.

The following Sub-sections describe the performance evaluation of the GP
approach when handling these re-allocation of resources in a NFC with
128 servers.

Effect of the number of VNFs scaling

To better understand how the NFC behaves when handling different num-
ber of VNF's scaling out simultaneously, we carried out 4 sets of experi-
ments (30 rounds from each): (1) 30 VNF's were scaling out simultaneously,
(2) 20 VNFs were scaling out simultaneously, (3) 10 VNFs were scaling
out simultaneously, and (4) 2 VNFs were scaling out simultaneously. We
have assumed a 4-fat tree architecture with 128 servers, where each server
has an initial capacity of 1000 units, each link has an initial capacity of
3000 units and each VNF initially requires 100 server capacity units. For
each round of experiments, we have used a fixed set of policy requests that
consists of 400 VNF's as the initial policy requests. We count the times
that the fitness value was improved during the GP process.

Figure 4.10 shows how the initial objective value (given by DFS) was
improved over the generations when different number of VNF's are scaling.
It reflects the average objective value of each 30 rounds of experiments.
The observation is that there is little benefit in running the GP process
when the number of VNFs scaling simultaneously is small. The number
of improvements when 2 VNF's were scaling was 6% from total number of
improvements. One can avoid running the GP process and use directly the
DFS solution. As the number of VNFs scaling simultaneously increases,
the potential gains provided by the GP optimization also increases. The
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Figure 4.10: Improvement of the initial solution over the generations
with respect to the number of VNFs scaling

number of improvements when 30 VNFs were scaling was 41% from total
number of improvements. In all cases, most of the improvement in the
fitness function (66% from total number of improvements) happens early
on (during first 100 generations), and after that the improvements decrease
significantly.

Effect of the local GP approach

Although the “global GP approach” where we are allowed to change con-
figurations of any policy of NFC during the genetic operations, may pro-
vide better resource allocations, the solutions may require drastic re-
arrangements of the current configurations, hence making them imprac-
tical in real scenarios. However, we can use this method to provide us
with a baseline to compare against a “local GP approach” where we limit
changes to configurations of policies that are scaling. We conducted ex-
periments for both GP based global and local GP approaches to compare
performances with respect to the resource allocation efficiency over several
days. As mentioned in Chapter 3.4, since in this thesis we did not explore
the problem of monitoring the resources and determining when to scale
the VNFs according to the dynamic traffic changes, we used statistics pre-
sented in existing work and replicated the traffic changes over a day with
relevant scaling triggers and events. We repeated the data for single day
(we derived 42 significant events over the 24 hours of traffic data for two
times to get the data to emulate 2 consecutive days, and therefore we had
total of 84 events for 2 days. There are two types of events: (1) when the
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traffic change has reached the threshold, resources have to be reallocated
to increase/decrease at least one VNF instance or (2) when the traffic
change has not reached the threshold, modify the bandwidth usages of the
links of the paths that were effected by the traffic change, to reflect the
new traffic amount passing by.

We called the global GP approach the baseline, i.e., the minimization
of the parameters relevant to server and links usage. For the local GP
approach, we focused on 2 limited cases: (1) all parameters are considered
and (2) only the parameters relevant to changes are considered. Since
the second case tried to minimize the changes to the servers and links,
it represented the scaling solutions that in theory minimally disturb the
traffic (e.g., packet drops, latency). The weights of fitness function (given
in equation 4.8) in these cases are shown in Table 4.4.

Fitness Function Usage | wl | w2 | w3 | w4 | wb
Global GP approach 1 1
Local GP approach 1 1 1
Local GP approach 2 0 0

1 0 0
1 1 1
0 1 1

Table 4.4: Different usages of fitness function given in equation 4.8 for
global vs local GP approaches (varying the weights)

Once the solutions have been provided for the 84 events for 2 consecutive
days by the GP approachs (global and two local methods), we manually
calculated the value of the each fitness function of the provided solutions,
assuming that changes do not count (i.e., wy = ws = 0) and compared
the global and local GP approaches. For each set of experiments, we have
used a fixed set of policy requests that consists of 400 VNFs. We have
assumed a 128 server network, where each server has an initial capacity of
1000 units, each link has an initial capacity of 3000 units and each VNF
requires 100 server capacity units.

The fitness value comparison (an average from 5 sets of experiments) for
the events of 2 consecutive days for a 4-fat tree architecture network is
shown in figure 4.11. The global GP approach produced solutions with
better resource allocations than the other two. However, the local GP
approaches solutions do not diverge from the global GP approach solu-
tions over time. Furthermore, the figure clearly shows that both local GP
approaches, followed essentially the same behaviour (modulo a translation
in the y axis) that the behaviour of the baseline: global GP approach, if
we smooth the curves.

A comparison of server changes needed in the configuration solutions (an
average from 5 sets of experiments) given by (1) global GP approach, (2)
local GP approach 1 and (3) local GP approach 2, after processing each
event is shown in the Figure 4.12. As expected, the global GP approach
caused the largest number of changes. The solutions given by the local
GP approaches had fewer server changes from their previous configuration



86 Resource allocation for VNF's

—+—Global -m-Locall Local 2

Fitness Value

o 10 20 30 40 50 60 70 80
Scaling Event

Figure 4.11: Fitness value comparison: KFat tree architecture

because the local GP approaches performed genetic operations only on the
partial solutions that are scaling. The interesting observation was that,
most of the time both local GP approaches had the same number of server
changes, making the two methods essentially the same. We have noted
that these server changes are the unavoidable changes due to the scaling
requirements, and not necessarily caused by the genetic operations.

In addition, similar to the server changes, we have observed that the solu-
tions given by the global GP approach has most links changes from their
previous configuration. Most of the time both local GP approaches have
the same number of links changes. As shown earlier, local GP approach
1 (which additionally minimizes usage of servers and links congestion)
gave better fitness values than local GP approach 2. Therefore, local GP
approach 1 provided solutions with better server and network resources
utilization without making many changes. Although we have included the
local GP approaches comparison results only for a 4-fat tree architecture
network because of the limited pages, we have observed that this behaviour
is the same for the other two architectures: BCube and VL2. Therefore,
in the rest of the experiments, we have used only local GP approach 1.

Effect of the NFC architecture

Going further, we have compared the behaviour of local GP approach 1
with global GP approach for other architectures: BCube and VL2 archi-
tectures for 2 consecutive days. The fitness values (an average from 5 sets
of experiments) for BCube and VL2 architectures for 2 consecutive days
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Figure 4.12: Server changes comparison: KFat tree architecture

are shown in Figure 4.13 and 4.14 respectively. As mentioned earlier, for
each set of experiments, we have used a fixed set of policy requests that
consists of 400 VNFs. We have assumed a 128 server network, where each
server has an initial capacity of 1000 units, each link has an initial capacity
of 3000 units and each VNF requires 100 server capacity units.

Similar to the 4-fat tree architecture, the global GP approach produced
solutions with better resource allocations than the local GP approach for
BCube and VL2 architectures. Also, they followed essentially the same
behaviour (module a translation in space) of the global GP approach: the
baseline. In the results of all three architectures, during most of the scaling
events of each day, the fitness values grew. The reason is, in the traffic
model we are using, the traffic is increasing until late night of each day.

We have observed that each architecture’s fitness values are effected by
different parameters of the fitness function. For all three architectures,
number of links used and links utilization made the difference in the fitness
values and the number of servers used were very similar. In the BCube
architecture, the difference between local and global GP approach was due
to the fact the local GP approach always used fewer links than the global
GP approach. While the global GP approach freely used more links over
time, the local GP approach hesitated to use more links because we were
trying to minimize number of server and links changes in the local GP
approach. Therefore, the solutions given by the local GP approach were
more congested than the solutions given by the global GP approach.

In the VL2 and 4-fat tree architectures, the number of links used was
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similar for both the local GP approach and the global GP approach, while
the difference was on link utilization. When considering the fitness values
increase for each day, the VL2 architecture’s fitness values for the local GP
approach increased fast with respect to the 4-fat tree and BCube. In the
VL2 architecture, servers are located in a more compact manner and it has
fewer paths between servers inside the same pod. Therefore, the links got
more congested, and when traffic was increasing the link utilization also
increased fast. The 4-fat tree architecture has more paths and therefore
the servers were not compact. It tried to use more links and made the
links less congested. Hence, the 4-fat tree architecture had more smooth
effect on the parameters of the fitness function.
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Figure 4.13: Fitness value comparison: BCube architecture

4.3.3 Summary

We introduced two new resource allocation algorithms for the Resource
Manager module to: (1) provision new VNF's policy requests and (2) scale
out/in of existing VNFs, based on GP approach. For the new policy
requests provisioning, we focused on minimizing the required server and
network resources (e.g., average link utilization). For the scaling out/in
of VNFs, in addition to minimizing the required server and network re-
sources, we focused minimizing the number of changes in server and links
configurations.

We explored the evolution of the GP based algorithms for large networks,
over a full day traffic patterns based on more realistic data. The results
show that, although GP approach may not provide the optimal solution,
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Figure 4.14: Fitness value comparison: VL2 architecture

GP can decide the computing and network allocations for hundreds of poli-
cies (around 400 VNFs) in a 128 server environment and find reasonable
solutions on the order of milliseconds. Most of the improvements in the ob-
jective function (80% from total number of improvements) happens early
on (during first 100 generations). Moreover, our results show that the GP
process provided an average objective value improvement percentage up
to 7.87% over the initial solution (the baseline) with a reduction of aver-
age link utilization up to 28.7% for the three architectures (a 4-fat tree, a
BCube and a VL2). In the evaluation of the algorithms over the time, our
results show that, the “local GP approach” provides reasonable solutions
with lesser changes to the current configurations, and moreover, they do
not diverge from the “global GP approach” solutions over time. The fig-
ure clearly shows that local GP approaches (1) and (2), if we smooth the
curves, will follow essentially the same behaviour (modulo a translation in
the y axis) that the behaviour of the baseline: “global GP approach”.

As opposed to the ILS based model, in which the efficiency of local search
depends on the neighbourhood structures and neighbourhood structures
are directly related to the network architecture, the GP approach is agnos-
tic of the network architecture. It is general enough, in a way that a change
to the network does not require a change in the algorithm implementation.



90 Resource allocation for VNF's

4.4 Performances comparison for Resource
Manager models

As discussed in previous Sections, we have implemented the resource al-
location algorithms for the Resource Manager module using different ap-
proaches. Specifically: (1) ILP, (2) ILS and (3) GP. Further more, both the
ILS and GP processes rely on either (1) DFS or (2) random approach to
find the initial solution. Each approach has its own advantages as well as
disadvantages, in terms of: (1) execution time of the algorithm, (2) quality
of the solution, (3) scalability of the algorithm for large scaled networks
and (4) agnosticism to the data center architecture etc. The selection of
which algorithm to use, might depend on the requirements and optimiza-
tion goals of the CSP. So it is important to understand the advantages of
each approach and the scenarios where each approach would be better to
use.

In this Section, we compare the approaches that we used to implement the
resource allocation algorithm in following aspects:

1. Performance comparison for a small scaled network: Sub-section
4.4.1

2. Performance comparison for a large scaled network: Sub-section
4.4.2

4.4.1 Small scaled networks

We start our comparison by exploring the performances of different ap-
proaches for a small scaled network. We compare the heuristics based
approaches: ILS and GP with the traditional ILP approach in the case of
new policy requests provisioning. However, as explained in earlier chap-
ters, both the ILS and GP processes rely on either (1) DFS, or (2) random
approach to find the initial solution. As DFS and random approaches
are yet another two different approaches of resource allocation, we have
included the initial solutions found with DFS and random approaches to
our comparison too.

We have considered a small NFC with a k-fat tree architecture. We have
assumed an environment with 2 pods and 4 servers, where each pod is
connected 2 servers, and carried out our experiments in a machine with
an Intel core i7-4500u processor and 8GB of RAM.

Configuration solution timing

We have implemented the ILP formulation of the NFCRMP in CPLEX [28].
We have conducted a set of experiments to compare the time taken to find
a solution for new policy requests provisioning by ILP, ILS and GP ap-
proaches. We have considered a set of policy requests, which have total
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of 10 VNFs. For the ILS process, the total time includes both (1) to find
an initial solution using DFS, and (2) the ILS process over 20 repeated
procedures. For the GP process, the total time includes both (1) to find
an initial solution using DFS, and (2) the GP process over 200 genera-
tions. We used 20 repeated procedures for ILS and 200 generations for
GP, because we have observed that, after those limits the improvements
are very rare for each approach [see Sub-section 4.2.2 and 4.3.2].

ILP took 1.5 hours to provide the optimal solution while ILS took only 2.9
milliseconds and GP took only 3.2 milliseconds. The results confirm that
although the ILP formalisation of the problem gives the optimal solution,
the ILP computational time requirement makes it not suitable even for a
few VNFs. On the other hand, the ILS and GP approach can find solutions
in milliseconds.

Configuration solution quality

In the next set of experiments, we compared the quality of the solution for
new policy requests provisioning provided by ILP, ILS and GP approaches.
As explained in earlier chapters, both the ILS and GP processes rely on
either (1) DFS, or (2) a random approach to find the initial solution. We
carried out separate ILS and GP processes experiments with both types
of initial solutions. We explored different classes of problems where we
assume that the 10 VNFs are distributed over one, two or three policies.
By varying the capacity requirements of VNFs, we observed that there
are different classes of these problems, where the differences are based on
number of servers required by these VNFs. We made sure to select 3 cases
in which the DFS would not give the optimal solution, because we wanted
to explore how the ILS and GP processes improves the solution given by
DFS. Specifically: (1) 10 VNF's belong to three policies, but all of them fit
onto a single server, (2) 10 VNFs belong to two policies, and they fit onto
two servers and (3) 10 VNFs belong to three policies, but they fit onto a
single server.

In all 3 sets of experiments, DFS gave better initial solution than random.
Therefore, when the DFS solution was given as the input to the ILS and
GP processes, in all 3 cases, our ILS and GP algorithms were able to
find the optimal solution. As described in previous sections, the DFS
method is a good bin-packing strategy, and therefore the solutions given
by the DFS uses minimal number of servers required. Also, it introduces
less inter-rack traffic, as it tries to place VNFs of a policy in the same
server as much as possible. Since the random method selects servers and
paths randomly that can be anywhere in the network, it uses much more
servers and introduces high inter-rack traffic, as the policy is splitted and
VNFs are placed in servers that are in different pods. Because of these
reasons, the initial solutions provided by the DFS was better than the
random approach. However, as the solution provided by the DFS tended
to use fewer links and those links were congested, ILS and GP were able
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to improve the solution by using different paths with different links to
distribute the traffic and reduce the average link utilization.

4.4.2 Large scaled networks

As shown in the previous section, our results show that finding the optimal
solution even for a few NFs with the ILP Equation (4.1) can take hours
and is consequently not suitable to meet traffic changes in the NFV con-
text. On the other hand, the heuristics based approaches find acceptable
solutions fast. Therefore, for the large scaled networks, we continue our
performances comparison with only heuristic based approaches.

Depth First Search (DFS) approach vs Random approach

The ILS and GP approaches both take an initial solution as the input, and
tries to improve the given initial solution. As explained in Sections 4.3 and
4.2, we use (1) DFS or (2) a random approach to find the initial solution.
Therefore, we can use these DFS and random solutions as the baseline
to compare the solutions given by the GP process after 200 generation.
In the DFS method, servers and paths are selected by searching through
the whole search space and selecting the first solution we come across.
The random method searches servers and paths randomly anywhere in
the network, until a feasible configuration is found.

First, we carried out experiments (50 rounds) to compare the quality of
the solutions provided by DFS and random approaches for large networks.
For each round of experiment, we derived a fixed set of policies (average of
100 policies) that include a total of 400 VNF's and try to find solutions with
DFS and random in a 128 server environment in a 4-fat tree architecture
network. We assumed that each server has an initial capacity of 1000 units,
each link has an initial capacity of 3000 units and each VNF requires 100
server capacity units. Similar to the results observed in smaller networks
(Section 4.4.1) and for the same reasons, in all the experiment rounds,
the initial solutions provided by the DFS was better than the random
approach.

ILS approach vs GP approach

As it is proven that the initial solution provided by DFS is better than
random, we use the DFS solution as the initial solution (baseline) and
compared the performances of the proposed ILS based algorithm with the
GP based algorithm for new policy requests provisioning. The comparison
included the quality of the solution provided by the each approach as well
as the time taken by the each approach to find a solution.

We conducted separate experiments assuming different network architec-
tures: (1) a k-fat tree, (2) a VL2, and (3) a BCube, and for each type
of network architecture, we conducted 30 round of experiments. For each
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round, we derived a new set of policies that include a total of 400 VNFs
and assumed a 128 server environment. First, we tried to find initial solu-
tions with DFS, and then improved the initial solution using ILS process
with 20 repeated procedures and GP process with 200 generations sepa-
rately. We used 20 repeated procedures for ILS and 200 generations for
GP, because we have observed that, after those limits the improvements
are very rare for each approach [see Sub-section 4.2.2 and 4.3.2].
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Figure 4.15: Objective value improvements: ILS and GP

As explained in the previous sections, with the ILS algorithm, the stan-
dard full local search performs “l-opt-VNF move” to the all the VNFs
sequentially as in the new policy requests order, and tries to improve the
solution, while the perturbation performs (1-opt-VNF move) randomly to
the VNFs. However, we observed that even without performing a full local
search, by just performing “1-opt-VNF move” to the 20% of the new pol-
icy requests in each local search round, ILS produced better results than
GP for all three types of architectures, in all 30 sets of experiments.

Figure 4.15 shows the objective value improvement percentages for ILS
and GP separately, with respect to the initial solution given by DFS. The
important part is that, most of the quartile boxes do not overlap. As the
main goal of our optimization is to reduce the average link utilization,
so that the network is less congested and future scaling requirements are
minimized, the results produced by ILS reduced the average link utilization
by 32%, 27.2% and 7% (compared to the DFS solution) respectively for
the three architectures. Moreover, the results produced by GP reduced
the average link utilization by 28.7%, 14.9% and 3.2% (compared to the
DFS solution) respectively for the three architectures.
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In addition, as shown in Table 4.5, for all three architectures, ILS was
faster than GP.

Architecture | Time for GP in us | Time for ILS in us
Average SD Average SD
KFat 167742.6 | 4245.47 | 71369.46 | 4032.97
VL2 153589.8 | 2541.53 | 65920.46 | 4010.66
BCube 173704.56 | 4672.85 | 105443.2 | 22798.8

Table 4.5: Time comparison: ILS and GP



CHAPTER 5

VNFs scaling methods

Despite some initial efforts [15, 16] the dynamic scaling of VNFs presents
still many open challenges. For example, one of the challenges is decid-
ing the scaling method: i.e., whether to use vertical scaling (i.e., alloca-
tion/release of host and bandwidth resources to/from a VNF instance)
or migration (i.e., running VNFs are paused, serialized and transferred
to different servers with more resources) or horizontal scaling (i.e., instal-
lation/removal of VNF instances). A second challenge is how to resolve
potentially conflicting optimization objectives: for instance, re-allocating
resources in a way that minimizes changes to current configuration and
therefore current network activities are minimally disturbed, and at the
same time optimize usage of server and network resources [17].

As described Chapter 4, for our research work in dynamic resource alloca-
tion, to achieve scaling, we adopted to a simple scaling procedure: first we
tried to allocate resources for a vertical scaling, and if it failed, then we
tried to allocate resources for migration scaling. However, it is important
to explore more on each scaling method to decide which scaling method
is suitable for which situation. Therefore, we explored different scaling
approaches in depth, specifically how the optimization is effected by the
scaling approach and the optimization objectives.

We expanded our ILS algorithms with three different scaling methods:
vertical, migration and horizontal to compare their performances. We
considered a single optimization goal: maximize the accepted bandwidth
of scaling requests while ensuring a new constraint: that the delay expe-
rienced by each packet of an accepted scaling request (inside the NFC),
does not exceed its requested deadline. We compared the different charac-
teristics of the solutions provided by scaling approaches such as accepted
bandwidth ratio, resource utilization etc.

In this chapter, we present a discussion on following aspects:

1. Practical aspects of different scaling approaches: Section 5.1

95
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2. Optimization aspects of different scaling approaches: Section 5.2
3. Implementation of the ILS based resource allocation algorithm: 5.2.1

4. A comparison between different scaling approaches: Sub-section
5.2.3

5. A comparison between different optimization objectives: Sub-section
5.2.3

6. A summary of the evaluation: Sub-section 5.2.4

5.1 Scaling approaches for VNFs: practical
aspects

Vertical, horizontal and migration based scaling approaches are widely
adopted resolutions in the implementation of VM based dynamic resource
allocation. There are two different aspects to look at when deciding which
approach to use: (1) selecting an approach based on the optimization goals
and (2) selecting an approach considering the real implementation. First
of all, we present a general discussion on these scaling approaches in-terms
of the real implementation [17].

Vertical scaling is a basic feature of a VNF which adjusts logical parti-
tion of multiple metrics (e.g. CPU, Memory, Bandwidth, I/O etc.) in a
VNF. Dynamic Logical Partition Resizing (DLPAR) allows users to logi-
cally attach and detach resource to and from a logical partition’s division
without rebooting. On the other hand, horizontal scaling changes the
number of VNF instances, which involves running applications on two or
more separate VNFs hosted on same or different servers. Further, live
migration of VNF instances can be employed to scale bandwidth and host
resources. The running VNFs are paused, serialized and transferred to a
different server with more resources, where they are once again scheduled
for execution with additional resources. Following sub sections describe
the differences of scaling approaches in-terms of different characteristics.

Physical limitations

The physical limitation of vertical scaling is the spare computational re-
sources of the VNF’s current server. When the computational resource
demand of a VNF exceeds this limitation, vertical scaling will fail and has
to change to the live migration approach where the VNF has to be trans-
ferred to a different server with more resources. However, even for the live
migration approach, the limitation of the spare computational resources
of the server applies, because the maximum computational resource that
can be allocated to the VNF is limited by the maximum computational
resource capacity of the server. On the other hand, for the horizontal scal-
ing, within fine-grained VNFs, the physical limitation is the overall spare
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resources inside the cloud infrastructure. Theoretically, cloud provider can
offer as many VNFs as possible in response to clients’ demands.

Time for the reconfiguration

The vertical scaling approach is efficient with respect to the time for recon-
figuration. The DLPAR technology used in vertical scaling takes less than
1 second for reconfigurations on pHyp hypervisorors and VMWare ESX3s
[130]. However, the duration of reconfiguration for horizontal scaling and
migration is higher, ranging from tens of milliseconds to a second, because
it includes the time to copy the new instance in a new server and then
initialize the instance [54, 55]. The process of coping the instance involves
VNF migration and time cost of migration is higher than the time cost of
metrics adjustment.

Cost of software license

Horizontal scaling introduces an additional cost due to the additional soft-
ware licenses needed for the new VNF instances. However, vertical scaling
and migration do not need additional software licences, as they do not
change the number of VNF instances.

Complexity of server consolidation

In general, resource fragments after a long term scaling requires the CSP
to perform server consolidation. The server consolidation is an approach
to the efficient usage of computer server resources in order to reduce the
total number of servers used [131]. The practice of server consolidation
was developed in response to the problem of server sprawl, a situation in
which multiple, under-utilized servers take up more space and consume
more resources than can be justified by their workload. The consolidation
after horizontal scaling is much more complicated, because the fragments
caused by it are irregular.

Coordination

Vertical scaling and migration, allows CSP to allocate a single VNF for the
clients total traffic with no coordination or latency among multiple VNF
instances. However, horizontal scaling introduces new VNF instances and
therefore, the CSP must ensure synchronization between VNF instances.
Moreover, horizontal scaling needs a gateway and workload balancer that
distributes the traffic to multiple VNF instances, which makes it resource-
consuming, that provides more throughout at expense of complexity.
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5.2 Scaling approaches for VNFs: optimization
aspects

As mentioned earlier, the second aspect to look at when deciding which
scaling approach to use is, selecting an approach based on the optimization
goals. We considered a single optimization goal: maximize the accepted
bandwidth of scaling requests while ensuring a new constraint: that the
delay experienced by each packet of an accepted scaling request (inside
the NFC), does not exceed its requested deadline.

We assumed that the end-to-end delay experienced by each packet inside
the NFC, is composed of following two components: (1) processing delay
of each VNF in the policy request and (2) transmission delays between
VNFs of the policy request [15]. Even though we have limited the end-to-
end delay to these two components, and considered only the delay inside
the NFC, one can easily add more delay components such as: (1) the extra
delay caused by moving NF's to the cloud, (2) the delay caused by creating
and configuring new VNF instances, (3) the delay caused by migrating
traffic from one VNF instance to another etc.

In this section, we describe the process that was carried out to compare the
effect of different scaling approaches (vertical, migration and horizontal)
with respect to the resource optimization, when handling scaling events
over a day.

5.2.1 Resource allocation algorithm

We used the same ILS based resource re-allocation algorithm described
in Chapter 4.2 to explore three scaling approaches: (1) vertical, (2) mi-
gration and (3) horizontal. The Resource Manager uses the current state
and search for the re-assignment of resources (servers and paths) for all
the VNFs of the scaling policy. The ILS based resource re-allocation al-
gorithm follows the same procedure as described in Chapter 4.2, but with
two differences. First is the way the search is performed for resource re-
allocation, which is based on the scaling approach that is used. Second is
the optimization goal of the Resource Manager, that is to maximize the
accepted bandwidth of scaling requests and ensure that delay experienced
by each packet of accepted scaling requests, do not exceed their required
deadlines.

For the vertical scaling, the scaling concept is to increase/decrease server
resources to/from the server where the VNF currently resides, and in-
crease/decrease bandwidth resources to/from the paths that VNF cur-
rently uses. When a policy has to be scaled out, for each VNF of the
scaling policy, the Resource Manager checks whether the server and the
path, that is currently used by the VNF, can handle the total bandwidth
demand, while ensuring the traffic of the policy request meet its deadline.
If the total bandwidth demand of the scaling request can’t be satisfy, then
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the Resource Manager tries to allocate resources from the current server
and the path, to accept as much as possible bandwidth demand, while
ensuring the deadline. When a policy has to be scaled in, for each VNF of
the scaling policy, the Resource Manager decreases server resources from
the server where the VNF currently resides, and decreases bandwidth re-
sources from the paths that VNF currently uses.

For the migration scaling, the concept is to transfer the VNF to a different
server with more resources that can handle the total bandwidth demand.
When a policy has to be scaled out, we assumed it as a new policy. Also, we
assumed that the new policy’s bandwidth request is the total bandwidth
demand: (current bandwidth +/- change). For each VNF of the scaling
policy, the Resource Manager searches for a server and a path to handle the
total bandwidth demand, using a DFS method, while ensuring the traffic
of the policy request meet its deadline. If the Resource Manager can’t find
resources to handle the total bandwidth demand of a scaling request, then
the Resource Manager tries to find resources to accept as much as possible
bandwidth demand, while ensuring the deadline. After the new policy
has been implemented, the resources allocated to the existing policy are
removed. This is done because, it is expected that both implementation
would need to co-exist for sometime to be able to handle session affinity to
ensure the correct behaviour of the VNF. When a policy has to be scaled
in, for each VNF of the scaling policy, the Resource Manager decreases
server resources from the server where the VNF currently resides, and
decreases bandwidth resources from the paths that VNF currently uses.

For the horizontal scaling, the concept is to install/remove VNF instances
or paths to handle the extra bandwidth demand (the traffic change).
Therefore, when a policy has to be scaled out, we assumed it as a new
policy. Also, we assumed that the new policy’s bandwidth request is the
extra bandwidth demand (the traffic change) of the existing policy. We
called it the “child policy”. For each VNF of the policy that is scaling,
the Resource Manager searches for a server and a path to handle the ex-
tra bandwidth demand, using a DFS method, while ensuring the traffic of
the policy request meet its deadline. If the Resource Manager can’t find
resources to fully satisfy the extra bandwidth demand of a scaling request,
then the Resource Manager tries to find resources to accept as much as
possible bandwidth demand, while ensuring the deadline. When a policy
has to be scaled in, for each VNF of the scaling policy, the Resource Man-
ager decreases server resources from the server where the VNF currently
resides, and decreases bandwidth resources from the paths that VNF cur-
rently uses. If this decrease means removing total resources from a child
policy, then we remove that child policy entirely.

5.2.2 Experimental set-up

We modified the experimental setup as follows: we assumed that we are
going to provide services for policy requests of 6 large enterprises. There-
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NF type Processing capacity | CPU cores required
1P firewall 900 Mbps 4
Application firewall 900 Mbps 4
WAN optimizer 900 Mbps 4
Proxy 900 Mbps 4
Gateway 900 Mbps 4
VPN 900 Mbps 2
Load balancer 900 Mbps 4
IDS/ IPS 600 Mbps 8

Table 5.1: Processing capacities and CPU requirements of VNF's

fore, the system handled around 130 policies with 600 NFs. We assumed
a 128 server environment in a 4-fat tree architecture where each server has
an initial capacity of 24 cpu cores and each link has an initial capacity of

10 Gbps.

We considered 7 types of VNFs: IP firewalls, Application firewalls, WAN
optimizers, Proxies, Gateways, VPNs, Load balancers, and IDS/IPS as
described in Section 3.4. Furthermore, we made more precise specifications
of the VNFs. The computational requirements for each VNF to serve a
specific amount of traffic, can be derived using the inbound traffic rate
and the resource profile of each VNF type. A resource profile for each
NF includes: (1) processing capacity of the VNF, (2) required minimum
number of CPU cores and (3) bandwidth demand transformation by the
VNF (compress or amplify the traffic).

Following the existing works [41, 97], Table 5.1 shows the assumed process-
ing capacities and the required number of CPU cores for different VNFs
in our experiments.

The bandwidth demand transformations are associated with traffic-scaling
VNFs. For an example, certain VNFs, such as Redundant eliminators and
Caches compress traffic, while other NF's such as packet multiplication and
encryptions amplify the traffic. Following the existing works [132], Table
5.2 shows the assumed traffic scaling factors for different VNFs in our
experiments. A traffic scaling factor less than 1 implies traffic compression
while a traffic scaling factor greater than 1 implies traffic amplification.

As mentioned in the previous Chapter, since we do not explore the prob-
lem of scaling triggering in this work, we used the scaling requirement
patterns for a day presented in [22] to replicate the traffic changes over a
day. However, for VNF's scaling methods evaluation, we considered traf-
fic changes of every hour (previously we considered the traffic of every
30 minutes), and we assumed the scaling triggers and derived the scal-
ing requirements. Since we are using more precise specifications of VNFs
for the VNFs scaling methods evaluation, the consequences of the traffic
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NF type Traffic scaling | Traffic scaling factor
IP firewall No -
Application firewall No -
WAN optimizer Yes 0.65
Proxy Yes 0.65
Gateway No -
VPN Yes 1.5
Load balancer No -
IDS/ IPS Yes 1.5

Table 5.2: Bandwidth demand transformations of VNF's

changes are different now. We call the scaling requirements of each hour
as a “scaling event” and we have 20 scaling events for the full day.

Following the work in [133], we assumed that the end-to-end delay re-
quirement (deadline) for a packet within a CSP network is 1 ms. In our
algorithm model, we have assumed that the end-to-end delay experienced
by each packet (inside the NFC) is composed of: (1) processing delays of
VNFs in the policy request and (2) transmission delays between VNF's of
the policy request [15]. We assumed that the processing delay of a VNF is
equal to ﬁ, where cap is the processing capacity of that VNF [15]. The
transmission delay between two VNFs is calculated based on allocated
path, where the delay of each link in the path is assumed to be 0.001 ms
[134].

5.2.3 Evaluation

In this section, we will describe the results of the experiments that were
carried out to compare the effect of different scaling approaches. All ex-
periments were carried out in a machine with an Intel core i3 processor
and 20GB of RAM.

For each experiment round, first we started with the initial resources al-
location algorithm, to find initial allocations for policies for their initial
expected traffic. We ran the algorithm with the two different methods of
finding the initial solution: (1) DFS and (2) random. Then we took the
solutions of two methods (DFS and random), and use them separately to
run the resource allocation algorithm for scaling. We ran the algorithm
with three scaling methods (vertical, migration and horizontal) separately,
over the 20 scaling events of a full day.

Therefore, we can summarize the different approach as follows:

1. Initial allocation with DFS and scaling with vertical: (DFS-Vertical)

2. Initial allocation with DF'S and scaling with migration: (DFS-Migration)
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3. Initial allocation with DF'S and scaling with horizontal: (DFS-Horizontal)

4. Initial allocation with Random and scaling with vertical: (Random-
Vertical)

5. Initial allocation with Random and scaling with migration: (Random-
Migration)

6. Initial allocation with Random and scaling with horizontal: (Random-
Horizontal)

We repeated this process for 10 experiment rounds, where for each exper-
iment round, we derived a fixed set of policies (average of 130 policies)
that include a total of 600 VNFs, as described in Section 5.2.2. For each
experiment round, scaling events were derived based on the policy set used
and the traffic data, following the process described in 5.2.2.

Percentage of bandwidth dropped

The optimization goal of our algorithm was to maximize the accepted
bandwidth of scaling requests with a constraint that ensures the delay ex-
perienced by each packet of accepted scaling requests, do not exceed their
deadlines. Therefore, we checked the percentage of bandwidth dropped,
for each scaling approach, starting with DFS and random based initial al-
location to have a better comparison. There are two reasons for an amount
of bandwidth or total bandwidth from a scaling request to be get dropped:
(1) the cloud infrastructure does not have enough resources or (2) the cloud
infrastructure has enough resources, but the resources cannot satisfy the
deadline constraint. We calculated the Percentage of bandwidth dropped
for each event as (Total of not accepted bandwidth for all the scaling poli-
cies of the event / Total bandwidth requested by all the scaling policies of
the event * 100). Vertical scaling had the highest percentage of bandwidth
dropped: average of 49.6%. The next was migration scaling: average of
3.89%, while horizontal scaling had the lowest percentage of bandwidth
dropped: average of 0.12%, making it the best scaling approach, in terms
of the optimization goal of accepting maximum bandwidth as possible.

Figure 5.1 shows the percentage of bandwidth dropped for the migration
scaling, over scaling events of the day. Vertical scaling is always limited by
the spare computational resources of the VNFE’s current server because ver-
tical scaling is done in the same server that the VNF resided at that time.
However, starting with a random initial allocation and continuing the day
with vertical scaling, provided significant better results than starting with
a DFS initial allocation. The DFS followed a bin-packing strategy and
did not leave free CPU units in servers to be used for future bandwidth
demands. On the other hand, with random initial allocation, servers were
not fully packed, therefore there were CPU units left in servers to be used
for future bandwidth demands.

Figure 5.2 shows the percentage of bandwidth dropped for the migration
scaling, over scaling events of the day. With the migration scaling, when
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Figure 5.1: Percentage of bandwidth dropped: Vertical scaling

a policy has to be scaled out, we assumed it as a new policy. Also, we
assumed that the new policy’s bandwidth request is the total bandwidth
demand of the existing policy. The first observation was, when the system
is not fully tight (more than 30% of the resources are free), the Resource
Manager was able to find resources to satisfy the total bandwidth demand.
But when the system became tighter over time, the Resource Manager was
not able to find resources to satisfy the total bandwidth demand. The sec-
ond observation was, when the bandwidth demand increased over time,
the migration scaling faced the problem of physical resources limitation
of a server, because the maximum computational resource that can be al-
located to the VNF is limited by the maximum computational resource
capacity of the server. Therefore, the Resource Manager was not able to
find servers to satisfy the total bandwidth demand. The final observation
was, for the migration scaling, for the scaling events at the beginning of
the day (until 8th event), there was no significant difference between start-
ing with a DFS or a random initial allocation. However, when the system
gets tighter over the time, percentage of bandwidth dropped tended to be
slightly different for two methods. For some events, starting with DFS
initial allocation gave better results while for other events, starting with
random initial allocation gave better results. Therefore, starting with a
DFS or a random based initial allocation, did not provide significant differ-
ent effect to continuation with the migration scaling. The factors effected
the continuation with migration scaling were tightness of the system and
physical resources limitation of servers.
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Figure 5.2: Percentage of bandwidth dropped: Migration scaling

Figure 5.3 shows the percentage of bandwidth dropped for the migration
scaling, over scaling events of the day. With the horizontal scaling, when
a policy has to be scaled out, we assumed it as a new policy. Also, we
assumed that the new policy’s bandwidth request is the extra bandwidth
demand (the traffic change) of the existing policy. The main observa-
tion was, most of the time (when the system is not tight or tight), the
Resource Manager was able to find resources to satisfy the total extra de-
mand. Therefore, the percentage of dropped bandwidth was minimum.
For the scaling events at the beginning of the day (until 8th event), there
was no significant difference between starting with a DFS or a random
initial allocation. However, when the system gets tighter over the time,
starting with DFS initial allocation gave better or equal results, having a
low percentage of bandwidth dropped.

Allocated CPU units

The optimization goal of our algorithm was to maximize the accepted
bandwidth of scaling requests. We can equate that value with earning and
contrast that against the CPU units allocated for the VNFs to process
the accepted bandwidth as a measurement of expenses. This implies an
approximated measurement of profit. 2 The number of allocated CPU

2Even though we have not explicitly converted the accepted bandwidth re-
quests or allocated CPU units to monetary values, once they are converted, it
is easy to calculate the profit.
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Figure 5.3: Percentage of bandwidth dropped: Horizontal scaling

units for the VNFs to process the accepted bandwidth when following
different approaches are shown in Figure 5.4. We compared the allocated
CPU units by these approaches with a base line: the number of CPU
units required to satisfy the total bandwidth demand of the system (for
all policies) at each scaling event. This is calculated without considering
the maximum capacities of servers or links, therefore the baseline is the
best case, which is not practically implementable.

As the vertical scaling has the highest percentage of dropped bandwidth,
it has the lowest number of CPU units allocated. The migration scaling’s
number of CPU units allocated is closer to the baseline, having the number
of allocated CPU units closer to the baseline. According to the baseline,
the horizontal scaling has allocated CPU units more than required. With
the horizontal scaling, when a policy has to be scaled out, we assumed it as
a new policy. Also, we assumed that the new policy’s bandwidth request
is the extra bandwidth demand (the traffic change) of the existing policy.
We have observed that some VNFs in the existing policy, had the enough
resources to satisfy the total bandwidth demand, while some VNFs in the
existing policy did not. As the maximum processing capacity of a VNF for
a given amount of resources depends on the VNF type, the capability to
handle the total bandwith demand with already allocated resources also
depends on the VNF type. A strategy of re-using VNF's of the existing pol-
icy that could satisfy the total bandwidth is complicated. We might need
to create new instances for some VNF's of the policy that can’t satisfy the
total bandwidth, and distribute the traffic by having workload balancers
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Figure 5.4: Comparison of allocated CPU units

within the policy chain. Therefore, even though there were VNFs in the
existing policy that could satisfy the total bandwidth demand with the
already implemented VNF instance, we still created a new VNF instance,
because the concept was to implement a new policy to satisfy the extra
bandwidth demand, as it needs a single workload balancer to distribute
the traffic over policy instances. For both the migration scaling and hor-
izontal scaling, starting with a DFS or random initial solution did not
provide significant difference in the results.

Server utilization

As shown in the previous sections, the horizontal approach has allocated
more CPUs and accepted more bandwidth than migration and vertical ap-
proaches. However, we have observed that to allocate more CPUs and to
accept more bandwidth, horizontal approach used more and more servers.
Therefore, one can consider this scenario as a situation with conflicted ob-
jectives: whether to use more server resources and accept more bandwidth
requests or to use less server resources and accept less bandwidth requests.

Figure 5.5 shows the comparison of number of servers used by each ap-
proach (average for 10 experiment rounds) over the scaling events. For
the scaling events at the beginning of the day, when started with a ran-
dom based initial allocation, all three scaling approaches have used more
servers. Further more, for the scaling events until the middle of the day,
when started with a DFS based initial allocation, both migration and
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Figure 5.5: Comparison of number of servers used

horizontal scaling approaches have used similar number of servers. Also,
when both of them started with a random based approach, they have used
similar number of servers too.

However, at the end of the day, when the total traffic rate is getting de-
creased and policies had to scaled in, the horizontal scaling approach used
fewer servers. This is because when scaling in (as a result of traffic de-
crease), horizontal scaling was able to remove the child policies that were
created, as the result of scaling out to accommodate the extra traffic de-
mands (when traffic was increasing). On the other hand, for migration
approach, scaling out was achieved by treating the policy as a new pol-
icy with total traffic demand, and transferring it to a new server with
more resources. Therefore, when scaling in, for migration approach, the
process was just to decreases server resources from the server where the
VNF currently resides, and decreases bandwidth resources from the paths
that VNF currently uses. It did not change the placement of VNFs and
therefore, the number of servers used did not change.

Changes to the current configuration

As we mentioned earlier, when scaling VNF's to satisfy the new traffic
amount, there might be different conflicted objectives. When re-allocating
resources to satisfy bandwidth requests as much as possible, we might not
want to cause many changes to current configuration, specifically current
placement of the VNFSs, so that the current network activities are mini-
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mally disturbed.

We use the term “a server change”, to refer when the placement of a VNF
changed, to satisfy the scaling requirement. Figure 5.6 shows the compar-
ison of number of server changes, when satisfying the scaling requirements
using horizontal and migration scaling approaches (average for 10 exper-
iment rounds) over the scaling events. For the migration scale, “a server
change” means the existing VNF instance has to migrated to a new server
to satisfy the scaling request and now the traffic has to re-directed to the
new server. For the horizontal scale, “a server change” means, that a
new VNF instance has to instantiate in a new server to satisfy the scaling
request and now the traffic has to be balanced between multiple VNF in-
stances. When using vertical scale, there are no server changes, because
for the vertical scaling, scaling is done by adjusting CPU and memory
metrics in the server, that the VNF is currently residing. Therefore, we
have not included vertical scaling in the Figure.
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Figure 5.6: Number of server changes

The main observation is that, for both horizontal and migration scaling
approaches, there was no significant effect from starting with a DFS based
or a random based initial allocation, with respect to the number of server
changes. Furthermore, horizontal scaling caused more server changes than
migration scaling. This is because horizontal scaling was accepting more
bandwidth requests more than the migration scaling, at the cost of chang-
ing servers. However, the consequence is that during the system adjust-
ments, the horizontal scaling might cause more traffic loss, directly affect-
ing the earnings and profit.



5.2. Scaling approaches for VNFs: optimization aspects 109

5.2.4 Summary

As mentioned in Chapter 2, the existing research work on scaling of VNFs
is very limited, most of them focus only on the complexities of the scaling
technologies. They do not consider the resource allocation or optimiza-
tion aspects of these scaling technologies. Therefore, we explored different
scaling approaches and the optimization perspectives: vertical scaling (al-
location/release of computing and bandwidth resources to/from a VNF
instance), (2) migration (running VNFs are paused, serialized and trans-
ferred to different servers with more resources) and (3) horizontal (instal-
lation/removal of VNF instances).

We conducted experiments to check how the optimization is effected by
the scaling approach and the optimization objectives. We implemented
a resource allocation algorithm to allocate resources for scaling require-
ments using ILS approach, with the three scaling methods. We considered
a single optimization goal: maximize the accepted bandwidth of scaling
requests while ensuring a new constraint: that the delay experienced by
each packet of an accepted scaling request (inside the NFC), does not ex-
ceed its relative deadline. We compared the different characteristics of
the solutions provided by scaling approaches such as accepted bandwidth
ratio, resource utilization etc.

The Vertical scaling approach had the highest percentage of bandwidth
dropped: average of 49.6%, and therefore accepted lowest number of scal-
ing requests. The next was migration scaling approach, with and average
of 3.89% of bandwidth dropped. The horizontal scaling approach had the
lowest percentage of bandwidth dropped: average of 0.12%, and accepted
highest number of scaling requests. Therefore, it can be considered as
the best scaling approach, in terms of the optimization goal of accepting
maximum bandwidth requests as possible. Our observation is that verti-
cal scaling is always limited by the spare computational resources of the
VNEF’s current server, and therefore, vertical scaling is rarely able to sat-
isfy the scaling requirements. The Migration scaling and horizontal scaling
have more freedom in scaling, and able to satisfy most of the scaling re-
quirements.

It is important to note that, each time a VNF has been placed in a new
server, paths have to be created dynamically to re-direct the traffic to the
new placement of the VNF. This involves modifying routing rules in the
switches: in our SDN network, changing OpenFlow rules in the switches
dynamically.

With migration scaling, the concept is to transfer the VNF to a different
server with more resources to satisfy the total bandwidth request. There-
fore, when using migration scaling, the rules of the switches are modified to
re-direct the total traffic flow, to the new placement: to the new server that
the VNF was migrated. But, when using horizontal scaling, as the concept
is to create a new VNF instance to satisfy the extra bandwidth request,
the total traffic has to be balanced between multiple instances. Therefore,
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the NFC Management System has to use a load balancing mechanism and
decide how the load is balanced between multiple instances of the VNF,
and then modify the rules in the switches to direct the traffic to each VNF
instance accordingly.



CHAPTER 6

Dynamic load balancing

Traditionally CSPs have been adopting dynamic load balancing approaches
to reduce the risk of a single server (or VM) being overloaded. They try to
distributed the traffic load across multiple servers (or VMs). In the sim-
ilar manner, there are situations where CSPs should adopt dynamic load
balancing mechanisms for VNFs, to balance the load among multiple VNF
instances. For an example, when using horizontal scaling as the scaling
approach, VNF instances are added /removed to satisfy the scaling require-
ment. However, when new VNF instances are added/removed, the traffic
has to be balanced among the remaining VNF instances dynamically.

Most of the current load balancing algorithms for cloud are flow-level
based, where a traffic flow is a uni-directional sequence of packets sent
from a source to a destination. However, with VNFs, the load balancing
approaches should look beyond the uni-directional flows and take care of
the sessions: which is bi-directional traffic flows between two nodes. This
is because, unlike layer 3 forwarding, many VNFs such as firewall, proxy,
and VPN perform stateful packet processing: session based packet pro-
cessing [29]. Therefore, these VNFs require affinity, where traffic for a
given flow must reach the instance that holds that flow’s state [30]. In
such cases, splitting traffic to balance the load, requires extra measures
to preserve affinity. For an instance, consider a load balancing scenario
where a firewall instance is overloaded with traffic and an additional in-
stance needs to be instantiated to adapt to the workload. The CSP must
not only direct some traffic to the new instance, but also move internal
flow states associated with the traffic. If not, serious problems might arise;
for example, attacks may go undetected because the new VNF instance
does not have the necessary information.

Existing solutions that maintain affinity mostly depend on state migra-
tion techniques: moving the relevant state from one instance to another.
Frameworks like Split/Merge [119] and OpenNF [30] facilitate fine-grained
transfers of internal NF state to support fast and safe reallocation of flows
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across NF instances. However, these systems require that NF vendors
adopt a new programming model or add a non-trivial amount of code to
existing NF implementations. Therefore, it is more appropriate to design
the load balancing algorithm in a way that the algorithm itself maintain
affinity and handle states and sessions, so that the requirement of state
migration is avoided [120].

We have proposed a load balancing algorithm that controls sessions to
avoid state migration, using consistent hashing techniques. We have built
a prototype to explore the proposed load balancing algorithm, and the
Load Balancer is deployed as a VNF in the network. In this chapter, we
discuss the proposed load balancing algorithm in following aspects:

1. Overview of the consistent hashing concept: Section 6.1
2. Description of the load balancing algorithm: Section 6.2
3. Experimental set-up: Section 6.3
4

. Preliminary evaluation: Section 6.4

Furthermore, for the dynamic load balancing, it is important that the
network configuration of the cloud infrastructure should be able to be
updated dynamically, easily and fast. However, dynamic update of net-
work configuration introduces a new challenge to the CSPs, because when
updating the network configuration, the CSPs should try to avoid any in-
consistencies in transient traffic and to minimize traffic lost, so that the
SLAs are not violated. In this context, we believe that use of Software
Defined Network (SDN) infrastructure is a very appropriate approach, as
it allows reconfiguring the physical network easily.

Therefore, In this chapter we discuss two dynamic network configurations
update mechanisms found in existing works [31]: Section 6.5

6.1 Consistent hashing

Consistent hashing is a scheme that provides hash table functionality to
distribute data across a cluster, in a way that the addition or removal of
one node does not significantly change the mapping of keys to nodes. In
this Section we introduce consistent hashing terminologies and describe
the consistent hashing concept.

Why consistent hashing

Consistent hashing was introduced in 1997 as a way of distributing requests
among a changing population of web servers [135]. In the context of the
Web, imagine a browser requesting a URL. Of course, one could request the
page from the appropriate Web server, but if the page is being requested
over and over again, it is wasteful to repeatedly download it from the
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server. The best idea was to use a Web cache, which stores a local copy of
recently visited pages. When a URL is requested, first the local cache is
checked for the page. If the page is in the cache, the page is sent directly
to the browser; without contacting the original server. If the page is not
in the cache, then the page is downloaded from a suitable server as before,
and the result is both sent to the browser and also stored in the local cache
for future re-use.

The main challenge with caching was where to store the cache. The earliest
method was to give each end user their own cache, maintained on their own
machine or device, but, later it was realized that if we could implement a
Web cache that is shared by many users, for example, all users of campus
network, it would be more beneficial. However, remembering recently
accessed Web pages of many users might take a lot of storage. Thus,
implementing a shared cache at a large scale required spreading the cache
over multiple machines. When the cache is spread over multiple machines
(multiple caches), and whenever a browser requests a URL and if we want
to know whether the Web page has been cached, it was not obvious where
to look for a cached copy of the Web page. We could poll all caches
for a copy, but that was inefficient and time consuming. It created the
requirement of mapping from URLs to caches. The first solution was to use
a hash function: a hash function maps objects, like URLs, to “buckets”,
like caches. However, a simple hash function was not enough for when
the number of buckets is not static, but rather is changing over time.
Therefore, the exact requirement was a hash table-type functionality (to
store objects and retrieve them later) with the additional property that
almost all objects stay assigned to the same bucket even as the number
of buckets changes. And the solution was to introduce consistent hashing
[135].

A “good” hash function h should satisfy two properties [135]:

1. Tt is easy to remember and evaluate, and ideally, computing the
function involves just a few arithmetic operations, such as a “mod”
operation

2. For all practical purposes, h behaves like a totally random func-
tion, spreading objects out evenly and without noticeable correla-
tion across the possible buckets

In addition to these proprieties, a consistent hash function should ensure
that neither addition nor removal of buckets cause a total objects to buck-
ets remapping [135]. When a new bucket is added, the objects of its
neighbours are shared with it, and when removal takes place, the removed
bucket’s objects are shared back with its neighbours.

Overview of consistent hashing for load balancing

The initial usage of consistent hashing was distributing requests among a
changing population of web servers. However, we can use this concept and
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distribute the traffic flows over multiple VNF's instances, in a way that the
traffic load processed by VNF instances are balanced.

The key idea of consistent caching is, in addition to hashing the names
of all objects = (for example Traffic Flows: TFs), we also hash the names
of all the buckets s (for example VNF instances). The object and bucket
names need to be hashed to the same range, such as 32-bit values [135].
This approach to consistent hashing can also be visualized on a circle, with
points on the circle corresponding to the possible hash values. Buckets and
objects both hash to points on this circle; an object is stored on the bucket
that is closest in the clockwise direction. Thus, n buckets partition the
circle into n segments, with each bucket responsible for all objects in one
of these segments.

To have a better understanding of the consistent hashing concepts, lets
assume a simple scenario where we have to distribute the traffic flows over
multiple VNFs instances. According to the consistent hashing terminolo-
gies, Traffic Flows (TFs) are considered as objects and VNF instances are
considered as buckets [136].

Figure 6.1-left shows the first step of the consistent hashing. We assume
that the range of hash value is (0, 232-1), and we assume there are 3 VNF
instances (3 buckets). We calculate the hash value of each VNF instance
(i.e., using IP address and port) and put them into the hash ring. Suppose
we have 4 TFs (4 objects) and as the second step, we calculate the hash
value of each TF and put them into the hash ring as shown in Figure 6.1-
right. According to the consistent hash algorithm, the object TF4 will be
located in V. N Fy, the TFp will be located in VN F5 and the object TFp,
TFo will be located in VN 5.

As shown in Figure 6.2-left, assume that the VN F5 goes down, and the
VNFy, and VNF; are still available. In a such situation, with a general
hashing algorithm, locations of all objects has to be re-arranged. However,
with consistent hashing, only few objects will be re-located. Therefore,
only the TFp will be re-located to VN F5.

Assume that a new VNF instance: VN Fy is added to the network as shown
in Figure 6.2-right. Then only the TFp will re-located to the VN Fy.

The challenge with consistent hashing algorithm is, since it is essentially
random, it is possible to have a very non-uniform distribution of TFs
between VNF instances. For an example, as shown in Figure 6.3-left, it is
obvious that the VIV F; will have to process most TFs and the performance
of the hash ring will be decreased.

The solution to this problem is to introduce the idea of “virtual nodes”,
which are replicas of VNF instances points in the circle. So whenever we
add a VNF instance we create a number of points in the circle for it. For
the example shown in Figure 6.3-right, where we have 2 VNF instances, we
create 3 virtual nodes for each VNF instance: VNF| 1, VNF, 5, VNF] 3,
etc. and we will get 6 virtual nodes. The hash ring with virtual nodes is
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Figure 6.1: Left: Hashing of each VNF instance, Right: Hashing of each
TF

232.1)0

Figure 6.2: Left: An existing VNF instance is removed, Right: A new
VNF instance is added
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Figure 6.3: Left: An example of non-uniform distribution of TFs between
VNF instances, Right: The solution of adding virtual nodes

shown in Figure. All the TF's located to VNF; 1, VNF; 5 and VNF| 3
will be allocated to VN Fy. And it solved the non-uniform distribution of
objects between caches.

6.2 Consistent hashing based load balancing

We have proposed a load balancing algorithm using consistent hashing
techniques. The algorithm distributes the traffic flows over multiple VNFs
instances, in a way that the traffic load processed by VNF instances are
balanced. The algorithm itself has been designed to maintain flow affinity
and handle states and sessions, so that the requirement of state migration
is avoided. In this section we introduce our Load Balancer module and
the implemented load balancing algorithm.

Whenever a packet is received by the Load Balancer, the Load Balancer
should decide, to which VNF instance that this packet will be forwarded
to. The Load Balancer should ensure that it maintains the session affin-
ity while balancing the load between VNF instances fairly and efficiently.
Therefore, if the packet belongs to an existing active session, the Load
Balancer should forward the packet, to the VNF instance that is currently
processing the specific session. If the packet does not belong to an exist-
ing active session, then the Load Balancer should select a VNF instance
to forward the packet.
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There are three main functions in our consistent hashing based load balanc-
ing algorithm: (1) Initialising the hash function, (2) Session-aware hashing
and (3) Dynamic load allocation.

First of all, to initialize the data structures and functions in the algorithm,
the Load Balancer module execute the initialising the hash function step.
Next, when Load Balancer receives a packet, it decides to which VNF in-
stance that this packet will be forwarded to. For this process, the Load
Balancer execute the Session-aware hashing function. Furthermore, the
Load Balancer module should support dynamic changes of the network,
where the Load Balancer might have to re-distribute the traffic load be-
cause: (1) traffic changed over time, (2) a new VNF instances was added,
or (3) an existing VNF instance was removed.

In the following Sub-sections, first we describe the terminologies we used
in the load balancing algorithm and then we describe each of the main
functions of the load balancing algorithm in detail. In addition, we describe
the proposed operational model for our load balancing algorithm, where
the Load Balancer module is implemented as a VNF in the network.

Notations and terminologies

We assumed a scenario where one instance of a specific type of VNF is
not enough to handle the traffic, therefore we have to deploy x number of
instances from that VNF type. The Load Balancer has to distribute the
traffic to these x VNF instances fairly and efficiently. When distributing
the traffic, the Load Balancer has to maintain flow affinity and handle
states and sessions of flows. Hence, in our load balancing algorithm, we
focused on distributing the traffic in-terms of the sessions.

Following the consistent hashing terminologies, we considered sessions of
the traffic flow as our objects, which we want to distribute over the buckets,
which are the VNF instances. Therefore, each VNF instance nf has:

1. AnID

2. Slots (virtual nodes).
The Load Monitor monitors traffic going through each VNF instance nf
in a given time window tau and the Load Distributor uses historical traffic

statistics (from the load monitor) to decide the number of slots assigned
to each VNF instance nf.

We assume that a “session” ses has two main properties:

1. A session key

2. A session status

A session key is used to identify the session and it consists of an {inbound
IP, inbound port, outbound IP, outbound port}. Given a packet p, if
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it is an incoming traffic, then its session key is {srcIP, srcPort, destIP,
destPort}. If it is an outgoing traffic, then its session key is {destIP,
destPort, srcIP, srcPort}.

A session status is used to identify whether the session is currently active
or not and it consists of: (1) the last (refresh/update) time-stamp and (2)
a tag. The last (refresh/update) time-stamp is the time of the last seen
packet for this session. The tag is the VNF instance ID, to which the
traffic of this session will be forwarded to.

Given the time window tau, a session ses is active, only if:

now — ses.lastTimestamp < tau (6.1)

Furthermore, a packet p is in the existing active session ses, if and only if:

> ses.[key(ses) == key(p) and p.timestamp—ses.lastTimestamp < tau]
(6.2)

The consistent hashing function hash() maps each given packet p to a
VNF instance nf id, such that, it respects:

1. Session: inbound and outbound traffic for the same session ses
should go through the same VNF instance nf

2. Slots: the probability of assigning a session key to an VNF instance
nf is equal to:
( Slots Of VNF instance nf / Total Slots Of All VNF instances )

Initialising the hash function: hash()

As the initialization step, first, the Load balancer initialize the hash ring
that is used for the hashing function in the session-aware hashing algo-
rithm. Given a random number generator seed s and a list of VNF in-
stances nf1,nfs,....,nfx, it generates an array buckets as follows.

As mentioned earlier, each VNF instance nf has an ID and n number of
slots assigned to it. Therefore, for each nf;, the Load balancer adds the
nf;.ID to the array buckets for nf;.slots times. Hence, size of the array
buckets is equals to the total number of slots of all VNF instances. Then
the Load balancer shuffle the array buckets using the random seed s.

Session-aware hashing

After the initialization step, next we describe the session-aware hashing
function, which is used by the Load Balancer to decide to which VNF
instance that a packet will be forwarded to.

Whenever a packet is received by the Load Balancer, the Load Balancer
should decide, to which VNF instance that this packet will be forwarded
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to. The Load Balancer should ensure that it maintains the session affin-
ity while balancing the load between VNF instances fairly and efficiently.
Therefore, if the packet belongs to an existing active session, the Load
Balancer should forward the packet, to the VNF instance that is currently
processing the specific session. If the packet does not belong to an exist-
ing active session, then the Load Balancer should select a VNF instance
to forward the packet.

As shown in the Algorithm 3, the Load Balancer starts the process for each
packet by, first checking whether the packet is in an already active session
using the Key of the packet: {inbound IP, inbound port, outbound IP,
outbound port}. If yes, then the Load Balancer uses the activeSessions()
function to retrieve information about the Session that this packet belongs
to. The activeSessions() function maps a Key to the Session. Therefore,
we pass the Key of the packet: {inbound IP, inbound port, outbound
IP, outbound port} to the activeSessions() function, and retrieve the
Session information. The Session information contains: (1) the last (re-
fresh/update) time-stamp and (2) the tag. As we mentioned earlier, the
tag is the VNF instance ID, to which the traffic of this session is currently
being forwarded to. The Load Balancer uses the tag and identify the VNF
instance that this packet should be forwarded to. Furthermore, the Load
Balancer also modify the last time-stamp of the session to reflect the cur-
rent time as the last time-stamp. Finally, the Load Balancer returns the
ID of the selected VNF instance as the output.

If the packet is not in an already active session, then the Load Balancer
should decide, to which VNF instance that this packet will be forwarded to.
For that, the Load Balancer uses the consistent hashing function. We use
a simple hashing function hash(), which takes the Key of a packet as the
input and returns a random integer in [0, 23] as the result. Furthermore,
the result of the hash() function is forwarded to the modulo operator with
the size of the buckets array. Finally, the position of the buckets array
pointed by this modulo operation, defines the VNF' instance that this
packet will be forwarded to. Note that the buckets array is constructed
with VNF instances IDs according to the number of slots that each VNF
instance is assigned. Since the packet is not in an already active session,
this packet is assumed to be the first packet of a new Session. Therefore, an
entry for a new Session is created, with current time as the new Session’s
last time-stamp and the selected VNF instance ID as the new Session’s
tag. Furthermore, the new Session’s status is saved as active. Finally, the
Load Balancer returns the ID of the selected VNF instance as the output.

Dynamic load allocation

As mentioned earlier, the Load Balancer should support dynamic changes
of the network, and therefore the Load Balancer might have to re-distribute
the traffic load due to three reasons:

1. The traffic load changed over time
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Algorithm 3 Session-aware hashing

1: procedure HASH(P: PACKET)

2: IF p is in an active sesston THEN:

3: sesStatus < activeSessions|key(p)]
sesStatus.lastTimestamp < p.timestamp
RETURN sesStatus.tag

: FLSE:

Instancel D + buckets[hash(key(p))%buckets.size]
newSesStatus.lastTimestamp < p.timestamp
newSesStauts.tag < Instancel D

10: activeSessions|key(p)] < newSesStatus

11: RETURN InstancelD

12: END IF

2. A new VNF instances was added

3. An existing VNF instance was removed

First of all we will introduce the definitions used in dynamic load allocation
procedure.

For the past-time window tau, let t1,%s,....,tx be the traffic statistics:
total incoming and outgoing packets going through each VNF instance
nf;. Thereofre for all N VNF instances, the total network traffic be:

T = sum(ty,ta, ..., tn)

Let [4,ls, ...,y be the number of slots assigned each VNF instance nf;,
and the total slots be:
L = sum(ly,la, ..., IN)

Therefore, we can calculate the probability p; of the hash function to assign
a (random) session to the VNF instance nf; as follows:

pi=1L/L (6.3)

In a perfect world where the all sessions are uniformly distributed, we

would have:
T.pl‘ = ti (64)

However, since some sessions may have many more packets than others,
we introduce the session bias bi for each VNF instance n f;, such that,

Tblpl = ti
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Therefore, the session bias bi for each VNF instance nf; can be calculated
as:

bi =t;/(T'p:) (6.5)

Now we can derive the equations to re-allocate traffic load for previously
mentioned three situations.

First, to simply redistribute the traffic load whenever traffic changed, we

can compute new values for p;,ps,....,pn as pP, p5", ..., p".
In ideal situation, for each VNF instance nf;,
T.b;.p7" =T/N
Therefore,
P = 1/(N.bi)
pi®" = (T/N).(pi/t:) (6.6)

Second, in a situation where a new VNF instance nfy;1 is added, we
modify p*? for ¢« <= N as,

P = (T/(N +1)).(pi/t:)

and
P4 =1/(N+1) (6.7)

Third, in a situation where a VNF instance nfy is removed, we modify
ppe for il =k as,
pi = (T/(N = 1)).(pi/t:)

and,

P =0 (6.8)
As we have updated values for p7®", py*", ....,piF", as the final step, we
can compute Iy, [, ...., Iy, assuming L is fixed.

Operational model of the dynamic load balancing

The main requirement of load balancing comes with the horizontal scal-
ing approach, where the policies are scaled by adding/removing VNF in-
stances. Since now there are multiple VNF instances to handle traffic,
the traffic load has to be balanced between the existing VNF instances.
We propose a model where the load balancing algorithm, with the Load
Balancer module runs as a VNF in the network. We specifically focus on
scenarios where the load balancing has to be done after horizontal scaling
of policies. In this Sub-section, we describe the operational aspect of our
load balancing model.
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Client
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Figure 6.4: Implementation of the original policy P1

Let’s assume a scenario where the NFC had a client that requests his web
traffic to go through a chain of VNFs: firewall-proxy-IDS. As shown in
Figure 6.4, to satisfy the client policy request, we have already imple-
mented policy P1: a VNF chain of firewall-proxy-IDS in the NFC. The
client traffic enters to the NFC through the edge switch ES1, traverse
through the VNF chain inside the NFC. Then the traffic goes out of the
NFC through the edge switch E£S2 and reach the destination Web server.
The replies from Web server, enters to the NFC through the edge switch
ES2, traverse through the VNF chain inside the NFC. Then the traffic
goes out of the NFC through the edge switch FS1 and reach the client.

Furthermore, over the time, because of the traffic increase, P1 has to be
scaled out using horizontal scaling approach. Following the horizontal
scaling concept, we treat this scaling requirement as a new policy; where
we install new VNF instances of firewall, proxy and IDS for the policy in
NFC. As shown in Figure 6.5, we call the newly implemented policy as the
child policy P1;.

Once the child policy P1; is created, it also connected to the edge switches
ES1 and ES2. The client traffic that comes to the ES1 must be dis-
tributed over the policies P1 and P1; to traverse through the required
VNFs chain. Therefore, the Load Balancer module has to take the deci-
sions on load balancing and split the traffic accordingly at the ES1.

However, in our scenario there are two types of traffic flows, going towards
two opposite directions: (1) traffic from client to web server (web requests)
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Figure 6.5: Implementation of the child policy P1; to satisfy the scaling
requirement

and (2) traffic from web server to client (replies). In a such situation, the
Load Balancer should maintain flow affinity and handle states and sessions
considering both directions of the traffic flow: requests and corresponding
replies. Therefore, the Load Balancer module must ensure that, if a traffic
session went from client to web server through the VNFs of P1, then the
reply for that traffic session also should go through the VNFs of P1. In
the same way, if a traffic session went from client to web server through
the VNFs of P1y, then the reply for that traffic session also should go
through the VNF's of P1;.

To handle traffic in both directions (requests and corresponding replies),
we implement a pair of Load Balancer modules edge switch £.S1 and ES2.
As shown in Figure 6.6, the two Load Balancer modules LB1 and LB2
are implemented as two VNFs connected to ES1 and ES2.

For the pair of Load Balancers LB1 and LB2, each Load Balancer runs
its own consistent hash function and Load Monitor. The Load Balancer
connected to edge switch ES1 (i.e., LB1) acts as the master and the other
(i.e., LB2) connected to edge switch ES2 acts as the slave.

When a new child policy (with new VNF instances) added or an existing
child policy is removed, the master Load Balancer is notified by the NFC
Management System. Also, when the traffic load has to be re-balanced,
the master Load Balancer is notified by the NFC Management System.
According to the new information sent by the NFC Management System,
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the master Load balancer has to update his hash function (i.e, number of
VNF instances and number of slots for each VNF, the traffic assigned to
each VNF instance, etc.) Furthermore, the master Load Balancer has to
communicate with the slave Load Balancer and send the new information
to slave Load Balancer, so that the slave Load Balancer also can update its
hash function. Therefore, in order to have a consistent hash function be-
tween LB1 and LB2, information about: (1) currently active sessions, (2)
VNF instance IDs and (3) slots assignments are shared and synchronised,
through a separate control channel between LB1 and LB2.

6.3 Experimental Set-up

We have conducted set of preliminary experiments to evaluate the perfor-
mances of the session-aware load balancing algorithm. We have assumed
a SDN based network and implemented the prototype of our network in
“mininet” [137]: a SDN simulation environment and used “Ryu” [138] as
the SDN controller. The OpenFlow based SDN switches are configured
using the “Ryu” controller to send the traffic through the network. Fur-
thermore, we have implemented VNF's as mininet hosts that run specific
NF software. Moreover, the Load Balancers are also implemented as VNFs
running in mininet hosts, that are connected to OpenFlow switches.

Following Sub-sections describe the experimental set-up with respect to:

1. Implementation of the Load Balancer VNFs
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2. Experimental use cases

Implementation of the Load Balancer VNFs

In our prototype implementation, we have assumed that the Load Balancer
is a VNF, that can be deployed in anywhere in the network. The functions
of the Load Balancer are programmed as software modules, so that the
Load Balancer can be implemented using a VM.

There are three main software modules running in our Load Balancer VNF
and they are described in details in this Sub-section:

1. Packet Capture module
2. Session-aware consistent hashing algorithm

3. Tag Inserter module

The functions of a Load Balancer VNF starts, when the Load Balancer
receives a packet from the OpenFlow switch which it is connected to.
For each packet received, the Load Balancer should decide to which VNF
instance that the packet will be forwarded to. This is done by the previ-
ously described, session-aware consistent hashing algorithm. To maintain
the session affinity, the Load Balancer first checks whether the packet is
in an already active session using the Key of the packet: {inbound IP,
inbound port, outbound IP, outbound port}. Therefore, the Key of the
packet is the main input to the session-aware hashing algorithm. To re-
trieve the Key of each packet coming to the Load Balancer VNF, we have
developed a separate module called Packet Capture using PcapPlus-
Plus [139]. PcapPlusPlus is a multi-platform C++ based network sniffing,
packet parsing and manipulation framework.

We are running the Packet Capture module and session-aware hashing
algorithm together in the Load Balancer VNF's as follows:

1. For each received packet, we retrieve the Key of the packet: {inbound
IP, inbound port, outbound IP, outbound port}, using the Packet
Capture module

2. Then the Key of the packet is passed to the session-aware hashing
algorithm as the input

3. The hashing algorithm uses the Key of the packet and decides to
which VNF instance that this packet will be forwarded to

4. Finally, the hashing algorithm returns the ID of the VNF instance
that this packet should be forwarded to

When hashing algorithm returns the ID of the VNF instance that this
packet should be forwarded to, the Load Balancer VNF can use that 1D
to forward the packet to the correct VNF instance. For that, the packet
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forwarding rules of the network can be defined considering the ID of the
VNF instance, that the packet should be forwarded to. In this situation,
we take the advantage of SDN network and its technologies, where we can
define packet forwarding rules in OpenFlow switches, based on different
properties of the packet [122].

We create packet forwarding rules in OpenFlow switches, based on the
packet’s {source IP, destination IP and VLAN tag}. We insert a VLAN
tag to the packet, where the VLAN tag is equals to the ID of the VNF in-
stance that the packet should be forwarded to. We have developed another
module called Tag Inserter using PcapPlusPlus [139], which intercepts
the packet and insert the VLAN tag. Once the tag is inserted by the Tag
Inserter the packet is sent back to the OpenFlow switch which is connected
to the VNF Load Balancer. The OpenFlow switch follows the rules that
were defined based on the packet’s {source IP, destination IP and VLAN
tag} and forwards the packet to the correct VNF instance.

A flow chart for the full process of a Load Balancer VNF is shown in Figure
6.7.

Experimental use cases

In this Sub-section we introduce the use cases that we used to evaluate
our Load Balancer, specifically its session-aware hashing algorithm.

As shown in Figure 6.8, we have assumed a simple scenario, where the
NFC had a client that requests his web traffic to go through a VNF. As
shown in Figure 6.4, to satisfy the client policy request, we have already
implemented the VNF in the NFC. The client traffic enters to the NFC
through the edge switch S1, traverse through the VNF inside the NFC.
Then the traffic goes out of the NFC through the edge switch S2 and
reach the destination Web server. The replies from Web server, enters to
the NFC through the edge switch S2, traverse through the VNF inside the
NFC. Then the traffic goes out of the NFC through the edge switch S1
and reach the client.

Furthermore, over the time, because of the traffic increase, we assume that
the VNF has to be scaled out using horizontal scaling approach. Following
the horizontal scaling concept, as shown in Figure 6.9, we install new VNF
instance(s) in the NFC. Once the new VNF instance(s) are implemented
and paths are created accordingly, the traffic has to be balanced between
existing VNF instances. Therefore, we implement the pair of Load Bal-
ancers, LB1 and LB2 as VNFs running in hosts and connected them to
the edge switches S1 and S2. LB1 acts as the master Load Balancer while
L B2 acts as the slave Load Balancer. Furthermore, in order to have a con-
sistent hash function between LB1 and LB2, and to share and synchronize
the required information, we have created a direct control channel between
LB1 and LB2.
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Figure 6.7: Flow chart for the process of a Load Balancer VNF

6.4 Preliminary evaluation

Following the experimental set-up and use cases described in previous sec-
tions, we have conducted preliminary experiments to evaluate the session-
aware load balancing algorithm for its accuracy and performances. We
have considered three scenarios:

1. The system starts with more than one VNF instance, so from the
beginning the traffic has to be balanced between multiple VNF' in-
stances: Static situation

2. The system starts with more than one VNF instance, but one VNF
instance is removed dynamically, so the load has to be re-balanced:
Cool down situation

3. The system starts with only one VNF instance, but one more VNF
instance is added dynamically, so the load has to be re-balanced:
Warm up situation
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Client

Figure 6.8: A simple network with one VNF instance

For our preliminary experiments, we have assumed that the session time-
out is 15 seconds. If the Load Balancer does not receive any packet belongs
to a particular session for 15 seconds, the Load Balancer consider that
session as a non-active session. Furthermore, the Load Monitor module
reports traffic statistics every 1 second, so that the Load Balancer can take
decisions on re-distribution of the traffic.

In this section, we present the preliminary results for performances of
session-aware load balancing algorithm for the three mentioned scenarios
with the assumptions we have made.

Static situation

The first scenario is where we assume that the system starts with more
than one VNF instance, so from the beginning the traffic has to be bal-
anced between multiple VNF instances.

To create a such scenario, we assumed that there are two VNF instances:
n1 and no, that have been implemented in the system, so from the be-
ginning the traffic has to be balanced between these two VNF instances.
We used iperf traffic generator [140] and generated 100, 200, 300, 400 and
500 parallel connections. We counted the number of packets received by
each VNF instance n; and calculated the percentage of packets received
by each VNF instance n; (with respect to the total number of packets
received by all VNF instances). We conducted 5 experiment runs to get
an average value. Figure 6.10 shows the percentage of packets received by
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each VNF instance n;, when there were 100, 200, 300, 400 and 500 parallel
connections. The results confirm that the proposed session-aware hashing
algorithm balances load evenly (within 1.5% of ideal).

Furthermore, to confirm the fairness of the algorithm, we assumed that
there are three VNF instances: ni, nmo and ng, that have been imple-
mented in the system, so from the beginning the traffic has to be balanced
between these three VNF instances. We used iperf traffic generator [140]
and generated 100 and 300 parallel connections. As mentioned earlier, we
counted number of packets received by each VNF' instance n; and calcu-
lated the percentage of packets received by each VNF instance n; (with
respect to the total number of packets received by all VNF instances). We
conducted 5 experiment runs to get an average value. The results confirm
that the proposed session-aware hashing algorithm balances load evenly
among three VNF instances (within 1.6% of ideal).

Cool down situation

The second scenario is where we assume that the system starts with more
than one VNF instance, but one VNF instance is removed dynamically.
So the Load Balancer has to re-balance the load among remaining VNF
instances dynamically.

To create a such scenario, we assumed that there are three VNF instances
that have been implemented in the system, so from the beginning the
traffic is balanced between these three VNF instances. Moreover, in the



130 Dynamic load balancing

120
Hn2 Enl
100 -
=]
[}
=
-]
o
@ 80 -
vy
1
-
&
8 60 -
u“—
o
[
[<T]
8 10
<
7]
(=)
S
1]
a
20 -
o0
100 200 300 400 500
Number of connections

Figure 6.10: Load balance for two VNFs, varying number of parallel
connections

middle of the experiment (after 20 seconds from the beginning of the ex-
periment), we removed one VNF instance, so that the Load Balancer had
to re-balance the load among remaining two VNF' instances dynamically.

When a VNF instance is removed, there are two important aspects to be
taken care of. First, even thought the VNF instance is removed, the Load
Balancer might be forced to keep forwarding the traffic of a particular
session to the removed VNF instance, until the time-out of that particular
session expires. This is because of the session aware nature of the Load
Balancer and it tries to maintain the session affinity. Second, after the
VNF instance is removed, the percentage of the traffic that has been sent
to that VNF instance, has to assigned to the remaining VNF' instances.
The Load Balancer has to consider current traffic loads of remaining VNFs
and do the re-distribution of workload fairly. Carrying out this full process
and for the system to become stable again, it might take sometime. We
called this as the “cool down period” of the removed VNF instance, and
in this preliminary evaluation we tried to get a general idea on this cool
down period.

To create continuous traffic we used httperf traffic load generator [141] and
generated 200 connections with a rate of 2 connections per second. From
the beginning we assumed that there are three VNFs running: n;, ne and
ng. After 20 seconds from the beginning of the experiment, we removed
VNF instance n3. We used time intervals of 20 seconds to capture the
number of packets received by each VNF instance. Then we calculate
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the packet rate (throughput) of each VNF instance for each of those time
intervals as number of packets for time interval T divided by 20. The
average results of 5 experiment runs are shown in Figure 6.11.
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Figure 6.11: Re-balance of the load for removal of one VNF instance

As it is shown in Figure 6.11, until 20 seconds, the load is balanced between
three VNF instances fairly. Once the ng is removed at 20 seconds, the load
is re-distributed over n; and no. Around 120 seconds, the balance of the
load between n; and ny became fair and stable. However, because of the
session affinity, until 150 seconds, there were some packets forwarded to
ns.

Warm up situation

The third scenario is where we assume that the system starts with only one
VNF instance, but one more VNF instance is added dynamically. So the
Load Balancer has to re-balance the load among VNF instances including
the new VNF instance dynamically.

To create a such scenario, we assumed that there is only one VNF instance
is implemented in the system at the beginning, so there is no requirement
for the load balancing at the beginning. Moreover, in the middle of the
experiment (after 20 seconds from the beginning of the experiment), we
added one VNF instance, so that the Load Balancer had to re-balance the
load among two VNF instances dynamically.

When a VNF instance is added, the Load Balancer has to split the traffic
between more than one instance. However, splitting traffic requires extra
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measures to preserve affinity. Therefore, even thought a new VNF instance
is added, the Load Balancer might be forced to keep forwarding the traffic
of a particular session to the old VNF instance until the time-out of that
particular session expires. Therefore, it might take sometime for the traffic
load between VNF instances to become fair and stable. We called this as
the “warm up period” of the new VNF instance, and in this preliminary
evaluation we tried to get a general idea on this warm up period.

To create continuous traffic we used httperf traffic load generator and
generated 200 connections with a rate of 2 connections per second. From
the beginning we assumed that there is only one VNFs is running: n;.
After 20 seconds from the beginning of the experiment, we added VNF
instance n3. We used time intervals of 20 seconds to capture the number
of packets received by each VNF instance. Then we calculate the packet
rate (throughput) of each VNF instance for each of those time intervals as
number of packets for time interval T divided by 20. The average results
of 5 experiment runs are shown in Figure 6.12.
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Figure 6.12: Re-balance of the load for addition of one VNF instance

As it is shown in Figure 6.12, until 20 seconds, the load is handled solely
by ni. Once the ng is added at 20 seconds, the load is re-distributed over
n1 and n3. Around 150 seconds, the balance of the load between n; and
n3 became fair and stable.
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6.5 Dynamic network configurations update

In previous sections, with dynamic load balancing concepts, we explored
how to re-distribute the traffic load between VNF instances over the time.
However, for the dynamic load balancing process, it is important that the
network configuration of the cloud infrastructure, should be able to be
updated easily and fast [18], to reflect new packet forwarding rules based
on the new traffic distribution.

Therefore, dynamic update of network configuration introduces a new chal-
lenge to the CSPs, because when updating the network configuration, the
CSPs should try to avoid any inconsistencies in transient traffic and to
minimize traffic lost, so that the SLAs are not violated. In this context,
we believe that use of Software Defined Network (SDN) infrastructure is
a very appropriate approach, as it allows reconfigure the physical network
easily.

In this section we discuss two dynamic network configurations update
mechanisms found in existing works [31]:

1. configuration rules are updated in all switches simultaneously

2. versioning tags are used to maintain per-flow consistency

We have implemented the physical structure of the NFC in a SDN test bed,
which was deployed with five TP-Link TL-WR1043ND switches. Open-
WRT and OpenFlow v1.3 was installed to make them SDN compatible
switches [122]. As an extension to the physical SDN, two OpenFlow soft-
ware switches were connected. The SDN test bed was tested with four
different SDN controllers: OpenFlow [122], POX [142], Ryu [138] and
FloodLight [143]. Apart from the physical network, mininet simulation
environment [137] was also used for the research activities. We have used
bro firewalls [144] and iptables [145] as the potential VNFs that can be
offered as a service in the NFC.

The first method is a simple approach, where configuration rules are up-
dated in all switches simultaneously. Even though this is a simple mech-
anism, this can introduce inconsistencies in transient traffic and traffic
lost. For an example, lets assume a specific traffic flow entered to the
network and switches at the entry perimeters forwarded the traffic flow,
based on their current rules. However, when this specific traffic flow was
going through the network, the configuration rules were updated in all
switches simultaneously. Now the traffic flow which is going through the
network and currently in the middle and exit perimeters of the network
might be dropped by the switches in the middle and exit perimeters of
the network, because those switches might not have appropriate rules for
these traffic flows. The rules relevant to these traffic flow might have been
already deleted because the configuration rules were already updated.

The second method: per-flow consistency update mechanism was intro-
duced in [31] to avoid any inconsistencies in transient traffic and reduce
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traffic lost. The update mechanism works by stamping every incoming
packet with a version number and modifying every configuration so that
it only processes packets with a set version number. To change from one
configuration to next, it first populates the switches in the middle of the
network with new configurations guarded by the next version number.
Once that is completed, it enables the new configurations by installing
rules at the perimeter of the network that stamp packets with the next
version number. This method makes network updates faster and cheaper,
by limiting the number of rules or switches affected.

We implemented both methods in the physical test-bed and evaluate the
methods for the number of packet lost. We conducted 25 experiment
runs for each method. As shown in Figure 6.13, the first implementation
(simultaneous updates) caused an average of 7% packet loss while second
implementation (with per-flow consistency) reduced it to average of 1.5%.
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CHAPTER 7

Final Remarks

“The outcome of any serious research can only be to make
two questions grow where only one grew before.”

Thorstein Veblen (1908)

The concluding chapter of the thesis aims to present a summary of the work
presented in the dissertation, along with the key results and conclusions.
Furthermore, it discusses the possible directions for future work, which
can be opportunities and guidances for new research works.

7.1 Conclusions and summary

In this section we discuss summary, key results and conclusions from the
thesis, organized based on the chapters of the thesis. Broadly, the research
aimed to explore different aspects of VNFs management, specifically with
cloud infrastructure related operations: provisioning, configuring, main-
taining and scaling of the VNFs, as well as configuring and updating of
the cloud network.

Starting with Chapter 2, first we presented an overview of the background
material necessary for the thesis. It introduced a concrete terminology for
NFYV concepts and technical concepts useful to understand the thesis work.
It then provided an overview of the state of the art for cloud management
and offering VNFs as a service.

Before moving to the research aspects of the thesis, Chapter 3 introduced
the experimental environment, data-sets and use cases we used to explore
different management aspects of VNF's.

We presented our experimental NFV platform: the Network Function Cen-
ter (NFC) in Section 3.1 and its architecture in Section 3.2. The main
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concept of the NFC is a cloud infrastructure and a service provider, that
offerers VINFs as a service to clients on a subscription basis. The
overall architecture of a NFC consists of two main components: a physi-
cal infrastructure, and a management system for the infrastructure. We
assumed general data center architectures (k fat tree [24], VL2 [26] and
BCube [25]) and a SDN based network for the physical infrastructure of
the NFC. Section 3.3 described the NFC Management System. The pro-
cess NFC Management System was built around five key modules: (1)
Resource Manager, (2) Topology Manager, (3) Flow Manager, (4) Elas-
ticity Manager and (5) Rules Generator. Each module is responsible for
different tasks, such as: resource allocation, monitor cloud infrastructure,
decide scaling requirements, scale VNFs | updates the network configu-
rations, etc. Conceptually, the Resource Manager, Topology Manager,
Elasticity Manager and Flow Manager can be seen as management appli-
cations. The Rules Generator as an extension to the SDN network. In
this thesis we focused on exploring the Resource Manager and the Rules
Generator.

While building the NFC and exploring different management aspects of
the NFC, it was important to have more realistic use cases and datasets
that can be used for the design and evaluation of the algorithms, with
respect to the cloud management. Since there were no publicly available
real data sets on different aspects of VNFs (i.e, VNF chains, traffic passing
through them, etc.). The Section 3.4 described the use cases and data set
generation process, that was necessary for design and evaluation of the
algorithms used by the management system. We have used data from
previous empirical analyses [6, 27] and made some assumptions to derive
the required data. We developed four programs to model the gathered
data and generate the required data. All gathered data and data modelling
programs are publicly available at [124].

After the introduction to our experimental environment, Chapter 4 to
Chapter 6 focused on describing our research contributions; specifically on
achieving the objectives of the research.

In Chapter 4, we discussed the resource allocation approaches for VNFs.
We described the Resource Manager module of the NFC Management
System, which is responsible for the resource allocations (server and net-
work resources), for VNFs in the cloud. We explored two approximation
based methods: Iterated Local Search (ILS) and Genetic Program-
ming (GP) approaches that can find reasonable solutions fast. We used a
traditional resource allocation method: Integer Linear Programming
(ILP) based approach to compare the quality of the solutions provided
by the approximation approaches.

In this thesis, we focused on resource allocation for two situations: the
initial resource allocation and (2) the resource re-allocation for scaling.
Once the client request for a set of VNF's has been accepted, the resource
allocation for the initial placement of these VNF's can be done in the order
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of minutes, and then the new VNFs can be deployed accordingly. But
the resource re-allocation for the scaling requirements of existing VNF's
happens during the middle of the operations, where the already deployed
VNFs are processing traffic. Therefore, the resource re-allocation for the
scaling requirements of existing VNFs is a time critical on-line problem.
The solutions have to be given in the order of milliseconds, so that the dis-
turbances and damages to current operations are minimal. Therefore, we
specifically explored the resource re-allocation for the scaling requirements
of existing VNFs problem in depth, as it is an interesting on-line resource
allocation problem. We formulated the Network Function Center Re-
source Management Problem (NFCRMP) as a set of ILP equations.
It addresses both (1) the resource allocation for new VNF's provision-
ing, and (2) the resource re-allocation for the scaling of existing
VNFs to support traffic changes. For resource allocation for new VNFs,
the goal was to minimize the required resources (i.e., number of servers,
number of links, and average link utilization). For resource re-allocation
for scaling of existing VNF's, the aim was to adjust the resources to satisfy
the traffic changes and, at the same time, minimize the number of config-
uration changes to reduce potential service disruptions, and performance
degradation.

We implemented the approximation algorithms using ILS and GP based
approaches and compared their solutions quality with the optimal solutions
provided by the implementation of ILP formulation of the NFCRMP in
CPLEX [28]. For the comparison in a small network, the results showed
that generating the optimal solutions takes 1.5 hours with ILP, but only
few milliseconds with ILS and GP.

Second, we conducted a comprehensive evaluation of the proposed ILS
and GP approaches for large networks assuming different network archi-
tectures: (1) k-fat tree [24], (2) BCube [25], and (3) VL2 [26]. We used
a more realistic traffic pattern generated based on [27]. As the both ILS
and GP process relies on an initial solution, we used simple Depth First
Search (DFS) and random approaches to find an initial solution, and con-
sidered this solution as the baseline to compare solutions given by ILS
and GP approaches. In the DFS method, servers and paths are selected
by searching through the whole search space and selecting the first so-
lution we come across. The random method searches servers and paths
randomly anywhere in the network, until a feasible configuration is found.
Our results showed that both ILS and GP algorithms can decide server
and network allocations for hundreds of policies (around 400 VNFs) in
a 128 server environment and find reasonable solutions in milliseconds.
Furthermore, ILS produced better results than GP for all three types of
architectures. As the main goal of our optimization was to reduce the
average link utilization, so that the network is less congested and future
scaling requirements are minimized, the results produced by ILS reduced
the average link utilization up to 32% and the results produced by GP
reduced the average link utilization up to 28.7%.
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However, we observed that, for the ILS based resource allocation algo-
rithms to be more efficient, they have to be designed with conditions based
on the network architecture. In other words, efficiency of ILS procedure is
not agnostics to the network architecture. Therefore, for a general situa-
tion where we might need resource allocation algorithms that are agnostics
to the network architecture, GP based approach can provide reasonable
solutions.

Third, we study the quality of the ILS and GP generated solutions over
time. Because both the ILS and GP approaches are approximations, they
run the risks of diverging from the optimal solution over time: whenever
we need to scale, we adopt a “local approach” algorithm to find solutions.
These “local approach” solutions may gradually diverge from the “global
approach” solution given that they strive to minimize not only the re-
quired resources, but also the number of changes in the network. We,
therefore, compared the solutions computed by our proposed ILS and GP
approaches, with their respective “global approach” solutions, generated
by ignoring the need to minimize the number of changes in the network.
Our results showed that, although the “global approach” provides bet-
ter resource allocations, the solutions require drastic re-arrangements to
the current configurations, and therefore it is impractical in real scenar-
ios. In contrast, “local approach” provides reasonable solutions with lesser
changes to readjust configurations, and without diverging from the “global
approach” solutions over time. Also, the local approach, if we smooth the
curve, will follow essentially the same behaviour (modulo a translation in
the y axis) that the behaviour of the baseline: “global approach”.

In Chapter 5, we explored different scaling approaches for VNFs: (1) ver-
tical scaling (allocation/release of computing and bandwidth resources
to/from a VNF instance), (2) migration (running VNFs are paused,
serialized and transferred to different servers with more resources) and
(3) horizontal (installation/removal of VNF instances). We expanded
our ILS algorithms to allocate resources for scaling requirements with the
three scaling methods. We considered a single optimization goal: max-
imize the accepted bandwidth of scaling requests while ensuring a new
constraint: that the delay experienced by each packet of an accepted scal-
ing request (inside the NFC), does not exceed its relative deadline. We
compared the different characteristics of the solutions provided by scaling
approaches such as accepted bandwidth ration, resource utilization etc.

The Vertical scaling approach had the highest percentage of bandwidth
rejection: average of 49.6%, and therefore accepted lowest number of scal-
ing requests. The next was migration scaling approach, with and average
of 3.89% of bandwidth rejection. The horizontal scaling approach had the
lowest percentage of bandwidth rejection: average of 0.12%, and accepted
highest number of scaling requests. Therefore, it can be considered as
the best scaling approach, in terms of the optimization goal of accept-
ing maximum bandwidth requests as much as possible. Our observation is
that vertical scaling is always limited by the spare computational resources
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of the VNF’s current server, and therefore, vertical scaling is rarely able
to satisfy the scaling requirements. The Migration scaling and horizon-
tal scaling have more freedom in scaling, and able to satisfy most of the
scaling requirements.

In Chapter 6, we discussed our work on exploring dynamic load balancing
approaches for VNFs, where we proposed a load balancing algorithm
with session control, based on consistent hashing techniques. We
argued that, it is more appropriate to design the load balancing algorithm
in a way that the algorithm itself maintain affinity and handle states and
sessions, so that the requirement of state migration is avoided. We have
conducted preliminary experiments for a small scaled network, to verify
the accuracy and basic performances of the proposed session-aware hashing
algorithm. We have considered three scenarios: (1) the system starts with
more than one VNF instance, so from the beginning the traffic has to be
balanced between multiple VNF instances, (2) the system starts with more
than one VNF instance, but one VNF instance is removed dynamically,
so the load has to be re-balanced and (3) the system starts with only
one VNF instance, but one more VNF instance is added dynamically, so
the load has to be re-balanced. Our preliminary results show that the
proposed session-aware hashing algorithm balances load evenly (within
1.5% of ideal) within a reasonable time frame.

Furthermore, in Section 6.5, we explored two dynamic network config-
urations update mechanisms found in existing works: (1) configura-
tion rules are updated in all switches simultaneously, and (2) versioning
tags are used to maintain per-flow consistency [31]. The versioning mecha-
nism works by stamping every incoming packet with a version number and
modifying every configuration so that it only processes packets with a set
version number. We implemented the physical structure of our test bed
with TP-Link TL-WR1043ND switches. As the Software Defined Network
(SDN) technologies based infrastructure allows to reconfigure the physical
network easily, we configured switches for OpenFlow compatibility. Our
results showed that when versioning tags are used to maintain per-flow
consistency [31], the packet loss was low, with an average of 1.5%.

7.2 Future directions

There are several directions for future work based on the thesis. The high-
level objective of the thesis was to explore different aspects of VNFs man-
agement, specifically with cloud infrastructure related operations: pro-
visioning, configuring, maintaining and scaling of the VNFs, as well as
configuring and updating of the cloud network. We proposed the NFC to
offer VNFs as a service, where its management system was built around
five key modules: (1) Resource Manager, (2) Topology Manager, (3) Flow
Manager, (4) Elasticity Manager and (5) Rules Generator. Each mod-
ule is responsible for different tasks, such as: resource allocation, monitor
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cloud infrastructure, decide scaling requirements, scale VNFs , updates
the network configurations, etc. All these are broad research topics that
can be approached from a number of perspectives and different academic
disciplines.

First and foremost, the most immediate future work is on the proposed
load balancing algorithm. In this thesis we have proposed a session-aware
load balancing algorithm that is implemented using consistent hashing
concepts. However, we have only conducted a set of preliminary experi-
ments to see the behaviour of the algorithm, and confirmed the accuracy
of the algorithm. But, we need to explore more on efficiency and scala-
bility of the algorithm. Therefore, the most immediate future work will
be to do a more comprehensive analysis to evaluate the performances of
the algorithm, in-terms of its efficiency and scalability. There are several
experiments to conduct, such as to explore the behaviour of the algorithm:
(1) with more and real VNFs such as Bro [144] and iptables [145], (2) in a
large scaled network, (3) with more traffic load, (4) using different session
time-out values etc.

As for the possible future directions, first, the Resource Manager module
can be explored more for the dynamic resource allocation approaches. In
this thesis, we have explored the Resource Manager module, by proposing
resource allocation algorithms based on a traditional resource allocation
method: ILP based approach as well as two approximation based meth-
ods: ILS and GP approaches. Even though we have used a linear equation
as the objective function for our ILS and GP based implementation, it is
not necessary for the objective function of ILS or GP to be linear. Further
more, we have used only few factors in our objective function: server uti-
lization, link utilization and changes to the current configurations. There
are many other linear and non-linear factors that might affect the NFC:
traffic lost, delay, cost of VNFs software license [99], power consumption
etc. Therefore, the most immediate possible work on dynamic resource
allocation will be exploring the ILS and GP based resource allocation al-
gorithms with different optimization factors and understand how these
factors effect the operations of NFC.

The second possible direction is exploring VNF's scaling with live migration
approach. There are two main aspects of the research: (1) migration
of VNF instances and (2) migration of traffic flows. For the migration
of VNF instances, the main concern will be to speed up the process of
live VNF migration without degrading the performance of the VNF. As
there are lots of existing work on live migration of traditional VMs [32,
51-53], it will be interesting to explore how those existing approaches
can be used with VNF instance migrations. For an instance, pre-copy
and post-copy are prevalent techniques of live VM migration. Pre-copy is
designed to reduce the downtime of VM during its migration, but it incurs
high total migration time, even for slightly write intensive applications.
Post-copy migration was introduced as an improvement over pre-copy to
reduce the total VM migration time, but it accomplishes this at the cost
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of increased VM downtime. For the migration of traffic flows in VNFs,
the state migration is an important task. Unlike layer 3 forwarding, many
NFs such as firewall, proxy, and VPN perform stateful packet processing.
When the VNF has been migrated to a new server, the CSP must not
only re-direct the traffic to the new placement, but also move the internal
flow states associated with the traffic. Thus, efficient state migration is an
important and practical issue in VNF's.

The third possible direction is the implementation of the Elastic Manager,
which is the least explored module in this thesis. The Elasticity Manager
is responsible for monitoring the network and servers to determine when
to scale the resource allocation to meet the traffic demands according
to the SLAs and QoS agreements. Therefore, the main challenge is to
determine when to scale out/in the resource allocations. Finding the exact
VNFs(s) or path(s) which are causing the bottleneck and deciding the
right number of resources to increase/decrease to achieve the demand is
important. The most basic method to scale out/in is to monitor system-
level metrics (server and links utilization) and determining whether to
scale out/in based on a threshold. However, threshold-based algorithms do
not capture the complex interaction among multiple resource parameters
(server and links) and the potential diversity of traffic types. Determining
the right set of thresholds for them to simultaneously achieve the right SLA
and QoS for each type of traffic would be difficult. Often the thresholds are
set based on ad-hoc measurements and past experiences. We are planing to
explore machine learning techniques, in particular reinforcement learning,
to learn the behaviour of the applications and automatically adapt to
changes. The learning algorithm can be augmented with heuristics to
improve the responsiveness and guide the algorithm itself.

In the process of “Towards making VNF's as a service” , we have realized the
importance of the practicality of any proposed system. With the concept
of NFC, we proposed an integration of different aspects of the VNFs man-
agement (resource allocation, monitoring, network configuration updating
etc.). Through this thesis, lots of effort has been put into the implemen-
tation of each module individually. But the final research direction could
be exploring the total integration of these modules, to make sure that the
proposed aspects of the management can be implemented in the real life
as individual models, as well as they can be integrated to work together
and to perform the expected functionalities of the NFC.

We sincerely believe that the dissertation has opened up the new area of
research in cloud management for VNFs. With several challenging and
interesting research problems in the area, there is significant scope and
potential for novel approaches and methodologies to solve these problems.
The future directions discussed here provide pointers for further research
in the field, and this is perhaps where a new PhD thesis can begin!
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APPENDIX B

Data Generation for the
Experiments

To conduct a more realistic evaluation, we needed data on: (1) potential
NFs chains (policies), (2) traffic flows passing through these NFs chains,
(3) how the dynamic traffic changes affect the NFs (scale out/in) and
(4) different data center architectures for the NFC. However, there are
no publicly available real data sets on NF chains and traffic that pass
through NF chains. We have therefore used data from previous empirical
analyses [6, 27] and made some assumptions to derive the required data.
We developed four programs to model the gathered data and generate
the required data. All gathered data and data modelling programs are
publicly available at [124].

B.1 Policy requests generation

When generating policy requests for the NFC, the main factor to be con-
sidered is the type (e.g., small, medium, large size network) of the enter-
prise/user, that is requesting the policies. Depending on the type of the
enterprise/user, the total number of NFs required, the number of NFs in
a policy and types of the NF's in the policy can vary. The policies (chains
of NFs) used in the experiments are generated based on a study about
middle-boxes used in enterprise networks [6]. This data set from [6] in-
cludes figures about types of enterprise networks, number and types of
middle-boxes used in these enterprise networks. According to [6], a chain
of NFs consists of 2 to 7 NFs, mostly 2 to 5. So the number of NFs
in a policy follows a truncated power-low distribution with exponent 2,
minimum 2 and maximum 7.

According [6], as shown in Figure B.1, large scaled enterprises, with 10k-
100k hosts can have average: IP Firewalls: 46, Application firewalls: 9,
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Figure B.1: Box plot of middlebox deployments for small (fewer than
1k hosts), medium (1k-10k hosts), large (10k-100k hosts), and very large
(more than 100k hosts) enterprise networks. Y-axis is in log scale. [6]

WAN optimizers: 0, Proxies: 6, Gateways: 3, VPNs: 6, Load Balancers:
7, IDS/IPS: 23 and Total: 100.

Policy requests generation program

We have considered large scaled enterprise networks where each network
has 100 NFs. A chain of NFs consists of 2 to 7 NFs and the number of
NFs in a policy follows a truncated power-low distribution with exponent
2, minimum 2 and maximum 7. The types of NFs in a policy are selected
randomly, with different probabilities based on how many instances of each
type of NFs can be there in the enterprise. Policy requests generation
program is written in c++-.

e Inputs to the program: number of large scaled enterprise networks

e Output of the program: a set of policies for each enterprise with 100
NFs

B.2 |Initial traffic distribution

After generating the policy requests, for simulating the traffic, we need
traffic data where owners (enterprises/users) of the flows can be identified,
so that we can differentiate the traffic passing through each policy. In the
real-life situation, the clients traffic passing through the set of NFs will
be directed to the different applications as web server, voip server etc
according to the clients requests/needs. So the traffic load that each client
is expecting can be different based on the applications client is handling
[125]. For the experiments, we assume our clients are handling web based
applications and the traffic used for the experiments is taken from a study
about web traffic [27]. The data set includes HTTP traffic breakdown of
30,000 users for a day which is measured at three different vantage points
of an Italian ISP. Traffic breakdown reports HT'TP traffic for every 2 hours.
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Initial traffic distribution program

We use the traffic data for each enterprise given in [27] at the starting
point of the HTTP traffic breakdown, and assume it as the initial total
traffic flow that will pass through all the policy chains of the enterprise.
We assume that the initial total traffic load is equally distributed over the
set of policies of that enterprise. The initial traffic distribution program
is written in c++.

e Inputs to the program: the set of policies, initial traffic load

e Output of the program: distribution of the traffic load over policies

B.3 Scaling requirements over the time

In a data center, traffic changes happen throughout the day and accord-
ing to the amount of these changes, the NFs should be scaled out/in to
satisfy the dynamic demands. The limitation of our data set is it lacks
the information on how the traffic changes occurred over two hours. It has
information only on traffic at each two hours.

According to [2], as shown in Figure B.2, traffic changes on usual days
happen gradually over time. Even at events where traffic will be increased
in a huge amount (elephant flows), as shown in Figure B.3, the change
happens gradually over a 15 minutes time period [3]. So we have assumed
that, for the every 2 hours traffic reported in [27], increase/decrease hap-
pened uniformly through 2 hours and generated the traffic graph in Figure
B.4. It shows traffic flow for 24 hours in 10MBps units for each enterprise.

But in special situations, there can be flash events, where sudden traffic
changes occurred within few minutes. So we have to consider two sit-
uations: usual traffic patterns and elephant flows where traffic changes
gradually and flash events where traffic changes suddenly. To reflect scal-
ing requirements of both situations, we spread the increase/decrease of
number of NFs (needed for the full 2 hours traffic change) over 2 hours
and add/remove one instance at a time.

According to [7], as shown in Figure B.5, if we add more than one instance
at a time, to be ready for the requirements in the future, we are adding
more than what is needed and wasting resources. So we define a threshold
(Maximum amount of traffic that an instance of a NF can handle) to find
how many instances we should add /remove to accommodate traffic change
and we will add/remove one instance at a time.

Scaling requirements over the time program

In the scaling requirements over the time program, first we define the
threshold L, The maximum amount of traffic that an instance of a NF
can handle. If the traffic change of a 2 hours period is greater than L, we
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Figure B.3: Traffic statistics from World Cup 2006 [3]

assume that we have to add an extra instance of the NF. We are making an
assumption: the traffic flowing through the NF instance is proportionate
to the capacity of the NF instance and it is same for all types of NFs. In
reality this might not be correct and different NF types may have different
connections between traffic flow and capacity.

As the second step, we identify the enterprises whose traffic has changed
over each 2 hours from the traffic graph. For each enterprise, we have
already generated x number of policies, and assume each policy has a
unique traffic flow passing through. When there is a change in the total
traffic for that enterprise, it is very unlikely that traffic passing through
all the policies of that enterprise contributed to the traffic change. Most
probably the traffic change was caused by the traffic passing through sub
set of policies. So for enterprises that have a traffic change, we randomly
select 5 of its policies, as the policies affected by the traffic change.
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Figure B.5: Machines Allocation [7]

After selecting the policies affected by each enterprise traffic change, the
third step is to identify which NF from each policy, needs to be scaled
out/in to satisfy the new traffic demands. According to Stratos [10], there
are simple approaches we could leverage for deciding which NF(s) to scale.
The simplest solution is to scale all NFs in that policy. This guarantees
that any bottleneck will be eliminated, but this potentially wastes signif-
icant resources and imposes unneeded costs, when only one NF may be
the bottleneck. So Stratos performs a set of scaling trials, scaling each
NF in the policy, one (VM) instance at a time. They begin by adding a
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new instance of the first NF in the chain, monitoring for changes over a
fixed time window. If performance improves beyond some threshold, then
the new instances is permanently added to the tenants topology. No im-
provement means that the NF is not a bottleneck, so they discard the new
instance. Then move to the next NF in the chain and repeat the process.
Their results show that no two NFs will be simultaneously and equally
bottlenecked and scaling one NF in the policy at a time is acceptable.
Hence assuming the conditions in Stratos, we randomly select a NF from
each policy as the bottlenecked NF for which the resource allocation needs
to be increase/decrease.

The last step is to decide, from the identified NF instance to scale, how
many instances we should add/remove to satisfy the new traffic demand.
For each enterprise whose traffic has changed, first we identify the total
traffic change over each 2 hours: C' from the traffic graph. Then we
calculate how many instances had to be add/remove for each enterprise:
I based on the threshold L we defined earlier.

I=C/L

If we have to add/remove instances, we spread the I over 2 hours (120
minutes). As explained earlier, we are trying to add/remove instance at
a time. Therefore, If I = 2, and starting time of the period is T=0, then
scaling occurs when T+40 minutes and T+80 minutes. If we dont have to
add/remove instances, we have to change the paths of the policies which
use overloaded links because of traffic change.

Following the above process, the scaling requirements over the time pro-
gram is written in c++.

e Inputs to the program: the set of policies, traffic pattern

e Output of the program: a set of policies and NF's effected by traf-
fic changes during each interval and the required add/remove NF
instances for each interval

B.4 Topology Generation

We have evaluated the performance of the resource allocation algorithm
assuming three different data center network architectures for NFC: (1) k
fat tree, (2) VL2 and (3) BCube as shown in figure B.6 . We have assumed
environment where there are 16, 32, 48, 64, 80, 96, 112 and 128 servers in
the NFC. Therefore, we needed data on: (1) nodes of the network (servers
and switches of the network), (2) links of the networn (connecting two
nodes), and (3) paths of the network (between each and every server of
the network). All these three depends on two factors: (1) the number of
servers in the NFC and (2) network architecture of the NFC.
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Figure B.6: (1) k fat tree, (2) BCube and (3) VL2

Topology generation program

Following the standards given for (1) k fat tree, (2) VL2 and (3) BCube
architectures [24-26], we define the network and equally distribute the
number of servers over ToR switches of the network. The topology gener-
ation program is written in python.

e Inputs to the program: network architecture and number of servers

e Output of the program: the topology: nodes, links and paths
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