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Abstract

Existing solutions for data sharing are not fully compatible with multi-provider contexts.

Traditionally, providers offer their datasets through hermetic Data Services with restricted

APIs. Therefore, consumers are compelled to adapt their applications to current

functionality, and their chances of contributing with their own know-how are very limited.

With regard to data management, current database management systems (DBMSs)

that sustain these Data Services are designed for a single-provider scenario, forcing a

centralized administration conducted by the database administrator (DBA). This DBA

defines the conceptual schema and the corresponding integrity constraints, and determines

the external schema to be offered to the end users. The problem is that a multi-provider

environment cannot assume the existence of a central role for the administration of all the

datasets.

In terms of data processing, the different representations of the data model at

different tiers, from the application level, to the Data Service or DBMS layers; causes

the applications to dedicate between 20% and 50% of the code to perform the proper

transformations. This causes a negative impact both on developers’ productivity and on

the global performance of data-intensive workflows.

In light of the foregoing, this thesis proposes three novel techniques that enable a

data store to support a multi-provider ecosystem, facilitating the collaboration within all

the players, and the development of efficient data-intensive applications. In particular,

and after the convenient decentralization of the database administration, this thesis

contributes to the community with: a) the proper mechanisms to enable consumers to

extend current schema and functionality without compromising providers constraints; b)

the proper mechanisms to enable any provider to define his own policies and integrity

constraints in a way that never will be jeopardized; c) the integration of a parallel

programming model with the data model to drastically reduce data transformations and

being designed to be compliant with near future storage devices.

Keywords: data sharing, data integration, database management systems, object

oriented persistence, multi-provider storage, data-intensive workflows
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Chapter 1

Introduction

Sharing data so that third parties can build new applications and services on top of it

is nowadays a cornerstone in both academic and business worlds to obtain the maximum

benefits of the produced information. Although most data sharing initiatives are sustained

by public data, the ability to reuse data generated by private companies is becoming

increasingly important as organizations like Google, Twitter, the BBC or the New York

Times, are providing access to part of their data and making a profit from it. Indeed, all

kind of organizations and institutions collaborate by sharing their data either by direct file

transferring or more commonly through Data Services, which were born from Web 2.0/3.0

services [1] and are feeding todays Big Data ecosystem [2].

Data Services publish suitable APIs to enable the consumer to access data remotely

(e.g. REST APIs [3]) and are basically offered in two flavors: over the Internet with key

vendor storage and functionality tools located in the cloud, or directly from providers’

infrastructures. Setups in the former case help to provide agile services that can perform

well while providers have to trust on the spaces over which their data traverses (which

are arbitrary). In the latter case, providers keep full control on their data since it never

leaves the infrastructure. In both cases, however, consumers are still restricted to the

set of provided functions which might meet their current needs but hinder forthcoming

collaborations requiring new functionality or certain adaptations to existing data.

Another key aspect to take into account for effective data sharing is related to

data integration. The lack of standards, in conjunction with the vast amount of

data formats and APIs, compels developers to make huge efforts to code explicit

middle-ware or pre/post-processing applications to adapt data for its correct processing
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and for interoperability. Moreover, this leads to an ineluctable performance decrease

due to systematic data transformations involving massive data transfers through the

communication layers among Data Services or between a Data Service and its end-user

applications.

In addition to inter-service issues, performance penalties also arise within services

themselves due to well-known impedance mismatch difficulties [4] present through different

layers of the I/O stack. From the application or Data Service data structures resident

in volatile memory to the lowest layer of the underlying persistent storage, data is

continuously transformed to meet different representations, data models or schemas.

Furthermore, the increase in computing power has far outpaced the increase in the

speed of storage systems so that data is usually produced faster than could be stored or

retrieved from disks, which also pushes the integration problem to its limits and encourages

new solutions to overcome the situation. In this regard, new research strategies can be

decisive to resolve these issues, both in storage systems or hardware and in workflow

management or software.

From the perspective of the persistence layer, the expected proliferation of NVRAM

technology (non-volatile random access memory) will boost the I/O stack [5] achieving

performance results similar to volatile memories and improve energy efficiency [6].

Therefore, cumbersome data transformations could be avoided by letting the applications

work with the storage system in the same way as they do in memory, so that developers

should only concern about designing a data model consistent with the requirements of

such applications. Consequently, this is a good time for in-memory compliant databases

to outperform their competitors.

On the other hand, in-situ processing strategies [7] [8] are gaining momentum in High

Performance Computing (HPC) environments, where developers are forced to redesign

their pipelines to perform post-processing tasks (post-analysis, visualization, etc.) on data

produced in prior stages and while it is present in memory (or being generated). Otherwise

these post-processing tasks are or were usually performed in external clusters and/or

institutions after dumping all outputs in disks or through long-winded data transfers to

retrieve the required data, which by the way, closes the circle of data sharing difficulties

since this data externalization is sometimes problematic due to privacy policies.

In view of the above this thesis presents dataClay, an object-oriented (OO) data store

that fills the gaps of current Data Services and DBMSs with novel techniques for sharing
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structured data in a multi-provider ecosystem. By means of the implementation and

evaluation of dataClay, this thesis validates three novel contributions.

The first contribution responds to the need of flexibility to adapt or integrate data

models from different sources in a single multi-provider data store. Traditionally providers

define how data is and how can be processed, but to foster data sharing in a multi-provider

context it is important that the different players are enabled to extend the different data

models to meet their requirements. To this end, a novel solution is proposed on the basis

of a particular decentralization of the data model administration.

The second contribution arises from the basis that, in such a multi-provider data store

where data is potentially interrelated across different datasets, enabling every provider to

define his particular access policies on his dataset fosters data sharing but might jeopardize

data integrity constraints of the data model. In particular, constraints depending on

references and accessibility between data records belonging to different datasets, might be

compromised due to potential differences in access permissions. In this context, this thesis

proposes a novel mechanism to decentralize access control while enabling the providers to

define extra functionality to ensure data integrity.

Last but not least, the third contribution responds to current difficulties of

data-intensive applications. These applications not only suffer from the unstoppable

growth of data volumes, requiring parallel computing models and/or exploiting data

locality (in-situ or near-data processing), but also from the differences between the

application and the persistent data models, forcing developers to code explicit data

transformations. To tackle this problem, this thesis proposes a novel integration of a

parallel programming model with a persistence OO data model. This integration is proven

successful to improve the performance of data-intensive workflows.

1.1 Background

The scenario in which this thesis falls within is based on the three pillars of todays

mechanisms for data sharing: Data Services, Database Management Systems, and storage

technologies (figure 1.1). In this regard, this section explores their main characteristics to

highlight the concepts related to the thesis contributions, and chapter 2 further exposes

them through the related work in the state of the art.
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Figure 1.1: Application to storage data layers

1.1.1 Data services for large-scale data sharing

Data Services [9] appeared as successors to Database Management Systems (DBMSs) in

todays globally connected world, adapting database ideas to the current scenario where

data sharing is being extended from a single organization to an ecosystem of providers and

consumers. In particular, a Data Service offers an interoperable service-oriented platform

for data exchanging that enables the data provider employing it to effectively offer its

datasets to consumers or 3rd parties through a specific API.

To this end, Data Services are deployed as an additional layer of a DBMS to

parameterize and control access to data, and making it available for external applications,

which do not require to know how data is structured in the underlying data store.

Consequently, Data Services had become the default solution for the specialization of web

services deployed on top of data stores, other services, and/or applications to encapsulate

data-centric operations.

Data services are mainly grounded in the concepts of: data dissemination, data

integration and data virtualization.

Data dissemination refers to the distribution or transmitting of data to end users,

either from open/public data usually based on open formats, or from proprietary data

that is released under specific constraints or using proprietary formats that can only be

processed with specific software provided by the organizations to users.

Data integration involves combining data residing in different sources and providing

users with a unified view of these data. This process becomes significant in a variety of
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Figure 1.2: ETL Data Service Figure 1.3: REST Data Service

situations, which include both commercial (two companies that merge their databases)

and scientific domains (combining research results from different repositories). Data

integration appears with increasing frequency as the volume and the need to share existing

data explodes.

Data virtualization allows an application to retrieve and manipulate data without

requiring technical details about the data, such as how it is formatted at source, or where

it is physically located. Unlike the traditional extract, transform, load (ETL) process, the

data remains in place, and real-time access is given to the source system for the data, thus

reducing the risk of data errors and reducing the workload of moving data around that

may never be used. Unlike Data Federation it does not attempt to impose a single data

model on the data (heterogeneous data). To resolve differences in source and consumer

formats and semantics, various abstraction and transformation techniques are used.

Practical examples of Data Services are shown in figures 1.2 and 1.3. The former figure

shows an ETL Data Service where data is extracted from homogeneous or heterogeneous

data sources, transformed for storing it in the proper format or structure for the purposes of

querying and analysis, and loaded into the final target (database or another data service).

The latter figure shows a REST Data Service where, unlike the ETL Data Service, data

does not leave the infrastructure and the API provided offers the whole functionality

available to process it.

In both cases, data providers are the central actors that decide how data is and how it

is published to consumers, whereas consumers are only allowed to retrieve or offer
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Figure 1.4: ANSI/SPARC architecture

new data remaining offside to contribute with new functionality based on their

own intellectual property. Consequently, 3rd-party collaboration is harmed with tedious

processes of data integration and external adaptations which sometimes makes it totally

unfeasible.

1.1.2 ANSI/SPARC architecture for DBMSs

Current DBMSs are based on the ANSI/SPARC [10] model, an abstract design first

proposed in 1975, that, although never became a formal standard, its idea of logical data

independence was widely adopted. The main goal of the ANSI/SPARC architecture is to

guarantee data independence, that is, the immunity of applications to changes in the way

data is stored and accessed, providing each user with access to a fragment of the database

and abstracting how data is physically managed. To this end, and illustrated in figure 1.4,

the architecture proposes three levels of abstraction: the external level, the conceptual

level, and the internal level.

The external level provides user’s view of the database describing a part of the

database that is relevant to a particular user. It excludes irrelevant data as well as

data which the user is not authorized to access. This level is specified by the database

administrator (DBA) that defines how data is exposed and which users can access it.

The internal level, in the opposite side, involves how the database is physically

represented on the computer system. It describes how the data is actually stored in the

database and on the computer hardware. This level is then enforced by database vendors

that implement the database internals and usually provide the proper mechanisms or tools
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that enable the DBA to tune the corresponding features considering the underlying storage

system.

The conceptual level, between the external level and the internal level, describes

what data is or can be stored within the whole database and how the data is inter-related.

To this end, the DBA is in charge of defining the schema or data model represented in the

database.

In view of the above, the DBA plays a central role in the administration of the system

being the responsible for defining the external and the conceptual levels, and for tuning

the internal level to meet the provider’s requirements. Thus in these circumstances, users

are compelled to adapt their applications to the external view of the database

which preserves the data safe in exchange for losing flexibility.

Furthermore, from time to time the DBA has to apply certain changes to the data

model or schema of the conceptual level, so-called schema evolution. In the case of

SQL, some operations are provided that enable the DBA to “alter” tables in order to add,

drop or modify (change type) columns. This feature is sometimes enough in order to deal

with basic adaptations, but the data model behind the scenes is still restrictive in

the sense that all rows within the table must be compliant with current column

design. On the contrary, most NoSQL data stores are characterized by not having a fixed

schema. Each “row” (object, node, document, etc.) might have a different number and

even different type of “columns” (or attributes) so that it is said that data modeling in

some NoSQL databases is fully elastic. The drawback is that the programmer has

to take into account these potential differences between the elements of the

database.

1.1.3 Data integrity in DBMSs

Data integrity refers to a condition of the persistent data in which all its elements are

accurate and consistent in respect to its target state of the real world. In this way, data

with “integrity” is said to have a complete or whole structure, that is, data values are

standardized according to a data model and/or data types and all characteristics of the

data must be correct. In this sense, mechanisms to enforce data integrity include referential

integrity defining the relations a datum can have with other data (e.g. Customer related to

purchased Products), type checks based on a fixed schema (e.g. numeric property cannot

accept alphabetic data), automatic correction checks based on triggers or callbacks, or
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derivation rules (e.g. materialized views).

Data integrity is not widely adopted by NoSQL solutions which normally delegate

this responsibility to applications, especially those offering a schema-less approach thus

not forcing a fixed schema. On the contrary, schema-based DBMSs such as object

oriented DBMSs (OODBMSs) and relational DBMSs (RDBMSs), traditionally support

the following types of integrity constraints.

Domain constraints specify that attributes or columns must be declared upon a

defined domain or type (e.g. a boolean typed column cannot contain a string).

Entity constraints concern the concept of a primary key, a rule which states that

every record must be uniquely identified. In the relational model, every table must define

a column or a set of columns as the primary key, forcing every row to be identifiable by

its content. In the OO model there is no such a concept of primary key, since every object

is identified by its unique OID (object identifier) in a transparent way for the user.

Referential constraints state that an attribute-column/s represents a reference to

an object/row of another class/table. In RDBMSs referential integrity is ensured based

on foreign keys which define a column or set of columns that refer to another table.

In this way, the system prevents rows to be removed while other rows are referring to

them, unless triggers are used to define so-called cascade behaviors to propagate deletions.

In OODBMSs, there is no concept of foreign keys, relationships are built through OID

references enabling objects to directly refer other objects through their identity. The

problem comes when removing an object. Although early OODBMSs [11] did not support

explicit object removal, more recent systems ensured referential integrity on the basis of

reference counters, inverse members [12], etc.

Check constraints enable the users to define extra domain rules such as accepted

value ranges (e.g. age attribute defined for integer values between 0 and 120)

User-defined constraints on the basis of procedural rules are used to define extra

checks or behaviors based on user-defined algorithms that are resolved in a non-interactive

way under certain circumstances. Triggers and materialized views are well-known features

in this regard.

In light of the foregoing, a schema-based data store should support all these integrity

constraints, but following sections reveal the extra complexity of ensuring data integrity

in a multi-provider context.
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Figure 1.5: Redefinition of persistence layers

1.1.4 New storage technologies

Newer storage devices with no mechanical parts are unveiled today to break from previous

storage technologies and to redefine the I/O stack (as shown in figure 1.5).

In the first place, the proliferation of Solid State Disks (SSDs) displaced Hard

Disk Drives (HDDs) from personal computers, laptops and smart* gadgets due to its

performance and lower battery consumption [13], but also gained importance in HPC

environments with hybrid SSD-HDD technologies [14].

But nowadays it is expected that the inclusion of non-volatile memories (like NVRAM

[15]) into the storage/memory hierarchy will boost the I/O stack to definitely obtain similar

results as traditional memories used for the application layer. NVRAM is random-access

memory that retains its information when power is turned off (non-volatile), in contrast

to dynamic random-access memory (DRAM) and static random-access memory (SRAM)

which both maintain data only for as long as power is supplied. Therefore, NVRAM

should offer the durability of disk with the high performance and byte addressability of

volatile RAM.

Indeed, as cost and yield improve, NVRAM may become ubiquitous across the

computing spectrum: they could become the preferred storage for small devices in

the Internet of Things (IoT), and similarly could become critical to performance and

recoverability in cloud systems and HPC environments. Byte-addressable NVRAMs enable
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the construction of high-performance, in-memory, recoverable data structures (RDS).

Conventionally, RDSs have been placed either on disk or Flash and accessed through a

slow, serial, block-based interface. With NVRAM, these data structures could be accessed

at word granularity via loads and stores orders of magnitude faster than accesses to HDDs

or SDDs.

This paradigm shift in access latency and interfaces encourages the redesigning of

RDSs. For example, recent research has looked at ways to optimize file systems for

NVRAMs [16] [5]. Programs written for such systems will have to manage the transfer of

data between volatile and nonvolatile memories. Whereas programmers are familiar with

designing recoverable systems using block-oriented file-system interfaces, NVRAM’s byte

addressability could create the potential for new and higher-performing RDSs and calls for

new programming interfaces to succinctly express ordering requirements. Future systems

may incorporate two explicit memory spaces for volatile and nonvolatile data, or further

better they may use a unified address space and precede nonvolatile memory spaces with

volatile caches to enable write coalescing.

Either way, NVRAM technologies will enable in-memory databases to keep

running at almost full speed while maintaining data in the event of power

failure. This uprising of in-memory processing should encourage the exploitation of data

models closer to the application-level, thus tackling the impedance mismatch

handicap resulting from the differences between data representation at the

application layer and its actual representation in the persistence layer.

1.1.5 In-situ processing

The growing power of parallel supercomputers gives scientists the ability to handle more

complex applications at higher accuracy. To maximize the utilization of the vast amount

of data generated by these applications, scientists also need scalable solutions for studying

their data to different extents and at different abstraction levels. As we move into exascale

computing, simply dumping as much raw simulation data as the storage capacity allows

for post-processing analysis or visualization is no longer a viable approach. A common

practice is to use a separate or external parallel computer to prepare data for subsequent

processing, but this strategy not only limits the amount of data that can be saved, but

also turns I/O into a performance bottleneck when using a large parallel system. The

most plausible solution for the exascale data problem is to reduce or transform the data
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in-situ [17] to perform subsequent processing locally or even while it is being generated.

Thus the amount of data that must be transferred over the network is kept to minimum.

For instance, for large-scale simulations [18], in-situ processing is the most effective way

to reduce the data output since the reduction can benefit all the subsequent data movement

and processing. In-situ processing may also be used to extract some specific information of

interest, which is generally much small than the original data and can be used for offline

examination and assessment. Compared to the conventional post-processing approach

(in an external cluster), performing data reduction and information extraction in-situ is

a more appealing approach, provided that the post-processing calculations take a small

portion of the supercomputer time. Furthermore, with in-situ processing there is no need

to keep the full raw data as it can be consumed as long as it is post-processed, thus saving

a considerable amount of disk space for data storage and network bandwidth for data

transmission.

Therefore, it is important that new data stores are capable of managing

in-situ processing by offering the proper execution environment in conjunction

with data persistence.

1.2 Problem statement

In the context of data sharing for multi-provider ecosystems, the effective collaboration

between data providers and consumers will be achieved only if the interests of all players

are accomplished. This means that on the one hand, data providers must be able to keep

full control on their datasets in order to trust that they can decide how to share them

and with whom at any moment. And on the other hand, and without breaking providers’

policies, consumers should be allowed to adapt data to their needs to the point of being

capable of creating new services on top of it, or becoming data providers for 3rd parties.

That is, by means of guaranteeing control over the data while maximizing flexibility for

its adaption, the key requirements of both providers and consumers are fulfilled thus

nourishing the spiral of collaboration.

In addition, large-scale data sharing involves an unstoppable growth of data volumes

requiring parallel computing models and/or exploiting data locality (in-situ or near-data

processing) in order to reduce data transfers. In this context, applications also suffer

from the differences between high-level and persistent data models, requiring an excessive

amount of data transformations.
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Hereafter this section digs deeper into these identified drawbacks in the scope of this

thesis.

1.2.1 Centralized administration

To begin with, the role of a centralized DBA used in current DBMSs is no longer

the best solution. In a context with several data providers they, as the data owners,

should be the ones responsible for the control on the data to be shared and how can be

accessed or processed. Therefore, a data store for a multi-provider context should

delegate these rights, traditionally assigned to the central DBA, to the actual

data owners.

1.2.2 Schema evolution in a multi-provider context

Current Data Services restrict consumers by the set of APIs defined by the

provider. That is, consumers are limited to how providers decide to offer their data

both regarding structure and functionality, which consequently narrows the potential of

consumer applications and blocks further collaborations with 3rd parties since consumers

are not allowed to share their know-how.

On the other hand, at DBMS level, schema evolution is widely supported enabling the

administrator to extend existing data with additional views, new information that is not

present, or additional functionalities for data processing (e.g. an alter table in RDBMSs).

In view of the foregoing, the challenge is to export the concepts of schema evolution

into a multi-provider context, thus offering a solution valid for Data Services. In

particular, consumers should be able to extend current schema without jeopardizing

existing providers’ constraints and at the same time becoming providers of their intellectual

property.

1.2.3 Data integrity with decentralized access control

The decentralization of access control enables the providers to define their particular access

permissions on their own datasets. In this context, ensuring data integrity requires special

attention, since data might be interrelated across different datasets having potentially

different accessibility policies. In particular, the integrity of the accessible data

by a consumer can be jeopardized in regard to referential constraints and

procedural rules if the interrelated/involved data come from datasets with
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different permissions.

Regarding referential constraints, a reference between a datum from a dataset

pointing to a datum of another dataset, might be compromised for users that have no access

to the second dataset. Therefore, providers’ administration based on a naive approach

using traditional mechanisms for access permissions (such as ACLs) is not enough. For

example, certain user Alice codes an application to access a datum from dataset D1 that

points to datum from dataset D2. If Alice has the proper permissions to access both D1

and D2, she can develop an application that navigates through a reference from D1 to

D2. On the contrary, if Alice has no access to D2 the reference is broken and the

application might produce unexpected errors.

On the other hand, procedural rules for user-defined triggers and derived data

potentially entails accessing d from different datasets to compute the corresponding

algorithm. For instance, a data model could implement the observer pattern for some

datum to be automatically updated under certain circumstances (e.g. a trigger updating

a counter). If the algorithm requires data from different datasets for the calculation of the

derived datum, the derived datum might be compromised if the accessibility permissions

are not the same in all the datasets involved. For example, user Alice now codes an

application that accesses some derived datum of dataset D1 representing a counter of

occurrences of certain elements in dataset D2. If Alice has the proper permissions to

access both datasets, the application retrieves a consistent value for the datum counter,

but otherwise the application might see a value greater than 0 although Alice

has no access to D2 which could incur an unexpected behavior.

1.2.4 Data model of data-intensive applications

Data Services usually move the computation of the offered functionality to HPC

environments in order to tackle the difficulties inherent from Big Data challenges. In

particular, data-intensive applications/functionalities suffer from the fast and continuous

growth of data volumes, which forces developers to code them on the basis of parallel

programming models to take full advantage of distributed environments such as HPC

clusters.

In-situ processing techniques, in-memory data management, parallel computing or the

recent changes in the I/O stack; already entail significant improvements in performance,

preventing expensive data transfers and exploiting data locality. However, parallel
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computing is still based on file transferring or I/O APIs that require a significant waste

of time for developers to write the proper code that translates the application data model

into persistent or communication data model.

Indeed, even the simplest user-level applications communicating with Data Services

through REST APIs or with DBMSs through drivers require a waste of time for

programmers to build the corresponding system-dependent requests and to parse the

subsequent responses. These conversions have proven to require between 25% and 50%

[19] [20] of the total of the code to perform the corresponding mappings between the

application and the persistent data models.

1.3 Requirements

Given the difficulties and opportunities highlighted in section 1.1 and the major problems

to be resolved exposed in section 1.2, this section highlights the set of requirements that

a new multi-provider data store should fulfill.

R1 Decentralized database administration. DBA role is no longer valid in current

scenario, with different data providers and consumers working together possibly

having different requirements. Requirement defined from problem described in

section 1.2.1.

R2 Facilitate data sharing. The system must provide the proper mechanisms to

facilitate data sharing in the multi-provider environment, concerning data access

and functionality.

R3 Maximize flexibility of data modeling. The system must provide the proper

mechanisms to help users to extend data structures and functionality. This must be

done without jeopardizing providers’ constraints and in a way that can be shared

with other users. Requirement defined from problem described in section 1.2.2.

R4 Ensure data integrity. Considering the decentralization of access control, the system

must support the proper mechanisms that enable providers to define any required

functionality to ensure data integrity of their data models. Requirement defined

from problem described in section 1.2.3.

R5 Prevent data transformations. The system must implement a data model compatible

with parallel data-intensive applications that reduces the code dedicated to data
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transformations (in response to problem described in section 1.2.4). Therefore this

requirement must consider:

R5.1 Resolve impedance mismatch issues. The system must resolve the impedance

mismatch difficulties between the application and the persistent data models.

R5.2 Compatible with programming models. The data model must be compatible

with top-most used programming languages and with parallel programming

models.

R5.3 In-situ processing techniques. The system must offer an execution

environment enabled to exploit data locality.

R5.4 Data model of new generation storage devices. The data model should be

enabled to take full advantage of new technologies.

1.4 Solution approach

This thesis presents dataClay, a distributed Object-Oriented data store that fulfills the

requirements stated in section 1.3 and thus serves to validate the three stated contributions

at the beginning of this chapter and that are further described in section 1.7.

dataClay relies on the structure and principles of the ANSI/SPARC architecture

(exposed in section 1.1.2), which has proven successful in many aspects, but breaks the

assumption that each DBMS has a central administrator (or administrator team). In

contrast with current DBMSs and data services, dataClay decentralizes the administration

(requirement R1) thus enabling different users to share and reuse data while maintaining

full control on their assets, both regarding the schema and the data itself. In this way, any

user can participate in the definition of the schema (requirement R3) adding those missing

concepts or functions he needs but always based on the fragment that he is allowed to

access as granted by the provider. These enhancements, also called schema enrichments,

can be also shared with other users in the same way as the provider shares his original

schema.

In this context, it is essential that data never moves outside the data store in order

to guarantee full control on it (unless explicitly allowed by the provider). To this end, an

identity-based data model is proposed making every single piece of data to be uniquely

identified and individually manipulated. In particular, dataClay is based on an Object

Oriented (OO) data model, which not only defines a unique identifier per object (OID),
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but also enables the encapsulation of the object state (the actual data) by exposing only

the methods that can be executed on such an object (i.e. class methods targeting object

instances).

This encapsulation enables providers to ensure data integrity constraints from within

the methods and by considering the different consumer views depending on access

permissions (requirement R4). For instance, in the case of referential integrity with the

example of section 1.2, Alice has access to a datum d1 in dataset D1 pointing to a datum

d2 in dataset D2, but if she has no access permissions to D2 the reference from d1 to d2

is broken. In dataClay, data is represented with objects and a reference from d1 to d2

would involve an attribute of d1 referring to the OID of d2. Given that the only way to

access objects is through methods, this attribute will never be exposed but only its getter

method. Therefore, dataClay enables the provider to implement such a getter method to

check Alice permissions and react accordingly, e.g. returning a null reference if she has no

access or a reference to d2 otherwise.

Analogously, this solution is then also valid for user-defined constraints on the

basis of procedural rules, since these procedures are actually methods that might be

implemented on the same basis. For instance, dataClay supports triggers on the basis

of Event-Condition-Action rules where condition checkers and actions to be taken are

regular methods defined by providers.

Finally, requirements related to preventing data transformations (R5), are resolved

with a novel integration of a parallel programming model with the proposed OO data

model for persistent data (requirement R5.2). In the first place, having an OO data

model enables the full integration of the external schema (of OO applications) with the

conceptual schema (within the system), which minimizes explicit data transformations

(in connection with requirement R5.1). Secondly, an OO data model is compatible with

upcoming byte-addressable NVRAM technologies (requirement R5.4), making possible

the integration of conceptual and internal levels that would prevent data transformations

between the system and the underlying data storage. Thirdly, the integration of the OO

data model with a parallel programming model is grounded in the concepts of in-situ

processing in order to exploit data locality (requirement R5.3).
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1.5 Research questions and hypotheses

During the inception of each research topic, the following research questions have been

raised:

Q1 Can consumers extend existing schema without jeopardizing providers’ constraints?

Q2 Can consumers extend functionality for data processing without jeopardizing

providers’ constraints?

Q3 Can consumers provide/share their extensions without jeopardizing prior providers’

constraints?

Q4 Can providers define integrity constraints across multiple datasets with a decentralized

access control?

Q5 Can the data model be integrated with a parallel programming model?

Based on the solution approach described in section 1.4, this thesis responds these

questions by formulating the following hypotheses:

H1 In a multi-provider data store with decentralized administration, consumers can be

enabled to extend accessible schemas and share these extensions without jeopardizing

providers’ constraints both by:

H1.1 Extending the provided data structures without jeopardizing providers’

constraints.

H1.2 Extending the provided data functionality without jeopardizing providers’

constraints.

H2 In a multi-provider data store with decentralized administration, encapsulating data

through methods, in conjunction with the proper mechanisms to check access

permissions, will enable providers to ensure data integrity constraints across multiple

datasets.

H3 An object-oriented data model can be integrated with a parallel programming model

and making the data store capable of:

H3.1 exploiting data locality for OO applications.

H3.2 avoiding data transformations between external schema and conceptual

schema.
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H3.3 eventually avoiding transformations between conceptual schema and internal

schema considering upcoming storage devices.

1.6 Methodology

This thesis follows an iterative methodology. Considering the scenario described in section

1.1 and the related work exposed in chapter 2, the following iterative process is engaged

for each of the research hypotheses:

1. Analysis of the requirements that aim to verify the hypotheses.

2. Design and implementation of the system modules required to fulfill the requirements

and deal with the research objectives.

3. Design and implementation of the proper tests to verify the robustness of the system.

4. Experimental evaluation with standard benchmarks and common applications to

validate the performance of the system.

5. Are the results satisfactory? If not, use the feedback from the experiments to assess

and improve steps 1 and 2, and repeat step 3 and 4.

6. State the conclusions, and use them as input for further research goals.

1.7 Contributions

This thesis proposes three novel contributions for the scientific community that aim

to prove the hypotheses formulated in section 1.5. For their validation, this thesis

exposes a novel distributed OO store called dataClay which is implemented following

the methodology of section 1.6 and fulfills all the requirements stated in section 1.3.

C1 - Flexibility to extend schema

The first contribution responds to the need of flexibility to adapt or integrate data

models from different sources in a single multi-provider data store, where the data

administration is assumed to be decentralized and the underlying data model is

based on the OO encapsulation through methods.

In this context, providers decide what they share with their consumers by defining the

external schema comprising only the relationship between classes and the methods

that can be executed. Consumers are not enabled to access attributes directly,
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thus they cannot jeopardize providers’ data and are enabled to add new attributes

and new methods to accessible classes. Actually what providers grant are access

permissions to specific implementations of their methods, and consumers are enabled

to extend functionality even with new implementations of their accessible methods.

In this way, flexibility is pushed to the limit while data cannot be compromised and

consumers are then enabled to share these extensions becoming new providers of the

data store.

This contribution aims to prove the hypotheses H1, H1.1 and H1.2.

C2 - Data integrity in a multi-provider data store

The second contribution responds to the problems of maintaining data integrity in

a multi-provider data store, where data is potentially interrelated across different

datasets while administration of access permissions is decentralized.

In this context, the encapsulation through methods of the OO data model enables

providers to ensure data integrity with the sole condition that the data store provides

a mechanism to check access permissions from within the method code. In this way,

this solution is suitable for both referential integrity constraints with relationships

across multiple datasets; and for derivation rules involving data elements from

different datasets.

This contribution aims to prove the hypothesis H2.

C3 - Integration of the parallel programming and data models

The third contribution responds to current difficulties of data-intensive applications,

requiring the exploitation of data locality with parallel programming models and

suffering from excessive data transformations which compel data programmers to

waste significant amounts of time coding these conversions.

Considering that top-most popular languages for programming user-level

applications are OO languages (Java and Python according to PYPL index [21]), the

integration of a parallel programming model with an OO data model for persistence

facilitates the exploitation of data locality in distributed environments through

parallelization, while reduces the data conversions required to access stored data.

Furthermore, a persistence data model close to the application data model is of

interest in order to take full advantage of new generation storage devices such as
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NVRAMs.

This contribution aims to prove the hypotheses H3, H3.1, H3.2 and H3.3.

1.8 Organization

This thesis is organized as follows. Chapter 2 presents current approaches related to

each research topic in the scope of this thesis, while emphasizing their disadvantages

and/or missing features to underline the problems introduced in section 1.2. Then chapter

3, exposes a first overview of dataClay, a distributed OO data store that fulfills the

requirements defined in section 1.3 and that serves to validate the contributions of this

thesis stated in section 1.7. This overview is further expanded afterwards in chapter 4

with design decisions and implementation details.

Thereupon, chapter 5 presents several performance studies conducted with dataClay

in order to validate the contributions of this thesis. dataClay is firstly validated using

the Yahoo Cloud Storage Benchmark (YCSB [22]) to compare it in terms of latency and

throughput with popular NoSQL solutions, and to prove that extensions of the schema

can be offered without penalizing the performance. Once dataClay is proven valid, two

popular applications are deeply analyzed comparing their execution behaviors between

their common implementation based on existing parallelization techniques and a further

improved implementation taking advantage of the integrated data model proposed in the

third contribution.

The last block begins with chapter 6, which outlines the conclusions achieved with the

realization of this thesis by pointing to the defined requirements and expected hypotheses

to be responded. Thereafter chapter 7 presents some work-in-progress and future work

that is out of the scope of this thesis but expected to be done proximately. Finally,

chapter 8 highlights the publications related to the thesis and its expected impact in the

near future both in academic and business worlds.
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Related work

This chapter briefly describes previous work in database management systems and

afterwards exposes the state of the art of current solutions in relation to the main topics

of this thesis. In particular, and following a similar order as in section 1.2 of identified

problems, sections below explore related work on:

• The ANSI/SPARC architecture, data representation and administration.

• Schema evolution for data structures and functionality.

• Data integrity: declarative constraints, triggers and derivation rules.

• Data processing: data locality, data transformations, and parallel programming

models and runtimes.

2.1 Database Management Systems

Database management systems (DBMSs) have experienced a fast evolution (figure 2.1)

from its first commercial approaches in the 60s. In 1964, Integrated Data Store (IDS),

developed at General Electric, based upon an early network data model developed by

C.W.Bachman ([23]). In the late 1960s, IBM and North American Aviation (later

Rockwell International) developed the first commercial hierarchical DBMS: Information

Management System (IMS). Both kinds of DBMSs (hierarchical and network) were

accessible from the programming language (usually Cobol) using a low-level interface.

This made the task of creating an application, maintaining the database as well as tuning

and development controllable, but still complex and time-consuming.
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Figure 2.1: Evolution of DBMSs

In 1970 Edgar F.Codd published a fundamentally different approach [24], suggesting

that all data in a database was represented as a tabular structure on the basis of tables

with columns and rows, which he called relations, and that these relations could be

accessed using a high-level non-procedural (or declarative) language: SQL (structured

query language). This was the origin of the relational model which enabled to access data

through predicates that identified the desired records or combination of records. In the

80s, the relational model led to the emergence of several commercial Relational DBMS

(RDBMS), also referred to as SQL databases (e.g. Oracle [25], Informix [26], Ingres [27]

or DB2 [28]).

In the 90s, relational databases adopted the Object Oriented paradigm towards

Object-Relational DBMSs (ORDBMSs) [29]. That is, an ORDBMS is a database

management system (DBMS) similar to a relational database, but with an object-oriented

database model: objects, classes and inheritance are directly supported in database

schemas and in the query language. In addition, just as with pure relational systems,

it supports extension of the data model with custom data-types and methods. An

object-relational database can be said to provide a middle ground between relational

databases and object-oriented databases (object database). In ORDBMSs, the approach is

essentially that of relational databases: the data resides in the database and is manipulated
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collectively with queries in a query language.

In contrast, at the other extreme are Object-Oriented DBMSs (OODBMSs) [11]. In

this case, the database is essentially a persistent object store for software written in an

object-oriented programming language, with a programming API for storing and retrieving

objects, and little or no specific support for querying. For the first time, databases were

concerned about overcoming impedance mismatch issues within the application

layer and the actual data representation in the persistent layer. OODBMSs

provide more flexibility in data modeling and are designed specifically for working with

object-oriented values, thus eliminating the need for converting data to and from its SQL

form, as the data is stored in its original object representation and relationships are directly

represented, rather than requiring join tables/operations.

Also in the 90s, appeared the first in-memory databases (IMDBs) also known as main

memory database systems (or MMDBs or memory resident database) [30], which primarily

rely on main memory for computer data storage in contrast to other DBMSs that employ a

disk storage mechanism. Main memory databases are faster than disk-optimized databases

because the disk access is slower than memory access, the internal optimization algorithms

are simpler and execute fewer CPU instructions. Accessing data in memory eliminates seek

time when querying the data, which provides faster and more predictable performance than

disk.

Finally, in 2009 was introduced NoSQL [31] as we know it today, the name attempted

to label the emergence of an increasing number of non-relational distributed data stores

(as previous OODBMSs). A NoSQL database (referring to “non SQL”, “not only SQL” or

“non relational”) provides a mechanism for storage and retrieval of data which is modeled

in means other than the tabular relations used in relational databases, such as key-value,

wide column, graph or document; making some operations faster in NoSQL by better

suiting to the the problem it must solve. One of the motivations of this approach is

presenting a simpler “horizontal” scaling to clusters of machines, which is a well-known

problem for relational databases [32].

2.1.1 ANSI/SPARC architecture

The ANSI/SPARC architecture (introduced in section 1.1.2) defines that DBMSs require

a central role for database administration: the Database Administrator (DBA). The DBA

is in charge of the definition of security policies (i.e. including the granting of certain
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rights to users) and the design and implementation of the database conceptual schema.

In terms of security, role-based access control (RBAC) is the mainstream model in

both SQL databases, like Oracle or Microsoft SQL Server [33], and NoSQL databases

like Cassandra [34] or MongoDB [35]. RBAC is normally based on a set of right profiles

offered by the DBMS (in some cases can be customized by the DBA) that define special

permissions. These profiles can be grouped as DBA deems suitable by defining roles.

When users need some of the capabilities to perform a particular operation requiring

special privileges, DBA assigns them the corresponding roles.

This centralized administration might be appropriate for scenarios where a Data

Service (or DBMS) is acting as the unique data provider, but this centralization is

unacceptable when dealing with a multi-provider system where all users are

potential model and/or data providers that want to keep control on their

assets.

With regard to the design of the conceptual data model, in some NoSQL DBMSs

offering a “schema-free” approach, like MongoDB or Couchbase [36], certainly the DBA has

no major bearing. However, the schema must be handled from the end-user applications

which eventually need to know how data is structured (in order to update contents, to

create indexes, etc.). Therefore, conceptual model is not actually managed from the DBMS

but at user level, thus from the ANSI/SPARC perspective conceptual level and external

level are mixed together.

This still has the advantage of decentralizing the conceptual data model so that

provider keeps full control on it with no DBA central role. However, the description of

the external model is lost and maintaining consumer applications up-to-date

can be tedious specially if the conceptual schema is altered regularly.

2.2 Flexibility to add new functionality

As exposed in section 1.2.2, one of the most important aspects to be exploited for an

effective data sharing in a multi-provider context is the flexibility to adapt current data

models and functionalities to consumers’ needs.

In this regard, data enrichment is a general term that refers to processes used to

enhance, refine or improve existing data. In many cases, the term refers to annotating

data with additional semantic information, either manually or automatically, to improve

search and retrieval of different kinds of data [37] [38] [39].
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In current schema-free DBMSs, like MongoDB and Neo4j, enrichment is supported

through the free addition of new attributes to documents or graph nodes respectively; and

stored javascript functions or plugins as stored procedures that can be called via REST

API or RPCs. However, they only permit the system administrator to install and

share them with others, which is an inconvenient as exposed in section 2.1.1.

On the other hand, and in the same way as RDBMSs, schema-based NoSQL solutions

like Intersystems Caché [40], db4o [41], HBase [42] and Cassandra support schema

evolution by offering the possibility to dynamically add or delete attributes from the

existing data model (i.e. alter table or view). However, none of them supports sharing

the schema in a way that it can be enhanced with new functionality that

remains controlled by its creator.

On the other hand, there are Dynamic Software Updating (DSU) solutions, like

JavAdaptor [43] or Rubah [44], that enable the developers to modify the schema of their

applications in real time by directly affecting any execution in progress (for instance,

to apply security fixes on a live vulnerable system). The drawback is that these

modifications affect to all running applications, so that there is no way to keep

different versions of the same data in the case that users are concurrently accessing it.

2.3 Data integrity constraints

Integrity constraints are used to ensure that all data in a database complies with rules

that have been set to establish accurate and acceptable information. In this way, since the

SQL standard definition [45] until now, DBMSs offer specific features to implement data

integrity constraints. In particular, this section explores the two common ways to specify

data integrity in current data stores: declarative constraints and active behaviors.

Declarative constraints are related to those originally defined by the SQL standard.

As exposed in section 1.1.3, examples of declarative constraints are: domain constraints,

entity constraints, referential constraints and check constraints.

On the other hand, constraints defined with procedural rules are commonly

based on user-defined algorithms that are executed in non-interactive way, i.e. by means

of so-called active behaviors. From the Event-Condition-Action (ECA) rule engines

introduced in the 80s [46], to modern event-driven architectures (EDA) [47] fulfilling the

Internet of Things (IoT) [48]; the support to active behaviors enable the users to program

integrity constraints that cannot be resolved from the mere definition of the data structure.
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Traditionally active behaviors are related to two well-known features: triggers fired under

certain circumstances, and derivation rules to define derived attributes and materialized

views.

2.3.1 Declarative constraints

Mostly all RDBMSs (SQL-based) support data integrity constraints since they are part

of the SQL standard, but on the contrary, in NoSQL databases integrity constraints are

not widely supported since integrity checks are expensive, especially in highly distributed

systems. Neo4j allows to specify a existence property constraint to ensure that a property

exists for all nodes of the graph with a specific label or for all the edges with a specific

type; and unique property constraints to ensure that property values are unique for all

nodes with a specific label. Cassandra allows to specify one primary key per table. On the

contrary, MongoDB or Couchbase do not provide any kind of built-in constraints, forcing

the applications to ensure uniqueness and correctness.

In the same way as schema-less NoSQL databases, modern OODBMSs such as Versant

(or db4o) also delegate most of data integrity checks to user-level applications. However,

early OODBMSs like GemStone [11] or ObjectStore [12] and more recent OODBMSs like

EyeDB [49] offered constraint support trying to mimic RDBMSs. For instance, EyeDB

supports not null or unique constraints.

Regarding referential constraints, in OODBMSs there is no concept of foreign keys as

in RDBMSs, relationships are built through OID references enabling objects to directly

refer other objects through their identity. Therefore, early OODBMSs did not support

explicit object removal, but more recent systems ensured referential integrity on the basis

of reference counters or inverse members. Reference counters might be used to know the

number of references pointing to an object, thus preventing that object to be removed

if some other objects are referencing it. Inverse members establish a hidden reference

between the pointed object and the object pointing it, thus having a double reference per

actual reference. If an object is about to be removed the system can check the existence of

inverse references (as reference counters do) to prevent the removal, if no inverse member

is found then navigates through its actual references to remove others’ inverse references

pointing to it.

As exposed in 1.2.3, a multi-provider data store requires special attention on referential

constraints defined on data that can be potentially interrelated across different datasets.
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Current state of the art does not offer a valid approach for this case.

2.3.2 Triggers

With regards to triggers, Oracle pushed this idea to the limit since not only permits

to react to data changes but also allows triggers that fire when schema level objects (i.e.

tables) are modified and when user logon or logoff events occur. Microsoft SQL Server also

supports Data Definition Language (DDL) Triggers [50] which can be fired in reaction to

a very wide range of events including those supported in Oracle. PostgeSQL and MySQL

only support data triggers, although PostgreSQL offers a workaround to schema triggers

by letting the table operations to be overridden by customized operations.

On the other hand, NoSQL databases are still a bit immature in this aspect. For

instance, MongoDB has no built-in implementation of triggers although there are external

solutions like mongo-triggers [51] which offers a workaround based on a middleware

intercepting the requests to database (allowing to perform any necessary checks or changes

to the whole query) and a callback-based mechanism or listeners waiting for the eventual

responses (allowing to execute any further requests). In contrast, in 2015 Amazon

DynamoDB [52] launched its streams feature that implement table update notifications,

which in conjunction with AWS Lambda functions that can be linked to these notifications,

provides the database with triggers for data updates. This is similarly implemented in

Neo4j with the TransactionEventHandler interface that supports reacting to update events

that are to be committed in the database through a transaction.

As exposed in 1.2.3, a multi-provider data store requires special attention on procedural

constraints involving objects from different datasets. In case of supporting a feature like

triggers, solutions in the state of the art cannot be directly mapped to a multi-provider

context.

2.3.3 Derivation rules

Section 1.2.3 exposes why a multi-provider data store requires special attention on

derivation rules when involving objects from different datasets. Current state of the art

can be used to understand the expected features to be covered, although all of them must

be revised for a multi-provider context.
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Derived attributes

Derivation rules enable the users to define data attributes/columns to be calculated with

an algorithm involving other attributes/columns.

In RDBMSs, such as as Oracle or DB2, derived columns are supported by means of as

or generated as clauses used in the definition of a table attribute. In MySQL, this kind of

derived columns are supported from views.

Regarding OODBMs, derived attributes can be offered from the data model since

OO programming defines the encapsulation of data through methods which means that

all object attributes are (or should be) accessed through methods. Therefore, derived

attributes can be supported by exposing only the corresponding getter methods from

which the actual value can be calculated every time the method is requested.

In NoSQL databases, derived attributes are not widely supported. However, the

following section 2.3.3 exposes some examples on how to obtain derived information in

such systems.

Materialized views

Materialized views are an important feature for SQL databases [53] where popular joins

might become especially expensive. In this context, materialized views are user views

defined on a query that are automatically updated considering the base tables of the

query. For instance, a materialized view can be used for maintaining up-to-date stats,

logging, or in general dynamic information.

Oracle supports materialized views and Microsoft SQL Server offers the same

functionality with indexed views as well as IBM DB2 provides materialized query tables

[54]. In the case of MySQL and PostgreSQL, materialized views are also supported but

they must be refreshed manually (or through triggers defined on the base tables).

In respect of NoSQL databases, MongoDB for instance offers so-called Aggregations

which are operations (e.g. a map-reduce function) that can group values from multiple

documents together and perform a variety of operations on the grouped data to return

a single result. Other NoSQL databases like recent version 3.0 of Cassandra supports

immediately updated materialized views [55], or CouchDB which offers MapReduce views

[56] based on incremental map-reduce operations which eventually compose the contents

of the view.
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2.4 Data processing

This thesis not only focuses on data management for effective data sharing in

a multi-provider context, but also concerns about data processing solutions for

data-intensive workflows. This includes the exploitation of data locality with

user-defined functionality, identifying and overcoming current difficulties related to data

transformations, and analyzing current approaches for the parallelization of data-intensive

applications.

2.4.1 User-defined methods

Computing close to the data has become a must in the last decade [57] [58], not only

because of the vast amount of data generated, but also because it is usually produced so

fast that moving it to an external infrastructure becomes unfeasible. To this end, DBMSs

traditionally offer some kind of implementation of so-called stored procedures that allow

the execution of arbitrary code within the database.

In relational DBMSs, stored procedures are usually offered through procedural

languages that extend SQL statements with elements such as conditions and loops,

declaration of constants and variables, etc. For instance, Oracle offers its PL/SQL

[59], Sybase ASE and Microsoft SQL Server have Transact-SQL [60], PostgreSQL has

PL/pgSQL [61] (which emulates PL/SQL to an extent), and IBM DB2 includes SQL

Procedural Language which conforms to the ISO SQL’s SQL/PSM standard [62].

The drawback of these solutions is the lack of interoperability, since applications need

to create DBMS-dependent request statements to call procedure methods. Furthermore,

any obtained result needs to be parsed or iterated following the rules of DBMS drivers

(e.g. a resultset representing a set of rows matching a query).

Stored procedures are also supported in some NoSQL databases. For instance, Neo4j

[63] manages stored procedures written in Java from version 3.0, and MongoDB allows

storing JavaScript functions on the server side (although they do not recommend the

overuse of this feature due to “performance limitations”).

Nevertheless, there is still a drawback related to previous section: DBA centralization.

It is assumed that using arbitrary code programmed in common programming

languages might jeopardize the database, therefore only its DBA or users with

permissions explicitly granted by the DBA, are enabled to store procedures

in the system.
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2.4.2 Persistent vs. volatile data

Traditionally, data has been represented and designed in a different way depending on

whether it is treated within a persistent (non-volatile) environment or a non-persistent

(volatile) one.

In a non-volatile environment, applications have to deal with persistent storage such

as a file system or a database. In the first case, the data is contained in files with

different formats (or not formatted at all) and the programmer handles them by performing

specific direct I/O operations or, in the best case, using existing parsers or serialization

mechanisms. In the second case, data is handled within a database with specific structures

and relationships like in relational databases and it can be accessed with specific query

languages; or it can be stored and accessed in newer NoSQL databases for instance via a

REST API.

On the other hand, in a volatile environment the applications allocate free memory to

load the data in, for example creating a set of objects in an Object Oriented programming

language where the data model is designed to navigate through object references, iterators,

etc.; thus processing and analyzing data efficiently.

Therefore, programmers are compelled to face the problem of handling two different

data models and the mappings between them. For this reason, in the 80s, Object

Relational Mapping (ORM) frameworks emerged to provide necessary mechanisms to

automatically convert data between different type systems. However, current approaches

like Hibernate [64] or DataNucleus [65] present some important drawbacks. For instance,

Hibernate addresses object-to-database impedance mismatch problems by replacing direct

persistence-related database accesses with high-level object handling functions. However,

the user must explicitly specify how the objects map to the database, thus

not preventing the programmer from handling two different data models. In

addition, persistence-related issues such as indexes, primary keys, or foreign keys must be

explicitly handled by the programmer by means of annotations in the classes.

In this case, OODBMSs such as db4o [41] or Intersystems Caché [40], make the

persistence of objects transparent to the programmer. Furthermore, Intersystems Caché

also offers a good level of interoperability between different languages such as C++ and

Java, thus having the capability of storing and access objects from applications coded

in any of the supported languages. However, both db4o and Intersystems Caché

present a lack of flexibility in model sharing as exposed in section 2.2.
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Some DBMSs such as Oracle, Microsoft SQL Server , or Redis [66]; already offer

the possibility to be configured as in-memory databases. With the inclusion of NVRAM

technology in the I/O stack, in-memory databases should be able to run at full

speed and maintain data in the event of power failure.

In that connection, the gains of NVRAMs are already proven successful in filesystems,

which traditionally assumed the presence of block-devices as the underlying storage

hardware accessing them through block I/O operations leading to large amount of data

migration (depending on the block-size). However, newer prototypes such as SCMFS

(Storage Class Memory filesystem [67]) or RAFS (random access filesystem for NVRAM

[16]) are directly built on top of the memory access interface thus achieving better

performance results.

In view of the above, any future data store should be designed with a data

model capable of taking full advantage of newer storage devices.

2.4.3 Parallel programming and runtimes

The scope of this thesis with regard to parallel programming is focused on the different

frameworks or tools that offer programming models for the parallelization of applications,

as well as the runtimes required to orchestrate the resulting workflows.

For instance, Ibis [68] offers a programming model for compute-intensive workloads

and includes a framework for programming and executing high-throughput applications.

The drawback is that porting an application to Ibis requires the user to explicitly

implement an API corresponding to its specific pattern and then compile the

code using specific scripts. Another example is Swift [69], a scripting language oriented

to scientific computing, which can automatically parallelize the execution of scripts and

distribute tasks to various resources, exploiting implicit parallelism. However, Swift also

entails porting the applications to its scripting language.

On the other hand, programming models for big data include models and frameworks

related to the processing and generation of large data sets. In this group, the MapReduce

programming model together with frameworks based on Hadoop [70] or Spark [71], are

widely used and implemented. These frameworks provide good performance on cloud

architectures, above all for data analytics applications on large data collections. The

drawback of these popular solutions is precisely that they are limited to MapReduce

applications.
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Regarding workflow managers, Taverna [72] is a workflow language and computational

model designed to support the automation of complex, service-based and data-intensive

processes. It automatically detects tasks that are free of data-dependences, and it

executes them in parallel. Pegasus [73] is another workflow manager that automatically

maps high-level workflow descriptions, provided as XML files, onto distributed resources.

The problem of these approaches is that the workflow of the application must be

statically predefined in a way that the programmer requires specific knowledge of

multi-threading, parallel and distributed programming or service invocation.

In light of the foregoing, it is worth introducing COMP Superscalar [74] (COMPSs).

COMPSs is a framework that provides an easy-to-use programming model for task-based

workflows as well as a suitable runtime to orchestrate their execution. In contrast to Ibis or

Swift, its users just specify the tasks of their sequential applications that can be executed

in parallel, and they are not limited to MapReduce or any specific programming model.

Furthermore, in contrast to Taverna or Pegasus, COMPSs detects task dependencies at

execution time. In this way, it exploits the parallelism at task level and distribute the

corresponding tasks along the available nodes of the execution environment.

Nevertheless, in spite of all these advantages and before the realization of this thesis,

COMPSs still forced the applications to deal with persistent data in the form of files, and

thus it became a good candidate to design, implement and evaluate the contribution C3

(detailed in chapter 5).



Chapter 3

dataClay: overview

This chapter exposes an initial overview of dataClay before going into detail about its

design and technical aspects, which are extensively described in chapter 4. In the first

place, concepts on which dataClay relies are exposed through the different levels of the

ANSI/SPARC architecture (introduced in section 1.1.2) and, subsequently, parceled control

is presented as the mechanism to decentralize the schema administration in the data store.

Thereafter, and on the basis of parceled control, the main pillars of the contributions

of this thesis are established through next sections by addressing these topics:

• Schema sharing and flexibility to extend accessible ones without compromising

existing data and prior functionality (regarding contribution C1).

• Management of data integrity constraints considering the decentralization of the

administration (with regard to contribution C2).

• Execution environment of dataClay specifically designed for an object-oriented data

model (in connection with contribution C3).

3.1 ANSI/SPARC architecture in dataClay

This section describes how the three layers (external, conceptual, internal) of the

ANSI/SPARC architecture are mapped to the dataClay abstractions used to structure

and manage data. To begin with, the conceptual level of dataClay is introduced given its

direct connection with the main contributions of the thesis. Secondly, it is presented how

the conceptual model is exported to users (external level) and, finally, how it is mapped

to the underlying storage (internal level).
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For the sake of clarity, the mappings with each of the ANSI/SPARC levels are described

as if there was a single administrator for the whole data store. This provides a clear picture

of how dataClay works analogously to other data stores with respect to the essential

ANSI/SPARC characteristics that are still valid for its design. However, some differences

are clarified at each level to finalize the section exposing how, in contrast to what is

assumed in ANSI/SPARC, dataClay divides data management into different parcels that

are separately controlled: dataClay parceled control.

3.1.1 Conceptual level

The conceptual level represents all the information contained in the database, abstracting

away physical storage details. This content is represented by means of the conceptual

schema, which is defined using the conceptual data definition language (DDL).

The conceptual level in dataClay follows an object-oriented data model. The

basic primitives are objects and literals or values. Each object has an identity, represented

by a unique object identifier (OID), and can be shared (referenced) by other objects. Every

object is an instance of a type or class, and a class has a number of attributes or properties

to represent the internal state of the object, and a set of operations or methods that can

be applied to objects of that type. Multi-level inheritance is also supported allowing any

class to be a subclass of another class or subclass.

The internal state of the object (i.e. attribute values or object’s data) is encapsulated

through its corresponding class methods. In this way, neither the class attributes nor

their values are directly visible outside the object, on the contrary, users are only allowed

to execute its class methods. This encapsulation ensures data independence by

basing the manipulation of data on its identity and functionality provided,

rather than on its value.

In contrast to objects, literals have no identifier and do not exist as first-class entities

outside the object that contains them as values of properties. Examples of literals are

instances of primitive or built-in types, such as int, char or String.

Figure 3.1 depicts the information about classes and objects stored in dataClay,

specified as a UML class diagram. The conceptual level corresponds to classes in orange

color, and the rest of the diagram will be introduced in the following subsections.

On the basis of the object-oriented model, dataClay is aligned with the idea that the

ultimate objective of the conceptual schema is to describe not only the data itself, but
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Figure 3.1: UML class diagram representing dataClay’s main entities. In orange, all classes related with
the conceptual level. In green, classes related with external level. In blue, classes for parceled control. All
relationships are navigational through methods (which have been omitted) or materialized attributes.

also how it is used [10], and at the same time provides users with a transparent access to

persistent data, thanks to the following principles:

• Persistence independence: the persistence of an object is independent of how a

program manipulates that object, and vice-versa. That is, a piece of code should

work with persistent and non-persistent objects indistinctly.

• Persistence orthogonality: all objects of all types should be allowed to be

persistent and non-persistent.

The goal of dataClay is to fully support this object-oriented model in

order to provide an identity-based data store. For this reason, the conceptual

layer includes not only the structural part of classes, but also their methods. All this

information is stored in dataClay, so that users can share and reuse not only data, but

also the methods that allow applications to manipulate it. In addition, the fact that

dataClay stores the methods associated to classes facilitates their execution

within the platform when invoked on objects, which guarantees that data is
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indeed encapsulated and protected by methods, with no possibility of bypassing them.

As a side-effect, efficiency is improved due to the fact that data transfers outside the data

store are minimized.

The DDL that allows users to define the conceptual schema in dataClay can be any

object-oriented language that enables them to describe their classes and methods. The

current implementation supports top-most popular programming languages: Java and

Python. Despite being procedural languages, they can be used to specify the structure

of the information, as well as its associated behavior, in the form of classes. Data

independence is then achieved by mapping these language constructs to an internal

dataClay representation of classes, which is independent of the specific language used

to define the class, as well as of the physical representation of the data. Thus, each user

may define his classes in the language that he prefers.

Given that the schema definitions are translated into an intermediate generic

representation, the fact that the conceptual DDL is language-dependent is not a problem

but rather an advantage to the users, since they do not need to learn a new language

to define the contents of the database. Using directly the same languages used to write

applications makes this task much easier for them. In addition, users can take advantage

of the whole expressiveness of these languages in order to implement additional behavior

in the conceptual schema itself, such as enforcing integrity constraints or security checks.

The fact that each user can access data only by means of a limited set of methods is a

potential problem if the user requires a specific method that is not available. However, and

precisely because data is encapsulated, any user is allowed to implement a new method

using only his available ones, as well as additional data that this method may need,

to provide new functionality without any danger for the already existing data. This is

so-called enrichment: if existing classes and methods do not correspond to what

the user needs for his applications, he can expand a class with new methods

and the necessary additional properties. These new properties and methods will be

stored (and executed) in the data store as if they had been defined by the creator of the

class. Thus, once they are part of the schema, they can be used and shared like any other

method. Section 3.2 describes how users can enrich existing classes, as well as adding new

classes to the schema, while controlling how these new elements are shared.

Enrichments are also a way to compensate the flexibility lost by disallowing arbitrary

queries in favor of methods: the enrichment mechanism can be used to structure objects
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according to the necessities of the application, by adding attributes or methods that

provide access to objects that are already organized in the appropriate data structures.

This provides a more efficient way of accessing data, since queries can be avoided when

they are known in advance.

Going one step further with regards to the object-oriented data model, enrichments

provide the possibility of having several implementations for each method. This feature

enables users to enhance any existing method with their own algorithms, applying

different constraints or considering specific environment variables that might be subject to

particular conditions. For instance, a method can have an extra implementation optimized

for specific hardware features, such as available memory or processor type.

3.1.2 External Level

According to the ANSI/SPARC architecture, the external level is concerned with the way

data is seen by users. An external view is the content of the database as perceived by

some particular user, and many external views may coexist on top of a single conceptual

view of the database. Thus, each user perceives the same database in a different way.

Users interact with this level by means of a data sublanguage, which is embedded in

a host language. This data sublanguage is a combination of an external DDL which, in

the same way as the conceptual DDL, supports the definition of the database objects in

the external schema, and a data manipulation language (DML), which allows processing

or manipulating such objects.

In the case of dataClay, the external level follows an object-oriented data model

like the conceptual level, thus preventing unnecessary data transformations.

In order to define the external views, which are based on the data model of the conceptual

level, providers populate their data models by means of dataClay interfaces and model

contracts (as shown in figure 3.1 represented by green classes). An interface is a subset

of the methods of a class that are made accessible to other users. Each class can have

an unlimited number of associated interfaces. A model contract is a set of interfaces of

different classes that are made accessible to a user for a certain period of time.

Therefore, a user’s external view consists of the union of all his model contracts, which

provides a subschema (a subset of the classes, and a subset of the contents of each class)

that the user can access at a given time. Thus, several external views can exist at the

same time for different users by means of distinct interfaces and model contracts, and
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some users can share an external view by means of different model contracts including the

same interface. In addition, a user may define an external view based on another external

view, by creating an interface of his own vision of the class and then including it in a

model contract to other users (further detailed in section 3.2).

This mechanism also allows dataClay to guarantee data independence, since new

properties, methods or classes can be created without affecting existing applications, which

are based on the already existing external views.

Regarding the DML, in dataClay the same host language, either Java or Python as

chosen by the user, is used as data sublanguage. Tight coupling is convenient for the user

and, in fact, the data sublanguage should ideally be transparent [10], as is the case in

dataClay.

To achieve this transparency, users retrieve the set of classes implementing

their external view of the registered classes in dataClay according to their

model contracts (more details in section 3.2). These classes only contain the methods

visible to that user, and allow him to access shared objects as if they were his own

in-memory objects. This is because these classes hide all the details regarding persistence

and location of the objects. Thus, the DML in dataClay corresponds to the methods

defined in the classes, and, the direct users of dataClay are application programmers.

3.1.3 Internal Level

The internal level is a low level representation of the database close to physical storage,

but still not in terms of any device-specific issues. The internal view is described by means

of the internal schema.

dataClay relies on other existing data stores to implement this physical

level, and thus there is a different internal schema for each data store. For

each different product, there is a dataClay component that maps the conceptual schema

to the specific technology used to store the objects. This mapping absorbs the changes

in the internal schema, or even in the implementation of the internal database, and the

conceptual schema remains invariant. This allows dataClay to take advantage of the

advances in technology, for instance when new kinds of databases appear, or when current

implementations of existing ones are improved, even if their interface changes. In the

same way, as soon as new storage technologies such as non-volatile memories

(NVRAM) become a reality, dataClay will be able to exploit them without
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affecting already existing applications, and benefit from their impressive access times

and fine access granularity, just by implementing the appropriate mapping. Thus, any

databases or storage technology can be interchanged at any point without affecting any

other layer in dataClay or above, just by choosing the one desired in a configuration flag.

In fact, some mappings are already implemented for the object-oriented database db4o

[41], the key-value column oriented Cassandra [34], the Neo4j [63] graph database, and

the relational database PostgreSQL. An additional mapping has been also implemented

based on the novel Seagate’s Kinetic hard drives [75], which are disks with a key-value

interface instead of a block interface, and are also working in a mapping to NVRAM in

a research collaboration with Intel. This shows that dataClay is able to directly access

storage devices without the need to go through a 3rd party data store, and benefit from

advances in storage technology. However, these novel storage technologies are not yet

easily accessible, so it is necessary to rely on an off-the-shelf database to implement the

internal level.

Either way, and as will be seen in section 4.2, the fact that in dataClay objects are only

accessed by their OID facilitates the simplification of the internal schema to its minimal

expression since most of the work is done in memory and with cached objects that are

already instantiated. For instance, in the mapping to PostgreSQL the schema consists of a

single table that contains all the objects. This table is defined with a primary key column

on behalf of the OID, and a second column for the object data represented as a codified

byte array containing all the values of its properties. References to other objects, such as

a property which value points to another object, are analogously stored within the byte

array by only saving their OIDs, since an OID is the minimum information required to

look for any dataClay object. Chapter 4 describes how objects are distributed in several

locations, and how their physical location is transparent to users.

3.2 Schema sharing and evolution via parceled control

As introduced in section 1.1.2, database administration is traditionally centralized under

the responsibility of the database administrator (DBA), which is the role in charge of

dealing with users to understand their requirements and define the conceptual schema

and external view, as well as the security and integrity constraints.

However, a DBA centralized approach becomes unfeasible in the context of data sharing

within a completely open environment, where users from different organizations may
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develop applications with requirements that are not always known by the data provider.

In this scenario, the data provider cannot allow consumers to run arbitrary requests on the

data, so a set of functions that limit how data is accessed must be implemented preventing

data from moving outside the database without the appropriate control.

This scenario poses some difficulties both to data providers and to data consumers.

On the one hand, data providers cannot foresee all the possible ways in which their data

can be used, so they cannot implement all the functions that data consumers will need in

order to build their applications. On the other hand, data consumers cannot depend on

the knowledge or availability of the data provider to offer them the required functionality,

which might be very specific to the domain of the data consumer, or the base of his

business model hence nobody else can or should do this job.

In this context, an alternative mechanism to maintain the security and integrity of

the database is needed so the requirement R1 (section 1.3) is fulfilled. This alternative

should provide flexibility to independent users to build applications based on shared data

without requiring any kind of intervention of the data owner (requirement R2), and at the

same time it must be considered to offer the proper mechanisms for data integrity across

providers’ datasets.

In dataClay this mechanism is referred as parceled control: the same database

stores objects from several owners, each of them controlling his part of schema

and his objects, and possibly enriching and consuming objects from other

providers. Figure 3.1 shows in blue color the entities concerned in parceled control and

explained hereafter.

In a first step to support parceled control in schema sharing, it was defined a new

abstraction for dataClay’s data model called namespace. In particular, since dataClay is

conceived for sharing data between independent users, and a class name is not a universal

identifier, classes are grouped into namespaces preventing name clashing. Any user is

allowed to create a namespace for the schema that defines his data, i.e. the schema on

which his applications are based.

This schema can be composed of new classes created in the namespace by its creator,

as well as already existing classes (enriched or not). That is, classes from other

namespaces can be imported in a specific namespace if the owner of such

a namespace has an active model contract including interfaces for them.

From then on, they can be used in the context of the namespace according to the
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interface specification, and the owner of the namespace can enrich them with new

properties, methods, or implementations as he does with his own classes (requirement

R3, contribution C1). Furthermore, these new elements enriching classes potentially

from other namespaces, will be managed by the owner of the current namespace, who

will be able to decide with whom they are shared and how long by means of new model

contracts in the same way as he does with the original classes of his namespace. This

enables integrating data from different owners.

On the other hand, an additional way of controlling access to data is by parceling not

only the schema but also the data itself in an orthogonal way (requirement R2). That

is, in the same way that a user may create a namespace that contains a set of classes, a

user can also create a dataset, which contains a set of objects from different

classes. A dataset is simply a container of objects, there is no direct relationship between

namespaces and datasets, which provides extra flexibility. For instance, a user can share

the same interface for a given class with different users, but offer a different subset of the

data to each of them. The dataset creator grants access to a dataset by means of a data

contract, specifying the expiration date and whether he gives permission to create new

objects on that dataset.

As a summary, model contracts provide control on the schema, while data

contracts provide control on the data. In other words, data contracts allow providers

to control which objects can be accessed by a user, while model contracts allow them to

control how these objects can be manipulated. For instance, if no method to modify an

attribute appears in the interface, the user will not be able to modify it. This kind of

access control is very fine-grained because it can grant write access to an attribute while

only read access, or no access, to another attribute in the same object.

3.3 Data integrity with decentralized administration

As introduced in section 1.1.3, and further extended with related work in section 2.3,

ensuring data integrity is a widely supported feature of current DBMSs, especially those

that are schema-based. In dataClay, integrity constraints are supported either from the

implicit characteristics of the OO data model, or by providing schema developers with the

proper mechanisms to ensure them.



3.3 Data integrity with decentralized administration 54

3.3.1 Schema constraints

Schema constraints are those related to originally defined as declarative constraints for

RDBMSs, comprising: entity constraints, domain constraints, check constraints and

referential constraints.

Entity constraints were introduced in RDBMSs to ensure that there are no duplicate

rows in a table. However, OODBMSs (and modern NoSQL databases) do not support

them since this concept of uniqueness is only required globally to identify object references,

which are based on their OIDs. Analogously, since dataClay is based on an OO data model,

global unique identifiers are used to specify objects’ OIDs. However, dataClay also enables

the users to define optional alias names for their objects in order to distinguish them in

a per-class fashion. If the schema developer still needs to define an attribute or set of

attributes to identify an object from other objects of the same class, he can implement

secondary objects in the form of indexes or dictionaries and check uniqueness from class

constructors. For instance, a developer registering a Book class defines the isbn attribute

as identifier through, and every time a new Book object is created the constructor checks

an external BookIndex object containing the set of existing isbns.

Domain constraints are implicitly resolved using an OO data model by means of

defining class attributes with a specific type, which in dataClay can be either language

types provided by the programming language (basic types or classes) or user-defined types

from the registered classes of providers’ schemas.

Check constraints can be enforced from setter methods, since dataClay enforces the

encapsulation of object’s state through its corresponding class methods. Defining a setter

method per attribute, developers can register the proper algorithm that serves to check

the correctness of their assigned values.

Finally, and as introduced in 1.2.3, the only problematic declarative constraints are the

referential ones. In a multi-provider context with a parceled control as described in 3.2,

objects can be stored in multiple datasets with potentially different permissions (different

data contracts). Therefore, not only removes can be problematic as in prior state of the art,

but further complex is the fact that every consumer has a potentially different vision of the

stored objects depending on his particular access permissions. In this context, referential

constraints can be compromised if, for instance, two interrelated objects are stored in

different datasets and the user trying to navigate from one object to the other only has

permissions for the first one. This means that referential constraints must be resolved in
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a per-consumer basis, since another user might have permissions to access both datasets

thus presenting no difficulties. To this end, and related to contribution C2, dataClay offers

the mechanisms to enable schema developers to check permissions from their methods,

which in conjunction with data encapsulation through methods, allows programming the

corresponding getter methods (e.g. “obj.getAttributeX()” where attribute X refers to

another object) by retrieving consumer permissions to determine what to do. For instance,

if the user has no access to referred object, the schema developer could decide returning a

null value, or an empty object on behalf of the real object, throwing an exception, etc.

3.3.2 Derived attributes

The solution proposed for referential constraints is also valid for derived attributes since, as

exposed in 2.3.3, in an OO data model enforcing encapsulation through methods, they can

be offered through getter methods. Therefore, a derived attribute calculated from other

objects data, should check access permissions of any involved object from the corresponding

algorithm implemented within the getter method. In this way, the developer might decide

that final value is composed only by the accessible ones, or an exception must be thrown

if some involved object is not accessible, etc.

3.3.3 Active behaviors: triggers and materialized views

In dataClay, triggers and materialized views are supported on the basis of an event-driven

subsystem (detailed in chapter 4.3) through Event-Condition-Action (ECA) rules defined

by the users. Specifically, developers might subscribe their classes to particular events

offered by the system (further detailed in chapter 4). In these classes, developers define

the condition to be checked on the object related to the produced event (if any), and the

actions to be performed if the condition is met. Both condition checkers and actions are

also methods of the same class.

The following example, illustrated in figure 3.2, serves to expose the integrity problems

described in section 1.2.3 with regard to accessibility permissions in user-defined active

behaviors. It actually shows the particular implementation of materialized views in

dataClay, but this includes the logics involved in triggers.

To begin with, a developer codes a RedCars class representing a collection of red cars

and wants to keep its objects’ instances up-to-date any time an accessible red car is stored

in or removed from the system. The developer codes the class to be registered to the
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Figure 3.2: Up-to-date collection of red cars with ECA subsystem.

events NewInstance and RemovedInstance of class Car, which are events supported by

the event-driven subsystem for any registered class. The developer codes a method in

RedCars class that acts as the condition checker, and names it isRedCar. This method

receives the reference of the new or removed instance of car whenever the notifications

of the subscribed events are produced, and checks if the car is red in order to determine

whether it must be added to or deleted from the collection. In the former case, if condition

checker resolves to true the action to be taken corresponds to the execution of the method

addCar present in the RedCars class and targeted to objects instancing it (which must

be kept up-to-date). Analogously, if a red car is removed the action would be executing

removeCar method.

In this context, active behaviors involve the same difficulty as referential

constraints. Car object references might have different access permissions for different

users and thus these triggers could compromise data integrity. However, analogously to

the solution proposed for referential constraints, and in regard with the contribution C2,

developers are enabled to check access permissions from the action methods. That is,

addCar or removeCar might check the accessibility to car object (i.e. its dataset) before

performing the corresponding action. This entails some particular issues that are further

detailed in chapter 4.
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3.4 Execution environment

On the basis of the parceled control presented in section 3.2 and the object encapsulation of

the conceptual level introduced in section 3.1.1, dataClay offers an execution environment

to carry out all the computation related to stored objects. This execution environment can

be distributed along several nodes which are enabled to both storing objects and invoking

their methods.

In this context, a user authorized to access the objects within a dataset (considering

current data contracts) can code an application that executes their corresponding class

methods (considering current model contracts) encapsulating them. These execution

requests are submitted through provided client libraries to be eventually handled by

dataClay.

To this end, and in order to make the applications to be easily adapted to dataClay,

model contracts are translated to actual classes that can be used from within

the applications as any other regular class. These contract classes, so-called stub

classes, are available for the user as long as the corresponding model contract

is active (i.e. has not expired). In addition, these stub classes are provided with all the

extra methods coupled to the dataClay I/O interface, thus enabling the applications to

generate new objects or delete accessible ones (according to current data contracts).

Through the integration of application and data models, dataClay aims to tackle

the difficulties of impedance mismatch present at multiple levels from the

application and up to physical data representation. On the one hand, avoiding

common explicit transformations required to connect applications with current Data

Services, which traditionally need to serialize and transform data with specific formats,

such as JSON or XML in REST APIs. On the other hand, the OO data model is also

chosen to exploit the characteristics of upcoming NVRAM technologies, which will help

mitigating the data conversions between the conceptual level and the persistent storage.

In view of the above, the following chapter 4 describes the main design and technical

details about the execution environment mechanisms to fulfill all these application

requirements, on the basis of a bidirectional interaction between applications and dataClay

through stub classes and/or dataClay libraries, and the execution request handling that

is performed within the distributed execution environment.

Afterwards, chapter 5 evaluates it through different performance studies, and analyzes



3.5 Summary 58

different applications to validate the integration of OO data model with a parallel

programming model according to the contribution C3.

3.5 Summary

This chapter introduces dataClay, a novel object-oriented data store that serves to validate

the proposed contributions of this thesis. In the first place, it exposes the mappings

between the three-layered data modeling proposed in ANSI/SPARC architecture and the

abstractions defined within dataClay. Considering that the majority of applications are

coded with object-oriented programming languages, an object-oriented data model resolves

the common impedance mismatch difficulties by coupling the external and conceptual

layers with the same data representation. Moreover, near future storage technologies,

such as NVRAMs, will presumably facilitate the persistent data to be stored in an

object-oriented fashion thanks to its byte-addressability, and therefore all data abstractions

could be presented with a single unified data model.

Thereafter, it is introduced a first overview of the so-called parceled control, which

provides specific mechanisms to decentralize the schema administration as opposed to

having a central administrator as defined by the ANSI/SPARC architecture (i.e. the

DBA). In particular, parceled control enables any user of dataClay to manage his own

persistent data and schema, as well as the permissions to share both with other users.

In order to facilitate the management of persistent data, dataClay offers the abstraction

called dataset to define common permissions for a set of objects (associated to it) and

data contracts to share them. On the other hand, the schema administration entails

the management of user-defined classes with so-called namespaces, which can be shared

through model contracts.

Thanks to data encapsulation through class methods, flexibility (contribution C1)

and integrity (contribution C2) are supported without compromising neither existing

persistent data nor current schemas. In respect of flexibility, the data model in conjunction

with the parceled control enable authorized users to extend schema by means of new

structures and functionality without jeopardizing current ones. These extensions are

called enrichments and can be also shared as any other part of the schema. On the other

hand, the required mechanisms to support user-defined data integrity constraints are also

presented, with special attention to referential constraints that serve as the basis to fully

support derived attributes and active behaviors in the context of multi-user scenarios with
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potentially different permissions.

Finally, this chapter also introduces the main ideas behind the dataClay execution

environment. From the application perspective, stub classes are used for the external

schema built from the model contracts available for each user, and acting as the main

entry points to the system by producing execution requests to registered class methods.

Internally, this execution environment is eventually in charge to conduct the actions

programmed within these methods and user-defined active behaviors, enabling near-data

processing and thus facilitating contribution C3 as it is described in the next chapters.





Chapter 4

dataClay: design and technical details

This chapter describes the key technical aspects of dataClay for the implementation of the

concepts exposed in previous chapter 3. Along the chapter, references to the contributions

are explicitly established in order to easily identify which are involved for each concept.

For a better understanding, figure 4.1 illustrates the main components concerned and

the interactions between them.

To begin with, dClayTool is a user-level application that facilitates Management

Operations related with data access control and the definition, evolution and sharing

of the conceptual and external schemas. The resulting requests from dClayTool are sent

to Logic Module (LM), a service that after authenticating the user, processes them and

stores the derived information in its local database.

On the other hand, users are also provided with a client library that enables the

development of their applications, using an API to communicate with dataClay to initiate a

session and submit any of the supported requests. Specifically, application requests are sent

to the Data Service (DS), a distributed service deployed in several nodes (DS backends)

that handles all object operations including persistence requests: store, load, update and

delete objects in the underlying database (i.e. CRUD on objects); and execution requests:

executing arbitrary code from methods of user classes on target objects. Persistence and

execution requests can be also produced from nested methods within a single DS backend

or backend-to-backend (i.e. backends are intercommunicated).

LM also handles a central repository of object metadata and the ECA subsystem for

active behaviors. The metadata repository gathers information about persistent objects

(e.g. location), and serves DS backends requiring any metadata information (further
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Figure 4.1: User-dataClay interactions with commands launched from dClayTool and session and execution
requests launched from user-level applications. Logic Module and a 3-backend Data Service are deployed in
different nodes with the corresponding data and metadata intercommunication.

discussed in section 4.2.2). Regarding the ECA subsystem, LM collects the available

events and subscriptions to them defined from classes requiring certain active behaviors

(further detailed in section 4.3).

Having dataClay components already introduced, the main design and implementation

details behind the proposed contributions of this thesis are explored along two major

sections:

• Parceled control and data integration, describing the mechanisms to effectively

decentralize the schema administration for a multi-provider scenario, with particular

attention to the flexibility to enrich existing schemas.

• Execution environment for data processing, with a distributed architecture for

parallel computation and object handling, as well as the capability to effectively

manage user-defined data integrity constraints and language interoperability.

Finally, and for the sake of clarity, the ECA subsystem, and its particularities related

to the contributions, is completely exposed in a separated section 4.3 as an extension of

previous ones.

4.1 Parceled Control and data integration

Management operations are those related with parceled control: schema registration,

enrichments, and data access granting. Schema registration includes creating namespaces,

registering classes and defining interfaces and model contracts for schema sharing.
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Schema Sharing
1 dClayTool -newNamespace <name>

2 dClayTool -newClass <namespace> <classname> <directorypath1..N>

3 dClayTool -newInterface <interface-definition> <interfacename>

4 dClayTool -newContract <begindate> <enddate> <beneficiary> <interface1..N>

5 dClayTool -importContract <contract> <namespace>

6 dClayTool -importClass <contract> <class> <namespace>

7 dClayTool -enrichClass <namespace> <enrichments-class> <class-to-enrich>

8 dClayTool -getstubs <ddl> <contract1..N>

Dataset Access Control
9 dClayTool -newDataset <datasetname>

10 dClayTool -grantAccess <begindate> <enddate> <dataset> <beneficiary> <permissions>

Figure 4.2: Syntax of dClayTool commands related to schema sharing and dataset access control.

Enrichments include the registration of new attributes and methods to existing classes,

or new implementations for existing methods. Data access granting refers to dataset

registration and data contracts signing for data sharing.

Schema sharing through model contracts and the flexibility to enrich accessible schemas

materialize the contribution C1, whereas data access operations will be considered along

the next section 4.2 and thus fulfilling contribution C2.

For a better understanding, this section exposes management operations through the

dClayTool, a user-friendly command-line tool that serves providers to handle them. In

particular, the most relevant commands are shown in table 4.2. Throughout this section

it is assumed that dClayTool sends user’s credentials to LM along the requests, thus

LM authenticates the user and performs any necessary checks. Finally, subsection 4.1.4

describes how users retrieve those classes (i.e. stub classes) according to their accessible

external schema, which is a key point to understand the details of next section 4.2 about

the execution runtime for data handling and processing.

4.1.1 Schema Registration

Given a user wanting to register a schema defined with classes shown in figure 4.3

(developed in Java or Python), he uses dClayTool to firstly create a namespace that

contains them naming it with a string (command 1). Logic Module verifies that there is

no other namespace with the same name and registers it in its local database.

Now the user proceeds to register his classes in the created namespace specifying the

directory paths where they are stored (command 2).

At this point, dClayTool analyzes the code (source code in Python or byte-code in
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Figure 4.3: Schema example with different kinds of associations and enrichments highlighted. Company class
is registered associated to a set of Employees with at least one CEO. Employees may own some Cars, but it is
assumed that a car cannot be owned by different employees.

Java) to verify that all class dependencies are found in the given paths, and automatically

registers all the required classes transparently for the user. In particular, dClayTool

performs a dependency analysis that generates a dependency tree by looking up references

to other classes, which in the implementation of the class will appear as: types of attributes,

parameters or returning values of methods, types used in local variables, and superclasses

of the current classes to be registered.

The leaf nodes of this dependency tree are either classes already registered or language

special classes (e.g. Object.class in Java). Already registered classes are not registered

again, and in the case of language classes, it is assumed that they are always accessible

from the programming language itself, so they are not registered either. On the contrary,

non-leaf nodes correspond to user classes that are transparently registered.

For instance, and assuming that all classes are in the directory /home/user/classes,

the user executes:

dClayTool -newClass myNameSpace Company /home/user/ classes

The dependency analysis detects Employee as a dependency, and recursively also finds

Car and CEO classes, thus all of them are registered automatically in myNameSpace.

In order to resolve cycles in class dependencies, classes are marked as in-progress before

registering their dependencies. Therefore, if the implementation of class Employee has

an attribute referring to his Company and Company has an attribute referring to its

Employees, Company is marked as in-progress until Employee is registered. In this way,

Company can be omitted when the dependency analysis finds that Employee depends on

it, preventing Company from being revisited.



65 Chapter 4 dataClay: design and technical details

Eventually, all class information is sent to Logic Module, which checks that there is

no class clash in the namespace and deploys registered classes to Data Service (further

detailed in section 4.2.3).

At this point, the user might share his classes by registering model contracts. To

this end, he creates one interface per class (command 3), writing one XML file per

interface defining the visible methods (with operation signatures) and implementations

(with implementation identifiers) for each corresponding class. Notice that applications

access dataClay objects only through methods, consequently interface definition does not

include class attributes. Given that multiple interfaces can be defined for a single class,

the user assigns an interface name to easily identify them and, in this way, also facilitates

the model contract registration, providing the names of the interfaces for the contract,

begin and expiration dates, and its beneficiary (command 4).

4.1.2 Enrichments

In line with the previous example, now the user wants to enrich class Car to include a

new attribute for its color and a new method isExpensive() that returns a boolean, true if

the price is higher than 20Ke, false otherwise. For the new method, the user knows that

the interface of class Car present in his model contract includes the method getPrice()

that retrieves the price of the car.

It might be the case that class Car was already registered in another namespace and

the user got access to it from one of his model contracts. In this context, he would

previously import the class Car into his namespace. To this end, he might either import a

whole model contract containing an interface for class Car (command 5), or only the class

Car from a specific model contract (command 6). As part of this process, Logic Module

validates that model contracts have not expired yet and that the same class names are

not already present in the target namespace of the user.

With class Car already present in the user’s namespace, either because he is its owner

or he imported it, he is now enabled to enrich it. The user codes the enrichments within a

regular class E extending from Car (or, more precisely, the view of class Car according to

his contracts). In particular, class E would define the color attribute and the isExpensive()

method. In this way, this class E benefits from being a subclass of class Car enabling

access to getPrice() method needed for the implementation of isExpensive(), and if method

isExpensive() was already present in class Car, the user could use overriding techniques
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to redefine it with a new implementation.

Finally, the user registers the enrichments contained in class E with command 7 (class

E is not registered, it is intended for enrichment coding purposes), and they become part

of the vision of class Car in his namespace. The same dependency analysis used for class

registration is applied, since any new enrichment may require some classes for attribute

types, method parameters or return values, or local variables in new implementations of

existing methods. If some class needs to be registered it is performed automatically.

Analogously to class registration, enrichment information is also sent to Logic Module

for the corresponding checks and the deployment of the enrichments to DS backends

(further detailed in section 4.2.3).

4.1.3 Dataset Access Control

As explained in previous sections, every object registered in dataClay belongs to a single

dataset, so that data contracts granting access to a dataset are used to define common

permissions for all the objects belonging to it. Therefore, management operations also

include dataset registration with a unique name (command 9), and definition of data

contracts (command 10) indicating the dataset for which the contract grants access, the

begin and end dates of the validity of the contract, the beneficiary and permissions.

Current version of dataClay assumes that a data contract grants its beneficiary to

execute class methods on all the objects registered within the offered dataset. However,

create/delete permission (createPerm in figure 3.1) is configurable to further control

whether the beneficiary of the data contract may create/delete objects in the dataset

or not.

4.1.4 Stub Classes

Stub classes (or stubs) implement the external schema representing the particular vision

of a user for the classes registered in dataClay, having one stub per accessible class and

containing only those methods for which the user has been granted access via model

contracts.

Following the example described in previous subsections, let us assume that a user

is beneficiary of several model contracts including different interfaces for the same class

Car. Now, the user is developing an application that requires accessing objects of class

Car, so by means of command 8 he is able to retrieve a stub of class Car for any of the
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supported languages (interoperability details in section 4.2.7). This stub is generated and

returned by the Logic Module as the union of the methods visible from all interfaces of

Car included among his model contracts.

At this point, the application can be compiled and executed using the stub of class Car

either to instantiate and persist new Car objects, or to instance references to existing Car

objects. In both cases, the application is then enabled to access persistent Car objects

through the visible methods available in the stub.

Regarding the management of object persistence, stub classes extend from a global

dataClay class called DataClayObject supplied in a client application library. Currently,

this client library has the form of jar-file dataclay.jar for Java and a dataclay package for

Python. DataClayObject offers a set of methods that can be called from any stub instance,

the most important are:

• makePersistent(ds_backend, [alias]): requests that the current stub instance (object)

is made persistent (becoming a persistent object) in the specified DS backend.

Optionally, a string alias can be provided as a user-friendly way to identify it.

• deletePersistent: removes the persistent object referenced by current stub instance.

In the case of makePersistent method (further detailed in section 4.2.1), both

parameters are optional, if the ds_backend is not provided dataClay chooses a random

backend, and if no alias is given the object is only retrievable by following a reference from

any other object. If an alias is supplied, the object can be retrieved afterwards using a

static class method called getByAlias present in all stub classes by default. This method

starts by submitting the corresponding request to the Logic Module, which returns the

object metadata; and then builds a new instance of the stub class with the returned OID

and locations (which are attributes inherited from DataClayObject as well).

Regarding the execution of methods not related with persistence management, stub

methods have a different behavior depending on whether the current stub instance refers

to a persistent object or not. If it refers to a persistent object, the stub method generates

an execution request for Data Service containing any possible parameters for the execution

of the method. But on the contrary, if the object is not yet persistent, the stub method

must be executed locally (that is, in the application context). To this end, stub methods

are provided with one of the method implementations available according to users’ model

contracts. Since there may be several implementations available from different contracts,
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Figure 4.4: Schema of the chain of car repair shops.

the LM resolves the collision when generates the stub class by assuming that model

contracts are sorted by priority order in the getStubs command, with the first model

contract having the highest priority. Therefore, the user has the possibility to affect the

choice of the implementation to be eventually executed among his accessible ones.

In order to make stub methods aware of whether the target object is persistent or not,

DataClayObject exposes a boolean attribute called isPersistent, which is set to true either

after the execution of makePersistent request, or from a return value of a stub method

containing references to existing persistent objects, or when using the getByAlias method.

Last but not least, stub classes also contain the implementation of two private methods

(not visible for the application) inherited from DataClayObject: serialize and deserialize.

The serialize method prepares a byte-array for the binary representation of attribute values

of the stub instance, so it can be transferred within an execution request as the parameter

of any stub method or for a makePersistent call. The deserialize method is used to build

a local object from its binary representation (serialized) coming from the return value of

a stub method.

4.1.5 Data sharing and integration examples

Following the company schema presented in section 4.1.1, let us suppose that there is an

important chain of car repair shops that signs an agreement with the previous company,

so that all cars of the company will be repaired by the car repair chain. The schema of the

car repair chain is illustrated in figure 4.4. RepairShop class represents the information

related to car repair shops (address and phone number), and it is related to CarBrand

class which represents the information of all the covered car brands, i.e. cars that can be

repaired in the available repair shops. Due to the agreement between the two companies,

both schemas should be integrated to provide a unified view of their data. With dataClay,
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this integration can be done at different levels, ranging from a loose integration in which

only the company uses dataClay, to a tight integration in which all the data is stored in

the same datastore.

In the first scenario, databases of the chain and the company are managed in different

infrastructures, and the chain does not use dataClay but offers a Data Service to consult

the repair shops given a car brand. In this context, a developer of the company codes

a method for Car class connecting to this Data Service to get available car repair shops

using the car brand information from the class. This method is used every time a car

needs to be repaired to get the address and phone number of an available repair shop

for the broken car, thus the integration is on the basis of the interoperability between

the company and the existing chain services. Although data migrations are avoided, the

drawback is that this approach requires data transformations to perform Data Service

dependent requests and responses. Therefore, the developer could be eventually tempted

to copy repair shops information locally, creating another RepairShop class for the company

with objects performing a periodic synchronization with the chain Data Service to check

for updates.

A tighter level of integration can be achieved if the chain also uses dataClay to store

its data. The chain starts creating a model contract to grant the company access to

method getRepairShops(String carBrand) thus providing a functionality analogous to the

previous Data Service. The model contract also includes an interface for RepairShop

class with access to getter methods for address and phone attributes. Finally the chain

creates a data contract to grant the company access to the object of RepairShop class.

In this context, the developer of the Company gets the stubs corresponding to the model

contract and codes the method to get available repair shops using them. In this occasion

the external communication with the infrastructure of the chain is done transparently

through dataClay stubs, preventing user-level transformations.

Finally, full integration can be achieved if both the company and the chain store their

data in the same data store, for instance externalizing it to a dataClay service in the cloud.

They use different namespaces for their schemas and different datasets for their objects to

ensure that their data is isolated unless they want to share it, but still want to integrate

their data without losing control (as shown in figure 4.5).

In this context, the company creates a model contract granting the chain access to Car

brand name attribute through its getter, plus the getCars method of Company class; as
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Figure 4.5: Schema of the data integration between the company and the chain of car repair shops. Classes and
associations in dashes means that are hidden for the non-proprietary of these entities. In red, the enrichments
added to the company schema to get repair shops when needed.

well as a data contract to offer its dataset. With these contracts, the chain enriches the Car

class with a new relationship attribute availableRepairShops and codes an application that

matches company cars with chain CarBrand information, filling the availableRepairShops

with references to RepairShop objects. Now the chain creates a model contract analogous

to previous scenario but includes the getter method of availableRepairShops, thus the

company application uses it to navigate from car objects to their corresponding repair

shops.

This approach enables the company to access up-to-date information from the chain

(as in the first scenario), but also prevents user-level data conversions (as in the second

scenario). With encapsulation and dataClay parceled control, both the company and the

chain are enabled to isolate the parts of the schema and data that do not have to be visible

from the non-proprietary party. Enrichments facilitate the integration between both data

schemas, letting the chain to adapt Car class to its needs and adding new functionality

accessible for the company.

4.2 Execution environment for data processing

This section presents the pillars of the proposed integration of programming and data

models, which is related to the contribution C3 and that is finally validated through

next chapter 5. To this end, it is detailed how the user-level applications interact with

dataClay to manage object persistence and stub method execution on existing objects, as
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public class AppInsertCompanyData {
public static void main ( String [] args) {

String user = args [0]; String pass = args [1];
String datasets [] = { " myCompanyDataset " };
String datasetStore = datasets [0];
dataClay . initSession (user , pass , datasets , datasetStore );
List <Employee > employees = new LinkedList <Employee >();
int employeeID = 0;
for (int i = 2; i < args. length ; i = i + 2) {

String employeeName = args[i];
Float carPrice = new Float(args[i+1]);
Car c = new Car( carPrice );
Employee emp = new Employee ( employeeName , employeeID , c);
emp. makePersistent ( employeeName ); // remote request
employees .add(emp);
employeeID ++;

}
Company myCompany = new Company (" myCompany ", employees );
myCompany . makePersistent (" myCompany "); // remote request

}
}

Figure 4.6: AppInsertCompanyData Java code that initializes a session and generates persistent objects
corresponding to the employees of the Company and their cars.

well as the interrelation between the different backends of the Data Service on behalf of

the distributed execution environment.

In particular, it is assumed that the schema presented in previous section has been

successfully registered and the owner of the namespace has defined a model contract to

share his classes with a certain user. In this context, the user beneficiary of such a model

contract has downloaded the corresponding stub classes and develops two applications

linked with them:

• AppInsertCompanyData (figure 4.6): creates and stores the data of the employees

in a company.

• AppGetCompanyEmployees (figure 4.7): retrieves the names of all the employees of

a company.

Analogously to the user authentication for Management Operations, applications

wanting to interact with dataClay also need to perform an authentication process that,

in this case, is performed through a session-based mechanism detailed in section 4.2.4.

Throughout this section it is assumed that the application is already authenticated and

has a session identifier for its execution requests.
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public class AppGetCompanyEmployees {
public static void main ( String [] args) {

String user = args [0]; String pass = args [1];
String datasets [] = { " myCompanyDataset " };
String datasetStore = datasets [0];
dataClay . initSession (user , pass , datasets , datasetStore );

// Initialize stub instance comp using the company alias
Company myCompany = ( Company ) dataClay . getByAlias (" myCompany ");

// remote execution request
String [] employeesNames = myCompany . getEmployees ();
for ( String employeeName : employeesNames ) {

System .out. println ( employeeName );
}

}
}

Figure 4.7: AppGetCompanyEmployees Java code that initializes a session with the dataset where Company
objects have been previously registered, and after retrieving the reference to myCompany object obtains its
employees’ names through remote execution request.

4.2.1 Data Generation

When executing AppInsertCompanyData, it starts creating local instances for the stub

classes of Employee and Car (with their corresponding associations). In order to illustrate

different ways to persist objects, the application calls makePersistent for each Employee

which transparently makes the associated Car to be persistent too, i.e. serializing both

car and employee data to be sent within the request. In contrast, makePersistent for

the Company object omits serializing employees’ data since at this point they are already

references to persistent objects, i.e. OIDs. Thus, only these OIDs are serialized along with

the company name (which is also used as the alias for myCompany object) as the state of

myCompany object. In all cases, no particular DS backend is provided for makePersistent

requests, so they are submitted to a random one based on a hash function. The request

includes the session ID for the proper checks and to infer the dataset where objects are

registered (more details about session management in section 4.2.4). As objects are stored

in the assigned DS backends (further detailed in section 4.2.3), they send the corresponding

object metadata to Logic Module (LM).

LM keeps an up-to-date metadata repository, equivalent to a database catalog, with the

following information per dataClay object: OID, a Universally Unique Identifier (UUID)

generated when the stub class is instantiated; dataset, for permission checks; ds_backends,

to know the locations of the object; and finally aliases, in order to resolve getByAlias

requests.
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4.2.2 Remote execution

With the objects already stored, the user executes AppGetCompanyEmployees, which

starts retrieving the Company object from its alias myCompany by means of the static

method getByAlias (introduced in section 4.1.4) accessible from Company stub class.

From then on, stub methods of Company behave as Remote Procedure Calls (RPCs)

for the myCompany object, and the resulting execution requests are submitted to one of

the DS backends where the object is located, including the parameters for the method

and the session information, which are serialized in TCP packets in binary format for the

underlying binary communication protocol used in dataClay (e.g. in Java, client library

uses Netty [10] framework). Types of parameters might be literals, language classes, or user

registered classes. Both literals and language classes are serialized to dataClay compliant

types in order to translate their contents to a common binary representation, whereas

parameters of user registered classes use the serialize method from the corresponding stub

classes. In case of persistent objects, only the OID is serialized. However, in the example

no parameter is needed and the application directly calls myCompany.getEmployees().

At this point, DS backend DS1 receiving the resulting execution request validates

the session and, considering permissions of the corresponding data contracts, checks

that myCompany object is actually accessible. To this end, DS backends are allowed to

access to session information and object metadata from Logic Module, that are requested

on-demand (when they are missing or out-of-date) and saved in internal LRU caches in

order to improve performance avoiding subsequent requests, and to prevent Logic Module

from becoming a bottleneck.

With session validated, DS1 loads myCompany object in its memory context and

executes getEmployees() method. To this end, DS1 has so-called execution classes

analogous to stub classes used to load objects from database to memory or to

update objects from memory to database. In both cases, analogous serialization and

deserialization mechanisms as for the communication protocol are used (further detailed in

section 4.2.3). Therefore, getEmployees()method iterates through the accessible employees

frommyCompany object and for each Employee object emp executes its method getName()

to eventually return all employees’ names.

It might happen that some of the objects are not present in DS1, so instances of

Employee execution class are actually referring to objects stored in other backends. In this

case, DS1 generates requests for getName() to other DS backends in the same way as an
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application does. That is, execution classes use the same serialization and communication

protocols as stub classes and the session identifier is propagated so the target backend

is also enabled to check the corresponding dataset permissions for the required Employee

objects.

On the other hand, Employee objects already present in DS1 are loaded in the same

memory space as myCompany object (which is also present in DS1) and the references

from myCompany to Employee objects will be materialized into native language references.

In Java, objects will meet in the heap of the Java Virtual Machine (JVM), and in Python,

objects will be mapped and navigable within the memory space of the interpreter. In

this way, execution workflow is analogous to a user-level application with a single memory

space for the objects present in the same DS backend.

Consequently, in Java the JVM heap memory acts as an object cache and objects are

present there until the Java Garbage Collector “decides” to remove them. In this case the

finalize() method, (present in all Java objects from Object.class) is called, and in dataClay

it is overridden through DataClayObject class in order to propagate any missing updates

to the database before the object is actually removed. Analogously, in Python the method

_del_ (present in all Python objects) is executed when the reference count reaches zero,

meaning that the object is inaccessible and can be deleted from the main memory, thus

this method is overridden to update the values in the database before the object is actually

deallocated.

Finally, all employees’ names are serialized and returned from DS1 to the application

AppGetCompanyEmployees. In this case, the returning value is an array of literals

(strings), so the getEmployees method of the execution class serializes all the strings in

binary format and produces a return message containing them along with the size of

the array, so the stub method getEmployees executed from AppGetCompanyEmployees

deserializes the array and the execution is resumed.

4.2.3 Execution classes - object handling

Execution classes are used in DS backends analogously to user’s stub classes at application

level. That is, an execution class is instantiated in order to load objects in memory and

has the serialization and deserialization functionalities to update or read objects from the

underlying storage or to transfer them either to client applications or other backends (as

a return value or parameters). Moreover, execution classes as well as user stubs, contain
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the proper code to execute RPCs on the methods that involve remote backends (when

accessing objects not stored in the current backend).

However, there is a major difference between an execution class and a user stub, which

is that the former contains the whole set of attributes and methods of the corresponding

registered class (including all its enrichments) while the latter is only based on certain

user’s model contracts. This is a requirement, since DS backends must be able to execute

any possible method of any class, and are not specialized to store objects instantiated from

any particular stub class. To this end, whenever a class is registered or enriched, Logic

Module deploys the corresponding execution class to all DS backends which store it as a

regular class file in their local filesystems separated by namespaces, i.e. one directory per

namespace.

In the case of enrichments, the deployment process updates the corresponding

execution class stored in DS backends. Objects already stored with previous versions

of the class are loaded considering that any possible new attribute is initialized to default

value of its type. When objects are updated in the underlying database, values of the new

attributes are also stored (if any). Consequently, objects are eventually in the form of the

newest version of the class without breaking any constraint while they are still in the old

form.

In Java, classes are managed via ClassLoaders, which are part of the Java Runtime

Environment and dynamically load Java classes into the Java Virtual Machine. In

dataClay, DS backends handle one ClassLoader per namespace and load the corresponding

execution classes from the underlying filesystem on demand. Given that ClassLoaders

cannot reload a class dynamically, there might be objects in memory being instances of

early loaded classes prior to enrichments. In order to overcome this issue, dataClay reacts

to enrichments by pausing upcoming execution requests that depend on newer versions of

loaded class, waits to in-progress execution requests to finish (that were using previous

versions of the classes), and when they finish creates a new ClassLoader instance to load

newest classes and resume the previously paused execution requests. Notice that this will

only affect the objects instancing classes of the namespace of the enrichments, and all other

objects will see no delays in their execution. However, in order to avoid pausing execution

requests in highly utilized classes, dataClay can be configured to apply enrichments once

a day (at a particular hour).

On the other hand, in Python, there is no exact counterpart for the concept of
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ClassLoader and two objects might be loaded in memory as instances of different versions

of a class while still being considered of the same class. The only problem is the built-in

isInstance function, which is expected to return the same result regardless the version of

the class, but stub classes override this method to make it behave as expected.

Regarding the mapping of objects to the underlying storage, DS backends store the

serialized objects (with serialize method) coming from makePersistent requests (from a

stub or an execution class) directly to the database. That is, objects are stored in the

database without having to deserialize them in memory, in a table with two columns using

the OID as the primary key and a byte-array for the object data (all other attribute values

or references). Analogously, when an object is read from the database, the deserialization

method in the execution class is used to load it in the backend execution memory context:

heap of the Java Virtual Machine in Java, or the memory space of the Python interpreter

in Python.

Similarly if a method execution (different from makePersistent) requires sending an

object as a return value or parameter from one backend to another (return value or

parameter of an execution request) the source backend uses the serialization method and

transfers the serialized object to the target backend. Then, the target backend deserializes

the object with the deserialization method and loads it in the corresponding execution

memory context. If it is a persistent object only the OID is serialized/deserialized (as a

reference) thus reducing data transfers significantly.

4.2.4 Session Management

In the context of the dClayTool, the credentials are always included within the requests

so that Logic Module authenticates the user for every management operation. On the

contrary, in the context of a user-level application where the execution time is critical, a

session-based authentication mechanism has been implemented in order to authenticate

the user only once for the lifetime of the application. In particular, the application uses a

client library provided with dataClay that offers this method:

dataClay . initSession (user , pass , datasets , datasetStore )

The initSession method submits a request to Logic Module, which validates the user

and checks that he can access the provided datasets from any of his current data contracts

(not expired ones). The user also defines one of these datasets as the dataset used by

default in the session, meaning that all the objects made persistent in the context of this
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Figure 4.8: Session management example where a shared method produces an exception due to bad dataset
permissions from current session.

session will be registered in the indicated dataset (datasetStore). Finally, LM generates a

session identifier (sessionID) which is returned and saved in the client library and, from

then on, it is sent serialized within the data of any upcoming client requests (e.g. along

the parameters of a stub method execution). LM infers the session expiration date by

taking the most restrictive expiration date among the data contracts corresponding to the

datasets specified for the session.

As introduced in section 4.2.2, session identifiers are propagated through all the

subsequent execution requests concerned along a workflow. An application that executes

a method on an object stored in dataset Dset1, which eventually calls a second method on

an object stored in dataset Dset2 ; sends its session information traversing all concerned

data service nodes along the workflow. Therefore, as illustrated in figure 4.8, it might

happen that the session has no permissions on Dset2 so it will not be able to finalize

its workflow since the second method would fail accessing objects in Dset2 (raising an

exception that can be handled as exposed in section 4.2.10). In this way, data is always

protected regardless the permissions on schemas defined by current model contracts.

4.2.5 Check accessibility

The propagation of the session along the overall execution of any method request ensures

that data access policies are never compromised. However, as exposed in section 1.2.3,

referential constraints, derived attributes and user-defined active behaviors such as triggers

and materialized views; require special attention in order to maintain data integrity

involving objects from different datasets with potentially different access permissions for

each consumer.
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As introduced in section 3.3, the solution entails that the system provides the proper

mechanism to allow schema developers to decide whether to ensure data integrity or not.

In this regard, the proposed solution is based on the encapsulation through methods offered

by the OO data model in conjunction with a particular system functionality that takes

current data contracts into account.

For better understanding, an example is proposed based on previous

Company-Employee-Car schema. Now, an object Car1 of class Car has a reference to

an object Employee1 of class Employee if Employee1 is using Car1. Assuming that Car1

belongs to dataset D1 and Employee1 belongs to dataset D2, then a user with access

permissions to D1 and D2 is enabled to navigate through the reference and eventually

produce execution requests on object Employee1. On the contrary, another user with no

access to D2 cannot access Employee1 thus cannot produce execution requests on that

object. However, what about the reference?

In this case, the reference is actually an attribute in class Car, e.g. attribute usedBy

of type Employee. In this case, given the encapsulation through methods, what is actually

provided is a getter method such as getUsedBy() accessible through stub or execution

classes and returning the reference to corresponding employee object. Therefore, to

maintain data integrity is required a mechanism to check the current session before trying

to access the pointed object. In dataClay, this is provided as a special method so-called

isAccessible(), which is offered from the global class DataClayObject (like makePersistent)

and takes the current session into account as any other method. In the example, the

getUsedBy method would call usedBy.isAccessible() before returning the reference, and

the Data Service backend executing the action would check the object metadata with the

OID to indicate whether the current session has proper permissions to access the employee

object or not. In this way, the schema developer might decide to return a null value, or

a reference to an empty Employee with no information, throwing an exception, etc. In

short, the developer chooses exactly how to maintain data integrity along his schema.

In case that object Employee1 has been removed from the system, the reference is no

longer valid, and isAccessible method will throw an exception that can be handled using a

try-catch block. The developer has full control in this case, and can decide to set reference

to null the first time getUsedBy is executed after the employee object is deleted.

In view of the above, the whole solution can be analogously applied for derived

attributes, since developers enclose the algorithm to compute the derived value of the
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Figure 4.9: Impersonation example. Application is enabled to execute getCars() through getEmployees()
although having no model contract for Employee class.

attribute on its getter method. Therefore, they can also decide what to return depending

on the accessibility of the objects involved according to consumers’ sessions.

This solution, in conjunction with the proposal for active behaviors explained in section

4.3, materializes the contribution C2.

4.2.6 Impersonation

A particular case of schema sharing is that users might code any class method on the basis

of any of their accessible operations, either from their own classes or from their current

model contracts with other users. Figure 4.9 (based on figure 4.8) illustrates a case for

Company-Employee-Car schema presented in previous sections, and assumes that Alice

has coded Car class and shares it with Bob and Carol. Then Bob codes Company and

Employee classes but only shares Company with Carol. In this context, Carol has no

access to Employee class, but with the model contracts with Bob and Alice she should be

able to execute method getCars() although internally it uses Emloyee class.

To this end, dataClay implements impersonation on the execution of class methods.

Given that data access is eventually protected as exposed in sections 4.2.4 and 4.2.5,

dataClay allows Carol’s application to use any of her accessible methods (first nesting

level). The application is enabled to execute getCars() and, from then on, it will remain

agnostic of any of the nested inner calls. That is, getCars() is executed as Bob programmed

it, with the particularity that Carol’s session identifier is the one used along all the workflow

levels. Therefore, if Carol does not have a data contract for Dset2, access to car objects

will be forbidden regardless of whether Bob has access to them or not.
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4.2.7 Interoperability

Interoperability between different languages further improves the materialization of the

contributions C1 and C3 by adding an extra layer of schema and data sharing between

the programming languages supported.

With the abstraction of the conceptual schema, dataClay allows to retrieve stub

classes in any of the supported languages regardless of the language used to code their

corresponding registered classes. This means that, for instance, a class implemented in

Python, as well as its existing objects, can be used from a Java application, and vice versa

in transparent way to the programmer.

In previous example, let us assume that the user who registered the conceptual schema

coded the classes in Java, registered them, and created an interface of Company class to

offer the method getEmployees() through a model contract.

Its beneficiary codes AppGetCompanyEmployees either in Java or in Python by

previously downloading the Company stub class in the required language. The stub

instance myCompany of Company class is accessed via getByAlias method, and the

application will access it as a Java object or Python object, so that getEmployees() is

accessible in the same way because internally the string array of Employees’ names will

be deserialized taking the language into account. This is plausible because string arrays

are one of the types supported to be serialized and sent from the Java execution class of

the DS backend (where myCompany object is actually located) to be deserialized in the

Python stub class of Company for the application.

Beyond string arrays stated in the previous example, dataClay currently supports

the translation between any basic type (integer, boolean, float, etc.), arrays of basic

types, and equivalent built-in types in both languages (e.g. LinkedList), and user-defined

classes. However, other complex types with a non-straightforward equivalence (e.g.

ConcurrentLinkedQueue) cannot be converted from one language to the other in current

implementation. Consequently, the retrievable stub methods for a language different than

that of the corresponding class, are those having compatible parameters and return values.

As described in section 4.1.4, stub methods are provided with one of the available

implementations for local execution (i.e. for method calls made while the object is not

persistent). This means that, in addition to serialization of parameters and return values,

another issue to be faced is code translation. Today, this is a work-in-progress feature,

so stub classes generated in a language different than the original class do not contain
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implementations for their methods. Consequently, these stub classes cannot be used

to create local instances but to refer to already persistent objects. However, dataClay

provides an intuitive way to persist new objects from these stub classes. In particular,

these stub classes are supplied with a customized implementation of the constructors that

produce a remote execute request for the original constructor and immediately after a

makePersistent call is submitted to persist the object. From this moment, the object can

be accessed as any other persistent object with the only limitations about serialization

compatibility commented before.

4.2.8 Concurrent execution

It might be the case that simultaneous execution requests are targeting the same object

(e.g. from different user level applications). In this context, dataClay allows concurrent

object access as in a regular multi-threaded application. That is, dataClay does not force

any locking or transactional mechanism, but the schema developers are allowed to use any

built-in mechanisms of the programming language to fulfill their concurrency requirements.

For instance, in Java, a user might register a class using the ReentrantLock built-in type to

force a reentrant mutual exclusion behavior on a particular piece of code within a method;

and in Python, the threading module of the standard library offers analogous mechanisms

to control concurrent execution. This prevents users from having to pay the penalty of

concurrency control in those cases where it is not required by their applications.

4.2.9 Memory swapping

There are some situations where a method requires an amount of memory that exceeds the

current available quantity. For instance, the execution of AppInsertCompanyData (figure

4.6) for Wal-Mart Stores (with 2,200,000 employees in 2016), could incur an OutOfMemory

exception produced from the JVM due to the excessive amount of objects inserted in the

employees linked list.

This problem is particularly prevalent in a shared environment like dataClay, where

not only singular methods might require an undue amount of memory but the execution

of too many methods concurrently might surpass it. Furthermore, the intervention of

the language Garbage Collector (GC), already described in section 4.2.2, cannot help in

this situation since indeed the language GC cannot collect anything at all in this case.

Therefore, it can be said that this is an irresolvable problem that can occur at any moment
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when required data does not fit in memory.

However, dataClay helps to mitigate this inconvenience in two different ways.

First, dataClay provides every object instantiating an execution class with the flag

isLoaded that determines whether the object is actually in memory or not. This means

that any particular instance of an execution class in the memory space of a DS backend,

might or might not contain the actual data represented by this object. The object is

actually loaded when it is accessed for the first time.

On the other hand, dataClay provides so-called proxy references that enable users to

define their classes with internal structures that can be swapped to storage by the language

GC in case of memory pressure.

For instance, assuming that previously presented application AppInsertCompanyData

is turned into a method of a registered class, the collection of employees could be split

into a collection of chunks, having a manageable number of employees per chunk. In this

case, the programmer would define a maximum size per chunk, thus in case a new chunk

is required to add an employee not fitting on existing ones, the collection would create it

and register it as a proxy reference. The difference in this case is that the programmer

uses a special method called newProxy instead of makePersistent. This newProxy method

creates a proxy object on behalf of the actual chunk, making the collection to actually

point to these proxy objects instead of chunks. These proxy objects only contain the OID

of the represented chunks, but no memory references to chunks. Therefore, in case the

language GC is triggered, chunks and their contained employees can be garbage collected

(and removed from memory) because the collection object (and anything else) is not

referring to them. When the collection object accesses any of the proxy objects, the

execution environment in the Data Service node will check if the OID corresponding to

its represented object, i.e. a chunk in this case, is present in the cache to actually access

it. If this is not the case, the chunk is then loaded from the underlying storage.

4.2.10 Exception handling

One important feature of today Object Oriented programming languages is exception

handling, a process of responding to the occurrence of anomalous or exceptional conditions

requiring special treatment. Exception handling is provided by specialized programming

language constructs that save the current state of execution in a predefined place and

switch the execution to a specific subroutine known as an exception handler. The exception
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Figure 4.10: Exception handling - call stack and exception propagation

handler might be defined in the current method that raised the exception, or in any

previous method in the call stack. This means that the exception is actually propagated

until the runtime system finds a method of the call stack that contains a block of code

that can handle the exception (typically a catch block).

Figure 4.10 illustrates an example of exception handling. An application starts its

execution from the main method and produces three consecutive nested calls to different

methods. The first method contains an exception handler, the second method does not,

and the third method throws the exception. When the error is produced and the exception

is thrown, the runtime system searches the stack call for the exception handler, forwarding

the exception in the second method to eventually handle it in the first method.

Although in dataClay the runtime system is distributed along the DS backends,

exception handling is currently supported for the Java programming language (Python

exceptions are not supported yet). Developers can register Java classes with methods that

throw exceptions, which can be propagated through the call stack traversing different DS

backends or reaching a user-level application if necessary. That is, following the previous

example, if the method with the exception handler started in a DS backend different than

the one processing the method that throws the exception, this would be propagated from

the latter to the former through any DS backend in the middle (e.g. the second method,

which forwards the exception, is executed in another backend different than previous

two). In the same way, if the exception handler is located in a method coded within the

application the exception is also propagated up to this method.

To carry out this undertaking, current version of dataClay falls back on the Java
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serialization mechanism which is implemented by the Java Exception class (i.e. Exception

class implements the Serializable interface). Therefore, the exception can be forwarded

externally by serializing and deserializing it properly to sent it through DS backends or

up to the user-level application.

4.3 Active Behaviors through ECA subsystem

dataClay implements an event-driven subsystem, so-called ECA subsystem, to support

Event-Condition-Action rules defined by the users. In this way, dataClay provides a

mechanism to define triggers and materialized views, for instance, in the form of derived

collections; which are well-known features in the state of the art (as exposed in sections

2.3.2 and 2.3.3). To begin with, details of the ECA subsystem are explained, and

afterwards the example of section 3.3.3 is revisited to finally explain the solution proposed

for integrity constraints (included in contribution C2).

4.3.1 ECA subsystem

The ECA subsystem consists of a service offered by the Logic Module that registers all the

possible events and conducts the corresponding actions. In the current implementation,

supported events are:

• Time event: a system event that enables the users to register a specific method to

be executed on a certain date.

• New and remove events: events that are produced whenever a new object is created

in or removed from the system.

The Time Event is basically a mechanism that enables the users to schedule a method

to be triggered on a specific date. When the date is reached, methods are executed

regularly by creating a session from the current available contracts of the user that

registered the action. To this end, the client library offers the method:

dClayTool -executeOnDate date namespace class method

With respect to class events, every user class registered in the system exposes two

kind of events: NewInstance and RemovedInstance. Given a certain class, NewInstance

occurs when a persistent object of such a class is stored in the system. Analogously,

RemovedInstance is produced when a certain persistent object is deleted from dataClay.



85 Chapter 4 dataClay: design and technical details

public class RedCars {
// subscriptions
public static ECANewInstance carNewInstance =

new ECANewInstance (Car.class , isRedCar , addCar );
public static ECARemovedInstance carRemovedInstance =

new ECARemovedInstance (Car.class , isRedCar , removeCar );

public Set <Car > redCars ; // collection of cars
public RedCars () { // constructor

redCars = new HashSet <Car >();
}
// static condition checker executed on class object
public static boolean isRedCar (Car carRef ) {

return carReg . getColor () == "red";
}
public void addCar (Car carRef ) {

if ( carRef . isAccessible ()) {
redCars .add( carRef );

}
}
public void removeCar (Car carRef ) {

redCars . remove ( carRef );
}

}

Figure 4.11: RedCars class with subscriptions to NewInstance and RemovedInstance events of class Car.

In order to subscribe a class to any of these events exposed by any other class, dataClay

offers two special class types that are used to define static attributes: ECANewInstance and

ECARemovedInstance. These types are translated to subscriptions in the ECA subsystem

when the class is registered in the Logic Module.

4.3.2 ECA example and integrity

Following the example in figure 3.2, RedCars class would be coded as illustrated in figure

4.11, having one static attribute per type: carNewInstance and carRemovedInstance.

These attributes are statically initialized to indicate the methods to be executed as the

condition checker, which is the same in both cases: isRedCar ; and as the actions, which

are addCar and removeCar accordingly.

Once the class has been registered, whenever an object is stored or removed from the

system not only the object metadata is updated but also the ECA subsystem initiates

the required notification processes. In particular, the ECA subsystem checks the recorded

subscriptions and notifies the event to the corresponding classes offering the reference to

the source object that produced the event. Following the example of figure 3.2, the ECA

subsystem would notify RedCars of the creation of both the red car carR and the green

car carG.
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Specifically, both notifications would start with special execution requests to the

condition checker defined in the subscriptions, i.e. isRedCar, passing the reference to

source object as the parameter, carR and carG respectively. This execution request

is special for two reasons. Firstly, because it does not require the information of any

particular persistent object, thus it is defined as a static class method that can be executed

just loading the corresponding class (i.e. targeting the class object). Secondly, because

in case that this static condition checker is resolved to true (e.g. isRedCar(carR)), a

set of regular execution requests to the defined actions (e.g. addCar) are then triggered

targeting the objects instancing the subscribed class.

In particular, the condition checker method is forced to be a static class method and

the ECA subsystem chooses a random DS backend to execute it, since classes are deployed

to all DS backends. The selected DS backend tailors the subsequent action methods in

case the condition checker returns a true value. Therefore in this case, the DS backend

produces local and remote execution requests depending on the locations of the objects

instancing the subscribed class (these are regular requests as those described in 4.2.2).

Resuming the example, the DS backend would manage the special execution request

for isRedCar(carR) and isRedCar(carG). In the former case, where condition checker is

resolved to true, regular execution requests will be submitted to objects of class RedCars

to perform the action addCar(carR). That is, more than one object might be instancing

RedCars class for different purposes, thus all them must be notified to execute the defined

action of the ECA rule.

For security reasons, the condition checker can only perform getter actions on the

object that produced the event, since it is executed globally only once to decide whether

the action has to be performed or not. On the contrary, the action method is executed

targeting every instance of RedCars thus can perform any programmable action.

Therefore action methods require a session, but they have not been registered by the

executor as Time Events. In this context, it is decided that the session applied for the

action method is defined by the contracts of the owner of the targeted object. That is,

once a user creates an instance of RedCars, his particular contracts are considered for

subsequent action methods produced on such an instance.

With regard to data integrity, this enables an analogous behavior as the one defined

in section 4.2.5, which completes the materialization of contribution C2.
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4.4 Summary

This chapter describes the design and implementation details of dataClay that are required

to sustain and validate the logics behind contributions C1 and C2, as well as exposing

the core concepts for the contribution C3 to be afterwards evaluated in chapter 5.

To begin with, the main dataClay components are introduced: user-level libraries, the

dClayTool the Logic Module and the Data Service. User-level libraries in conjunction

with stub classes and the dClayTool are intended for communicate applications with the

system and for administration tasks. Logic Module handles object metadata such as object

locations and dataset permissions defined by data contracts, as well as namespaces and

information of user-defined schemas (classes) with their associated model contracts for

stub generation. Last but not least, the Data Service is a distributed object store with

the proper execution environment for near-data processing.

With a global picture of dataClay essentials, so-called parceled control is detailed as

the solution proposed in dataClay for the decentralization of the schema administration,

which has been identified as a mandatory requirement for a multi-provider data store.

For the sake of clarity, the dClayTool serves to illustrate the management operations

available for the users to register their schemas and datasets, along with the contracts and

permissions to grant other users to use and access them. Along this section, the logics

behind contribution C1 are also pinpointed through so-called enrichments, which are used

to extend any accessible schema with new attributes and methods.

Thereafter, the chapter describes all the implementation details necessary to

understand contributions C2 and C3.

Contribution C2 is sustained by means of the session-based mechanisms and

accessibility checking. Thanks to data encapsulation through class methods in conjunction

with accessibility constraints to check which is the current executing session, enable

providers to determine the actual behavior of their class methods depending on the

particular visibility scope and permissions of the current executing session. Therefore,

referential constraints, derived attributes or active behaviors (presented through dataClay

ECA subsystem) become fully supported as it is shown with several examples and/or use

cases.

In respect of contribution C3, this chapter further details the execution environment

of dataClay describing the main mechanisms behind the (distributed) Data Service:
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persistent data generation, execution request handling and object serialization, class

loading for data processing (execution classes), management of concurrent execution

requests, language interoperability, etc. With all that, the integration of the multi-provider

data model of dataClay with a parallel programming model becomes feasible and it only

requires its evaluation with a particular example entirely exposed in the next chapter.



Chapter 5

Performance evaluation

This chapter exposes different performance analyses to evaluate dataClay as well as the

feasibility of the contributions proposed in this thesis, especially contribution C3.

It is worth noting that contribution C2 has been left out of the scope of this

chapter since data integrity constraints are coded within class methods as part of their

behavior, which makes this contribution to be not provable or measurable in terms of

any performance metric or comparison. In compensation, previous chapters illustrated

different examples through the design and implementation details of the corresponding

dataClay features, such as derived attributes or active behaviors with ECA subsystem.

Analogously, contribution C1 is also presented followed with examples such as data

integration use cases, but in this case there is a possible impact on performance that

can be evaluated by measuring the overhead in arbitrary class growth due to enrichments.

Furthermore, it is also remarkable that the iterative methodology used in this thesis

applies to the development of dataClay, including all the functionality and features

that support all the proposed contributions. In this sense, an extensive battery of

approximately 1000 tests was implemented, including: unit tests, functional tests,

integration tests and code coverage analysis. All tests are daily executed whenever the

code changes.

Taking previous considerations into account, the following sections are then focused

on:

• Validating that the mechanisms implemented to fulfill the defined requirements

introduce tolerable or negligible overheads. This study is conducted by means of

the Yahoo Cloud Serving Benchmark (YCSB [22]), a well-known benchmark in
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recent literature [76] [77] [78] that allowed to compare dataClay with popular NoSQL

solutions in terms of latencies and throughput.

• Evaluating the possible effects of schema enrichments using the same benchmark,

thus validating the contribution C1. This study has been also conducted with YCSB

using several implementations of the same schema each of them comprising different

amount of enrichments.

• Validating the contribution C3 by means of the integration of dataClay with the

parallel programming model offered by the framework COMP Superscalar (COMPSs

[74]), through the performance analyses of different data-intensive applications.

5.1 YCSB benchmark

This section proves that, despite the novel features presented along the thesis, dataClay

can be compared in terms of I/O performance with other trendy databases. In the first

place, a comparison between dataClay, Cassandra [34] (version 2) and MongoDB [35]

(version 3) is shown, both in terms of throughput (operations per second) and latencies

when performing read and update operations. Cassandra and MongoDB were chosen

because nowadays they are two of the topmost popular NoSQL databases [79] and have

become key technologies to resolve common storage issues in Big Data scenarios [80] [81].

The last part of this section presents an analysis on the potential overhead produced by

enrichments, a key dataClay feature for effective data sharing.

5.1.1 Methodology

The described performance studies are conducted with YCSB, that allows to evaluate and

compare DBMSs both in throughput (operations per second) and latencies when resolving

common CRUD (create/insert, read, update, delete) requests. The kernel of YCSB has

a framework coded in Java with a workload generator that creates the test workload and

a set of workload scenarios. YCSB assumes that every DBMS to be tested exposes a

table where each record is represented by one string field as the primary key and a set

of byte-array fields (values). The workloads of YCSB are characterized by the following

main options: number of records (for the table), number of operations (to be executed on

records), percentage of operations of each type (read, update, etc.) and access distribution

(zipfian, uniform, etc.).
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Once a workload is defined, YCSB launches a multi-threaded workload executor that

calls the operations to the database following the workload specification with equal

load-balancing between the threads. To this end, the workload executor relies on an

abstract class called DB that defines a set of methods to be implemented by specific

driver classes, having one driver class per database, i.e. each driver overrides DB methods

with its database-dependent implementation.

In the case of Cassandra and MongoDB, YCSB already provides the corresponding

drivers to execute the benchmark. Analogously, a driver for dataClay has been

implemented based on the source code of previous two. In all cases, every 10 seconds,

YCSB outputs stats on global throughput in operations/second (aggregating throughputs

from all threads) and the latency per operation in µseconds.

The tests has been executed in a cluster of 4 nodes interconnected with a 10-Gbit

Ethernet switch (0.3 milliseconds RTT) and each node equipped with 16 Intel Xeon

processors with 24GB of DDR3 RAM. One node was dedicated for the client running

the YCSB workload executor, and three nodes for the database services (i.e. 3 nodes for

distributing the records of the table) to deploy a distributed environment with all the

different actors for each DBMSs, in dataClay: Logic Module (LM) and 3 Data Service

(DS) backends (LM sharing a node with one DS backend); in MongoDB: 1 config server,

and 3 router+shard servers (config server is in a shared node); and in Cassandra: 1 seed

and 2 non-seed nodes. In the case of dataClay the internal level representation in the DS

backends uses the PostgreSQL handler, i.e. objects are eventually stored in an underlying

PostgreSQL database. Given that YCSB uses only one node for the client-side, spreading

data in more than 3 nodes did not produce any significant effect in the performance since

the amount of concurrent requests is limited.

Two main workloads were specified to analyze the performance outcome in basic data

I/O operations: workload WR and workload WU. WR is based on workloadC of the

benchmark, focused on read operations. In contrast,WU only performs update operations.

Both workloads are configured to execute 1,000,000 operations on a distributed table

of 1,000,000 records, and each record with 1,000 bytes in size distributed in 10 fields.

The values in each field are random strings of ASCII characters, 100 bytes each. The

workload executor uses up to 16 threads (number of CPUs) and all threads execute the

same amount of operations, thus the evaluated cases are: 1 single thread executing 1M

operations (1*1M ), 2 threads running 500K operations (2*500K ), 4 threads with 250K
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Figure 5.1: Results of WR and WU workloads. In bars, throughput in thousands of ops/sec (left axis); in
pointed lines, latencies in milliseconds (right axis). X-axis shows #threads * #ops per thread of the evaluated
subcases.

operations each (4*250K ), 8 threads doing 125K (8*125K ), and 16 threads performing

62,500 each (16*62,5K ).

Regarding the access distribution, Zipfian is commonly used [82] since it represents

a realistic behavior with some records being more popular than others. It is the default

distribution in YCSB and the one used for the executed tests.

5.1.2 Comparison with NoSQL databases

YCSB binding for Cassandra assumes that there already exists a table (which is created

using CQL) on a specific keyspace containing 11 varchar fields, one for the primary key

and the other for the values. In the case of MongoDB, records are embodied in BSON

documents grouped in a collection that represents the table; each document is identified

by the key field and is filled with 10 byte-array entries for the values. In dataClay, every

record is an object instancing a user-defined class with 10 byte[] attributes for the values,

and the key field is stored as the object alias.

The results obtained for workloads WR and WU are presented in figure 5.1 showing

throughputs and latencies for all the cases stated in previous subsection.

In the case of read-only workload WR, all DBMSs present a linear scalability and

dataClay achieves between 33% and 17% better throughput than Cassandra, but performs

between 10% worse than MongoDB. This is also reflected in latencies, where MongoDB

keeps values between 600 and 800 µseconds, dataClay between 700 and 900, while

Cassandra achieves latencies around 1 millisecond. It is worth mentioning that early
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results on Cassandra were similar to dataClay and MongoDB when using cassandra-10

client binding of YCSB, but it turned out that Thrift API used in this binding was

deprecated and cassandra2-cql must be used instead (CQL API), which obtains the

presented results. Anyhow, the maximum performance is obtained in dataClay and

MongoDB with variations produced due to differences in serialization (different ways to

represent data) and communication protocols.

On the other hand, in update-only workload WU, MongoDB achieves best results in

the single thread execution but tends to increase its latencies and gets stalled when the

amount of threads is greater than 4. This is due to reader-writer locks used in MongoDB,

which allow concurrent readers accessing to a collection of documents, but force exclusive

access in write operations. Consequently, zipfian distribution, which makes some objects or

documents particularly popular, tends to penalize MongoDB. On the contrary, Cassandra

and dataClay achieve similar results outperforming MongoDB when using 4 to 16 threads,

and present again an almost linear scalability. In the case of dataClay, this is a consequence

of having no implicit control or locking for concurrent accesses to objects (as explained in

section 4.2.8). In Cassandra, this is due to its eventual consistency in transactions and

concurrency granularity at row level, and also because Cassandra upserts (operation for

insert or update) do not need to read rows before updating them. Therefore, Cassandra

ends up obtaining results for WU 25% better than WR.

5.1.3 Enrichment overhead

One of the key features of dataClay is the possibility to enrich data models, and thus it is

important to evaluate the overhead of using such mechanisms. Especially because many

enrichments may be performed without the data user being aware of them.

Figure 5.2 compares the original dataClay scenario presented in previous results with

other scenarios based on enrichments. In particular, the class for record objects is now

registered empty and enriched afterwards with ten byte-array attributes. Enrichments

can be applied in several steps until the final class represents the record schema. In this

regard, figure shows the cases for one (Enriched1 ), two (Enriched2 ) and five (Enriched5 )

enrichment steps. Thus, Enriched1 means that a single class extending from the record

class has been used to specify all missing 10 byte-array attributes. Enriched2 means that

the record class has been enriched first with 5 byte-array attributes, and afterwards with

the other 5. Thus Enriched5 means that the record class has been enriched 5 times with
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Figure 5.2: dataClay with and without enrichments for WR (left) and WU (right) workloads. Bars represent
the ratio of the throughput respect to the original dataClay execution (left axis), lines represent the ratio of the
latencies (right axis). X-axis shows #threads * #ops per thread of the evaluated subcases.

2 attributes in each case.

Results show that both the throughput and latencies are almost the same in all the

evaluated cases, which follows that using enrichments incurs no extra penalty and no

matters how many enrichment steps are used to enrich a class. This was the expected

behavior since the execution class resulting after deploying all the enrichments has exactly

the same code as the execution class deployed from the record class registered with all the

attributes from the very beginning.

The only penalty to be considered regarding enrichments is produced when an object

created with a previous version of the class is loaded for the first time with a newer

version of the class containing new attributes. These new attributes must be initialized

to fulfill the new schema, basic type attributes to the corresponding default values and

non-basic types (references) to null. However, the elapsed time to initialize an attribute

(in 1K executions on one of the cluster nodes) is 2.1±0.1 µseconds in Java and 1.1±0.1

µseconds in Python, which are negligible times unless there are hundreds of enrichments

being applied simultaneously.

5.2 COMPSs and dataClay integration

This section shows the results after integrating dataClay with COMP Superscalar.

As introduced in chapter 2), COMPSs is a framework that provides an easy-to-use

programming model for parallel workflows and the runtime to orchestrate their execution.

In COMPSs, the user only needs to define which methods of the application are tasks

that can be executed in parallel, then the runtime conducts the workflow through the

available computing nodes. In this way, COMPSs can execute any conceivable
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parallel application, from embarrassingly parallel MapReduce workflows to the most

complex workflows involving arbitrary levels of parallelism.

COMPSs uses a master-worker model to orchestrate the application tasks at runtime,

considering the dependencies between them by analyzing their parameters and return

values. The master typically runs on a single node (although it can share the node with

a worker), and workers are deployed on the rest of the nodes available for the application

execution. Workers are executed as independent services that remain waiting for input

tasks coming from the master. Every worker is configured to use a set of the available

resources on the node: a certain amount of CPUs, memory and disk, and specific network

interfaces to communicate with the master.

In this context, the master process starts executing the application and whenever

a method task is reached it is scheduled to a worker process which will be in charge

to compute it. COMPSs maps tasks to workers by prioritizing free resources and data

locality. This means that in case there are several free workers (not executing anything at

the moment), the task is scheduled to the one that meets most of the input requirements.

Input requirements can be in-memory objects or files already present in a specific worker

if, for instance, some of the following cases are met:

• Two subsequent tasks executed in the same worker share the same input data, thus

the second task might have them already present in the worker after the master

covered the requirements of the first task.

• Two subsequent tasks are executed in the same worker, the first task producing the

objects required by the second task.

• A task executed in a worker node requires some input data in the form of files that

are already stored in such a worker node.

In order to validate the integration of dataClay with COMPSs, this section shows two

applications where tackling impedance mismatch difficulties and hastening data transfers

are crucial to significantly outperform their execution times. In particular, it is presented

a weak scaling study on the execution of two well-known algorithms implemented in Java:

Wordcount and K-means. Both applications are tailored to take the maximum advantage

of COMPSs, and the obtained results are compared in terms of elapsed times to those

produced when configuring COMPSs to use dataClay as the underlying data store. That

is, when configured to use dataClay, COMPSs handle data as persistent objects and derives
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the computation and communications to dataClay DS backends according to the execution

environment exposed in chapter 4.

All the experiments for this COMPSs-dataClay evaluation were performed in

MareNostrum III supercomputer [83] were COMPSs is installed and ready for its usage.

Launched jobs were configured to request up to eight 16-CPU nodes with 32GB of DRAM

each (2GB DRAM per CPU) interconnected with a FDR10 Infiniband network.

Furthermore, certain workloads are also examined in more detail in order to understand

the internal behavior of both applications. To this end, some executions were repeated

configuring COMPSs and dataClay to produce Paraver [84] formatted traces to be

visualized (and shown throughout this section) using the Paraver tool, a performance

analyzer included in the suite CEPBA-Tools currently maintained in the Barcelona

Supercomputing Center. That is, COMPSs and dataClay are already instrumented to

optionally produce Paraver traces.

5.2.1 Wordcount

Wordcount is an embarrassingly parallel algorithm that counts the appearances of all the

different words within a set of files. The application parses the input files splitting their

text lines into words and maintains a data structure to keep one counter per word. The

application ends up producing a final output to present the final counters for each unique

word.

The original application used for COMPSs is implemented as a MapReduce workflow.

The Map stage comprises the parallelization of word counting in a per file basis (one task

per file), and the Reduce stage aggregates all the partial results obtained from the Map

tasks by following a binary tree strategy to combine them all. That is, results are combined

in pairs so that all files processed by a worker are locally merged, then workers work in

pairs to combine their results, and finally the last result (the tree “root”) is sent to the

master (application executor).

When using dataClay, files are no longer necessary. Instead, their contents are mapped

to persistent objects instancing a TextFile class, which represents the text of a file as

a list of strings. Given that texts are represented as objects of a user-defined class,

dataClay allows to define methods for them. Therefore the method Map<String, Integer>

wordCount() is provided from the TextFile class, which is called from COMPSs workers

to compute the result of each text object.
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Figure 5.3: Weak scaling study of the integration of COMPSs with dataClay with the Wordcount application.
Y-axis represents the elapsed times in milliseconds. X-axis shows the number of nodes. Every node processes
16 texts of 256MB each.

Figure 5.3 illustrates the elapsed times (in milliseconds) obtained in Wordcount

evaluation with 1, 2, 4 and 8 nodes. Every node computes 16 files of 256MB each (4GB

per node), achieving a parallelization of 1 file per computing unit, i.e. one COMPSs Map

task per CPU. The Reduce stage is negligible in comparison to the Map stage since texts

have been created with a Lorem Ipsum word generator of 400 words, thus every partial

result (a file word-count) produces a short map of 400 counters. This is intended to focus

the problem on the impedance mismatch issues, whereas next section covers the effects of

data serialization and inter-node communication (with K-means evaluation).

Results show that using dataClay COMPSs is boosted reducing the elapsed time up

to a 43%. This is due to the lack of data transformations since dataClay works directly

with the text stored within a TextFile object. In the regular version of COMPss (i.e.

without dataClay), although files are cached and accessed in parallel (MareNostrum III

uses GPFS [85]) every read operation incurs one I/O system call which makes the difference

with dataClay.

This situation is further illustrated with figure 5.4, which presents two Paraver traces

showing a Wordcount computation conducted by COMPSs for the case of 64 texts

processed in parallel using 4 MareNostrum nodes. The first trace shows the behavior

when the application is programmed on the basis of files, computing one file per COMPSs

worker thread, i.e. one file per CPU. The second trace shows the same workload using

dataClay as the underlying data store, thus processing TextFile objects instead of files,
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Figure 5.4: Traces for the case of Wordcount execution on 64 files with 4 nodes. COMPSs using files first.
COMPSs using dataClay second. Tasks of Map stage in blue. Tasks of Reduce stage in orange.

one per worker thread, i.e. one object per CPU. The horizontal axis shows the total time

of the trace, whereas the vertical axis shows some of the labels corresponding to threads.

Blue boxes represent word-count tasks of the Map stage and its duration (one per text),

whereas orange boxes show the tasks required to compute the Reduce stage.

The second trace is scaled to the same duration as the files-based trace (approximately

10 seconds), thus illustrating the time reduction using dataClay when comparing both

traces, which is also revealed by the differences in the durations of blue word-count tasks.

5.2.2 K-means

K-means clustering is a method of vector quantization that is popular for cluster analysis

in data mining. The algorithm partitions N observations represented as multi-dimensional

vectors into K clusters, in which each observation belongs to the cluster with the nearest
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mean. These cluster means are also represented as a multi-dimensional vector that serves

as a prototype of the cluster.

A typical implementation of the K-means algorithm [86] uses an iterative approach that

starts defining K random means in the range of the observation values, and recomputes

them in every iteration until it converges up to a certain epsilon value (sum of variances)

which represents the maximum tolerated distances between observations and the final

means. The problem is NP-hard so the number of iterations is limited to a maximum

amount regardless of the epsilon value. In this context, the Map stage of each iteration

performs the computation of all the distances between the N observations (grouped in

fragments to enhance parallelism) and the current selected K means, while Reduce stage

gathers the resulting values and adjusts the K means for the next iteration. At the end

of each iteration the algorithm checks whether the result has already converged or the

maximum number of iterations has been reached. In either case it finishes and returns the

final K means.

Unlike the Wordcount study, K-means study focuses on the problems derived from the

communications produced in the Reduce stage when gathering the partial results obtained

in the Map stage. To this end, instead of parsing files, the K-means tests (with and

without dataClay) start creating a random set of values on behalf of the N observations to

be clustered. These N observations are fragmented into objects of the same size, forcing

the Map stage to comprise one fragment per core (CPU) to best exploit the parallelism.

Fragments are represented as Java objects instancing a Fragment class that contains,

for each observation in the fragment, one double-typed array storing the values of each

dimension.

With COMPSs, the fragments are created directly in the workers so that Map stage is

fully parallelized having one computation task per fragment (i.e. one task per CPU). The

Reduce stage is executed combining all partial results in pairs as a binary tree that starts

from its leaves up to the root. The “root” or final result is then gathered by the master

node to normalize it and start the next iteration (if necessary).

When using dataClay, fragments are represented as persistent objects of the Fragment

stub class and are distributed analogously along the DS backends (there is one DS node

per COMPSs worker). Partial results are also persistent objects to reproduce the same

behavior in the Reduce stage.

Figure 5.5 illustrates the elapsed times (in seconds) of the K-means computation with
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Figure 5.5: Weak scaling study of the integration of COMPSs with dataClay with the K-means application.
Y-axis represents the elapsed times in seconds. X-axis shows the number of nodes. 16 fragments of 12800
100-dimensional vectors are processed per node.

1, 2, 4 and 8 nodes. Every node computes 16 fragments, thus having 16, 32, 64 and 128

fragments respectively. Each fragment represents 12800 different points (observations),

and each point is a 100-dimensional double-typed array, resulting in 10MB per fragment. K

is set to 1000 clusters and the maximum amount of iterations is set to 10. All 10 iterations

are computed since the epsilon value was configured to be extremely low (0.0001), thus

focusing on the serialization problem of the Reduce tasks of every iteration.

The impact of inter-node communications is revealed considering the bad scalability

shown in the results. Unlike Wordcount application, K-means requires transferring a larger

amount of data between nodes for the Reduce stage (which in addition is repeated 10

times, once per iteration). However, results show that thanks to serialization mechanisms

provided by dataClay through stub/execution classes, it is possible to outperform Java

default serialization techniques used in the original COMPSs to transfer the partial results.

The stub classes resulting from registered classes analyze class attributes to create a

customized serialization of the objects, whereas Java serialization uses reflection techniques

that penalizes the Reduce stage resolution. For this reason, when only one node is used

the difference is almost irrelevant since no communications (and thus, no serialization)

are actually performed, but on the contrary, when 2, 4 or 8 nodes are involved in the

computation dataClay helps COMPSs to boost its performance with an improvement of

up to a 41%.
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Figure 5.6: Traces for the case of K-means execution on 64 fragments with 4 nodes. COMPSs not using
dataClay first. COMPSs using dataClay second. Tasks of Map stage in blue. Tasks of Reduce stage in orange.
X-axis shows the execution time in seconds. Y-axis shows thread ids.

These results are further illustrated with Paraver traces. In the first place, figure 5.6

shows the 10 iterations for the K-means execution for the case of 64 fragments processed

with 4 MareNostrum nodes. The first trace shows the behavior when fragments are

distributed along the COMPSs workers as regular Java objects (i.e. not persistent). The

second trace shows the behavior when fragments are persistent objects processed within

dataClay. The horizontal axis shows the total time of the trace, whereas the vertical axis

shows some of the labels corresponding to threads. Blue boxes represent clustering tasks

of the Map stage and its duration (one per text), whereas orange boxes show the tasks

required to compute the Reduce stage.

The second trace is scaled to the same duration as the first trace, thus revealing the

reduction of time commented before. However, these traces show that tasks look longer

when using dataClay. Indeed, using Paraver it can be determined that the average time

to compute a blue clustering task of the Map stage within dataClay is about 116 seconds,
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Figure 5.7: 2 fragments sample processed within dataClay. Clustering computation in green. Persistence of
partial results afterwards (orange and brown) with the corresponding communications with the Logic Module
that registers the objects (red). X-axis shows the execution time in seconds. Y-axis shows thread ids.

whereas the same task executed from COMPSs workers using regular Java objects only

requires 12 seconds. Analogously, orange reduce tasks require 26 seconds with dataClay

and only 15 milliseconds without dataClay. Therefore, these differences demand to dig

deeper in order to understand what is really happening.

The difference about an order of magnitude in clustering tasks can be explained by

considering that dataClay performs session and permissions checks as stated in sections 4.2

and 4.2.4, but also because it stores the partial result for the subsequent Reduce stage. To

show this behavior, a basic multi-threaded application was coded to illustrate the internal

behavior of dataClay when executing one of the K-means iterations processing only 2

fragments located in two different DS backends. In particular, figure 5.7 shows a trace

where vertical axis represent client (CL-*), Logic Module (LM-*) and Data Service threads

of both DS backends (DS1,2-*). The most significant fact to be considered here is that,

after the effective computation of the clustering task colored in green (including session

and permission checks), the resulting objects are persisted in the underlying database of

the corresponding DS backend and the metadata is registered to the Logic Module (orange

and brown tasks of Data Service threads, and red tasks of the Logic Module threads).

On the other hand, and back to the main figure 5.6, the significant difference in

the inner tasks of the Reduce stage (colored in orange) is because traces are shown at

application/COMPSs level, thus the required communications in this stage are actually

included in the total time of the tasks. Figure 5.8 illustrates this behavior showing the last

iteration for the case of K-means execution on 64 fragments with 4 nodes. The first trace

illustrates the communications (yellow lines) among the workers needed to perform the

Reduce stage. The second trace is scaled with the same duration as the first trace to see

the impact on the elapsed time, although communication lines cannot be shown since they
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Figure 5.8: Traces of the last iteration for the case of K-means execution on 64 fragments with 4
nodes. COMPSs not using dataClay first, including communication events. COMPSs using dataClay second
(communications are included in reduce tasks). Tasks of Map stage in blue. Tasks of Reduce stage in orange.
X-axis shows the execution time in seconds. Y-axis shows thread ids.

are included in Reduce tasks computed within the dataClay environment. This explains

the different durations of Reduce tasks when using dataClay, short Reduce tasks involve

local partial results whereas long Reduce tasks involve partial results that are located in

different nodes.

When COMPSs is not using dataClay, Paraver reveals that 98% of the elapsed time of

K-means execution is dedicated to communications during the Reduce task as it is shown

by the separation between subsequent iterations in main figure 5.6. On the contrary,

using dataClay the serialization and communication mechanisms drastically reduced the

inter-iteration gaps, compensating the costs of persisting partial results.

It is worth noting that the overhead due to Java serialization and reflection when not

using dataClay could be mitigated if the data model used in the application implemented

the Externalizable interface for all classes involved in data transferring. However, this
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would compel the users to code their own serialization algorithms since Externalizable

interface forces a class to implement serialize and deserialize methods in order to know

how to deal with its object instances. With dataClay this is done transparently for the

user thanks to having classes registered and thus avoiding reflection in both stub and

execution classes.

5.3 Summary

This chapter presents different performance studies focused on the evaluation of dataClay

and some of the contributions proposed in this thesis. Given that dataClay is a novel data

store used to validate and evaluate the feasibility of the contributions proposed in this

thesis, the first study evaluates dataClay in terms of throughput and latency comparing

it with trendy NoSQL databases: MongoDB and Cassandra. To this end, a well-known

benchmark called Yahoo Cloud Serving Benchmark (YCSB) is used to conduct concurrent

execution requests performing basic persistence operations in different scenarios. On the

one hand, in read-only workloads dataClay achieves similar throughputs and latencies to

those obtained by MongoDB, which was the best in this case. On the other hand, in

update-only workload dataClay obtains similar performance to Cassandra’s, which was

the best in this case. In all cases, dataClay shows an almost linear scalability regarding

the number of threads.

Once dataClay has been proven competitive, a second study with YCSB shows that

enrichments (in relation to contribution C1) have no impact on the performance results.

Actually, this was the expected behavior since enrichments are actually deployed as part

of the code of any registered class (i.e. with no special treatment) as explained in previous

chapters.

Finally, this chapter focuses on the contribution C3 exposing the integration of the

particular parallel programming model offered by COMPSs with the object-oriented data

model of dataClay. Specifically, dataClay object-oriented data model is proven successful

to tackle impedance mismatch difficulties, while improving data serialization for inter-node

communications thanks to having the schema registered in the system. On the one hand,

using dataClay instead of files, it is proven that COMPSs can execute a Wordcount

application with up to 43% time reduction; and on the other hand, thanks to dataClay

serialization techniques implicit in the generation of stub and execution classes, it is shown

how COMPSs can be boosted up to a 41% in the K-means computation.
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Conclusions

This thesis addresses the gaps of current data services and database management systems

in the area of data sharing for multi-provider scenarios. In particular, three novel

contributions are proposed for the upcoming data stores aiming to effectively support

inter-player data sharing as well as the efficient processing of data-intensive workflows.

First contribution C1 proposes novel techniques to maximize the flexibility to share

and extend the accessible schema in such a multi-provider context. Second contribution

C2 defines a mechanism to ensure data integrity constraints within the framework of a

decentralized administration. And last contribution C3 exposes a novel integration of the

application and data models in response to identified drawbacks and opportunities related

to the execution of data-intensive applications.

In order to validate the proposed contributions, this thesis presents a distributed

object-oriented data store, called dataClay, as a proof of concept to show how to fulfill

all the requirements established in section 1.3. dataClay is based on the early ideas of

logical data independence defined in the ANSI/SPARC architecture, but proposes the

decentralization of the administration with the so-called parceled control. Parceled

control is ensured by making data to be encapsulated and accessible only through

methods with explicit granted access. Then, in conjunction with an orthogonal dataset

control through data contracts and a session-based mechanism for the workflow execution,

dataClay enables data providers to fully administrate their data, ensuring data integrity

and deciding how they share it and with who.

In this context, contribution C1 regarding the flexibility to share and extend data

structures and functionality, is fulfilled by enabling the users to register and share their own
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schemas and by allowing their evolution through so-called enrichments. Enrichments

comprise the extension of classes with new attributes, new methods, or even new

implementations of existing methods; and can be applied by any user that is granted access

to the corresponding schemas according to the model contracts defined by the provider.

To further facilitate this flexibility and data integration, data model impersonation enables

the developers to design their class methods based on the scope of their accessible schemas

and without concerning about any underlying functionality required. Although this makes

that applications might implicitly use functionality that is not accessible for them, data

still remains protected through schema-defined data integrity and the independent control

of dataset accessibility reflected in the transparent propagation of session information.

In that connection, however, data integrity has proven to require special attention

in a multi-provider context, where every consumer might have a different vision of the

stored objects, and thus, a different vision of their relationships. In this sense, referential

constraints, derived attributes, or in general any method coded on the basis of accessing

other objects, requires that the system provides the developers with the proper mechanisms

to define a correct behavior considering access permissions of current consumer. With

dataClay, this is proven feasible by means of the encapsulation through methods, the

session propagation and the provided system operations to check data accessibility. In

this way, contribution C2 is validated.

Finally, the contribution C3 is validated through chapters 4 and 5.

To begin with, chapter 4 exposes the technical details of the distributed execution

environment of dataClay including (among other features): a) how dataClay exploits

data locality by taking account of current objects locations, b) how dataClay overcomes

impedance mismatch issues with an Object Oriented data model for data representation,

c) the support of interoperability between two of the most used high-level languages (Java

and Python). In this way, dataClay meets the requirements related to the integration of

application and data models.

Thereafter, chapter 5, starts validating dataClay in terms of throughput and latency

in different scenarios and by comparing it with trendy NoSQL databases: MongoDB

and Cassandra. Results show that in a read-only workload dataClay achieves similar

throughputs and latencies to those obtained by MongoDB, which was the best in this

case. On the other hand, in update-only workload dataClay obtains similar performance

to Cassandra’s, which was the best in this case. In all cases, dataClay shows an almost
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linear scalability regarding the number of threads. With the same benchmark, it is also

shown that enrichments (in relation to contribution C1) have no effect on the performance

results, since they are actually deployed as part of the code of any registered class (i.e.

with no special treatment).

Once dataClay has been proven competitive, the contributionC3 is definitely validated

through the performance evaluation of the integration of dataClay with a parallel

programming model (offered by COMP Superscalar). Specifically, using an OO data

model is proven successful to tackle impedance mismatch difficulties, while improving

data serialization for inter-node communications thanks to having the schema registered

in the system. In particular, using dataClay instead of files, it is proven that COMPSs

can execute a Wordcount application with up to 43% time reduction; and on the other

hand, thanks to dataClay serialization techniques implicit in the generation of stub and

execution classes, it is shown how COMPSs can be boosted up to a 41% in the K-means

computation.

In view of the above, this thesis proves that all the hypothesis formulated in section

1.5 have been satisfied with the proposed contributions and through the design and

implementation of dataClay. Therefore, future data stores for multi-provider ecosystems

should consider these proposals in order to effectively support data sharing, data

integration and efficient data processing, and thus fostering the collaboration among all

the players.
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Future Work

This chapter presents a set of issues that remained out of the scope of this thesis but that

are of vital importance for large-scale data sharing in a multi-provider context. Some of

them are already work-in-progress by the dataClay team, nourishing research lines for the

advent of new theses projects.

7.1 Metadata repository

Large-scale data sharing requires the decentralization of metadata repositories in order

to avoid single points of failure and prevent potential bottlenecks. In dataClay, for

instance, the Logic Module keeps all metadata about objects, sessions, and management

operations related to parceled control. Therefore, although Data Service nodes maintain

local metadata caches to mitigate this problem, a central repository still is an obvious

bottleneck especially when dealing with workflows that create or delete objects constantly.

Different solutions have been proposed to tackle this issue, but still no implementation

has been actually programmed. For instance, a distributed metadata service could be

deployed among all the Data Service nodes. Every Data Service node could be in charge

of the metadata of the objects stored in its database. Metadata could be replicated in

several nodes and/or an eventually consistent replica of the metadata could be kept in the

LM and updated periodically in an asynchronous fashion.

Object metadata could also be assigned to Data Service nodes by applying a hash

function on the object identifiers (OIDs), thus producing a distributed hash table for

metadata that could be inspired in some of the current implementations available in the

literature [87] [88].
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7.2 Global garbage collector

Working with large volumes of persistent data requires a non-trivial management of storage

resources. In this regard, and analogously to language Garbage Collectors that help in the

memory management of execution environments, an OO data store should implement some

mechanism to detect and remove persistent objects that might be orphaned or isolated.

The problem is that this task might become especially complex in multi-session distributed

environments [89] [90] [91] where objects are interrelated at many levels and coupled to

different data integrity constraints.

For example, in dataClay an object instantiating a collection (of other objects) could

be made persistent and stored in a particular Data Service node possessing some elements.

A particular alias could be assigned to this collection making it retrievable whenever is

needed, but the contained objects might not have tagged with an alias but persisted with

OIDs and referenced from the collection. Afterwards, at any time, this collection object

could be deleted, but what happens with the contained elements?

If they are referenced from any other accessible object, they should not be deleted,

but on the contrary a global dataClay Garbage Collector should be able to detect isolated

objects (i.e. that cannot be accessible in any way) to garbage collect them and eventually

remove them.

However, determining whether an object is being accessible at any time is not trivial.

It is not only a matter of knowing the relationships between objects and whether they

can be directly accessed (e.g. via aliases) or not, but also which of them are referenced

from any execution thread among the runtime environment, or even worse, referenced

from the environment of user-level applications. Therefore, information such as current

opened sessions should be also considered in order to determine whether an object is being

accessible or not, taking account of the accessible datasets, etc.

7.3 Replica management

Replica management is out of the scope of this thesis, but it is a common feature [92]

[93] [94] for any distributed storage where exploiting replication can yield several benefits:

enhancing parallelization with simultaneous access to different replicas of the same object

(horizontal read scaling), fault tolerance in case of net splits or node failures with automatic

forwarding to accessible replicas, etc.
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In a multi-provider environment replica management might be very dependent of the

requirements of each data model. This suggests that dataClay should not provide a specific

replica management implementation but the tools or facilities necessary for the developers

to easily implement replica management coupled to their data models.

For instance, depending on the consistency level, dataClay could support some typical

features like: transactions for atomic updates, implementations of Paxos or Raft protocols

for master-slave replication, a Domain Specific Language (DSL) to define a minimum

number of replicas per object of a class or how they should be distributed, etc.

Nevertheless, replication could also be done automatically considering the current

status of the system and/or the data patterns (e.g. learned from the kind of prefetching

service stated before). In this sense, it could also be possible to apply clustering techniques

to define groups of objects that could be replicated together depending on such patterns.

7.4 Iterators

In OO programming, the iterator pattern [95] is a well-known design pattern in which a

special object, the iterator, is used to traverse a container getting access to its elements

in a particular order and without exposing its underlying representation.

A smart usage of iterators in a distributed environment should enhance parallelism

opportunities on certain executions. For instance, an application could iterate through the

elements of a collection considering their actual location among the storage nodes. To this

end, it is necessary that the data store provides developers with the required mechanisms

to implement collections and iterator patterns enabled to work with the distributed data.

Furthermore, these mechanisms should be also compliant with the language native

iterators, i.e. “iterator-like” objects in Python and Java classes implementing Iterator

interface.

7.5 ECA subsystem

Event-driven architectures are of interest for the integration of execution environments

with data stores, allowing active behaviors for non-interactive (or autonomous)

functionality.

However, dealing with event-driven subsystems for large-scale data sharing requires

special attention. For instance, current implementation of dataClay only supports two
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kind of events at object persistence level: NewInstance and RemovedInstance. However,

what if UpdatedInstance should be also supported?

For instance, following the examples in section 4.3, RedCars class could track not

only the creation and removal of cars, but also the potential changes of their color.

This means that not only the common create or delete methods (like makePersistent

or deletePersistent) produce events, but also any setter method modifying the current

object state. Consequently, scalable solutions should concern, for instance, about when

an object is considered to be actually updated, e.g. when modifications are propagated to

persistent storage.

Furthermore, scalable solutions should also consider distributing, not only the

execution of condition checkers and actions as dataClay does, but also the event handling

(which in dataClay is centralized through the Logic Module). Probably event management

should be delegated to the backend nodes, for instance, implementing a multicast protocol

to communicate an event produced in one DS backend to the rest of DS backends on the

basis of P2P overlays [96].

7.6 Prefetching and placement

Data prefetching techniques are commonly applied at different levels of the I/O stack [97]

[98] [99] in order to load certain data in advance (i.e. before it is actually requested) by

learning data access patterns in conjunction with certain heuristics that help making the

corresponding decisions.

In this regard, the performance of data-intensive workflows could be drastically

improved by applying data prefetching techniques from the runtime environment. For

instance, in dataClay, pre-loading objects from the underlying storage could take advantage

of I/O bandwidths while preventing time waits due to I/O latencies when objects are

retrieved on demand.

To this end, some mechanisms can be implemented considering the proposed

registration of providers’ schemas in the system.

On the one hand, although it is impossible to foresee the arbitrary code of user-level

applications, knowing the underlying data schema might be useful to infer data patterns

based either on the relationships between the classes or on the code of the registered

methods.

On the other hand, an OO data store might also learn object-access patterns
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dynamically from any method execution processed along the service backends. For

instance, backends could record the order in which objects are accessed to create a

global access pattern base of knowledge. In this way, the system could also provide

the mechanisms to group and reorganize objects among backends to further exploit data

locality.





Chapter 8

Result dissemination

This chapter presents the publications and collaborations related to this thesis, as well as

the ongoing efforts on creating a start-up to exploit dataClay technology.

8.1 Publications

This thesis has three preceding publications and a recent paper under minor review:

J. Martí, A. Queralt, D. Gasull, and T. Cortes. “Living objects: towards flexible big data

sharing.” Journal of Computer Science & Technology. vol. 13. no. 2. pp. 56–63. 2013

J. Martí, D. Gasull, A. Queralt, and T. Cortes. “Towards DaaS 2.0: Enriching Data

Models.” in Proceedings - 2013 IEEE 9th World Congress on Services, SERVICES

2013. pp. 349–355. IEEE. IEEE. jun 2013

A. Queralt, J. Martí, H. Baars, A. Brinkmann, and T. Cortes. “Fusing storage

and computing for the domain of business intelligence and analytics - Research

opportunities.” in Proceedings of the Annual Hawaii International Conference on

System Sciences. vol. 2015-March. pp. 4752–4761. 2015

J. Martí, A. Queralt, D. Gasull, A. Barcelo, J. J. Costa, and T. Cortes. “dataclay: a

distributed data store for effective inter-player data sharing.” Under Minor Review

in Journal of Systems and Software. 2016

The first one presented the concept of object encapsulation through so-called

self-contained objects, i.e. functionality and security policies defined at method-level,

which is the pillar for all the presented contributions. The encapsulation is required for
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effective data sharing and schema evolution in multi-provider context (contributionC1); it

is also required to enable developers to define data integrity constraints on their schemas

according to contribution C2, and the OO data model is the basis of the integration

proposed in contribution C3.

The second one exposed a first version of dataClay focusing on the actual

implementation of self-contained objects and the necessary mechanisms to show how to

actually share data models and to enable 3rd parties to enrich them. Therefore it was

mainly focused on the contribution C1 of this thesis.

The third one proposes a revitalization of ideas from object-oriented databases

applying to Business Intelligence and Analytics (BIA) solutions by using the concept

of self-contained objects.

Last paper (under minor review) exposes dataClay on its most recent version with all

the major concepts presented in this thesis.

8.2 Technology transfer

Nowadays the advisors and the author of this thesis are also working together on the

transfer of dataClay technology from Barcelona Supercomputing Center to a start-up

company that, in case of success, will try to exploit the dataClay platform in the business

world. In order to facilitate this challenge, they started a process to patent the concepts

related to the contributions C1 and C2 of this thesis.

The information of the PCT application is:

Title Accessing data stored in a database system

Inventors Antonio Cortés, Anna Queralt, Jonathan Martí, Daniel Gasull

Applicants Barcelona Supercomputing Center ,

Universitat Politècnica de Catalunya

PCT app number PCT/EP2016/075420

Date of receipt 21 October 2016

Receiving Office European Patent Office

8.3 Collaborations

Severo Ochoa. The Spanish Ministry of Economy and Competitiveness twice awarded

Barcelona Supercomputing Center (BSC) the Severo Ochoa Centers of Excellence
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accreditation in 2011 (grant SEV-2011-00067) and 2015 (grant SEV-2015-0493).

Within this framework, BSC started a project that encourages all of its groups

and departments to cooperate in interdisciplinaryresearch lines. In this project, the

Storage System Research Group (in charge of dataClay) in collaboration with Grid

Computing and Clusters Group (in charge of COMPSs) worked together towards

the integration of COMPSs with dataClay, which is directly connected to the

contribution C3 of this thesis.

Big Storage is an European Training Network (ETN) whose main goal is to train

future data scientists in applying holistic and interdisciplinary approaches for

taking advantage of a data-overwhelmed world. This requires HPC and Cloud

infrastructures with a redefinition of storage architectures underpinning them,

focusing on meeting highly ambitious performance and energy usage objectives. In

this project, dataClay will be focused on the definition of new data prefetching

strategies thanks to having both code and data stored together and pushing the

exploitation of data locality to the limit.

NextGenIO is an European project that aims to define a new I/O stack for next

generation Storage systems. These new standards will take account of new NVRAM

technologies to exploit the access to non-volatile memories, faster than traditional

storage units like hard disks. In this context, dataClay will be positioned to exploit

this persistent layer closer to the application thus achieving better performance

outcomes, which is connected with the contribution C3.

mF2C is an European project starting on January 2017. This project tries to fill the

gaps between the use of Cloud and Fog Computing. In this project, contributions

from the research on dataClay will be the cornerstone to manage the data between

different devices in IoT environments such as smart cities.
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