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Abstract 

This document presents the theoretical background and experimental work made 

to develop and validate a set of experiments based on functional magnetic resonance 

imaging (fMRI). These experiments are aimed to demonstrate that fMRI can be a valuable 

tool to objectivize drug treatment response in Social Anxiety Disorder (SAD) patients. 

Functional MRI is a non-invasive imaging technique which provides localized 

indicators of brain activity. The analysis of fMRI data has recently facilitated neuroscience 

to make a leap forward in the understanding of the human brain. 

Psychiatric clinical research, however, hasn’t fully embraced yet the potential of 

fMRI. In parallel, the societal costs of new psychiatric drug discovery are reaching 

unbearable limits. It has been hypothesized that the addition of fMRI in clinical trials of 

pharmacologic treatments of SAD can provide new biomarkers of treatment response 

which, in the future, shall reduce the temporal and economic burden of drug discovery. 

Five studies are presented in this dissertation in an evolving path towards the validation 

of the hypothesis. 

In study 1, a widely validated state-of-the-art emotional face processing paradigm 

was piloted in a non-clinical sample. Task-related activations were in line with the findings 

previously reported in the literature. However, the results of experiment did not show a 

correlation with symptom severity. An additional exploratory psychophysiological 

interaction analysis revealed that the relationship between two emotion-processing areas 

had a significant correlation with SAD symptom severity. This emphasized the potential 

value of studies based on functional connectivity for our objectives. 

Study 2 explored the reproducibility of connectivity analysis of fMRI data. To do 

so, a brain network was selected and explored with Independent Component Analysis 

(ICA) on data collected from three categorically differentiated paradigms: A resting task, 

a moral dilemma task and in a cognitive-challenging Stroop task. The selected network 

was systematically identified in the three cases, exemplifying the robustness of the 

technique in three extreme cases. 
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Study 3 explores the sensitivity of ICA by analyzing resting-state data acquired 

before and after an experimental induction of sad mood. Multiple regions reflected 

changes in their intranetwork connectivity after sad mood induction. Results were 

validated using a split-half re-analysis and confirmatory seed-based functional 

connectivity measurements. These results support the idea that spatial ICA of fMRI is not 

only reliable, but also a sensitive paradigm.  

Study 4 presents a novel SAD symptom-provoking paradigm that was validated 

on SAD patients and controls. The analysis of this pilot revealed a striking non-linear 

relationship between task activation and social anxiety scores. This non-linear relationship 

is compatible with some of the divergences found in literature regarding the alteration of 

emotional regulation brain areas in SAD. 

Study 5 presents the results of a small placebo-controlled clinical trial using a 

common treatment for SAD (paroxetine) in SAD patients. Subjects underwent the 

emotional face processing, the symptom-provoking and resting state tasks that were 

administered and analyzed following the experience obtained in studies 1 to 4. The 

selected fMRI paradigms and analysis methods showed significant sensitivity to the 

effects of paroxetine treatment on SAD. Treatment effects were identified in areas related 

to the processing of fear stress and anxiety, which are known to be altered in SAD. 

Remarkably, ICA revealed sensitivity to pharmacologically-induced clinical improvement 

in the same areas and direction than the symptom-provocation task. 

Along with the evidences reported in the literature review, the methods and 

results obtained throughout this dissertation provide a proof of concept on the usage of 

fMRI as a biomarker for SAD pharmacologic research.
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1 Introduction 

1.1 Context and motivation 

Anxiety disorders form the group of most common psychiatric disorders. The 

most relevant medical authorities, including the World Health Organization and the 

American Psychiatric Association, recognize a subtype in it named Social Anxiety Disorder 

(SAD) or social phobia (WHO 1992; APA 2000). SAD patients are characterized by fearing 

and avoiding the scrutiny of others that leads them to the avoidance of social situations, 

significantly impairing their life. SAD has been reported to have a lifetime prevalence up 

to 12.1% over the US general population (Ruscio et al. 2008). This bears huge costs to our 

society (François et al. 2010), who calls for new and more effective treatments (Stein & 

Stein 2008). 

Neuropsychopharmacologic research eagerly requires the development of 

research protocols able to objectivize drug effectivity assessment. In some cases, 

biomarkers simplify and accelerate the characterization of patient populations and the 

quantification of the effect of new treatments on their therapeutic targets (Frank & 

Hargreaves 2003). Unfortunately, these are still scarce or with limited effectivity to model 

psychiatric conditions (Macaluso & Preskorn 2012). Due to this lack of biomarkers, 

psychiatry research often has to infer treatment response through self-reports of large 

samples of patients.  

This situation makes translational research difficult in anxiety-related disorders. 

Often, the treatment effect needs to be inferred from behavioral observations of the 

animals under study. These provide standardized and reproducible results, but with 

limited capacity to predict human response to new pharmacological treatments (Cryan & 

Sweeney 2011).  

From the perspective of the pharmacological industry, the lack of biological 

markers adds risks and costs to the assessment of effectivity of new molecules. As a result, 

the pharmacologic industry’s costs are increasing dramatically while the amount of new 

treatments launched has been barely maintained (Trist & Bye 2014).  
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Recent advancements in human functional magnetic resonance imaging and its 

analysis indicate the possibility of is usage in the development of new paradigms for 

psychiatric drug discovery (Nathan et al. 2014). In particular, fMRI has proven able to 

identify activity in emotional processing and anxiety related brain circuits, which are 

known to be altered in SAD (Goldin, Manber, et al. 2009). 

The complex nature of SAD makes difficult the development of biomarkers that 

require to trigger the symptoms consistently across subjects or trials. Techniques based 

on symptom provocation have an interpretation closer to the context of clinical practice, 

and are the most used in SAD. However, biomarkers that directly explore the underlying 

neuropsychological mechanisms may better support drug development in its early 

phases, as they are more compatible with translational research (Cryan & Sweeney 2011) 

and early microdosing studies (Bergström et al. 2003). Extensive neuroscience studies and 

techniques are still to be developed in order to reach the stage in which biomarkers 

become validated and widely accepted for drug discovery in the Social Anxiety Disorder. 

Concurrently to the issues presented, in the research context, there has been a 

growing interest and advancements in the interpretation of fMRI brain signals collected 

while the subject is performing no task (being in resting state). The further development 

of methods able to analyze resting-state fMRI datasets suggests the possibility to study 

treatment response without the need of relying on a full cooperation of the individuals 

under study nor symptom-provoking paradigms. 

Resting state assessments of disease severity biomarkers in SAD patients would 

avoid the variability across subjects or time of the effectivity of symptom-provoking tasks. 

Importantly, it could also be highly compatible with translational research, as resting state 

studies have proven highly translational on animal models (Barks et al. 2015). This enables 

the creation of cross-species biomarkers (Becerra et al. 2013; Grimm et al. 2015) 

A protocol for assessing drug effectivity in SAD using resting state had not been 

published when this thesis was started. Recent publications show similar working lines in 

other labs. As part of this dissertation, and prior to its design and development, it has 

been necessary to explore some pre-requisites such as the expression of SAD in brain 



-3- 

connectivity, the reproducibility, specificity and sensitivity of resting state studies in this 

particular context. After designing the protocol and analysis methods, a pilot study with 

actual patients is presented for its validation. 

1.2 Thesis outline 

This thesis presents the theoretical background and experimental work made to 

explore fMRI-based biomarkers aimed to objectivize drug treatment response in Social 

Anxiety Disorder (SAD) patients. The assessed biomarkers are based on tasks previously 

validated by the scientific community, a task developed during the development of this 

work and an analysis that can be performed while the subject performs no task (resting 

state analysis). Results of the different task types are analyzed as biomarker candidates in 

pilot studies including controls and patients.  

Section 2 introduces the reader into the technical background of fMRI. Section 3 

describes the context of psychiatry, neuroimaging and drug discovery research. Section 4 

sets the hypotheses and objectives of this work along with their conceptual arrangement 

throughout this dissertation. Section 5 shows the initial exploratory experiment aimed to 

validate the imaging technique and to explore the value of connectivity analysis in SAD 

research. Section 6 validates reproducibility and specificity of ICA of fMRI collected in 

resting state, cognitive and emotional tasks. Section 7 shows the results of an exploratory 

experiment aimed to test the sensitivity of resting-state ICA to emotional state changes. 

Section 8 shows the results of an experiment aimed to compare SAD patients and 

controls. Section 9 shows the first results obtained with the described protocol, and 

analyzes them to validate its effectivity. Section 10 contains an ethical review of the 

results obtained during the development of this thesis. Section 11 summarizes the 

conclusions made through this piece of work. 
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2 Introduction to the technological state of the art 

2.1 Physics to technology: From magnetism to brain function maps 

2.1.1 The journey towards Nuclear Magnetic Resonance 

Magnetism is a phenomenon that has been known by mankind for millennia. We 

can find references to magnetism even in Thales of Miletus’ works (VI century BC). 

However, for long time, magnetism remained as a non-understood phenomenon. It was 

not until 1820 when Christian Oersted published a clear relationship between electric 

current and magnetism. Even then, the phenomenon was not mathematically modeled 

until André-Marie Ampère published his seminal works in 1826 (Ampère 1826).  

The accelerated growth of knowledge on the atom and quantum physics of the 

early XX century originated a singular situation in which the Nuclear Magnetic Resonance 

(NMR) phenomenon was described simultaneously by two researchers of distant centers. 

(Bloch 1946; Purcell et al. 1946). A surprised editor of the Physical Review Journal received 

their two groundbreaking papers, describing NMR, within 4 weeks of difference.  

Immediately after, and for almost 4 decades, NMR was considered as a technique 

used to characterize chemical samples. Its adoption was mainly in physics and chemistry 

research. Nonetheless, there are early reports of its application to study histological 

samples (Odeblad & Lindström 1955). 

The physical principle behind NMR is understood through quantic physics: 

Isotopes that contain an unpaired number of protons or neurons – such as hydrogen 1H- 

present a quantic mechanical property named spin. To make a macroscopic mechanical 

analogue, spin behaves as if a small magnet was inside the atom, spinning on its north-

south axis. This magnet can be imagined with some inertial momentum, like a spinning 

top has. In normal conditions, these atomic spins would be randomly oriented, creating a 

null macroscopic magnetization vector. 

However, when an external magnetic field B0 is applied, the spins orient 

themselves either parallel or antiparallel to the magnetic field. Because parallel alignment 
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to B0 is a lower energy state, thus more stable, than antiparallel alignment, an excess of 

nuclei will be aligned towards the parallel state. In conditions compatible with a biologic 

exploration, this excess is very small, on the order of 1 out of 10 million spins. This excess 

is, however, enough to create a measurable macroscopic magnetization vector. 

Spins naturally precess according to the Larmor frequency ω, which is 

proportional to the magnetic field B0 and to the gyromagnetic ratio γ of the nucleus (ω= γ 

·B0). The gyromagnetic ratio of hydrogen is 42.6 MHz/Tesla. Again, in stable conditions, 

precession phases will be incoherent and therefore no macroscopic effect will be 

detectable due to this precession. However, if an electromagnetic signal (at Larmor 

frequency) is applied to the sample, spins will start precessing coherently, creating a 

macroscopic magnetic component perpendicular to B0 that will rotate along direction B0 

and that will briefly remain after we stop applying the electromagnetic signal. As the spin 

returns to its relaxed state, it will release an electromagnetic signal. This is the origin of 

the term magnetic resonance. The macroscopic transversal component of the spin –and 

its decay- can be measured using suitable antennas for the application’s Larmor 

frequency. 

After cessation of the stimulating signal, the transverse magnetization will decay 

exponentially in the process we know as relaxation. This decay will depend on the 

physicochemical surrounding of the nuclei, and therefore vary depending on it. The 

principles of NMR are based on measuring the relaxation times in the longitudinal axis (T1) 

or in the transversal plane (T2 and T2*) to detect the concentration and state of substances 

or tissues.  

The difference between T2 and T2* parameters only relies on how they are 

measured: T2 is measured as the difference between the echo after the (90º) excitation 

pulse and the echo after and 180º refocusing pulse. T2* is measured as the rate of decay 

of the pulse right after the excitation pulse. T2* measurements are more sensitive to local 

magnetic field inhomogeneity, which dephases faster the spins. In an ideally 

homogeneous magnetic field and sample, T2 would be exactly as T2*. In general practice 

T2* << T2, this is also a reason why T2* is widely used in fast imaging sequences. 
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2.1.2 Images based on NMR: Magnetic Resonance Imaging 

Note that, as described before, NMR would not able to discriminate the signal 

from different positions within the sample. This made the technique barely usable in in-

vivo tests until magnetic resonance imaging was developed, using a simple addition: Small 

spatial variations of the field strength were used to spatially encode the Larmor 

frequency, and therefore the collected signal. Receivers also faced the challenge of 

changing from measuring a decaying tone, to processing a broadband signal that needed 

to be explored band by band to record the signal from different spatial locations at once. 

Raymond Vahan Damadian is considered one of the key fathers of NMR imaging 

(MRI) systems. Initially, the system he invented and patented was based on a simple 

execution of NMR spectroscopies run in vivo on patients aiming to detect cancerous tissue 

(Damadian 1971). The usefulness of his invention and its commercial application were 

deeply controversial for years.  

It is not until 1973 when Paul Lauterbur published in Nature the first image 

generated by MRI as the technique is conceived today. For the first time, spatially encoded 

magnetic gradients were being applied on a sample to give its atoms a location-specific 

resonant frequency (Lauterbur 1973). In the following years, Lauterbur’s lab developed 

many technical solutions that are still in use in today’s MRI systems. In parallel, Peter 

Mansfield developed excitation and reconstruction algorithms that would allow retrieving 

images within a timespan that enabled their usage in clinical practice (Mansfield 1977). 

Among them, the Echo Planar Imaging sequence (EPI), which still is widely used today. 

The simultaneous developments of Lauterbur and Mansfield made them eligible to share 

them the 2003 Nobel’s prize of medicine.  

The first commercial MRI systems were placed on the market in the early eighties. 

Most of the early manufacturers (Bruker, EMI) chose to develop systems operating at 

magnetic fields below 0.5 Tesla. A remarkable step forward was made with the 

introduction of the Signa systems that General Electric, together with Advanced NMR 

systems, presented in 1983. These systems operated at a magnetic field of 1.5 Tesla. This 

represented the onset of the era of high field MRI. As it will be presented later, this step 
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was key for the evolution towards functional MRI. Functional MRI of the human brain, as 

we understand it today, is practically considered to be technically feasible only at 1.5 T or 

higher fields.  

2.1.3 Imaging the biophysics of brain function: functional Magnetic Resonance 
Imaging 

Later in the eighties, MRI had become a modern imaging technique, relatively 

accessible in clinical and research environments and opening new windows to 

neuroscience  (Pujol et al. 1988). However, at that time, the technique of reference for 

brain activity imaging was still Positron Emission Tomography (PET).  

The work of Fox and Raichle had showed that, upon activation, the cortical brain 

tissue changed its local Cerebral Blood Flow (CBF) in a proportion much larger that the 

change in its Cerebral Metabolic Rate of Oxygen (CMRO2)  (Fox & Raichle 1986).  This 

effect induces the paradox in which a local increase of brain activity is accompanied by a 

local increase of the fraction of oxygenated blood in the local capillary bed. 

In 1990, Ogawa et al demonstrated the idea that local blood oxygenation could 

be mapped using MRI  (Ogawa & Lee 1990). Ogawa et al modulated cerebral blood flow 

in a rat model using a high-CO2 gas mixture that the animal breathed. The vasodilation 

property of CO2 dramatically increases brain blood flow, while the oxygen metabolic rate 

of the brain could be assumed to remain constant. Therefore, upon breading the CO2, the 

brain blood was more oxygenated, with less presence of deoxyhemoglobin. Ogawa 

observed a significant change in the signal of an MRI technique, based on the 

measurement of T2, which is sensitive to magnetic field heterogeneity. They termed it the 

Blood Oxygenation Level Dependent (BOLD) signal. 

With the findings of an MRI technique sensitive to local blood oxygenation and 

knowing that PET studies pointed that brain activity would be accompanied by a local 

change of oxygenation, the quest for an MRI technique sensitive to brain activity had 

started.  
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 In 1992, two groups published, almost simultaneously, results showing the 

feasibility of techniques able to map BOLD signal in human brains without the need to 

administer any external agent (Kwong et al. 1992; Ogawa et al. 1992). These are 

considered the first successful experiments of functional Magnetic Resonance Imaging 

(fMRI) as we understand it today. The momentum of that period can be exemplified by 

the fact that multiple groups also published successful fMRI results in the following 

months (Frahm et al. 1993; Menon et al. 1993; Blamire et al. 1992; Turner et al. 1993). 

Soon after, the global neuroscientific community was aware that the technique was aware 

of the potential of this technique for clinical and scientific interests (Pujol et al. 1995). 

The BOLD signal detected by fMRI sequences is based in the magnetic properties 

of hemoglobin. Hemoglobin is present in the blood of all vertebrates, with the exception 

of the ice fish family Channichthyidae (di Prisco et al. 2002). When hemoglobin flows 

through the capillary bed and loses its oxygen, it turns into deoxihemoglobin. Magnetic 

properties of hemoglobin and deoxihemoglobin differ categorically (Pauling & Coryell 

1936). The binding of oxygen to the protein’s ferrous nucleus makes hemoglobin to 

behave as diamagnetic and to turn into paramagnetic when it loses this oxygen, becoming 

deoxihemoglobin.  

At MRI’s high magnetic fields, the paramagnetic property of deoxihemoglobin 

introduces an inhomogeneity into its environment’s magnetic field.  This inhomogeneity 

induces a drop in the transverse relaxation time T2* of the hydrogen nuclei of the water 

present in blood. In particular, the blood’s rate of relaxation T2-1 has a quadratic 

dependency of the external magnetic field’s strength and the bloods concentration of 

deoxihemoglobin (Thulborn et al. 1982). 

In contrast to PET studies, fMRI allowed for the first time recording an activity 

indicator of the whole brain tissue every few seconds. Therefore, it allowed creating 3D 

maps of brain activity with an unprecedented combination of spatial and temporal 

precision. Also, in favor against PET, fMRI did not require exposing the subject to any 

contrast agent nor to ionizing radiation. Consequently, the technique was considered as 

non-invasive since its beginning. This extremely facilitated the recruitment of volunteers 
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and approval of experiments avoided many burdensome approvals. Some of the subjects 

of the first experiments were, in fact, young researches that years later became successful 

Neuroimaging authors (Blamire 2012; Uğurbil 2012) . 

With an effective sampling frequency, at that time, around 0.5 Hz, fMRI had 

positioned inbetween the two most accepted neuroimaging techniques of the moment: 

PET (with a temporal resolution in the order of minutes) and EEG (with a temporal 

resolution in the area of milliseconds).  In terms of space resolution, it presented a 

resolution and precision one order of magnitude above PET and EEG. The cost of the 

instruments and its maintenance was similar to a PET setup. However, the fact that 

explorations were noninvasive and that spent no consumables quickly raised the interest 

from the neuroscientific community (Illes et al. 2003). Currently, the rate of usage of fMRI 

continues growing, while PET is in decline (Cumming 2014) despite it has some unmatched 

strengths. See Figure 1 for a graph on the rate of appearance of the keyword “fMRI” in 

title/abstract headers of peer-reviewed articles published per year (2015 volume was 

projected from the run rate at August 2015). 

 

 
Figure 1 Rate of publication of fMRI papers 

Rate of apparition of the keyword fMRI in peer-reviewed articles indexed by the US 
national library of medicine. Quantity indicates yearly amount of articles. 2015 data is 
a projection from rate in august 2015. 
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Currently, fMRI has clearly become the technique of first choice in cognitive 

neuroscience to study brain activity (Rosen & Savoy 2012) in a time-space window 

constrained down to 1 second temporal resolution and 1 mm3 of spatial precision. 

2.1.4 Physiological principles behind fMRI 

As introduced in section 2.1.3, the BOLD contrast was named after the 

observation that focal brain activity generates a local increase of the blood blow that 

exceeds the increase of oxygen tissue the same area. This induces an increased 

oxygenation in the capillary bed of the activated cortex. Some MRI sequences are 

sensitive to these local changes. Therefore, the brain activity detection made with fMRI is 

a deeply indirect approach. The observed BOLD signal is generated by a chain of 

physiologic effects that needs to be fully understood before it is interpreted. Each of the 

mediators can also act as a potential source of confounds for the measurement. This 

section covers the minimum concepts needed to be able to interpret the inferences made 

in this thesis. 

The source of the BOLD effect was originally described as the “uncoupling” of the 

activation-induced changes in local cerebral blood flow (CBF) and in the cerebral 

metabolic rate of oxygen (CMRO2) (Fox & Raichle 1986). However, it soon became clear 

that the relationship between brain activity and these physiologic phenomena needed to 

be clearer understood in order to correctly interpret fMRI results.  

The increase in CMRO2 that accompanies brain activity is related to the increased 

oxidative metabolism of glucose that is triggered by synaptic activity (Erecińska & Dagani 

1990). Neural activity is also known to induce anaerobic glycolysis (Fox et al. 1988), but 

this has a small contribution to the neuron’s ATP supply due to its much smaller yield. The 

relationship between synaptic activity and neuronal energetic metabolism is still partially 

quantified (Ivannikov & Macleod 2013). 

Activity-related changes in local Cerebral Blood Flow (CBF) are still to be precisely 

described, but is widely accepted that hemodynamic regulatory mechanisms are 

independent of substrate depletion nor metabolite buildup (Davis & Hill 1999). The brain’s 
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capillary bed is highly responsive to the changes that neuronal activity introduce in the 

chemical composition of the extracellular fluid. Level of K+ change due to membrane 

potential shifts and are considered the main driver of CBF regulation. Some neurogenic 

regulation of CBF can also occur: The fastigial nucleus of the cerebellum (Iadecola & Reis 

1990) and the basal forebrain (Sato et al. 2001) have been demonstrated to drive changes 

in CBF, which are unrelated to local metabolic rates. 

Generally, CBF regulation is mainly achieved by increasing capillary blood velocity 

rather than by additional capillary recruitment (Keyeux et al. 1995).  However, some 

studies using vasoactive challenges did manage to induce changes in vessel recruitment 

(Hutchinson et al. 2006). These results are key to compare fMRI results obtained with 

different MRI sequences, as they show different sensitivity to the vascular state of the 

tissue (Duong et al. 2003). 

While the CMRO2 changes are immediately tied to neuronal metabolism, CBF is 

related to slower physical changes that need to take place in the vascular bed. These 

changes have lags in the order of magnitude of seconds. Because of their longer sampling 

times, the early PET studies on CBF were not sensitive to these hemodynamics,  but this 

lag became evident since the earliest fMRI results because of the technique’s highest 

temporal resolution (Kwong et al. 1992). The initial approaches for modeling the 

relationship between CMRO2 and the BOLD signal involved modeling it as a linear filter 

(K. J. Friston et al. 1994). Its impulse response would be convolved with the expected 

neuronal activity related to stimulus to predict BOLD signal. Posterior works developed 

more complete –and complex- non-linear models of BOLD hemodynamics (Buxton & 

Frank 1997; Mandeville et al. 1999; Friston et al. 2000). Models like these are used in 

practically every fMRI analysis, although some details of them are still under discussion 

(van Zijl et al. 2012). 

Buxton’s nonlinear “balloon” model (Buxton et al. 1998) along with its posterior 

expansions (Griffeth & Buxton 2011), has been one of the most influencing physiologic 

models to map neuronal activity to its expression in fMRI’s BOLD signal. Buxton’s model 

introduces cerebral blood volume into the equation: Some of the effects identified are 
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not directly related to blood oxygenation changes, but to the temporal evolution of the 

intravascular/extravascular ratio of volume within each acquisition voxel. Capillaries’ 

response to activity displaces extravascular tissue, as they inflate like elastic balloons 

(hence the origin of the model’s name), changing the local cerebral blood volume (CBV). 

In typical BOLD sequences, most of the signal change will be related to the venous fraction 

of the capillary bead, because there is where most of deoxihemoglobin is (the arteriole 

fraction is normally saturated of oxygen). The effects of a CBV change become larger in 

higher magnetic fields, and have an important dependence with sequence settings such 

as Echo Time (TE) (Uludağ et al. 2009).  

The impulse response defined by the model (BOLD signal triggered by a brief 

neuronal activity) incorporates three characteristic phases:  

a) An initial undershoot, when CMRO2 has increased, but the vascular bed has not yet 

responded effectively. The timing of this phase is related to the arteriole’s smooth 

musculature response to neural signaling and to their biomechanical elastic 

properties (Behzadi & Liu 2005).  

b) The increased BOLD signal period, related to the excessive compensation of CBF in 

response to increased CMRO2, which leads to an effective decrease in the Oxigen 

Extraction Fraction (OEF), and therefore an increase in transverse MRI relaxation 

time. 

c) A trailing undershoot, which was originally attributed to slow biomechanical recovery 

of CBV. This effect has been proven to have significant spatial dependence (Yacoub et 

al. 2006). Contrarily, the undershoot has been also attributed to increased post-

activation levels of CMRO2 (Dechent et al. 2011), or to a CBF undershoot (Griffeth et 

al. 2011). The huge discrepancies found across serious studies suggest that this effect 

may be generated by multiple factors. 
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Figure 2 Hemodinamic response function 

Impulse response of the hemodynamic response function, as implemented in SPM5 by 
default. This response function models the BOLD signal response to a “spike” (delta 
function) of neural activity. The convolution of the model of neural activation (typically 
matching the task or stimulus) with this impulse response will allow the generation of 
BOLD activation model to which the observed fMRI signal is tested against. 

 

2.1.5 Functional magnetic resonance imaging sequences 

Going back to the technical description of MRI initiated in section 2.1.1, we can 

summarize saying that magnetic resonance imaging is based in creating in vivo maps –

images- of tissue’s NMR properties. A careful selection of the scanner’s pulse sequence 

settings will define the different weights given to T1, T2 and T2* properties in the MRI 

signal readings. This weighting defines the image contrast, which will allow the sought 

discrimination between different tissues or tissue states in the resulting MRI image. 

Practical implementations of MRI imaging do not simply measure the signal decay 

immediately after the excitation pulse. This would lead to unfeasibly long acquisition 

times. Instead, it uses refocusing pulses generated with the radio frequency (RF) 

generator or with the magnetic gradient coils. The time between the excitation pulse and 

the recovered signal is called echo time (TE). The time between excitation pulses is called 

repetition time (TR). The specific combination of RF pulses and magnetic gradients is what 

we call the fMRI sequence, which highly defines the characteristics of the images 

collected. 
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Gradient-Recalled Echo Planar Imaging (GE-EPI) is by far the most used sequence 

to explore brain activity. GE-EPI quickly took over other early fast imaging sequences such 

as FLASH (Haase et al. 1986), GRASE (Oshio & Feinberg 1991) or PRESTO (Liu et al. 1993). 

However, these sequences are not completely abandoned and remain being found 

advantageous in singular experimental setups (van Gelderen et al. 2012; Zuo et al. 2013; 

Kemper et al. 2015).  

Spin Echo EPI is likely to be the second most widely-used BOLD imaging technique. 

SE-EPI is known to give similar, but lower BOLD signals than GE-EPI at 1.5 Tesla (Bandettini 

et al. 1994). At 3 T scanning, these results are less obvious: They are replicated or 

indicating the opposite direction depending on the brain area (Naganawa et al. 2002). At 

3 T, however, SE-EPI has been reported to suffer less susceptibility artifacts, which are a 

common concern at high fields. SE-EPI is also known to generate a signal more specifically 

driven by the oxygenation of the microvascular bed (weighting down large vessels), 

especially at high fields (Zhao et al. 2006). This makes SE-EPI still a preferable technique 

in certain experimental setups.  

As it is described in the methods section of each individual study, all studies that 

compose this dissertation have been acquired using a single-shot gradient-recalled 

echoplanar imaging sequence (GE-EPI). 

2.1.6 Technical characterization of common fMRI datasets. 

A typical fMRI experiment on a subject generates a four-dimensional set of BOLD 

signal measurements, which can also be interpreted as a (true) 3-D video of BOLD activity 

within the field of view under exploration (typically covering the complete head). 

Spatial resolution 

In all imaging techniques, the spatial resolution obtained from the phenomenon 

under observation depends on two main elements: The sampling matrix (the spatial 

density of sampling points –voxels-) and the sharpness of the sensing technique, which is 

typically characterized by its point spread function (PSF).  
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The PSF is derived from the model of the filter that imaging technique applies 

onto the signal. Typically modelled by a Gaussian convolving kernel and measured by the 

full width at half maximum (FWHM) of its impulse response. For visualization purposes of 

this principle, see Figure 3: In it, we see the effect of a technique that has captured the 

image of a perfect dot. The PSF’s FWHM would be the diameter of the resulting’s blurb 

core, defining the core as the signal that exceeds 50% of the peak signal. 

Figure 3 Point spread function 

Visualization of the effect of convolving a technique’s point spread function with a small 
object. The technique’s PSF defines the effective resolution –and smoothness- of the 
resulting images.  

The effective spatial resolution of an imaging technique will be mainly driven by 

the worse of either the sampling spacing or the technique’s PSF function. While the 

technique’s PSF function is largely intrinsic to the imaging system and the sample under 

study, the sampling spacing (the acquisition matrix) is a decision made during the pulse 

sequence programming. In a methodological study, a 1.5 T scanner with a Gradient Echo 

sequence showed a PSF function of 3.5 mm FWHM when exploring small (column-like) 

areas in the visual cortex (Engel et al. 1997). This system can be considered highly 

equivalent to the techniques used in the works of this dissertation. Similar PSF 

characteristics have been reported in posterior works with 3 T scanners (Parkes et al. 

2005), although a higher spatial resolution is known to be possible at high field fMRI 

(Logothetis 2008), compromising signal-to-noise ratio. Knowing the signal’s smoothness 

allows selecting a sampling matrix that optimizes signal to noise ratio and radiofrequency 

energy absorption. Posteriorly, it supports the statistical-wise calculation of cluster-wise 

significance of the activations detected. 
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Temporal resolution 

Thanks to multi-echo scanning techniques, an Echo Planar Imaging slice can be 

collected in less than 100 ms. Technically, a slice can be collected much faster, but loosing 

SNR. The practical threshold of around 100 ms allows collecting a 20-24 slices volume in 

2 seconds, which becomes the effective TR, or sampling rate of the volume. That is, the 

signal of each volume element is recorded once per TR. While the electric neural 

discharges behind neural processes occur in a time window a 100 times shorter than the 

mentioned TR, the neurovascular response associated to the BOLD signal has much slower 

dynamics (See section 2.1.4) and a TR between 2 and 3 seconds has become a standard 

practice in terms of tradeoff between SNR and temporal resolution. However, some 

experimental setups have successfully used TR rates as low as 100 ms (Feinberg & Yacoub 

2012). 

Noise content 

 Functional MRI datasets are affected by multiple known sources of noise. 

Knowing them allows developing more robust analysis methods. One of the most 

characteristic noises of fMRI datasets is the low-frequency drift. This noise has been 

observed since the early days of fMRI and it has been described to have a 1/f shape in its 

spectral power density (Aguirre et al. 1997). This noise source is frequently isolated using 

autoregressive models (Woolrich et al. 2001; Gautama & Van Hulle 2005) or other 

implementations of high-pass filters (Bullmore et al. 2001). Aguirre et al reported that this 

type of noise is observed in human acquisitions and in water phantoms. Therefore it is not 

attributed to physiologic sources. The relatively large energy of this noise source prevents 

the direct comparison of task activations across very distant time points as it prevents 

absolute readings of BOLD signal intensity. Note that most of fMRI techniques focus in 

signal change rather than in signal level due to this noise source. 

 Another source of noise is that of physiologic origin, but not related to the biologic 

process under observation. This is a form of self-interference of the subject on his/her 

own BOLD signal. Respiration motion and heart beat pulsations are known to introduce 

noise to the fMRI datasets that degrades the statistical significance of activation signals. 
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This type of noise has been isolated by measuring and incorporating the cardiac and 

respiratory phase as regressors in the statistical analysis (Glover et al. 2000). Cardiac rate, 

in addition to phase, has also been described as a source of noise, and therefore as a 

candidate regressor to reduce noise (Shmueli et al. 2007). However, physiologic 

fluctuations have also found to share variance with brain processes of interest, including 

resting state functional connectivity signals (Chang & Glover 2009). The fact that 

physiologic fluctuations are also being associated with cognitive (Backs & Seljos 1994) or 

self-regulatory sympathetic and parasympathetic activity (Chang et al. 2013) calls for 

extreme caution before taking actions to remove them from an fMRI dataset (Bright & 

Murphy 2015). 

 Other, sources of noise include artifacts generated by movements of the head, 

eyeball (Zhang et al. 2011) or mouth (Kemeny et al. 2005). These artifacts have a 

spontaneous nature and should be minimized by experimental setup design and training 

of the subject. When in certain experiments or populations it is not possible to avoid these 

sources of noise, some specific artifact-removal algorithms may have to be used to 

prevent the unwanted effects of these noise sources (Diedrichsen & Shadmehr 2005). 

Dataset size 

The datasets used in this thesis are highly representative of the datasets used in a 

typical whole-brain neuroscience study. For example, the dataset used in study 1 consists 

of 270 volumes of 22 slices composed of a scan matrix of 64 x 64 pixels. Each pixel has a 

grayscale depth of 2 bytes.  

Therefore, the effective information of one subject’s exploration is: 

𝑠𝑖𝑧𝑒 [𝑀𝑏] = 270 𝑣𝑜𝑙𝑢𝑚𝑒𝑠 ·
22 𝑠𝑙𝑖𝑐𝑒𝑠

1 𝑣𝑜𝑙𝑢𝑚𝑒
·

64𝑥64 𝑝𝑖𝑥𝑒𝑙

1 𝑠𝑙𝑖𝑐𝑒
·

2 𝑏𝑦𝑡𝑒

1 𝑝𝑖𝑥𝑒𝑙
·

1 𝑘𝑏

1024 𝑏𝑦𝑡𝑒
·

1 𝑀𝑏

1024 𝑘𝑏
=46.4 Mbyte 

 Which provide the following amount of independent BOLD signal measurements 

per subject: 

𝑠𝑖𝑧𝑒 [𝑠𝑎𝑚𝑝𝑙𝑒𝑠] = 270 𝑣𝑜𝑙𝑢𝑚𝑒𝑠 ·
22 𝑠𝑙𝑖𝑐𝑒𝑠

1 𝑣𝑜𝑙𝑢𝑚𝑒
·

64𝑥64 𝑝𝑖𝑥𝑒𝑙

1 𝑠𝑙𝑖𝑐𝑒
=24.33 million samples 
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 The size of this dataset makes some analysis challenging in terms of 

computational power, although it is common to conduct fMRI analysis on standard 

desktop computers. Note that the practical amount of information is increased by 

application-based add-ons like headers and redundancy information. 

2.2  Overview of analysis methods of fMRI studies 

The purpose of this section is to introduce the basics in terms of fMRI analysis. 

Details of the specific methods used in the presented studies are included in the 

corresponding sessions. 

As presented in section 2.1, the BOLD signal is driven by a set of complex 

phenomena driven by the processes of the brain, which is in turn a complex system as 

well. As a result, the interpretation of BOLD-sensitive MRI sequences requires some 

awareness of statistic procedures and of neuroscience. The basics are presented below to 

make this document self-contained. 

The first concept that needs to be taken into account when planning fMRI-based 

research is the fact that the fMRI BOLD signal is affected by noise sources related to 

unwanted thermal, physiologic or scanner-related effects. These unwanted effects can 

even exceed the effect size of the signal of interest (SNR < 0 dB) (Krüger & Glover 2001). 

This presence of noise often requires the usage of high order filtering –or statistical tests- 

to reach appropriate confidence levels (Murphy et al. 2007). The amount of signal time 

points needed for a particular study depends on the technique used and the expected 

effect size of the task, but few fMRI experiments use less than 50 time points due to the 

mentioned SNR limitations. This need to obtain a large number of representative samples 

will significantly condition experimental design: In some contexts such as phobic symptom 

induction or positive reward, repeatedly inducing the same effect on the subjects under 

study can be a challenge. 

A second important concept to be taken into account is the complexity of the 

human mind: A myriad of processes are in concurrent execution in the human brain. All 

these processes are based on neuronal activity – and thus BOLD signal- which could be 
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considered as an interference. The experiment and analysis will be designed taking into 

account that the signal of interest will be mixed with a number of uncontrolled signal 

sources. 

 A large number of experimental design and analysis methods have been 

developed for neuroimaging studies. However, a basic split is proposed in this section. 

The intention of the proposed division is to provide the reader with the basic 

understanding of the techniques presented in this dissertation. 

2.2.1 Analysis based on a model of the expected BOLD signal 

Model-based analyses were the first models used in neuroimaging studies and 

are those that provide a more direct interpretation. In these studies, a hypothesis is made 

on the expected neuronal response to a given experimental condition. Then, statistical 

analyses are typically made with methods to compare the significance of the given model 

versus a null hypothesis. This analysis is analogous to the matched filter approach in signal 

processing. 

It is important to note that these analyses basically answer to which point the 

signal behaves according to the model. Therefore, the sensitivity of these methods heavily 

relies on the ability to make valid predictions on the expected BOLD signal. This involves 

not only having a neuroscientific hypothesis on the neural activity triggered by a stimulus, 

but also dealing with a model of the hemodynamic response function that “translates” 

from neuronal activity to BOLD signal. 

In this type of analysis, confound signals need to be modelled or to be cancelled 

by experimental design. As it has already been introduced, during our experiment, self-

regulatory, sensorial, attention-related or cognitive processes are running in parallel. This 

generates brain activity and therefore confound BOLD signals.  

A common way to cancel confound signals by experimental design consists on 

designing an experiment containing at least two conditions, and making these conditions 

to differ only in the process of interest. The assumption that confound signals are 
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stationary processes, and that therefore will have the same effect size in both conditions, 

allows comparing conditions to explore only the expression of the process of interest.  

To illustrate the cancellation of confound signals, observe the following example: 

If we want to map the brain activity related to seeing an angry face, the first line of 

thought could be just presenting the angry face pictures and comparing it against epochs 

of a dark screen. In an experiment like this, a huge primary visual activation would be 

expected (seeing something versus not seeing it), along with the deactivation of an 

extensive cortical and limbic network related to cognitive load (placing the attention into 

something versus not doing so) these activations would be large, overlapping our 

activation of interest and not specifically tied to it (any complex visual stimulus would 

generate similar results). To obtain specific results, the control condition may be changed 

from a blank screen to neutral faces. That is, we would compare BOLD signal of looking 

angry faces versus looking at neutral faces. In this second case, as task and control 

conditions are highly matched in neurocognitive terms, the results obtained would show 

the specific effect of looking at angry faces. However, if this experiment is carried on SAD 

patients and with the intention of mapping the activity in the areas related to angry face 

processing, a neuroscience literature research may warn us that SAD patients are prone 

to interpret neutral faces as salient (like angry faces) (Cooney et al. 2006) or that SAD may 

encompass an impaired ability to discriminate between relevant and irrelevant social 

stimuli (Ahrens et al. 2015). Therefore our analysis would have suboptimal sensitivity. In 

this context, using happy faces as the control condition could be more appropriate (Phan 

et al. 2006). 

The purpose of the example above is to show the important need of having robust 

a priori knowledge of the phenomenon under study when building the experimental 

design or model. 

In some cases, the confound signals cannot be expected to behave as stationary 

processes across task and control conditions. This can be the case of heart rate or blood 

CO2 levels. In these cases, these variables may be added to the analysis as nuisance 

regressors, provided that the transfer function (variable to BOLD) is known. 



-22- 

2.2.1.1 The General Linear Model 

The most widespread approach for model-based analysis of fMRI data is through 

the general linear model (GLM). The GLM is an equation Y=Xβ+ɛ  that expresses the 

observed variable Y in terms of a linear combination of beta-weighted explanatory 

variables X plus an error term (Friston et al. 1995). The term GLM is widely used across 

the neuroimaging world. However, in other scientific disciplines, the concept of GLM is 

also known as 'analysis of covariance' or 'multiple regression analysis'.   

In GLM, the matrix X that contains the explanatory variables is called the design 

matrix.  Each column of the design matrix corresponds to some effect the researcher has 

modelled, measured or included into the experiment. These columns are commonly 

referred to as regressors, explanatory variables or covariates. The relative contribution 

(β) of each of these columns (X) to the observed variable (Y) is assessed using standard 

least squares. Inferences about these contributions are typically made using T or F 

statistics, depending upon whether one is looking at a particular linear combination (e.g. a 

subtraction), or all of them together.  Note that the Y variable can contain either direct 

measurements (such as an individual’s BOLD signal readings) or the results already 

obtained in a GLM. In the context of this dissertation, these cases are referred to as first 

level and second level analysis, respectively. 

From a conceptual point of view, a conventional analysis of an fMRI time series is 

conducted in a voxel by voxel basis. That is, the signal in each voxel is modelled as the Y 

of an independent GLM. However, this involves that a whole-brain study has an order of 

magnitude of 105 independent observations. Attempting to make a direct multiple 

comparisons censoring (Bonferroni’s correction) to the inference in this context could 

make the analysis extremely insensitive. On the other hand, a formal indicator of 

significance is still needed. 

The challenge described above stimulated the application of Gaussian Random 

Fields (GRF) theory to the interpretation of neuroimaging data (Chumbley & Friston 2009), 

leading to the concept of Statistical Parametric Mapping. Statistical Parametric Mapping 

(SPM) involves the construction of spatially extended null-hypothesis models to test 
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hypotheses about regionally specific effects (Friston et al. 1991). The interest of SPM 

largely relies on the simplicity of the idea.  Voxels can be initially analyzed using any 

standard (univariate) statistical test. The resulting statistical parameters are then 

assembled into an image, which is also typically named a statistical parameter map 

(SPM).  To calculate significance of the results contained in SPMs, these are interpreted 

as spatially extended statistical processes by referring to the probabilistic behavior of 

Gaussian fields (Worsley et al. 1992; K. Friston et al. 1994). Gaussian random fields model 

both the univariate probabilistic characteristics of a SPM and any non-stationary spatial 

covariance structure. 'Unlikely' excursions of the SPM are interpreted as regionally 

specific effects, attributable to the variables contained in the design matrix.    

GRF is not the only approach to set appropriate significance thresholds to fMRI 

data. Monte Carlo permutations or cluster extent thresholding are also used. However 

GRF is the most widely adopted solution to support inference on SPM (Nichols 2012). In 

these cases, the GLM is used to estimate parameters that could explain the spatially 

continuous data in exactly the same way as in conventional analysis of discrete data. GRF 

theory is used afterwards to resolve the multiple comparison problem that arises when 

making inferences over a relatively large volume of the brain. Therefore, GRF theory 

provides a method for correcting p values for the search volume of a SPM and plays the 

same role for continuous data (i.e. images) as the Bonferroni correction for the number 

of discontinuous or discrete statistical tests. 

It is important to note that most of the statistical tests conducted in neuroimaging 

can be explained taking as a basis the general linear model. This can include the 

comparison of 2 groups, an analysis of variance (ANOVA) or the calculation of the 

correlation coefficient between a signal and its model. Even the idiosyncratic 

psychophysiological interaction analysis presented in section 5.2.4.2 is based in a two-

steps GLM. Mathematically, these analyses are fitted with identical equations and 

algorithms. The two parameters that distinguish analyses amongst them is the design 

matrix that defines the experimental design and the contrasts extracted to compare the 

fitting of different columns of X. 
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2.2.2 Model-free analysis. 

As the title of the section announces, this section covers the description of 

analysis methods that do not rely on comparing the observed BOLD signal against a pre-

defined model for it. Instead, these techniques characterize the signal properties with 

voxel-by-voxel descriptors or by the relationship of the signal across voxels. 

 These techniques may seem to have an exploratory nature. However, the 

measurements of these techniques can still be compared across subjects or states of the 

same subject. Therefore, model-free analysis are also valid to test n-sample or parametric 

hypothesis.  

While model-free analysis of fMRI data can be done on sequences in which the 

subject is executing a task, a particular interest has been raised by experiments that 

observe the spontaneous neural-driven fluctuations of the BOLD signal while the subject 

is at rest (Snyder & Raichle 2012). The term resting-state fMRI (rs-fMRI) is now widely 

used in the world of neuroscience. 

One of the strong points of rs-fMRI experiments is that they do not require the 

subject to understand and execute a task nor a control condition. This can be a great 

benefit in the context of psychiatry or animal research, where compliance to complex 

tasks cannot always be assumed. Resting state fMRI results have been shown sensitive to 

certain psychiatric conditions, although inconsistent results have also been reported 

(Fornito & Bullmore 2010). In their comprehensive review, Fornito and Bullmore provided 

a thorough classification of the techniques used in the psychiatric context. This 

classification has been used as the basis for the literature search presented in Table 1. 

This breakdown of the usage of model-free techniques in fMRI research has been done 

with PubMed searches in the title or abstract of peer-reviewed journals using the 

keywords indicated. The results indicate that ICA and seed-based correlation analysis are 

the most used model-free analysis techniques, followed by graph theory analyses. 
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Method 
PubMed search terms: 

(FMRI OR "functional MRI" OR "functional 
magnetic resonance imaging") and 

Quantity of 
articles 

[2005-2015] 

Independent Component Analysis ICA OR "independent component analysis" 1076 

Seed-based correlation Seed 710 

Graph analysis Graph 496 

Spectral power 
"spectral analysis" or "spectrum analysis" or 

fALFF or ALFF 
253 

Regional homogeneity (ReHo) "Regional homogeneity" OR ReHo 223 

Granger causality, multivariate 
autoregressive methods 

Granger OR multivariate autoregressive 89 

Hurst and Holder exponents Hurst OR Holder OR fractal 51 

Network homogeneity "Network homogeneity" 5 

Resting-state Activity Index "Activity Index" RSAI 2 

Table 1 Publications with model free analysis methods 

Quantitative results of a literature search made in August 2015 using model-free fMRI 
analysis methods as key words in Pubmed. 

 
The basic concepts behind seed connectivity and independent component 

analysis are described below, as they are the two model-free techniques used in the works 

that compose this dissertation. 

2.2.2.1 Seed-based functional connectivity mapping 

The concept of functional connectivity was observed and described soon after the 

development of BOLD fMRI sequences  (Biswal et al. 1995). This term refers to the 

measurement of synchronization between oscillations of brain activity measurements 

(BOLD signal in this case) in different brain areas. Although many studies use pairwise 

correlation coefficients as a measurement of functional connectivity, the broader 

statistical term dependence may be more appropriate to describe what it is explored in 

such analyses. Functional connectivity differs from anatomical connectivity by the fact 

that it doesn’t identify regions that necessarily have more dense axonal connections, but 

regions in which activity is statistically dependent, suggesting they form a functional brain 

network which may be related by direct or complex physical connection paths (Deco et 

al. 2013). 

Seed-based functional connectivity maps refer to a map of the cross-correlation 

coefficient of the time course in each of the volume’s voxels against the signal of one of 

them (the seed). In some cases, instead of a seed voxel, the average signal of a small 
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volume of interest is used. This provides higher robustness to noise. Therefore, seed-

based functional connectivity maps highlight the brain areas functionally connected to 

the seed region.  

Despite seed-based functional connectivity analysis are frequently obtained from 

resting state data, functional connectivity studies in the context of a task are becoming 

common and provide new optics to classic experiments (Lee et al. 2013).  

Seed-based connectivity analyses require the selection of a seed amongst 

thousands of resels. Consequently these studies are frequently used with narrow 

hypothesis or in post-hoc analysis, rather than in exploratory approaches. 

2.2.2.2 Independent component analysis 

Independent component analysis (ICA) is a data-driven statistical method that is 

able to decompose high-dimensionality data into discrete signal and noise covariance 

components (Comon 1994; Bell & Sejnowski 1995). In a more general context, it belongs 

to the group called Blind Source Separation techniques. ICA has successfully been applied 

in fMRI data to identify temporal signals (McKeown 1998) and anatomical networks that 

define functional connectivity (Calhoun & Adali 2006). 

Typically, ICA assumes a generative model in which observations are linear 

mixtures of independent non-Gaussian sources. That is, in the context of fMRI, that the 

signal in each location is influenced by an overlapping set of spatial networks that oscillate 

with an independent intrinsic signal –or components, in ICA jargon-. The central limit 

theorem tells us that the mixture of independent random variables tends towards a 

Gaussian distribution, under certain assumptions. Thus, the sum of two independent 

random variables is expected to have a distribution that resembles more a Gaussian 

distribution tan any of the two original random variables, provided none of them originally 

has a Gaussian distribution. This explains why the algorithm will provide consistent results 

only if at most one of the true sources is Gaussian. The Gaussianity measurement method 

is one of the parameters that shape the performance of an ICA implementation. Kurtosis 
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and negentropy Gaussianity estimators are common choices. See (Hyvärinen & Oja 2000) 

for details in the different implementations of ICA algorithms. 

ICA will therefore use high order statistics to split the dataset into a number of 

independent sources with the same dimensionality as an observation of the original 

dataset. It is important to highlight that, while PCA splits the data by minimizing 

correlation, ICA uses higher order statistics, aiming to achieve maximal statistical 

independence among components. ICA is, therefore, an appealing method to solve the 

classical cocktail party problem (Haykin & Chen 2005), which sets an scenario with 

multiple people talking at the same time, with independent speeches that need to be 

unmixed. 

In our context it is relevant to note that in the typical cocktail party problem the 

situation is having long recordings in a few locations. In the typical fMRI dataset we will 

have a much larger amount of locations than the limited number of time points where we 

collected data. The transposition of the fMRI data matrix (with dimensions defined as 

“number of time samples” x “number of voxels”) will make the dataset highly equivalent 

to the cocktail party dataset mentioned before. However, the interpretation of the results 

requires taking into account that this has happened: We are obtaining spatial locations 

maximally independent amongst them, rather than time courses maximally independent 

themselves. The emphasis on this matter has caused that, in the fMRI context, this 

common practice makes the analysis being often called spatial ICA (sICA) (Calhoun et al. 

2001b). From the signal processing perspective, this has little effect and all the ICA 

literature and algorithms are equally applicable to spatial or temporal ICA of fMRI data. 

In the formal description of an ICA, the signal of an individual’s fMRI time series 

is modelled by X=AS. Where X is a matrix containing the BOLD signal readings of the 

complete exploration, arranged in M rows and N columns. In the sICA arrangement, M is 

the number of time points and N the number of voxels in the field of view. AMxn and SnxN 

are initially unknown and named as the mixing matrix (A) of n spatial components 

contained by S. In sICA, the matrix A is often referred to as the set of characteristic time 

courses of the M spatial maps contained by the matrix S. 
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The outcome or an ICA algorithm is to the estimation of an unmixing matrix WnxM 

such that y is a good approximation to the true sources s. Therefore, y= Wx = W·A·s . In 

some contexts, W will be simply referred to as the pseudoinverse of A (�̂�−1). The 

algorithm will iterate attempting to obtain a maximally independent set of components 

in y. 

Infomax (Bell & Sejnowski 1995), -a contraction of information maximization- is 

the algorithm most commonly used to optimize the indepence of the components of the 

unmixing matrix W. Infomax is based on the principle of numerically maximizing the 

absolute value of the entropy of the above auxiliary signal y. Entropy of a discrete signal, 

as defined by Shannon is: 

𝐻(𝑦) = − ∑ 𝑝𝑘(𝑦)𝑙𝑜𝑔 (𝑝𝑘(𝑦))
𝑘

 

Where pk(y) refers to the probability of y taking the discrete value k. This can be 

done iteratively by minimizing the mutual information across pairs of components, which 

is defined as: 

𝐼(𝑥; 𝑦) = 𝐻(𝑥) − 𝐻(𝑥|𝑦) 

Where H(x│y) is the conditional entropy. That is, the entropy of x conditional to y 

taking a particular value yi. 

Similar algorithms such as fastICA and JADE have also been applied to fMRI data. 

Comparisons amongst them have showed that consistent and reliable results can be 

obtained with the three mentioned algorithms (Correa et al. 2007) despite minor 

performance differences have been described between them (Calhoun & Adali 2006). In 

these comparisons, Infomax has been shown to perform better in super Gaussian 

datasets, which is a common situation when estimating independent fMRI sources from 

the spatial perspective, but not the temporal ones (Correa et al. 2007). This limitation has 

been known since the early days of Infomax (Lee et al. 1999) so some sophisticated 

proposals analyze the component’s Gaussianity to select the algorithm depending on the 

dataset’s properties (Choi et al. 2000) . 
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The application of ICA to groups of subjects is not straightforward because of 

potentially having a different mixing matrix for each subject (Calhoun et al. 2001a). This is 

typically addressed by a concatenation of the spatially-normalized BOLD images, prior to 

the source separation, followed by a segmentation after the split. The dataset generated 

by the concatenation may be very large (see section 2.1.6 for an order of magnitude 

analysis). Therefore, due to computational power constraints, the group dataset often 

needs to be reduced. This is done with lossy signal compression techniques such as 

Pareto-decimated Principal Component Analysis (PCA). The amount of sources to be 

extracted is also numerically determined during the analysis employing minimum 

description length (Rissanen 1983) or Akaike’s information criterion (Akaike 1974). 

Group ICA methods have received increasing attention in the analysis of fMRI 

studies for their robust and flexible modeling nature (Calhoun & Adalı 2012). In addition 

to providing a data-driven characterization of fMRI studies, ICA results can also provide 

an estimate of functional connectivity in such studies. In the case of Group ICA, 

‘‘functionally connected’’ networks of voxels or regions are defined spatially by their 

signal as a system, which is estimated in the higher-order statistical sense. Calhoun et al. 

showed that, after reconstruction, ICA results using this group approach are similar to 

those performed for each individual subject. This indicates that group ICA technique is 

robust to cross-subject variability (Calhoun et al. 2001a). 
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3 Introduction to the application’s state of the art: Psychiatry 
research from a neuroimaging perspective 

The etymology of the term psychiatry refers to healing the mind (or in some strict 

interpretations, the soul). Some historic views of the mind-body duality used somehow 

ethereal concepts to describe the mind’s nature. However, today’s neuroscientific 

community shares a clear vision of the mind being a functional manifestation of a complex 

nervous system. Consequently, in this dissertation a strict physicalism-driven perspective 

will be kept, without forgetting the extraordinary complexity of the system we are 

exploring. 

Therefore, in our perspective, pathologies of the mind are potentially related to 

alterations in its biophysical substrate, which may actuate as pathology drivers or just as 

risk factors. Unfortunately, the anatomical, biochemical and electrical complexity of the 

brain, along with the limitations of the imaging techniques, makes many of the possible 

alterations virtually impossible to measure with today’s equipment. Instead, today’s 

neuroimaging can still only offer just macroscopic or indirect measurements. 

For two centuries, psychiatry has evolved without the support of neuroimaging 

tools. Disease definitions, patient classifications and treatments have been developed 

based on behavioral observations of patients and healthy controls. During the last four 

decades, neuroscientists have worked to explain the biophysical principles behind 

psychiatric diseases and treatments. This has brought an explosion of knowledge on the 

brain, which entails many exciting opportunities for psychiatry (Linden 2012). However, it 

is also openly recognized that still there is a long way to go.  

3.1 Contributions of neuroimaging to the clinical practice of psychiatry 

While the understanding of the mind-body duet has made a leap forward thanks 

to fMRI, functional magnetic resonance imaging is still seldom used in the clinical practice 

of psychiatry (Rosen & Savoy 2012). This can be illustrated by the lack of apparition of 

fMRI as a diagnostic technique in the latest edition of the Diagnostic and Statistical 
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Manual of Mental Disorders DSM-5 (APA 2013).In the clinical day to day, neuroimaging is 

mainly devoted to simply exploring the encephalic tissue integrity. 

After decades of formal neuroscience research, which included the “decade of 

the brain”, there seems to be a general consensus that not a single psychiatric disorder 

can be explained by a simple biological mechanism (Paulus & Stein 2007). Multiple 

biological alterations have been solidly associated to psychiatric disorders. However, the 

human mind manifests the dynamic (Gazzaniga 2011) complexity of its host: A self-

adapting network of roughly 100 billion neurons (Azevedo et al. 2009), 160 trillion 

synapses (Tang et al. 2001) and over 500 million years of evolution (Shu et al. 1999). This 

amazing organ is, still today, just partially understood. As a consequence, the mind and 

its malfunctions are just partially understood as well. 

Another limitation of the contribution of neuroimaging to psychiatry is that the 

current definition of psychiatric disorders is mainly based on symptom observation on a 

phenomenological level. Neuroimaging provides data much more related to biological 

measurements. Different biological expressions (or a combination of them) can converge 

to the same set of symptoms. This involves that a single psychiatric definition can be 

mapped with different imaging alterations. Being the psychiatric practices the gold 

standard, these differences can be initially interpreted as inconsistent results from the 

neuroimaging community. 

3.2 Potential contributions of neuroimaging in psychiatric drug discovery: 
biomarkers and surrogate markers 

As introduced in section 3.1, the usage of fMRI in the clinical practice of psychiatry 

is modest. Consequently, its usage in clinical trials to assess the state of patients is still 

uncommon. However, since its earliest days, fMRI has been regarded as a tool with high 

potential to develop biomarkers to support drug discovery (Borsook et al. 2006).  

It is important to highlight that, in the context of drug discovery, a biomarker is 

defined as a laboratory measurement that reflects the activity of a disease process (Katz 

2004). When a biomarker is fully validated as a direct measure on how the patient feels, 

functions or survives and is expected to predict the effect of the therapy, it may start 
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being used in clinical trials as a surrogate markers (Temple 1999). That is, only some 

biomarkers can become surrogate markers in clinical trials.  

In order to be validated as a surrogate marker, a biomarker is expected to meet 

all the following requirements (Paulus & Stein 2007): 

- A consistent response across studies and drugs 

- A clear response of the biomarker to therapeutic doses 

- A dose-response relationship 

- A plausible relationship between the biomarker and pharmacology or 

pathogenesis. 

An increasing amount of studies are showing the capacity of fMRI to feed 

biomarkers for early clinical research in psychiatry. Promising fMRI-based studies have 

showed the effects of pharmacological treatments on disease-relevant brain circuitry of 

depression (Fu et al. 2013), anxiety disorders (Nitschke et al. 2009), schizophrenia (Snitz 

et al. 2005) and addictions (Myrick et al. 2008; Goudriaan et al. 2013). These results keep 

the expectations high on the opportunities that fMRI has to support drug discovery 

through the development of surrogate markers (Nathan et al. 2014). However, further 

studies are still clearly needed to fully demonstrate the validity and reliability of fMRI to 

predict the outcome of pharmacologic treatments. 

From a regulatory perspective, the influent Food and Drug (FDA) administration 

of the USA makes an explicit acceptance of clinical trials based on surrogate markers that 

are “reasonably likely” to predict clinical benefit (FDA 2015). The usage of this path is 

frequent: In the period of 2005-2012, 91 of out the 206 newly approved indications were 

based on surrogate endpoints (Downing et al. 2014).  

The convenience of using biomarkers or surrogate markers is widely recognized 

in the early phases of drug development (Frank & Hargreaves 2003). However, the usage 

of surrogate endpoints in pivotal phase III studies has been overtly questioned (Fleming 

1996) and clinical trials based on them not always remain trouble-free (Sacks et al. 2014).  
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3.2.1 The phases of clinical trials 

In our context, clinical trials are experiments done on human participants to 

determine safety and efficacy of new treatments. These experiments are tightly regulated 

by laws and cannot be conducted without approval of medical and ethical committees 

representing the authorities. These committees will assess risk/benefit of conducting the 

experiment along with legal and ethical compliance. Ethical compliance will require, 

amongst others, that the experiment generates scientific validity and reproducibility of 

the results. The need for clinical trials has developed a large industry especially visible in 

the shape of Contract Research Organizations (CRO) and Clinical Research Facilities (CRF), 

which operate guaranteeing strict observance of the ethical principles set by the 

declaration of Helsinki.  

The context of clinical research has, to some extent, developed its own language 

(NIH 2015). Clinical trials are divided in phases that have barely changed in the last 50 

years. Only seen a recent addition of a “phase 0” has been seen in a limited amount of 

studies. See below the common naming and description of the main phases of the drug 

development process. 

3.2.1.1 Phase I 

The main purpose of Phase I is to assess drug safety, pharmacokinetics and 

pharmacodynamics. The molecules under study may have been synthesized or isolated 

from nature. Extensive studies in animal models are often required prior gaining approval 

to initiate Phase I of a clinical trial. 

Typically, this phase involves testing the drug on small groups of healthy 

volunteers for dose ranging. At this stage, dose may still be subtherapeutic. In these trials, 

a single or multiple doses are administered to the volunteers in a controlled environment. 

Subjects participating in the trial are exhaustively monitored during multiple drug half-

lives to describe the drug effects and to detect any possible side effects. In most of cases, 

Phase I encompasses the “first time in humans” step of clinical trials (see section 3.2.1.5 

for exceptions). 
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3.2.1.2 Phase II 

The purpose of this phase is to test drug safety and efficacy or effectiveness in a 

small group of patients. When testing for efficacy, que question to answer is whether the 

drug is able to improve the patient’s condition. When testing for effectiveness, the 

question to answer is whether the patients will improve when following the standard 

clinical practice (patient compliance comes into the equation). Still, in this case, the 

experiment is driven in the clinical research context (not by personal physicians)  

3.2.1.3 Phase III 

The purpose of phase III is to test the effectiveness of a treatment in the context 

of clinical practice. This involves administering the drug in a large sample of patients 

through the conventional clinical practice. In some cases, multiple phase III studies are 

conducted before the drug launch. Local agencies may require a phase III study to be 

conducted in their region prior granting approval for drug launch. A large amount of 

workforce is needed to monitor the trials. This workforce is typically provided by a 

Contract Research Organization (CRO). 

3.2.1.4 Phase IV 

Typical phase IV studies are based in post-launch surveillance. This phase is 

intended to detect rare effects or effects related to the patient context (for example due 

to comorbidity or interaction with other drugs). In this phase, a large amount of data 

needs to be collected and analyzed. Depending on the results, the drug may be withdrawn 

from the market or restricted to certain uses. 

3.2.1.5 Exploratory “Investigational New Drug” studies or “Phase 0” studies 

The decay of the last two decades in R&D productivity of the global 

pharmacological industry raised concerns on the sustainability of the tight regulatory 

scheme of clinical trials (Merlo Pich 2011). The tight waterfall model of phase I to Phase 

IV has proven very effective to maintain patient’s safety. However, it’s early phases have 

proven a low effectivity in discarding molecules that will fail in posterior phases (Kola & 

Landis 2004). 
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In a modernization attempt, the US food and drug administration (FDA) and the 

European Medicines Agency (EMA) have generated procedures to allow an earlier human 

exposition to novel drugs with the purpose of better predicting drug efficacy. While there 

still is a strict surveillance for the safety of the subjects that participate in clinical trials, 

the new schemes may grant authorization for early (pre-phase I) exposure of the subjects 

to small doses of the drug. These procedures were named “exploratory Investigational 

New Drug (IND)” by the FDA and “Phase 0” by the EMA. These experiment may be done 

in healthy volunteers or, rarely, even in patients. The purpose of these new phases is not 

identifying therapeutic effect, but to obtain early indicators such as pharmacokinetics, 

pharmacodynamics or the effect on selected biomarkers. The formal definition of phase 

0 clinical trials raised controversy (The Lancet editors 2009). But soon provided proof of 

effectiveness to accelerate drug development in certain cases (Kummar et al. 2009) 

Microdosing in humans before a formal phase 1 study is not completely new and 

had been proposed earlier to accelerate clinical trials and to validate animal models 

(Lappin & Garner 2003). However, when the US FDA published guidelines for exploratory 

IND studies, this boosted the interest for these practices and for the development and 

validation of biomarkers and surrogate markers that could assist in these studies (Collins 

2005). 

3.2.2 Potential contribution of fMRI biomarkers to drug discovery success rate 
enhancement 

The need to increase productivity of clinical trials is not just a simple business 

interest: Due to the increasing regulatory pressure and the complexity of new drugs, the 

costs related to drug validation (through clinical trials) have surged over the last decades. 

If we take into account the means needed to conduct clinical trials and the success rate 

of these trials, the current average R&D costs for bringing a neurological drug from phase 

I to the market (a successful phase III) are in the region of 1000 million USD (Adams & Van 

Vu 2010). This is still excluding basic science, in vitro or animal drug discovery costs.  

One billion USD per new drug launch is a huge cost even for the top 

pharmaceutical companies. In order to contextualize, see in Table 2 the key company size 
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indicators of the world’s top 6 pharmaceutical industries at July 2015. As a rule of thumb, 

we can see that launching a new drug can require between the 5% and 10% of the yearly’s 

EBIT of the world’s largest pharmaceutical companies. 

Company 
Market capitalization 

·109$ 
Revenue 

·109$ 
EBITDA 

·109$ 

Pfizer (PFE) 212 49,1 20,3 

Novartis (NVS) 250 52,8 16,4 

Sanofi (SNY) 135 38,8 11,8 

Roche (RHHBY) 248 52,6 13,02 

Merck (MRK) 164 41,4 14,7 

GlaxoSmithKline (GSK) 103 35,4 9,79 
Table 2 Key economic statistics of top drug companies 

Market capitalizationm annual revenue and EBITDA was based on avg values of the 
2014 exercise. Data extracted 12/7/2015 from CapitalIQ (www.capitaliq.com). 

 
 A large fraction of the drug development cost is driven by the high failure rate of 

new drugs in late phases, which can be over a 90% in central nervous system drug trials 

(Kola & Landis 2004). Duration of clinical trials also worsens the financial concern: It takes 

over 8 years in average to move from phase I to Phase IV (Kaitin 2010). Despite 

unprecedented investment in drug discovery over the last years, the amount of new drugs 

approved by the US Food and Drug administration hasn’t changed drastically in decades 

(Munos 2009). Patients also pay a toll, as every failure in phase III involves that a cohort 

of patients have been exposed to a non-suitable treatment. 

As introduced in section 3.2.1.5, the huge drug development costs, together with 

its worsening trend, has opened debates questioning the tight “waterfall model” of 

clinical trials. In phase 0 studies (or investigational IND studies) biomarkers make possible 

an early assessment of drug effectiveness before the trial progresses to posterior phases 

(Trist & Bye 2014). 

Functional magnetic resonance imaging has been proposed as a screening stage 

for early assessment of effectivity of new psychoactive drugs (Wise & Preston 2010). Some 

fMRI-based biomarkers have proven helpful to pre-assess treatments for psychiatric 

diseases such as schizophrenia (Minzenberg & Carter 2007), although further technical 

http://www.capitaliq.com/


-38- 

improvements are still obviously needed (Iannetti & Wise 2007). Once these biomarkers 

are validated enough, they may be considered suitable to be used in early stages of clinical 

trials to prune molecules with less likelihood of success. This would be done before phase 

II or even before phase I, in micro dosing studies. Early pruning of non-successful drugs 

can avoid substantial clinical trial costs and unnecessary exposure of volunteers to 

suboptimal treatments. 

Another practice that is becoming more common in clinical research is the usage 

of adaptive and Bayesian experimental designs (Orloff et al. 2009). This line of action 

involves continuous processing of the clinical trial data, and distributing the decision 

making throughout the duration of the clinical trial. This is opposed to phase-end decision 

points of the classical model. These decisions can be used to adjust cohort size or dosing. 

Decision making can even include the continuity of the study. The decision making can be 

based on parameters such as PK/PD, symptom severity or in novel biomarkers. 

Besides clinical trials, another area of pharmacology that can benefit from the 

advancement of biomarkers are the treatments called “personalized medicines”. This is a 

growing approach based on delivering customized treatments, highly adapted to the 

patient (Costa e Silva 2013). This approach eagerly requires novel techniques to predict 

and to measure treatment response (ESR 2015). Technically speaking, personalized 

medicine has something in common with clinical trials: The need to asses or predict drug 

effectivity as early as possible. 
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3.3 The Social Anxiety Disorder 

The understanding of the social anxiety disorder has evolved from the concept of 

it being a heightened shyness to a more complex set of symptoms tied to behavioral and 

neurobiological alterations (Stein & Stein 2008). It is important to highlight that shyness 

is a normal personality trait and therefore is not regarded as pathological. However, 

today, social anxiety disorder is widely recognized as a high-prevalence mental disorder, 

with high impairment of the patient’s quality of life and significant costs to our society 

(François et al. 2010). 

From an evolutionary perspective, social anxiety is hypothesized to act as a 

mechanism to detect and react in front of potential attacks of dominant group members 

(Trower & Gilbert 1989). Therefore, it may have played a vital role in the evolution of 

social groups as it avoids unnecessary challenge to the dominant group members and 

keep submissive individuals in the safety of the group. Today this function is still highly 

valuable and generally supports the acquisition and execution of social skills (Gilbert 

2001). However, when a heightened social anxiety impairs significantly the individual’s 

ability to carry on with a normal life, the individual may be diagnosed of a social anxiety 

disorder. 

3.3.1 SAD in the domestic context 

Individuals with SAD fear the scrutiny of others and are highly concerned by the 

possibility of saying or doing something that could result in embarrassment or 

humiliation. These concerns can be so intense that the individual avoids interpersonal 

encounters, or just go through them with high discomfort (Stein & Stein 2008).  

SAD is a chronical disease (Reich et al. 1994) and one of the most prevalent mental 

disorders, with estimates of lifetime as high as 12.1% in general population of the US 

(Ruscio et al. 2008), although other surveys reported lifetime prevalence estimations 

down to 5.0% (Grant et al. 2005). Similar results have been reported in other western 

countries, while studies in eastern cultures report much lower prevalence, presumably 

due to culture-driven differences in the interpretation of the disease (Iancu et al. 2006). 
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Certain collectives, such as musicians, show a higher awareness on social phobia, as it is 

highly correlated with performance anxiety (Cox & Kenardy 1993). Musicians have also 

been reported to develop particular coping strategies (Fehm & Schmidt 2006). 

SAD significantly impairs quality of life (Mendlowicz & Stein 2000). In a European 

survey, it was identified as one of the top ten diseases in terms of lost work days (Alonso 

et al. 2004). Associated costs are also substantial (Stuhldreher et al. 2014). SAD is 

associated with high comorbidity (Schneier et al. 1992), specially with depression (Stein 

& Kean 2000) and presents a high risk of substance abuse (Sareen et al. 2006). 

3.3.2 SAD in the clinical context 

Three decades ago, social phobia was reported as “a neglected anxiety disorder” 

(Liebowitz et al. 1985). However, over the last years it has become widely studied and 

recognized with the more modern “social anxiety disorder”. Today, Social phobia (or 

social anxiety disorder) is a well-described condition with a single diagnostic category in 

general (WHO 1992) and psychiatry-specific diagnostic manuals (APA 2000). In order to 

support diagnose, today’s clinicians can benefit from using tools like the Brief Social 

Phobia Scale (Davidson et al. 1991; Davidson et al. 1997) or the Liebowitz Social Anxiety 

Scale (LSAS) (Liebowitz 1987), being this later a widespread well-validated symptom-

based questionnaire (Heimberg et al. 1999). 

Despite of SAD being highly impairing, it is often difficult to detect and diagnose. 

It has been observed that SAD patients often do not seek treatment unless they need 

medical help for any of the comorbidities (Lipsitz & Schneier 2000; Fehm et al. 2005). Even 

during treatment, due to their condition, patients may avoid sharing information about 

their symptoms for fear of being negatively evaluated. 

According to a public health treatment guide of UK (NICE 2013), Patients 

diagnosed with Social Anxiety Disorder may be first offered cognitive behavioral therapy 

(CBT). CBT based on the Clark and Wells (Clark et al. 2003) or the Heimberg models 

(Heimberg 2002) are specifically developed to treat SAD and therefore became the 

primary choices. For individuals that do not accept CBT or do not respond adequately to 
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it, a pharmacological treatment may be offered. Selective Serotonin Reuptake Inhibitors 

(SSRI) such as escitalopram or sertraline are typical first choices for treatment. Patients 

not responding to the first SSRI treatment may be offered an alternative SSRI (fluvoxamine 

or paroxetine) or an alternative class of anxiolytic drugs, including serotonin 

noradrenaline reuptake inhibitors (SNRI) such as venlafaxine (Stein et al. 2004; Liebowitz 

et al. 2005), reversible inhibitors of monoamine oxidase (RIMA) such as moclobemide (D. 

J. Stein et al. 2002) or, still, a non-selective irreversible monoamine oxidase inhibitor 

(MAOI) such as phenelzine (Blanco et al. 2003; Canton et al. 2012). It is important to note 

that, like in most psychiatric treatments, there are relevant regional differences on the 

approved or preferred treatments for SAD. For example, in USA, the FDA-approved 

prescription drugs for SAD are limited to paroxetine, sertraline, extended-release 

venlafaxine and extended-release fluvoxamine (Schneier 2011). However, off-label drug 

usage (Wittich et al. 2012) and comorbidity (Ruscio et al. 2008) open the practical span of 

medication that SAD patients receive. Benzodiazepines such as clonazepam or alprazolam 

have been historically widely used to treat anxiety symptoms. However, its usage is today 

is diminished due to its fast-building dose tolerance and side effects (Brown et al. 2015). 

Its fast effectivity still keep them as a valid option for acute episodes (Benítez et al. 2008; 

Schneier 2011).  

3.3.3 SAD in the clinical research context 

Conducting research with SAD patients requires understanding the condition’s 

nature and adapting the clinical setting to the requirements of the cohort. The 

recommendations on the interactions with the individuals do not differ much from these 

given to clinical practitioners. An example of these can be found in the guide published by 

the British Psychological Society and The Royal College of Psychiatrists (NICE 2013) and 

include: 

Improving access to services: Provide clear information on where to go on arrival 

and where to wait. Provide a private space for waiting and inform upfront on the location 

of toilets or clinical personnel in the facilities. Provide the opportunity to fill forms or eat 
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in private. Minimize the distress of interacting with different professionals. Develop and 

maintain an accompanying liaison throughout the trial. 

Adapting communication style: When working with a person with social anxiety 

disorder, researchers must bear in mind that the individual may be vulnerable to stigma 

and embarrassment. It is common that SAD patients avoid interaction with researchers to 

disclose information about them, to ask questions or to complain. Therefore, it is 

important that researchers actively encourage patients to communicate in the way they 

feel most comfortable (including writing) and to raise any questions or concerns they 

have. Attention to this aspect should be maintained throughout the complete clinical trial. 

Recruitment of SAD patients for a clinical trial arises a very unique situation. 

Conventional advertising in media asking for volunteers involves that the patients would 

have to take the initiative to contact the clinical research team. This step can be very 

difficult for the SAD population. Cooperation with healthcare providers, which can 

introduce the clinical trial to the patients and offer to initiate contact would be a preferred 

recruitment procedure. 
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4 Hypothesis and specific objectives of this dissertation 

4.1 Hypothesis 

This dissertation aims to demonstrate that fMRI is a tool applicable to the 

development of valuable biomarkers for the characterization of treatment response in 

clinical research of Social Anxiety Disorder. The building blocks needed to validate this 

hypothesis were broken down as objectives for the five studies embedded in this 

dissertation, which are presented in the section below. 

The applicability of the technique will be determined by its capacity to provide 

sensitive and reproducible measurements with a scientifically proven relationship to 

pharmacology or pathogenesis. 

4.2 Objectives 

The initial literature review revealed that emotional face processing paradigms 

had already been proposed as candidate biomarkers for pharmacologic treatment in 

anxiety disorders (Paulus et al. 2005). Therefore, the first set of objectives was set in the 

replication and pilot of such methods in our specific imaging setup (Study 1). An 

exploratory connectivity-based analysis was added to the study as recent findings pointed 

that connectivity could be a valuable contribution in our context. Given these positive 

results, we proceeded to further explore connectivity-based analysis, this case using 

Independent Component Analysis. This involved setting as objectives the validation that 

results obtained through this technique were reproducible across paradigms (Study 2) and 

that the results were sensitive enough to detect subtle changes in the subject’s emotional 

state (Study 3). It was perceived necessary to compare any connectivity findings with a 

symptom-provoking task. This set the objectives to define and validate the experimental 

setup of study 4. A pilot clinical trial is presented in study 5 using the literature-reviewed 

task of study 1, the ICA technique validated in studies 2 and 3 and the novel symptom 

provoking task of study 4. These 3 paradigms were executed on the same trial, exploring 

coincidences, power and specificities of their results. Figure 4 shows a graphic 

representation of the flow of these objectives. 
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Figure 4 Thesis outline 

The following sub-objectives were specifically defined for each of the mentioned 

studies: 
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4.2.1 Study 1: Replication of the state of the art and pilot of novel connectivity-
based biomarkers. 

1) To develop and validate an imaging setup and analysis methods able to replicate 

the findings of previous studies in terms of brain activations induced by the 

emotional face processing task. 

2) To determine if there is a significant relationship between task-induced activation 

and the social phobia scores. 

3) To describe the interaction between the fusiform gyrus and amygdala, including 

its relationship with social phobia scores. 

4.2.2 Study 2: Reproducibility of ICA results 

1) To implement and validate an Independent component analysis pipeline able to 

obtain indicators of functional connectivity within resting state networks, from 

the BOLD images obtained in our system. 

2) To validate that, with our methods, the extraction of a particular network is 

reproducible despite the images being acquired while the subjects are executing 

a cognitive-demanding task, a self-referential exercise or no particular task (rest).  

4.2.3 Study 3: Sensitivity of ICA results 

1) To validate that Independent Component Analysis of fMRI data is able to detect 

brain connectivity changes related to emotional states. 

2) To validate that the changes detected are not related to coupling of the network 

with physiological noise sources, which have a spectral power density different 

than the spontaneous brain activity oscillations that drive network connectivity. 

3) To validate that the networks obtained are directionally reproducible with the 

“golden standard” seed-based functional connectivity estimator. 
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4.2.4 Study 4: Pilot of a novel symptom-provoking task as a new potential 
biomarker.  

1) To develop and pilot a customized SAD symptom-provoking experimental 

condition able to drive robust activations in the emotional and arousal brain 

networks. 

2) To characterize the differential response between SAD patients and controls 

when exposed to the experimental condition. 

3) To characterize the relationship between task-related activation and SAD 

symptom severity. 

4) To validate that the new experiment is well tolerated by SAD patients and 

controls by not creating overwhelming physiologic responses. 

5) Using an eye tracking system, to validate that SAD patients do not react to the 

experiment with gaze avoidance strategies which could minimize the exposure 

to the stimuli. 

4.2.5 Study 5: Pilot of the explored techniques in a clinical trial. 

1) To characterize the effects of treatment in the activations of the emotional 

face processing task presented in Study 1. 

2) To characterize the effects of treatment on the resting-state network 

connectivity measurements presented in Studies 2 and 3. 

3) To characterize the effects of treatment in the activations of the symptom-

provoking task presented in Study 4. 

4) To characterize the correlation of drug-driven clinical improvement scores 

with the results three experiments. 
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5 Study 1 - Exploratory analysis of altered emotional face 
processing as a SAD symptom biomarker in healthy 
volunteers: Proof of concept on the value of functional 
connectivity and validation of the imaging setup 

5.1 Introduction 

The assessment of disease severity in most of medical disciplines is backed up by 

objective measurements such as biochemical concentrations or mechanical properties. 

However, the assessment of psychiatric diseases’ severity in clinical practice and research 

is still mainly relying on structured interviews and questionnaires. This involves that the 

patient and researcher or physician rely on the accuracy in which patients self-reports 

their symptoms and experience.  

For the severity assessment of Social Anxiety Disorders, the usage of self-reported 

scales such as the Clinical Global impression (CGI) and the Liebowitz social anxiety scale 

(LSAS) is the most widespread approach. CGI and LSAS ratings are reasonably well 

accepted as condition severity indicators by the healthcare and research community. 

These scales have been demonstrated to have moderate but similar effect sizes (Hedges 

et al. 2009).  

Despite this generalized usage, there has always been some concerns in the 

accuracy and repeatability of such instruments (Beneke & Rasmus 1992; Busner et al. 

2009). In fact, a conceptual issue arises when relying on data extracted from an interview 

with social phobia patients: The nature of their condition is prone to limit the individual’s 

ability to describe or acknowledge their symptoms (Rapee & Heimberg 1997). On the 

other side, individuals with social anxiety are likely to experience disruptions in the 

workplace, family, friendship or romantic relationships (Stein & Kean 2000). These 

disruptions are often captured by the questionnaires and structured interviews as 

symptomatic queues. It is possible that, after treatment, the individual remains anxious 

by these social situations, but being no longer disabled by the disease. This could be 
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captured by the instruments as a remaining symptom, reducing its sensitivity to 

improvement.  

The recent developments of neuroimaging techniques has raised the interest 

towards the development of biomarkers able to derive disorder severity from physical 

measurements made on the subject under study (Valenzuela et al. 2011). It is important 

to stress that, in this context, neuroimaging-based biomarkers are typically targeted to 

explore the physical or functional integrity of the neural circuitry that supports the 

impaired function. 

Anxiety is regulated by a complex brain circuit involving cortical and subcortical 

structures. Alterations of this circuitry are associated to anxiety-related mental disorders, 

including social phobia. The amygdala is a key part of this circuit and it is frequently viewed 

as the central target for anxiolytic treatments (Mathew et al. 2008), because of its pivotal 

role in fear acquisition (Phelps & LeDoux 2005) and emotion processing (Phelps 2006). In 

a pioneer H2
15O PET study, Furmark et al. showed correlation between treatment 

response and amygdala’s CBF attenuation in SAD patients during a symptom-provoking 

task (Furmark et al. 2002). 

Emotional face processing tasks have proven effective to induce amygdala 

activation that can be detected with fMRI and explored under different states of patients 

and controls (Gentili et al. 2015). These tasks have captured attention as candidates for 

the development of symptom–measuring biomarkers: In multiple studies, SAD patients 

have shown increased amygdala activation (with respect to controls) while doing 

emotional face processing tasks (M. B. Stein et al. 2002; Veit et al. 2002; Straube et al. 

2005; Phan et al. 2006; Etkin & Wager 2007; Brühl et al. 2014). However, results also 

indicate that the amygdala activation related to emotional processing may not be stable 

across time (Campbell et al. 2007), especially in SAD patients (Sladky et al. 2012).  

Despite the limitations of the emotional face processing paradigm, the appeal of 

these results is that amygdala is clearly associated to the brain system processing social, 

emotional and threatening information (Haxby et al. 2002). A circuit formed by the 

amygdala and its cortical extensions is frequently reported to be altered in social phobia 
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patients (Clark & Mcmanus 2002; Duval et al. 2015). Therefore, standardized tasks able to 

functionally challenge this brain circuit are good candidates to identify differences 

between patients and controls, patient phenotypes or differences related to treatment 

response. 

Previous studies suggest that the brain activations induced by the emotional face 

processing tasks (EFPT) can be sensitive to the effect of psychoactive drugs –mainly 

benzodiazepines and selective serotonin reuptake inhibitors- in healthy subjects (Paulus 

et al. 2005; Arce et al. 2008) and patients (Kilts et al. 2006; Faria et al. 2012; Phan et al. 

2013; Brown et al. 2015). Some studies also indicate that this type of experiments can be 

useful to predict treatment response (McClure et al. 2007; Whalen et al. 2008; Nitschke 

et al. 2009) 

Development of an experimental setup able to explore such relationships 

requires extensive design and validation activities. At the time this study started, no 

emotional face processing studies had been performed at our R&D center. Therefore, it 

was necessary to conduct a first study including the replication of the results of the 

literature to proof the setup’s sensitivity and specificity. This was, therefore, the first step 

prior to exploring the relationship between brain activation during the EFPT and the 

expression of Social Phobia symptoms.  

It would have been very difficult to justify running an exploratory paradigm in a 

clinical population. A non-clinical population was used instead: Healthy volunteers were 

recruited in the University environment. Individuals were selected based on social anxiety 

ratings to evenly cover the spectrum of social anxiety degrees in non-patient population. 

This range overlaps with the range of LSAS scores for patients. Having a uniform coverage 

of degrees of expression of social phobia symptoms will facilitate performing correlation 

analyses of brain activation versus symptom severity. 

The amygdala is a well-known emotional processing area with observed alteration 

in social phobia patients. However, amygdala is also part of a complex brain circuit 

processing emotional face stimulus, which includes the fusiform gyrus (Kanwisher et al. 

1997). Alterations in the fusiform gyrus have been inconsistently reported in social phobia 
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patients (Straube et al. 2004). In a parallel context, alteration in the fusiform-amygdala 

system has been deemed instrumental in the social deficits of autism (Schultz 2005; 

Dziobek et al. 2010). 

A neuromodulatory effect of the amygdala in face processing areas has been 

described in PET studies using PsychoPhysiologic Interaction (PPI) (Morris et al. 1998), but 

not in fMRI at the time of the study. A posterior study used a similar PPI method in fMRI, 

obtaining results consistent with ours (Frick et al. 2013). 

Provided this context and as described in section 4.2.1, three specific objectives were 

defined for this study: 

1) To validate that our imaging setup and analysis methods can replicate the findings 

of previous studies in terms of brain activations induced by the emotional face 

processing task. 

2) To determine if there is a significant relationship between task-induced activation 

and the social phobia scores. 

3) To describe the interaction between the fusiform gyrus and amygdala, including 

its relationship with social phobia scores. 

5.2 Methods 

A model-based approach was selected for this study. As introduced in section 

2.2.1, this involves that neural response to a given stimulus is hypothesized and statistical 

comparison is made between the observed BOLD signals and the model.  

Due to the unpredictability of neural processes at an uncontrolled rest, subjects 

need to be explored in two very similar conditions (task and control), and signal is to be 

compared to obtain a differential contrast. Task and control conditions are designed to 

differ only in the neural process under study (in this case, emotional face processing). 

Simplifying, the activation of the system of interest will be determined by the difference 

in BOLD signal between the task and control conditions. The low signal-to-noise ratio of 

fMRI studies require us to take repeated measures in order to increase statistical power. 

Additionally, the low frequency psychophysiological changes that subjects can 
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experiment during the task requires us to interleave control and experimental conditions 

to avoid results being biased by this background drift. All these requirements condition 

the behavioral paradigm that subjects execute during the fMRI exploration. 

5.2.1 Behavioral paradigm 

Subjects were explored with fMRI while executing a modified version of the 

emotional face-processing task developed by Hariri et al. (Hariri et al. 2002). The task was 

configured using the same stimulus as used by Paulus et al (Paulus et al. 2005), but the 

variety of faces used was reduced to fearful and happy only. The reason for selecting this 

version is that Paulus et al reported that the level of amygdala activation created by this 

task in healthy volunteers was specifically attenuated by the administration of lorazepam, 

a benzodiazepine widely used for its anxiolytic effects. These results make the task a good 

candidate biomarker for SAD. 

In this task, subjects execute a sequence of 5 second trials in which they are 

presented with three images, one in the center and two below, separated towards the 

sides. Subjects are asked to indicate which of the bottom images matches the center 

image. In the task condition, images are standardized faces of individuals making 

emotional expressions (Ekman et al. 1983). All faces were different and the target was 

always either happy or fearful to match complexity with the control condition. In the 

control condition, geometric shapes (ovals) were presented. A total of 24 5-second trials 

were run for each of the task and control conditions, this provides 60 full-brain images 

per condition (TR= 2 seconds per image). Trials were presented in blocks of 6 (30 s) of the 

same condition (task/control), spaced by a 15–second fixation cross to enhance 

independence across the measurement blocks. This totals 9.00 minutes, thus providing a 

time series of 270 full-brain BOLD images per subject. 
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Figure 5 EFPT task as implemented in study 1 

The EFPT task implemented in study 1 consisted in 6 30-second blocks of face matching 
trials (see bottom right corner for an example trial) , 3 30-second blocks of matching 
fearful faces, and 3 30-second blocks of matching happy faces. Each block contained 6 
5-second trials. Total experiment duration was 540 seconds 

5.2.2 Population selection 

Twenty-four volunteers were recruited for this study. Individuals were selected 

from a larger pool on the basis of their score on the Liebowitz Social Anxiety Scale (LSAS) 

(Liebowitz 1987), which has been validated to quantify the level of social anxiety in young 

Spanish non-clinical populations (Zubeidat et al. 2008). A pre-screening self-report was 

conducted in the students of Barcelona University and Barcelona Autonomous University, 

obtaining 146 valid answers. Volunteers were selected based on their social anxiety score 

to uniformly cover the range of social phobia in normal subjects. A confirmatory and 

differential assessment was conducted on the selected sample by a senior psychiatrist 

using a Structured Clinical Interview for DSM-IV (SCID) non patient version (First et al. 

2002). This interview confirmed that selected volunteers did not meet criteria for social 

phobia, nor were seeking medical treatment. Subjects with a relevant history of medical 

disorders (including psychiatric) or substance abuse were excluded. The resulting sample 

ranged from 11 to 61 points of the LSAS scale, with a fairly uniform distribution (see 

histogram in Figure 6). As a reference, patients with social phobia usually score more than 

60 points above this scale, while the range of 30 to 60 is considered a subclinical score 

(Mennin et al. 2002). 



-53- 

 

Figure 6 LSAS score histogram 

Distribution of LSAS scores of the recruited sample. LSAS provides a dimensional 
assessment of the degree of social anxiety of the individual, being larger to higher social 
anxiety. Participants were selected to provide a roughly homogeneous distribution of 
LSAS scores. Note that scores from 30 to 60 points are considered a subclinical 
expression of social anxiety. 

 
A comprehensive set of demographic and psychometric questionnaires was used 

to characterize the population sample, but was not used to further censor nor select the 

subjects. This included the following items, with its scores summarized in the table below. 

The table includes the values for 22 subjects, as 2 were excluded from the final analysis 

due to unsuccessful fMRI exploration. 

- A handedness questionnaire: The Edinburgh Handedness Inventory (Oldfield 

1971). This provides a laterality scale (degree of dominance of right/left hand). 

However, for the descriptive statistics, only right/left dominance was considered.  

- A simplified intelligence test. In particular, the vocabulary subscale of the 

Wechsler Adult Intelligence Scale – Revised (WAIS-R) (Wechsler 1981). A reduced 

version was chosen as this variable is secondary and it would take more than two 

hours of a mental health professional per subject to administer and score a full 

WAIS-R test (Camara et al. 2000). 

- The Beck Anxiety and Depression Inventories (Beck et al. 1988) to support the 

absence of comorbidity 
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- The Spielberger State-Trait Anxiety Inventories (STAI) (Spielberger 1983), which 

provides indicators of state anxiety (at the precise moment of the assessment) 

and trait anxiety (experienced in a continuous way). A generalized anxiety score 

allows the comparison against the specific social anxiety scores. A high social 

anxiety score with a moderate generalized score support the specificity of the 

social anxiety expression. 

- The Cloninger Temperament and Character Inventory – Revised (TCI-R Spanish 

version) (Gutiérrez-Zotes et al. 2004), which provided personality descriptors 

related to novelty seeking and harm avoidance trends. 

- The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) 

(Torrubia et al. 2001) which provided two additional personality describing 

metrics. These two metrics, along with those provided by the TCI, facilitate the 

psychologic assessment of the sample. This is relevant in this study due to the 

atypical recruitment procedure. 

Table 3 Study sample descriptors 

Sex: female/male 12 / 10 

Age, years 26.0 (3.5) 

Handedness: Right/left handed 20 / 2 

Education level, years 17 (3) 

WAIS-R vocabulary 11.8 (2.8) 

Liebowitz Social Anxiety Scale 37.5 (15.2) 

Beck Anxiety Inventory 8.7 (7.8) 

Beck Depression Inventory 5.6 (6.3) 

Sielberger’s State Anxiety Inventory 32.9 (22.9) 

Sielberger’s Trait Anxiety Inventory 30.5 (27.2) 

Cloninger’s TCI-Novelty seeking 52.1 (6.3) 

Cloninger’s TCI-Harm avoidance 52.8 (10.2) 

Sensitivity to punishment 6.3 (4.8) 

Sensitivity to reward  7.0 (4.6) 

 
Sample descriptors as revealed by the battery of tests. Mean (SD) where applicable 
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5.2.3 Imaging setup 

5.2.3.1 MRI system 

The MRI equipment used was a Signa Excite 1.5 Tesla system (General Electric, 

Milwaukee, WI, USA) equipped with an eight-channel phased-array coil.  

While 1.5 T systems were the most common choice for fMRI studies in the past, 

we can recognize a clear trend now to use to 3 T systems instead. Doubling the magnetic 

field strength provides an increased sensitivity to BOLD signal contrast that depends on 

settings, but that has been reported to be in the order of magnitude of a 25% higher in 

cortical structures (van der Zwaag et al. 2009). However, when the areas of interest are 

near the frontal or sphenoid sinuses (such as the orbitofrontal cortex or the amygdala) 

the advantages of using a 3 T system over a 1.5 T may not be seen (Krasnow et al. 2003). 

The air-bone-brain interface creates spatial discontinuity of the magnetic properties 

which induces, in that area, a larger signal dropout at 3 Tesla. The loss of sensitivity in 3 T 

systems can be partially corrected using custom hardware and fMRI pulse sequences 

optimized for a given brain structure (Weiskopf et al. 2006), but the applicability of these 

methods to whole-brain studies remains highly experimental. 

At the time the study was planned, a 3 T system was not easily available to explore 

the advantages and disadvantages of higher fields in the context of this particular study. 

5.2.3.2 MRI Sequences 

Single-shot echo planar Imaging (EPI), gradient-recalled images were collected in 

the steady state. Time of Repetition (TR) was 2000 ms. Common settings were selected 

for Time of Echo (50 ms) and Pulse angle (90º). Experimental data has proven that, in 1.5 

T systems, selection of a TE around 50 ms (TE ≈ T2*) provides an optimal contrast between 

the activated and baseline state (Gati et al. 1997).  

Images covered a field of view of 24 cm with an original pixel matrix of 64x64 and 

with slice thickness of 4 mm plus an interslice gap of 1 mm. Twenty-two interleaved slices 

were collected parallel to the anterior-posterior commissure line. The functional time 

series consisted in 270 consecutive volumes (which covered 9 minutes of acquisition). 
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Four additional dummy volumes were collected and discarded at the beginning of the 

acquisition to reach the equilibrium state. 

An extra anatomical image was collected for posterior reference. This provided 

high-resolution landmarks of the subject. The anatomical sequence selected in this case 

was a 3-D fast spoiled gradient (SPGR) inversion-recuperation prepared sequence with 

130 contiguous slices (TR 11.8ms; TE 4.2 ms; flip angle 15º and a field of view 30 cm 

divided in 256x256 pixels with slice thickness of 1.2 mm.  

5.2.3.3 Stimulus presentation and response collection 

The presentation of visual stimuli in the fMRI context is particularly challenging 

due to the bulky MRI instrumentation. The Signa’s MRI magnet’s leaves a confined space 

(0.6 m diameter cylinder, 1 m long approximately) where the subject has to stay quiet 

while the images are collected. In a typical brain imaging sequence, the subject lays in 

supine positon with the head fixed with straps to the center of this cylindrical space. The 

whole-brain surface antenna array takes extra space as it is placed like an American 

football helmet surrounding the subject’s head. 

Most models of MRI head antennas include a small mirror positioned at 45º with 

respect to the horizontal. This mirror provides the subject a vector of vision parallel to the 

body’s axis towards the subject’s feet. Many fMRI paradigms have used this mirror to 

successfully provide visual stimulus to the subject by retro projecting them on a screen 

placed at the subject’s feet.  

In this case, however, we determined we needed a deeper immersion of the 

subject on the stimulus, a high quality of images to make emotional face processing 

feasible and the biggest isolation possible of the subjects from the MRI environment. 

For this reason, the chosen mechanism for stimulus delivery was a set of MRI-

compatible high-resolution goggles (Visuastim digital System, Resonance technology inc, 

Northridge, CA, USA) which were acquired for the study. These goggles are placed directly 

on the subject’s eyes, between the face and the head antenna. The goggles are built with 

diamagnetic materials and highly counterbalanced current-induced magnetic fields. This 
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makes them effectively “transparent” to the fMRI technique. The system consists in 2 

small LCD displays of 600x800 pixels which cover 30 degrees of horizontal field of view. 

The viewing experience is therefore equivalent to watching a 50” 4:3 TV from a distance 

of approximately 1.9 meters, in a dark room. A set of embeddable lenses allow the usage 

of the system by persons with myopia or hyperopia. 

The usage of this system helps in minimizing the head movement during the task 

by avoiding instinctive head movements to explore the surroundings or the edges of the 

field of view. 

 

 
Figure 7 MRI-compatible goggles 

The usage of goggles fitted with LCD displays facilitated an immersive experience into 
the paradigm and isolation of the subject from the surroundings during the experiment. 
Model shown: Visuastim digital System, Resonance technology inc, Northridge, CA, USA 

 

Subject’s responses (left or right matching) were collected using two trigger-

equipped handles (ResponseGrip, NordicNeuroLab AS, Bergen, Norway) which were held 

by the patient throughout of the scan. Patients could answer left or right using the 

corresponding hand’s index finger. As this system is entirely passive (a button press acts 

as a diaphragm on a fiber optic link) and contains no paramagnetic materials, there is no 

doubt on its compatibility with the fMRI environment. The “pistol-type” trigger avoids 

distractions by the subject to (blindly) look for the button, as they are always under the 

left and right index fingers. 
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Figure 8 MRI-compatible response devices 

MRI-compatible response buttons embedded in a handle allow a simple positioning of 
the response fingers, even when the response buttons are out of the visual field of the 
subject. Model shown: ResponseGrip, NordicNeuroLab AS, Bergen, Norway. 

 

Subject’s hearth rate and respiration rhythm were monitored using a pulse 

oximeter (4500MRI, Invivo research, Winter park, FL, USA) and a home-built pneumatic 

plethysmograph. 

5.2.4 Image analysis 

The flow from raw fMRI images to statistical results can be segmented in two 

differentiated stages: The data preprocessing and the statistical testing itself. As some of 

these steps are very similar across the 5 studies presented in this dissertation, they are 

described in detail in this section and posteriorly referenced along this document. 

5.2.4.1 Image preprocessing 

Preprocessing includes all the image modifications that take place since the 

volumes are collected from the scanner until they are fed into statistical analysis tools. 

The purpose of image preprocessing is increasing the robustness of the analysis methods 

by correcting nuisance factors such as spatial motion, anatomical variability of the 

individuals or noise from the imaging technique.  

In our studies, image preprocessing was conducted entirely on Statistical 

Parametric Mapping software (SPM5; The Wellcome Department of Imaging 
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Neuroscience, London, UK) running on Matlab v6.5 (The MathWorks Inc., Natick, MA, 

USA). SPM5 is a freely available academic software toolkit developed and maintained 

mainly by members & collaborators of the Wellcome Trust Centre for Neuroimaging of 

University College London (UCL). This software package was originally developed by Karl 

Friston at the Medical Research Council (MRC) and first made available to the 

neuroimaging community in 1991 (Friston et al. 2007). In few years SPM became the most 

used neuroimaging software. Many researchers have contributed to develop posterior 

versions, fully backed up with peer-reviewed methodological articles (Ashburner 2012). 

The software package is currently distributed under the terms of the GNU General Public 

License as published by the Free Software Foundation. 

A common preprocessing process was selected, which involves three steps: 

Realignment, normalization and smoothing, which are described below. 

Realignment:  

As the statistics applied to the images are based in a voxel-by-voxel comparison, 

it is essential that every piece of tissue is always compared to itself during the complete 

time-series. Small movements during the task could misalign these voxels and 

compromise the following analysis phases (note that in this case the original “pixel” 

measures 3,75 X 3,75 x 4 mm), so a displacement in this order of magnitude is considered 

extremely large. 

In our fMRI sequences, the subject was explained the importance of staying 

steady and had the head restrained by pillows and elastic straps. However, small 

movements are still possible. These movements are especially concerning during 

statistical image processing and inference as they act in two ways: Adding variance to the 

test residuals, thus reducing sensitivity of the analysis or, when they are correlated to the 

task, biasing the results of the statistical tests against the models.  

In order to minimize the effects of small movements, an iterative rigid-movement 

algorithm is applied to each of the images to realign them to the first image in the series. 

This algorithm uses rotation and displacement transformations while attempting to 
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minimize a least squares cost function of the difference between the realigned image and 

the first one in the series. The optimal spatial transformation for each image is saved in a 

separate file, but images do not get re-written as posterior transformations can include 

these motion correction parameters in the transformation function. 

In most of the cases, only sub-millimetric corrections need to be made to realign 

the series. Large movements can induce additional non-geometric effects on the image 

quality: Note that it takes 2 seconds to collect a whole brain, so intra-image movement 

can create a “blurring” effect, where signal of the same point of tissue influences more 

than one image element. Also, the MRI technique uses sequential spatial encoding to 

excite-recover signal from the tissue. Therefore, a sudden movement can create a wrong 

area to be excited, encoded or recalled, inducing a loss of signal in a part of the image, 

typically a slice. For this reason, the magnitude of the realignment needed is often taken 

as a data quality criteria.  

In this study, we defined an acceptance criterion of a maximum of 2 mm of 

displacement or one degree of rotation, in order to deem the images suitable for further 

analysis. Note that one degree of rotation involves a displacement of approximately 2 mm 

at the edge of the field of view (120 mm radius –> displacement [mm] = 120tan(1º) = 2,09 

mm ).  

In order to avoid resampling errors to build up, images are not rewritten at this 

stage. Only an affine transformation matrix (containing the displacement and rotation 

parameters for each of the 3 axis) is saved for each image, and will be added to the 

transformation made in the next step. 

In this study, one subject was excluded from the statistical analysis due to 

exceeding 2 mm movement in the z-axis, as detected during the realignment 

preprocessing step. 

Normalization:  

After realignment we can assume that all images within a subject’s time series are 

co-registered. That is, that every coordinate (pixel position) points to the same portion of 
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tissue in each of the images that compose the time series. However, this correspondence 

cannot be assumed between subjects due to the variability in the individual’s anatomy. 

Most of neuroimaging studies, like this one, require multiple subjects to be 

analyzed as a group. However, inter-subject voxel-based statistics, like averaging, is 

possible only after ensuring that each voxel in the volume corresponds to the same 

anatomic location of the individual. 

Normalization involves deforming the individual’s volumes to a common 

“standard brain” space, so each voxel coordinate corresponds to the same anatomical 

region in all the subjects of the study. When the selected common space is a widely known 

template, results from different studies can be easily compared and extrapolated to the 

general population’s anatomy. One of the earliest formal reference spaces, which is still 

in wide use today, is the Tailarach-Tornoux coordinate system (Talairach & Tournoux 

1988). This coordinate system is based on an orthogonal division of a single subject’s brain 

using anatomical landmarks. 

In this study, the common space selected for normalization is the ICBM-152 

template developed in the Montreal Neurological Institute (MNI). This template was 

developed as part of the ICBM project (Mazziotta et al. 1995) by averaging the high-

resolution anatomical MR images of 152 healthy subjects, which had been previously 

corregistered to a series of earlier MNI templates that in turn had been corregistered to 

the Tailarach-Tournoux space. In few years, the usage of the MNI system of coordinates 

to report results of neuroimaging studies become as used as the previously omnipresent 

Tailarach-Tornoux coordinate system (Laird et al. 2010). However, the wide usage of the 

Talairach-Tournoux coordinate system in medicine and in research make it to remain as a 

reference for reporting landmark’s coordinates.  

The existence of small differences across the two previously mentioned reference 

spaces raised methodological concerns and controversies in the neuroimaging 

community, and even multiple inter-space transformation functions (Brett, Johnsrude, et 

al. 2002; Lancaster et al. 2007). These differences are particularly problematic in the case 

of coordinate-based meta-analysis studies. In studies where the individual’s anatomy is 
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available, a neuroanatomic assessment may still prevail to pinpoint the anatomical 

location of certain resulting coordinates, especially if they are in the regions where the 

different spaces differ mostly. 

In our study, the algorithm used to calculate the optimal warping from the 

individual’s image to the common template was developed by the SPM creators 

(Ashburner & Friston 2005). The algorithm was made available for first time in SPM5 and 

shows performance improvements compared to the algorithm previously implemented 

in SPM (Klein et al. 2009). This algorithm is highly optimized for human brain images and 

combines a priory probabilistic tissue classification (segmentation) with the spatial 

deformation log-likelihood cost function. This generates a “mixture of Gaussians model” 

that is used to calculate the optimal parameters of the cost function. The combination of 

tissue segmentation with normalization is known to reduce the dependence of the 

normalization results from the fMRI physic acquisition parameters (Fischl et al. 2004). 
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For this specific case, normalization was carried over in 4 steps: 

1) Rigid-body coregistration of the low resolution average BOLD image with the 

same subject’s high-resolution anatomic image. 

2) Calculation of the normalization of the high resolution image to match the space 

of the MNI template. 

3) Application of the normalization (deformation) parameters to each of the 

functional BOLD images, on top of the realignment parameters calculated in the 

previous step. Resulting functional and anatomical images are re-written 

(resampled) after applying the transformation. 

4) Visual inspection of the resulting images:  

a. Anatomical comparison of the original and normalized images to detect 

deformation artifacts (excessive warping, aberrant misalignment…). 

b. Matching comparison of the normalized images and the template space 

to detect a possible failure to match. 

Although failures of the normalization algorithm are not frequent, step 4 is 

extremely important to ensure data integrity and, therefore, validity of the downstream 

results. The normalization and coregistration algorithms are based in heuristic cost 

function minimizations. Therefore, it is possible that the algorithm converges into an 

aberrant local minimum. When this happens, it is often sufficient to slightly adjust the 

initial alignment so the algorithm converges to the absolute minimum of the cost function.  
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Smoothing: 

A last step of spatial smoothing is very commonly done before moving into 

statistical analysis. This procedure consists in a 3-D convolution of the imaging data with 

a filtering kernel. The most commonly used kernel shape is Gaussian, which is described 

by the “Full Width at Half Maximum” (FWHM) parameter. 

Smoothing with an appropriate FWHM can mitigate high (spatial) frequency MRI 

noise, including residual effects of motion, inter-subject variability and resampling-related 

artifacts (Maas & Renshaw 1999). This can involve a potential increase the Signal to Noise 

Ratio (SNR) and therefore an increase of sensitivity and specificity of the statistical results. 

As per the matched filter theory, a single filter size won’t be optimal for all the activation 

foci. Sensitivity and specificity will be optimized for activation foci of a size matching the 

smoothing kernel (White et al. 2001). A large smoothing filter can also cause a loss in 

spatial resolution of the results. For example, two separate activation foci can merge into 

a single activation cluster if the distance between them is smaller or comparable to the 

smoothing filter’s FWHM. It is therefore prime to take into consideration the data 

smoothness when interpreting fMRI data. 

A minimum data smoothness is also required to use the common parametric 

statistics implemented in the SPM software package. The statistical inference using this 

software is based in the Gaussian Random Field theory. Therefore, it is assuming that the 

dataset is a set of discrete samples collected from a smooth Gaussian field (Friston et al. 

1996; Worsley et al. 1996). A rule of thumb that can be used as an entry criteria in these 

analysis is that the data smoothness (or “RESEL” – RESolution ELement) should be at least 

the double of the voxel size (Worsley & Friston 1995; Strother et al. 2004). Data 

smoothness (FWHM) is linearly additive: Convolving two times a spatial impulse function 

-a dot- with a 4 mm FWHM leads to an 8 mm FWHM dataset. Therefore, to meet this rule 

of thumb, the minimum FWHM convolution filter would be the voxel size, provided that 

the voxel signals are independent from one to the other. 

In this study, an isotropic Gaussian filter of 8 mm FWHM was used to smooth the 

data, as it meets the rule for minimum size (larger than the 3,75x3,75x4 mm voxel size), 
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it is comparable to the smallest structure of interest (amygdala) and it has shown as 

optimal for group statistical analysis in similar datasets (Mikl et al. 2008). 

5.2.4.2 Statistical analysis 

In order to explore the activations induced by the task, a classical two-step 

General Linear Model (GLM) statistical analysis is conducted:  

1) A first-level analysis is made for each individual to determine the amount of 

activation related to the task (contrast estimation). 

2) A second-level analysis is made using all the individual’s contrasts to obtain, 

for each voxel in the brain, a group-wise statistical test against the null 

hypothesis (In this case, that the voxel does not activate according to the task 

model). 

The details of these analysis steps can be seen below: 

First level analysis: This analysis is executed voxel by voxel on the signal’s time course 

(BOLD signal as collected during each moment of the task) modeling the signal with a 

parametric statistical model containing experimental, confound and residual variables. 

Best fit of the model and the data is calculated numerically, deriving parameter estimates 

(beta values) for each voxel and variable of the model, leaving a residual noise, which is 

the non-explained fraction of the signal. Classical statistical inference can be used to test 

hypotheses that are expressed in terms of the variables of the General Linear Model and 

referenced to the residual noise.  

In this study, the General linear model contained three experimental variables: Shapes, 

Happy faces and Fearful faces. Each of these 3 variables was constructed by a box-car 

function (value of 1 when the subject is executing this task and 0 otherwise) convolved 

with the “canonical” SPM-default model of the hemodynamic task-to-BOLD transfer 

function, which is based in two gamma functions (Friston et al. 1999). This is not the most 

versatile model, but it is widely used as it is fairly simple to use and interpret (Lindquist et 

al. 2009). A 128 s high pass filter was applied to the resulting time course model to remove 

its drift component. After the beta values were estimated, 4 sets of beta comparisons 
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(contrasts) were extracted for its significance testing in the second level analysis: βfaces - 

βshapes; βfearful - βshapes; βhappy - βshapes; βfearful - βhappy. Note that “faces” experimental condition 

is the union of “happy” and “fearful” experimental conditions. The rationale behind task 

and control experimental condition in this experiment is introduced in section 5.2.1 

“Behavioral paradigm”. 

Second level analysis: In this step we conduct group-wise statistical tests on the 

task effect under the contrasts extracted in the first level analysis. In this case, the null 

hypothesis is “average first-level beta values equal zero”. One-sample T-test where used 

to test each contrast condition. A whole-brain significance threshold was set at voxel level 

to p<0.05, being p corrected by the false discovery rate method (Genovese et al. 2002; 

Chumbley & Friston 2009). Anatomical interpretation was mainly conducted in the MNI 

space, but supported case by case by the individual’s 3D image and the landmarks of the 

Talairach and Tournoux atlas, particularly for the fusiform gyrus, as it is one of the areas 

with highest discrepancy between the Talairach and MNI reference spaces (Lancaster et 

al. 2007). All results are reported in the Talairach and Tournoux coordinate space. 
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Psychophysiological interaction analysis:  

Psychophysiological interaction (PPI) analyses test the model in which the 

response of a cortical area is explained in terms of an interaction between another area’s 

activity (the physiological factor) and an experimental parameter (the psychological 

factor). That is, PPI analyses are used in fMRI studies to quantify the extent to which an 

experimental task changes the influence that one brain region has over another (Friston 

et al. 1997). 

With Friston’s PPI approach, the BOLD signal of all voxels throughout the brain 

(target regions) are attempted to be explained (via a general linear model) by the activity 

of a single “seed” region of interest (ROI), the psychological (task-related) factor and their 

interaction. 

When building a GLM for a PPI analysis, we will use one regressor representing 

the deconvolved (Gitelman et al. 2003) activation time course of the ROI (the physiological 

variable), one regressor representing the psychological variable of interest (the weighted 

task contrast) and a third regressor representing the cross-product of the previous two 

(the psychophysiological interaction - PPI- term). Solving the GLM will provide us, for each 

voxel in the brain, beta values for each regressor plus an error term. These will be used to 

map areas where activation is significantly predicted by the PPI term. That is, the 

physiological and psychological regressors are treated as confound variables.  

More specifically, a GLM design matrix X is generated containing four columns of 

variables as follows: 

 X1 or P, The psychological variable representing the experimental paradigm (here, 

the task’s emotional face stimuli versus shapes). 

 X2 or T, The time-series variable containing the amygdala-representative signal, 

extracted as the average time course from a 5 mm radial sphere ROI centered on 

the cluster maxima identified inside the amygdala in the group analysis. 

 X3 or I, The interaction variable containing the product between P and T. 
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 X4, A constant term included by default into the model to capture the grand mean 

signal. 

This model is then numerically fitted at each voxel in the brain as: y=Xβ+e using a 

pseudoinverse algorithm. Where y is the “observed” voxel’s signal, β are the parameter 

estimates and e is the error term. Note that, despite the results are obtained via a general 

linear model, the addition of the interaction variable involves the inclusion of non-linear 

relationships into the tested model. 

Activity in seed area
(Physiologic factor)

Task temporal profile
(Psychologic factor)

Activity in area under study
(modulated area)

x
PT

T P

T·P

y=[T P T·P]·β+ɛ
 

Figure 9 Model for Psychophysiological interaction analysis 

Visualization of the Psychophysiological interaction analysis. The equation forms a 
general linear model that contains data from the subject, the model of the response of 
the task and the interaction (internal product) of both. 

 

For each individual, the regression coefficient for the interaction term I (βI) gives 

a measure of PPI. Significance of PPI will be determined by a random effects analysis of βI 

and the error term ɛ (One-sample T-test). A strong significance of PPI indicates that the 

correlation between the source and the target region(s) during the presentation of 

emotional faces is significantly different from that during presentation of shapes. Note 

that, in neuroimaging, the correlation between the BOLD signals of two regions is 

commonly described as functional connectivity. 

Group results were obtained by feeding individual’s whole-brain βI estimates into 

a second level one-sample T-test.  

http://www.sciencedirect.com.ezproxy.lib.swin.edu.au/science?_ob=MathURL&_method=retrieve&_udi=B6WNP-4FNW4P3-3&_mathId=mml1&_cdi=6968&_rdoc=2&_aset=V-WA-A-W-AV-MsSAYVA-UUW-U-AACUBDCYDU-AAVDECZZDU-YDWDWYWDA-AV-U&_acct=C000047763&_version=1&_userid=907278&md5=ad07d8a036f88db9485df6749c0b7864
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Amygdala correlation with LSAS scores Amygdala activation (1st level contrast for 

happy and fearful faces) was correlated against individual’s LSAS score. To assess the 

influence of the fusiform gyrus on amygdala, a representative signal of the fusiform gyrus 

was introduced into the model as a regressor. In order to obtain this representative signal, 

the average contrast value of a 5 mm spherical region of interest (ROI) was extracted. The 

center of the ROI was defined by the peak activation within the fusiform area functionally 

related to face processing (Kanwisher et al. 1997). ROI’s signal was extracted using the 

MarsBar toolbox for SPM (Brett, Anton, et al. 2002). Separate extractions and analysis of 

right and left fusiform gyrus were done given the supporting evidence of lateralized 

functional specialization in this structure (Koutstaal et al. 2001; Sorger et al. 2007; Meng 

et al. 2012). The correlation analysis was restricted to the region of the hypothesis 

(amygdala nucleus and its cortical extensions) to avoid the loss of sensitivity induced by 

the multiple comparisons correction that would need to be made in a whole-brain 

analysis. Analysis significance threshold was adjusted following the Montecarlo 

simulations performed by Stein, Paulus et al (Paulus et al. 2005; Stein et al. 2007) using 

the AlphaSim software distributed with the AFNI software package (Cox 1996). These 

simulations reveal the relationship between an a priori voxel wise probabilistic threshold 

and the resulting corrected threshold, when activations are only considered if they reach 

a minimum number of suprathreshold contiguous voxels. In this case, only clusters of 2 or 

more contiguous voxels (equivalent to 128 µl of tissue) are considered within the 

amygdala ROI, with an a priori voxel wise probabilistic threshold of p=0.05. This 

corresponds to a corrected cluster wise p=0.05 or to a corrected voxel wise p=0.01. 
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5.3 Results 

5.3.1 Behavioral performance indicators during the task 

Subjects showed a high accuracy in the task execution. This indicates that the 

selected task is not excessively demanding for this context. Average failure rate was 1.5%, 

or an average of 1.1 errors out of the 72 trials that compose the paradigm (total amount 

of errors ranged from 0 to 5). Having a lenient task is an advantage of this paradigm for 

future replications of this experiment: Patients or healthy volunteers under the effect of 

drugs may show a diminished functional performance. 

Reaction times to match faces differed between happy (1.079 ± 0.207 s) and 

fearful (1.505 ± 0.307 s). Difference (0.426 s) was statistically significant (paired Student’s 

T=10.6, p<0.00001). This suggests that the task induces a different level or type of 

cognitive demand to process the fearful faces than the happy ones. 

5.3.2 Brain response to emotional faces  

5.3.2.1 Main task effect 

Group level voxel-wise comparison (One sample T-test on individual’s contrasts) 

between matching shapes versus matching emotional faces (being happy and fearful part 

of the same group) showed significant bilateral activation in the visual cortex, fusiform 

gyrus, amygdala and prefrontal cortex. Note that activation, as described here, refers to 

strong statistical correlation between BOLD signal and the task model, with statistic 

strength above the pre-defined significance level. See Figure 10 and Table 4 for details in 

the activations identified in this analysis. These activations are in line with those identified 

in previous works using this same task (Paulus et al. 2005; Stein et al. 2007). Therefore, 

these results can be used to validate that the experimental setup and analysis methods 

are sensitive enough to detect face-processing brain activations.  
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Figure 10 Main faces-matching task effects 

Group (second-level) statistical test of the activations related to matching emotional 
faces (happy and fearful) versus the control shape-matching condition. Group results 
are thresholded at p<0.05, False Discovery Rate (FDR) corrected. The color bar 
represents Student’s T scores. R indicates the right hemisphere. 

 
Table 4 Main faces-matching task effects 

 Main task effect (fearful+happy > Shapes) 

  
Z score 

Talairach coordinates  
(x, y, z mm) 

Visual cortex   

R 6.9 26, -86, -5 
L 6.5 -18, -97, 8 

Fusiform gyrus   

R 6.3 40, -50, -13 
L 6.4 -38, -50, -13 

Amygdala   

R 4.1 20, -5, -22 
L 3.9 -20, -5, -23 

Frontal cortex   

R 5.7 44, 22, 17 
L 5.8 -40, 7,25 

 
Coordinates and z score of the cluster’s peak value. All contrasts show p<0.05 False 
Discovery Rate corrected significance. 
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 The effects of both face conditions (fearful and happy) showed a similar activation 

pattern to the task’s main effect (same functional areas were activated), see Table 5 for 

details. 

Table 5 Segmented faces-matching task effects 

 Fearful>Shapes   Happy>Shapes 

  
Z 

score 

Talairach 
coordinates  
(x, y, z mm) 

   
Z 

score 

Talairach 
coordinates  
(x, y, z mm) 

Visual cortex 
   

Visual cortex 
  

R 6.9 26, -86, -6  R 7.0 20, -97, -1 

L 6.8 -18, -99, 8  L 6.4 -14, -95, 4 

Fusiform gyrus 
  

Fusiform gyrus 
 

R 6.0 40, -50, -11  R 6.2 40, -57, -9 

L 6.3 -38, -52, -13  L 6.1 -38, -50, -13 

Amygdala 
   

Amygdala 
  

R 3.6 20, -9, -16  R 2.9 20, -3, -22 

L 4.2 -16, -5, -13  L 3.0 -22, -11, -18 

Frontal cortex 
  

Frontal cortex 
 

R 5.8 51, -1, 52  R 3.9 46, 2, 48 

L 5.9 -44, 11, 20  L 4.4 -55, 26, 19 

Coordinates and z score of the cluster’s peak value. All contrasts show p<0.05 False 
Discovery Rate corrected significance, except for amygdala in the happy condition 
which showed uncorrected p<0.002 (L) and p<0.001 (R) 

The comparison between happy and fearful, revealed a significantly stronger 

activation for the fearful condition in bilateral fusiform gyrus and middle frontal gyrus 

(See Table 6 for details). This suggest that the extended reaction time observed for fearful 

face matching may be related to heightened activity in the face processing areas. 
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Table 6 Differential task effects: Fear > Happy 

 Differential task effect (fearful > happy) 

  
Z score 

Talairach coordinates  
(x, y, z mm) 

Fusiform gyrus   

R 3.6 42, -51, -1 
L 3.4 -40, -51, -6 

Frontal cortex   

R 4.3 48, 5, 26 
L 4.7 -44, 11, 27 

Coordinates and z score of the cluster’s peak value. All contrasts show p<0.05 False 
Discovery Rate corrected significance. 

 

5.3.2.2 Psychophysiological interaction 

The Psychophysiological interaction analysis (PPI) showed that the emotional face 

processing blocks significantly and specifically increased connectivity between the 

amygdala and the fusiform gyrus. Note that the seed region was extracted from the peak 

amygdala coordinate of the task’s main effect (right amygdala). The peak connectivity 

within the target region of interest (fusiform gyrus) was identified in coordinates -40 -50 

-13, with a T-value of 4.27 (p=0.003), p false discovery rate (FDR) corrected for the target 

area’s volume. See Figure 11 for anatomy. 

 
Figure 11 Psychophysiological interaction induced by the faces processing task 

Results from the psychophysiological interaction (PPI) analysis revealing functional 
connectivity modulation by the face processing task between the 5 mm amygdala 
source region (white circles) and fusiform gyrus [target region of interest (ROI): right 
fusiform gyrus (40,-50,-13), z score=3.52, T value=4.27, small volume correction 
pFDR=0.003]. 
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5.3.3 Correlation of brain activation with social anxiety scores and behavioral 
variables 

The Liebowitz Social Anxiety Scale (LSAS) score of each subject was used as a 

symptom severity indicator to explore if the task activations in the face processing areas 

showed a Pearson’s correlation with SAD expression. The average activation of a 5mm 

radius sphere was extracted from the activation’s peak to feed it to the statistical test.  

In this analysis, we found that none of the region’s peak activation, including 

amygdala’s, showed a significant positive correlation with LSAS scores. The fusiform gyrus 

activation did, however, show a moderate (r=0.47) negative correlation in the fearful 

condition. Note the fearful condition is also the condition that showed the strongest 

activation for the fusiform gyrus, and the condition with highest response times. 
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Table 7 Correlations of LSAS with brain response to emotional faces in the task’s activation peak 
coordinates. 

 Happy  Fearful 

 Pearson’s r p  Pearson’s r p 

Visual cortex 
     

R -0.13 0.576  -0.22 0.338 

L -0.08 0.701  -0.22 0.323 

Fusiform gyrus      

R -0.18 0.431  -0.47 0.029 

L -0.31 0.168  -0.42 0.051 

Amygdala      

R -0.14 0.551  0.12 0.602 

L -0.01 0.971  -0.05 0.827 

Frontal cortex      

R 0.29 0.191  0.24 0.286 

L 0.04 0.877  -0.18 0.413 

Pearson’s correlation between individual brain activation at group’s peak coordinate 
and individual’s Liebowitz Social Anxiety Scale Scores. R, Right; L, left.  

 
The relationship of peak amygdala and fusiform gyrus activation was further 

explored by calculating its correlation with the clinical and behavioral scores presented in 

Table 3. Again, in this analysis we didn’t find significant findings for the amygdala. Right 

fusiform gyrus’s peak activation did show a moderate correlation with two personality 

dimension scores: Harm avoidance (r=-0.53, p=0.012) and Sensitivity to punishment (r=-

0.74, p<0.001), but not with the rest of behavioral scales. 

5.3.4 Region of interest correlation with social anxiety scores 

Provided that the activation in the amygdala’s peak coordinate hadn’t shown a 

significant correlation with social anxiety scores, an additional exploratory analysis was 

conducted. In particular, the whole amygdala region of interest was mapped using voxel-

wise correlation between individual’s activation and LSAS scores. The mapping was 



-76- 

conducted for separately for both happy and fearful faces and for left and right amygdala 

ROIs. In none of these cases we found correlations surviving our significance threshold. 

The analysis was repeated but this time including the signal of the fusiform gyrus 

as a nuisance regressor in the correlation analysis. This analysis showed that amygdala 

activation had a significant correlation with LSAS scores only after regressing out the 

effect of fusiform gyrus. Using this model, a suprathreshold cluster was identified for the 

happy condition in the left amygdala region (see Figure 12a). In the fearful condition, 

activation was identified in both left and right amygdala ROIs (see Figure 12b). See Table 

8 for size, position and significance of the clusters detected. 
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Figure 12 Amygdala regions that correlate with LSAS after regressing out the activation of the fusiform 
gyrus. 

Mapping of the voxel-wise correlation in the amygdala region between the Liebowitz 
Social Anxiety Scale (LSAS) scores and task activation after controlling for (regressing 
out) activation in the right fusiform gyrus: (a) Correlations obtained for the happy 
condition; (b) Correlations obtained for the fearful condition. Only clusters above the 
reference threshold (volume>128 µl with p<0.05) are displayed. The color bar 
represents t scores. R indicates the right hemisphere. 
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Table 8 Correlation of amygdala response to emotional faces with LSAS after controlling for fusiform gyrus 
activation 

 

Talairach 
coordinates 

(x,y,z) 
Partial 

correlation r 
T score 

p 

Cluster 
volume 

(µl) 

Happy vs shapes L -16, -3,-15 0.43 2.14 0.023 184 

Fearful vs shapes R -20, 1, -17 0.51 2.63 0.008 824 

Fearful vs shapes L 20, -13, -21 0.63 3.72 0.001 696 

 
Partial correlation coefficients of Liebowitz Social Anxiety Scale with amygdala 
activation after regressing out activation in the fusiform gyrus (20 degrees of freedom). 
Coordinates, correlation coefficient, T value and p refer to the cluster’s peak. 

 

For data visualization, the relationship between amygdala activation (residuals 

after regressing out the fusiform gyrus activation) was plotted against the corresponding 

individual’s LSAS score. Figure 13 shows these plots for the peak left and right amygdala 

in the fearful condition. Results are clearly not driven by outliers. 
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Figure 13 Plots between amygdala activation and LSAS scores after regressing out the activation of 
fusiform gyrus 

Plots showing the correlation between LSAS scores and amygdala activation in the 
fearful faces condition after controlling for right fusiform gyrus activation. The 
activations were extracted from a 5 mm-diameter ROIs centered at the peak 
correlation in the left amygdala (partial correlation, r= 0.51, df= 20, p= 0.017 two-tailed) 
and right amygdala (partial correlation, r= 0.63, df= 20, p= 0.002 two-tailed). 

 
To explore specificity of the observed correlations after regressing out the 

activation of the right fusiform gyrus, the analysis was repeated but regressing out the 

activation at the peak coordinates of the other regions involved in the emotional face 

processing task (left fusiform gyrus, bilateral visual and prefrontal areas). In the fearful 

condition, controlling for none of these regions replicated the effect seen in the 

amygdala’s activation. In the happy condition, only controlling for left fusiform gyrus 

replicated the left amygdala correlation with LSAS. In particular, by identifying a cluster of 

640 µl with p<0.05 with peak correlation at Talairach coordinates (-22, 1,-20) and peak 

significance of p=0.007. 

5.4 Discussion and Conclusions 

The presented experimental setup and analysis method was proven able to 

generate and detect significant activation in a network related to facial emotion 

processing, including visual cortices and bilateral amygdala in a non-clinical population. 

These activations are in line with the dominant works modeling emotional face processing 

(Haxby et al. 2000; Gobbini & Haxby 2007; Stein et al. 2007). 
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The observed amygdala activation did not show a direct correlation with social 

anxiety disorder symptom severity until a modulatory effect of the fusiform gyrus was 

considered in the model. The univariate statistical model detected involvement of 

emotional processing areas in healthy subjects, but was unable to provide dimensional 

results. Some studies have shown a heightened amygdala response to emotional (mainly 

harsh) faces in SAD patients (M. B. Stein et al. 2002; Phan et al. 2006; Evans et al. 2008; 

Goldin, Manber, et al. 2009), but we are not aware of similar findings in a non-clinical 

population such ours. The psychophysiological interaction observed guided the 

exploratory analysis towards considering a bivariate model of the relationship between 

symptom severity and activation of not one, but two emotional processing areas (fusiform 

gyrus and amygdala). Recent studies suggest that this functional connectivity interaction 

may also be altered in Social anxiety and correlated to symptom severity (Frick et al. 

2013). Also, a recent magnetoencephalography (MEG) study (which provides a temporal 

resolution 100 times higher than fMRI) has described a complex pattern of activation of 

fusiform gyrus, with an early (150-200 ms) under activation (in SAD patients) followed by 

a late (250-300 ms) over activation (Riwkes et al. 2015). The early undershooting pattern 

would be within the temporal timeframe of the amygdala response, but amygdala signal 

was not collected in Riwke’s study due to the technical limitations of MEG. These results 

suggest that the processes related emotional face processing may have complexity within 

a temporal timeframe smaller than the typical time resolution of fMRI. This scenario 

emphasizes the methodological value of connectivity-related analysis, which provide an 

intrinsic synchronization of the dataset used for the analyses.  

The bivariate model (including fusiform gyrus’ interaction with amygdala) 

revealed a linear relationship between task-induced activations in areas related to the 

disease and symptom severity. These findings suggest this relationship should be further 

explored as a biological marker candidate for symptom severity exploration using fMRI. 

Previous studies identified related alterations in the fusiform gyrus with SAD (Straube et 

al. 2004; Gentili et al. 2008). But these findings have not always been consistent across 

studies (M. B. Stein et al. 2002; Phan et al. 2006). Functional connectivity studies will 

reveal further details of these modulatory relationships. The indicator of fusiform gyrus 
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activation may be related to the activity of a brain network extended further than the 

amygdala: In a similar experiment, Gaebler et al identified that high-frequency heart rate 

variability was modulated by the faces matching task and that this modulation correlated 

with fusiform gyrus activation (Gaebler et al. 2013). 

In the context of emotional face processing tasks, fusiform gyrus could be a good 

indicator of task immersion, being activated proportionally to the cognitive load placed 

on face processing or to the fixation time on the face stimulus. Its involvement in 

emotional processing may therefore act as an indicator of the amount of attention placed 

to the faces stimuli. The inclusion of an eye tracking system in the experimental setup may 

be able to show correlation between fusiform activation and the time spent analyzing the 

faces stimulus. Unfortunately, this system was not available in our experimental 

environment. See study 4 (section 8 of this document) for a follow-up on this issue, 

including the results of an eye tracking analysis in the context of a similar experiment. 

When executing this paradigm in our non-clinical population, we have observed 

a modulation of the brain activity in the circuitry previously shown to be recruited and 

altered in patient populations. The fact that both populations activate similar structures 

reinforces the interest of using in dimensional, not categorical (active/not active) 

approaches as a biomarker. The nature of symptom severity is also non binary, despite 

medical criteria does end up categorizing patients as patients or non-patients. Measuring 

the strength of the interaction between emotion processing areas, which is a dimensional 

approach, can therefore be particularly helpful, as this study suggests this can act as a 

specific biological marker correlating with SAD symptom severity.  

Our results did not reveal significant differences between happy and fearful faces, 

although fearful faces triggered a stronger effect, with stronger activations and 

correlations. A methodological study reported higher test-retest reliability in the 

amygdala’s response to fear faces than in response to neutral faces (Johnstone et al. 

2005). Also, a comprehensive meta-analysis associated fusiform hyper-activity to 

specifically negative emotional stimuli in SAD (Etkin & Wager 2007). It is important to note 

that our experiment was not aimed to discriminate the effect between accepting and 
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harsh faces, as random expressions appear in the non-target option of every trial. We 

neither controlled for neutral faces, which have been reported to also trigger an abnormal 

amygdala response in SAD patients (Birbaumer et al. 1998; Cooney et al. 2006). 

In conclusion, the results of this work suggest that our setup and implementation 

of the emotional face processing task induces brain activations in line with those found in 

the literature. The task also was seen to modulate amygdala-fusiform connectivity. The 

exploratory analysis considering fusiform and amygdala activation has revealed brain 

activation patterns linearly related to symptom severity in the non-clinical population. 

Increasing knowledge on these inter-related brain activation patterns (functional 

connectivity) in SAD patients may be extremely helpful to develop biomarkers able to 

identify and objectivize treatment response or patient’s symptom severity. 
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6 Study 2: Specificity and reproducibility of independent 
component analysis of fMRI datasets in cognitive, emotional 
and resting state experiments 

6.1 Introduction 

The results of study 1 (section 5 of this document) pointed that a connectivity-

based measurement could provide a biomarker reflecting symptom severity in SAD. This 

triggers the interest of further exploring functional connectivity techniques to develop 

fMRI-based biomarkers for SAD.  

The interpretation of functional connectivity (that is, of the dependence between 

the brain activity registered in different areas of the brain) as the expression of brain 

networks which support certain functions is not new. The first fMRI connectivity study 

was limited to the calculation of cross-correlation of the signal of a (seed) point of the 

brain’s motor cortices versus the rest of voxels (Biswal et al. 1995). These results remained 

relatively non-interpreted for several years. However, the understanding of functional 

connectivity measurements has evolved very fast in the XXI century (Sporns 2012). In this 

period, a new and exciting perspective has been provided to neuroimaging through the 

study of the human connectome (Behrens & Sporns 2012) and its dynamics (Calhoun et 

al. 2014). This later is becoming relevant in neuroscience and it has brought up the 

concept of the study of the chronnectome. This later illustrates the understanding that 

functional connectivity maps can reflect dynamic states rather than a mere footprint of 

an underlying neuronal system. 

As introduced in section 2.2.2.2, Independent Component Analysis is a convenient 

and attractive method to explore whole-brain networks defined by functional 

connectivity. The fact that this technique can explore the brain’s functional connectivity 

even in resting state, makes it a very good candidate for translational research or for 

clinical research with human patients with which full cooperation cannot be taken for 

granted. It is not surprising then that the clinical applications for which resting-state 

studies have shown earlier development include Alzheimer’s disease, schizophrenia and 
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disorders of consciousness (which cover coma and vegetative states) (Rosazza & Minati 

2011). 

In light of this interest, it is considered necessary to demonstrate that our 

experimental system and analysis methods can obtain valid connectivity maps from 

healthy volunteers, and that these connectivity maps are indeed representing an 

underlying brain network that remains regardless of the activity the subject is carrying.  

In this study, a characteristic brain network has been selected and it will be 

examined using a model-free analysis of three extremely different tasks that the subject 

will be performing. The selected network for study is the “default mode brain network”, 

due to the interest that its unconventional dynamics have arisen. A recent literature 

review pointed that the main findings on resting state connectivity alterations in anxiety-

related patients are related to this network (Peterson et al. 2014). Reproducibility of the 

results will be explored as part of the validation of the experimental setup and the analysis 

methods. 

6.2 The concept of the default mode brain network 

The name of the “default mode” network (DMN) was coined after a few years of 

PET studies identifying a set of brain structures that, paradoxically, would decrease their 

activity when the subject was performing non-referential attention-demanding tasks 

(Shulman et al. 1997; Raichle et al. 2001).  

An intense debate and expectation has been generated around the interpretation 

of the brain functions related to this network, and even on its existence (Morcom & 

Fletcher 2007). This controversial situation has reverted in a fast growth on the awareness 

on this network, as evidenced by the large amount of recent publications on the topic 

(Raichle 2013). 

Despite there are still multiple open unknowns, today the DMN observations are 

widely accepted as the proof of existence of an ongoing and anatomically organized mode 

of neuronal activity that is preferentially engaged in the brain and that is suspended only 

during specific goal-directed behaviors. In humans, this default mode system has been 
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linked, in part, to: The spontaneous thought processes or self-referential mental activity 

(Andrews-Hanna et al. 2010), to the support of emotional processing (Gusnard et al. 2001) 

and to the recollection of prior experiences (Vincent et al. 2006).  

There are methodological concerns related to the unknown contribution of 

physiological noise to the connectivity metrics obtained in these analysis (Birn, Murphy, 

et al. 2008). However, the functional connectivity shown by this group of brain structures 

has been widely reproduced across the glove and are now backed up by studies showing 

highly matching anatomical connectivity across the nodes of this network (Hagmann et al. 

2008; Deco et al. 2013). The DMN is, therefore, a widely recognized brain network, still 

under study. This gives it a great scientific interest that pulls attention for neuroscientific 

and methodological works like the one presented below. 

6.3 Methods 

6.3.1 Subjects 

Twenty-two healthy subjects were included in this study (12 female; 10 male; 

mean age ± SD = 26.0 ± 3.5 years) from an original sample of 24. Two male subjects were 

excluded from the final analysis, one because of failure to complete the fMRI session and 

the second because of excessive head movement. None of the individuals had a personal 

history of neurological or psychiatric illness and all subjects had normal or corrected-to-

normal vision. Each subject underwent the Structured Clinical Interview for DSM-IV (SCID) 

non-patient version (APA 2000). The mean education level of the group was 17 ± 3 years. 

All subjects gave written informed consent to participate in the study, which was 

approved by local research and ethics committees. 

6.3.2 Task selection for comparison with spontaneous activity 

Previous literature has identified that brain activity in the so-called default-mode 

brain network can be consistently modulated depending on the activity of the subject. 

While this brain network has been identified to oscillate while the subject performs no 

task, the activity of this network is now well known to significantly decrease while the 

subject performs an attention-demanding task (Greicius & Menon 2004). At the same 
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time, activity in this network has been seen to increase when the individual is performing 

involving self-judgments, autobiographical memory recall, moral dilemma, and 

prospective thinking, among others (Gusnard et al. 2001; Pujol et al. 2008). 

This study sought to investigate the reproducibility ICA-extracted default mode 

network maps obtained by three distinct fMRI contexts: Passive rest, task-related 

deactivation and task- related activation.  

6.3.2.1 Resting state condition 

A 4-minute continuous resting-state scan was acquired for each subject. Subjects 

were instructed to relax, to stay awake and to lie still without moving, while keeping their 

eyes closed at all times. This scan generated 120 whole-brain EPI volumes and was 

acquired as the first functional imaging sequence for each subject. 

6.3.2.2 Deactivating task 

To study functional deactivations of default mode regions, we developed a self-

paced computerized version of the Stroop color-word interference task. This task is 

known to be highly cognitive demanding as it defines both speed and accuracy as 

performance criteria. The choice of the task being self-paced is to promote robust 

deactivation of the default network by keeping subjects continually engaged regardless 

of their ability to perform the task. 

This Stroop paradigm involved three conditions: resting visual-fixation (R), 

congruent color-word stimulus blocks (C), and incongruent color-word stimulus blocks (I). 

The paradigm began with an initial resting block of 32 seconds, followed by four 30-

second congruent and incongruent stimulus blocks, interleaved sequentially by eight 12-

second blocks of resting visual-fixation, defining the sequence [RCRIRCRIRCRIRCRIR]. 

During congruent trials, the stimulus ‘‘XXXXX’’ was centered on a black screen in either 

one of three colors: red, green, or blue. Correct responses were mapped to the following 

target stimuli; ‘‘RED,’’ ‘‘GREEN,’’ or ‘‘BLUE,’’ located in the screen below the cue stimulus 

and displayed in congruent caption color. The location of the targets (left, middle, right) 

corresponded to the hand-held button device responses presented in section 5.2.3.3. 
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During incongruent trials, the same stimulus configuration was presented. However, the 

cue stimulus was instead one of the same three words presented in incongruent caption 

color.  

Subjects were instructed to match the color of the cue stimulus with the 

corresponding target word stimulus as quickly and accurately as possible, while mentally 

vocalizing their response (color naming). There was no inter-stimulus interval between 

consecutive stimulus presentations. Instead, new stimuli appeared immediately, at a pace 

determined by each subjects’ rate of responding. The paradigm ran for a total duration of 

6 minutes, generating 180 whole-brain EPI volumes. 

6.3.2.3 Activating task 

For the activation task, a version of the moral dilemma challenge previously used 

by the same group (Pujol et al. 2008) was selected. In this task, subjects are familiarized 

with stories with and without moral challenges and, for the morally challenging situations, 

are asked to provide their answer on what would they do. 

As the logistics of the fMRI setup do not allow developing the story during the 

acquisition, subjects were familiarized in detail with the 24 moral dilemma and 24 control 

task situations, illustrated with vignettes, within one week of the exploration. This training 

session lasted approximately 1h and was performed to ensure that subjects had a clear 

understanding of the task and to assist the recall of each control and dilemma vignette on 

the study day. 

On the day of the experiment and before commencing scanning, subjects verified 

that they could remember each task vignette and were then instructed how to respond 

during the actual scan. For the control condition, subjects were told to simply indicate the 

outcome of each event when voice-prompted for a ‘‘yes/no’’ answer, by raising either 

their index finger (yes) or index and middle fingers (no). For the moral dilemma condition, 

subjects were informed that during scanning they would be prompted for their own moral 

judgment to each of the dilemma vignettes, again by raising their index finger to indicate 

‘‘yes’’ or index and middle fingers to indicate ‘‘no.’’ All of the voice prompts that 
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accompanied the presentation of the control and moral dilemma vignettes were 

prerecorded and programmed to occur one second after the presentation of the visual 

stimuli. The total stimulus interval for each visual presentation was 5 s. Subjects’ 

responses were made within a four second window using the response commands 

described above, which were recorded by an examiner. The control (C) and dilemma (D) 

scenarios were presented as four 30-second long, alternating blocks of six stimulus 

presentations each (CDCDCDCD). The exploration lasted 4 minutes in total, generating 

120 whole-brain EPI volumes. See below a sample of a moral dilemma situation and an 

episodic recall (control) condition. 
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Mr. Jones is walking down the street when 
he finds across a wallet lying on the ground. 
He opens the wallet to see that it contains 
$900 in cash as well as the owner's driver’s 
license and credit cards. From the contents, 
Mr. Jones can see that the owner has been 
hit by hard times. He considers mailing the 
wallet back to the owner with all its contents 
from the address on the driver’s license, or 
keeping the $900 and sending back just the 
credit card and license.  
Voice prompt: Would you keep the $900? 

 

 

 
Mr. Jones is out in the main shopping street 
downtown. He enters a clothes store where 
he tries on several garments. After thinking 
for a long while he makes up his mind and 
selects the red t-shirt. 
 
Voice Prompt: Will he buy the blue t-shirt? 
 

Figure 14 Examples of moral dilemma task 

Figures presented to immerse the subject in each of the stories (left) and story 
accompanying the image (right) subjects were trained with these stories prior to the 
fMRI exploration. Note that the top story corresponds to a dilemma condition, while 
the bottom story corresponds to a control condition. 

 

6.3.3 Image acquisition 

The MRI system and MRI sequence was the same as used in Study 1 and described 

in section 5.2.3.2. In summary, a 1.5 T Signa Excite system (General Electric) equipped 

with an eight-channel phased-array head coil and single-shot echoplanar imaging (EPI) 

software was used. Functional sequences consisted of gradient recalled acquisition in the 

steady state [time of repetition (TR), 2,000 ms; time of echo (TE), 50 ms; pulse angle, 90°] 

within a field of view of 24 cm, with a 64 x 64 pixel matrix and a slice thickness of 4 mm 

(plus an interslice gap of 1 mm). Twenty-two interleaved slices, parallel to the anterior–
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posterior commissure (AC–PC) line, were acquired to cover the whole-brain for all 

functional sequences. The first four (additional) images in each run were discarded to 

allow the magnetization to reach equilibrium. 

As introduced in section 6.3.2, the number of acquired volumes was 120 for the 

resting state sequence and the dilemma (activating) task and 180 for the Stroop 

(deactivating) task. 

6.3.4 Image analysis 

6.3.4.1 Preprocessing 

Image preprocessing followed a similar pipeline as in study 1 (See section 5.2.4.1 

for a detailed description). In summary, it was preprocessed using SPM5 

(www.fil.ion.ucl.ac.uk/spm) by doing motion correction, spatial normalization to the MNI 

template and smoothing using a Gaussian filter of 8 mm of full-width to half-maximum. 

Data was resliced to 3 mm isotropic voxels to contain computational power demand in 

the ICA analysis. One subject was excluded due to presenting excessive head movement 

(z axis translation > 2 mm). 

6.3.4.2 Independent Component Analysis 

Independent Component Analysis was performed using the Group spatial ICA for 

fMRI Toolbox (GIFT, Version 1.3b; http://icatb.sourceforge.net/) run on MATLAB 7, using 

settings and algorithms similar to those reported in the studies of the toolbox developers 

i.e. (Calhoun et al. 2004). This involved that, for each of the three fMRI experiments, a 

single Group ICA was performed at the group level after concatenation of all subjects 

along the spatial dimension. Single-subject time courses and spatial maps where back 

reconstructed after the analysis from the raw data matrix. As detailed in Calhoun’s works, 

GIFT performs this procedure as three stages: (1) data reduction, (2) application of the 

ICA algorithm, and (3) back reconstruction. 

During stage 1, principal component analysis (PCA) (with three reduction steps) 

was used to reduce individual subjects’ data in dimensionality (for computational 

feasibility). The dimensionality of these data, or number of components, was estimated 

http://www.fil.ion.ucl.ac.uk/spm
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using the minimum description length (MDL) criterion as implemented in GIFT, which 

attempts to minimize mutual information between components (Li et al. 2007). For the 

resting-state study, data from each subject (n = 22) were initially reduced from 120 to 17 

dimensions, followed by a second concatenation into five groups (n = 4, 4, 4, 4, 6), each 

of which was reduced from 68 or 102 dimensions to 17. This was followed by an ultimate 

concatenation and reduction into one group with 17 components. An identical data 

reduction was estimated for the activation (moral dilemma) study. For the deactivation 

(Stroop) study, as it had a longer acquisition time, data from each subject (n = 22) were 

first reduced from 184 to 19 dimensions followed by a second concatenation into five 

groups (n = 4, 4, 4, 4, 6), each of which was reduced from 76 dimensions to 19. This was 

followed by an ultimate concatenation and reduction to one group with 19 components.  

In stage 2, the estimation of independent sources was performed using the 

Infomax algorithm (Bell & Sejnowski 1995). See section 2.2.2.2 for an overview of the 

rationale behind this algorithm. 

During stage 3 of back-reconstruction, individual subject image maps and time 

courses were estimated using the group solution and the individual data to accurately 

represent the subject-to-subject variability existing in the data (Calhoun et al. 2001a). The 

resulting single-subject time course amplitudes were then calibrated (scaled) by using the 

raw data to reflect a proportional percentage of fMRI-BOLD signal strength. In this 

process, the estimated time course is treated as the model and is linearly fitted to the raw 

data using an intercept term. This fit is then used to scale (or normalize) the component 

images into effect size “z score” units. Z-score effect size estimators also reflect the 

deviation of the data from the mean, enabling second-level (subtractive or conjunctive) 

random effects analyses to be performed. 

6.3.4.3 Identification of the extracted components 

This work focused mainly in one pre-defined network, which was expected to be 

represented by one of the ICA-extracted components. In order to maintain impartiality in 

the component selection, we performed an automatic (blind) spatial sorting analysis of 

the GIFT output. For each respective set of Group ICA results, independent components 
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were spatially correlated with an anatomically predefined default mode template and 

were ranked according to a ‘‘highest correlation’’ criterion (Pearson’s r) with this 

anatomy. For a similar approach see (Greicius & Menon 2004). This template was created 

using the Wake Forest University “WFU Pick atlas” (www.fmri.wfubmc.edu), which is 

based on the Talairach labeling system. The basic anatomy of the template included the 

posterior cingulate cortex, and medial frontal and inferior parietal lobes. Although 

objective, this process essentially confirmed what was evident upon a visual inspection of 

the data. 

6.3.4.4 Statistical Significance Testing of Networks 

One-sample T-tests in SPM5 were used to assess the statistical significance of 

each identified default mode network pattern. For a particular pattern, each subject’s 

respective independent component image (z score spatial correlation map) was entered 

into a second-level random-effects analysis and assessed statistically against a threshold 

of PFDR < 0.05 (whole-brain corrected) with a minimum cluster size of >8 contiguous voxels. 

6.3.4.5 Anatomical comparison of Identified networks 

Consistency in the spatial distribution of the default mode pattern across the 

three study conditions was assessed by calculating the percentage of overlap of voxels in 

each activity map in a series of pairwise comparisons. Initially, each map was scaled and 

binarized as a global mask that represented all suprathreshold brain voxels. The total 

number of voxels in each map was then calculated. For each comparison, the number of 

voxels contained within a union of the two given masks was also estimated. With these 

data, it was then possible to determine the percentage of overlap of voxels, and the 

percentage of unique voxel space, of one network relative to the other. 

The consistency of regional activity in the three default mode network patterns 

was examined using a conjunction analysis as implemented in SPM5 adopting the global 

null approach (Friston et al. 2005). That is, the condition tested is whether the activation 

takes place in all conditions (AND condition). Evidence for a conjunction between the 

three task states was assessed statistically using a threshold of PFDR < 0.05 (whole-brain 

http://www.fmri.wfubmc.edu/
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corrected). The results of these analyses indicate those voxels that showed significantly 

consistent connectivity to the DMN across the three experiments.  

6.4 Results 

6.4.1 Identification of the default mode brain network 

For each experiment, we identified a statistically significant pattern of spatially 

correlated BOLD signal activity [an independent component (IC)] that reproduced the 

major anatomical features of the default mode network with statistical significance (PFDR 

< 0.05). This was tested further and directly, using the described spatial sorting analysis 

that estimated the spatial correlation of all IC patterns from a given set of Group ICA 

results using an anatomical template of the default mode network created by using a 

Talairach and Tournoux atlas labeling system. 

In each case, the default mode network pattern that we identified from each 

Group ICA demonstrated the highest correlation to this anatomical template with respect 

to other estimated ICs (Pearson’s r range = 0.40 to 0.60). 

 Figure 15 shows the default mode network patterns and their associated time 

courses that were identified in each of the fMRI experiments. For each of these 

observations, primary clusters of activity were located in the dorsal and polar medial 

frontal cortex, ventral posterior cingulate cortex, the inferior parietal and frontal cortices 

and lateral cerebellum.  

After the initial spatial identification of networks, a temporal sorting analysis was 

performed to determine the degree of ‘‘task-relatedness’’ of the moral dilemma and 

Stroop task default mode network patterns. For each set of ICA results, the associated 

time course for all ICs was correlated with an idealized reference function (task waveform) 

of the moral dilemma and Stroop experiments, respectively. In both cases, the identified 

default mode networks (Figure 15 B and C) demonstrated the highest correlation to each 

corresponding task waveform of the relevant task periods. As seen in Figure 15B, the 

degree of task-relatedness of the default mode network activity pattern to the moral 

dilemma task was strong. This pattern was positively and most robustly correlated with 
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the specific moral dilemma condition blocks (Pearson’s r = 0.53) relative to other 

estimated ICs. 

Similarly, the degree of task-relatedness of the default mode network pattern to 

the Stroop task was also high (Figure 15C). This pattern was positively and most robustly 

correlated with the interleaved rest-fixation periods during Stroop task performance 

(Pearson’s r = 0.53) relative to other estimated ICs. 

  



-95- 

 

 

Figure 15 Components of the default mode network 

Map of the group-defined default mode network during (A) Rest (z score range = 3.5 to 
7) and the time course of a representative subject. (B) The moral dilemma experiment 
(z score range=3.5 to >8) and the average task-related activity (solid line) ± standard 
error (dashed line). (C) The Stroop task experiment (z score range = 3.5 to 7) and the 
average task-related activity (solid line) ± standard error (dashed line) Diamonds 
located below this time course correspond to the middle point of each Stroop task 
block. White diamonds, rest-fixation periods; green diamonds, congruent trials; red 
diamonds, incongruent trials. Image display: Radiologic convention (left = right). 

 

6.4.2 Anatomical comparison of the identified networks 

After the initial identification of default mode network activity patterns, our first 

aim was to assess the consistency of the spatial anatomy of the network across the three 

imaging contexts: Activation, deactivation and rest. The primary intention of this analysis 

was to determine the extent to which the task-related activity patterns may reproduce 

the spontaneous anatomy of the network as characterized at rest. This was performed by 

calculating the percentage of common and unique voxel space in each activity map in a 

series of pairwise statistical comparisons. 

A spatial overlap of 97.3% was observed from the resting-state to dilemma task 

activity map, such that the dilemma map reproduced almost the entire voxel space of the 
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default mode network represented at rest. The dilemma activity map was also 41.6% 

larger in additional voxel space compared with rest—an effect that was expressed 

predominantly in the anterior, mid, and posterior cingulate regions; right inferior parietal 

cortex; and dorsolateral frontal cortex (see Figure 16A). 

A spatial overlap of 94.7% was observed from the resting-state to Stroop task 

activity map, such that the Stroop map also reproduced the original voxel space of the 

default mode network at rest. The Stroop task activity map was also found to be 48.5% 

larger in additional voxel space compared with rest. This effect was expressed 

predominantly in the anterior, mid, and posterior cingulate cortex regions (see Figure 

16B). 

 

Figure 16 ICA-extracted Default Mode Network overlap across tasks 

 Figure 16 shows the anatomical overlap of default mode network activities. (A) 
Representative axial slices showing the moral dilemma activation map (color) over- laid 
with the corresponding anatomy of the default mode network at rest (white contour 
lines). (B) Representative axial slices showing the Stroop task deactivation map(color) 
overlaid with the corresponding functional anatomy of the default mode network at 
rest (white contour lines). Image display: Radiological convention (left = right). 

 

6.5 Discussion and conclusions 

The selected Independent component analysis technique consistently identified 

the functional connectivity of the chosen brain network (the default mode network) in 
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three paradigms very different among them (highly emotional, highly cognitive and task-

free). The model-free independent component analysis results showed a high spatial 

coherence across functional network footprint identified in each of the three paradigms. 

This network was selected because the interest and open questions the neuroscientific 

community recently raised on it (Raichle 2013). Piling scientific work is contributing to the 

vanishing of the concerns expressed on the value of resting state functional connectivity 

studies (Morcom & Fletcher 2007). Nowadays, the DMN has now been robustly identified 

across imaging techniques, including positron emission tomography (Raichle et al. 2001), 

electroencephalography (Laufs et al. 2003), near infra-red spectroscopy (White et al. 

2009) and magnetoencephalography (Brookes et al. 2011). Using fMRI, the DMN has also 

been identified in resting monkeys (Vincent et al. 2007), cats (Popa et al. 2009), rats (Lu 

et al. 2012) and mice (Stafford et al. 2014). The availability of methods to image 

connectivity of resting state networks in animal models boost the interest of 

characterizing SAD improvement biomarkers based on resting state functional 

connectivity, as these could be explored across species in translational research. 

The analysis of the time course identified to be driving the network’s connectivity 

revealed that the emotional (moral dilemma) task increased the activity in the DMN. The 

opposite effect was observed in the cognitive (Stroop) task. From the neuroscientific 

perspective, these results support the idea that this brain network is also functionally 

related to self-referential process in humans (Harrison et al. 2008). 

The fact that the network identified was anatomically highly coincident across 

experiments supports the reproducibility of the results obtained by the implemented 

group ICA approach. That is, the implemented approach is able to isolate underlying brain 

networks despite of them having large differences in their activity during the imaging 

session. In an experiment that was executed around the same timeframe as ours, Calhoun 

et al also explored the reproducibility of the brain networks extracted with group ICA. In 

Calhoun’s work, they reported a robust replication of the spatial map of the default mode 

network obtained by analyzing data obtained during resting state and during a cognitive-

demanding auditory oddball task (Calhoun et al. 2008). In this work, they found a large 

spatial correlation in a large fraction of the networks explored, but not in all of them. 
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The extension differences observed in the results of our experiment (see Figure 

16) are likely to be related to the applied thresholding. In our context, thresholding can 

only be based on an arbitrary value and must not be assumed to provide the same results 

across experiments. It is important to note that in fMRI’s ICA, the signal of each voxel is 

generally expected to be influenced by more than one source (Calhoun et al. 2013). 

Changes in the coupling with regions of other networks will affect the effect size measured 

by the analysis procedure. This is very likely to expand or contract the network borders 

when these are defined by a fixed effect size threshold. Therefore, neuroscience-literate 

qualitative assessments are often used to set the boundary threshold and to determine 

whether a voxel in the network’s border has a relevant participation in the detected 

network or not. Expansion of the spatial ICA analysis with temporal independence analysis 

on the component’s time course has proven to provide high robustness to the issue of 

having highly overlapping networks (Smith et al. 2012). However, the initial works using 

this approach required over 100 times more data points and the associated computational 

power, making it to be considered not yet usable in our context. 

One of the limitations of this study to support reproducibility of the group ICA 

method implemented is that it is focused on a single set of tasks and in a single brain 

network. The results found in this study, even when reproduced, cannot be used to infer 

a robust reproducibility in all tasks and networks. Similar validating assessments will have 

to be carried before alternative networks and tasks can be validated as fMRI biomarkers.  

Another limitation of this study is the limited sample size (n=22). A study on 1093 

resting-state datasets acquired in 2 different centers also concluded that resting state 

fMRI provides a remarkable stability of the functional connectome (Biswal et al. 2010). In 

Biswal’s et al. study, however, subtle differences related to gender and age were 

identified. The fact that our identified default mode network is anatomically highly 

overlapping with the findings of large-sample studies further supports the conclusion that 

the technique’s implementation is robust and reliable. 
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Concluding, the selected group spatial independent component analysis 

technique has been able to robustly reproduce the anatomy of the default mode network 

in data acquired during two very distinct tasks and while the subject was in rest condition. 
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7 Study 3: Validation of sensitivity of resting-state 
experiments to emotional state differences. 

7.1 Introduction 

The robustness of spatial independent component analysis of fMRI data in 

systematically isolating functionally connected brain networks is now becoming widely 

accepted. This can be rapidly inferred from a basic literature review in the general case, 

or from study 2 in the particular context of our setup and analysis methods. 

It has been highlighted that spatial independent component analysis may not just 

be able to robustly identify brain networks, but may also be sensitive to certain 

characteristics or states of the subject (Beckmann 2012). In this study we will study the 

feasibility of using spatial ICA results as psychiatric biomarkers by attempting to detect 

subtle short-term changes in the subject’s emotional state. Significant progresses have 

been made in characterizing ICA-based biomarkers in other psychiatry areas of 

knowledge, such as schizophrenia (Du et al. 2014), but models of ICA expression of most 

psychiatric alterations are still deeply underdeveloped.  

When comparing the results of spatial independent component analysis across 

two states or populations, it is essential to describe in detail the metric being compared. 

Subtle details can deeply condition the inference that can be made from the results. 

The concept most broadly used to explore functional changes of brain networks 

is Functional Connectivity (FC). FC is defined as the correlation (or other kinds of statistical 

dependency) among two spatially remote brain regions (Friston 2002). Due to its simple 

interpretation, the FC estimator most broadly used is the Pearson’s correlation coefficient 

between two given voxels or ROIs. Note that, when this correlation coefficient is mapped 

from a particular location to a broad set of regions of the brain, we are using the technique 

described in section 2.2.2.1 as seed-based functional connectivity. 

In the context of spatial independent component analysis (sICA, described in 

section 2.2.2.2), the unmixing matrix obtained as part of the analysis defines a temporal 
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signal that drives the connectivity within each identified network. In sICA, the obtained 

spatial component (images) are maximally independent. This does not apply to the 

obtained time courses, for which independence has not been maximized during the 

process. Therefore, the network’s time courses can exhibit temporal dependencies 

between them. These temporal dependencies among components are typically not as 

large as those between regions within a component (otherwise they would likely have 

been included within a single component) (Calhoun et al. 2001b; Calhoun et al. 2003). The 

study of the dependence between network’s time course is now commonly known as the 

study of functional network connectivity (Jafri et al. 2008). 

A method conceptually in between the two analysis previously described consists 

in the assessment of the dependence of each voxel’s raw time course with the time course 

of a given (ICA-extracted) functional network. This method allows assessing to which 

extent a network’s characteristic signal explains the variance of a given voxel. This gives 

an indicator of functional connectivity of the pixel to the network’s estimated 

characteristic signal. In this context, the most commonly used effect size estimator is the 

standardized score (z-score). This method is also commonly used to determine which 

voxels are significantly modulated by a network’s time course (Beckmann et al. 2005). To 

do so, a map is typically created containing the z-scores of voxels that survive a pre-

defined significance threshold. These are the characteristic “Independent network map” 

images used to present a network’s anatomy in most ICA-based works, including this one. 

Provided that the differences versus basic functional connectivity have been presented in 

this section, in the context of this work, these “z-score” maps will be simply referred to as 

“component connectivity maps”. 

In this study, changes in functional connectivity through experimental 

manipulation of the subjects are explored through comparison of component connectivity 

maps. As it has been exemplified in section 6, ICA allows modeling the independent 

component networks behind an fMRI dataset with fair spatial robustness across subjects 

and conditions. Z-score component connectivity maps have been successfully used to 

determine to which extent component connectivity maps differ in certain populations 

such as Alzheimer’s disease patients (Greicius & Menon 2004) or schizophrenic patients 
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(Çetin et al. 2014). It has also been described that functional alterations related to task 

execution can be observed in component connectivity maps (Calhoun et al. 2008). Some 

studies revealed that the resting state networks could be sensitive even to the task that 

the subject had performed just before (not during) the scan session (Waites et al. 2005; 

Tailby et al. 2015). This supports the idea that the subject’s state could, to some extent, 

influence component connectivity maps. 

One of the main objectives of this study is exploring whether ICA component 

connectivity maps can be sensitive to experimentally induced emotional states. We are 

not aware of any previous study that has tested this hypothesis and we believe that these 

results can contribute in the understanding that ICA of fMRI data is a technique highly 

sensitive to the status of the subject under study. A positive result reinforces that this 

technique could be a valuable contributor to the characterization of psychiatric patient’s 

symptom severity or response to psychopharmacologic treatments. 

7.2 Methods 

7.2.1 Subjects 

Twenty-four, right-handed, healthy volunteers were recruited for this study (12 

female; mean age and SD=31.0 ± 8.3 years). All subjects spoke English as a first language 

(they were recruited and explored in the area of Melbourne, Australia) and had no history 

of neurological disorder or psychiatric illness. Subjects’ mean education level was 15.3 ± 

2.4 years and general intelligence scores (Wechsler 1999) 114 ± 10.8. All subjects gave 

written, informed consent to participate in the study, which was approved by the Mental 

Health Research Institute of Victoria and Melbourne Health Research and Ethics 

Committees 

7.2.2 Experimental protocol 

For mood induction, we used a modified version of the paradigm reported by 

Damasio et al (Damasio et al. 2000). During an initial interview session, one week prior to 

scanning, participants were told that they would be required to think about two events in 

their past - one especially non-emotional experience and one especially sad experience- . 
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Subjects were told that they would be asked to provide broad (not detailed) accounts of 

the contents of their imagery after scanning. As described in Damasio et al, there was no 

attempt to constrain the themes artificially by limiting the recall to episodes involving the 

same persons or places or a certain time span, because we were interested in gaining 

access to the autobiographical episodes that the subjects considered to be emotionally 

most powerful. For the neutral recall condition, subjects were asked to recall in detail a 

specific but unemotional day in their lives (e.g., a typical day at work in which everything 

is routine) assisted by the musical piece ‘Chopin Waltzes numbers 11 and 12’ (played at 

half-speed). Subjects were asked to recall this day chronologically, i.e., from waking up in 

the morning, preparing breakfast, getting dressed, hearing the news, leaving for work, 

arriving at work etc. For the sad recall condition, subjects were asked to recall in detail a 

specific, personal episode or event of particular sadness in their lives and to attempt to 

re-experience the emotions, aided by the musical piece ‘Russia under the Mongolian 

Yoke’ by Prokofiev. To encourage that true autobiographical recalls were generated for 

both conditions, subjects were instructed not to imagine or interject untrue events (i.e. 

worst/best case scenarios) but rather to think about events that actually happened.  

During scanning, subjects were instructed to close their eyes and attempt to recall 

and re-experience the specific neutral or sad emotional episodes (i.e., scan 1 = neutral 

recall, scan 2 = sad recall). Subjects were told to actively visualize, think and ruminate 

about the specific episodes rather than to concentrate on their feelings of relaxedness or 

sadness. They were also instructed to maintain as long as they could these specific feeling 

states until the end of the scanning period, i.e., after they had indicated each scan to 

commence (see further). Each condition commenced with the selected music pieces being 

played. The choice of music to accompany the sad recall condition was based on previous 

studies indicating that this piece, together with the sad memory recall, consistently and 

specifically induced dysphoric mood without co-producing other related emotional states 

(e.g. anxiety) (Clark & Teasdale 1985; Martin 1990; Segal et al. 2006). This approach to 

mood induction, including the specific sad music piece, have been used successfully in 

previous PET and fMRI studies e.g., (Baker et al. 1997; Lewis et al. 2005), albeit to assess 

the influence of induced mood states on latter cognitive task performance. In our study, 
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the presentation of music pieces during the pre-scanning (induction) period was also 

employed to reduce distraction to surrounding noise in the MRI environment. 

Each musical piece (presented via headphones) was played for between one and 

five minutes on average before each of the four-minute scans commenced, depending on 

the time it took for the participant to achieve the mood state. Scanning commenced only 

after the subject indicated (via button press) that they felt a certain intensity of neutral or 

sad mood had been reached. While we allowed up to five minutes for subjects to achieve 

the desired mood states, in practice, all subjects indicated to commence the scans within 

a three-minute period. For the neutral recall condition, this period lasted on average 

between one to two minutes while for the sad recall condition this lasted typically two to 

three minutes. Throughout the scanning sequences, subjects laid in a relaxed position and 

were instructed to keep their eyes closed at all times without falling asleep. Mood state 

ratings and alertness was assessed by self-report and communication with the subjects 

between the neutral and sad recall conditions. All subjects spent approximately 30 

minutes in a mock scanner prior to the actual study period in order to familiarize 

themselves with the MRI environment. 

Subjects' mood state was assessed by verbal response to an 11-point rating scale 

of the seven dimensions, ‘alertness’, ‘anxiety’, ‘happiness’, ‘sadness’, ‘fear’, ‘anger’ and 

‘disgust’. Scale range was from 0–10, with 0 reflecting ‘not at all’ and 10 reflecting 

‘extremely’. In a debriefing session following scanning, subjects were also asked to 

indicate the extent to which they were actively engaged in the sad autobiographical recall, 

rating on an 11-point scale (0–10) their relative ‘ease of inducing sadness’ (mean ± SD = 

7.1 ± 2.1); ‘similarity of feelings when compared to actual life event/episode’ (mean ± SD 

= 6.7 ± 2.1); and the ‘approximate proportion of time sadness was maintained throughout 

the four-minutes’ (mean ± SD = 5.5 ± 2.1). Behavioral data were analyzed using the 

Statistical Package for the Social Sciences v. 11 (SPSS, Chicago, Illinois). 

7.2.3 Imaging acquisition 

Individual MRI sequences were acquired in a single scanning session using a 3 

Tesla GE Signa Horizon LX whole body scanner (General Electric, Milwaukee, WI, USA). 
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Subjects' heads were fixed using a Velcro® strap over the forehead. Functional MRI data 

were acquired as a series of single shot gradient-recalled echo planar imaging volumes 

providing T2*-weighted BOLD contrast (repetition time, 3000 ms; echo time, 40 ms; flip-

angle 60°; field of view, 24 cm; voxel size, 1.875×1.875×4.0 mm; 25 slices). For each 

condition, the functional time-series consisted of 80 consecutive whole-brain images 

(duration of 4 minutes) after automatically discarding the first (additional) four images in 

each run to allow the magnetization to reach equilibrium. 

7.2.4 Image analysis 

7.2.4.1 Preprocessing 

Image preprocessing followed a similar pipeline as in study 2 (See section 5.2.4.1 

for a detailed description). In summary, images were preprocessed using SPM5 

(www.fil.ion.ucl.ac.uk/spm) by doing motion correction, spatial normalization to the MNI 

template and smoothing using a Gaussian filter of 5 mm of full-width to half-maximum. 

Data was resliced to 3 mm isotropic voxel to contain computational power demand in the 

ICA analysis.  

Provided this was a paired-sample experimental design, we further compared the 

translation and rotation estimates (x, y, z) from both scans (neutral and sad recall 

conditions) using repeated measures analysis of variance (ANOVAs) to ensure equivalent 

data quality. Translation and rotation estimates (x, y, z) were all less than 1 mm or 1°, 

respectively. For translation estimates, we observed no main effect of condition (F(1, 23) 

= 1.43, p = 0.23) or translation estimate by condition interaction (F(1, 23) = 0.30, p = 0.74). 

For rotation estimates, we observed no main effect of condition (F(1, 23) = 3.59, p = 0.07) 

or rotation estimate by session interaction (F(1, 23) = 0.35, p = 0.71). 

7.2.4.2 Independent Component Analysis 

The ICA analysis performed in this study was the same as in Study 2. See section 

6.3.4.2 for details. Briefly, the Group ICA for fMRI Toolbox (GIFT v1.3b; 

http://icatb.sourceforge.net) was used to perform ICA at the group level for the neutral 

and sad recall conditions per separate. This involves that the Infomax ICA algorithm was 

http://www.fil.ion.ucl.ac.uk/spm
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executed after the previously described subject-wise data concatenations, and followed 

by a back reconstruction of single-subject time courses and spatial maps from the raw 

data matrix. 

The algorithm’s initial self-adjusting parameters did converge to a singular 

configuration in terms of data reduction and number of detected components that is 

described next.  

During Stage 1, three steps of PCA were used to reduce individual subjects' data 

to a dimensionality estimated following a minimum description length algorithm. For the 

neutral recall condition, data from each subject (n = 24) were firstly reduced from 80 to 

21 dimensions, followed by a second concatenation into six groups of n = 4 subjects each. 

The dimensionality of each subgroup (i.e., n = 4 sets of 21 dimensions) was reduced from 

84 to 21 dimensions using PCA. This was followed by a final concatenation and reduction 

into one group with 21 components. For the sad recall condition, data from each subject 

(n = 24) were first reduced from 80 to 24 dimensions followed by a second concatenation 

into six groups (of n = 4 subjects), each of which was reduced from 96 dimensions to 24. 

This was followed by a final concatenation and reduction to one group with 24 

components. 

In Stage 2, the estimation of independent sources was performed using the 

Infomax algorithm (Bell & Sejnowski 1995). During this stage the spatially independent 

component maps were created, while during Stage 3 of back reconstruction, individual 

subject image maps and time courses were estimated using the group solution to 

accurately represent the subject-to-subject variability existing in the data (Calhoun et al. 

2001a).  

The resulting single-subject time course amplitudes were then calibrated (scaled) 

using the raw data to reflect percent fMRI signal strength, followed by normalization to z 

score values. In this process, the estimated time course is treated as the model and is 

fitted to the raw data using an intercept term. This fit is then used to scale (or normalize) 

the component images into z score units also reflecting the data's deviation from the 

mean, thus, enabling second-level random effects analyses to be performed. 
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7.2.4.3 Identification and assessment of Resting-State Networks 

For the neutral and sad recall conditions, ICA produced respectively 21 and 24 

maximally independent patterns (ICs). Both the spatial pattern and frequency spectra (see 

below) of each component were visually inspected to determine their appearance as 

potential RSNs or possible image artifacts.  

Examples of noise ICs published in previous ICA works (Cordes et al. 2001; 

Beckmann et al. 2005; De Luca et al. 2006; Fukunaga et al. 2006) were used to detect 

components that corresponded to distinct and clear image artifacts. The noise 

components identified were related to subject’s head motion and related susceptibility 

artifact at the frontal sinus; eyeball movement, cardiac-induced pulsatile fluctuation at 

the base of the brain and/or surrounding major vessels, and cerebrospinal fluid (CSF) 

signal fluctuation due the respiratory and cardiac cycles. 

For the neutral and sad recall conditions, respectively 7 and 5 task-related 

relevant RSNs were identified with neurophysiological relevance criteria for further 

analysis. The components were matched across conditions following neuroanatomical 

criteria. 

Before testing for possible mood state-related changes in the functional 

connectivity pattern of the five common RSNs, we examined the reproducibility of these 

results by performing a simple split-half analysis of both of the datasets, repeating the 

procedure of the original group ICAs. This analysis was considered necessary because 

although measurements of functional connectivity of RSNs have demonstrated spatial 

consistency across fMRI studies, it is less clear how reliable these measurements are in 

detecting changes of functional connectivity strength in the context of repeated 

measurements and task performance. To assess the reproducibility of our main effects 

using group ICA (Shown in Figure 17), we compared the findings of each split-half analysis 

qualitatively (by visual inspection) as shown in Figure 18. It is important to note that some 

of the discrepancies shown could be attributed to the loss of statistical power when 

reducing to the half the amount of subjects in the analysis. 
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7.2.4.4 Significance testing of changes in Resting-State Networks 

SPM5 was used to estimate second-level group RSN maps to compare the 

common RSNs for differences in their relative functional connectivity strength between 

the neutral and sad recall conditions. Group statistical maps were estimated for each RSN 

separately, by first entering each subject's respective independent component images (z-

score maps) into voxel-wise one-sample t tests (p FDR<0.05, corrected). To assess for 

differences in the functional connectivity pattern of common RSNs, a global mask was 

created by combining all regions from RSN patterns that survived the previous correction 

of pFDR<0.05 in both conditions. Paired samples t tests were then used to test for 

differences in functional connectivity strength of the common RSNs restricted only to 

voxels contained in the global mask. Regional differences were considered significant if 

surviving p<0.005 (uncorrected), with a minimum cluster extent of at least 5 contiguous 

voxels. 

7.2.4.5 Signal analysis of the resting state networks 

Analyzing the signal of the identified networks served two basic purposes in the 

current study:  

1) To confirm that all selected RSNs showed dominant a Power Spectrum 

Density (PSD) in the expected ‘very low frequency’ domain (Cordes et al. 

2001; Kiviniemi et al. 2003; Kiviniemi et al. 2005). 

2) To assess for any significant differences in the PSD parameters for the 

common RSN patterns identified in association with the neutral and sad recall 

conditions, which may reflect different sources of signal variation. 

Transformation of group ICA associated time courses into the frequency domain 

is necessary because phase synchrony of these slow signal fluctuations cannot be 

assumed across subjects under resting-state conditions. By characterizing ICA-associated 

time courses on the basis of PSDs, inter-subject averaging becomes possible and, in turn, 

facilitates the assessment of frequency characteristics and differences between 

components.  
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To perform this analysis, we derived the PSD estimate using a modified 

periodogram method (with a Hamming window of 240 s) for each subject's respective RSN 

time-series (i.e., 5×2 common RSN patterns + 2 specific RSNs per subject = 12 in total). 

Components were normalized in energy (σ2 = 1) prior to the analysis. We also computed 

each RSN's average PSD across subjects. 

Our specific interest was to compare the proportion of power in this frequency 

domain among the common RSNs. To perform this comparison without an operator-

driven bias, we divided our frequency range into three domains based on the literature’s 

descriptions; ‘very low frequency’ ranging between 0.01–0.04 Hz; ‘low frequency’ ranging 

between 0.04–0.10 Hz; and ‘higher frequencies’ ranging between 0.1–0.17 Hz (Cordes et 

al. 2001; Kiviniemi et al. 2003; Kiviniemi et al. 2005). Note that, provided TR=3 s, 0.17 Hz 

is our Nyquist frequency. 

For each extracted RSN, the proportion of the total power in each of these bands 

was estimated (see one example in Figure 20). Focusing on the ‘very low frequency’ range 

of interest, paired-samples Wilcoxon Signed Ranks Tests were used to assess for 

differences in the proportion of power across this frequency range between common 

RSNs. 

7.2.4.6 Confirmatory Cross-Correlation Analysis 

Seed-based cross-correlation analyses (CCAs) were performed to assess for 

specific changes in functional connectivity strength among key ROIs (seed and target) in 

the ‘paralimbic’ and ‘default mode’ RSNs. The ROI placements and size (i.e., volume) were 

derived from a conjunction analysis in SPM5 of the ICA functional connectivity maps for 

each RSN, as described above. This analysis identified clusters whose activity was highly 

and jointly significant in both the neutral and sad recall conditions (p FDR<0.05). These 

SPM activity clusters were converted to ROIs using the MarsBaR region of interest (ROI) 

toolbox (http://marsbar.sourceforge.net). 

http://marsbar.sourceforge.net/
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All ROI placements and dimensions were determined via a conjunction analysis of 

the exploratory ICA connectivity maps, which identified those regions whose activity was 

highly and jointly significant to both conditions (p FDR<0.05). 

Initially, reference time courses were extracted from the neutral and sad recall 

condition scans for each subject, for each seed ROI. These time courses were calculated 

as the average time courses across all voxels inside each ROIs, which were then entered 

into first-level (single-subject) whole-brain, linear regression analyses in SPM5. To 

minimize the effect of global drift, voxel intensities were proportionally scaled by dividing 

each time point's value by the mean value of the whole-brain image at that time point. A 

high-pass filter set at 120 s cutoff period was used to remove low frequency drifts below 

~0.008 Hz. Data were corrected for first-order serial autocorrelations using the AR(1) 

model in SPM5. Contrast images were generated for each subject by estimating the 

regression coefficient between each voxel and the reference time-series. These contrast 

images were then included in second-level (group) random-effects analyses using one-

sample t tests. Resulting z transformed (Gaussianized) SPMs were thresholded at 

pFDR<0.05 (corrected) and represent the strength of functional connectivity from each 

seed to target ROI respectively (see Figure 21). Differences between conditions were 

considered significant at p<0.05 FDR corrected after small volume correction (search 

volume used during significance testing was the target ROI’s volume). 

7.3 Results 

7.3.1 Behavioural 

The effect of task conditions on subjects' mood state was assessed in a two-way 

repeated-measures analysis of variance with mood dimensions and condition type 

(neutral and sad recall) as within-subject variables, which indicated a significant 

interaction (F(1, 6) = 41.21, p = 0.0001). Post-hoc t tests showed no significant change in 

subjective ratings of ‘alertness’ between the neutral and sad recall conditions (indicating 

score of neutral recall minus sad recall) [t (1, 23) = 0.67, p = 0.51], but significant changes 

in self-reported levels of anxiety [t (1, 23) = −3.78, p = 0.001]; happiness [t (1, 23) = 7.47, 

p = 0.0001], sadness [t (1, 23) = −11.44, p = 0.0001]; and fear [t (1, 23) = −3.55, p = 0.002]. 
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In a pairwise comparison of the change scores for each mood state dimension, the 

magnitude of change for self-reported sadness between the neutral and sad recall 

conditions was found to be greater than for each of the other dimensions (p value range 

<0.023 to 0.0001). 

7.3.2 Identification and assessment of resting-state networks 

From the group ICAs, we identified 5 significant independent component patterns 

of interest (i.e., RSNs) that were common to both of the task conditions (See Figure 17). 

The two unmatched components were related to visual and sensorimotor cortices, but 

they did not appear robustly during the sad recall condition. 
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Figure 17 Resting state networks common across states 

Global functional connectivity maps of the common RSN patterns that were identified 
in the mood induction experiments (p FDR<0.05). The left-most panel displays axial, 
coronal and sagittal views of the pattern under the neutral recall condition, while the 
right-most panel displays each corresponding pattern under the sad recall condition. 
All images are presented on a high-resolution single-subject MRI in standard 
neuroanatomical space (Montreal Neurological Institute, Colin-27). Corresponding 
color bars indicate the t score ranges of the displayed maps. Images are displayed in 
neurological convention (left = left). 

 
In the reproducibility-confirmatory analysis of both datasets, we observed an 80% 

reproducibility of the five common RSN patterns. For the RSN patterns that reproduced 

in both split halves, there appeared to be good agreement (similarity) in the strength of 

functional connectivity estimated within-condition (neutral or sad recall), as well as 
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apparent changes in the extent and magnitude of functional connectivity between these 

conditions as suggested from the original full-sample analysis. 

 
Figure 18 Results of the split-half reproducibility analysis 

Split-half analysis of resting-state networks. Assessment of the reproducibility of group 
ICA findings with the use of simple half-sample analysis repetition of the neutral and 
sad recall conditions. For both analyses, the split groups were assigned using a pseudo-
random order. All images are presented on a high-resolution single-subject MRI in 
standard neuroanatomical space (Montreal Neurological Institute, Colin-27). 
Corresponding color bars indicate the z score ranges of the displayed maps. Images are 
displayed in neurological convention (left = left). 
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7.3.3 Significance testing of changes in resting state networks 

Figure 19 shows the relative changes of functional connectivity that were 

observed in each RSN between the two task conditions (visualization threshold at 

p<0.005). These changes occurred as either increases or decreases in the statistical 

magnitude and/or extent of regional clusters showing correlated activities in the very low 

frequency domain (<0.04 Hz) as shown by the signal analysis below. These five common 

networks and their changes can be summarized as follows. All statistics are reported as 

peak z-score in coordinates (mm) according to the MNI standard space, CS=cluster size.  

Default Mode Network: included primary clusters in the posterior cingulate and 

medial prefrontal cortices as well as the angular gyri. Specific regions that showed 

decreased functional connectivity during the sad recall condition (A-A*) included the 

dorsal and ventral posterior cingulate cortex (-9,-63,27 mm; Z=4.1; CS=226 voxels), 

bilateral angular gyri (45,-78,36 mm; Z=3.53; CS=61 voxels) (-54,-63,21 mm; Z=2.93; CS=62 

voxels), ventral medial frontal cortex (-3,48,21 mm; Z=3.34; CS=251 voxels) and caudate 

nucleus (9,12,3 mm; Z=3.61; CS=26 voxels).  

Paralimbic network: included clusters located primarily in the dorsal anterior 

cingulate and insula cortices, supplementary motor area and dorsal medial frontal cortex. 

Specific regions that showed increased functional connectivity during the sad recall 

condition (B* -B) included the dorsal anterior cingulate (3,-6,42 mm; Z=3.44; CS=168 

voxels) and supplementary motor area (3,-9,60 mm; Z=2.97; CS=21 voxels), left anterior 

insula (-42,15,-9 mm; Z=3.64; CS=50 voxels) and opercular region (-57,12,-3 mm; Z=3.47; 

CS=22 voxels). 

Right frontoparietal network: included clusters lateralized to the right 

hemisphere, including the lateral prefrontal (medial and inferior frontal gyri), the inferior 

parietal cortices, caudate nucleus and supplementary motor area. Specific regions that 

showed increased functional connectivity during the sad recall condition (C* - C) included 

the right inferior frontal gyrus (3,36,51 mm; Z=3.04; CS=53 voxels), anterior insula (39,24,-

9 mm; Z=2.54; CS=11 voxels), superior frontal gyrus (3,36,51 mm; Z=3.04; CS=53 voxels) 

and inferior parietal cortex (51,-66,45 mm; Z=2.8; CS=36 voxels).  
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Left Frontoparietal Network: included clusters lateralized to the left hemisphere, 

including the lateral prefrontal cortex (superior, medial and inferior frontal gyri), inferior 

and superior parietal cortices, thalamus and caudate nucleus. Specific regions that 

showed increased functional connectivity during the sad recall condition (D* - D) included 

the left medial (-39,3,45 mm; Z=3.92; CS=849 voxels) and superior frontal gyrus (-3,6,57 

mm; Z=3.26; CS=98 voxels) and inferior parietal cortex (-42,-54,39 mm; Z=2.69; CS=8 

voxels).  

Auditory Cortex Network: included clusters located primarily in the lateral 

superior temporal cortex and posterior insular cortex. Specific regions that showed 

increased functional connectivity during the sad recall condition (E* - E) included the right 

posterior insula (39,-12,6 mm; Z=3.79; CS=287 voxels) and left mid-temporal cortex (-54,-

9,0 mm; Z=3.63; CS=79 voxels). 
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Figure 19 Modulation of Resting-State Networks by Mood Induction 

Global functional connectivity differences observed between the neutral and sad recall 
conditions for the common RSNs. The top panel A - A* indicates an apparent decrease 

in intranetwork functional connectivity of the default mode network between the 
neutral and sad recall conditions. All other panels indicate apparent increases of 
intranetwork functional connectivity during the sad compared to neutral recall 
condition. All images are presented in standard neuroanatomical space. Corresponding 
color bars indicate the t score ranges of the displayed maps. Images are displayed in 
neurological convention (left = left) 
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7.3.4 Signal analysis of the resting state networks 

Each RSN's PSD averaged across subjects showed good fitting to the a+bf−1 model 

previously described for raw BOLD signal analysis, with a Pearson’s r2 range of 0.97 to 

0.55. Dominant oscillating frequencies were observed as one or more clear peaks above 

this baseline, typically around 0.03 Hz.  

All networks had predominant power density distributions in the very low 

frequency domain (0.01–0.04 Hz), similar to previously published fMRI studies of 

spontaneous resting-state conditions (Biswal et al. 1995; De Luca et al. 2006; Kim et al. 

2013). An example of this assessment is provided in Figure 20. For the five common RSN 

pairs, there were no significant differences in their relative proportions of power 

distributed within this range (p value range = 0.19–0.58), indicating that these signal 

variations were similar between the neutral and sad recall conditions. 

 

Figure 20 Spectral analysis of ICA results 

Left: A representative mean power spectral density plot for one component of interest 
(default mode network; represented as A and A* in Figure 17). For all networks, the 
highest power density was observed below 0.04 Hz. Right: Proportion of power in the 
three non-overlapping frequency bands for the default mode RSN associated with the 
neutral and sad recall conditions. All identified components showed the highest 
percentage of power in the very low frequency band. LF = low frequency; VLF = very 
low frequency; HF = higher frequency. NR = neutral recall; SR = sad recall. 
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7.3.5 Confirmatory seed-based cross-correlation analysis 

To confirm the changes in functional connectivity identified with ICA in the major 

regions of interest, our primary seed ROIs were located in the dorsal anterior cingulate 

cortex (‘paralimbic’ RSN; MNI x, y, z = 3, −3, 51 mm; 260 voxels) and the posterior cingulate 

cortex (‘default mode’ RSN; MNI x, y, z = −3, −69, 21 mm; 367 voxels), respectively. Our 

primary target ROIs were located in the right anterior insula cortex (‘paralimbic’ RSN; MNI 

x, y, z = 48, 18 mm, −12; 145 voxels) and the medial frontal cortex (‘default mode’ RSN; 

MNI x, y, z = −9, 51, 36 mm; 1062 voxels), respectively. 

Consistent with the group ICA findings, both RSN patterns were reproduced by 

the seed-based cross-correlation approach (Figure 21). For the paralimbic network, we 

observed a significant increase of functional connectivity between the dorsal anterior 

cingulate and right anterior insula cortex in the sad recall relative to neutral recall 

condition (MNI x, y, z = 48, 21 mm, −15; z = 2.86; 24 voxels). By comparison, for the default 

mode network, there was also decreased of functional connectivity between the posterior 

cingulate and medial frontal cortex in the sad relative to neutral recall condition (MNI x, 

y, z = 6, 54, 12 mm; z = 2.93; 23 voxels). 
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Figure 21 Cross-Correlation analysis of representative resting-state Networks 

Regional functional connectivity maps of the ‘paralimbic’ (A) and ‘default mode’ (B) 
resting state networks. Green clusters represent the two seed ROIs while the blue 
clusters represent their respective target ROIs. Both ROI types are overlaid on the 
regional functional connectivity maps derived from the cross-correlation analyses. All 
images are presented in standard neuroanatomical space. Corresponding color bars 
indicate the t score ranges of the displayed maps. Images are displayed in neurological 
convention (left = left). 

 

7.4 Discussion and conclusions 

The results obtained in this study support the idea that measurable changes in 

component connectivity maps can be obtained from very subtle changes in the 

individual’s state. In this study, the five networks explored showed significant changes in 

the connectivity scores after sad mood induction. The selected behavioral task was 

proven effective to induce a significant emotional change to the individuals explored and 

the selected analysis methods generated results that are in line with the results of 

previous studies on mood induction (Phan et al. 2002). 

While we consider that the subjects under study were in a “resting-equivalent” 

status, it is important to recognize that the mood induction task involved an active 
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memory recall exercise of a sad event. This was counterbalanced by experimental design 

in the neutral condition by the recall of a routine day. Despite being very mild cognitive-

demanding tasks, the conditions we used may have subtle differences compared to a pure 

“resting state” experiment, in which mind wandering may drive a singular profile of brain 

activity (Braboszcz & Delorme 2011). Therefore, caution shall be taking before directly 

inferring our results to pure resting state paradigms. Further experiments shall be 

conducted to demonstrate if the observed network alterations are also evident in pure 

resting state paradigms.  

The results obtained may be limited by the relatively short scan length used in 

this study. However, as in study 2, ICA was able to isolate a set of resting state networks 

that was majorly reproducible across subject states and that in most of the cases survived 

to the split-half confirmatory analysis. This is relevant, provided that the stability of ICA 

connectivity studies has been reported to have a steep decrease in scan durations below 

4 minutes (Birn et al. 2013). On the other hand, sustaining an induced sad mood for longer 

periods of time would have been more difficult for the volunteers, setting the compliance 

of the experimental condition at risk. Further studies may benefit from recent 

methodological works developing chronnectomic techniques, which try to disentangle 

the short term existence of connectivity patterns (Allen et al. 2014). Short-term existence 

of networks conflicts with the spatial stationarity assumption that our ICA approach used. 

The usage of ICA component connectivity maps to compare two experimental 

conditions poses an unsolved methodological question: The spatial independent 

component analysis can be performed by concatenation of the complete dataset (that is 

the two conditions merged into a single analysis) or by estimating component connectivity 

effect size per separate in each condition and later comparing across them. Both options 

have been used in the literature (Calhoun et al. 2008; Arbabshirani et al. 2013) by the 

team who developed GIFT, the software package that implements the algorithms used in 

our study. When concatenating all image sets in a single ICA, the analysis is vulnerable to 

lose sensitivity in cases where networks are spatially different across conditions, as ICA’s 

performance is optimum when the network is spatially stationary. On the other hand, 

executing the analysis in two runs requires an additional step of matching the identified 
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networks across the results of two analyses, which requires expert neuroscientific 

judgement and is subject to human error. In the event of having a network that 

significantly changes its anatomy across the two analyses, inference on its comparison 

may be doubtful and should not be performed without extreme awareness of its 

limitations. 

It is important to stress the limitations in the ability to infer connectivity strength 

from the comparison of ICA spatial maps. The comparison of seed-based cross-correlation 

is much more widespread as this analysis is simpler and relates to the complete fraction 

of signal. Despite a moderate correlation has been reported in the comparison of resting-

state seed-based maps and ICA maps (Rosazza et al. 2011), when comparing ICA maps 

across populations or states it is important to bear in mind the “variance segmentation” 

nature of the signal processing made. Having 2 regions of interest with strongly correlated 

time courses will lead to a clear result if the signal of one of the ROIs is used as a seed in 

a seed-based cross-correlation analysis: The connectivity of both ROIs will be solidly 

identified. This will also be the case in ICA analysis as long as the signal of these two ROIs 

majorly corresponds to that of one of the identified spatially independent components 

identified. In an opposite situation, if the variance of the signal of these ROIs is explained 

by a mixture of a mid to large amount of components, these two ROIs may not be 

identified as part of any network, despite being strongly correlated. When comparing 

spatial connectivity effect size of two different states with ICA, it is important to question 

whether there could have been a significant reorganization of the functional connectivity 

of the brain networks involved, before assuming that these changes reflect real changes 

in functional connectivity. Confirmatory post-hoc seed-based cross-correlation analysis 

(with or without regressing out the signal of other ROIs) are a wise recommendation for 

studies attempting to infer macroscopic functional connectivity changes using ICA. 

We cannot hypothesize why two components were not reproduced in the sad 

recall condition. A number of reasons could explain it, ranging from technical limitations 

or because of true experimental effect on connectivity of these areas. The fact that a large 

number of components were considered noise or non-relevant evidences that a fraction 
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of the fMRI signal was excluded from the analysis because of being considered noise or 

not being coherent enough to generate a component in the ICA.  

The signal spectrum of the networks identified was highly reproducible across 

networks and states, emphasizing the idea that the networks identified effectively show 

a stable large-scale set of networks. These networks are also backed up by basic 

neuroscience knowledge and in line with the regions recruited or affected by an 

experiment such as ours. Similar signal spectrum results have been obtained in the 

intraoperative context using direct optical readings of oxyhemoglobin concentration in 

the capillary bed (Rayshubskiy et al. 2014). Our spectral analysis procedure was similar to 

that used by Calhoun et al in a study aimed to reveal differences between schizophrenic 

patients and controls in the connectivity changes related to a cognitive task versus rest 

(Calhoun et al. 2008). Calhoun et al also reported that the power spectrum distribution of 

the temporal signal representing the extracted components did not significantly change 

across experimental conditions. 

The seed-based connectivity analysis provided a valuable confirmation that the 

changes identified by analyzing the ICA results where indeed representative of the 

macroscopic connectivity changes in the brain. Note that the seed-based connectivity 

analysis is not affected by the exclusion of “unstable” or “noise” components, the 

complete signal is used in this case. 

These results support recent findings that the resting state functional connectivity 

may be affected by the subject’s state immediately before the scanning (Tailby et al. 

2015). Therefore, executing resting state paradigms in rigid protocols that replicate the 

conditions before the scan may reduce the variance observed across subjects. 

Taking everything into account, our findings suggest that ICA-extracted 

component connectivity maps reflect very subtle changes in the emotional state of the 

subject. This reinforces our hypothesis that resting state ICA analyses could become 

valuable contributors in the spectrum of biomarkers for clinical improvement on 

psychiatric patients. 
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8 Study 4: Characterization of SAD’s expression using a novel 
symptom provoking fMRI experiment in patients and 
controls. 

8.1 Introduction 

In the study of the neural expression of phobias, study of the brain activations 

encompassing specific symptom provocation is a common choice (Etkin & Wager 2007). 

While some potential biomarkers exploit differences in indirect brain mechanisms – like 

the emotional face processing paradigm in study 1-, it is still interesting to evaluate SAD 

patients in a direct approach involving symptom provocation. Given the nature of the 

fMRI setup, it is impossible to fully replicate a natural social interaction scenario. 

Therefore, fMRI experiments aiming to explore brain responses to symptom-provocation 

stimuli always require some degree of abstraction of the stimuli and, therefore, a 

thorough validation of the model.  

Social anxiety symptom-provocation PET-based studies have been frequently 

reported using overt speaking situations in front of a reduced public (Tillfors et al. 2001; 

Åhs et al. 2006; Furmark et al. 2008). However, overt speaking in fMRI is considered as a 

highly unfavorable situation due to the induced artifacts (Birn et al. 1998; Barch et al. 

1999; Birn et al. 2004) and its usage is restricted to experiments in which it is 

indispensable, such as surgical planning (Croft et al. 2013). 

Functional MRI studies of SAD have been performed using a wide range of 

symptom-provoking stimuli. This includes angry face visualization (M. B. Stein et al. 2002), 

although similar results have been reported with neutral faces (Cooney et al. 2006). 

Actually, simple gaze is now considered as a salient symptom-provoking stimulus, which 

has been shown to trigger powerful responses in SAD patients (Cavallo et al. 2015). Other 

fMRI experiments involved the processing of anger prosody (Quadflieg et al. 2008), script-

driven imaginary of anxiety-provoking social situations (Kilts et al. 2006), responding to 

cognitive challenging tests (Sareen et al. 2007), anticipation of a public speaking task 

(Lorberbaum et al. 2004) or exposure to criticism and negative self-beliefs (Ziv et al. 2013). 
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Like in all fMRI-based phobic symptom-provoking paradigms, it is important to 

take into account that social phobia responses can encompass intense physical symptoms 

including blushing, heart rate acceleration, sweating, trembling or nausea (Stein & Stein 

2008). The associated physiologic alterations can create irreversible artefactual 

degradation of the fMRI BOLD signal or even lead the individual to avoid the anxiety-

provoking situation. Therefore, in such experiments, it is key to carefully contain the 

degree of distress induced to the subject by the experimental condition to mild and 

bearable levels.  

Despite the brain networks related to harsh social stimulus processing are fairly 

described, the differential neural circuitry activations detected when comparing patients 

with controls in these experiments has led to heterogeneous results, which may be 

related to the methodological differences (Freitas-Ferrari et al. 2010). Until the neural 

expression of SAD becomes fully understood, it is highly valuable that the neuroimaging 

community continues developing paradigm variants and continues reporting the 

differential findings so a more holistic model can be developed. 

In this study, we assessed the neural response of patients to self-recognition 

when exposed to scrutiny and evaluation by others. Specifically, the experiment involved 

presenting patients and controls with prerecorded video sequences of themselves 

performing a verbal memory task, in a session during which the examiners acted as a 

scrutinizing audience and rated the performance of the subject under study through the 

examination of his/her video recording. 

We anticipated that the neural response in this situation would involve robust 

activation of distributed brain regions in patient and control groups. Indeed, simple visual 

recognition of one’s own face is associated with the activation of a complex cortical 

network involving the inferior occipito-temporal cortex, inferior frontal and parietal 

cortices, the medial frontal gyrus and the anterior cingulate cortex (Devue & Brédart 

2011). We also expected that a potentially tense scrutiny perception situation would lead 

to relevant engagement of emotion and arousal systems including the activation of the 
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amygdala and the thalamus in addition to the insular, cingulate and prefrontal cortices 

(Barrett et al. 2007). 

The first line of thought could lead us to expect that the anxiety generated by a 

symptom provocation task in SAD would be associated with a heightened activation in 

response to the stimulus. However, the literature review reveals that, in SAD symptom 

provocation tasks, it is common finding a reduced activation in brain areas devoted to 

evaluative processes of emotion (Tillfors et al. 2001; Lorberbaum et al. 2004). Similarly, 

imagining socially threatening situations was associated with cortical activity reductions 

in SAD patients (Kilts et al. 2006; Nakao et al. 2011). Of note, confronting patients with 

negative self-beliefs (Goldin, Manber-Ball, et al. 2009) and first-person negative appraisals 

(Blair et al. 2011) has also been associated with reduced early activation in cortical areas 

related to cognitive emotion control.  

In the context of our task, we predicted that SAD patients overall would not show 

a generally higher response than control subjects. Instead, we anticipated that patients 

would demonstrate a combination of activation increases in systems mediating emotional 

reactions (Tillfors et al. 2001), together with reduced activation of cortical areas driving 

the cognitive control of anxiety (Bishop et al. 2004). 

8.2 Methods 

8.2.1 Subjects 

A total of 20 patients with generalized SAD were recruited through public media 

advertisement (local newspapers and poster advertisements). Participants contacted the 

study center (Pharmacology Research Unit) by email and then a clinical researcher 

performed a preliminary interview by telephone. A screening visit was performed 

thereafter to confirm inclusion/exclusion criteria and good physical health by a complete 

physical examination. Inclusion criteria were: (a) out-patients with a primary psychiatric 

diagnosis of generalized SAD according to DSM-IV-TR criteria (APA 2000) (b) A Liebowitz 

Social Anxiety Scale (LSAS; Liebowitz, 1987) score ≥50, and (c) participants aged between 

18 and 60 years. Patients with relevant medical or neurological disorders, or other DSM-
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IV Axis I disorders, were not considered for inclusion. All subjects were free of any history 

of substance dependence or current substance abuse, and all provided a negative urine 

toxicity and breath alcohol screen. In addition, subjects receiving any current 

psychotherapy or pharmacological treatment were not included. The finally selected 

sample represents a notably homogeneous SAD group of generalized type (no cases 

showing only performance-related SAD were included) with childhood onset of symptoms 

and significant distress and interference in the patient's life, but with no current 

treatment that could confound the study results. The LSAS score of this patient cohort 

was (mean ± SD) 80.7 ± 16.2. 

A group of 20 healthy volunteers matched by age, educational status and gender 

distribution were recruited. These control participants satisfied the same health 

conditions and also showed negative results in the toxicity screen. All participants were 

right-handed. The LSAS score of the control cohort was (mean ± SD) 24.4 ± 5.6. 

Written informed consent was obtained from all participants. The study was 

approved by the local ethics committee (CEIC-IMAS, Barcelona) and in compliance with 

the declaration of Helsinki. 

8.2.2 The novel experimental task 

Before scanning, participants' verbal task performances were video-recorded 

privately in a laboratory setting. They underwent a memory task adapted from the 

Wechsler Memory Scale – Revised (Wechsler 1981), which involves a single presentation 

of verbal narratives to be recalled and repeated immediately. Subjects were asked to 

listen to and repeat aloud three stories. During each repetition, video sequences of 30 

seconds duration were recorded at a short distance. Public exposure to the video 

segments occurred only during the fMRI session when both the subject and the research 

team viewed the scenes.  

Participants were informed that a clinical psychologist would evaluate their 

memory performance during the imaging session according to formal guidelines. As a 

control condition, equivalent video segments featuring unknown ‘other’ subjects 
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responding to the same stories were used. These ‘others’ were matched in terms of age 

and gender to each individual study participant. We maintained a stable background 

(neutral white color) and framing (fixed general short plane) in all videos, and avoided 

possible distracters such as loud colors for clothes, hairstyle or accessories (large 

pendants or earrings). 

In total, the fMRI experiment consisted of six alternating 30-second blocks of the 

control (other) and experimental (self) conditions. It is important to note that the 

experiment required no actual performance during scanning. In this way, the neural 

response shows no influence from actions and mental operations related to performance 

nor speech. This may facilitate the interpretation of results and provide data less affected 

by head motion artifacts. Total recall execution scores during the videos were not 

collected, as the task finished once a 30-second video was successfully recorded. To assess 

the quality of execution, we considered relevant that participants were talking during 

most (80%) of the recording periods. That is, periods of silence during recording never 

exceeded 20% of the time. Experimental and baseline conditions were also equated in 

this performance parameter. 

 

Figure 22 The PERPT Task 

Visual representation of the PERPT (Public Exposition of Recorded Performance Task). 
During “patient” condition, the subject was seeing his own pre-recorded memory 
performance task. During the “control” condition, the subject was seeing another 
subject performing the same task. 
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8.2.3 Out of scanner behavioral experiment 

Because of the complexity of the fMRI session, the assessment of task behavioral 

effects was completed in a separate experiment that included eye-tracking records to rule 

out possible visual avoidance strategies in SAD patients during symptom provocation 

(Horley et al. 2004). 

The separate experiment was conducted in a subgroup of 30 participants (15 SAD 

patients and 15 control subjects, also matched by age, educational status and gender 

distribution), who consented to undergo the behavioral study protocol a second time. This 

assessment was carried out several months after the primary study, minimizing possible 

retest effects. The evaluation procedures adopted during the fMRI session were 

reproduced in this experiment and the subjects’ gaze was monitored using an eye-tracking 

system. At the end of the session, the subjects were asked to fully describe their subjective 

experience and to rate the emotion perceived using 101-numerical rating scales (0 being 

not at all, 100 the maximum possible). Rates for “anxiety” were used as the main outcome 

measurement and 18 additional descriptors served to characterize the nature of the 

generated emotion (i.e., alert, anger, apathy, calm, discouragement, displeasure, distress, 

embarrassment, lack of interest, negative excitement, negative thoughts, nervousness, 

pleasure, positive excitement, problems to maintain the attention, restlessness, stress 

and tension). 

Real-time “free binocular viewing” behavior was recorded continuously during 

the task using a high resolution eye tracking system (T60 Tobii Technology AB, Stockholm) 

and the data were analyzed using Tobii Studio™ analysis v2.1.1.3 software. The stimuli 

videos were presented full-screen on a 17” monitor with a resolution of 1280x1024 pixels. 

The Eye Tracker device collected eye movement data with a 60-Hz sampling rate. For the 

analysis, we computed for each block (i) the total number of visual fixations on the 

presented scenes, (ii) fixations specifically on the eyes of the person appearing in the 

video, and (iii) time spent for visual fixation on this eye area (expressed as a percentage 

of block duration). 
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Between-groups differences in behavioral and physiological variables were tested 

using parametric (Student-t) tests when normally distributed and non-parametric (Mann-

Whitney) tests when distribution did not follow a normal pattern. 

8.2.4 Physiological data acquisition 

Heart rate was monitored continuously during fMRI scans using a 

photoplethysmograph placed on the left index finger (Model 4500MRI, Invivo Corp., USA). 

The device provided an output signal for each arterial pulsation that was registered using 

software developed in-house on the Labview 8.0 platform (National Instruments Corp., 

USA). Scanner trigger pulses were also registered to allow accurate synchronization of 

physiological signals with the fMRI data. Data were analyzed and plotted using procedures 

similar to those we reported in a previous study (Caseras et al. 2010). The beat-to-beat 

interval was calculated and the inverse of each interval was designated as the beat-to-

beat heart rate. The evoked response to the experimental (self) condition was calculated 

as the heart rate increase in relation to the preceding control (other) block. Group mean 

heart rate was also calculated for each block. 

8.2.5 Image acquisition 

The MRI system was the same as used in Studies 1 and 2. That is, a 1.5 Tesla Signa 

Excite system (General Electric) equipped with an eight-channel phased-array head coil 

and single-shot echoplanar imaging (EPI) software was used. The MRI sequence was highly 

equivalent to that described in section 5.2.3.2. Functional sequences consisted of gradient 

recalled acquisition in the steady state [time of repetition (TR), 2000 ms; time of echo (TE), 

50 ms; pulse angle, 90°] within a field of view of 24 cm, with a 64 x 64 pixel matrix and a 

slice thickness of 4 mm (plus an interslice gap of 1.5 mm). Twenty-two interleaved slices, 

parallel to the anterior–posterior commissure (AC–PC) line, were acquired to cover the 

whole brain for all functional sequences. The first four (additional) images in each run 

were discarded to allow the magnetization to reach equilibrium. 
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8.2.6 Image analysis 

8.2.6.1 Preprocessing 

Image preprocessing followed a similar pipeline as in studies 1 and 2 (See section 

5.2.4.1 for a detailed description). In summary, it was preprocessed using SPM5 

(www.fil.ion.ucl.ac.uk/spm) by doing motion correction, spatial normalization to the MNI 

template and smoothing using a Gaussian filter of 8 mm of full-width to half-maximum.  

8.2.6.2 Task effect statistical analysis 

Single-subject (first-level) SPM contrast images were estimated comparing the 

‘self’ condition with the ‘other’ condition. For these analyses, the fMRI signal response at 

each voxel was modeled using the SPM canonical hemodynamic response function 

(Friston et al. 1999). The resulting first-level contrast images were then carried forward to 

subsequent second-level random-effects (group) analyses.  

One-sample t-statistic maps were calculated to obtain task-related activations 

and deactivations, and two-sample t tests were performed to map between-group 

differences.  

Voxel-wise analysis in SPM5 was also performed to map the correlation between 

brain activation and both task-related anxiety ratings and LSAS scores. The task-related 

anxiety ratings were (i) ‘anxiety before minus anxiety after scanning’, as a representative 

measurement of anticipatory anxiety obtained in the fMRI session day, and (ii) ‘anxiety 

during ‘self’ condition minus anxiety during ‘other’ condition', as a task-evoked anxiety 

measurement obtained in the out-of-scanner experiment.  

A threshold pFDR <0.05 whole-brain corrected was used throughout this study. In 

one-sample t-test maps, only activations surviving this conservative threshold are 

reported. For between-group comparisons and correlation maps, changes involving a 

minimum cluster extension of 15 voxels at p < 0.001 uncorrected were also reported, 

which may provide an optimal balance between type I and type II errors (Lieberman & 

Cunningham 2009). In figures, an activation threshold of p < 0.01 is used for display 

purposes. 

http://www.fil.ion.ucl.ac.uk/spm
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8.3 Results 

8.3.1 Task-induced brain activation 

The neural response to the ‘self’ versus ‘other’ condition produced robust 

activation in regions involved in self-face recognition (extrastriate visual cortex, right 

inferior frontal gyrus and medial frontal gyrus) and emotional response/general arousal 

(bilateral anterior insula, anterior cingulate cortex, bilateral amygdala, upper brainstem, 

thalamus, basal ganglia and cerebellum) in both SAD patients and control subjects. SAD 

patients showed additional activation in the primary visual cortex but the activation in 

midline regions was less extensive (see top row of Figure 23). Significant deactivation 

during the ‘self’ condition was observed only in the patient group in the dorsal prefrontal 

and parietal neocortex (see bottom row of Figure 23). The direct between-group 

comparison showed no differences surviving the false-discovery rate (FDR)-corrected 

threshold. Nevertheless, as shown in Figure 24, increased activation in the primary visual 

cortex, reduced activation in the medial frontal gyrus and the anterior cingulate cortex, 

and more pronounced deactivation in the dorsolateral prefrontal cortex were identified 

in SAD patients compared to control subjects when observed with a significance threshold 

of p < 0.001 uncorrected (minimum cluster extension >15 voxels). 
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Figure 23 Task-induced activation 

Top: neural response to the task –activations- as revealed by separate one-sample T-
tests for control subjects (C) and social anxiety disorder (SAD) patients (P).  
Bottom: Deactivation maps for SAD patients. Deactivation in control subjects did not 
reach the significance level. The right hemisphere corresponds to the right side of the 
coronal views and the bottom side of the axial views. 
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Figure 24 Differences in task-induced activation 

Between-group differences in task responses as revealed by the two-sample T-test. The 
right hemisphere corresponds to the right side of the coronal views and the bottom 
side of the axial views. 

 

8.3.2 Correlation of brain activation with task-related anxiety ratings 

SAD patients showed a notable amount of anxiety before the fMRI assessment 

(mean ± SD = 54.5 ± 19.8 %). Using ‘anxiety before minus anxiety after scanning’ as a 

measurement of anticipatory anxiety, we observed a negative correlation with cortical 

activation within the patient group (p < 0.001 uncorrected, cluster >15 voxels) (Figure 

25a). Anxiety ratings obtained in the separate behavioral experiment similarly showed 

negative correlations with brain activation, in this case combining patients and controls 

in the measurement of anxiety during ‘self’ condition minus anxiety during ‘other’ 

condition (Figure 25b). Notably, in both analyses the areas with negative correlations 

implicated the frontoparietal-cingulate network that showed significant deactivation or 

reduced activation during the task in patients. 
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Figure 25 Correlation of brain activation with task-related anxiety ratings 

a) Correlation maps of brain activation with anticipatory anxiety before functional 
magnetic resonance imaging (fMRI) in 20 patients. 
 
(b) Correlation maps of brain activation with anxiety provoked by the task in the 
separate experiment combining patients and control subjects (total n = 30). The right 
hemisphere corresponds to the right side of the coronal views and the bottom side of 
the axial views. 

 

8.3.3 Correlation of brain activation with social anxiety scores 

The correlation between LSAS scores and the observed brain response showed a 

clear tendency to differ between groups. LSAS correlated positively with brain activation 

in control subjects in regions where SAD patients showed negative correlations. The map 

of the interaction between groups for the correlation of LSAS with brain response 

summarizes this effect (Figure 26). Regions showing an interaction effect included the 

mesencephalic tegmentum, the thalamus, hypothalamus, ventral striatum, medial and 

posterior orbitofrontal cortex, occipitotemporal areas and the right dorsal (medial and 

lateral) frontal cortex. The interaction effect is illustrated with a plot including both 

controls and patients in Figure 26. For this plot, the relationship between LSAS and brain 

activation was best explained by a quadratic or inverted U-shaped function (r = 0.75, r 2 

= 0.56, p < 0.00001). 
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Figure 26 Correlation of brain activation with Liebowitz Social Anxiety Scale (LSAS) scores 

The map corresponds to the interaction between groups and displays voxels showing a 
positive correlation significantly greater in control subjects than in patients (or a 
negative correlation significantly greater in patients than in controls). The right 
hemisphere corresponds to the right side of the coronal view and the bottom side of 
the axial view. The plot illustrates the interaction effect. A quadratic function or an 
inverted-U function provided the best explanation for the relationship. 

 

8.3.4 Analysis of physiologic monitoring data 

Recorded heart beat data were optimal (>95% of beats registered) for all but 

three participants who were subsequently excluded from this analysis (one control 

subject and two patients). SAD patients showed a tendency to lower heart rate during 

each paradigm phase; in terms of the whole experiment, control subjects showed an 

average heart rate of 78.8 ± 10.3 beats/min and SAD patients 72.2 ± 9.5 beats/min (t = 2.0 

and p = 0.051). The response to the ‘self’ condition was characterized by an initial increase 

in heart rate in control subjects (Figure 27). This physiological reaction, however, was 

mostly absent in SAD patients. The mean initial (5 seconds window) heart rate increase 

across the three ‘self’ condition blocks was 1.9 ± 2.6 beats/min in control subjects and 0.4 

± 1.1 beats/min in SAD patients (t = 2.4 and p = 0.025). 
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Figure 27 Physiological assessment of task response for patients and controls 

Plot of heart rate evolution during the “self” condition averaged across blocks and 
subjects. Note that the initial heart rate increment observed in the control subject 
group was almost absent in patients. Vertical bar denotes standard error of the mean. 

 

8.3.5 Out of scanner behavioral experiment 

Anxiety ratings: The exposure to one’s own pre-recorded performance generated 

a significant amount of anxiety in SAD patients (mean+SD points in the 101-numerical 

rating scale in controls, 15.3+18.5; in SAD, 58.3+29.0; Z=-3.8; p=0.00006). Group 

differences were also significant for the variable “anxiety during self” condition minus 

“anxiety during other” condition (10.7+20.9 in controls and 37.7+26.8 in SAD; Z=-3.0; 

p=0.002). SAD patients gave higher scores to all descriptors closely related to anxiety.  

Eye tracking: During the “self” condition, SAD patients made more visual fixations 

on the screen than control subjects (controls: 111.7+41.5; SAD patients: 144.6+31.6; Z=-

2.4 and P=0.016). The number of visual fixations specifically on the eye area, however, did 

not significantly differ between groups (controls: 36.6+23.2; SAD patients: 34.20+17.4; 

not significant). Additionally, there were no significant group differences in the 

percentage of time involving visual fixations on the eyes during this condition (controls: 

37.4%+25.9%; SAD patients: 25.8%+12.8%; not significant). No between-group 

differences were observed for any measurement related to the “other” condition. The 

overall results indicate that patients showed a different visual scanning approach (Figure 
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28), although the data do suggest that patients’ strategy did not overtly involve eye area 

avoidance. 

 

Figure 28 Eye tracking assessment 

The pictures show the data from an illustrative single control subject (top) and a patient 
(bottom). The color “heat maps” typically represent visual fixations on each screen 
point averaged across blocks for the “other” condition (left) and “self” condition (right). 
(Red color indicates the most observed areas). 

 

8.4 Discussion and conclusions 

We have developed and piloted an fMRI-compatible experimental situation in 

which participants are explored while they see themselves as if viewed from an observer's 

perspective during exposure to scrutiny and evaluation by others.  
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SAD patients were highly sensitive to the situation, as reflected by their 

behavioral ratings. However, both patients and controls showed robust activation in brain 

regions related to self-face recognition, emotion and general arousal. The patients 

showed greater activation than the controls only in primary visual areas. By contrast, the 

patients showed deactivation or smaller activation in dorsal frontoparietal and anterior 

cingulate cortices. Task-related anxiety ratings revealed a pattern of negative correlation 

with activation in this frontoparietal/cingulate network. Social anxiety scores were 

positively correlated with brain activation in control subjects and negatively in patients, a 

pattern that was best explained by an inverted-U function. 

The lack of a strong contrast between patients and controls may be associated 

with the disease complexity pointed by this inverted-U function. In fact, in a literature 

review of symptom provocation tasks it is frequent to find both activity increases and 

decreases when comparing patients with controls. 

In our assessment, symptom provocation was not associated with increased 

psychophysiological arousal, but instead SAD patients showed reduced heart rate 

responses. This is in line with the altered cardiac regulation observed in previous studies 

on SAD patients (Gaebler et al. 2013). Heart rate deceleration in response to gaze has 

been observed in healthy subjects with high trait of social anxiety (Tsuji & Shimada 2015). 

Several independent research groups have reported an absence of a significant increase 

in heart rate and other physiological measures between SAD patients and controls in 

response to threatening faces (Staugaard 2010) or during stressful speaking tasks (Heiser 

et al. 2009; Schmitz et al. 2011). The importance of this finding relies in the fact that an 

altered heart rate responsivity in the context of emotional regulation can be associated 

to alterations in autonomic, sympathetic or parasympathetic regulatory mechanisms 

(Appelhans & Luecken 2006). These alterations, have not been associated with enhanced 

fear conditioning in SAD (Tinoco-González et al. 2015). Cardiac regulation has, however, 

been seen modulated by SSRI intake in patients with panic disorder (Mueller et al. 2014). 

From a technical experimental design point of view, the lack of an exacerbated 

physiologic reaction of the subjects should be regarded as a success of the task design. An 
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aberrant increase in arousal could be a concern due to the sensitivity of fMRI to large 

changes in the physiologic state of the subject. This is known to create significant artifacts 

in the analysis results through alterations in respiratory (Birn et al. 2006; Birn, Smith, et 

al. 2008) or heart rates (Shmueli et al. 2007). However, physiologic oscillations may also 

be related to the experimental effect, for example through a top-down regulation related 

to attention or emotion. Consequently, in this case we took a cautionary approach by not 

including them into the analysis as regressors. An excessive regression out of “confound” 

variables would have a potentially detrimental effect on the signal of interest. 

A literature review may bring us to suspect that arousal response may be different 

in particular patient subgroups or experimental conditions. Significant heart rate 

acceleration during speech presentation was observed in social phobia patients who 

complained of blushing (Gerlach et al. 2001), elderly socially anxious women (Grossman 

et al. 2001), social phobia patients without associated avoidance personality disorder 

(Hofmann et al. 1995), and selective public speaking phobics (as opposed to generalized 

social phobia) (Heimberg et al. 1990; Levin et al. 1993). 

Nevertheless, it is important to emphasize that differences between patients and 

control subjects have been more consistent for the subjective perception of physiological 

reactions than for the reactions themselves, which supports cognitive theories of social 

anxiety emphasizing negative interpretation of bodily sensations as part of the anxiety 

response (Klumbies et al. 2014). 

In conclusion, the task we developed, which involved self-recognition when 

exposed to scrutiny and evaluation by others, was well tolerated by patients and controls 

and generated a robust neural response in regions relevant to emotional reactivity. 

However, group differences for the activations were not evident in these domains. Social 

anxiety was more specifically associated with changes in the dorsal frontal and cingulate 

systems mediating top-down emotion regulation. These results may emphasize the 

relevance of the cognitive component of anxiety in SAD. Disorder severity showed a 

nonlinear relationship with the neural activation pattern, which was characterized by a 
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significant cortical reduction in the most severe cases. This observation may help to 

explain some of the divergent results that can be found in research studies of SAD 
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9 Study 5: Validation of an imaging protocol aimed to 
characterize pharmacological response in Social Anxiety 
Disorder patients 

9.1 Introduction 

Along this dissertation we have presented the socio-economical need of 

developing and validating biomarkers able to characterize treatment response in Social 

Anxiety Disorder. The availability of validated biomarkers could reduce the long time to 

market and the failure rate of new SAD treatments (Merlo Pich 2011). Potentially, it would 

also enhance the currently limited contribution of animal models (Cryan & Sweeney 

2011). This could revert in significant savings for our society (Adams & Van Vu 2010) and 

the reduction of patients unnecessarily exposed to unsuccessful experimental treatments 

(Trist & Bye 2014). 

Also along this document, we have reviewed the latest findings in fMRI research 

on social anxiety disorders. These findings suggest an engaging possibility to explore SAD 

treatment response using fMRI biomarkers in novel paradigms for drug discovery 

(Valenzuela et al. 2011; Nathan et al. 2014). The first attempts to characterize treatment 

response in SAD works focused on measuring the response to emotional or stressful 

stimuli as BOLD activation level in the amygdala and insula (Paulus & Stein 2007; Arce et 

al. 2008). These brain regions are considered representative of an extended network that 

processes fear, stress and anxiety (Etkin & Wager 2007; Shin & Liberzon 2010). In some of 

these studies, amygdala was described as over-responsive when SAD patients were 

exposed to socially stressful or harsh emotional stimuli (Etkin & Wager 2007). This over-

responsiveness of the fear and stress network was suggested to reflect a disease-related 

susceptibility. This view led to the proposal that a pharmacologic agent attenuating 

amygdala hyper-responsiveness would be also an effective treatment for clinical anxiety. 

Promising findings were obtained using standard therapeutics (Nathan et al. 2014). 

However, amygdala over-responsiveness was not always observed in Anxiety Disorders 

(Marsh et al., 2008, Whalen et al., 2008) which may be attributed to dependency of this 

biomarker on subtle methodological differences (Freitas-Ferrari et al. 2010). This 
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highlights the complex dynamics of this brain network (Riwkes et al. 2015). The 

inconsistency of the findings on brain activations in the fear circuitry challenges the 

usability of these as SAD symptom severity biomarkers in clinical research, as first we 

would need to be understand them further. 

In our exploratory experiment presented as study 1, we identified that a state-of-

the-art emotional face processing task created a solid activation in the emotional face 

processing structures in a non-clinical sample. These results were in line with the 

literature review. However, we did not identify a direct correlation of this activation with 

SAD symptom severity. Notably, an exploratory interaction measurement did show 

significant correlation s with symptom severity. This finding is in line with growing 

evidence in literature that SAD disorder expresses in functional connectivity alterations 

(Liao et al. 2010; Giménez et al. 2012; Demenescu et al. 2013; Dodhia et al. 2014; Liu et 

al. 2015). 

Functional connectivity studies provide the advantage of reducing dependence 

on activation models, which is highly advantageous when exploring complex brain 

networks (Calhoun & Adalı 2012). Unfortunately, results of model-free connectivity-based 

analysis methods are not always simple to interpret (Barkhof et al. 2014) and this raised 

some controversies in the neuroimaging community (Morcom & Fletcher 2007). 

In Studies 2 and 3 of this dissertation we presented results supporting a high 

reproducibility and sensitivity of functional connectivity studies based on spatial 

Independent Component Analysis of fMRI BOLD data (Calhoun & Adali 2006). Similar 

methods have been recently proposed as biomarkers for nicotine addiction (Fedota & 

Stein 2015). 

On the other hand, in study 4 we presented the results of a novel model-based 

symptom-provocation task. In our pilot study including SAD patients and matched 

controls, this task neither revealed alterations in the activations of the fear and anxiety 

brain network. Instead, social anxiety scores showed a significant non-linear relationship 

with the dorsal frontal and cingulate systems, which mediate top-down emotion 

regulation (Bishop et al. 2004). These results were in line with growing literature reports 
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that support that SAD alterations do not limit to amygdala and its emotional processing 

network, but to a much more complex network, including emotion regulation areas 

(Gentili et al. 2015) 

The aim of this study is to characterize, for first time, treatment response in SAD 

patients using fMRI and a resting state functional connectivity paradigm. In particular, 

response to a commonly used anxiolytic drug (Paroxetine) is assessed. Along with the 

resting state ICA analysis, two additional model-based tasks are included in the paradigm. 

One of the tasks has been widely used in literature as a lenient challenge to the emotion-

processing brain circuitry (and piloted in our setup in study 1). The second task is the novel 

one presented in study 4 to explore the subject’s reactions in a context of SAD symptom 

provocation. An additional visuo-motor control task is also included to validate that no 

significant physiologic disruption takes place due to the administration of the drug. 

9.2 SSRI action principles in SAD. 

As introduced in section 3.3.2, Selective Serotonin Reuptake inhibitors (SSRIs) 

such as paroxetine currently are the widest choice for pharmacologic treatment of SAD, 

with vast evidence of their effectivity (Blanco et al. 2013). SSRIs are known to modulate 

the physiology related to the monoamine neurotransmitter 5-Hydroxytryptamine (5-HT, 

serotonin), which has been associated with a wide variety of emotional, cognitive and 

behavioral control processes (Cools et al. 2008). 

The action principle of SSRIs is by avoiding the reabsorption of serotonin into the 

presynaptic cell. This is believed to increase the extracellular level of serotonin, 

modulating signaling across synapses in which serotonin serves as the primary 

neurotransmitter. Effects have been observed to differ on chronic vs acute treatments 

and to show a nonlinear response to dose (Fischer et al. 2014).  

In some contexts, acute doses of an SSRI have been observed to produce the 

opposite effects than chronic treatments (Burghardt et al. 2004). As an example, acute 

administration of the SSRI citalopram has been observed to enhance the recognition of 

fear emotion in healthy volunteers (Browning et al. 2007; Harmer et al. 2003) whereas 
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administration for seven days has been observed impairs its recognition (Harmer et al. 

2004). 

Biological models explain this phenomenon by predicting that SSRI administration 

will quickly increase extracellular serotonin availability, which also excites autoregulation 

receptors, thus inhibiting the release of serotonin. These autoregulation receptors may 

become desensitized after few weeks of treatment (Gray et al. 2013), leading to the 

sought increased serotonin availability in the synapse. The predictions of these models 

are backed up by the experimental results of dietary restriction of the 5-HT precursor (the 

essential amino acid tryptophan). As an essential amino acid, tryptophan cannot be 

synthetized and must be obtained through the diet. Tryptophan depletion is known to 

reduce serotonin levels and has been shown to reverse the effect of chronic SSRI in SAD 

patients (Argyropoulos et al. 2004). 

Serotonergic neuronal cell bodies are restricted to discrete groups of cells or 

nuclei located along the midline of the brainstem, found largely within the boundaries of 

the raphe nuclei (Molliver 1987). These nuclei have a wide fan out of axonal projections. 

The limbic and paralimbic systems are heavily innervated by axonal projections from the 

median raphe nucleus (to dorsal hippocampus, medial septum and hypothalamus) and 

dorsal raphe nucleus (to prefrontal cortex, lateral septum, amygdala, striatum and ventral 

hippocampus), conforming the so-called serotonin pathways. See the review of Hensler 

et al. for a detailed description of the serotonin pathways to the limbic system (Hensler 

2006). 

Unfortunately, there is not yet a clear understanding on how SSRIs work to 

normalize abnormal cognitive and emotional processes (Andrews et al. 2015) nor to 

increase social behavior in healthy volunteers executing a problem-solving task and 

(Knutson et al. 1998). However, a well-established assumption is that the therapeutic 

effects of SSRI are related to modulation of activity in brain structures densely connected 

to the serotonin pathways, particularly those in the limbic and paralimbic systems. 

Consequently, these regions have been, and still are, frequent subject of study to 
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understand the relationship between brain activity and SSRI’s therapeutic effects (Stahl 

1998; Phan et al. 2013).  

9.3 Experimental setup 

The experimental setup used for this study was exactly as the setup described and 

validated in studies 1, 2 and 4 (see section 5.2.3 for a detailed description). This involved 

exploring subjects in a GE 1.5 Tesla Signa Excite MRI system, using single-shot echo planar 

Imaging (EPI) gradient recalled acquisition in the steady state. MRI settings were also 

reproduced: Whole-brain images were acquired with a Time of Repetition (TR) of 2000 

ms, Time of Echo 50 ms and 90º of pulse angle. The number of images acquired for each 

task is presented along with the experimental paradigm description. 

The MRI setup was equipped with the stimulus presentation system described in 

section 5.2.3.3, which allowed an immersive presentation of audiovisual stimulus. 

Replicating the setup used in studies 1, 2 and 4 allowed being able to use the 

previous results as a validation of the setup effectiveness and as reference in the 

interpretation of the results. 

9.4 Methods 

9.4.1 Subjects 

A total of 33 subjects (28 female and 5 male), with a DSM-IV-TR guided primary 

diagnosis of SAD (APA 2000) obtained using the structured clinical diagnostic interview 

SCID-I (First et al. 2002) were included into the study via public media advertisement. 

Inclusion criteria also involved LSAS score > 50, the acceptance to restrict alcohol intake 

to 2 units/day, the absence of any other psychiatric disorders and co-morbidity with 

diabetes, hypertension, cardiovascular, renal, hepatic or endocrine disorders, no 

psychotropic medications use in the month before trial initiation with exception of low-

dose hypnotics, no participation in any other trial in the last 6 months and no reported 

suicidal ideation. Demography, subject disposition, State-Trait anxiety inventory (STAI) 

questionnaire (Spielberger 1983) and Patient Health Questionnaire (PHQ) (Spitzer 1999) 

were collected during screening. 
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 Each subject was randomized (1:1 ratio) to daily receive either 20 mg of 

paroxetine or placebo as oral capsules for 8 weeks, with controlled visits and tablet 

refilling every 2 weeks. At the end of the study, subjects of the active treatment group 

received 10 mg/day of paroxetine as a tapering dose for one additional week before 

discontinuation. One subject was withdrawn from the study on day 17 due to a protocol 

violation 

9.4.2 Experimental paradigms 

The main objective of this experiment is to explore the capacity of fMRI to detect 

SAD treatment response. For this reason, the three categorically different paradigms 

presented in the previous studies of this dissertation were executed by the SAD and 

control populations under treatment and placebo condition. 

The selected experimental paradigms were those presented in study 1 (emotional 

faces matching), study 2 (resting state) and study 4 (delayed public exposition) of this 

dissertation, plus a control visuomotor task. Note this selection of tasks allowed testing 

the individuals under: 

1) A well-validated task in the SAD context (emotional faces matching) 

2) Our novel symptom-provocation task (delayed public exposition). 

3) A resting state condition with the technical parameters validated in studies 2 

and 3 plus  

4) A universal control task (visuomotor paradigm) that will allow to test for 

unwanted physiologic effects of the drug under study.  

For readability of this document, a brief description is provided below for all 

paradigms, including the reused ones. Cross-references are also provided to guide the 

reader to the detailed descriptions of the tasks in earlier sections of this document. 

9.4.2.1 EFPT – Emotional Face processing task 

This task was executed exactly as presented by Paulus et al. (Paulus et al. 2005) 

and highly similar to that used in study 1 (see section 5.2.1 for details). The emotional 

faces pictures, display layout and trial duration were exactly the same as in study 1. This 
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study incorporated the “angry” faces block, originally present in Paulus’ study but that 

had been excluded in study 1. 

Summarizing the rationale of this task, subjects performed a simple matching 

exercise where the items to match are either emotional faces or shapes. The overall task 

consisted of an 8.32 minutes sequence, comprising 12 blocks (9 for faces –fear, anger or 

happiness-, 3 for shapes) and a fixation cross presented between blocks. An “angry block”, 

for example, is defined by the emotion expressed by target image, which would be 

“angry” in this case. See Figure 29, bottom right corner for an example of an angry faces 

(AF) trial and a shapes trial. Each run comprised the acquisition of 256 volumes (15 brain 

volumes in each trial block, spaced by 12 seconds of fixation cross with 2000 ms per 

volume). 

 

 
Figure 29 EFPT task 

Visual description of the used version of the EFPT. Bottom right corner shows the 
screens presented in an “angry” trial (top) and in a “shapes” trial (bottom) 

 
This task is generally considered a lenient set of stimulus that allow the selective 

recruitment of the emotional face processing brain circuits without a specific SAD 

symptom provocation. Tasks related to emotional face processing are widely used in 

multiple variants to study SAD. See (Gentili et al. 2015) for a recent review. 

9.4.2.2 PERPT – Public Exposition of Recorded Performance Task 

This task, developed and presented in study 4, was executed exactly as presented 

in study 4 and in (Pujol et al. 2013) (see section 8.2.2 for details).  
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To summarize the task, subjects were presented with stimuli consisting of a pre-

recorded “private” video with three 30-s sequences of the same subject while executing 

a memory test that consisted in memorizing and narrating a story. The control condition 

were clips of the same length of another subject performing the same memory test. The 

whole task consisted of 6 alternated blocks (“other” and “self”), each block resulting in 15 

brain volumes, 2000 ms per volume. 

9.4.2.3 Resting state scanning 

Subjects were asked to lie quietly in the scanner with eyes open and fixed to a 

neutral dimmed green spot during the acquisition for 6 minutes, thus generating 180 

volumes acquired every of 2000 ms . Subjects had ben indicated that the green color of 

the spot indicated they were not being scrutinized during that period. 

9.4.2.4 Visuomotor control task 

The visual-motor task was selected as a control test to rule out “unspecific” 

effects of drug treatment on the BOLD signal. Subjects were scanned while performing a 

visual-motor paradigm consisting of a repeated finger opposition task while watching 

checkerboard square flashing (alternating black and white) at 3 Hz. 

The fMRI sequence, based on a block design, included the visual-motor condition 

and a baseline condition in which the subject was asked to fix the eyes onto the screen 

while remained immobile. The 4 minute sequence was organized in 8 blocks (4 task, 4 

rest), with each block lasting 30 s. Each run comprised the acquisition of 120 volumes (15 

brain volumes in each block, 2 s per volume). 



-151- 

 

Figure 30 Visuo motor control task 

In the visuo-motor control tasks, a fixed-length block design was used. Blocks lasted 30 
seconds and consisted either in a passive rest, or a “visuomotor” condition in which 
subjects executed a finger opposition task while watching a checkerboard with 
alternating pattern at 3 Hz. Four blocks of each condition were collected, for a total of 
4 minutes of exploration. 

 

9.4.3 Image analysis 

The analysis methods used were highly similar to those presented in Studies 1 to 

4. After preprocessing of all fMRI images, first level analysis was based in the general linear 

model for the EFPT, PERPT and visuomotor tasks. ICA was used to analyze the resting state 

task. A GLM-based ANOVA was performed as a second level analysis of the four studies. 

An overview of these analysis methods is presented below for readability of this 

document. 

9.4.3.1 Preprocessing 

Image preprocessing followed a similar pipeline as in studies 1 to 4 (See section 

5.2.4.1 for a detailed description). In summary, it was preprocessed using SPM5 

(www.fil.ion.ucl.ac.uk/spm) by doing motion correction, spatial normalization to the MNI 

template and smoothing using a Gaussian filter of 8 mm of full-width to half-maximum. 

During normalization, images were resampled to a 2x2x2 mm3 voxel size, except for the 

resting-state sequence which was resampled to a voxel size of 3x3x3 mm3 like in studies 

2 and 3, due to computational power limitations. 

http://www.fil.ion.ucl.ac.uk/spm
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9.4.3.2 First level - General linear model 

The emotional face processing task, public exposition of recorded performance 

task and visuomotor control tasks where analyzed using a general linear modeling 

analogous to that those in study 1 (described in section 5.2.4.2) and study 4 (described in 

section 8.2.6.2). 

Summarizing, first level analysis were performed in SPM5 using as the model box-

car designs following the experimental conditions, convolved with the canonical 

hemodynamic response function. The contrasts extracted were those leading robust 

results in study 1 (harsh faces > shapes) and in study 4 (“viewing self” > ”viewing other”. 

For the visuomotor task, the extracted contrast was sensorimotor activity>rest. 

9.4.3.3 First level – Independent Component Analysis 

The ICA analysis performed in this study was the same as in Studies 2 and 3. See 

section 6.3.4.2 for details. Briefly, time-series were concatenated and processed using 

GIFT v1.3d; (http://icatb.sourceforge.net) running on Matlab 7. This included a 

component back-reconstruction following the individual’s source data, as previously 

described. Attending the purposes of the current study, four components related to 

anxiety, self-referential emotion and arousal processes were selected (see the selected 

networks in Figure 31 ). 
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Figure 31 ICA components selected for second level analysis 

Components extracted by ICA from the resting state sequence and selected as relevant 
for the second level analysis. Each ICA component shows brain voxels with a particular 
activation dynamics (temporal time course). These are presented in a single- subject 
MRI standard MNI anatomical space. 

 

9.4.3.4 Second level Analysis 

Inferential analysis of each of the 4 experiments were conducted on SPM using a 

2x2 repeated measures ANalysis Of VAriance (ANOVA), where 2 factors were defined as 

treatment (paroxetine or placebo) and time (baseline or week 8). Significance was tested 

for the “drug vs placebo” interaction and for individual treatment effects. 

For the three tasks analyzed with GLM at the first level, the described contrasts 

of interests were fed to SPM to calculate the ANOVA statistics. For the resting state task, 
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component connectivity effect size (z-score maps) were fed, separately for each 

component, to the same repeated-measures ANOVA statistical calculation. 

Baseline task effect (one-sample T-test) second level analysis were also 

performed to validate the brain areas recruited by the experiment. For the emotional face 

processing task, GLM inference was constrained using the WFU pick atlas v 3.1 to a priori 

regions of interest, previously reported as potential treatment response biomarkers: 

Bilateral amygdala and insula (Paulus et al. 2005; Arce et al. 2008). For the novel PERPT, 

data was analyzed with both a ROI and a whole-brain approach. 

Additionally, a correlation coefficient analysis was performed between clinical 

improvement (as revealed by CGI-I) and the ANOVA’s time contrast (week 8 versus 

baseline) for placebo and paroxetine. 

9.5 Results 

9.5.1 Baseline of behavioral tasks 

The baseline analysis of behavioral tasks revealed, for each task, the brain areas 

for which activity is significantly modulated by the paradigm. These results were used to 

confirm that the experimental design effectively engages the brain regions targeted by 

the experiment.  

9.5.1.1 EFPT 

At baseline, the EFPT produced a significant bilateral activation of amygdala and 

insula, as well as other areas included in the fear, stress and anxiety circuit, e.g., 

hippocampus, orbitofrontal cortex, and fusiform gyrus. See the anatomy in Figure 32, left 

panel. 
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Figure 32 EFPT and PERPT activation maps 

Activation maps observed in SAD subjects during EFPT (a) and PERPT (b). Color maps 
represent group-wise activation T-values (black,t = 0; red,t = 4; yellow,t = 8; white,t = 
10). 

 

9.5.1.2 PERPT 

At baseline, the PERPT produced a more intense and extended bilateral activation 

of the same areas as the EFPT, with an additional distinctive activation in the regions 

related to self-recognition, i.e., extrastriate visual cortex, the right inferior frontal gyrus 

and medial frontal gyrus. See the anatomy in Figure 32, right panel. 

9.5.2 Effects of treatment 

Treatment effect analysis revealed the differential brain activity induced by the 

pharmacologic treatment. It is important to read these results in conjunction with the 

baseline results presented in the previous section. Provided the experimental design, 

factorial (ANOVA) and dimensional (correlation coefficient) results are presented. 
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9.5.2.1 ANOVA on EFPT activations 

The effect of paroxetine on the activation produced by the EFPT was analyzed by 

a ROI approach, focusing on amygdala and insula bilaterally, and as an exploratory analysis 

in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC). Two-way ANOVA 

treatment x time interaction was found significant in right amygdala (cluster size=122, 

t=2.11 in MNI 24 -4 -20, p=0.019), left insula (cluster size=205, t=2.96 in MNI -40 -80, 

p=0.002) and right insula (cluster size=532, t=3.78 in MNI 30 -14 20, p<0.0005). These 

results were mostly explained by paroxetine producing more activation at study-end 

when compared to placebo (Figure 33, upper panel). Placebo alone did not directly affect 

amygdala and insula, but reduced the signal in the hippocampus and in the right thalamus 

(Figure 33, yellow arrows). No significant effect of paroxetine or placebo treatment was 

observed in PFC or ACC (data not shown). 
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Figure 33 ANOVA 2x2 results of interaction between treatment and time 

Statistical maps of the ANOVA 2x2 interactions between treatment and time 
(paroxetine vs. placebo, study-end vs. baseline). Threshold was p<0.05 at voxel level, 
color maps representing t-values (red,t=1.5; yellow,t = 2.5; white, t = 3.5). Top panel: 
Results from the EFPT in the amygdala and the insula ROI. Lower panel: Results from 
the PERPT assessed as fear, stress and anxiety circuit, showing BOLD signal changes in 
orbitofrontal and ACC, posterior hippocampus, insula and thalamus respectively. In 
PERPT, amygdala activation was attenuated by both placebo and paroxetine and did 
not show significant interaction. Arrows represent the increase (upwards) or the 
decrease (downwards) of activation found at study-end versus baseline for paroxetine 
(red arrow) and placebo (yellow arrow). 

 

9.5.2.2 ANOVA on PERPT activations 

In the PERPT, the two-way ANOVA treatment x time interaction showed effects 

in various components of the fear, stress and anxiety circuit (Figure 33, lower panel). In 

addition to subcortical structures, engagement of a medial prefrontal cluster was 

observed, including anterior cingulate cortex and the subgenual cortex (Broadmann areas 

34 and 25). Significant interaction was found in the left insula (cluster size=87, t=3.10 in 

MNI -38 20 10, p=0.002), right insula (cluster size=31, t=2.65 in MNI 30 32 -2, p=0.005), 

left hippocampus (cluster size=72, t=2.30 in MNI -18 -40 0, p=0.013), right hippocampus 

(cluster size=146,t=3.10 in MNI 40 -36 -10, p=0.001), left extended prefrontal and ACC 

(cluster size=705, t=2.60 in MNI -6 38 8, p=0.006), right extended prefrontal and ACC 

(cluster size=248, t=3.67 in MNI 10 32 28, p<0.0005), right thalamus (cluster size=54, 
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t=2.81 in MNI 20 -30 14, p=0.003) and left thalamus (cluster size=18, t=1.88 in MNI -8 -16 

14, p=0.032). The study of the main effects (Table 9) showed that the amygdala response 

was significantly attenuated at study-end versus baseline in both treatment groups. 

Table 9 Treatment effects of paroxetine on PERPT activation in ROIs 

ROI 
Cluster size 

(voxels) 

MNI 
coordinates 
(x y z mm) T value 

p value 
(uncorrected) 

Paroxetine effect (study end < baseline) 

Bilateral thalamus 895 10 -30 -2 3.69 <0.0005 
 33 22 -20 14 2.42 0.009 

Left PFC and ACC 48 -6 46 28 2.29 0.013 
Right amygdala 36 18 -10 -26 2.72 0.004 

Placebo effect (study end < baseline) 

Left hippocampus 385 -18 -40 -2 3.11 0.001 
Right hippocampus 243 28 -10 -26 3.35 0.001 

 142 38 -34 -12 2.61 0.006 
 26 24 -42 -2 2.13 0.018 

Right amygdala 25 28 -6 -26 3.02 0.002 

Placebo effect (study end > baseline) 

Left insula 250 -38 18 8 3.66 <0.0005 
Right insula 107 26 32 0 2.72 0.004 

Bilateral PFC, subgenual 
region and ACC 

3311 12 30 28 4.57 <0.0005 

 
MNI coordinates, p and T values refer to the maximum peak within the cluster revealed 
by the ANOVA on the PERPT activations. Abbreviations: ACC: anterior cingulate cortex; 
MNI: Montreal neurological institute; PFC: prefrontal cortex; ROI: region of interest. 

 

9.5.2.3 Correlation analysis on PERPT 

Correlation analysis between clinical scores and brain activation in the PERPT 

indicates a significant negative correlation between CGI-I scores and brain activation in 

the rostro-medial PFC produced by paroxetine (cluster size=877 in MNI 2 58 -0, t=4.35, 

p<0.0001). Since low CGI-I scores indicate better clinical conditions, these data indicate a 

direct association with clinical improvement (Figure 34a). No significant correlation 

between brain activation and clinical scores was observed in the placebo group. 
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Figure 34 Correlation of paroxetine effect on PERPT or resting and CGI scores 

Correlation (p<0.001) between CGI-I scores and (a) activation produced by the PERPT, 
and (b) changes in resting state ICA “Anterior Paralimbic” component induced by 
paroxetine. Color maps represent t-values (black, t = 0; red, t = 1; yellow, t = 3; white, t 
= 5). Note that both paradigms showed a negative correlation with clinical score in the 
same areas of rostro-medial PFC. Placebo did not produce any effects (data not shown). 

 

9.5.2.4 ANOVA on resting state task 

Results from the two-way ANOVA treatment x time interactions showed that 

paroxetine treatment reduced the value of all ICA components when compared to 

placebo (Figure 35), suggesting an attenuation of functional connectivity. Specifically, a 

significant attenuation of connectivity of the ‘Default Mode’ component was produced in 

the right thalamus by paroxetine at study-end versus baseline when compared with 

placebo (cluster size=57, t=2.53 in MNI 9 -24 3, p=0.007). Paroxetine-induced attenuation 

of connectivity versus placebo was observed measuring the ‘Posterior Insular’ component 

in the right insula (cluster size=88, t=3.19 in MNI 33 -12 0, p=0.001) and in the perigenual 

regions BA12 and BA32 (cluster size=44, t=2.64 in -3 42 0, p=0.005). Paroxetine also 

reduced versus placebo connectivity of the anterior paralimbic component, in the the 

subgenual ACC (cluster size=89, t=2.98 in MNI 0 9 -12, p=0.002). Conversely, placebo 

treatment significantly increased functional connectivity in the subgenual region BA24 

and BA35 at study-end vs. baseline (cluster size=58, t=2.96 in MNI 6 21 -, p=0.002). Finally, 
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the analysis of the ‘Fronto-Parietal’ component showed significant interaction at the level 

of the anterior left insula (cluster size=67, t=2.68 in MNI -36 15 6, p=0.005), a result driven 

by paroxetine that attenuated the signal at study-end while placebo did not. See Figure 

35 for a summary of these results. 

 

Figure 35 Resting state effect of treatment 

Resting state maps of the ANOVA 2 x 2 interactions between treatment and time 
(paroxetine vs. placebo, study-end vs. baseline). Threshold was p < 0.05 at voxel level, 
color maps representing t-value at single voxel (black, t = 0; red, t = 1; yellow, 
t = 2; white, t = 2.5). The brain regions significantly affected are thalamus and midbrain 
for the ‘Default Mode’ component, the ACC and posterior insula for the ‘Posterior 
Insular’ component, the orbitofrontal and subgenual cortex for the ‘Anterior 
Paralimbic’ component, and the anterior insula for the ‘Fronto-Parietal’ component. 
Arrows represent the increase and the decrease of activation found at study-end vs. 
baseline for paroxetine (red arrow) and placebo (yellow arrow). 

 

9.5.2.5 Correlation analysis on resting state data 

Correlation analysis between CGI-I clinical scores and ICA ‘anterior paralimbic’ 

component showed a significant negative correlation between CGI-I scores (low score 

indicates improvement) and brain functional connectivity in the rostro-medial PFC 

produced by paroxetine (cluster size=32, t=3.53 in MNI 3 63 -15, p=0.001) (Figure 34b). 

Positive correlation was instead observed in the subgenual cortex, in the paroxetine group 

(cluster size=75, t=4.79 in MNI -6 39 -3, p<0.0001) and in the left orbitofrontal region in 

the placebo group (cluster size=114, t=4.62, in MNI -36 45 -6, p<0.0001). 
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9.6 Discussion and Conclusions 

To our knowledge, this was the first placebo-controlled fMRI study evaluating 

paroxetine treatments in SAD that implements resting state analysis. In this present study 

two small groups of SAD subjects were exposed to paroxetine or placebo for 8 weeks, 

which is considered equivalent to a chronic treatment. Significant effects of paroxetine 

treatment were observed with the clinical score CGI-I and fMRI. Functional MRI showed 

consistent changes in structures of the fear, stress and anxiety circuit in two different 

procedures, the high-distressing PERPT and the non-intrusive resting state ICA analysis. 

Significant effects, but of more difficult interpretation, were also obtained with EFPT, a 

task shown to be sensitive to anxiolytics in healthy volunteers (Paulus et al. 2005). The 

lack of significant effects on the visuomotor task confirms that no unspecific effects were 

generated by the drug on fMRI results. 

At baseline, the PERPT and EFPT fMRI tasks produced robust activation maps, as 

previously described in literature (Paulus et al. 2005) and in study 1 of this dissertation for 

EFPT and in study 4 for PERPT. PERPT generated generally stronger activations and 

activated additional brain regions – also seen in study 4- including primary and extra 

striate visual cortex, right inferior frontal gyrus, medial frontal gyrus, and ACC, known to 

be engaged in self-referential processing (Northoff et al. 2006).  

The resting-state spatial Independent Component Analysis robustly isolated the 

spatial components reported in studies 2 and 3 of this dissertation and widely reported in 

literature (Barkhof et al. 2014). Only those networks overlapping with the fear, stress and 

anxiety circuit were considered when assessing paroxetine effects. These components 

were those corresponding to the Default Mode, posterior Insula, anterior paralimbic and 

fronto–parietal networks (see Figure 31). 

Chronic treatment with paroxetine attenuated the activation produced by PERPT 

in medial PFC, subgenual PFC and ACC. These areas are known to be involved in emotion 

regulation and top-down modulation of anxiety in healthy subjects, with rostral ACC 

presumed to control the amygdala’s response to stressful and aversive stimuli (Etkin et al. 

2011). Notably, recent findings suggest ACC as a mediator from anxiety sensitivity to 
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subjective anxiety (Harrison et al. 2015). Attenuation of threat-related medial prefrontal 

cortex activation by acute administration of another SSRI (citalopram) has been previously 

reported (Harmer et al. 2006; Simmons et al. 2009).  

The analysis on the connectivity in the four ICA-extracted components of interest 

showed that paroxetine treatment reduced connectivity in all components when 

compared to placebo. Specifically, paroxetine reduced thalamus connectivity to the 

default mode network. Reduced connectivity in posterior right insula, pregenual regions 

and subgenual ACC were seen when comparing paroxetine vs placebo. Remarkably, a 

recent seed-based study identified that higher social anxiety severity in SAD subjects 

correlated with lower amygdala-ACC/mPFC connectivity (Dodhia et al. 2014). In Dohia’s 

study, this atypical connectivity was reversed by the administration of intranasal oxytocin. 

These could seem to be results opposite to ours. However, it is important to note the 

differences in the interpretation of seed-based functional connectivity and ICA-based 

functional network connectivity that were discussed in section 7.1. From our methods, it 

cannot be determined whether our decrease in intra-network connectivity was related to 

an experimentally induced internetwork coupling. Interestingly, another recent set of 

results revealed simultaneous decreased connectivity of the orbitofrontal gyrus and 

increased connectivity of the middle frontal gyrus in SAD patients versus controls (Geiger 

et al. 2015). This suggests that both hypo-connectivity in the executive control network 

and hyper-connectivity between the orbitofrontal cortex and the amygdala may reflect a 

disturbance in the balance between top-down and bottom-up control processes in SAD 

patients. 

In the present study, the EFPT results drove activation of amygdala in both 

placebo and paroxetine groups at baseline and a similar significant attenuation over time. 

The interaction between paroxetine and placebo groups measured at basal and study-

end, the effects were of activation, at variance with the attenuation reported in the early 

anxiolytic literature in healthy volunteers (Paulus et al. 2005; Arce et al. 2008; Simmons 

et al. 2009). However, other discrepant results like ours have been reported, showing SSRI 

to increase amygdala activation (Tendolkar et al. 2011), placebo to reduce it (Furmark et 

al. 2008) or SAD patients displaying lower amygdala activation than healthy volunteers 
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(Britton et al. 2010; Phan et al. 2006). The heterogeneity of these results suggest that the 

results of this paradigm may depend on setup-specific conditions (Freitas-Ferrari et al. 

2010) or different phenotype-driven neural expressions of SAD (Furmark et al. 2008). 

The analysis of correlation between clinical improvement (as reflected by CGI) 

and task activation revealed significant a significant correlation between PERPT BOLD 

activation and the improvement of CGI-I clinical scores in the rostro-medial PFC 

(Broadmann area 11) of SAD subjects in the paroxetine group. Remarkably, the same 

Broadmann area was identified to show a significant correlation between CGI-I clinical 

scores and ICA network functional connectivity. The fact that the symptom-provoking 

PERPT showed the same sensitivity to clinical improvement than the passive resting-state 

experiment enhances the interest for further exploring Independent Component Analysis 

as a basis for fMRI-based clinical improvement biomarkers. Notably, the only area 

identified to show this behavior is recently being highlighted as a potential candidate of 

study to disentangle the neural basis of social anxiety disorder (Sylvester et al. 2012; 

Geiger et al. 2015; Duval et al. 2015). A recent study applying connectivity and graph 

theory on a nonclinical population found that SAD symptoms were associated with 

weakened connectivity of the parahypocampal gyrus and ventromedial prefrontal 

cortex/medial orbitofrontal cortex, but not in insula nor amygdala (Kajimura et al. 2015). 

Altered ventrolateral prefrontal cortex (VLPFC) has also been observed in SAD patients 

using near infrared spectroscopy during a verbal fluency task (Yokoyama et al. 2015) 

In conclusion, the selected fMRI paradigms and analysis methods showed 

significant sensitivity to the effects of paroxetine treatment of SAD. Treatment effects 

were identified in areas related to the processing of fear stress and anxiety, which are 

known to be altered in SAD. Remarkably, Independent Component Analysis revealed 

sensitivity to clinical improvement in the same areas and direction than the symptom-

provocation task. While there is an evident need of further exploration and replication of 

these results, we conclude that our results strengthen the set of published evidence that 

fMRI can become a powerful tool for drug discovery. 
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10 Ethical considerations 

All the experiments presented in this document have been planned and executed 

with strict observation of the Declaration of Helsinki (WMA 2013) and the applicable 

ethical committees, including CEIC-IMAS for studies 1,2,4 and 5; the Mental Health 

Research Institute of Victoria and Melbourne Health Research and Ethics Committees for 

study 3. Study 5 was posted on clinicaltrial.gov with reference NCT00470483. 

Some additional ethical considerations are discussed below, covering the possible 

inferences done through this dissertation, and some common areas of concern in the field 

of neuroimaging. 

10.1 Limitations of the inference through this thesis’ results 

Like in many other scientific disciplines, the inference of the results found in this 

work shall be contained until wide replication of these results is obtained and a full 

understanding of the underlying biophysical principles is developed.  

As described in the section 2 of this dissertation, neuroimaging through functional 

magnetic resonance imaging relies in a long and complex chain of measurements and 

assumptions. Leaving aside possible execution errors, multiple unaccounted variables 

could influence the neuroimaging results. These variables could be affecting in the 

physics, physiology, psychology, technology or analysis methods and even be coincident 

in different experimental setups (Savoy 2005). Neuroimaging is not free of optimistic 

attempts to predict outcomes from too small datasets (Whelan & Garavan 2014) so 

experimental replication on robust sample sizes is convenient. When we seek for result 

replication we should include both similar and distinct experimental approaches to rule 

out the effect of random and deterministic effects, respectively. The experiments in 

studies 1 and 2 have been replicated in multiple setups, not without some diverging 

results. However, studies 3 to 5 involved much more novel tasks and analysis methods. 

Therefore, care should still be taken before inferring out from their results as the scientific 

community would need first to try to replicate these experiments.  
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10.2 Neuroethics 

Unfortunately, when a neuroimaging study presents results in the shape of a set 

of colored regions on an anatomical image, the potential confounds or unaccounted 

variables are frequently not represented. Non-rational automatic thinking can lead to the 

belief that the relationship between the stimulus or condition and those colored areas is 

proven. However, like it happens with basic statistics when we see a difference between 

the mean values of two groups, we know that a number of context variables and metrics 

(i.e. variance or sample size) need to be accounted before these results are inferred into 

knowledge on the observed phenomenon. Most of the research disciplines are vulnerable 

to this (Ioannidis 2005), but the complexity of the brain and the related analysis methods 

make it a deeper concern in neuroimaging. These concerns have raised in the scientific 

community the feeling that neuroethics can play a significant role in the field of 

neuroimaging and our society in general (Levy 2008). 

Having made a hypothesis before the experiment was executed is a generally 

adopted best practice. However, the hypothesis itself is not guaranteeing the validity of 

inference made out of the results. In fact, confirmation bias is a well-known phenomenon 

of human psychology, described as a tendency to search for evidence that supports the 

hypothesis we are assessing, rather than evidence that refutes it. It can also lead to the 

interpretation of ambiguous evidence so that it supports our hypothesis (Nickerson 1998). 

Unfortunately, confirmation bias can also affect the progress of science. This 

phenomenon would make a scientist to pay more attention to evidence confirming the 

own hypothesis or beliefs and disregard disconfirming evidences. This can combine with 

the availability heuristic: The mental shortcut driving the belief that if something can be 

recalled, it is more frequent than alternative solutions which are not as readily recalled 

(Tversky & Kahneman 1973). Because, in presence of confirmation bias, confirming 

instances are more easily recalled, memory searches can lead us to conclude that our 

hypothesis is true. This is the same mechanism that leads people to believe that car 

accidents are more likely to happen after being shocked by witnessing one. Even when 

judging own experiences, perceived ease of recall can play a significant role in the 



-167- 

interpretation of the implications of the recalled experiences (Schwarz et al. 1991). The 

scientific community needs to pay special attention to impartiality and to 

contextualization of results to avoid this. 

Most of the peer-reviewed articles are targeted to the scientific community. 

However, since the decade of the brain, the influence of neuroimaging has expanded to 

the broader community. Suddenly, the consumers of neuroscience studies have expanded 

to include marketing, legal, economics or divulgation interests, to name a few. A search 

in general news identified a large part of them had a mostly optimistic tone, while 

scientific issues such as validity were seldom discussed (Racine et al. 2005).  

The “neuro-policy” trend identified by Racine et al, attempting to use fMRI to 

promote political or personal interests is becoming particularly concerning: The 

apparition of neuroimaging results in courts and legislatures is becoming frequent (Rosen 

& Savoy 2012). In these contexts the audience may not be trained enough to interpret 

these results with guarantees. In fact, research has shown that neuroimaging results are 

highly persuasive and are taken more seriously than other kinds of data in decision making 

(McCabe & Castel 2008). Racine et al also described “neurorealism”, where fMRI 

investigations can make a phenomenon uncritically real, objective or effective in the eyes 

of the public, despite the complexity of the data acquisition and processing. Under this 

phenomenon, general beliefs seem to be confirmed by the “visual proof” of brain activity. 

A study that interviewed over 2000 members of the general community identified 

that reading about neuroscience in divulgation media could have both positive and 

negative effects in neuroscience literacy (Herculano-Houzel 2002). Historically, wide press 

coverage has shown to influence even health professionals, modulating the adoption of 

certain practices, such as what happened with the promotion of lobotomy to treat certain 

psychiatric diseases (Diefenbach et al. 1999), initiating one of the darkest episodes of 

neuroscience. Unfortunately, and the effect of popular press on medical practice remains 

as a concern today (Singh et al. 2007; Gilbert & Ovadia 2011; Schmitz et al. 2003). A high 

scientific criticism can be expected in the interpretation of fMRI data for pharmacology 

research, but the need to pay high attention to the methods and data interpretation to 
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support drug development is an overt concern in the neuroscientific community (Wise & 

Preston 2010). Developing a formal widespread education on neuroimaging to 

researchers and research consumers start seeming necessary to avoid the risks of 

misusing this science (Savoy 2012). 

10.3 A new window to the brain: Privacy of the subjects 

Despite the complexity of fMRI studies and the calls for caution in its 

interpretation, fMRI is clearly advancing at a high speed. Protocols based in fMRI are every 

day giving more information about the subject under study. Psychiatric pathology, 

emotional state or treatment response are characteristics of the individual that typically 

would be not revealed without one’s participation. However, as we have seen in this work, 

novel techniques can give increasing detail about these conditions. This has raised 

concerns on the protection of privacy of the subject under study (Farah 2012). Like it 

happens with DNA sampling, the amount of information that can be extracted from the 

individual’s data is not always predefined as new knowledge and analysis techniques can 

be developed after the data collection. Unlike DNA, fMRI results can be driven not only 

by the genetic heritage, but also by the subject’s experience and cognition. This can be a 

concern in applications related to moral beliefs or crime (Littlefield 2009). Strict 

anonymity of research studies of medical files seems to be more necessary than ever to 

protect the subject’s privacy to the current or future capacity of fMRI analyses.  

On the other hand, the amount of information that today can be obtained from 

an individual’s fMRI scan is still scarce. This is why fMRI studies often seek for large 

population samples before a conclusion can be drawn. As a result, individual’s privacy may 

still be fairly well protected by the limitations in the science and technology behind fMRI 

(Farah et al. 2009). In fact, as introduced in section 10.1, it is likely that the general public’s 

expectations on the degree of detail obtained by the individual is above the actual 

capacity of the technique. This could bring to an unjustified discomfort by the volunteers, 

as the perceived degree of privacy violation done by an exploration is modulated by the 

individual’s expectations on the kind and quantity of data obtained by the technique 

(Baker et al. 2013). In this scenario, an overt communication of the actual degree of detail 
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obtained from the individual may reduce the subjects discomfort and may even ease 

recruitment for research studies. 

If subsequent studies of this or parallel works continue objectivizing treatment 

response in psychiatric diseases, these research techniques may start being applied in the 

clinical context. This could significantly modify treatment adjustment practices, which 

today still rely mainly on self-reports from the individual. Despite self-reports from 

psychiatric patients can be misleading or complex to decode, a “the machine says you’re 

better” scenario where a neuroimaging test drives drug dosing or replacement would be 

likely to be considered too disruptive by patients and practitioners. The short term 

expectations for these techniques should not exceed the support to drug discovery 

research and being a bedside support technique in the clinical practice.  

In future research, informed consents may need to be updated to detail the 

information that is expected to be inferred from the individual through the imaging 

exploration. Responsible and anonymous usage of these fMRI datasets is necessary to 

protect individual’s privacy and other rights. Public and private institutions may need to 

keep updating the criteria used in their ethical committees following the developments in 

fMRI techniques. 
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11 Conclusions 

The review of the state of the art revealed that the usage of fMRI in clinical 

psychiatry research is in an incipient stage, while there is clear socioeconomic need to 

enhance the success rate of drug discovery. 

The results of our emotional face processing experiment revealed that not only 

fMRI task activation, but also functional connectivity measurements shall be considered 

as potential biomarkers to characterize severity of social anxiety disorder. 

Independent component analysis provides whole-brain functional connectivity 

measurements that are anatomically reproducible across studies and are sensitive to the 

subject’s emotional state. 

Our novel symptom-provoking task revealed a non-linear relationship between 

symptom severity and task-induced activations in brain structures mediating top-down 

emotion regulation. 

In the pilot clinical trial using a standard pharmacological treatment on SAD 

patients, both the symptom-provocation task and the resting state analysis revealed that 

effect size on ventromedial prefrontal cortex (Broadmann area 11) was sensitive to clinical 

improvement as revealed by the CGI scale. 

Despite it is clear that extensive works are still needed, these results provide 

evidence that fMRI-based measurements, including ICA of resting-state data, are sensitive 

to the expression of social anxiety disorder. Therefore, these techniques are valid 

candidates as SAD treatment response biomarkers for clinical research. 
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12 Publications derived from this thesis 

The works presented in this thesis have contributed to the development of the 

following peer-reviewed publications. The results presented in studies 1 to 5 are 

reproduced from these publications with permission of the editors.  

Study 1 (Journal’s 2014 impact factor: 5.9) 

Pujol, J, B J Harrison, Hector Ortiz, Joan Deus, Carles Soriano-Mas, M López-Solà, M 
Yücel, et al. 2009. “Influence of the Fusiform Gyrus on Amygdala Response to 
Emotional Faces in the Non-Clinical Range of Social Anxiety.” Psychological Medicine 39 
(7). pp 1177–87. Results reproduced with permission of the editor. 
 
Study 2 (Journal’s 2014 impact factor: 9.7) 

Harrison, Ben J, Jesus Pujol, Marina López-Solà, Rosa Hernández-Ribas, Joan Deus, 
Hector Ortiz, Carles Soriano-Mas, et al. 2008. “Consistency and Functional 
Specialization in the Default Mode Brain Network.” Proceedings of the National 
Academy of Sciences of the United States of America 105 (28). pp 9781–86. Results 
reproduced with permission of the editor, copyright © by the National Academy of 
Sciences. 
 
Study 3 (Journal’s 2014 impact factor: 3.23) 

Harrison, Ben J., Jesus Pujol, Hector Ortiz, Alex Fornito, Christos Pantelis, and Murat 
Yücel. 2008. “Modulation of Brain Resting-State Networks by Sad Mood Induction.” 
PLoS ONE 3 (3). Results reproduced under the CC license granted by the editor. 
 
Study 4 (Journal’s 2014 impact factor: 5.9) 

Pujol, J., M. Giménez, Hector Ortiz, Carles Soriano-Mas, M. López-Solà, M. Farré, Joan 
Deus, et al. 2013. “Neural Response to the Observable Self in Social Anxiety Disorder.” 
Psychological Medicine 43 (1). Pp 721-731. Results reproduced with permission of the 
editor. 
 
Study 5 (Journal’s 2014 impact factor: 4.4) 

Giménez, Mónica, Hector Ortiz, Carles Soriano-Mas, Marina López-Solà, Magí Farré, Joan 
Deus, Rocio Martín-Santos, et al. 2014. “Functional Effects of Chronic Paroxetine versus 
Placebo on the Fear, Stress and Anxiety Brain Circuit in Social Anxiety Disorder: Initial 
Validation of an Imaging Protocol for Drug Discovery.” European 
Neuropsychopharmacology 24 (1). pp 105–16. Results reproduced with permission of the 
editor. 
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