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Abstract

Long thought to be an unattainable ambition, self-sustainable and green-powered wireless

networks are rapidly becoming a reality. This is driven by recent hardware improvements

in what is known as Energy Harvesting (EH). This technology makes it possible for de-

vices to scavenge energy from the environment, be it from solar, thermal, kinetic or other

sources. One area where this idea has shown considerable promise is in Wireless Sensor

Networks (WSNs). These networks consist of inexpensive, small and low-power sensors,

making them a prime candidate for the deployment of energy harvesting technologies.

However, when devices are equipped with these new technologies, the intermittent and

random nature of the energy supply makes it necessary to take a new approach to the

design of communication policies.

It is the main objective of this dissertation to study, evaluate and solve problems

that arise in wireless sensor networks with energy harvesting capabilities. The nature

of the problems studied can be grouped into two categories. On one hand, we address

problems of estimation, which arise when EH sensors collect measurements of some

physical phenomenon. On the other hand, we study problems of control, which emerge

when EH sensors are part of a dynamical system.

First, we address the estimation problem in EH-powered wireless sensor networks. We

approach the problem in a coded manner, where sensors transit their measurements to a

Fusion Center (FC) digitally. We consider a point-to-point sensor-to-FC communication

scenario, where the measured sources are time-correlated. We derive the transmission

policies minimizing the average reconstruction distortion for both delay-constrained and

delay-tolerant scenarios. Next, we study the case in which multiple sensors collaborate in

the estimation of a source. In this problem, only a limited number of sensors can transmit

simultaneously, due to the reduced number of sensor-to-FC channels. The goal is to

jointly design the power allocation and sensor selection policies that minimize the average

reconstruction distortion. However, this problem is not convex. To overcome this, we

propose two policies, an iterative joint policy that finds a stationary solution of the

original problem; and a heuristic separate policy in which the optimal power allocation
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is given by a convex optimization problem. Both policies are related to each other in the

fact that the latter can be used as an initialization point of the former iterative policy.

Further, as an alternative approach to the problem, we have also proposed the use of

sparsity-promoting techniques.

Then, we turn our attention to problems of a control nature in energy harvesting

communication networks. First, we study the problem of jointly routing and schedul-

ing traffic in a communication network with EH-powered nodes. The routing-scheduling

policies proposed act as a generalization the stochastic backpressure policies to energy

harvesting communication networks. Specifically, we provide two policies, an easy to

compute policy and a randomized policy with improved stability guarantees. Further-

more, we ensure that given sustainable data and energy arrivals, the proposed policies

stabilize the data queues over all the network. Finally, we study a more general control

problem in which energy harvesting sensors share a wireless medium over which they

transmit measurements to their respective controllers. Since the medium is shared, si-

multaneous transmissions might lead to packet collisions. To overcome this issue, we

propose the use of a random access scheduling policy. Furthermore, we show that given

sustainable energy and stability requirements, the policies stabilize all the control sys-

tems while satisfying the energy harvesting constraints.
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Resumen

Consideradas durante mucho tiempo una ambición inalcanzable, las redes inalámbricas

auto-sostenibles y de enerǵıa renovable se están convirtiendo rápidamente en una reali-

dad. Esto viene impulsado por las recientes mejoras de hardware en lo que se conoce

como recolección de enerǵıa (energy harvesting). Esta tecnoloǵıa permite a los dispositi-

vos recoger la enerǵıa del medio ambiente, ya sea de fuentes solares, térmicas, cinéticas

u otras. Un área en la que esta idea se ha mostrado considerablemente prometedora son

las redes de sensores inalámbricos. Estas redes consisten en sensores baratos, pequeños

y de baja potencia, lo que los convierte en un excelente candidato para el despliegue de

tecnoloǵıas de recolección de enerǵıa. Sin embargo, cuando los dispositivos están equi-

pados con estas nuevas tecnoloǵıas, la naturaleza intermitente y aleatoria del suministro

de enerǵıa hace necesario adoptar un nuevo enfoque para el diseño de las poĺıticas de

comunicación.

Es el objetivo principal de esta tesis doctoral estudiar, evaluar y resolver problemas

que surgen en redes de sensores inalámbricos con capacidades de recolección de enerǵıa.

La naturaleza de los problemas estudiados puede agruparse en dos categoŕıas. Por un

lado, abordamos problemas de estimación, que surgen cuando los sensores con capacida-

des de recolección de enerǵıa recogen mediciones de algún fenómeno f́ısico. Por otro lado,

estudiamos los problemas de control, que surgen cuando los sensores con capacidades de

recolección de enerǵıa forman parte de un sistema dinámico.

En primer lugar, abordamos el problema de estimación en redes de sensores inalámbri-

cos alimentados con recolección de enerǵıa. Enfocamos el problema de una manera codi-

ficada, donde los sensores transmiten sus mediciones digitalmente a un centro de fusión.

Consideramos un escenario de comunicación punto a punto de sensor a centro de fusión,

donde las fuentes medidas están correlacionadas temporalmente. Derivamos las poĺıti-

cas de transmisión que minimizan la distorsión media de reconstrucción tanto para los

escenarios con limitación de retardo como con tolerancia al retardo. A continuación, es-

tudiamos el caso en el que múltiples sensores colaboran en la estimación de una fuente.

En este problema, sólo un número limitado de sensores puede transmitir simultáneamen-
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te, debido al número reducido de canales de sensor a centro de fusión. El objetivo es

diseñar de manera conjunta las poĺıticas de asignación de potencia y selección de senso-

res que minimicen la distorsión media de reconstrucción. Sin embargo, este problema no

es convexo. Para superar esto, proponemos dos poĺıticas, una poĺıtica conjunta iterativa

que encuentra una solución estacionaria del problema original; y una poĺıtica separada

heuŕıstica en la que la asignación de potencia óptima viene dada por un problema de

optimización convexa. Ambas poĺıticas están relacionadas entre śı en el hecho de que

ésta última puede ser utilizada como un punto de inicialización de la poĺıtica iterativa

anterior. Además, como un enfoque alternativo al problema, también hemos propuesto

el uso de técnicas de promoción de la dispersión.

Más tarde, centramos nuestra atención en los problemas de control en las redes de

comunicaciones con recolección de enerǵıa. En primer lugar, estudiamos el problema de

enrutamiento y planificación conjunta del tráfico en una red de comunicaciones con nodos

alimentados por recolección de enerǵıa. Las poĺıticas de enrutamiento y planificación que

proponemos actúan como una generalización de las poĺıticas de backpressure estocásticas

para las redes de comunicaciones con recolección de enerǵıa. Espećıficamente, ofrecemos

dos poĺıticas, una poĺıtica fácil de calcular y una poĺıtica aleatoria con mejores garant́ıas

de estabilidad. Además, aseguramos que dadas llegadas de datos y enerǵıa factibles, las

poĺıticas propuestas estabilizan las colas de datos en toda la red. Finalmente, estudia-

mos un problema de control más general en el que los sensores con recolección de enerǵıa

comparten un medio inalámbrico sobre el cual transmiten mediciones a sus respectivos

controladores. Dado que el medio es compartido, las transmisiones simultáneas pueden

llevar a colisiones de paquetes. Para superar este problema, proponemos el uso de una

poĺıtica de planificación de acceso aleatorio. Además, demostramos que, dadas necesi-

dades de enerǵıa y estabilidad factibles, las poĺıticas estabilizan todos los sistemas de

control y satisfacen las restricciones impuestas por la recolección de enerǵıa.
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Resum

Considerades durant molt de temps una ambició inassolible, les xarxes sense fils auto-

sostenibles i d’energia renovable s’estan converting ràpidament en una realitat. Aquest

fet ve impulsat per les recents millores de hardware en el que es coneix com recol·lecció

d’energia (energy harvesting). Aquesta tecnologia permet als dispositius recollir l’energia

del medi ambient, ja sigui de fonts solars, tèrmiques, cinètiques o altres. Una àrea en la

que aquesta idea s’ha mostrat considerablement prometedora són les xarxes de sensors

sense fils. Aquestes xarxes consisteixen en sensors barats, petits i de baixa potència,

el que els converteix en un excel·lent candidat per al desplegament de tecnologies de

recol·lecció d’energia. No obstant, quan els dispositius estan equipats amb aquestes

noves tecnologies, la naturalesa intermitent i aleatòria del subministrament d’energia fa

necessari adoptar un nou enfocament per al disseny de les poĺıtiques de comunicació.

És l’objectiu principal d’aquesta tesi doctoral estudiar, avaluar i resoldre problemes

que sorgeixen en xarxes de sensors sense fils amb capacitats de recol·lecció d’energia.

La naturalesa dels problemes estudiats pot agrupar-se en dues categories. D’una ban-

da, abordem problemes d’estimació, que sorgeixen quan els sensors amb capacitats de

recol·lecció d’energia recullen mesuraments d’algun fenomen f́ısic. D’altra banda, estudi-

em els problemes de control, que sorgeixen quan els sensors amb capacitats de recol·lecció

d’energia formen part d’un sistema dinàmic.

En primer lloc, abordem el problema d’estimació en xarxes de sensors sense fils ali-

mentats amb recol·lecció d’energia. Enfoquem el problema d’una manera codificada, on

els sensors transmeten els seus mesuraments digitalment a un centre de fusió. Consi-

derem un escenari de comunicació punt a punt de sensor a centre de fusió, on les fonts

mesurades estan correlacionades temporalment. Derivem les poĺıtiques de transmissió

que minimitzen la distorsió mitjana de reconstrucció tant per als escenaris amb limitació

de retard com amb tolerància al retard. A continuació, estudiem el cas en què múltiples

sensors col·laboren en l’estimació d’una font. En aquest problema, només un nombre

limitat de sensors pot transmetre simultàniament, a causa del nombre redüıt de canals

de sensor a centre de fusió. L’objectiu és dissenyar de manera conjunta les poĺıtiques
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d’assignació de potència i selecció de sensors que minimitzin la distorsió mitjana de re-

construcció. No obstant, aquest problema no és convex. Per superar això, proposem dues

poĺıtiques, una poĺıtica conjunta iterativa que troba una solució estacionària del proble-

ma original; i una poĺıtica separada heuŕıstica en què l’assignació de potència òptima ve

donada per un problema d’optimització convexa. Les dues poĺıtiques estan relacionades

entre si en el fet que aquesta última pot ser utilitzada com un punt d’inicialització de

la poĺıtica iterativa anterior. A més, com un enfocament alternatiu al problema, també

hem proposat l’ús de tècniques de promoció de la dispersió.

Més tard, centrem la nostra atenció en els problemes de control en les xarxes de

comunicacions amb recol·lecció d’energia. En primer lloc, estudiem el problema d’enca-

minament i planificació conjunta del trànsit en una xarxa de comunicacions amb nodes

alimentats per recol·lecció d’energia. Les poĺıtiques d’encaminament i planificació que

proposem actuen com una generalització de les poĺıtiques de backpressure estocàstiques

per a les xarxes de comunicacions amb recol·lecció d’energia. Espećıficament, oferim du-

es poĺıtiques, una poĺıtica fàcil de calcular i una poĺıtica aleatòria amb millors garanties

d’estabilitat. A més, assegurem que donades arribades de dades i energia factibles, les

poĺıtiques propostes estabilitzen les cues de dades en tota la xarxa. Finalment, estudi-

em un problema de control més general en el qual els sensors amb recol·lecció d’energia

comparteixen un mitjà sense fils sobre el qual transmeten mesuraments als seus respec-

tius controladors. Atès que el mitjà és compartit, les transmissions simultànies poden

dur a col·lisions de paquets. Per superar aquest problema, proposem l’ús d’una poĺıtica

de planificació d’accés aleatori. A més, demostrem que, donades necessitats d’energia i

estabilitat factibles, les poĺıtiques estabilitzen tots els sistemes de control i satisfan les

restriccions imposades per la recol·lecció d’energia.
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Chapter 1
Introduction

1.1 Motivation

Usually, wireless communication devices are equipped with batteries acting as their only

energy supply. Even though these batteries might be rechargeable, the wireless nature of

such communication devices means that they tend to lack access to a wired energy source

from which to easily recharge them. However, in recent years, attention has turned to

advances in technologies that make it possible to gather energy from the environment.

This technology, energy harvesting, has emerged as capable of overcoming (or, at least,

alleviating) some of the limitations imposed by traditional battery operation. Devices

powered by energy harvesting are capable of acquiring energy from a varied array of

natural sources, with the most common being solar, thermal, or vibrational sources.

Not only that, even man-made sources, such as Radio Frequency (RF) signals can be

exploited by energy harvesting technologies to obtain energy.

An area where this technology has shown much promise is in wireless sensor networks.

These networks are composed of sensor nodes which are usually powered by batteries.

However, due to their nature, WSNs are sometimes deployed in remote and difficult

to access locations. This makes it very difficult for the devices to have access to the

power grid in order to have their batteries recharged. Besides, the process of replacing

the batteries can be very expensive and difficult. Additionally, with the current micro-

manufacturing technology allowing for small, ultra-low power wireless sensors, wireless

sensor networks pose an excellent deployment scenario for energy harvesting technologies.

Given the wide availability of energy sources coupled with the small energy needs of

sensors, it is expected that EH-powered nodes could extend their lifetime considerably.

This is to say, they could even operate perpetually, until hardware failure. Also, recently

emerging concepts such as the Internet of Things (IoT) envision massive deployment of

wireless sensors. It is expected that energy harvesting technologies will play a major role

in enabling this vision.

1
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The hardware and circuit design aspects of energy harvesting technologies have long

been studied. However, when dealing with the design of communication policies, previous

efforts have been in the design of energy efficient policies, focused on reducing the power

consumption of the wireless nodes. While this is a sensible approach for battery powered

systems, the random nature of the energy harvesting process introduces fundamental

changes in the communication system, leaving previous policies inefficient. Hence, the

emergence of wireless networks equipped with energy harvesting technologies represents

a paradigm shift in the way that communication problems are treated.

The need to design EH-aware communication policies poses several research ques-

tions. Specifically, we aim to investigate some of the issues that arise when dealing with

problems of estimation and control in communication networks powered by energy har-

vesting. Consider a system of EH-powered sensors acquiring some type of measurements

which they must transmit to a fusion center for further processing. What is the optimal

power allocation for transmission if our goal is to minimize the reconstruction distortion?

If the measurements are obtained from a time-correlated source, how does correlation

affect the transmission policies? Can we allow some delay in the reconstruction to better

exploit the intermittency of the energy supply? Now, if the estimation is done with

multiple sensors which share a wireless medium of limited bandwidth, how do we select

which sensors are allowed to transmit at each time? Additionally, all this information

needs to be delivered to its destination. This might require the routing and scheduling

of data traffic. How can we design policies that ensure that the data queues are stable

when the energy supply itself is subject to randomness? And, what if the sensors are

measuring any kind of dynamical system. Can we give some guarantees on the stability

of the system when control policies rely on the measurements collected and transmitted

by an energy harvesting device? These are some of the questions that this dissertation

aims to answer.

1.2 Outline of the Thesis

As discussed earlier, in this dissertation we study wireless sensor networks powered by

energy harvesting. Specifically, our focus lies on issues related to estimation and control

in the energy harvesting scenario. Broadly speaking, the contribution of this thesis can

be split in two parts. The first part (Chapters 4 and 5) is devoted to estimation problems,

while the second part (Chapters 6 and 7) studies control problems. In more detail, this

document is organized as follows.

In Chapter 2, we provide the reader with some background knowledge on the state of

the art of energy harvesting technologies. Specifically, we review the sources from which

energy can be harvested and how they are modeled. Also, we survey the communica-

tion aspects of wireless devices powered by energy harvesting. Notably, we review the
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information-theoretical foundations as well as the current advances in both offline and

online transmission policies.

In Chapter 3, we review a number of important mathematical concepts over which

much of the work of this thesis is built. Specifically, we review convex optimization,

non-convex optimization and ergodic stochastic optimization.

We begin the contributions of this dissertation in Chapter 4. We start by considering

the estimation of a phenomenon which is correlated over time. More formally, we consider

a point-to-point communication scenario between a sensor node and a fusion center. The

sensor node is powered by energy harvesting and obtains measurements from a series of

time-correlated sources. In this scenario, we aim to find coded transmission policies which

minimize the average reconstruction distortion at the fusion center. Due to correlation,

the transmission policies leverage on the previously encoded sources as side information.

We derive these policies for both a delay-constrained case (in which sources must be

reconstructed at the next time slot) and a delay-tolerant scenario (where a certain time

lag is allowed in the reconstruction of sources). We take an offline approach to the

problem and pose it in a convex optimization framework. The optimal policies can be

computed by the proposed iterative algorithm, which consists of a coupling between

a two-directional waterfilling (for power allocation) and a reverse waterfilling (for rate

allocation). Furthermore, we also provide an online myopic form of these policies, for

which its offline counterpart serves as a benchmark.

Chapter 5 extends some of the ideas of the previous chapter to the case of multiple

sensor nodes. Specifically, we consider a scenario in which multiple EH-powered sensors

acquire different measurements of the same source and want to transmit them to a fu-

sion center. Due to the limited number of available sensor-to-FC channels, a decision on

which sensors should transmit must be made at each time slot. Additionally, the sensors

must design their power allocation policy. Our goal is to jointly derive the sensor selec-

tion and power allocation policies which minimize the average reconstruction distortion

of the source at the fusion center. Unfortunately, we show that this problem is not con-

vex. Instead, we propose two suboptimal offline policies. First, we provide a joint sensor

selection and power allocation scheme, based on an iterative majorization-minimization

procedure which allows us to find a locally optimal solution of the original non-convex

problem. Then, we also propose a separate sensor selection and power allocation policy.

In this separate policy, we propose a heuristic sensor selection policy which takes into

account the energy harvesting process. Then, given this selection, the optimal power allo-

cation can be computed as the solution to a convex optimization problem. Furthermore,

the separate sensor selection and power allocation policy can be used as an initialization

point of the iterative algorithm of the joint policy, which then in turn, improves on the

separate policy. Also, as in the previous chapter, we provide the online myopic form of

these policies. Further, we also study an alternative approach to the problem, based in
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promoting sparsity in the power allocation.

In Chapter 6 we turn our attention to some control aspects of energy harvesting net-

works. Specifically, in this chapter we investigate the problem of routing and scheduling

traffic in an energy harvesting communication network. Each node in the network inde-

pendently generates data packets to be delivered to some other node in the network and

nodes must collaborate to ensure that data packets are delivered to their destination. To

solve this problem, we propose routing-scheduling policies which act as a generalization

of the well-known backpressure family of algorithms for EH-powered networks. To do

this, we leverage on stochastic subgradient methods on the dual domain. Specifically, we

propose two distinct policies: (i) a straightforward policy where the routing-scheduling

decision is taken by the comparison of a node’s and its neighbors’ Lagrange multipli-

ers; and (ii) a policy given by a randomized decision. Instead of a direct comparison

between a node’s and its neighbors’ Lagrange multipliers, this second policy equalizes

the differences between multipliers by means of an inverse waterfilling. This results in

a routing-scheduling probability mass function over which the node samples to take its

decision. This second policy results in a faster convergence speed. Furthermore, we

show that given sustainable packet and energy arrival processes, both policies stabilize

the data queues over all the network. And, hence, such stabilization can be regarded as

a control problem.

In Chapter 7 we investigate networked control systems in a more general manner.

Specifically, we study a scenario in which multiple EH-powered sensor nodes must trans-

mit measurements to their respective controllers in order to stabilize their dynamical

system. This transmission occurs over a shared wireless medium. Due to this, collisions

might occur if sensors transmit simultaneously. Under these conditions, our goal is to

design transmission policies capable of stabilizing all the control loops subject to the

constraints imposed by the energy harvesting process. Since each control loop might

have a different control performance requirement, we propose the use of a control perfor-

mance abstraction which translates the average control requirements into probabilities of

successful transmission in a random access communication scheme. Then, leveraging on

dual subgradient methods, we propose a policy satisfying these probabilities of successful

transmission.

Finally, in Chapter 8 we conclude this thesis by providing a summary and final

remarks on the main results of this work. Also, we outline and discuss some possible

lines of future work.

1.3 Contribution

The research presented in this dissertation has also been disseminated through the fol-

lowing publications [1–11].



1.3 Contribution 5

Chapter 4

• M. Calvo-Fullana, J. Matamoros, and C. Antón-Haro, “Reconstruction of Corre-

lated Sources with Energy Harvesting Constraints in Delay-constrained and Delay-

tolerant Communication Scenarios,” IEEE Transactions on Wireless Communica-

tions, vol. 16, no. 3, pp. 1975-1986, March 2017.

• M. Calvo-Fullana, J. Matamoros, and C. Antón-Haro, “Reconstruction of Corre-

lated Sources with Energy Harvesting Constraints,” in Proceedings of European

Wireless (EW), Budapest, Hungary, May 2015.

Chapter 5

• M. Calvo-Fullana, J. Matamoros, and C. Antón-Haro, “Sensor Selection and Power

Allocation Strategies for Energy Harvesting Wireless Sensor Networks,” IEEE

Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3685-3695,

December 2016.

• M. Calvo-Fullana, J. Matamoros, and C. Antón-Haro, “Decentralized Sparsity-

Promoting Sensor Selection in Energy Harvesting Wireless Sensor Networks,” in

Proceedings of European Signal Processing Conference (EUSIPCO), Budapest,

Hungary, August 2016.

• M. Calvo-Fullana, J. Matamoros, C. Antón-Haro, and Sophie M. Fosson, “Sparsity-

promoting Sensor Selection with Energy Harvesting Constraints,” in Proceedings

of International Conference on Acoustics, Speech and Signal Processing (ICASSP),

Shanghai, China, March 2016.

• M. Calvo-Fullana, J. Matamoros, and C. Antón-Haro, “Sensor Selection in Energy

Harvesting Wireless Sensor Networks,” in Proceedings of IEEE Global Conference

on Signal and Information Processing (GlobalSIP), Orlando, USA, December 2015.

Best Paper Award.

Chapter 6

• M. Calvo-Fullana, C. Antón-Haro, J. Matamoros, and A. Ribeiro, “Stochastic

Routing and Scheduling Policies for Energy Harvesting Communication Networks,”

to be submitted, 2017.

• M. Calvo-Fullana, J. Matamoros, C. Antón-Haro, and A. Ribeiro, “Stochastic

Backpressure in Energy Harvesting Networks,” in Proceedings of International

Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans,

USA, March 2017.



6 1 Introduction

Chapter 7

• M. Calvo-Fullana, C. Antón-Haro, J. Matamoros, and A. Ribeiro, “Random Access

Communication for Wireless Control Systems with Energy Harvesting Sensors,” in

preparation, 2017.

• M. Calvo-Fullana, C. Antón-Haro, J. Matamoros, and A. Ribeiro, “Random Access

Policies for Wireless Networked Control Systems with Energy Harvesting Sensors,”

in Proceedings of American Control Conference (ACC), Seattle, USA, May 2017.

Other contributions not included in this dissertation

• J. Matamoros, M. Calvo-Fullana, and C. Antón-Haro, “On the impact of corre-

lated sampling processes in WSNs with Energy-neutral operation,” in Proceedings

of IEEE International Conference on Communications (ICC), London, UK, June

2015. Best Paper Award.



Chapter 2
State of the Art in Energy

Harvesting Technologies

In this section, we provide an overview of the current state of the art in energy harvesting

technologies. Specially, we focus on wireless communication systems powered by energy

harvesting. As discussed earlier in the introduction, batteries alone are not capable of

coping with the demands of current devices. Consequently, the attention has turned to

energy harvesting as a way to extend the lifetime of wireless devices.

2.1 Sources and Models for Energy Harvesting

The first step to EH-powered systems is to have an energy source providing an adequate

supply of energy. Scavenging energy from sources like water and wind goes back in time

to structures like water wheels and windmills. Nowadays, solar farms, wind farms and

hydroelectric plants form the main bulk of renewable energy generation. These tend to

be very large installations meant to supply energy to the power grid in a sustainable

manner. However, as advances in microelectronics allowed for the manufacturing of

small and power efficient devices, interest arose to also use energy harvesting to power

those devices. In this case, due to their low-power nature, the range of energy harvesting

sources available is considerably larger. In Table 2.1 we provide an overview of a variety

of energy sources and their associated power densities. Also, we discuss some of these

sources in the following.

• Light. By using photovoltaic cells, photons can be converted into electricity. The

efficiency of this process depends on the materials used for the construction of the

photovoltaic cells, with usual efficiency values around 5 − 30%. When deployed

outside with direct solar illumination, photovoltaic cells have a power density of

around 100 mW/cm2. This makes the sun an excellent source for energy harvesting.

7
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Energy source Power density

Acoustic Noise [12] 0.003 µW/cm3 at 75 dB

0.96 µW/cm3 at 100 dB

Temperature Variation [13] 10 µW/cm3

Ambient Radio Frequency [14] < 1 µW/cm2

Ambient Light [15] 100 mW/cm2 (Direct sun)

100 µW/cm2 (Illuminated office)

Thermoelectric [16] 60 µW/cm2

Vibrational Microgenerators [17] 4 µW/cm3 (Human motion, Hz)

800 µW/cm3 (Machines, kHz)

Vibrations (Piezoelectric) [18] 200 µW/cm3

Ambient Airflow [19] 1 µW/cm2

Push buttons [20] 50 µJ/N

Hand generators [21] 30 W/kg

Heel strike [22] 7 W/cm2

Table 2.1: Power density of several energy harvesting sources [23].

When deployed indoors, the available illumination levels tend to be smaller, with

resulting power densities around 100 µW/cm2. Altogether, photovoltaic cells are

a well developed and mature technology.

• Radio frequency. With the extensive amount of radio signals in today’s world,

the harvesting of RF waveforms to obtain energy is a possibility. The most com-

mon sources being Global System for Mobile Communications (GSM) and Wireless

Local Area Network (WLAN) signals. However, power densities tend to be very

small, less than 1 µW/cm2, making it difficult to harvest enough energy for practi-

cal applications. A more promising idea is the concept of Wireless Power Transfer

(WPT) [24], where a dedicated RF source transmits for the sole purpose of being

harvested as energy. Recently, there has also been considerable interest in the idea

of transmitting both information and power, a concept known as Simultaneous

Wireless Information and Power Transfer (SWIPT) [25]. A practical example of

WPT are Radio Frequency IDentification (RFID) tags, which wirelessly receive

their required amount of energy, which can be as low as 1 µW. On a more gen-

eral note, at a transmission power of 100 mW and 20 cm of separation, harvested

values of 1.5 mW have been reported [26]. And, in [27], for the same 100 mW of

transmission power, 200 µW were harvested at a distance of 2 m.

• Thermoelectric. By heat transfer, objects or environments that present a differ-

ence in temperature offer the opportunity to generate power. A classical example

of this is any of the widely used heat engines throughout history. More interesting
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however, is the Seebeck effect, which states that when two junctions made of two

dissimilar conductors are kept at different temperatures, an open circuit voltage

develops between them [15]. Thermoelectric devices exploiting the Seebeck effect

can be used to harvest energy in human body applications. At an ambient tem-

perature of 22 ◦C, a thermal gradient of 15 ◦C can be converted to energy with an

an efficiency around 0.8%. The resulting power density is around 15 µW/cm2 [28].

Practical uses of thermoelectric energy harvesting in human body applications can

be found, for example, to power a wristwatch by the small thermal gradient pro-

vided by the human body heat over ambient temperature. On another note, for

industrial applications with a much higher thermal gradient, power densities of 60

µW/cm2 have been reported [16].

• Vibrational and mechanical. Vibrational and mechanical stimuli are widely

available. In order to convert them into energy, the most common transduction

mechanism are piezoelectric, or electromagnetic. The former exploits the piezoelec-

tric effect, by which some materials generate an electric charge under mechanical

stress. When piezoelectrics are coupled with vibrating structures, they can gener-

ate up to around 200 µW/cm3 [18]. Besides, electromagnetic transducers tend to

be found in vibrational microgenerators. These systems are based on the interac-

tion between moving magnets and coils. They exploit vibrations, with power levels

ranging from 4 µW/cm3 (typical human motion, a motion of 5 mm at 1 Hz) up to

800 µW/cm3 (machine motion, a motion of 2 nm at 2.5 kHz) [17]. Another sig-

nificant source of mechanical power is human input in various forms. Examples of

this are pushing, shaking or pulling to power devices (e.g., typical examples of this

use of human sources are self-winding wristwatches or shake-powered flashlights).

For example, the available power in a walking person’s heel strike is 7 W/cm2 (70

kg at 1 Hz), with demonstrated systems harvesting around 250 − 700 mW out of

it [22].

In oder to design systems powered by energy harvesting, it is important to have

an accurate characterization of the energy harvested from the sources. In this regard,

considerable attention has been given in the literature to this issue, with light energy

sources being the most researched ones. Models for solar power in outdoor scenarios have

been studied in [29], with a focus on wireless sensor networks. Similarly, the authors

in [30] improve solar source models with the inclusion of weather forecasts. In [31], the

authors propose a model that adapts to seasonal variations in sunlight and diurnal cycles.

Furthermore, in [32] the authors developed an indoor light model. With respect to other

types of sources, a wind model has been studied in [31], while a mechanical energy model

related to human motion (such as, walking, running and cycling), has been considered

in [33].
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In a more general sense, the energy harvesting process can be modeled as a discrete-

time stochastic process. This is convenient, for instance, in order to design EH-aware

communication policies. The stochastic process can be characterized either statistically

or from samples of real harvested energy measurements. For tractability, some specific

stochastic processes have been considered in the literature. For example, the authors

in [34] consider an stationary Markov chain and the authors in [35] extend those results

to a non-stationary Markov model.

2.2 Wireless Networks Powered by Energy Harvesting

While the hardware and modeling aspects of energy harvesting have been researched for

a long time, the study of wireless communication systems powered by energy harvesting

is more recent. When powered by energy harvesting, the random nature of the energy

supply introduces fundamental changes in how wireless communication problems need

to be addressed. In this section, we provide an overview of recent results in energy

harvesting wireless communication1. First, we discuss how the introduction of energy

harvesting alters the communication problem from an information-theoretic perspective.

Then, we review the transmission policies found in the literature. For the latter, there are

two distinct approaches, offline transmission policies and online transmission policies.

Offline policies are derived under non-causal knowledge of the energy harvesting process

by the transmitter. That is, they assume the knowledge of present, past and future

energy arrivals and their magnitudes. For tractability reasons, these strategies are widely

used to derive upper bounds on the performance of the system. On the contrary, online

policies assume only a causal knowledge of the energy harvesting process (even though,

statistical knowledge is also acceptable). Hence, they are more realistic and applicable

to real systems.

2.2.1 Information-theoretic Approaches

When dealing with EH-powered communication, some information-theoretic questions

require some thought. Mainly, the study of the channel capacity under the consideration

that energy harvesting constrains the transmission has received considerable attention.

In general, energy harvesting can be modeled as a discrete stochastic process. Hence, the

use of energy harvesting introduces a new energy queue in the system. The canonical

model for energy harvesting communication systems is shown in Figure 2.1.

In the classical Additive White Gaussian Noise (AWGN) channel with unit-variance

Gaussian noise, the capacity is given by the well-known expression C = 1
2 log(1 + P ),

1We refer the reader to references [36] and [37] for a more detailed overview.
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Figure 2.1: Wireless communication model powered by energy harvesting.

where P is the average power constraining the transmitted codewords Xi, that is

1

2

n∑

i=1

X2
i ≤ P, (2.1)

for n very large. In the case of an energy harvesting system, let us consider the energy

harvesting process Ei as a stationary and ergodic random process with average arrival

rate E[Ei] = P . In order to transmit a codeword, a sufficient amount of energy must

have been harvested and stored first. The resulting constraints are called the energy

causality constraints, given by

k∑

i=1

X2
i ≤

k∑

i=1

Ei, k = 1, . . . , n. (2.2)

That is, for each channel use, the cumulative energy spent cannot exceed the cumulative

harvested energy. Consequently, transmission decisions made in a given channel use also

affect all future channel uses. For each time instant, additional constraints stem from

the battery state. We define a battery state Bi, with evolution given by

Bi+1 =
[
Bi −X2

i + Ei
]Bmax

0
, (2.3)

where Bmax corresponds to the battery capacity. Hence, the battery state Bi is a random

process correlated over time even when the energy arrivals are independent and iden-

tically distributed (i.i.d.). Then, the instantaneous transmission constraints are simply

given by X2
i ≤ Bi.

Due to this, the study of the capacity of the energy harvesting channel is an intricate

problem for which some preliminary results can be found in the literature. The most

tractable case to tackle is that of infinite battery capacity, i.e., Bmax =∞. For this case,

and the AWGN channel, the authors in [38] derive two schemes capable of asymptotically

achieving the classical AWGN channel capacity. These results have been extended in [39]

and [40] to include the Multiple Access Channel (MAC).

The other extreme case entails the lack of battery, i.e., Bmax = 0. In this case, the

instantaneous constraints are given by X2
i ≤ Ei, that is, just depending on the energy

harvested at the current time instant. This condition can be used to account for systems
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that become active when they receive energy (e.g., those who store energy in supercapac-

itors), which they immediately consume to transmit, and become inactive again. This

case has been studied by the authors in [41], where they derive the capacity for this sce-

nario and provide a coding scheme to achieve it. The resulting capacity is related to the

capacity of the amplitude-constrained AWGN channel [42]. The constraints, however,

are not deterministic and constant, but time-varying and stochastic. As expected, the

capacity is significantly lower than that of the Bmax = ∞ case. Complementarily, the

extension to the MAC channel has been studied in [43].

Results for a finite battery are much more elusive. For a unit battery size, Bmax = 1,

the authors in [44] study the capacity over a binary noiseless channel. They derive the

channel capacity by showing that the noiseless binary channel with a unit battery can be

equivalently modeled as a timing channel [45]. For the more general case of batteries of an

arbitrary size, the authors in [46] conjecture an expression for the capacity, and compute

it numerically. Also, in [47], the authors provide for the AWGN channel with finite

battery size, an approximate capacity expression with a guarantee on the approximation

gap.

2.2.2 Design of Offline Transmission Policies

A common preliminary assumption when designing transmission policies is the assump-

tion of non-causal knowledge of the time-varying system variables (channel state, energy

and data arrivals). Usually, this simplifies the problem, allowing it to be cast into a

convex optimization framework. As discussed earlier, typically, the performance of such

offline policies is used as a benchmark for the performance of online ones.

We start by discussing point-to-point communication scenarios. Under the assump-

tion of an infinite size battery and communication over a AWGN channel, the authors

in [48], derive the power allocation policy which minimizes the transmission completion

time. Since minimizing the transmission completion time given a number of bits is equiv-

alent to maximizing the number of bits given a duration, this problem is equivalent to

throughput maximization. These results are then extended to the case of finite battery

capacity by the authors in [49]. Both policies can be analyzed by means of the cumula-

tive curve methodology introduced in [50]. These results show that the optimal power

allocation policy must be piecewise linear and due to the concavity of the power-rate

function, power allocation is kept as constant as possible subject to the energy harvest-

ing constraints and battery overflow conditions. Battery imperfections have also been

considered in [51], where the authors study the case in which the battery suffers energy

leakage over time. This modifies the resulting power allocation policy due to the change

in the cumulative energy profile. The authors in [52] have considered the fading channel,

where they also introduce the directional waterfilling algorithm. This algorithm allows

to solve the KKT conditions associated to the optimization problem and acts as a gen-
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eralized version of the waterfilling algorithm under energy harvesting constraints. Its

behavior is similar to that of a waterfilling algorithm, however, right-permeable walls are

placed at energy arrival times, restricting the direction of the water flow and representing

the causality constraints imposed by the energy harvesting process. These results are

further extended in [53], in which the authors consider processing costs, where energy

is not only spent in transmission but also for transmission circuitry. They derive the

throughput maximizing power allocation under this scenario, which is given by a direc-

tional glue-pouring algorithm. The optimal policy results into a bursty transmission due

to the effect of the processing cost.

Multiuser scenarios have also been extensively analyzed. The two-user broadcast

channel with an infinite battery capacity transmitter has been studied in [54]. The

authors derive the optimal transmit power allocation policy, which follows the same

structure as in the point-to-point scenario. However, the authors show that there exists

a cut-off power level, where only the power above this level is allocated to the weaker

user. These results are then generalized in [55] to the broadcast channel with an arbitrary

number of users and finite battery capacity. For this case, a similar structure of multiple

cut-off powers is identified. The two-user Multiple Access Channel (MAC), has been

studied in [56]. The authors assume a battery of infinite capacity and characterize, by

means of an energy harvesting version of the generalized iterative waterfilling algorithm

[57], the transmission policies which maximize the departure region of the transmitters.

These results are then extended in [58] to the finite battery case for an arbitrary number

of transmitters. The resulting transmission policy can be computed by a generalization

of the iterative waterfilling algorithm [59] to the energy harvesting case. This results

in a dynamic waterfilling algorithm, the waterlevels of which varies with the battery

level. The two-user Gaussian interference channel has been considered in [60], where

the authors provide sum-rate optimal transmission policies. The two-hop full duplex

relay channel has been studied in [61]. The scenario studied consists on a source and

relay terminal, powered by energy harvesting. The authors show that the optimal policy

can be computed independently between source and relay, where the source maximizes

its throughput with respect to its energy supply only. Likewise, the relay maximizes

its throughput with respect to the data received from the source and its energy supply.

These results are then generalized to the half-duplex case in [62].

2.2.3 Design of Online Transmission Policies

In practice, the assumptions of non-causal knowledge of the energy harvesting and data

arrival processes used in offline transmission policies are rarely realistic. In this section,

we consider transmission policies that drop this assumption and merely need causal

knowledge of the processes.

Due to the coupling in time of the energy causality constraints, online energy har-
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vesting problems can be cast as stochastic control problems. Usually, the transmitter

attempts to maximize a certain expected outcome, but due to the energy causality con-

straints, their decision at any time affects all future decisions. The optimal solution to

this problem can be found by using standard Dynamic Programming (DP) tools. How-

ever, due to the time-coupled nature of the problem, the computational complexity grows

rapidly with the state space. This means that finding the optimal solution incurs a high

computational cost, making these policies impractical.

In order to render the online problem solvable many authors have casted into a

Markov Decision Process (MDP) framework. Each state of the system has a set of

actions (idle, transmit) and transitions depend on events (harvested energy). Then, a

policy is designed such that decisions are taken in order to maximize a given reward.

Under this framework, state transitions satisfy the Markov property, which makes the

resulting state space sufficiently manageable. Under perfect knowledge of the battery

state, [63] studies for the MDP framework, the optimal online transmission policy, where

the reward function is given by an importance value assigned to packets. These results

are then extended to the case of a time-correlated energy supply in [64]. In some cases,

perfect knowledge of the battery state is difficult to obtain, this is studied in [65], where

the resulting system model is given by a partially observable Markov decision process.

In [66] these results are extended to the case of time-correlated energy supply.



Chapter 3
Mathematical Preliminaries

In this section we aim to provide the reader with an overview of some important math-

ematical concepts that are used throughout this thesis. We focus on concepts related to

optimization theory, namely, convex optimization, non-convex optimization and ergodic

stochastic optimization. These are the most important tools used to solve the problems

tackled in this thesis. Since these are vast fields of knowledge, it is our intent to present

only the most relevant parts of the subject matter. Hence, we refer the reader to classical

texts such as [67] and [68] for a more in-depth discussion.

3.1 Convex Optimization

Convex optimization deals with a specific subclass of optimization problems, that is,

convex problems. Due to their convexity, these problems have certain characteristics

that make them deserving of independent study from a more general class of optimiza-

tion problems. Their main singularity being that local optimality and global optimality

are equivalent. While, in general, convex optimization problems have no analytical solu-

tion, there exist efficient algorithms for computing their solutions. This means that this

type of problems can be solved numerically with high reliability and efficiency. Convex

optimization problems are very common, arising in a vast number of disciplines and sce-

narios, such as statistics, signal processing, communications and control systems, among

others. Convex optimization is a well studied subject, even though it is still one of very

active research. In the following, we present a brief summary of its foundations1.

1Hereinafter, we present a summary based on Chapters 2 to 5 in [67].
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3.1.1 Convexity

Definition 3.1. A set C is convex if the line segment between any two points in C lies

in C, i.e., if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C. (3.1)

Essentially, this means that a set is convex if the line between any two points inside

the set lies inside the set.

Definition 3.2. A function f : Rn → R is convex if dom f is a convex set and if for all

x, y ∈ dom f and θ with 0 ≤ θ ≤ 1, we have

f (θx + (1− θ) y) ≤ θf (x) + (1− θ) f (y) . (3.2)

When dealing with functions, we have a similar interpretation as in sets. Geomet-

rically, this means that for a convex function, any line between (x, f(x)) and (y, f(y))

must lie above the graph. Also, we refer to any function that satisfies (3.2) with strict

inequality for x 6= y and 0 ≤ θ ≤ 1 as strictly convex. Furthermore, we say that a

function f is concave if −f is convex. Likewise, we that a function f is strictly concave

if −f is strictly convex.

Definition 3.3. The epigraph of a function f : Rn → R is defined as

epi f = {(x, t) | x ∈ dom f, f(x) ≤ t} . (3.3)

The epigraph allows to establish a relationship between convex sets and convex func-

tions. Namely, a function is convex if and only if its epigraph is a convex set. Now, we

establish the conditions that allow us to identify convexity.

Proposition 3.4 (First-order conditions). Suppose f is differentiable. Then f is convex

if and only if dom f is convex and

f (y) ≥ f (x) +∇f (x)T (y − x) . (3.4)

The right hand side term of this inequality corresponds to the first-order Taylor

approximation of the function f near x. The inequality shows that for convex functions,

the first-order Taylor approximation acts as a global lower bound of the function. This

is one of the most important properties of convex functions. From this inequality, we

can conclude that if ∇f (x) = 0, then x is a global minimizer of f , i.e. f (y) ≥ f (x) for

all y ∈ dom f .

Proposition 3.5 (Second-order conditions). Assume that f is twice differentiable, that

is, its Hessian or second derivative ∇2f exists at each point in dom f , which is open.

Then f is convex if and only if dom f is convex and its Hessian is positive semidefinite:

for all x ∈ dom f ,

∇2f (x) ≥ 0. (3.5)
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Geometrically, this condition corresponds to the requirement that the function have

upward curvature at x.

3.1.2 Convex Optimization Problems

Definition 3.6. An optimization problem can be written in general form as

minimize
x

f0 (x) (3.6a)

subject to fi (x) ≤ 0, i = 1, . . . ,m (3.6b)

hi (x) = 0, i = 1, . . . , p (3.6c)

where x ∈ Rn is the optimization variable, f0 : Rn → R is the objective function,

fi : Rn → R are the inequality constraint functions, and hi : Rn → R are the equality

constraint functions. The inequalities fi (x) ≤ 0 are called the inequality constraints, and

the equations hi (x) = 0 are called the equality constraints.

Definition 3.7. The optimization problem (3.6) is a convex optimization problem if

the objective function f0 (x) is convex, the inequality constraint functions functions

fi (x) , i = 1, . . . ,m are convex and the equality constraint functions hi (x) , i = 1, . . . , p

are affine.

By convention, we express problems in the minimization form. With a slight abuse

of notation, we will also refer to concave maximization problems as convex optimization

problems. A maximization problem can be solved under this convention by the simple

minimization of the −f0 (x) objective function.

Definition 3.8. The set of points for which the objective and all constraint functions

are defined, is called the domain of the optimization problem, and is given by

D =

m⋂

i=0

dom fi ∩
p⋂

i=1

domhi. (3.7)

In the case of a convex optimization problem, the domain is convex.

Definition 3.9. A point x ∈ D is called feasible if it satisfies fi (x) ≤ 0 for i = 1, . . . ,m

and hi (x) = 0 for i = 1, . . . , p.

Definition 3.10. The optimal value p? of the optimization problem is given by

p? = inf {f0 (x) | f0 (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p} . (3.8)

Furthermore, we say x? is an optimal point, if x? is feasible and f0(x?) = p?.

Definition 3.11. We say a feasible point x is locally optimal if there is an R > 0 such

that

f0 (x) = inf {f0 (z) | fi (z) ≤ 0, i = 1, . . . ,m, hi (z) = 0, i = 1, . . . , p, ‖z− x‖2 ≤ R} .
(3.9)

This is to say that a locally optimal point minimizes f0 over nearby feasible points.
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3.1.3 Duality

Definition 3.12. The Lagrangian L : Rn×Rm×Rp → R of optimization problem (3.6)

is defined as

L (x,λ,ν) = f0 (x) +

m∑

i=1

λifi (x) +

p∑

i=1

νihi (x) , (3.10)

where λi is referred as the Lagrange multiplier associated to constraint fi (x) ≤ 0 and νi

as the Lagrange multiplier associated to constraint hi (x) = 0. The vectors λ,ν are the

Lagrange multiplier vectors, also called the dual variables of the optimization problem.

Definition 3.13. The Lagrange dual function g : Rm × Rp → R is defined as

g (λ,ν) = inf
x∈D
L (x,λ,ν) = inf

x∈D

(
f0 (x) +

m∑

i=1

λifi (x) +

p∑

i=1

νihi (x) .

)
(3.11)

Furthermore, we denote any pair (λ,ν) with λ ≥ 0 and (λ,ν) ∈ dom g as dual feasible.

An important thing to notice is that since the dual function g (λ,ν) is given by the

pointwise infimum of a family of affine functions, it is concave even when the original

problem is not convex.

Proposition 3.14 (Lower bound on optimal value). The dual function gives a lower

bound on the optimal value p?, for any λ ≥ 0 and ν we have

g (λ,ν) ≤ p?. (3.12)

Since for each pair (λ,ν) with λ ≥ 0 , the dual function provides a lower bound on

the optimal value p?, one might want to obtain the best lower bound possible. This is

the dual problem.

Definition 3.15. The Lagrange dual problem is given by

maximize
λ,ν

g (λ,ν) (3.13a)

subject to λ ≥ 0 (3.13b)

(3.13c)

We denote by d? the optimal value of the Lagrange dual problem. As previously said,

the Lagrange dual problem allows us to find the best lower bound possible. Furthermore,

since the dual function is concave, the Lagrange dual problem is a convex optimization

problem even when the original problem (3.6) is not convex.

Proposition 3.16 (Duality gap). We have the inequality

d? ≤ p?, (3.14)

this property is called weak duality and we refer to the difference p? − d? as the duality

gap. If p? = d? we say that strong duality holds.
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In general, strong duality does not hold. When the primal problem is a convex

optimization problem, usually (but not always), strong duality holds. There exist several

results that establish conditions under which strong duality holds. These conditions

are called constraint qualifications. One important constraint qualification under which

strong duality holds is Slater’s condition.

Proposition 3.17 (Slater’s condition). There exists an x ∈ relintD such that

fi (x) < 0, i = 1, . . . ,m (3.15)

and

hi (x) = 0, i = 1, . . . , p. (3.16)

Furthermore, a point satisfying these conditions is called an strictly feasible point.

Slater’s condition not only implies strong duality for convex problems. It also implies

the existence of a dual feasible pair (λ?,ν?) with g(λ?,ν?) = p? = d?.

3.1.4 Optimality Conditions

Proposition 3.18 (Karush-Kuhn-Tucker conditions). Assume the functions f0, . . . , fm

and h1, . . . , hp are differentiable and let x? and (λ?,ν?) be any primal and dual optimal

points with zero duality gap. Then the following Karush-Kuhn-Tucker (KKT) conditions

must be satisfied,

fi (x?) ≤ 0, i = 1, . . . ,m (3.17)

hi (x?) = 0, i = 1, . . . , p (3.18)

λ?i ≥ 0, i = 1, . . . ,m (3.19)

λ?i fi (x?) = 0, i = 1, . . . ,m (3.20)

∇f0 (x?) +
m∑

i=1

λ?i∇fi (x?) +

p∑

i=1

ν?i∇hi (x?) = 0 (3.21)

The Karush-Kuhn-Tucker (KKT) conditions say that any pair of primal and dual

optimal points must satisfy these conditions. Furthermore, if the optimization problem

is convex, then the KKT conditions are necessary and sufficient for optimality. While

these conditions give us the requirements for optimality. they can rarely be solved

analytically. Instead, we usually resort to iterative algorithms to find solutions satisfying

the KKT conditions.

3.2 Non-convex Optimization

When the optimization problem is not convex, there are in general no effective meth-

ods for solving the problem. As a whole, we can subdivide the approach taken in two

subfields, global optimization and local optimization.
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In global optimization, the aim is to find the solution which minimizes the objective

function over all feasible points. However, due to the lack of convexity, the worst-case

complexity of these methods grows exponentially with the problem size. Nonetheless,

in practice one hopes that the method is faster. However, these situations are far from

typical. The computational cost is therefore very high and such methods are usually only

justified when the value of finding the true global solution is very high. For example, in

the verification of safety-critical systems.

Another approach is local optimization. In this case, a compromise is made to find

a locally optimal solution, meaning a solution that minimizes the objective over nearby

feasible points. However, this does not guarantee that the solution is globally optimal.

These methods tend to be faster and they are widely used when the goal is to find a

good enough solution and not necessarily the best one. These types of methods are

highly dependent on the initialization point, which ultimately determines the solution to

which the method converges. A common way to choose the initial point is by a simple

randomization. And sometimes, to obtain a good initial guess, a convex relaxation of the

non-convex problem is solved, in which the non-convex parts of the problem are replaced

by looser, but convex ones.

Next, we focus on the Majorization-Minimization (MM) algorithm, a simple yet ef-

fective method that is widely used to find locally optimal solutions to non-convex opti-

mization problems.

3.2.1 Majorization-Minimization Algorithm

The Majorization-Minimization algorithm [69] , also known as Minorization-Maximization

algorithm when dealing with maximization problems, is an optimization procedure used

to iteratively solve problems that are too difficult to solve directly. In the case of non-

convex problems, the MM algorithm aims at solving a sequence of convex problems that

lead to a locally optimal solution of the original non-convex one. The MM algorithm has

been shown to be very useful, for example, for high-dimensional problems that otherwise

would be difficult to solve. The method relies on the concept of majorization.

Definition 3.19. A function g : Rn×Rn → R is said to majorize a function f : Rn → R
at the point xk if

f(xk) = g(xk,xk) (3.22)

f(x) ≤ g(x,xk), x 6= xk (3.23)

This is to say that the surface g(x,xk) lies over the surface f(x) and is tangent to it

at the point x = xk. Then, the MM algorithm consists on the iterative minimization of a

surrogate majorizer of the original non-convex function. We have illustrated this process

in Figure 3.1. The point xk corresponds to the current iterate of the MM algorithm, and
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Figure 3.1: Majorization-Minimization algorithm.

a sequence {xk} of iterates is generated by the update

xk+1 := arg min
x∈X

g(x,xk), (3.24)

where X is a convex set. Since the update xk+1 minimizes the majorizer function g(x,xk),

it follows that g(xk+1,xk) ≤ g(xk,xk). Then, the resulting iterates satisfy the following

inequality

f(xk+1) = g(xk+1,xk) + f(xk+1)− g(xk+1,xk)

≤ g(xk,xk) + f(xk)− g(xk,xk)

= f(xk). (3.25)

Hence, the MM procedure forces f(xk+1) ≤ f(xk) and the iterate sequence {xk} can be

shown, under mild conditions, to converge to a local minimizer to the original non-convex

function. Then, in practice, the problem is usually to find an appropriate majorizer of

the non-convex function.

3.3 Ergodic Stochastic Optimization

In this section, we present an overview of the Ergodic Stochastic Optimization (ESO)

algorithm introduced in [70]. This algorithm is used to solve optimization problems

involving random variables and where the optimality criteria is given by long term aver-

ages. Such conditions commonly arise in the optimization of resource allocation problems

in wireless communications [71, 72], signal processing [73] and many other areas. In or-

der to solve such problems in a strictly online manner, the ESO algorithm resorts to a

stochastic approximation of the Lagrangian function. In this way, the algorithm does

not need to know the probability distribution function of the random variable, but only

its current realization. Then, a subgradient method in the dual domain is used, where

the step size is kept constant in order to have an online and adaptive algorithm. From
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the solution in the dual domain, the primal iterates are then recovered and their ergodic

averages can be shown to converge almost surely to the optimal solution.

More formally, consider a problem involving a time-varying state h(t) which has a

probability distribution function m(h), a resource allocation function p(t) and an ergodic

variable x := limt→∞
1
t

∑t
u=1 x(u) which constrains the system. This is described by the

following optimization problem

maximize
x∈X ,

{m(p(h)):p(h)∈P(h)}

f0 (x) (3.26a)

subject to x ≤ Eh
[
Em(p(h)) [f1(p(h),h)]

]
, (3.26b)

f2(x) ≥ 0, (3.26c)

where the maximization of the concave objective function f0 (x) is with respect to the

ergodic averages x and the pdf of the resource allocation m(p(h)). The constraints

x ∈ X and {m(p(h)) : p(h) ∈ P(h)} are left implicit in order to model constraints

satisfied for all time instants. The convex set X constrains the ergodic variable x, while

the set P(h) constrains the resource allocation p(h) and does not need to be convex.

The explicit constraints in the system are given by a concave function f2(x) and a

function f1(p(h),h) which is parametrized by the random state h and does not need to

be concave with respect to the resource allocation p(h). Due to the definition of ergodic

limits x := limt→∞
1
t

∑t
u=1 x(u), constraint (3.26b) and (3.26c) are equivalent to the

long term constraints

lim
t→∞

1

t

t∑

u=1

x(u) ≤ lim
t→∞

1

t

t∑

u=1

f1(p(u),h(u)), (3.27)

f2

(
lim
t→∞

1

t

t∑

u=1

x(u)

)
≥ 0. (3.28)

Due to the inclusion of the pdf m(p(h)), the problem in the primal domain consists of

an infinite number of primal variables, which makes it difficult to solve. On the contrary,

the dual problem has a finite number of variables, making it much more tractable. To

this end, consider the Lagrangian of the optimization problem (3.26), given by

L(x,m(p(h)),λ) = f0 (x) + λT1
(
Eh
[
Em(p(h)) [f1(p(h); h)]

]
− x

)
+ λT2 f2(x), , (3.29)

where λ1 are the Lagrange multipliers associated to constraint (3.26b) and λ2 the La-

grange multipliers associated to constraint (3.26c). Also, for compactness we have col-

lected both multipliers in the variable λ := [λT1 ,λ
T
2 ]T . The ESO algorithm takes a

stochastic approximation of the Lagrangian (3.29), consisting in the substitution of the

random variable h for its instantaneous value h(t). Then, it solves the problem in a

primal-dual sense by means of a subgradient method. The resulting steps of the ESO

algorithm can be summarized as follows
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1. Primal Iteration. Given multipliers λ(t), find the primal variables x(t) ∈ X and

p(t) ∈ P(h(t)) such that

x(t) := arg max
x∈X

{
f0 (x)− λT1 (t)x + λT2 (t)f2(x)

}
(3.30)

p(t) := arg max
p(h(t))∈P(h(t))

{
λT1 (t)f1(p(h(t)),h(t))

}
(3.31)

2. Dual Stochastic Subgradients. Define the stochastic subgradient ŝ(t) = ŝ(h(t),

λ(t)) = [ŝT1 (t), ŝT2 (t)]T of the dual function given by

ŝ1(t) := f1(p(t),h(t))− x(t), (3.32)

ŝ2(t) := f2(x(t)). (3.33)

3. Dual Iteration. Update in the dual domain with a predetermined step size ε

along the direction −ŝ(t)

λ(t+ 1) := [λ(t)− εŝ(t)]+ =

[
λ1(t)− ε (f1(p(t),h(t))− x(t))

λ2(t)− εf2(x(t))

]+

. (3.34)

Usually, when solving an optimization problem such as (3.26), the goal is to find optimal

variables x? and m?(p(h)), where f0 (x?) is maximized while also satisfying the prob-

lem constraints (3.26b) and(3.26c). Since the ESO is an online algorithm with ergodic

constraints, the aim is slightly different. Our objective is to find iterates {x(t)}∞t=1 and

{p(t)}∞t=1 that satisfy constraints (3.26b) and (3.26c) over a sufficiently long period of

time (as shown by the equivalent constraints (3.27) and (3.28)). While, at the same time,

maintaining a sufficiently small optimality gap. Specifically, the guarantees provided by

the ESO algorithm are outlined in the following theorem.

Theorem 3.20. Consider the optimization problem previously defined and sequences

{x(t)}∞t=1 and {p(t)}∞t=1 generated by the ESO algorithm defined previously. Let E[‖ŝ(t)‖2 |
λ(t)] ≤ Ŝ2 be a bound on the second moment of the norm of the stochastic subgradi-

ents ŝ(t) and assume that there exists strictly feasible x0 ∈ X and m0(p(h)) such that

Eh
[
Em0(p(h)) [f1(p(h); h)]

]
− x0 > C and f2(x) > C for some strictly positive constant

C > 0. Then

1. Almost sure feasibility. Sequences {x(t)}∞t=1 and {p(t)}∞t=1 are feasible with

probability 1, i.e.,

lim
t→∞

1

t

t∑

u=1

x(u) ≤ lim
t→∞

1

t

t∑

u=1

f1(p(u); h(u)), a.s. (3.35)

f2

(
lim
t→∞

1

t

t∑

u=1

x(u)

)
≥ 0, a.s. (3.36)
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2. Almost sure near optimality. The ergodic average of f0(x(t)) almost surely

converges to a value with optimality gap smaller than εŜ2/2, i.e.,

f0 (x?)− f0

(
lim
t→∞

1

t

t∑

u=1

x(u)

)
≤ εŜ2

2
. (3.37)

From these guarantees, we can draw some final remarks. First, note that the opti-

mality gap can be made arbitrarily small by the choice of step size ε. Furthermore, the

ergodic limit x := limt→∞
1
t

∑t
u=1 x(u) of the solution provided by the ESO algorithm

satisfies the constraints of the optimization problem with probability 1. Also, when find-

ing the solution to the problem, note that the optimal resource allocation distribution

m?(p(h)) is not directly computed by the ESO algorithm. Instead, the algorithm gen-

erates samples of p(t) from a distribution that asymptotically approximates m?(p(h)).



Chapter 4
Reconstruction of Correlated

Sources

In this chapter, we investigate the reconstruction of time-correlated sources in a point-

to-point communications scenario comprising an energy harvesting sensor and a fusion

center. Our goal is to minimize the average distortion in the reconstructed observations

by using data from previously encoded sources as side information. First, we analyze

a delay-constrained scenario, where the sources must be reconstructed before the next

time slot. We formulate the problem in a convex optimization framework and derive

the optimal transmission (i.e., power and rate allocation) policy. To solve this problem,

we propose an iterative algorithm based on the subgradient method. Interestingly, the

solution to the problem consists of a coupling between a two-dimensional directional

waterfilling algorithm (for power allocation) and a reverse waterfilling algorithm (for rate

allocation). Then we find a more general solution to this problem in a delay-tolerant

scenario where the time horizon for source reconstruction is extended to multiple time

slots. Finally, we provide some numerical results that illustrate the impact of delay and

correlation in the power and rate allocation policies, and in the resulting reconstruction

distortion. We also discuss the performance gap exhibited by a heuristic online policy

derived from the optimal (offline) one.

4.1 Introduction

A number of works address the problem of source reconstruction and estimation in wire-

less sensor network contexts. For uncoded transmissions, [74] investigates a number of

energy-related aspects in a context of wireless sensor networks for parameter estimation.

As for the coded case, in [75] the authors generalize Wyner-Ziv’s source coding strategies

with side information [76] to tree-structured sensor networks. Several aspects of source

and channel coding have been analyzed in energy harvesting scenarios. A point-to-point

25
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Figure 4.1: Temporal and spatial correlation models in video coding.

case was studied in [77], where rate-distortion allocation is optimized for stationary en-

ergy arrivals under data queue stability. These results were extended in [78] to the case of

finite energy and data buffers. Besides, the multi-hop scenario was studied in [79] with

correlated sources and distributed source coding. From a finite-horizon point of view,

in [80] the problem of minimizing the reconstruction distortion of a Gaussian source is

considered.

4.1.1 Contribution

In this chapter, we investigate the reconstruction of time-correlated sources in a point-

to-point communications scenario. As in [48, 51, 55, 80] we assume that energy arrivals

are non-causally known, thus taking an offline optimization approach to the problem.

Hence, the solution turns out to be a benchmark against which any online policy can

be compared (we also propose one heuristic online policy). The introduction of tempo-

ral correlation in the sources is particularly relevant for video coding applications [81]

since, in this case, images (i.e., sources) in consecutive frames are clearly correlated.

Video source coding has been widely investigated in the literature [82–84]. In [82] the

authors model video signals as a sequence of time-correlated (correlation given by a first-

order auto-regressive process) spatially independent and identically distributed Gaussian

processes (namely, frames). Such correlation model, which we adopt in this work, is il-

lustrated in Fig. 4.1. Still, more general correlation models are also available [84]. In

other works [83], the authors analyze the impact of a delay-tolerant reconstruction of

the correlated source. Those studies, however, were conducted in scenarios without en-

ergy harvesting. Our work goes one step beyond and incorporates energy harvesting

constraints (in the sensor node) in the source coding process itself. Consequently, the
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closed-form expressions that we derive for the power and rate allocation policies explic-

itly take correlation into account. In this respect, we generalize the results of [80] to

the correlated case. In this more general setting and in contrast to previous works, we

further leverage on side information-aware coding strategies for WSNs [75] to exploit

correlation. First, we study the delay-constrained case in which the source must be

reconstructed at the FC before the next time slot. Then we generalize our study to

the delay-tolerant case, where the time horizon for source reconstruction is extended to

multiple time slots. For both cases, we derive the optimal transmission policy which

minimizes the average reconstruction distortion at the destination. Our policy reverts

to that of [80] for uncorrelated sources, and to that of [48] for the uncorrelated and

delay-constrained case. In order to compute this rate and power allocation policy, we

propose an iterative algorithm based on the subgradient method [68]. Interestingly, we

show that the procedure encompasses the interaction between a two-directional direc-

tional waterfiling and a reverse waterfilling [85, Chapter 10] schemes. Finally, we provide

extensive numerical results which illustrate the impact of correlation and delay in the

transmit policy and the resulting reconstruction distortion.

The remainder of this chapter is organized as follows. In Section 4.2 we introduce the

system model and provide details on the encoding process. In Section 4.3, we address

the distortion minimization problem for the delay-constrained case. We formulate the

problem as a convex program and derive the optimal power and rate allocation policy.

In order to compute this resulting transmission policy, we propose in Section 4.3.3 an

iterative algorithm based on the subgradient method. Next, in Section 4.4 we generalize

the problem (and the solution) to the delay-tolerant case. We provide numerical results

in Section 4.5, where the effect of correlation as well as delay on the transmit policy and

the resulting distortion are assessed. Finally, Section 4.6 closes the chapter by providing

some concluding remarks.

4.2 System Model

Consider the point-to-point communications scenario depicted in Fig. 4.2 which com-

prises one Energy Harvesting (EH) sensor and one Fusion Center (FC). We adopt a

slotted transmission model, with K denoting the total number of time slots. The sensor

measures a time-varying phenomenon of interest which, in the sequel, we model by mul-

tiple correlated and memoryless Gaussian wide-sense stationary sources (see rationale in

the preceding section). Specifically, each source models the phenomenon in a given time

slot. In the k-th time slot, the sensor node (i) collects a large number of independent

and identically distributed (i.i.d.) samples from the k-th source; and (ii) encodes those

measurements. The encoded data is then transmitted to the FC in d consecutive time

slots.
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Figure 4.2: System Model.

In this work, we consider both delay-constrained (d = 1) and delay-tolerant (d > 1)

communication scenarios. Clearly, in delay-tolerant scenarios the encoded data trans-

mitted in a given time slot corresponds to multiple sources, as Figure 4.3 illustrates.

Let Ri,j denote the average transmission rate assigned to the encoded samples of the

j-th source in the i-th time slot. Necessarily, the sum-rate in the i-th time slot is upper

bounded by the channel capacity1, namely,

i∑

j=i−d+1

Ri,j ≤ log
(
1 + |hi|2pi

)
, i = 1, . . . ,K, (4.1)

with |hi|2 and pi standing for the channel gain and average transmit power in time slot i,

respectively (channel noise is assumed to be Gaussian-distributed, with zero-mean and

unit variance). The n i.i.d. samples collected by the sensor node from the i-th source

will be denoted in the sequel by {xki }nk=1. Such samples, we assume, are correlated over

time slots through a first-order autoregressive process. Hence, for the k-th sample from

the i-th source we have that

xki =
√
ρxki−1 + wki ,

k = 1, . . . , n,

i = 1, . . . ,K,
(4.2)

with ρ = E
[
xki x

k
i−1

]
denoting the correlation coefficient, and wki standing for an i.i.d.

zero-mean Gaussian random variable with variance σ2
w = (1− ρ)σ2

x.

As for the underlying energy harvesting process, we model it as a counting process

[48, 49] with packet energy arrivals of Ei Joules at the beginning of time slot i. For

simplicity, we assume that energy can be stored in a rechargeable battery of infinite

capacity. By considering transmit power as the only energy cost, any transmission (power

allocation) policy {pi} at the sensor node must satisfy the following energy causality

1For the ease of notation, we let the number of channel uses to be equal to the number of samples

collected in a given time slot. This number, in turn, is assumed to be large enough to satisfy Shannon’s

source coding theorem.
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Figure 4.3: Simultaneous transmission of source measurements.

constraint:

Ts

i∑

j=1

pj ≤
i∑

j=1

Ej , i = 1, . . . ,K, (4.3)

where Ts denotes the duration of the time slot which, in the sequel, we normalize (i.e.,

Ts = 1).

Remark 4.1. There exist more sophisticated power consumption models encompassing

non-ideal circuit power consumption effects [86] or the impact of processing power [87]

(See also references [88] and [89] for more insight into these matters). In this work,

for simplicity, we restrict ourselves to transmit power consumption. Nonetheless, the

proposed model easily adapts to a constant circuit power consumption. Any model of the

form Ts
∑i

j=1 pj+ Ts
∑i

j=1 P
c
i ≤

∑i
j=1Ej , with P ci being the circuit power consumption

at the i-th time slot, can be rewritten as Ts
∑i

j=1 pj ≤
∑i

j=1 Ēj , where we have defined

a new energy harvesting process as Ēi = Ei − TsP ci . Using this new energy harvesting

process, the proposed framework can be used to obtain policies adapted to a constant

circuit power consumption.

Our goal is to reconstruct at the FC the sequence of measurements {xki }nk=1 of each

source in up to d time slots since they were collected. Due to the continuous-valued nature

of the sources and the rate constraint (4.1), the reconstructed measurements {x̂ki }nk=1 will

be unavoidably subject to some distortion. Such distortion will be characterized by a

Mean Squared Error (MSE) metric:

Di =
1

n

n∑

k=1

(
xki − x̂ki

)2
, i = 1, . . . ,K. (4.4)

4.2.1 Source Coding and Distortion

Hereinafter, we assume separability of source and channel coding at the sensor node.

Hence, {xki }nk=1 can be first encoded into a length-n codeword (with a sufficiently large
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n) given by {uki }nk=1. This process, as in [90], can be modeled as

ui = xi + zi, i = 1, . . . ,K, (4.5)

where zi denotes i.i.d. zero-mean Gaussian random noise of variance σ2
zi , which plays

the role of encoding noise (the sample index has been omitted here for brevity). We

know that, in order to decode the received data, the FC will exploit the available side

information (i.e., all the preceding ui). Hence, the sum of the (average) encoding rates

per sample for the i-th source over the d consecutive time slots must satisfy [85]

i+d−1∑

j=i

Rj,i ≥ I(xi;ui|u1, . . . , ui−1), i = 1, . . . ,K, (4.6)

where I(·; ·|·) stands for the conditional mutual information. From (4.5), this last ex-

pression can be rewritten as

I(xi;ui|u1, . . . , ui−1) =H (ui|u1, . . . , ui−1)−H (ui|u1, . . . , ui−1, xi)

= log

(
1 +

σ2
xi|u1,...,ui−1

σ2
zi

)
, (4.7)

with H(·|·) standing for the conditional entropy and σ2
xi|u1,...,ui−1

for the conditional

variance of the i-th observation given all the previous data available at the FC. Hence,

by taking equality in (4.6), the variance of the encoding noise reads

σ2
zi =

σ2
xi|u1,...,ui−1

e

i+d−1∑
j=i

Rj,i
− 1

. (4.8)

In each time slot, the FC produces an optimal Minimum Mean Squared Error (MMSE)

estimate of the observations which, as discussed earlier, exploits all the preceding ui,

namely

x̂i = E [xi|u1, . . . , ui] , i = 1, . . . ,K. (4.9)

The distortion in the reconstruction of xi thus reads:

Di = σ2
xi|u1,...,ui , (4.10)

which, in turn, can be expressed as2 (see Appendix 4.7, for a detailed derivation)

Di = σ2
x

(
(1− ρ)

i∑

j=2

ρi−je
−
∑i

k=j

∑k+d−1
l=k Rl,k + ρi−1e−

∑i
k=1

∑k+d−1
l=k Rl,k

)
. (4.11)

2With some abuse of notation, in the summation interval we write k + d − 1. Still, we restrict such

summations to the valid range of timeslot values, namely, max{k + d− 1,K}.
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4.3 Minimization of the Average Distortion: The Delay-

Constrained Scenario

Here, samples must be encoded, transmitted and reconstructed before the next time slot

starts (i.e., d = 1). The particularization of the channel capacity constraint (4.1) thus

reads

Ri ≤ log
(
1 + |hi|2pi

)
, (4.12)

where Ri stands for the transmission rate which is assigned to the i-th source in the i-th

time slot only (i.e., no summation of rates over subsequent time slots). Likewise, the

rate-distortion constraint (4.6) can be particularized to

Ri ≥ I(xi;ui|u1, . . . , ui−1), (4.13)

From all the above, the reconstruction distortion in (4.11) simplifies to

Di = σ2
x

(
(1− ρ)

i∑

j=2

ρi−je

−
i∑

k=j

Rk
+ ρi−1e

−
i∑

k=1

Rk)
. (4.14)

Our goal is to find the optimal power {pi} and rate {Ri} allocation that minimize the

average distortion given by (4.14) subject to the energy causality constraint of (4.3) and

the capacity constraint of (4.1). Unfortunately, due to the coupling (over time slots) of

the rates in the exponential terms of (4.14), this optimization problem cannot be solved

analytically. To circumvent this, we define the cumulative rates rij as rij ,
∑i

k=j Rk,

for i = 1, . . . ,K, j = 1, . . . , i. By doing so, the optimization problem can be posed as:

minimize
{pi},{Ri},{rij}

σ2
x

K

K∑

i=1

(
(1− ρ)

i∑

j=2

ρi−je−rij + ρi−1e−ri1
)

(4.15a)

subject to rij =
i∑

k=j

Rk, i = 1, . . . ,K, j = 1, . . . , i (4.15b)

Ri ≤ log
(
1 + |hi|2pi

)
, i = 1, . . . ,K, (4.15c)

i∑

j=1

pj ≤
i∑

j=1

Ej , i = 1, . . . ,K, (4.15d)

pi ≥ 0, i = 1, . . . ,K, (4.15e)

Ri ≥ 0, i = 1, . . . ,K, (4.15f)

rij ≥ 0, i = 1, . . . ,K, j = 1, . . . , i (4.15g)

where the optimization is with respect to variables {pi}, {Ri} and, also, {rij} (this

follows from the introduction of the additional constraint (4.15b) associated to the def-

inition of cumulative rates). Since the objective function (4.15a) is convex and the
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constraints (4.15b)-(4.15g) define a convex feasible set, the optimization problem (4.15)

is convex and, thus, has a global solution [67]. By satisfying the Karush-Kuhn-Tucker

(KKT) conditions, we identify the necessary and sufficient conditions for optimality. The

Lagrangian of (4.15) reads

L =
σ2
x

K

K∑

i=1


(1− ρ)

i∑

j=2

ρi−je−rij + ρi−1e−ri1




+
K∑

i=1

i∑

j=1

λij


rij −

i∑

k=j

Rk




+
K∑

i=1

µi
(
Ri − log

(
1 + |hi|2pi

))

+
K∑

i=1

βi




i∑

j=1

pj −
i∑

j=1

Ej




−
K∑

i=1

ηipi −
K∑

i=1

φiRi −
K∑

i=1

i∑

j=1

δirij , (4.16)

where {µi} ≥ 0, {βi} ≥ 0, {ηi} ≥ 0, {φi} ≥ 0, {δij} ≥ 0 and {λij} stand for the

corresponding Lagrange multipliers. The additional complementary slackness conditions

are given by

µi
(
Ri − log

(
1 + |hi|2pi

))
= 0, ∀i, (4.17)

βi




i∑

j=1

pj −
i∑

j=1

Ej


 = 0, ∀i, (4.18)

ηipi = 0, ∀i, (4.19)

φiRi = 0, ∀i, (4.20)

δirij = 0, ∀i, j. (4.21)

Finally, by taking the derivative of the Lagrangian with respect to pi, Ri, rij and letting

them be equal to zero we the set of stationarity conditions follow, namely,

∂L
∂pi

= − µi|hi|2
1 + |hi|2pi

+

K∑

j=i

βj − ηi = 0, (4.22)

∂L
∂Ri

= −
K∑

k=i

i∑

j=1

λkj + µi − φi = 0, (4.23)

∂L
∂rij

=




−σ2

x
K ρ

i−je−rij + λij − δij = 0, if j = 1,

−σ2
x
K (1− ρ) ρi−je−rij + λij − δij = 0, if j 6= 1.

(4.24)



4.3 Minimization of the Average Distortion: The Delay-Constrained Scenario 33

(a) Two-dimensional directional waterfilling.

(b) Reverse waterfilling with multiple waterlevels.

Figure 4.4: Optimal power and cumulative rate allocation.

4.3.1 Optimal Power Allocation

From the stationarity conditions on pi (4.22) and Ri (4.23), and the slackness conditions

of (4.21), the optimal power allocation follows:

p?i =




K∑
k=i

i∑
j=1

λkj

K∑
j=i

βj

− 1

|hi|2




+

, i = 1, . . . ,K, (4.25)

This solution can be interpreted as a two-dimensional directional waterfilling, as shown

in Fig. 4.4(a). For each time slot i, we have a rectangle of solid material of width

Wi ,
∑K

k=i

∑i
j=1 λkj and height Hi , 1

/(
|hi|2

∑K
k=i

∑i
j=1 λkj

)
. Right-permeable taps

are placed in time slots with energy arrivals. Water is consequently poured up to a

waterlevel νi , 1/
∑K

j=i βj . The resulting power allocation corresponds to the area of

water above the solid rectangle.
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4.3.2 Optimal Rate Allocation

Next, by solving (4.24) for rij , and taking into account the corresponding slackness

conditions, the optimal cumulative rate allocation can be written as

r?ij =





[
log

(
1
Kσ

2
xρ
i−j

λij

)]+

, if j = 1,

[
log

(
1
Kσ

2
x (1− ρ) ρi−j

λij

)]+

, if j 6= 1.

(4.26)

From this last expression, it becomes apparent that, necessarily, {λij} > 0. Hence, from

(4.23), we have that {µi} > 0 too. This implies that constraint (4.15c) is satisfied with

equality. Moreover, expression (4.26) can be readily interpreted in terms of a reverse

waterfilling solution for the reconstruction of parallel Gaussian sources [85, Chapter 10].

To see that, we define

γij =





1
Kσ

2
xρ
i−j , if j = 1,

1
Kσ

2
x (1− ρ) ρi−j , if j 6= 1,

(4.27)

and

Dij =




λij , if λij < γij ,

γij , if λij ≥ γij .
(4.28)

Bearing the above in mind, equation (4.26) can be rewritten as

r?ij =

[
log

(
γij
Dij

)]+

. (4.29)

As Figure 4.4(b) illustrates, this solution mimics that of a rate-distortion allocation

problem for parallel Gaussian sources. However, here the allocated rates r?ij (and sources)

are cumulative rather than individual ; and the reverse water level given by λij is not

constant. Besides, the numerator in the argument of (4.29) does not only depend on the

variance of the sources σ2
x but also on the correlation coefficient ρ, as (4.27) evidences.

Finally, by replacing (4.29) in (4.14), the optimal distortion for the reconstruction of

the i-th source reads

D?
i =

i∑

j=1

Dij . (4.30)

that is, it can be computed as the sum of the distortions associated to the corresponding

cumulative rates.

4.3.3 Optimization Algorithm

As discussed in the previous section, the optimal power (4.25) and cumulative rate (4.26)

allocation are coupled by the Lagrange multipliers λij . Further, one can easily prove
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Algorithm 4.1 Optimal power and rate allocation for the delay-constrained case.

1: Initialize: {λ(t)
ij } := 0.

2: Step 1: For all i, allocate power.

3: p
(t+1)
i :=




K∑
k=i

i∑
j=1

λ
(t)
kj

K∑
j=i

βj

− 1

|hi|2




+

4: Step 2: For all i, j, cumulative rate allocation.

5: r
(t+1)
ij :=

[
log

(
γij

λ
(t)
ij

)]+

6: Step 3: For all i, j, update multiplier.

7: λ
(t+1)
ij :=

[
λ

(t)
ij + α

(
r

(t+1)
ij −

i∑
k=j

log
(

1 + |hk|2p(t+1)
k

))]

8: Step 4: Go to Step 1 until stopping criteria is met.

that problem (4.15) satisfies Slater’s condition, and therefore, strong duality holds [67].

Since in these conditions the duality gap is zero, we propose to solve the corresponding

dual problem in order to determine the primal solution (power and rates) in which we

are interested. To that aim, we resort to the subgradient method [68] on which basis

the solution to the dual problem, {λij}, can be iteratively found (convergence can be

guaranteed under some mild conditions). Specifically, in the t-th iteration, the Lagrange

multipliers are updated as follows3:

λ
(t+1)
ij :=

[
λ

(t)
ij + α

(
r

(t+1)
ij −

i∑

k=j

log
(

1 + |hk|2p(t+1)
k

))]
, (4.31)

with α standing for the corresponding step size. In Algorithm 4.1, we summarize the

proposed procedure to solve the power and cumulative rate allocation problem.

The algorithm corresponds to a a subgradient ascent on the dual function. Hence,

it has a convergence rate of the order of O(1/
√
t) [91, Chapter 8.2]. Moreover, for a

node, a single iteration of the algorithm will be of the order of O(K logK), as it is a

form of waterfilling. Namely, sorting takes O(K logK) operations, while each waterfilling

operation takes O(K) operations and there are at most O(logK) waterfillings to be done,

since we can compute a binary search between the water bins.

3Here, we use extended-value definitions for all functions [67], thus taking +∞ values outside their

respective domain.
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4.4 Minimization of the Average Distortion: The Delay-

Tolerant Scenario

Here, we address the more general case in which data is allowed to be transmitted and

reconstructed within d > 1 time slots after samples are collect and encoded. Again, to

render the problem solvable, we define the cumulative rates as

rij ,
i∑

k=j

k+d−1∑

l=k

Rl,k for i = 1, . . . ,K, j = 1, . . . , i. (4.32)

In delay-tolerant scenarios, each time slot conveys data from up to d different sources

(see Fig. 4.3). Hence, the number of unknowns ({Ri,j}), Kd − d(d − 1)/2 in total,

exceeds the number of equations given by the capacity constraints (4.1), K in total.

Consequently, the system of equations becomes underdetermined. This means that,

even if a unique solution exists when optimizing on the cumulative rates rij (as we

discuss next), there exist multiple solutions for the individual rates. Thus, we propose to

solve the optimization problem in terms of cumulative rates (only), and then define some

criteria to select one solution in terms of individual rates (this will be further elaborated

in Section 4.5 ahead).

To start with, we need to rewrite not only (i) the objective function given by (4.11);

but, also, (ii) the set of constraints, in terms of cumulative rates. The latter can be

accomplished by expressing the cumulative rates in the following recursive form:

rij ,





∑i
k=j rkk, if j 6= i

∑j+d−1
k=j Rk,j , if j = i

(4.33)

for i = 1, . . . ,K, j = 1, . . . , i, and then resorting to Fourier-Motzkin elimination [92].

Further, we prove that the system obtained by Fourier-Motzkin elimination is equivalent.





rii =
i+d−1∑

j=i

Rj,i,

i = 1, . . . ,K

i∑

j=i−d+1

Ri,j ≤ log
(
1 + |hi|2pi

)
,

i = 1, . . . ,K

Ri,j ≥ 0,

i = 1, . . . ,K, j = i− d+ 1, . . . , i





≡





rij =
i∑

k=j

rkk,

i = 1, . . . ,K, j = 1, . . . , i− 1

rij ≤
d+i−1∑

k=j

log
(
1 + |hk|2pk

)
,

i = 1, . . . ,K, j = 1, . . . , i

rij ≥ 0,

i = 1, . . . ,K, j = 1, . . . , i





(4.34)

Proposition 4.2. The systems of inequalities in (4.34) are equivalent when solving

optimization problem (4.35). That is, the set of variables {pi},{Ri,j} and {rij} satisfy
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the constraints on the left hand side of (4.34) if and only if they satisfy the constraints

on the right hand side of (4.34).

Proof. See Appendix 4.8. �

Finally, in order to pose the optimization problem, it suffices to include the corre-

sponding energy harvesting constraints of (4.3) too, namely

minimize
{pi},{rij}

σ2
x

K

K∑

i=1

(
(1− ρ)

i∑

j=2

ρi−je−rij + ρi−1e−ri1
)

(4.35a)

subject to rij =

i∑

k=j

rkk, i = 1, . . . ,K, j = 1, . . . , i− 1 (4.35b)

rij ≤
d+i−1∑

k=j

log
(
1 + |hk|2pk

)
, i = 1, . . . ,K, j = 1, . . . , i (4.35c)

i∑

j=1

pj ≤
i∑

j=1

Ej , i = 1, . . . ,K, (4.35d)

pi ≥ 0, i = 1, . . . ,K, (4.35e)

rij ≥ 0, i = 1, . . . ,K, j = 1, . . . , i (4.35f)

where, clearly, the optimization is now with respect to variables {pi} and {rij}. Dif-

ferently from Section 4.3, constraint (4.35b) guarantees, on the one hand, that the cu-

mulative rates satisfy definition (4.33). On the other, constraint (4.35c) enforces the

cumulative rates to satisfy the per time slot channel capacity constraint.

The optimization problem (4.35) is convex and can be solved in closed-form by (i)

computing the Lagrangian function:

L =
σ2
x

K

K∑

i=1


(1− ρ)

i∑

j=2

ρi−je−rij + ρi−1e−ri1




+

K∑

i=1

i∑

j=1

µij


rij −

i∑

k=j

rkk




+

K∑

i=1

i∑

j=1

λij


rij −

d+i−1∑

k=j

log
(
1 + |hi|2pi

)



+

K∑

i=1

βi




i∑

j=1

pj −
i∑

j=1

Ej




−
K∑

i=1

ηipi −
K∑

i=1

i∑

j=1

δijrij . (4.36)
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with {λij} ≥ 0, {βi} ≥ 0, {ηi} ≥ 0, {δi} ≥ 0; and {µij} standing for the corresponding

Lagrangian multipliers; and (ii) satisfying the Karush-Kuhn-Tucker (KKT) conditions

that follow from the Lagrangian. Along the lines of Section 4.3, the optimal power

allocation reads,

p?i =




K∑
k=i−d+1

k∑
l=1

λkl

K∑
j=i

βj

− 1

|hi|2




+

, i = 1, . . . ,K. (4.37)

The optimal power allocation for the (more general) delay-tolerant scenario admits

again a two-dimensional directional waterfilling interpretation. Differently from the

delay-constrained scenario, the width and height of the solid rectangle, namely Wi ,∑K
k=i−d+1

∑k
l=1 λkl and Hi , 1

/(
|hi|2

∑K
k=i−d+1

∑k
l=1 λkl

)
, have an explicit dependence

on d, the maximum latency4.

Along the lines of the preceding section, the optimal cumulative rates for the delay-

constrained scenario follow:

r?ij =

[
log

(
γij

λij + µ̄ij

)]+

. (4.38)

where we have defined

µ̄ij =





−
K∑
k=i

i∑
l=1
l 6=k

µkl, if i = j,

µij , if i 6= j.

(4.39)

and γij is given by (4.27). Again, this solution can be interpreted in terms of a classical

reverse waterfilling scheme.

As in Section 4.3.3, we solve the corresponding dual problem by resorting to the

subgradient method. However, now both dual variables λij and µij must be updated as

follows

λ
(t+1)
ij :=

[
λ

(t)
ij + αλ

(
r

(t+1)
ij −

d+i−1∑

k=j

log
(

1 + |hk|2p(t+1)
k

))]+

, (4.40)

µ
(t+1)
ij :=

[
µ

(t)
ij + αµ

(
r

(t+1)
ij −

i∑

k=j

r
(t+1)
kk

)]
, (4.41)

where αλ and αµ denote the corresponding step sizes. Algorithm 4.2 details the proposed

procedure to obtain the optimal power and cumulative rate allocation.

4.5 Numerical Results

In this section, we assess the performance of the proposed optimal power and rate allo-

cation schemes. We are particularly interested in analyzing the impact of the correlation

4As expected, these expressions simplify to the ones for the delay-constrained scenario for d = 1.
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Algorithm 4.2 Optimal power and rate allocation for the delay-tolerant case.

1: Initialize: {λ(t)
ij } := 0, {µ(t)

ij } := 0.

2: Step 1: For all i, allocate power.

3: p
(t+1)
i :=




K∑
k=i−d+1

k∑
l=1

λ
(t)
kl

K∑
j=i

βj

− 1

|hi|2




+

4: Step 2: For all i, j, cumulative rate allocation.

5: r
(t+1)
ij :=

[
log

(
γij

λ
(t)
ij + µ̄

(t)
ij

)]+

6: Step 3: For all i, j, update multipliers.

7: λ
(t+1)
ij :=

[
λ

(t)
ij + αλ

(
r

(t+1)
ij −

d+i−1∑
k=j

log
(

1 + |hk|2p(t+1)
k

))]+

8: µ
(t+1)
ij :=

[
µ

(t)
ij + αµ

(
r

(t+1)
ij −

i∑
k=j

r
(t+1)
kk

)]

9: Step 4: Go to Step 1 until stopping criteria is met.

coefficient ρ and the delay d in the resulting transmission policies. For this reason, in

all numerical results we have set the channel gains to a (constant) unit value. Unless

otherwise stated, the simulation setup considers a system with K = 10 time slots and an

(arbitrary) energy harvesting profile with energy arrivals given by E1 = 0.2, E3 = 0.6,

E6 = 0.8 and E7 = 1.4.

4.5.1 Delay-Constrained Scenario (d = 1)

The resulting optimal power allocation policy is shown in Figure 4.5. For uncorrelated

sources (ρ = 0), the optimal policy turns out to be the well-known geometric solution

of [48] and [50]. This corresponds to the tightest string below the cumulative energy

harvesting curve connecting the original and the total harvested energy by the end of

time slot K. However, as the correlation increases, the harvested energy tends to be

spent (i.e., allocated as transmit power) sooner. As a result, in Fig. 4.5 the slope of

the energy consumption curves right after new energy arrivals (e.g., in the beginning

of time slot 3) increases with ρ. This indicates that, in order to minimize the average

distortion, one should encode the observations as accurately as possible when some new

energy is made available. This stems from the fact that past observations are used here

as side information at the receiver. Intuitively, the earlier an observation is accurately

encoded, the more estimates (in subsequent time slots) can benefit from such an increased

accuracy. This holds true even at the expense of a reduced (or zero, as in time slot 10,

for ρ = 1) transmit power being allocated to some subsequent time slots. That is, at

the expense of suspending data transmission. All the above is in stark contrast with the

uncorrelated case studied in [48] where transmit power is (i) strictly positive for all time
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Figure 4.5: Optimal power allocation for d = 1 and varying correlation coefficient ρ.

slots and (ii) a monotonically increasing function.

Figure 4.6 depicts the reconstruction distortion for each source (and time slot since

d = 1) associated to the optimal policy. Unsurprisingly, the higher the correlation, the

more predictable the sources become and, hence, the lower the distortion (curves are

shifted downwards). For correlated sources, however, distortion does not monotonically

decrease with time slot index. As discussed in the previous paragraph, this stems from

the anticipated consumption of the harvested energy for the encoding of previous ob-

servations. Consequently, one can observe (i) a substantial decrease of the individual

distortion for sources in time slots with energy arrivals (time slots 3, 6, and 7); and (ii)

distortion upturns in time slots where the energy harvested so far has been spent or is

close to (time slots 2, 5, and 10). Still, the average distortion is lower.

4.5.2 Delay-Tolerant Scenario (d > 1)

Figure 4.7 illustrates the impact of delay on the optimal power allocation. Interestingly,

as d increases the solution converges to the tightest string below the cumulative energy

harvesting curve of [48]. The intuition behind is as follows. To recall, the tightest string

solution attempts to maximize the total throughput (rate) for the whole transmission

period. To that aim, the sequence of transmit powers (and rates) must be monotonically

increasing, that is, transmit power is higher by the end of the transmission period (i.e,

last time slot(s)). For d = 1, on the contrary, the allocated transmit power (and, thus,

rate) is higher in time slots with energy arrivals, and not necessarily in the last one(s).
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Figure 4.6: Individual distortion for d = 1 and varying ρ.

Moreover, the source must be reconstructed immediately, that is, after d = 1 time slots

(assuming the processing time at the FC to be negligible). In other words, there is some

urgency to allocate power (namely, spend energy). This is in stark contrast with the

tightest string solution where higher power and rates can be found at the end. Things,

however, are radically different when d increases. On the one hand, the deadline by

which individual sources must be reconstructed is shifted d time slots towards the end.

On the other, the rates (and power) needed to encode a specific source can be allocated

over multiple time slots, rather than just one. Hence, for increasing d the urgency to

allocate power decreases and, thus, the way in which power is allocated is more aligned

with that of the tightest string solution.

Figure 4.8 depicts the average distortion as a function of delay. Clearly, the average

distortion decreases with delay since the higher the delay, the higher the degrees of

freedom to allocate transmit power (and, thus, spend energy in a more sensible manner).

Unsurprisingly, distortion is lower for higher values of ρ, since the preceding (correlated)

sources used as side information at the FC are more informative.

Next, we investigate to what extent our system leverages on the knowledge on source

correlation. To that aim, the rate and power allocation policy from [80], which was

derived for a scenario with uncorrelated sources, is used as a benchmark. Specifically,

whereas the source encoding rate depends on I(xi;ui) (namely, the mutual informa-

tion with the current source only) the sources at the FC are reconstructed according

to (4.9). Our approach, on the contrary, exploits correlation both in the encoding and
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Figure 4.7: Optimal power allocation for ρ = 0.8 and varying delay d.

decoding/reconstruction processes. Figure 4.9 shows the normalized reduction (differ-

ence) in the average distortion attained by such benchmark and our scheme. For delay-

constrained scenarios, the reduction in distortion can be as high 25% for our scheme.

For delay-tolerant ones (d = 10), reduction can go up to 80%, which is very remarkable.

4.5.3 Comparison with an Online Policy

As discussed earlier, the proposed (offline) transmit power and rate allocation scheme

requires non-causal knowledge on energy arrivals. Here, instead, we introduce a more

realistic online version just requiring causal knowledge. The offline scheme will be used

as a benchmark.

Similar to [52], a myopic5 online policy can be computed as follows. Assume for

a moment that, after harvesting some energy in the initial timeslot (i.e., E1 > 0), no

additional energy is harvested in subsequent timeslots. Hence, we let E2 = · · · = EK = 0

and solve problem (4.35) for k = 1, . . . ,K. In the absence of knowledge on future energy

arrivals, this is a sensible approach too. After all, distortion would be minimized should

no additional energy be actually harvested. And, otherwise, we can react accordingly.

Let k0 < K denote the next timeslot in which some energy is harvested (i.e., Ek0 >

0). For the preceding timeslots (i.e., k = 1, . . . , k0 − 1), we force the power and rate

allocations computed after the last energy arrival to remain unchanged. Hence, the

5More general online policies accounting for different degrees of availability of channel and energy

state information can be also be considered (see e.g., [93]).
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Figure 4.8: Average distortion vs. delay d for varying correlation ρ.

unspent energy in the beginning of timeslot k0 reads Euk0 =
∑k0−1

j=1 Ej −
∑k0−1

j=1 pj . Next,

we let Ek0 := Euk0 + Ek0 and Ek0+1 = · · · = EK = 0 and, again, solve problem (4.35)

for k = k0, . . . ,K. That is, we compute the optimal power and rate allocations for

all subsequent timeslots. This procedure is iterated until all energy arrivals have been

accounted for.

Of course, no optimality can be claimed for the resulting policy. Still, the interesting

property of such scheme is its ability to adjust (re-compute) the remaining power and

rate allocations every time that some energy is harvested. By doing so, the additional

(and causal) knowledge on energy arrivals is effectively exploited.

Figure 4.10 illustrates the performance of the offline and online policies vs. the

intensity rate of energy arrivals (which are modeled as a Poisson process). Unsurprisingly,

the distortion of the offline versions turns out to be a lower bound of that attained

by online ones. For a given intensity rate, the additional distortion associated to the

online version can be regarded as moderate (some 20% at an energy arrival rate equal

to 1, ρ = 0.2, and d = 1). Interestingly, the online version requires a 40% increase

of the intensity rate to achieve the same distortion as its offline counterpart (for the

same operating point). The distortion gap becomes narrower for delay-tolerant scenarios

(d = 10) and wider in percentage for scenarios with high correlation (see ρ = 0.8 curves)

or when the intensity rate increases.
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Figure 4.9: Reduction in average distortion.

4.5.4 Convergence

Next, we investigate the convergence properties of the proposed scheme. Specifically,

in Figure 4.11 we depict the relative error ε between the average distortion at iteration

t and its optimal value, namely, ε =
∣∣∣D?

avg −D(t)
avg

∣∣∣ /D?
avg. For the update of the dual

variables in (4.31), we have used a time-varying step size6. Clearly, convergence is slower

for larger d values. This stems from the fact that, for delay-tolerant scenarios, the search

space for the solution is larger, as the summation in equation (4.35c) evidences.

4.5.5 Allocation of Individual Rates

As discussed in Section 4.4, for d > 1 there exists an infinite number of solutions for the

allocation of the individual rates (the system of equations is underdetermined). In order

to get some insight on how individual rates are allocated, we will select the solution with

the lowest 2-norm. This, clearly, penalizes solutions with very large (dissimilar) rates.

After solving the optimization problem (4.35) and determining the optimal cumula-

6The step size used is α(t) = ᾱ(t)/‖g(t)‖2, where g(t) is the corresponding subgradient and ᾱ = 1/
√
t.

This diminishing step size satisfies the convergence conditions given by ᾱ(t) ≥ 0, limt→∞ ᾱ
(t) = 0 and∑∞

t=1 ᾱ
(t) =∞ [68].
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Figure 4.10: Average distortion for the offline and online policies, for low (ρ = 0.2) and

high (ρ = 0.8) correlation, and delay-constrained (d = 1) and delay-tolerant (d = 10)

scenarios.

tive rates ri,j , we find the individual rates Ri,j by solving:

minimize
{Ri,j}




K∑

i=1

i∑

j=i−d+1

R2
i,j




1/2

(4.42a)

subject to rii =
i+d−1∑

j=i

Rj,i, i = 1, . . . ,K (4.42b)

i∑

j=i−d+1

Ri,j ≤ log
(
1 + |hi|2pi

)
, i = 1, . . . ,K (4.42c)

Ri,j ≥ 0, i = 1, . . . ,K, j = i− d+ 1, . . . , i (4.42d)

To that aim, we need to use rii and pi from the solution of the (cumulative) rate and

power allocation problem as an input (see first and second inequality constraints in the

problem above).

Figure 4.12 shows the allocation of individual rates over the d time slots for each

source (a different color is used for each source). We consider scenarios with sources

exhibiting low (ρ = 0.2) and high (ρ = 0.8) correlation. Interestingly enough, the higher

the correlation, the lower the spread of individual rates over time slots (fewer sources in

each time slot). This is consistent with the fact that, as discussed earlier, for low ρ (and

d = 1) energy tends to be spent sooner. Accordingly, in delay-tolerant scenarios where
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Figure 4.11: Relative distortion error for ρ = 0.8 and varying d.

the encoded data is transmitted in a number of time slots, when correlation is high the

first time slots are favored.

4.6 Conclusions

In this chapter, we have investigated the impact of source correlation in the design of

point-to-point optimal transmission policies with energy harvesting sensors. We have

considered both delay-constrained delay-tolerant scenarios. In both cases, our goal was

to minimize the average distortion in the decoded (reconstructed) observations by us-

ing data from previously encoded sources as side information. We have formulated the

problems in a convex optimization framework. Besides, we have proposed an iterative

procedure, based on the subgradient method, to solve both problems. Interestingly,

the procedure entails the interaction of a directional and reverse waterfilling schemes in

each iteration. For the delay-constrained scenario, numerical results revealed that, dif-

ferently from the uncorrelated case, minimizing the average distortion implies encoding

observations as accurately as possible upon energy arrivals. This holds true even if the

transmit power allocated to subsequent time slots is lower or, eventually, zero (and, thus,

an increase in distortion in such time slots). For the delay-tolerant scenario, we have

observed that as delay increases, the power allocation policy converges to the tightest

string below the cumulative energy harvesting curve. And, also, that the average dis-

tortion decreases. In comparison with other schemes not exploiting correlated sources
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Figure 4.12: Allocation of individual rates for sources with low (top) and high (bottom)

correlation (K = 20; d = 4; energy profile: E1 = 0.2, E2 = 1, E4 = 0.6, E6 = 1,

E7 = 0.8, E8 = 0.2, E9 = 0.4, E11 = 1.4, E13 = 0.6, E14 = 0.6, E16 = 0.8, E17 = 0.2,

E18 = 1, E19 = 0.2, and E20 = 0.4).

as side information, ours attains an average distortion which is substantially lower (with

reductions of up to 25% or 80% for d = 1 and d = 10, respectively. We have also pro-

posed a myopic online policy exhibiting a moderate performance gap (some 20% for low

correlation and delay-constrained scenarios) with respect to the offline (optimal) policy.

Besides, we have found that the time needed for the algorithm to convergence is higher

for delay-tolerant scenarios since the search space is substantially larger there. Finally,

we have observed that for delay-tolerant scenarios, the higher the correlation, the lower

the spread of individual rates over time slots.
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4.7 Appendix: Derivation of the Average Distortion in

(4.11)

For compactness, hereinafter we let Ri ,
∑i+d−1

j=i Rj,i denote the rate assigned to the

i-th source over its d time slots; and Di = σ2
xi|u1,...,ui the distortion for the i-th source

which can be recursively expressed as [94]:

σ2
xk|u1,...,uk = σ2

xk|u1,...,uk−1
− cov2(uk, xk|u1, . . . , uk−1)

σ2
uk|u1,...,uk−1

. (4.43)

We prove by induction that

Di = σ2
x

(
(1− ρ)

i∑

j=2

ρi−je
−
∑i

k=j

∑k+d−1
l=k Rl,k + ρi−1e−

∑i
k=1

∑k+d−1
l=k Rl,k

)

= σ2
x

(
(1− ρ)

i∑

j=2

ρi−je
−
∑i

k=j Rk + ρi−1e−
∑i

k=1Rk
)
. (4.44)

We start by showing this expression holds for the base case (i = 1). That is

D1 = σ2
x1|u1 = σ2

x −
(
σ2
x

)2

σ2
x + σ2

z1

= σ2
x −

(
σ2
x

)2

σ2
x +

σ2
x

eR1 − 1

= σ2
xe
−R1 , (4.45)

which satisfies expression (4.44). For the inductive step, assume expression (4.44) is true

for i = n. Then consider

Dn+1 = σ2
xn+1|u1,...,un+1

= σ2
xn+1|u1,...,un − σ

2
xn+1|u1,...,un

(
1− e−Rn+1

)

= σ2
xn+1|u1,...,une

−Rn+1

= σ2√
ρxn+wn|u1,...,une

−Rn+1

=
(
ρσ2

xn|u1,...,un + σ2
wn|u1,...,un

)
e−Rn+1

=
(
ρDn + σ2

x (1− ρ)
)
e−Rn+1 = Dnρe

−Rn+1 + σ2
x (1− ρ) e−Rn+1 (4.46)

Then by the induction hypothesis we have

Dn+1 = σ2
x

(
(1− ρ)

n∑

j=2

ρn−je
−
∑n

k=j Rk

+ρn−1e−
∑n

k=1Rk
)
ρe−Rn+1 + σ2

x (1− ρ) e−Rn+1 (4.47)

and by rearranging terms we have

Dn+1 = σ2
x

(
(1− ρ)

n+1∑

j=2

ρn+1−je
−
∑n+1

k=j Rk + ρn+1−1e−
∑i+1

k=1Rk
)
. (4.48)

Thus, expression (4.44) holds for i = n + 1. Therefore, by the principle of induction,

expression (4.44) holds for all i.
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4.8 Appendix: Proof of Proposition 4.2.

Proof. For notational convenience, let ci , log(1+ |hi|2pi) denote the channel capacity in

the i-th timeslot. First, we focus on the direct proof. Assuming that the LHS of (4.34),

which is given by the system of inequalities

∑i+d−1
j=i Rj,i = rii, i = 1, . . . ,K, (4.49a)

∑i
j=i−d+1Ri,j ≤ ci, i = 1, . . . ,K, (4.49b)

Ri,j ≥ 0, i = 1, . . . ,K,j = 1, . . . , i− d+ 1, (4.49c)

has a solution in terms of individual rates Ri,j , our goal is to find the system of inequal-

ities in the RHS of (4.34), namely

rij =
∑i

k=j rkk, i = 1, . . . ,K, j = 1, . . . , i− 1, (4.50a)

rij ≤
∑i+d−1

k=j ck, i = 1, . . . ,K, j = 1, . . . , i, (4.50b)

rij ≥ 0, i = 1, . . . ,K, j = 1, . . . , i. (4.50c)

The constraints (4.50a) follow directly from the definition of the cumulative rates (4.33).

Constraint (4.50c) is also straightforward since, from its definition in (4.32), the cumula-

tive rates ri,j can be expressed as a summation of non-negative (see (4.49c)) individual

rates Ri,j . As for (4.50b), note that from (4.49b) each non-negative individual rate can

be upper-bounded as follows

Ri,j ≤ ci, i = 1, . . . ,K, j = 1, . . . , i− d+ 1. (4.51)

Next, by direct substitution of the bounds (4.51) into the equalities (4.49a), we have that

rii ≤
∑i+d−1

j=i cj , i = 1, . . . ,K (4.52)

Finally, by substitution of (4.52) into the definition of cumulative rates (4.33), inequality

(4.50b) follows.

Consider now the converse. Assume that the RHS of (4.34), which is also given by

the system of inequalities (4.50), has a solution in terms of cumulative rates rij . Then,

we want to prove that there exists a non-empty set of individual rates Ri,j satisfying the

inequalities (4.49) (i.e., the RHS of (4.34) has a solution even if it might not be unique,

as discussed earlier). To prove that, we focus on the more restrictive case where we

force the capacity constraint (4.49b) to be satisfied with equality. Hence, the first two

constraints in (4.50) become:

∑i+d−1
j=i Rj,i = rii, i = 1, . . . ,K (4.53a)

∑i
j=i−d+1Ri,j = ci, i = 1, . . . ,K. (4.53b)

The system of equations above can be rewritten in matrix form:

Ax = b (4.54)
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where we have defined the column vectors x , [R1,1, R2,1, . . . , RK,K ]T and b , [r1,1, . . . ,

rK,K , c1, . . . , cK ]T , and where matrix A is given by the {0, 1} entries yielding the sum-

mations in (4.53). Next, we resort to Farkas’ lemma:

Lemma 4.3 (Farkas’ Lemma [21]). If A ∈ Rm×n and b ∈ Rm, then exactly one of the

following holds:

(i) There exists x ∈ Rn such that Ax = b and x ≥ 0.

(ii) There exists y ∈ Rm such that yTA ≥ 0 and yTb < 0.

where the inequality x ≥ 0 is defined element-wise. Clearly, alternative (i) in

the Farkas lemma states that, if it holds, a solution to the LHS in terms of indi-

vidual rates exists. In the next paragraphs, we prove (by contradiction) that alter-

native (ii) does not hold for our problem. To that aim, we start by defining y ,

[kr11 , . . . , krKK , kc1 , . . . , kcK ]T . Assume that alternative (ii) holds. To satisfy the con-

dition yTA ≥ 0, there must exist a nonnegative set of coefficients krii and kci such

that

krii + kcj ≥ 0, i = 1, . . . ,K, j = i, . . . , i+ d− 1. (4.55)

And, condition yTb < 0 can be rewritten as

∑K
i=1 kriirii +

∑K
i=1 kcici < 0. (4.56)

Next, we will check that for any set of valid krii and kcj equation (4.56) does not hold.

To that aim, we will determine the lowest possible value of the LHS of (4.56) subject to

the inequalities given by (4.55). In other words, we need to solve an optimization (mini-

mization) problem with the LHS of (4.56) playing the role of the objective function and

(4.55) as constraints. Since rii and ci are nonnegative, this is a linear program. Hence,

the solution will lie at the vertex of the feasible region defined by (4.55) [92, Chapter 7].

Since the expressions (4.55) define a convex cone, its only vertex is given by

krii + kcj = 0, i = 1, . . . ,K, j = i, . . . , i+ d− 1. (4.57)

By recursively analyzing the various equations in (4.57), we conclude that necessarily

k , krii = −kci , i = 1, . . . ,K. (4.58)

That is, except for the sign, all the coefficients are identical. By replacing (4.58) into the

LHS of (4.56), the objective function in the optimization problem becomes

k
∑K

i=1 rii − k
∑K

i=1 ci. (4.59)

From (4.50a) and (4.50b), we have that
∑K

i=1 rii ≤
∑K

i=1 ci. That is, the sum of cumu-

lative rates of all sources is below or equal to the channel capacity over all time slots.
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However, since the objective function in (4.35) is nonincreasing in all rij , the optimal

solution of (4.35) must satisfy
∑K

i=1 rii =
∑K

i=1 ci (i.e., with equality). This means

that, necessarily, (4.59) is lower bounded by 0, hence, (4.56) does not hold and, in turn,

alternative (ii) in the Farkas theorem does not hold either. This concludes the proof. �
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Chapter 5
Sensor Selection and Power

Allocation Strategies

In this chapter, we investigate the problem of jointly selecting a predefined number of

energy harvesting sensors and computing the optimal power allocation. The ultimate

goal is to minimize the reconstruction distortion at the fusion center. This optimization

problem is, unfortunately, non-convex. To circumvent that, we propose two suboptimal

strategies: (i) a joint sensor selection and power allocation (JSS-EH) scheme that, we

prove, is capable of iteratively finding a stationary solution of the original problem from

a sequence of surrogate convex problems; and (ii) a separate sensor selection and power

allocation (SS-EH) scheme, on which basis we can identify a sensible sensor selection and

analytically find a power allocation policy by solving a convex problem. We also discuss

the interplay between the two strategies. Alternatively, we also propose a sparse sensor

selection (SSS-EH) scheme, where we promote sparsity directly in the power allocation

vector. Performance in terms of reconstruction distortion, impact of initialization, actual

subsets of selected sensors and computed power allocation policies, etc., is assessed by

means of computer simulations. To that aim, an EH-agnostic sensor selection strategy,

a lower bound on distortion, and an online version of the SS-EH and JSS-EH schemes

are derived and used for benchmarking.

5.1 Introduction

Current technological advances make it feasible to deploy inexpensive sensors in large

numbers. In this context, the problem of optimally selecting a subset of sensors to per-

form a given task naturally arises. This often stems from resource (e.g., bandwidth),

interference level or energy consumption constraints, which make massive sensor to Fu-

sion Center (FC) communications barely recommended or simply not possible. While

the aforementioned sensor selection problem is combinatorial in nature, Joshi and Boyd

53
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studied in [95] a convex relaxation allowing to (approximately) solve the problem with a

reasonable computational cost. Other more recent approaches leverage on the inherent

sparsity of the problem. For instance, the authors in [96] investigate—both from central-

ized and distributed standpoints—strategies aimed to minimize the number of selected

sensors subject to a given Mean Square Error (MSE) target. Non-linear measurement

models (such as those in source localization and tracking problems) have been considered

in [97], also in a sparsity-promoting framework. Further, the sensor selection problem

has also been studied in [98] for correlated measurement noise. From an energy efficiency

point of view, the authors in [99] used a sparsity-promoting penalty function to discour-

age the repeated selection of any sensor node in particular (e.g., the most informative

ones). By doing so, uneven battery drainage can be prevented. Likewise, the same au-

thors propose in [100] a periodic sensor scheduling strategy which limits the number of

times that a sensor can be selected and transmit in a given period of time.

5.1.1 Contribution

In this chapter, we investigate the problem of jointly selecting a predefined number of

energy harvesting sensors and computing the optimal power allocation. The selection is

needed due to the reduced number of sensor-to-FC channels. Our goal is to minimize the

distortion in the reconstruction of the underlying source at the FC subject to the causality

constraints imposed by the EH process. This is in stark contrast with the approaches in

e.g., [99] [100] which were EH-agnostic. Unfortunately, the aforementioned optimization

problem is not convex. For this reason, we propose two suboptimal offline strategies.

First, the joint sensor selection and power allocation (JSS-EH) scheme is capable of

finding a stationary solution to the problem on the basis of a Majorization-Minimization

(MM) procedure [101]. The MM procedure allows us to identify a sequence of surrogate

(and approximate) convex optimization problems that we iteratively solve. As an al-

ternative, we propose a method to separately identify a sensible (and EH-aware) sensor

selection and the corresponding power allocation policy. By doing so, the power alloca-

tion problem for a given sensor selection becomes convex. Hereinafter, this is referred to

as the separate sensor selection and power allocation (SS-EH) scheme. Very interestingly,

the corresponding power allocation policy can be analytically derived and, as we discuss,

it can be interpreted as a two-dimensional [102] waterfilling solution. Besides, the SS-EH

solution turns out to be a suitable initialization to compute in a relatively low number of

iterations a refined (i.e., with lower distortion) stationary solution to the JSS-EH prob-

lem. Furthermore, we derive an online version of both schemes and, as an alternative

approach to the problem, we also propose an sparse sensor selection (SSS-EH) scheme.

In this scheme, we propose to promote sparsity in the power allocation using a log-sum

penalty term, this in turn resulting into sparse sensor selection policies. We provide a

majorization-minimization algorithm to find a stationary solution of the problem, which
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Figure 5.1: System model.

consists in the iterative minimization of a reweighted `1 penalty function. Finally, we

also discuss the interplay between and conduct an extensive performance assessment of

all the schemes by means of computer simulations.

The remainder of this chapter is organized as follows. In Section 5.2, we present the

signal and system model. In Section 5.3, we formulate the sensor selection and power

allocation problem in an energy-harvesting framework. Sections 5.4 and 5.5 are devoted

to present the two proposed strategies to compute joint (JSS-EH) and separate (SS-EH)

suboptimal solutions to the aforementioned optimization problem, respectively. Then, in

Section 5.6 we propose an alternative scheme (SSS-EH) based on promoting sparsity in

the power allocation vector. Next, in Section 5.7, we extensively assess the performance

of the proposed strategies. Finally, we close the chapter by providing some concluding

remarks in Section 5.8.

5.2 System Model

Consider the system model illustrated in Figure 5.1, comprising a wireless sensor network

composed of M energy harvesting sensor nodes (with index set M , {1, . . . ,M}) and

one fusion center deployed to estimate an underlying source x ∈ Rm, with x ∼ N (0,Σx).

We consider a time-slotted system with T time slots indexed by the set T , {1, . . . , T} of

duration Ts. In time slot t, the stationary source x generates an independent and identi-

cally distributed (i.i.d.) large sequence of n samples {x(k)[t]}nk=1 =
{
x(1)[t], . . . ,x(n)[t]

}
.

As in [95], source samples and sensor measurements are related through the following

linear model:

y
(k)
i [t] = aTi x(k)[t] + w

(k)
i [t],

k = 1, . . . , n

i ∈ Zt,
(5.1)
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where {w(k)
i [t]}nk=1 stands for i.i.d., zero-mean Gaussian observation noise of variance

σ2
w; vector ai gathers the known coefficients of the linear model at the i-th sensor; and

Zt ⊆ M denotes the subset of active (selected) sensors in time slot t, with cardinality

|Zt|. The ultimate goal is to reconstruct at the FC the sequence {x(k)[t]}nk=1 in each time

slot. To that aim, a total of K ≤ M orthogonal channels are available for sensor-to-FC

channel communications. Therefore, the number of sensors selected in each time slot

must satisfy |Zt| ≤ K.

In the sequel, we assume separability of source and channel coding. As far as source

coding is concerned, we adopt a rate-distortion optimal encoder. Assuming a quadratic

distortion measure at the FC, the encoded measurements at the sensor nodes can be

modeled as a sequence of auxiliary random variables {u(k)
i [t]}nk=1 [90]:

u
(k)
i [t] = aTi x(k)[t] + w

(k)
i [t] + q

(k)
i [t],

k = 1, . . . , n

i ∈ Zt,
(5.2)

with q
(k)
i [t] ∼ N

(
0, σ2

qi [t]
)

modeling the i.i.d. encoding noise. The average encoding rate

per sample Ri[t] must satisfy the rate-distortion theorem [85], that is,

Ri[t] ≥ I(yi[t];ui[t]) = h(ui[t])− h(ui[t]|yi[t]),

=
1

2
log

(
1 +

aTi Σxai + σ2
w

σ2
qi [t]

)
(5.3)

for all i ∈ Zt. Further, we assume that each active sensor encodes its observations at the

maximum channel rate which is given by the Shannon capacity formula1. Hence we have

Ri[t] = 1
2 log(1 + hi[t]pi[t]), where pi[t] and hi[t] stand for the average transmit power

and channel gain, respectively. From this and (5.3), the variance of the encoding noise

reads

σ2
qi [t] =

aTi Σxai + σ2
w

hi[t]pi[t]
, i ∈ Zt. (5.4)

Finally, by means of a Minimum Mean Square Error (MMSE) estimator [94] the FC2

reconstructs {x(k)[t]}nk=1 from the received codewords {u(k)
i [t]}nk=1 i ∈ Zt. The average

(MSE) distortion in time slot t ∈ T is given by [94]

D[t] = tr

(
M∑

i=1

zi[t]

σ2
w + σ2

qi [t]
aia

T
i + Σ−1

x

)−1

, (5.5)

1For simplicity, we let the number of channel uses per sensor be equal to the number of samples in a

time slot.
2The FC collects all measurements and computes the MMSE estimate of the underlying source. Given

a general linear model of the form y = Ax + w, with x ∼ N (0,Cx), and w ∼ N (0,Cw), the MMSE

estimate turns out to be x̂ = CxyC
−1
y y with distortion given by DMMSE = tr(CxyC

−1
y CT

xy + Cx)−1,

where Cy = E[yyT ] and Cxy = E[xyT ].
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where tr(·) denotes the trace operator3, and z[t] = [z1[t], . . . , zM [t]]T stands for the sensor

selection vector, with zi[t] = 1 if i ∈ Zt and zi[t] = 0 otherwise. By substituting expres-

sion (5.4) in (5.5) and defining ξi[t] ,
(

aT
i Σxai/σ

2
w+1

hi[t]

)
, the distortion can be rewritten

as

D[t] = tr

(
1

σ2
w

M∑

i=1

pi[t]zi[t]

pi[t] + ξi[t]
aia

T
i + Σ−1

x

)−1

. (5.6)

5.3 Problem Statement: Sensor Selection and Power Allo-

cation in an Energy Harvesting Framework

Since sensor nodes are capable of harvesting energy from the environment, the average

transmit power, pi[t] in (5.6), is necessarily constrained by the amount of scavenged

energy. Hence, in time slot t ∈ T we have

Ts

t∑

l=1

pi[l] ≤
t∑

l=1

Ei[l], t ∈ T , i ∈M. (5.7)

where Ei[t] denotes the energy harvested by the i-th sensor node in time slot t. In this

context, our goal is to jointly determine the optimal sensor selection and power allocation

strategy that (i) satisfies the above constraints imposed by the energy harvesting process;

(ii) selects K sensors in each time slot; and, by doing so, (iii) minimizes the sum distortion

(5.6) over the T time slots. Accordingly, the optimization problem reads

minimize
z[t],p[t]

T∑

t=1

tr

(
1

σ2
w

M∑

i=1

pi[t]zi[t]

pi[t] + ξi[t]
aia

T
i + Σ−1

x

)−1

(5.8a)

subject to Ts

t∑

l=1

pi[l] ≤
t∑

l=1

Ei[l], ∀t ∈ T , ∀i ∈M (5.8b)

1T z[t] = K, ∀t ∈ T (5.8c)

z[t] ∈ {0, 1}M , ∀t ∈ T (5.8d)

p[t] ≥ 0, ∀t ∈ T (5.8e)

where p[t] = [p1[t], . . . , pM [t]]T stands for the power allocation vector in a given time slot;

1 and 0 denote the all-ones and all-zeros vectors of appropriate dimension, respectively;

and vector inequality (5.8e) is defined element-wise. By introducing the auxiliary vector

3Throughout this chapter we adopt the widely accepted notational convention by which the inverse

operator precedes the trace operator. That is, tr(X)−1 is understood as tr((X)−1).
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s[t] = [s1[t], . . . , sM [t]]T , the optimization problem can be conveniently rewritten as:

minimize
z[t],s[t],p[t]

T∑

t=1

tr

(
M∑

i=1

si[t]

σ2
w

aia
T
i + Σ−1

x

)−1

(5.9a)

subject to si[t] ≤
pi[t]zi[t]

pi[t] + ξi[t]
,∀t ∈ T ,∀i ∈M (5.9b)

Ts

t∑

l=1

pi[l] ≤
t∑

l=1

Ei[l], ∀t ∈ T , ∀i ∈M (5.9c)

1T z[t] = K, ∀t ∈ T (5.9d)

z[t] ∈ {0, 1}M , ∀t ∈ T (5.9e)

p[t] ≥ 0, ∀t ∈ T (5.9f)

s[t] ≥ 0, ∀t ∈ T . (5.9g)

Clearly, the optimization problems (5.8) and (5.9) are equivalent. To see that, note

that the objective function is strictly decreasing in si[t]. Therefore, the optimal solu-

tion to problem (5.9), namely {(z?i [t], s?i [t], p
?
i [t])}i∈M,t∈T , must satisfy constraint (5.9b)

with equality (since, otherwise, there would be some si[t] > s?i [t] for which distor-

tion would be lower, which is a contradiction). That is, we necessarily have si[t] =

s?i [t] = p?i [t]z
?
i [t]/(p?i [t] + ξi[t]),∀t ∈ T , ∀i ∈ M which renders the two optimization

problems equivalent.

Unfortunately, problem (5.9) is non-convex due to the Boolean variable z[t] ∈ {0, 1}M
and the product of variables pi[t] and zi[t] in constraint (5.9b). The use of Boolean vari-

ables in constraint (5.9e), renders the sensor selection problem combinatorial in nature

and, in general, NP-hard. To circumvent that, we relax the boolean constraint by letting

variable zi[t] take values in the real-valued interval [0, 1] [95]. The optimization problem

now reads

minimize
z[t],s[t],p[t]

T∑

t=1

tr

(
M∑

i=1

si[t]

σ2
w

aia
T
i + Σ−1

x

)−1

(5.10a)

subject to si[t] ≤
pi[t]zi[t]

pi[t] + ξi[t]
,∀t ∈ T ,∀i ∈M (5.10b)

Ts

t∑

l=1

pi[l] ≤
t∑

l=1

Ei[l], ∀t ∈ T , ∀i ∈M (5.10c)

1T z[t] = K, ∀t ∈ T (5.10d)

z[t] ∈ [0, 1]M , ∀t ∈ T (5.10e)

p[t] ≥ 0, ∀t ∈ T (5.10f)

s[t] ≥ 0, ∀t ∈ T . (5.10g)

Still, constraint (5.10b) prevents the optimization problem from being convex. Conse-

quently, one cannot find a global minimizer without resorting to an exhaustive search of



5.4 Joint Sensor Selection and Power Allocation with Energy Harvesting (JSS-EH) 59

the optimization space. Global optimization techniques such as the so-called branch and

bound [103] can yield an ε-optimal solution but typically exhibit low converge rates and

poor scalability with problem dimension.

To alleviate this, we propose two suboptimal strategies: an iterative scheme capable

of finding a stationary solution to the problem (5.10) of jointly determining the sensor

selection and power allocation policies (Section 5.4); and a method to separately identify

a sensible sensor selection and a power allocation policy (Section 5.5). Also, we highlight

the interplay between these two strategies.

5.4 Joint Sensor Selection and Power Allocation with En-

ergy Harvesting (JSS-EH)

Here, we focus on finding a stationary (i.e., at least locally optimal) solution to the

problem. To that aim, we resort to a Majorization-Minimization procedure (MM) which

is explained below. This technique allows us to iteratively identify a sequence of surrogate

(and approximate) convex optimization problems that we attempt to solve.

We start by rearranging the terms of the non-convex constraint (5.10b) as follows:

si[t]pi[t]− pi[t]zi[t] + si[t]ξi[t] ≤ 0. (5.11)

The terms f(si[t], pi[t]) , si[t]pi[t] and g(pi[t], zi[t]) , −pi[t]zi[t], which are bilinear in the

optimization variables, can be alternatively expressed as a difference of convex functions:

f(si[t], pi[t]) =
1

2
(si[t] + pi[t])

2 − 1

2

(
si[t]

2 + pi[t]
2
)
, (5.12)

g(pi[t], zi[t]) =
1

2

(
zi[t]

2 + pi[t]
2
)
− 1

2
(zi[t] + pi[t])

2 . (5.13)

In the k-th iteration, we obtain a majorizer of expression (5.11) by linearizing the concave

(second) terms of (5.12) and (5.13) in the neighborhood of the solution found in the

previous iteration (z
(k)
i [t], s

(k)
i [t], p

(k)
i [t]), namely

f̄ (k)(si[t], pi[t]) ,
1

2
(si[t] + pi[t])

2 − 1

2

(
s

(k)
i [t]2 + p

(k)
i [t]2

)

− s(k)
i [t]

(
si[t]− s(k)

i [t]
)

− p(k)
i [t]

(
pi[t]− p(k)

i [t]
)
, (5.14)

ḡ(k)(zi[t], pi[t]) ,
1

2

(
zi[t]

2 + pi[t]
2
)
− 1

2

(
z

(k)
i [t] + p

(k)
i [t]

)2

−
(
z

(k)
i [t] + p

(k)
i [t]

)(
zi[t]− z(k)

i [t]
)

−
(
z

(k)
i [t] + p

(k)
i [t]

)(
pi[t]− p(k)

i [t]
)
. (5.15)
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Algorithm 5.1 Joint sensor selection and power allocation.

1: Initialize: Set k := 0 and initialize (z(0)[t], s(0)[t],p(0)[t]) to a feasible point.

2: Step 1: Update f̄ (k) and ḡ(k) according (5.14) and (5.15), respectively.

3: Step 2: Compute (z(k+1)[t], s(k+1)[t],p(k+1)[t]) by solving the optimization problem

(5.16).

4: Step 3: Let k := k + 1 and go to Step 1 until convergence.

5: Step 4: Set z?[t] to 1 for the K largest entries in each time slot and 0 otherwise.

All this results into the following surrogate convex optimization problem for the k-th

iteration:

minimize
z[t],s[t],p[t]

T∑

t=1

tr

(
M∑

i=1

si[t]

σ2
w

aia
T
i + Σ−1

x

)−1

(5.16a)

subject to f̄ (k)(si[t], pi[t]) + ḡ(k)(pi[t], zi[t]) + si[t]ξi[t] ≤ 0,∀t ∈ T ,∀i ∈M (5.16b)

Ts

t∑

l=1

pi[l] ≤
t∑

l=1

Ei[l], ∀t ∈ T , ∀i ∈M (5.16c)

1T z[t] = K, ∀t ∈ T (5.16d)

z[t] ∈ [0, 1]M , ∀t ∈ T (5.16e)

p[t] ≥ 0, ∀t ∈ T (5.16f)

s[t] ≥ 0, ∀t ∈ T . (5.16g)

Finally, a stationary point of the original (non-convex) optimization problem (5.10) can

be iteratively found by using Algorithm 5.1.

Proposition 5.1. Algorithm 5.1 converges to a stationary solution (a point satisfying

the KKT conditions) of the optimization problem (5.10).

Proof. For the ease of notation, let us first collect the vectors of primal variables z =

[z[1]T , . . . , z[T ]T ]T , s = [s[1]T , . . . , s[T ]T ]T , p = [p[1]T , . . . ,p[T ]T ]T . Let (z(0), s(0),p(0))

be a feasible point of the original optimization problem (5.10). Since the linearized

constraint (5.16b) is an upper bound on the original constraint (5.10b), it follows that

the feasible set of the surrogate problem (5.16) at iteration k, is contained in the feasible

set of the original problem (5.10). Hence, all iterates are feasible.

Now, solving the optimization problem (5.16) at iteration k leads to a solution

(z(k+1), s(k+1),p(k+1)) satisfying
∑T

t=1 tr(
∑M

i=1(s
(k+1)
i [t]/σ2

w)aia
T
i + Σ−1

x )−1 ≤ ∑T
t=1 tr(∑M

i=1(s
(k)
i [t]/σ2

w)aia
T
i + Σ−1

x )−1. This follows from the fact that, by definition, the lin-

earization is tight at the point (z(k), s(k),p(k)), and that by convexity of problem (5.16)

we have (z(k+1), s(k+1),p(k+1)) = (z(k), s(k),p(k)) if (z(k), s(k),p(k)) is a minimizer of the

k + 1 iteration. Thus, the sequence of objective functions generated by Algorithm 5.1 is

nonincreasing and bounded, therefore it converges. Denote the primal variables at this
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point by (z?, s?,p?), and the corresponding dual variables by λ?. Since problem (5.16)

satisfies Slater’s condition, its Lagrangian has a saddle point in
(
(z?, s?,p?),λ?

)
.

However, since the linearization is tight at the point (z?, s?,p?), the gradients in the

KKT conditions of problems (5.10) and (5.16) match. To see this, let si[t] = s?i [t] = s
(k)
i [t]

and pi[t] = p?i [t] = p
(k)
i [t] in expressions (5.14) and (5.15) (they become equivalent to

(5.12) and (5.13), respectively). Therefore, Algorithm 5.1 converges to a KKT point of

the optimization problem (5.10). �

5.4.1 Remarks

A few considerations are in line. First, in order to select a subset of sensors after

convergence, the (relaxed) solution z?[t] ∈ [0, 1]M must be forced to take Boolean values

again, namely z?[t] ∈ {0, 1}M . To that aim, the z?[t] vectors are cropped to their K

largest entries. After that, however, we do not recompute the associated power allocation.

This, however, has a negligible impact on performance since, as discussed in the numerical

results section, typically just K entries in vector z?[t] are numerically close to 1, whereas

the rest are approximately 0.

The second consideration is that, being the problem non-convex and Algorithm 5.1

iterative, the stationary solution at which it converges depends on the initialization (and

so does performance). Hence, providing it with a suitable initialization is crucial. This

will be further discussed in the next section.

Finally, note that one full convex optimization problem has to be solved in each

iteration, the computational burden of which might not be negligible (in particular if

the number of constraints is large). Therefore, special attention should be paid to the

number of iterations needed and the increased computational burden that this entails

(for some initializations, convergence can be particulary slow, see numerical results).

5.5 Separate Sensor Selection and Power Allocation with

Energy Harvesting (SS-EH)

Here, we depart from the iterative scheme presented in the previous section. Instead,

we propose a lower complexity one shot approach. Specifically, we propose to determine

the subset of active sensors first, and then compute the optimal power allocation policy

for such selection. Interestingly, the latter turns out to be a convex (and, thus, easily

solvable) problem.
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5.5.1 Optimal Power Allocation for a Given Sensor Selection

For a given subset {Zt}t∈T of active sensors in each time slot, the resulting optimization

problem (5.9) reads

minimize
s[t],p[t]

T∑

t=1

tr

(∑

i∈Zt

si[t]

σ2
w

aia
T
i + Σ−1

x

)−1

(5.17a)

subject to si[t] ≤
pi[t]

pi[t] + ξi[t]
, ∀t ∈ T , ∀i ∈M (5.17b)

Ts

t∑

l=1

pi[l] ≤
t∑

l=1

Ei[l],∀t ∈ T ,∀i ∈ Zt (5.17c)

p[t] ≥ 0, ∀t ∈ T (5.17d)

s[t] ≥ 0, ∀t ∈ T (5.17e)

where, clearly, the sensor selection vector z[t] has been removed from the problem formu-

lation. Since the objective function (5.17a) is convex and the constraints (5.17b)-(5.17e)

define a convex feasible set, the resulting optimization problem (5.17) is convex and

therefore has a global minimizer [67]. By satisfying the Karush-Kuhn-Tucker (KKT)

conditions, we can identify the necessary and sufficient conditions for optimality. Specif-

ically, the Lagrangian of (5.17) is given by

L =
T∑

t=1

tr

(∑

i∈Zt

si[t]

σ2
w

aia
T
i + Σ−1

x

)−1

+

T∑

t=1

∑

i∈Zt

λi[t]

(
si[t]−

pi[t]

pi[t] + ξi[t]

)

+
T∑

t=1

∑

i∈Zt

βi[t]

(
Ts

t∑

l=1

pi[l]−
t∑

l=1

Ei[l]

)

−
T∑

t=1

∑

i∈Zt

ηi[t]pi[t]−
T∑

t=1

∑

i∈Zt

θi[t]si[t], (5.18)

where λi[t] ≥ 0, βi[t] ≥ 0, ηi[t] ≥ 0 and θi[t] ≥ 0 are the corresponding dual variables.

By taking the derivative of the Lagrangian with respect to pi[t], we get

∂L
∂pi[t]

=
−λi[t] (pi[t] + ξi[t]) + λi[t]pi[t]

(pi[t] + ξi[t])
2 + Ts

T∑

l=t

βi[l]− ηi[t]

By letting ∂L
∂pi[t]

= 0 and applying the complementary slackness condition ηi[t]p
?
i [t] = 0,

the optimal power allocation p?i [t] follows:

p?i [t] =

√
ξi[t]λi[t]

Ts


 1√∑T

l=t βi[l]
−
√
ξi[t]Ts
λi[t]




+

. (5.19)
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Figure 5.2: Two-dimensional directional waterfilling for a sensor i ∈ M in a scenario

with T = 5 time slots and energy arrivals in time slots 1,2 and 4.

This solution can be interpreted as the two-dimensional directional waterfilling shown

in Figure 5.2. For an arbitrary sensor i, each time slot is associated to a rectangle of

solid material of width Wi[t] ,
√
ξi[t]λi[t]/Ts and height Hi[t] ,

√
ξi[t]Ts/λi[t]. Right-

permeable walls are placed at each time slot with an energy arrival (t = 1, 2, 4), this

accounting for the causality of energy consumption. Water is then poured up to a

waterlevel given by νi[t] , 1
/√∑T

l=t βi[l]. Finally, the corresponding power allocation is

given by the area of water above the solid rectangle.

Next, the derivative of the Lagrangian w.r.t. si[t] yields

∂L
∂si[t]

= − tr




∑

j∈Zt

sj [t]

σ2
w

aja
T
j + Σ−1

x



−2

(
aia

T
i

)

+ λi[t]− θi[t]. (5.20)

Unfortunately, from (5.20) no closed-form expression can be found for s?i [t]. Hence, si[t]

will be iteratively updated by means of the projected gradient method [68].

Algorithm 5.2 summarizes the proposed procedure for the computation of the optimal

power allocation. Specifically, we use an Uzawa update step [104] to find the optimal

primal-dual saddle point of the optimization problem (5.17). In this way, at each iteration

we do an exact minimization of the power allocation {pi[t]} while we iteratively update

both the auxiliary {si[t]} and the dual {λi[t]} variables. Convergence of Algorithm 2 is

trivially satisfied by the Arrow-Hurwicz-Uzawa method, as it is shown next.

Proposition 5.2. Algorithm 5.2 converges to the global minimum of the optimization

problem (5.17).

Proof. For the ease of notation, let us first collect the vectors of primal variables s =

[s[1]T , . . . , s[T ]T ]T , p = [p[1]T , . . . ,p[T ]T ]T , and let λ be the vector of all dual vari-

ables. Since problem (5.17) satisfies Slater’s condition, the Lagrangian (5.18) of this
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Algorithm 5.2 Optimal power allocation for a given sensor selection.

1: Initialize: {λi[t]} := 0, {si[t]} := 0, select ε.

2: Step 1: For all t ∈ T and i ∈ Zt, update primal variables.

3: s
(k+1)
i [t] :=


s(k)

i [t]− ε


λ(k)

i [t]− tr



(
∑
j∈Zt

s
(k)
j

σ2
w

[t]aja
T
j + Σ−1

x

)−2 (
aia

T
i

)







+

4: p
(k+1)
i [t] :=

√
ξi[t]λ

(k)
i [t]
Ts

[
1√∑T
l=t βi[l]

−
√

ξi[t]Ts

λ
(k)
i [t]

]+

5: Step 2: For all t ∈ T and i ∈ Zt, update dual variable.

6: λ
(k+1)
i [t] :=

[
λ

(k)
i [t] + ε

(
s

(k+1)
i [t]− p

(k+1)
i [t]

p
(k+1)
i [t]+ξi[t]

)]+

7: Step 3: Go to Step 1 until termination condition is met.

optimization problem satisfies the saddle-point property, namely

min
s,p

max
λ
L(s,p,λ) = max

λ
min
s,p
L(s,p,λ). (5.21)

Let us define p?(λ) , arg minp L(s,p,λ), then for Algorithm 5.2 to converge by the

Uzawa method [104], the saddle-point property must also be satisfied given p?(λ) for all

s, that is

min
s

max
λ
L(s,p?(λ),λ) = max

λ
min

s
L(s,p?(λ),λ). (5.22)

This is equivalent to

min
s

min
p

max
λ
L(s,p,λ) = min

s
max
λ

min
p
L(s,p,λ), (5.23)

which is to say that the Lagrangian (5.18) must have a saddle point in (p,λ) for all s,

namely

min
p

max
λ
L(s,p,λ) = max

λ
min

p
L(s,p,λ). (5.24)

This corresponds to solving optimization problem (5.17) with a fixed value of s. Since

this problem also satisfies Slater’s condition, the saddle-point property (5.24) is satisfied.

Therefore, convergence of the Algorithm 5.2 follows by convergence of the inexact Uzawa

algorithm [105, Theorem 3.1]. �

5.5.2 EH-aware Sensor Selection

For a system without energy harvesting sensors, Joshi and Boyd [95] propose to compute

the sensor selection policy by solving the convex program

minimize
z

tr

(
σ−2
w

M∑

i=1

ziaia
T
i + Σ−1

x

)−1

(5.25)

subject to 1T z = K, z ∈ [0, 1]M .
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and constructing the selection sets {Zt}t∈T from the K largest elements in the sensor

selection vector z?[t] (in our case, the same subset of sensors for all time slots). This

indexed family of sets {Zt}t∈T can then be used to solve the optimization problem (5.17)

in the preceding subsection and, by doing so, compute the (associated) optimal power

allocation.

This EH-agnostic policy4 might select sensors which do not have any harvested energy

yet. To circumvent that, we propose a (heuristic) EH-aware sensor selection policy. First,

we let Zt = M and solve problem (5.17). Clearly, si[t] in (5.17) plays the same role as

zi does in (5.25), namely, it weights the contribution of each sensor to the resulting

distortion. Motivated by this, an intuitive selection rule consists in choosing for each

time slot t the K largest elements in vector s?[t]. With the indexes of these elements,

we form the new selection sets {Zt}t∈T . And by solving problem (5.17) again with this

new indexed family of sets, we obtain the corresponding optimal power allocation. The

main difference is that, now, s?[t] takes into account not only the impact of ai but also

the actual energy arrivals via the energy causality constraint (5.17c).

5.5.3 Remarks

As discussed earlier, the computational complexity of the separate sensor selection and

power allocation approach (SS-EH), which is one-shot, is lower than that of the joint one

(JSS-EH) presented in the previous section, which is iterative. However, no guarantee

on the optimality of either solution can be given. Still, if the former is initialized with

the solution to the latter, it will be capable of refining it. To recall, we proved that JSS-

EH always converges to a stationary solution of the original problem. Therefore, the

resulting distortion after convergence will necessary be lower (i.e., a refined solution).

In general, the solution to the separate optimization problem turns out to be a suitable

initialization for the JSS-EH scheme.

5.5.4 Online SS-EH Strategy

The proposed SS-EH scheme requires non-causal knowledge on energy arrivals. Here,

instead, we introduce a more realistic online version just requiring causal knowledge5.

Inspired by [52], a myopic online policy can be computed as follows. Assume for a

moment that, after harvesting some energy in the initial time slot, no additional energy

is harvested by the sensors. Hence, we let Ei[1] > 0 and Ei[2] = · · · = Ei[T ] = 0 for all

i, and solve the sensor selection and power allocation problem (5.17) for t = 1, . . . , T .

4Note that it only takes into account the impact of ai, i.e., the set of coefficients in the linear

observation model of each node.
5Likewise, an online version can be derived for the JSS-EH scheme. However, we focus on SS-EH, for

brevity. Nonetheless, numerical results are provided in Section 5.7 for both schemes.
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In the absence of knowledge on future energy arrivals, this is also a sensible approach.

After all, the reconstruction distortion is minimized if no additional energy is harvested.

Let to ≤ T denote the next time slot in which some energy is harvested by an arbitrary

sensor io i.e., Eio [to] > 0). For the preceding time slots (i.e., t = 1, . . . , to − 1), we

impose that the subsets of active sensors and the power allocation just computed remain

unchanged. Hence, the remaining (unspent) energy at the beginning of time slot to reads

Eui [to] =
∑to−1

t=1 Ei[t]− Ts
∑to−1

t=1 pi[t] for all i. Further, we let

Ei[to] :=




Eui [to] + Ei[to] if i = io,

Eui [to] if i 6= io,
(5.26)

Ei[to + 1], . . . , Ei[T ] := 0 for all i and, then, we compute the sensor selection and power

allocation for t = to, . . . , T , that is, for all subsequent time slots. This procedure is

iterated until all energy arrivals have been accounted for. The interesting property of

such scheme is its ability to adjust (recompute) the remaining subsets of active sensors

and power allocations whenever some additional energy is harvested. By doing so, the

additional (and causal) knowledge on energy arrivals is effectively exploited. This my-

opic policy, however, has side effect: it tends to generate conservative power allocation

patterns. That is, it tends to shift power allocation towards the end of the observa-

tion period (i.e., time slot T ). To recall, when the power allocation is recomputed after

harvesting some energy, the working assumption is that no additional energy will be

harvested anymore. Consequently, the algorithm tends to spend energy very slowly, to

make sure that for each sensor some energy is left for data transmission for the whole

observation window (since, it can be shown that transmitting over longer time periods

results into lower distortion).

5.6 Sparse Sensor Selection and Power Allocation with En-

ergy Harvesting (SSS-EH)

As thoroughly discussed in the previous sections, the introduction of the selection variable

zi[t] in optimization problem (5.9) leads to the non-convex bilinear form pi[t]zi[t]. In this

section, we propose an alternative approach to circumvent this problem. Instead of

restricting the selection to a predefined number of sensors, we promote sparsity in the
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Figure 5.3: Sparsity-promoting penalty functions.

power allocation vector p[t] itself. The resulting optimization problem thus reads

minimize
s[t],p[t]

T∑

t=1

tr

(
M∑

i=1

si[t]

σ2
w

aia
T
i + Σ−1

x

)−1

+ λ
T∑

t=1

f(p[t]) (5.27a)

subject to si[t] ≤
pi[t]

pi[t] + ξi[t]
,∀t ∈ T ,∀i ∈M (5.27b)

Ts

t∑

l=1

pi[l] ≤
t∑

l=1

Ei[l], ∀t ∈ T , ∀i ∈M (5.27c)

p[t] ≥ 0, ∀t ∈ T (5.27d)

s[t] ≥ 0, ∀t ∈ T , (5.27e)

where f : RM → R is a sparsity-inducing penalty function and λ is the corresponding

sparsity parameter. For the ease of notation, in the sequel we will denote the constraints

(5.27b)-(5.27e) by the convex set C. Three common penalty functions are illustrated in

Figure 5.3 for the scalar case. Namely, the `0 norm, the `1 norm and the log-sum function.

Function f0 = ‖p[t]‖0 merely counts the non-zero elements of the input vector p[t], which

leads to an optimization problem which is combinatorial in nature (and thus intractable).

The most common convex (and thus tractable) approximation of f0 is given by the `1

norm f1(p[t]) = ‖p[t]‖1, which has been shown to provide good performance [106]. In our

scenario, however, this results in an homogeneous penalization of the allocated power.

That is, an increase in power allocation in an already selected sensor will be penalized

the same way as an increase in power allocation in a non-selected sensor. This leads

to scenarios where only a small subset of the most informative sensors are repeatedly

selected without using their total available energy. To circumvent that, we need a better

approximation of f0. In particular, we adopt the well known log-sum penalty function

flog(p[t]) =
∑M

i=1 log(|pi[t]| + ε), which promotes sparsity more efficiently than the `1

norm (see e.g., [107,108]).

However, the log-sum penalty function flog is concave (see Fig. 5.3), thus turning
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Algorithm 5.3 Reweighted `1 minimization algorithm.

1: Initialize: {wi[t]} := 1, set λ and ε.

2: Step 1: Solve reweighted `1 problem:

3: (s(k)[t],p(k)[t]) := arg min
s[t],p[t]∈C

{
T∑
t=1

(
tr

(
M∑
i=1

si[t]
σ2
w

aia
T
i + Σ−1

x

)−1

+ λ‖W(k)[t]p[t]‖1
)}

4: Step 2: Update weights:

5: w
(k+1)
i [t] := 1

|p(k)i [t]|+ε
6: Step 3: Go to Step 1 until convergence.

the objective function of the optimization problem (5.27) into a difference of convex

functions. Though a global minimizer of this problem cannot be expected to be found

without resorting to an exhaustive search, we can find a local minimum of the problem by

resorting to a Majorization-Minimization algorithm [107]. In doing so, we can converge

to a stationary solution of the problem (5.27) by iteratively minimizing a surrogate

optimization problem in which, at iteration k, we approximate f(p[t]) in (5.27a) by its

linearization around p(k−1)[t], that is,

f̂
(k)
log (p[t]) = flog(p(k−1)[t]) +∇flog(p(k−1)[t])T

(
p[t]− p(k−1)[t]

)
(5.28)

with flog(p[t]) =
∑M

i=1 log(|pi[t]|+ ε) and removing the constant terms

f̂
(k)
log (p[t]) =

M∑

i=1

|pi[t]|
|p(k−1)
i [t]|+ ε

. (5.29)

By defining the set of weights as

w
(k)
i [t] =

1

|p(k−1)
i [t]|+ ε

, (5.30)

which can be more conveniently expressed by the diagonal matrix W(k)[t] = diag(w
(k)
1 [t],

. . . , w
(k)
M [t]), we can then interpret this as the following reweighted `1 penalty function

f̂
(k)
log (p[t]) = ‖W(k)[t]p[t]‖1, (5.31)

where at each iteration, we solve the optimization problem (5.27), with the penalty

function given by (5.31), and the weights are updated after each iteration according to

(5.30). This procedure is summarized in Algorithm 5.3.

5.7 Numerical Results

In this section, we assess the performance of the proposed energy harvesting-aware sensor

selection and power allocation strategies. Unless otherwise stated, the algorithm to

solve the JSS-EH problem is initialized with the solution of the SS-EH problem. As a
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Figure 5.4: Sensor selection policies. Energy arrivals are denoted by +. The sensors

selected by the SS, SS-EH and JSS-EH policies are denoted by �, ◦ and �, respectively

(M = 20, T = 50, K = 10, µ = 0.5, σ2
w = 0.1).

benchmark, we use the EH-agnostic policy (SS) proposed in [95] and succinctly described

in Section 5.5.2. For simulation purposes, we consider linear combination coefficients

(which, to recall, are held fixed for all time slots) given by ai ∼ N (0, I/
√
m), with m = 5

for the underlying source. Energy arrivals Ei[t] are modeled as Poisson processes of

intensity rate µ and |Ei[t]| = E. Further, we assume static (i.e., non-fading) sensor-to-

FC channels6.

5.7.1 Subsets of Active Sensors

In Figure 5.4, we depict an individual realization of subsets of active sensors associated

to the JSS-EH, SS-EH and SS strategies. Specifically, a marker is shown whenever a

particular sensor belongs to the subset of selected sensors and some transmit power is

allocated to it (i.e., pi[t] > 0)7. The number of selected sensors in each time slot is set

to K = 10 (out of M = 20).

As discussed earlier, the SS strategy selects the same subset of sensors for all time

slots, that is, irrespectively of energy arrivals. Specifically, it tends to select the sensors

with the most informative observations according to the generated ai vectors. On the

6This is a reasonable assumption for static wireless sensor networks.
7Notice that the former does not necessary imply the latter for the SS strategy until some energy is

harvested by each sensor.
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Figure 5.5: Power allocation policies corresponding to sensor 16 in Fig. 5.4 for the Joint

(JSS-EH) and Separate (SS-EH) EH-aware Sensor Selection and Power Allocation strate-

gies, and the EH-agnostic Sensor Selection (SS) one. The cumulative energy harvesting

(cEH) curve is shown as a reference.

contrary, the active sensors resulting from the proposed SS-EH and JSS-EH strategies

vary from time slot to time slot (since they do take into account energy arrivals). This

results into a more efficient use of the available energy.

Interestingly enough, the subsets of active sensors for the SS-EH and JSS-EH strate-

gies are very similar. The most notable difference is sensor 16, which remains inactive

after time slot 21 for SS-EH, whereas it is included in the scheduling pattern of JSS-EH

until the very last time slot. As discussed earlier, JSS-EH manages to refine the solution

of the SS-EH problem and, hence, no radical changes can, in principle, be expected.

However, selectively introducing some adjustments may have a considerable impact on

the resulting distortion (see Section 5.7.3 ahead). To illustrate this, Figure 5.5 shows

the power allocation for sensor 16 associated to the three strategies. Since the SS-EH

strategy does not select this sensor after time slot 21, part of the harvested energy is

wasted (i.e., not used for transmission). This stems from the fact that the actual selec-

tion rule (based on the s[t] values) yet more sophisticated than a EH-agnostic one is,

in fact, heuristic. The JSS-EH strategy fixes this inefficiency by properly adjusting the

power allocation policy. This allows to schedule sensor 16 after time slot 21 too and, by

doing so, consume the energy that is harvested after that time slot.
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Figure 5.6: Histogram of the selection variable zi[t] after convergence of the JSS-EH

scheme (top) and zoomed-in area with details (bottom). Results are shown for a total

of 20 independent runs with random initializations (M = 50, T = 20, µ = 1, σ2
w = 0.1).

5.7.2 Impact of Cropping the Selection Vector

To recall, in order to effectively select a subset of sensors the JSS-EH scheme forces

(crops) z?[t] to 1 for theK largest entries in each time slot (and 0 otherwise). However, we

argued, there is no need to recompute corresponding power allocation. Figure 5.6, which

shows a histogram of the zi[t] variables after convergence (and right before cropping, for

20 independent runs with random initializations and repeated for a different number of

selected sensors, K), evidences why: with high probability, those values already lie in a

close neighborhood of 0 or 1. Also, as the figure reveals, for the intermediate values of

zi[t] in the histogram (i.e., those in between 0 and 1) the actual K parameter setting has

virtually no impact. Take for example the case K = 25, since the percentage of active

sensors is K/M = 25/50 = 50% the bar in 1 is of (roughly) the same height as that in

0. The zoomed-in area reveals that only a small percentage of values lie in between 0

and 1: 1.72% (or 342 out of 20,000) in the interval (0.01, 0.99); or 0.38% (or 76 out of

20,000) in the interval (0.1, 0.9). The constraint 1T z[t] = K thus implies that, for the

largest K values in each time slot (and only those ones), we have zi[t] ≈ 1. Therefore, the
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impact of not recomputing the power allocation for such a reduced subset of K sensors

is negligible.

5.7.3 Distortion Performance

Now, we focus our attention on the reconstruction distortion (MSE) for the proposed

JSS-EH and SS-EH strategies (see Fig. 5.7). For any strategy, a trivial Lower Bound

(LB) of the optimal distortion can be found by letting Zt =M for all t ∈ T in problem

(5.17). By doing so, we allow all sensors to be selected8 and, hence, all the observations

can be used to reconstruct the source at the FC.

As expected, distortion monotonically decreases with K in all cases. And, further,

the resulting distortion is lower for the high-SNR scenario (σ2
w = 0.01). More impor-

tantly, the proposed JSS-EH and SS-EH strategies outperform the benchmark (SS), in

particular for the high-SNR regime. Interestingly too, the gap between the JSS-EH curve

and the lower bound is narrower than that of SS-EH for a low number of selected sensors,

which turns out to be the region of interest. Also, for this scenario our proposed strate-

gies attain the lower bound when the number of active sensors is set to 30% and 50%,

for the high- and low-SNR regimes, respectively. This implies that, yet suboptimal, the

proposed JSS-EH and SS-EH strategies effectively attain the performance of the optimal

solution (which cannot be computed) when the number of active sensors is set to those

values or higher. On the contrary, the benchmark SS strategy only attains the lower

bound when all sensors are active. Next, in Fig. 5.8, we investigate the impact of the

initialization on the performance (convergence rate, distortion after convergence) of the

JSS-EH scheme. By far, the all-zeros initialization results into a slower convergence.

Resorting to random initialization definitely helps speed up convergence. However, dis-

tortion can be further reduced by initializing the JSS-EH scheme with the solution to

the SS-EH problem (including the resulting power allocation). This, in addition, results

into faster convergence.

5.7.4 Comparison of the Online and Offline Strategies

Figure 5.9 illustrates the performance of the offline and online strategies vs. the intensity

rate of energy arrivals. Clearly, the distortion of the offline versions is lower and both

the JSS-EH and SS-EH online policies exhibit a similar behavior (yet distortion is lower

for the former). To stress, distortion in all cases decreases for an increasing intensity

rate of energy arrivals since, accordingly, the overall harvested energy increases too.

Interestingly, in the SS-EH case, the gap between the online and offline curves is broader

for a scenario with a low number of selected sensors (K = 10 out of M = 50, or 20%).

However, this gap is particularly marginal for the JSS-EH scheme. For a conservative

8Note this is not feasible since there are only K ≤M orthogonal channels.
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Figure 5.7: Reconstruction distortion vs. number of active sensors, for high (σ2
w = 0.01)

and low-SNR scenarios (σ2
w = 0.5) and lower bound (M = 100, T = 20, µ = 0.25).

power allocation policy, if a substantial number of sensors with unspent energy are not

scheduled in the final time slots, the remaining energy is wasted. And, clearly, this is

more likely to happen for a lower number of selected sensors (20% vs. 80%).

To alleviate this, one can think of mechanisms to stimulate a more aggressive (earlier)

consumption of the harvested energy. For instance, rather than recomputing the solution

for the remaining time slots, we can do so for a sliding window of duration Tw, namely,

for t = to, . . . , to +Tw. The implicit assumption here is that no additional energy will be

harvested in the few coming Tw slots. By that time instant, the harvested energy should

be consumed and, consequently, it favors an earlier consumption.

In Figure 5.10, we illustrate the impact of the window size (Tw) on the reconstruction

distortion. Two different scenarios are considered: (i) low intensity rate, with high

amounts of harvested energy in each arrival (µ = 0.1 and E = 25); and (ii) high intensity

rate, with low amounts of harvested energy (µ = 2.5 and E = 1). In both scenarios,

though, the average harvested energy is identical (µ · E = 2.5). There exists a trade-

off in the duration of the sliding window Tw, as the curves for a low intensity rate of

energy arrivals evidence. For very low Tw values, energy is consumed shortly after being

harvested (e.g., in the same time slot, for Tw = 1). Consequently, transmission might

need to be prematurely interrupted (i.e., K might be larger than the number of sensors

with available energy) which results into higher distortion. On the contrary, for high Tw

values (or when recomputing the solution for the whole remaining observation period),
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Figure 5.8: Reconstruction distortion vs. number of iterations for various initializations

of the JSS-EH algorithm: SS-EH, all-zeros, and random for 20 different realizations

(M = 50, T = 20, K = 10, µ = 1, σ2
w = 0.1).

energy consumption is slower, which might result into some wasted energy in the final

time slots (and, again, increased distortion). Therefore, there exists some intermediate

(optimal) value yielding a minimum distortion (e.g., Tw = 2 for K = 5 in the SS-EH

policy). Interestingly, the optimal duration of the sliding window becomes higher for an

increasing number of selected sensors (namely, Tw = 4 for K = 10, Tw = 6 for K = 20

in the SS-EH policy). Intuitively, the risk of wasting energy when the percentage of

scheduled sensors is higher turns out to be lower and, thus, sliding windows of a higher

duration are advisable. For scenarios with high intensity rate (µ = 2.5, and E = 1),

curves are flatter. On the one hand, for low Tw the risk of running out of energy before

the next energy arrival is lower now and so is the distortion penalty (interestingly enough,

the optimal duration of the sliding window is one time slot, for K = 5 and K = 10). On

the other hand, for high Tw chances are lower that sensors remain unscheduled for a long

time since energy arrives more frequently and the sensor selection and power allocation

policies are more frequently recomputed too (lower distortion penalty again). Again,

Figure 5.10 reveals a very similar behavior of the JSS-EH and SS-EH approaches for a

varying window size (yet, unsurprisingly, distortion for the former is lower). We also

observe that the optimal window size tends to be smaller for the online JSS-EH policy.
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Figure 5.9: Distortion associated to the online and offline SS-EH and JSS-EH strategies,

for scenarios with a low (K = 10) and high (K = 40) number of selected sensors (M = 50,

T = 20, σ2
w = 0.01).

5.7.5 Sparse Sensor Selection

Now, we study the performance of the alternative sparse sensor selection scheme. For

this purpose, we consider a wireless sensor network composed of M = 100 sensors over

T = 20 time slots. Further, the variance of the measurement noise is given by σ2
w = 0.01

and the energy arrival intensity rate is µ = 1.

In Figure 5.11, we compare the resulting distortion of our proposed scheme when

using the `1 norm as a penalty function (f1) and the reweighted `1 penalty function

(flog). Two different scenarios are compared, consisting of energy arrivals of low and

high harvested energy E. As the sparsity parameter λ is not comparable between the

two algorithms, we solve the optimization problem (5.27) for different values of λ and

map the resulting distortion to the average number of selected sensors. As expected,

the distortion monotonically decreases as the average number of selected sensors in-

creases. More importantly, the reweighted `1 penalty function clearly outperforms the

non-reweighted `1 norm. Also, note that the gap between the solutions of the two penalty

functions becomes broader for scenarios with larger amounts of harvested energy. This

is due to the linear nature of the `1 norm and its impact on the resource allocation, as

discussed in the next paragraph.

In Figure 5.12, we depict the power allocation of an individual sensor. This sensor



76 5 Sensor Selection and Power Allocation Strategies

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Window Size

N
or

m
al

iz
ed

M
SE

SS-EH K = 5 low intensity
JSS-EH K = 10 low intensity

K = 20 low intensity
K = 5 high intensity
K = 10 high intensity
K = 20 high intensity

Figure 5.10: Reconstruction distortion for the online SS-EH and JSS-EH strategies, in

scenarios with low (µ = 0.1, E = 25) and high (µ = 2.5, E = 1) intensity rates (M = 50,

T = 20, σ2
w = 0.01).

is taken from the selection of approximately 30 sensors and E = 0.1. We observe that,

in the solution obtained when using the `1 penalty function, the sensor node still has a

considerable amount of unused energy at the end of the observation period (t = 20). A

solution leading to lower distortion and the same sensor selection schedule can be found

by simply increasing the transmit power during time slots 5 to 20 so as to consume all

the available energy by the deadline. On that account, we confirm that the `1 norm does

not lead to good solutions. Also, note how the sensor is selected during most of the time,

with the exception of time slots 3 and 4, which is not a very sparse schedule. In contrast,

when using the reweighted `1 penalty function, the sensor allocates all of its available

energy by the last time slot and exhibits a more sparse sensor selection schedule, being

selected only 6 out of the 20 total time slots.

5.8 Conclusions

In this chapter, we have proposed two suboptimal strategies to solve the non-convex

problem of jointly selecting a predefined number of energy-harvesting sensors and com-

puting the optimal power allocation policy. Further, we have also provided an alter-

native sparsity-based policy. The joint sensor selection and power allocation (JSS-EH)

scheme is capable of finding a stationary solution (a proof is provided) on the basis of a
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Figure 5.11: Distortion vs. Average number of selected sensors for high and low energy

scenarios in the SSS-EH policy.

majorization-minimization procedure. This allows us to identify a sequence of surrogate

convex optimization problems that we iteratively solve. As an alternative, we propose

a method to separately identify a sensible sensor selection and power allocation policies

(SS-EH scheme) which does takes into account the actual energy arrivals. The resulting

power allocation strategy can be interpreted as a two-dimensional waterfilling solution.

We have also learned that the SS-EH solution turns out to be a suitable initialization to

compute a decent stationary solution to the JSS-EH problem in a relatively low number

of iterations. The latter solution can be regarded as a refined version with lower recon-

struction distortion. Computer simulations revealed that the subsets of active sensors for

the JSS-EH and SS-EH strategies are very similar. However, the corresponding power

allocation policies differ. For the analyzed scenario, the proposed strategies attain the

lower bound when the number of active sensors is set to 30% (50%) in the high- (low-)

SNR regime. We have also found that cropping the relaxed sensor selection vector of the

JSS-EH scheme to the largest K values without re-computing the power allocation policy

has a negligible impact on distortion. Also, we have proposed an online version of the

strategies. The associated distortion, however, is higher. This is in part motivated by

the fact that it tends to generate conservative power allocation patterns with slow energy

consumption. Should a substantial fraction of those sensors not be scheduled by the end

of the observation period, the harvested energy is wasted and, thus, distortion increases.

By resorting to a sliding window, one can generate more aggressive power allocation
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Figure 5.12: Power allocation for a single sensor in the SSS-EH policy.

patterns (i.e., faster energy consumption). We have empirically shown that, for a given

setting, an optimal duration of such sliding window exists (which might be in some cases,

a single time slot). Finally, due to the non-convexity of the classical formulation, we have

also proposed an alternative sparsity-promoting approach to solving the problem. This

has been accomplished by introducing a regularization term that promotes sparsity in

the power allocation, which in turn leads to sparse sensor selection schedules. Further,

we have found that strictly concave penalty functions are desirable in order to ensure the

proper consumption of the harvested energy. Specifically, we have proposed the use of a

log-sum penalty function, which can be interpreted as a reweighted `1 norm. Numerical

results show that the proposed solution rapidly approaches the asymptotic distortion,

by just selecting 20% of the available sensors in average.



Chapter 6
Stochastic Routing and

Scheduling Policies

In this chapter, we study the joint routing-scheduling problem in energy harvesting com-

munication networks. Our policies, which are based on stochastic subgradient methods

on the dual domain, act as an energy harvesting variant of the stochastic family of back-

presure algorithms. Specifically, we propose two policies: (i) the Stochastic Backpressure

with Energy Harvesting (SBP-EH), in which a node’s routing-scheduling decisions are

determined by the difference between the Lagrange multipliers associated to their queue

stability constraints and their neighbors’; and (ii) the Stochastic Soft Backpressure with

Energy Harvesting (SSBP-EH), an improved algorithm where the routing-scheduling de-

cision is of a probabilistic nature. For both policies, we show that given sustainable

data and energy arrival rates, the stability of the data queues over all network nodes

is guaranteed. Numerical results corroborate the stability guarantees and illustrate the

minimal gap in performance that our policies offer with respect to classical ones which

work with an unlimited energy supply.

6.1 Introduction

The appearance of multiple interconnected devices powered by energy harvesting results

in communication networks formed by self-sustainable and perpetually communicating

nodes. In such scenarios, there is the necessity of designing efficient routing and schedul-

ing algorithms that explicitly take into account the energy harvesting process. In this

sense, there have been some previous efforts in developing communication policies for

these types of multi-hop networks. In general, the full characterization of the optimal

transmission policies is a difficult problem, as optimal transmission policies are heavily

coupled throughout the network. Under full non-causal knowledge of the energy harvest-

ing process, the optimal transmission policies of a simpler two-hop network have been

79
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studied in [62]. A more realistic approach is the consideration of non-causal knowledge

of the energy harvesting process. Under this assumption, the authors in [109] jointly

optimize data compression and transmission tasks to obtain a close-to-optimal policy.

In [110], the authors propose an EH-aware routing scheme that is asymptotically optimal

with respect to the network size. The authors in [111], address the EH scheduling prob-

lem for both single-hop and multi-hop networks, and provide a joint admission control

and routing policy. Also, in the same line, the authors in [112] propose a policy which

improves on the multi-hop performance bounds of [111]. Overall, non-causal policies

are typically designed under the assumption of independent and identically distributed

(i.i.d.) or Markov energy harvesting and data arrival processes, and Lyapunov optimiza-

tion techniques are used to derive their queue stability results.

In this chapter, we study the problem of jointly routing and scheduling data packets in

an energy harvesting communication network. Each node independently generates traffic

for delivery to a specific destination and collaborates with the other nodes in the network

to ensure the delivery of all data packets. In this way, each node decides the next suitable

hop for each packet in its queue (routing), and when to transmit it (scheduling). The solu-

tion to this problem—when the nodes are not EH-powered—is given by the backpressure

(BP) algorithm [113]. The previous works [111] and [112] considered a similar problem

which consists in finding admission control and resource allocation policies that satisfy

network stability and energy causality while attaining close-to-optimal performance. In

this work, instead, our goal is to find stabilizing policies given the data rates. Also, while

previous works [111,112] require data and energy arrival processes to be i.i.d. or Markov,

we only require them to be ergodic, which is a weaker requirement. Furthermore, our

approach to the problem is also markedly different. While the works [111] and [112] relied

on queueing theory and Lyapunov drift arguments to find stabilizing policies, we instead

interpret the scheduling and routing problem as a stochastic optimization problem. This

allows us to resort to a dual stochastic subgradient descent algorithm [70] to solve the

joint routing-scheduling problem. However, the introduction of energy harvesting con-

straints results in an energy causality problem in the problem. In order to solve this, we

introduce a modified problem formulation and derive the conditions that ensure causal-

ity in the energy consumption. Under this framework, we propose two different policies.

The first, which we denote Stochastic Backpressure with Energy Harvesting (SBP-EH),

is a policy of rather simple nature. The network nodes track the pressure of the data

flows by computing the difference between the Lagrange multipliers associated to their

queue stability constraints and the ones of their neighbors (instead of their data queues

as in the classical backpressure algorithm). Then, the Lagrange multipliers associated

with the battery state reduce the pressure when the stored energy in the node decreases.

The resulting routing-scheduling decision is to transmit the flow with highest pressure.

The second policy, which we name Stochastic Soft Backpressure with Energy Harvesting
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(SSBP-EH), is a probabilistic policy. In this policy, the nodes perform the same tracking

of pressure as the SBP-EH policy. However, instead of transmitting the flow with the

highest pressure, the flows are equalized in an inverse waterfilling manner. This results

in a routing-scheduling probability mass function, where the transmit decision is taken

as a sample of this distribution. This second policy, while not as simple as the previous

one, provides several improvements in the stabilization speed of the network, as well as

a reduction in the packets in queue and packet delivery delay once the network is sta-

bilized. For both policies, we provide the necessary battery capacity which ensures the

proper behavior of the algorithms. Furthermore, we also provide theoretical guarantees

certifying that given sustainable data and energy arrival rates, the stability of the data

queues over all network nodes is guaranteed. Finally, we study the policies numerically

and verify that they show a minimal gap in performance with respect to classical policies

operating with an unlimited energy supply.

The rest of the chapter is organized as follows. In Section 6.2 we introduce the

system model and provide details on the data and energy queue dynamics. Section 6.3

develops the framework of the proposed joint routing and scheduling algorithms, with

the SBP-EH and SSBP-EH policies introduced in Sections 6.3.1 and 6.3.2, respectively.

Theoretical guarantees, namely, queue stability and energy causality are discussed in

Section 6.4. After this, we devote Section 6.5 to simulations assessing the performance

of our proposed policies. Finally, we provide some concluding remarks in Section 6.6.

6.2 System Model

Consider a communication network given by the graph G = (N , E), where N is the set

of N nodes in the network and E ⊆ N ×N is the set of communication links, such that if

node i is capable of communicating with node j, we have (i, j) ∈ E . Moreover, we define

the neighborhood of node i as the set Ni = {j|(i, j) ∈ E}. The network supports K

information flows (which we index by the set K), where for a flow k ∈ K, the destination

node is denoted by Nk
(dest). At a time slot t, each k ∈ K flow at the i-th node generates

aki [t] packets to be delivered to the node Nk
(dest). This packet arrival process is assumed

to be stationary with mean E
[
aki [t]

]
= aki . At the same time, the i-th node routes

rkij [t] packets to its neighbors j ∈ Ni, while simultaneously being routed rkji[t] packets.

For simplicity, at each time slot, we restrict each node to route one single packet to its

neighbors. Therefore, the nodes have the following routing constraint

∑

k∈K

∑

j∈Ni

rkij [t] ≤ 1, i ∈ N . (6.1)

Furthermore, each node in the network keeps track of the number of packets awaiting

to be transmitted for each flow. Denoting by qki [t] the k-th flow data queue at the i-th
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node and time slot t, the evolution of the queue is given by

qki [t+ 1] = qki [t] + aki [t] +
∑

j∈Ni

rkji[t]−
∑

j∈Ni

rkij [t], (6.2)

for all i ∈ N and k ∈ K. The objective is to determine routing policies rkij [t] such that

the queues in (6.2) remain stable while satisfying the routing constraints given by (6.1).

By grouping the all the queues in a vector q[t] = {qi[t]}, we say that the routing policies

rkij [t] guarantee stability if there exists a constant Q such that for some arbitrary time T

we have

Pr

{
max
t≥T
‖q[t]‖ ≤ Q|q[T ]

}
= 1. (6.3)

This is to say that, almost surely, no queue becomes arbitrarily large. In turn, we can

guarantee this if the average rate at which packets enter the queues is smaller than the

rate at which they exit them. In order to formally state this, let us denote the ergodic

limits of processes aki [t] and rkij [t] by

aki = E
[
aki [t]

]
= lim

t→∞

1

t

t∑

l=1

aki [l], (6.4)

rkij = E
[
rkij [t]

]
= lim

t→∞

1

t

t∑

l=1

rkij [l]. (6.5)

Then, in order to have stable data queues in the network, it suffices to satisfy the

condition

aki ≤
∑

j∈Ni

rkij −
∑

j∈Ni

rkji. (6.6)

for all i ∈ N and k ∈ K. If there exist routing variables rkij satisfying this inequality,

then the queue evolution in (6.2) follows a supermartingale expression, and the stability

condition given by (6.3) is then guaranteed by the martingale convergence theorem [114,

Theorem 5.2.9]. Alternatively, by introducing arbitrary concave functions fkij : R → R,

we can formulate this as the following optimization problem

maximize∑
k,j

rkij≤1

∑

i∈N

∑

k∈K

∑

j∈Ni

fkij

(
rkij

)
(6.7a)

subject to aki ≤
∑

j∈Ni

rkij −
∑

j∈Ni

rkji, k ∈ K, i ∈ N , (6.7b)

where we have left the routing constraints given by (6.1) implicit, and the optimization

is over the nonnegative routing variables rkij ≥ 0. Furthermore, we have substituted the

per time slot constraints in (6.1) for average ones. Then, assuming data arrival rates

satisfying inequality (6.7b) exist, the objective is to design an algorithm such that the
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instantaneous routing variables rkij [t] satisfy E
[
rkij [t]

]
= rkij and the routing constraints in

(6.1) are satisfied for all time slots. This is the optimization problem that the backpres-

sure family of algorithms solve. By resorting to a stochastic subgradient method on the

dual domain, a direct comparison can be established between data queues and Lagrange

multipliers [115]. Then, the choice of objective function in the optimization problem

(6.7) determines the resulting variant of the backpressure algorithm. For example, on

one hand, the stochastic backpressure (SBP) algorithm [113] can be recovered by the

use of a linear objective function. On the other hand, the choice of a strongly concave

objective function leads to the soft stochastic backpressure (SSBP) algorithm [116].

6.2.1 Routing and Scheduling with Energy Harvesting

Different from classical approaches [113, 116], we consider that the network nodes are

powered by energy harvesting. At time slot t, the i-th node harvests ei[t] units of

energy, where the energy harvesting process is assumed to be stationary with mean

E
[
ei[t]

]
= ei. We consider a normalized energy harvesting process, where the routing of

one packet consumes one unit of energy. Furthermore, we consider packet transmission

to be the only energy-consuming action taken by the nodes. Under these conditions and

denoting by bi[t] the energy stored in the i-th node’s battery at time t, the following

energy causality constraint must be satisfied for all time slots

∑

k∈K

∑

j∈Ni

rkij [t] ≤ bi[t], i ∈ N . (6.8)

Additionally, we consider that nodes have a finite battery of capacity bmax
i . Then, we

can write the battery dynamics as

bi[t+ 1] =

[
bi[t]−

∑

k∈K

∑

j∈Ni

rkij [t] + ei[t]

]bmax
i

0

(6.9)

for i ∈ N . In order to introduce these constraints into the optimization problem (6.7),

we denote the ergodic limit of the energy harvesting process ei[t] by

ei = E
[
ei[t]

]
= lim

t→∞

1

t

t∑

l=1

ei[l]. (6.10)

Then, substituting the battery dynamics given by (6.9) in the energy causality con-

straint(6.8) and then taking the ergodic limits on both sides of the inequality, we obtain

the following average constraint in the routing variables

∑

k∈K

∑

j∈Ni

rkij ≤ ei, i ∈ N . (6.11)

This states that the average amount of energy spent must be less than the average energy

harvested. Then, we introduce this constraint in problem (6.7), resulting in the following
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optimization problem

maximize∑
k,j

rkij≤1

∑

i∈N

∑

k∈K

∑

j∈Ni

fkij

(
rkij

)
(6.12a)

subject to aki ≤
∑

j∈Ni

rkij −
∑

j∈Ni

rkji, k ∈ K, i ∈ N (6.12b)

∑

k∈K

∑

j∈Ni

rkij ≤ ei, i ∈ N . (6.12c)

Assuming data and energy arrival rates satisfying (6.12b) and (6.12c) exist, the goal

is to design an algorithm such that the instantaneous routing variables rkij [t] satisfy

E
[
rkij [t]

]
= rkij and the constraints (6.1) and (6.8) are satisfied for all time slots. However,

the use of the average energy constraint (6.12c) presents a causality problem, as a solution

satisfying (6.12c) does not guarantee that the energy causality constraint in (6.8) is

satisfied for all time slots. In order to circumvent this, we propose the introduction of

the following modified optimization problem

maximize∑
k,j

rkij≤1,

xki ∈[0,x̄ki ]

∑

i∈N

∑

k∈K

∑

j∈Ni

fkij

(
rkij

)
−
∑

i∈N

∑

k∈K
γ̄ki x

k
i (6.13a)

subject to aki ≤
∑

j∈Ni

(
rkij − rkji

)
+ xki , k ∈ K, i ∈ N (6.13b)

∑

k∈K

∑

j∈Ni

rkij ≤ ei, i ∈ N . (6.13c)

This optimization problem differs from (6.12) in the introduction of an auxiliary variable

xki . This variable is restricted to lie in the interval [0, x̄ki ], with x̄ki being a constant whose

value is determined by the system parameters. This auxiliary variable appears in the

queue stability constraint (6.13b), where it helps to satisfy the constraint if necessary.

Furthermore, we have added the term −∑i∈N
∑

k∈K γ̄
k
i x

k
i in the objective function,

where γ̄ki is a constant parameter. The value of this parameter γ̄ki is chosen such that

the optimal value of the Lagrange multipliers of the queue constraint (6.13b) lies in the

interval [0, γ̄ki ].

The reasoning behind using the modified optimization problem (6.13) becomes more

clear when attempting to solve the problem. We take an approach consisting of a primal-

dual method and a stochastic approximation. Hence, we use the instantaneous values of

the variables instead of their ergodic limits. In the modified problem, the instantaneous

values of the dual variables can be shown to be bounded above. This is not the case

in the original problem (6.12). In turn, this allows us to establish conditions on x̄ki
that ensure that the energy causality constraints (6.8) are satisfied for all time slots.

At the same time, if γ̄ki is chosen correctly such that the optimal queue multipliers lie

in the interval [0, γ̄ki ], then the ergodic limits of the auxiliary variables go to zero, i.e.,
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limt→∞
1
t

∑t
l=1 x

k
i [l] = xki = 0. As a consequence, both the optimal solutions of problems

(6.12) and (6.13) are equivalent and therefore the solution of (6.13) also satisfies the

original stability constrains constraint (6.12b).

6.3 Joint Routing and Scheduling Algorithm

As we mentioned previously, in order to solve optimization problem posed in (6.13) we

resort to a primal-dual method. To start, let us define the vector r = {rkij , xki } collecting

the routing variables rkij and auxiliary variables xki and the vector λ = {γki , βi} collecting

the queue multipliers γki associated with constraint (6.13b) and battery multipliers βi

corresponding to constraint (6.13c). Furthermore, we collect the implicit optimization

constraints in the set R =
{∑

k,j r
k
ij ≤ 1, xki ∈ [0, x̄ki ]

}
. Then, we write the Lagrangian

of the optimization problem (6.13) as follows

L(r,λ) =
∑

i∈N

∑

k∈K

∑

j∈Ni

fkij

(
rkij

)
−
∑

i∈N

∑

k∈K
γ̄ki x

k
i

+
∑

k∈K

∑

i∈N
γki

(∑

j∈Ni

rkij −
∑

j∈Ni

rkji + xki − aki
)

+
∑

i∈N
βi

(
ei −

∑

k∈K

∑

j∈Ni

rkij

)
. (6.14)

The Lagrange dual function is then given by

g(λ) = max
r∈R
L(r,λ). (6.15)

An immediate issue that arises when trying to solve this problem is that network nodes

have no knowledge of the data arrival rates aki nor the energy harvesting rates ei.

Nonetheless, the nodes observe the instantaneous rates aki [t] and ei[t], hence we resort to

using these instantaneous variables. Furthermore, we can reorder the Lagrangian (6.14)

to allow for a separate maximization over network nodes, where each node only needs the

queue multipliers of its neighboring nodes. The routing variables can then be obtained

as follows

rkij [t] := arg max∑
k,j

rkij≤1

∑

k∈K

∑

j∈Ni

(
fkij

(
rkij

)
+ rkij

(
γki [t]− γkj [t]− βi[t]

))
, (6.16)

for i ∈ N . In a similar way, the auxiliary variables at each node are given by

xki [t] := arg max
xki ∈[0,x̄ki ]

xki

(
γki [t]− γ̄ki

)
. (6.17)

This is simply a threshold operation, where xki [t] = 0 if γki [t] ≤ γ̄ki and xki [t] = x̄ki if

γki [t] > γ̄ki . Now, since the dual function in (6.15) is convex, we can minimize it by
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(a) Data queues. (b) Batteries.

Figure 6.1: Relationship between data queues, batteries and their Lagrange multipliers.

Example with γ̄ki = 5 and bmax
i = 5.

performing a stochastic subgradient descent. Then, the dual updates are given by the

following expressions

γki [t+ 1] :=

[
γki [t] + aki [t]− xki [t] +

∑

j∈Ni

(
rkji[t]− rkij [t]

)]+

(6.18)

βi[t+ 1] :=

[
βi[t]− ei[t] +

∑

k∈K

∑

j∈Ni

rkij [t]

]+

(6.19)

where [·]+ is the projection on the nonnegative orthant. For compactness, we also express

the dual updates in vector form as λ[t + 1] := [λ[t]− s[t]]+, where s[t] corresponds to

the vector collecting the stochastic subgradients. Since the algorithm that we propose

is designed to be run in an online fashion, we have considered a fixed step size in the

dual updates. Specifically, we have used a unit step size. This allows a clear comparison

between dual variables and data queues and battery dynamics as outlined in Figure 6.1.

For the case of the data queues, the difference between their dynamics (6.2) and those

of their Lagrange multiplier counterparts (6.18) is given by the auxiliary variable in the

dual update. Assume a packet is either routed or not, i.e., rkij [t] ∈ {0, 1}. Then the dual

variables qki [t] follow the data queues γki [t] until γki [t] > γ̄ki , at which point, the dual

variables are pushed back by the auxiliary variable xki [t] = x̄ki . From this point forward,

the queue and multiplier dynamics lose their symmetry, coupling again when the queue

empties. In a similar way, a comparison can also be drawn between the battery dynamics

(6.9) and the battery dual update (6.19). In this case, the symmetry exists in a mirrored

way, as the relationship between the battery state bi[t] and its multipliers βi[t] is given

by bi[t] = bmax
i − βi[t]. Different from the case of data queues, the coupling between the

battery state and its multipliers is never lost.
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Algorithm 6.1 Stochastic Backpressure with Energy Harvesting.

1: Initialize: Set γki [0] := 0 and βi[0] := bmax
i − bi[0].

2: Step 1(a): Routing-scheduling decision (SBP-EH).

3: rkij [t] := arg max∑
k,j

rkij≤1

∑
k∈K

∑
j∈Ni

rkij
(
wkij + γki [t]− γkj [t]− βi[t]

)

4: Step 1(b): Routing-scheduling decision (SSBP-EH).

5: rkij [t] := 1
2

[
wkij + γki [t]− γkj [t]− βi[t]− νi[t]

]+

6: Step 2: Compute auxiliary variable.

7: xki [t] := arg max
xki ∈[0,x̄ki ]

xki
(
γki [t]− γ̄ki

)

8: Step 3: Update dual variables.

9: γki [t+ 1] :=

[
γki [t] + aki [t]− xki [t] +

∑
j∈Ni

(
rkji[t]− rkij [t]

)]+

10: βi[t+ 1] :=

[
βi[t]− ei[t] +

∑
k∈K

∑
j∈Ni

rkij [t]

]+

11: Step 4: For all neighbors j ∈ Ni, send dual variables γki [t + 1] and receive dual

variables γkj [t+ 1].

12: Step 5: Set t := t+ 1 and go to Step 1.

Next, we consider some choices of the objective function fkij
(
rkij
)

in the optimization

problem (6.13) which lead to familiar formulations of the backpressure algorithm adapted

to the energy harvesting process. The steps of the two resulting policies are summarized

in Algorithm 6.1.

6.3.1 Stochastic Backpressure with Energy Harvesting (SBP-EH)

Consider functions fkij
(
rkij
)

which are linear with respect to the routing variables, i.e.,

taking the form fkij
(
rkij
)

= wkijr
k
ij , where wkij is an arbitrary weight. In this case, we

recover a version of the stochastic backpressure algorithm adapted to the energy har-

vesting process. For a linear objective function, the maximization in (6.16) leads to the

routing variables

rkij [t] := arg max∑
k,j

rkij≤1

∑

k∈K

∑

j∈Ni

rkij

(
wkij + γki [t]− γkj [t]− βi[t]

)
. (6.20)

To solve the maximization in (6.20) it suffices to find the flow over the neighboring

nodes with the largest differential wkij + γki [t] − γkj [t] − βi[t] and if it is positive, set its

corresponding routing variable rkij [t] to one while the other variables are kept to zero.

This algorithm, when wkij = 0, is analogous to the stochastic form of backpressure. In

the classical backpressure algorithm, the flow with the largest queue differential qki [t] −
qkj [t] is chosen. Interpreted in its stochastic form, the flow with the largest Lagrange

multiplier difference γki [t] − γkj [t] is chosen. In the SBP-EH policy, the stochastic form
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Figure 6.2: Example of a SSBP-EH routing decision for a node node serving two flows

and four neighbors.

of backpressure adds the battery multiplier βi[t]. As the battery depletes, the value of

βi[t] increases and the pressure to transmit of this node decreases.

6.3.2 Stochastic Soft Backpressure with Energy Harvesting (SSBP-

EH)

Now, we consider a quadratic plus linear term function given by fkij
(
rkij
)

= −
(
rkij
)2

+

wkijr
k
ij . This leads to a stochastic soft backpressure algorithm [116], where the routing

variables obtained by the maximization in (6.16) are given by

rkij [t] :=
1

2

[
wkij + γki [t]− γkj [t]− βi[t]− νi[t]

]+

, (6.21)

where νi[t] are the Lagrange multipliers ensuring
∑

k∈K
∑

j∈Ni
rkij ≤ 1 for all i ∈ N . This

expression can be understood a form of inverse waterfilling. An example of this solution is

shown in Figure 6.2. Let us construct rectangles of height Hk
ij [t] = wkij+γ

k
i [t]−γkj [t]−βi[t]

and scale them by the widths W k
ij [t] = 1/2. For each node, every possible flow and

neighbor routing destination is represented by one of these rectangles. Then, water is

poured from the bottom, in an inverse manner until the νi[t] waterlevel is reached. The

resulting area of water filled inside the rectangles represents the probability mass function

of the routing variables. Then, the node takes its routing decision by drawing a sample

from this distribution.

While not as simple as the SBP-EH algorithm, the SSBP-EH algorithm presents

an important improvement over the former. The introduction of an strongly concave

objective function allows the dual function in (6.15) to be differentiable. This, in turn,

makes the algorithm take the form of an stochastic gradient rather than a stochastic

subgradient (which is the case of SBP-EH), therefore improving the expected rate of

stabilization of the algorithm from O(1/
√
t) to O(1/t) [117, Chapter 3.2].
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6.4 Causality and Stability Analysis

In this section, we provide theoretical guarantees on the behavior of the proposed policies.

On one hand, we establish the conditions under which the routing policies generated by

Algorithm 6.1 satisfy the energy causality constraints (6.8). And, on the other hand, we

provide stability guarantees on the network queues.

6.4.1 Energy Causality

As we mentioned previously in Section 6.2, the presence of the energy harvesting con-

straints in the stochastic optimization problem (6.12) introduces the question of causal-

ity. In order to have a tractable problem, we have introduced the energy harvesting

constraints in an average sense to the routing-scheduling problem. This includes an ad-

ditional issue, as not all possible solutions satisfy the original causality constraints (6.8)

for all time slots. In order to deal with this, we have modified the problem formulation

with the introduction of an auxiliary variable. By appropriately choosing the domain of

this auxiliary variable and the nodes’ battery capacity, we can ensure that the causality

constraints are satisfied.

Proposition 6.1 (Energy Causality). Let the data arrivals of a node i ∈ N satisfy

aki [t] ≤ āki for all k ∈ K flows and all time slots t. Further, let x̄ki ≥ γ̄ki + āki + |Ni|
and let the battery capacity satisfy bmax

i ≥ wkij + γ̄ki + āki + |Ni|. Then both the SBP-EH

and SSBP-EH policies shown in Algorithm 6.1 satisfy the energy consumption causality

constraint
∑

k∈K
∑

j∈Ni
rkij [t] ≤ bi[t] of this node for all time slots.

Proof. To satisfy the energy causality constraints it suffices to show that no transmission

occurs when there is no available energy in the battery. This is to say that rkij [t] = 0

for all j, k if bi[t] = 0. In expressions (6.20) and (6.21), corresponding to the SBP-EH

and SSBP-EH algorithms, it suffices to ensure that wkij + γki [t] − γkj [t] − βi[t] < 0 when

the battery is empty. In this case, when bi[t] = 0, the battery dual update takes the

value βi[t] = bmax
i . By the dual update (6.18) and the minimum value of x̄ki , the data

arrival bound āki and the number of neighbors |Ni|, we can upper bound the multiplier

difference by γki [t] − γkj [t] ≤ γ̄ki + āki + |Ni| over all time slots t. We can write then

wkij + γ̄ki + āki + |Ni| − bmax
i ≤ 0, and since bmax

i ≥ wkij + γ̄ki + āki + |Ni|, this ensures that

rkij [t] = 0. Hence, satisfying the energy causality constraint
∑

k∈K
∑

j∈Ni
rkij [t] ≤ bi[t] for

all time slots. �

In order to ensure that the energy causality constraints are satisfied, the stochastic

subgradients are required to be bounded. This, in turn, forces the probability distribution

of the data arrival process to be bounded above by a constant āki . In practice, for the

case in which the probability distribution is not bounded, when a time slot with over
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āki packets occurs, only āki data packets can be kept in the queue and the rest must be

discarded to satisfy the energy causality constraints.

6.4.2 Queue Stability

Now, we provide guarantees on the queue stability of the proposed policies. Different

from other works (such as [111, 112]), which analyze queue stability with Lyapunov

drift notions, we resort to duality theory arguments. We do this by leveraging on the

fact that the proposed algorithm is a type of stochastic subgradient algorithm. The

approach we take to showing that our algorithm makes the queues stable in the sense of

(6.3) is to show that the solution provided by Algorithm 6.1 satisfies the queue stability

constraints (6.13b) almost surely. Then, we show that if the optimal queue multipliers

γki are upper bounded by γ̄ki , the solution provided by Algorithm 6.1 also satisfies the

stability constraint without auxiliary variable (6.12b). Hence, the data queues satisfy

the stability condition (6.3).

First, we start by recalling a common property of the stochastic subgradient.

Proposition 6.2. Given the dual variables λ[t], the conditional expected value E [s[t]|λ[t]]

of the stochastic subgradient s[t] is a subgradient of the dual function. Namely, for any

λ,

E
[
sT [t]|λ[t]

]
(λ[t]− λ) ≥ g(λ[t])− g(λ). (6.22)

Proof. Take the Lagrangian (6.14) and substitute the ergodic definitions E
[
aki [t]

]
= aki

and E
[
ei[t]

]
= ei. Then, the resulting Lagrangian is given by

L(r,λ) =
∑

i∈N

∑

k∈K

∑

j∈Ni

fkij

(
rkij

)
−
∑

i∈N

∑

k∈K
γ̄ki x

k
i

+
∑

k∈K

∑

i∈N
γki

(∑

j∈Ni

(
rkij − rkji

)
+ xki − E

[
aki [t]

])

+
∑

i∈N
βi

(
E
[
ei[t]

]
−
∑

k∈K

∑

j∈Ni

rkij

)
. (6.23)

Now, recall that the dual function is then given by g(λ) = maxr∈R L(r,λ), and consider

the dual function at time t, given by g(λ[t]). The primal maximization of this dual

function is given by the variables rkij [t] and xki [t] in (6.16) and (6.17), respectively. Hence,

we can write the dual function as

g(λ[t]) =
∑

i∈N

∑

k∈K

∑

j∈Ni

fkij

(
rkij [t]

)
−
∑

i∈N

∑

k∈K
γ̄ki x

k
i [t]

+
∑

k∈K

∑

i∈N
γki [t]E

[∑

j∈Ni

(
rkij [t]− rkji[t]

)
+ xki [t]− aki [t]

]

+
∑

i∈N
βi[t]E

[
ei[t]−

∑

k∈K

∑

j∈Ni

rkij [t]

]
, (6.24)
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where we have moved the expectation operator E[·] out of the subgradients due to its

linearity. Then we can use the compact notation for the multiplier vector λ[t] and

the subgradient s[t], and substitute the conditional expected value of the subgradients

E [s[t]|λ[t]] to obtain

g(λ[t]) =
∑

i∈N

∑

k∈K

∑

j∈Ni

fkij

(
rkij [t]

)
−
∑

i∈N

∑

k∈K
γ̄ki x

k
i [t]

+ E
[
sT [t]|λ[t]

]
λ[t]. (6.25)

For any arbitrary λ we simply have

g(λ) ≥
∑

i∈N

∑

k∈K

∑

j∈Ni

fkij

(
rkij [t]

)
−
∑

i∈N

∑

k∈K
γ̄ki x

k
i [t]

+ E
[
sT [t]|λ[t]

]
λ. (6.26)

Then it simply suffices to subtract expression (6.26) from (6.25) to obtain inequality

(6.22). �

Proposition 6.2 shows that the stochastic subgradient is an average descent direction

of the dual function g(λ[t]). Now, we proceed to quantify the average descent distance

of the dual update.

Lemma 6.3. Consider the dual updates of Algorithm 6.1 given by (6.18) and (6.19), and

let E
[
‖s[t]‖2|λ[t]

]
≤ S2 be a bound on the second moment of the norm of the stochastic

subgradients s[t]. Then, the dual updates satisfy the inequality

E
[
‖λ[t+ 1]− λ?‖2|λ[t]

]
≤‖λ[t]− λ?‖2 + S2 − 2 (g(λ[t])− g(λ?)) (6.27)

Proof. Start by considering the squared distance between the dual variables at time t+1

and their optimal value. This distance is given by ‖λ[t+ 1]−λ?‖2. Then, we substitute

the dual variable λ[t+1] by its update λ[t+1] = [λ[t]− s[t]]+. Then, since the projection

is nonexpansive we can upper bound the aforementioned distance by

‖λ[t+ 1]− λ?‖2 ≤ ‖λ[t]− s[t]− λ?‖2. (6.28)

Then, we simply expand the square norm to obtain the expression

‖λ[t+ 1]− λ?‖2 ≤ ‖λ[t]− λ?‖2 + ‖s[t]‖2

− 2sT [t] (λ[t]− λ?) . (6.29)

Now, by taking the expectation conditioned by λ[t] on both sides we obtain

E
[
‖λ[t+ 1]− λ?‖2|λ[t]

]
≤ ‖λ[t]− λ?‖2 + E

[
‖s[t]‖2|λ[t]

]

− 2E
[
sT [t]|λ[t]

]
(λ[t]− λ?) (6.30)

And then by substituting the second term on the right hand side of the previous ex-

pression by the bound E
[
‖s[t]‖2|λ[t]

]
≤ S2 and the third term by the application of

Proposition 6.2 with λ = λ?, we have expression (6.27). �
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Then, we leverage on this lemma to show that Algorithm 6.1 converges to a neigh-

borhood of the optimal solution of the dual function.

Lemma 6.4. Consider the dual updates of Algorithm 6.1 given by (6.18) and (6.19), and

let E
[
‖s[t]‖2|λ[t]

]
≤ S2 be a bound on the second moment of the norm of the stochastic

subgradients s[t]. Assume that the dual variable λ[T ] is given for an arbitrary time T

and define as λbest[t] := arg minλ[l] g(λ[l]) the dual variable leading to the best value of

the of the dual function for the interval l ∈ [T, t]. Then, we have

lim
t→∞

g(λbest[t]|λ[T ]) ≤ g(λ?) +
S2

2
a.s. (6.31)

Proof. For ease of exposition, let T = 0. Then, define the stopped process α[t], tracking

the distance between the dual variables at time t and their optimal value, i.e., ‖λ[t]−λ?‖2,

until the optimality gap g(λ[t])− g(λ?) falls below S2/2. This expression is given by

α[t] := ‖λ[t]− λ?‖2I
{
g(λbest[t])− g(λ?) > S2/2

}
. (6.32)

where I{·} denotes the indicator function. In a similar way, define the sequence β[t]

which follows 2 (g(λ[t])− g(λ?)) − S2 until the optimality gap g(λ[t]) − g(λ?) becomes

smaller than S2/2,

β[t] :=
(
2
(
g(λ[t])−g(λ?)

)
− S2

)
I
{
g(λbest[t])− g(λ?) > S2/2

}
. (6.33)

Now, let F [t] be the filtration measuring α[t] and β[t]. Since α[t] and β[t] are completely

determined by λ[t], and λ[t] is a Markov process, conditioning on F [t] is equivalent to

conditioning on λ[t]. Hence, by application of Lemma 6.3, we can write E [α[t+ 1]|F [t]] ≤
α[t] − β[t]. Since by definitions (6.32) and (6.33), the processes α[t] and β[t] are non-

negative, the sequence α[t] follows a supermartingale expression. Then, by the super-

martingale convergence theorem [114, Theorem 5.2.9], the sequence α[t] converges al-

most surely, and the sum
∑∞

t=1 β[t] <∞ is almost surely finite. The latter implies that

lim inft→∞ β[t] = 0 almost surely. Given the definition of β[t], this is implied by either

of two events. (i) If the indicator function goes to zero, i.e., g(λbest[t]) − g(λ?) ≤ S2/2

for a large t; or (ii) lim inft→∞ 2
(
g(λ[t]) − g(λ?)

)
− S2 = 0. From any of those events,

expression (6.31) follows. �

The convergence of the dual function as asserted in the previous lemma allows us to

prove that the sequences of routing decision {rkij [t]}∞t=1 and auxiliary variables {xki [t]}∞t=1

generated by Algorithm 6.1 are almost surely feasible.

Proposition 6.5 (Auxiliary Feasibility). Assume there exist strictly feasible primal vari-

ables rkij and xki such that
∑

j∈Ni
rkij−

∑
j∈Ni

rkji−aki +xki > ξ and ei−
∑

k∈K
∑

j∈Ni
rkij > ξ,

for some ξ > 0. Then, the constraints (6.13b) and (6.13c) are almost surely satisfied by

Algorithm 6.1.
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Proof. First, let us collect the feasible routing variables rkij and auxiliary variables xki
in the vector r̂ = {rkij , xki }. Then, if there exist strictly feasible variables r̂, we can

bound the value of the dual function g(λ) as follows. The dual function is defined as the

maximum over primal variables g(λ) = maxr L(r,λ), hence g(λ) ≥ L(r̂,λ). From this,

by using the
∑

j∈Ni
rkij −

∑
j∈Ni

rkji− aki +xki > ξ and ei−
∑

k∈K
∑

j∈Ni
rkij > ξ terms we

establish the following bound

g(λ) ≥
∑

i∈N

∑

k∈K

∑

j∈Ni

fkij

(
rkij

)
−
∑

i∈N

∑

k∈K
γ̄ki x

k
i + ξλT1. (6.34)

Then, by simply reordering terms we obtain the following upper bound on the dual

variables

λ ≤ 1

ξ

(
g(λ)−

∑

i∈N

∑

k∈K

(∑

j∈Ni

fkij

(
rkij

)
+ γ̄ki x

k
i

))
. (6.35)

Lemma 6.4 certifies the existence of a time t ≥ T0 for which g(λ[t]) ≤ g(λ?) + S2/2.

Hence,

λ[t] ≤ 1

ξ

(
g(λ?) +

S2

2
−
∑

i∈N

∑

k∈K

(∑

j∈Ni

fkij

(
rkij

)
+ γ̄ki x

k
i

))
(6.36)

for t ≥ T0. Now, recall that the feasibility conditions (6.13b) and (6.13c) are given by

the limits

lim
t→∞

1

t

t∑

l=1

(∑

j∈Ni

(
rkij [l]− rkji[l]

)
− aki [l] + xki [t]

)
≥ 0 (6.37)

lim
t→∞

1

t

t∑

l=1

(
ei[l]−

∑

k∈K

∑

j∈Ni

rkij [l]

)
≥ 0 (6.38)

which, by recalling that the constraints are simply the stochastic subgradients s[t] of the

problem, they can also be written in compact form as limt→∞
1
t

∑t
l=1 s[l] ≥ 0. Now,

consider the dual updates (6.18) and (6.19) given by λ[t+ 1] = [λ[t]− s[t]]+. Since the

[·]+ operator corresponds to a nonnegative projection, the dual variables can be lower

bounded by removing the projection and recursively substituting the updates

λ[t+ 1] ≥ λ[t]− s[t] ≥ λ[1]−
t∑

l=1

s[l] ≥ −
t∑

l=1

s[l]. (6.39)

To prove almost sure feasibility, we will follow by contradiction. First, assume that

conditions (6.37) and (6.38) are infeasible. In compact form, this means the existence

of a time t ≥ T1, for which there is a constant δ > 0 such that 1
t

∑t
l=1 s[l] ≤ −δ. By

substituting in (6.39), we have that the dual variables are lower bounded by λ[t+1] ≥ δt.
Now, we can freely choose a time t ≥ T2 such that

λ[t] >
1

ξ

(
g(λ?) +

S2

2
−
∑

i∈N

∑

k∈K

(∑

j∈Ni

fkij

(
rkij

)
+ γ̄ki x

k
i

))
(6.40)
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for all t ≥ T2. However, this contradicts the upper bound established in (6.36). This

means that there do not exist sequences generated by Algorithm 6.1 such that (6.37)

and (6.38) are not satisfied. Therefore, the constraints (6.13b) and (6.13c) are satisfied

almost surely. �

Finally, it suffices to show that if the optimal dual variables are upper bounded by

the constants γ̄ki , the system satisfies the original problem without the auxiliary variable.

Thus, satisfying the original constraint (6.12b) and hence the queue stability condition

(6.3).

Proposition 6.6 (Feasibility). Assume that there exist strictly feasible routing variables

rkij such that
∑

j∈Ni
rkij−

∑
j∈Ni

rkji−aki > ξ and ei−
∑

k∈K
∑

j∈Ni
rkij > ξ, for some ξ > 0.

Furthermore, assume the optimal Lagrange multipliers of the queue stability constraints

satisfy γk,?i ≤ γ̄ki . Then, the constraints (6.12b) and (6.12c) are almost surely satisfied

by Algorithm 6.1.

Proof. Take the difference between the Lagrangian (6.14) of the optimization problem

with the auxiliary variable (6.13) and the original problem (6.12). The difference between

them is given by

L(r,λ)− L̂(r,λ) =
∑

i∈N

∑

k∈K

(
−γ̄ki + γki + θki − νki

)
xki +

∑

i∈N

∑

k∈K
νki x̄

k
i (6.41)

where θki ≥ 0 and νki ≥ 0 are the Lagrange multipliers of the xki ≥ 0 and xki ≤ x̄ki
constraints, respectively. In order for both problems to be equivalent, the minimization

of (6.41), which is the solution of the dual problem, must be zero. This implies the

existence of Lagrange multipliers satisfying the constraints γ̄ki − γki − θki + νki = 0, for all

i ∈ N and k ∈ K. Since γk,?i ≤ γ̄ki , the constraints can be satisfied by letting νk,?i = 0,

and θk,?i acting as a slack variable. Then, L(r,λ) − L̂(r,λ) = 0, which implies that the

optimal solution of both problems is the same. Hence, limt→∞
1
t

∑t
l=1 x

k
i [l] = xki = 0,

and by Proposition 6.5 the routing variables rkij of Algorithm 6.1 satisfy the constraint∑
j∈Ni

rkij −
∑

j∈Ni
rkji − aki ≥ 0. �

Corollary 6.7 (Queue Stability). Consider the conditions of Proposition 6.6. Then,

there exists a constant Q such that for some arbitrary time T the queues of the system

under Algorithm 6.1 satisfy Pr {maxt≥T ‖q[t]‖ ≤ Q|q[T ]} = 1.

Proof. Denote by Fki [t] the filtration measuring qki [l]. Then, since the routing variables

rkij generated by Algorithm 6.1 satisfy
∑

j∈Ni
rkij −

∑
j∈Ni

rkji − aki ≥ 0, the queue evo-

lution (6.2) obeys the supermartingale expression E
[
qki [t+ 1]|Fki [t]

]
≤ qki [t]. By the

supermartingale convergence theorem [114, Theorem 5.2.9], the sequence qki [t] converges

almost surely, therefore satisfying the stability condition Pr {maxt≥T ‖q[t]‖ ≤ Q|q[T ]} =

1. �
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Given an appropriate choice of γ̄ki and feasible data and energy arrivals, Proposi-

tion 6.6 guarantees that the nodes route in average as many packets as they receive

from neighbors and the arrival process (i.e., the constraint (6.12b) is satisfied). Then,

Corollary 6.7 shows that this implies that the queues themselves are almost surely stable.

6.4.3 Remarks and Practical Considerations

As we have thoroughly examined, the introduction of energy harvesting constraints in

the routing-scheduling problem also introduces a causality problem. In order to handle

this problem, we have resorted to the auxiliary formulation introduced in (6.13). Under

this new formulation, we have shown the ability of Algorithm 6.1 to stabilize the data

queues while guaranteeing the energy causality constrains. This modified formulation

serves to bound the values of the dual variables. Hence, one might think that a simpler

approach would be to simply project the dual variables to a restricted domain and

remove the auxiliary variables xki altogether from the optimization problem. We studied

the consequences of this formulation in our previous work [8]. The main drawback of

using a dual projection is that in order to ensure the almost sure feasibility of such

scheme (as in Proposition 6.5), the maximum value of the projection λmax must be lower

bounded by

λmax >
1

ξ


g(λ?) +

S2

2
−
∑

i∈N

∑

k∈K

∑

j∈Ni

fkij

(
rkij

)

 . (6.42)

This is a very loose requirement, which does not provide the clear theoretical guaranties

that our proposed formulation offers. Nonetheless, the numerical results provided in [8]

seem to indicate that simply having the optimal dual variables in the range [0,λmax] can

be sufficient. Thus, the simpler use a projection of the dual variables can also be used

as a less theoretically robust but practical option.

6.5 Numerical Results

In this section, we conduct numerical experiments aimed at evaluating the performance of

the proposed SBP-EH and SSBP-EH policies. As a means of comparison, when indicated,

we also provide the non-energy harvesting counterparts of our proposed policies. Namely,

the Stochastic Backpressure (SBP) [113] and Stochastic Soft Backpressure (SSBP) [116]

policies. These policies correspond to solving (6.7), the original optimization problem

without the energy harvesting constraints, with the objective functions shown in Sections

6.3.1 and 6.3.2, respectively. Hence, these policies assume the availability of an unlimited

energy supply. We consider the communication network shown in Figure 6.3, where we

let nodes 1 and 14 act as sink nodes and the rest of the nodes support a single flow with

packet arrival rates of aki = 0.35 packets per time slot. Moreover, we consider the nodes
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Figure 6.3: Connectivity graph of the simulated network.

to be harvesting energy at a rate of ei = 1 units of energy per time slot and storing it

in a battery of capacity bmax
i = 15. Furthermore, we set the routing weights to wkij = 0,

and let γ̄ki = 10.

6.5.1 Network Queues

First, we plot in Figure 6.4 a sample path of the total number of queued packets in the

network as a function of the elapsed time. As expected, all the policies are capable of

stabilizing the queues in the network. Due to the random nature of the processes, it

is difficult to say exactly at which point stabilization occurs. Nonetheless, for the SBP

and SBP-EH policies, the data queues seem to stop growing after around t = 200 time

slots. In the case of the SSBP and SSBP-EH policies, stabilization occurs much more

rapidly rapidly, with less than t = 100 time slots necessary to obtain stability. Also, both

soft policies (SSBP and SSBP-EH) stabilize the queues with a lower number of average

queued packets than their counterpart non-soft policies (SBP and SBP-EH). Namely, at

t = 1000, the average queued packets are 19.08 for SBP and 26.22 for SBP-EH. In the

case of the soft policies, these numbers are much smaller, with 11.55 and 11.97 packets

for SSBP and SSBP-EH, respectively. This also shows that the gap between the SSBP

and SSBP-EH policies seems to vanish asymptotically (3.63% at t = 1000), while this is

not the case for the non-soft policies (a gap of 37.42% at t = 1000). This occurs due to

the fact that the SBP and SBP-EH policies choose their routing policy by maximizing

the difference between queue multipliers. Hence, making the decision indifferent to the

actual value of the multipliers as long as their differences stay the same. For the SSBP

and SSBP-EH policies, this situation does not occur due to their randomized nature.

Hence, pushing for lower average queued packets. Furthermore, since the data arrivals

can be sustained by the energy harvesting process, the SSBP-EH policy tries to get as

close a the non-EH one, leading to the small of the gap. Also, note that the SBP-EH
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Figure 6.4: Total amount of packets queued in the network at each time slot. Average

values are shown in dashed lines.

and SSBP-EH policies are more volatile than their non-EH counterparts. For example,

around t = 550, the number of queued packets spikes for the energy harvesting policies,

which is not the case in the non-EH ones. These types of spikes arise due to a certain

lack of energy around those time instants.

In Figure 6.5 we have plotted the average queued packets at each node for the SBP-

EH and SSBP-EH policies. In general, SSBP-EH shows a lower number of average

queued packets over all the nodes and the improvements are more significant the lower

the pressure the node supports. This tends to translate to better improvements for nodes

far away from a sink that tend to be routed less traffic. For example, the nodes 7 and

8 (See Fig. 6.3), which are the furthest away from any sink, show a reduction of 1.92

and 1.81 average packets, respectively, when using SSBP-EH. The rest of the nodes also

show significant improvements when using SSBP-EH. Nodes 5, 6, 9 and 10, all lying

at two hops of distance of a sink are more critical for accessing a sink, as having them

congested blocks the access to the sink of the previous nodes 7 and 8. In this case, the

improvements range from 1.57 to 1.79 average data packets. Finally, there are the nodes

that lie at one hop distance from any sink (nodes 2, 3, 4, 11, 12 and 13) . These nodes

sustain a significant amount of traffic and show improvements ranging from 0.51 to 1.78.

With the nodes with the highest traffic, nodes 4 and 11, improving by 0.73 and 1.28 data

packets, respectively.
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Figure 6.5: Average data queues at each node in the network.

The differences between SBP-EH and SSBP-EH are also evidenced in terms of their

energy use. In Figure 6.6 we plot the total energy in the network at a given time slot

for both the SBP-EH and the SSBP-EH policies. On one hand, this figure illustrates the

high variability in the energy supply due to the energy harvesting process. On the other

hand, the SSBP-EH policy is shown to be more aggressive in its energy use. Also, note

that drops in total network energy are not necessarily correlated with increases in queued

packets in the network. For example, the previously noticed peak of queued data packets

at t = 550 in Fig. 6.4 does not have an equivalent large drop in network energy. This

is due to the fact that it is better for energy in the network to overall be lower than to

have a specific high-pressure node have an energy shortage. In general, spikes in queued

data packets tend to occur when a specific route becomes blocked by the temporary lack

of energy.
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Figure 6.6: Total energy stored in the network at a given time slot.

6.5.2 Network Balance

As discussed in Section 6.4, the choice of the parameters γ̄ki , which control the maximum

values taken by the queue multipliers γki , is important to ensure the stability of the data

queues. Namely, the optimal multipliers must be smaller than this γ̄ki parameter. In

Figure 6.7, we plot the γki multipliers for one of the nodes which supports the most

traffic in the network (node 5). The time-average of these dual variables converges to

the optimal value. In the chosen scenario, the parameter used, γ̄ki = 10, is well above

the optimal value. Hence, the system satisfies Proposition 6.7, and can be ensured to

stabilize the queues. Some additional insight into the importance of the queue multipliers

can be gained by a pricing interpretation of the dual problem. Under this interpretation,

the dual variables γki [t] represent the unit price associated to the routing constraint

aki [t] ≤
∑

j∈Ni

(
rkij [t]− rkji[t]

)
+ xki [t]. When the node does not satisfy this constraint, it

pays γki [t] per unit of constraint violation. Likewise, if it strictly satisfies this constraint,

it receives γki [t] per unit of constraint satisfaction. In this sense, the γ̄ki parameter

represents both the maximum payment that a node can receive and the maximum price

it can pay. Hence, the optimal value of γki must necessarily fall below γ̄ki in order to

obtain a stable system. We can use this pricing interpretation to compare the different

policies. In general, the energy harvesting policies have higher γki [t] values than their non-

EH counterparts. This is due to the fact that, due to the energy harvesting constraints,

the unit violation of the routing constraint is harder to recoup in the EH-aware policies,

hence the higher price paid. In a similar note, due to their more aggressive routing

decisions, the soft policies also show higher γki [t] values than their non-soft counterparts.
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Figure 6.7: Average value of the queue multipliers γki for node 5 (i = 5, k = 1).

Also of interest is the study of the balance characteristics of the network. As discussed

previously, the stability guarantees of the network are subject to the existence of a

feasible routing solution given the data and energy arrival rates. This motivates another

way of showing stability, different from the data queues shown in Fig. 6.4. We can

consider that a successful routing strategy is expected to route to the sink nodes as many

packets as generated by the network. This is given by the network balance expression∑
i∈N

∑
k∈K

(
aki [t]− rkij [t]

)
, where j = Nk

(dest). The time average of this measure is

shown in Figure 6.8. As expected, the time average data network balance goes to zero

for all policies. This illustrates that all policies are capable of routing to the sink nodes

as many packets as they arrive to the network, hence ensuring queue stability. We

previously observed in Fig. 6.8 that stability occurs around t = 200 time slots for the

SBP and SBP-EH policies and less than t = 100 time slots for the SSBP and SSBP-

EH ones. Those observations can be compared with the network balance of Fig. 6.8,

where those values correspond to the time around when the slope of the data balance

curve starts to go flat. Remarkably, the proposed energy harvesting policies do not lose

convergence speed when compared to the non-EH ones. Also, convergence of the SSBP

and SSBP-EH policies occurs at a faster rate, a point that we previously raised in Section

6.3.2.

Another measure of network balance of interest is related to the energy balance in

the network. This can be expressed by
∑

i∈N
∑

k∈K

(
ei[t]−

∑
j∈Ni

rkij [t]
)

. This measure

serves to quantify how much of the energy harvested in the network is actually being

used. The time average of the energy balance is shown in Figure 6.9. As expected, given
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Figure 6.8: Average data balance in the network, given by the expression 1
t

∑t
l=0∑

i∈N
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k∈K

(
aki [l]− rkij [l]

)
, where j = Nk

(dest).

that the network harvests enough energy to support the routing-scheduling decisions,

both policies converge to a non-zero value. Once stabilized, the SBP-EH policy has, in

average, energy left for around 12 packet transmission in all of the network, while the

SSBP-EH only has energy left for an average of 2 packet transmissions. We previously

identified in Fig. 6.6 the SSBP-EH to be more aggressive in its energy use. At the

same time, we can also say that the SSBP-EH policy uses its energy supply in a more

efficient manner. Since the nodes are powered by energy harvesting instead of a limited

energy supply, not using available energy can be considered wasteful, as batteries will

tend to overflow. In this sense, to use more energy (as in SSBP-EH) rather than to use

energy more conservatively (as in SBP-EH), can be seen as a better option. In this sense,

SSBP-EH makes a more efficient use of the available energy, resulting in an overall better

performance.

6.5.3 Network Delay

An additional important characteristic of routing-scheduling policies is their resulting

delay in the packet delivery. While the average delay is proportional to the average

number of queued packets in the network, we also study this measure explicitly. In order

to do this, and under the assumption of first-in first-out queues, we compute the number

of time slots it takes for a packet to be delivered to a sink node. We plot in Figure 6.10

the resulting histogram. In average, the number of time slots it takes to deliver a packet

to a sink node is 4.04 for the SSBP-EH policy, while it is 5.36 for the SBP-EH policy.
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Figure 6.9: Average energy balance in the network, given by the expression 1
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.

This is about a 1 time slot of difference between the policies. Taking a more detailed

look at the histogram, we can see that the distribution for the SSBP-EH is very similar

to the one of the SBP-EH, but with a 1 time slot shift to the left. As already seen in Fig.

6.5, the more aggressive behavior of the SSBP-EH policy leads to an overall reduction

in the network queues. These smaller queues result in a reduction of the waiting time of

packets at each hop, which results in a smaller delivery delay.

6.6 Conclusions

In this chapter, we have generalized the stochastic family of backpressure policies to

energy harvesting networks. Different from other works, which are based on Lyapunov

drift notions, we have resorted to duality theory. This has allowed us to study the

problem under a framework based on the correspondence between queues and Lagrange

multipliers. Under this framework, we have proposed two policies, (i) SBP-EH, an easy

to implement policy where nodes track the difference between their queue multipliers and

the ones of their neighbors. The pressure is further reduced by the battery multipliers as

the stored energy decreases. Then, the transmit decision is to transmit the flow with the

highest pressure. And (ii) SSBP-EH, a probabilistic policy with improved performance

and convergence guarantees, where nodes track the pressure in the same way as SBP-

EH but perform an equalization in the form of an inverse waterfilling. This results in

a probability mass function for the routing-scheduling decision, where a sample of this
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Figure 6.10: Histogram of packet elapsed time before reaching a sink node.

distribution is then taken to decide the transmission. For both policies, we have studied

the conditions under which energy causality and queue stability are guaranteed, which

we have also verified by means of simulations. The numerical results show that given

feasible data and energy arrivals, both policies are capable of stabilizing the network.

Overall, the SSBP-EH policy shows improvements in queued packets, stabilization speed

and delay with respect to the SBP-EH policy. Furthermore, when compared to non-EH

policies, the SSBP-EH policy shows to have an asymptotically vanishing gap.
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Chapter 7
Random Access Policies for

Wireless Networked Control

Systems

In this chapter, we study wireless networked control systems with energy harvesting sen-

sors. Multiple sensors share a wireless medium over which they transmit measurements

to their respective controllers, and due to the shared medium, packet collisions occur if

sensors transmit simultaneously. To alleviate this problem, we propose random access

policies that satisfy a required control performance on each control loop, while also sat-

isfying the energy constraints imposed by the energy harvesting process. The optimal

scheduling policy is shown to follow a simple thresholding operation. Moreover, we pro-

vide a stochastic dual method for their computation, which is shown to be decoupled

across sensors. Finally, we verify numerically the properties of the proposed policy.

7.1 Introduction

Wireless networked control systems are rapidly becoming prevalent in the modern world.

They are present in smart homes, robotic automation, smart transportation, industrial

plants and more. A critical component of these wireless control systems are the sensing

devices. These sensor nodes measure the state of the system and transmit their obser-

vations over a wireless channel. However, due to the uncertain nature of the wireless

channel, the choice of communication policy critically affects the closed loop performance

of the control system. The sensors share the wireless communication medium and there-

fore one should aim for an efficient use of this resource in a way that meets the control

performance requirements.

When dealing with classically powered sensors, the scheduling problem in wireless

networked control systems has been previously studied in the literature. The most com-

105
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mon approach to this problem is the design of centralized scheduling policies. In this

setup, there exists an overseeing entity specifying which sensor is allowed to transmit at

a given time slot, in order to avoid collisions between packets. These type of policies

might be static [118,119] or of a more dynamic nature, where centralized decisions can be

taken based on plant state information [120] or wireless channel conditions [121], among

others.

7.1.1 Contribution

In this work, we study the design of random access policies for sensor nodes powered

by energy harvesting. Different from previous works [119–121], we design decentralized

scheduling policies. This is more in line with the random access policy presented in

[122]. However, these policies are designed for traditionally powered systems and are

not necessarily stable when the sensor nodes are powered by energy harvesting. In

contrast, our goal is to design channel access policies such that all control loops satisfy

their control performance requirements and the power consumption satisfies the energy

causality constraints imposed by the energy harvesting process. To this end, we use

a control performance abstraction which allows us to translate the control performance

requirements to successful transmission probabilities of the random access scheme. Under

ergodic assumptions on the channel states and energy harvesting process, we propose a

simple dynamic threshold scheduling policy which accounts for the channel as well as the

battery state of the sensor. Furthermore, the optimal scheduling policies are computed

by means of a stochastic dual method. Finally, we numerically verify the behavior of the

proposed policies.

7.2 System Model and Problem Formulation

Consider the wireless control system consisting of M different plants shown in Figure 7.1.

The state of each of these plants is measured by a sensor powered by energy harvesting,

and each of these sensors transmits the measurements to the plant controller through a

shared wireless medium. Due to the nature of the shared medium, collisions will arise

if more than one sensor decides to transmit at the same time. Under these conditions,

our goal is to design medium access policies such that a specific control performance is

guaranteed for all plants.

7.2.1 Control Model

Let us denote by γi[t] ∈ {0, 1} whether the transmission by the i-th sensor at time slot

t was successful or not. Then, under the assumption of a linear time-invariant system,
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Figure 7.1: System model.

we can model the plant dynamics by the following discrete-time switched system

xi[t+ 1] =





Ac,ixi[t] + wi[t], if γi[t] = 1,

Ao,ixi[t] + wi[t], if γi[t] = 0,
(7.1)

where xi[t] ∈ Rni denotes the i-th plant state at time slot t, and the wi[t] variables

correspond to independent and identically distributed (i.i.d.) zero-mean Gaussian noise

with covariance Ci. Moreover, Ac,i ∈ Rni×ni is the closed-loop dynamics matrix and

Ao,i ∈ Rni×ni is the open-loop dynamics matrix. The closed-loop matrix Ac,i corresponds

to the system evolution when the plant successfully receives the measurement transmitted

by the sensor node and is thus assumed to be asymptotically stable. On the other

hand, the matrix Ao,i corresponds to the plant evolution when not receiving the sensor

measurement (due to a lack of transmission by the sensor node or collision) and may be

unstable.

7.2.2 Communication Model

Consider now the communication model. We have defined the variables γi[t] to indicate

the successful transmission of the sensor nodes measurements. Hence, they correspond

to random variables whose distribution depends on the chosen communication policy.

We consider a time slotted communication model in which at each time slot, the sensor

either transmits a packet (containing the measurement at that time slot) over the shared

wireless medium or not. We denote this decision to transmit by the scheduling variable

zi[t] ∈ {0, 1}. Then, if two sensors transmit at the same time slot, a collision will occur

and neither packet will be received. Furthermore, the packet will be decoded with a

certain probability depending on the channel state. Then, the probability of successful
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Figure 7.2: Probability of decoding as a function of the channel state.

transmission at a given time slot t is given by

Pr (γi[t] = 1) = q(hi[t])zi[t]
∏

j 6=i
(1− zj [t]) (7.2)

where q : R→ [0, 1] is a continuous strictly increasing decoding function, which depends

on the channel state hi[t] (A typical decoding function is shown in Figure 7.2). Fur-

thermore, the channel state variables hi[t] are assumed to have continuous probability

density function1. Also, for notational compactness we define qi[t] , q(hi[t]).

7.2.3 Energy Harvesting

We consider the sensor nodes to be powered by energy harvesting. At time slot t, the i-th

sensor harvests ei[t] units of energy, where the energy harvesting process is assumed to

be stationary. This energy is then stored in a battery of capacity bmax
i . Furthermore, we

assume a normalized power consumption model, where accessing the medium consumes

one unit of energy. By considering this transmission cost as the only energy-consuming

action taken by the sensor nodes, we can model the battery dynamics as

bi[t+ 1] =
[
bi[t]− zi[t] + ei[t]

]bmax
i

0
. (7.3)

Also, in order to ensure that the sensors do not consume more energy than they have

available, the following energy causality constraint must be satisfied for all time slots

zi[t] ≤ bi[t]. (7.4)

7.2.4 Control Performance

We are interested in the design of communication policies that satisfy a required control

performance criteria. Due to the nature of the communication system, we can establish

1This assumption holds true for many practical channel models such as Rician, Nakagami or Rayleigh

fading [123].
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a relationship between the sensor transmission probabilities and the control performance

as stated by the following proposition.

Proposition 7.1 (Control performance abstraction [122]). Consider the switched system

described by (7.1) with γi[t] given by a sequence of i.i.d. Bernoulli random variables, and

the quadratic Lyapunov function Vi(xi) = xTi Pixi, with Pi positive definite. Then the

function Vi(xi) decreases at an average rate ρi < 1, denoted by

E[Vi(xi[t+ 1])|xi[t]] ≤ ρiV (xi[t]) + tr(PiCi) (7.5)

if and only if Pr(γi[t] = 1) ≥ pi, where pi is given by

pi = min
{
θ ≥ 0 : θAT

c,iPiAc,i + (1− θ)AT
o,iPiAo,i ≤ ρiPi

}
(7.6)

Proof. By particularizing the function Vi(xi) = xTi Pixi with the system dynamics (7.1),

we can write the equation

E[Vi(xi[t+ 1])|xi[t]] = xTi [t]AT
c,iPiAc,ixi[t] Pr(γi[t] = 1)

+ xTi [t]AT
o,iPiAo,ixi[t] Pr(γi[t] = 0) + tr(PiCi). (7.7)

Then, by substituting this expression in the left hand side of the average decrease in-

equality (7.5) we have the following inequality

xTi [t]AT
c,iPiAc,ixi[t] Pr(γi[t] = 1)

+xTi [t]AT
o,iPiAo,ixi[t] Pr(γi[t] = 0) ≤ ρixTi [t]Pixi[t]. (7.8)

Since this condition needs to hold for all xi[t], we can equivalently rewrite this condition

as the following linear matrix inequality

AT
c,iPiAc,i Pr(γi[t] = 1) + AT

o,iPiAo,i(1− Pr(γi[t] = 1)) ≤ ρiPi, (7.9)

where we have also used the fact that Pr(γi[t] = 0) = (1 − Pr(γi[t] = 1)). Then, the

Pr(γi[t] = 1) values satisfying this inequality define a convex set of which there is a

minimum value pi such that the condition is equivalent to Pr(γi[t] = 1) ≥ pi. �

7.2.5 Problem Formulation

The previous proposition allows us to relate the required control performance to the

required packet success rates in the communication scheme. Our goal is then to design

communication policies such that this control performance is attained, while also satis-

fying the energy causality constraints (7.4). Assuming an ergodic mode of operation, the

control performance of the system is determined by the long term behavior of the trans-

mission probabilities (7.2). Hence, the following ergodic limits determine the control

performance

pi ≤ lim
t→∞

1

t

t∑

l=1

qi[l]zi[l]
∏

j 6=i
(1− zj [l]) (7.10)
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Likewise, the energy causality constraints (7.4) have a long term behavior determined

by the ergodic limits

lim
t→∞

1

t

t∑

l=1

zi[l] ≤ lim
t→∞

1

t

t∑

l=1

ei[l] (7.11)

where, in this case the energy causality constraints (7.4) are satisfied in an ergodic sense.

Nonetheless, we will provide conditions ensuring that they are satisfied in a time slot to

time slot basis. Furthermore, in order to make an efficient use of the shared medium, we

aim to find policies satisfying (7.10) and (7.11) that minimize the number of times the

medium is accessed. Due to the ergodic assumption on the system, we can substitute

the ergodic limits in (7.10) and (7.11) for their expected value. This allows us to pose

the following stochastic optimization problem

minimize
zi∈Z

M∑

i=1

E zi (7.12a)

subject to pi ≤ E qizi
∏

j 6=i
(1− zj) , i = 1, . . . ,M (7.12b)

E zi ≤ E ei i = 1, . . . ,M (7.12c)

where the expectation is taken with respect to the channel realizations hi[t] and the

energy harvesting process ei[t], and Z is the set of all functions R+ → {0, 1}. We

want that the sensors be able to solve this problem in a distributed manner. However,

the optimization problem (7.12) depends on the other sensors scheduling decision by

constraint (7.12b). In order to separate the problem in a per sensor basis we take the

logarithm of constraint (7.12b) as follows

log(pi) ≤ log(E qizi) +
∑

j 6=i
log (1− E zj) , (7.13)

and introduce the auxiliary variables ri = E qizi and si = E zi. This allows us to rewrite

problem (7.12) in the following equivalent form

minimize
zi∈Z,
ri∈[0,1],
si∈[0,1]

M∑

i=1

E zi (7.14a)

subject to log(pi) ≤ log(ri) +
∑

j 6=i
log (1− sj) , i = 1, . . . ,M (7.14b)

ri ≤ E qizi, i = 1, . . . ,M (7.14c)

si ≥ E zi, i = 1, . . . ,M (7.14d)

E zi ≤ E ei i = 1, . . . ,M (7.14e)

where the relaxation of the auxiliary variables to an inequality is done without loss

of optimality. The optimal solution of (7.14) is equivalent to the optimal solution of
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(7.12). Nonetheless, another problem arises due to the fact that the sensors do not have

knowledge of the distributions of hi nor the energy harvesting process ei (over which the

expectation is taken). Nonetheless, they have access to the instantaneous values hi[t]

and ei[t]. Thus, by leveraging stochastic subgradient ascent on the dual domain [70], we

will design an algorithm that solves problem (7.14) while satisfying constraints (7.4) for

all time slots.

7.3 Stochastic Algorithm

Let us define the vector z = {zi, ri, si} collecting the primal variables and the vector

λ = {φi, νi, µi, βi} collecting the dual variables. Furthermore, we collect the implicit

optimization constraints in the set C =
{
zi ∈ Z, ri ∈ [0, 1], si ∈ [0, 1]

}
. We can write the

Lagrangian of problem (7.14) as follows

L(z,λ) =

M∑

i=1

E zi +

M∑

i=1

φi


log (pi)− log (ri)−

∑

j 6=i
log (1− sj)




+

M∑

i=1

νi (ri − E qizi) +

M∑

i=1

µi (E zi − si) +

M∑

i=1

βi (E zi − E ei) (7.15)

And the Lagrange dual function is then given by

g(λ) = max
z∈C
L(z,λ). (7.16)

By approximating the expected values for the instanteneous values and reordering the

Lagrangian (7.15), the values of the scheduling variables can be found as the solution to

the minimization

zi[t] = arg min
zi∈{0,1}

zi (1− νi[t]qi[t] + µi[t] + βi[t]) . (7.17)

Since the scheduling variable zi[t] acts linearly on the term 1 − νi[t]qi[t] + µi[t] + βi[t],

the solution to this minimization problem corresponds to the simple threshold rule given

by zi[t] = I (νi[t]qi[t]− µi[t]− βi[t] ≥ 1). In a similar manner, the auxiliary variables are

given by the minimizations

ri[t] = arg min
ri∈[0,1]

−φi[t] log(ri) + νi[t]ri (7.18)

si[t] = arg min
si∈[0,1]

−
M∑

i=1

φi[t]
∑

j 6=i
log(1− sj)−

M∑

i=1

µi[t]si (7.19)
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Algorithm 7.1 Control-aware scheduling algorithm for energy harvesting sensors.

1: Initialize: Initialize the dual variables to φi[0] := 0, νi[0] := 0, µi[0] := 0, and

βi[0] := bmax
i − bi[0].

2: Step 1: The sensor decides to access the shared medium according to

3: zi[t] := I (νi[t]qi[t]− µi[t]− βi[t] ≥ 1)

4: Step 2: The sensor computes the auxiliary variables variables

5: ri[t] :=
[
φi[t]
νi[t]

]1

0
and si[t] :=

[
1−

∑
j 6=i

φi[t]

µi[t]

]1

0
6: Step 3: The sensor updates the dual variables

7: φi[t+ 1] :=

[
φi[t] + log (pi)− log (ri[t])−

∑
j 6=i

log (1− si[t])
]+

8: νi[t+ 1] := [νi[t] + ri[t]− zi[t]qi[t]]ν
max
i

0

9: µi[t+ 1] := [µi[t] + zi[t]− si[t]]+

10: βi[t+ 1] := [βi[t] + zi[t]− ei[t]]b
max
i

0

11: Step 4: Set t := t+ 1 and go to Step 1.

which have the following closed form solutions

ri[t] =

[
φi[t]

νi[t]

]1

0

, si[t] =


1−

∑
j 6=i

φi[t]

µi[t]




1

0

, (7.20)

Note that the computation of the auxiliary variable si[t] requires the dual variables φi[t]

of the other sensors. This implies that a certain amount of communication overhead

needs to occur to ensure this information exchange takes place. Following, since the dual

function (7.16) is concave, we can perform a subgradient ascent on the dual domain. The

updates to the dual variables are then given by

φi[t+ 1] =

[
φi[t] + log (pi)− log (ri[t])−

∑

j 6=i
log (1− si[t])

]+

(7.21)

νi[t+ 1] =
[
νi[t] + ri[t]− zi[t]qi[t]

]νmax
i

0
(7.22)

µi[t+ 1] =
[
µi[t] + zi[t]− si[t]

]+
(7.23)

βi[t+ 1] =
[
βi[t] + zi[t]− ei[t]

]bmax
i

0
(7.24)

where for simplicity we have used an unit step size and projected the dual variables to

a specific interval. Let us denote by ν?i and β?i the optimal Lagrange multipliers of νi

and βi, respectively. Then if ν?i ∈ [0, νmax
i ] and β?i ∈ [0, βmax

i ], Algorithm 7.1, which

summarizes the proposed policy, stabilizes the dynamical systems.

Also, note that due to the use of a unit step size, the dual update (7.24) mimics

the battery dynamics (7.3) in a mirrored way, since they can be expressed as bi[t] =

bmax
i − βi[t]. This observation leads us to the following proposition, by which we can
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choose a battery capacity such that the energy causality constraints (7.4) are satisfied

for all time slots.

Proposition 7.2 (Energy Causality). Let the battery capacity of the i-th sensor satisfy

bmax
i ≥ νmax

i −1. Then Algorithm 7.1 satisfies the energy causality constraints zi[t] ≤ bi[t]
for all t time slots.

Proof. Assume the battery capacity satisfies bmax
i ≥ νmax

i −1. Then, to satisfy the energy

causality constraints zi[t] ≤ bi[t] for all t, it suffices to certify that no transmission is

scheduled when the sensor has no stored energy, i.e., zi[t] = 0 when bi[t] = 0. When

bi[t] = 0, the battery multiplier βi[t] takes the value βi[t] = bmax
i . And, by (7.17), we

have that the sensor transmits if νi[t]qi[t]−µi[t]− βi[t] ≥ 1. Hence, the sensor transmits

if νi[t]qi[t] − µi[t] − bmax
i ≥ 1. Furthermore, since qi[t] ≤ 1 and νi[t] is bounded by the

projection to νmax
i , we can certify that no transmission occurs if νmax

i − bmax
i ≤ 1. This

is ensured by the battery capacity assumption bmax
i ≥ νmax

i − 1. �

7.4 Numerical Results

In this section we study the performance of the proposed random access scheme with

energy harvesting sensors. We consider a scalar control system, with M = 2 plants

sharing the communication medium. The plant dynamics are given by Ao,1 = 1.15

and Ac,1 = 0.1 for the first system, and Ao,2 = 1.05 and Ac,2 = 0.15 for the second

system. Hence, the first system is slightly more unstable than the second one. Further,

we consider both systems to be perturbed by i.i.d. zero-mean Gaussian noise. We

assume the same control performance requirement for both plants, given by the Lyapunov

function Vi(xi[t]) = x2
i and an expected decrease rate of ρi = 0.8. By Proposition 7.1

this translates to successful transmission probabilities of p1 ≈ 0.3981 and p2 ≈ 0.2801,

respectively.

Further, we consider the sensors in both systems to be powered by an energy harvest-

ing process of rate ei = 1. The sensors store this energy in batteries of size bmax
1 = 20 and

bmax
2 = 10 for the first and second sensors, respectively. Since the first system is slightly

more unstable, it requires a larger battery capacity as we will see later. Furthermore, the

projection of the dual variables νi is chosen to be bmax
i = νmax

i for both systems, hence

satisfying Proposition 7.2. Finally, we consider a communication system where the chan-

nel variables hi[t] are i.i.d. zero-mean Gaussian variables and the decoding probability

q(hi[t]) is given by the function shown in Figure 7.2.

In Figure 7.3 we plot the plant state at each time slot. As previously noted, the first

system is slightly more unstable than the second system, as can be evidenced by the

more pronounced peaks of instability. This instability translates to a higher variance of

the energy stored in the batteries, as shown in Figure 7.4. Here, we see that the energy
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Figure 7.3: Evolution of the plant state at each time slot.
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Figure 7.4: Energy stored in the batteries at each time slot.

states vary more drastically in the more unstable system. Also, the battery size chosen

for the second system is smaller.

In Figure 7.5 we plot the average value 1
t

∑t
l=0 νi[l] of the νi dual variables. The

average values of the νi multipliers converge to the values ν?1 ≈ 18.2 and ν?2 ≈ 6.5, which

by Proposition 7.2 evidences the lower battery requirements of System 2. Finally, we

show in Figure 7.6 the evolution of the control system performance, where we see that

both systems are asymptotically stable.
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Figure 7.5: Average evolution of the dual variables νi[t] at each time slot.
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Figure 7.6: Evolution of the control system performance at each time slot.

7.5 Conclusions

In this chapter, we have provided a random access mechanism for energy harvesting sen-

sors in wireless networked control systems. The goal has been to design communication

policies such that a required control performance is attained while also satisfying the

energy causality requirements imposed by the energy harvesting process. Under ergodic

assumptions, we have proposed a decentralized scheduling policy and provided a stochas-



116 7 Random Access Policies for Wireless Networked Control Systems

tic dual-based algorithm to compute it. Numerical results have verified the stabilizing

properties of the proposed scheme.



Chapter 8
Conclusions and Future Work

8.1 Conclusions

In this thesis, we have studied some problems that arise in wireless communication

networks powered by energy harvesting. More specifically, we have addressed problems

related to estimation and control. With respect to former, we have studied the estimation

of physical phenomena, with a single or multiple sensors. Regarding the latter, we have

studied the problem of stabilizing the data queues in an EH-powered network, as well as

a general wireless networked control problem. In the following, we summarize in more

detail the main results of each problem studied.

In Chapter 4, we have addressed the problem of reconstruction of time-correlated

sources with energy harvesting sensors. The scenario that we have considered is that

of a point-to-point communication between an energy harvesting sensor and a fusion

center. Furthermore, we have considered both the delay-constrained and delay-tolerant

cases. For both scenarios, our goal has been the minimization of the average reconstruc-

tion distortion at the fusion center. Since the sources are correlated, we have exploited

side information in our design of the transmission policies. Then, the problem has been

formulated under a convex optimization framework. In order to compute the optimal

solution to this problem, we have proposed an iterative subgradient method that exhibits

a coupling between a two-dimensional directional waterfilling (for power allocation) and

a reverse waterfilling (for rate allocation). The numerical results have illustrated the im-

pact of source correlation in the resulting transmission policies. For the delay-constrained

scenario, the results show that in order to minimize the average distortion, the earlier

sources need to be encoded more accurately than the latter sources (that is, spending

more energy in their transmission). Additionally, the difference in energy expenditure

is also more pronounced the higher the correlation is. As expected, this is due to the

fact that previous observations might be used as side information for future ones. For

the delay-tolerant scenario, the results show that as the delay tolerance increases, the

117
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optimal solution approaches the one for uncorrelated sources. Moreover, we have seen

that allowing a higher delay in the reconstructions allows for an overall lower average

distortion. Then, we have also compared our policy with a policy not exploiting side in-

formation, where the results show that the average distortion can be brought significantly

lower when using our scheme (up to an 80% with a delay of d = 10 time slots). Also, we

have provided a myopic online policy, which has a small performance gap (around 20%)

with respect to the offline benchmark policy. Finally, we have studied how individual

rates are spread over time slots. The results show that for delay-tolerant scenarios, the

higher the correlation, the lower the spread of individual rates over time slots.

In Chapter 5, we have studied the sensor selection problem for energy harvesting

sensors. In this way, we have extended some of the ideas of the previous chapter to

the case of multiple sensor nodes. The specific scenario that we have studied consists

of multiple sensors powered by energy harvesting which acquire distinct measurement

from the same source. Then, these measurements need to be transmitted to a fusion

center. However, due to the limited availability of wireless channels, only a limited

amount of sensors are allowed to transmit at each time slot. Thus, our goal has been

to design the joint selection of a subset of sensors and computing their power allocation.

However, we have shown this problem to be non-convex. Instead, we have proposed

two suboptimal strategies. (i) The joint sensor selection and power allocation (JSS-

EH) policy, which is based on an iterative majorization-minimization procedure and

has been shown to attain an stationary solution of the original non-convex problem.

And (ii) a separate sensor selection and power allocation (SS-EH) policy, which is a

heuristic policy that can also be used as an initialization point of the previous one. In

this policy, given the selection subset, the resulting optimal power allocation has been

shown to follow a directional waterfilling solution. Also as an alternative approach to

the problem, we have proposed an sparsity-promoting sensor selection (SSS-EH) scheme.

Numerical results have shown that the selected sensors are very similar for both the

JSS-EH and SS-EH policies. However, the resulting power allocation over the sensors

varies drastically between the two policies. Also, remember that for the JSS-EH policy

it is needed to crop the sensor selection vector to the largest K values. We have verified

that the effect of doing this procedure and not recomputing the power allocation policy

has a negligible impact on the resulting distortion performance. With regard to the

distortion performance, the simulations show that both policies attain the lower bound

on the distortion with as low as 30% of the sensors selected in the high-SNR case and 50%

in the low-SNR case. Furthermore, we have studied how the initialization point of the

JSS-EH policy affects its performance. The results show that initializing this policy with

the SS-EH solution improves the convergence speed as well as resulting in a lower average

distortion. Finally, we have proposed a myopic online version of our proposed policies.

In the case of the JSS-EH policy, the gap has been shown to be marginal. For the SS-EH
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policy, the gap is higher for a lower number of selected sensors, as conservative power

allocation schemes ultimately lead to unspent energy. To alleviate this, we have proposed

the use of a sliding window to encourage the early consumption of energy. With regards

to the sparse sensor selection policy, the numerical results have shown that by using a

log-sum penalty function, the sparse solution approaches the asymptotic distortion with

as few as 20% of the sensors selected.

Chapter 6 has been devoted to the problem of routing and scheduling data traffic in

an energy harvesting network. In short, the problem that we have studied is that of a

network composed of nodes powered by energy harvesting, where each node generates

data traffic to be routed to a certain destination in the network. Then, the nodes must

collaborate with each other by scheduling and routing the traffic around the network

to ensure the delivery of all data packets. To this end, we have relied on stochastic

subgradient methods on the dual domain. As such, the routing-scheduling policies that

we have proposed act as an energy harvesting generalization of the stochastic family of

the backpressure algorithm. Specifically, we have proposed two distinct policies. (i) The

Stochastic Backpressure with Energy Harvesting (SBP-EH), a simple policy where the

routing-scheduling decision is determined by the difference between a node and its neigh-

bors Lagrange multipliers. And (ii) Stochastic Soft Backpressure with Energy Harvest-

ing (SSBP-EH), a policy with improved convergence guarantees based on a randomized

routing-scheduling decision. Furthermore, we have provided energy causality and queue

stability guarantees for both SBP-EH and SSBP-EH. Numerical results have shown that

given feasible data and energy arrival rates, both SBP-EH and SSBP-EH are capable

of stabilizing the data queues in the network. Furthermore, due to its randomized na-

ture, the SSBP-EH policy is capable of stabilizing the queues to a smaller average value.

More importantly, while there is a gap between the SBP-EH policy and its non-EH

benchmark, the gap between the SSBP-EH policy and its non-EH counterpart seems

to vanish asymptotically. Furthermore, we have also verified by simulations that the

SSBP-EH policy stabilizes the network faster than the SBP-EH policy. This also relates

to the more aggressive use of the available energy in the network by the SSBP-EH policy,

a fact also exposed by the numerical results. Finally, we have characterized the delay

in the packet delivery of both policies. The simulations show that the more aggressive

nature of the SSBP-EH policy pays off, as the average time it takes to deliver a packet

to its destination is lower than for the SBP-EH policy.

Finally, in Chapter 7 we have studied networked control systems in which the sensor

nodes are powered by energy harvesting. The scenario that we have considered is one of

multiple control systems. The sensors of each of these control systems are powered by

energy harvesting and must transmit their measurements to their respective controllers

in order to satisfy a desired control performance. The sensors share the wireless medium,

and therefore, collisions might occur if multiple sensors transmit simultaneously. Our goal
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has been to design transmission policies that satisfy all the desired control performances

while also satisfying the constraints imposed by the energy harvesting process. To do

this, we have used a control performance abstraction to translate the control performance

requirements to equivalent successful transmission probabilities. Then, by resorting to a

dual subgradient method, we have proposed a random access communication scheme that

satisfies the successful transmission probability requirements. Numerical results have

shown that the proposed policy is stabilizing while also satisfying the energy harvesting

constraints. Furthermore, the simulations have also shown how the battery requirements

increase with the instability of the system to be controlled.

8.2 Future Work

There is a vast number of research directions in which the work of this dissertation can be

extended. In this section, we provide some ideas and directions that have been identified.

• More general estimation techniques. We have devoted Chapters 4 and 5 to

some problems of estimation. These results can be readily extended by considering

more general models and estimation methods. For example, the time-correlation

model used in Chapter 4, including the analysis of delay-constrained and delay-

tolerant scenarios, could be incorporated to the multi-sensor problem considered

in Chapter 5. In this case, due to the appearance of time-correlation, it is ex-

pected that the sensor selection policies would vary substantially when compared

to the non-correlated ones. For multi-sensor settings, another extension that can

be readily considered is the introduction of correlated noise over sensors. This

is often the case when measuring certain physical phenomena, resulting in sensor

measurements which are spatially correlated. Such consideration would make the

sensor selection and power allocation problem much more challenging. Other ex-

tensions that can be considered are, for example, the generalization to non-linear

measurement models and the use of more robust estimation techniques (e.g., out-

lier detection). Also, in a more general sense, the framework we have developed

could be used for other techniques of statistical inference, for example, hypothesis

testing for signal detection.

• Actuators powered by energy harvesting. In Chapter 7 we have considered

networked control systems where sensors are powered by energy harvesting. In our

scenario, however, actuators are not powered by an energy harvesting process. This

scenario is common in systems where the estimation of the system state is done

remotely but the actuator has access to the power grid (e.g., industrial applications

where the actuator has a high power consumption). However, recent concepts like

the IoT also envision large amounts of small actuators that could be powered by
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energy harvesting. For such scenarios, there is the need to study how the energy

harvesting process affects the design of the controller itself.

• Joint sensing and actuation with energy harvesting. When dealing with

dynamical systems, it is desirable to deal with scenarios or problems where the

principle of separation of estimation and control holds. This principle states that

the optimal design of the estimator and controller can be done independently of

each other. For example, this is the case of the fundamental Linear-Quadratic-

Gaussian (LQG) control problem, which results in a Kalman filter as estimator

and a linear-quadratic regulator as controller. However, the introduction of energy

harvesting constraints in both the sensors and actuators renders both the estima-

tion and control problems heavily coupled. This motivates the need to study these

problems jointly. This is a very challenging endeavor, and the resulting problem

formulations are expected to be highly non-convex. However, by making use of

the currently available tools and the insight gained throughout this thesis, jointly

designed policies could be developed that, while not optimal, greatly outperform

their separately designed counterparts. In fact, this would fuse together much of

the work done on this thesis, leading to a joint theory of estimation and control of

energy harvesting networks.
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