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Abstract

In this work we use geometric techniques in order to study certain natural exten-
sions of free groups, and solve several algorithmic problems on them.

To this end, we consider the family of free-abelian times free groups (Zm ×Fn) as
a seed towards further generalization in two main directions: semidirect products,
and partially commutative groups (PC-groups).

The four principal projects of this thesis are the following:

Direct products of free-abelian and free groups [DV13; Del14b; DV17b]. We
begin by studying the structure of the groups Zm ×Fn, with special emphasis
on their lattice of subgroups, and their endomorphisms (for which an explicit
description is given, and both injectivity and surjectiveness are characterized); to
then solve on them algorithmic problems involving both subgroups (membership
problem, finite index problem, and subgroup and coset intersection problems)
and endomorphisms (fixed points problem, Whitehead problems, and twisted-
conjugacy problem).

Algorithmic recognition of infinite-cyclic extensions [Cav+17]. In the first part,
we prove the algorithmic undecidability of several properties (finite generability,
finite presentability, abelianity, finiteness, independence, triviality) of the base
group of finitely presented cyclic extensions. In particular, we see that it is not
possible to decide algorithmically if a finitely presented Z-extension admits a
finitely generated base group. This last result allows us to demonstrate the
undecidability of the Bieri-Neumann-Strebel (BNS) invariant.

In the second part, we prove the equivalence between the isomorphism problem
within the subclass of unique Z-extensions, and the semi-conjugacy problem for
certain type of outer automorphisms, which we characterize algorithmically.

Stallings automata for free-abelian by free groups [DV17a]. After recreating
in a purely algorithmic language the classic theory of Stallings associating an
automaton to each subgroup of the free group, we extend this theory to semi-
direct products of the form Zm oFn. Specifically, we associate to each subgroup
of Zm oFn, an automaton (‘enriched’ with vectors in Zm), and we see that in
the finitely generated case this construction is algorithmic and allows to solve the
membership problem within this family of groups.
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The geometric description obtained also shows (even in the case of direct products)
not only that the intersection of finitely generated subgroups can be infinitely
generated, but that even when it is finitely generated, the rank of the intersection
can not be bound in terms of the ranks of the intersected subgroups. This fact is
relevant because it denies any possible extension of the celebrated — and recently
proven — Hanna Neumann conjecture in this direction.

Intersection problems for Droms groups [Del14a; DVZ17]. After characterizing
those partially commutative groups satisfying the Howson property, we combine
the algorithmic version of the Kurosh subgroup theorem given by S.V. Ivanov, with
a generalization of some ideas from our work on Zm ×Fn, to prove the solvability
of the subgroup and coset intersection problems within the subfamily of Droms
groups (that is, those PC- groups whose subgroups are always again partially
commutative).
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Part I

Free times free-abelian groups





1Definition and generalities

Our first approach to extensions of free and free-abelian groups is through direct
products. Despite its naive appearance, the family of finitely generated free-abelian
times free groups (Zm ×Fn) constitutes not only a natural and interesting starting
point by itself, but also a fruitful source of ideas for further generalization.

As we have seen in the introduction, finitely generated free-abelian groups,
namely Zm, are classical and very well known. Free groups, on the other hand,
although much wilder and complicated, have also been extensively studied in the
literature since more than a hundred years ago.

The goal of this chapter is to investigate the structure of direct products of the
form Zm×Fn, namely free-abelian times free groups. At first glance, it may seem
that many questions and problems concerning Zm ×Fn will easily reduce to the
corresponding questions or problems for Zm and Fn; and, in fact, this is the case
when the problem considered is easy or rigid enough.

However, many questions that admit simple solutions when dealing with Zm

or Fn individually, require far more complex solutions over Zm ×Fn. This is the
case, for example, when one considers automorphisms; Aut(Zm ×Fn) naturally
contains GLm(Z)×Aut(Fn), but there are many more automorphisms other than
those preserving the factors Zm and Fn. This causes potential complications
when studying problems involving automorphisms: apart from understanding the
problem in both the free-abelian and the free parts, one has to be able to control
how is it affected by the interaction between the two parts.

Another example of this phenomena is the study of intersections of subgroups.
It is well known that every subgroup of Zm is finitely generated. This is not
true for free groups Fn with n > 2, but it is also a classical result that all these
groups satisfy the Howson property: the intersection of two finitely generated
subgroups is again finitely generated. This elementary property fails dramatically
in Zm × Fn, when m > 1 and n > 2 (a very easy example reproduced below,
already appears in [BK98] attributed to Moldavanski). Consequently, the problem
of computing intersections of finitely generated subgroups of Zm ×Fn (including
the preliminary decision on whether such intersection is finitely generated or not)
becomes considerably more involved than the corresponding problems in Zm and
Fn (see Section 2.3).
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Throughout the chapter we shall use the following notation and conventions. For
n > 1, [n] denotes the set of integers {1, . . . ,n}. Vectors from Zm will always
be understood as row vectors, and matrices M will always be thought as linear
maps acting on the right, v vM; accordingly, morphisms will always act on the
right of the arguments, x xα. For notational coherence, we shall use uppercase
boldface letters for matrices, and lowercase boldface letters for vectors (moreover,
if w ∈ Fn then w ∈ Zn will typically denote its abelianization). We shall use
lowercase Greek letters for endomorphisms of free groups, φ : Fn → Fn, and
uppercase Greek letters for endomorphisms of free-abelian times free groups,
Φ : Zm ×Fn → Zm ×Fn.

The chapter is organized as follows. In Section 1.1, we introduce the family of
groups we are interested in, and we define several basic notions and properties
shared by both families of free-abelian, and free groups, such as the concepts
of rank and basis. In Section 1.2 we study the lattice of subgroups within this
family, an we provide some computational results which will be useful in the next
chapter. Finally, in Section 1.3, we give an explicit description of all automorphisms,
monomorphisms and endomorphisms of free-abelian times free groups which will
be used in Section 2.4 to study fixed point subgroups, in Section 2.5 to solve the
Whitehead problems, and in Section 2.6 to solve the twisted-conjugacy problem
within this family.

1.1 Free-abelian times free groups
Let T = { ti : i ∈ I } and X = { xj : j ∈ J } be disjoint (possibly empty) sets of
symbols, and consider the group G given by the presentation

G = 〈 T ,X | [T , T tX] 〉 ,

where [A,B] denotes the set of commutators of all elements from A with all
elements from B. Calling A and F the subgroups of G generated, respectively, by
T and X, it is easy to see that A is a free-abelian group with basis T , and F is a
free group with basis X. We shall refer to the subgroups A = 〈T〉 and F = 〈X〉
as the free-abelian part, and the free part of the group G, respectively. Now, it is
straightforward to see that G is the direct product of its free-abelian and free parts,
namely

G = 〈 T ,X | [T , T tX] 〉 ' A×F . (1.1)

Definition 1.1.1. We say that a group is free-abelian times free (FATF) if it is isomor-
phic to one of the form (1.1).

Since each letter in T commutes with all generators, any word on T t X can
be rewritten moving the T -letters, say, to the left. So, every element from G
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decomposes as a product of an element from A and an element from F, in a
unique way. After choosing a well ordering on the set T (whose existence for a
general T is equivalent — assuming ZF — to the Axiom of Choice) we have a
natural normal form for the elements in G, which we shall write as taw, where
a = (ai)i ∈

⊕
i∈IZ = Z⊕I, and ta stands for the (finite) product

∏
i∈I t

ai
i (in the

given order for T ), and w is a reduced free word on X.

We shall mostly be interested in the finitely generated case, i.e., when T and X
are both finite, say #I = m, and #J = n respectively, with m,n > 0. In this case,
A is the free-abelian group of rank m (A = Zm), F is the free group of rank n
(F = Fn), and our group G becomes

G = Zm ×Fn = 〈 t1, . . . , tm, x1, . . . , xn | titj = tjti, tixk = xkti 〉, (1.2)

where i, j ∈ [m] and k ∈ [n]. The normal form for an element g ∈ G is now

taw := ta1
1 · · · t

am
m w(x1, . . . , xn),

where a = (a1, . . . ,am) ∈ Zm is a row vector, and w = w(x1, . . . , xn) is a reduced
free word on the alphabet X. Note that the symbol t by itself has no real meaning,
but it allows us to convert the notation for the abelian group Zm from additive
into multiplicative, by moving up the vectors (i.e., the entries of the vectors) to
the level of exponents; this will be especially convenient when working in G, a
noncommutative group in general.

Remark 1.1.2. Observe that the center of the group G is A unless F is infinite
cyclic, in which case G is abelian, and so its center is the whole G. This exception
will create some technical problems. For example, it causes the ranks of the
free-abelian and free parts of G, say m and n, not to be invariants of the group
G, since Zm × F1 ' Zm+1 × F0. However, as one may expect, this is the only
possible redundancy.

Lemma 1.1.3. Let A, A ′ be arbitrary free-abelian groups, and let F, F ′ be arbitrary free
groups. If F and F ′ are not infinite cyclic, then

A×F ' A ′ ×F ′ ⇐⇒ rk(A) = rk(A ′) and rk(F) = rk(F ′) .

Proof. Recall that the center of A×F is A (here is where F 6' Z is needed). Taking
quotient by the center we obtain (A× F)/A ' F. The claimed result follows
immediately.

Last lemma leads to the following natural definition.
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Definition 1.1.4. Let G = A×F be a free-abelian times free group and assume,
without loss of generality, that F 6' Z. Then, the pair of cardinals (rk A, rk F) is
an invariant of G, which we shall refer to as the rank of G, denoted by rk(G).

Remark 1.1.5. We allow this abuse of terminology because the rank of G in the usual
sense, namely the minimal cardinal of a set of generators, is precisely rk A + rk F:
Indeed, let rk A = κ, and rk F = ν. It is clear that G is generated by a set of κ+ ν
elements, and abelianizing, we get G ab = (A× F) ab = A⊕ F ab, a free-abelian
group of rank κ+ ν, so G cannot be generated by less than κ+ ν elements.

Definition 1.1.6. Let G = A×F be a free-abelian times free group. A pair (B,A)
of subsets of G is called a basis of G if the following three conditions are satisfied:

(i) B is an abelian basis of the center of G,

(ii) A is empty, or a free basis of a non-abelian free subgroup of G (note that
this excludes the possibility |A| = 1),

(iii) 〈B∪A〉 = G.

In this case we shall also say that B and A are, respectively, the free-abelian and free
components of (B,A). From (i), (ii) and (iii) it follows immediately

(iv) 〈B〉 ∩ 〈A〉 = {1},

(v) B∩A = ∅,

since 〈B〉 ∩ 〈A〉 is contained in the center of G, but no nontrivial element of 〈A〉
belongs to it.

Usually, we shall abuse notation and just say that B∪A is a basis of G. Note that
no information is lost because we can retrieve B as the elements in B∪A which
belong to the center of G, and A as the remaining elements.

Observe that, by (i), (iii) and (iv) in the previous definition, if (B,A) is a basis of
a free-abelian times free group G, then G = 〈B〉 × 〈A〉; and by (i) and (ii), 〈B〉 is a
free-abelian group of rank |B|, and 〈A〉 is a free group of rank |A| 6= 1; hence, G
admits the “canonical” presentation G = 〈B,A | [B,BtA]〉 and, by Lemma 1.1.3,
rk(G) = (|B|, |A|). In particular, this implies that (|B|, |A|) does not depend on the
particular basis (B,A) chosen.

On the other hand, the first obvious example is T ∪X being a basis of the group
G = 〈T ,X | [T , T tX]〉 (note that if |X| 6= 1 then B = T and A = X, but if |X| = 1 then
B = T ∪X and A = ∅ due to the technical requirement in Lemma 1.1.3). We have
proved the following.

Corollary 1.1.7. Every free-abelian times free group G has a basis. Moreover, every
basis (B,A) satisfies rk(G) = (|B|, |A|).
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1.2 Subgroups of free-abelian times free groups

Let us focus now our attention to subgroups. It is very well known that every
subgroup of a free-abelian group is free-abelian; and every subgroup of a free
group is again free. These two facts lead, with a straightforward argument, to the
same property for free-abelian times free groups (this fact will be crucial for the
rest of the chapter).

Proposition 1.2.1. Any subgroup H 6 Zm ×Fn admits the decomposition

H ' (H∩Zm)×HπF . (1.3)

In particular, subgroups of free-abelian times free group are again free-abelian times free.

Proof. Let T and X be arbitrary disjoint sets, let G be the free-abelian times free
group given by presentation (1.1), and let H 6 G.

If |X| = 0, 1 then G is free-abelian, and so H is again free-abelian (with rank less
than or equal to that of G); the result follows.

Assume |X| > 2. Let A = 〈T〉 and F = 〈X〉 be the free-abelian and free parts of G
respectively, and let us consider the natural short exact sequence associated to the
direct product structure of G:

1 −→A ι A×F = G
πF−→ F −→ 1,

where ι is the inclusion, πF is the projection taw w, and therefore ker(πF) =

A = im(ι). Restricting this short exact sequence to H 6 G, we get

1 −→ ker(πF|H)
ι−→ H

πF−→ HπF −→ 1,

where 1 6 ker(πF|H) = H ∩ ker(πF) = H ∩A 6 A, and 1 6 HπF 6 F. Therefore,
ker(πF|H) is a free-abelian group, and HπF is a free group. Since HπF is free, πF|H

has a splitting
H

σ←− HπF, (1.4)

sending back each element of a chosen free basis for HπF to an arbitrary preim-
age. Hence, σ is injective, HπFσ 6 H is isomorphic to HπF, and straightforward
calculations show that the following map is an isomorphism:

Θσ : H −→ ker(πF|H)×HπFσ

h 7−→
(
h(hπFσ)

−1, hπFσ
)

.
(1.5)

Thus H ' ker(πF|H)×HπFσ is free-abelian times free and the result is proven.

1.2 Subgroups of free-abelian times free groups 7



This proof shows a particular way of decomposing H into a direct product of a free-
abelian subgroup and a free subgroup, which depends on the chosen splitting σ,
namely

H = (H∩A)×HπFσ. (1.6)

We call the subgroups H∩A and HπFσ, respectively, the free-abelian and free parts
of H, with respect to the splitting σ. Note that the free-abelian and free parts of the
subgroup H = G with respect to the natural inclusion Fn 3 w 7→ t0w ∈ G coincide
with what we called the free-abelian and free parts of G.

Furthermore, Proposition 1.2.1 and the decomposition (1.6) give a characterization
of the bases, rank, and all possible isomorphism classes of such an arbitrary
subgroup H.

Corollary 1.2.2. With the above notation, a subset E ⊆ H 6 G = A×F is a basis of H
if and only if

E = EA t EF,

where EA is an abelian basis of H ∩A, and EF is a free basis of HπFσ, for a certain
splitting σ as in (1.4).

Proof. The implication to the left is straightforward, with E = BtA, and (B,A) =
(EA,EF) except for the case rk(F) = 1, where we have (B,A) = (EA t EF,∅).

Suppose now that E = BtA is a basis of H in the sense of Definition 1.1.6, and let
us look at the decomposition (1.6), for suitable σ. If rk(HπF) = 1, then H is abelian,
B is an abelian basis for H, A = ∅, and all but exactly one of the elements in B
belong to H∩A (i.e., have normal forms using only letters from T ); in this case the
result is clear, taking EF to be just that special element. Otherwise, A(H) = H∩A

having B as an abelian basis; take EA = B and EF = A. It is clear that the projection
πF : H HπF, ta u u, restricts to an isomorphism πF|〈A〉 : 〈A〉 → HπF since no
nontrivial element in 〈A〉 belongs to kerπF = H∩A. Therefore, taking σ = πF

−1
|〈A〉,

EF is a free basis of HπFσ.

Corollary 1.2.3. Let G be the free-abelian times free group given by presentation (1.1),
and let rk(G) = (κ, σ). Every subgroup H 6 G is again free-abelian times free with
rk(H) = (κ ′, σ ′) where,

(i) in case of σ = 0: 0 6 κ ′ 6 κ and σ ′ = 0;

(ii) in case of σ > 2: either 0 6 κ ′ 6 κ + 1 and σ ′ = 0, or 0 6 κ ′ 6 κ and
0 6 σ ′ 6 max{σ, ℵ0} and σ ′ 6= 1.

Furthermore, for every such (κ ′, σ ′), there is a subgroup H 6 G such that rk(H) =

(κ ′, σ ′).
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Throughout the rest of the chapter, we shall concentrate on the finitely generated
case. From Proposition 1.2.1 we can easily deduce the following corollary, which
will be useful later.

Corollary 1.2.4. A subgroup H 6 Zm × Fn is finitely generated if and only if its
projection to the free part HπF is finitely generated.

Remark 1.2.5. Note that the proof of Proposition 1.2.1, at least in the finitely
generated case, is completely algorithmic; i.e., if H is given by a finite set of
generators, one can effectively choose a splitting σ, and compute a basis of the
free-abelian and free parts of H (w.r.t. σ). This fact will be crucial for the rest of
the chapter, and we make it more precise in the following proposition.

Proposition 1.2.6. Let G = Zm×Fn be a finitely generated free-abelian times free group.
There is an algorithm which, given a subgroup H 6 G by a finite family of generators,
computes a basis for H and writes both, the new elements in terms of the old generators,
and the old generators in terms of the new basis.

Proof. If n = |X| = 0, 1 then G is free-abelian and the problem is a straightforward
exercise in linear algebra. So, let us assume n > 2.

We are given a finite set of generators for H, say tc1w1, . . . , tcpwp, where p > 1,
c1, . . . , cp ∈ Zm are row vectors, and w1, . . . ,wp ∈ Fn are reduced words on
X = {x1, . . . , xn}. Applying suitable Nielsen transformations, see [LS01], we can
algorithmically transform the p-tuple (w1, . . . ,wp) of elements from Fn, into
another of the form (u1, . . . ,un ′ , 1, . . . , 1), where {u1, . . . ,un ′} is a free basis of
〈w1, . . . ,wp〉 = HπF, and 0 6 n ′ 6 p. Furthermore, reading along the Nielsen
process performed, we can effectively compute expressions of the new elements as
words on the old generators, say uj = ηj(w1, . . . ,wp), j ∈ [n ′], as well as expres-
sions of the old generators in terms of the new free basis, say wi = νi(u1, . . . ,un ′),
for i ∈ [p].

Now, the map σ : HπF → H, uj ηj(tc1w1, . . . , tcpwp) can serve as a splitting in the
proof of Proposition 1.2.1, since ηj(tc1w1, . . . , tcpwp) = tajηj(w1, . . . ,wp) = tajuj ∈
H, where aj, j ∈ [n ′], are integral linear combinations of c1, . . . , cp.

It only remains to compute an abelian basis for ker(πF|H) = H ∩Zm. For each
one of the given generators h = tciwi, calculate h(hπFσ)

−1 = tdi (here, we shall
need the words νi computed before). Using the isomorphism Θσ from the proof
of Proposition 1.2.1, we deduce that {td1 , . . . , tdp} generate H∩Zm; it only remains
to use a standard linear algebra procedure, to extract from here an abelian basis
{tb1 , . . . , tbm ′ } for H∩Zm. Clearly, 0 6 m ′ 6 m.

We immediately get a basis (B,A) for H (with just a small technical caution): if
n ′ 6= 1, take B = {tb1 , . . . , tbm ′ } and A = {ta1u1, . . . , tan ′un ′}; and if n ′ = 1 take
B = {tb1 , . . . , tbm ′ , ta1u1} and A = ∅.
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On the other hand, as a side product of the calculations done, we have the
expressions tajuj = ηj(tc1w1, . . . , tcpwp), j ∈ [n ′]. And we can also compute
expressions of the tbi ’s in terms of the tdi ’s, and of the tdi ’s in terms of the tciwi’s.
Hence we can compute expressions for each one of the new elements in terms of
the old generators.

For the other direction, we also have the expressions wi = νi(u1, . . . ,un ′), for
i ∈ [p]. Hence, νi(ta1u1, . . . , tan ′un ′) = teiwi for some ei ∈ Zm. But

H 3 (tciwi)(teiwi)
−1 = tci−ei ∈ Zm ,

so we can compute integers λ1, . . . , λm ′ such that ci − ei = λ1b1 + · · ·+ λm ′bm ′ .
Thus,

tciwi = tci−eiteiwi = tλ1b1+···+λm ′bm ′ teiwi = (tb1)λ1 · · · (tbm ′ )λm ′νi(ta1u1, . . . , tan ′un ′) ,

for i ∈ [p]. This concludes the proof.

To conclude this section, let us introduce some notation that will be useful later.
Let H be a finitely generated subgroup of G = Zm × Fn, and consider a basis
for H,

{tb1 , . . . , tbm ′ , ta1u1, . . . , tan ′un ′}, (1.7)

where 0 6 m ′ 6 m, {b1, . . . , bm ′} is an abelian basis of H ∩Zm 6 Zm, 0 6 n ′,
a1, . . . , an ′ ∈ Zm, and {u1, . . . ,un ′} is a free basis of HπF 6 Fn. Let us denote by L
the abelian subgroup 〈b1, . . . , bm ′〉 6 Zm (with additive notation, i.e., these are
true vectors with m integral coordinates each), and let us denote by A the n ′ ×m
integral matrix whose rows are the ai’s,

A =


a1
...

an ′

 ∈ Mn ′×m(Z).

If ω is a word on n ′ letters (i.e., an element of the abstract free group Fn ′), we
will denote by ω(u1, . . . ,un ′) the element of HπF obtained by replacing the i-th
letter in ω by ui, i ∈ [n ′]. And we shall use boldface, ω, to denote the abstract
abelianization of ω, which is an integral vector with n ′ coordinates, ω ∈ Zn

′
(not

to be confused with the image of ω(u1, . . . ,un ′) ∈ Fn under the abelianization
map Fn Zn). Straightforward calculations show the result below.

Lemma 1.2.7. With the previous notations, we have

H = { taω(u1, . . . ,un ′) : ω ∈ Fn ′ , a ∈ωA + L } ,

a convenient description of H.
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Definition 1.2.8. Given a subgroup H 6 Zm ×Fn, and an element w ∈ Fn, we
define the abelian completion of w in H as

CH(w) = {a ∈ Zm : taw ∈ H} ⊆ Zm.

Corollary 1.2.9. With the above notation, for every w ∈ Fn we have

(a) if w 6∈ HπF, then CH(w) = ∅,

(b) if w ∈ HπF, then CH(w) = ωA + L, where ω is the abelianization of the
word ω ∈ Fn ′ which expresses w ∈ Fn in terms of the free basis {u1, . . . ,un ′},
i.e., w = ω(u1, . . . ,un ′) (note the difference between w and ω).

So, the completion CH(w) ⊆ Zm is either empty, or a coset of L = H∩Zm.

1.3 Endomorphisms
In this section we will study the endomorphisms of a finitely generated free-
abelian times free group G = Zm ×Fn (with the notation from presentation (1.2)).
Without loss of generality, we assume n 6= 1.

To clarify notation, we shall use lowercase Greek letters to denote endomorphisms
of Fn, and uppercase Greek letters to denote endomorphisms of G = Zm ×Fn.

Proposition 1.3.1. Let G = Zm ×Fn with n 6= 1. The following is a complete list of all
endomorphisms of G:

I. Ψφ,Q,P : tau taQ+uP uφ, where φ ∈ End(Fn), Q ∈ Mm(Z), and P ∈
Mn×m(Z).

II. Ψz,l,h,Q,P : tau taQ+uP zalT+uhT , where 1 6= z ∈ Fn is not a proper power,
Q ∈Mm(Z), P ∈Mn×m(Z), 0 6= l ∈ Zm, and h ∈ Zn.

(In both cases, u ∈ Zn denotes the abelianization of the word u ∈ Fn.) We will refer to
them as endomorphisms of type I and II respectively.

Proof. It is routine to check that all maps of types I and II are, indeed, endomor-
phisms of G.

To see that this is a complete list, let Ψ : G→ G be an arbitrary endomorphism of
G. Looking at the normal form of the images of the xi’s and tj’s, we have

Ψ :

{
xi 7−→ tpi wi

tj 7−→ tqj zj ,
(1.8)

where pi, qj ∈ Zm and wi, zj ∈ Fn, i ∈ [n], j ∈ [m]. Let us distinguish two cases.
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Case 1: zj = 1 for all j ∈ [m]. Denoting by φ the endomorphism of Fn given
by xi wi, and by P and Q the following integral matrices (of sizes n×m and
m×m, respectively)

P =


p11 · · · p1m

...
. . .

...
pn1 · · · pnm

 =


p1
...

pn

 and Q =


q11 · · · q1m

...
. . .

...
qm1 · · · qmm

 =


q1
...

qm

 ,

we can write

Ψ :

{
u 7−→ tuP uφ

ta 7−→ taQ,

where u ∈ Fn, and a ∈ Zm. So, (ta u)Ψ = taQ+uP uφ, and Ψ = Ψφ,Q,P of type I.

Case 2: zk 6= 1 for some k ∈ [m]. In order to Ψ to be well defined, tpi wi and tqj zj

must all commute with tqk zk, and so wi and zj with zk 6= 1, for all i ∈ [n] and
j ∈ [m]. This means that wi = zhi , zj = z lj for some integers hi, lj ∈ Z, i ∈ [n],
j ∈ [m], with lk 6= 0, and some z ∈ Fn not being a proper power. Hence,

(ta u)Ψ = (taΨ) (uΨ) = (taQ zalT) (tuP zuhT
) = taQ+uP zalT+uhT

,

and Ψ = Ψz,l,h,Q,P of type II. This completes the proof.

Remark 1.3.2. Note that if n = 0 then type I and type II endomorphisms do coin-
cide. Otherwise, type II endomorphisms will be seen to be neither injective nor
surjective.

The following proposition gives a quite natural characterization of which endo-
morphisms of type I are injective, and which are surjective. It is important to note
that the matrix P plays absolutely no role in this matter.

Proposition 1.3.3. Let Ψ be an endomorphism of G = Zm ×Fn, with n > 2. Then,

(i) Ψ is a monomorphism if and only if it is of type I, Ψ = Ψφ,Q,P, with φ a monomor-
phism of Fn, and det(Q) 6= 0,

(ii) Ψ is an epimorphism if and only if it is of type I, Ψ = Ψφ,Q,P, withφ an epimorphism
of Fn, and det(Q) = ±1.

(iii) Ψ is an automorphism if and only if it is of type I, Ψ = Ψφ,Q,P, with φ ∈ Aut(Fn)
and Q ∈ GLm(Z); in this case, (Ψφ,Q,P)

−1 = Ψφ−1,Q−1,−M−1PQ−1 , where M ∈
GLn(Z) is the abelianization of φ.

Proof. (i) Suppose that Ψ is injective. Then Ψ cannot be of type II since, if it were,
the commutator of any two elements in Fn (n > 2) would be in the kernel of Ψ.
Hence, Ψ = Ψφ,Q,P for some φ ∈ End(Fn), Q ∈Mm(Z), and P ∈Mn×m(Z).
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Since taΨ = taQ, the injectivity of Ψ implies that of a aQ; hence, det(Q) 6= 0.
Finally, in order to prove the injectivity of φ, let u ∈ Fn with uφ = 1. Note that
the endomorphism of Qm given by Q is invertible so, in particular, there exists
v ∈ Qm such that vQ = uP; write v = 1

ba for some a ∈ Zm and b ∈ Z, b 6= 0,
and we have aQ = b vQ = buP; thus, (tau−b)Ψ = taQ(tuP1)−b = taQ−buP = t0 = 1.
Hence, tau−b = 1 and so, u = 1.

Conversely, let Ψ = Ψφ,Q,P be of type I, with φ a monomorphism of Fn and
det(Q) 6= 0, and let ta u ∈ G be such that 1 = (ta u)Ψ = taQ+uP uφ. Then, uφ = 1
and so, u = 1; and 0 = aQ + uP = aQ and so, a = 0. Hence, Ψ is injective.

(ii) Suppose that Ψ is surjective. Since the image of an endomorphism of type II
followed by the projection πF onto Fn, n > 2, is contained in 〈z〉 (and so is cyclic),
Ψ cannot be of type II. Hence, Ψ = Ψφ,Q,P for some φ ∈ End(Fn), Q ∈ Mm(Z),
and P ∈Mn×m(Z).

Given v ∈ Fn 6 G there must be tau ∈ G such that (tau)Ψ = v and so uφ = v.
Thus φ : Fn → Fn is surjective. On the other hand, for every j ∈ [m], let δj be the
canonical vector of Zm with 1 at coordinate j, and let tbjuj ∈ G be a preimage by Ψ
of tj = tδj . We have (tbjuj)Ψ = tδj , i.e., ujφ = 1, uj = 0 and bjQ = bjQ + ujP = δj.
This means that the matrix B with rows bj satisfies BQ = Im and thus, det(Q) = ±1.

Conversely, let Ψ = Ψφ,Q,P be of type I, with φ being an epimorphism of Fn

and det(Q) = ±1. Since Fn is hopfian, φ ∈ Aut(Fn) and we can consider
Υ = Ψφ−1,Q−1,−M−1PQ−1 , where M ∈ GLn(Z) is the abelianization of φ. For every
ta u ∈ G, we have

(ta u)ΥΨ =
(
taQ−1−uM−1PQ−1

(uφ−1)
)
Ψ = ta−uM−1P+uM−1P u = ta u .

Hence, Ψ is surjective.

(iii) The equivalence is a direct consequence of (i) and (ii). To see the actual value
of Ψ−1 it remains to compute the composition in the reverse order:

(ta u)ΨΥ =
(
taQ+uP(uφ)

)
Υ = ta+uPQ−1−uMM−1PQ−1

u = ta u .

From these characterizations for an endomorphism to be mono, epi or auto, we
immediately have the following corollary.

Corollary 1.3.4. Zm ×Fn is hopfian and not cohopfian.

Remark 1.3.5. This result was already known: in [Gre90] and [Hum94] it is proved
that finitely generated partially commutative groups (this includes groups of the
form G = Zm ×Fn) are residually finite and so, hopfian. However, our proof is
more direct and explicit in the sense of giving complete characterizations of the
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injectivity and surjectivity of a given endomorphism of G. We remark that the
hopfian property for Zm ×Fn does not follow directly from that of free-abelian
and free groups (both very well known): in [Tyr71], the author constructs a direct
product of two hopfian groups which is not hopfian.

Below, we detail the expressions obtained after composing endomorphisms of
types I and II in all possible ways.

Lemma 1.3.6. Composition in the monoid End(Zm ×Fn) can be summarized in the
following four cases:

(a) Type I followed by type I:

Ψφ1,Q1,P1 Ψφ2,Q2,P2 = Ψφ1φ2 , Q1Q2 , P1Q2+M1P2 . (1.9)

(b) Type I followed by type II:

Ψφ1,Q1,P1 Ψw2,l2,h2,Q2,P2 = Ψ
w2 , l2Q1

T , l2P1
T
+h2M1

T , Q1Q2 , P1Q2+M1P2 . (1.10)

(c) Type II followed by type I:

Ψw1,l1,h1,Q1,P1 Ψφ2,Q2,P2 = Ψ
w1φ2 , l1 , h1 , Q1Q2+l1

Tw1P2 , P1Q2+h1
Tw1P2 . (1.11)

(d) Type II followed by type II:

Ψw1,l1,h1,Q1,P1 Ψw2,l2,h2,Q2,P2 =

= Ψ
w2 , l2Q1

T
+h2w1

T l1 , l2P1
T
+h2w1

T h1 , Q1Q2+l1
Tw1P2 , P1Q2+h1

Tw1P2 .
(1.12)

where, M1 denotes the (matrix of) the abelianization of φ1 ∈ End(Fn).

So, composition in End(Zm ×Fn) is closed by both types of endomorphisms,
whereas type II absorbs crossed products. In particular, since the identity map
clearly belongs to type I, we conclude that type I endomorphisms constitute a
submonoid of End(Zm ×Fn) which, moreover, contains the cases most interesting
to us (recall Proposition 1.3.3).

For later use, next lemma summarizes how to operate type I endomorphisms
(compose, invert and take a power); it can be easily proved by following routine
computations. can find similar expressions for the composition of two type II
endomorphisms, or one of each.

Lemma 1.3.7. Let Ψφ,Q,P and Ψφ ′,Q ′,P ′ be two type I endomorphisms of G = Zm ×Fn,
n 6= 1, and denote by M ∈ Mn(Z) the (matrix of the) abelianization of φ ∈ End(Fn).
Then,
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(i) Ψφ,Q,P ·Ψφ ′,Q ′,P ′ = Ψφφ ′,QQ ′,PQ ′+MP ′ ,

(ii) for all k > 1, (Ψφ,Q,P)
k = Ψφk,Qk,Pk

, where Pk =
∑k
i=1 Mi−1P Qk−i,

(iii) Ψφ,Q,P is invertible if and only if φ ∈ Aut(Fn) and Q ∈ GLm(Z); in this case,
(Ψφ,Q,P)

−1 = Ψφ−1,Q−1,−M−1PQ−1 .

(iv) For every a ∈ Zm and u ∈ Fn, the right conjugation by ta u is Γtau = Ψγu,Im,0,
where γu is the right conjugation by u in Fn, v u−1vu, Im is the identity
matrix of size m, and 0 is the zero matrix of size n×m.

In the rest of the section, we shall use this information to derive the structure
of Aut(G), where G = Zm ×Fn, m > 1, n > 2.

Theorem 1.3.8. For G = Zm × Fn, with m > 1 and n > 2, the group Aut(G) is
isomorphic to the semidirect product Mn×m(Z)o (Aut(Fn)×GLm(Z)) with respect
to the natural action. In particular, Aut(G) is finitely presented.

Proof. First of all note that, for every φ, φ ′ ∈ Aut(Fn), every Q, Q ′ ∈ GLm(Z),
and every P, P ′ ∈Mn×m(Z), we have

Ψφ,Im,0 ·Ψφ ′,Im,0 = Ψφφ ′,Im,0 ,

Ψ idFn ,Q,0 ·Ψ idFn ,Q ′,0 = Ψ idFn ,QQ ′,0 ,

Ψ idFn ,Im,P ·Ψ idFn ,Im,P ′ = Ψ idFn ,Im,P+P ′ .

Hence, the three groups Aut(Fn), GLm(Z), and Mn×m(Z) (this last one with the
addition of matrices), are all subgroups of Aut(G) via the three natural inclusions:
φ Ψφ,Im,0, Q Ψ idFn ,Q,0, and P Ψ idFn ,Im,P, respectively. Furthermore, for
every φ ∈ Aut(Fn) and every Q ∈ GLm(Z), it is clear that Ψφ,Im,0 · Ψ idFn ,Q,0 =

Ψ idFn ,Q,0 ·Ψφ,Im,0; hence Aut(Fn)×GLm(Z) is a subgroup of Aut(G) in the natural
way.

On the other hand, for every φ ∈ Aut(Fn), every Q ∈ GLm(Z), and every
P ∈Mn×m(Z), we have

(Ψφ,Im,0)
−1 ·Ψ idFn ,Im,P ·Ψφ,Im,0 = Ψφ−1,Im,0 ·Ψφ,Im,P = Ψ idFn ,Im,M−1P , (1.13)

where M ∈ GLn(Z) is the abelianization of φ, and

(Ψ idFn ,Q,0)
−1 ·Ψ idFn ,Im,P ·Ψ idFn ,Q,0 = Ψ idFn ,Q−1,0 ·Ψ idFn ,Q,PQ = Ψ idFn ,Im,PQ . (1.14)

In particular, Mn×m(Z) is a normal subgroup of Aut(G). But Aut(Fn), GLm(Z)

and Mn×m(Z) altogether generated the whole Aut(G), as can be seen with the
equality

Ψφ,Q,P = Ψ idFn ,Im,PQ−1 ·Ψ idFn ,Q,0 ·Ψφ,Im,0 . (1.15)
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Thus, Aut(G) is isomorphic to the semidirect product Mn×m(Z)o (Aut(Fn)×
GLm(Z)), with the action of Aut(Fn)×GLm(Z) on Mn×m(Z) given by equa-
tions (1.13) and (1.14).

Since Mn×m(Z), Aut(Fn), and GLm(Z) are finitely presented, Aut(G) is finitely
presented too. This completes the proof.

Remark 1.3.9. Finite presentability of Aut(G) was previously known as a particular
case of a more general result: in [Lau95], M. Laurence gave a finite family of
generators for the group of automorphisms of any finitely generated partially
commutative group, in terms of the underlying graph. It turns out that, when
particularizing this to free-abelian times free groups, Laurence’s generating set
for Aut(G) is essentially the same as the one obtained here, after deleting some
obvious redundancy.

Later, in [Day09], M. Day builds a kind of peak reduction technique for such
groups, from which he deduces finite presentation for its group of automorphisms.
However, our Theorem 1.3.8 provides the explicit structure of the automorphism
group of a free-abelian times free group.
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2Algorithmic problems

We shall dedicate this chapter to solve several algorithmic problems in G =

Zm×Fn. The first approach will be to reduce them to the analogous problems on
each part, Zm and Fn, and then apply the vast existing literature for free-abelian
and free groups. In some cases, the solutions for the free-abelian and free parts will
naturally build up a solution for G, while in some others the interaction between
both parts will be more intricate; it depends on how complicated the relation
between the two parts becomes.

From the algorithmic point of view, the statement “let G be a group” is not
sufficiently precise. The algorithmic behavior of G may depend on how it is given
to us. For free-abelian times free groups, we will always assume that they are
finitely generated and given to us with the standard presentation (1.2). We will
also assume that elements, subgroups, homomorphisms and any other objects
associated with the group are given to us in terms of this presentation.

The chapter is organized as follows: we start recalling the folklore solutions to the
three classical Dehn problems for free-abelian times free groups, to then move to
the subgroup membership problem in Section 2.1, which is an easy consequence
of the computability of basis in this family. In the next two sections we study some
other more interesting algorithmic problems: the finite index subgroup problem
in Section 2.2, and the subgroup and coset intersection problems in Section 2.3.
In the second half of the chapter we consider algorithmic problems involving
endomorphisms. Namely we study the fixed subgroup of an endomorphism
in Section 2.4, the Whitehead problems in Section 2.5, and finally in Section 2.6 the
twisted-conjugacy problem and its connection with orbit decidability.

From the existence and computability of normal forms for its elements, one can
easily deduce the solvability of the word and conjugacy problems for Zm ×Fn.
The third of Dehn’s problems is also easy within our family of groups.

Proposition 2.0.1. Let G = Zm ×Fn. Then

(i) the word problem for G is solvable,

(ii) the conjugacy problem for G is solvable,

(iii) the isomorphism problem is solvable within the family of finitely generated free-
abelian times free groups.
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Proof. The solvability of the word and conjugacy problems is straightforward using
the existence of normal forms for the group elements.

For the isomorphism problem, let 〈X | R 〉 and 〈Y | S 〉 be two arbitrary finite
presentations of free-abelian times free groups G and G ′ (i.e., we are given two
arbitrary finite presentations plus the information that both groups are free-abelian
times free). So, both G and G ′ admit presentations of the form (1.2), say Pn,m and
Pn ′,m ′ , for some integers m,n,m ′,n ′ > 0, n,n ′ 6= 1 (unknown at the beginning).

It is well known that two finite presentations present the same group if and only
if they are connected by a finite sequence of Tietze transformations (see [LS01]);
so, there exist finite sequences of Tietze transformations, one from 〈X | R 〉 to Pn,m,
and another from 〈Y | S 〉 to Pn ′,m ′ (again, unknown at the beginning). Let us
start two diagonal procedures exploring, respectively, the tree of all possible Tietze
transformations successively applicable to 〈X | R 〉 and 〈Y | S 〉.

From the discussion above, it is clear that both procedures will necessarily reach
presentations of the desired form in finite time. Once the parameters m,n,m ′,n ′

are known, we apply Lemma 1.1.3 and conclude that 〈X | R 〉 and 〈Y | S 〉 are
isomorphic if and only if n = n ′ and m = m ′.

2.1 Subgroup membership problem
As a first application of Proposition 1.2.6, free-abelian times free groups have solv-
able membership problem. Let us first state the problem for an arbitrary group G.

(Subgroup) membership problem, MP(G). Given elements g, h1, . . . ,hp ∈ G, decide
whether g ∈ H = 〈h1, . . . ,hp〉 and, in affirmative case, compute an expression of g as a
word in the hi’s.

Proposition 2.1.1. The membership problem for G = Zm ×Fn is solvable.

Proof. Write g = taw. We start by computing a basis for H following Proposi-
tion 1.2.6, say {tb1 , . . . , tbm ′ , ta1u1, . . . , tan ′un ′}. Now, check whether gπF = w ∈
HπF = 〈u1, . . . ,un ′〉 (MP is well known to be solvable for finitely generated
free groups). If the answer is negative then g 6∈ H and we are done. Other-
wise, a standard algorithm for membership in free groups gives us the (unique)
expression of w as a word on the uj’s, say w = ω(u1, . . . ,un ′). Finally, com-
pute ω(ta1u1, . . . , tan ′un ′) = tcw ∈ H. It is clear that taw ∈ H if and only if
ta−c = (taw)(tcw)−1 ∈ H that is, if and only if a− c ∈ 〈b1, . . . , bm ′〉 6 Zm. This can
be checked by just solving a system of linear equations; and, in the affirmative case,
we can easily find an expression for g in terms of {tb1 , . . . , tbm ′ , ta1u1, . . . , tan ′un ′},
like at the end of the previous proof. Finally, it only remains to convert this into an
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expression of g in {h1, . . . ,hp} using the expressions we already have for the basis
elements in terms of the hi’s.

Since any element of an arbitrary free-abelian times free group has finite support,
we immediately deduce the following result.

Corollary 2.1.2. The membership problem for arbitrary free-abelian times free groups is
solvable.

2.2 Finite index problem
In this section, the goal is to find an algorithm solving the finite index problem for
a free-abelian times free group.

Finite index problem, FIP(G). Given a finite list w1, . . . ,ws of elements in G, decide
whether the subgroup H = 〈w1, . . . ,ws〉 is of finite index in G; and, if so, compute the
index and a system of right (or left) coset representatives for H.

To start, recall that this same algorithmic problem is well known to be solvable
both for free-abelian and for free groups.

Proposition 2.2.1. A subgroup L 6 Zm has finite index in Zm if and only if it has
(maximum) rankm. Moreover, given L (by a finite set of generators), we can algorithmically
decide whether L is of finite index in Zm, and

(i) effectively compute a transversal (and so the index [Zm : L]) if the index is finite.

(ii) recursively enumerate a transversal for Zm/L if the index is infinite.

Proof. Let a1, . . . , as ∈ Zm be a generating set for L. Consider the s×m integral
matrix A whose rows are the ai’s, and compute its Smith normal form, i.e.

PA = diag(d1,d2, . . . ,dr, 0, . . . , 0)Q, (2.1)

where P ∈ GLs(Z), Q ∈ GLm(Z), d1, . . . ,dr are nonzero positive integers each
dividing the following one (d1 | d2 | · · · | dr 6= 0), and r 6 min{s,m} is the rank of
the diagonal matrix, and thus of A (standard algorithms are known to compute all
these from A, see [Art10] for details).

Since rows of A generate L, it is clear from (2.1) that L is also generated by the
rows of PA, i.e. the image under the automorphism Q : Zm → Zm, v 7→ vQ of the
subgroup L ′ generated by the vectors (d1, 0, . . . , 0), . . . , (0, . . . , 0,dr).
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Now, it is clear that
[d1]× · · · × [dr]×Zm−r (2.2)

is a transversal for Zm/L ′, and hence its image under Q is a transversal for Zm/L.
Moreover, note that the index of L (and of L ′) in Zm is:

[Zm : L] = d1 · · ·dr · # Zm−r, (2.3)

which is finite if and only if r = m, i.e., if and only if L (and so L ′) has maximal
rank in Zm.

Finally recall that the finite index condition (i.e., r = m) is algorithmically decidable
by just looking at the number of nonzero diagonal elements in the Smith normal
form in (2.1); and the obtained transversal for Zm/L recursively enumerable just
tracking forward the elements in (2.2) (diagonally if m− r > 2) and multiplying
them by Q.

Corollary 2.2.2. The finite index problem for Zm is solvable.

On the other hand, the subgroup H = 〈w1, . . . ,ws〉 6 Fn has finite index if and
only if every vertex in the core of the Schreier graph of H, denoted S(H), is
complete (i.e., has degree 2n); this is algorithmically checkable by means of fast
algorithms. And, in this case, the labels of paths in a chosen maximal tree T from
the basepoint to each vertex (resp. from each vertex to the basepoint) give a set of
left (resp. right) coset representatives for H, whose index in Fn is then the number
of vertices of S(H). For details, see [Sta83] for the classical reference or [KM02] for
a more modern and combinatorial approach.

Hence, FIP(Zm) and FIP(Fn) are solvable. In order to build an algorithm to solve
the same problem in Zm ×Fn, we shall need some well-known basic facts about
indices of subgroups, recalled in the following lemmas. For a subgroup H 6 G of
an arbitrary group G, we will write H 6fi G to denote [G : H] <∞.

Lemma 2.2.3. Let G and G ′ be arbitrary groups, ρ : G G ′ an epimorphism between
them, and let H 6 G and H ′ 6 G ′ be arbitrary subgroups. Then,

(i) [G : H] > [G ′ : Hρ]; in particular, if H 6fi G then Hρ 6fi G
′.

(ii) [G : H ′ρ ] = [G ′ : H ′]; in particular, H ′ 6fi G
′ if and only if H ′ρ 6fi G.

Proof. (i) It is enough to see that the map ρ̃ : G/H → G ′/H ′, xH 7→ (xH)ρ is well
defined and surjective. It is well defined since the image of any subset is unique,
and (xH)ρ = xρHρ ∈ G ′/Hρ. Surjectivity is immediate from that of ρ.
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(ii) It is enough to see that the map ρ : G ′/H ′ → G/(H ′ρ ) , x ′H ′ 7→ (x ′H ′)ρ is
well defined and bijective. Again, it is clear that the complete preimage of a set is
unique. Moreover, from the surjectivity of ρ:

y ∈ (x ′H ′)ρ ⇔ yρ ∈ xρH ′ ⇔ (xρ)−1 yρ ∈ H ′

⇔ (x−1y)ρ ∈ H ′ ⇔ x−1y ∈ H ′ρ ⇔ y ∈ x (H ′ρ ) ,

for certain preimage x ∈ G of x ′. Thus, the image (x ′H ′)ρ = x (H ′ρ ) ∈ G/H ′ρ
and the map is well defined. This same fact (reversed) also proves surjectiv-
ity (∀x ∈ G, x(H ′ρ ) = (xρH ′)ρ ; and injectivity:

(x ′H ′)ρ = (y ′H ′)ρ ⇒ (xρH ′)ρ = (yρH ′) ⇒ x (H ′ρ ) = y (H ′ρ ) .

This completes the proof.

Lemma 2.2.4. Let H,H ′ be subgroups of an arbitrary group, and K 6 H. Then:

[H : K] > [H∩H ′ : K∩H ′] , (2.4)

in particular, K 6fi H ⇒ K∩H ′ 6fi H∩H ′.

Proof. It is immediate to see that the map H∩H ′/K∩H ′ → H/K , x(K∩H ′) 7→ xK

is well-defined and injective.

Lemma 2.2.5. Let G and G ′ be arbitrary groups, and let H 6 G×G ′ be a subgroup of
their direct product. Then

[G×G ′ : H] 6 [G : H∩G] · [G ′ : H∩G ′], (2.5)

and
H 6fi G×G ′ ⇔ H∩G 6fi G and H∩G ′ 6fi G

′. (2.6)

Proof. It is easy to prove that the map

G/(H∩G) × G ′/(H∩G ′) → (G×G ′)/H(
g (H∩G) , g ′ (H∩G ′)

)
gg ′H

(2.7)

is well defined and surjective. Namely, let g1 (H ∩G) = g2 (H ∩G), and g ′1 (H ∩
G ′) = g ′2 (H ∩ G ′); i.e., let g1(g2)

−1 ∈ H ∩ G, and g ′1(g
′
2)

−1 ∈ H ∩ G ′. Then,
g1(g2)

−1g ′1(g
′
2)

−1 ∈ H, and since elements in G commute with elements in G ′, we
have that g1g

′
1(g
′
2g2)

−1 ∈ H, that is g1g
′
1H = g2g

′
2H, and the map in (2.7) is well

defined. Since its surjectivity is obvious, we have already proved the inequality
(2.5), and hence the left implication in (2.6).
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The converse implication is a particular case of Lemma 2.2.4. So, the proof is
complete.

Remark 2.2.6. Let G = Zm × Fn, and let H be a subgroup of G. If H has finite
index in G then, applying Lemma 2.2.3.(i) to the canonical projections πA : G Zm

and πF : G Fn, we have that both indices [Zm : HπA], and [Fn : HπF] must also
be finite. Since we can effectively compute generators for HπF and for HπA, and
we can decide whether HπA 6fi Zm and HπF 6fi Fn hold, we have two effectively
checkable necessary conditions for H to be of finite index in G: if either [Zm : HπA]

or [Fn : HπF] is infinite, then so is [G : H].

Nevertheless, these two necessary conditions together are not sufficient to ensure
finiteness of [G : H], as the following easy example shows.

Example 2.2.7. Let H = 〈sa, tb〉, a subgroup of G = Z2 ×F2 = 〈s, t | [s, t]〉 × 〈a,b | 〉.
It is clear that HπA = Z2 and HπF = F2 (so, both indices are 1), but the index
[Z2 ×F2 : H] is infinite because no power of a belongs to H.

Note that H ∩ Zm 6 HπA 6 Zm and H ∩ Fn 6 HπF 6 Fn. So, according
to Lemma 2.2.5, the conditions really necessary, and sufficient, for H to be of
finite index in G (detailed below) are stronger than HπA 6fi Zm and HπF 6fi Fn

respectively, and none of them satisfied in the example.

Lemma 2.2.8. Let H be a subgroup of G = Zm ×Fn. Then,

H 6fi G ⇔

H∩Zm 6fi Zm,

H∩Fn 6fi HπF, and HπF 6fi Fn .
(2.8)

Theorem 2.2.9. The finite index problem for Zm ×Fn is solvable.

Proof. From the given generators for H, we start by computing a basis of H
(see Proposition 1.2.6), say

{tb1 , . . . , tbm ′ , ta1u1, . . . , tan ′un ′},

where 0 6 m ′ 6 m, 0 6 n ′ 6 p, {b1, . . . , bm ′} is a free-abelian basis for L =

H ∩Zm ' Zm
′
, a1, . . . , an ′ ∈ Zm, and {u1, . . . ,un ′} is a free basis for HπF ' Fn ′ .

As above, let us write A for the n ′ ×m integral matrix whose rows are ai ∈ Zm,
i ∈ [n ′].

Since L = 〈b1, . . . , bm ′〉 ' H∩Zm (with the natural isomorphism b tb, changing
the notation from additive to multiplicative), the first necessary condition in (2.8)
is rk(L) = m, i.e., m ′ = m. If this is not the case, then [G : H] = ∞ and we are
done. So, let us assume m ′ = m and compute a set of (right) coset representatives
for L in Zm, say Zm = c1Lt · · · t crL.
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Next, check whether HπF = 〈u1, . . . ,un ′〉 has finite index in Fn (by computing
the core of the Schreier graph of HπF, and checking whether is it complete or not,
see Proposition 5.5.6). If this is not the case, then [G : H] =∞ and we are done as
well. So, let us assume HπF 6fi Fn, and using FIP(Fn) (Theorem 5.5.7), compute a
set of right coset representatives for HπF in Fn, say Fn = v1(HπF)t · · · t vs(HπF).

According to Lemma 2.2.8, it only remains to check whether the subgroup H∩Fn

has finite or infinite index in HπF. Call ρ : Fn ′ Zn
′

the abstract abelianization
map for the free group of rank n ′ (with free basis {u1, . . . ,un ′}), and A : Zn

′ → Zm

the linear mapping v vA corresponding to right multiplication by the matrix A.
Note that

H∩Fn = {w ∈ Fn : 0 ∈ CH(w)} = {w ∈ Fn : ωA ∈ L} 6 HπF,

where ω = ωρ is the abelianization of the word ω which expresses w in the free
basis {u1, . . . ,un ′} of HπF; i.e., ω(u1, . . . ,un ′) = w ∈ Fn, see Corollary 1.2.9. Thus,
H∩Fn is, in terms of the free basis {u1, . . . ,un ′}, the successive full preimage of L,
first by the map A and then by the map ρ, namely H∩Fn ' (L)A−1ρ−1 (see the
diagram in Equation (2.9)).

Fn > HπF ' Fn ′ Zn
′

Zm

P P P P
H∩Fn ' (L)A ρ (L)A L

ρ ←→A

←[→ ←[→

(2.9)

Fig. 2.1: Finite index problem diagram for FATF groups

Hence, using Lemma 2.2.3.(ii), [HπF : H∩Fn] = [Fn ′ : (L)A ρ ] is finite if and only
if [Zn

′
: (L)A ] is finite (in fact, both indices coincide). And this happens if and

only if rk((L)A ) = n ′. Since rk((L)A ) = rk((L ∩ im(A))A ) = rk(L ∩ im(A)) +

rk(ker(A)), we can immediately check whether this rank equals n ′, or not. If this
is not the case, then [HπF : H ∩ Fn] = [Fn ′ : (L)A ρ ] = [Zn

′
: (L)A ] = ∞ and

we are done. Otherwise, (L)A 6fi Zn
′

and so, H∩Fn 6fi HπF and H 6fi G. This
concludes the decision part of the problem.
For the search part, suppose H 6fi G and let us explain how to compute a set of
right coset representatives for H in G (and so, the actual value of the index [G : H]).
Having followed the algorithm described above, we have Zm = c1L t · · · t crL,
and Fn = v1(HπF)t · · · t vs(HπF). Furthermore, from the analysis in the previous
paragraph, we can also compute a set of (right) coset representatives {d1, . . . , dt}

for (L)A−1 in Zn
′
, which can be biunivocally converted (taking respective ρ

preimages, see Lemma 2.2.3.(ii)) into a set of right coset representatives for H∩Fn

in HπF, say HπF = w1(H∩Fn)t · · · twt(H∩Fn).
Hence,

Fn =
⊔
j∈[s]

⊔
k∈[t]

vjwk(H∩Fn) , and [Fn : H∩Fn] = st .
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Combining this with Zm =
⊔
i∈[r] tci(H ∩Zm) , and using the map in the proof

of Lemma 2.2.5, we get

G = Zm ×Fn =
⋃
i∈[r]

⋃
j∈[s]

⋃
k∈[t]

tci vjwkH ,

where some of the cosets tci vjwkH may coincide.
It only remains to perform a cleaning process in the family of rst elements

{
tci vjwk : i ∈ [r], j ∈ [s], k ∈ [t]

}
in order to eliminate any possible duplication in the representatives of the right
cosets of H. This can be easily done by successive application of the membership
problem for H, see Corollary 2.1.2. After this cleaning process, we get a genuine
set of right coset representatives for H in G, and the actual value of [G : H], which
is at most rst. (Note that in general this cleaning process cannot be avoided as the
following example shows.)
Finally, inverting all of them we will get a set of left coset representatives for H
in G.

Example 2.2.10. Let G = Z2 ×F2 = 〈s, t | [s, t] 〉 × 〈a,b | 〉 and consider the (normal)
subgroups H = 〈s, t2,a,b2,bab〉, and H ′ = 〈s, t2,a,b2,bab, tb〉 = 〈s, t2,a, tb〉 of
G (with bases {s, t2,a,b2,bab} and {s, t2,a, tb}, respectively). We have H ∩Z2 =

H ′ ∩Z2 = 〈s, t2〉 62 Z2, and H∩F2 = H ′ ∩F2 = 〈a,b2,bab〉 62 F2, but

[Z2 ×F2 : H] = 4 = [Z2 : H∩Z2] · [F2 : H∩F2] ,

while
[Z2 ×F2 : H ′] = 2 < 4 = [Z2 : H ′ ∩Z2] · [F2 : H ′ ∩F2] ,

with (right) coset representatives {1,b, t, tb} and {1, t}, respectively. This shows that
both the equality and the strict inequality can occur in Lemma 2.2.5.

2.3 Intersection problems and Howson’s property
A group G is said to have the Howson property if the intersection of every pair (and
hence every finite family) of finitely generated subgroups H,H ′ 6fg G is again
finitely generated, H∩H ′ 6fg G.

It is well known that Zm satisfies Howson’s property, since every subgroup is
free-abelian of rank less than or equal to m (and so, finite). Moreover, SIP(Zm)

and CIP(Zm) just reduce to solving standard systems of linear equations.

The case of free groups is more interesting. Howson himself established in 1954
that Fn also satisfies the Howson property, see [How54]. Since then, there have
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been several improvements of this result in the literature, both about lowering the
upper bounds for the rank of the intersection, and about simplifying the arguments
used.

The modern point of view is based on the pull-back technique for graphs: One
can algorithmically represent subgroups of Fn by the core of their Schreier graphs
(a.k.a. Stallings automata); then the graph corresponding to H∩H ′ is the pull-back
of the graphs corresponding to H and H ′, easily constructible from them when
they are finitely generated. This not only confirms Howson’s property for Fn

(namely, the pull-back of finite graphs is finite) but, more importantly, it provides
the algorithmic aspect into the topic by solving SIP(Fn). And, more generally,
an easy variation of these arguments using pullbacks also solves CIP(Fn), see
Proposition 6.1 in [BMV10]).

As a generalization of Howson’s result, B. Baumslag established in [Bau66] the
conservation of Howson’s property under free products (i.e., if G1 and G2 satisfy
Howson’s property then so does G1 ∗G2). The same statement fails dramatically if
we replace the free product by a direct product. And one can find an extremely
simple counterexample for this, in the family of free-abelian times free groups; the
following observation is folklore (it appears in [BK98] attributed to Moldavanski,
and as the solution to exercise 23.8(3) in [Bog08]).

Lemma 2.3.1. The group Zm ×Fn, for m > 1 and n > 2, does not satisfy Howson’s
property.

Proof. The following argument is described as a solution to exercise 23.8(3) in [Bog08]
(see also [DV13]). Indeed, if we write Z×F2 = 〈t | −〉 × 〈a,b | −〉, then the sub-
groups

H = 〈a,b〉 = F2 6 Z×F2 , and

K = 〈ta,b〉 = {w(ta,b) | w ∈ F2} = {t|w|aw(a,b) | w ∈ F2} 6 Z×F2

are both finitely generated, but its intersection

H∩K = {t0w(a,b) | w ∈ F2, |w|a = 0} = 〈〈b〉〉F2 = 〈a
−kbak, k ∈ Z〉

is the normal closure of b in F2, which is infinitely generated, as you can immedi-
ately see from its Stallings automaton (see Corollary 5.4.33)

· · · ;· · ·

b

a

Fig. 2.2: Stallings automaton of 〈〈b〉〉 in F{a,b}
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or using this alternative argument: Suppose that H∩K is finitely generated, then
there exist anm ∈N such that am+1ba−(m+1) ∈ 〈a−kbak, k ∈ [−m,m]〉, and thus
am+1 equals the reduced form of some prefix of w(amba−m, . . . ,b, . . . ,a−mbam),
for some word w. However, the sum of the exponents of a in any such prefix must
be in [−m,m], which is a contradiction.

Note that both H and K are free groups of rank two whose intersection is infinitely
generated. This fact, far from violating the Howson property, means that they are
not simultaneously contained in any free subgroup of Z×F2.

We remark that the subgroups H and H ′ in the previous counterexample are both
isomorphic to F2. So, interestingly, the above is a situation where two free groups
of rank 2 have a non-finitely generated (of course, free) intersection. This does
not contradict the Howson property for free groups, but rather indicates that one
cannot embed H and H ′ simultaneously into a free subgroup of Z×F2.

In this setting, it makes sense to consider the following two related algorithmic
problems (stated for an arbitrary group G).

Subgroup intersection problem, SIP(G). Given finitely generated subgroups H and
H ′ of G (by finite sets of generators), decide whether the intersection H ∩H ′ is finitely
generated and, if so, compute a generating set for H∩H ′.

Coset intersection problem, CIP(G). Given finitely generated subgroups H and H ′ of
G (by finite sets of generators), and elements g,g ′ ∈ G, decide whether the right cosets
gH and g ′H ′ intersect trivially or not; and in the negative case (i.e., when gH∩ g ′H ′ =
g ′′(H∩H ′)), compute such a g ′′ ∈ G.

In the present section, we shall solve SIP(Zm × Fn) and CIP(Zm × Fn). The
key point is Corollary 1.2.4 : the intersection H ∩H ′ is finitely generated if and
only if its projection (H ∩H ′)πF 6 Fn is finitely generated. Note that the group
HπF ∩H ′πF is always finitely generated (by Howson’s property of Fn), but the
inclusion is not, in general, an equality.

Lemma 2.3.2. Let H,H ′ be subgroups of Zm ×Fn. Then,

(H∩H ′)πF 6 HπF ∩ H ′πF ,

and the inclusion can be strict.

Proof. The inclusion is obvious. For the possible strictness consider the following
example.
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Example 2.3.3. Consider in Z×F2 = 〈t | −〉 × 〈a,b | −〉 the subgroups below:

H = 〈ta2,bab−1, t2〉 , H ′ = 〈t2a3,ba, t2〉 .

Then,

Hπ = 〈a2,bab−1〉 , H ′π = 〈a3,ba〉 ,

L = 2Z , L ′ = 2Z ,

ω = (3, 0) , ω ′ = (2, 0) ,

A =
[

1
0

]
, A ′ =

[
2
0

]
.

So, it is clear that a6 ∈ HπF ∩H ′πF.

We claim that a6 /∈ (H∩H ′)πF. Indeed, a6 ∈ (H∩H ′)πF if and only if its respective
abelian completions in H, and H ′ are compatible. Now, from Corollary 1.2.9:

CH(a
6) = ωA + L = (3, 0)

[
1
0

]
+ 2Z = 1 + 2Z ,

CH ′(a
6) = ω ′A ′ + L ′ = (2, 0)

[
2
0

]
+ 2Z = 2Z .

Thus, CH(a6)∩ CH ′(a6) = ∅, and a6 /∈ (H∩H ′)πF, as claimed.

So, although HπF ∩H ′πF 6 Fn is always finitely generated, since the inclusion
(H ∩H ′)πF 6 HπF ∩H ′πF can be strict, this opens the possibility for (H ∩H ′)πF

(and so for H∩H ′) to be non-finitely generated, as is the case in the example in
the proof of Lemma 2.3.1.

Let us describe in detail the data involved in CIP(G) for G = Zm ×Fn. By Propo-
sition 1.2.6, we can assume that the initial finitely generated subgroups H,H ′ 6 G
are given by respective bases i.e., by two sets of elements

E = {tb1 , . . . , tbm1 , ta1u1, . . . , tan1un1} ,

E ′ = {tb ′1 , . . . , tb ′m2 , ta ′1u ′1, . . . , ta ′n2u ′n2
} ,

(2.10)

where {u1, . . . ,un1} is a free basis of HπF 6 Fn, {u ′1, . . . ,u ′n2
} is a free basis of

H ′πF 6 Fn, {tb1 , . . . , tbm1 } is an abelian basis of H ∩Zm, and {tb ′1 , . . . , tb ′m2 } is an
abelian basis of H ′ ∩Zm. Consider the subgroups L = 〈b1, . . . , bm1〉 6 Zm and
L ′ = 〈b ′1, . . . , b ′m2

〉 6 Zm, and the matrices

A =


a1
...

an1

 ∈Mn1×m(Z) and A ′ =


a ′1
...

a ′n2

 ∈Mn2×m(Z).
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We are also given two elements g = ta u and g ′ = ta ′ u ′ from G, and have to decide
whether the intersection gH∩ g ′H ′ is empty or not.

Before describing the algorithm, note that HπF is a free group of rank n1. Since
{u1, . . . ,un1} is a free basis of HπF, every element w ∈ HπF can be written in a
unique way as a word on the ui’s, say w = ω(u1, . . . ,un1). Abelianizing this word,
we get the abelianization map ρ1 : HπF Zn1 , w ω (not to be confused with
the restriction to HπF of the ambient abelianization Fn Zn, which will have no
role in this proof). Similarly, we define the morphism ρ2 : H

′πF Zn2 .

With all this data given, note that gH∩ g ′H ′ is empty if and only if its projection
to the free component is empty,

gH∩ g ′H ′ = ∅ ⇔ (gH∩ g ′H ′)πF = ∅;

so, it will be enough to study this last projection. And, since this projection contains
precisely those elements from (gH)πF ∩ (g ′H ′)πF = (u ·HπF)∩ (u ′ ·H ′πF) having
compatible abelian completions in gH∩ g ′H ′, a direct application of Lemma 1.2.7
gives the following result.

Lemma 2.3.4. With the above notation, the projection (gH∩ g ′H ′)πF consists precisely
on those elements v ∈ (u ·HπF)∩ (u ′ ·H ′πF) such that

Nv = (a +ωA + L)∩
(
a ′ +ω′A ′ + L ′

)
6= ∅ , (2.11)

whereω = wρ1 andω′ = w ′ρ2 are, respectively, the abelianizations of the abstract words
ω ∈ Fn1 and ω ′ ∈ Fn2 expressing w = u−1v ∈ HπF 6 Fn and w ′ = u ′−1v ∈ H ′πF 6

Fn in terms of the free bases {u1, . . . ,un1} and {u ′1, . . . ,u ′n2
} (i.e., u ·ω(u1, . . . ,un1) =

v = u ′ ·ω ′(u ′1, . . . ,u ′n2
)). That is,

(gH∩ g ′H ′)πF = {v ∈ (u ·HπF)∩ (u ′ ·H ′πF) : Nv 6= ∅ } ⊆ (u ·HπF)∩ (u ′ ·H ′πF)

Theorem 2.3.5. The coset intersection problem for Zm ×Fn is solvable.

Proof. Let G = Zm × Fn be a finitely generated free-abelian times free group.
Using the solution to CIP(Fn), we start by checking whether (u ·HπF)∩ (u ′ ·H ′πF)

is empty or not. In the first case (gH ∩ g ′H ′)πF, and so gH ∩ g ′H ′, will also be
empty and we are done. Otherwise, we can compute v0 ∈ Fn such that

(u ·HπF)∩ (u ′ ·H ′πF) = v0 · (HπF ∩H ′πF) , (2.12)

compute words ω0 ∈ Fn1 and ω ′0 ∈ Fn2 such that u ·ω0(u1, . . . ,un1) = v0 =

u ′ ·ω ′0(u ′1, . . . ,u ′n2
), and compute a free basis, {v1, . . . , vn3}, for HπF ∩H ′πF together
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with expressions of the vi’s in terms of the free bases for HπF and H ′πF, vi =

νi(u1, . . . ,un1) = ν
′
i(u
′
1, . . . ,u ′n2

), i ∈ [n3].

Let ρ3 : HπF ∩H ′πF Zn3 be the corresponding abelianization map. Abelianizing
the words νi and ν ′i, we can compute the rows of the matrices P and P ′ (of sizes
n3 ×n1 and n3 ×n2, respectively) describing the abelianizations of the inclusion

maps HπF
ι HπF ∩H ′πF

ι ′ H ′πF, see the central part of the diagram (2.13)
below.

By (2.12), u−1v0 ∈ HπF and u ′−1v0 ∈ H ′πF. So, left translation by w0 = u−1v0 is a
permutation of HπF (not a homomorphism, unless w0 = 1), say λw0 : HπF → HπF,
x w0x = u−1v0x. Analogously, we have the left translation by w ′0 = u ′−1v0,
say λw ′0 : H

′πF → H ′πF, x w ′0x = u ′−1v0x. We include these translations in our
diagram:

(H∩H ′)πF

6

HπF HπF HπF ∩H ′πF H ′πF H ′πF

Zn1 Zn1 Zn3 Zn2 Zn2

Zm

←

�ρ1 ///

←

�ρ1

←→

λw0

///

←
� ρ3

�→ι �→ι
′

///

←

� ρ2

←→
λw ′0

///

←

� ρ2

←
→

A
←

→
A

←→+ω0 ←→P ← →P ′

←
→

A ′

←→
+ω ′0

←
→ A ′

(2.13)

where ω0 = w0ρ1 ∈ Zn1 and ω′
0 = w ′0ρ2 ∈ Zn2 are the abelianizations of w0 and

w ′0 with respect to the free bases {u1, . . . ,un1} and {u ′1, . . . ,u ′n2
}, respectively.

Now, for every v ∈ (u ·HπF)∩ (u ′ ·H ′πF), using Lemma 2.3.4 and the commutativ-
ity of the upper part of the above diagram, we have

Nv =
(
a + (u−1v)ρ1A + L

)
∩
(
a ′ + (u ′−1v)ρ2A ′ + L ′

)
=
(
a + (v−1

0 v)ιλw0ρ1A + L
)
∩
(

a ′ + (v−1
0 v)ι ′λw ′0ρ2A ′ + L ′

)
=
(
a + (ω0 + (v−1

0 v)ρ3P)A + L
)
∩
(
a ′ + (ω′

0 + (v−1
0 v)ρ3P ′)A ′ + L ′

)
=
(
a +ω0A + (v−1

0 v)ρ3PA + L
)
∩
(
a ′ +ω′

0A ′ + (v−1
0 v)ρ3P ′A ′ + L ′

)
.

With this expression, we can characterize, in a computable way, which elements
from (u ·HπF)∩ (u ′ ·H ′πF) do belong to (gH∩ g ′H ′)πF.

Lemma 2.3.6. With the current notation we have

(gH∩ g ′H ′)πF = Mρ3λv0 ⊆ (u ·HπF)∩ (u ′ ·H ′πF) , (2.14)
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where M ⊆ Zn3 is the preimage by the linear mapping PA − P ′A ′ : Zn3 → Zm of the
linear variety

N = a ′ − a +ω′
0A ′ −ω0A + (L+ L ′) ⊆ Zm. (2.15)

Proof. By Lemma 2.3.4, an element v ∈ (u ·HπF) ∩ (u ′ ·H ′πF) belongs to (gH ∩
g ′H ′)πF if and only if Nv 6= ∅. That is, if and only if the vector x = (v−1

0 v)ρ3 ∈ Zn3

satisfies that the two varieties a +ω0A + xPA + L and a ′ +ω′
0A ′ + xP ′A ′ + L ′ do

intersect. But this happens if and only if the vector

(
a +ω0A + xPA

)
−
(
a ′ +ω′

0A ′ + xP ′A ′
)
= a − a ′ +ω0A −ω′

0A ′ + x(PA − P ′A ′)

belongs to L + L ′. That is, if and only if x(PA − P ′A ′) belongs to N. Hence,
v belongs to (gH ∩ g ′H ′)πF if and only if x = (v−1

0 v)ρ3 ∈ M, i.e., if and only
if v ∈Mρ3λv0 .

With all the data already computed, we explicitly have the variety N and, using
standard linear algebra, we can compute M (which could be empty, because N may
possibly be disjoint with the image of PA − P ′A ′). In this situation, the algorithmic
decision on whether gH∩ g ′H ′ is empty or not is straightforward.

Lemma 2.3.7. With the current notation, and assuming that (u ·HπF)∩ (u ′ ·H ′πF) 6= ∅,
the following are equivalent:

(a) gH∩ g ′H ′ = ∅,

(b) (gH∩ g ′H ′)πF = ∅,

(c) Mρ3 = ∅,

(d) M = ∅,

(e) N∩ im(PA − P ′A ′) = ∅.

If gH ∩ g ′H ′ = ∅, we are done. Otherwise, N ∩ im(PA − P ′A ′) 6= ∅ and we
can compute a vector x ∈ Zn3 such that x(PA − P ′A ′) ∈ N. Take now any
preimage of x by ρ3, for example vx1

1 · · · v
xn3
n3 if x = (x1, . . . , xn3), and by (2.14),

u ′′ = v0v
x1
1 · · · v

xn3
n3 ∈ (gH∩ g ′H ′)πF.

It only remains to find a ′′ ∈ Zm such that g ′′ = ta ′′u ′′ ∈ gH ∩ g ′H ′. To do this,
observe that u ′′ ∈ (gH ∩ g ′H ′)πF implies the existence of a vector a ′′ such that
ta ′′ u ′′ ∈ tauH ∩ ta ′u ′H ′, i.e., such that ta ′′−a u−1u ′′ ∈ H and ta ′′−a ′u ′−1u ′′ ∈ H ′.
In other words, there exists a vector a ′′ ∈ Zm such that a ′′ − a ∈ CH(u

−1u ′′)

and a ′′ − a ′ ∈ CH ′(u
′−1u ′′). That is, the affine varieties a + CH(u

−1u ′′) and a ′ +
CH ′(u

′−1u ′′) do intersect. By Corollary 1.2.9, we can compute equations for these
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two varieties, and compute a vector in its intersection. This is the a ′′ ∈ Zm we are
looking for.

The above argument applied to the case where g = g ′ = 1 is giving us valuable
information about the subgroup intersection H ∩H ′; this will allow us to solve
SIP(Zm × Fn) as well. Note that, in this case, a = a ′ = 0, u = u ′ = 1 and so,
v0 = 1, w0 = w ′0 = 1, and ω0 =ω′

0 = 0.

Theorem 2.3.8. The subgroup intersection problem for Zm ×Fn is solvable.

Proof. Let G = Zm ×Fn be a finitely generated free-abelian times free group. As
in the proof of Theorem 2.3.5, we can assume that the initial finitely generated
subgroups H,H ′ 6 G are given by respective bases, i.e., by two sets of elements like
in (2.10), E = {tb1 , . . . , tbm1 , ta1u1, . . . , tan1un1} and E ′ = {tb ′1 , . . . , tb ′m2 , ta ′1u ′1, . . . , ta ′n2u ′n2

}.
Consider the subgroups L,L ′ 6 Zm and the matrices A ∈ Mn1×m(Z) and
A ′ ∈ Mn2×m(Z) as above. We shall algorithmically decide whether the inter-
section H ∩ H ′ is finitely generated or not and, in the affirmative case, shall
compute a basis for H∩H ′.

Let us apply the algorithm from the proof of Theorem 2.3.5 to the cosets 1 ·H and
1 ·H ′; that is, take g = g ′ = 1, i.e., u = u ′ = 1 and a = a ′ = 0. Of course, H∩H ′ is
not empty, and v0 = 1 serves as an element in the intersection, v0 ∈ H∩H ′. With
this choice, the algorithm works with w0 = w ′0 = 1 and ω0 = ω′

0 = 0 (so, we
can forget the two translation parts in diagram (2.13)). Lemma 2.3.6 tells us that
(H∩H ′)πF =Mρ3 6 HπF ∩H ′πF, where M is the preimage by the linear mapping
PA − P ′A ′ : Zn3 → Zn1 of the subspace N = L+ L ′ 6 Zm. In this situation, the
following lemma decides whether H∩H ′ is finitely generated or not.

Lemma 2.3.9. With the current notation, the following are equivalent:

(a) H∩H ′ is finitely generated,

(b) (H∩H ′)πF is finitely generated,

(c) Mρ3 is either trivial or of finite index in HπF ∩H ′πF,

(d) either n3 = 1 and M = {0}, or M is of finite index in Zn3 ,

(e) either n3 = 1 and M = {0}, or rk(M) = n3.

Proof. The equivalence (a) ⇔ (b) is proved in Corollary 1.2.4. The equivalence
(b)⇔ (c) comes from the well-known fact (see, for example, [LS01] pags. 16-18) that,
in the finitely generated free group HπF ∩H ′πF, the subgroup (H∩H ′)πF =Mρ3

is normal and so, finitely generated if and only if it is either trivial or of finite
index. But, by Lemma 2.2.3.(ii), the index [HπF ∩H ′πF :Mρ3 ] is finite if and only if
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[Zn3 :M] is finite; this gives (c)⇔ (d). The last equivalence is a basic fact in linear
algebra.

We have computed n3 and an abelian basis for M. If n3 = 0 we immediately
deduce that H ∩H ′ is finitely generated. If n3 = 1 and M = {0} we also deduce
that H∩H ′ is finitely generated. Otherwise, we check whether rk(M) equals n3; if
this is the case then again H∩H ′ is finitely generated; if not, H∩H ′ is infinitely
generated.

It only remains to compute a basis for H∩H ′, in case it is finitely generated. We
know from (1.6) that

H∩H ′ =
(
(H∩H ′)∩Zm

)
× (H∩H ′)πFσ,

where σ is any splitting for πF|H∩H ′ : H∩H ′ (H∩H ′)πF; then we can easily get
a basis of H∩H ′ by putting together a basis of each part. The strategy will be the
following: first, we compute an abelian basis for

(H∩H ′)∩Zm = (H∩Zm)∩ (H ′ ∩Zm) = L∩ L ′

by just solving a system of linear equations. Second, we shall compute a free basis
for (H∩H ′)πF. And finally, we will construct an explicit splitting σ and will use it
to get a free basis for (H∩H ′)πFσ. Putting together these two parts, we shall be
done.

To compute a free basis for (H ∩ H ′)πF note that, if n3 = 0, or n3 = 1 and
M = {0}, then (H ∩H ′)πF = 1 and there is nothing to do. In the remaining case,
rk(M) = n3 > 1, Mρ3 = (H ∩H ′)πF has finite index in HπF ∩H ′πF, and so it is
finitely generated. We give two alternative options to compute a free basis for it.

The subgroup M has finite index in Zn3 , and we can compute a system of coset
representatives of Zn3 modulo M,

Zn3 = Mc1 t · · · tMcd

Now, being ρ3 surjective, and according to Lemma 2.2.3.(ii), we can transfer
the previous partition via ρ3 to obtain a system of right coset representatives of
HπF ∩H ′πF modulo Mρ3 :

HπF ∩H ′πF = (Mρ3 )z1 t · · · t (Mρ3 )zd, (2.16)

where we can take, for example, zi = v
ci,1
1 v

ci,2
2 · · · vci,n3

n3 ∈ HπF ∩H ′πF, for each
vector ci = (ci,1, ci,2, . . . , ci,n3) ∈ Zn3 , i ∈ [d].
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Now let us construct the core of the Schreier graph for Mρ3 = (H∩H ′)πF (with
respect to {v1, . . . , vn3}, a free basis for HπF ∩H ′πF), S(Mρ3 ), in the following way:
consider the graph with the cosets of (2.16) as vertices, and with no edge. Then,
for every vertex (Mρ3 )zi and every letter vj, add an edge labeled vj from (Mρ3 )zi

to (Mρ3 )zivj, algorithmically identified among the available vertices by repeatedly
using the solvability of the membership problem for Mρ3 (note that we can do this
by abelianizing the candidate and checking the defining equations for M). Once
we have run over all i, j, we shall get the full graph S(Mρ3 ), from which we can
easily obtain a free basis for (H∩H ′)πF in terms of {v1, . . . , vn3}.

Alternatively, let {m1, . . . , mn3} be an abelian basis for M (which we already
have from the previous construction), say mi = (mi,1,mi,2, . . . ,mi,n3) ∈ Zn3 ,
i = 1, . . . ,n3, and consider the elements xi = v

mi,1
1 v

mi,2
2 · · · vmi,n3

n3 ∈ HπF ∩H ′πF. It
is clear that Mρ3 is the subgroup of HπF ∩H ′πF generated by x1, . . . , xn3 and all
the infinitely many commutators from elements in HπF ∩H ′πF. But Mρ3 is finitely
generated so, finitely many of those commutators will be enough. Enumerate
all of them, y1,y2, . . . and keep computing the core Sj of the Schreier graph for
the subgroup 〈x1, . . . , xn3 ,y1, . . . ,yj〉 for increasing j’s until obtaining a complete
graph with d vertices (i.e., until reaching a subgroup of index d).

When this happens, we shall have computed the core of the Schreier graph for
Mρ3 = (H∩H ′)πF (with respect to {v1, . . . , vn3}, a free basis of HπF ∩H ′πF), from
which we can easily find a free basis for (H∩H ′)πF, in terms of {v1, . . . , vn3}.

Finally, it remains to compute an explicit splitting σ for πF|H∩H ′ : H∩H ′ (H∩
H ′)πF. We have a free basis {z1, . . . , zd} for (H∩H ′)πF, in terms of {v1, . . . , vn3}; so,
using the expressions vi = νi(u1, . . . ,un1) that we have from the beginning of the
proof, we can get expressions zi = ηi(u1, . . . ,un1). From here,

ηi(ta1 u1, . . . , tan1 un1) = tei zi ∈ H ,

and projects to zi, so Czi,H = ei + L (see Corollary 1.2.9), i ∈ [d]. Similarly,
we can get vectors e ′i ∈ Zm such that Czi,H ′ = e ′i + L

′. Since, by construction,
Czi,H∩H ′ = Czi,H ∩ Czi,H ′ is a non-empty affine variety in Zm with direction
L∩ L ′, we can compute vectors e ′′i ∈ Zm on it by just solving the corresponding
systems of linear equations, i ∈ [d]. Now, zi te ′′i zi is the desired splitting
H ∩H ′ σ← (H ∩H ′)πF, and {te ′′1 z1, . . . , te ′′d zd} is the free basis for (H ∩H ′)πFσ we
were looking for.

As mentioned above, putting together this free basis with the abelian basis we
already have for L∩ L ′, we get a basis for H∩H ′, concluding the proof.
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Corollary 2.3.10. Let H,H ′ be two free non-abelian subgroups of finite rank in Zm×Fn.
With the previous notation, the intersection H ∩H ′ is finitely generated if and only if
either H∩H ′ = 1, or PA = P ′A ′.

Proof. Under the conditions of the statement, we have L = L ′ = {0}. Hence,
N = L+ L ′ = {0} and its preimage by PA − P ′A ′ is M = ker(PA − P ′A ′) 6 Zn3 .
Now, by Lemma 2.3.9, H∩H ′ is finitely generated if and only if either

(H∩H ′)πF = Mρ3 = 1 , or n3 − rk(im(PA − P ′A ′)) = rk(M) = n3 ;

that is, if and only if either

(H∩H ′)πF = 1 , or PA = P ′A ′ .

But, since L = L ′ = {0}, (H∩H ′)πF = 1 if and only if H∩H ′ = 1.

We consider now two examples to illustrate the preceding algorithm.

Example 2.3.11. Let us analyze again the example given in the proof of Lemma 2.3.1,
under the light of the previous corollary. We considered in Z×F2 = 〈t | 〉× 〈a,b | 〉
the subgroups H = 〈a,b〉 and H ′ = 〈ta,b〉, both free non-abelian of rank 2. It
is clear that A =

[
0
0

]
and A ′ =

[
1
0

]
, while HπF = H ′πF = HπF ∩ H ′πF = F2;

in particular, n3 = 2 and H ∩H ′ 6= 1. In these circumstances, both inclusions
HπF HπF ∩H ′πF H ′πF are the identity maps, so P = P ′ = 1 is the 2× 2
identity matrix and hence, PA =

[
0
0

]
6=
[

1
0

]
= P ′A ′. According to Corollary 2.3.10,

this means that H∩H ′ is not finitely generated, as we had seen before.

Example 2.3.12. Consider two finitely generated subgroups H,H ′ 6 Fn 6 Zm×Fn.
In this case we have A = (0) ∈ Mn1,m and A ′ = (0) ∈ Mn2,m and so, PA = (0) =
P ′A ′. Thus, Corollary 2.3.10 just corroborates Howson’s property for Fn.

To finish this section, we present an application of Theorem 2.3.8 to a nice geometric
problem. In [Sah15], Sahattchieve studies quasi-convexity of subgroups of Zm×Fn

with respect to the natural component-wise action of Zm × Fn on the product
space, Rm × Tn, of the m-dimensional euclidean space and the regular (2n)-
valent infinite tree Tn: a subgroup H 6 Zm × Fn is quasi-convex if the orbit
Hp of some (and hence every) point p ∈ Rm × Tn is a quasi-convex subset of
Rm× Tn (see [Sah15] for more details). One of the results obtained is the following
characterization.

Theorem 2.3.13 (Sahattchieve). Let H be a subgroup of Zm ×Fn. Then, H is quasi-
convex if and only if H is either cyclic or virtually of the form B×A, for some finitely
generated B 6fg Zm and A 6fg Fn. (In particular, quasi-convex subgroups are finitely
generated.)
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Combining this with our Theorem 2.3.8, we can easily establish an algorithm to
decide whether a given finitely generated subgroup of Zm ×Fn is quasi-convex
or not (with respect to the above mentioned action).

Corollary 2.3.14. There is an algorithm which, given a finite list h1, . . . ,hs of elements
in Zm ×Fn, decides whether the subgroup H = 〈h1, . . . ,hs〉 is quasi-convex or not.

Proof. First, apply Proposition 1.2.6 to compute a basis for H. If it contains only
one element, then H is cyclic and we are done.

Otherwise (H is not cyclic) we can easily compute a free-abelian basis and a free
basis for the respective projections HπA 6 Zm and HπF 6 Fn. From the basis
for H we can immediately extract a free-abelian basis for Zm ∩H = HπA ∩H.
And, using Theorem 2.3.8, we can decide whether Fn ∩H = HπF ∩H is finitely
generated or not and, in the affirmative case, compute a free basis for it.

Finally, we can decide whether HπA ∩H 6fi HπA and HπF ∩H 6fi HπF hold or
not (applying the well-known solutions to FIP(Zm) and FIP(Fn ′) or, alternatively,
using the more general Theorem 2.2.9 above); note that if we detected that HπF ∩H
is infinitely generated then it must automatically be of infinite index in HπF (which,
of course, is finitely generated).

We claim that H is quasi-convex if and only if HπA ∩H 6fi HπA and HπF ∩H 6fi

HπF; this will conclude the proof.

For the implication to the right (and applying Theorem 2.3.13), assume that
B×A 6fi H for some B 6 Zm and A 6 Fn being finitely generated. Applying
πA and πF we get B 6fi HπA and A 6fi HπF, respectively (see Lemma 2.2.3.(i)).
But B 6 HπA ∩H 6 HπA and A 6 HπF ∩H 6 HπF hence, HπA ∩H 6fi HπA and
HπF ∩H 6fi HπF.

For the implication to the left, assume HπA ∩H 6fi HπA and HπF ∩H 6fi HπF

(and, in particular, HπF ∩H finitely generated). Take B = HπA ∩H 6fi HπA 6 Zm

andA = HπF∩H 6fi HπF 6 Fn, and we get B×A 6fi HπA×HπF (see Lemma 2.2.5).
But H is in between, B×A 6 H 6 HπA ×HπF, hence B×A 6fi H and, by Theo-
rem 2.3.13, H is quasi-convex.

2.4 Fixed subgroups

In this section we shall study when the subgroup fixed by an endomorphism or
an automorphism of Zm ×Fn is finitely generated and, in this case, consider the
problem of computing a basis for it.
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Fixed Points Problems, FPPA(G), FPPE(G). Given an automorphism (resp. endomor-
phism) Ψ of G by images of generators, decide whether FixΨ is finitely generated and, if
so, compute a generating set.

Of course, the fixed point subgroup of an arbitrary endomorphism of Zm is finitely
generated, and the problems FPPA(Zm) and FPPE(Z

m) are clearly solvable, just
reducing them to solve the corresponding systems of linear equations.

Again, the case of free groups is much more complicated, and has a rich and
interesting history (see [Ven02] for a historical survey). After several conjec-
tures about the finite generability of Fixα, for different kinds of automorphisms
α ∈ Aut(Fn), Gersten finally proved in [Ger87] that rk(Fixα) <∞ for every auto-
morphism α ∈ Aut(Fn); and shortly after, Goldstein and Turner [GT86] extended
this result to arbitrary endomorphisms of Fn.

After these results, the natural quest for possible bounds of this rank ended up
with the publication in 1992 of the seminal paper [BH92] by M. Bestvina, and
M. Handel introducing the powerful technique of train tracks, and providing the
first (and furthermore tight) uniform upper bound for the rank of the subgroup of
fixed points of an automorphism α ∈ Aut(Fn), namely rk(Fixα) 6 n.

Regarding computability, some partial results were obtained (see, for example,
Cohen and Lustig [CL89] for positive automorphisms, Turner [Tur95] for special
irreducible automorphisms, and Bogopolski [Bog00] for the case n = 2) before
O. Bogopolski and O. Maslakova, making strong use of the theory of train tracks,
finally published in [BM15] an algorithm to compute a free basis for Fixα, for a
general automorphism α ∈ Aut Fn (see also the preprint [FH14] for an alternative
proof).

Theorem 2.4.1 (Bogopolski and Maslakova, 2015, [BM15]). There exists an algorithm
which, given an automorphism α of Fn finds a basis of its fixed point subgroup Fix(α) =
{w ∈ Fn : wα = w}.

On the other hand, as far as we know, the problem FPPE(Fn) remains still open in
general.

When one moves to free-abelian times free groups, the situation is even more
involved. Similar to what happens with respect to the Howson property, FixΨ is
not necessarily finitely generated for Ψ ∈ Aut(Z×F2), and essentially the same
example from Lemma 2.3.1 can be recycled here.

Example 2.4.2. Consider the type I automorphism Ψ given by a ta, b b, t t;
clearly, trw(a,b) tr+|w|a w(a,b) and so,

FixΨ = { trw(a,b) | |w|a = 0 } = 〈〈t, b〉〉 = 〈t,a−kbak (k ∈ Z)〉
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is not finitely generated.

In the present section we shall analyze the fixed point subgroup of an endomor-
phism of a free-abelian times free group, and give an explicit characterization of
when it is finitely generated. In this case, we shall also consider the computability
of a finite basis, and solve FPPA(Zm ×Fn) and FPPE(Z

m ×Fn) modulo the cor-
responding problems for free groups, FPPA(Fn) and FPPE(Fn). (Our arguments
descend directly from End(Zm ×Fn) to End(Fn) in such a way that any partial
solution to the free problems can be used to give the corresponding partial solution
to the free-abelian times free problems, see Proposition 2.4.6 below.)

Let us distinguish the two types of endomorphisms according to Proposition 1.3.1
(and starting with the easier type II ones).

Proposition 2.4.3. Let G = Zm ×Fn with n 6= 1, and consider a type II endomorphism
Ψ, namely

Ψ = Ψz,l,h,Q,P : tau taQ+uP zalT+uhT
,

where 1 6= z ∈ Fn is not a proper power, Q ∈ Mm(Z), P ∈ Mn×m(Z), 0 6= l ∈ Zm,
and h ∈ Zn. Then, FixΨ is finitely generated, and a basis for FixΨ is computable.

Proof. First note that imΨ is an abelian subgroup of Zm × Fn. Then, by Corol-
lary 1.2.3, it must be isomorphic to Zm

′
for a certain m ′ 6 m+ 1. Therefore,

FixΨ 6 im(Ψ) is isomorphic to a subgroup of Zm
′
, and thus finitely generated.

According to the definition, an element tau is fixed by Ψ if and only if taQ+uPzalT+uhT
=

tau. For this to be satisfied, u must be a power of z, say u = zr for certain r ∈ Z,
and abelianizing we get u = rz, and the system of equations

alT + rzhT = r

a(Im − Q) = rzP

}
(2.17)

whose set S of integral solutions (a, r) ∈ Zm+1 describe precisely the subgroup of
fixed points by Ψ:

FixΨ = { tazr : (a, r) ∈ S } .

Theorem 2.4.4. Let G = Zm ×Fn with n 6= 1, and consider a type I endomorphism Ψ,
namely

Ψ = Ψφ,Q,P : ta u taQ+uP uφ ,

where φ ∈ End(Fn), Q ∈Mm(Z), and P ∈Mn×m(Z). Let N = im(Im − Q)∩ im Po,
where Po is the restriction of P : Zn → Zm to (Fixφ)ρ, the image of Fixφ 6 Fn under
the global abelianization ρ : Fn Zn.

Then, FixΨ is finitely generated if and only if one of the following happens:
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(a) Fixφ = 1;

(b) Fixφ is cyclic, (Fixφ)ρ 6= {0}, and NPo = {0}; or

(c) rk(N) = rk(im Po) .

Proof. An element tau is fixed by Ψ if and only if taQ+uPuφ = tau, i.e., if and only
if

uφ = u

a(Im − Q) = uP

}
That is,

FixΨ = {tau ∈ G : u ∈ Fixφ and a(Im − Q) = uP}, (2.18)

where u = uρ, and ρ : Fn Zn is the abelianization map. As we have seen
in Corollary 1.2.4, FixΨ is finitely generated if and only if so is its projection to the
free part

(FixΨ)πF = Fixφ ∩ {u ∈ Fn : uP ∈ im(Im − Q)}. (2.19)

Now (identifying integral matrices A with the corresponding linear mappings
v vA, as usual), let M be the image of Im − Q, and consider its preimage first
by P and then by ρ, see the following diagram:

Fixφ 6 Fn Zn Zm

P P P

MP ρ MP M = im(Im − Q)

← �
ρ ←→P

← →Im−Q

←[→ ←[→

(2.20)

Equation (2.19) can be rewritten as

(FixΨ)πF = Fixφ ∩ MP ρ . (2.21)

However, this description does not show whether FixΨ is finitely generated be-
cause Fixφ is in fact finitely generated, but MP ρ is not in general. We shall
avoid the intersection with the whole fixed subgroup Fixφ by reducing M to a
certain subgroup. Let ρo be the restriction of ρ to Fixφ (not to be confused with
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the abelianization map of the subgroup Fixφ itself), let Po be the restriction of P to
im ρo , and let N =M∩ im Po, see the following diagram:

Fn Zn Zm > M = im(Im − Q)

6 P P

Fixφ im ρo im Po

P P P

(FixΨ)πF = NPo ρo NPo N = M∩ im Po .

← �
ρ ←→P

← →Im−Q

ρo ←→Po

←[→ ←[→

(2.22)

Fig. 2.3: Fixed points subgroup diagram for FATF groups

Then, Equation (2.21) rewrites into

(FixΨ)πF = NPo ρo .

Now, since NPo ρo is a normal subgroup of Fixφ (not, in general, of Fn), it is
finitely generated if and only if it is either trivial, or of finite index in Fixφ.
Note that the restricted abelianization ρo is injective (and thus bijective) if and
only if Fixφ is either trivial, or cyclic not abelianizing to zero (indeed, for this
to be the case we cannot have two freely independent elements in Fixφ and so,
rk(Fixφ) 6 1).
Thus, (FixΨ)πF = NPo ρo = 1 if and only if Fixφ is trivial; or Fixφ is cyclic not
abelianizing to zero, and NPo = {0}.
On the other side, by Lemma 2.2.3.(ii), the preimageNPo ρo has finite index in Fixφ
if and only if N has finite index in im Po i.e., if and only if rk(N) = rk(im Po).

Example 2.4.5. Let us analyze again Example 2.4.2, under the light of the The-
orem 2.4.4. We considered the automorphism Ψ of Z × F2 = 〈t | 〉 × 〈a,b | 〉
given by a ta, b b and t t. That is, Ψ = Ψ idF2 , I1 , P, where P is the 2× 1
matrix P = (1, 0)T. Now, it is clear that Fix idF2 = F2 and so, conditions (a) and
(b) from Theorem 2.4.4 do not hold. Furthermore, ρo = ρ, Po = P, M = im(0) = {0},
N = {0}, while im Po = Z. Hence, condition (c) from Theorem 2.4.4 does not hold
either, according to the fact that FixΨ is not finitely generated.

Finally, the proof of Theorem 2.4.4 is explicit enough to allow us to make the whole
argument algorithmic: given a type I endomorphism Ψ = Ψφ,Q,P ∈ End(Zm×Fn),
the decision on whether FixΨ is finitely generated or not, and the computation of
a basis for it affirmative case, can be made effective assuming we have a procedure
to compute a (free) basis for Fixφ.

Proposition 2.4.6. Let G = Zm × Fn with n 6= 1, and let Ψ = Ψφ,Q,P be a type I
endomorphism of G. Assuming a (finite and free) basis for Fixφ is given to us, we can
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algorithmically decide whether FixΨ is finitely generated or not and, in case it is, compute
a basis for it.

Proof. Let {v1, . . . , vp} be the (finite and free) basis for Fixφ 6 Fn given to us in
the hypothesis.

Theorem 2.4.4 describes FixΨ and when is it finitely generated. Assuming the
notation from the proof there, we can compute abelian bases for N 6 im Po 6 Zm

and NPo 6 im ρo 6 Zn. Then, we can easily check whether any of the following
three conditions hold:

(a) Fixφ is trivial,

(b) Fixφ = 〈z〉, zρ 6= 0 and NPo = {0}, for certain z ∈ Fn,

(c) rk(N) = rk(im Po).

If all three conditions fail, then FixΨ is not finitely generated and we are done.
Otherwise, FixΨ is finitely generated and it remains to compute a basis. From (1.6),
we have

FixΨ =
(
(FixΨ)∩Zm

)
× (FixΨ)πFσ,

where FixΨ σ (FixΨ)πF is any splitting of πF|FixΨ : FixΨ (FixΨ)πF. We just
have to compute a basis for each part and put them together (after computing
some splitting σ). Regarding the abelian part, equation (2.18) tells us that

(FixΨ)∩Zm = { ta : a(Im − Q) = 0 } ,

and we can easily find an abelian basis for it by just computing ker(Im − Q).

Consider now the free part. In cases (a) and (b), (FixΨ)πF = 1 and there is nothing
to compute. Note that, in these cases, FixΨ is an abelian subgroup of Zm ×Fn.

Assume case (c), i.e., rk(N) = rk(im Po). In this situation, N has finite index in
im Po and so, NPo has finite index in im ρo . So, we can effectively compute a set of
coset representatives of im ρo modulo NPo , say

im ρo = (NPo )c1 t · · · t (NPo )cq .

Now, according to Lemma 2.2.3 (b), we can transfer this partition via ρo to obtain a
system of right coset representatives of Fixφ modulo (FixΨ)πF = NPo ρo ,

Fixφ = (NPo ρo )z1 t · · · t (NPo ρo )zq. (2.23)

To compute the zi’s, note that v1 = v1ρo , . . . , vp = vpρo generate im ρo , write
each ci ∈ im ρo as a (not necessarily unique) linear combination of them, say
ci = ci,1v1 + · · ·+ ci,pvp, i ∈ [q], and take zi = v

ci,1
1 v

ci,1
2 · · · vci,pp ∈ Fixφ.
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Now, construct a free basis for NPo ρo = (FixΨ)πF following the first of the two
alternatives at the end of the proof of Theorem 2.3.8 (the second one does not work
here because ρo is not the abelianization of the subgroup Fixφ, but the restriction
there of the abelianization of Fn):

Build the Schreier graph Sch
(
NPo ρo

)
forNPo ρo 6 Fixφwith respect to {v1, . . . , vp},

in the following way: consider the graph with the cosets of (2.23) as vertices, and
with no edge. Then, for every vertex (NPo ρo )zi and every letter vj, add an edge
labeled vj from (NPo ρo )zi to (NPo ρo )zivj, algorithmically identified among the
available vertices by repeatedly using the membership problem for NPo ρo (note
that we can easily do this by abelianizing the candidate and checking whether
it belongs to NPo ). Once we have run over all i, j, we shall get the full graph
Sch

(
NPo ρo

)
, from which we can easily obtain a free basis for NPo ρo = (FixΨ)πF.

Finally, having a free basis for (FixΨ)πF, we can easily construct a splitting for
πF|FixΨ : FixΨ (FixΨ)πF by just computing, for each generator u ∈ (FixΨ)πF, a
preimage tau ∈ FixΨ, where a ∈ Zm is a completion found by solving the system
of equations a(Im − Q) = uP (see (2.18)).

This completes the proof.

Bringing together Propositions 2.4.3 and 2.4.6, and Theorem 2.4.4, we get the
following result.

Theorem 2.4.7. The fixed points problem FPPA(Zm ×Fn) is solvable.

Since FPPE(Fn) is still open, the corresponding result about endomorphisms
of Zm ×Fn, can only be stated in conditional form at this point.

Theorem 2.4.8. If the fixed points problem FPPE(Fn) is solvable then FPPE(Z
m ×Fn)

is also solvable.

To close this section, we point the reader to some very recent results related to
fixed subgroups of endomorphisms of partially commutative groups. In [RSS13],
E. Rodaro, P.V. Silva and M. Sykiotis characterize which partially commutative
groups G satisfy that FixΨ is finitely generated for every Ψ ∈ End(G) (and, of
course, free-abelian times free groups are included there); they also provide similar
results concerning automorphisms.

2.5 Whitehead problems
J.H.C. Whitehead, back in the 1930’s, gave an algorithm [Whi36] to decide, given
two elements u and v from a finitely generated free group Fn, whether there exists
an automorphism φ ∈ Aut(Fn) sending one to the other, v = uφ. Whitehead’s

2.5 Whitehead problems 41



algorithm uses a (today) very classical piece of combinatorial group theory tech-
nique called ‘peak reduction’, see also [LS01]. Several variations of this problem
(like replacing u and v by tuples of words, relaxing equality to equality up to
conjugacy, adding conditions on the conjugators, replacing words by subgroups,
replacing automorphisms to monomorphisms or endomorphisms, etc.), as well as
extensions of all these problems to other families of groups, can be found in the
literature, all of them generically known as Whitehead problems. Here, we state the
standard Whitehead problems for an arbitrary group G.

Whitehead problems, WhPA(G), WhPM(G), WhPE(G). Given two elements u, v ∈ G,
decide whether there exists an automorphism (resp. monomorphism, endomorphism) φ
of G such that uφ = v; and if so, find one by giving images of generators.

In this section we shall solve these three problems for free-abelian times free
groups. We note that a new version of the classical peak-reduction theorem has
been developed by M. Day [Day14] for an arbitrary partially commutative group,
see also [Day09]. These techniques allow the author to solve the Whitehead
problem for partially commutative groups, in its form relative to automorphisms
and tuples of conjugacy classes. In particular WhPA(G) (which was conjectured
in [Day09]) is solved in [Day14] for any partially commutative group G. As far as
we know, WhPM(G) and WhPE(G) remain unsolved in general for a PC-group G.
Our Theorem 2.5.5 below is a small contribution into this direction, solving these
problems for free-abelian times free groups.

Let us begin by reminding the situation of the Whitehead problems for free-abelian
and for free groups. We firstly recall some well-known facts about free-abelian
groups that, in particular, solve WhPA(Zm), WhPM(Zm) and WhPE(Z

m). Here, for
a vector a = (a1, . . . ,am) ∈ Zm, we write gcd(a) to denote the greatest common
divisor of the ai’s (with the convention that gcd(0) = 0).

Lemma 2.5.1. An element a ∈ Zm is primitive (member of a free-abelian basis of Zm) if
and only if gcd(a) = 1.

Proof. [⇒] By contrapositive, suppose that d = gcd(a) 6= 1. Then a = d · â, where
gcd(â) = 1. Thus, for every a2, . . . am ∈ Zm,

det(a, a2, . . . , am) = d · det(â, a2, . . . , am) 6= ±1 ,

and so {a, a2, . . . , am} is not a free-abelian basis of Zm.

[⇐] If gcd(a) = 1 we know (see for example [Art10, Section 14.4]) that there exists
a matrix P ∈ GLm(Z) such that aP = (1, 0, . . . , 0). That is, a is the first row of P−1,
and therefore a primitive element of Zm.
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Lemma 2.5.2. Let a ∈ Zm. Then,

(i) An element y ∈ Zn is a homomorphic image of a if and only if gcd(a) | gcd(y).
That is, the Zn-homomorphic orbit of a is:

{ aM : M ∈Mm×n(Z) } =
{

y ∈ Zn : gcd(a) | gcd(y)
}

.

(ii) An element x ∈ Zm is an automorphic image of a if and only if gcd(x) = gcd(a).
That is, the automorphic orbit of a is:

{ aP : P ∈ GLm(Z) } = { x ∈ Zm : gcd(a) = gcd(x) } .

(iii) An element x ∈ Zm is a monomorphic image of a 6= 0 if and only if gcd(a) | gcd(x) 6= 0.
That is, the monomorphic orbit of a 6= 0 is:

{ aQ : Q ∈Mm(Z) with det(Q) 6= 0 } =
{

x ∈ Zm : gcd(a) | gcd(x)
}
r { 0 } ,

Proof. The case a = 0 holds trivially. So, suppose a 6= 0, let d = gcd(a), and let
a = d · â, where gcd(ã) = 1.

(i) It is clear that aM = d · âM, and so d | gcd(aM). Conversely, given y ∈ Zn

such that d | gcd(y), let y = d · ŷ. Since â is primitive, there exist a matrix
M ∈Mm×n(Z) such that âM = ŷ, and hence aM = y.

(ii) If x = aP, then a = xP−1, and the inclusion to the right follows from (i). The
inclusion to the left is immediate from Lemma 2.5.1.

(iii) The inclusion to the right is proved in the same way as in (i). However, note
that now, the extra assumptions that a 6= 0, and Q is injective exclude 0 from the
orbit. Conversely, given x ∈ Znr {0} such that d | gcd(x), we can write x = c · d · x̂,
where c 6= 0, and gcd(x̂) = 1. Since both â and x̂ are primitive (by (ii)) there exists
a matrix P ∈ GLm(Z) such that x̂ = âP. Then,

x = c · d · x̂ = c · d · âP = c · aP = a[c · P] ,

and it is enough to take Q = cP.

Since the previous characterizations are fully algorithmic, and the corresponding
search problems reduce to standard linear algebra over Z, we already have the
solvability of all three problems for finitely generated free-abelian groups.

Corollary 2.5.3. WhPA(Zm), WhPM(Zm), and WhPE(Z
m) are solvable.
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As expected, the same problems for the free group Fn are much more complicated.
As mentioned above, the case of automorphisms was solved by Whitehead back
in the 1930’s. The case of endomorphisms can be solved by writing a system of
equations over Fn (with unknowns being the images of a given free basis for Fn),
and then solving it by the powerful Makanin’s algorithm. Finally, the case of
monomorphisms was recently solved by Ciobanu and Houcine.

Theorem 2.5.4. Let Fn denote the free group of rank n. Then,

(i) WhPA(Fn) is solvable (Whitehead, 1936, [Whi36]).

(ii) WhPM(Fn) is solvable (Ciobanu and Houcine, 2010, [CH10]).

(iii) WhPE(Fn) is solvable (Makanin, 1982, [Mak82]).

Our goal is to make use of the results above, together with our description of the
different kinds of endomorphisms of Zm ×Fn, in order to prove the solvability of
all three problem in this new family.

Theorem 2.5.5. The Whitehead problems for automorphisms, monomorphisms, and endo-
morphisms, are solvable for finitely generated free-abelian times free groups, namely:

(i) WhPA(Zm ×Fn) is solvable.

(ii) WhPM(Zm ×Fn) is solvable.

(iii) WhPE(Z
m ×Fn) is solvable.

Proof. We are given two elements ta u, tb v ∈ G = Zm ×Fn, and have to decide
whether there exists an automorphism (resp. monomorphism, endomorphism)
of G sending one to the other. And in the affirmative case, find one of them. For
convenience, we shall prove (ii), (i), and (iii) in this order.

(ii) Since all monomorphisms of G are of type I, we have to decide whether there
exist a monomorphism φ of Fn, and matrices Q ∈ Mm(Z) and P ∈ Mn×m(Z),
with det Q 6= 0, such that (tau)Ψφ,Q,P = tb v. Separating the free and free-abelian
parts, we get two independent problems:

uφ = v

aQ + uP = b

}
(2.24)

On one hand, we can use Theorem 2.5.4.(ii) to decide whether there exists a
monomorphism φ of Fn such that uφ = v. If not then our problem has no solution
either, and we are done; otherwise, WhPM(Fn) gives us such a φ.

On the other hand, we need to know whether there exist matrices Q ∈ Mm(Z)

and P ∈Mn×m(Z), with det Q 6= 0 and such that aQ + uP = b, where u ∈ Zn
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is the abelianization of u ∈ Fn (given from the beginning). If a = 0 or u = 0,
this is already solved in Lemma 2.5.2.(i) or Lemma 2.5.2.(iii) Otherwise, write
0 6= α = gcd(a) and 0 6= µ = gcd(u); and, according to Lemma 2.5.2, we have to
decide whether there exist a ′ ∈ Zm and u ′ ∈ Zm, with a ′ 6= 0, α | gcd(a ′), and
µ | gcd(u ′), such that a ′ + u ′ = b. Writing a ′ = α x and u ′ = µ y, the problem
reduces to test whether the following linear system of equations

αx1 + µy1 = b1
...

...
αxm + µym = bm

 (2.25)

has any integral solution x1, . . . , xm,y1, . . . ,ym ∈ Z such that (x1, . . . , xm) 6= 0.
A necessary and sufficient condition for the system (2.25) to have a solution is
gcd(α,µ) | bj, for every j ∈ [m]. And note that, if (x1,y1) is a solution to the
first equation, then (x1 + µ,y1 − α) is another one; since µ 6= 0, the condition
(x1, . . . , xm) 6= 0 is then superfluous. Therefore, the answer is affirmative if and
only if gcd(α,µ) | bj, for every j ∈ [m]; and, in this case, we can easily reconstruct
a monomorphism Ψ of G such that (ta u)Ψ = tb v.

(i) The argument for automorphisms is completely parallel to the previous discus-
sion replacing the conditions φmonomorphism and det Q 6= 0, to φ automorphism
and det Q = ±1. We manage the first change by using Theorem 2.5.4.(i) instead
of Theorem 2.5.4.(ii) The second change forces us to look for solutions of the linear
system (2.25) with the extra requirement gcd(x) = 1 (because now gcd(a ′) should
be equal to, and not just a multiple, of α).

So, if any of the conditions gcd(α,µ) | bj fails, the answer is negative and we
are done. Otherwise, write ρ = gcd(α,µ), α = ρα ′ and µ = ρµ ′, and the general
solution for the j-th equation in (2.25) is

(xj,yj) = (x0
j ,y

0
j) + λj(µ

′,−α ′), λj ∈ Z,

where (x0
j ,y

0
j) is a particular solution, which can be easily computed. Thus, it only

remains to decide whether there exist λ1, . . . , λm ∈ Z such that

gcd(x0
1 + λ1µ

′, . . . , x0
m + λmµ

′) = 1. (2.26)

We claim that this happens if and only if

gcd(x0
1, . . . , x0

m, µ ′) = 1, (2.27)

which is clearly a decidable condition.

Reorganizing a Bezout identity for (2.26) we can obtain a Bezout identity for (2.27).
Hence (2.26) implies (2.27). For the converse, assume the integers x0

1, . . . , x0
m,µ ′
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are coprime, and we can fulfill equation (2.26) by taking λ1 = · · · = λm−1 = 0
and λm equal to the product of the primes dividing x0

1, . . . , x0
m−1 but not x0

m (take
λm = 1 if there is no such prime). Indeed, let us see that any prime p dividing
x0

1, . . . , x0
m−1 is not a divisor of x0

m + λmµ
′. If p divides x0

m, then p does not divide
neither µ ′ nor λm and therefore x0

m + λmµ
′ either. If p does not divide x0

m, then p
divides λm by construction, hence p does not divide x0

m + λmµ
′. This completes

the proof of the claim, and of the theorem for automorphisms.

(iii) In our discussion now, we should take into account endomorphisms of types I
and II.

Again, the argument to decide whether there exists an endomorphism of type I
sending ta u to tb v, is completely parallel to the above proof (ii), replacing the
condition φ monomorphism by φ endomorphism, and deleting the condition
det Q 6= 0 (allowing here an arbitrary matrix Q). We manage the first change by
using Theorem 2.5.4.(iii) instead of Theorem 2.5.4.(ii) The second change simply
leads us to solve the system (2.25) with no extra condition on the variables; so, the
answer is affirmative if and only if gcd(α,µ) | bj, for every j ∈ [m].

It remains to consider endomorphisms of type II, Ψz,l,h,Q,P. So, given our elements
ta u and tb v, and separating the free and free-abelian parts, we have to decide
whether there exist z ∈ Fn, l ∈ Zm, h ∈ Zn, Q ∈ Mm(Z), and P ∈ Mn×m(Z)

such that
zalT+uhT

= v

aQ + uP = b

}
(2.28)

(note that we can ignore the condition l 6= 0 because if l = 0 then the endomorphism
becomes of type I as well, and this case is already considered before). Again the two
equations are independent. About the free part, note that the integers alT + uhT

with l ∈ Zm and h ∈ Zn are precisely the multiples of d = gcd(a, u); so, it
has a solution if and only if v is a d-th power in Fn, a very easy condition to
check. And about the second equation, it is exactly the same as when considering
endomorphisms of type I, so its solvability is already discussed.

2.6 Twisted conjugacy problem
Recall that given G a group, and α an automorphism of G, we say that two
elements g,h ∈ G are α(twisted)-conjugate, denoted by g ∼α h, if there exists an
element k ∈ G such that (kα)−1gk = h. Then, we also say that k is an α(-twisted)
conjugator of g into h. It is routine to check that α-conjugacy is an equivalence
relation. Note also, that idG-conjugacy corresponds to standard conjugacy in G.

Recently , O. Bogopolski, A. Martino, and E. Ventura rediscovered twisted con-
jugacy as an important ingredient relating conjugacy with orbit decidability in
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certain extensions of groups (see Theorem 2.6.9). To this end, they consider
in [BMV10] the algorithmic problem below. As usual we will assume that a finite
presentation for G is given, and that the input of the problem is given in terms of
this presentation.

Twisted conjugacy problem, TCP(G). Given two elements u, v ∈ G, and an au-
tomorphism α ∈ AutG, decide whether there exists an element w ∈ G such that
(wα)−1uw = v; and if so, find one such α-conjugate w.

The problem obtained by restricting the family F ⊆ AutG where we can pick
the automorphism α, is called the F-(twisted) conjugacy problem for G, denoted
by TCPF(G). Accordingly, if F = {α} (i.e., if the automorphism α is fixed) we have
the α-(twisted) conjugacy problem for G, denoted by TCPα(G).

Remark 2.6.1. Note that TCPid(G) = CP(G) but, in general, TCP(G) is a strictly
stronger algorithmic problem that standard CP(G) (see [BMV10, Corollary 4.9])
for an example of a group with solvable CP but unsolvable TCP.

Our goal in this section is to prove the solvability of TCP(Zm ×Fn), and derive
some consequences using Theorem 2.6.9.

We emphasize that TCP is well known to be solvable for each of the factors
in Zm ×Fn. Concretely, the solvability of TCP(Zm) reduces to solving a system
of linear diophantine equations, whereas that of TCP(Fn) is proved in [Bog+06]
as a prelude to that of CP(Fn oZ).

Theorem 2.6.2 (Bogopolski, Martino, Maslakova, and Ventura, 2006, [Bog+06]).
TCP(Fn) is solvable.

Note, however, that it is not enough to independently consider the solvability
of TCP for the factors (Fn and Zm) to deduce the solvability of TCP(Zm ×Fn).
So, calling A = {(φ, Im, 0) : φ ∈ Aut(Fn)}, and B = {(idFn , Q, 0) : Q ∈ GLm(Z)},
it is clear from the characterization in Figure 7.4 that, taken separately, the solv-
abilities of TCP(Fn), and TCP(Zm) translate into those of TCPA(Zm ×Fn) and
TCPB(Zm ×Fn), respectively; subcases that obviously do not cover the whole
automorphism group Aut(Zm ×Fn). In fact, as you can deduce from Figure 7.4,
they not even constitute a family of generators. We will need, therefore, a less
coarse approach to achieve our result.

Remark 2.6.3. Note that any TCP search problem is guaranteed to be algorithmi-
cally solvable (by a brute force argument) once the decision problem is known
to answer yes. Namely, given two elements g,h ∈ G we can always recursively
enumerate the elements in k ∈ G checking whether the twisted-conjugacy con-
dition (kα)−1gk = h holds. Since such an element is known to exist, this search
procedure will certainly terminate.
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The following characterization of the twisted conjugators between two elements is
straightforward.

Lemma 2.6.4. Let g,h ∈ G, α ∈ AutG, and k0 an α-conjugator of g into h. Then, for
all k ∈ G,

(kα)−1gk = h ⇔ k ∈ Fix(αγg) k0 ,

where γg : x 7→ g−1xg is the standard (right) conjugation in G.

In particular, the set of α-conjugators of one element into another is either empty, or a
coset of Fix(αγg).

Proof. Since, by assumption, (k0α)
−1gk0 = h, then

(k−1)α gk = h ⇔ (k−1
0 )α g k0 = (k−1)α g k

⇔ g−1 (kk−1
0 )α g = kk−1

0

⇔ kk−1
0 ∈ Fix(αγg)

⇔ k ∈ Fix(αγg) k0 .

The lemma below is, as we will see in the proof of Theorem 2.6.6, essentially a
compact version of the decision problem obtained from TCP(Zm ×Fn) after using
our description for the involved automorphism, and separating the free and free
abelian parts.

Lemma 2.6.5. The problem consisting in, given u, v ∈ Fn, α ∈ Aut(Fn), P ∈∈
Mn×m(Z), d ∈ Zm, and L 6 Zm, whether there exist an α-conjugator w of u into v,
such that wP + d ∈ H is algorithmically solvable.

That is, we can algorithmically decide whether

∃w ∈ Fn such that
{

(wα)−1uw = v , and
wP + d ∈ L .

(2.29)

Proof. Using Theorem 2.6.2, we can algorithmically decide the existence of α-
conjugators and, in affirmative case, find one such conjugator (that we will call
w0). If the algorith to decide TCP(Fn) answers no, then we also answer no, and
we are done. Otherwise, according Lemma 2.6.4, our problem becomes that of
deciding whether:

∃w ∈ Fn such that
{
w ∈ Fix(αγu)w0 , and
wP + d ∈ L .

Now, since a basis for the fixed point subgroup of any automorphism α ∈ Aut(Fn)
is algorithmically computable [BM15], we can find a generating set for Fix(αγu)
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and, after taking the image by the ambient abelianization Fn Zn, compute a
basis for the subgroup M = (Fix(αγu)) ab 6 Zn. In this way we reduce our initial
problem to deciding whether:

∃w ∈ Zn such that
{

w ∈M+ w0 , and
wP + d ∈ L ,

that is, to solving a linear system of diophantine equations, which is well known
to be algorithmically decidable.

Theorem 2.6.6. TCP(Zm ×Fn) is solvable.

Proof. Given elements ta u, tb v ∈ Zm ×Fn, and an automorphism Ψ ∈ Aut(Zm ×Fn),
we want to decide whether there exists an element tcw ∈ Zm ×Fn such that:

tcw)−1Ψ ta u tcw = tb v .

Since every automorphism of Zm ×Fn is of the form Ψ : ta u 7→ taQ+uP uα, where
α ∈ (Aut Fn), Q ∈ GLm(Z), and P ∈Mn×m(Z), we obtain the following equiva-
lent equation:

t a+ c(Im−Q)−wP (wα)−1uw = tb v , (2.30)

where, w denotes the abelianization of w ∈ Fn.

Now, separating the free, and free-abelian parts in (2.30), TCP(Zm ×Fn) is re-
duced to the following problem: given a, b ∈ Zm, u, v ∈ Fn, α ∈ Aut(Fn),
Q ∈ GLm(Z), and P ∈ Mn×m(Z), decide whether there exist c ∈ Zm, and
w ∈ Fn such that: {

(wφ)−1uw = v

wP + b − a = c(Im − Q) ,
(2.31)

which is a particular case of Lemma 2.6.5, where d = b − a, and L = im(Im − Q).

Let us now recall the aforementioned relation involving TCP, CP, and orbit
decidability (OP) in order to derive some consequences from Theorem 2.6.6. To
this end, we introduce below some new terminology.

Orbit problems, OPA(G). For a subset A 6 End(G), decide, given g, h ∈ G, whether
there exist a homomorphism α ∈ A, such that gα = h; and if so, find one such endomor-
phism.

When OPA(G) is algorithmically decidable, we equivalently say that A is orbit decidable
(OD, for short).
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Remark 2.6.7. Recall that if A is recursively enumerable (e.g. given by a images of a
finite set of generators), then the orbit search problem is solvable by brute force.

Remark 2.6.8. Note that many classical algorithmic problems match the previous
pattern. For example, the conjugacy problem of a group G is nothing more that
the orbit decidability of the subgroup of its inner automorphisms, i.e., CP(G) =
OD(InnG); note also the Whitehead problems are precisely the orbit problems of
the corresponding subgroups.

Note also that, given a short exact sequence of groups

1 −→ F
ι−→ G

ρ−→ H −→ 1 ,

since Fι is normal in G, then for every g ∈ G the restriction to Fι of the conjuga-
tion γg in G is an automorphism, xι 7→ g−1xι g of Fι that, through ι, induces an
automorphism αg a F; concretely αg := ι γg|Fι

ι−1, i.e.,

αg : x
ι7−→ xι

γg|Fι7−−−→ g−1 (xι)g
ι−1
7−−→ (g−1 (xι)g)ι−1.

Identifying, as usual, x and xι, we have that for every g ∈ G, αg : x 7→ g−1xg

is an automorphism (not necessarily inner) of F. It is clear that the set of such
automorphisms,

AG = {αg : g ∈ G} ,

is a subgroup of Aut(F) containing Inn(F). We call it the action subgroup of the
given short exact sequence.

Assuming certain hypothesis on the short exact sequence, and the groups involved,
the theorem below shows that the solvability of the conjugacy problem for G is
equivalent to the orbit decidability of the action subgroup AG 6 Aut F.

Theorem 2.6.9 (Bogopolski, Martino, and Ventura, 2010, [BMV10]). Let

1 −→ F −→ G −→ H −→ 1 (2.32)

be an algorithmic short exact sequence of groups such that:

(i) TCP(F) is solvable.

(ii) CP(H) is solvable.

(iii) for every 1 6= h ∈ H, the subgroup 〈h〉 has finite index in its centralizer CH(h),
and there is an algorithm which computes a finite set of coset representatives,
zh,1, . . . , zh,th ∈ H, i.e.,

CH(h) = 〈h〉zh,1 t · · · t 〈h〉zh,th .
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Then,
CP(G) is decidable ⇔ AG is orbit decidable ,

where AG is the action subgroup of (2.32).

Remark 2.6.10. Note that Theorem 2.6.9 provides a kind of machinery to prove the
conjugacy problem for group extensions: ar far as you are able to prove conditions
(i),(ii),(iii) in Theorem 2.6.9, and orbit decidability for the action subgroup, you au-
tomatically have the solvability of the conjugacy problem for the central subgroup
of the extension.

Applying these considerations to some of our previous results we immediately
obtain the following corollary.

Corollary 2.6.11. If Φ1, . . . ,Φr is a generating set for Aut(Fn ×Zm), then the group
(Zm ×Fn)oΦ1,...,Φr Fr has solvable conjugacy problem.

Proof. It is enough to apply Theorem 2.6.9 on the short exact sequence:

1 −→ Zm ×Fn −→ (Zm ×Fn)oΦ1,...,Φr Fr −→ Fr −→ 1 .

Note that in this case the action subgroup is Aut(Fn ×Zm) all the requisites in
Remark 2.6.10 are satisfied. Namely:

• TCP(Zm ×Fn) is solvable: Theorem 2.6.6.

• el CP(Fr) is solvable: this is a well-known fact, see [LS01, Proposition I.2.14].

• for all 1 6= w ∈ Fr, 〈CFr(w) = 〈root(w)〉, and condition (iii) in Theorem 2.6.9
holds trivially.

• Aut(Fn ×Zm) is orbit decidable: Theorem 2.5.5.(i).

We conclude, therefore, that CP((Fn×Zm)oα1,...,αr Fr) is solvable, as claimed.
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Part II

Semidirect products





3Group extensions and semidirect
products

Semidirect products (see Section 3.2) are natural generalizations of direct products,
and thus a natural target in order to extend the results in Part I. In turn, they
constitute a particular case of much more general constructions called group
extensions. It is often convenient to see semidirect products within this broader
framework; so we introduce semidirect products from both points of view.

3.1 Group extensions
Definition 3.1.1. A sequence of groups and homomorphisms

· · · φi−1
Gi

φi Gi+1
φi+1 · · ·

is said to be an exact sequence if the image of every homomorphism is the kernel of
the next one; i.e., if for all i, im(φi) = ker(φi+1). A short exact sequence is an exact
sequence of the form: 1→ G1 → G2 → G3 → 1.

Definition 3.1.2. Let N and Q be arbitrary groups. A group extension of N by Q is
a group G having a normal subgroup (isomorphic to) N, such that the quotient
G/N is isomorphic to Q.

Note that we can compactly summarize the previous definition saying that a group
G is an extension of N by Q if it admits a short exact sequence of the form:

1 N ιG πQ 1 . (3.1)

Indeed, from the definition of exact sequence:

• The homomorphism ι is injective, and we usually identify the group N with
its (isomorphic) image Nι, which is normal in G.

• The homomorphism π is onto; ie Gπ = Q.

• The quotient G/N is isomorphic to Q.

Then, we say that N is a base group for G, with quotient group Q (and vice-versa).

In particular, a group extension G of N (in the sense of definition 3.1.2) is always
a group extension of N in the broad sense; i.e., the base group N is always
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(isomorphic to) a subgroup of G. However, it is not true that the quotient group Q
is always (isomorphic to) a subgroup of G. Indeed, we will see that the case when
this happens corresponds exactly to semidirect products.

Definition 3.1.3. A short exact sequence like (3.1) is said to split if there exists a
homomorphism σ : Q→ G such that σπ = idQ. Then, we say that σ is a section (or
split) of π, and we write

1 N G Q 1←→ ←→ι ←�π ←→
σ

(3.2)

Remark 3.1.4. Note that a section is always injective. Hence, in a split extension,
the quotient group Q is always (isomorphic to) a subgroup of G.

3.2 Semidirect products
We summarize in this section the standard definition(s) of semidirect product,
its elementary properties, and its relation with group extensions (see for exam-
ple [Rob96] for details).

Throughout this section N and Q will be arbitrary groups, and

α : Q Aut(N)

q αq
(3.3)

a group homomorphism (with autos acting on the right).

Definition 3.2.1. The (external) semidirect product of N by Q with action α is the
group defined on the cartesian product Q×N by the operation:

(q1,n1) · (q2,n2) = (q1 · q2, (n1)αq2 ·n2) . (3.4)

We will interchangeably denote the semidirect product of N by Q with action α

by Qnα N or Noα Q.

We will write G = QnN (or or G = NoQ) to abbreviate that there exists a
homomorphism α : Q Aut(N) such that G = Qnα N.

Remark 3.2.2. It is straightforward to check that (3.4) defines an associative law,
with neutral element (1Q, 1N), and that every element (q,n) ∈ Qnα N has an
inverse (q,n)−1 = (q−1, (n−1)α−1

q ).

Remark 3.2.3. Note that if α : q 7→ idN, then Qnα N = Q×N.

The results stated hereinafter in this section, whose proof we omit, are straightfor-
ward and absolutely standard (see, for example [Rob96]).
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Proposition 3.2.4. Let G = QnN. Then:

1. The map ιN : n 7→ (1q,n) is a monomorphism N QnN.

(Hereinafter, we identify the group N with N× 1Q.)

2. The map πQ : (q,n) 7→ q is an epimorphismQnN Q with kernelN× 1Q ' N.

3. The map idQ : q 7→ (q, 1N) is a section of πQ.

(Hereinafter, we identify the group Q with Q× 1N.)

That is, G = Qnα N admits the short exact sequence

1 N G Q 1 ,←→ ←→ιN ←→
πQ ←→ (3.5)

which splits via idQ.

Corollary 3.2.5. Let G = QnN. Then:

[SD1] The group N is a normal subgroup of QnN, and the quotient (QnN)/N is
isomorphic to Q.

[SD2] The group Q is a subgroup of QnN.

[SD3] G = QN, and Q∩N = 1.

(i.e., every element in G can be written in a unique way as a product of an element
in Q, and an element in N.)

Indeed, it turns out that the three properties in Corollary 3.2.5 — or the short exact
sequence (3.5) — fully characterize semidirect products.

Theorem 3.2.6. Let G be a group. Then, the following statements are equivalent:

1. The group G admits a split short exact sequence (say 1→ N→ G→ Q→ 1).

2. There exist subgroups Q,N 6 G satisfying the properties [SD1-SD3].

3. The group G is isomorphic to the semidirect product Qnα N, with action α : q 7→
γq|N (n 7→ q−1nq).

Remark 3.2.7. Note that from property [SD3], every element g ∈ G = QnαN admits
a normal form:

g = qn, where q ∈ Q, and n ∈ N ; (3.6)

and then, from (3.4), we have the following multiplication rules for he semidirect
product: for every q ∈ Q, and every n ∈ N,

n · q = q · (n)αq and q ·n = (n)α−1
q · q . (3.7)

So, we have the following mnemonic criteria for a semidirect product Qnα N:
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1. every element q ∈ Q “jumps to the left (resp. right)” of an element n ∈ N at
the price of applying αq (resp. α−1

q ) to the jumped element n.

2. every element n ∈ N “jumps to the right (resp. left)” of an element q ∈ Q at
the price of applying αq (resp. α−1

q ) to the jumping element n.

Observe that, in particular, we have that 1G = 1Q1N, and for every g = qn

in Qnα N,
g−1 = (qn)−1 = n−1q−1 = q−1 (n−1)α−1

q . (3.8)

in concordance with Remark 3.2.2.

Corollary 3.2.8. Let Q = 〈X | R〉, N = 〈Y | S〉 be arbitrary groups, and let α : Q →
Aut(N) be a homomorphism of groups. Then, the semidirect product Qnα N admits the
presentation

〈
X , Y

∣∣ R ,S , x−1
i yjxi = (yj)αxi ∀xi ∈ X, ∀yj ∈ Y

〉
, (3.9)

which is usually abbreviated 〈Q,N | x−1
i yjxi = (yj)αxi ∀xi ∈ X,∀yj ∈ Y 〉, and called

a standard presentation for the semidirect product Qnα N with respect to the given
presentations.

3.2.1 Abelianization of semidirect products

One straightforward consequence of the form of standard presentations is the
following description for the abelianization of a semidirect product.

Lemma 3.2.9. Let Q = 〈X | R〉 and N = 〈Y | S〉 be arbitrary groups, and let α : Q →
Aut(N) be a homomorphism of groups. Then, the abelianization of the semidirect product
Qnα N is

(Qnα N) ab ' Q ab ⊕ N ab

〈 im(α ab
x − id), x ∈ X 〉

. (3.10)

Moreover, if Q,N are given by finite presentations, say with #X = n, and #Y = m; then
the abelianization is computable. Namely:

(Qnα N) ab ' Zn

〈R ab 〉 ⊕
Zm

〈S ab〉+
∑n
i=1 im(Ai − Im)

, (3.11)

where, Ai := (αxi)
ab : Zm → Zm, for i = 1, . . . ,n.
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Proof. Recall that Q = 〈X | R〉, and N = 〈Y | S〉. After adding the commutators
between generators as relators in the standard presentation for Qnα N we obtain:

(Qnα N) ab =

〈
X, Y

∣∣∣∣ R,S,
x−1yx=(y)αx , (x∈X,y∈Y)
[x,x ′] , [y,y ′] , [x,y] (x,x ′∈X,y,y ′∈Y)

〉
'
〈
X
∣∣ R, [x, x ′] (x, x ′ ∈ X)

〉
×
〈
Y
∣∣∣ S, [y,y ′] (y,y ′∈Y)
y=(y)αx (x∈X,y∈Y)

〉
' Q ab ⊕ N ab

〈 im(α ab
x − id), x ∈ X 〉

,

which is exactly the claim in (3.10). The second claim follows easily from (3.11)
(whose denominators are computable), and the classification theorem of finitely
generated abelian groups.

Corollary 3.2.10. The abelianization of GA = Fn nA• Zm is computable. Namely:

G ab
A = Zn ⊕ Zm∑n

j=1 im(Aj − Im)
= Zn ⊕ Zm

im Ã
, (3.12)

where Ã := (A1 − Im | A2 − Im | · · · | An − Im)T. In particular,

b(GA)
ab = n+ k , (3.13)

rk G ab
A = n+ k+ t , (3.14)

where k, t are the free-abelian, and torsion ranks of the quotient Zm/ im Ã, respectively.
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4Algorithmic recognition of infinite
cyclic extensions

In the present chapter, we study algorithmic problems about recognition of certain
algebraic properties among some families of group extensions. Indeed, we see
that yet for the relatively easy family of Z-extensions one can find positive and
negative results, i.e., both solvable and unsolvable “recognition problems”.

For example, we prove that one cannot algorithmically decide whether a finitely
presented Z-extension admits a finitely generated base group. Even when the
extension has a unique possible base group, it is not decidable in general whether
this particular base group is finitely generated or not. As a consequence, we prove
general undecidability for the Bieri–Neumann–Strebel invariant: there is no algo-
rithm which, given a finite presentation for a group G, and a character χ : G→ R

as input, decides whether [χ] belongs to the BNS invariant of G, [χ] ∈ Σ(G), or
not. Although this result seems quite natural, since this geometric invariant has
long been agreed to be hard to compute in general (see for example [MV95; PS10;
KMM15; KP14]), as far as we know, its undecidability does not seem to appear in
the literature. Following our study of recognition properties, we finally consider
the isomorphism problem in certain classes of unique Z-extensions, and prove that
it is equivalent to the semi-conjugacy problem for the corresponding deranged
outer automorphisms (see details in Section 4.10).

The structure of the chapter is as follows. In Section 4.1 we state the recognition
problems we are interested in. In Section 4.2 we introduce the general frame-
work for our study: (finitely presented) Zr-extensions (denoted ∗ - by - Zr), unique
Zr-extensions (denoted ! - by - Zr), as well as the subfamily of fg - by - Zr groups,
and will investigate the above problems for them. In Sections 4.4 and 4.5 we
focus on case r = 1 (i.e., infinite cyclic extensions) which will be the main target
of the chapter. The central result in Section 4.6 is Theorem 4.6.3, showing that
the membership problem for fg - by - Z (among other similar families) is undecid-
able, even within the class ! - by - Z. As an application, Section 4.7 contains the
undecidability of the BNS invariant (Theorem 4.7.4). In Section 4.8 we search
for “standard presentations” of fg - by - Z groups (Proposition 4.8.1). Finally, in
Section 4.10 we characterize the isomorphism problem in the subclass of unique
Z-extensions by means of the so-called semi-conjugacy problem (a weakened
version of the standard conjugacy problem) for deranged outer automorphisms
(Theorem 4.10.4).
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4.1 Algorithmic recognition of groups
Algorithmic behavior of groups has been a very fundamental concern in Combi-
natorial and Geometric Group Theory since the very beginning of this branch of
Mathematics in the early 1900s. The famous three problems stated by Max Dehn in
1911 are prototypical examples of this fact: the Word, Conjugacy, and Isomorphism
problems have been very influential in the literature along these last hundred years.
Today, these problems (together with a great and growing collection of variations)
are the center of what is known as Algorithmic Group Theory.

Dehn’s Isomorphism Problem is probably the paradigmatic example of what is
popularly understood as “algorithmic recognition of groups". Namely, let Gfp be
the family of finite presentations of groups. Then (with the usual abuse of notation
of denoting in the same way a presentation and the presented group):

• Isomorphism problem [ IP ]: given two finite presentations G1,G2 ∈ Gfp, decide
whether they present isomorphic groups, G1 ' G2, or not.

It is well known that, in this full generality, Dehn’s Isomorphism Problem is
unsolvable, see for example [Mil92]. So, a natural next step is to study what
happens when we restrict the inputs to a certain subfamily H ⊆ Gfp:

• Isomorphism problem within H [ IP(H) ]: given two finite presentationsH1,H2 ∈
H, decide whether they present isomorphic groups, H1 ' H2, or not.

Since we are interested in groups, we will only consider families of presentations
closed by isomorphism; in this way, the problems considered are actually about
groups (although represented by finite presentations). The literature is full of
results solving the isomorphism problem for more and more such subfamilies H

of Gfp, or showing its unsolvability even when restricted to smaller and smaller
subfamilies H.

Another recognition aspect is that of deciding whether a given group satisfies
certain property, i.e., whether it belongs to a certain previously defined family. For
two arbitrary subfamilies H,G ⊆ Gfp, we define the:

• (Family) Membership problem for H within G [MPG(H) ]: given a finite presen-
tation G ∈ G, decide whether G ∈ H or not.

If H ⊆ G and MPG(H) is decidable we will also say that the inclusion H ⊆ G is
decidable. When the considered ambient family is the whole family of finitely
presented groups (i.e., G = Gfp) we will usually omit any reference to it and simply
talk about the membership problem for H, denoted MP(H).

A classic undecidability result due to Adian [Adi57b; Adi57a] and Rabin [Rab58]
(see also [Mil92]) falls into this scheme. Namely, when H is a Markov subfamily
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(i.e., a nonempty subfamily ∅ 6= H ⊆ Gfp such that the subgroups of groups in
H do not completely cover Gfp), then MP(H) is not decidable. This turns out
to include the impossibility of deciding membership for countless well known
families of finitely presented groups (e.g. trivial, finite, abelian, nilpotent, solvable,
free, torsion-free, simple, automatic, etc.).

Note that MP(H) being decidable is the same as saying that H is a recursive set of
finite presentations. And, even when MP(H) is not decidable, we can still ask for
a recursive enumeration of the elements in H:

• Enumeration problem for H [EP(H) ]: enumerate all the elements in H.

In many cases the considered subfamily H ⊆ Gfp entails a concept of “good" or
“standard" presentation S ⊆ H, for the groups presented. For example, if H is the
family of (finite presentations for) braid groups {Bn | n > 2}, we can define the set
of standard presentations S ⊆ H to be those of the form〈

σ1, . . . ,σn−1

∣∣∣∣∣ σiσj = σjσi, |i− j| > 1
σiσjσi = σjσiσj, |i− j| = 1

〉
;

in this case, the family enumeration problem for S consists, on input an arbitrary
finite presentation presenting a braid group, to compute its (unique) standard one
for it, i.e., to recognize the number of strands n.

4.2 Group extensions
Let G and Q be arbitrary groups. We say that G is a group extension by Q (or a
Q-extension) if G can be homomorphically mapped onto Q, i.e., if there exists a
normal subgroup H P G such that the quotient G/H is isomorphic to Q.

Of course, this situation gives rise to the short exact sequence

1 −→ H −→ G −→ Q −→ 1

for some group H, and we will write that G is ∗ - by -Q. One also says that such
an H is a base group for the extension, and that G is an extension of H by Q;
accordingly, if we want to specify the base group we will say that G is H - by -Q.

We remark that a given group extension by Q may admit many, even non-
isomorphic, different base groups (see Corollary 4.9.2).

If H is the only (as subset) normal subgroup of G with quotient G/H isomorphic
toQ, then we say that theQ-extension is unique, or that G is a unique extension by Q;
in the same vein as before, we will write that G is ! - by -Q (or that G is !H - by -Q,
if we want to specify who is the unique normal subgroup).
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It will be convenient to extend this notation allowing to replace the groups H andQ
by any group property (which we will usually write in sans typeface). Concretely,
given two properties of groups, P1, P2, we say that a group G is P1 - by -P2 (resp.
!P1 - by -P2) if it is H - by -Q (resp. !H - by -Q) for certain groups H satisfying P1,
and Q satisfying P2. In this way we can easily refer to families of group extensions
in terms of the behavior of their base and quotient groups. So, for example, a
group G is fg - by - Zr if it is H - by - Zr for some finitely generated group H. And
it is !fg - by - Zr if it is !H - by - Zr for some finitely generated group H; i.e., if it has
a unique normal subgroup with quotient isomorphic to Zr, which happens to be
finitely generated (not to be confused with G having a unique finitely generated
normal subgroup whose quotient is isomorphic to Zr — and possibly some others
infinitely generated as well).

When we need to add extra assumptions (i.e., satisfying some property P) on the
elements of certain family G, we will denote the new family [G]P. For example,
[abelian]fg denotes the family of finitely generated abelian groups, while [∗ - by - Z]fp

denotes the family of finitely presented extensions by Z.

4.3 Finitely generated groups (as free-abelian
extensions)

The family of finitely generated groups (seen as extensions by free-abelian groups)
provides both a neat framework to show some of the introduced terminology,
and a first approximation to the infinite-cyclic extensions studied in the following
sections. In particular, the families ∗ - by - Zr and ! - by - Zr turn out to be very
easy to recognize algorithmically.

If G is a finitely generated group, then it is well known that its abelianization
G ab = G/[G,G] is of the form G ab = Zr ⊕ T , where r is a nonnegative integer, and
T is a finite abelian group, both canonically determined by G. The integer r > 0
is usually known as the first Betti number of G, denoted b(G), while the finite
group T is the torsion subgroup of G ab, and is called the abelian torsion of G. Let
us denote:

• πab the abelianization map of G (i.e., πab : G G ab),

• π∗ the projection map from G ab onto its free-abelian part Zr

(i.e., π∗ : G ab G ab/Tor G ab),

• πab
∗ the composition of πab followed by π∗

(i.e., πab
∗ := πabπ∗), and
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• Gab
∗ the image of G under πab

∗ (i.e., Gab
∗ := (G)πab

∗ ).

Then, we can construct the following diagram of groups and homomorphisms:

Zr ⊕ T Zr

' '
kerπab

∗ = (πab)−1(T) G G ab Gab
∗

←�π
ab

←

�
πab
∗

←�π∗ (4.1)

Note that both πab and π∗ (and thus πab
∗ ) in (4.1) are quotients by fully characteris-

tic subgroups, namely: the commutator subgroup [G,G] 6 G, the torsion subgroup
T = Tor G 6 G ab (and (πab)−1(T) 6 G) respectively. Therefore, every endomor-
phism (resp. automorphism) φ of G factors to respective unique endomorphisms
(resp. automorphisms) φ ab and φab

∗ of G ab and Gab
∗ respectively:

Zr ⊕ T Zr' '

G G ab Gab
∗

G G ab Gab
∗

←�πab

←→ φ

←�π∗

←→ φ ab ←→ φab
∗

←�πab ←�π∗

(4.2)

Moreover, the following chains are homomorphisms between the corresponding
groups of transformations:

End(G) End(G ab) End(Gab
∗ )

φ φ ab φab
∗ ,

and
Aut(G) Aut(G ab) Aut(Gab

∗ )

φ φ ab φab
∗ .

Of course, φab
∗ can be thought as a square r× rmatrix over Z (with determinant ±1

if φ is an automorphism). In Section 4.5 we will relate certain properties of a
Z-extension Hoφ Z with the automorphism φab

∗ associated to φ.

Definition 4.3.1. The first Betti number of a finitely generated group G, denoted
b(G), is the rank of the free-abelian part of its abelianization; with the previous
notation,

b(G) := rkGab
∗ .

We collect here some elementary properties of the first Betti number which will be
useful later.

Lemma 4.3.2. Let G be a finitely generated group. Then,
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1. b(G) = b(G ab) = b(Gab
∗ ) = rkGab

∗ 6 rk(G ab), with equality if and only if G ab

is free-abelian;

2. for every subgroup H 6 G ab, b(G ab/H) = b(G ab) − b(H);

3. if G ab = H1 ⊕ · · · ⊕Hk, then b(G ab) = b(H1) + · · ·+ b(Hk).

From diagram (4.1) it is clear that any finitely generated group G is an extension
by Zk, for every k 6 r = b(G). Indeed, it is not difficult to see that b(G) is the
maximum rank for a free-abelian quotient of G. Hence, we have the following
straightforward characterizations.

Lemma 4.3.3. Let G be a finitely generated group, and k a nonnegative integer. Then, G
is an extension by Zk if and only if k 6 b(G), i.e.,

G is ∗ - by - Zk ⇔ k 6 b(G) . (4.3)

And, if so, every possible base group of G by Zk must contain kerπab
∗ = (πab)−1(T).

Proof. Since Zk is abelian and torsion-free, every epimorphism ρ : G Zk should
factor through πab

∗ (abelianizing and killing the torsion)

G Zk

Zb(G)

←�πab
∗

←�ρ
← �

ρ̃
(4.4)

providing an epimorphism Zb(G) Zk, which implies k 6 b(G). The converse is
clear from diagram (4.1). Finally, the inclusion kerπab

∗ 6 ker ρ is immediate from
the factorization (4.4).

A characterization of unique extensions by free-abelian groups follows easily.

Lemma 4.3.4. Let G be a finitely generated group, and k a nonnegative integer. Then, G
is a unique extension by Zk if and only if k = b(G), i.e.,

G is ! - by - Zk ⇔ k = b(G) . (4.5)

If so, the (unique) base group of G by Zb(G) is kerπab
∗ = (πab)−1(T); i.e., every finitely

generated group G is !
(
(πab)−1(T)

)
- by - Zb(G).

Proof. It is enough to realize that the inclusion kerπab
∗ 6 ker ρ in (4.4) is an equality

— and thus the base group is unique and equal to (πab)−1(T) — if and only if the
epimorphism ρ̃ : Zb(G) Zk is bijective, i.e., if and only if k = b(G).
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Note that one can easily compute the Betti number of any group given by a finite
presentation: just abelianize it (i.e., add as relators the commutators of any pair
of generators in the presentation) and then apply the Classification Theorem for
finitely generated abelian groups, which is clearly algorithmic. Thus, Lemmas 4.3.3
and 4.3.4 immediately imply the decidability of the membership problem for these
families of groups.

Corollary 4.3.5. For every k > 0, the membership problem for the families ∗ - by - Zk and
! - by - Zk is decidable; i.e., there exists an algorithm which takes any finite presentation as
input and decides whether the presented group is ∗ - by - Zk (resp. ! - by - Zk) or not.

4.4 Infinite-cyclic extensions
We will concentrate now on infinite cyclic extensions, concretely in the family
∗ - by - Z and its subfamily ! - by - Z. Let us describe them in a different way: since
Z is a free group, every short exact sequence of the form 1 → H → G → Z → 1
splits, and so G is a semidirect product of H by Z; namely G ' Hoα Z, for
some α ∈ Aut(H). Let us recall this well known construction in order to fix our
notation.

Given an arbitrary groupH and an automorphism α ∈ Aut(H), define the semidirect
product of H by Z determined by α as the group Hoα Z with underlying set H×Z

and operation given by

(h,m) · (k,n) = (hαm(k),m+n), (4.6)

for all h,k ∈ H, and m,n ∈ Z. Of course, h 7→ (h, 0) is a natural embedding of H
in Hoα Z, and we then have the natural short exact sequence

1→ H→ Hoα Z→ Z→ 1. (4.7)

Therefore, Hoα Z belongs to the family ∗ - by - Z. Recall that we can have Hoα
Z ' K oβ Z, with H = K but α 6= β; or even with H 6' K. We discuss this
phenomena in Section 4.9 (see Lemma 4.9.3, and Corollary 4.9.2, respectively).

In the opposite direction, assume that G is in the family ∗ - by - Z. Choose a
homomorphism onto Z, say ρ : G � Z, and consider the short exact sequence
given by

1→ H→ G
ρ
� Z→ 1,

where H = ker ρ P G. Choose and denote by t a preimage in G of any of the
two generators of Z (note that choosing such t is equivalent to choosing a split
homomorphism for ρ). Now consider the conjugation by t in G, say γt : G→ G,
g 7→ tgt−1, and denote by α ∈ Aut(H) its restriction to H (note that γt is an inner
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automorphism of G, but α may very well not be inner as an automorphism of H).
By construction, we have

th = α(h)t, (4.8)

for every h ∈ H. At this point, it is clear that every element from G can be
written in a unique way as htk, for some h ∈ H and k ∈ Z. And—from (4.8)—the
operation in G can be easily understood by thinking that t (respectively, t−1) jumps
to the right of elements from H at the price of applying α (respectively, α−1):

htm · ktn = hαm(k) tm+n. (4.9)

This is, precisely, the multiplicative version of (4.6). Hence, G ' Hoα Z, the
semidirect product of H by Z determined by α.

From this discussion it follows easily that, for any presentation of H, say H = 〈X |

R〉, and any α ∈ Aut(H), the semidirect product G = HoαZ admits a presentation
of the form 〈

X, t
∣∣ R , txt−1 = α(x) (x ∈ X)

〉
. (4.10)

Note that (4.10) is a finite presentation if and only if the initial presentation for H
was finite. So, a group G admits a finite presentation of type (4.10) if and only if G
is fp - by - Z. This provides the notion of standard presentation in this context.

Definition 4.4.1. A standard presentation for a fp - by - Z group G is a finite presen-
tation of the form (4.10).

The previous discussion provides the following alternative descriptions for the
family of finitely presented Z-extensions. For any group H, we have

[H - by - Z]fp = {Hoα Z f.p. | α ∈ Aut(H)},

and then,

[∗ - by - Z]fp = {G fp | b(G) > 1 }

= {Hoα Z fp | H group, and α ∈ Aut(H) } .

Remark 4.4.2. Note that we have made no assumptions on the base group H.
Imposing natural conditions on it, we get the inclusions

fp - by - Z ⊆ [fg - by - Z]fp ⊆ [∗ - by - Z]fp , (4.11)

which will be seen throughout the paper to be both strict.
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The strictness of the second inclusion in (4.11) is a direct consequence of Corol-
lary 4.6.2, while the strictness of the first one is proved below (we thank Conchita
Martínez for pointing out the candidate group (4.12) in the subsequent proof).

Proposition 4.4.3. The inclusion fp - by - Z ⊆ [fg - by - Z]fp is strict. That is, there exist
finitely presented Z-extensions of finitely generated groups, which are not Z-extensions of
any finitely presented group.

Proof. Let p < q < r be three different prime numbers, and consider the additive
group A of the ring Z[ 1

p , 1
q , 1
r ], which is well known to be generated by X =

{1/pn}n∈N ∪ {1/qn}n∈N ∪ {1/rn}n∈N, but not finitely generated (for any given
finite set of elements in A, let k be the biggest p-exponent in the denominators, and
it is easy to see that 1/pk+1 ∈ A is not in the subgroup generated by them). Finally
consider the two commuting automorphisms α,β : A → A given by α : a 7→ p

ra,
and β : a 7→ q

ra.

Our candidate G is the (metabelian) semidirect product of A by Z2 = 〈t, s | [t, s]〉,
with action t 7→ α, s 7→ β, namely,

G = Aoα,β Z2

=
〈
A, t, s

∣∣∣ ts = st, tat−1 =
p

r
a, sas−1 =

q

r
a
〉

.
(4.12)

(One has to be careful here with the notation: it is typically multiplicative for
the nonabelian group G, but additive for the abelian group A, while α and β are
defined using products of rational numbers; beware, in particular, of the element
1 ∈ Z ⊆ A which is additive and, of course, nontrivial.)

It is easy to see that G is generated by 1 ∈ A, and t, s ∈ Z2: indeed, conjugating
1 by all powers of t and s we obtain, respectively, pn/rn and qn/rn, and then
λnp

n/rn + µnq
n/rn = 1/rn for appropriate integers λn,µn, by Bezout’s identity;

with the same trick and having rn/pn and 1/rn, we get 1/pnrn and so, 1/pn; and
similarly, one gets 1/qn. Note that, in order to obtain all of A, it is enough to get
1/pn, 1/qn and 1/rn for n big enough; this will be used later.

To see that G is finitely presented, it is enough to use Theorem A(ii) in [BS80],
which provides a precise condition for a finitely generated metabelian group to be
finitely presented. This is a result, due to Bieri and Strebel, that later lead to the
development of the so called Bieri–Neumann–Strebel theory (see Section 4.7).

Note that the group G is finitely generated and metabelian, having A as an
abelian normal subgroup with quotient Z2. We know that A is not finitely
generated as group; however, with Z2 acting by conjugation, A becomes a Z2-
module, which is finitely generated by the exact same argument as in the previous
paragraph. But even more: for all nontrivial valuation v : Z2 → R, A is also finitely
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generated over at least one of the two monoids {(n,m) ∈ Z2 | v(n,m) > 0}, or
{(n,m) ∈ Z2 | v(n,m) 6 0}. This is because any such valuation has the form
(n,m) 7→ αn+ βm for some (0, 0) 6= (α,β) ∈ Z2, and then it is routine to show
that, starting with 1 ∈ A, conjugating only either by those tnsm with αn+βm > 0,
or those with αn+βm 6 0, and adding, we can get all of A (we leave the details to
the reader). By Theorem A(ii) from [BS80], this implies that the group G is finitely
presented.

Now consider the subgroup H = 〈ts,A〉 6 G, which is clearly normal and produces
a quotient G/H = Z = 〈z | −〉. Since

H ' Aoα◦β Z =
〈
A, z

∣∣∣ zaz−1 =
pq

r2 a
〉

is generated by 1, z (by the same reason as above), we deduce that G is both
a Z-extension of its finitely generated subgroup H, and finitely presented; i.e.,
G ∈ [fg - by - Z]fp.

It remains to see that G /∈ fp - by - Z (i.e., G is not a Z-extension of any finitely
presented subgroup). We do not know whether this is true for every p,q, r, but
we shall prove it for particular values of the parameters; concretely for (p,q, r) =
(2, 3, 5).

It is easy to see that the derived subgroup G ′ is contained in A. We shall prove that,
when this inclusion is indeed an equality—for example, when (p,q, r) = (2, 3, 5), as
it is straightforward to see—then G is not a Z-extension of any finitely presented
subgroup. That is, no normal subgroup N P G with G/N ' Z can be finitely
presented. In fact, let N P G be such a subgroup. Then A = G ′ P N P G

and, taking quotients by A, we obtain 1 P N/A P G/A = Z2 = 〈t, s〉. But
Z ' G/N ' G/A

N/A '
Z2

N/A . So, it must be N/A ' Z.

Now, choose (n,m) 6= (0, 0) such that N/A is generated by tnsmA (we can clearly
assume n > 0); and deduce that N ' Anϕ Z with action ϕ : a 7→ pnqm

rn+m a. In
particular, N is finitely generated by an argument as above. Note also that the
action of ϕ is by multiplication by a simplified fraction, say λ/µ, with λ and µ
both different from ±1 (if m > 0 it is multiplication by pnqm

rn+m ; and if m < 0, it is
multiplication by pnr|m|

rnq|m| ).

Finally, let us apply again Theorem A(ii) in [BS80], now to the short exact sequence
1→ A→ N→ Z→ 1. The only nontrivial valuations Z→ R are 1 7→ ±1, and it
is easy to see that A is not finitely generated neither as a Z+-module (with finitely
many elements one cannot obtain 1/λn for n � 0), nor as a Z−-module (with
finitely many elements one cannot obtain 1/µn for n � 0). Therefore, N is not
finitely presented, and the group G is not a Z-extension of any finitely presented
subgroup, as we wanted to prove.
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4.5 Unique infinite-cyclic extensions
Recall that the family of unique Z-extensions (i.e., groups having a unique normal
subgroup with quotient Z) which are finitely presented is denoted [! - by - Z]fp.

As seen in Lemma 4.3.4, the family [! - by - Z]fp consists precisely of those groups
G in [∗ - by - Z]fp such that b(G) = 1. For finitely generated base groups H, Propo-
sition 4.5.5 provides a quite simple characterization of this unicity condition in
terms of the defining automorphism α.

We first obtain a convenient description of the center and abelianization of an
infinite-cyclic extension Hoα Z = 〈X, t | R , txt−1 = α(x) (x ∈ X)〉 in terms of the
defining automorphism α ∈ AutH.

4.5.1 Center and abelianization.

Observe that, if α 6= idH then t does not commute with some element of H (namely,
those h ∈ H such that α(h) 6= h); in particular, Hoα Z is not abelian in this cases.
In fact, it is straightforward to obtain a complete characterization of the elements
in the center of Hoα Z just reinterpreting the commutativity conditions using.

Lemma 4.5.1. Let α ∈ Aut(H), and h tk ∈ Hoα Z. Then,

1. h tk commutes with every element in H if and only if αk = γh−1 ∈ Inn(H),

2. h tk commutes with t ∈ Z if and only if α(h) = h.

Therefore, the center of Hoα Z is

Z (Hoα Z) = {h tk : h ∈ Fix(α) and αk = γh−1} . (4.13)

A characterization of the triviality of the center of Hoα Z follows immediately.

Corollary 4.5.2. The group Hoα Z has nontrivial center if and only if either α is of
finite order in Aut(H), or αk is conjugation by a nontrivial α-fixed element, for some
k ∈ Z.

In particular we get quite neat characterizations in the following two degenerated
cases:

Corollary 4.5.3. For α ∈ Aut(H),

1. if Fix(α) is trivial, then: Z(HoαZ) = 1 ⇔ α is of infinite order in Aut(H),

2. if Z(H) is trivial, then: Z(HoαZ) = 1 ⇔ [α] is of infinite order in Out(H).
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Lemma 4.5.4. Let H be an arbitrary group, and let α ∈ Aut(H). Then,

(Hoα Z) ab ' H ab

im(α ab − id)
⊕ Z . (4.14)

Moreover, if H is finitely generated, then so is Hoα Z, and

(Hoα Z) ab ' Zk+1 ⊕ T , (4.15)

where k is the rank of ker(α ab
∗ − id), and T is a finite abelian group.

Proof. Let H = 〈X | R〉. Abelianizing Hoα Z = 〈X, t | R, txit−1 = α(xi) (xi ∈ X)〉,
we get

(Hoα Z) ab =

〈
X, t

∣∣∣∣∣∣
R,
txit

−1=α(xi) (xi∈X),
xixj=xjxi (xi,xj∈X),
txi=xit (xi∈X)

〉

'
〈
X

∣∣∣∣ R,
xi=α(xi) (xi∈X),
xixj=xjxi (xi,xj∈X)

〉
× 〈t | −〉 (4.16)

' H ab

im(α ab − id)
⊕ 〈t | −〉 .

For the second part, suppose that H is finitely generated. Then so is H ab and thus,
using Lemma 4.3.2, we have

b(Hoα Z) = b1

(
H ab

im(α ab − id)

)
+ 1

= b(H ab) − b(im(α ab − id)) + 1

= b(H ab
∗ ) − b(im(α ab

∗ − id)) + 1

= b(ker(α ab
∗ − id)) + 1

= rk (ker(α ab
∗ − id)) + 1 ,

(4.17)

which is, precisely, what we wanted to prove.

4.5.2 Deranged automorphisms

This last result, combined with Lemma 4.3.4, provides a computable characteriza-
tion for automorphisms defining !fg - by - Z groups. We state the result in a more
general setting, the algorithmic part corresponding to the finitely generated base
group case.

Proposition 4.5.5. Let H be an arbitrary group, and α ∈ Aut(H) such that the semidirect
product Hoα Z is finitely generated. Then, the following conditions are equivalent:
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a. Hoα Z is ! - by - Z;

b. b(Hoα Z) = 1;

c. H = ker(πab
∗ ) = (πab)−1(T)

(i.e., H is the full preabelianization of the torsion subgroup T 6 (Hoα Z) ab);

d. H is a fully characteristic subgroup of Hoα Z.

Moreover, if H is finitely generated, then the following additional condition is also equiva-
lent:

e. αab
∗ has no nontrivial fixed points (equivalently, 1 is not an eigenvalue of αab

∗ ,
ker(αab

∗ − id) = 0, or det(αab
∗ − id) 6= 0).

Proof. [a.⇔ b.⇔ c.]. This is precisely the content of Lemma 4.3.4, for k = 1.

[c.⇒ d.]. This is clear, since ker(πab
∗ ) = (πab)−1(T), the full preabelianization of the

torsion subgroup T of the abelian group (Hoα Z) ab, which is fully characteristic.

[d.⇒ b.]. By contradiction, suppose that Hoα 〈t | −〉 has Betti number at least 2.
Then, there exists an epimorphism ρ : Hoα 〈t〉 Z2, and thus an element h ∈ H
such that ρ(h) 6= 0. Take a primitive element v ∈ Z2 such that ρ(h) = λv for
some λ ∈ Z, λ 6= 0. The subgroup 〈v〉 ' Z is a direct summand of Z2, and the
composition

Hoα 〈t〉
ρ

Z2 〈v〉 Hoα 〈t〉
v t

provides an endomorphism of Hoα Z mapping h ∈ H to tλ, a contradiction with
condition d..

Finally, assume H is finitely generated. Then, from (4.15) in Lemma 4.5.4, we
have that b(Hoα Z) = 1 if and only if rk ker(αab

∗ − id) = 0, i.e., if and only if
ker(αab

∗ − id) = 0. This proves [b.⇔ e.].

Definition 4.5.6. We say that an automorphism α ∈ Aut(H) is deranged if one of
(and thus all) the conditions a. − d. in Proposition 4.5.5 hold. Note that when
the base group H is finitely generated, condition e. provides another equivalent
definition which is, furthermore, clearly algorithmic with respect to the defining
automorphism: given α ∈ Aut(H) by images of generators, it is easy to algorithmi-
cally check whether α is deranged or not.

In particular, every automorphism of a group H with b(H) = 0 (i.e., with finite
abelianization) is trivially deranged. Note also that derangedness is, in fact,
a property of outer automorphisms. The sets of deranged automorphisms and
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deranged outer automorphisms of a groupHwill be denoted, respectively, Autd(H)
and Outd(H).

Consequently, for any finitely generated group H we have

[!H - by - Z]fp = {Hoα Z fp | α ∈ Autd(H) },

and then,

[!fg - by - Z]fp = { Hoα Z fp | H fg and α ∈ Autd(H) }

⊆ [! - by - Z]fp = {G fp | b(G) = 1} . (4.18)

Note that in (4.18) we wrote inclusion and not an equality because, in principle,
it could happen that a finitely presented ! - by - Z group has his unique normal
subgroup with quotient isomorphic to Z being not finitely generated. In the next
section we shall construct such a group (see Corollary 4.6.2), showing that this
inclusion is strict.

4.6 Undecidability results
In this section, we will be concerned with inclusions between subfamilies of infinite-
cyclic extensions. For example, it is immediate that if H is finitely generated or
finitely presented, then so is Hoα Z for every α ∈ Aut(H), i.e.,

fg - by - Z ⊆ [∗ - by - Z]fg,

fp - by - Z ⊆ [∗ - by - Z]fp .

However, it is less obvious that the converse is not true in general: a semidirect
product HoαZ can be finitely presented, with H not even being finitely generated.
Or, as was hinted few lines above, even worse: there do exist finitely presented
Z-extensions which are not Z-extensions of any finitely generated group. In other
words, the following inclusion is strict:

[fg - by - Z]fp ⊂ [∗ - by - Z]fp .

Indeed, this can happen even for unique Z-extensions. This fact follows easily
from the next lemma, showing that any free product K ∗Z has the form of a certain
semidirect product.

Lemma 4.6.1. Let K = 〈X | R〉 be an arbitrary group with generators X = {xj}j∈J, and
consider the free product

∗
i∈Z

K =
〈
X(i) (i ∈ Z)

∣∣∣ R(i) (i ∈ Z)
〉

,
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where
〈
X(i)

∣∣ R(i) 〉 (i ∈ Z) are disjoint copies of the original presentation for K. Then,(
∗
i∈Z

K

)
oτ Z ' K ∗Z , (4.19)

where τ is the automorphism of∗i∈Z K defined by

τ : x
(i)
j 7→ x

(i+1)
j

(
∀i ∈ Z , ∀x(i)j ∈ X

(i)
)

. (4.20)

Proof. Naming t the generator of Z, we have

(
∗
i∈Z

K

)
oτ Z =

〈
t,X(i) (i ∈ Z)

∣∣∣∣∣ R(i) (i ∈ Z),

t x
(i)
j t−1 = x

(i+1)
j

(
i ∈ Z, x(i)j ∈ X

(i)
) 〉

'

〈
t,X(i) (i ∈ Z)

∣∣∣∣∣ R(0),

t x
(i)
j t−1 = x

(i+1)
j

(
i ∈ Z, x(i)j ∈ X

(i)
) 〉

(4.21)

'
〈
t,X(0)

∣∣∣ R(0)
〉

= K ∗Z . (4.22)

To see the last isomorphism, consider the maps from (4.22) to (4.21) given by

t 7→ t,

x
(0)
j 7→ x

(0)
j (x

(0)
j ∈ X

(0)),

and from (4.21) to (4.22) given by

t 7→ t,

x
(i)
j 7→ tix

(0)
j t−i (i ∈ Z, x(i)j ∈ X

(i)).

It is straightforward to see that they are both well-defined homomorphisms, and
one inverse to the other.

Corollary 4.6.2. If K is a group with finite abelianization (i.e., b(K) = 0), then the free
product K ∗Z is a unique Z-extension, and the following conditions are equivalent:

(a) K ∗Z is fg - by - Z;

(b) K ∗Z is fp - by - Z;

(c) K ∗Z is abelian - by - Z;

(d) K ∗Z is finite - by - Z;

(e) K ∗Z is free - by - Z;

(f) K = 1.
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In particular, !fg - by - Z is a strict subfamily of [! - by - Z]fp (and so, fg - by - Z is a strict
subfamily of [∗ - by - Z]fp).

Proof. Note that the abelianization of K ∗Z is (K ∗Z) ab = K ab ⊕Z, where |K ab| <∞ by hypothesis; therefore, b(K ∗Z) = 1. Thus, from Lemma 4.3.4, K ∗Z is a
unique Z-extension, i.e., it contains a unique normal subgroup with quotient Z.
By Lemma 4.6.1, this unique normal subgroup is isomorphic to∗z∈Z K, which is
finitely generated (resp., finitely presented, abelian, finite, free) if and only if K is
trivial (the free case being true because b(K) = 0).

Taking K to be a nontrivial finitely presented group with finite abelianization, we
obtain that K ∗Z belongs to [! - by - Z]fp but not to !fg - by - Z.

Next, inspired by a trick initially suggested by Maurice Chiodo, we will prove a
stronger result. Not only the family !fg - by - Z is a strict subfamily of [! - by - Z]fp,
but the membership problem between these two families is undecidable: it is
impossible to decide algorithmically whether a given finitely presented unique
Z-extension is fg - by - Z or not, i.e., whether its unique base group is finitely
generated or not. To see this, we use a classic undecidability result: there is no
algorithm which, on input a finite presentation, decides whether the presented
group is trivial or not (see, for example, [Mil92]).

Theorem 4.6.3. For every group property P ∈ {fg, fp, abelian, finite, free}, the membership
problem for P - by - Z within [! - by - Z]fp is undecidable.

In other words, there exists no algorithm which, on input a finite presentation of a
group with Betti number 1, decides whether it presents a fg - by - Z (resp. fp - by - Z,
abelian - by - Z, finite - by - Z, free - by - Z) group or not.

Proof. We will proceed by contradiction. Assume the existence of an algorithm,
say A, such that, given as input a finite presentation of a group with Betti number
1, outputs yes if it presents a P - by - Z group, and no otherwise.

Now, consider the following algorithm B to check the triviality of an arbitrary
finite presentation K = 〈X | R〉 given as input:

1. abelianize K and, using the Classification Theorem for finitely generated
abelian groups, check whether K ab is trivial or not; if not, answer no;
otherwise K is a perfect group and so, the new group K ∗Z has Betti
number 1;

2. apply A to the presentation 〈X, t | R〉, to decide whether K ∗Z is a P - by - Z

group or not.
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According to Corollary 4.6.2, the output to step (ii) is yes if and only if K is
trivial. Hence, the algorithm B decides whether the given presentation 〈X | R〉
presents the trivial group or not. This contradicts Adian–Rabin’s Theorem on the
undecidability of the triviality problem, and therefore there is no such algorithm A,
as we wanted to prove

Of course, if the membership problem is not decidable within some family H,
it is also undecidable within any superfamily of H. So, we immediately get the
following consequence.

Corollary 4.6.4. The membership problems for the families fp - by - Z and fg - by - Z are
undecidable.

As stated in the introduction, this is exactly the same as saying that the families
(of finite presentations) fp - by - Z and fg - by - Z are not recursive.

Remark 4.6.5. Note that none of these families is neither Markov nor co-Markov,
and thus the two undecidability results in Corollary 4.6.4 are not consequence
of the classic result due to Adian–Rabin. Indeed, any finitely presented group
is a subgroup of some fp - by - Z (and so, of some fg - by - Z) group; therefore the
families fp - by - Z and fg - by - Z are not Markov. On the other hand, every fp group
embeds into some 2-generated simple group (see [Mil92, Corollary 3.10]); since

simple ⇒ perfect ⇒ ¬(fg - by - Z) ⇒ ¬(fp - by - Z) ,

the families fp - by - Z and fg - by - Z are not co-Markov either.

4.7 Implications for the BNS invariant

Since the early 1980s, in a series of papers by R. Bieri, W. Neumann, and R. Strebel
(see [BS80; BNS87]), several gradually more general invariants —called Sigma
(or BNS) Invariants— have been introduced to deal with finiteness conditions for
presentations of groups. Concretely in [BNS87], they present an invariant that
characterizes those normal subgroups of a finitely generated group G that are
finitely generated and contain the commutator subgroup of G. Over the years, this
theory has been reformulated in more geometric terms (for a modern version see
the survey [Str12]). Below, we recall this construction and characterization, and
discuss some implications of our undecidability results from Section 4.6.

For a finitely generated group G, consider the real vector space Hom(G, R) of
all homomorphisms χ : G→ R (from G to the additive group of the field of real
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numbers) which we call characters of G. Note that, since R is abelian and torsion-
free, any character χ must factor through πab

∗ (abelianizing and then killing the
torsion), i.e.,

χ : G πab
G ab π∗ Gab

∗ R .

Thus, Hom(G, R) = Hom(Zr, R) = Rr, where r = b(G). We will consider the set
of nontrivial characters modulo the equivalence relation given by positive scaling:

χ1 ∼ χ2 ⇔ ∃λ > 0 s.t. χ2 = λχ1 . (4.23)

They form the so-called character sphere of G, denoted S(G) = Hom(G, R)∗/ ∼

which, equipped with the quotient topology, is homeomorphic to the unit Eu-
clidean sphere of dimension r− 1 (through the natural identification of each ray
emanating from the origin with its unique point of norm 1).

For example, if G is not ∗ - by - Z (i.e., if b(G) = 0), then Hom(G, R) = {0} and
the sphere character is empty (so, for this class of groups the BNS theory will be
vacuous). More interestingly, if G is ! - by - Z (i.e., b(G) = 1), then the character
sphere of G is a set of just two points, namely S(G) = {+1,−1}. Similarly, if
b(G) = 2, 3, . . ., then S(G) is the unit circle in R2, the unit sphere in R3, and so
on.

For any given (equivalence class of a) nontrivial character χ, consider now the
following submonoid of G, called the positive cone of χ:

Gχ = {g ∈ G | χ(g) > 0} = χ−1([0,+∞)), (4.24)

to be thought of as the full subgraph of the Cayley graph Cay (G,X) determined
by the vertices in Gχ (once a set of generators for G is fixed). The Sigma invariant
Σ(G) can then be defined as follows (we note that this is not the original definition
given in [BNS87], but a more geometrically appealing one, which was not noticed
to be equivalent until several years later, see [Mei90, Theorem 3.19]).

Definition 4.7.1. Let G = 〈X〉 be a finitely generated group, and Cay (G,X) its
Cayley graph. Then the set

Σ(G) = { [χ] ∈ S(G) | Gχ is connected } ⊆ S(G) (4.25)

does not depend on the choice of the finite generating set X (see [Str12]), and is
called the (first) Sigma — or BNS — invariant of G.

Interestingly enough, this notion is quite related with commutativity. The extreme
examples are free and free-abelian groups, for which it is easy to see that the BNS
invariants are, respectively, the empty set and the full character sphere: Σ(Fr) = ∅,
for r > 2; and Σ(Zr) = S(Zr), for r > 1.
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The set of characters vanishing on a certain subgroup H 6 G determine the
subsphere

S(G,H) = { [χ] ∈ S(G) | χ(H) = 0 } ⊆ S(G) ,

which happens to contain relevant information about H itself.

Theorem 4.7.2 (Bieri, Neumann, and Strebel, 1987, [BNS87]). Let H be a normal
subgroup of a finitely generated group G with G/H abelian. Then, H is finitely generated
if and only if S(G,H) ⊆ Σ(G). In particular, the commutator subgroup [G,G] is finitely
generated if and only if Σ(G) = S(G).

Note that if G is H - by - Z, then S(G,H) = {[πH],−[πH]}, where πH : G G/H ' Z

is the canonical projection modulo H. In this case, Theorem 4.7.2 tells us that

H is fg ⇔ [πH],−[πH] ∈ Σ(G). (4.26)

It follows a characterization of fg - by - Z groups which is directly connected with
our undecidability result in Corollary 4.6.4.

Proposition 4.7.3. A finitely generated group G is fg - by - Z if and only if its BNS
invariant contains a pair of antipodal points; i.e.,

G is fg - by - Z ⇔ ∃[χ] ∈ S(G) s.t. [χ],−[χ] ∈ Σ(G) . (4.27)

Proof. The implication to the right is clear from (4.26).

The implication to the left follows from the fact that we can always choose such a
character χ with cyclic image (i.e., such that rkZ χ(G) = 1). To see this, we observe
that, given a nontrivial character χ : G → R, one has rkZ χ(G) = 1 if and only
if there exists λ > 0 such that λχ has integral image, λχ : G Z ⊆ R. In other
words, rank-one characters correspond, precisely, to those points in the sphere
S(G) which are projections of integral (or rational) points from Rr \ {0}. Thus,
rank-one characters form a dense subset of S(G). This, together with the fact that
Σ(G) is an open subset of S(G) (see [Str12, Theorem A3.3]) allows us to deduce,
from the hypothesis, the existence of a pair of antipodal points of rank one.

As a corollary, and using Theorem 4.6.3, we obtain the main result in this section:
the BNS invariant is not uniformly decidable.

Theorem 4.7.4. There is no algorithm such that, given a finite presentation of a group G
and a character [χ] ∈ S(G), decides whether [χ] belongs to Σ(G) or not.

Proof. Given a finite presentation of a ! - by - Z group G (i.e., b(G) = 1, and S(G) has
two points), we can abelianize and construct the unique two characters ±π : G Z.
Assuming an algorithm like in the statement, we could algorithmically decide
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whether π,−π both belong to Σ(G) or not, i.e., according to Proposition 4.7.3,
whether G is fg - by - Z or not. This contradicts Theorem 4.6.3.

We note that, in the case of a one-relator group G = 〈a,b | r〉, K. Brown provided
an interesting algorithm for deciding whether a given character χ : G→ R belongs
to Σ(G) or not, by looking at the sequence of χ-images of the prefixes of the relation
r (assumed to be in cyclically reduced form); see [Bro87]. Later, N. Dunfield,
J. Button and D. Thurston found applications of this result to 3-manifold theory;
see [Dun01; But05; DT06].

4.8 Recursive enumerability of presentations
A standard presentation of a given fp - by - Z group G has been defined as a finite
presentation of the form

〈
X, t

∣∣ R, txt−1 = α(x) (x ∈ X)
〉

,

where α is an automorphism of 〈X | R〉. It is natural to ask for an algorithm
to compute one —or all— standard presentations for such a group G, since
this algorithm will provide explicit computable ways to think G as a semidirect
product (i.e., an explicit base group H, and an explicit automorphism α, such that
G ' Hoα Z).

We have seen that membership for fp - by - Z is undecidable (Corollary 4.6.4).
However, given a finite presentation for a fp - by - Z group G, we can use Tietze
transformations to obtain a recursive enumeration of all the finite presentations for
G. In the following proposition we provide a (brute force) filtering process which
extracts from it a recursive enumeration of all the standard ones.

Proposition 4.8.1. Given a finite presentation of a fp - by - Z group G, the set of standard
presentations for G is recursively enumerable.

Proof. Let P be the finite presentation given (of a fp - by - Z group G). We will start
enumerating all finite presentations of G by successively applying to P chains of
elementary Tietze transformations in all possible ways. This process is recursive
and eventually visits all finite presentations for G (all standard presentations
among them).

Now, it will be enough to construct a recognizing subprocess S which, applied to
any finite presentation P ′ for G, if P ′ is in standard form it halts and returns P ′, and
if not it maybe halts returning “no, P ′ is not standard", or works forever. Having
S, we can keep following the enumeration of all finite presentations P ′ for G via
Tietze transformations and, for each one, start and run in parallel the recognizing
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process S for it; we maintain all of them running in parallel (some of them possibly
forever), and at the same time we keep opening new ones, simultaneously aware
of the possible halts (each one killing one of the parallel processes and possibly
outputting a genuine standard presentation for G).

So, we are reduced to design such a recognizing process S. For a given finite
presentation P ′ of G, let us perform the following steps:

i. Check whether P ′ matches the scheme

〈
X, t

∣∣ R , txit−1 = wi (xi ∈ X)
〉

, (4.28)

where X = {x1, . . . , xn} and R = {r1, . . . , rm} are finite, and the wi’s and rj’s
are all (reduced) words on X. If P does not match this scheme, then halt and
answer “no, P ′ is not standard"; otherwise go to the next step.

ii. With P ′ being of the form (4.28), consider the groupH = 〈X | R〉 = F(X)/〈〈R〉〉
and let us try to check whether the map xi 7→ wi extends to a well-defined
homomorphism α : H → H. For this, we must check whether α(rj) = 1
in H or not (but caution! we cannot assume in general a solution to the
word problem for H). Enumerate and reduce the elements in 〈〈R〉〉 and
check whether, for every relator rj(x1, . . . , xn) ∈ R, the word rj(w1, . . . ,wn)
appears in the enumeration. If this happens for all j = 1, . . . ,m, then go to
the next step (with P ′ being of the form

〈
X, t

∣∣ R , txit−1 = α(xi) (xi ∈ X)
〉

, (4.29)

where α ∈ End(F(X)/〈〈R〉〉) ).

iii. With P ′ being of the form (4.29), let us try to check now whether α is
bijective, looking by brute force for its eventual inverse: enumerate all
possible n-tuples (v1, . . . , vn) of reduced words on X and for each one,
check simultaneously whether rj(v1, . . . , vn) = 1 in H for all j = 1, . . . ,m
(i.e., whether β : H→ H, xi 7→ vi is a well-defined endomorphism of H) and
whether vi(w1, . . . ,wn) = 1 and wi(v1, . . . , vn) = 1 in H, for all i = 1, . . . ,n
(i.e., whether αβ = βα = id and so α ∈ Aut(H)). We do this in a similar
way as in the previous step: enumerate the normal closure 〈〈R〉〉 (an infinite
process) and wait until all the mentioned words appear in the enumeration.
When this happens (if so), halt the process and output P ′ as a standard
presentation for G.

For any given P ′, step (i) finishes in finite time and either rejects P ′, or recognizes
that P ′ is of the form (4.28) and sends the control to step (ii). Now step (ii)
either works forever, or it halts recognizing P ′ of the form (4.29) and sending the
control to step (iii) (note that, by construction, it is guaranteed that if P ′ is really
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in standard form then α is a well-defined endomorphism of H and step (ii) will
eventually halt in finite time). Finally, the same happens in step (iii): it either works
forever, or it halts recognizing that P ′ is in standard form (again by construction, it
is guaranteed that if P ′ is really in standard form then α is bijective and step (iii)
will eventually catch its inverse and halt in finite time. Process S is built and this
concludes the proof.

We remark that we can apply the previous algorithm to an arbitrary finite pre-
sentation P of a (arbitrary) group G: if G is a fp - by - Z group the process will
enumerate all its standard presentations, while if G is not fp - by - Z the process
will work forever outputting nothing. So, we can successively apply —in parallel—
the previous algorithm to any enumerable family H of presentations to obtain an
enumeration of all standard fp - by - Z presentations within H. Taking H = Gfp, we
get an enumeration of all standard fp - by - Z presentations.

Corollary 4.8.2. The set of standard presentations of fp - by - Z groups is recursively
enumerable.

Applying all possible Tietze transformations to every standard presentation out-
putted by this procedure, we obtain an enumeration of all finite presentations of
fp - by - Z groups. This enriches Corollary 4.6.4 in the following way.

Corollary 4.8.3. The set of finite presentations of fp - by - Z groups is recursively enu-
merable but not recursive.

4.9 Isomorphisms of Z-extensions
Let us consider now problems of the first kind mentioned in Section 4.1: isomor-
phism problems within families of the form [P - by - Z]fp.

To begin with, we combine Lemma 4.6.1 with the following one, in order to see
that a Z-extension can have non-isomorphic base groups. The proof is just a direct
writing of the corresponding presentations.

Lemma 4.9.1. Let H be an arbitrary group, and φ ∈ Aut(H). Then,

(Hoφ Z)×Z ' (H×Z)oΦ Z , (4.30)

where Φ ∈ Aut(H×Z) is defined by (h, t) 7→ (φ(h), t).

Corollary 4.9.2. Isomorphic Z-extensions can have non-isomorphic base groups, even
of different type. More precisely, there exist a finitely presented group H, a non-finitely
generated group H ′, and automorphisms α ∈ Aut(H) and β ∈ Aut(H ′), such that
Hoα Z ' H ′ oβ Z. In particular, HoZ ' H ′ oZ ; H ' H ′.
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Proof. Let K be any nontrivial finitely presented group. Consider H = K ∗Z, which
is also finitely presented, and H ′ =

(∗i∈Z K
)
×Z, which is not finitely generated.

Combining (4.19) and (4.30), we get

H×Z = (K ∗Z)×Z '
((
∗
i∈Z

K

)
oτ Z

)
×Z '

((
∗
i∈Z

K

)
×Z

)
oT Z = H ′oT Z,

where τ ∈ Aut(∗i∈Z K) is the automorphism (4.20) defined in Lemma 4.6.1, and
T ∈ Aut(H ′) the corresponding one according to Lemma 4.9.1. The result follows
taking α = idH and β = T .

So, there is considerable flexibility in describing cyclic extensions as semidirect
products. Even fixing the base group, this flexibility persists within the possible
defining automorphisms. For example, one can easily see that Hoγ Z ' H×Z,
for every inner automorphism γ ∈ Inn(H). A bit more generally, the following is
a folklore lemma providing sufficient conditions for two automorphisms (of the
same base group) to define isomorphic semidirect products by Z.

Lemma 4.9.3. Let H be an arbitrary group, and let α,β ∈ Aut(H). If β = γξα±1ξ−1

for some γ ∈ Inn(H) and some ξ ∈ Aut(H), then Hoα Z ' Hoβ Z.

The existence of such γ ∈ InnH and ξ ∈ Aut(H) is exactly the same as [β] being
conjugate to [α]±1 in Out(H). This condition turns out to have some protagonism
along the rest of the chapter, making convenient to have a general shorthand
terminology for it.

Definition 4.9.4. Let G be an arbitrary group. A pair of elements g,h ∈ G are said
to be semi-conjugate if g is conjugate to either h or h−1; we denote this situation
by g ∼ h±1.

With this terminology, Lemma 4.9.3 is saying that when the defining automor-
phisms α,β ∈ Aut(H) are semi-conjugate in Out(H), then the corresponding
semidirect products H oα Z and H oβ Z are isomorphic. Note also the fol-
lowing necessary condition: by Proposition 4.5.5, α is deranged if and only if
b(Hoα Z) = 1 so, in order for Hoα Z and Hoβ Z to be isomorphic, a necessary
condition is that α and β are either both simultaneously deranged, or both not
deranged.

Apart from this, not much is known in general about characterizing or deciding
when two Z-extensions of a given group are isomorphic. In [BMV07], Bogopolski–
Martino–Ventura proved that, when the base group H is free of rank 2, the converse
to Lemma 4.9.3 also holds, providing a quite neat characterization of isomorphism
within the family of F2 - by - Z extensions and (using the decidability of the con-
jugacy problem in Out(F2), see [Bog00]) a positive solution to the isomorphism
problem within this family of groups.
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Theorem 4.9.5 (Bogopolski–Martino–Ventura, [BMV07]). Let α,β ∈ Aut(F2). Then,

F2 oα Z ' F2 oβ Z ⇔ [α] and [β] are semi-conjugate in Out(F2). (4.31)

In particular, the isomorphism problem within the family F2 - by - Z is decidable.

However, in this same paper, a counterexample was given (suggested by Dicks)
to see that this equivalence is not true for free groups of higher rank, where the
situation is, in general, much more complicated. The example is the following:
consider the free group of rank 3, F3 = 〈a,b, c | 〉, and the automorphisms α : F3 →
F3 given by a 7→ b 7→ c 7→ b−1ab−2c3, and β : F3 → F3 by a 7→ b 7→ c 7→ a−1b2cb−1.
It happens that F3 oα Z ' F3 oβ Z (see [BMV07] for details), while α and β are
not semi-conjugate in Out(F3) because they abelianize to two 3× 3 matrices of
determinants, respectively, 1 and -1. As far as we know, the isomorphism problem
for Fr - by - Z groups is open for r > 3.

The goal of the present section is to prove that an equivalence like (4.31) still
holds, but under kind of an orthogonal condition: rather than restricting the
base group to be F2, we will leave H arbitrary finitely generated, and impose
conditions on the defining automorphism. Note that such an equivalence reduces
the isomorphism problem in the family of restricted extensions, to the conjugacy
problem in the corresponding family of outer automorphisms of the base group
(or even to a weaker problem, if semi-conjugacy is not algorithmically equivalent
to conjugacy).

This context strongly suggests defining the semi-conjugacy problem much in the
same way that the standard conjugacy problem, and asking for the relationship
between them. We state both problems together in order to make the comparison
clear.

Definition 4.9.6. Let 〈X | R〉 be a finite presentation for a group G. Then:

• Conjugacy Problem for G [CP(G) ]: given two words u, v in X±, decide
whether they represent conjugate elements in G (u ∼G v) or not.

• Semi-conjugacy Problem for G [ 1
2CP(G) ]: given two words u, v in X±, decide

whether they represent semi-conjugate elements in G (u ∼G v
±1) or not.

Question 1. Is there a (finitely presented) group with decidable semi-conjugacy problem
but undecidable conjugacy problem?

This question looks quite tricky. Of course, if two elements g,h ∈ G are not
semi-conjugate, then they are not conjugate either. But if g ∼ h−1, it is not clear
how this information can help, in general, to decide whether g ∼ h or not; in this
sense the answer to the question seems reasonable to be negative. But, on the other
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hand, the two algorithmic problems are so close that it seems hard to construct a
counterexample.

In our case, the condition demanded for the defining automorphisms is deranged-
ness (see 4.5.6). The first observation is the following: suppose Hoα Z ' Koβ Z

for some groups H, K, and some deranged automorphisms α ∈ Aut(H) and
β ∈ Aut(K). Then, by construction, H and K are respectively, the unique normal
subgroups with quotient isomorphic to Z. Hence H ' K and, after expressing β
in terms of the generators of H, we can think that both α,β ∈ Aut(H). The next
step is to show that, under the derangedness condition, Hoα Z ' Hoβ Z implies
that [α], [β] ∈ Out(H) are semi-conjugate. To see this, we need to analyze how
homomorphisms between unique Z-extensions look like.

Definition 4.9.7. Let G be a group, and H a subgroup of G. An endomorphism Ψ ∈
End(G) is called H-stable if Ψ(H) 6 H (i.e., if H is invariant under Ψ). The collection
of all H-stable endomorphisms of G form a submonoid denoted EndH(G) 6
End(G). In a similar way, the collection of all H-stable automorphisms of G form a
normal subgroup denoted AutH(G) P Aut(G).

Notation. We will use Greek capital letters (Φ,Ψ, . . .) to denote homomorphisms
of the extensions HoZ, and keep using lowercase Greek letters (φ,ψ,α,β, . . .) to
denote homomorphisms of the base group H. Moreover, when a homomorphism
Φ ∈ End(HoZ) is H-stable, we will usually denote with the same letter in lowercase
the endomorphism induced by Φ in H; i.e., φ := Φ|H : H 3 h 7→ Φ(h).

A general description of the H-stable endomorphisms and automorphisms of
infinite-cyclic extensions of H follows.

Proposition 4.9.8. LetH be a group generated by X = {xi | i ∈ I}, and let α,β ∈ Aut(H).
Then, any homomorphism from Hoα Z to Hoβ Z mapping H to H is of the form

Φε,φ,h0 : Hoα Z → Hoβ Z,
xi 7→ φ(xi)

t 7→ h0 t
ε

(4.32)

where ε ∈ Z, h0 ∈ H, and φ ∈ End(H) are such that γh0β
εφ = φα.

Furthermore, Φε,φ,h0 is an isomorphism if and only if ε = ±1 and φ ∈ Aut(H). Thus,
the set of H-stable automorphisms of Hoα Z is

AutH(Hoα Z) =
{
Φε,φ,h0 | ε = ±1, h0 ∈ H, φ ∈ Aut(H) s.t. γh0α

εφ = φα
}

.
(4.33)

Proof. Let Φ : Hoα Z→ Hoβ Z be a homomorphism leaving H invariant, and let
us denote by φ : H → H its restriction to H. Write Φ(t) = h0 t

ε for some h0 ∈ H
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and ε ∈ Z. Applying Φ to both sides of the relation tht−1 = α(h) in the domain,
we get

h0 ·βεφ(h) · h−1
0 = h0t

ε ·φ(h) · t−εh−1
0 = Φ(tht−1) = Φ(α(h)) = φα(h) ,

for all h ∈ H. Hence, γh0β
εφ = φα and Φ = Φε,φ,h0 has the desired form.

Assume now that Φε,φ,h0 is an isomorphism (in particular, φ : H→ H is injective).
Then we must have ε = ±1, otherwise t would not be in the image. On the other
hand, since H P Hoα Z, we have that

φ(H) = Φε,φ,h0(H) P Hoβ Z = Φε,φ,h0(Hoα Z) = 〈φ(H), h0t
ε〉 ,

and so, any element of Hoβ Z can be written in the form φ(h)(h0t
ε)k, for some

h ∈ H and k ∈ Z; and it belongs to H if and only if k = 0. Thus, Φ(H) = H and
φ ∈ Aut(H). For the converse, it is clear that ε = ±1 and φ ∈ Aut(H) implies that
Φε,φ,h0 is an isomorphism. The final statement follows immediately.

4.10 Isomorphisms of unique Z-extensions

Note that Proposition 4.5.5 states precisely that EndH(Hoα Z) = End(Hoα Z)

if and only if α is deranged. This fact, together with the previous description
provides a characterization of isomorphic deranged extensions in terms of semi-
congugacy.

Corollary 4.10.1. Let H and K be two arbitrary groups, and let α ∈ Aut(H) and
β ∈ Aut(K) be two deranged automorphisms. Then,

Hoα Z ' Koβ Z ⇔ H ' K and [α] ∼ [β ′]±1 in Out(H), (4.34)

where β ′ = ψ−1βψ ∈ Aut(H), and ψ : H→ K is any isomorphism.

Proof. For any isomorphism ψ : H → K, it is clear that Koβ Z = ψ(H)oβ Z '
Hoψ−1βψ Z. Hence, the statement is equivalent to saying

Hoα Z ' Hoβ Z ⇔ [α] ∼ [β]±1 in Out(H),

for α,β ∈ Aut(H). The implication to the left is a general fact (see Lemma 4.9.3),
and the implication to the right is a direct consequence of Proposition 4.9.8: since
α and β are deranged, any isomorphism from Hoα Z to Hoβ Z must map H to
H and so, must be of the form Φε,φ,h0 for some ε = ±1, h0 ∈ H, and φ ∈ Aut(H)
satisfying γh0β

εφ = φα. Hence, [α] ∼ [β]±1 in Out(H).
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We are now ready to prove the main result in this section: for any family H of
finitely presented groups with decidable isomorphism problem, we characterize
when the family [!H - by - Z]fp has again decidable isomorphism problem, in terms
of a certain variation of the conjugacy problem for outer automorphisms of groups
in H.

Note that Corollary 4.10.1 clearly insinuates a link between the isomorphism
problem for deranged extensions, and the semi-conjugacy problem for deranged
outer automorphisms of the base group. However, there is a subtlety at this point:
the supposed algorithm solving the isomorphism problem will receive the input
(the compared groups) as finite presentations of the Z-extensions. From those,
we know how to compute suitable base groups H,K, and automorphisms α,β
(see Proposition 4.8.1), but this last ones are given by images of the generators in the
starting presentations, and not as words in some presentation of the corresponding
automorphism groups, which would be the appropriate inputs for the standard
conjugacy problem there.

So, in general, one must distinguish between these two close but not necessarily
identical situations. As before, we state both problems together to emphasize the
difference between them.

Definition 4.10.2. Let 〈X | R〉 be a presentation for a groupG, 〈Y | S〉 a presentation
for Aut(G), and assume |X| <∞. Then:

• (Standard) conjugacy problem for Aut(G) [CP(Aut(G)) ]: given two automor-
phisms α,β ∈ Aut(G) as words in the presentation of Aut(G), decide whether
α and β are conjugate to each other in Aut(G).

• Aut-conjugacy problem for G [CPG(Aut(G)) ]: given two automorphisms
α,β ∈ Aut(G) by images of (the finitely many) generators X, decide whether α
and β are conjugate to each other in Aut(G).

Similarly, we define the Out-conjugacy problem [CPG(Out(G)) ], the Aut-semi-conjugacy
problem [ 1

2CPG(Aut(G)) ], and the Out-semi-conjugacy problem [ 1
2CPG(Out(G)) ] for

G (in contrast with the standard CP(Out(G)), 1
2CP(Aut(G)), and 1

2CP(Out(G))).

Note that, in general, these pairs of problems are similar but not identical: from
the algorithmic point of view it could be different to have an automorphism of G
given as the collection of images of a finite set of generators of G, or as a word
(composition of generators for Aut(G)). Consider, for example, the Baumslag–
Solitar group G = BS(2, 4), which is finitely generated, but whose automorphism
group Aut(G) is known to be not finitely generated (see [CL83]).
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However, knowing in advance a finite set of generators for Aut(G) (respectively,
Out(G)) as images of generators of G, these two kinds of problems turn out to be
equivalent.

Proposition 4.10.3. Let 〈X | R〉 be a presentation for a group G, X = {x1, . . . , xn},
and {ui,j | i = 1, . . . ,n, j = 1, . . . ,N} a finite set of words in X± such that {αj : xi 7→
ui,j : j = 1, . . . ,N} is a well defined finite family of automorphisms generating Aut(G).
Then,

CPG(Aut(G)) is decidable ⇔ CP(Aut(G)) is decidable . (4.35)

The same is true replacing conjugacy by semi-conjugacy, or Aut by Out.

Proof. Suppose that G has decidable Aut-conjugacy problem. Given two auto-
morphisms α,β ∈ Aut(G) as words on the αi’s, say α = a(α1, . . . ,αN) and
β = b(α1, . . . ,αN), we can compute the corresponding compositions of αj’s and
obtain explicit expressions for α(xi) and β(xi) in terms of X, for i = 1, . . . ,n. Now,
applying the solution to the Aut-conjugacy problem for G we decide whether α
and β are conjugate to each other in Aut(G).

Conversely, suppose Aut(G) has decidable conjugacy problem, and we are given
two automorphisms α,β ∈ Aut(G) by the images of the xi’s, say α(xi) and β(xi),
i = 1, . . . ,n. We will express α and β as compositions of the αj’s, and then apply
the assumed solution to the conjugacy problem for Aut(G) to decide whether
α and β are conjugate to each other, or not. We can do this by a brute force
enumeration of all possible formal reduced words w on α1, . . . ,αN and, for each
one, computing the tuple (w(x1), . . . ,w(xn)) and trying to check whether it equals
(α(x1), . . . ,α(xn)), or (β(x1), . . . ,β(xn)) (following a brute force enumeration of
the normal closure 〈〈R〉〉, like in the proof of Proposition 4.8.1).

The proofs of the other versions of the statement are completely analogous. For
the Out cases we need to add another brute force search layer enumerating all
possible conjugators; we leave details to the reader.

After this proposition we can prove the main result in this section.

Theorem 4.10.4. Let H be a family of finitely presented groups with decidable isomorphism
problem. Then, the isomorphism problem of !H - by - Z is decidable if and only if the Outd-
semi-conjugacy problem of H is decidable for every H in H; i.e.,

IP(!H - by - Z) decidable ⇔ 1
2CPH(Outd(H)) decidable, ∀H ∈ H.

Proof. Suppose that every H ∈ H has decidable Out-semi-conjugacy problem
for deranged inputs. Given finite presentations of two groups G and G ′ in
!H - by - Z, we run Proposition 4.8.1 to compute standard presentations for them,
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and extract finite presentations for base groups and defining automorphisms
(say H and α ∈ Aut(H) for G, and K and β ∈ Aut(K) for G ′, respectively). We
have G = Hoα Z and G ′ = Koβ Z and, by hypotheses, α and β are deranged.
Furthermore, since b(G) = b(G ′) = 1, H and K are the unique normal subgroups
of G and G ′, respectively, with quotient Z; hence, H,K ∈ H.

Now we apply the isomorphism problem within H to the obtained presentations
for H and K, and decide whether they are isomorphic as groups. If H 6' K then,
by Corollary 4.10.1, G 6' G ′ and we are done. Otherwise, we construct an explicit
isomorphism ψ : H→ K (by a brute force search procedure like the ones above),
we compute β ′ = ψ−1βψ ∈ Aut(H), and we apply our solution to the Out-semi-
conjugacy problem for H ∈ H to the inputs α and β ′, (which are deranged, by
construction). The output on whether [α] and [β ′] are or are not semi-conjugate in
Out(H) is the final answer we are looking for (again by Corollary 4.10.1).

For the converse, assume that the isomorphism problem is decidable in the family
!H - by - Z, and fix a finite presentation 〈X | R〉 for a group H ∈ H. Given two
deranged automorphisms α,β ∈ Out(H) via images of the generators xi ∈ X,
build the corresponding standard presentations for Hoα Z and Hoβ Z (which
are groups in !H - by - Z, by construction) and apply the assumed solution to the
isomorphism problem for this family, to decide whether they are isomorphic or
not. By Corollary 4.10.1, the answer is affirmative if and only if [α] and [β] are
semi-conjugate in Out(H).

We apply now Theorem 4.10.4 to special families of groups with decidable iso-
morphism problem. Some of these corollaries are already known in the literature;
other methods provide alternative approaches.

Taking H to be a single group H, we get the following result.

Corollary 4.10.5. Let H be a finitely presented group. Then the isomorphism problem is
decidable within the family !H - by - Z if and only if H has decidable Out-semi-conjugacy
problem for deranged inputs. In particular, if |Out(H)| <∞, then !H - by - Z has decidable
isomorphism problem.

Taking H to be the families of finite, finitely generated abelian, or polycyclic
groups, Theorem 4.10.4 provides well-known results, since the obtained extensions
turn out to be subfamilies of that of virtually-polycyclic groups for which the
isomorphism problem is known to be decidable (see [Seg90]).

For the family of Braid groups B = braid = {Bn | n > 2}, the specially simple
structure of its outer automorphism group allows us to state the isomorphism
problem within the family B - by - Z.
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Corollary 4.10.6. The isomorphism problem is decidable within the family B - by - Z.

Proof. It is well known that, for every n > 2, Out(Bn) = {id, ι}, where ι : Bn → Bn

is the automorphism given by σi 7→ σ−1
i (see [DG81]). Then, (since automorphisms

in the same inner class induce the same Z-extension, by Lemma 4.9.3), we have

B - by - Z = {Bn ×Z,n > 2}∪ {Bn oι Z,n > 2} . (4.36)

We claim that they are all pairwise non-isomorphic. Those in the first term of the
union cannot be isomorphic to those in the second one because id is not deranged,
while ι is (in other words, b(Bn ×Z) = 2 while b(Bn oι Z) = 1). Two deranged
extensions Bn oι Z and Bm oι Z can only be isomorphic if their base groups are,
and this happens only when n = m (this can be seen, for example, by observing
that the center Z (Bn) is generated by the full twist (σ1σ2 · · ·σn−1)

n and so, the
abelianization of Bn/Z (Bn) is cyclic of order n(n− 1)). Finally, the same argument
shows that Bn ×Z ' Bm ×Z if and only if n = m.

Thus, the isomorphism problem within B - by - Z is decidable: given two finite
presentations of groups G1 andG2 in B - by - Z, explore the two trees of Tietze trans-
formations until finding standard presentations for them, i.e., until recognizing
their number of strands, say n and m. Now G1 ' G2 if and only if b(G1) = b(G2)

and n = m.

Finally, let us consider the case of finitely generated free groups, F = [free]fg =

{Fn | n > 0}. To start with, the isomorphism problem for F is decidable like in
the case of Braid groups (since Fn ' Fm ⇔ n = m). A solution to the conjugacy
problem in Out(Fn) was announced by M. Lustig in the preprints [Lus00; Lus01].
Although this project is not completed (and there is no published version yet),
it is believed that Out(Fn) has decidable conjugacy problem. However, at this
moment we can only say to have firm complete solutions for some classes of outer
automorphisms:

i. the case of rank 2 is easily decidable because Out(F2) ' GL2(Z);

ii. for finite-order elements of Out(Fn) an algorithm to solve the conjugacy
problem follows from results of S. Krstić (see [Krs89]);

iii. J. Los and, independently, Z. Sela solved the conjugacy problem in Out(Fr)
for irreducible inputs, see [Sel95; Los96; Lus07];

iv. for Dehn twist automorphisms, the conjugacy problem has been solved by
Cohen–Lustig, see [CL99];
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v. finally, Krstić–Lustig–Vogtmann solved the conjugacy problem in Out(Fn)
for linearly growing automorphisms, i.e., for roots of Dehn twists, see [KLV01].

If the conjugacy problem in Out(Fn) were decidable in general, we could deduce
from Theorem 4.10.4 that the isomorphism problem for the family ![free]fg - by - Z

is decidable as well. By the moment, we can only restrict our attention to the
above mentioned subsets of Out(Fn), where the conjugacy problem is firmly know
to be decidable, and we obtain the isomorphism problem for the corresponding
subfamilies (see the proof of Theorem 4.10.4).

Corollary 4.10.7. If the conjugacy problem for Out(Fn) is decidable, then the isomorphism
problem within the family ![free]fg - by - Z is also decidable.

Corollary 4.10.8. The isomorphism problem within the following families is decidable:

(i) !F2 - by - Z;

(ii) {Fn oα Z | α ∈ Out(Fn) deranged and finite order };

(iii) {Fn oα Z | α ∈ Out(Fn) deranged and irreducible };

(iv) {Fn oα Z | α ∈ Out(Fn) deranged and linearly growing }.

It is worth mentioning that our approach is somehow opposite to that taken
by Dahmani in [dahmani_suspensions_2013]. In this interesting preprint the
author solves the conjugacy problem for atoroidal automorphisms of Fn. An
automorphism α ∈ Out(Fn) is atoroidal if no proper power of α fixes any nontrivial
conjugacy class (note that this notion is similar in spirit to our notion of deranged-
ness, though they do not coincide). Brinkmann proved in [Bri00] that Fn oα Z

is hyperbolic if and only if α is atoroidal. And α,β ∈ Out(Fn) are conjugate to
each other if and only if FnoαZ is isomorphic to FnoβZ with an automorphism
mapping Fn to Fn, and t to an element of the form wt1 (i.e., with an stable and
positive automorphism in our language, see the proof of Corollary 4.10.1). Then,
Dahmani uses a variation of the celebrated solution to the general isomorphism
problem for hyperbolic groups (see [Sel95; DG11]) to determine whether Fn oα Z

and Fn oβ Z are isomorphic through an isomorphism of the above type, and so
deciding whether the atoroidal automorphisms α and β are conjugated to each
other in Out(Fn). Our approach has been the opposite: we have used the conjugacy
problem in Out(Fn) (more precisely, those particular cases where it is known to
be decidable) to solve the isomorphism problem in the corresponding families of
unique Z-extensions.
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5Free-abelian by free groups

5.1 Alphabets, words, and languages

Definition 5.1.1. An alphabet is a nonempty (not necessarily finite) set. The ele-
ments of an alphabet are called symbols or letters.

Definition 5.1.2. A string (or word) of length k in A is a (k-)tuple of elements in A.
We denote by A∗ the set of words in A,

A∗ = {λ}∪
⋃
n>1

An ,

where λ denotes de the empty word (of length 0).

We will denote by |w| the length of a word w.

Notation 5.1.3. We use sans serif typeface to denote both alphabets (A,B,C, . . .), and
letters a, b, c, . . . ∈ A, or words u, v,w, . . . ∈ A∗.

Notation 5.1.4. We will usually omit parentheses and commas and represent words
just as a juxtaposition of letters; i.e.,

ai1ai2 . . . aik := (ai1 , ai2 , . . . , aik) .

Definition 5.1.5. Given two words u = ai1ai2 . . . aik , v = bj1bj2 . . . bjl , we define the
concatenation of u and v , denoted by uv, to be the word (of length k+ l) obtained
by juxtaposing v after u

uv = ai1ai2 . . . aikbj1bj2 . . . bjl .

Remark 5.1.6. Concatenation is associative with neutral element λ. Hence, with
the operation given by concatenation, A∗ is the free monoid over A; and we can
recursively define the concatenation of any finite sequence of words in the natural
way.

Example 5.1.7. {a}∗'N.

Remark 5.1.8. If the alphabet A is finite, then the free monoid A∗ has countable
cardinal ℵ0; otherwise, A and A∗ have the same cardinal. So, a nontrivial free
monoid is always infinite.
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Notation 5.1.9. Given a word w, we will denote by w[i] the i-th letter in w, and w[i, j]
the [i, j]-segment of w (i.e., the subword of w starting in position i and ending in
position j).

We will usually write w = w(A), or w = w(−→ai) to denote that w is a word in the
alphabet A = {ai}i. Also, given a family of words {ui}i in some other alphabet B,
we will denote by w(−→ui) the word obtained from w by replacing each appearance
of the letter ai in w by the corresponding word ui ∈ B∗. Formally, w(−→ui) := Θ(w),
where Θ : A∗ → B∗ is the extension to A∗ of the map ai 7→ ui.

Definition 5.1.10. A language over A is any subset L ⊆ A∗.

Several natural operations can be defined on languages. We introduce below the
most common ones.

Definition 5.1.11. Let L,L ′ ⊆ A∗. Then,

• the union of languages L∪L ′ is the set:

L∪L ′ =
{
w ∈ A∗ : w ∈ L or w ∈ L ′

}
;

• the intersection of languages L∩L ′ is the set:

L∩L ′ =
{
w ∈ A∗ : w ∈ L and w ∈ L ′

}
;

• the difference of languages LrL ′ is the set:

LrL ′ =
{
w ∈ A∗ : w ∈ L and w /∈ L ′

}
;

• the complementary of language of L is the set:

Lc = A∗ rL = {w ∈ A∗ : w /∈ L } ;

• the concatenation of two languages LL ′ is the set:

LL ′ =
{
ww ′ ∈ A∗ : w ∈ L and w ′ ∈ L ′

}
.

Finally, since the concatenation of languages is associative, the languages below
are also well defined.

• The n-th power of a language L is the set:

Ln = L
(n)

· · ·L = {w1w2 · · ·wn : wi ∈ L (i = 1, . . . ,n) } , if n > 1 ;

or the trivial language L0 = {λ} , if n = 0 ;

• the Kleene star of a language L is the set L∗ =
⋃
n>0 L

n.
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Definition 5.1.12. A word u ∈ A∗ is said to be a prefix (resp. suffix) of a word
w ∈ A∗ if there exists a word v ∈ A∗ such that w = uv (resp. w = vu). We denote
by w[i→] (resp. w[←i]) the i-th prefix (resp. the i-th suffix) of w; i.e., the subword of
w consisting of its first (resp. last) i letters. Finally, we denote by w[i, j] the segment
subword of w starting at the ith letter and ending at the jth letter.

Definition 5.1.13. The set of rational languages on a finite alphabet A, denoted
by Rat(A∗), is the smallest set of A-languages R satisfying the following conditions:

(i) ∅ ∈ R, and {a} ∈ R, for all a ∈ A,

(ii) R is closed under finite union, concatenation, and Kleene star;
(i.e., if L,L ′ ∈ R, then L∪L ′,LL ′,L∗ ∈ R).

Remark 5.1.14. Note that A∗ ∈ Rat(A∗), and any intersection of sets of languages
satisfying (i) and (ii), satisfies again (i) and (ii). Thus, the “smallest set” in
Definition 5.1.13 is well defined.

Definition 5.1.15. Given an alphabet A, we denote by A−1 the set of formal inverses
of A. Formally A−1 can be defined as any set A ′ equipotent and disjoint with A,
together with a bijection ι : A → A ′. Then, for every a ∈ A, we call aι the formal
inverse of a, and we denote by a−1 := aι. So, we have A−1 = {a−1 : a ∈ A}, and
A∩A−1 = ∅.

Definition 5.1.16. An alphabet is said to be involutive if it is of the form

X± := XtX−1 .

Then, we usually extend ι : x 7→ x−1 to an involution ι = −1 on (X±)∗ through

(xi1 · · · xik)
−1 := x−1

ik
· · · x−1

i1
,

and call the resulting pair ((X±)∗,−1 ), the involutive free monoid on X.

Definition 5.1.17. A word w ∈ X± is said to be (freely) reduced if it contains no
consecutive mutually inverse letters (i.e., it has no subword of the form xx−1,
where x ∈ X±).

The following are classic results, whose (long but standard) proofs we omit. See,
for example [MKS04; LS01].

Proposition 5.1.18. The word obtained from w by removing pairs of consecutive inverse
letters (i.e., applying the rewriting rules xx−1 → λ, ∀x ∈ X±) is unique, called the free
reduction of w, and denoted by w̃.

In the same vein, the free reduction of a language L ⊆ X± is the set L̃ =

{ w̃ : w ∈ L }, and we denote by RX the full set of reduced words in X±.
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Proposition 5.1.19. The free group FX (with basis X) is isomorphic to RX with the
operation of concatenation and reduction (i.e., u ? v = ũv).

That is, we can think elements in the free group either as equivalence classes or as
reduced words. We write S̃ to refer to the set of reduced words in X± representing
elements in S ⊆ FX, i.e., S̃ = {w ∈ RX : [w] ∈ S }. So, we immediately have a
natural isomorphism H ' H̃, for any subgroup H 6 FX.

Remark 5.1.20. If G = 〈X | R〉 is a group generated by X, then we have the following
natural sequence of epimorphisms:

(X±)∗ FX G = FX/〈〈R〉〉
w [w]F [w]G .

µF

µG

φG

←[ → ←[ →
(5.1)

Fig. 5.1: Natural epimorphisms between free monoids, free groups, and groups

When there is no ambiguity on the group G we are working with, we usually
omit the subindexes, and denote with the same letter in italics the group element
described by a word w; i.e., we write w = [w]G.

5.2 Digraphs and automata
Definition 5.2.1. A directed multigraph (digraph for short) is a tuple Γ = (V,E, ι, τ),
where:

1. V is a set called set of vertices of Γ ,

2. E is a set called set of arcs or directed edges,

3. ι, τ : E→ V are (resp. initial and final) incidence functions.

Then, for each arc e ∈ E, we say e is incident to ι(e) and τ(e), which are called initial
vertex (or origin), and final vertex (or target) of e, respectively.

Note that no cardinal or incidence restrictions have been done, in particular we are
admitting the empty digraph (where V = E = ∅); and both the possibility of arcs
having the same vertex as origin and target (called directed loops), and of different
arcs sharing the same origin and target (called parallel arcs).

Definition 5.2.2. Given a digraph Γ , we usually denote by VΓ (resp., by EΓ ) its set of
vertices (resp., set of arcs); and call order and size of Γ the respective cardinals #VΓ ,
and #EΓ .

Definition 5.2.3. A digraph Γ is called finite (resp. countable) if its global number
of vertices and arcs (# (VΓ t EΓ)) is finite (resp. countable).
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Definition 5.2.4. The in-neighborhood Ep (resp. out-neighborhood Ep ) of a vertex p in
a digraph is the set of arcs with final (resp initial) vertex p. The (total) neighborhood
of p is Ep = Ep ∪ Ep . The in-degree, out-degree, and total degree of a vertex p are the
cardinals of Ep , Ep , and Ep respectively.

Definition 5.2.5. An arc e2 is said to be reversed to an arc e1 if they swap initial
and final vertices; i.e., if ι(ei) = τ(ej), for distinct i, j ∈ {1, 2}.

Definition 5.2.6. We say that two vertices are adjacent if there exists and arc
indident to both of them. For arcs, we have two notions of incidency; namely, two
arcs e, f are:

• strongly incident if there exists a vertex p such that τ(e) = p = ι(f), or
τ(f) = p = ι(e).

• (weakly) incident if there exists a vertex incident to both e and f.

Accordingly, we have the corresponding notions for walks and connectivity.

Definition 5.2.7. A directed walk (resp., undirected walk) in an digraph Γ is either
a single vertex p, or a nonempty finite sequence e1 · · · ek of successively strongly
(resp., weakly) incident arcs in Γ . In the first case we say that the walk has length 0,
and goes from p to p; and in the second case that it has length k, and goes from
ι(e1) to τ(ek). We will denote the existence of a directed (resp., undirected) walk
from p to q by p q (resp. by p q).

Definition 5.2.8. A digraph is said to be (strongly) connected if for every pair of
vertices p, q of Γ there exists a (directed) undirected walk from p to q.

Definition 5.2.9. Being connected is an equivalence relation between the vertices
of a digraph Γ , whose equivalence classes are called connected components of Γ .

Definition 5.2.10. A labelled digraph is a digraph together with a map ` : E → A
from the set of arcs to some set A. Then, we say that A is the set of labels of Γ , and
that Γ is an A- digraph. Similarly, an arc e labelled by a is called an a-arc, and two
parallel arcs with the same label a are called a-parallel.

Remark 5.2.11. The set A is usually thought to be a set of symbols (alphabet) with
no further structure. However, we will admit more general labellings along the
chapter (see Definition 5.7.3).

Remark 5.2.12. Distinguishing two subsets of (initial and terminal) vertices in a
(finite) A-labelled digraph constitutes the standard notion of (finite) automata. We,
however, will only use automata having a unique terminal vertex equal to the
initial one, which is not a superfluous restriction (see Remark 5.2.21).

Definition 5.2.13. A (pointed) A-automaton Γ = (V,E, ι, τ, `, ) is a connected digraph
Γ = (V,E, ι, τ) with a labelling ` : E→ A, and a distinguished vertex (called base
vertex or basepoint of Γ).
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In this context, the vertices of Γ are usually called the states of the automaton, the
basepoint is the initial and (unique) final state, and the A-labelled arcs define
transitions between states (an arc p a q defines a transition from state p to q
with label a). An automaton is called finite if it has a finite number of states, and
transitions (i.e., if #V <∞ and #E <∞).

Given a subset S ⊆ A, an A-automaton is said to be S-complete (resp., S-regular) if
for every vertex p, and for every letter a ∈ S, there exists at least (resp., exactly)
one arc departing p with label a. An A-complete A-automaton is simply called
complete.

Remark 5.2.14. Hereafter, if not stated otherwise, we will assume all automata to
be pointed, and we will simply refer them as automata.

Also, if not stated otherwise, we will assume that all the walks appearing in this
chapter are directed, and thus its labelling determines (spells) a word in A∗.

Definition 5.2.15. The label of a walk γ in an A-automaton Γ is defined to be

`(γ) :=

{
λ , if γ = p , (an empty walk in Γ),
`(e1) · · · `(ek) , if γ = e1, . . . , ek (a nonempty walk in Γ) .

Then, we say that γ reads or spells the word w = `(γ) ∈ A∗. We denote the existence

of a walk from p to q reading the word w ∈ A∗ by p w q .

Also, if G is a group generated by X, we will denote by `G(γ) the element in G
described by the word w ∈ (X±)∗ read by γ; formally (see diagram (5.1)):

`G(γ) := (`(γ))µG .

Definition 5.2.16. We say that a vertex p in Γ is accessible (resp. coaccessible) if there
exists a directed walk in Γ from the basepoint to p (resp. from p to the basepoint);
i.e.,

p is accessible ⇐⇒ p ,

p is coaccessible ⇐⇒ p .

Walks starting and ending in the basepoint are called - closed walks ( - walks,
for short).

Remark 5.2.17. A vertex is both accessible and coaccessible if and only if it belongs
to some - walk.

Definition 5.2.18. Let Γ be a A-automaton. A word w ∈ A∗ is said to be accepted
(or recognized) by Γ if there exists a - walk in Γ reading w; i.e.,

w ∈ A∗ is accepted by Γ ⇐⇒ w
in Γ .
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Definition 5.2.19. The language recognized (or accepted) by an A-automaton Γ is the
set L(Γ) consisting of all the words in A accepted by Γ; i.e.,

L(Γ) =
{
w ∈ A∗ :

w
in Γ
}

=
{
`(γ) : γ is a - walk in Γ

}
⊆ A∗ .

Remark 5.2.20. Note that allowing parallel arcs with the same label (i.e., redundant
transitions) do not contribute to the language recognized by the automaton. We
admit them because they appear in a natural way from the techniques that follow
(e.g. closed foldings (5.7)).

Remark 5.2.21. Our definition of (pointed) automata in Definition 5.2.13 supposes
an actual restriction in terms of the possible recognized languages, since, any
language recognized by our automata must contain, for example, the empty string
(which is not the case for a general automaton).

Remark 5.2.22. For any A-automaton Γ, the restriction of the labelling to - walk s
is an epimorphism (of monoids):

` : { - walks in Γ } L(Γ)

γ `(γ)
(5.2)

which is not injective in general (see Corollary 5.4.5). In particular L(Γ) = im(` ) is
closed by concatenation, and hence not every language L ⊆ A∗ can be recognized
by a A-automaton. That is, the map

{A-automata } → { subsets of A∗ }
Γ 7→ L(Γ) .

is not onto.

Below, we formalize transformations preserving the language recognized by an
automaton.

Definition 5.2.23. Let Γ, Γ ′ be A-automata. A homomorphism of automata between
Γ and Γ ′ is a map φ : V(Γ) → V(Γ ′) between their respective vertex sets which
preserves basepoints, and labelled adjacency. More formally, φ is such that:

1. If p0 is the basepoint of Γ, then p0φ is the basepoint of Γ ′.

2. If p a q is an arc of Γ, then pφ a qφ is an arc of Γ ′.

Remark 5.2.24. Note that the second condition allows us to extend the homomor-
phism φ to arcs in a natural (but not necessarily unique) way: for every arc p a q
of Γ, define its image by φ to be (one of the arcs) of the form pφ a qφ.

This ambiguity disappears if we remove redundancies (parallel arcs with the
same label) from the automata; then the previous agreement provide a unique
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map φ : E(Γ)→ E(Γ ′) between arcs. This fact justifies the usual abuse of notation
consisting in denoting homomorphisms of automata by φ : Γ → Γ ′.

The distinctive property of homomorphism of automata summarized in the fol-
lowing result is easily proved by induction.

Lemma 5.2.25. If φ : Γ → Γ is a homomorphism of automata, then for any vertices p, q
in Γ, and every word w ∈ A∗:

p w q =⇒ pφ w qφ .

Remark 5.2.26. So, if there exists an homomorphism of automata between Γ and Γ ′,
then any word accepted by Γ is also accepted by Γ ′, i.e.,

∃ homomorphism φ : Γ → Γ ′ =⇒ L(Γ) ⊆ L(Γ ′) . (5.3)

The converse implication, however, is easily shown to be false. In order it to be true,
we need an important extra condition for the image of φ (see Proposition 5.4.12).

5.3 Involutive automata
In order to deal with subgroups of groups given by presentations 〈X | R〉, it is
natural to consider automata with an involutive alphabet (corresponding to the
involutive closure X± of the generating set X = {xj}j in the presentation), and
consistent with involution. We make this requirements precise in the following
definition.

Definition 5.3.1. An involutive X-automaton is an automaton having an (involutive)
alphabet X±, and an involution −1 : E→ E, e 7→ e−1 on its arcs such that:

1. No arc e can be the inverse of itself (i.e., e−1 6= e, for every e ∈ E).

2. Inverse arcs are reversed (i.e., ιe−1 = τe, for every e ∈ E).

3. Arc involution is compatible with label inversion (i.e., `(e−1) = `(e)−1, for
every e ∈ E).

Definition 5.3.2. In an involutive automaton, we define the reduced label, denoted
by ˜̀, of a walk γ in the natural way, i.e., ˜̀(γ) := ˜̀(γ).
Thus, in an involutive automaton, for every labelled arc e ≡ p a q, there exists a

“unique” reversed arc e−1 ≡ p a−1
q (called the inverse of e). That is, arcs appear

by pairs:
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.a
a−1 (5.4)

Fig. 5.2: Arcs in an involutive automaton

We say that an arc is positive (resp. negative) if it is labelled with a letter in X
(resp. X−1). We denote by E+ and E− the sets of positive and negative arcs,
respectively.

Remark 5.3.3. An involutive automaton is strongly connected by construction; in
particular, every vertex is both accessible and coaccessible.

Definition 5.3.4. The (undirected) underlying graph of an involutive automaton Γ
is the undirected graph, denoted by Γ , obtained by omitting the labelling, and
identifying all pairs of respectively inverse arcs in Γ.

Remark 5.3.5. Every undirected graph can be defined in this way. Note that then
an edge in Γ is an unordered pair {e, e−1}, where e ∈ E+Γ, and e− ∈ E−Γ. Hence,
the total degree of any vertex in an involutive automaton Γ doubles the degree
of its underlying graph (which in turn coincides with both the in-degree and the
out-degree of Γ). Thus,

#EΓ = #E+Γ = #E−Γ = #EΓ/2 . (5.5)

Remark 5.3.6. Note that for an involutive X-automata it is enough to represent
positively-labelled arcs (i.e., X-labelled arcs) in order to fully describe it; with the
tacit assumption that for every shown positive arc there is also a hidden — dashed
in (5.4) — inverse arc.

Convention 5.3.7. It will be convenient to think involutive X-automata just as
connected X+-automata whose arcs can be crossed in both directions (with the
assumption that an x-arc crossed backwards is read x−1).

This convention, together with the relations in (5.5) makes it natural to abuse
language and refer to positive arcs as edges, to the cardinal of E+Γ as the size
(number of edges) of an involutive automaton Γ, and of the cardinal E+(p) as the
degree of any vertex p in Γ.

In the same vein — interpreting undirected graphs as (inverse-arc) identified
digraphs — if ∆ is subgraph of the underlying graph of Γ, we denote by ∆ the
involutive subautomaton of Γ having underlying graph ∆. In this way, we can
easily refer to paths, trees, etc. (as involutive subautomata) within an involutive
automaton.
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Definition 5.3.8. The (circuit) rank of an undirected graph Γ , denoted rk Γ is the
minimum number of edges that must be removed from Γ to make it acyclic. For
finite nonempty connected graphs, Euler’s formula states that

rk Γ = #EΓ − #VΓ + 1 . (5.6)

(That is, the rank of a connected graph is the cardinal of the set of edges outside any
spanning tree.) The rank of an involutive automaton Γ is the rank of its underlying
graph; i.e.,

rk Γ = rk Γ = #(EΓ r ET) ,

where T is any spanning tree of Γ.

Definition 5.3.9. A labelled arc e2 is said to be reversed to a labelled arc e1 in an
involutive automaton Γ if they are reversed, and the labels are inverse of each
other.

The existence and computability of spanning trees for arbitrary graphs is a subtle
matter. We summarize without proof the results on this topic which are relevant to
us (the result for finite graphs is folklore; for details on spanning trees for infinite
graphs see [Sti93, section 2.1.5], and [Sou08]).

Theorem 5.3.10. Let Γ be a connected undirected graph. Depending on the order of Γ we
distinguish the following cases:

• If Γ is finite, then a spanning tree always exists and can be computed in linear time.

• If Γ is infinite, then the existence of spanning trees for Γ is equivalent to the axiom
of choice (AC).

• If Γ is recursively enumerable, then (assuming AC) there exists a recursively enu-
merable spanning tree for Γ .

So, throughout the chapter, AC will be assumed wherever the existence of general
spanning trees is needed.

Definition 5.3.11. A walk γ in an involutive automaton is said to be reduced if no
successive edges in γ are mutually reversed (i.e., a walk is reduced if it has no
vertex backtracking). Otherwise we say that the walk γ is degenerated.

Note that we can remove any vertex backtracking from any walk γ to obtain a
reduced walk, denoted γ̃, reading the same word once reduced, i.e., such that:

˜̀(γ) = ˜̀(γ̃) .

We say that γ̃ is the walk-reduction of γ.
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Remark 5.3.12. Since we are admitting parallel arcs with the same label, the inverse
arc e−1 can be not the only arc reversed to e, and thus walk-reduction is not
necessarily unique in a general involutive automaton.

Remark 5.3.13. Note that if γ is a walk in an involutive automaton, then:

`(γ) is reduced =⇒ γ is reduced ,

but the converse is not necessarily true, since subwalks of the form

a a−1 (5.7)

(reading aa−1) can appear in a reduced walk. Thus, in an involutive automaton,
we always have |`(γ̃)| 6 |̃`(γ)|, and, in general ˜̀(γ) 6= `(γ̃) (see Lemma 5.4.9).

Involutive automata can be used to represent subgroups. Namely, if X is a set of
generators for a group G as in (5.1), and Γ is an involutive X-automaton, then the
labels of the set of walks starting and ending at the basepoint (i.e., the - closed
walks) of Γ describe a subgroup of G. More precisely, the following result is
immediate from the algebra of walks in the automaton.

Proposition 5.3.14. Let Γ be an involutive X-automaton, then the language recognized
by Γ contains the empty word, and is closed by concatenation and taking inverses (i.e., is
an involutive submonoid of (X±)∗).

The following immediate lemma about the behaviour of walks within involu-
tive trees is essential to translate the previous proposition (about monoids) into
Proposition 5.3.16 (about groups).

Lemma 5.3.15. Let T be an involutive X-automaton, whose underlying graph is a tree.
Then,

(i) for any two vertices p, q in T, there exist a unique reduced walk from p to q along T.
We denote it by γT [p, q].

γT [p, q] ≡ p T q

Fig. 5.3: The (unique) reduced walk from p to q along the tree T

(ii) any - walk γ within T can be obtained from the empty - walk by recursively
inserting a finite number of subwalks of the form ηiη

−1
i (where the ηi’s are walks

in T as well). Therefore, the group element represented by γ is always trivial
(i.e., `G(γ) = 1, for every G = 〈X〉).
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Proposition 5.3.16. Let Γ be an involutive X-automaton, let G = 〈X | R〉 be a group,
and let µG : (X±)∗ → G be the natural projection (5.1). Then, the set of words recognized
by Γ describe (through µG) a subgroup of G denoted by 〈Γ〉G; namely:

〈 Γ 〉G := (LΓ)µG =
{
`G(γ) : γ is a - walk in Γ

}
(5.8)

is a subgroup of G with generating set

{
`G(

T • e • T
) : e ∈ E+(Γ rT)

}
, (5.9)

for any spanning tree T of Γ (where e denotes the arc named e, and
T

denotes
the unique reduced walk through T between vertices).

In particular, if Γ is finite, then 〈Γ〉G is finitely generated.

Proof. Since every walk
T • e • T

is a - walk in Γ, it is clear that the
subgroup generated by (5.9) is included in 〈Γ〉G.

To see the opposite inclusion, we need to prove that every element in 〈Γ〉G can be
written as a product of elements of (5.9) and its inverses.

Consider a nontrivial element h ∈ 〈Γ〉G. Then, since the automaton is involutive ,
there exists a - walk

γ ≡
eε1

1 p1
eε2

2 p2 · · · pk−1
eεkk

such that ei ∈ E+ and εi = ±1 for all i = 1, . . . ,k, and `(γ) =G h.

Now, let γ ′ be the walk obtained from γ by going to the basepoint through T and
back, after visiting every intermediate vertex in γ:

eε1
1 p1

T T p1
eε2

2 p2
T T p2

T · · ·

· · · T pk−2
eεk−1
k−1 pk−1

T T pk−1
eεkk .

Then, defining p0 = pk = , we have

`(P ′) =

(∏k−1

i=1
`(ei)εi · `(•

T T •)
)
· `(ek)εk . (5.10)

Now (from Lemma 5.3.15),

1. since for every vertex p, `G(p
T T p) = 1, we have

`G(P
′) = `G(e1)

ε1 · `G(e2)
ε1 · · · `G(ek)ε1 = `G(P) = h , (5.11)
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and so γ ′ also describes the element h in G.

2. since for every arc ei in T,

`G
( T • ei • T )

= 1 ,

we can remove all the arcs in T from the product in (5.10) (and so, use only
arcs in Γ rT).

Therefore, every element h ∈ 〈Γ〉G can be generated by the family (5.9), as we
wanted to prove. This concludes the proof.

Definition 5.3.17. The subgroup in (5.8) is called subgroup recognized by Γ in G,
and denoted by 〈Γ〉G (or simply 〈Γ〉 if the background group G is clear).

So, every involutive X-automaton describes some subgroup of G = 〈X〉. On the
other hand, given a word w = w(X) in the generators, we can always consider the
involutive -walk Fl(w) spelling w (or w−1 if read in the opposite direction). This
is the petal associated to w.

Recall that, for involutive automata, we only represent arcs with positive labels,
and assume that for every arc labelled x ∈ X, there is always a unique reversed arc
labelled x−1.

a b

ab

Fig. 5.4: The petal automaton associated to the word a−1b−1ab

Now it is straightforward to build an involutive X-automaton recognizing any
given subgroup of G = 〈X〉.

Definition 5.3.18. Let S = {wi(X)}i be a set of words in the generators of a group G.
The flower automaton of S, denoted by Fl(S), is the involutive X-automaton obtained
from the petals reading the words wi ∈ S by identifying all their basepoints.

w1

w2

wp

Fig. 5.5: The flower automaton of {w1,w2, . . . ,wp} ⊆ (X±)∗
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It is clear that the subgroup of G recognized by the flower automaton Fl(S) is
precisely the subgroup generated by S. Thus, any subgroup H 6 G is represented
by some involutive X-automaton and vice versa. Moreover, the subgroup is finitely
(resp., countably) generated if and only if it can be represented by some finite
(resp., countable) involutive X-automaton.

So, given a group G = 〈X | R〉, the map

{ involutive X-automata } → { subgroups of G }

Γ 7→ 〈Γ〉G ,
(5.12)

sending every involutive automaton to the subgroup it recognizes in G, is well-
defined and onto. Of course it is not injective since you can, for example, consider
flower automata associated to different generating sets for the same subgroup;
or, more importantly, the petal automata associated to any relation in the group
describes the same (trivial) subgroup of G.

Remark 5.3.19. Of course, if G is Noetherian (resp., countable), then it is enough
to consider finite (resp., countable) automata in Equation (5.12). This facts have
important implications related to computability of subgroups through automata.

Definition 5.3.20. Let G be a group generated by X, and let Γ, Γ ′ be two involutive
X-automata. Then, we say that Γ, Γ ′ are equivalent automata with respect to G,
denoted by Γ ≡G Γ ′ if they recognize the same subgroup of G; i.e.,

Γ ≡G Γ ′ ⇐⇒ 〈Γ〉G = 〈Γ ′〉G

As usual, if there is no ambiguity about the group G, we will omit the references
to it, and simply talk of equivalent automata, denoted by Γ ≡ Γ ′.

5.4 Stallings automata
A natural goal in this scenario is trying to normalize the map (5.12) (i.e., to
distinguish, for every subgroup H 6 G, a canonical representative among the
automata recognizing H. This would allow us to restrict (5.12) to a bijection, which
we would like to be computable in the finite case.

This is essentially what Stallings did (from a more topological wiewpoint) for free
groups in his celebrated paper [Sta83]. Although, it is often claimed — and not
very surprising — that the arguments can be translated to combinatorial language
in full generality, we know no detailed survey of such treatment. Below, we
recreate this nice theory using algorithmic language (see [KM02; BS10] for similar
approaches mostly focused in the finitely generated case).

Let FX = 〈X | −〉 denote the free group with basis X.
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Remark 5.4.1. Recall that, according to Proposition 5.1.19, we can identify elements
in the free group (thought as classes of words) with freely reduced words; i.e., for
each word w ∈ (X±)∗, we can assume wµ = w̃. Similarly, for every X-walk γ, we
have that `FX(γ) = ˜̀(γ).
From the previous discussion, we have the following natural sequence of onto
maps:

{X-Involutive } L−→
{

involutive submonoids of (X±)∗
} µ−→ { subgroups of FX }

Γ 7−→ LΓ 7−→ 〈Γ〉 ,
(5.13)

where L and µ, and so its composition Γ 7→ 〈Γ〉, are not injective in general. We
will see that we can overcome this last ambiguity by imposing two conditions in
the automata: namely determinism, and trimness.

Definition 5.4.2. An A-automaton is called deterministic if it has no different arcs
with the same label exiting the same vertex (i.e., for every vertex there is at most
one arc exiting it with the same label).

Namely, an automaton is deterministic if and only if none of the following situations
occur:

a

a a

a

Fig. 5.6: Nondeterministic situations

Remark 5.4.3. In a deterministic A-automaton Γ:

1. There are no parallel arcs in Γ with the same label. Note that for such (non-
redundant) automata, one can define the set of transitions as a subset of
V(Γ)×A×V(Γ), recovering a standard (a bit more tight) notion of automata.

2. For each p ∈ V(Γ), and each a ∈ A there exists at most one vertex q such that
p a q (in particular, the out-degree of any vertex is at most #A). Thus, in
these automata we can define transitions through a (partial) function

V(Γ)×A → V(Γ)
(p, a) 7→ q

(5.14)

which is called transition function of the deterministic automaton, and can be
extended to a partial function V×A∗ → V in the natural way.

3. The degree of any vertex in Γ is at most #A. A deterministic A-automata is
complete if and only if it is A-regular.
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An important consequence of the definition is easily proved by induction.

Lemma 5.4.4. In a deterministic automaton Γ, if two walks starting at the same vertex
read the same word, then they are identical (and, in particular the final vertex is the
same).

So, for any fixed vertex p in a deterministic automaton Γ, the following map is
injective:

{walks in Γ starting at p } → A∗

γ 7→ `(γ)

Corollary 5.4.5. Let Γ be a deterministic A-automaton. Then, the map:

` : { -walks in Γ } → L(Γ)

γ 7→ `(γ)
(5.15)

is an isomorphism of monoids.

For an involutive automaton, being deterministic implies two crucial properties:
one regarding the relation between automata and the languages they recognize
(Corollary 5.4.14), and the other regarding the behaviour of reduced words in the
automata.

Example 5.4.6 (Schreier coset digraph). If H is a subgroup of a group X with
generating set X, the (right) Schreier coset digraph of H relative to X, denoted by
Sch (H,X), is the directed graph with vertices the right cosets Hg ∈ H\G, and for
every vertex Hg, and every element x ∈ X±, an arc labelled x from Hg to Hgx.

Note that setting the coset H as basepoint confers to Sch (H,X) structure of pointed
automata. Then the following result is immediate.

Lemma 5.4.7. If X is a subset of a group G, then the Schreier coset digraph Sch (H,X) is
a (complete) deterministic involutive X-automaton recognizing H.

The following results state key facts about deterministic involutive automata.

Remark 5.4.8. In a deterministic involutive automata, the inverse arc e−1 is the
unique arc reversed to a given arc e; i.e.,

e ′ is reversed to e ⇐⇒ e ′ = e−1(the inverse of e) .

Lemma 5.4.9. Let γ be a walk in a deterministic involutive X-automaton. Then, the
following statements are equivalent.

(a) `(γ) = aa−1, for some a ∈ X±.

(b) γ = ee−1, for some edge e in Γ (labelled a).
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So, in a deterministic involutive automaton,

γ is reduced ⇐⇒ `(γ) is reduced ,

and `(γ̃) = ˜̀(γ).
Lemma 5.4.10. Let Γ be a deterministic involutive X-automaton. Then, for any vertices
p, q in Γ, and any words w, u, v in X±,

p uww−1v q =⇒ p uv q .

So, if Γ is involutive and deterministic, then L̃Γ ⊆ LΓ .

Proof. Let γ ≡ p uww−1v q, and suppose that w = w ′a, with a ∈ X±. From
Lemma 5.4.9, γ must have two successively inverse edges (reading aa−1) that we
can remove to obtain a new (shorter) walk

γ ′ ≡ p
uw ′(w ′)−1v

q .

The result follows from repeating this procedure until w ′ = λ.

Corollary 5.4.11. If Γ is a deterministic involutive X-automaton, the isomorphism ` in
Corollary 5.4.5 restricts to the following isomorphism of (free) groups:

` : {reduced -walks in Γ} → L̃(Γ) ' 〈Γ〉
γ 7→ `(γ) = ˜̀(γ) .

(5.16)

The existence of a homomorphism Γ → Γ ′, trivially implies that L(Γ) ⊆ L(Γ ′).
Now we prove that, for involutive automata, the converse is also true if the
codomain Γ ′ is deterministic.

Proposition 5.4.12. Let Γ, Γ ′ be involutive X-automata, with Γ ′ deterministic. Then:

L(Γ) ⊆ L(Γ ′) ⇐⇒ ∃ homomorphism φ : Γ → Γ ′ .

and, if so, the homomorphism is unique.

Proof. Unicity is consequence of the determinism of Γ ′: indeed, suppose that we
have homomorphisms φ,φ ′ : Γ → Γ ′, and a vertex p in Γ such that pφ = p ′ 6= p ′′ =
pφ ′. Then the images γφ,γφ ′ of any walk γ ≡ p in Γ, would be walks in Γ ′

with the same starting points and labels, but different end point, in contradiction
with Γ ′ being deterministic (Lemma 5.4.4).
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[⇐] This implication is immediate from the definition of homomorphism of
automata in 5.2.23.

[⇒] Suppose L(Γ) ⊆ L(Γ ′) with Γ ′ deterministic. Then, given a vertex p in Γ,
consider a - walk in Γ through p

u p v
.

accepting some word uv. Since L(Γ) ⊆ L(Γ ′), we can read the same word in Γ ′,
i.e.,

′ u p ′ v ′ ,

where p ′ is some vertex in Γ ′. We claim that such a vertex p ′ is uniquely deter-
mined, and the corresponding map

φ : V(Γ) → V(Γ ′)
p 7→ p ′

(5.17)

(sending basepoint to basepoint) obtained in this way defines a homomorphism
between Γ and Γ ′.

For the first claim, suppose that
u ′ p v ′

is another - walk through p in
Γ. Then,

u p v ′

is also a - walk through p in Γ. Therefore, both uv, and uv ′ must be read by
′- walks in Γ ′:

′
p ′

p ′′
′

u v

u v ′

Then, since Γ ′ is deterministic, from Lemma 5.4.4 we have p ′ = p ′′, and the map φ
in (5.18) is well defined.

Finally, to see that φ is a homomorphism of automata, consider a labelled arc
e ≡ p a q in Γ. Then (since p, q are both accessible and coaccessible), there exists
a - walk through e in Γ:

u p a q v
.

Thus, the word uav belongs to LΓ , and so to LΓ ′ ; which according to definition
(5.18) means that in Γ ′ we have the walk

u pφ a qφ v
.
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In particular, we have an arc pφ a qφ in Γ ′. Thus φ : Γ → Γ ′ is a homomorphism
of automata, as we wanted to prove.

The following two corollaries are immediate, and important for us.

Corollary 5.4.13. If Γ is a deterministic involutive automaton, then the only homomor-
phism Γ → Γ is the identity.

Corollary 5.4.14. If two deterministic involutive X-automata Γ, Γ ′ recognize the same
language, then they are isomorphic; i.e., for deterministic involutive X-automata Γ, Γ ′,

LΓ = LΓ ′ ⇔ Γ ' Γ ′ .

We have already seen (Corollary 5.4.11) that, in a deterministic involutive automa-
ton Γ, reduced -walks biunivocally describe the recognized subgroup 〈Γ〉. So, it
is clear that the vertices in Γ not laying in any reduced - walk play no role in
this description. Note, however, that the accepted language LΓ can change if one
removes those vertices.

Definition 5.4.15. A vertex (resp. an arc) in an involutive automaton is called useful
if it belongs to some reduced - walk, and superfluous otherwise.

Definition 5.4.16. An involutive automaton Γ is called trim (or core) if it has no
superfluous vertices. (i.e., every vertex in Γ is useful).

Any transformation consisting in removing superfluous vertices from an involutive
automaton is also called a trim. A total trim, denoted τ, is the transformation
consisting in removing from an inverse automata all its superfluous vertices. The
core of an involutive automaton Γ, denoted by core(Γ), is the automaton obtained
after applying a total trim to Γ, i.e., core(Γ) := (Γ)τ.

Remark 5.4.17. The core of an involutive automaton Γ is precisely the (trim) au-
tomaton obtained by removing from Γ all the (finite or infinite) hanging trees not
containing the basepoint. The finite case, however, admits a local description: a
finite involutive automaton is trim if and only if it has no non-base vertices of
degree one.

Remark 5.4.18. The subgroup recognized by an automaton Γ coincides with the
subgroup recognized by its core; i.e., 〈Γ〉 = 〈core(Γ)〉.

Lemma 5.4.19. Let Γ be a involutive automaton. Then, Γ is trim (i.e., every vertex in Γ
is useful) if and only if every arc in Γ is useful.

Proof. One of the implications is obvious. For the other one suppose, that every
vertex in Γ is useful, and consider an arc e ≡ p a q in Γ. From the usefulness of
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p and q we have reduced - closed walks throug p and q in Γ. If e belongs to any
of those walks, we are done. Otherwise, we have the following situation:

p

q

u1 v1

u2 v2

a

Now it is clear that the walk
u1 p a q

v2
is reduced. The claimed

result follows.

Definition 5.4.20. An inverse X-automaton is an involutive X-automaton which
is deterministic and trim. We denote by X-Inverse the full family of X-inverse
automata.

Remark 5.4.21. In an inverse automata the basepoint still can have degree one,
when this happens we call basepoint thread the path from the basepoint to the first
vertex with degree strictly grater than 2.

Remark 5.4.22. The degree (resp., total degree) of a vertex in an inverse X-automaton
is at most #X (resp., 2 · #X).

Example 5.4.23. If S is a subset of a group G = 〈X〉, then the core of the Schreier
coset digraph of the subgroup H = 〈S〉 relative to X is a (not necessarily complete)
inverse X-automaton recognizing H. We will see in Theorem 5.4.32 that, for the
free group, this is (modulo isomorphism) the unique inverse automata recognizing
a subgroup H 6 FX.

For an involutive automaton, determinism (through Lemma 5.4.9) and trimness
easily produce the following variant of Proposition 5.4.12.

Proposition 5.4.24. Let Γ, Γ ′ be inverse X-automata. Then:

L̃(Γ) ⊆ L̃(Γ ′) ⇔ ∃ homomorphism φ : Γ → Γ ′ .

and, if so, the homomorphism is unique.

Proof. Unicity is consequence of the determinism of Γ ′ (see the proof of Proposi-
tion 5.4.12).

[⇐] This implication is immediate from the definitions of homomorphism of
automata in 5.2.23, and reduction of a language.

[⇒] Suppose L̃(Γ) ⊆ L̃(Γ ′). Then, given a vertex p in Γ (which is trim) we can
consider a reduced - walk in Γ through p

u p v
.
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accepting some word uv, that will be reduced (from Lemma 5.4.9). Since L̃(Γ) ⊆
L̃(Γ ′), we can read the same reduced word in Γ ′, and from lemmas 5.4.9 and 5.4.10,
there exists a reduced walk

′ u p ′ v ′ ,

where p ′ is some vertex in Γ ′. We claim that such a vertex p ′ is uniquely deter-
mined, and the corresponding map

φ : V(Γ) → V(Γ ′)
p 7→ p ′

(5.18)

(sending basepoint to basepoint) obtained in this way defines a homomorphism
between Γ and Γ ′.

For the first claim, we note that the argument used in Proposition 5.4.12 works for
reduced walks. Finally, to see that φ is a homomorphism of automata, consider
a labelled arc e ≡ p a q in Γ. Then (from Lemma 5.4.19), there exist a reduced

- walk in Γ of the form:

u p a q v

for some words u, v. Now, using L̃(Γ) ⊆ L̃(Γ ′) together with Lemma 5.4.9 (in both
sides), we have that there exists a reduced - walk in Γ ′ of the form:

u pφ a qφ v
.

In particular, we have an arc pφ a qφ in Γ ′. Thus φ : Γ → Γ ′ is a homomorphism
of automata, as we wanted to prove.

Finally, combining Proposition 5.4.12 with Proposition 5.4.24, we obtain one of
the main goals of Stallings theory: the family X-Inverse of inverse X-automata
univocally represent the subgroups of the free group with basis X.

Corollary 5.4.25. Let Γ, Γ ′ be inverse X-automata. Then, the following statements are
equivalent:

1. Γ and Γ ′ are isomorphic (i.e., Γ ' Γ ′).

2. Γ and Γ ′ recognize the same language (i.e., LΓ = LΓ ′).

3. Γ and Γ ′ recognize the same reduced language (i.e., L̃Γ = L̃Γ ′).

4. Γ and Γ ′ recognize the same subgroup of FX
(
i.e., 〈Γ〉 = 〈Γ ′〉

)
.
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Below, we see that for every involutive X-automaton, there exists a (unique)
inverse automaton equivalent to it. Note that a constructive proof of this fact
(see Theorem 5.4.43) can not be given in the general setting.

Definition 5.4.26. Let Γ be an involutive X-automaton. We say that two vertices
p, q in Γ are equivalent, denoted by p ≡ q, if there exist a walkbetween both vertices
recognizing the trivial element in FX. That is,

p ≡ q (def)⇐⇒ ∃w ∈ FX : p
1FX q .

Lemma 5.4.27. Equivalence of vertices is an equivalence relation compatible with the
automaton structure; i.e., the map

VΓ VΓ/≡
p 7→ [p]

induces (identifying parallel arcs with the same label) a well-defined epimorphism of
automata Γ Γ/≡ .

Proposition 5.4.28. Let Γ be an X-automaton. Then, the core of the quotient automa-
ton Γ/≡ is an inverse X-automaton recognizing the same subgroup as Γ. It is called the
Stallings reduction of Γ, and denoted St (Γ).

Proof. It is enough to note that any path in the quotient graph Γ/≡ can be lifted
to a path in Γ whose label represents the same element in FX. This is so because
given any path of length 2 in Γ/≡,

[p] x1 [q] x2 [r] , (5.19)

there must exist 1-paths p1
x1 q1 and q2

x2 r1 in Γ, where p1 and r1 are
preimages of [p] and [r] respectively, and q1, q2 are (maybe different) preimages of
[q]. And since q1, q2 are equivalent, from Definition 5.4.26 there must also exist
walks in Γ from the basepoint to q1 and q2 reading the same element, say w ∈ FX.
But then,

p1
x1 q1

w−1 w q2
x2 r1

is a walk in Γ recognizing x1x2 (the same element recognized by (5.19)). This
completes the proof.

Now, Corollary 5.4.25 allows us to use the notion of Stallings automorphism
modulo equivalent automata.
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Definition 5.4.29. Let H be a subgroup of a free group FX. Then, the Stallings
automaton of H with respect to X, denoted by St (H,X) is the Stallings reduction of
any X-automata recognizing H; i.e.,

St (H,X) := core(St (Γ)) ,

where Γ is an X-automata recognizing H.

If there is no ambiguity about the underlying basis (e.g. when it is clear that we
refer to the one in the given presentation), we will sometimes omit any reference
to it and simply talk about the Stallings automaton of the subgroup H, denoted
by St (H).

Proposition 5.4.30. Let H be a subgroup of a free group FX. Then, the Stallings au-
tomaton of H with respect to X is isomorphic to the core of the Schreier automaton of H;
i.e.,

St (H,X) ' core(Sch (H,X)) .

Proof. By construction, core(Sch (H,X)) is trim, deterministic, and recognizes the
subgroup H. Then, by the uniqueness in Corollary 5.4.25, we are done.

Since the unique (from Corollary 5.4.25) inverse X-automaton recognizing a sub-
group H 6 FX always exists (Definition 5.4.29), we can finally state the characteriza-
tion theorem for subgroups of arbitrary free groups (note that we are not assuming
the subgroups, or even the ambient free group to be finitely generated).

Notation 5.4.31. For every arc e outside T, we will denote by γT [e] the (unique)
reduced - walk trough T, across e, and back to through T; i.e.,

γT [e] ≡
T • e • T

(reduced) ;

and we will denote by wT[e] its label, i.e.,

wT[e] = `(γT [e]) = ˜̀( T • e • T )
.

(Note that, since γT [e] is reduced, and Γ is inverse, the word wT[e] is also reduced.)

Theorem 5.4.32 (Stallings, 1983, [Sta83]). Let FX be a free group with basis X. Then,
the map

{Subgroups of FX } → { Inverse X-automata }
H 7→ St (H,X)

, (5.20)

(sending every subgroup H 6 FX to its Stallings automaton) is a bijection with in-
verse Γ 7→ 〈Γ〉.
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Moreover, for any spanning tree T of an inverse X-automaton Γ, the set

BΓ,T =
{
wT[e] : e ∈ E+(Γ rT)

}
, (5.21)

is a free basis for the subgroup H recognized by Γ. It is called the canonical basis for H
with respect to (Γ,T).

Proof. The bijectivity of (5.20) is clear from Corollary 5.4.25.

On the other hand, from Proposition 5.3.16, we have that the family BΓ,T in (5.21)
is a generating set for H (recall that `FX = ˜̀, and Notation 5.4.31). Now we prove
that, if Γ is an inverse automaton, then BΓ,T is indeed a free family (and thus a
basis of H).

It is enough to see that any nontrivial word w reduced in BΓ,T (i.e., such that

w = wT[ei1 ] wT[ei2 ] · · · wT[eik ] , (5.22)

where eij ∈ E(Γ r T), and no two successive eij ’s are inverse of each other)
represents a nontrivial element in FX (i.e., that w̃ 6= 1). Since -walks within trees
read trivial group elements, we have:

w̃ = ˜̀(γT [ei1 ] γT [ei2 ] · · · γT [eik ])

= ˜̀( T •
ei1 • T T •

ei2 • T · · · T •
eik • T )

= ˜̀( T •
ei1 • T •

ei2 • T • · · · • T •
eik • T )

. (5.23)

Note that the walk in (5.23) is nontrivial and already reduced (since the arcs eij are
outside T). But, since Γ is deterministic, this means (Corollary 5.4.11) that w̃ 6= 1,
as we wanted to prove.

Corollary 5.4.33. For any subgroup H of a free group FX, rkH = rkSt (H,X). In
particular:

H is finitely generated ⇔ St (H,X) is finite .

5.4.1 Finitely generated subgroups of free groups

For finitely generated subgroups of free groups, the previous characterization can
be made algorithmic. In this case, it is enough to sequentially remove from any
(finite) starting automata the obvious redundances coming from non-determinism,
and non-trimness. To this end, let us introduce two kinds of transformations on
inverse automata that obviously keep the recognized language unchanged: foldings
and trims.
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We call foldings the natural identifications of arcs preformed in order to fix local
non-determinism, namely the situations shown in Figure 5.6.

Definition 5.4.34. Let Γ = (V,E, ι, τ, `, ) be an involutive X-automaton, and let e, f
be two positive arcs in Γ with the same origin and label (say e ≡ p a q, and
f ≡ p a r, where q and r are not necesarily different).

Then, the involutive X-automaton Γ ′ obtained by identifying e and e ′ (and its
respective inverses) in Γ is called an (elementary) Stallings reduction of e and f in Γ.

Formally, Γ ′ = (V ′,E ′, ι ′, τ ′, ` ′, ) is given by:

1. vertex set V ′ = (Vr {q, r}) t {q ′} ,

2. arc set E ′ = Er E{q,r} t
{
f ′ ,∀f ∈ E{q,r}

}
, where

2.1. for all f ∈ E{q,r}, if the origin ιf (resp. end τf) of f is q or r, then the origin
(resp. end) of f ′ is q ′,

2.2. all other incidence relation for an arc e ′ ∈ E ′ is inherited from the
corresponding arc e ∈ E .

3. labelling

3.1. for all f ∈ E{q,r}, ` ′(f ′) = `(f) ,

3.2. ` ′(e) = `(e) for every other arc e ∈ E ′.

Then, the map
ϕ{e,f} : Γ → Γ ′

q , r 7→ q ′

s 7→ s, for all s /∈ {q, r} ,

is an epimorphism of automata called (elementary) Stallings folding of the arcs e
and f. The action of a folding transformation on Γ to obtain Γ ′ is denoted by

Γ
ϕ

Γ ′ .

Note that an inverse automaton is deterministic if and only if it has no available
foldings (the term folded automaton is also used).

The following results are clear by construction.

Proposition 5.4.35. Foldings do not change the language (and hence the subgroup)
recognized by an involutive automaton.

Remark 5.4.36. A folding decreases the number of arcs by 1 (2 if we count inverse
arcs). So, if the starting automaton is finite, we will reach a folded automaton after
a finite number of foldings.
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Definition 5.4.37. Let Γ be a finite inverse automaton. Then, we define the loss of
a folding ϕ : Γ → Γ ′ to be the difference of the ranks of Γ and Γ ′; i.e.,

loss ϕ = rk Γ − rk Γ ′ .

The loss of a finite sequence of elementary foldings is the sum of the losses of each
folding in the sequence.

The result below is immediate from the definition of automaton rank.

Proposition 5.4.38. The loss of a folding on a finite inverse automaton is 0 if the identified
arcs are nonparallel, and 1 otherwise.

Definition 5.4.39. We can divide foldings in two disjoint types:

(a) Open foldings (with loss 0): those which are identifications of two nonparallel
adjacent arcs with the same labels (and its corresponding inverses).

xi

xi

xi

Fig. 5.7: Open folding

(b) Closed foldings (with loss 1): i.e., those which identify two parallel arcs with
the same label (and its corresponding inverses).

xi

xi

xi

Fig. 5.8: Closed folding

Remark 5.4.40. Note that the natural act of neglecting an explicit cancellation
determined by two non mutually inverse arcs within an induced walk:

xi xi

in an inverse X-automata, can be achieved by a folding followed by a trim. So we
can, without loss of generality, avoid such situations in the considered automata.

The computability of finite inverse automata is now straightforward.

Proposition 5.4.41. Any finite X-automaton Γ recognizing H can be converted into an
inverse automata — recognizing the same subgroup H — after a finite number of foldings,
followed by a total trim.

118 Chapter 5 Free-abelian by free groups



Proof. This is clear, because each folding decreases the number of arcs by one.
Since the starting automaton is finite, after a finite number of foldings we will
reach a deterministic automaton, that will be inverse after performing the final
complete trim.

Γ
ϕ(1)

Γ
(1) ϕ(2)

· · · ϕ(p)

Γ
(p) τ

Γ
(p+1)

(5.24)

Fig. 5.9: Folding process followed by a total trim

Corollary 5.4.42. The Stallings automaton of a finitely generated subgroup H of a free
group is computable given any finite generating set for H.

Proof. Given S a finite generating set for H, it is enough to compute the flower
automaton Fl(S) and then apply Proposition 5.4.41 on it. Recall that Fl(S) (an so, ev-
ery automaton in the folding sequence) is trim, therefore, the final T transformation
in (5.24) is not necessary in this case.

The computation of the Stallings automaton of a finitely generated subgroup of the
free group is well known to be fast (in [Tou06], Touikan shows it to be O(N log∗N),
where N is the total number of letters in the input generating set).

On the other side, given a finite inverse X-automaton Γ, there exist well known
algorithms to compute a spanning tree, and hence — using (5.21) — a basis for
the recognized subgroup 〈Γ〉. The version of Theorem 5.4.32 for finitely generated
subgroups follows.

Theorem 5.4.43 (Stallings, 1983, [Sta83]). Let FX be a finitely generated free group with
basis X. Then, the map

{ f.g. subgroups of FX } → {Finite inverse X-automata }
H 7→ St (H,X)

(5.25)

sending a finitely generated subgroup H 6 FX to its (finite) Stallings automaton, is a
computable bijection.

Corollary 5.4.44. For any finitely generated subgroup H of a free group F,

rkH = #EΓ − #VΓ + 1 ,

where Γ is the Stallings automaton of H.
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5.5 Some applications of Stallings theory

The results on the last section provide a natural geometric reinterpretation and
proof of many classic results about subgroups of free groups. The first natural
application is the solvability of the membership problem for free groups. We state
this problem (a.k.a. generalized word problem) below, for an arbitrary finitely
presented group G.

(Subgroup) membership problem, MP(G). Given a finite set of words w,w1, . . . ,wn,
in the generators of G, decide whether w represents an element in 〈w1, . . . ,wn〉G; and, in
affirmative case, compute an expression of w as a word in the wi’s.

Theorem 5.5.1. The subgroup membership problem is decidable for free groups.

Proof. Note that, for this problem, one can always assume the ambient group to
be finitely generated: indeed, for any finite input S = {w,w1, . . . ,wn} ⊆ FX, it is
enough to consider the (finitely generated) free ambient with basis the support set
consisting of all the generators of X appearing in S.

Let w,w1, . . . ,wn be reduced words in some (we can assume finite) free basis X. In
order to decide whether w belongs to the subgroup generated by S = {w1, . . . ,wn},
it is enough to compute the Stallings automaton Γ = St (〈S〉), and check whether
the word w is recognized by Γ. Since Γ recognizes exactly the elements in the
subgroup 〈S〉, and this test can be performed algorithmically, the solvability of the
membership (decision) problem follows.

For the search problem, let w,w1, . . . ,wn be freely reduced words in X, such
that w belongs to the subgroup generated by S = {w1, . . . ,wn}. Once built the
Stallings automaton Γ of 〈S〉, the spelling of the word w will draw a - walk γ in
Γ. Then, unfold back Γ to the flower automaton Fl(S) keeping track of the walk γ.
The walk obtained from γ in Fl(S) will describe w as a product of the starting
generators w1, . . . ,wn.

Remark 5.5.2. Recall that, although the membership search problem is always
solvable by brute force (see Figure 5.49), the Stallings construction allows a much
more efficient search of the expression of a word w ∈ H in terms of a finite family
of generators S: namely, lifting back the closed walk in St (H) reading w through
the tower of foldings to the Flower automaton Fl(S).

Also, recall that Theorem 5.4.32 and Theorem 5.4.43 contain the classic results
below.
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Proposition 5.5.3. Two free groups are isomorphic if and only if their respective bases
have the same cardinality, i.e.,

FX ' FY ⇔ #X = #Y .

Theorem 5.5.4 (Nielsen–Schreier Theorem). Every subgroup of a free group is itself
free.

Theorem 5.5.5. Bases for finitely generated subgroups of free groups are computable (from
any finite family of generators).

The close relationship between the Stallings automaton and the Schreier digraph
of a subgroup of a free group, provides useful information. For example, if the
ambient group is finitely generated, the following implications are straightforward:

[F : H ] <∞ ⇐⇒ Sch (H) is finite

=⇒ St (H) is finite =⇒ H is f.g.
(5.26)

(Note that for the last implication, a finitely generated ambient is necessary.)

Indeed, a more precise statement can be made.

Proposition 5.5.6. Let Fn a free group of finite rank n, and H 6 Fn. Then,

[Fn : H ] <∞ ⇐⇒ St (H) is complete, (5.27)

and, if so,

1. The index of H in Fn is the number of vertices of St (H).

2. Schreier index formula:

rkH− 1 = [Fn : H] · (n− 1) . (5.28)

Proof. The equivalence (5.27) and the first claim, are clear from the identity
St (H,X) = core(Sch (H,X)), assuming X to be finite. For the second claim, re-
call that rkH = rk St (H,X), and use Euler’s formula (5.6).

Therefore, we can algorithmically decide whether a subgroup of Fn given by a
finite family of generators has finite index, just building its Stallings automaton, and
then checking whether every vertex has degree 2n. Note also that, in affirmative
case (if every vertex is complete), we can immediately obtain a family of coset
representatives just reading words from the basepoint to the vertices.

Theorem 5.5.7. The finite index problem is solvable for free groups of finite rank.
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The relation between the rank of a subgroup and its Stallings automaton also
provides easily the following classic result.

Theorem 5.5.8. Finitely generated free groups are Hopfian (and not co-Hopfian).

Proof. The non-coHopfianicity of free groups is evident (to prove it in our setting,
it is enough to to build a Stallings automaton of rank n not being equal to the
bouquet).

For the Hopfianicity, let S be a generating set for a subgroup H 6 Fn. We want to
prove that, if #S = rkH, then S is indeed a basis for H. It is enough to observe that
then, both the flower automaton Fl(S), and the Stallings automaton St (H) have the
same rank, and thus no closed foldings are possible in the folding process. The
result follows.

However, this does not mean that, in a free group, any minimal generating set
in Fn has exactly n elements. Indeed, using the Stallings automata, it is not
difficult to build examples satisfying a slightly stronger claim.

Lemma 5.5.9. There exist minimal generating sets for Fn of any (finite) size r > n.

Conjugation and normality also have natural translations in the geometric setting.
For example, the following result is straightforward from the graphic interpreta-
tion.

Proposition 5.5.10. Two subgroups H,K 6 FX are conjugate, say H = Kw, for certain
w ∈ F, if and only if their Schreier coset digraphs Sch (H) and Sch (K) coincide except
maybe for the location of the basepoint. In this case, the respective basepoints are connected
through a walk reading the conjugating word w.

The corollaries below follow easily from Proposition 5.5.10.

Corollary 5.5.11. A subgroup of a free group is normal if and only if its Schreier digraph
is vertex-transitive.

Remark 5.5.12. If H is a nontrivial normal subgroup of the free group, then its
Schreier digraph is core (and hence coincides with its Stallings automaton)

Corollary 5.5.13. A nontrivial subgroup H 6 FX is normal if and only if its Stallings
automaton St (H,X):

(i) is complete (i.e., is X±-regular), and

(ii) has a vertex-transitive subjacent digraph (i.e., for every vertex p in St (H), there
exist an automorphism of digraphs of St (H), sending the basepoint to p).
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Remark 5.5.14. The Stallings automaton of a nontrivial normal subgroup of Fn

is 2n-regular.

Corollary 5.5.15. A nontrivial normal subgroup of Fn is finitely generated if and only if
it has finite index.

Proof. The converse implication always holds in a finitely generated ambient, see
(5.26). The direct implication follows from Remark 5.5.12: if H is nontrivial and
normal in Fn, then its (finite) Stallings automaton coincides with its Schreier
digraph. Since the vertices of the Schreier digraph are precisely the right cosets of
H in Fn, the result follows.

Corollary 5.5.16. There exists an algorithm which, given w1, . . . ,wk ∈ Fn, decides
whether the subgroup H = 〈w1, . . . ,wk〉 is normal in Fn; and, if not, finds a word
w ∈ Fn such that Hw 6= H.

5.5.1 Intersection problems for free groups
Problems concerning intersections within free groups deserve its own section, not
only as a nice application of Stallings machinery, but also because their importance
in modern geometric group theory, and the protagonism they have throughout the
whole dissertation (see Figure 5.49).

For free groups, the first important result on this topic is the following theorem of
Howson.

Theorem 5.5.17 (Howson, 1954, [How54]). The intersection of two finitely generated
subgroups of a free group is again finitely generated.

The property that appears in the theorem above has aroused so much interest that
finally took the name of the author who first considered it.

Definition 5.5.18. A group G is said to satisfy Howson’s property (or to be a Howson
group, for short), if the intersection of any two of its finitely generated subgroups
is again finitely generated.

Remark 5.5.19. Note that for this problem, the rank of the ambient group can be
assumed to be finite. Namely, we only need to consider generators appearing in
any pair of finite generating sets for the subgroups.

After Theorem 5.5.17, the natural question about the rank of the intersection
subgroup became popular, and ended up being one of the most famous open
problems in geometric group theory during the last decades. The first (partial)
answer to this question was given by Howson himself, providing also examples of
subgroups H,K 6 Fn where rk(H∩K) − 1 = (rkH− 1) (rkK− 1).

Shortly after, Hanna Neumann improved Howson’s bound.
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Proposition 5.5.20 (Neumann, 1956, [Neu56]). IfH,K are non-trivial finitely generated
subgroups of a free group, then:

rk(H∩K) − 1 6 2 (rkH− 1) (rkK− 1) . (5.29)

In the same paper Neumann conjectured that the bound still holds if we remove
the factor 2 from the right term in (5.29). This last claim has become known as the
“Hanna Neumann conjecture” (see Theorem 5.5.21).

Many partial proofs, related claims, and generalizations of this conjecture have
been done since its statement [Bur71; Neu90; Tar92; Dic94; Tar96; Arz00; DF01;
Iva01; MW02; Kha02; Iva08; DI08; Wis05], but no full proof was given since Igor
Mineyev and Joel Friedman independently proved it quite recently (see also the
remarkable two-page version of the proof using Bass-Serre theory by Warren Dicks,
available at [Dic12], and the related paper [Nos16]).

Theorem 5.5.21 (Mineyev, 2012, [Min12]; Friedman, 2015, [Fri15]). If H,K are
non-trivial finitely generated subgroups of a free group, then:

rk(H∩K) − 1 6 (rkH− 1) (rkK− 1) . (5.30)

(Note that, according to Howson’s examples, this bound is tight.)

Below, we see how to use Stallings automata to obtain Howson’s result, and Hanna
Neumann bound Equation (5.29), and indeed compute a basis for the intersection,
given generators for the intersecting subgroups.

Definition 5.5.22. Let Γ = (V,E, ι, τ, `, ) and Γ ′ = (V ′,E ′, ι ′, τ ′, ` ′, ′) be X-automata.
Then, the (tensor) product or pull-back of Γ and Γ ′, denoted by Γ × Γ ′, is the pointed
X-digraph:

1. with vertex set the cartesian product V×V ′,

2. such that an arc (p, p ′) (q, q ′) exists and is labelled by x ∈ X, if and only
if there exist both an arc p x q in Γ, and an arc p ′ x q ′ in Γ ′, and

3. having the vertex ( , ′) as basepoint.

The following lemmas contain claims which are clear from the definition.

Lemma 5.5.23. If Γ, Γ ′ are deterministic automata, then the product Γ × Γ ′ is also
deterministic. Moreover, the degree of any vertex (p, p ′) in Γ × Γ ′ is at most equal to the
minimum of the degrees of p and p ′ in Γ and Γ ′ respectively.

Remark 5.5.24. The product of two inverse (i.e., involutive, deterministic, and trim)
automata is again involutive and deterministic, but not necessarily connected nor
trim.
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Lemma 5.5.25. The language recognized by (the connected component containing the
basepoint in) the product Γ × Γ ′ is exactly the intersection of the languages recognized
by Γ and Γ ′.

In particular, if two languages L,L ′ are regular, then their intersection is also regular.

Finally, removing the contributions from the possible superfluous vertices in the
product we reach the automata recognizing subgroup intersections.

Definition 5.5.26. Let Γ,∆ be inverse X-automata. Then, the core of the prod-
uct Γ ×∆ is called the junction automaton of Γ and ∆, and is denoted by Γ ∧∆;
i.e.,

Γ ∧∆ := core(Γ ×∆) .

Proposition 5.5.27. Let H,K be finitely generated subgroups of a free group. Then, the
Stallings automaton of the intersection H∩K, is the junction of the Stallings automata of
H and K; that is:

St (H∩K) = St (H) ∧ St (K) .

Proof. It is enough to realize that the junction automaton St (H) ∧ St (K):

1. recognizes the subgroup H∩K. This is clear from Lemma 5.5.25, since the
only missing words can be obtained by inserting word-cancellations.

2. is deterministic (Lemma 5.5.23), and

3. is trim (obvious because it is a core automata).

Remark 5.5.28. Since the product of two finite automata is finite, Proposition 5.5.27
automatically proves Howson’s property for free groups, and it is not difficult
to also obtain Hanna Neuman’s bound in (5.29) from the product construction.
Namely, if H,H ′ are finitely generated subgroups of Fn, let us denote by Γ and Γ ′

the Stallings automaton of H and H ′ respectively. Then, removing from Γ and Γ ′
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basepoint threads if necessary (note that this does not affect the rank, and so our
argument):

2(rkH− 1)(rkH ′ − 1) = 2(#EΓ − #VΓ)(#EΓ ′ − #VΓ ′)

= 2
(

1
2

∑
p∈VΓ

(deg p− 2)
)(

1
2

∑
p ′∈VΓ ′

(deg p ′ − 2)
)

=
1
2

∑
p∈VΓ

∑
p ′∈VΓ ′

(deg p− 2)(deg p ′ − 2)

=
1
2

∑
(p,p ′)∈VΓ×VΓ ′

(deg p− 2)(deg p ′ − 2)

>
1
2

∑
(p,p ′)∈V(Γ×Γ ′)

(deg(p, p ′) − 2)2

>
1
2

∑
(p,p ′)∈V(Γ×Γ ′)

∣∣deg(p, p ′) − 2
∣∣

>
1
2

∑
(p,p ′)∈V(St(H∩H ′))

(deg(p, p ′) − 2)

= #E(St
(
H∩H ′

)
) − #V(St

(
H∩H ′

)
)

= rk(H∩H ′) − 1 ,

where we have used the rank formula (5.4.44), the handshaking lemma, and the
inequalities deg(p, p ′) 6 max(deg p, deg p ′), and #V(St (H∩H ′)) 6 #V(Γ × Γ ′).

Finally, both the decision intersection problem (which obviously always answers
yes, since free groups are Howson), and the computability of a basis for the
intersection of two finitely generated subgroups, are clear consequences of Propo-
sition 5.5.27.

Theorem 5.5.29. The (full) subgroup intersection problem is solvable for free groups. That
is, there exists an algorithm which, given elements u1, . . . ,uk, v1, . . . , vl ∈ FX, computes
a basis for the intersection 〈u1, . . . ,uk〉 ∩ 〈v1, . . . , vl〉.

Example 5.5.30. Let H = 〈x3,yx,y3xy−2〉, and H ′ = 〈x2,yxy−1〉 6 F2 = 〈x,y | −〉.
In order to compute (a basis for) the intersection H ∩H ′ we first compute the
Stallings automata St (H) and St (H ′), and then build the product:
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St (H)

St (H ′)
x

y

x

y

St (H)× St (H ′)

Fig. 5.10: Pull-back of St (H) and St (H ′)

Note that the product in Figure 5.10 is neither connected nor trim; thus, in order
to obtain the Stallings automata of the intersection H∩H ′, we need to consider the
connected component in St (Γ)× St (∆) containing the basepoint, and then apply
a total trim. After rearranging the resulting automata we get:

(2)

(8)

(4)

(5)

(1)
(3)

(7)

(6)

Fig. 5.11: Stallings automaton of H∩H ′

where the dashed arcs indicate the arcs outside the spanning tree built according
to the order x ≺ x−1 ≺ y ≺ y−1 in the generating set {x,y}± (the labels indicate the
order of appearance of each arc in this construction). Note that Figure 5.10 also
shows that, for the purpose of intersection, the element y3xy−2 in H (producing
only a hanging thread, and a non-basic disconnected component in the product) is
completely irrelevant.

Now, we can use Theorem 5.4.43 to compute the basis {x6,yx3y−1} for the intersec-
tion H∩H ′, which therefore has rank 2.

Finally we state without proof two more easy consequences of the pullback con-
struction for free groups.

Theorem 5.5.31. The (full) coset intersection problem is solvable for free groups.
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Corollary 5.5.32. A subgroupH of a free group is malnormal if and only if every connected
component of the product of St (H) with itself is a tree, except the diagonal one (which is
clearly isomorphic to St (H)).

5.6 Free-abelian by free groups
We aim to extend the Stallings machinery for free groups to a broadened scenario.
Namely, let

• Zm = 〈T | [T , T ]〉 be a free-abelian group of finite rank m, with free-abelian
basis T = {t1, . . . , tm},

• FX = 〈X | −〉 be a free group (of arbitrary rank) with basis X = {xj}j∈J, and

• Aj ∈ GLm(Z), for each j ∈ J, be automorphisms of Zm;

and consider the semidirect product GA = FX nA• Zm, with action the homomor-
phism given by

A• : FX → GLm(Z)

xj 7→ Aj .
(5.31)

Notation 5.6.1. Of course, once fixed a free-abelian basis, we can interpret the
automorphisms in GLm(Z) as invertible integer matrices, that we will assume
acting on the right. That is, we will write bA the image of b ∈ Zm under the

matrix A, and AB the composition Zm
A

Zm
B

Zm.

If w = w(−→xj) = xε1
j1
xε2
j2
· · · xεpjp is a word in X, then we will write

Aw := w(
−→
Aj) = Aε1

j1
Aε2

j2
· · ·Aεpjp

(the product of matrices obtained replacing each appearance of a letter xj in w,
by the corresponding matrix Aj). Note that Aw = Aw, for each word w = w(X)
representing an element w ∈ FX; in particular, Aλ = A1 = Im. In the same vein, we
denote by AS the (set of matrices) image of any subset S ⊆ FX under the action A•;
i.e., AS = {Aw : w ∈ S}. Note that then, A〈S〉 = 〈AS〉 6 GLm(Z).

With the previous notation, our target group can be written:

GA = FX nA• Zm =

〈
T ,X

∣∣∣∣∣ titk = tkti ∀i,k ∈ [1,m]

x−1
j ti xj = tiAj ∀i ∈ [1,m],∀j ∈ J

〉
. (5.32)

Remark 5.6.2. The case where A• : xj 7→ Im (for all j) corresponds exactly to the
direct product FX ×Zm. Thus, all the results in this chapter apply to the groups
considered in Part I and [DV13], and some of them constitute generalizations of
the results found there.
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Given a word w = w(X, T), we can always use the relations in (5.32) to move t’s to
one side (say to the right), and obtain a normal form for the element represented
by w.

Definition 5.6.3. A normal form for the element in GA represented by the word w
is defined to be

w ta = w · ta1
1 t
a2
2 · · · t

am
m , (5.33)

where w is the element in FX represented by the free part of w, (i.e., w = wπF ∈
FX), a = (a1,a2, . . . ,am) ∈ Zm; and we have abbreviated ta := ta1

1 t
a2
2 · · · t

am
m . In

particular, if {ei}i is the canonical basis in Zm, then tei = ti, for all i ∈ [1,m]. We
say that w and ta are respectively the free part, and free-abelian part of the word
w ta.

Remark 5.6.4. The abbreviated notationw ta allows us to think elements of FXnZm

as pairs (w, a) ∈ FX nZm but with multiplicative behaviour, which is convenient
when working in a noncommutative group.

With this notation, the semidirect conjugation relation in GA becomes

w−1 taw = taAw ,where a ∈ Zm , and w ∈ FX .

This means that a subword ta can jump to the right (resp. left) of a free subword
w ∈ FX at the price of applying the matrix Aw (resp. A−1

w ) to the vector a; i.e.,

taw = w taAw and w ta = taA−1
w w = taA−w w . (5.34)

Remark 5.6.5. Obviously, the normal form of a given word is always computable.
So (for computable purposes) we can always assume, without loss of generality,
the elements in GA given in normal form.

Iterating the rules in (5.34) we obtain the expressions below, that will be useful
later.

Lemma 5.6.6. Let w
(−−−→
ui tai

)
= ui1 tai1 ui2 tai2 · · · uip taip be a word of length p > 1

in {ui tai}i ⊆ Zm ×Fn. Then

w
(−−−→
ui tai

)
= ui1 tai1 ui2 tai2 · · · uip taip

=GA ui1ui2 · · ·uip tai1 Aui2
···Auip tai2 Aui3

···Auip · · · taip−1 Auip taip

=GA w(−→ui) t
∑p
j=1

(
aij

∏p+1
k=j+1 Auik

)
, (5.35)

=GA w(−→ui) t
∑p
j=1 aij Aw[j+1,p](−→ui) , (5.36)

where w[p+ 1,p] is the empty word, and so Aw[p+1,p](−→ui) = Im.
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Below, we summarize the expressions for the simplest situations.

Corollary 5.6.7. Let u,u1, . . . ,up ∈ Fn, a, a1, . . . , ap ∈ Zm, where p > 1. Then,

(i)
∏p
i=1 ui tai =

(∏p
i=1 ui

)
t
∑p
i=1(ai

∏p+1
j=i+1 Aj), where Ap+1 = Im.

(ii) (u ta)p = up ta (
∑p
i=1 Ap−iu ) = up ta (

∑p−1
i=0 Aiu).

(iii) (u ta)−1 = u−1 t−aA−1
u .

(Note that (u ta)ε = uε t(εa)A(ε−1)/2
u , for ε = ±1.)

Recall that semidirect products correspond to split short exact sequences (see Sec-
tion 3.2); in our case we can take:

1 Zm GA = FX nZm
πF FX 1 , (5.37)

with the natural “identity section” w 7→ w t0 of πF. Note that we have omitted the
action name (as we will often do hereinafter) in order to lighten notation.

Definition 5.6.8. According to this description, the groups FX nZm are called
free-abelian by free (FABF), and Zm is said to be the full basegroup of FX nA• Zm

with quotient FX.

Remark 5.6.9. Note that one does not necessarily need the full basegroup Zm

to generate the whole group GA through the action A•. Namely, any (abelian)
contribution that can be obtained by conjugating other abelian elements is not
necessary in order to generate the whole group (as far as we dispose of the
conjugated element).

Definition 5.6.10. A basegroup for GA = FX nA• Zm (with respect to Zm) is any
subgroup L 6 Zm that normally generates the full basegroup; i.e., any group that
satisfies one (and thus all) of the following equivalent conditions:

(a) 〈L∪X〉GA = GA.

(b) 〈〈L〉〉GA = Zm.

(c)
∑n
i=1 LAi = Zm.

It is clear that the full basegroup is unique, and the largest possible basegroup
for GA.
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5.6.1 Subgroups of free-abelian by free groups
Our objective is to associate to every subgroup H 6 FX nZm a “unique” (in a
sense that will be detailed) automaton recognizing exactly the elements in H. Let
us first describe these subgroups from an algebraic point of view.

Proposition 5.6.11. Let GA = FX nA• Zm as in (5.32). Then, any subgroup H 6 GA

admits the decomposition
H ' HπF n (H∩Zm) , (5.38)

where H∩Zm is the full basegroup of H, and the action is

HπF → GL(H∩Zm)

u 7→ Au|H∩Zm :
{
H∩Zm → H∩Zm

tb 7→ tbAu .

(5.39)

The expression (5.38) is called the split decomposition of H as FABF group.

In particular, every subgroup of a free-abelian by free group is again free-abelian by free.

Proof. Let H = 〈{wk tak}k〉 be a subgroup of GA, and consider the restriction of the
short exact sequence (5.37) to H:

1 H∩Zm H
πF|H

HπF 1 . (5.40)

Now it is clear that:

• HπF is a subgroup of FX with basis, say {vl}l, where each vl admits an
expression vl = vl(

−→wk) as a word in the generators {wk}k of HπF.

Moreover, since for every tb ∈ H∩Zm, and every uta ∈ H,

(uta)−1tb(uta) = t−au−1tbuta = t−au−1utbAuta = t−a+bAu+a = tbAu ∈ H∩Zm ,

we also have that:

• kerπF|H = H ∩Zm is (a free-abelian subgroup of Zm of rank at most m)
normal in H. Note that this also proves that ∀u ∈ HπF, H∩Zm is invariant
under Au, and thus the homomorphism (5.39) is well defined.

• The map vl 7→ vl(
−−−→
wktak) defines a section σ : HπF → H of πF|H which acts

by conjugation on H∩Zm according (5.39).

This completes the proof.

Corollary 5.6.12. Let GA be a free-abelian by free group, and H a subgroup of GA. Then,

H is finitely generated ⇔ HπF is finitely generated ,
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where πF : ta u 7→ u is the natural projection in (5.37).

In particular, if the action is trivial, a particularly simple description for the rank
of a subgroup follows immediately from (5.38).

Corollary 5.6.13. Let H,H ′ be subgroups of a free-abelian times free group FX ×Zm.
Then,

rk(H) = rk(H∩Zm) + rk(HπF) ,

Below we generalize to FABF groups a concept already used in Part I.

Definition 5.6.14. Given a subgroup H 6 FX nZm, and an element w ∈ Fn, we
define the abelian completion of w in H as

CH(w) = { a ∈ Zm : w ta ∈ H } ⊆ Zm.

In the same vein, the full completion of an element w ∈ Fn in H is defined to be the
set w tCH(w) := {w ta : a ∈ CH(w) } if w ∈ HπF, and the empty set otherwise.

Corollary 5.6.15. According to Lemma 5.6.6, if {ui tai}i is a generating set for a subgroup
H 6 FX nZm, and w ∈ FX, then:

(a) if w 6∈ HπF, then CH(w) = ∅, and

(b) if w ∈ HπF, then CH(w) =
∑p
j=1

(
aij

∏p+1
k=j+1 Auik

)
+ L ,

where w = w
(−→ui) = ui1 ui2 · · · uip is an expression of w as a word in the free

projection of the generating set for H.

So, every completion CH(w) ⊆ Zm is either empty, or a coset of L = H∩Zm.

5.7 Enriched automata

The following discussion suggests natural restrictions on the family of involutive
automata (see Section 5.3), in order to describe subgroups of free-abelian by free
groups.

Remark 5.7.1. Given S a family of words (we can assume in normal form) in T tX
generating a subgroup H 6 FX nZm, recall that we denote by ST the set of
words {wj(T)}j ⊆ S using only letters in T . Then, it is obvious that ST generates a
(f.g. free-abelian) subgroup 〈{wj}j〉 6 H∩Zm, where wj = w ab

j . So, in the flower
automaton Fl(S), we could abbreviate — say as a label attached to the basepoint —
all the abelian petals by the subgroup L = 〈ST 〉 they generate, which is obviously
computable if S is finite.
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w1(X,T)

w2(X,T)

wp(X,T)

wq(T) wp+1(T)

w1(X̂)

w2(X̂)

wp(X̂)

L

=

〈wp+1,...,wq〉 6 Zm

Fig. 5.12: The standard (left), and abbreviated (right) flower automaton Fl(S) of the
set S = {w1(X, T),w2(X, T), . . . ,wp(X, T),wp+1(T), . . . ,wq(T)} of words in the
generators of the FABF group (5.32)

Remark 5.7.2. If w = xε1
j1
xε2
j2
· · · xεpjp is a word in X±, and b ∈ Zm. Then, the element

in FX nZm described by the word wtb can be written in the form

(t−a1xε1
j1

tb1) (t−a2xε2
j2

tb2) · · · (t−apx
εp
jp

tbp) (5.41)

(for some a1, a2, . . . , ap, b1, b2, . . . , bp ∈ Zm) if and only if

−a1Aε1
j1

Aε2
j2
· · ·Aεpjp

+ (b1 − a2)A
ε2
j2
· · ·Aεpjp

+ · · ·+ (bp−1 − ap)A
εp
jp

+ bp = b ,
(5.42)

∑p+1

k=1
(bk−1 − ak)

∏p

i=k
Aεiji

= b , (5.43)

where we are assuming a0 = bp+1 = 0. Hence, any noncentral element in FXnZm

can be written as a product of enriched noncentral generators x̂i = t−aixitbi , where
ai, bi ∈ Zm, in infinitely many ways.

To provide flexibility in the forthcoming transformations (see Section 5.8), it will
we convenient to enable our automata to recognize any fragmentation of the
form (5.41) of words describing elements in the target subgroup.

The conjunction of the last two remarks provides a compact definition for “flower
automaton” within free-abelian by free groups, and suggests a convenient (re-
stricted) family of automata for describing their subgroups.

The following definitions are meant to provide a formal description of these
automata.

Definition 5.7.3. A Zm-enriched X-automaton (EA) Γ̂L is a pointed (Zm×X×Zm)-
automaton, with a subgroup of Zm attached to its basepoint.

In more detail, a Zm-enriched X-automaton is a tern Γ̂L = (Γ ,̂̀,L), consisting of:

1. A pointed digraph Γ (the underlying digraph of Γ̂L).

2. An arc-labelling ̂̀: EΓ → Zm ×X×Zm (the enriched labelling of Γ̂L).
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3. A subgroup L 6 Zm (the basepoint subgroup of Γ̂L).

Remark 5.7.4. So, Zm-enriched X-automata are nothing more than convenient
abbreviations for standard {T ,X}-automata in the context of free-abelian by free
groups. Namely, the basepoint subgroup is meant to abbreviate a set of free-
abelian petals attached to the basepoint (see Remark 5.7.1); and the enriched arcs,
graphically represented:

.ê ≡ x
a b

Fig. 5.13: An enriched arc

That is, the middle label is a “free letter” x ∈ X, and the two extreme free-abelian
labels a, b ∈ Zm (named initial and final labels of the ê, respectively) are meant to
represent the oriented T tX-walk reading t−a x tb.

That is, the abelian labels a, b can be interpreted as abbreviations for the directed
T -walks reading respectively t−a and tb before and after an arc labelled by x.

It will be usually clear from context which label interpretation are we using for an
enriched arc ê as in (5.13); but to avoid any confusion, we will distinguish between:

ê = (a, x, b) and `( ê ) = t−a x tb ,

where we have slightly abused notation (in the first one).

Notation 5.7.5. A Zm-enriched X-automaton can be always thought as an standard
X-automaton enriched with free-abelian labels (elements at the extremes of every
edge, and a subgroup labelling the basepoint). In this context, we generically
accentuate with a hat “ Ô ” to mean “object O” with its arcs enriched with abelian
labels. We use this notation in order to refer to any Zm-enriched object through
its X-skeleton (see Definition 5.7.7).

So, an enriched automata Γ̂L is a standard X-automata Γ (its X-skeleton), with and
abelian arc-labelling (denoted with a hat, Γ̂), plus a free-abelian subgroup attached
to its basepoint (denoted subscript, Γ̂L). In the same vein, a walk will be denoted
by γ̂ or γ depending on whether it is supposed to be read in Γ̂ (i.e., including
abelian labels) or just in Γ. For example, we may denote by ê an arc with enriched
label (a, x, b), and by e the same arc with label x.

Example 5.7.6. The enriched arc

ê ≡ x
(−2, 0, 1) (1,−2, 1)
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corresponds to the path

.t1 t1 t3 x t1 t2 t2 t3

So, we have:

ê = ((−2, 0, 1), x, (1,−2, 1)) , `( ê ) = t(−2,0,1) x t(1,−2,1) ,

e = (0, x, 0) , `(e) = x .

The previous conventions immediately provide a natural translation for null
abelian labels within enriched automata: we can neglect any abelian label equal
to 0 in Γ̂L. For example, we write Γ̂0 = Γ̂, if the basepoint subgroup is trivial.

In the same vein, we identify any enriched automata Γ̂L having all its abelian labels
equal to 0, with the X-automaton Γ obtained by removing them. Hence, we can
think standard automata as particular (null abelian) cases of enriched automata.

Definition 5.7.7. The X-skeleton of an enriched automaton Γ̂L, denoted by sk(Γ̂L),
is the X-automaton Γ obtained after removing all the abelian labels from Γ̂L.

Notation 5.7.8. Whenever possible, we will denote enriched automata by Γ̂L, which
allows us to refer to its skeleton simply by Γ.

The meaning of a walk and its label within an enriched automaton is a natural
adaptation of Definitions 5.2.7 and 5.2.15 taking into account the meaning of the
basepoint label (see Remark 5.7.1).

Definition 5.7.9. Let Γ̂L be an enriched automaton. A walk γ̂ in Γ̂L is either a single
vertex in Γ̂L, or a (strongly adjacent) sequence of enriched arcs ê1 · · · êk in Γ̂L such
that the corresponding sequence of arcs e1 · · · ek is a walk in the skeleton Γ.

Then, the label of an enriched walk in Γ̂L is recursively defined as follows:

• The label of a non-basepoint vertex is the empty word λ (i.e., `(•) = λ).

• The label of the basepoint vertex is the set tL (i.e., `( ) = tL).

• The label of a nontrivial walk γ̂ ≡ ê1 · · · êk is

`(γ̂) = `(ê1 · · · êk−1) `(ιek) t−ak `(ek) tbk`(τek) ,

where ιek and τek are respectively the initial and terminal vertices of ek.

Note that Definition 5.7.9 extends unambiguously the notion of label in an standard
automaton; i.e., if γ is a walk in the skeleton Γ of Γ̂L, then `(γ) = `(e1) · · · `(ek)
both as automaton label, and as enriched automaton label of Γ.
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As usual, if µG : ((X t T)±)∗ → GA is the natural projection, then we denote by
`GA(γ̂) the element in GA represented by `(γ̂) (i.e., `GA(γ̂) := (`(γ̂))µG).

Corollary 5.7.10. Let GA = FX nA• Zm be as in (5.32), and consider a basepoint-free
enriched walk γ̂ = ê1ê2 · · · êp, with êk = (ak, xjk , bk). Then,

`GA(γ̂) = `(γ) t
∑p+1
k=1 (bk−1−ak)

∏p
i=kAji , (5.44)

where γ is the X-skeleton of γ̂, and we assume a0 = bp+1 = 0.

In particular, if ê = (a, x, b), then `GA(ê) = x tb−aAx .

Finally, our interpretation of enriched automata as a particular type of standard
automata (see Remark 5.7.4) also provides a natural notion for involutive automata
in this context.

Definition 5.7.11. An enriched automata is said to be involutive if for every arc
labelled (a, x, b) ∈ Zm × X± ×Zm, there is always a unique reversed arc la-
belled (−b, x−1,−a).

That is, in an involutive enriched automata, for every arc positively labelled
(a, xj, b), we are always assuming the existence of a (unique) reversed arc, dashed
in the following picture, but usually omitted in the graphic representation.

.xja b

x−1
j

−b−a

Fig. 5.14: Arcs in an involutive enriched automaton

Remark 5.7.12. Put another way, we have the following rule of thumb. Any visible
(positive) arc xj

a b in an involutive enriched automaton is meant to be read:

• t−a xj tb when crossed forward (from left to right), and

• t−b x−1
j ta when crossed backwards (from right to left).

In particular, the skeleton of an involutive (Zm,X)-EA is an involutive X-automaton.

The notions of determinism and trimness also admit a definition on enriched
automata, conveniently adapted in terms of its interpretation as standard automata.
However, we will see in Definition 5.9.2 that a much more concise characterization
can be given.

As usual, we only need to depict positive arcs to describe involutive enriched
automata.
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〈(2,3)〉

x

(0,2)

y

x
y

x
(1,2) (0,2)

y

(1,2)

Fig. 5.15: A Z2-enriched {x,y}-automaton

We have reached the restricted family of automata that we will use to represent
subgroups of free-abelian by free groups GA = FXnZm; namely, that of involutive
enriched automata. Hereinafter, if not stated otherwise, we will assume all the
enriched automata appearing in the chapter to be involutive.

The description of the subgroup of GA recognized by an involutive enriched au-
tomaton follows from the general Definition 5.3.17 and the previous conventions.

Proposition 5.7.13. Let GA = FX nA• Zm, and let Γ̂L be a Zm-enriched X-automaton.
Then, the subgroup of GA recognized by Γ̂L is:

〈Γ̂L〉 ' 〈Γ〉n LΓ , (5.45)

where LΓ is the normal closure of L in 〈Γ̂L〉 (see Definition 5.8.1), and the action is given
by A〈Γ〉|LΓ .

In particular, the projection to the free part of the subgroup recognized by an enriched
automaton Γ̂L is exactly the subgroup recognized by its skeleton Γ; i.e., if H is the subgroup
recognized by Γ̂L, then 〈Γ〉 = HπF.

Remark 5.7.14. Note that, since flower automata are clearly of this kind, involutive
enriched automata are enough to describe all the subgroups of GA = FX nA• Zm.
Concretely, the map

{ involutive Zm-enriched X-automata } → { subgroups of GA }

Γ̂L 7→ 〈Γ̂L〉GA

(5.46)

is well defined and onto. However, this is clearly very far from being injec-
tive (which is our goal). Indeed, the sources of looseness within the preimage
in (5.46) of a given subgroup are well determined. Namely, looseness can appear:

(a) in the basepoint subgroup L, either through the action A• (see Remark 5.8.3),
or through parallel X-arcs (see Remark 5.8.7).

(b) by rearranging the abelian arc-labels according multiplication rules in GA.

(c) in the skeleton Γ, either by nondeterminism or nontrimness (as it happened
in the free case, see Section 5.4).
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We will see in the next section that these cases contain all possible ambiguity in an
enriched automata recognizing a subgroup of GA.

5.8 Transformations on enriched automata
In this section we introduce different kinds of transformations on enriched au-
tomata in order to fix all the kinds of looseness detailed in Remark 5.7.14, and hence
compute a unique representative among all the enriched automata recognizing a
finitely generated subgroup of GA.

Let Γ̂L be an involutive Zm-enriched X-automata recognizing a subgroup H of
GA = FX nA• Zm. First of all, recall that -walks in Γ̂ acting on L by conjugation
can produce abelian elements in H ∩Zm which are not included in L; i.e., the
subgroup L 6 H∩Zm is not necessarily AHπF

-invariant. In order to deal with this
kind of looseness, we introduce the notion below.

Definition 5.8.1. Let Γ̂L be an Zm-enriched X-automaton recognizing H in GA.
Then, the closure of L in Γ̂L (with respect to A•) is the subgroup

LΓ := 〈〈L〉〉〈Γ̂L〉 = L〈Γ̂L〉 = L〈Γ〉 = LHπF = (L)AHπF
6 H∩Zm . (5.47)

If the acting skeleton Γ is clear, we will usually omit any reference to it, and denote
the closure of the basepoint L simply by L.

The basepoint group L is said to be closed (in Γ̂L with respect to A•) if it equals
its own closure; i.e., if L = LΓ . An enriched automaton having a closed basepoint
subgroup is also called closed.

Again, since the ambient action A• is given from the start, we will usually omit
any reference to it, and talk simply about closed basepoint group, tacitly assuming
the given action.

Remark 5.8.2. The closed subgroup LΓ is AHπF
-invariant by construction.

Remark 5.8.3 (Basepoint subgroup looseness of type I). Let Γ̂L be an enriched
automaton. Then, L ⊆ LΓ ⊆ 〈Γ̂L〉, and therefore

〈Γ̂
LΓ
〉 = 〈Γ̂L〉 .

That is, Γ̂L and Γ̂
LΓ

are enriched automata recognizing the same subgroup of GA.
(Note however, that LΓ is still not necessarily equal to the full base subgroup
H ∩Zm, since other abelian contributions can arise in H through composition
within Γ̂L, see Remark 5.8.7.)

In order to fix the first type of basepoint subgroup ambiguity, we only need to
consider the transformation defined below.
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Definition 5.8.4. We call basegroup closure (for a given action A•) the transformation
consisting in replacing the subgroup basepoint in an enriched automaton by its
conjugate closure.

(A0) Γ̂L Γ̂
LΓ

Fig. 5.16: (Abelian) basegroup closure transformation

Below, we prove that this transformation can be done algorithmically when the
enriched automata is finite.

Lemma 5.8.5. If the automata Γ̂L is finite, then, a basis for the conjugate closure LΓ is
computable.

Proof. Firstly, recall that we can always use standard linear algebra (over Z) to
compute a basis for a subgroup of Zm, given any finite family of generators.

Now, in order to compute a basis for LΓ , start computing a basis B for L, and a
basis W for HπF = 〈Γ〉. Then, repeat the following procedure: Check whether
L = 〈B〉 is invariant under the action by conjugation of W; i.e., check whether

(B)AW±1 ⊆ 〈B〉 . (5.48)

(Note that, since both B and W are finite, this is again linear algebra.) Now, if
inclusion (5.48) holds, B is already a basis for LΓ , and we are done. Otherwise,
compute a new basis B ′ for the subgroup generated by B∪AW±1 , update the basis
B to B ′, and restart the process checking (5.48) again for the new B. Repeat until
(5.48) is hold, then return the corresponding basis, and stop.

Algorithm 5.8.1: Algorithm to compute the starting base subgroup LΓ

1 start

2 compute a basis B for L;
3 compute a basis W for 〈Γ〉;
4 while (B)AW±1  〈B〉 do

5 compute a basis B ′ for 〈B∪ (B)AW±1 〉;
6 update B to B ′;
7 return B;
8 stop

We claim that the previous algorithm returns a basis for the closed subgroup LΓ

(on input a finite enriched automaton for Γ̂L).

• It is clear that only elements in LΓ can appear in the output.

• It is also clear that every element in the basegroup LΓ will belong to the sub-
group 〈B∪ (B)AW±1 〉, computed in line 5, at some stage of the procedure.
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• So, it only remains to prove that Algorithm 5.8.1 finishes on every (finite)
input Γ̂L. This is clear because every enlargement of the candidate subgroup
(performed in line 5) supposes either:

E1 increasing the rank of the base subgroup, or

E2 decreasing the index of the base subgroup (if the rank keeps constant).

But, in a free-abelian group Zm the rank of a subgroup is bounded above
by the ambient rank m; and the index of a subgroup is bounded below by 1.
So, none of the steps E1 or E2 (and so line 5 in Algorithm 5.8.1) can be
performed infinitely many times, and thus the algorithm must end in finite
time.

This concludes the proof.

It is clear that the basepoint group of a full EA Γ̂L is the largest possible base-
point group among all the possible basepoint groups for Γ̂ recognizing the same
subgroup.

Remark 5.8.6. A folded EA is closed iff it is full. (there are no possible contributions
from parallel X-arcs).

Remark 5.8.7 (Basepoint subgroup looseness of type II). The second kind of base-
point subgroup looseness is created by parallel enriched x-arcs with the same free
label. Indeed, consider the following situation:

L

xa b

xc d

u t∗

γ

Fig. 5.17: Basepoint subgroup looseness of type II

Note that looping around the parallel x-arc loop in Figure 5.17 (starting at the left
vertex), we can read the family of words[(

t−a x tb−d x−1tc
)±1

]∗
,

which, naming e := c − a + (b − d)A−1
x , corresponds (in GA) to the abelian sub-

group 〈 te 〉; which, in turn, once moved to the basepoint (through γ), provides the
abelian contribution

〈t eA−1
u 〉 6 Zm ,

Now, if eA−1
u /∈ L, it is clear that Γ̂L and Γ̂L+〈eA−1

u 〉 are enriched automata with
distinct subgroup basepoint recognizing the same subgroup.

We will fix this kind of looseness at the same time that we fix nondeterminism in
the skeleton automata Γ, see transformations of type (FII).
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In order to specify and fix the looseness that can appear in the arc-labelling of an
enriched automaton Γ̂L, we introduce the (abelian) transformations below, which
clearly do not affect the recognized subgroup.

Definition 5.8.8. Let us consider the following elementary abelian transformations
on enriched automata:

(AI) Basepoint transformations: consisting in replacing any abelian label a in the
immediate abelian neighborhood of the basepoint , by the label a + l, for
any l ∈ L (the basepoint subgroup in Γ̂L).

xi1

a1

xi2

a2

xi3

a3

xi4

a4
xi1

a1+l

xi2

a2

xi3

a3

xi4

a4

Fig. 5.18: Basepoint transformation

(AII) Arc transformations: consisting in respectively adding to the initial and final
(abelian) labels of an edge (with free label, say xi), any element c ∈ Zm, and
its corresponding image cAi.

xi
a b

xi

a+c b+cAi

Fig. 5.19: Arc transformation

(AIII) Non-basepoint transformations: consisting in adding any element c ∈ Zm to
every abelian label in the abelian neighborhood of a non-base vertex.

xi1

a1

xi2

a2

xi3

a3

xi1

a1+c
xi2

a2+c

xi3

a3+c

Fig. 5.20: Non-basepoint transformation

The following result is straightforward to check, and we leave the details to the
reader.

Lemma 5.8.9. Elementary abelian transformations do not affect the recognized subgroup
in GA. That is, if Γ̂L is an enriched Z-automaton, and Γ̂Ly Γ̂ ′L′ is any of the elementary
abelian transformations introduced in Definition 5.8.8; then, the subgroups recognized by
Γ̂L and Γ̂ ′L′ in GA do coincide; i.e., 〈Γ̂L〉 = 〈Γ̂ ′L′ 〉 6 GA.
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Remark 5.8.10. We can combine transformations of types AII and AIII to move and
spread abelian labels throughout the automata without changing the recognized
subgroup. A particularly important application od this fact is used in Lemma 5.8.17

Remark 5.8.11. An AIII-like transformation performed on the basepoint would
correspond to a (in general nontrivial) conjugation by an element of the form tc, of
the recognized subgroup.

Example 5.8.12. In the particular case of direct products Fn ×Zm (i.e., when
Ai = id, for all i), the previous transformations take a particularly simple form.
Namely, abelian arcs work modulo L, and we can freely add any abelian element,
either to both extremes of any arc, or to the immediate abelian neighborhood of
any vertex (Note that in this case abelian and free labels commute, so there is
no point in excluding basevertex neighborhood transformations in AIII since the
corresponding conjugations are trivial).

Lemma 5.8.13. The abelian labels in any bridge-arc in an enriched automaton do not
affect the subgroup it recognizes in Fn ×Zm. In particular, we can remove all abelian
labels from any bridge-arc in this situation.

Proof 1. Since any - walk would cross any bridge-arc the same number of times
in both directions, the neat abelian contribution of any bridge-arc will be zero
regardless the actual value of the abelian labels in it.

Proof 2. Alternatively, use AII to agglutinate all the abelian contribution of the
bridge-arc, say c ∈ Zm in the arc extreme closer to the basepoint; then (using
transformations of type AIII) subtract c of every vertex neighborhood in the
component containing the basepoint; and finally (using transformations of type
AII) add c to both the head and tail of every arc, again in the basepoint connected
component.

Of course, if an enriched automaton ∆̂M is the result of applying a finite sequence
of elementary abelian transformations to a given enriched automaton Γ̂L then they
recognize the same subgroup of GA.

Clearly, the converse is not true in general. Think, for example, in what happens
with the corresponding skeletons — which are enriched automata as well — in the
free group case. So, we need to adapt the classic Stallings foldings to free-abelian
by free groups GA.

The transformations introduced below are aimed to this end: open foldings work
essentially in the same way as its free counterparts. However, the extension of
closed foldings to GA is not that neat. Recall that, in our new ambient, parallel
arcs with the same free label can provide new abelian contributions, which we
also need to take into account (see Remark 5.8.7).
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Definition 5.8.14. Let us consider the following elementary folding transforma-
tions on enriched automata:

(FI) Open (enriched) foldings: consisting in identifying a pair of nonparallel en-
riched arcs with exactly the same (free and abelian) labelling is called an
enriched open folding.

xia

b

xia

b

xi

a b

Fig. 5.21: Open enriched folding

(FII) Closed (enriched) foldings: consisting in identifying a pair of parallel enriched
arcs with the same free label1 at the price of conveniently updating the
basepoint (according with Remark 5.8.7) are called closed enriched foldings.

(1Note however that, without loss of generality, we can restrict these trans-
formations only to parallel x-arcs having null initial labels, previously using
abelian arc transformations to cancel the initial labels out.)

L

xi b

xi d

t∗ v

L+ 〈(b−d)Av〉

xi
b

t∗ v

Fig. 5.22: Closed enriched folding

Remark 5.8.15. Note that this last kind of transformation depends on some choices.
Namely,

(a) the chosen abelian label in the head of the transformed automaton could
have been, for example, d instead of b, with the corresponding change in
the resulting basegroup, and

(b) the chosen walk back to basepoint could have been some other, with the
corresponding change in the action, and hence in the basegroup.

However this choices are only relevant locally: since the final basepoint of te
folding process will be closed (see Theorem 5.9.12), no matter which choices we
make in (a) and (b), the final basepoint in the folded automata will be the same.

Again, the following lemma is natural and straightforward to check.
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Lemma 5.8.16. Enriched foldings do not affect the recognized subgroup in GA. That is,
if Γ̂L is an enriched Z-automaton, and Γ̂Ly Γ̂ ′L′ is any of the transformations introduced
in Definition 5.8.14; then, the subgroups recognized by Γ̂L and Γ̂ ′L′ in GA do coincide;
i.e., 〈Γ̂L〉 = 〈Γ̂ ′L′ 〉 6 GA.

So, foldings in enriched automata can be performed essentially in the same way
as standard foldings in the free group case, but only after moving adequately the
abelian labels, and taking into account the abelian contributions that can arise
from closed foldings.

Since abelian transformations do not alter the recognized subgroup, it makes
sense to look for possible foldings modulo abelian transformations. In this vein,
we abuse language and say that two arcs in an enriched automaton Γ̂L admit an
open (resp., closed) folding if they admit it after a suitable abelian transformation
on Γ̂L.

The following key lemma shows that the aforementioned parallelism between
enriched and standard foldings goes indeed much further.

Lemma 5.8.17. A pair of arcs ê1, ê2 in an enriched automaton Γ̂L admit an open (resp.
closed) folding if and only if the corresponding arcs e1, e2 admit an open (resp. closed)
folding in the X-skeleton Γ of Γ̂L.

Proof. The “only if” implication is obvious. For the converse, we distinguish
between the two kinds of enriched folding: the implication is clear for closed
foldings, since they apply to arbitrary abelian labels (see Figure 5.22). On the other
hand, given a general pair of arcs in Γ̂L admitting an open folding in the skeleton Γ,
consider the following sequence of abelian transformations:

xia

b

xic

d

(1)
xia

b

xia

e

(2)
xia

b

xia

b
∗
∗

Fig. 5.23: Converting skeleton open folding into enriched open folding

where,

(1) is the abelian transformation (of type AII) consisting in adding a − c and
(a − c)Ai to the abelian labels in the tail and head respectively of the bottom
arc in the first automata (note that then, e = d + (a − c)Ai).
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(2) is the abelian transformation (of type AIII) consisting in adding b − e to the
immediate abelian neighborhood of the final vertex in the bottom arc of the
second automata in Figure 5.23.

(Recall that the asterisks in the last automata indicate possibly changed
abelian labels.)

It is evident that, the transformed arcs in the final automaton (obtained using only
abelian transformations) admit an open enriched folding.

Note that, since necessarily (al least) one of the folded vertices is not the basepoint,
we can always perform a legal transformation of type AIII in (2) using a folded arc
without the basepoint. This concludes the proof.

5.9 Inverse (enriched) automata
The previous lemma has several important implications for us. One immediate
consequence is that the property of an enriched automaton being folded is indeed
a property of its skeleton.

Corollary 5.9.1. Let Γ̂L be an enriched automaton, and Γ its skeleton. Then:

Γ̂L is folded ⇐⇒ Γ is folded .

In the same vein, Lemma 5.8.17 allows us to adapt some definitions and procedures
from the free case. For example, now it is clear that the notions of determinism
and trimness (for enriched automata) are indeed properties of the skeleton.

Definition 5.9.2. An enriched automata Γ̂L is said to be deterministic (resp., trim)
if its skeleton Γ is so. We define the trim, and total trim transformations in a
completely analogous way as in the free case.

Moreover, restricting our subgroup representatives only to deterministic and trim
enriched automata, not only fixes the third kind of looseness in Remark 5.7.14, but
also fixes subgroup looseness of type II, since no parallel arcs with the same free
label can appear in a folded automata (see Remark 5.8.7). Therefore, a closed base
subgroup of a folded enriched automata recognizing H 6 GA must necessarily be
the full base subgroup (H∩Zm) of H.

Lemma 5.9.3. Let Γ̂L be a folded enriched automaton recognizing H 6 GA. Then, LΓ =
H∩Zm. That is, a closed folded automata is necessarily full.

Proof. The inclusion LΓ 6 H∩Zm is trivial. For the converse inclusion, suppose
that ta ∈ H ∩Zm. This means that there exists a -closed enriched walk γ̂ in Γ̂L
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that recognizes the element 1FX ta ∈ GA. Therefore γ must recognize the trivial
element 1FX in the skeleton Γ; but, since Γ is reduced by hypothesis, γ only can
read the trivial element if it is a sequence of cancellations, i.e.,

γ = γ−1
1 γ1 γ

−1
2 γ2 · · ·γ−1

k γk ,

where, for each i = 1, . . . ,k, γi is an elementary -walk in the skeleton Γ. Hence,
according Definition 5.7.9, the enriched walk γ̂ recognizes the set

`(γ̂) = tL `(γ̂−1
1 ) tL `(γ̂1) tL `(γ̂2)

−1 tL `(γ̂2) · · · tL `(γ̂k)−1 tL `(γ̂k) tL

= tL `(γ1)
−1 tL `(γ1) tL `(γ2)

−1 tL `(γ2) · · · tL `(γk)−1 tL `(γk) tL

= tL t(L)A`(γ1) tL t(L)A`(γ2) · · · tL t(L)A`(γk) tL

= tL+(L)A`(γ1)
+L+(L)A`(γ2)

+···+L+(L)A`(γk)+L 6 LΓ .

Therefore ta ∈ γ̂ must belong to the closure LΓ , and the proof is completed.

Since nontrimness can be fixed in exactly the same way as in the free group case,
we have reached a quite compact family of representatives of a given subgroup H 6
GA; namely those being deterministic, closed, and trim.

Definition 5.9.4. An enriched automaton is said to be inverse if it is deterministic,
basepoint closed, and trim.

Inverse (enriched) automata, although still not unique, are quite neat descriptions
of subgroups of free-abelian by free groups. Namely, the factor decomposition of a
given subgroup is explicitly encoded in them.

Proposition 5.9.5. Let Γ̂L be an inverse automaton recognizing the subgroup H 6 GA

with decomposition

H = HπFσn (H∩Zm) ' HπF n (H∩Zm) ,

where σ is a section as in (5.38). Then,

(i) The base subgroup L is full; i.e., L = H∩Zm.

(ii) The automata Γ̂ recognizes precisely the subgroup HπF/(H∩Zm) ' HπFσ.

(iii) The skeleton Γ is the Stallings automaton of the projection HπF ' HπFσ.

Below, we see that for every involutive enriched automaton, there exist inverse
automata equivalent to it. Note that a constructive proof of this fact (see Theo-
rem 5.9.12) can not be given in the general setting.
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Definition 5.9.6. Let Γ̂L be an involutive Zm-enriched X-automaton. We say that
two vertices p, q in Γ̂L are (graphically) equivalent, denoted by p ≡ q, if they are
equivalent in the skeleton Γ (i.e., if there exist a walk in the skeleton Γ from one
vertex to the other reading the trivial element in FX).

Lemma 5.9.7. Equivalence of vertices is an equivalence relation compatible with the
enriched automaton structure; i.e., the map

VΓ VΓ/≡
p 7→ [p]

induces a well-defined epimorphism of enriched automata Γ̂L Γ̂L/≡, where the quotient
automaton Γ̂L/≡ is defined as follows:

1. its vertex set is VΓ/≡ (the quotient of V modulo graphic equivalence);

2. its arcs are those in Γ̂L under the identification (i), with parallel arcs (both the
original ones in Γ̂L, and those created by the identification of vertices) identified
using closed (enriched) foldings;

3. its basepoint is the closure of the result of adding to L the abelian contributions
coming from closed foldings. (Note that some of these closed foldings will lay in the
degenerated paths in Γ̂L/≡ corresponding to paths between identified vertices in Γ̂L
reading purely abelian elements.)

(Note that, as it always happens in enriched automata, the quotient automaton Γ̂L/≡
should be thought modulo the base subgroup.)

Proposition 5.9.8. Let Γ̂L be a Zm-enriched X-automaton. Then, the core of (any
representative of) the quotient automaton Γ̂L/≡ is an inverse Zm-enriched X-automaton
recognizing the same subgroup as Γ̂L.

These (abelianly equivalent) automata are called Stallings reductions of Γ̂L, and
are denoted by Ŝt(Γ̂L) when thought modulo abelian transformations, or some
particular abelian labelling is distinguished.

Proof. We want to prove that 〈Γ̂L/ ≡〉 = 〈Γ̂L〉. But this is clear by construction
of the quotient automaton in Lemma 5.9.7: the quotient image of any -walk γ̂
in Γ̂L is a -walk in Γ̂L/≡ reading exactly the same element in GA; and, given a

-closed walk [γ̂] in the quotient, either it corresponds exactly to a -path in Γ̂L, or
the difference amounts to an abelian contribution by either a closed folding, or a
vertex identification (both included in the basepoint of the quotient).

Moreover, since Stallings reductions are inverse, we can associate them biunivocally
(modulo graphic equivalence) with subgroups of GA.
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Corollary 5.9.9. Two enriched automata Γ̂L, ∆̂M recognize the same subgroup of GA

(i.e., they are equivalent) if and only if their quotient automata coincide (i.e., they are
graphically equivalent).

Definition 5.9.10. Let H be a subgroup of GA. Then, a Stallings automaton for H
with respect to X, is any Stallings reduction of any Zm-enriched X-automata Γ̂L
recognizing H. We will denote them by

Ŝt(H,X) := core(Ŝt(Γ̂L)) , (5.49)

where, as before, (5.49) is thought modulo abelian transformations, or assuming
some distinguished abelian labelling.

Remark 5.9.11. We have tightened the description in (5.46) of subgroups as enriched
automata to the following (now bijective) map:

{ inverse Zm-enriched X-automata } / ≡ → { subgroups of GA }

Γ̂L 7→ 〈Γ̂L〉GA

Ŝt(H,X) ←[ H .

(5.50)

Note that the bijection (5.50) is in general not algorithmic, since we are not as-
suming the subgroups, or even the ambient group GA to be finitely generated.
However, as it happened for free groups, we will see that graphical equivalence
admits an effective description in terms of (enriched) foldings in the finitely gen-
erated case, which is an straightforward adaptation of the procedure given in
Proposition 5.4.41.

Theorem 5.9.12. Any finite enriched automaton Γ̂L recognizing a subgroup H 6 GA can
be converted into a reduced automaton — recognizing the same subgroup H — after a
finite number of (folding, abelian, or trim) transformations.

Proof. By Proposition 5.4.41, we know that there exists a finite sequence of trans-
formations

Γ
ϕ(1)

Γ
(1) ϕ(2)

· · · ϕ(p)

Γ
(p) τ

Γ
(p+1)

= St (Γ) (5.51)

(where the ϕ(i)s denote folding transformations, and τ denotes a total trim) con-
verting the skeleton of Γ̂L into an inverse automaton.

Now it is just a matter of translating these sequence of standard transforma-
tions into a finite sequence of enriched (folding, abelian, or trim) transformations
from Γ̂L to a reduced automaton. But we know from Lemma 5.8.17 that we can
(using abelian transformations in the case of open foldings, and non basepoint
transformations in the case of closed foldings) obtain respective enriched foldings
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ϕ̂(i), for each ϕ(p) in the folding sequence (5.52). This immediately provides the de-
sired finite sequence of (abelian, basepoint, and enriched folding) transformations
converting Γ̂L into an equivalent deterministic enriched automata, say Γ

(p)

Lp
.

Note that Γ
(p)

Lp
is still not necessarily basegroup closed nor trim. We finish our

sequence of transformations fixing these two anomalies with the corresponding
trim (τ), and basegroup closure (β) transformations, to finally obtain a reduced
automaton for Γ̂L after a finite number of effective transformations.

Γ̂L
ϕ̂(1)

Γ
(1)

L1

ϕ̂(2)

· · · ϕ̂(p)

Γ
(p)

Lp

τ
Γ

(p+1)

Lp

β
Γ

(p+1)

Lp+1
= Ŝt(Γ̂L) (5.52)

Fig. 5.24: Computation of a reduced (enriched) automata

This concludes the proof.

Corollary 5.9.13. A reduced automaton recognizing a finitely generated subgroup H 6
GA is computable given any finite generating set for H.

For some practical issues, having a reduced automaton of a given finitely generated
subgroup H 6 GA is enough to perform the desired computations and obtain
results (e.g. to compute the enriched pullback).

Example 5.9.14. Let a, b, c ∈ Zm, H 6 Zm, and consider the (parameterized)
subgroup

H =
〈

tL, x3 ta,yx tb,y3xy−2 tc
〉
6 F{x,y} ×Zm .

Then, the flower automaton of H is

L

b
a c

Now, after conveniently moving the label c (using AII and AIII transformations),
we can successively fold (using FI transformations): first all three blue arcs incident
to de basepoint, and then the two blue arcs departing from the end of the last
folded arc; to get

L

ba
c

Finally, we can rearrange a as a + (b − a) over the red triangle in order match the
labelling of the two red arcs incident to the basepoint
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L

bba−b

c

and finally, identify the two red arcs incident to the basepoint, to obtain the
following reduced automaton for H:

L

b

a−b c

Fig. 5.25: Reduced automaton for H = 〈tL, x3 ta,yx tb,y3xy−2 tc〉

Note, however, that this is not the only reduced automaton recognizing H. In order
to have a neat bijection between subgroups and “some kind of automata” we still
have to fix abelian equivalence (among reduced automata recognizing the same
subgroup).

One possible shortcut would be simply looking at reduced automata modulo
abelian transformations, but this coarse solution is not necessary because a much
more tangible object can be considered, which, besides, provides some additional
insight into the whole picture.

The drawback is that, in order to choose a unique reduced representative of a
subgroup H, we will need to make some arbitrary choice. Namely, we need to
arbitrarily choose a spanning tree in the Stallings automaton of HπF.

(Recall that the considerations in Theorem 5.3.10 must be taken into account
whenever we consider existence and computability of spanning trees in graphs of
arbitrary order.)

Definition 5.9.15. A reduced automaton Γ̂L is said to be normalized with respect to
an spanning tree T (T-normalized, for short) if:

1. the abelian labelling of every arc in T is zero.

2. the initial (abelian) label of every arc outside T is zero.

Lemma 5.9.16. Let H be a subgroup of GA = FXnZm. Then, for every spanning tree T
of the Stallings automaton of HπF 6 FX, there exists a normalized reduced automaton for
H relative to T. Moreover, if the subgroup is given by a finite family of generators, then a
normalized reduced automaton for H is computable.

It is called an (enriched) Stallings automaton of H with respect to T, and denoted
by StT(H).
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Proof. The existential claim is a consequence of the previous discussion.

For the algorithmic claim, suppose that H is a subgroup given by a finite family of
generators, and therefore a reduced automaton Γ̂L recognizing H is computable.
Let T be an spanning tree of Γ̂L; we claim that we can normalize Γ̂L just pushing
out the abelian labels, starting from the basepoint and through the spanning tree.

Indeed, suppose that we have removed all abelian labels from every arc at T-
distance at most k from the basepoint (i.e., from a vertex pk at T-distance k to a
vertex pk+1 at T-distance k+ 1 to the basepoint). Then, it is enough to, for every
arc at T-distance k+ 1 from the basepoint,

pk+1 pk+2.ê ≡ x
a b

perform an edge transformation removing the label a from the tail of e, and then
perform a non-basepoint transformation in pk+2 to remove the obtained label
(concretely b− aAx) from the head of e. Note that this sequence of transformations
can have only two possible outcomes:

(a) it modifies the abelian labelling of an arc at distance k+ 1 from the basepoint,
or

(b) it modifies the abelian labelling of a cyclotomic arc (outside T).

But since the automata Γ̂L is finite, after a finite number of steps there will be no
arcs at distance k+ 1, and every non-zero abelian label will lie in a cyclotomic arc.

Finally, we can apply arc transformations to concentrate the abelian weight in
the heads of cyclotomic arcs to get the T-normalization of Γ̂L, which is therefore
computable.

Once assumed the existence of reduced automata (and so AC), the existence and
unicity of Stallings automata (modulo the basegroup) is immediate. Moreover, the
nonzero abelian label in any arc outside the chosen tree is easily computable from
the corresponding - walk in any reduced automaton for H.

However, in order to properly define a bijection between subgroups and Stallings
automata, we need an a priori well-defined uniform way of choosing the spanning
tree for each reduced automaton Γ̂L. This can be done using a well-order fixed a
priori in the set X of free generators in Γ̂L. (Note that a well-order in X automatically
induces a well-order in the edge-neighborhood of any vertex in a deterministic X-
automaton.)

We remark that the existence of well-orders for general sets is again equivalent to
the axiom of choice (see [Jec73]),which we are assuming for the general setting.
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Lemma 5.9.17. Let Γ be an arbitrary inverse X-automaton, let ≺ be a well-order in X,
and consider the family of trees Tk recursively defined by:

• T1 =

• Tk+1 is obtained by attaching to Tk every vertex p at distance 1 from it, using the
arc from a vertex in Tk to p with ≺-minimum possible X-label. Formally:{

VTk+1 = VTk ∪ { p ∈ V : d(p,Tk) = 1 } ,

ETk+1 = ETk ∪ {minE(p← VTk) : d(p,Tk) = 1 } .

Then, the union ⋃
k>1

Tk

is a spanning tree of Γ. We call it the radial spanning tree of Γ induced by ≺.

If the generating set is finite, say X = {x1, . . . , xp}, then the radial spanning tree of
an Stallings automaton is always constructible, and will be considered by default.
Also, if not state otherwise, we will assume the default ordering x1 ≺ x−1

1 ≺ · · · ≺
xp ≺ x

−1
p .

Example 5.9.18. The Stallings automaton of the subgroup in Figure 5.25 (i.e., relative
to the radial spanning tree induced by the ordering a ≺ a−1 ≺ b ≺ b−1) is

L
b

a c

Fig. 5.26: Stallings automaton of H = 〈tL,a3 ta,batb,b3ab−2 tc〉

It is clear that the radial spanning tree only is algorithmically constructible when
the label set X is finite.

Remark 5.9.19. Note, that if X is finite both the layer and the diagonal spanning
trees are computable, but they are not necessarily the same. Thus, one of the
construction schemes must be fixed a priori.

Therefore, a uniform choice of spanning trees for reduced automata can be done,
and we can finally state our characterization theorem for subgroups of free-abelian
by free groups.

Theorem 5.9.20. Let GA = FX nA• Zm be a free-abelian by free group as in (5.32), and
assume a particular well-order ≺ in X. Then, the map

{Subgroups of GA } → {Stallings≺ (X, Zm)-automata }
H 7→ St≺(H)

(5.53)
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(sending every subgroup H 6 GA to its Stallings automaton with respect to the spanning
tree generated by ≺) is a bijection with inverse Γ̂L 7→ 〈Γ̂L〉GA .

Moreover, if St≺(H) = Γ̂L , then the set

B≺ =
{
u≺[ ê ] : ê ∈ E+

(
Γ̂ rT≺

)}
, (5.54)

is a free basis for the subgroup HπF recognized by Γ̂.

Corollary 5.9.21. The restriction of the bijection (5.53) to finitely generated subgroups is
computable. In particular, if a subgroup H 6 GA is given by a finite family of generators,
then a Stallings automaton recognizing H is computable.

5.10 Algorithmic problems for free-abelian by free
groups

We will start reviewing the status of the classic Dehn problems for the family of
free-abelian by free groups (of the form Fn nZm). These results (only the word
problem being solvable) makes it apparent the computational complicacy of this
family.

Theorem 5.10.1.

(i) The word problem is solvable for free-abelian by free groups.

(ii) The conjugacy problem is unsolvable for free-abelian by free groups [BMV10].

(iii) The isomorphism problem is unsolvable for free-abelian by free groups [Zim85;
Lev08].

The solvability of the word problem is, as often happens, a direct consequence
of the computability of normal forms for the elements of groups in the family
(see Remark 5.6.5).

The other two results are much more involved, and closely related. They are
both based in the remarkable Theorem 3.1 in [BMV10] which links the conjugacy
problem in a group extension with the orbit-decidability of the action subgroup.
Since F2 embeds in GL2(Z), and so F2 × F2 (which is well known to have un-
solvable MP) embeds in GL4(Z), the authors deduce that GL4(Z) contains finitely
generated orbit undecidable subgroups. Then, the aforementioned Theorem 3.1 im-
plies the existence of Z4-by-[f.g. free] groups with unsolvable conjugacy problem
(see [BMV10, Corollary 7.6]).

Finally, in the unpublished note [Lev08], Levitt elaborates on the previous ideas
to show that the isomorphism problem for Z4-by-[f.g. free] groups is unsolvable;
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and recalls that the previous paper [Zim85] by Zimmermann contains a similar
result for Z4-by-surface groups; whose argument also applies to Z4-by-[f.g. free]
groups.

5.10.1 Membership problem

As in the free case, the first application of (now enriched) automata describing
subgroups is that they naturally solve the MP within the class of free-abelian by
free groups: namely a word w belongs to the subgroup generated by a finite set
of words w1, . . . ,wp in the generators if and only if it is readable in the Stallings
automaton of the subgroup 〈w1, . . . ,wp〉.

Theorem 5.10.2. The subgroup membership problem is solvable for free-abelian by free
groups.

Proof. It is clear that we can suppose any input word in normal form. So, given
finitely many elements w ta,w1 ta1 , . . . ,wk tak ∈ GA, in order to decide whether w ta

belongs to the subgroup H = 〈w1 ta1 , . . . ,wk tak〉, apply the following procedure:

1. Build the Stallings automata Γ̂L of H.

2. Try to read the free part w of the word in the skeleton Γ, keeping track of
the global abelian contribution cw ∈ Zm obtained in doing so. If this is not
possible, return no; otherwise continue.

3. If the final vertex (after reading w in Γ) is not the basepoint, then return no;
otherwise continue.

4. Check whether ta ∈ cw + L (this can be easily done using linear algebra
over Z). In affirmative case return yes, otherwise return no.

5.10.2 Intersection problem

We have already shown that free-abelian by free groups are not Howson. Recall
that even the simple case Zm ×F2 is not Howson (see Figure 5.49).

Therefore, it makes sense to consider the following problems for a finitely presented
group G in this family.

Subgroup intersection (decision) problem, SIPd(G). Given a finite set of words
u1, . . . , un, v1, . . . , vm in the generators of G, decide whether the subgroup intersection
〈u1, . . . , un〉G ∩ 〈v1, . . . , vm〉G is finitely generated or not.
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Subgroup intersection (search) problem, SIPs(G). Given a finite set of words u1, . . . , un,
v1, . . . , vm in the generators of G, compute a generating set for the subgroup intersection
〈u1, . . . , un〉G ∩ 〈v1, . . . , vm〉G.

Subgroup intersection (full) problem, SIP(G). Given a finite set of words u1, . . . , un,
v1, . . . , vm in the generators ofG, decide whether the subgroup intersection 〈u1, . . . , un〉G∩
〈v1, . . . , vm〉G is finitely generated or not; and in affirmative case, compute a generating
set for this intersection.

In order to tackle these problems, we pretend to adapt the ideas in Section 5.5.1 to
our enriched setting. Namely, given subgroups H,K 6 GA, we want to determine
a reduced (enriched) automaton associated to its intersection, and then derive
from it the desired properties about the intersection. The construction below is
introduced to this end.

Definition 5.10.3. The product of two enriched automata Γ̂L and ∆̂M, denoted by
Γ̂L× ∆̂M, consists of the product Γ×∆ of their respective skeletons, doubly-enriched
with the abelian labelling detailed below:

1. To every arc (e, e ′) ≡ (p, p ′) xi (q, q ′) in the product Γ ×∆ we add:

1.1. the pair (a, a ′) as initial label of (e, e ′), where a and a ′ are the initial
labels of the arcs e and e ′ (in Γ̂L and ∆̂M), respectively; and

1.2. the pair (b, b ′) as final label of (e, e ′), where b and b ′ are the final labels
of e and e ′ (in Γ̂L and ∆̂M), respectively.

2. We add the pair (L,L′) as a label for the basepoint of the enriched product.

xi
a b

xi

a ′

b ′

xi

(a, a ′)

(b, b ′)

Fig. 5.27: Construction of an arc in the enriched product

Finiteness, connectivity, skeleton, core, etc. are defined in the natural way for
doubly-enriched automata. In particular, the skeleton of the product is (by defini-
tion) the product of the skeletons of the factors.

Notation 5.10.4. We will denote doubly enriched automata by ̂̂ΥL,L′ where Υ is its
skeleton, and the double tilde stands for the double abelian labelling.
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Generic double hat notation (for objects with double abelian labelling) is defined
in the same way as generic single hat notation (see Notation 5.7.5). That is, if ̂̂o
is a doubly-enriched object, we will denote by ô (resp., by ô′ ) the single-enriched
object obtained by considering only the first (resp., second) abelian component
in ̂̂o. For example, given an arbitrary doubly-enriched automaton ̂̂ΥL,L′ we will
denote by Υ̂L (resp., Υ̂ ′L′) the enriched automata defined by its first (resp., second)
components.

The following key result, clear by construction, is based on the same principles as
the homologous Proposition 5.5.27 for free groups.

Proposition 5.10.5. Let H,H ′ be subgroups of GA, and let Γ̂L, Γ̂ ′L′ be Stallings automata
recognizing H and H ′ respectively. Then, an element w ta ∈ GA belongs to the inter-
section H ∩H ′ if and only if it is componentwise -readable in the core of the enriched
product Γ̂L × Γ̂ ′L′ . Formally,

H∩H ′ =
⋃{

ŵGA ∩ ŵ
′

GA
: w ∈

〈
St
(
HπF ∩H ′πF

) 〉}
, (5.55)

where ŵGA and ŵ
′

GA
are the completions of w in H and H ′ respectively.

Corollary 5.10.6. Note that then,

(H∩H ′)πF =
{
w ∈

〈
St
(
HπF ∩H ′πF

) 〉
: ŵGA ∩ ŵ

′

GA
6= ∅
}

=
{
w ∈

〈
St
(
HπF ∩H ′πF

) 〉
: CL(w)∩ CL ′(w) 6= ∅

}

Hence, the core of the enriched product Ŝt(H)× Ŝt(H ′) encodes the intersection
H∩H ′, and in particular whether it is finitely generated or not.

Definition 5.10.7. Let H,H ′ be subgroups of GA, and let Γ̂L, Γ̂ ′L′ be Stallings au-
tomata recognizing H and H ′ respectively. Then, the core of Ŝt(H)× Ŝt(H ′) is
called an intersection scheme for H∩H ′, and denoted Ŝt(H) ∧ Ŝt(H ′); i.e.,

Ŝt(H) ∧ Ŝt(H ′) := core
(
Ŝt(H)× Ŝt(H ′)

)
.

We say that an intersection scheme is (T)-normalized, if we have distinguished a
spanning tree T of the scheme, and have imposed the conditions in Definition 5.9.15
to both abelian components in the product automaton. The arcs outside a spanning
tree (say T) are called (T-)cyclomatic.
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Since for any enriched automata, the skeleton of the core is the core of the skeleton,
we have:

sk core(Ŝt(H)× Ŝt(H ′)) = core sk(Ŝt(H)× Ŝt(H ′))

= core(sk Ŝt(H)× sk Ŝt(H ′))

= core(St (HπF)× (St
(
H ′πF

)
)

= St
(
HπF ∩H ′πF

)
.

So, the free part of any element in the intersection H∩H ′ is recognized by the stan-
dard Stallings automaton St (HπF ∩H ′πF) (which is the skeleton of any intersection
scheme for H∩H ′), and we recover the obvious inclusion (H∩H ′)πF 6 HπF ∩H ′πF.
However, according Proposition 5.10.5, in order to belong to (H ∩H ′)πF, an ele-
ment in HπF ∩H ′πF needs to be componentwise readable in the enriched pullback,
and this is something that not always happen (see Example 5.5.30 for a concrete
case).

Lemma 5.10.8. Let H,H ′ be subgroups of GA = FX nZm. Then,

(H∩H ′)πF 6 HπF ∩H ′πF , (5.56)

and this inclusion can be strict.

In some cases (see Section 5.10.3) the behaviour of this inclusion turns out to
contain important information about the intersection problem (recall that in our
context, it is enough to make the decision about the finite generability of the
projection (H∩H ′)πF, see Corollary 5.6.12).

Below we provide an algebraic description of the inclusion (5.63) in terms of
intersection schemes. Before we fix some convenient notation.

Remark 5.10.9. Suppose that ̂̂ΥL,L′ is an intersection scheme of rank r normalized
with respect to certain spanning tree T. Then every cyclomatic arc in ̂̂ΥL,L′ has the
form: ̂̂eι ≡ (bι, b ′ι)

xjι

in ̂̂ΥL,L′ , the corresponding T-petal has the form:

(L,L′)

uι

vι

xjι
(bι, b ′ι)

Fig. 5.28: A doubly-enriched petal
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Then, using the multiplication rules in GA, we componentwise read the petal as:

uιxjιt
bιvι tL =GA uιxjιvι tbιAvι+L = wι tbιAvι+L =: ŵι ,

uιxjιt
b ′ιvι tL

′
=GA uιxjιvι tb ′ιAvι+L

′
= wι tb ′ιAvι+L

′
=: ŵ

′

ι ,
(5.57)

where wι := uιxjιvι is the element of FX read by the skeleton of the petal in (5.28);
and therefore {wι}ι is a free basis (of size r) of HπF ∩H ′πF. Using these notations,
the target subgroup (H∩H ′)πF admits a quite compact description.

Proposition 5.10.10. Let H,H ′ be subgroups of GA. Then, the projection of the inter-
section H ∩H ′ to the free part is the preimage of the subgroup L+ L′ 6 Zm under the
map (5.58); i.e.,

(H∩H ′)πF = (L+ L′)η ,

where
η : HπF ∩H ′πF → Zm

w(−→wι) 7→
∑|w|
k=1(bιk− b ′ιk)Avιk

∏|w|+1
l=k+1 Awιl .

(5.58)

Proof. From (5.55), the subgroup (H∩H ′)πF consists precisely of those elements
w ∈ HπF ∩H ′πF that admit compatible abelian completions in H and H ′, that is
such that ŵGA ∩ ŵ

′

GA
6= ∅.

Let Υ be the Stallings automaton of HπF ∩H ′πF with respect to certain spanning
tree T. Let (wι)ι be the canonical basis of HπF ∩H ′πF relative to (Υ,T); i.e., wι =
uιxjιvι, for each arc eι ∈ E(ΥrT).

Now, since any -walk ̂̂γ in ̂̂ΥL,L′ decomposes as a product of (doubly-enriched)
T-petals, say

̂̂γ = γT [
̂̂eι1 ] γT [ ̂̂eι2 ] · · · γT [ ̂̂eιp ] = p∏

k=1

γT [
̂̂eιk ] ,

then, according to the notation in Figure 5.28, the object recognized by ̂̂γ is:

̂̂w =

p∏
k=1

uιkxιk t(bιk , b ′ιk) vιk

=

p∏
k=1

uιkxιk vιk t(bιkAvιk , b ′ιkAvιk)

=

p∏
k=1

wιk t(bιkAvιk ,b ′ιkAvιk) , (5.59)

where w = w(−→wι) = wι1wι2 · · ·wιp is any element in HπF ∩H ′πF (expressed as a
word in the basis {wι}ι).
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After breaking down the two components in (5.59), and applying the multiplication
rules in GA, we obtain the expressions:

ŵ =GA

p∏
k=1

wιk tbιkAvιk+L = w t
∑p
k=1 bιkAvιk

(∏p+1
l=k+1 Awιl

)
+L ,

ŵ
′
=GA

p∏
k=1

wιk tb ′ιkAvιk+L
′
= w t

∑p
k=1 b ′ιkAvιk

(∏p+1
l=k+1 Awιl

)
+L′ ,

whose intersection is nonempty if and only if

p∑
k=1

(bιk− b ′ιk)Avιk
∏p+1
l=k+1 Awιl ∈ L+ L

′ ; (5.60)

that is, if and only if
|w|∑
k=1

dιk Wk ∈ L+ L′ , (5.61)

where dιk = (bιk− b ′ιk)Avιk , and Wk =
∏p+1
l=k+1 Awιl .

This completes the proof.

Remark 5.10.11. The map η in (5.58) is not (in general) a homomorphism.

When the intersecting subgroups H,H ′ 6 GA are finitely generated, then we
can encode the intersection within a normalized intersecting scheme, which is
computable and finite (much in the same form as the standard pullback encodes
intersections of two finitely generated subgroups of the free group).

Corollary 5.10.12. If H,H ′ are finitely generated subgroups of GA given by respective
finite generating sets, then an intersection scheme for H∩H ′ is computable.

Proof. This is immediate since the respective Stallings automata for H and H ′ are
clearly computable (and finite) from the finite generating sets; and the product of
two finite enriched automata — and its core — are again clearly computable.

However, as we have already seen, the intersection of two finitely generated
subgroups within GA does not need to be again finitely generated. So, the
question is whether we can algorithmically extract certain information (e.g. whether
the intersection is finitely generated or not) from the intersecting scheme or not.
As we see in the next section, in the case of direct products
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5.10.3 The direct product case

It is not surprising that the previous discussion takes a particularly simple (and
much more algorithmic friendly) form if the semidirect action A• is trivial; namely
for direct products of free-abelian and free groups. Moreover, when we consider
the constructions in Section 5.10.2 for this case, a particularly appealing geometric
structure arises that nicely complements the results in Section 2.3.

Let us rephrase the results from the last section in this setting; namely, for free-
abelian times free (FATF) groups. Recall that, if H,H ′ are subgroups of FX ×Zm,
then we denote by r the rank of the product automaton, that is:

r := rk(HπF ∩H ′πF)

= rkSt
(
HπF ∩H ′πF

)
= rk

(
St (HπF)× St

(
H ′πF

))
;

and by {wι}ι the basis (of size r) ofHπF∩H ′πF corresponding to some distinguished
spanning tree in St (HπF ∩H ′πF).

Note that the rank r is not necessarily finite (even if both H and H ′ are finitely
generated). We will denote by Z⊕r :=

⊕
rZ the free-abelian group of rank r

(i.e., the abelianization of Fr).

With the above conventions, Proposition 5.10.10 takes the following form over
FATF groups.

Proposition 5.10.13. Let H,H ′ be subgroups of FX ×Zm. Then, the projection of the
intersection H∩H ′ to the free part is

(H∩H ′)πF =
{
w(−→wι) ∈ HπF ∩H ′πF : w B ∈ L+ L′

}
,

where w = w ab ∈ Z⊕r denotes the abelianization of w, and B : Z⊕r → Zm is the linear
map given by the r×m integer matrix B having as i-th row the element bi− b ′i ∈ Zm.
Equivalently:

(H∩H ′)πF = (L+ L′)B ρ = Mρ , (5.62)

where ρ denotes the abelianization HπF ∩H ′πF ' Fr Z⊕r, and M := (L+ L′)B .

Proof. Taking Aw = Im for every w ∈ Fn, the map η : HπF ∩H ′πF → Zm in (5.58)
reduces to

w(−→wι) 7→
∑|w|
k=1(bιk− b ′ιk) =

∑r
i=1 |w|i(bi− b ′i) = wB ,
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where we have grouped summands with the same index ιk, and we have used
the notation in the statement (note that r denotes the rank of HπF ∩H ′πF, i.e., the
number of distinct wi’s in the basis).

Observe that now, contrary to what happens in the general case, (5.62) describes our
target subgroup (H ∩H ′)πF as the preimage of a homomorphism. This fact is
important for us, and has as an immediate consequence the following partial
refinement of Lemma 5.10.8.

Corollary 5.10.14. Let H,H ′ be subgroups of Fn ×Zm. Then,

(H∩H ′)πF P HπF ∩H ′πF , (5.63)

and this inclusion can be strict.

Proof. The normality is an immediate consequence of (H ∩ H ′)πF being a full
preimage of a (normal) subgroup of an abelian group by a homomorphism.

The diagram below describes the current situation:

Fn > HπF ∩H ′πF ' Fr Z⊕r Zm

P P P P

(H∩H ′)πF ' Mρ M L+ L′

ρ ←→B

←[→ ←[→

(5.64)

Fig. 5.29: Projected intersection diagram for FATF groups

Now, since all the inclusions in Equation (5.64) are normal, we have the following
chain of isomorphisms of (abelian) quotient groups:

HπF ∩H ′πF/(H∩H ′)πF ' Fr/Mρ ' Z⊕r/M ' im B/(L+ L′) , (5.65)

which allows us to see skeletons of enriched Stallings automata, as Cayley digraphs
of finitely generated abelian groups.
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Lemma 5.10.15. Let H,H ′ be subgroups of FX ×Zm. Then, the subgroup (H∩H ′)πF

is either trivial (and hence has trivial Stallings automata), or

St
(
(H∩H ′)πF , {wi(X)}i

) (1)
' St (Mρ , {wi}i)

(2)
= coreSch (Mρ , {wi}i)

(3)
= Sch (Mρ , {wi}i)

(4)
' Cay

(
F{wi}i/Mρ , {[wi]}i

)
(5)
' Cay

(
Z⊕r/M , {ei}i

)
(6)
' Cay

(
im B/(L+ L′) , {eiB}i

)
,

(5.66)

where {ei}i denotes the canonical basis of Z⊕r. (Note that the bases in (5.66) must be
interpreted as ordered multisets in order to keep track of the link between generators in the
corresponding automata.)

Remark 5.10.16. Note that the subgroup (H ∩H ′)πF ' Mρ can only be trivial
if r = 0, 1 (otherwise it would contain the nontrivial commutator subgroup of a
nonabelian free group). More precisely:

(H∩H ′)πF = {1} ⇔

{
r = 0 , or

r = 1 and M = {0} .
(5.67)

Proof. The isomorphism (1) (of automata) is clear from the group isomorphism
(H∩H ′)πF 'Mρ , and Corollary 5.4.25; see Figure 5.29.

The equality (2) is just an instance of Proposition 5.4.30.

Since Mρ ' (H∩H ′)πF is nontrivial and normal in Fr, then the Schreier digraph
of Mρ has no superfluous vertices, and coincides with the Cayley digraph of the
quotient. Equality (3) and isomorphism (4) follow.

The isomorphism (5) is clear since the abelianization epimorphism ρ : Fr Zr

induces an isomorphism Fr/Mρ ' Zr/M.

The isomorphism (6) is clear from the group isomorphism Z⊕r/M ' im B/(L+ L′)
induced by B : Z⊕r im B.

Now we claim that the previous discussion applied to finitely generated subgroups
H,H ′ 6 Fn ×Zm allows us to solve the subgroup intersection problem. To this
end, the normality of (H ∩H ′)πF in HπF ∩H ′πF plays a key role, since it allows
us to relate finite generability with finite index, which we will be able to check
algorithmically.
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Recall that if the subgroups H,H ′ are given by respective finite sets of generators,
then we can compute a finite normalized intersection scheme for H∩H ′; and in
particular, the (finite) rank r, the matrix B, and the subgroup L+ L ′ are given and
finite as well. Hence, the equation wB ∈ L+ L′ is solvable using standard linear
algebra over Z.

Moreover, suppose that we have already computed a basis {m1, . . . , ms} (s 6 r) for
the subgroup M 6 Zr of solutions to the equation wB ∈ L+ L′; and denote by M
the s× r integer matrix having as i-th row the element mi ∈ Zm. Then, we can
apply the Smith normal form (SNF) decomposition to M and compute matrices
P ∈ GLs(Z), Q ∈ GLr(Z), and an integer s× r diagonal matrix

D = diag(δ1, . . . , δs) ,

where s 6 r, and δ1 | δ2 | · · · | δs are strictly positive integers successively dividing
each other; such that PMQ = D.

So, we can express the solution subgroup M 6 Zr as the row space of any of the
matrices M, PM, or DQ−1. That is,

M = 〈M〉 = 〈PM〉 = 〈DQ−1〉 . (5.68)

Note that this means that

M = 〈 δ1d1, . . . , δrdr 〉 ,

where di is the i-th row of Q−1, and we have defined δj := 0, for all j = s+ 1, . . . , r.

Hence, in the finitely generated case we can rewrite Equation (5.65) more precisely
as:

HπF ∩H ′πF/(H∩H ′)πF ' Zr/〈M〉 (5.69)

' Zr/〈DQ−1〉 (5.70)

' Zr/〈D〉 (5.71)

=
⊕s
i=1 Z/δi ⊕ Zr−s (5.72)

=
⊕r
i=1 Z/δi . (5.73)

In particular, if both H and H ′ are finitely generated, then the index of (H∩H ′)πF

in HπF ∩H ′πF is:

[
HπF ∩H ′πF : (H∩H ′)πF

]
=
∏r
i=1 [Z : δiZ ] =

{ ∏s
i=1 δi, if s = r ,

ℵ0, if s < r ;
(5.74)

and Lemma 5.10.15 takes the form below.
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Proposition 5.10.17. Let H,H ′ be finitely generated subgroups of FX ×Zm (given by
respective finite generating sets). Then, the Stallings automaton of (H∩H ′)πF w.r.t. the
basis {wi(X)}i of HπF ∩H ′πF is either trivial, or:

St
(
(H∩H ′)πF, {wi(X)}i

)
= Cay (

⊕r
i=1 Z/δiZ , {eiQ}i) , (5.75)

where PMQ = diag(δ1, . . . , δs) is a SNF decomposition of the the matrix M having as
rows the elements of a basis of the general solution of the equation wB ∈ L+L′, and {eiQ}i

are the rows of Q.

Moreover, if the subgroup (H∩H ′)πF turns out to be finitely generated (which is check-
able algorithmically, see Proposition 5.10.20), then its Stallings automaton in (5.75) is
computable.

Proof. Note that (H ∩H ′)πF can only be trivial if r = 0, 1 (otherwise it would
contain the nontrivial commutator subgroup of Fr), and this is always checkable
algorithmically if H and H ′ are finitely generated. Namely, r is the rank of the
(computable) Stallings automata of HπF ∩H ′πF; and then, if r = 0, then (H∩H ′)πF

is necessarily trivial; whereas if r = 1 (i.e., ρ = idZ), then (H ∩H ′)πF is trivial if
and only if M = {0} (which is again a computable condition).

Otherwise (if (H∩H ′)πF is nontrivial) consider the following sequence of isomor-
phisms:

St
(
(H∩H ′)πF, {wi(X)}i

) (1)
' Cay (Zr/M , {ei}i)

(2)
= Cay (Zr/〈M〉, {ei}i)
(3)
= Cay

(
Zr/〈D Q−1〉, {ei}i

)
(4)
' Cay (Zr/〈D〉 , {eiQ}i)

(5)
= Cay (

⊕r
i=1 Z/δiZ , {eiQ}i) ,

(5.76)

where {ei}i denotes the canonical basis of Zr, and hence {eiQ}i are the rows of Q.

Observe that all the steps in (5.76) are clear: the isomorphism (1) corresponds
exactly to (5.66) in the finitely generated case, whereas the rest are easy conse-
quences of the equalities in (5.68). In particular, the isomorphism (4) (of automata)
corresponds to the isomorphism (of groups) Zr/〈DQ−1〉 ' Zr/〈D〉 induced by
Q ∈ GLr(Z).

For the last claim, note that if the subgroups (H,H ′) are finitely generated, then
we can compute an intersection scheme for H ∩H ′, which contains all the data
in the equation w B ∈ L+ L′, from whose (computable) set of solutions we can
obtain all the parameters in (5.75). And, furthermore, if the projection (H∩H ′)πF
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is finitely generated, then the Cayley digraph — and so the Stallings automaton —
in Equation (5.76) is computable.

Rewriting the edges in St ((H∩H ′)πF, {wi(X)}i) in terms of the original genera-
tors X and reducing, we get the corresponding Stallings automata w.r.t. X.

Corollary 5.10.18. Let H,H ′ be subgroups of FX ×Zm. Then, the Stallings automaton
of the projection (H∩H ′)πF is either the trivial automaton (if (H∩H ′)πF is trivial); or
otherwise, the Stallings reduction of the automaton obtained after replacing every arc
labelled by wi(X) in St ((H∩H ′)πF, {wi(X)}i), by the corresponding X-walk reading
wi(X).

Moreover, if the intersecting subgroupsH,H ′ are finitely generated (i.e., given by respective
finite sets of generators), and the projection (H∩H ′)πF is also finitely generated, then the
Stallings automaton St ((H∩H ′)πF,X) is indeed computable.

Proof. Since the resulting automaton is reduced by construction, it is enough to
prove that the resulting inverse X-automaton recognizes the subgroup (H∩H ′)πF.
But this is obvious since it clearly recognizes exactly the same elements as the
corresponding Stallings automaton w.r.t. {wi(X)}i). Finally, the unicity among
inverse X-automata recognizing the same subgroup (Corollary 5.4.25).

For the second claim, recall that if H and H ′ are given by respective finite sets of gen-
erators, and the projection (H∩H ′)πF is also finitely generated, then the Stallings
automaton St ((H∩H ′)πF, {wi(X)}i) is finite and computable (Proposition 5.10.17);
and both the substitutions wι → wι(X), and the final Stallings reduction can be
performed algorithmically.

Note also, that no closed folding is possible in the folding process in (2), since both
inverse automata must recognize the same subgroup, and hence have the same
rank, i.e., rk(St ((H∩H ′)πF,X)) = rk(St ((H∩H ′)πF, {wi(X)}i)).

Corollary 5.10.19. Let H,H ′ be finitely generated subgroups of Fn ×Zm, and let r
denote the (finite) rank of HπF ∩H ′πF. Then,

(a) if r = 0, then rk((H∩H ′)πF) = 0;

(b) if r = 1, then rk((H∩H ′)πF) = 0 if δ1 = 0, and rk((H∩H ′)πF) = 1 otherwise.

(c) if r > 2, then

rk
(
(H∩H ′)πF

)
= rk

(
HπF ∩H ′πF

)
·
∏r
i=1 [Z : δiZ ] , (5.77)

where rk(A) := max { rk(A) − 1, 0 } denotes the reduced rank of a subgroup A.
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Proof. The case r = 0 is trivial.

In the case where r = 1, the (cyclic) subgroup (H∩H ′)πF is trivial if and only if
M = {0}, or equivalently if δ1 = 0. The claimed result follows.

For r > 2 the result follows easily from Equation (5.74). If the index of (H ∩
H ′)πF in HπF ∩H ′πF is finite, then it corresponds precisely to the Schreier index
formula (5.28). Otherwise, (H∩H ′)πF is a nontrivial normal subgroup of infinite
index in HπF ∩H ′πF and hence has infinite rank; and on the other hand, at least
one of the δi’s is zero, i.e., at least one of the indices [Z : δiZ ] is infinite, and
hence the right hand side of (5.77) is infinite as well.

This corollary provides the following characterization, that allows us to immedi-
ately solve the intersection decision problem.

Proposition 5.10.20. Let H,H ′ finitely generated subgroups of Fn ×Zm. Then, the
following conditions are equivalent:

(a) The intersection H∩H ′ is finitely generated.

(b) The projection subgroup (H∩H ′)πF is finitely generated.

(c) The subgroup (H∩H ′)πF is either trivial, or have finite index in HπF ∩H ′πF.

(d) Either r = 0, 1 and the subgroup M is trivial; or M has finite index in Zr.

(e) Either HπF ∩H ′πF is trivial (i.e., r = 0), or all the multiplicities δi (i = 1, . . . , r)
are strictly positive.

(a)⇔ (b). This is a particular case of Corollary 5.6.12.

[(b) ⇔ (c)] This is a direct consequence of Corollary 5.10.19: if (H ∩H ′)πF = {1},
then it is obviously finitely generated and there is is nothing to prove; otherwise
the result follows immediately from Equation (5.77) (which still holds for r = 1, if
M is nontrivial).

[(c)⇔ (d)] On one side, from Remark 5.10.16, (H∩H ′)πF = {1} if and only if either
r = 0, or r = 1 and M = {0} (note that in both cases the subgroup M is trivial). On
the other side, since (H ∩H ′)πF is a full homomorphism preimage of M, it has
finite index in HπF ∩H ′πF if and only if M has finite index in Zr.

[(d) ⇔ (e)] This is clear from Equation (5.77) (which still holds for r = 1, if M is
nontrivial).
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So far we have described the skeleton St ((H∩H ′)πF,X) of any Stallings automata
for the intersection of two subgroups H,H ′ of a FATF group in terms of the Cayley
graph of a certain finitely generated abelian group, and we have seen it to be
computable if the intersecting subgroups and the intersection itself are finitely
generated. Below we show that in order to enrich this skeleton to a genuine
Stallings automaton for the intersection H∩H ′, it is enough to adapt the skeleton
procedure to the abelianly completed generators given for the subgroups H and H ′.

Theorem 5.10.21. Let H,H ′ be subgroups of FX×Zm. Then, a normalized Stallings au-
tomaton for the intersection H∩H ′ is the result of attaching to the basepoint of the skeleton
St ((H∩H ′)πF,X) the subgroup L∩ L ′ = H∩H ′ ∩Zm, and then (after distinguishing
an spanning tree) labelling the end of every cyclomatic edge eι with any representative of
the (nonempty) coset intersection CL(vι)∩ CL ′(vι), where vι denotes the free word in X
read by the ι-th petal in the skeleton.

Proof. Since the resulting enriched automaton — say Γ̂L∩L′ — is reduced and
normalized by construction, it is enough to show that it recognizes the sub-
group H∩H ′.

But this is clear, since Γ̂L∩L′ has been built in such a way that:

(i) its basepoint subgroup L∩ L′ is the full basegroup of the intersection H∩H ′

(see Proposition 5.6.11).

(ii) its skeleton recognizes precisely the elements in the projection (H∩H ′)πF

(that is, the elements in HπF ∩H ′πF that admit compatible completions in H
and H ′), and

(iii) its abelian labelling provides to the elements in (H ∩H ′)πF precisely with
the completion that we know they have by the previous comment.

Finally, recall that these are precisely the conditions in Proposition 5.10.5 for an
element to be in the intersection of the subgroups H and H ′.

Now the computability of finitely generated intersections is straightforward.

Corollary 5.10.22. IfH andH ′ are finitely generated subgroups of FX×Zm with finitely
generated intersection, then a normalized Stallings automaton for H∩H ′ is computable.

Proof. It is enough to realize that, if the intersecting groups H,H ′ and the intersec-
tion H∩H ′ are finitely generated, then every ingredient in Theorem 5.10.21 of the
construction of the Stallings of an Stallings automaton for H∩H ′ is computable:

(i) since H and H ′ are given by finite families of generators, respective normal-
ized Stallings automata for H and H ′ — including finite basis for their full
basegroups L and L′ — are computable (Corollary 5.9.21).
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(ii) The skeleton St ((H∩H ′)πF,X) has already shown to be computable under
the assumptions of the theorem (see Corollary 5.10.18).

(iii) A basis for the basepoint subgroup L∩ L′ is easily computable from the finite
basis for H and H ′ in step (i) using linear algebra.

(iv) Representatives for the (necessarily nonempty) intersections CL(vι)∩ CL ′(vι)
of abelian completions in every petal, are again computable using standard
linear algebra.

(v) Since the resulting enriched Stallings automaton recognizing H∩H is finite,
we can clearly normalize it algorithmically.

This concludes the proof.

Our target result (below) follows easily from Proposition 5.10.20, and Corol-
lary 5.10.22.

Theorem 5.10.23. The (full) subgroup intersection problem is solvable for free-abelian
times free groups.

Proof. The decision problem is solvable using Proposition 5.10.20: given two
finitely generated subgroups H,H ′ 6 Fn ×Zm given by respective finite families
of generators, one can decide whether the intersection is finitely generated or not
computing an scheme for the intersection H∩H ′, and from it the data appearing
in any of the last two conditions in Proposition 5.10.20. For example, computing
the integers r = rk(HπF ∩H ′πF) and s = rkM, and then:

• if r = 0, then answer yes; and otherwise

• if s = r then answer yes, and if s < r then answer no.

In case that the intersection H∩H ′ is finitely generated (i.e., when the previous
algorithm answers yes); then the (computable) Stallings automaton Γ̂L∩L′ for the
intersection H ∩H ′ provides a finite generating set in the usual way. Namely, a
generating set for the intersection H∩H ′ consists of the following:

(i) A free-abelian basis A of the base subgroup L∩ L′; and

(ii) A free basis B for the section subgroup (H∩H ′)πFσ obtained from the words
read by the petals in Γ̂ after distinguishing an spanning tree.

Since both A and B are clearly computable under our assumptions, then their
(disjoint) union A t B constitutes a (finite) computable generating set for the
intersection H∩H ′, and the proof is concluded.
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Examples

As a first example of application of these graphical techniques, let us reconsider
under this viewpoint the situation given in Lemma 2.3.1 as a counterexample for
Howson’s property in FATF groups.

Example 5.10.24. Let H = 〈x,y〉 and H ′ = 〈xt,y〉 be subgroups of the FATF group
F2 ×Z = 〈x,y | −〉 × 〈t | −〉. Then, L = L′ = L ∩ L′ = L+ L′ = {0}, and enriched
Stallings automata of H, and H ′ are:

andŜt(H) ≡ xy ;Ŝt(H ′) ≡
1

and therefore, .Ŝt(H) ∧ Ŝt(H ′) = Ŝt(H)× Ŝt(H ′) ≡
(0,1)

(0,0)

Note that from this intersection scheme it is clear that one can not equalize the two
components of the red label (modulo 0) after any finite number of turns around
the red loop (corresponding to the generator x), and therefore the intersection
must be infinitely generated.

Formally, we have B =
[

1
0

]
, and the matrix M = [ 0 1 ] has as row a basis for

the set of solutions of the equation wB = 0. Hence, the SNF of M is D = [ 1 0 ],
with P = [ 1 ], and Q =

[
0 1
1 0

]
.

Then, applying Proposition 5.10.17, we have that

St
(
(H∩H ′)πF, {x,y}

)
' Cay (Z/Z⊕Z/0Z , {(0, 1), (1, 0)}) ' Cay (Z , {1, 0}) ,

which, after substituting x by xt (and y by y) takes the form:

· · · ;· · ·

y

x
1 1 1 11111

and after removing the abelian labels in the red arcs (which are bridges) constitutes
the Stallings automaton of the intersection:

· · · ;· · ·

y

x

which obviously coincide with the one computed in Lemma 2.3.1.

Finally, we consider a parameterized example in order to show how very different
situations can emerge from similar intersecting patterns.
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Example 5.10.25. Consider the following two parameterized subgroups of the direct
product F{x,y} ×Zm,

H = 〈 tL, x3 ta,yx tb,y3xy−2 tc 〉 ,

H ′ = 〈 tL′ , x2 td,yxy−1 〉 ,

where a, b, c, d ∈ Zm, and L,L′ are subgroups of Zm.

In order to compute (a basis for) the intersection H ∩H ′ we first compute re-
duced automata for H and H ′, and then build its product (recall Examples 5.9.14
and 5.5.30).

(Note that we don’t need a unique representative until reaching a scheme for the
subgroup of the intersection, so reduced automata Γ̂L, Γ̂ ′L′ for H,H ′are enough
here.)

L′

L

d

a
b

c

L,L′

a,d

0,d

a,0

0,d

b,0 a,0

0,d c,0

Fig. 5.30: Product of enriched automata

After removing non-basepoint components, performing a total trim, and rearrang-
ing, we obtain the core of the enriched product; namely:

L,L′

2a,3d
b,0

a,0

Fig. 5.31: Intersection scheme for H∩H ′

Finally, after normalizing (recall Lemma 5.8.13) we obtain a reduced automaton
for H∩H ′:

170 Chapter 5 Free-abelian by free groups



L,L′

2a,3d

a,0

Fig. 5.32: Normalized intersection scheme for H∩H ′

Remark 5.10.26. Note that the abelian labels b and c in Figure 5.30 no longer appear
in the normalized intersection scheme (Figure 5.32); the first one because it labels
a bridge (Lemma 5.8.13), and the second one because it lies outside the core. Thus,
neither b nor c will play any role in the intersection H∩H ′.

So, we have that w1 = x6 ,

w2 = yx3y−1
(5.78)

is a basis for HπF ∩H ′πF.
In particular, x6 ∈ HπF ∩H ′πF. Now, according to Proposition 5.10.5, x6 ∈ (H ∩
H ′)πF if and only if it is componentwise readable in the intersection scheme
in Figure 5.32; i.e., if there exists an abstract (reduced) word w ∈ F{x,y}, such that

x6 t0 ∈ w
(−−−−−−−−−−−−−−−−→
x6 t2a+L , yx3y−1 ta+L)

GA
∩ w

(−−−−−−−−−−−−−−−−−→
x6 t3d+L ′ , yx3y−1 t0+L ′)

GA

= w
(−−−−−−−→
x6,yx3y−1) tλ12a+λ2a+L ∩ w

(−−−−−−−→
x6,yx3y−1) tλ13d+λ20+L ′

= w
(−−−−−−−→
x6,yx3y−1) t(λ12a+λ2a+L)∩ (λ13d+λ20+L ′) ,

where w ab = (λ1, λ2). Now, since x6 ∈ w
(−−−−−−−→
x6,yx3b−1

)
, we necessarily have

that w(w1,w2) = w1, and so λ1 = 1 and λ2 = 0. Thus, x6 ∈ (H ∩ H ′)πF if
and only if

0 ∈ (2a + L) ∩ (3d + L′) ,

which is equivalent to the condition

2a ∈ L and 3d ∈ L′ . (5.79)

This example shows that, the inclusion (H∩H ′)πF 6 (H)πF ∩ (H ′)πF can be strict,
as claimed in Lemma 5.10.8. Indeed, as we have seen in Proposition 5.10.20, the
index of this inclusion is directly related with the intersection problem.

Let’s now study the intersection H ∩H ′ in our example. According to Proposi-
tion 5.10.13, its projection (H∩H ′)πF is described by the words w ∈ F2, such that
their abelianization w ∈ Z2 satisfies the equation:

wB ∈ L+ L′ , (5.80)
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where B is the matrix having as i-th row the difference between the two enrich-
ments in the i-th cyclotomic arc of the intersection scheme; in our example

B =

[
2a − 3d

a

]
.

We now distinguish different cases depending on the parameters a, d ∈ Z2, and
the subgroups L,L′ 6 Z2:
Case 1: Suppose a = (1, 0), d = (0, 1) ∈ Z2, and L1 = 〈(0, 6)〉, L ′1 = 〈(3,−3)〉 6 Z2.

That is, consider

H1 = 〈t(0,6), x3 t(1,0),yx tb,y3xy−2 tc〉 ,

H ′1 = 〈t(3,−3), x2 t(0,1),yxy−1〉 .

Then, L1 ∩ L ′1 = {(0, 0)}, B =
[

2a−3d
a
]
=
[

2 −3
1 0

]
; and the set of solutions for

w
[

2 −3
1 0

]
∈ 〈 (0, 6), (3,−3) 〉

is easily computable to be the subgroup M generated by the rows of the
matrix M =

[
−2 4

1 1

]
; which, in turn, admits the Smith normal form decompo-

sition PMQ = D, where P =
[

0 1
1 2

]
, Q =

[
1 −1
0 1

]
, and D =

[
1 0
0 6

]
.

Therefore, according to Proposition 5.10.17:

St (Mρ , {w1,w2}) = Cay
(
F{w1,w2}/Mρ , {[w1] , [w2]}

)
= Cay

(
Z2/〈M〉 , {(1, 0), (0, 1)}

)
= Cay

(
Z2/〈DQ−1〉 , {(1, 0), (0, 1)}

)
= Cay

(
Z2/〈D〉 , {(1,−1), (0, 1)}

)
= Cay (Z/Z⊕Z/6Z , {(1,−1), (0, 1)})

= Cay (Z/6Z , {−1, 1}) ,

which is easily constructible by inspection: denoting by a violet (resp., green)
arc the action of the element −1 (resp., 1), we obtain the automaton:
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w1

w2

Fig. 5.33: Stallings automaton St (Mρ , {w1,w2})

which after replacing w1 by x6, w2 by yx3y−1, and folding, becomes:

Fig. 5.34: Stallings automaton St
(
(H1 ∩H ′1)πF, {x,y}

)

i.e., the Stallings automaton of the projection H1 ∩H ′1)πF (which has rank
equal to 7). Now we distinguish a maximal tree T (using thicker lines to
denote its cyclotomic arcs), which provides the basis:

v1 = yx3 y−1 x6 ,

v2 = yx6 y−1 x6 yx−3 y−1 ,

v3 = yx9 y−1 x6 yx−6 y−1 ,

v4 = yx12 y−1 x6 yx−9 y−1 ,

v5 = yx15 y−1 x6 yx−12 y−1 ,

v6 = yx18 y−1 ,

v7 = x6 yx−12 y−1 ,

(5.81)

for the projection (H1 ∩H ′1)πF.

In the same vein, after replacing w1 by x6 t(2a,3d) = x6 t(2,0),(0,3), and w2

by yx3y−1 t(a,0) = yx3y−1 t(1,0),(0,0), and folding we obtain (abbreviating
u := (2a, 3d), and v := (a, 0)):
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u
u

u

u
u

u

v

vv

v

v v

Fig. 5.35: Expanded intersection scheme for H1 ∩H ′1

In order to normalize this doubly enriched automaton (w.r.t. T), consider
the following transformation between neighborhoods of clockwise succes-
sive blue arcs (note that these neighborhoods contain every abelian label)
in Figure 5.35.

u

v

u

v

u

2v

u−v v

which after 5 applications (starting from the first blue neighborhood after
the basepoint, and moving clockwise) provides the normalized automaton:

(−3,0),(0,3)
(3,0),(0,3)

(3,0),(0,3)

(3,0),(0,3)
(3,0),(0,3)

(3,0),(0,3)

(6,0),(0,0)

Fig. 5.36: Normalized expanded intersection scheme for H1 ∩H ′1
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Now, we know that every T-petal in Figure 5.36 must have compatible
abelian completions; i.e., must be readable in some way in both enriched
components. Let us compute these intersections for every T-petal:

CL1(v6)∩ CL ′1(v6) = (6, 0) + 〈(0, 6)〉 ∩ (0, 0) + 〈(3,−3)〉 = {(6,−6)} ,

CL1(v7)∩ CL ′1(v7) = (−3, 0) + 〈(0, 6)〉 ∩ (0, 3) + 〈(3,−3)〉 = {(−3, 6)}

CL1(vi)∩ CL ′1(vi) = (3, 0) + 〈(0, 6)〉 ∩ (0, 3) + 〈(3,−3)〉 = {(3, 0)} ,

(5.82)

for i = 1, . . . , 5.

Finally, replacing each double abelian labelling in Figure 5.36 by one rep-
resentative from the corresponding intersection class in (5.82), we obtain a
Stallings automaton for the intersection H1 ∩H ′1:

(−3,6)
(3,0)

(3,0)

(3,0)
(3,0)

(3,0)

(6,−6)

Fig. 5.37: Stallings automaton for H1 ∩H ′1

which provides the basis:

v̂1 = yx3 y−1 x6 t(3,0) ,

v̂2 = yx6 y−1 x6 yx−3 y−1 t(3,0) ,

v̂3 = yx9 y−1 x6 yx−6 y−1 t(3,0) ,

v̂4 = yx12 y−1 x6 yx−9 y−1 t(3,0) ,

v̂5 = yx15 y−1 x6 yx−12 y−1 t(3,0) ,

v̂6 = yx18 y−1 t(6,−6) ,

v̂7 = x6 yx−12 y−1 t(−3,6) ,

(5.83)

for the intersection H1 ∩H ′2.
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Recall that since L1∩L ′1 is trivial, the intersection does not have any nontrivial
purely abelian part, and (5.83) is indeed a basis of the whole intersection
H1 ∩H ′1. In particular, in this case, the rank of the intersection is 7.

Case 2: Suppose a = (3, 3), d = (2, 2) ∈ Z2, and L2 = 〈(1, 2)〉, L ′2 = 〈(0, 0)〉 6 Z2.
That is, consider the subgroups:

H2 = 〈 t(1,2), x3 t(3,3),yx tb,y3xy−2 tc 〉 ,

H ′2 = 〈 x2 t(2,2),yxy−1 〉 .

Then, L2 ∩ L ′2 = {(0, 0)}, B =
[

2a−3d
a
]
=
[

0 0
3 3

]
; and the set of solutions for

w
[

0 0
3 3

]
∈ 〈 (1, 2) 〉

is clearly the subgroup M generated by the row of the matrix M = [ 1 0 ].
which is already in Smith normal form. That is, the change of basis matrices
are trivial (P = I1 = [1], Q = I2 =

[
1 0
0 1

]
); and D = [ 1 0 ].

Then, according to Proposition 5.10.17:

St (Mρ , {w1,w2}) = Cay
(
F{w1,w2}/Mρ , {[w1], [w2]}

)
= Cay

(
Z2/〈M〉 , {(1, 0), (0, 1)}

)
= Cay (Z/Z⊕Z/0Z , {(1, 0), (0, 1)})

= Cay (Z , {0, 1)}) ,

which, denoting by a violet (resp., green) arc the action of the element 0
(resp., 1), takes the form:

· · ·· · ·

w1

w2

Fig. 5.38: Cayley graph of Z w.r.t. {0, 1}

which after replacing w1 by x6, and w2 by yx3y−1, and folding, becomes:

· · ·· · ·

Fig. 5.39: Stallings automaton of (H2 ∩H ′2)πF w.r.t. {x,y}
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Note that it has infinite rank, and provides the basis:

vk = yx3k y−1 x6 yx−3k y−1 , ∀k ∈ Z ,

for (H2 ∩H ′2)πF, with the corresponding cyclotomic arcs highlighted (thicker)
in Figure 5.39.

According Theorem 5.10.21, if we instead substitutew1 by x6 tu = x6 t(2a,3d) =

x6 t(6,6),(6,6), andw2 by yx3y−1 tv = yx3y−1 t(a,0) = yx3y−1 t(3,3),(0,0), and fold,
we obtain:

· · ·· · · v

u

v

u u

v

u

v

u

v

Fig. 5.40: Expanded intersection scheme for (H2 ∩H ′2)πF

which is already normalized if we remove all the v’s (lying on bridges,
see Lemma 5.8.13) from it. Therefore, taking the vector (6, 6) as a com-
mon representative in both completions, we obtain the following Stallings
automaton:

· · ·· · ·

(6,6) (6,6) (6,6)(6,6)(6,6)

Fig. 5.41: Stallings automaton for H2 ∩H ′2

The corresponding (infinite) basis for H2 ∩H ′2 is:

v̂k = vk t(6,6) = yx3k y−1 x6 yx−3k y−1 t(6,6) , ∀k ∈ Z ,

(again, since L2 ∩ L ′2 is trivial, there is no abelian contribution to the basis),
and hence the intersection H2 ∩H ′2 has infinite rank.

Remark 5.10.27. Note that the fact that an element in one of the intersecting
subgroups does not appear in the intersection does not mean that it does not affect
it. For example, the cases 3 and 4 (below) correspond to case 2 after replacing the
generator of Li (from t(1,2) to t(2,2) and t(1,1) respectively). Observe that none of
these elements belong to the corresponding intersection, but the intersections are
different (even of different type).
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Case 3: Suppose a = (3, 3), d = (2, 2) ∈ Z2, and L3 = 〈(2, 2)〉, L ′3 = 〈(0, 0)〉 6 Z2.
That is, consider the subgroups:

H3 = 〈 t(2,2), x3 t(3,3),yx tb,y3xy−2 tc 〉 ,

H ′3 = 〈 x2 t(2,2),yxy−1 〉 .

Note that the only difference with case 2 is that L3 6= L2. Hence, as be-
fore, B =

[
0 0
3 3

]
, and L3 ∩ L ′3 = {(0, 0)}; and the set of solutions for the

equation w
[

0 0
3 3

]
∈ 〈 (2, 2) 〉 is the subgroup generated by the rows of the

matrix M =
[

1 0
0 2

]
, which is already in Smith normal form.

Then, according to Proposition 5.10.17:

St (Mρ , {w1,w2}) = Cay
(
F{w1,w2}/Mρ , {[w1], [w2]}

)
= Cay

(
Z2/〈M〉, {(1, 0), (0, 1)}

)
= Cay (Z/Z⊕Z/2Z , {(1, 0), (0, 1)})

= Cay (Z/2Z , {0, 1}) ,

which, denoting by a violet (resp., green) arc the action of the element 0
(resp., 1), takes the form:

w1 w1

w2

w2

Fig. 5.42: Cayley digraph of Z/2Z w.r.t. {0, 1}

which after replacing w1 by x6, and w2 by yx3y−1, and folding, becomes:

Fig. 5.43: Stallings automaton of (H3 ∩H ′3)πF w.r.t. {x,y}

which provides the basis:

v1 = x6 ,

v2 = yx6 y−1 ,

v3 = yx3 y−1 x6 yx−3 y−1 .

(5.84)

for (H3 ∩H ′3)πF, with the corresponding cyclotomic arcs highlighted (thicker)
in Figure 5.43.
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Now, after replacing w1 by x6 t(2a,3d) = x6 t(6,6),(6,6) and w2 by yx3y−1 t(a,0) =

yx3y−1 t(3,3),(0,0), and fold, we obtain:

(6,6),(6,6) (3,3),(0,0)

(3,3),(0,0) (6,6),(6,6)

which we can normalize to get:

(6,6),(6,6)

(6,6),(0,0) (6,6),(6,6)

whose double labels we know that are equalizable. Taking a common
representative for both abelian completions, for example:

(6, 6) ∈ (6, 6) + L3 ∩ (6, 6) + L ′3 = (6, 6) + 〈(2, 2)〉 ∩ (6, 6) + 〈(0, 0)〉 , and

(0, 0) ∈ (6, 6) + L3 ∩ (0, 0) + L ′3 = (6, 6) + 〈(2, 2)〉 ∩ (0, 0) + 〈(0, 0)〉

we finally obtain an Stallings automata for the intersection H3 ∩H ′3:

(6,6)

(6,6)

Fig. 5.44: Stallings automaton for H3 ∩H ′3

which provides the basis:

ŵ1 = x6 t(6,6) ,

ŵ2 = yx6 y−1 ,

ŵ3 = yx3 y−1 x6 yx−3 y−1 t(6,6) .

(5.85)

for the subgroup H3 ∩H ′3, which therefore has rank equal to 3.

Case 4: Suppose a = (3, 3), d = (2, 2) ∈ Z2, and L4 = 〈(1, 1)〉, L ′4 = 〈(0, 0)〉 6 Z2.
That is, consider the subgroups:

H4 = 〈 t(1,1), x3 t(3,3),yx tb,y3xy−2 tc 〉 ,

H ′4 = 〈 x2 t(2,2),yxy−1 〉 .

Again, the only difference with cases 2 and 3 lies in the abelian subgroup
L4. Hence, L4 ∩ L ′4 = {(0, 0)}, and B =

[
0 0
3 3

]
. In this case it is clear that the

set of solutions of the equation w
[

0 0
3 3

]
∈ 〈 (1, 1) 〉 is the whole space Z2,
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namely the subgroup generated by the rows of the matrix M =
[

1 0
0 1

]
, which

is already in Smith normal form.

Then, according to Proposition 5.10.17:

St (Mρ , {w1,w2}) = Cay
(
F{w1,w2}/Mρ , {[w1], [w2]}

)
= Cay

(
Z2/〈M〉 , {(1, 0), (0, 1)}

)
= Cay (Z/Z⊕Z/Z , {(1, 0), (0, 1)})

= Cay ({0} , {0, 0}) ,

(recall that we admit Cayley digraphs w.r.t. generating multisets) which has
the form:

w1 w2

Fig. 5.45: Cayley digraph of the trivial (abelian) group {0} w.r.t. {0, 0}

and after replacing w1 by x6, and w2 by yx3y−1, and folding, becomes:

Fig. 5.46: Stallings automaton of (H4 ∩H ′4)πF w.r.t. {x,y}

That is, in this case the Stallings automata of (H4 ∩H ′4)πF and H4πF ∩H ′4πF

do coincide. Hence (H4 ∩H ′4)πF = H4πF ∩H ′4πF, with basis:

w1 = x6 ,

w2 = yx3 y−1 .
(5.86)

After replacing w1 by x6 t(2a,3d) = x6 t(6,6),(6,6) and w2 by yx3y−1 t(a,0) =

yx3y−1 t(3,3),(0,0), and fold, we obtain:

(6,6),(6,6)

(3,3),(0,0)

which is already normalized. Hence their double labels are equalizable,
again taking (6, 6), and (0, 0) as representatives; and an Stallings automaton
for H4 ∩H ′4 is:
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(6,6)

Fig. 5.47: Stallings automaton for H4 ∩H ′4

which provides the basis:

ŵ1 = x6 t(6,6) ,

ŵ2 = yx3 y−1 .
(5.87)

for the subgroup H4 ∩H ′4, which therefore has rank equal to 2.

Case 5: Suppose a = (1,−1), d = (1,−2) ∈ Z2, and L5 = 〈(12, 0), (0, 12)〉, L ′5 =

〈(2,−2)〉 6 Z2. That is, consider

H1 = 〈 t(12,0) , t(0,12) , x3 t(1,−1) , yx tb , y3xy−2 tc〉 ,

H ′1 = 〈t(2,−2) , x2 t(1,−2) , yxy−1〉 .

Then, L5 ∩ L ′5 = {(12,−12)}, B =
[

2a−3d
a
]
=
[
−1 4

1 −1

]
; and the set of solutions

for

w
[
−1 4

1 −1

]
∈ 〈 (12, 0), (0, 12), (2,−2) 〉 = 〈 (12, 0), (2,−2) 〉

is the subgroup M generated by the rows of the matrix M =
[

4 16
0 2

]
; with

SNF decomposition PMQ = D, where P =
[

0 1
1 −8

]
, Q =

[
0 1
1 0

]
, and D =

[
2 0
0 4

]
.

Therefore, according to Proposition 5.10.17

St (Mρ , {w1,w2}) = Cay
(
F{w1,w2}/Mρ , {[w1], [w2]}

)
= Cay

(
Z2/〈D〉 , {(0, 1), (1, 0)}

)
= Cay (Z/2Z⊕Z/4Z , {(0, 1), (1, 0)}) ,

which, denoting by a violet (resp., green) arc the action of the element (0, 1)
(resp., (1, 0)), has the form:

w2

w1

Fig. 5.48: Cayley digraph of Z/2Z⊕Z/4Z w.r.t. {(0, 1), (1, 0)}

which after replacing w1 by x6, and w2 by yx3y−1, and folding, becomes:

5.10 Algorithmic problems for free-abelian by free groups 181



Fig. 5.49: Stallings automaton of (H5 ∩H ′5)πF w.r.t. {x,y}

After replacing w1 by x6 tu = x6 t(2a,3d) = x6 t(2,−2),(3,−6) and w2 by
yx3y−1 tv = yx3y−1 t(a,0) = yx3y−1 t(1,−1),(0,0), and fold, we obtain:

v

v

v

v

v

v

v

v

u

u

u u u

u u u

which is still not normalized (note that the double labels in it are not
equalizable). However, after choosing an spanning tree and normalizing, we
get

(2,−2),(0,0) (2,−2),(0,0) (2,−2),(0,0) (2,−2),(0,0)

(8,−8),(12,−24)

(8,−8),(12,−24)

where we can finally equalize labels taking, for example:

(−4,−8) ∈ (8,−8) + 〈(12, 0), (0, 12)〉 ∩ (12,−24) + 〈(2,−2)〉 , and

(2,−2) ∈ (2,−2) + 〈(12, 0), (0, 12)〉 ∩ (0, 0) + 〈(2,−2)〉 ;

and attach 〈(12,−12)〉 = L5 ∩ L ′5 as a basepoint subgroup to obtain an
Stallings automaton for the intersection H5 ∩H ′5:
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〈(12,−12)〉

(2,−2) (2,−2) (2,−2) (2,−2)

(−4,−8)

(−4,−8)

Fig. 5.50: Stallings automaton for H5 ∩H ′5 w.r.t. {x,y}

which provides the basis:

v1 = yx6y−1 t(2,−2)

v2 = x6yx6y−1x−6 t(2,−2)

v3 = x12yx6y−1x−12 t(2,−2)

v4 = x18yx6y−1x−18 t(2,−2)

v5 = yx3y−1x6yx−3y−1x−6

v6 = yx3y−1x12yx−3y−1x−12

v7 = yx3y−1x18yx−3y−1x−18

v8 = x24 t(−4,−8)

v9 = yx3y−1x24yx−3y−1 t(−4,−8)

v10 = t(12,−12)

for the subgroup H5 ∩H ′5, which therefore has rank equal to 10.

Case 6: Suppose a = (6, 6), d = (4, 4) ∈ Z2, L6 = 〈(6p, 6p)〉, L ′6 = 〈(0, 0)〉 6 Z2,
for some p ∈ Z. That is, consider the subgroups:

H6 = 〈 t(6p,6p), x3 t(6,6),yx tb,y3xy−2 tc 〉 ,

H ′6 = 〈 x2 t(4,4) , yxy−1 〉 .

So, B =
[

2a−3d
a
]
=
[

0 0
6 6

]
, and L3 ∩ L ′3 = {(0, 0)}. Then, the set of solutions

for w
[

0 0
6 6

]
∈ 〈 (6p, 6p) 〉 is the subgroup generated by the rows of the ma-

trix M =
[ 1 0

0 p
]
, which is already in Smith normal form, i.e., PMQ = D,

where P =
[

1 0
0 1

]
, Q =

[
1 0
0 1

]
, and D =

[ 1 0
0 p
]
.
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Then, according to Equation (5.66):

St (Mρ , {w1,w2}) = Cay
(
F{w1,w2}/Mρ , {[w1], [w2]}

)
= Cay

(
Z2/〈M〉 , {(1, 0), (0, 1)}

)
= Cay (Z/Z⊕Z/pZ , {(1, 0), (0, 1)})

= Cay (Z/pZ , {0, 1}) ,

which, denoting by a violet arc the action of the element 0 (corresponding to
w1), and by a green arc the action of the element 1 (corresponding to w2),
takes the form:

p vertices

Fig. 5.51: Cayley digraph of Z/pZ w.r.t. {0, 1}

which after replacing w1 by x6 tu = x6 t(2a,3d) = x6 t(12,12),(12,12), and w2 by
yx3y−1 tv = yx3y−1 t(a,0) = yx3y−1 t(6,6),(0,0), and folding, becomes:

(p times)

u

v

u

v

u

v

u

v

u

v

u

v

u

v

u

v

which after normalizing (w.r.t. the spanning tree having as cyclotomic arcs

the thicker ones) takes the form:
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(p times)

u

u

u

u

u

u

u

u

pv

which allow us to equalize the double labelling, taking (12, 12) and (0, 0)
as common representatives for u and pv respectively, and finally obtain an
Stallings automaton for the intersection H6 ∩H ′6:

(p times)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

Fig. 5.52: Stallings automaton for H6 ∩H ′6

and provides the basis:

v̂0 = yx3py−1 ,

v̂k = yx3ky−1x6yx−3ky−1 t(12,12) , ∀k = 0, . . . ,p− 1 ,
(5.88)

for the intersection subgroup H6 ∩H ′6, , which therefore has rank equal to p.

This last case points out one last interesting consequence of the extended index
formula (5.77): not only the intersection of two finitely generated subgroups
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H,H ′ 6 Fn ×Zm can be infinitely generated (i.e., FATF groups are not Howson),
but even when it is finitely generated, one can no longer bound the rank of H∩H ′

in terms of the ranks of the intersecting subgroups (moreover, as we see in the
example, this can happen even keeping fixed the skeleton of the subgroups).

Proposition 5.10.28. If for every pair of natural numbers n1,n2 ∈ N2 we define the
threshold function ζ as:

ζ(n1,n2) := sup { rk(H1 ∩H2) <∞ : rk(H1) 6 n1 , rk(H2) 6 n2 } ∈ N∪ {∞ } ,

then ζ admits only the values 0, 1, 2 and∞ in FATF gropus. Namely:

(a) if min{n1,n2} = 0, then ζ(n1,n2) = 0;

(b) if min{n1,n2} = 1, then ζ(n1,n2) = 1;

(c) if n1 = n2 = 2, then ζ(n1,n2) = 2;

(d) otherwise, ζ(n1,n2) =∞.

Proof. Firstly note that, since we can always take H1 = H2 of rank equal to
min{n1,n2}, then for all n1,n2 ∈ Z2, we have that ζ(n1,n2) > min{n1,n2}. Now,
we study the cases separately.

The case (a) is trivial.

The case (b) is also obvious, since the intersection of two cyclic subgroups must be
cyclic, and we can take H1 = H2.

In case (c) (we can assume rk(H1) = rk(H2) = 2), we distinguish two subcases:

• if either H1πF or H2πF has rank 1, then both H1πF ∩ H2πF (and any of its
subgroups, including (H1∩H2)πF) and L1∩L2 have rank at most 1. Therefore,
from Corollary 5.6.13, rk(H2 ∩H2) 6 2.

• if rk(H1πF) = rk(H2πF) = 2, then L = L′ = L∩ L′ = L+ L′ = {0}, and so M is
the set of solutions of the equation w(B) = 0, i.e., M = ker B 6 Zm. Now,
from Proposition 5.10.20, the intersection H1 ∩H2 is finitely generated if and
only if M = ker B has finite index in Zm, that is if and only if B = 0 (and
the finite index is 1). Note that in this case (H1 ∩H2)πF = H1πF ∩H2πF and
hence:

rk(H1 ∩H2) = rk((H1 ∩H2)πF)

= rk(H1πF ∩H2πF)

6 1 + (rkH1 − 1)(rkH2 − 1) = 2 ,
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where we have applied the Hanna Neumann Theorem in the last inequality.

Again, since we can take H1 = H2, this proves that ζ(2, 2) = 2.

To prove (d) it is enough to adapt the case 6 in Example 5.10.25.

Concretely, according case 6, if we take H1 = 〈 t(6p,6p), x3 t(6,6),yx 〉 (recall that, as
we discussed in Example 5.5.30 the element y3xy−2 plays no role in the intersection)
and H2 = 〈 x2 t(4,4) , yxy−1 〉, then we have rkH1 = 3, rkH2 = 2, and rk(H1 ∩H2) =

p; which proves that ζ(2, 3) =∞.

To prove that ζ(3 + n1, 2 + n2) = ∞, for all n1,n2 ∈ N, it is enough to perform
the following trick: consider {u1, . . . ,un1}, and {v1, . . . , vn2} basis of respective
subgroups of FX such that

• 〈u1, . . . ,un1〉 ∩H1 = {1},

• 〈v1, . . . , vn2〉 ∩H2 = {1}, and

• 〈u1, . . . ,un1〉 ∩ 〈v1, . . . , vn2〉 = {1},

and then take:

H̃1 = 〈 t(6p,6p), x3 t(6,6),yx,u1, . . . ,un1 〉

H̃2 = 〈 x2 t(4,4) , yxy−1, v1, . . . , vn2 〉 .

Now, it is clear by construction that rk H̃1 = 3 +n1, rk H̃2 = 2 +n2, and the rank
of the intersection is rk(H̃1 ∩ H̃2) = rk(H1 ∩H2) = p.

The claim ζ(3 +n1, 2 +n2) =∞ follows, and the proof is completed.

This fact is relevant because it denies any possible extension of the recently proved
Hanna Neumann conjecture (see Theorem 5.5.21) in this direction, thus providing
clear limitations in the attempt to extend that celebrated result to broader families,
which has become a very active research target since the proof of the original
conjecture (see for example [DI10; AMS11; Zak14; ASS14]).

A topological approach

In this section, we present an alternative (more topological) description of the
Stallings automaton for the intersection of two subgroups H,H ′ 6 Fn ×Zm.

Theorem 5.10.29. Let H,H ′ be subgroups of FX ×Zm. Then, a normalized Stallings
automaton for the intersection H∩H ′ is the result of the following steps:

1. normalize the junction automaton Ŝt(HπF)∧ Ŝt(H ′πF) w.r.t. a certain distinguished
spanning tree T;
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2. replace every label wi — of the arc ei in St (Mρ , {wi}i) — with the (doubly-
enriched) label of the corresponding T-cyclotomic arc in the junction Ŝt(HπF) ∧

Ŝt(H ′πF);

3. replace every vertex pj in St (Mρ , {wi}i) by a copy T(j) of T;

4. for every (now enriched X±-labelled) arc ei ≡ pj1 pj2 in St (Mρ , {wi}i), join
its tail and head with the leaves in T(j1) and T(j2) respectively, in such a way that
the path from the basepoint in T(j1) to the basepoint in T(j2) reads precisely the
word ŵi recognized by the i-th petal in Ŝt(HπF) ∧ Ŝt(H ′πF);

5. normalize the resulting automaton, and equalize its abelian labels;

6. set as basepoint for the resulting automaton, the basepoint of the basepoint-tree T( ),
and attach to it L∩ L′ as a basepoint subgroup.

Proof. As in Theorem 5.9.12, it is clear by construction that the resulting enriched
automaton is inverse, normalized, and recognizes exactly the subgroup H∩H ′.
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Part III

Partially commutative groups





6Definition and generalities

In this part of the dissertation, we care about the second main generalization
of free-abelian times free groups considered in Part I, namely that of partially
commutative groups (PC-groups). In particular, we combine a generalization of the
techniques developed in Section 2.3, with an algorithmic version of the Stallings-
like automata theory for free products developed by Ivanov, to study several
algorithmic intersection problems within the subfamily of Droms groups (those
finitely generated PC-groups whose subgroups are again PC-groups).

6.1 Partially-commutative groups
Given any set of elements U = {ui}i in a group G, one can always consider the
(undirected simple) commutation graph of U in G, denoted by ΓU,G, having as
vertices the elements in U, and two different vertices ui,uj being adjacent if and
only if they commute in G (i.e., if [ui,uj] = 1).

We call partially commutative groups (PC-groups, for short) the groups that admit
presentations all whose relations are commutators between generators, i.e., presen-
tations of the form 〈X | R〉, where R is a subset of [X,X] (the set of commutators
between elements in X).

We can represent this situation in a very natural way through the commutation
graph Γ = (X,E) having as vertices the generators in X, and two vertices x,y ∈ X
being adjacent if and only if its commutator [x,y] belongs to R; then we say that
the PC-group is presented by the graph Γ , and we denote it by GΓ .

Recall that a simple graph is undirected, and containing no loops or multiple edges;
so, a simple graph Γ = (X,E) is nothing more than a symmetric and irreflexive
binary relation in X, and its edges can be represented as 2-subsets of X, that
is E ⊆

(
X
2

)
.

Definition 6.1.1. A group G is said to be (free) partially commutative (a PC-group,
for short) if it admits the presentation

GΓ = 〈X | [x1, x2] = 1, whenever {x1, x2} ∈ E 〉 , (6.1)

for some (not necessarily finite) simple graph Γ = (X,E) (i.e., if there exists an
isomorphism ϕ : GΓ → G). Then, we say that G is presented by the commutation
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graph Γ ; that (6.1) is a graphic presentation for G; and — for each such ϕ — that Xϕ
is a graphic set of generators (a basis, for short) for G.

Below, we state an useful reformulation of the previous concepts.

Lemma 6.1.2. Let U = {uj}j be a subset of an arbitrary group G. Then, the following
statements are equivalent:

(a) U is a (graphic) basis of 〈U〉G.

(b) The natural epimorphism GΓU,G 〈U〉G (uj 7→ uj) is injective.

Proof. The implication (b)⇒ (a) is obvious. For the converse, suppose that there
exists a simple graph Γ such that ϕ : 〈U〉G → GΓ is a group isomorphism.

Partially commutative groups constitute a surprisingly rich family, and have
been thoroughly studied — specially in the finitely generated case — during the
last decades in different branches of mathematics and computer science. They
appear in the literature also as semi-free groups, graph groups, or right-angled Artin
groups (when they are finitely generated), among other names. Below, we recall
some results about PC-groups we will need throughout the paper; we refer the
reader to [Cha07; EKR05; Gre90; Kob13] for more detailed surveys, and further
reference.

It is obvious that every simple graph Γ presents exactly one PC-group; more
precisely, we have a surjective map Γ 7→ GΓ between (isomorphic classes of) simple
graphs, and (isomorphic classes of) PC-groups.

Remark 6.1.3. The abelianization of a PC-group GΓ is always the free-abelian group
with rank equal to the number of vertices in Γ (and hence to the rank of GΓ ).
Namely, if Γ = (X,E), then

(GΓ )
ab =

⊕
x∈X

Z ,

and thus,
rk GΓ = rk G ab

Γ = |X| , (6.2)

with the canonical basis consisting of the (classes of) vertices in Γ . The abelian-
ization map is hence given by w(X) 7→ w = (|w|i)i, where |w|i denotes the total
xi-exponent in w (exactly in the same way as the abelianization works for free
groups). In particular, the abelianization of any PC-group of finite rank m, is the
finitely generated free-abelian group Zm.
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So, it is clear that every pair of graphs presenting the same PC-group must have
the same order (equal to the rank of the group). This, however, turns out to be a
very weak statement since a key result proved by Droms in [Dro87b] states that
the map Γ 7→ GΓ is indeed bijective.

Theorem 6.1.4 (Droms, 1987, [Dro87b]). Let Γ1, Γ2 be simple graphs. Then, the
groups GΓ1 , GΓ2 are isomorphic if and only if the graphs Γ1, Γ2 are isomorphic, i.e.,

GΓ1 ' GΓ2 (as groups) ⇔ Γ1 ' Γ2 (as graphs) .

Corollary 6.1.5. For any PC-group GΓ , the following conditions are equivalent: (a) Γ is
finite, (b) GΓ is finitely presented, (c) GΓ is finitely generated.

Definition 6.1.6. Finitely generated PC-groups are also called right-angled Artin
groups (RAAGs, for short); we will use this last denomination when we want to em-
phasize the finitely generated character of a PC-group; whereas the term PC-group
will refer to a general — possibly infinitely generated — partially commutative
group.

Remark 6.1.7. Note that any local property (i.e., involving only finitely many
vertices) holding for RAAGS, also holds for general PC-groups. For example an
infinitely generated PC-group is Howson if and only if every emmbedded RAAG
is Howson (see Section 6.2.1).

However, many important algebraic properties of RAAGs do no not general-
ize to infinitely generated PC-groups. Specially important for us is the case of
Hopfianity, which, in the finitely generated case, can be deduced from residual
finiteness (see [Kob13]).

Proposition 6.1.8. RAAGs are Hopfian.

Of course infinitely generated PC-groups are not Hopfian in general (consider, for
example, any infinitely generated free group FX, where any infinite proper subset
of vertices S ⊆ X of the same cardinality as X generate a proper quotient isomorphic
to the starting group FX).

From Theorem 6.1.4, we have an absolutely transparent geometric characterization
of isomorphic classes of PC-groups (resp., RAAGs): we can identify them with
simple (resp., finite simple) graphs . Hence, several graph-related notions will be
relevant to our discussion.

Examples 6.1.9. Some families of graphs having protagonism throughout the chapter
are the following:

• Complete graphs (Kn): graphs with n vertices and all possible edges between
them.
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• Edgeless graphs (Kc
n): graphs with n vertices and no edges.

• Path graphs (Pn): graphs with n vertices {1, . . . ,n}, and every vertex except
the last one, adjacent to the next one.

• Cycle graphs (Cn): graphs with n vertices {1, . . . ,n}, and every vertex except
adjacent to the next one modulo n.

K5 Kc
5 P5 C5

Fig. 6.1: Complete, edgeless, path, and cycle graphs of order 5

Definition 6.1.10. A central vertex (a.k.a. universal, or dominating vertex) is a vertex
adjacent to any other vertex in the graph. The center of a graph Γ , denoted by Z (Γ),
is the set of central vertices in Γ . A graph having (at least) one central vertex is
called a cone.

If there is no possible confusion, we will usually abuse notation and also call the
center of Γ , and denote it by Z (Γ), the subgraph induced in Γ by the set of central
vertices.

Lemma 6.1.11. The center of a graph is the intersection of all its maximal complete
subgraphs.

Proof. Let p be a vertex lying in the center of a graph Γ , and let K be a maximal
complete subgraph of Γ ; then p must belong to K, because otherwise K would
be strictly included in the complete graph induced by VK ∪ {p}, contradicting the
maximality of K.

For the converse implication, suppose that p is a vertex belonging to every maximal
complete subgraph of Γ . Then, for every other vertex q 6= p in Γ (since every vertex
in a graph belongs to some maximal complete subgraph), p belongs to some
maximal complete subgraph of Γ containing q, and in particular, p is adjacent to q,
as we wanted to prove.

Remark 6.1.12. Note that the center of a graph Γ must be a complete graph contained
in any (but not necessarily equal to any) largest complete subgraph in Γ .

A subgraph ∆ of a graph Γ = (X,E) is said to be full (or induced) if it has exactly
the edges that appear in Γ over its vertex set, say Y ⊆ X. Then, ∆ is called the full
subgraph of Γ spanned by Y, and we denote it by ∆ = Γ [Y]. If Γ has a full subgraph
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isomorphic to a certain graph ∆, we will abuse the terminology and say that ∆
is (or appears as) a full subgraph of Γ ; we denote this situation by ∆ 6 Γ . When
none of the graphs belonging to a certain family F appear as a full subgraph of Γ ,
we say that Γ is F-free. In particular, a graph Γ is ∆-free if it does not have any full
subgraph isomorphic to ∆.

Remark 6.1.13. Every subgraph of a F-free graph is again F-free.

Definition 6.1.14. A graph is said to be chordal if it contains no induced cycles of
length stricly greater than 3; i.e., if it is {Cn,n > 4}-free.

In view of Theorem 6.1.4, it is natural to look for correspondences between
algebraic properties (of PC-groups), and geometric properties (of the graphs
presenting them). It turns out that several algebraic properties can be expressed in
terms of forbidden subgraphs. The most relevant to our discussion will be:

• P3-free graphs: these are disjoint unions of complete graphs (a.k.a. cluster
graphs), corresponding to Howson PC-groups; see Theorem 6.2.2.

• Finite chordal graphs, corresponding to coherent RAAGs; see Theorem 6.1.24.

• Finite {P4,C4}-free graphs (i.e., Droms graphs) corresponding to Droms RAAGs;
see Theorem 6.1.21.

Also, two types of operations between graphs will represent a prominent role
throughout the chapter; namely, disjoint union, and graph join. Recall that the dis-
joint union of a family of graphs {Γi = (Xi,Ei)}i is the graph

⊔
i Γi := (

⊔
i Xi,

⊔
i Ei);

whereas the join of two graphs Γ and Γ ′, denoted by Γ ∨ Γ ′, is the graph obtained
by adding to Γ t Γ ′ every edge joining a vertex in Γ to a vertex in Γ ′.

For example, the PC-groups associated to the complete graph Kn, and its com-
plementary (the edgeless graph) Kc

n, are respectively the free-abelian group Zn,
and the free group Fn. We can think of PC-groups as a generalization of these
two extreme cases describing the intermediate commutativity situations between
them.

So, for example, the finitely generated free-abelian times free group Zm ×Fn

studied in Part I is presented by the join Km ∨Kc
n of a complete graph of order m,

and an edgeless graph of order n.

Fig. 6.2: The graph K3∨Kc
2 presenting the group Z3 ×F2
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All these facts are direct from definitions, and make the equivalence between the
conditions in Lemma 6.1.15 almost immediate as well.

Lemma 6.1.15. Let Γ be an arbitrary simple graph, and GΓ the corresponding PC-group.
Then, the following conditions are equivalent:

(a) The path on three vertices P3 is not a full subgraph of Γ (i.e., Γ is P3-free).

(b) The reflexive closure of Γ is a transitive binary relation.

(c) The graph Γ is a disjoint union of complete graphs.

(d) The group GΓ is a free product of free-abelian groups.

More generally, disjoint unions and joins of graphs correspond to free products,
and weak direct products of PC-groups respectively.

Proposition 6.1.16. A PC-group GΓ splits as a non-trivial free product if and only if its
defining graph Γ is disconnected.

Proof. The “if” part is immediate from the graph presentation: if Γ = AtB with
A,B 6= ∅, then GΓ = GA ∗GB with GA, GB 6= {1}.

For the converse, suppose a connected graph Γ with a nontrivial decomposi-
tion GΓ = A ∗B. It is clear that Γ 6= K1, so we can consider two adjacent vertices
p ∼ q in Γ . Now, since 〈p, q〉 ' GK2 = Z2 (which contains no non-abelian free
subgroups), the Kurosh subgroup theorem implies that 〈p, q〉 is contained in certain
conjugate of A or B. And, since Γ is connected, it follows that every vertex in Γ is
conjugate to an element in one of the free factors, say A. But this is not possible be-
cause after abelianizing we would get rkG = rkG ab = rkA ab 6 rkA < rkA+ rkB
(in contradiction with the Grushko-Neumann theorem).

On the other hand, the corresponding relation between joins of graphs and direct
products of PC-groups is an immediate corollary of the description of centralizers
in PC-groups (see [Ser89] and [BC12]).

Theorem 6.1.17. Let 1 6= w ∈ GΓ be a cyclically reduced word. Then, the following
statements are equivalent:

(a) The element w is contained in a join subgroup.

(b) The centralizer of w in GΓ is not cyclic.

(c) The centralizer of w in GΓ is contained in a join subgroup.

(Recall that a word w ∈ GΓ is called cyclically reduced if it has minimal length among
all reduced words given by cyclically permuting the letters of w.)
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Corollary 6.1.18. A PC-group GΓ splits as a non-trivial direct product if and only if its
defining graph Γ is a join.

Corollary 6.1.19. The center of a PC-group GΓ is the (free-abelian) subgroup generated
by the set of central vertices in Γ , i.e.,

Z (GΓ ) = 〈Z (Γ)〉 '
⊕

p∈Z(Γ)Z .

Regarding subgroups, the first natural result is that those generated by subsets of
vertices behave as one might expect: they are again PC-groups, and precisely pre-
sented by the corresponding induced subgraph. Below, we provide an elementary
proof for this well known fact, which will be used later.

Lemma 6.1.20. Let Γ be an arbitrary simple graph, and Y a subset of vertices of Γ . Then,
the subgroup of GΓ generated by Y is a PC-group presented by Γ [Y].

Proof. Let X be the set of vertices of Γ (then Y ⊆ X), and consider the following
two homomorphisms:

GΓ [Y]
ι−→ GΓ

y 7−→ y

, GΓ
ρ−→ GΓ [Y]

Y 3 y 7−→ y

X \ Y 3 x 7−→ 1

.

It is clear that both ι and ρ are well defined homomorphisms (they obviously
respect relations). Moreover, note that the composition ιρ (ι followed by ρ) is
the identity map on GΓ [Y]. Therefore, ι is a monomorphism, and thus GΓ [Y] is
isomorphic to its image under ι, which is exactly the subgroup of GΓ generated by
Y, as we wanted to prove.

Despite the naive appearance of the last result, it soon becomes clear that the full
lattice of subgroups of a PC-group GΓ can be rather complicated (even when Γ is
finite). To start with, it turns out that not every subgroup of a PC-group is again a
PC-group; as Droms proved in [Dro87c] through the neat result below.

Theorem 6.1.21 (Droms, 1987, [Dro87c]). Let Γ be a finite graph. Then, every subgroup
of GΓ is again a (possibly infinitely generated) PC-group if and only if Γ is {P4,C4}-free.

Since these families of groups and graphs are the main protagonists in our discus-
sion, it is convenient to have a common name for them.

Definition 6.1.22. A Droms graph is a finite {P4,C4}-free graph. Accordingly, a
Droms group is a PC-group (finitely) presented by a Droms graph.
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So, Droms PC-groups, are precisely those finitely generated PC-groups GΓ having all
their subgroups again partially commutative (that is presented by some graph, not
necessarily a subgraph of Γ ). Indeed, a bit more can be deduced from the definition.

Corollary 6.1.23. Every subgroup of a Droms group is again a (possibly infinitely
generated) PC-group with {P4,C4}-free commutation graph. In particular, every finitely
generated subgroup of a Droms group is again a Droms group.

Proof. Let H be a subgroup of a Droms group GΓ . From theorem 6.1.21, we have
that H ' G∆, where ∆ is a possibly infinite graph. Now, again by theorem 6.1.21,
if a graph Λ ∈ {P4,C4} were a full subgraph of ∆, then there would exist a
non-PC-group K, such that K 6 GΛ 6 G∆ 6 GΓ , in contradiction with Γ being
Droms. Finally, according corollary 6.1.5 the subgroup being finitely generated is
equivalent to the defining graph being finite, and the final remark follows.

From Corollary 6.1.5, it is clear that Droms groups are coherent (every finitely
generated subgroup is finitely presented). However, this last class was proved to
be bigger, again by Droms, who provided in [Dro87a] a characterization also in
terms of forbidden graphs.

Theorem 6.1.24 (Droms, 1987, [Dro87a]). Let Γ be a finite graph. Then, the PC-group GΓ

is coherent if and only if the graph Γ is chordal.

We remark the pertinacious absence of GC4 = F2 ×F2 from any collection of ’well-
behaved’ partially commutative groups (see also Mikhailova’s Theorem 6.1.30 in the
next section). Yet another argument in the same direction was given by Baumslag
and Roseblade in [BR84], where they prove that there exist uncountably many
nonisomorphic subgroups of GC4 = F2 × F2 (see [DSS92] for more examples
of PC-groups having this property).

6.1.1 First algorithmic properties

When considering algorithmic properties about partially commutative groups, we
will often — depending on whether the studied property admits a reasonable
algorithmic description — restrict ourselves to the finitely generated ones (that we
will call RAAGs).

Notation 6.1.25. If there exists an algorithm that solves the problem PROB(G), then
we say that the group G satisfies (property) PROB, or that property PROB(G) is
satisfied. We extend this convention to families of groups; namely if PROB(G) is
solvable for every group in a certain family F, we say that F satisfies PROB, or
that PROB(F) is satisfied.
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For example, it is well known that free groups satisfy WP (word problem) and CP
(conjugacy problem); and, as we will see, PC-groups do not satisfy MP (subgroup
membership problem) since, for example MP(F2 ×F2) = MP(GC4) is undecidable.

Remark 6.1.26. Note that, for RAAGs, one can always algorithmically obtain a
graphic presentation from any given finite presentation, by brute force: just keep
exploring the tree of all possible Tietze transformations applied to the initial (finite)
presentation until getting one in the form of a PC-group (namely, with all relators
being commutators or certain pairs of generators); this will be achieved in finite
time because we know in advance that H is indeed a PC-group.

So, without lost of generality we can always assume (finite) graphic presentations
for RAAGs.

For this family of groups — as often happens — the solvability of the word
problem (WP) relies in the existence of “good normal forms” for its elements.
Several different variants of normal forms for RAAGs have been introduced
([Die87; DK93; EKR05]) since Baudisch provided the first ones in [Bau77], allowing
him to also give the following useful result.

Proposition 6.1.27 (Baudisch, 1981, [Bau81]). RAAGs are torsion-free.

Accordingly, several solutions to the word problem have been found for RAAGs,
some of them related to broader contexts — such as partially commutative monoids
[Wra88; Wra89; LWZ90], or automatic groups [HM95; Van94] — and including
also a (linear-time) solution for the conjugacy problem (CP). See a nice survey of
both problems in [CGW09].

On the other hand, Theorem 6.1.4 (together with Remark 6.1.26) reduces the
isomorphism problem (IP) for RAAGs to the graph isomorphism problem (which
is obviously solvable since the involved graphs are always finite). We summarize
these classic results in a single statement.

Theorem 6.1.28. All three Dehn problems (WP, CP and IP) are solvable for RAAGs.

However, the algorithmic benignity of the properties stated so far does not always
keep for problems that involve subgroups. For example, in [Mik58], Mikhailova
uses a clever trick to translate the word problem of a finitely presented group
into the membership problem of certain subgroup of F2 × F2 (i.e., the RAAG
presented by the square graph), to then — taking advantage of the existence of
finitely presented groups with unsolvable word problem — prove that F2 ×F2

has unsolvable subgroup membership problem (MP), maybe the first natural
algorithmic problem involving subgroups.
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(Subgroup) membership problem, MP(G). Given a finite set of words w,w1, . . . ,wn,
in the generators of G, decide whether w represents an element in 〈w1, . . . ,wn〉G.

Remark 6.1.29. Note that from the computability point of view, for this particular
problem, there is no difference between the ambient being (finitely generated)
RAAGS, or (general) PC-groups: as far as we have the local (RAAG) description of
the letters involved in the input, the problem remains the same.

Theorem 6.1.30 (Mikhailova, 1958, [Mik58]). The group F2 × F2 has unsolvable
subgroup membership problem.

This result automatically establishes the family presented by C4-free graphs as the
lowest possible threshold for the class of PC-groups having solvable MP. Note that
coherent (and thus Droms) PC-groups lie within this family of candidates; and
indeed, in 2008, they were proved to have solvable MP.

Theorem 6.1.31 (Kapovich, Weidmann, and Myasnikov, 2005, [KWM05]). Let Γ be
a finite chordal graph (i.e., GΓ is a coherent RAAG) Then,

(1) GΓ has decidable subgroup membership problem.

(2) given a finite subset S ⊆ GΓ , we can algorithmically find a presentation for the
subgroup 〈S〉 6 GΓ .

Remark 6.1.32. Observe the current gap between the PC-groups which are known to
have unsolvable MP (namely, those presented by graphs with an induced C4), and
those which are known to have solvable MP (namely, those presented by chordal
graphs). This, of course, leaves open many natural questions, for example the ones
below (in increasing order of generality).

Question 2. Does the PC-group presented by the 5-cycle have solvable MP?

Question 3. For which n > 5 does the PC-group presented by the n-cycle have solv-
able MP?

Question 4. Characterize the RAAGs with solvable MP.

Finally, we recall that for partially commutative monoids, the exact border for
the corresponding membership problem is already known: Lohrey and Steinberg
prove in [LS08], that the submonoid membership problem is solvable for a partially
commutative monoid if and only if its commutation graph is Droms. Note that this
implies, in particular, that the 4-path presents a group with solvable group mem-
bership problem (it is chordal), but unsolvable monoid membership problem (it is
not Droms).
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6.2 Intersections
In group theory, the study of intersections of subgroups has been recurrently
considered in the literature. Roughly speaking, the problem is “given H,K 6 G,
find H∩K”. However, in the context of Combinatorial Group Theory, where groups
may be infinite, or even infinitely generated, one needs to be more precise about
the word find, specially if one is interested in the computational point of view.

Definition 6.2.1. A group G is said to satisfy Howson’s property — or to be Howson,
for short — if the intersection of any two (and so, finitely many) finitely generated
subgroups is again finitely generated.

For these groups, a natural meaning for the above sentence is ‘given finite sets
of generators for two subgroups H,K 6 G, compute a finite set of generators for the
intersection H∩K’.

Classical examples of Howson PC-groups are the aforementioned families of free-
abelian, and free groups (note that no rank restriction is needed: since Howson
property only alludes to finitely generated subgroups, any instance of the property
within a general free, or free-abelian group, can be reduced to a finitely generated
ambient, which is again of the same kind). In Qn (and Zn) Howson’s property
is granted, since every subgroup is again finitely generated; and one can use
linear algebra (plus finite index considerations) in order to compute a finite set of
generators for H∩K, in terms of given finite sets of generators for H and K.

For the case of free groups, the latter is not true, but Howson himself proved
in [How54] that the intersection of two finitely generated subgroups is always
again finitely generated (here is where the name of the property comes from); and
also gave an algorithm to compute generators for the intersection (see Figure 5.49,
or [Sta83] for a later reformulation of this result in the nice language of pull-backs
of finite automata).

However, not every PC-group is Howson: as we have seen in Part I, the subfamily of
free-abelian times free groups turns out to be non-Howson in every non-degenerate
case (i.e., they are Howson if and only if they do not have Z×F2 as a subgroup).
So, two natural questions emerge:

• is it possible to characterize those PC-groups which are Howson?

• is it possible to decide, given two finitely generated subgroups in a PC-group,
whether their intersection is finitely generated or not?

It turns out that the first question — considered below — is straightforward,
and easily decidable algorithmically (in the finitely generated case); whereas the
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study of the — much more involved — second one is developed afterwards, and
constitutes the main topic of this part of the dissertation.

6.2.1 Characterizations of Howson PC-groups

Along the following lines, we will see (Theorem 6.2.2) that the same condition as
for free-abelian times free groups (namely, not containing Z×F2 as a subgroup)
characterizes Howson property within PC-groups; and that it is equivalent to other
important algebraic properties, such as being fully residually free.

For limit groups there are many different equivalent definitions. We shall use the
one using fully residually freeness: a group G is said to be fully residually free if for
every finite subset S ⊆ G such that 1 /∈ S, there exist an homomorphism φ from G

to a free group such that 1 /∈ φ(S). Then, a limit group can be defined as a finitely
generated fully residually free group.

From this definition, it is not difficult to see that both free and free-abelian groups
are fully residually free, and that subgroups and free products of fully residually
free groups are again fully residually free. It is also straightforward to see that limit
groups are commutative-transitive i.e., , for 1 6= x,y, z ∈ G, if x commutes with y and
y commutes with z then x commutes with z (see [Wil05] for a gentle introduction
to limit groups, and [CG05] for a more detailed — topologically oriented — survey
focusing on its relation with the universal theory of free groups).

In [RSS13], the authors study the family of finitely generated partially commutative
groups for which the fixed points subgroup of every endomorphism is finitely
generated. Concretely, in Theorem 3.1 they characterize this family as those groups
consisting in (finite) free products of finitely generated free-abelian groups.

Although it is an immediate consequence of well know facts, below we provide
an elementary proof for two extra characterizations of this family, namely: being
Howson, and being a limit group. Moreover, we observe that, for some of the
properties, no restriction in the cardinal of the generating set is needed, and the
result holds in full generality (i.e., for every — possibly non-finitely generated —
PC-group).

As proved by Rodaro, Silva, and Sykiotis in [RSS13, Theorem 3.1], if we restrict
to finitely generated PC-groups, (any of) the conditions in Lemma 6.1.15 describe
exactly the family of those having finitely generated fixed point subgroup for every
endomorphism — or equivalently, those having finitely generated periodic point
subgroup for every endomorphism.

In the following theorem, we provide two extra characterizations for the PC-groups
described in Lemma 6.1.15 (including the infinitely generated case). For complete-
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ness, we summarize them in a single statement together with the conditions
discussed above.

Theorem 6.2.2. Let Γ be an arbitrary (possibly infinite) simple graph, and GΓ the PC-
group presented by Γ . Then, the following conditions are equivalent:

(a) GΓ is fully residually free,

(b) GΓ is Howson,

(c) GΓ does not contain Z×F2 as a subgroup,

(d) the graph Γ is P3-free,

(e) GΓ is a free product of free-abelian groups.

Moreover, if the graph Γ is finite (i.e., GΓ is finitely generated), then the following additional
conditions are also equivalent:

(f) For every φ ∈ End GΓ , the subgroup

Fixφ = {g ∈ GΓ : φ(g) = g }

of fixed points of φ is finitely generated.

(g) For every φ ∈ End GΓ , the subgroup

Perφ = {g ∈ GΓ : ∃n > 1 φn(g) = g }

of periodic points of φ is finitely generated.

Proof. [(a) ⇒ (b)]. Dahmani obtained this result for limit groups (i.e., assum-
ing GΓ finitely generated) as a consequence of them being hyperbolic relative to
their maximal abelian non-cyclic subgroups (see Corollary 0.4 in [Dah03]). We note
that the finitely generated condition is superfluous for this implication since the
Howson property involves only finitely generated subgroups, and every subgroup
of a fully residually free group is again fully residually free.

[(b) ⇒ (c)]. Since Howson’s property is subgroup-hereditary, it is enough to show
that the group Z×F2 does not satisfy the Howson property (see Lemma 2.3.1).

[(c) ⇒ (d) ⇒ (e)]. From Lemma 6.1.20, if GΓ does not contain the group Z×F2

(which is presented by P3) as a subgroup, then P3 is not a full subgraph of Γ .
Equivalently (see Lemma 6.1.15), GΓ is a free product of free-abelian groups.

[(e) ⇒ (a)]. This is again clear, since both free-abelian groups and free products
of fully residually free groups are again fully residually free. Note here, that no
cardinal restriction is needed; neither for the rank of the free-abelian groups, nor
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for the number of factors in the free product, since the definition of fully residually
freeness involves only finite families.

Finally, for the equivalence between (e), (f) and (g) under the finite generation
hypothesis, see Theorem 3.1 in [RSS13].

Note that Remark 6.1.26, together with condition (d) in theorem 6.2.2, immedi-
ately provides the algorithmic recognizability of Howson RAAGs, in the finitely
generated case.

An immediate corollary of Lemma 6.1.20 is that the PC-group presented by any
full subgraph ∆ 6 Γ is itself a subgroup of the PC-group presented by Γ , i.e., for
every pair of graphs Γ ,∆, we have ∆ 6 Γ ⇒ G∆ 6 GΓ .

The (eventual) converse implication suggests a distinguished family of PC-groups,
that we will call explicit.

Definition 6.2.3. A PC-group G∆ (or the graph ∆ presenting it) is said to be explicit
if whenever you have it as a subgroup of a PC-group GΓ , then its commutation
graph ∆ is an induced subgraph of Γ ; that is, if for every graph Γ ,

∆ 6 Γ ⇔ G∆ 6 GΓ . (6.3)

For example, it is straightforward to see that the only explicit edgeless graphs are
those with zero, one, and two vertices: the first two cases are obvious, and for the
third one, note that if F2 6 G then G can not be abelian. Finally, for n > 3, it is
sufficient to note (again) that Fn is not an explicit subgroup of F2.

At the opposite extreme, the following is a well-known result relating the maximum
abelian rank of a PC-group GΓ with the order of a largest clique in Γ (see [KK13,
Lemma 18]).

Lemma 6.2.4. The maximum rank of a free-abelian subgroup of a RAAG GΓ is the size of
a largest clique in Γ .

As an immediate consequence, we have that every (finite) complete graph Kr is
explicit:

Zr 6 GΓ ⇔ Kr 6 Γ , (6.4)

and therefore, no infinitely generated free-abelian group can be embedded into a
RAAG.

In the last years, embedability between PC-groups has been matter of growing
interest and research (see [Kam09], [KK13] and [CDK13]) which has provided some
new examples of explicit graphs, such as the square C4 (proved by Kambites, in
[Kam09]), or the path on four vertices P4 (proved by Kim and Koberda in [KK13]).
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To end with, we just remark that our characterization theorem (Theorem 6.2.2)
immediately provides a new member of this family.

Corollary 6.2.5. The path on three vertices P3 is explicit.
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7Intersection problem for Droms
groups

As we have already discussed, within any ambient containing non-Howson groups
(e.g. that of PC-groups) it is natural to include the decision about finite genera-
tion of the intersection among the requirements of any reasonable definition for
(algorithmic) subgroup intersection problem.

We formalize below this classical definition, together with the closely related coset
intersection problem. Note, that every problem has a decision version consisting in
checking some property, and the corresponding search version which, depending on
the problem, could consist in finding a witness, or in characterizing all witnesses
for the property. Of course, such a witness can only exist when the property holds.
Thus, from the algorithmic point of view, the reasonable combination of both
problems (that we call the full version of the problem) is defined to consist in first
deciding whether the property holds or not, and if so, find a witness for it.

7.1 Algorithmic intersection problems

We recall the standard intersection problems for subgroups and cosets in a finitely
presented group G = 〈X | R〉.

Subgroup intersection (decision) problem, SIPd(G). Given a finite set of words
u1, . . . , un, v1, . . . , vm in the generators of G, decide whether the subgroup intersection
〈u1, . . . , un〉G ∩ 〈v1, . . . , vm〉G is finitely generated or not.

Subgroup intersection (search) problem, SIPs(G). Given a finite set of words u1, . . . , un,
v1, . . . , vm in the generators of G, compute a generating set for the subgroup intersection
〈u1, . . . , un〉G ∩ 〈v1, . . . , vm〉G.

Subgroup intersection (full) problem, SIP(G). Given a finite set of words u1, . . . , un,
v1, . . . , vm in the generators ofG, decide whether the subgroup intersection 〈u1, . . . , un〉G∩
〈v1, . . . , vm〉G is finitely generated or not; and in affirmative case, compute a generating
set for this intersection.
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In Part I (see also [DV13]) we prove that direct products of free-abelian and free
groups satisfy SIP. The goal of the present chapter is to extend and complement
the algebraic arguments given there, in order to prove the same property (and some
technically stronger variations) for a much wider family of groups, namely that
of Droms PC-groups. In the course of doing so, we realized that SIP in free-like
contexts is closely related to the also classical Coset Intersection Problem (CIP),
stated below.

Coset intersection (decision) problem, CIPd(G). Given a finite set of elements w,w ′,
u1, . . . , un, v1, . . . , vm in the generators ofG, decide whether the coset intersection w〈u1, . . . , un〉G∩
w ′〈v1, . . . , vm〉G is empty or not.

Coset intersection (search) problem, CIPs(G). Given a finite set of elements w,w ′,
u1, . . . , un, v1, . . . , vm in the generators of G, compute a representative for the coset inter-
section w〈u1, . . . , un〉G ∩w ′〈v1, . . . , vm〉G.

Coset intersection (full) problem, CIP(G). Given a finite set of elements w,w ′,
u1, . . . , un, v1, . . . , vm in the generators ofG, decide whether the coset intersection w〈u1, . . . , un〉G∩
w ′〈v1, . . . , vm〉G is empty or not; and in negative case compute a coset representative.

Remark 7.1.1. Note that, in terms of computability, the search problem in CIP is
superfluous (i.e., CIP ⇔ CIPd ⇒ CIPs). Namely, the computation of a coset
representative g ′′ ∈ gH∩ g ′K once known that gH∩ g ′K 6= ∅ can always be done
by a brute force search along an enumeration of all the elements in G (even without
assuming the word problem for G, since we only need its yes part, which is always
computable).

Also, note that, since (Hg)−1 = g−1H and g1Hg2 = g1g2(g
−1
2 Hg2) = g1g2H

g2 , the
variants of CIP for right and left cosets are equivalent problems.

Abelian groups clearly satisfy CIP, as do free groups as well — with a well-
known modification of the pullback argument given in Stallings [Sta83] (see
also Section 5.5.1). Moreover, in [DV13] CIP is also proved for groups of the
form Zm ×Fn.

Some convenient variations of the previous intersection problems are considered
below for a general finitely presented group G = 〈X | R〉.

Twofold intersection problem, TIP(G). Solve both SIP(G) and CIP(G). Mnemoni-
cally,

TIP(G) = SIP(G) + CIP(G) .

208 Chapter 7 Intersection problem for Droms groups



Extended subgroup intersection problem, ESIP(G). Given a finite set of elements
w,w ′, u1, . . . , un, v1, . . . , vm in the generators of G, decide whether the intersection of the
subgroups H = 〈u1, . . . , un〉G and K = 〈v1, . . . , vm〉G is finitely generated or not; and in
affirmative case, compute a generating set for the subgroup intersection H∩K, and decide
whether the coset intersection wH∩w ′K is empty or not. Mnemonically,

ESIP(G) = SIP(G) + CIPfg(G) . (7.1)

Notice that the difference between properties TIP and ESIP is that the second one
says nothing about gH∩g ′K in the case when H∩K is not finitely generated, while
TIP is required to answer about emptyness even in this case; this is a subtlety that
will become important along the chapter.

Remark 7.1.2. Note that all these properties (TIP, ESIP, CIP, SIP, MP and WP)
clearly pass to subgroups.

Several obvious relations among already introduced problems are summarized in
the diagram below:

TIP

ESIP SIP

MP WP

CIP CIPfg

(∗)

Fig. 7.1: Some dependencies between algorithmic problems

where the starred implication is true with the extra assumption that the involved
group G is torsion-free, and has solvable word problem.

Lemma 7.1.3. If a torsion-free group satisfies SIP and WP, then it also satisfies MP.

Proof. Let G = 〈X | R〉. Given words u, v1, . . . , vm in X (call h = [u]G, and ki =
[vi]G), apply SIP to H = 〈u〉G, and K = 〈v1, . . . , vm〉G): since H ∩ K is cyclic (and
so, finitely generated), SIP will always answer yes, and return a finite set of
words w1, . . . ,wp in X representing elements g1, . . . ,gp ∈ G, such that H ∩ K =

〈g1, . . . ,gp〉 = 〈hr〉, for some r ∈ Z.

Now, since each gi must be a power of h (say gi = hri), we can compute the
exponents r1, . . . , rp ∈ Z by enumerating all powers of u and searching, by brute
force, which of them represents each gi, for each i = 1, . . . , r. This can be done
without using WP, since we already have the information that each gi is indeed
a power of h. That is, for each i = 1, . . . , r, we can start checking — in parallel —
whether wiu−ri ∈ 〈〈R〉〉, for r = 0,±1,±2, . . . until we find a suitable ri.

7.1 Algorithmic intersection problems 209



Once we have obtained explicit integers r1, . . . , rp ∈ Z such that gi = hri , we
can effectively compute the greatest common divisor r = gcd(r1, . . . , rp) satisfying
H∩K = 〈g1, . . . ,gp〉 = 〈hr〉.

Now, it is clear that h ∈ K if and only if h ∈ H ∩ K = 〈hr〉; i.e., if and only
if h = hrs, for some s ∈ Z.

To decide whether such an s exists, first apply WP to the input word u in order
to decide whether h = 1 or not. In the affirmative case the answer is obviously
yes; and otherwise (i.e., if h 6= 1) torsion-freeness of G tells us that h ∈ K, and the
answer is yes, if and only if r = ±1.

Remark 7.1.4. The torsion-freeness hypothesis is not necessary for the CIPfg ⇒ MP
implication, since g ∈ 〈h1, . . . ,hk〉 ⇔ g · {1} ∩ 1 · 〈h1, . . . ,hk〉 6= ∅.

Corollary 7.1.5. For PC-groups, both SIP and CIP imply MP. In particular, SIP and CIP
are unsolvable for F2 ×F2 = GC4 , and hence for any PC-group containing it.

Proof. It is enough to recall that PC-groups are torsion-free, that SIP, CIP and MP
pass to subgroups; and that F2 ×F2 = GC4 has unsolvable MP, and is explicit.

So, we can not pretend to prove the solvability of SIP (or ESIP) and CIP for
PC-groups in full generality: the maximum possible scope being — in principle
— the same as that of MP, namely the family presented by C4-free graphs. In the
next section we discuss an important subfamily of that of C4-free graphs for which
we are able to prove the solvability of both problems.

7.2 Droms groups

The family of Droms groups has often established the threshold of positive algo-
rithmic properties within both partially commutative groups (see e.g. [RSS13]),
and partially commutative monoids (see [AH89; LS08]). Particularly suggestive
for us is the result from Aalbersberg and Hoogeboom in [AH89] stating that the
intersection problem for a partially commutative monoid is solvable if and only if
its commutation graph is Droms. Moreover, since they have solvable membership
problem (recall that they are coherent and Figure 7.4), they constitute a natural
target where to study intersection problems.

Recall that Droms groups are the finitely generated PC-groups having all their
subgroups being again PC-groups, and correspond exactly to those PC-groups
presented by finite {C4,P4}-free graphs (which we call Droms graphs).
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Fig. 7.2: Forbidden induced graphs in Droms graphs

This family of graphs has also been called transitive forests, trivially perfect graphs,
comparability graphs of trees, or quasi-threshold graphs, and many equivalent charac-
terizations are known for it (see [Wol62; Wol65; Gol78; JJC96; Rub15]).

Next, we detail one of such characterizations (providing a recursive construction
which will allow us to use induction to prove the solvability of SIP and CIP for
this family). It follows easily from the property stated below.

Lemma 7.2.1. Every nonempty Droms graph is either disconnected, or contains a central
vertex.

Proof 1. By transposition, suppose that Γ is connected, Droms, and centerless. Note
that, since Droms graphs are finite, every vertex has bounded degree.

Now, consider a vertex t non-adjacent to a vertex q of maximum degree in Γ (there
must be at least one because otherwise q would be central), and a shortest path
P from q to t. Let q, r, s be the starting vertices of P (note that s is not adjacent
to q and may equal t). Since deg(q) > deg(r), there is at least one neighbour p of
q which is not adjacent to r. But then, the 4-path pqrs have no chords (p is not
adjacent to r, and s is not adjacent to q). Thus, either p is adjacent to s and the
4-cycle pqrs is induced in Γ , or p is not adjacent to s and the 4-path pqrs is induced
in Γ . This completes the proof.

Proof 2. By induction on n (the number of vertices of the graph).

[n = 1, 2, 3] Trivial.

[n = k⇒ n = k+ 1] Let Γk+1 be a connected Droms (i.e., {P4,C4}-free) graph with
k+ 1 vertices. Then every connected component of any k-full subgraph of Γk+1 is
again a nonempty connected Droms graph. Let p be the vertex in V(Γk+1r Γk), for
some k-full subgraph Γk of Γk+1.

Then, from the induction hypothesis (IH), we know that every connected compo-
nent Cj of Γk has nontrivial center Zj. Now we distinguish two cases:

(a) Γk is connected, and hence there is only one connected component in Γk
with center Z. Then, we claim that V is adjacent to every vertex in Z, which
is hence also central in Γk+1. This is so because otherwise, since Γk+1 is
connected, then there must exist a vertex r ∈ Γk r Z adjacent to q, and —
since r is noncentral in Γk — another noncentral vertex s in Γk not adjacent to
r. But then, if we take a central vertex z ∈ Z, we only have two possibilities:
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• q is adjacent to s, and thus q r z s q is an induced square
in Γk+1.

• q is not adjacent to s, and thus q r z s is an induced 4-path
in Γk+1.

Since none of this possibilities is possible (recall that Γk+1 is {P4,C4}-free by
hypothesis), we conclude that q is adjacent to every vertex in Z as claimed.

(b) Γk is disconnected, and hence Γk has at least two different connected compo-
nents. Then, we claim that q is central in Γk+1. Again, we distinguish two
cases:

• every connected component in Γk contains a single vertex. Then (since
Γk+1 is connected) q must be adjacent to every other vertex in Γk+1.

• some connected component in Γk, say C, contains at least 2 vertices. Now
suppose, by contraposition, that q is not central in Γk+1. Then, since
(Γk+1 is connected) there must exist a vertex r in C not adjacent to q,
and adjacent to some vertex z central in Γk. But then, for any vertex z
adjacent to q in any connected component different from C (which must
exist since Γk+1 is connected), we will have that r z q t is an
induced 4-path in Γk+1, which is not possible since Γk+1 is Droms.

Thus, in all cases, the graph Γk+1 contains a central vertex, and the proof is
concluded.

Below, we warn that the last claim is no longer true if we remove the finiteness
condition in Lemma 7.2.1.

Lemma 7.2.2. Let Υ be the (infinite) graph with vertices the nonnegative integers, and
every odd vertex adjacent to the rest of odd vertices and to the even vertices smaller than it
(see Figure 7.3). Then, Υ is nonempty, centerless, and {P4,C4}-free.

2k

2k+ 1 2(k+ l) + 1

(∀k > 0, and ∀l > 1)
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Fig. 7.3: The (infinite) centerless connected {P4,C4}-free graph Υ

Proof. Note that Υ is clearly connected and centerless (there is no odd integer
greater than any even number). Finally let’s see that every 4-path in Υ has a chord.

First, observe that every 4-path in Υ must contain at least two odd vertices: since
the set of even vertices is independent in Υ, there exist no nontrivial connected
subgraphs of even vertices, and every connected 4-subgraph ∆ having only one
odd vertex has a vertex (the odd one) of degree 3, and thus is not a path.

It is obvious that any 4-path P with three or more odd vertices has a chord (since
they belong to a complete subgraph of Υ). So, there is only one case left, namely
4-paths with two even (say p < q), and two odd (say r < s) vertices. Note that for
any such path the lowest in the path must be even, and so adjacent to both r and s,
which are odd greater than p, and thus also adjacent. This provides a triangle in P,
and concludes the proof.

Indeed, since the higher vertex must be odd, there are only two possibilities,
namely p < q < r < s, and p < r < q < s, corresponding to the following induced
subgraphs of Υ.

p q

r s

p q

r s

Fig. 7.4: Possible induced 4-vertex subgraphs of Υ containing P4 (both chordal)

Remark 7.2.3. The previous example shows that the property in Lemma 7.2.1 is
no longer true if we replace finite by infinite. Therefore the inductive techniques
derived from this lemma (below) will be no longer applicable in the more general
case of (maybe infinite) {P4,C4}-free PC-groups.

The key consequence of Lemma 7.2.1 is that if we remove the center from a Droms
graph, we get either the empty graph, or a disconnected Droms graph.
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Corollary 7.2.4. Let Γ be a Droms graph, then

Γ = Z (Γ) ∨ (Γ rZ (Γ)) = Km ∨ Γ0 , (7.2)

where Km is a complete graph of rank m > 0, and Γ0 := Γ r Z (Γ) is either empty or a
disconnected Droms graph.

Proof. It is clear that Γ = Z (Γ) ∨ Γ0, and that Z (Γ) = Km, for certain m > 0. So, it is
enough to see that if Γ is Droms, then Γ0 = Γ rZ (Γ) is either empty or disconnected.
By transposition, suppose that Γ0 is nonempty and connected. Then, since Γ0 is a
full subgraph of Γ , Γ0 is again Droms, and there must exist (Lemma 7.2.1) a vertex
p ∈ Γ0 which is adjacent to every other vertex in Γ0. But, by construction, every
vertex in Γ0 is also adjacent to every vertex outside Γ0, therefore p ∈ Γ0 ∩ Z (Γ),
contradicting our definition of Γ0.

Remark 7.2.5. Let Γ = Km ∨ Γ0 be a nonempty Droms graph decomposition, like
(7.2). Then:

• GΓ is free-abelian ⇔ Γ is complete ⇔ Z (Γ) = Γ ⇔ Γ0 = ∅.

• GΓ is connected def⇔ Γ is connected ⇔ Z (Γ) 6= ∅ ⇔ m > 1 ⇔ Γ is a cone .

• GΓ is centerless ⇔ Γ is disconnected ⇔ Z (Γ) = ∅ ⇔ m = 0.

The recursive definition follows immediately from the previous corollary. Below
we state this key result in parallel with its algebraic counterpart.

Corollary 7.2.6. The family of Droms graphs (resp., Droms groups) can be recursively
defined as the smallest family D (resp., D) satisfying the following rules:

[D1] K0 ∈ D.

[D2] Γ1, Γ2 ∈ D ⇒ Γ1 t Γ2 ∈ D.

[D3] Γ ∈ D ⇒ K1 ∨ Γ ∈ D.

[D1] {1} ∈ D.

[D2] G1,G2 ∈ D ⇒ G1 ∗G2 ∈ D.

[D3] G ∈ D ⇒ Z×G ∈ D.

Note that grouping together all successive applications of rules (2) and (3) in the construc-
tion, we can respectively substitute them by:

[D2]’ (∀k) Γ1, . . . , Γk ∈ D ⇒
⊔k
i=1 Γi ∈ D.

[D3]’ (∀m) Γ ∈ D ⇒ Km ∨ Γ ∈ D.

[D2]’ (∀k) G1, . . . ,Gk ∈ D ⇒ ∗ki=1Gi ∈ D.

[D3]’ (∀m) G ∈ D ⇒ Zm ×G ∈ D.

Proof. It is obvious that the empty graph K0 is Droms, and that the union of Droms
graphs is again Droms. To see that if Γ is Droms, then K1 ∨ Γ is Droms, suppose —
by transposition — that P is an induced 4-path or square within K1 ∨ Γ . Since Γ is
Droms, P must contain the joined vertex p. But then any edge joining p with the
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rest of vertices in P will be also in P. Therefore, P is neither a 4-path nor a square,
in contradiction with the starting assumption.

This proves that every graph in D is Droms. The converse implication is an
immediate consequence of Corollary 7.2.4.

Remark 7.2.7. Observe that we can restrict step [D2]’) only to connected graphs;
similarly, we can restrict step or [D3]’ only to disconnected (or trivial) graphs,
and thus reduce the construction of any Droms graph to step [D1] followed by an
alternate sequence of steps [D2]’ and [D3]’.

Note that this allows us to compactify the previous lemma into the one below.

Corollary 7.2.8. Every Droms graph Γ is either complete, or the join of a (maybe empty)
complete graph with a finite disjoint union of two or more nonempty connected Droms
graphs.

Moreover, this decomposition is unique; i.e., given a Droms graph Γ , there exist unique
nonnegative integers m > 0, and 1 6= k > 0, and unique connected Droms graphs Λi (i =
1, . . . ,k) such that

Γ = Km ∨

k⊔
i=1

Λi ,
(

equivalently, GΓ = Zm ×
k∗
i=1

GΛi

)
. (7.3)

Recall that K0 = ∅, and we are using the convention that
⊔0
i=1Λi = ∅.

Definition 7.2.9. The decomposition in (7.3) is called primary decomposition of the
Droms graph Γ (or the Droms group GΓ ). Recursively applying (7.3) to every
non-complete connected graph appearing in (7.3), we can build a unique finite
rooted tree (having complete graphs as leafs) describing Γ . This tree is called the
full decomposition of Γ (or GΓ ).

The following important result states that, not only finitely generated subgroups
of Droms groups are again Droms, but that a graphic presentation for them is
always computable from any finite set of generators, together with an explicit
isomorphism expressing the original generators in terms of the new basis, and
vice versa.

Proposition 7.2.10. Let GΓ = 〈X | R〉 be a Droms group. Then, there exists an algorithm
which, given words w1(X), . . . ,wp(X) in the generators of GΓ :

(i) Computes a (basis/graphic presentation) for the subgroup H = 〈w1, . . . ,wp〉 6 GΓ .

(ii) Provides an effective isomorphism between the original generators and the new basis
(and recursively enumerates all such isomorphisms).
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Proof. Since Droms graphs are chordal, by Theorem 6.1.31, we can effectively
compute a finite presentation for H, say H = 〈Y | S〉.

Then, one can exhaustively explore the tree of all possible Tietze transformations
applied to 〈Y | S〉 until getting one, say 〈Z | Q〉, in graphic form (namely, with all
relators being commutators of certain pairs of generators); this will be achieved
in finite time because we know in advance that H is indeed a finitely generated
PC-group.

Note that at this point, we know that H = 〈w1, . . . ,wp〉GΓ ' 〈Y | S〉 ' 〈Z | Q〉;
and even if we don’t know the relation between the elements in the obtained
basis Z = {z1, . . . , zr}, and the original words w1(X), . . . ,wp(X), since we know that
such an isomorphism does indeed exist, we can start a brute force quest for it
using the following two parallel procedures.

1. Enumerate all homomorphisms zj 7→ 〈w1, . . . ,wp〉.

This can be done preforming , again in parallel, the following tasks:

1.1. Enumerate candidates: enumerate all possible r-tuples (vj)rj=1 of words
in {w1, . . . ,wp}±.

(Note that each such k-tuple corresponds to a candidate homomorphism
defined by zj 7→ vj for j = 1, . . . , r.)

1.2. Filtering homomorphisms: for each candidate from 1.1., check whether
when substituting each occurrence of zj by the corresponding v in each
(commutation) relations in Q, the result is a relation in R.

(Note that this procedure provides an enumeration of all homomor-
phisms zj 7→ 〈w1, . . . ,wp〉.)

2. Filtering epimorphisms: for each homomorphism (zj 7→ vj)rj=1 from 1.2.,
enumerate all words in {v1, . . . , vr}±, and check whether every wj (j =

1, . . . ,p) appears in the list.

(Note that, for every non-surjective homomorphisms, this process will con-
tinue forever, but if all then are preformed in parallel, every epimorphism
will be detected in finite time.)

(Note also, that WP is available — since the involved groups are PC-groups —
but not really necessary because we only need its yes part to perform the above
checks.)

So, the previous combined algorithm outputs a list of all surjective homomor-
phisms (zj 7→ vj)rj=1. Finally, recall that finitely generated PC-groups (and
hence GΓ ) are Hopfian (Proposition 6.1.8), and thus, this is indeed a list of all
possible isomorphisms (zj 7→ vj)rj=1. This completes the proof.
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Remark 7.2.11. This last result allows us to suppose any given generating set for a
subgroup of a Droms group to be graphic (i.e., a basis).

7.3 Results
The main results of the chapter concern preservability of interesection properties
through free and direct products, and the corresponding implications on the family
of Droms groups. We summarize them below.

Theorem 7.3.1. If two finitely presented groups G1 and G2 satisfy TIP, then their free
product G1 ∗G2 also satisfies TIP.

Theorem 7.3.2. If two finitely presented groups G1 and G2 satisfy ESIP, then their free
product G1 ∗G2 also satisfies ESIP.

Theorem 7.3.3. Let G be a Droms PC-group. If G satisfies SIP, then Zm × G also
satisfies SIP.

Theorem 7.3.4. Let G be a Droms PC-group. If G satisfies ESIP, then Zm ×G also
satisfies ESIP.

Note that similar preserving properties were studied for the Membership Prob-
lem (MP) by Mikhailova. In [Mik68] she proves that MP is preserved under free
products; whereas in the already mentioned paper [Mik58], she shows that F2×F2

has unsolvable membership problem, proving that MP (and thus SIP and CIP) do
not pass to direct products.

Since, by Theorems 7.3.2 and 7.3.4, the inductive steps [D2] and [D3]’ preserve
ESIP, we deduce that all Droms PC-groups enjoy such property.

Theorem 7.3.5. Every Droms PC-group satisfies ESIP (and, in particular, SIP).

Proof. Let Γ be a Droms graph, and let GΓ be the corresponding Droms PC-group.
We will prove the result by induction on the number of vertices |VΓ |. If |VΓ | = 0,
then GΓ = 1, and ESIP is obvious.

Now, consider a nonempty Droms graph Γ , and assume (I.H.) that every Droms PC-
group with strictly less than |VΓ | vertices does satisfy ESIP. Then, note that either Γ
is complete (i.e., GΓ is free-abelian, and thus satisfies ESIP); or otherwise, every
graph Λi in the primary decomposition (7.3) is a Droms graph with strictly less
that |VΓ | vertices. So, applying the induction hypothesis, every Λi satisfies ESIP.
Now, the solvability of ESIP for GΓ follows from Theorems 7.3.2 and 7.3.4 and the
decomposition in (7.3). This concludes the proof.
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This can be seen as a generalization of a result by Kapovich, Weidmann, and Myas-
nikov [KWM05] in the following sense. Since ESIP implies MP, our Theorem 7.3.5
proves a potentially stronger thesis than Theorem 6.1.31 for a smaller class of
groups. It is interesting to ask the following question (open as far as we know):

Question 5. Does the group GP4 have solvable SIP?

If the answer were negative then we would have a positive answer to the following
open question:

Question 6. Is it true that a PC-group satisfies SIP if and only if it is Droms?

We devote Sections 7.4 and 7.5 to prove the inductive results regarding direct and
free products, respectively.

7.4 The free product case
In this section, we shall prove the inductive intersection problems for free products,
namely Theorems 7.3.1 and 7.3.2.

We follow the graph-theoretic approach of Ivanov in [Iva99], generalizing the
classical Stallings machinery (see Section 5.4) for subgroups of free groups, to
subgroups of free products. This allowed him to give an alternative proof that
free products of Howson groups are Howson, as well as provide bounds for such
an intersection (see [Iva99; Iva01; Iva08]). Namely, we use generalized folding
techniques to algorithmically represent any finitely generated subgroup H of a free
product, by a finite automaton providing a Kurosh decomposition for H. Then we
analyze how the graph for the intersection H∩K is related to the graphs for H and
K. This allows us, using ESIP for the factors, to decide whether H∩K is finitely
generated or not; and if so, construct the graph of H∩K and from it compute the
generators of H ∩ K. Similarly, modified graphs representing cosets allow us to
decide whether the intersection Ha∩Kb is empty or not, provided that H∩K is
finitely generated.

Note that the use of this kind of automata to describe subgroups was later extended
to the context of graphs of groups by Kapovich, Weidmann, and Myasnikov
in [KWM05]. Their methods, which are based on a further generalization of the
folding techniques, allow to construct algorithmically the subgroup automaton
under some conditions on the edge groups, which automatically hold in the
case of free products. However, they do not analyze subgroup intersections. On
the contrary, Ivanov describe subgroup intersections, but does not consider their
algorithmic behavior. For this reason we provide almost complete details.
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So, we give algorithmic treatment to Ivanov’s description for the intersection of
subgroups in a free product, in order to solve the intersection problems stated
in Section 7.1. Roughly speaking, the proof goes like this: given two finitely
generated subgroups H,K 6 G1 ∗G2, construct the corresponding automata ΓH
and Γk which reflect the (Kurosh) free product structure of H,K respectively, and
then adapt Ivanov’s methods to either compute the full automaton recognizing
the intersection H∩K (when it is finitely generated), or detecting when it is not.
This allows us to solve various intersection problems on G1 ∗G2, assuming they
hold in the factors.

The use of Stallings automata to understand the lattice of subgroups within
different families is well-known, and we assume the reader is familiar with it;
see Chapter 5 for the original version for free groups and a generalization to
free-abelian by free groups, and [Iva99; KWM05; Mar07; SSV16] for other general-
izations. In the following lines we present Ivanov’s generalization of this technique
to cover the case of free products G = G1 ∗G2.

For all the section, we fix two groups G1 and G2, for which we shall assume
several properties in the sequel; the goal is to understand subgroups H 6 G1 ∗
G2 via some objects, which we will call reduced wedge automata (by similarity
with the free group case). In particular, they will encode the Kurosh subgroup
decomposition of H. A result saying that, for any finitely generated H, one can
always algorithmically construct a reduced automaton for it, will give as a corollary
an algorithmic version of the classical Kurosh subgroup theorem.

Theorem 7.4.1. Given words w1, . . . ,wn ∈ G1 ∗G2, one can compute words x1, . . . , xm,
y1, . . . ,yr, z1, . . . , zs ∈ G1 ∗G2, and finitely many elements ai,k ∈ G1 and bj,k ∈ G2

such that
H = F ∗

r∗
i=1

(y−1
i Aiyi) ∗

s∗
j=1

(z−1
j Bjzj)

is a Kurosh subgroup decomposition for H = 〈w1, . . . ,wn〉, where the set {x1, . . . , xm} is
a free basis for F, the ai,k’s are generators for Ai 6 G1, i = 1, . . . , r, and the bj,k’s are
generators for Bj 6 G2, j = 1, . . . , s.

7.4.1 Wedge automata
The basic idea is the following: automata recognizing subgroups of free groups,
say F2 = 〈a〉 ∗ 〈b〉, are directed, involutive, connected graphs with labels ‘a’ or ‘b’
attached to the arcs; this way, walks spell words on {a,b}±, i.e., they represent
elements from F{a,b}.

Now, to cover the more general situation of G1 ∗G2, we need to encode more
information into the arcs: A classical (say a)-labelled arc would correspond to
what we call a (say G1)-wedge: an arc subdivided in two halves, admitting a
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(possibly trivial) label from G1 on each side, and also admitting a (possibly trivial)
subgroup A 6 G1 as a label of the middle (special) vertex. Doing the same with
the b-arcs (and subgroups of G2) we get an automata with two types of vertices,
primary (the original ones), and secondary (the new ones, dividing the original
arcs).

H1

(g1,g ′1∈G1, H16G1)

H2

(g2,g ′2∈G2, H26G2)

g1 g ′1 g2 g ′2

Fig. 7.5: Wedges of first and second kind

In these new automata, walks are going to spell subsets of G1 ∗G2 (instead of words
in {a,b}±), by picking all elements from the label of a secondary vertex when
traversing it. Allowing, in addition, vertices to have any degree, we get the new
notion of wedge automaton.

Definition 7.4.2. Let G1,G2 be two groups. A wedge automaton on (G1,G2) (also
called a (G1,G2)-automaton, for short) is a septuple Γ = (VΓ ,EΓ , ι, τ, `, , −1), where:

1. Γ = (VΓ ,EΓ , ι, τ, −1) is an involutive digraph (called underlying digraph of Γ)
with:

1.1. the set of vertices VΓ consisting of three disjoint types,

VΓ = V0Γ t V1Γ t V2Γ .

Namely,

1.1.1. primary vertices in V0, denoted by ; except for a distinguished one
called the basepoint of Γ, denoted by .

1.1.2. secondary vertices, of two different kinds: type 1 (or 1-secondary)
vertices in V1, denoted by ; and type 2 (or 2-secondary) vertices
in V2, denoted by .

1.2. Every arc in EΓ joining (in either direction) a primary vertex with either
a 1-secondary vertex (called an arc of type 1, or 1-arc, in E1Γ), or a
2-secondary vertex (called an arc of type 2, or a 2-arc, in E2Γ), i.e.,

EΓ = E1Γ t E2Γ .

2. ` is a twofold label map, associating:

220 Chapter 7 Intersection problem for Droms groups



2.1. an element from Gν to every ν-arc (ν = 1, 2) of Γ,

` : Eν Γ → Gν

e 7→ `e

2.2. a subgroup of Gν to every ν-secondary vertex (ν = 1, 2) of Γ,

` : Vν Γ → {subgroups of Gν}
q 7→ `q

3. The involution −1 : EΓ → EΓ on the set of arcs extends naturally to an invo-
lution on the corresponding labels, i.e., ιe−1 = τe, τe−1 = ιe, and `e−1 = `−1

e .

Remark 7.4.3. Since wedge automata are assumed to be involutive by definition,
on pictures we will only represent one arc (usually the one departing a secondary
vertex) from each pair of inverses {e, e−1}, understanding implicitly the existence
of the other. In the same vein, we will understand the degree of a vertex in a wedge
automata as the number of arcs leaving (or arriving) a vertex.

Remark 7.4.4. Note that the underlying digraph of a wedge automata is, by def-
inition, primary-secondary bipartite, with both types of vertices admitting, in
principle, any degree. We will usually represent them in bipartite form with the
arcs leaving secondary vertices (see Figure 7.6).

Fig. 7.6: Underlying digraph of certain wedge automaton

Definition 7.4.5. We say that a wedge automaton Γ is connected (resp., finite) if
the underlying digraph (VΓ,EΓ, ι, τ) is so. We will also say that that a wedge
automaton Γ is of finite type if the underlying digraph is finite, and the subgroups
labelling the secondary vertices are all finitely generated. This will always be
the situation when we consider computational issues; in this case, the labels of
vertices will be given by finite sets of generators. We say that a vertex label is trivial
if `q = {1}.

If not stated otherwise all the wedged automata appearing from this point will be
assumed to be finite.

Definition 7.4.6. Let Γ be a (G1,G2)-wedge automaton. A walk in Γ is a sequence
of alternating and successively incident vertices and arcs, starting and ending
at primary vertices. The length of a walk is the number of arcs in the sequence
defining it. A walk (of length 0) consisting of only a primary vertex is called a
trivial walk.
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Note that, since Γ is bipartite by definition, any walk γ in a wedge automaton Γ
must alternate visits to primary and secondary vertices; so it has the form:

γ = p0(e−1
1 q1e ′1)p1(e−1

2 q2e ′2)p2 · · · pr−1(e−1
r qre ′r)pr (7.4)

where p0, . . . , pr are (not necessarily distinct) primary vertices, q1, . . . , qr are (not
necessarily distinct) secondary vertices, and for every k = 1, . . . , r, all three
of ek, qk, e ′k are simultaneously of the same type νk (νk = 1, 2); see Figure 7.7.

p0

q1

p1

q2

p2

. . .

pr−1

qr

pr

e−1
1 e ′1 e−1

2 e ′2 e−1
r e ′r

Fig. 7.7: Elementary decomposition of the walk γ in (7.4)

So, the length of a walk γ in a wedge automaton is always even (l(γ) = 2r), and
any walk γ can be subdivided into a sequence of r consecutive adjacent subwalks
of length 2.

Definition 7.4.7. An elementary walk is a walk of length 2 (hence visiting only one
secondary vertex). An elementary walk is called of type ν (ν-elementary) if its
secondary vertex is of type ν (ν = 1, 2).

Remark 7.4.8. An elementary walk is degenerate (or backtracking) if it consists of
consecutive inverse arcs, otherwise it can be open (if it visits three different vertices,
i.e., it crosses exactly one wedge in the enriched automaton), or closed (if it uses
twice the same primary vertex, using reverse — but not inverse — parallel arcs).
See Figure 7.8.

(a) (b) (c)

e−1
1 e2 e1 e2 e−1

1
e1

Fig. 7.8: Open (a), closed (b), and backtracking (c) elementary walks

Definition 7.4.9. Observe that every walk γ in Γ (beginning and ending at primary
vertices) decomposes as a product of elementary walks (either degenerate or
nondegenerate, and with possible repetitions) in a unique way

γ = γ1 γ2 · · ·γr ; (7.5)

(for convention, we take r = 0 when the walk γ is trivial). This is called the
elementary decomposition of γ; accordingly, the number of elementary walks in the
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elementary decomposition of γ is called the elementary length of γ (see Figure 7.7).
Hereinafter, unless stated otherwise, any walk decomposition of the form (7.5) will
be assumed to be elementary.

Remark 7.4.10. Note that γ is a nondegenerate walk (i.e., it involves no backtracking)
if and only if the γi’s on its elementary decomposition are all nondegenerate, and
there is no backtracking in the products γi · γi+1.

Definition 7.4.11. We say that a walk γ is alternating if its elementary decomposi-
tion sequence γ1,γ2, . . . ,γr alternates between types 1 and 2.

Remark 7.4.12. We emphasize that (in a general wedge automaton) the elementary
decomposition of a walk is not necessarily alternating; i.e., it is possible to have
in (7.5) consecutive elementary walks of the same type.

Definition 7.4.13. The (total) label of a walk γ, denoted by `γ, is defined to be the
subset

`γ =
{
(`−1

e1
h1`e ′1)(`

−1
e2
h2`e ′2) · · · (`

−1
er hr`e ′r) : hk ∈ `qk

}
= (g−1

1 H1 g
′) (g−1

2 H2 g
′
2) · · · (g−1

r Hr g
′
r) ⊆ G1 ∗G2 .

(Note that here brackets indicate just the labelling of the elementary decomposi-
tion.) The label of an elementary walk is called elementary label.

That is, while travelling along γ, when we traverse an arc e, we pick its label `e, and
when we traverse a secondary vertex q we take all labels h ∈ `q (primary vertices
have no contribution to `γ, and can be thought as trivially labelled: `p = 1, for
all p ∈ V0). Collecting labels in all such possible ways, we form the label `γ.

H1 H2

. . .
Hr

g−1
1 g ′1 g−1

2 g ′2 g−1
r

g ′r

Fig. 7.9: The label of a walk with elementary length r

Two variations (subsets) of the total label will be used throughout the paper:

• Picking only the trivial element in every secondary vertex of γ we obtain
what we know as the basic label of γ,

`•γ = (`−1
e1
`e ′1)(`

−1
e2
`e ′2) · · · (`

−1
er `e ′r) ∈ G1 ∗G2 ;

of course, `•γ ∈ `γ.
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• Picking only the trivial element in every secondary vertex in γ except one,
say qj we obtain what we call the label of γ centered in qi,

`
qj
γ = (`−1

e1
`e ′1) · · · (`

−1
ej `qj`e ′j) · · · (`

−1
er `e ′r) ∈ G1 ∗G2 ;

of course, `qjγ ⊆ `γ, for all j = 1, . . . , r.

Remark 7.4.14. Note that if the secondary vertices q1, . . . , qr successively visited by
the walk γ do alternate between type 1 and type 2, and the choices of hk’s are such
that `−1

ei hk`e ′i 6= 1 for all i = 1, . . . , r, then the brackets in the expression

(`−1
e1
h1`e ′1)(`

−1
e2
h2`e ′2) · · · (`

−1
er hr`e ′r)

indicate, precisely, the syllable decomposition of the element in G1 ∗G2 read by γ;
otherwise, some consecutive pairs of brackets may merge into the same syllable.
So, in general, the syllable length of every element in `γ is less than or equal to
its elementary length r = l(γ)/2, with equality if and only if the previous two
conditions are satisfied.

Definition 7.4.15. Let Γ be a (G1,G2)-wedge automaton and let p, p ′ be two con-
nected primary vertices. We define the coset recognized by Γ relative to (p, p ′) to be
the set:

〈Γ〉(p,p ′) :=
⋃
γ
`γ ,

where the union runs over all walks in Γ from p to p ′. When p = p ′, then we
abbreviate 〈Γ〉p := 〈Γ〉(p,p). Moreover, if p = p ′ = (the basepoint of Γ) then we
simply write 〈Γ〉 = 〈Γ〉 , and we call it the subgroup recognized by Γ.

The lemma below justifies the previous terminology.

Lemma 7.4.16. Let Γ be a (G1,G2)-wedge automaton, and let p, p ′ ∈ V0 Γ. Then,

(i) the set 〈Γ〉p is a subgroup of G1 ∗G2;

(ii) the sets 〈Γ〉p and 〈Γ〉p ′ are conjugate to each other; more concretely,

〈Γ〉p ′ = 〈Γ〉gp , for every g ∈ 〈Γ〉(p,p ′) ;

(iii) the set 〈Γ〉(p,p ′) is a right coset of 〈Γ〉(p,p); more concretely,

〈Γ〉(p,p ′) = 〈Γ〉(p,p) · g , for every g ∈ 〈Γ〉(p,p ′) .

Proof. For subsets A,B ⊆ G1 ∗G2, define the inverse and the product in the natural
way A−1 = {a−1 | a ∈ A}, and A · B = {ab | a ∈ A,b ∈ B}. Then, for α and β
two incident walks in Γ , it is clear that `α−1 = `−1

α and `α · `β = `αβ. The lemma
follows straightforward from Definition 7.4.13.
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Proposition 7.4.17. For every subgroup H 6 G1 ∗G2, there exists a (G1,G2)-wedge
automaton Γ recognizing H. Furthermore, if H is finitely generated, one such Γ is
algorithmically constructible from a finite set of generators for H given in normal form.

Proof. Let H = 〈W〉, where W = {w1,w2, . . .} is a (finite or infinite) set of generators
for H. For every non-trivial generator in W, say w, consider its normal form as an
element of G1 ∗G2, say

w = a1b1 · · ·asbs , (7.6)

with s > 1, ai ∈ G1, bi ∈ G2, ai 6= 1 for all i = 2, . . . , s, and bi 6= 1 for
all i = 1, . . . , s− 1. Let Fl(w) denote the (G1,G2)-wedge automaton depicted in
Fig. 7.10, and called the (wedge) petal corresponding to w. Clearly, 〈Fl(w)〉 = 〈w〉.

1
1

1
1

1

a1
1 b1

a2 · · ·bs−1

1as
1

bs

Fig. 7.10: A wedge petal

Now consider Fl(W) the disjoint union of all the Fl(wi)’s identifying the basepoints
into a single primary vertex (declared as basepoint); the resulting object is a
(G1,G2)-wedge automaton called the flower (wedge) graph corresponding to W and
clearly satisfying 〈Fl(W)〉 = 〈W〉 = H. Moreover, Fl(W) is of finite type if and
only if W has finite cardinal; and, in this case, it is clearly constructible from the
given wi’s.

So, we have a well defined surjective map

{ (G1,G2)-wedge automata } → { subgroups of G1 ∗G2 }

Γ 7→ 〈Γ〉 .
(7.7)

However, in order to describe appropriately the behavior of the subgroups of G1 ∗
G2 (according our target), we need to restrict the class of wedge graphs representing
a given subgroup. This is what we do in the next section through the concept of
reduced wedge automata.

7.4.2 Reduced wedge automata

Wedge automata are too general, and just a first step in order to understand
subgroups of free products G1 ∗G2 (they are only geometric realizations of sets of
generators for subgroups, as the previous proposition illustrates).
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The really useful objects to understand subgroups of G1 ∗G2 will be the so-called re-
duced wedge graphs. These are wedge graphs enjoying some extra regularity
properties, good enough to extract from them enough algebraic information to
characterize the subgroup they represent.

Essentially, we will ask our wedge graphs to be ‘deterministic’ in a sense that will
be precisely specified in Definition 7.4.18, and naturally extends that of classical
Stallings automata for free groups.

On the other hand, we shall detail how to algorithmically build such a reduced
automaton for a subgroup H 6 G1 ∗G2, from any given finite set of generators
for H. Similar constructions are called ‘irreducible graphs’ by Ivanov in [Iva99],
and are particular cases of the so-called ‘folded graphs’ in Kapovich–Weidman–
Miasnikov [KWM05].

Definition 7.4.18. Let G1,G2 be two groups, and let Γ be a finite (G1,G2)-wedge
automaton. We say that Γ is reduced if the following conditions are satisfied:

(i) Γ is connected;

(ii) every primary vertex of Γ is incident with at most one arc from E1Γ, and
at most one arc from E2Γ. That is, it is adjacent to at most one 1-secondary
vertex and at most one 2-secondary vertex, being connected to each of them
by at most one arc;

Fig. 7.11: Forbidden “nondeterminstic” situations in a reduced automaton

(iii) no nondegenerate elementary walk reads the trivial element. That is, for
ν = 1, 2, and every ν-secondary vertex q ∈ Vν Γ, and for every pair of
different ν-edges e1, e2 with ιe1 = ιe2 = q, we have that 1 6∈ `−1

e1
`q`e2 (or,

equivalently, `e1`
−1
e2
6∈ `q).

A

g1 g21
(
1 ∈ g−1

1 Ag2
)

.

Fig. 7.12: Forbidden nondegenerate wedge reading the trivial element

Remark 7.4.19. Note that in a reduced wedge automaton, the degree of any primary
vertex is either 1 (corresponding to having only one adjacent secondary vertex) or 2
(corresponding to having an adjacent secondary vertex of each type). Therefore,
the elementary decomposition of any walk in a reduced automaton is always
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alternating, and spell the syllable decomposition in G1 ∗G2 of the read element.
Secondary vertices, on its turn, can have any degree in a reduced reduced wedge
automaton.

Assume now that Γ is a reduced wedge automaton. Then, Remark 7.4.10 can be
restated in the following way: γ is nondegenerate if and only if it is alternating
and the elementary walks on its elementary decomposition are all nondegenerate.
In this case, additionally, property (iii) from Definition 7.4.18 ensures that the
elementary decomposition of γ gives the syllable decomposition of every g ∈ `γ as
element from G1 ∗G2 (because nondegenerate elementary walks do not admit the
trivial element as a label). However, this is not the whole story: even with some
of the γi’s being degenerate, we can still get the syllable decomposition of g ∈ `γ
assuming that the elements picked from the labels of the backtracking vertices
are all non-trivial. This motivates the following definition and the subsequent
important technical lemma.

Definition 7.4.20. Let γ be be a walk in a wedge automaton Γ , with elementary
decomposition γ = γ1 γ2 · · · γr = p0(e−1

1 q1e ′1)p1(e−1
2 q2e ′2)p2 · · · pr−1(e−1

r qre ′r)pr.
We define the reduced label of γ as

˜̀
γ =

{
(`−1

e1
c1`e ′1)(`

−1
e2
c2`e ′2) · · · (`

−1
er cr`e ′r) :

ci ∈ `qi
ci 6= 1 if γi is degenerate

}

Of course, ˜̀γ ⊆ `γ.

Lemma 7.4.21. For a reduced (G1,G2)- automaton Γ, we have

〈Γ〉 =
⋃
γ
`γ =

⋃
γ̂
˜̀
γ̂,

where the first union runs over all -walks γ of Γ, and the second one only over the
alternating -walks γ̂ of Γ.

Proof. The inclusion ‘⊇’ is clear, since the first union is over more sets than the
second one, and `γ ⊇ ˜̀γ.

To see the inclusion ‘⊆’, fix a -walk γ = γ1 · · ·γr, and an element g ∈ `γ, and let
us find an alternating -walk γ̂ such that g ∈ ˜̀γ̂.

In fact, if γ is not alternating there is ν = 1, 2 and i = 1, . . . , r − 1 such that
γi = pi−1e−1

i qie ′ipi and γi+1 = pie−1
i+1qi+1e ′i+1pi+1 are both of type ν; so, by

condition (ii) in Definition 7.4.18, qi = qi+1 and e ′i = ei+1. Replacing γiγi+1

by = pi−1e−1
i qie ′i+1pi+1, we get a new -walk γ

(1) , with shorter elementary de-
composition and such that g ∈ `γ

(1)
as well, since (`−1

ei ci`e ′i)(`
−1
ei+1
ci+1`e ′i+1

) =

`−1
ei (cici+1)`e ′i+1

, for all ci, ci+1 ∈ `qi 6 Gν).
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Repeating this operation a finite number of times, say k ,we can assume that γ̂ = γ
(k)

is alternating (and g ∈ `γ̂).

It remains to prove that g ∈ ˜̀γ̂, i.e., that it can be obtained by picking always
non-trivial elements at all the backtracking vertices of γ̂ = γ1 · · ·γs: if qj is the
secondary vertex in the degenerate elementary walk γj = pj−1e−1

j qjejpj−1, and
the corresponding cj picked in the formation of g is trivial, then just ignore
(`−1

ej cj`ej) = 1, and realize g in the label of γ̂
(1) = γ1 · · ·γj−1γj+1 · · ·γs, a -walk

with shorter elementary decomposition, which will be again alternating after
repeating the operation in the third paragraph. Repeating this operations (a finite
number of times) until no trivial choices are made at the degenerate vertices, we
obtain the desired result.

Remark 7.4.22. The usefulness of the previous lemma is the following: when
realizing an element g ∈ 〈Γ〉 from the recognized subgroup of a reduced automaton
X as g ∈ ˜̀γ̂ for some alternating -walk γ̂, the elementary decomposition of γ̂
automatically provides the syllable decomposition of g as an element of G1 ∗G2.
This is a crucial bridge between the algebraic and the geometric aspects of the
theory.

One of the most useful facets of reduced (G1,G2)-automata is that they naturally
encode the Kurosh free product decomposition (the induced splitting) of their
fundamental group as subgroup of G1 ∗G2. With some technical differences, our
exposition follows [Iva99; KWM05], but with an special emphasis made on the
algorithmic point of view.

The theorem below appears as Lemma 4 in Ivanov’s [Iva08] and, in a more general
setting, as Proposition 4.3 in Kapovich–Weidmann–Myasnikov [KWM05]; we
highlight here the algorithmic nature of the proof, for Γ of finite type. Note that,
after Theorem 7.4.30, realizing every finitely generated subgroup H 6 G1 ∗G2 as
recognized by some finite reduced (G1,G2)-automaton, we obtain an alternative
constructive proof of the classical Kurosh subgroup theorem, for finitely generated
subgroups.

Notation 7.4.23. Let Γ be a reduced (G1,G2)-wedge automaton, and let H = 〈Γ〉 6
G1 ∗G2 be its recognized subgroup. Fix a maximal subtree T in Γ, let E = EΓ r ET
be the set of edges of Γ outside T, and let E+ be a subset of E containing exactly
one element of each pair of mutually inverses e, e−1 ∈ E.

For every arc e ∈ E+, let q be the secondary vertex in Γ incident with e. Then:

(a) the subautomaton of Γ consisting of e together with the tree segments from
the basepoint to the head and tail of e is called the (primary) e-petal of T, and
denoted by T[e].
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(b) the subautomaton of Γ consisting of the tree segment from the basepoint
to q is called the (secondary) q-petal of T, and denoted by T[q].

Slightly abusing terminology and notation, we also call (respectively primary
and secondary) T-petals the closed walks, denoted by γT [e] and γT [q], respectively
touring the petals T[e] and T[q], namely:

γT [e] := γT [ , ιe] eγT [τe, ] , and γT [q] := γT [ , ιq]γT [q, ] .

Definition 7.4.24. We define the petal label xe of a nondegenerate petal γT [e] to be
its basic label; whereas the petal label (Hq)

zq of a degenerate petal γT [q] is defined
to be the label of γT [q] centered in q. That is:

xe := `•γe = z−1
ιe `e zτe , and (Hq)

zq := `
q
γT [q]

= (`γT [q])
zq = z−1

q `q zq ,

where, for any (primary or secondary) vertex p in Γ we have denoted by zq the
basic label `•T[q, ] ∈ G1 ∗G2.

Finally, a reduced secondary-petal label is

`
q∗
γT [q]

:= z−1
q yq zq ,

where y ∈ `q r {1} = `∗q. (See Figure 7.13.)

`q

(a)

T

T

e `q

(b)

T

Fig. 7.13: (a) Primary T-petal T[e] with petal label xe = z−1
ιe `e zτe ∈ G1 ∗G2 (b) Secondary

T-petal T[q] with petal label z−1
q `q zq 6 G1 ∗G2

Theorem 7.4.25. Let Γ be a reduced (G1,G2)-automaton. Then, with the above notations,
the subgroup recognized by Γ is

〈 Γ 〉 = F ∗

(
∗

q∈V1Γ

z−1
q `q zq

)
∗

(
∗

q∈V2Γ

z−1
q `q zq

)
, (7.8)

where F is the free subgroup of 〈Γ〉 freely generated by the set
{
z−1

ιe `e zτe | e ∈ E+
}

,
and `q 6 Gν are the labels of the corresponding secondary vertices (of type ν = 1, 2) in Γ.

Moreover, if Γ is of finite type, then the subgroup 〈Γ〉 is finitely generated, and we can
algorithmically compute a Kurosh decomposition like (7.8).
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Proof. Adapting the characterization in [Mil04, Theorem 3.2] to our case, we need
to prove the following two facts:

(i) The elements in

{
z−1

ιe `e zτe | e ∈ E+
}
t
⋃

q∈V1Γ

z−1
q `q zq t

⋃
q∈V2Γ

z−1
q `q zq (7.9)

generate the recognized subgroup 〈Γ〉 6 G1 ∗G2. (Note that indeed, this claim
holds even if Γ is not reduced.)

This is clear because since for any -walk

γ = p0(e−1
1 q1e ′1)p1(e−1

2 q2e ′2)p2 · · · · · · pr−1(e−1
r qre ′r)pr

in Γ (where ei, e ′i are arcs in EΓ), the associated walk γT (going to the
basepoint and back — through T — after visiting each element in γ), i.e.,

γT = γT [e−1
1 ]γT [q1]γT [e ′1]γT [e−1

2 ]γT [q2]γT [e ′2] · · · γT [e−1
r ]γT [qr]γT [e ′r] ,

has the same label as γ. So, any element recognized by γ is of the form:

x−1
e1

(z−1
q1
yq1zq1) xe ′1 xe−1

2
(z−1

q2
yq2zq2) xe ′2 · · · xe−1

r
(z−1

qr yqrzqr) xe ′r , (7.10)

where yqi ∈ `qi , for i = 1, . . . , r. Finally note that the only nontrivial elements
xei , xe ′i in (7.10), are those corresponding to arcs outside T. Thus, (7.10) is a
product of elements in (7.9) and their inverses, as we wanted to prove.

(ii) If w =
∏r
i=1 gi is an alternating word in the generators in (7.9) representing the

trivial element in 〈Γ〉, then there exists a syllable gj in w which is trivial in its
corresponding factor in (7.8).

By transposition, suppose that every syllable gj (i = 1, . . . , r) in w is nontrivial
in its corresponding factor. That is, suppose:

1. w =
∏r
i=1 gi ;

2. every syllable gi of w is either

(a) equal to a nontrivial power of z−1
ιe `e zτe, for some e ∈ E+, or

(b) equal to a reduced petal label z−1
q yq zq, where yq ∈ `q r {1} = `∗q,

for certain secondary vertex q in Γ;

Then, the set

{
〈z−1

ιe `e zτe〉 : e ∈ E+
}
∪
{
z−1
q `∗q zq : q ∈ V1 ∪V2

}
(7.11)

is called the set of syllable types.
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3. no consecutive syllables in w are of the same type in (7.11).

So, disregarding order (which does not affect our next argumentation)
we have the following three cases for petal labels separating consecutive
syllables in w:

(a) Consecutive labels of different-type ‘primary-petals’:

(z−1
ιe1
`e1 zτe1)(z

−1
ιe2
`e2 zτe2) , (7.12)

where e1 6= e±1
2 . This automatically implies that (7.12) is the basic label

of two distinct consecutive primary petals in Γ (see Figure 7.14). In
particular, every possible cancellation in (7.12) occurs within the tree T.

T

T
T

e1

T
T

e−1
2

Fig. 7.14: Distinct consecutive primary petals separating syllables in w

(b) Consecutive reduced labels of different-type secondary-petals:

(z−1
q1
yq1 zq1)(z

−1
q2
yq2 zq2) , (7.13)

where yq1 ∈ `∗q1
, yq2 ∈ `∗q2

, and, q1 6= q2.

Here we distinguish two subcases depending on whether: the bifurcation
vertex is primary (b1) (note that in this case it must be the basepoint,
since Γ is reduced by hypothesis), or secondary (b2);

yq1

yq2

(b1)

T

T

yq1

yq2

(b2)

T

T

Fig. 7.15: Consecutive primary petals separating alternating syllables in w,
with secondary (b2), and primary (b1) bifurcation vertex

Now we claim that in (7.13), the product zq1z
−1
q2

is always nontrivial; and
hence every possible cancellation in (7.13) occurs within the tree T.

If the bifurcation vertex is primary, we know — since Γ is reduced — that
the two secondary vertices adjacent to the basepoint must be of different
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type (see case (b1) in Figure 7.15). But, since any walk in a reduced
wedge automaton is alternating, this means that the first syllables of the
labels of zq1 and zq2 must belong to different Gi’s. Hence, zq1 6= zq2 , as
claimed.

If the bifurcation vertex is secondary (case (b2) in Figure 7.15), suppose
by contraposition, that zq1 = zq2 . Then, in particular, the basic labels
z ′q1

, z ′q2
of the subwalks from the bifurcation vertex to q1 and q2 would

coincide (i.e., z ′q1
(z ′q2

)−1 = 1). But, again, since any walk in a reduced
automata must be alternating, this would imply that the elementary
walk from q1 to q2 containing the bifurcation vertex should be trivial
as well, contradicting condition (iii) in the definition of reduced wedge
automaton.

(c) (Reduced) secondary petal label followed by primary petal label:

(z−1
ιe `e zτe)(z

−1
q yq zq) , (7.14)

where yq ∈ `∗q.

Here we distinguish three cases depending on whether the bifurcation
vertex is primary (note that then it must be the basepoint and the two
petals must be overlapping (see (c1)); or secondary, where — in turn —
we distinguish between overlapping petals (c2), and non-overlapping
petals (c3).

yq

(c1)

e

T
T

T

yq

(c2)

e
T

T
T

T

yq

1

(c3)

e

T T T

T

T

Again, we claim that in all three cases, all cancellations in (7.14) occur
within the tree T.

For cases (c1) and (c2) the same argument used for (b2) works: namely,
if (7.14) were trivial, then we would have an elementary walk (centered
in q) reading the trivial element, which is not possible in a reduced
automaton.

Finally, case (c3) easily reduces to case (b2), since all the petal syllables
are assumed to be nontrivial by hypothesis.

Thus, since any possible cancellation between syllables in w occurs within the
tree T, a fragment of every syllable survives in w, which therefore is nontrivial, as
we wanted to prove. This concludes the proofs of (ii), and the theorem.
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Corollary 7.4.26. For a reduced (G1,G2)-automaton Γ, the group 〈Γ〉 is finitely generated
if and only if Γ is of finite type (i.e., the underlying graph of Γ has finite rank, and all
vertex labels of Γ are finitely generated).

Proof. From (7.8) in Theorem 7.4.25, the recognized subgroup 〈Γ〉 is finitely gener-
ated if and only if both F and all the `q’s are finitely generated, which are precisely
the two conditions for the wedge automata Γ to be of finite type.

7.4.3 Effective construction of reduced automata

Theorem 7.4.25 and Corollary 7.4.26 are easily seen to be false if we substitute
reduced automata by general wedge automata.

This is why the conditions in the definition of reduced automata are important.
The next step is to show that every finitely generated subgroup H 6 G1 ∗ G2

can be realized as the fundamental group of some reduced (G1,G2)-automaton
Γ of finite type. Therefore, the contents of Theorem 7.4.25 and Corollary 7.4.26
applies to every finitely generated subgroup of G1 ∗G2. Additionally, and more
importantly, the construction of Γ will be made algorithmic from any given finite
set of generators for H.

To achieve this goal, we introduce several elementary operations on wedge graphs
which will not change their fundamental group. All the arc-transformations
are stated only for one of the orientations in Γ, assuming the corresponding
transformation on its involutive counterpart.

Definition 7.4.27. Let us consider the following elementary transformations (Γ Γ ′)
on a (G1,G2)-wedge automaton:

(i) Adjustment: consists in replacing the label of any arc e leaving a secondary
vertex q, by h · `e, for any h ∈ `q = H; see Figure 7.16.

H
g1
g2

gk
H

hg1
g2

gk

Fig. 7.16: Adjustment

(Note, in particular, that any arc-label belonging to the subgroup it reaches
is negligible.)

(ii) Conjugation: (for ν = 1, 2) consists in replacing, given g ∈ Gν, the label `p of
a ν-secondary vertex q, by g`pg−1; and replacing the label `ei of every arc ei
incident from p, by the respective g`ei (see Figure 7.17).
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H
g1
g2

gk
gHg−1

gg1

gg2

ggk

Fig. 7.17: Conjugation

(iii) Isolation: consisting in removing from Γ all the connected components not
containing the basepoint. That is, we define Γ ′ as the connected component
of Γ containing the basepoint (see Figure 7.17).

Fig. 7.18: Isolation

(iv) Primary open folding: for ν = 1, 2, given two ν-secondary vertices q1, q2

adjacent to the same primary vertex through respective arcs e1, e2 with the
same label g ∈ Gν, consists in identifying q1 and q2 into a new secondary
vertex with label 〈`q1 , `q2〉, and identifying the arcs e1, e2 into a new arc with
the same label g (see Figure 7.19).

H K

g g

〈H∪K〉

g

Fig. 7.19: Primary open folding

(v) Secondary open folding: for ν = 1, 2, given a ν-secondary vertex q adjacent
to two different primary vertices p1, p2 through arcs e1, e2 having the same
label g ∈ Gν, consists in identifying the vertices p1 and p2, and the arcs e1, e2

into an arc maintaining the label g (see Figure 7.20).
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H

g g1

H

g

Fig. 7.20: Secondary open folding

(vi) Closed folding: for ν = 1, 2, given a primary vertex p adjacent to a ν-secondary
vertex q by two different (parallel) edges e1, e2, consists in identifying e1

and e2 into a single arc with label `e1 , and change the label of q from `q to
〈`q, `e1`

−1
e2
〉 6 Gν (see Figure 7.21).

H

g h

〈H,gh−1〉

g

Fig. 7.21: Closed folding

(Of course, in any transformation involving arcs, the corresponding transformation
preserving involution is assumed in the respective inverse arcs.)

Remark 7.4.28. The (folding) transformations (iv), (v), and (vi) in Definition 7.4.27
decrease the number of arcs in the automata exactly by 1.

The following result is straightforward to check, and we leave the details to the
reader.

Lemma 7.4.29. Let Γ be a reduced (G1,G2)-automaton, and let Γ Γ ′ be any of the
elementary transformations in Definition 7.4.27. Then, the recognized subgroups of Γ
and Γ ′ do coincide, i.e., 〈Γ〉 = 〈Γ ′〉 6 G1 ∗G2.

Using these elementary operations appropriately, we can already give a construc-
tive proof of the existence of reduced (G1,G2)-automata representing any given
finitely generated subgroup H 6 G1 ∗G2.

Theorem 7.4.30 (Ivanov, 1999, [Iva99]). For any groups G1,G2 groups, and any finitely
generated H 6 G1 ∗G2, there exists a reduced (G1,G2)-wedge automaton recognizing H.

Moreover, if both G1 and G2 have solvable membership problem, then given a finite set
of generators of a (finitely generated) subgroup H 6 G1 ∗G2, one can algorithmically
construct a reduced (G1,G2)-automaton of finite type recognizing H.
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Proof. It is clear that the (trivial) wedge automata consisting only of a primary
vertex (being the basepoint) and no secondary vertices nor edges is reduced
(G1,G2)-automaton of finite type recognizing the trivial group. So, for the rest of
the proof, we can assume H 6= 1.

Given a finite set of generatorsW = {w1, . . . ,wn} for H, consider the flower automa-
ton Fl(W); as seen above, this is a connected (G1,G2)-wedge automaton of finite
type recognizing H. In order to gain properties (ii) and (iii) from Definition 7.4.18,
we now combine elementary transformations to clean Γ in the following three
ways:

(I) if, for ν = 1, 2, Γ has a primary vertex p adjacent to two different ν-secondary
vertices, then we apply a corrected primary open folding at p: namely, we first
apply a suitable conjugation transformation to (say) the second ν-vertex in
order to equalize the involved arc labels, an then apply an primary open
folding to identify both arcs.

(II) if, for ν = 1, 2, Γ has a primary vertex p and a ν-secondary vertex q connected
by two different arcs e1, e2. then we apply a closed folding to identify the two
arcs into a single one.

(III) if Γ has a secondary vertex q adjacent to two different primary vertices
through arcs e1 and e2 (of the same type), say with ιe1 = ιe2 = q, and such
that 1 ∈ `−1

e1
`q`e2 (i.e., `e1`

−1
e2
∈ `q), then we apply a corrected secondary open

folding at q: i.e., we first apply a suitable adjustment transformation to (say)
the second arc e2 in order to equalize the involved arc labels, an then apply
an elementary open folding to identify e1 and e2 into an arc with label `e1 .

Observe that we can algorithmically recognize whether each of these situations
occur: (I) and (II) are clear, whereas (III) can be detected using the solution to the
membership problem for G1 and G2 which we are assuming in the hypothesis.

Therefore, the cleaning procedure is straightforward: successively detect any of
these situations, and then apply the corresponding cleaning move. Note that
although this could create new instances of any of the three situations to be
fixed, the total number of arcs always decrease after applying any of the cleaning
operations. So, no matter in which order do we perform the operations, since
the starting flower automaton is finite, the process will terminate after a finite
number of steps, giving as a final output a (G1,G2)-wedge automaton Γ ′ where
the situations (I)-(III) do not occur anymore. This cleaning procedure is called a
folding process.

We claim that the result of this process (Γ ′) is a reduced (G1,G2)-automaton of
finite type recognizing the same subgroup H = 〈Γ〉, so proving the result.
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Indeed, by construction, Γ ′ is connected. By (I) and (II), for ν = 1, 2, any primary
vertex of Γ ′ is adjacent to at most one ν-secondary vertex through at most one
arc; therefore, Γ ′ satisfies (ii). On the other hand, by (III), Γ ′ satisfies property (iii).
Hence, Γ ′ is a reduced (G1,G2)-automaton.

Moreover, the underlying graph of Γ ′ is clearly finite, and the labels of vertices
are finitely generated because they started being trivial, and passed finitely many
times through the two operations ‘adding a generator’, and ‘merging two sets of
generators into one’. Hence, Γ ′ is of finite type.

Since elementary operations preserve the recognized subgroup (by Lemma 7.4.29),
we have 〈Γ ′〉 = 〈Γ〉 = H. The proof is completed.

Remark 7.4.31. The reduced (G1,G2)-automaton constructed in the proof of The-
orem 7.4.30 can depend, in principle, on the order in which we perform the
operations to Fl(W), and on the initial set of generators W for H. With a bit more
of technical work, it is possible to canonically associate to H a unique reduced
(G1,G2)-automaton ΓH such that 〈ΓH〉 = H (which will be the common result of
the above sequence of operations, no matter in which order we performed them,
and independently from the initial W as well). We do not develop these details
here because we shall not need this uniqueness along the present paper.

7.4.4 A reduced automaton for the intersection
We now move on the main topic of this second part of the chapter; namely,
intersections of subgroups of free products. The goal of this subsection is to
detail an algorithmic procedure to build an reduced automaton recognizing the
intersection of two finitely generated subgroups of a free product G = G1 ∗G2.

Recall that if G1 and G2 are Howson, then G1 ∗G2 is Howson as well (this was first
proved by Baumslag in [Bau66], whereas later, Ivanov [Iva99] gave an alternative
proof, which is essentially the one we present here). However, a free product
G1 ∗G2 can very well contain finitely generated subgroups H,K 6 G1 ∗G2 such
that H∩K is not finitely generated.

Below, we algorithmize the argument given in [Iva99] (generalizing the classical
“pullback” technique for free groups) to describe a reduced (G1,G2)-automaton
ΓH ∧ ΓK such that 〈ΓH ∧ ΓK〉 = H∩K, in terms of given reduced (G1,G2)-automata
ΓH, with 〈ΓH〉 = H; and ΓK, with 〈ΓK〉 = K. Note that this construction is not
algorithmic since ΓH ∧ ΓK may very well be not of finite type, even when both ΓH
and ΓK are so (this situation corresponds to the case where H,K are both finitely
generated but H∩K is infinitely generated, see Corollary 7.4.26).

Later, we shall restrict ourselves to automata of finite type (ΓH and ΓK) and, for
this case, we shall give an effective procedure which starts constructing, locally, the
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aforementioned junction automaton ΓH ∧ ΓK recognizing the intersection. While
running, there will be an alert observing the construction: if some (algorithmically
checkable) specific situation occurs, then the intersection H∩K is infinitely gen-
erated. We shall achieve our goal by proving that, in finite time, either the alert
sounds or the procedure terminates providing the finite type reduced automa-
ton ΓH ∧ ΓK as output.

So, suppose that H,K 6 G1 ∗G2 are arbitrary finitely generated subgroups, and ΓH
and ΓK are finite type reduced (G1,G2)-wedge graphs satisfying 〈ΓH〉 = H, and
〈Γk〉 = K. We will define the junction ΓH ∧ ΓK along the following paragraphs from
a so-called product automaton of the reduced wedge automata ΓH and ΓK.

To begin with, we define the set of primary vertices of the product, which we will
denote by Γ̃, as the cartesian product of the primary vertices in ΓH and the primary
vertices in ΓK,

V0Γ̃ = V0 ΓH ×V0 ΓK .

Accordingly, the basepoint of Γ̃ is defined to be the pair of respective basepoints,
i.e., = ( H, K).

Now, for ν = 1, 2, we consider the subsets of primary vertices (in ΓH and ΓK)
adjacent to some ν-secondary vertex,

V0←ν ΓH = { p ∈ V0 ΓH | p is adj. to a ν-secondary in ΓH } ⊆ V0 ΓH,

V0←ν ΓK = {p ∈ V0 ΓK | p is adj. to a ν-secondary in ΓK} ⊆ V0 ΓK,

and define the following relation ≡ν on the set V0←ν ΓH ×V0←ν ΓK ⊆ V0Γ̃:
(p1, p ′1) ≡ν (p2, p ′2), if and only if there exist two ν-elementary walks: γ from p1

to p2 in ΓH (say γ = p1e−1
1 qe2p2, with q ∈ Vν ΓH), and γ ′ from p ′1 to p ′2 in ΓK

(say γ ′ = p ′1e
′−1
1 q ′e ′2p ′2, with q ′ ∈ Vν ΓK), such that the intersection of their labels is

nonempty, i.e.,

(p1, p ′1) ≡ν (p2, p ′2) ⇔ ∃ν-vertices q, q ′ :
{

p1 q p2 , p ′1 q ′ p ′2
`p1→q→p2 ∩ `p ′1→q ′→p ′2 6= ∅ .

(7.15)

A

A ′

≡ν if g−1
1 Ag2∩ (g ′1)

−1A ′g ′2 6=∅
g1

g2

g ′1 g ′2

Fig. 7.22: ν-equivalence of primary vertices in Γ̃
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Lemma 7.4.32. For ν = 1, 2, the relation ≡ν defined in (7.15) is an equivalence relation
on the subset of primary vertices V0←νΓH ×V0←νΓK ⊆ V0Γ̃.

Proof. If any of the factors (ΓH or ΓK) does not have ν-secondary vertices, then its
ν-neighborhood is empty, and the result follows immediately. So, we can assume
that both factors do have ν-secondary vertices.

Fix an element p = (p, p ′) ∈ V0←νΓH × V0←νΓK. Let q be the ν-secondary vertex
in ΓH incident to p (there exists exactly one since p ∈ V0←νΓH, and Γ is reduced),
and let γ = pe−1qep be the corresponding ν-elementary degenerate walk. Since
`γ = `−1

e `q`e is a subgroup of Gν, it always contains the trivial element. Repeating
the same on the second coordinate, we get 1 ∈ `γ∩ `γ ′ 6= ∅ and so, (p, p ′) ≡ν (p, p ′).
This shows that ≡ν is reflexive.

By construction, ≡ν is clearly symmetric.

Now, consider three elements (p1, p ′1), (p2, p ′2), (p3, p ′3) ∈ V0 ΓH ×V0 ΓK and assume
(p1, p ′1) ≡ν (p2, p ′2) ≡ν (p3, p ′3). This means that, in ΓH, there exist ν-elementary
walks γ1 = p1e−1

1 q1e2p2 and γ2 = p2e−1
4 q2e3p3 with q1, q2 ∈ Vν ΓH, and, in ΓK,

ν-elementary walks γ ′1 = p ′1e
′−1
1 q ′1e ′2p ′2 and γ ′2 = p ′2e

′−1
4 q ′2e ′3p ′3 with q ′1, q ′2 ∈ Vν ΓK

such that

∅ 6= `−1
e1
`q1`e2 ∩ `

−1
e ′1
`q ′1`e ′2 ⊆ Gν ,

∅ 6= `−1
e4
`q2`e3 ∩ `

−1
e ′4
`q ′2`e ′3 ⊆ Gν .

Since ΓH and ΓK are reduced automata, we deduce that q1 = q2 and q ′1 = q ′2 (call
them, respectively, q and q ′), and e2 = e4 and e ′2 = e ′4. Take elements in the above
two nonempty sets,

`−1
e1
a`e2 = x = `−1

e ′1
a ′`e ′2 ,

`−1
e2
b`e3 = y = `−1

e ′2
b ′`e ′3 ,

for some a,b ∈ `q and a ′,b ′ ∈ `q ′ . Then, ab ∈ `q, a ′b ′ ∈ `q ′ and so,

`−1
e1

(ab)`e3 = (`−1
e1
a`e2)(`

−1
e2
b`e3) = xy = (`−1

e ′1
a ′`e ′2)(`

−1
e ′2
b ′`e ′3) = `−1

e ′1
(a ′b ′)`e ′3 .

Therefore, the ν-elementary walks p1e−1
1 qe3p3 and p ′1e

′−1
1 q ′e ′3p ′3, in ΓH and ΓK,

respectively, show that (p1, p ′1) ≡ν (p3, p ′3). This proves transitivity.

Remark 7.4.33.
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After Lemma 7.4.32, we can advance in the construction of the product automaton
Γ̃. For ν = 1, 2, define the ν-secondary vertices of Γ̃ to be the equivalence classes
modulo ≡ν. Namely,

Vν Γ̃ = (V0←ν ΓH ×V0←ν ΓK) / ≡ν

Moreover, for each such secondary vertex q ∈ Vν Γ̃, and each primary vertex
p = (p, p ′) ∈ q, add a ν-arc q p. That is, the membership relation between
primary and secondary vertices defines the arcs in Γ̃:

E Γ̃ :=
{
q p : q ∈ V1,2 Γ̃, p ∈ V0 Γ̃, and p ∈ q

}
.

This defines the complete set of ν-arcs EνΓ̃, and finishes the definition of the
underlying digraph of Γ̃.

Observe that a primary vertex (p, p ′) ∈ V0 Γ̃ with one of its two coordinates not
being adjacent to any ν-secondary vertex plays no role in the definition of ≡ν and
so, becomes non-adjacent to any ν-secondary vertex in Γ̃, either (note that, for a
given (p, p ′) this could be the case for ν = 1 and not for ν = 2, or viceversa, or
for both at the same time); otherwise, (p, p ′) ∈ V0←νΓH ×V0←νΓK belongs to one
and only one equivalence class of ≡ν. Therefore, for ν = 1, 2, every primary vertex
of Γ̃ is adjacent to at most one ν-secondary vertex of Γ̃ through at most one arc.

On the other hand, observe that Γ̃ may not be connected in general, even with ΓH
and ΓK being so.

Once the underlying digraph for the product Γ̃ of ΓH and ΓK is established, we
define the projection (digraph) homomorphisms in the natural way.

Definition 7.4.34. Let Γ̃ be the product of ΓH and ΓK. We define a digraph
homomorphism π : Γ̃ → ΓH by parts:

(a) its restriction to primary vertices is the projection π : V0 Γ̃ → V0 ΓH, (p, p ′) 7→ p;

(b) its restriction π : Vν Γ̃ → Vν ΓH to ν-secondary vertices assigns to every ver-
tex q ∈ Vν Γ̃, the only (ν-secondary) vertex in ΓH adjacent to every ver-
tex p = (p, p ′)π ∈ V0 ΓH such that (p, p ′) ∈ q;

(Note that this corresponds precisely to the image qπ of the secondary vertex
q thought as a class of primary vertices.)

(c) its restriction π : Eν Γ̃ → Eν ΓH to ν-arcs is defined as follows: for every
q ∈ Vν Γ̃, and every (p, p ′) ∈ q, the (unique) ν-arc in Γ̃ from q to (p, p ′) is
assigned to the (unique) ν-arc in ΓH from q = qπ to p = (p, p ′)π.
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Clearly, π is a well defined digraph homomorphism, called the projection to ΓH.
The projection to ΓK, denoted by π ′ : Γ̃ → ΓK, is defined in an analogous way. Then,
we write π := (π,π ′) : Γ̃ → ΓH × ΓK.

Moreover, the respective restrictions of π to primary vertices and edges are injective.
Thus, we will usually write p = (pπ,pπ ′) = (p, p ′), q = (qπ,qπ ′) = (q, q ′), and
e = (eπ, eπ ′) = (e, e ′) (see Figure 7.23).

p

q

p ′ q ′

p

q

π

π ′

e

e ′

e

Fig. 7.23: Projection maps π and π ′

In order to complete the definition of the wedge automaton Γ̃, it remains to
establish the labels for its vertices and arcs. We will do it in a way that extends
the digraph homomorphisms π and π ′ into homomorphisms of the corresponding
automata.

Definition 7.4.35. For ν = 1, 2, and every ν-secondary vertex q ∈ VνΓ̃, choose a
particular primary vertex pq = (pq, p ′q) ∈ q, and let eq be the (only) arc in Γ̃ form q
to the representative pq. This means that:

• in ΓH there exists a ν-arc eq := (eq)π ∈ Eν ΓH from q = qπ ∈ Vν ΓH to pq ;
and

• in ΓK there exists a ν-arc e ′q := (eq)π ′ ∈ Eν ΓK from q ′ = qπ ′ ∈ Vν ΓK to p ′q.

Then, we define the label of vertex q as

`q := `−1
eq `q `eq ∩ `

−1
e ′q `q

′ `e ′q = `
`eq
q ∩ `

`e ′q
q ′ 6 Gν . (7.16)

Finally, for any ν-arc e ∈ Eν Γ̃ form q to a certain primary vertex p = (p, p ′) ∈ q,
call e := eπ, e ′ := eπ ′, and define the label of e as an arbitrary element from the
corresponding coset intersection; i.e.,

`e ∈ `−1
eq `q `e ∩ `

−1
e ′q `q

′ `e ′ , (7.17)

which is nonempty because (pq, p ′q) ≡ν (p, p ′) by construction (see Figure 7.24).
Note that, in particular, we can take `eq = 1.
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A ′

Ag1∩A ′g
′
1

g2

g1

g′
1 g′

2

1

g ∈ g−1
1 Ag2 ∩ g′

1
−1
A′g′

2

Fig. 7.24: Secondary vertex and related labels in Γ̃

This completes the definition of a product automaton Γ̃ of ΓH and ΓK (depending
on some choices made on the way). Note also that Γ̃ may not be connected, in
general. The main property of the labels defined for Γ̃ is expressed in the following
lemma.

Lemma 7.4.36. If Γ̃ is a product of two reduced wedge automata ΓH and ΓK. Then, for
every ν-elementary walk γ in Γ̃, the projected walks γπ and γπ ′ are ν-elementary in ΓH
and ΓK respectively; and we have

`γ = `γπ ∩ `γπ ′ . (7.18)

Furthermore, γ is degenerate if and only if both γπ and γπ ′ are degenerate.

Proof. Clearly, the projections by π and π ′ of ν-elementary walks in Γ̃ are also
ν-elementary walks (in ΓH and ΓK, respectively), with the original one being
degenerate if and only if both projections are degenerate. Note, however, that γ
could be nondegenerate with one (and only one) of γπ and γπ ′ being degenerate;
see Figure 7.24.

To see the equality in labels, let γ = p1e−1
1 qe2p2 be a ν-elementary walk in Γ̃, where

p1 = (p1, p ′1) and p2 = (p2, p ′2), and let γπ = p1e−1
1 qe2p2 and γπ ′ = p ′1(e ′1)

−1q ′e ′2p ′2
be the corresponding ν-elementary walks in ΓH and ΓK, respectively. No matter if γ
is degenerate (i.e., if e1 = e2) or not, we have `γπ = `−1

e1
`q `e2 and `γπ ′ = `−1

e ′1
`q ′ `e ′2 .

Now, consider the chosen ν-arc eq incident to q (possibly equal to e1 and/or e2).
According to definitions (7.16) and (7.17), we have:

`q = `
`eq
q ∩ `

`e ′q
q ′ and `ei ∈ `

−1
eq `q `ei ∩ `

−1
eq `q ′ `e ′i ,

for i = 1, 2 (see Figure 7.24). Therefore,

`γ = `−1
e1
`q `e2 = `−1

e1
·
(
`
`eq
q ∩ `

`e ′q
q ′

)
· `e2 = `−1

e1
`q `e2 ∩ `

−1
e ′1
`q ′ `e ′2 = `γπ ∩ `γπ ′ .
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This completes the proof.

We can now state the definition of junction automaton ΓH ∧ ΓK and show that it is
a reduced (G1,G2)-wedge automaton such that 〈ΓH ∧ ΓK〉 = H∩K.

Definition 7.4.37. Let G1,G2 be two groups, let H,K 6 G1 ∗G2 be two subgroups,
and let ΓH, ΓK be reduced (G1,G2)-wedge automata recognizing H and K, respec-
tively; and let Γ̃ be a product of ΓH and ΓK (recall that there are some arbitrary
choices made on the way).

Then, the junction (automaton) of ΓH and ΓK (relative to the product Γ̃), which we
will loosely denote by ΓH ∧ ΓK, is the connected component of Γ̃ containing the
basepoint.

Proposition 7.4.38. Any junction automaton ΓH ∧ ΓK is a (G1,G2)-reduced automaton
recognizing H∩K.

Proof. By definition, the junction ΓH ∧ ΓK is connected. So, it satisfies property (ii)
from Definition 7.4.18.

As observed above, for ν = 1, 2, every primary vertex of Γ̃ is adjacent to at most
one ν-secondary vertex of Γ̃ through at most one arc; so Γ̃, and hence ΓH ∧ ΓK,
satisfies property (ii) from Definition 7.4.18.

To see property (iii) in Definition 7.4.18, take ν = 1, 2, and let q ∈ Vν Γ̃ be a
ν-secondary vertex of Γ̃, and let e1, e2 be two different ν-arcs from q to p1 = (p1, p ′1)
and p2 = (p2, p ′2) respectively; i.e., γ = pe−1

1 qe2p2 is a nondegenerate elementary
walk in Γ̃.

By symmetry, we can assume p1 6= p2, i.e., that γπ = p1e−1
1 qe2p2 is a nondegenerate

elementary walk in ΓH. Since ΓH is a (G1,G2)-reduced automaton, 1 6∈ `−1
e1
`q `e2 =

`γπ. Therefore, by Lemma 7.4.36, 1 6∈ `γ = `γπ ∩ `γπ ′ . This shows that Γ̃, and
hence ΓH ∧ ΓK, satisfies property (iii) from Definition 7.4.18.

Therefore, ΓH ∧ ΓK is a reduced (G1,G2)-automaton.

It remains to show that 〈ΓH ∧ ΓK〉 = H∩K (or, equivalently, 〈Γ̃〉 = H∩K).

Indeed, let γ be an arbitrary -walk in Γ̃, and let γ = γ1 · · ·γr be its elementary
decomposition. Clearly, the elementary decompositions of γπ in ΓH, and γπ ′

in ΓK, are γπ = (γ1π) · · · (γrπ) and γπ ′ = (γ1π
′) · · · (γrπ ′), respectively. Then,

by Lemma 7.4.36,

`γ = `γ1 · · · `γr ⊆ `γ1π · · · `γrπ = `(γ1π) ··· (γrπ) = `γπ ⊆ H .
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Since this is true for every γ, we deduce 〈ΓH ∧ ΓK〉 ⊆ H; and, by the symmetric
argument, also 〈ΓH ∧ ΓK〉 ⊆ K.

For the converse inclusion, take an element g ∈ H ∩ K, and let g = g1 · · ·gr be
its syllable decomposition in G1 ∗G2. Since ΓH is a (G1,G2)-reduced automaton
and 〈ΓH〉 = H, Lemma 7.4.21 ensures us that g ∈ ˜̀γ for some alternating walk
γ, closed at the basepoint of ΓH. In this situation, its elementary decomposition,
γ = γ1 · · ·γr, correspond to the syllable decomposition g = g1 · · ·gr, i.e., gi ∈ ˜̀γi ,
for i = 1, . . . , r. Similarly, there exists an alternating walk γ ′, closed at the basepoint
of ΓK, whose elementary decomposition γ ′ = γ ′1 · · ·γ ′r again correspond to the
syllable decomposition g = g1 · · ·gr, i.e., gi ∈ ˜̀γ ′i , for i = 1, . . . , r.

Write γi = pi−1e−1
i qifipi and γ ′i = p ′i−1(e ′i)−1q ′if ′ip ′i. Then, for each i = 1, . . . , r, we

have gi ∈ `γi = `−1
ei `qi `fi and gi ∈ `γ ′i = `

−1
e ′i
`q ′i `f ′i ; so,

∅ 6= `−1
ei `qi`fi ∩ `

−1
e ′i
`q ′i`f ′i ⊆ Gν .

and this means that pi−1 = (pi−1, p ′i−1) ≡νi (pi, p ′i) = pi , where νi is the common
type of the vertices qi (in ΓH) and q ′i (in ΓK); see (7.15). Therefore, pi−1 and pi are
both incident to a common νi-secondary vertex in ΓH ∧ ΓK. In other words, there is
a νi-elementary walk in ΓH ∧ ΓK, say γi, from pi−1 to pi . Finally, by Lemma 7.4.36,
gi ∈ `γi ∩ `γ ′i = `γi . Therefore,

g = g1 · · ·gr ∈ `γ1 · · · `γr = `γ1···γr ⊆ 〈ΓH ∧ ΓK〉 ,

concluding the proof.

Corollary 7.4.39. In the above situation, H∩K is finitely generated if and only if all the
vertex labels of ΓH ∧ ΓK are finitely generated.

Proof. By construction, the underlying graph of ΓH ∧ ΓK is finite. So, the result
follows from Proposition 7.4.38 and Corollary 7.4.26.

7.4.5 Understanding intersections of cosets

According to Lemma 7.4.16, given a wedge automaton ΓH, the union of the labels
of all the walks in ΓH from the basepoint to a primary vertex p ∈ V0 ΓH, denoted
by 〈ΓH〉( ,p), constitute a coset of the recognized subgroup 〈ΓH〉 = H. In general,
though, this does not reflect all the cosets of H (consider, for example the cases
when ΓH has only finitely many primary vertices). However, we can slightly
modify the automaton ΓH to achieve this purpose:
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Let u = a1b1 · · ·asbs ∈ G1 ∗G2, written in normal form. Consider the (G1,G2)-
wedge automaton (also denoted by u) consisting on a single segment line spelling
the normal form for g, and having trivial vertex labels (like the petal in Figure 7.10,
but without identifying the initial and terminal vertices ιu and τu); let us call it
the hair for u. Attach this hair to ΓH by identifying the basepoint H with ιu, and
then apply the folding process until no more foldings are possible (see the proof
of Theorem 7.4.30). Observe that operation (II) will not be used, and the triviality
of the vertex labels in the hair implies that the vertex groups already present in ΓH
will not change along the process. So, the output is the exact same graph ΓH with
a terminal segment of the hair (maybe the whole of it) attached somewhere and
sticking out; denote this by ΓHu. Clearly, ΓHu is a (G1,G2)-reduced automaton,
like ΓH, and furthermore, since the new secondary vertices out of ΓH have trivial
label, 〈ΓHu〉 = 〈ΓH〉 = H.

By Lemma 7.4.16 (iii), 〈ΓHu〉( H,τu) = 〈ΓH〉 · u (the situation where this coset could
already be represented by a vertex in ΓH corresponds to the fact that the hair
happens to fold completely and so, ΓHu = ΓH).

Now let us go back to the graph ΓH ∧ ΓK. It is useful to understand the intersection
of H and K but also, adding the corresponding hairs, it will be useful to understand
the intersection of two arbitrary cosets Hu and Kv.

Given elements u, v ∈ G1 ∗G2, consider the (G1,G2)-reduced automata ΓHu and
ΓKv, and the graph ΓHu ∧ ΓKv constructed exactly like ΓH ∧ ΓK but starting with
ΓHu and ΓKv instead of ΓH and ΓK.

Lemma 7.4.40. With the above notation,

(i) ΓH ∧ ΓK is a (G1,G2)-reduced subgraph of ΓHu ∧ ΓKv;

(ii) Hu∩Kv 6= ∅ if and only if the vertex (τu, τv) belongs to ΓHu ∧ ΓKv;

(iii) for any walk γ in ΓHu ∧ ΓKv from ( H, K) to (τu, τv), and any g ∈ `γ, we have

Hu∩Kv = 〈ΓHu ∧ ΓKv〉( H, K), (τu,τv) = (H∩K)g.

Proof. Note that the initial set of primary vertices for ΓHu ∧ ΓKv, namely V0 ΓHu ×
V0 ΓKv, contains as a subset V0 ΓH × V0 ΓK, the initial set of primary vertices for
ΓH ∧ ΓK. And two old vertices (p1, p ′1), (p2, p ′2) ∈ ΓH ∧ ΓK are ≡ν-equivalent in
ΓH ∧ ΓK if and only if they are ≡ν-equivalent as vertices in ΓHu ∧ ΓKv (since
vertices of ΓHu ∧ ΓKv outside ΓH ∧ ΓK have always trivial labels). This proves (i).

Suppose first that (τu, τv) ∈ V ΓHu∧ΓKv, let γ be a walk in ΓHu∧ΓKv from ( H, K)

to (τu, τv), and consider its basic label `•γ ∈ G1 ∗G2. By the same argument as in
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Proposition 7.4.38, `•γ ∈ `γπ ∩ `γπ ′ . But γπ (resp., γπ ′) is a walk in ΓHu from H

to τu (resp., a walk in ΓKv from K to τv) hence, by Lemma 7.4.16 (iii),

`•γ ∈ 〈ΓHu〉( H,τu) ∩ 〈ΓKv〉( K,τv) = Hu∩Kv ,

concluding that Hu∩Kv 6= ∅.

Conversely, suppose thatHu∩Kv 6= ∅ and let g ∈ Hu∩Kv. Again by Lemma 7.4.16 (iii),
there exist walks γ in ΓHu from H to τu, and γ ′ in ΓKv from K to τv, such that
g ∈ `γ ∩ `γ ′ . Again, with an argument like in the proof of Proposition 7.4.38,
there exists a walk γ in ΓHu ∧ ΓKv from ( H, K) to (τu, τv) such that g ∈ `γ. In
particular, (τu, τv) ∈ ΓHu ∧ ΓKv. This proves (ii) and (iii).

7.4.6 Algorithmic treatment of the junction automaton

Let us now address the algorithmic aspects of this construction. For all the present
section, assume the two starting reduced (G1,G2)-automata ΓH and ΓK to be of
finite type (namely, H and K are finitely generated subgroups of G1 ∗G2).

By construction, the underlying graph of ΓH ∧ ΓK is finite, but not necessarily of
finite type (since the labels of the vertices in ΓH ∧ ΓK may very well be infinitely
generated as a possible result of intersections of finitely generated subgroups of
G1 and G2).

A first easy observation is that, under the assumption that both G1 and G2 are
Howson, then ΓH ∧ ΓK will always of finite type. This recovers a classical result
originally proved by Baumslag in [Bau66].

Theorem 7.4.41 (Baumslag, 1966, [Bau66]; Ivanov, 1999, [Iva99]). Any arbitrary free
product of Howson groups is again Howson.

Proof. Suppose G1 and G2 are Howson, and let H,K 6 G1 ∗G2 be finitely generated.
By Theorem 7.4.30, there exist (G1,G2)-reduced automata of finite type ΓH and ΓK
respectively recognizing H and K. Then, the (G1,G2)-reduced automaton ΓH ∧ ΓK

is again of finite type (this is clear since the order of the junction is bounded, and
you can only obtain finitely generated labels after finitely many foldings). And,
by Corollary 7.4.26, H ∩ K = 〈ΓH ∧ ΓK〉 is finitely generated. Hence, G1 ∗G2 is
Howson.

By induction, any finite free product of Howson groups is again Howson. Finally,
an arbitrary free product ∗i∈IGi of Howson groups Gi is also again Howson
since any finitely generated subgroup H 6∗i∈IGi is contained in∗i∈I0

Gi for
some big enough finite set of indices I0 ⊆ I.
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In the present section — without assuming the Howson property for the factors — we
shall give an algorithm which, on input two finitely generated subgroups H,K 6
G1 ∗G2 (given by finite sets of generators in normal form), decides whether H∩K
is finitely generated or not and, in the affirmative case, computes an automaton
of the form ΓH ∧ ΓK recognizing this intersection (assuming SIP in H and K). For
this purpose, we shall need to decide whether certain intersections of pairs of
finitely generated subgroups of Gi are finitely generated again, or not; and in the
affirmative case, whether certain cosets of them do intersect or not. This conducts
us to the proofs of Theorems 7.3.1 and 7.3.2.

Theorem 7.3.2. If two finitely presented groups G1 and G2 satisfy ESIP, then their free
product G1 ∗G2 also satisfies ESIP.

Proof. Assume that both G1 and G2 satisfy ESIP; and suppose we are given two
finitely generated subgroups H,K 6 G1 ∗G2 by finite sets of generators, and two
extra elements u, v ∈ G1 ∗G2, all of them in normal form. By Remark 7.1.4, both
G1 and G2 also have solvable membership problem; and by Theorem 7.4.30, we can
compute reduced (G1,G2)-automata ΓH and ΓK such that 〈ΓH〉 = H, and 〈ΓK〉 = K.

Now recall Proposition 7.4.38 and Corollary 7.4.39: the intersection H ∩ K is
recognized by the (finite) junction automaton ΓH ∧ ΓK, and is finitely generated if
and only if all the vertex labels in ΓH ∧ ΓK are finitely generated.

So, the next step is to start constructing the graph ΓH ∧ΓK; locally from its basepoint:
For every new ν-secondary vertex q added to the picture, we shall algorithmically
detect whether its label `q is finitely generated or not: if it is not, then we kill
the whole process and deduce that H ∩ K is infinitely generated; otherwise, we
shall compute a finite set of generators for `q, and proceed with the construction
of ΓH ∧ ΓK. In this way, we shall either detect that the intersection H∩K is infinitely
generated, or will complete the construction of ΓH ∧ ΓK.

To eventually compute this construction, we start looking at the basepoint =

( H, K), with the whole set V0 Γ̃ = V0 ΓH ×V0 ΓK in the background. We have to
keep adding ν-secondary vertices (with their labels), and ν-arcs (with their labels
too) connecting them to certain primaries, until getting ΓH ∧ ΓK, the full connected
component of Γ̃ containing the basepoint .

We start checking whether there exists ν ∈ {1, 2}, such that both H and K have
nonempty ν-neighborhoods. If not, then the basepoint is not adjacent to any
secondary vertex in Γ̃, and we are done (namely, the product Γ̃ is the trivial
automata, and the intersection H∩K = 1). Otherwise, let q ∈ Vν ΓH, and e ∈ Eν ΓH
with ιe = q, τe = H; and let q ′ ∈ Vν ΓK and e ′ ∈ Eν ΓK with ιe ′ = q ′, τe ′ = K, and
enlarge our picture by drawing a new ν-secondary vertex, say q, and a new ν-arc,

7.4 The free product case 247



say e = (e, e ′), from q to . According to (7.16) — and with respect to the choice
(pq, p ′q) = ( H, K) — we know that the label of q is `q = ` `eq ∩ `

`e ′
q ′ 6 Gν.

Applying SIP for Gν to the (finitely generated) subgroups ` `eq and ` `e ′q ′ , we can
decide whether `q is finitely generated or not. In case it is not, kill the whole
process and declare H∩K infinitely generated. Otherwise, compute a finite set of
generators for `q, assign `e = 1, and check which other primary vertices from Γ̃

are adjacent to q: p = (p, p ′) ∈ V0 Γ̃ is adjacent to q if and only if (p, p ′) ≡ν (pq, p ′q),
which happens if and only if there exists f ∈ Eν ΓH from q to p, and f ′ ∈ Eν ΓK
from q ′ to p ′, such that `−1

e `q `f ∩ `−1
e ′ `q ′ `f ′ 6= ∅. So, run over every p ∈ V0 ΓH

adjacent to q, and every p ′ ∈ V0 ΓK adjacent to q ′ and, for each such pair, check
whether the intersection of (right) cosets

` `eq · (`−1
e `f) ∩ `

`e ′
q ′ · (`

−1
e ′ `f ′) = `−1

e `q `f ∩ `−1
e ′ `q ′ `f ′ (7.19)

is empty or not; this can be done using the above call to ESIP from Gν, since
they are right cosets of ` `eq , ` `e ′q ′ 6 Gν, whose intersection happens to be finitely
generated.

Then, in case that intersection is not empty, add a ν-arc, say f = (f, f ′), from q to p,
and `(f,f ′) arbitrarily chosen from that nonempty intersection. After this procedure,
we have a complete picture of the 1-elementary and 2-elementary walks in ΓH ∧ ΓK

starting at the basepoint .

Now, for every ν = 1, 2, and every primary vertex p = (p, p ′) added to the
picture and not yet explored yet, repeat the same process (with p in place of

). Since the underlying graph of Γ̃ is finite, this procedure will either find an
infinitely generated vertex label (so detecting the infinite generated type of the
intersection), or finish in finite time, with output the complete junction ΓH ∧ ΓK,
from which we can obtain generators for H∩K (in fact, its Kurosh decomposition)
applying Theorem 7.4.25.

Hence, so far we have proved SIP(G1 ∗ G2). Note that the decision about the
disjunctiveness of the intersection of two finitely generated cosets (when the
corresponding intersection of subgroups is finitely generated) is still pending.

To carry it out, let us place ourselves in the case where H∩K finitely generated (and
so, we have constructed the full junction automata ΓH ∧ ΓK). Now the inputs u, v
start playing, and we have to decide whether the intersection of right cosetsHu∩Kv
is empty or not. We can extend the computation of ΓH ∧ ΓK to that of ΓHu∧ ΓKv; or,
if you prefer, construct directly ΓHu ∧ ΓKv — since we know (see Lemma 7.4.40 (i))
that ΓH ∧ ΓK will show up as a subgraph and so, the process will not be killed for
the presence of infinitely generated vertex labels.
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Tt only remains to check whether the vertex (τu, τv) appears in ΓHu ∧ ΓKv, or not.
Namely, using Lemma 7.4.40 (ii): (τu, τv) is connected to ( H, K) if and only if the
intersection Hu∩Kv is nonempty; and, if so, any element g from the label of any
walk from ( H, K) to (τu, τv) belongs to such intersection, g ∈ Hu∩Kv = (H∩K)g.

This concludes the proof.

Finally, we complement the arguments in the last proof to prove that TIP also
passes through free products.

Theorem 7.3.1. If two finitely presented groups G1 and G2 satisfy TIP, then their free
product G1 ∗G2 also satisfies TIP.

Proof. Since TIP implies ESIP, Theorem 7.3.2 already gives us ESIP for G1 ∗G2. It
remains to solve CIP in the case where the given finitely generated subgroups H,K
have infinitely generated intersection.

Given H,K 6 G1 ∗ G2 finitely generated, and w,w ′ ∈ G1 ∗ G2, run the same
algorithm as in the proof of Theorem 7.3.2: construct ΓHu and ΓKv and start
building the graph ΓHu ∧ ΓKv. When we encounter a secondary vertex q whose
label `q = ` `eq ∩ `

`e ′
q ′ 6 Gν is infinitely generated, instead of computing a set of

generators for it (which is not possible), we just put the trivial subgroup as a label
in place of `q. Then, when analyzing which other primary vertices are adjacent to
q, we need to decide if the intersection of cosets from equation (7.19) are empty
or not: even though ` `eq ∩ `

`e ′
q ′ 6 Gν is infinitely generated, the decision can be

made effective using CIP from Gν. This way, we can algorithmically complete
the description of ΓHu ∧ ΓKv except that, for some secondary vertices q, instead of
having generators for `q, we just have the trivial element in them.

Of course, this is not enough information for computing a set of generators
for H ∩ K (which, according to Corollary 7.4.39, is infinitely generated). But it
suffices for deciding whether the vertices ( H, K) and (τw, τw ′) belong to the
same connected component of ΓHu ∧ ΓKv. By Lemma 7.4.40, this allows us to
decide whether the intersection of cosets Hu∩Kv is empty or not, and in case it
is not, we can compute an element from it, just choosing a walk γ from ( H, K)

to (τw, τw ′), and then picking an element from `γ (if γ traverses some secondary
vertex with infinitely generated label, we just recorded an element from it for this
purpose).

This completes the proof.
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7.5 The direct product case

This section is devoted to proving Theorems 7.3.3 and 7.3.4 (concerning preservabil-
ity of intersection problems through direct products with free-abelian groups). To
this end, we analyze the Droms groups presented by connected Droms graphs (i.e., by
Droms cones).

Fix an arbitrary Droms graph Γ0 on n > 1 vertices, say VΓ0 = X = {x1, . . . , xn},
and a complete graph Km on m vertices, say VKm = T = {t1, . . . , tm}, and consider
the join Γ = Km ∨ Γ0. Recall that every Droms group GΓ admits such a primary
decomposition (Corollary 7.2.8), with Γ0 disconnected (or empty, if Γ is complete),
and in that case, the starting group GΓ is connected if and only if m > 1. Of course,
this situation, corresponds to Km agglutinating the center of Γ , and gives rise to
the short exact sequence:

1 −→ Zm −→ GΓ
π0−→ GΓ0 −→ 1 ,

ta u 7−→ u
(7.20)

where π0 : GΓ → GΓ0 is the natural map killing the center (i.e., at the level of words,
the map π0 just erases the occurrences of letters in T± = {t1, . . . , tm}±).

We have to show that if GΓ0 satisfies SIP (resp., ESIP), then so does GΓ = Zm ×GΓ0 .

Remark 7.5.1. First of all, observe that if any of this results were true for discon-
nected graphs Γ0, it would automatically be true in general: since any Droms group
Γ0 is of the form Γ0 = Kr ∨ Γ ′0 , with Γ ′0 disconnected; and if GΓ0 satisfies SIP (resp
ESIP), its subgroup GΓ ′0

satisfies it too, then

Zm+r ×GΓ ′0
= Zm × (Zr ×GΓ ′0

) = Zm ×GΓ0 (7.21)

will satisfy SIP (resp ESIP) as well.

Therefore, without lost of generality, we can assume for the rest of the proof that Γ0

is disconnected, say, Γ0 = Γ0,1 t Γ0,2, with Γ0,1, Γ0,2 6= ∅ (i.e., GΓ0 = GΓ0,1 ∗GΓ0,2

with GΓ0,1 , GΓ0,2 6= 1); in particular, Z (GΓ ) = 〈t1, . . . , tm〉 ' Zm.

Every element in GΓ can be written as a word on {t1, . . . , tm, x1, . . . , xn}, where
the ti’s are free to move at any position, because they commute with any other
letter. We will write all these ti’s systematically on the left, and will abbreviate
them as a vectorial power of a formal symbol ‘t’. This way, every element in
GΓ = Zm ×GΓ0 can be written in the form

ta1
1 · · · t

am
m u(x1, . . . , xn) = ta u(x1, . . . , xn) ,
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where a = (a1, . . . ,am) ∈ Zm, and u = u(x1, . . . , xn) is a word on the xi’s. Clearly,
the product of elements under this form is given by the rule

(ta u) · (tb v) = ta+b uv .

Now, we introduce a notion that will simplify the forthcoming discussion in this
setting.

Definition 7.5.2. Let GΓ = Zm ×GΓ0 be the primary decomposition of a Droms
group. Then, for a given subgroup H 6 GΓ , and an element u ∈ GΓ0 , we define
the (abelian) completion of u in H (a.k.a. the H-completion of u) to be the set

CH(u) = { a ∈ Zm | ta u ∈ H } .

Lemma 7.5.3. The completion CH(u) is either empty (when u /∈ Hπ0), or a coset of Zm ∩
H. Moreover, if u1, . . . ,un ∈ Hπ0, and ω(u1, . . . ,un) is an arbitrary word on them, then

CH(ω(u1, . . . ,un)) =

n∑
i=1

ωi CH(ui) ,

where ωi = |ω|i is the total exponent of the variable ui in ω.

Proof. Obviously, CH(u) 6= ∅ ⇔ u ∈ Hπ0. Also, CH(u) happens to be a coset of
Zm ∩H since, given ta ∈ CH(u),

b ∈ CH(u) ⇔ tb u ∈ H ⇔ (tb u)(ta u)−1 ∈ H ⇔ tb−a ∈ Zm ∩H .

With the regular addition of cosets, (a + L) + (b + L) = (a + b) + L, and λ(a + L) =

λa + L, the second claim is straightforward to see.

The next lemma shows how the subgroups of a connected Droms group (which we
know that are again PC-groups) are related to its center, and allows us to derive
useful consequences.

Lemma 7.5.4. Let GΓ = Zm ×GΓ0 be the primary decomposition of a connected Droms
PC-group. Then, any subgroup H 6 GΓ splits as:

H = (Zm ∩H)×Hπ0σ, (7.22)

where π0 : GΓ → GΓ0 is the natural projection killing the center of GΓ , and σ : Hπ0 → H

is a section of π0|H.

Proof. Note that the full subgraph Γ0 must be Droms as well. Let X = {x1, . . . , xn}
be the (finite) set of vertices of Γ0 (i.e., let GΓ0 = 〈X | R〉, where R ⊆ [X,X]); and
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let Zm = 〈t1, . . . , tm | [ti, tj] ∀i, j〉. Now, consider the restriction to a subgroup H 6
Zm ×GΓ0 of the natural short exact sequence associated to Zm ×GΓ0 :

1 −→ Zm −→ GΓ
π0−→ GΓ0 −→ 1 (7.23)

6 6 6

1 −→ Zm ∩H −→ H −→ Hπ0 −→ 1 , (7.24)

Since GΓ0 is Droms, we know that Hπ0 6 GΓ0 is again a PC-group. Thus, there
exists a (not necessarily finite) subset Y = {yj}j ⊆ GΓ0 such that Hπ0 ' 〈Y | S〉,
where S is some subset of the commutator set [Y, Y].

Now, observe that any map σ : Y → H sending each yj ∈ Y back to any of
its π0-preimages in H will respect the relations in S: indeed, for each commutator
[yi,yj] ∈ S, we have [(yi)σ, (yj)σ] = [taiyi, tajyj] = [yi,yj] (for certain abelian
completions ai, aj ∈ Zm). Therefore, any such map σ defines a (injective) section
of the restriction π0|H (which we will denote by σ as well). Thus, the short exact
sequence (7.24) splits; and Hπ0 ' Hπ0σ, for any such section σ.

Moreover, since the kernel of the subextension (7.24) lies in the center of GΓ , the
conjugation action is trivial, and the claimed result follows.

Remark 7.5.5. Note that, for an arbitrary finitely generated subgroup

H = 〈tb1 , . . . , tbr , ta1 u1, . . . , tas us〉 6 GΓ = Zm ×GΓ0 , (7.25)

where ui 6= 1, for all i = 1, . . . , s (we have placed the generators of H belonging to
the center Zm of GΓ at the beginning of the tuple), we always have:

〈tb1 , . . . , tbr〉
(1)

6 Zm ∩H = Z(GΓ )∩H
(2)

6 Z(H) , (7.26)

but these inclusions are — in general — not strict, since:

(1) a nontrivial product of the last s generators in (7.25) could, in principle, be
equal to tc for some element c 6∈ 〈b1, . . . , br〉;

(2) a generator tai ui in (7.25) can commute with every other generator in (7.25),
but it does not commute with every generator in GΓ (since ui contains
noncentral generators of GΓ ). Consider, for example, the element x in the
subgroup 〈t, x〉 6 〈t | −〉 × 〈x,y | −〉 ' Z×F2.

Since subgroups of finitely generated free-abelian groups are always of finite rank,
the next result follows immediately from Lemma 7.5.4.

Corollary 7.5.6. Let GΓ be a Droms group, and H a subgroup of GΓ . Then,

H is finitely generated ⇔ Hπ0 is finitely generated .
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Proof. The claim is a tautology for centerless Droms groups. Otherwise, the direct
implication is obviously true; whereas the converse follows from Equation (7.22),
and the fact that subgroups of finitely generated free-abelian groups are always
finitely generated.

Therefore, in order to decide whether the intersection of two subgroups H1,H2 of a
Droms group is finitely generated, it will be enough to find out what happens with
the projection (H1 ∩H2)π0. We will see that the behaviour of the embedding (H1 ∩
H2)π0 6 (H1)π0 ∩ (H2)π0 is crucial to this end; we describe it below.

Lemma 7.5.7. Let H1,H2 be subgroups of a Droms PC-group G = GΓ , and let π0 be the
projection killing the center of G. Then,

(i) (H1 ∩H2)π0 6 H1π0 ∩H2π0, sometimes with strict inclusion;

(ii) (H1 ∩H2)π0 P H1π0 ∩H2π0;

(iii) J(H1)π0 ∩ (H2)π0K 6 (H1 ∩H2)π0.

That is, we have the following chain of inclusions:

J(H1)π0 ∩ (H2)π0K 6 (H1 ∩H2)π0 P (H1)π0 ∩ (H2)π0 6 ∗ki=1 GΛi , (7.27)

where {Λi}ki=1 (k > 2) are the connected components of Γ0 = Γ rZ (Γ).

(We denote the commutator subgroup of a group G by JGK, in order to distinguish it from
the set of commutators [G,G]; i.e., JGK = 〈[G,G]〉.)

Proof. If the Droms group GΓ is centerless, then π0 is the identity, and all three
claims are obvious. We prove them for connected Droms groups:

(i) This is clear because (H1 ∩H2)π0 consists of those elements u ∈ GΓ0 that have a
common completion in H1 and H2 — i.e., such that ta u ∈ H1 ∩H2, for some a ∈
Zm; whereas H1π0 ∩H2π0 contains every element u ∈ GΓ0 with (not necessarily
common) completions in both H1 and H2 — i.e., such that ta u ∈ H1 and tb u ∈ H2

for some (not necessarily equal) vectors a, b ∈ Zm.

(ii) For normality, consider u ∈ (H1 ∩H2)π0, and v ∈ (H1)π0 ∩ (H2)π0. Then, there
must exist elements tau ∈ H1 ∩H2, and tbiv ∈ Hi (for i = 1, 2). Now observe that

ta(v−1uv) = v−1 (ta u) v = (tbi v)−1 (ta u) (tbi v) ∈ Hi (for i = 1, 2) .

Thus, ta v−1uv ∈ H1 ∩H2; and so, v−1uv ∈ (H1 ∩H2)π0, as we wanted to prove.
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(iii) Finally, take u, v ∈ (H1)π0 ∩ (H2)π0. Then, there exist elements taiu ∈ Hi,
tbiv ∈ Hi (i = 1, 2). Now, observe that

[u, v] = u−1v−1uv = (tai u)−1 (tbi v)−1 (tai u) (tbi v) ∈ Hi (for i = 1, 2) .

Thus, [u, v] belongs to H1 ∩H2, and to (H1 ∩H2)π0, as claimed.

The final chain (7.4) is nothing more that the two previous inclusions, followed by
that coming from the fact that centerless Droms graphs are disconnected.

Lemma 7.5.8. Let H1,H2 be subgroups of a Droms PC-group, and let π0 be the natural
projection killing the center. Then:

(H1 ∩H2)π0 is abelian ⇔ (H1)π0 ∩ (H2)π0 is abelian .

Otherwise,
F∞ 6 J(H1)π0 ∩ (H2)π0K 6 (H1 ∩H2)π0 .

Proof. The converse implication is clear since (H1 ∩H2)π0 6 (H1)π0 ∩ (H2)π0. We
prove the direct implication by transposition. Recall that (H1)π0 ∩ (H2)π0 is a
subgroup of a Droms group, and thus a PC-group as well. So, if (H1)π0 ∩ (H2)π0

is not abelian, then there exist at least one missing edge — say {u, v} — in its
commutation graph.

Therefore, the (infinitely-generated free) derived subgroup
q

F{u,v}
y
' F∞ of the

free subgroup generated by {u, v} in (H1)π0 ∩ (H2)π0, must be included in the
derived subgroup of (H1)π0 ∩ (H2)π0, and thus in (H1 ∩H2)π0 which, therefore, is
not abelian. This concludes the proof.

Lemma 7.5.9. Let H1,H2 be subgroups of a Droms PC-group GΓ . Then, if (H1)π0 ∩
(H2)π0 is infinitely generated, then (H1 ∩ H2)π0 (and so H1 ∩ H2) is also infinitely
generated.

Proof. Assume that H1π0 ∩H2π0 is infinitely generated, but (H1 ∩H2)π0 is finitely
generated, and let us find a contradiction.

Since both subgroups lie within a Droms group, H1π0 ∩H2π0 is again a PC-group
with infinite {P4,C4}-free commutation graph, say ∆, and (H1 ∩H2)π0 6 G∆0 6 G∆,
where ∆0 is the full subgraph of ∆ determined by the vertices appearing in the
reduced expressions of elements in (H1 ∩H2)π0. Note that the assumption of finite
generation for (H1 ∩H2)π0 implies that ∆0 is finite. Note also that, by construction,
∆0 is minimal (i.e., for any x ∈ V∆0, there exists and element g ∈ (H1 ∩H2)π0 such
that g 6∈ G∆0r{x}).
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Recall that then, (H1)π0 ∩ (H2)π0 can not be abelian since, if so, we would have
an infinitely generated free-abelian group embedded in the finitely generated
PC-group GΓ , which is not possible (see Lemma 6.2.4). So, (H1)π0 ∩ (H2)π0 is
not abelian (and infinitely generated by hypothesis); and, from Lemma 7.5.8,
(H1 ∩H2)π0 is not abelian as well. Accordingly, neither the (infinite) graph ∆, nor
the (finite) graph ∆0 can be complete.

Suppose now there is a missing edge between some element x ∈ V∆0 and some
vertex y ∈ V∆r V∆0. Take an element g ∈ (H1 ∩H2)π0 with g 6∈ G(∆0 r {x})

and Lemma 7.5.7(ii) would tell us that y−1gy ∈ G∆0 , which is a contradiction.

Hence, in ∆, every vertex from ∆0 is connected to every vertex outside ∆0. But
then, two non-adjacent vertices x1, x2 from ∆0 (there is at least one pair because ∆0

is not complete) together with two non-adjacent vertices y1,y2 from ∆r∆0 (there
must be many because ∆r∆0 is infinite and Z∞ does not embed into GΓ ) form a
copy of C4, a square, as a full subgraph of ∆; this is again a contradiction with ∆
being Droms.

So, the starting assumption must be false, and the proof is concluded.

7.5.1 Inductive theorems for connected Droms groups
Let us now prove Theorem 7.3.3; and afterwards, with an extension of the same
arguments, we shall put cosets into the picture and prove Theorem 7.3.4.

Theorem 7.3.3. Let G be a Droms PC-group. If G satisfies SIP, then Zm × G also
satisfies SIP.

Proof. Recall that it is enough to prove the theorem when G is a Droms group
with disconnected commuting graph, say Γ0 (Remark 7.5.1). So, we will assume
G = GΓ0 = 〈X | R〉 (a graphic presentation) for the rest of the proof.

We are given finite sets of generators for two subgroups H1,H2 of a Droms group
with primary decomposition GΓ = Zm ×GΓ0 .

If we project the given generators to GΓ0 , and then apply Proposition 7.2.10 on
the projected generating sets, we can compute bases for H1π0 and H2π0 respec-
tively. Now, for each such basis, say u1, . . . ,uni of Hiπ0, compute its completion,
say ta1 u1, . . . , tani uni , in Hi. This can be easily done by taking the words express-
ing the ui’s in terms of the generators of Hiπ projection of the initial generators,
and recomputing them on the original generators given for Hi.

Now, for each of the original generators of Hi, say tcv, we can write v ∈ Hiπ in
terms of the basis u1, . . . ,uni , say v = v(u1, . . . ,uni) and compute

v(ta1 u1, . . . , tani uni) = td v(u1, . . . ,uni) = td v .
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We obtain tc v, td v ∈ Hi, and so tc−d ∈ Hi ∩Zm. Repeating this operation for each
generator of Hi, we get a collection of vectors generating Hi ∩Zm. Cleaning them
with the use of standard linear algebra, we obtain a free abelian basis of Hi ∩Zm,
say {tb1 , . . . , tbm1 }. It is then immediate to see that {tb1 , . . . , tbm1 , ta1 u1, . . . , tani uni}

is a basis of Hi, with the extra properties that {tb1 , . . . , tbm1 } is a free-abelian basis
of Hi ∩Zm, and {u1, . . . ,uni} is a basis of Hiπ.

So, we can assume the given generators to be of the form:

H1 = 〈tb1 , . . . , tbm1 , ta1 u1, . . . , tan1 un1〉 6 GΓ ,

H2 = 〈tb ′2 , . . . , tb ′m2 , ta ′2 u ′2, . . . , ta ′n2 u ′n2
〉 6 GΓ ,

(7.28)

where {tb1 , . . . , tbm1 } is a free-abelian basis for L1 = H1 ∩Zm, and {u1, . . . ,un1}

is a basis of H1π (resp., {tb ′1 , . . . , tb ′m2 } is a free-abelian basis for L2 = H2 ∩Zm,
and {u ′1, . . . ,u ′n2

} is a basis of H2π)

Let us first make the decision on whether H1 ∩H2 is finitely generated or not
(equivalently, whether (H1 ∩H2)π0 6 GΓ0 is finitely generated or not). In the
affirmative case, we shall then compute a set of generators for this intersection.

We have generators (indeed bases) U = {u1, . . . ,un1}, and U ′ = {u ′1, . . . ,u ′n2
} —

written as words on X = {x1, . . . , xn} — for the respective subgroups H1π0, and
H2π0 of the Droms group GΓ0 . Let ∆1 and ∆2 be the respective commutation graphs
for them; i.e.,

H1π0 ' G∆1 and H2π0 ' G∆2 ,

with U and U ′ corresponding to the vertices of ∆1 and ∆2 respectively.

Applying property SIP from the hypothesis to these two subgroups of GΓ0 , we can
decide whether H1π0 ∩H2π0 is finitely generated or not. If it is infinitely generated
then (by Lemma 7.5.9) so is (H1 ∩H2)π0; hence (by Corollary 7.5.6) H1 ∩H2 is also
infinitely generated, and we are done.

Thus, for the rest of the proof, assume that H1π0 ∩H2π0 6 GΓ0 is finitely generated,
in which case the hypothesis provides us with a finite set of generators for it.
Applying again Proposition 7.2.10, we can compute its commutation graph — say
∆3, with basis W = {w1, . . . ,wn3} — for H1π0 ∩H2π0; i.e.,

H1π0 ∩H2π0 = G∆3 = 〈w1, . . . ,wn3〉 6 GΓ0 ,

where the wi’s are words on X = {x1, . . . , xn}.

Recall that in order to decide about finite generation of H1 ∩H2, it will be enough
to decide about finite generation of (H1 ∩H2)π0, which is a normal subgroup of
the subgroup H1π0 ∩H2π0 described above.
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Also note that the wi’s in W can be algorithmically written as words wi =

ωi(u1, . . . ,un1) on U (resp., wi = ωi(u
′
1, . . . ,u ′n2

) on U ′) just enumerating all
products of the elements in U (resp., U ′), and waiting to hit w1, . . . ,wn3 (we
can algorithmically recognize them with the help of the word problem for GΓ0 ,
but recall that only the yes part is needed). These words constitute the formal
expressions of the inclusions ι1 : H1π0 ∩H2π0 H1π0, and ι2 : H1π0 ∩H2π0 H2π0

in terms of the corresponding bases (i.e., ι1 : G∆3 G∆1 , and ι2 : G∆3 G∆2).

Abelianizing these two morphisms, we obtain the integral matrices P1 (of size
n3 × n1), and P2 (of size n3 × n2) and complete the upper half of the diagram
in Figure 7.25, where the ρi’s are the corresponding abelianization maps. Note
that, even though ι1 and ι2 are injective, their abelianizations P1 and P2 need not
be (n3 could very well be bigger than n1 or n2).

(H1 ∩H2)π06

G∆1 ' H1π0 H1π0 ∩H2π0 H2π0 ' G∆2

Zn1 Zn3 Zn2

Zm

6 6

L1 L2

←

�

ρ1 ///

←

�

ρ3

�→ι1 �→ι2

///
←

�

ρ2
←

→A1

///

←→P1 ← →P2

←

→R1

←

→ R2

←

→ A2

///

Fig. 7.25: Intersection diagram for subgroups of Droms groups

Now, we can recompute the wordsωi (resp.,ω ′i) as words on the (tai ui)’s (resp., on
the (ta ′i u ′i)’s) to get particular preimages of the wi’s in H1 (resp., H2). Namely,

ωi(ta1 u1, . . . , tan1 un1) = tωiA1 ωi(u1, . . . ,un1) = tωiA1 wi ∈ H1 ,

ω ′i(t
a ′1 u ′1, . . . , ta ′n2 u ′n2

) = tω
′
iA2 ω ′i(u

′
1, . . . ,u ′n2

) = tω
′
iA2 wi ∈ H2 ,

where ωi = (ωi)
ab, ω′

i = (ω ′i)
ab; and the integral matrices

A1 =

( a1...
an1

)
and A2 =

(
a ′1...

a ′n2

)

have sizes n1 ×m and n2 ×m, respectively.
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Hence, the abelian completions of wi ∈ H1π0 ∩H2π0 in H1 and H2 are the linear
varieties:

CH1(wi) = ωiA1 + L1 = wiι1ρ1A1 + L1 = wiρ3R1 + L1 ,

CH2(wi) = ω′
iA2 + L2 = wiι2ρ2A2 + L2 = wiρ3R2 + L2 ,

where Li = Zm ∩Hi, and we have used the commutation ιiρi = ρ3Pi together
with the definition Ri := PiAi, for i = 1, 2 (see diagram in Figure 7.25).
To finish our argument, it is crucial to understand which elements of H1π0 ∩
H2π0 do belong to (the normal subgroup) (H1 ∩H2)π0. They are, precisely, those
whose H1-completion and H2-completion (which are linear varieties in Zm of
directions L1 and L2, respectively) do intersect:

(H1 ∩H2)π0 = {w ∈ H1π0 ∩H2π0 | CH1(w)∩ CH2(w) 6= ∅ }

= {w ∈ H1π0 ∩H2π0 | (wρ3P1A1 + L1)∩ (wρ3P2A2 + L2) 6= ∅ }

= ({d ∈ Zn3 | (dR1 + L1)∩ (dR2 + L2) 6= ∅}) ρ3 (7.29)

= ({d ∈ Zn3 | d(R1 − R2) ∈ L1 + L2})ρ3

= (L1 + L2)(R1 − R2) ρ3 = Mρ3 ,

where M := (L1 + L2)(R1 −R2) (denoting the preimage of L1 + L2 by R1 −R2) is a
subgroup of Zn3 for which we can easily compute a free-abelian basis using linear
algebra (note that the data of the problem allows us to compute L1, L2, R1 and R2).
From this computations one can see clearly the inclusions stated in Lemma 7.5.7:

JH1π0 ∩H2π0K 6 (H1 ∩H2)π0 P H1π0 ∩H2π0 .

At this point, we can decide whether (H1 ∩H2)π0 is finitely generated or not, by
distinguishing two cases.
If ∆3 is complete (this includes the case where ∆3 is empty and n3 = 0), then H1π0 ∩
H2π0 ' Zn3 is abelian, ρ3 is the identity, and (H1 ∩H2)π0 = (L1 + L2)(R1 − R2) =

M is always finitely generated, and a basis for it is easily computable with basic
linear algebra techniques.
So, assume ∆3 is not complete. Since it is a Droms graph, it will have a pri-
mary decomposition, say ∆3 = Kn4 ∨∆5, where n4 > 0, and ∆5 is Droms again,
disconnected, with |V∆5| = n5 = n3 −n4 > 2.
Let us denote VKn4 =: {z1, . . . , zn4}, and V∆5 =: {y1, . . . ,yn5}, the vertices of ∆3.
Algebraically, we have that H1π0 ∩ H2π0 ' G∆3 = Zn4 × G∆5 , where n4 > 0,
and G∆5 6= 1 decomposing as a non-trivial free product. Furthermore, note that
the normal subgroup (H1 ∩ H2)π0 P G∆3 is not contained in Zn4 (taking two
vertices, say yi,yj, in different components of ∆5, Lemma 7.5.7(iii) tells us that
1 6= [yi,yj] ∈ (H1 ∩H2)π0).
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In this situation, the abelianization map ρ3 : G∆3 Zn3 is the identity on the
center Zn4 of G∆3 and so, can be written in the form

ρ3 = id× ρ5 : G∆3 = Zn4 ×G∆5 Zn4 ×Zn5 = Zn3

(c, v) 7→ (c, v) ,
(7.30)

where, as usual, v denotes the abelianization, v = v ab ∈ Zn5 . Of course, if n4 = 0
then ρ5 = ρ3 and the decomposition in (7.30) is vacuous.
Now consider the image of (H1 ∩H2)π0 under the projection π1 : Zn4 ×G∆5 G∆5

(which is non-trivial since (H1 ∩H2)π0 66 Zn4). We have 1 6= (H1 ∩H2)π0π1 P G∆5 ,
a non-trivial normal subgroup in a group which decomposes as a non-trivial free
product. Therefore,

H1 ∩H2 is finitely generated ⇔ (H1 ∩H2)π0 is finitely generated

⇔ (H1 ∩H2)π0π1 is finitely generated

⇔ (H1 ∩H2)π0π1 Pfi G∆5

⇔ Mρ3π1 Pfi G∆5

⇔ Mπ1
abρ5 Pfi G∆5

⇔ Mπ1
ab Pfi Zn5

⇔ rk
(
Mπ1

ab) = n5 .

(7.31)

(Note that:
• the first and second equivalences are applications of Corollary 7.5.6.

• The third equivalence is an application of the following theorem by Baumslag
in [Bau66, Section 6].
Theorem 7.5.10. Let G be the free product of two non-trivial groups. Let H be a
finitely generated subgroup containing a non-trivial normal subgroup of G. Then
H is of finite index in G.

• The fifth equivalence is correct because π1ρ5 = ρ3π1
ab, and all of them are

surjective maps.

• The sixth equivalence is correct because backwards the epimor-
phism ρ5 : G∆5 Zn5 , a subgroup Mπ1

ab 6 Zn5 is of finite index if and only
if its full preimage Mπ1

abρ5 is of finite index in G∆5 — in which case, further-
more, the two indices do coincide; namely, [Zn5 :Mπ1

ab] = [G∆5 :Mπ1
abρ5 ].)
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(H1 ∩H2)π0 ' Mρ3 6 G∆3 G∆5 > Mπ1
abρ5

(L1 + L2)(R1 − R2) = M 6 Zn3 Zn5 > Mπ1
ab

///

←→π1

←

�

ρ3

←

�

ρ5

←→π1
ab

Fig. 7.26: The map π1 and its abelianization

It only remains to realize that, since we know L1, L2, R1, and R2 (they are all
clearly computable from the input in Equation (7.28)), the last condition in (7.31)
— namely, whether rk(Mπ1

ab) = n5 = |V∆5| — can effectively be checked with
linear algebra (recall that, from Proposition 7.2.10, a basis, and thus the rank n5 of
G∆5 , can be computed from the finite generating set obtained from the induction
hypothesis on the subgroups H1π0, and H2π0).
Hence, we can algorithmically decide whether H1 ∩H2 is finitely generated or not
(ultimately, in terms of some integral matrix having the correct rank). This solves
the decision part of SIP for Droms groups.

GΓ

'

Zm × Γ0

Zm

Zm ∩H2Zm ∩H1 H1 H2

GΓ0

H1π0 H2π0

π0

H1π0 ∩H2π0

(H1 ∩H2)π0H1 ∩H2 ' Mρ3

JH1π0 ∩H2π0K

H1 ∩H2 ∩Zm
π0

' G∆3 Zn3
ρ3

Zm
R1−R2

M L1 + L2

G∆5 Zn5

π1 π ab
1

ρ5

Mρ3π1 Mπ ab
1

=

Mπ ab
1 ρ5

Fig. 7.27: Roadmap to SIP induction for connected Droms groups

The second part of the proof consists in computing a (finite) set of generators
for H1 ∩H2 assuming it is finitely generated; i.e., assuming we are in the situation
described by any of the conditions in (7.31); e.g. rkMπ1

ab = n5, where M =

(L1 + L2)(R1 − R2) 6 Zn3 . We will take advantage of Theorem 7.5.10 to deduce
finite generating sets from the corresponding Schreier graphs.
Note however, that (H1 ∩ H2)π ' Mρ3 can be finitely generated, even when
M is of infinite index in Zn3 (recall that the actual condition is Mπ1

ab being of
finite index in Zn5). So, we will start computing a (finite) family C of coset
representatives of Zn5 modulo Mπ1

ab (recall that Mπ1
ab is known, and thus such a
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family is computable), and then choose ρ5-preimages in G∆5 , say {v1, . . . , vr}, where
r = [G∆5 :Mπ1

abρ5 ] = [Zn5 :Mπ1
ab]. This can be done, for example, choosing for

each vector a = (a1, . . . ,an5) ∈ Zn5 , the element ya1
1 · · ·y

an5
n5 ∈ G∆5 .

Now, we shall construct the Schreier graph of the subgroup

(H1 ∩H2)π0π1 = Mρ3π1 = Mπ1
abρ5 6fi G∆5

with respect to V∆5, in the following way:
• Draw as vertices the cosets [v1], . . . , [vr].

• For every [vi] (i = 1, . . . , r), and every yj (j = 1, . . . ,n5), Draw an edge
labelled yj from [vi] to [viyj].

Here, we have to algorithmically recognize which is the coset [viyj] from
our list of vertices, but this is easy since:

[viyj] = [vk] ⇔ viyjv
−1
k ∈Mπ1

abρ5 ⇔ (viyjv
−1
k )ρ5 ∈ Mπ1

ab .

After having the full picture of the Schreier graph for (H1 ∩H2)π0π1 6fi G∆5 , we
can obtain a finite set of generators for (H1 ∩H2)π0π1 just reading the basic labels
of the petals T[e] corresponding to the arcs outside a chosen maximal tree T (this
is a general fact, see Figure 5.49). These will be words on V∆5 = {y1, . . . ,yn5},
i.e., elements of G∆3 not using the central vertices {z1, . . . , zn4}.
The next step is to elevate the obtained generators of (H1 ∩ H2)π0π1 to gen-
erators of (H1 ∩H2)π0, pulling them back through π1. For each one of them,
say g(y1, . . . ,yn5), we look for its preimages in (H1 ∩H2)π0; they all are of the form

zλ1
1 · · · z

λn4
n4 g(y1, . . . ,yn5) , (7.32)

where the unknowns λ1, . . . , λn4 ∈ Z can be found by solving the system of linear
equations coming from the imposition of the condition:

zλ1
1 · · · z

λn4
n4 g(y1, . . . ,yn5) ∈ (H1 ∩H2)π0 = Mρ3 .

That is, (λ1, . . . , λn4 , |g|1, . . . , |g|n5) ∈M = (L1 + L2)(R1 − R2) , or equivalently:

(λ1, . . . , λn4 , |g|1, . . . , |g|n5)(R1 − R2) ∈ L1 + L2 .

For each such g(y1, . . . ,yn5), we compute a particular preimage of the form (7.32)
and put them all to constitute a set of generators for (H1 ∩H2)π0, adding on top of
them a free basis for

kerπ1 ∩ (H1 ∩H2)π0 =
{
zλ1

1 · · · z
λn4
n4 : (λ1, . . . , λn4 , 0, . . . , 0)(R1 − R2) ∈ L1 + L2

}
.
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Finally, we have to lift the just computed set of generators for (H1 ∩H2)π0, to H1 ∩
H2:
• Write each generator hj ∈ (H1 ∩ H2)π0 6 (Hν)π0 (ν = 1, 2) as a word
ωj(u1, . . . ,un1) (resp., ω ′j(u

′
1, . . . ,u ′n2

)) in the original basis U for H1π0

(resp., U ′ for H2π0).

• Evaluate each ωj and ω ′j in the noncentral part of original bases (7.28) for
H1 and H2 respectively, to obtain vectors cj, c ′j ∈ Zm such that:

ωj(ta1 u1, . . . , tan1 un1) = tcj ωj(u1, . . . ,un1) ∈ H1 ,

ω ′j(t
a ′1 u ′1, . . . , ta ′n2 u ′n2

) = tc ′j ω ′j(u
′
1, . . . ,u ′n2

) ∈ H2 .

Now, for each j, compute a vector dj ∈ (cj + L1) ∩ (c ′j + L2) (note that all these
intersections must be nonempty because hj ∈ (H1 ∩ H2)π0), and consider the
element tdjh ∈ H1 ∩H2. All these elements tdj hj, together with a free-abelian basis
for H1 ∩H2 ∩Zm = (H1 ∩Zm)∩ (H2 ∩Zm) = L1 ∩ L2 constitute the desired set of
generators for H1 ∩H2.
Therefore, GΓ = Zm×GΓ0 satisfies both the decision, and the search SIP properties,
and the proof is completed.

Below, we extend the previous arguments to prove Theorem 7.3.4.

Theorem 7.3.4. Let G be a Droms PC-group. If G satisfies ESIP, then Zm ×G also
satisfies ESIP.

Proof. Let us use the same notation as above: G = GΓ0 , and also assume Γ0

disconnected (using the argument in Remark 7.5.1). We want to prove that if GΓ0

satisfies ESIP, then GΓ = Zm ×GΓ0 also satisfies ESIP.

We are given finite sets of generators for two subgroups H1,H2 6 GΓ , and two
elements ta u, ta ′u ′ ∈ GΓ . By Proposition 7.2.10, we can assume the generators to
be bases of the respective subgroups, like in (7.28). Note that we can immediatly
apply Theorem 7.3.3 to solve the SIP part of ESIP; see Definition (7.1).

So, we can assume that H1 ∩H2 is finitely generated, and that we have already
computed a set of generators, say {v1, . . . , vp}, following the proof of Theorem 7.3.3.
Here is where ta u and ta ′ u ′ start playing its role: we have to decide whether the
coset intersection (ta u)H1 ∩ (ta ′ u ′)H2 is empty or not. Note that

(ta u)H1 ∩ (ta ′u ′)H2 = ∅ ⇔
(
(ta u)H1 ∩ (ta ′u ′)H2

)
π0 = ∅,

and that(
(ta u)H1 ∩ (ta ′ u ′)H2

)
π0 ⊆ ((ta u)H1)π0 ∩ ((ta ′ u ′)H2)π0 = u(H1π0)∩ u ′(H2π0) .
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Then, since H1 ∩H2 is finitely generated, we know from Lemma 7.5.9 that H1π0 ∩
H2π0 is finitely generated as well. So, an application of ESIP inductive hypothesis
to H1π0,H2π0 6 GΓ0 and u,u ′ ∈ GΓ0 , tells us (algorithmically) whether the coset
intersection u(H1π0) ∩ u ′(H2π0) is empty or not. If it is empty, then ((ta u)H1 ∩
(ta ′u ′)H2)π0 is empty as well, and we are done.

Otherwise, u(H1π0)∩u ′(H2π0) 6= ∅, and we can assume — by induction hypothesis
— that we have computed an element v0 ∈ u(H1π0) ∩ u ′(H2π0) as a word on
VΓ0 = {x1, . . . , xn}; and thus u(H1π0)∩ u ′(H2π0) = v0(H1π0 ∩H2π0).

Observe that ((ta u)H1 ∩ (ta ′u ′)H2)π0 consists precisely of those elements v0w, with
w ∈ H1π0 ∩ H2π0, for which there exists a vector c ∈ Zm such that tc v0w ∈
(ta u)H1 ∩ (ta ′u ′)H2 ; that is, such that tc−a u−1v0w ∈ H1, and tc−a ′ (u ′)−1v0w ∈ H2.
In the language of completions, this is the same as saying that c− a ∈ CH1(u

−1v0w),
and c − a ′ ∈ CH2((u

′)−1v0w); i.e., that these linear varieties do intersect.

Therefore, ((ta u)H1 ∩ (ta ′u ′)H2)π0 = ∅ if and only if

∀w ∈ H1π0 ∩H2π0 ,
(
a + CH1(u

−1v0w)
)
∩
(
a ′ + CH2((u

′)−1v0w)
)
= ∅ .

But then, for an arbitrary word w = ω(w1, . . . ,wn3), with |ω|i = λi, and choos-
ing c ∈ CH1(u

−1v0), c ′ ∈ CH2((u
′)−1v0), and di ∈ CH1(wi), d ′i ∈ CH2(wi), for

i = 1, . . . ,n3; we have:(
a + CH1(u

−1v0w)
)
∩
(
a ′ + CH2((u

′)−1v0w)
)
=

= (a + c + CH1(w)) ∩
(
a ′ + c ′ + CH2(w)

)
=

(
a + c +

n3∑
i=1

λiCH1(wi)

)
∩

(
a ′ + c ′ +

n3∑
i=1

λiCH2(wi)

)

=

(
a + c +

n3∑
i=1

λidi + L1

)
∩

(
a ′ + c ′ +

n3∑
i=1

λid ′i + L2

)
.

Hence, the coset intersection
(
(ta u)H1 ∩ (ta ′u ′)H2

)
π0 is empty if and only if:

∀λ1, . . . , λn3 ∈ Z ,
(
a − a ′ + c − c ′

)
+

n3∑
i=1

λi(di − d ′i ) /∈ L1 + L2 ,

or, equivalently:

(
a − a ′ + c − c ′

)
+
〈

d1 − d ′1, . . . , dn3 − d ′n3

〉
∩ (L1 + L2) = ∅ .

This can be effectively decided, so the proof is concluded.
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(G1,G2)-automaton, 220
S-complete, 98
S-regular, 98
Zm-enriched X-automaton, 133
F-free, 195
P1 - by -P2, 64
A- digraph, 97
a-arc, 97
e-petal of T, 228
q-petal of T, 229
ν-elementary, 222
Aut-conjugacy problem, 87
i-th prefix, 95
i-th suffix, 95
n-th power of a language, 94
∆-free, 195
(Standard) conjugacy problem, 87
(abelian) completion, 251
(circuit) rank, 102
(enriched) Stallings automaton, 150
(external) semidirect product, 56
(first) Sigma, 78
(free) partially commutative, 191
(freely) reduced, 95
(graphically) equivalent, 147
(pointed) A-automaton, 97
(right) Schreier coset digraph, 108
(strongly) connected, 97
(tensor) product, 124
(undirected) underlying graph, 101
(weakly) incident, 97
(wedge) petal, 225
walk, 221

walk-reduction, 102

abelian completion of w in H, 11, 132
abelian torsion, 64
accepted, 98, 99
accessible, 98
action subgroup, 50
adjacent, 97
Adjustment, 233
alphabet, 93
alternating, 223
Arc transformations, 141
arcs, 96
atoroidal, 91

backtracking, 222
base

caracteritzacions, 8
base group, 55, 63
base vertex, 97
basegroup, 130
basegroup closure, 139
basepoint, 97, 220
basepoint subgroup, 134
basepoint thread, 112
Basepoint transformations, 141
basic label, 223
basis, 6, 192
BNS, 78

center, 194
central vertex, 194
character sphere, 78
characters, 78
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chordal, 195
closed, 138
Closed (enriched) foldings, 143
closed enriched foldings, 143
Closed folding, 235
Closed foldings , 118
coaccessible, 98
coherent, 198
commutation graph, 191, 192
complementary of language, 94
complete, 98
Complete graphs, 193
concatenation, 93
concatenation of two languages, 94
cone, 194
Conjugacy Problem, 84
Conjugation, 233
connected, 214, 221
connected components, 97
core, 111
coset recognized, 224
countable, 96
Cycle graphs, 194
cyclically reduced, 196
cyclomatic, 156

degenerate, 222
degenerated, 102
degree, 221
deranged, 73
deterministic, 107, 145
difference of languages, 94
digraph, 96
directed edges, 96
directed loops, 96
directed multigraph, 96
disjoint union, 195
Droms graph, 197
Droms group, 197

Edgeless graphs, 194
elementary decomposition, 222
elementary label, 223

elementary length, 223
elementary walk, 222
empty digraph, 96
empty word, 93
endomorphisms of type I and II, 11
enriched labelling, 133
enriched open folding, 143
equivalent automata, 106
exact sequence, 55
explicit, 204

final, 98
final vertex, 96
finite, 96, 98, 221
finite index problem (FIP) for FATF,

22
finite type, 221
first Betti number, 65
flower (wedge) graph, 225
flower automaton, 105
folded automaton, 117
folding process, 236
formal inverse, 95
free, 6
free monoid, 93
free part, 4, 129
free parts of H, with respect to the

splitting σ, 8
free reduction, 95
free-abelian, 6, 8, 129
free-abelian by free, 130
free-abelian part, 4
free-abelian times free, 4
full, 194
full basegroup, 130
full completion, 132
full decomposition, 215
full subgraph of Γ spanned by Y, 194
fully residually free, 202

graphic presentation, 192
graphic set of generators, 192
group extension, 55
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hair, 245
homomorphism of automata, 99
Howson group, 123
Howson property, 24
Howson’s property, 123, 201

in-degree, 97
in-neighborhood, 97
incidence functions, 96
incident, 96
initial, 98
initial and final labels, 134
initial vertex, 96
intersection of languages, 94
intersection scheme, 156
invariant, 78
inverse, 146
inverse X-automaton, 112
involutive, 95, 136
involutive X-automaton, 100
involutive free monoid, 95
Isolation, 234

join, 195
junction (automaton), 243
junction automaton, 125

Kleene star of a language, 94

label map, 220
label of a walk, 223
label of a walk , 98
label of an enriched walk, 135
label of γ centered in qi, 224
labelled digraph, 97
labels, 97
language, 94
language recognized, 99
length, 93, 97, 221
length 0, 93, 97
letters, 93
limit group, 202
loss, 118

middle label, 134

negative, 101
neighborhood, 97
Non-basepoint transformations, 141
nondegenerate walk, 223
normal form, 5, 57, 129
normalized, 150

Open (enriched) foldings, 143
Open foldings , 118
orbit decidable, 49
order, 96
origin, 96
out-degree, 97
out-neighborhood, 97

parallel arcs, 96
Path graphs, 194
petal label, 229
positive, 101
positive cone, 78
prefix, 95
primary decomposition, 215
Primary open folding, 234
primary vertices, 220
product, 155
projection, 241
pull-back, 124

quasi-convex, 34
quotient group, 55

RAAGs, 193
radial spanning tree, 152
rank, 6
rank of an involutive automaton, 102
rational languages, 95
reads, 98
recognized, 98
reduced, 102, 226
reduced label, 100, 227
reduced secondary-petal label, 229
reversed, 97, 102
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right-angled Artin groups, 193

Secondary open folding:, 234
secondary vertices, 220
section, 56
segment, 94
segment subword, 95
Semi-conjugacy Problem, 84
semi-conjugate, 83
set of formal inverses, 95
short exact sequence, 55
size, 96
skeleton, 135
spells, 98
split, 56
split decomposition, 131
Stallings automaton, 115, 148
Stallings folding, 117
Stallings reduction, 114, 117
Stallings reductions, 147
standard presentation, 58, 68
states, 98
string, 93
strongly incident, 97
subgroup recognized, 105, 224
suffix, 95
superfluous, 111
syllable types, 230
symbols, 93

target, 96
total degree, 97
total trim, 111
transition function, 107
transitions, 98
trim, 111, 145
trivial, 221
trivial language, 94
trivial walk, 221

underlying digraph, 133, 220
union of languages, 94
unique, 63

unique extension, 63
useful, 111

vertices, 96

walk, 135
wedge automaton, 220
Whitehead problems, 42
word, 93
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