
“tesi” — 2017/9/30 — 0:03 — page i — #1

Novel approaches for generalized

planning

Damir Lotinac

TESI DOCTORAL UPF / ANY 2017

DIRECTOR DE LA TESI

Prof. Dr. Anders Jonsson, Department of Information and

Communication Technologies

“tesi” — 2017/9/30 — 0:03 — page ii — #2

“tesi” — 2017/9/30 — 0:03 — page iii — #3

To my family

iii

“tesi” — 2017/9/30 — 0:03 — page iv — #4

“tesi” — 2017/9/30 — 0:03 — page v — #5

Acknowledgements

This thesis would not have been written without the support of my advisor

Anders Jonsson. I am sincerely grateful for his guidance, patience and

encouragement throughout my work on the thesis.

My office mates created a friendly and supportive environment. I express

my gratitude to Javier Segovia, Oussam Larkem and Guillem Frances for

making my stay at UPF more pleasurable.

During my stay in Barcelona I was lucky to share a flat with Marina Cor-

bera, Tardor and Iru, who have been the best flatmates I could ever ask

for.

All the stress would probably be unbearable, without the optimism of Fil-

ippos Kominis, Jonathan Ferrer and Bruno Paun who have been a tremen-

dous support all these years. I am also grateful to Dunja Veselinovic and

Denis Salkanovic who never let the distance affect our friendship.

I thank Elvira Lakovic, without whom this journey would not have had

started at all.

Finally I owe my gratitude to my parents and sister, who have always

supported and encouraged me.

v

“tesi” — 2017/9/30 — 0:03 — page vi — #6

“tesi” — 2017/9/30 — 0:03 — page vii — #7

Abstract

Classical planning is the problem of finding a sequence of actions, from

a given initial state to some goal state. While, in generalized planning, a

plan is a solution to a set of planning problems, which belong to the same

class. In this thesis we explore novel ways of computing generalized

plans, inductively from a set of examples, and deductively from a model

of actions.

First we present an extension of planning programs, as a representation

of a generalized plan, which is induced from a set of examples. The

extension, allows for modeling of classification tasks.

This work also introduces a novel domain-independent algorithm for gen-

erating hierarchical task networks directly from the action model and one

representative instance of the planning problem. We also present the opti-

mizations used by the translation and show that the algorithm is competi-

tive with the state-of-the-art algorithms.

vii

“tesi” — 2017/9/30 — 0:03 — page viii — #8

Resum

La planificació clàssica és un problema que consisteix en trobar una se-

qüència d’accions, que va des d’un estat inicial fins un objectiu. Per una

altra banda en planificació general, un plà és una solució a un conjunt de

problemes de planificació els quals pertanyen a una mateixa classe. En

aquesta tesi explorem camins nous per obtenir plans generals de forma

inductiva sobre un conjunt d’exemples, i de forma deductiva sobre un

model d’accions.

Primer presentem una extensió per programes de planificació, com una

representació d’un plà general, el qual es induı̈t d’un conjunt d’exemples.

L’extensió permet modelar una tasca de classificació.

Aquest treball també introdueix un nou algorisme, que és independent de

domini, que genera una xarxa de tasques jeràrquiques directament d’un

model d’accions i d’una instància d’un problema de planificació. També

presentem les optimitzacions utilitzades en la traducció i mostrem que

aquest algorisme és competitiu amb l’estat de l’art.

viii

“tesi” — 2017/9/30 — 0:03 — page ix — #9

Preface

Classical planning is the problem of finding a sequence of actions, which

leads from an initial state to some goal state. The effects of the actions

are deterministic and the states are fully observable. It is equivalent to

a search problem in an implicitly defined directed graph, where states

represent the nodes, and actions represent the edges. To tackle the com-

plexity arising from the number of states, modern planners usually rely on

heuristics. The heuristics are usually computed from a relaxed version of

the original planning problem. However, such planners find solutions for

a single instance of the problem. Each time a classical planner solves a

planning instance, the search begins without any prior knowledge.

A generalized plan is a solution to a family of planning problems. Two

types of generalized plans can be distinguished. One can just be exe-

cuted without search, while the other reduces the search space by encod-

ing the knowledge derived from the commonalities among the planning

problems. There are many different representations used to encode the

generalized plans. In the literature these representations range from deci-

sion lists (Martı́n and Geffner, 2004), finite-state controllers (Bonet et al.,

2010), to programs (Jiménez and Jonsson, 2015).

In this thesis we explore novel ways to compute generalized plans. We

investigate how to generate relevant features, in tight coupling with the

computation of the generalized plan. There are two major approaches to

synthesizing a generalized plan. One is to either induce a plan from a set

of examples. Another is to generate the generalized plan by analyzing the

action model, which captures the commonalities of the family of planning

problems. The first approach is often referred to as inductive, while the

latter is called deductive.

In Part II, we introduce an extension to planning programs, which en-

hances the expressive power of basic planning programs. Planning pro-

ix

“tesi” — 2017/9/30 — 0:03 — page x — #10

grams are a representation of a generalized plan. These are programs that

consist of sequential, goto and termination instructions. The goto instruc-

tions are used for branching, however in the basic version, the condition

for branching can only be a fluent. In this work we explore the use of

conjunctive queries to encode high-level state features, which in turn al-

lows for higher expressiveness. This extension is applied to the branching

conditions. In this part we show how the enhanced planning programs

enable modeling of supervised classification tasks. We also show a novel

approach for generating high-level state features, in tight coupling with

the induction of the planning program.

In Part III of this thesis, we introduce automatically generated hierarchical

task networks (HTNs). HTNs can be seen as another representation of

the generalized plan, since such hierarchies capture knowledge about the

whole planning domain. The HTNs presented in this work are generated

from planning domain in PDDL format and one representative planning

instance. We show that a lifted representation of invariant graphs can be

used to analyze the planning domain, and generate HTNs which encode

knowledge about the domain as a whole. While other approaches induce

the hierarchical task networks from examples, we present a compilation

directly from a PDDL domain to HTN. This compilation is a novel way

to deductively generate a generalized plan. In this part, we compare the

HTN planner using the generated HTNs with Fast Downward blind search

algorithm, since both the HTN planner uses blind search as well. We

show that the HTN planner with the generated HTNs, constructed from

lifted invariant graphs, are competitive with Fast Downward blind search

algorithm.

Further, in Part III, we explore optimizations which can be imposed over

the generated HTN. The optimizations we present are domain-independent

and are used to either constrain the search space, or guide the task-subtask

decompositions. We present a goal ordering optimization, which which

specifies how to order the goal fluents of the original planning instance.

We also introduce an ordering of the invariant graphs, which enables more

efficient selection of an invariant graph in which the search is to be per-

x

“tesi” — 2017/9/30 — 0:03 — page xi — #11

formed. Finally, we introduce an optimization which guides the search

by sorting the bindings of the free variables of the HTN decomposition

methods. We show that fully optimized generated HTNs are competi-

tive with HTNs which are induced from a set of examples, by a state-

of-the-art HTN generator. Compared to existing approaches, the input of

our algorithm is significantly simpler and solves instances that are much

larger.

Some of the work presented in this thesis, has previously been published

in the following articles:

• Jonsson, A., & Lotinac, D. (2015). Automatic Generation of HTNs

From PDDL. ICAPS Workshop, Planning and Learning (PAL-15),

15. [Chapter 4]

• Lotinac, D. & Jonsson, A. (2015). Automatic Generation of HTNs

From PDDL. Proceedings of the 2nd Multi-disciplinary Confer-

ence on Reinforcement Learning and Decision Making (RLDM’15)

[Chapter 4]

• Lotinac, D., Segovia-Aguas, J., Jiménez, S., & Jonsson, A. (2016).

Automatic generation of high-level state features for generalized

planning. In Proceedings of the 25th International Joint Confer-

ence on Artificial Intelligence; 2016 July 9-15; New York, United

States. Palo Alto: AAAI Press; 2016. p. 3199-3205.. Association

for the Advancement of Artificial Intelligence (AAAI). [Chapter 3]

• Lotinac, D., & Jonsson, A. (2016). Constructing Hierarchical Task

Models Using Invariance Analysis. In ECAI (pp. 1274-1282).

[Chapter 4, Chapter 5]

• Lotinac, D., & Jonsson, A. Generating Hierarchical Task Networks.

Submitted to Journal of Artificial Intelligence (JAIR) [Chapter 4,

Chapter 5]

xi

“tesi” — 2017/9/30 — 0:03 — page xii — #12

“tesi” — 2017/9/30 — 0:03 — page xiii — #13

Contents

Abstract vii

Resum viii

Preface ix

List of Figures xvii

List of Tables xix

I Background 1

1 CLASSICAL PLANNING 3

1.1 Modeling languages . 3

1.2 Planning domains and instances 5

1.3 Classical planning model 8

1.3.1 Classical planning problem 8

1.3.2 Classical planning with conditional effects . . . 10

1.3.3 Multivalued representations 11

1.4 Invariants . 12

1.5 Abstractions in planning 13

2 GENERALIZED PLANNING 15

2.1 Introduction . 15

xiii

“tesi” — 2017/9/30 — 0:03 — page xiv — #14

2.2 Planning Programs . 19

2.2.1 Basic Planning Programs 19

2.3 Hierarchies in Planning 21

2.3.1 Hierarchical Task Networks 21

2.3.2 SHOP2 modeling language 24

II High-Level state features 29

3 PLANNING PROGRAMS WITH HIGH-LEVEL STATE FEA-

TURES 31

3.1 Introduction . 31

3.2 Generating High-Level State Features 34

3.2.1 High-Level State Features 34

3.2.2 Planning Programs with Conjunctive Queries . . 37

3.2.3 Computing Planning Programs with Conjunctive

Queries . 38

3.3 Properties of Planning Programs with conjunctive queries 42

3.4 Classification with Planning Programs 43

3.5 Evaluation . 45

3.6 Discussion . 47

III Generating HTNs 49

4 GENERATING HTNS 51

4.1 Introduction . 51

4.2 Invariant graphs . 54

4.3 Translation algorithm 56

4.3.1 Predicates . 58

4.3.2 Primitive tasks 58

4.3.3 Compound tasks 59

4.3.4 Methods . 60

4.3.5 Planning Instances 65

4.3.6 Example . 66

xiv

“tesi” — 2017/9/30 — 0:03 — page xv — #15

4.4 Ordering Preconditions 69

4.5 Properties of the generated HTNs 70

4.6 Experimental results 74

4.7 Discussion . 76

5 OPTIMIZATIONS OF GENERATED HTNS 79

5.1 Introduction . 79

5.2 Goal Ordering . 81

5.3 Ordering the invariant graphs 84

5.4 Sorting the bindings of the free variables 86

5.5 Experimental Results 87

5.6 Discussion . 90

IV Related Work 93

6 RELATED WORK 95

6.1 High-Level State Features 95

6.2 Generating HTNs . 96

V Conclusions and Future Work 99

7 CONCLUSIONS 101

7.1 Contributions . 101

7.2 Future work . 102

7.2.1 Planning Programs with High-Level State Features 103

7.2.2 Generating Hierarchical Task Networks 104

VI Appendix 107

Bibliography 109

xv

“tesi” — 2017/9/30 — 0:03 — page xvi — #16

“tesi” — 2017/9/30 — 0:03 — page xvii — #17

List of Figures

2.1 Example instances of TOWER domain 18

2.2 Planning program for placing all blocks of a single tower,

on the table . 21

3.1 Planning program for finding the minimum element in a

list of integers of size n. 32

3.2 Derived predicates in the form of conjunctive queries for

finding the minimum number in a list. 35

3.3 Planning program that encodes a noise-free classifier for

the Michalski’s train problem. 44

4.1 Invariant graphs (G1, G2 and G3) in LOGISTICS. 55

4.2 Architecture overview 57

4.3 Example of search in the invariant graph G1 in LOGIS-

TICS domain. 68

4.4 Algorithm ordering preconditions of a except p. 70

4.5 Invariant graphs (G1, G2), where (uv), (xy), (yz) rep-

resent actions, while the nodes represent predicates. The

preconditions of each action are: prec(uv) = {x}, prec(xy) =
∅, prec(yz) = {v} . 72

5.1 Invariant graphs (G1, G2 and G3) in the BLOCKS domain. 83

xvii

“tesi” — 2017/9/30 — 0:03 — page xviii — #18

“tesi” — 2017/9/30 — 0:03 — page xix — #19

List of Tables

3.1 Program lines, slots and variables of the features, time (in

seconds) elapsed while computing the solution, and plan

length required to generate and verify the solution. . . . 46

4.1 The first five task expansions of the solve task generated

from the running example in LOGISTICS. The colored

tasks are those added by the decomposition of the under-

lined task in the previous step. 67

4.2 Results in the IPC-2000 and IPC-2002 domains, with the

total number of instances of each domain shown in brack-

ets. For each solver we report number of solved instances

(#s), average time in seconds (t) and average number of

backtracks in thousands (#b) respectively 75

5.1 Coverage of HTN-MAKER’s experiment instances, scores

marked with * are scores over IPC instances 88

5.2 Results in the IPC-2000 and IPC-2002 domains, with the

total number of instances of each domain shown in brack-

ets. For each solver we report number of solved instances

(#s), average time in seconds (t) and average number of

backtracks in thousands (#b) respectively 89

xix

“tesi” — 2017/9/30 — 0:03 — page xx — #20

“tesi” — 2017/9/30 — 0:03 — page 1 — #21

Part I

Background

1

“tesi” — 2017/9/30 — 0:03 — page 2 — #22

“tesi” — 2017/9/30 — 0:03 — page 3 — #23

Chapter 1

CLASSICAL PLANNING

In this chapter modeling languages for classical planning and the classi-

cal planning model are introduced. The domain-instance separation and

different representations of planning problem are discussed, along with

invariance and abstractions used in classical planning.

1.1 Modeling languages

One of the first modeling languages used for planning was STRIPS (Stan-

ford Research Institute Problem Solver) (Fikes and Nilsson, 1971). Such

a model is constructed using first-order logic formuale, where the literals

are grounded and function-free. A state is represented by a set of true

literals and all other literals are assumed to be false. The model consists

of the initial and goal state. Transitions between states are encoded by a

set of actions which are represented by a set of preconditions and post-

conditions. The main limitation of STRIPS is the expressive power. After

a number of languages attempted to address the shortcomings of STRIPS

language, the Planning Domain Definition Language (PDDL) (McDer-

mott et al., 1998), emerged as a standard modeling language used in plan-

3

“tesi” — 2017/9/30 — 0:03 — page 4 — #24

ning. It allows for the domain to be modeled separately from any partic-

ular instance of the problem, and thus reuse the specified action model.

The model specified in the domain describes all the actions in terms of

preconditions and effects. On the other hand, each instance of a plan-

ning problem specifies the objects, the initial state and the goal condi-

tion.

Since the first version, PDDL imported older languages used in plan-

ning, like STRIPS and ADL. PDDL was first introduced at the Interna-

tional Planning Competition (IPC) in 1998, and has been evolving ever

since. The PDDL versions, along with features they introduced, are listed

here:

• PDDL 1.2, used in the first planning competition 1998.

• PDDL 2.1, introduced numeric fluents, plan metrics, durative

continuous actions.

• PDDL 2.2, introduced derived predicates and timed literals.

• PDDL 3.0, introduces state-trajectory constraints and preferences.

• PDDL 3.1, introduced object fluents.

The work presented in this thesis is based on fragments of PDDL ver-

sion 2.2 (Edelkamp and Hoffmann, 2004). Apart form PDDL versions

listed here, there are a number of extensions and variants of the PDDL

modeling language, for example: PDDL+ (Fox and Long, 2002) which

introduces processes and events, Probabilistic PDDL (PPDDL) (Younes

and Littman, 2004) which introduces probabilistic effects, Relational Dy-

namic influence Diagram Language (RDDL) (Sanner, 2010) which intro-

duces partial observability, etc. These extensions are mainly addressing

the issues related with modeling of the real-world problems, by adding

new features. The enhanced expressiveness of such extensions enables

modeling of the different kinds of problems and not necessarily in the

scope of classical planning.

4

“tesi” — 2017/9/30 — 0:03 — page 5 — #25

1.2 Planning domains and instances

In this section we introduce the concepts of planning domains and show

how instances are induced, by binding the objects specified in the in-

stances. To represent planning domains, we adapt a definition based on

function symbols (Bäckström et al., 2014). We consider a fragment of

PDDL modeling typed STRIPS planning domains, which include nega-

tive preconditions and goals. Planning domains are used to specify action

schemata in PDDL style. The instantiated actions can only be determin-

istic, and the states on which they operate must be fully observable. Plan-

ning instances introduce particularities of a specific planning problem,

by defining the initial state and the goal condition, along with specific

objects. Given a planning domain and a planning instance, a planning

problem is instantiated.

Given a set X , let Xn denote the set of vectors of length n whose elements

are symbols in X . Given such a vector x ∈ Xn, let xk ∈ X , 1 ≤ k ≤ n,

denote the k-th element of x.

We distinguish between typed and untyped function symbols. An un-

typed function symbol f has an associated arity α(f). In addition, a

typed function symbol f has an associated type list β(f) ∈ T α(f), where

T = {τ1, . . . , τn} is a set of types. Let F be a set of function symbols,

and let Σ = Σ1 ∪ · · · ∪ Σn be a set of objects, where Σi, 1 ≤ i ≤ n, is a

set of objects of type τi. We define FΣ = {f [x] : f ∈ F, x ∈ Σα(f)} as

the set of new objects obtained by applying each function symbol in F to

each vector of objects in Σ of the appropriate arity. If f is typed, f [x] has

to satisfy the additional constraint xk ∈ Σβk(f) for each k, 1 ≤ k ≤ α(f),
i.e. the type of each element in x is determined by the type list β(f) of

f .

Let f and g be two function symbols in F . An argument map from f to

g is a function ϕ : Σα(f) → Σα(g) mapping arguments of f to arguments

of g. An argument map ϕ allows us to map each object f [x] ∈ FΣ to an

object g[ϕ(x)] ∈ FΣ. In PDDL, argument maps have a restricted form:

5

“tesi” — 2017/9/30 — 0:03 — page 6 — #26

each element in ϕ(x) is either an element from x or a constant object in

Σ independent of x. WLOG we assume that argument maps are well-

defined for typed function symbols.

Definition 1. A planning domain is a tuple d = 〈T , <,P ,A〉, where:

• T = {τ1, . . . , τn} is a set of types

• < is an inheritance relation on types

• P is a set of typed function symbols called predicates

• A is a set of typed function symbols called action schemata

Given a set of types T and the inheritance relation <, we denote a tran-

sitive closure over the inheritance relation as <∗. We say that τi inherits

from τ iff τi <∗ τ . Each action schema a ∈ A has a set of preconditions

pre(a) and a set of positive and negative effects eff(a). Each element in

these two sets is a pair (p, ϕ) consisting of a predicate p ∈ P and an

argument map ϕ from a to p.

For example, consider a PDDL planning domain which has only one ac-

tion, and the sole purpose of the domain is to be able to move blocks

stacked in a tower to the table:

(define (domain tower-strips)

(: requirements :strips :typing)

(: types block)

(: predicates (on ?x − block ?y − block)

(ontable ?x − block)

(clear ?x − block)

)

(: action mvToTable

:parameters (?x − block ?y − block)

:precondition (and (clear ?x) (on ?x ?y))

:effect (and (ontable ?x) (clear ?y)

(not (on ?x ?y)))

)

)

6

“tesi” — 2017/9/30 — 0:03 — page 7 — #27

Types impose restrictions on the objects which can be mapped to the ar-

guments of an action schema. In the example above, parameters ?x and

?y can only be objects of type block.

A planning instance specifies the initial state and the goal condition, along

with the set of objects which are needed for defining those.

Definition 2. Given a planning domain d = 〈T , <,P ,A〉, a planning

instance is a tuple p = 〈Ω, init, goal〉, where:

• Ω = Ω1 ∪ . . . ∪ Ωn is a set of objects of each type in T

• Object ω ∈ Ω has type τ ∈ T iff ω ∈ Ωi for some 1 ≤ i ≤ n and τi

equals τ or inherits from τ

• init is an initial state

• goal is a goal condition

An example of a PDDL instance which defines objects, initial state and

goal condition is given here:

(define (problem tower-strips-3)

(: domain tower-strips)

(: objects A B C − block)

(: init (ontable A) (on B A)

(on C B) (clear C)

)

)

To induce a planning instance, predicates and action schemata defined in

the domain d are combined with a set of objects defined in the planning

instance p, along with the initial state and the goal condition, specified

in the planning instance p. Action schemata are used to implicitly define

actions. However, it is only by assignment of objects of the correct type in

the action schema parameter list, that the grounded actions are generated.

In the same manner predicates implicitly define fluents.

7

“tesi” — 2017/9/30 — 0:03 — page 8 — #28

The induced planning instance p, implicitly defines a set of fluents PΩ

and a set of grounded actions AΩ. A grounded action a[x] ∈ AΩ, has a

set of preconditions pre(a[x]) and a set of positive and negative effects

eff(a[x]). Each element in these sets is a fluent p[ϕ(x)] ∈ PΩ, where

(p, ϕ) is the associated precondition or effect of the action a. The initial

state init ∈ PΩ and the goal condition goal ∈ PΩ, are both subsets of

fluents. We often abuse notation by dropping the argument x of elements

in PΩ and AΩ.

In the TOWER example, the predicate on[?a, ?b] for objects A, B, C induces

fluents such as on[B, A], on[C, B]. In the same example, actions such as

mvToTable[B, A] and mvToTable[C, B] are induced.

1.3 Classical planning model

A classical planning frame consists of a set of fluents F and a set of ac-

tions A.

Definition 3. A classical planning frame is a tuple Φ = 〈F, A〉, where:

• F is a set of fluents

• A is a set of actions

The planning frame is induced by a planning domain d = 〈T , <,P ,A〉
and the set of objects Ω of a planning instance, therefore F = PΩ and

A = AΩ.

1.3.1 Classical planning problem

The problem of classical planning is one of finding a valid sequence of

actions, which leads from an initial state to the goal condition.

8

“tesi” — 2017/9/30 — 0:03 — page 9 — #29

Definition 4. A planning problem is a tuple P = 〈F, A, I, G〉, where:

• 〈F, A〉 is a planning frame

• I is an initial state

• G is a goal condition

A literal l is a valuation of a fluent f ∈ F , i.e. l = f or l = ¬f . A set of

literals L represents a partial assignment of values to fluents (WLOG we

assume that L does not assign conflicting values to any fluent). Given L,

let ¬L = {¬l : l ∈ L} be the complement of L.

As in the case of induced planning instances a state s is a set of lit-

erals such that |s| = |F |, i.e. a total assignment of values to fluents.

The number of states is then bounded and given by 2|F |. Given a sub-

set F ′ ⊆ F of fluents, let s|F ′ be the projection of s onto F ′, defined as

s|F ′ = (s ∩ F ′) ∪ (s ∩ ¬F ′), i.e. s|F ′ contains all literals on F ′ that are

present in s. Explicitly including negative literals ¬f in states simplifies

subsequent definitions, but we often abuse notation by defining a state s

only in terms of the fluents that are true in s.

An action a ∈ A is applicable in s if and only if pre(a) ⊆ s, and the

result of applying a in s is a new state s ⋉ a = (s \ ¬eff(a)) ∪ eff(a). A

plan is then a sequence of applicable actions which leads from an initial

state to the goal state.

Definition 5. A plan for P is a sequence of actions π = 〈a1, . . . , an〉 such

that ai, 1 ≤ i ≤ n, is applicable in I ⋉ a1 ⋉ · · ·⋉ ai−1, and π solves P if

it reaches the goal state, i.e. if G ⊆ I ⋉ a1 ⋉ · · ·⋉ an.

Given a domain d and an induced set of planning instances ps = {p1 . . . pT},
which share the same set of objects Ω, the equivalent set of planning prob-

lems is Ψ. The planning frame Φ is shared by a set of planning problems

Ψ if and only if:

• The same planning domain d induced each of the planning instances

9

“tesi” — 2017/9/30 — 0:03 — page 10 — #30

in ps

• The set of objects Ω is shared by the planning instances in ps

1.3.2 Classical planning with conditional effects

So far we have considered actions with preconditions, such that all the

effects of an action are applied depending only on the preconditions of an

action. Here we introduce conditional effects which allow for a specified

subset of action effects to be applied if a certain condition holds, along

with the action precondition.

As discussed before, we consider the fragment of classical planning with

conditional effects that includes negative conditions and goals. Under this

formalism, a classical planning frame is a tuple Φ = 〈F, A〉, where F is

a set of fluents and A is a set of actions with conditional effects.

Each action a ∈ A has a set of literals pre(a) called the precondition and

a set of conditional effects cond(a). Each conditional effect C ✄ E ∈
cond(a) is composed of two sets of literals C (the condition) and E (the

effect).

An action a ∈ A is applicable in state s if and only if pre(a) ⊆ s, and the

resulting set of triggered effects is

eff(s, a) =
⋃

C✄E∈cond(a),C⊆s

E,

i.e. effects whose conditions hold in s. The result of applying a in s is a

new state s ⋉ a = (s \ ¬eff(s, a)) ∪ eff(s, a).

The only difference in the definition of a planning problem and a solution

plan, with conditional effects, is that the effects of actions are conditional

on the state. In fact, the effects of actions without the conditional effects

are a special case of conditional effects. We can create a conditional ef-

fect: ∅ → eff(a), so that the effect of action a will always occur.

10

“tesi” — 2017/9/30 — 0:03 — page 11 — #31

For example, using the conditional effects, mvToTable can be written,

without parameters, as:

(: action mvToTable

:parameters ()

:precondition (and)

:effect (forall (?x ?y − block)

(and (when (and (on ?x ?y) (clear ?x))

(and (not (on ?x ?y))

(ontable ?x) (clear ?y)))

)

)

1.3.3 Multivalued representations

A set of fluents of a planning problem defined above can be seen as a set

of first-order variables. However, often a more compact encoding of a

planning problem is beneficial for the solvers. These representations can

represent the same planning problem using a set of variables which are

usually defined on a certain finite domain. We introduce a multivalued

representation which we later use to define causal and domain transition

graphs, in the following sections.

Our definition of a multivalued representation of a planning problem is

based on the definition by Helmert (2004).

Definition 6. A multivalued representation of a planning problem is a

tuple 〈V , A, I, G〉, where:

• V is a list of state variables V = {v1, . . . , vn}, with an associated

finite domainDv. A partial variable assignment over V is a function

s on some subset of V such that s(v) ∈ Dv wherever s(v) is defined.

If s(v) is defined for all v ∈ V , s is called a state.

11

“tesi” — 2017/9/30 — 0:03 — page 12 — #32

• A is a set of actions, where each action is a pair 〈pre, eff〉, of

partial variable assignments, preconditions and effects respectively

• I is an initial state

• G is a goal state defined as a partial variable assignment

An action a ∈ A is applicable in a state if the value of the variables in

its preconditions are defined and equal to the value of the variables in the

state. Applying the action changes the value of some state variable to

eff(v) if eff(v) is defined.

Previous definition of the planning problem, can be seen as a multival-

ued representation, where variables can only take two values, i.e. for all

variables, Dv = {true, false}.

1.4 Invariants

An invariant is a property, which is true in all reachable states of a given

planning problem. Many invariants are not interesting from a planning

perspective, as they cannot be exploited in finding a solution. Other in-

variants, while useful, can also be hard to compute (some can be PSPACE-

hard). However, mutual exclusion (mutex) invariants are often exploited

in planning. Planners such as Fast Downward use them to construct a

multivalued planning problem representation from a propositional plan-

ning problem described before.

A mutex invariant for a planning problem is defined by a set of fluents

which can not be true at the same time i.e. in the same state. Invariance is

usually proven inductively, starting with some initial guess, called invari-

ant candidate. First the initial state is checked, and then if the condition

holds in that state, by analyzing the actions, it can be shown to hold in an

arbitrary reachable state, and all successor states. The condition is then

proven for all reachable states and thus is an invariant property.

12

“tesi” — 2017/9/30 — 0:03 — page 13 — #33

Fast Downward includes an algorithm for synthesizing the invariants (Helmert,

2009) that works directly on a PDDL domain part described in the section

before. The resulting mutexes cannot be validated, without a planning in-

stance. While other algorithms for synthesizing invariants exist, most of

them depend on STRIPS representation of a planning problem, or do not

support PDDL 2.2 domains, therefore in this work we rely on Fast Down-

ward’s algorithm for finding mutex invariants.

The synthesis of the invariants consists of an initial guided guess, vali-

dation, and refining of the failed candidates. Given that this is a search

problem, breath first search with a closed list is used, so that the search is

guaranteed to terminate. The initial invariant candidates are constructed

from fluents that appear as effects of actions, as opposed to static fluents

whose value remains unchanged, which are then checked. If an invariant

candidate is confirmed it is not considered further by the search algorithm.

If the invariant candidate is not confirmed in the check phase, the algo-

rithm attempts to classify it and refine it before it attempts a new check

on this invariant candidate. The refinement is done by adding new atoms

to the failed invariant candidate.

1.5 Abstractions in planning

In order to gain insight into the original planning problem, planners usu-

ally construct abstractions over it. The properties of such derived struc-

tures can then be exploited to limit the search space, extract heuristics or

infer if the problem is solvable, etc. Many of these structures are graphs,

constructed from the original planning problem. In this work, we will use

causal and domain transition graphs. Our definitions of causal and do-

main transition graph are based on the definitions introduced by Helmert

(2004).

In a multivalued representation of a planning problem, the causal graph

shows dependencies of the variables, based on preconditions and effects

13

“tesi” — 2017/9/30 — 0:03 — page 14 — #34

of the actions. The nodes of such graph are variables, while the edges are

induced by the actions. Both the causal and the domain transition graph,

are not only more compact under multivalued representation, but can also

have different properties. It can happen that a causal graph is cyclic in

STRIPS problem representation, but not in a multivalued representation.

It is widely believed that problems with acyclic causal graphs are eas-

ier to solve, however this is not true in the worst case (Jonsson et al.,

2013).

Definition 7. Given a multivalued representation of a planning problem

〈V , A, I, G〉, a causal graph is a digraph (V , E) containing an arc (u, v)
iff (u 6= v) and there exists an action 〈pre, eff〉 ∈ A , such that eff(v)
is defined and either pre(u) or eff(u) are defined.

A domain transition graph (DTG) is constructed to represent the depen-

dencies between the values of the variables in a multivalued representa-

tion. A DTG can be thought of as a graphical representation of a variable

in a multivalued representation.

Definition 8. Given a multivalued representation of a planning problem

〈V , A, I, G〉, where v ∈ V , a domain transition graph is a labeled digraph

Gv, with vertex set Dv which contains an arc (d, d′) iff there is an action

〈pre, eff〉 where pre(v) = d or pre(v) is undefined, and eff(v) = d′.

The arc is labeled by pre| (V \ {v}). For each arch (d, d′) with label L

we say that there is a transition of v from d to d′ under the condition L.

14

“tesi” — 2017/9/30 — 0:03 — page 15 — #35

Chapter 2

GENERALIZED

PLANNING

In this chapter the problem of generalized planning is introduced. Plan-

ning programs and hierarchical task networks are presented as represen-

tations of generalized plans.

2.1 Introduction

In classical planning a plan is a valid sequence of actions which reaches

the goal from a given initial state, for a particular planning problem. As

discussed in section 1.3, such plans are not expected to be valid for any

other planning problem. In a broad sense, generalized planning is a prob-

lem of finding plans which are valid for more than one planning problem.

Those planning problems are expected to share a certain structure, and

definitions of generalized planning can vary depending on what common-

alities are assumed. Classical planners can be seen as singleton general-

ized planners, since they are able to generate a plan for every individual

planning instance.

15

“tesi” — 2017/9/30 — 0:03 — page 16 — #36

Our definition of the generalized planning task is based on that of Hu

and De Giacomo (Hu and De Giacomo, 2011), who define a generalized

planning problem as a finite set of multiple individual planning problems

Ψ = {P1, . . . , PT} that share the same observations and actions. Al-

though actions are shared, in their formalism each action can have a differ-

ent interpretation, depending on a state, due to conditional effects.

In this work we restrict the above definition for generalized planning in

two ways:

1. States are fully observable, so observations are equivalent to the

state variables.

2. Each action has the same (conditional) effects, in each individual

problem.

Definition 9. A generalized planning problem Ψ is a set of individual

classical planning problems P1 = 〈F, A, I1, G1〉, . . . , PT = 〈F, A, IT , GT 〉,
that share the same planning frame Φ = 〈F, A〉, and differ only in the

particular initial state and goals.

Consequently a generalized planning problem can also be defined as a set

of planning instances Ψ = {p1, . . . , pT}, which share the same domain d

and set of objects Ω, inducing a planning frame 〈F, A〉.

Definition 10. A solution π to a generalized planning problem Ψ is a

generalized plan that solves each individual problem Pt, 1 ≤ t ≤ T in a

set of planning problems Ψ.

This definition of the generalized planning task is related to previous

works on planning and learning that extract and reuse general knowledge

from different tasks of the same domain (Fern et al., 2011; Jiménez et al.,

2012). The constraint imposed in this work is stronger, as by sharing

the same domain the set of instances also share the same fluents, so all

individual planning tasks have the same state space.

Representations of a generalized plan can take many different forms. In

16

“tesi” — 2017/9/30 — 0:03 — page 17 — #37

the literature the form of a generalized plan ranges from DS-planners (Win-

ner and Veloso, 2003) and generalized polices (Martı́n and Geffner, 2004)

to finite state machines (FSMs) (Bonet et al., 2010). Each representation

has a different syntax and semantics, but they all allow non-sequential

execution flow to solve planning instances with different initial states

and goals. In this work we use planning programs as expressions of

generalized plans and hierarchical task networks (HTNs) as a different

form of generalized plan that does not explicitly represent a unique solu-

tion.

Once derived a generalized plan allows for solving multiple planning in-

stances. However, the complexities of instantiation and means for com-

puting such plans can vary depending on the representation. According to

Srivastava (2011) several criteria are relevant for evaluating a generalized

plan:

• Complexity of checking applicability

• Complexity of plan instantiation

• Domain coverage

• Complexity of computing the generalized plan

• Quality of the instantiated plan

As an extreme example, a classical planner can be considered as a gen-

eralized plan, if the complexity of the instantiation of such a plan is ac-

ceptable. A classical planner forms an independent search problem, re-

gardless of whether it has already solved the same, or a similar instance

of the planning problem. Given a generalized plan, depending on the

representation, checking quality, applicability, and determining the exact

domain coverage of such a plan, can still be hard. A generalized plan

can be incomplete in the sense that some search still has to be performed.

However, the idea of generalized planning is to reduce the search space

by encoding knowledge, about the whole planning domain.

Approaches to construction of generalized plans can be divided into in-

17

“tesi” — 2017/9/30 — 0:03 — page 18 — #38

ductive and deductive (or generative). The inductive approaches attempt

to generalize from a given set of examples. In case of classical planning,

those examples are solutions to a training set of planning problems. The

deductive approach to generalized planning derives the plan directly from

the model, which is represented as the planning domain d, introduced be-

fore. The classical planning domain models the actions for a certain world

and by deriving general rules one can assemble a strategy that solves all

the instances in a given planning domain.

According to our definition of the generalized planning task the particular

case where |Ψ| = 1 corresponds to classical planning with conditional

effects. The case for which all the individual problems in Ψ share the

same goals, G1 = G2 = · · · = GT−1 = GT , corresponds to conformant

planning (Palacios and Geffner, 2009). Nevertheless the form of the solu-

tions is different. While solutions in classical planning or in conformant

planning are defined as sequences of actions, generalized plans relax this

assumption and exploit a more expressive solution representation with

non-sequential execution that can achieve more compact solutions.

Consider the example TOWER domain from the previous chapter. We

can define an instance which describes a single tower of any size, or an

instance with multiple towers as shown in Figure 2.1. A generalized plan

would be able to solve any such instance.

Figure 2.1: Example instances of TOWER domain

Such a generalized plan can be expressed as a policy:

1. If there is a clear block on top of another block, move that block to

the table.

18

“tesi” — 2017/9/30 — 0:03 — page 19 — #39

2. While not all blocks are on table, repeat 1.

In the following sections we will explore how such a policy can be ex-

pressed.

2.2 Planning Programs

This section introduces the basic version of the planning program for-

malism (Jiménez and Jonsson, 2015). In its simplest form, a planning

program is a sequence of planning actions enhanced with goto instruc-

tions, i.e. conditional constructs for jumping to arbitrary locations of the

program, allowing for non-sequential plan execution with branching and

loops. In this section we define basic planning programs.

2.2.1 Basic Planning Programs

Given a STRIPS frame Φ = 〈F, A〉, a basic planning program is a se-

quence of instructions Π = 〈w0, . . . , wn〉. Each instruction wi, 0 ≤ i ≤ n,

is associated with a program line i and is drawn from a set of instructions

I defined as

I = A∪Igo ∪{end }, Igo = {goto(i’,!f) : 0 ≤ i′ ≤ n, f ∈ F}.

In other words, each instruction is either a planning action a ∈ A, a goto

instruction goto(i’,!f) or a termination instruction end. A termina-

tion instruction acts as an explicit marker that program execution should

end, similar to a return statement in programming. We explicitly re-

quire that the last instruction wn should equal end, and since this instruc-

tion is fixed, we say that Π has |Π| = n program lines, even though Π in

fact contains n + 1 instructions.

The execution model for a planning program Π consists of a program state

(s, i), i.e. a pair of a planning state s ⊆ F and a program counter whose

19

“tesi” — 2017/9/30 — 0:03 — page 20 — #40

value is the current program line i, 0 ≤ i ≤ n. Given a program state

(s, i), the execution of instruction wi on line i is defined as follows:

• If wi ∈ A, the new program state is (s′, i + 1), where s′ = s ⋉ wi is

the result of applying action wi in planning state s, and the program

counter is simply incremented.

• If wi = goto(i’,!f), the new program state is (s, i+1) if f ∈ s,

and (s, i′) otherwise. We adopt the convention of jumping to line

i′ whenever f is false in s. Note that the planning state s remains

unchanged.

• If wi = end, execution terminates.

To execute a planning program Π on a planning problem P = 〈F, A, I, G〉,
we set the initial program state to (I, 0), i.e. the initial state of P and

program line 0. We say that Π solves P if and only if execution ter-

minates and the goal condition holds in the resulting program state (s, i),
i.e. G ⊆ s∧wi = end. Executing Π on P can fail for three reasons:

1. Execution terminates in program state (s, i) but the goal condition

does not hold, i.e. G 6⊆ s ∧ wi = end.

2. When executing an action wi ∈ A in program state (s, i), the pre-

condition of wi does not hold, i.e. pre(wi) 6⊆ s.

3. Execution enters an infinite loop that never reaches an end instruc-

tion.

This execution model is deterministic and hence a basic planning pro-

gram can be viewed as a form of compact reactive plan for the family of

planning problems defined by the STRIPS frame Φ = 〈F, A〉.

If we consider the TOWER example, to construct a planning program we

would need a condition in the goto instruction that depends on a single

fluent. This means that in the basic version of planning programs we

cannot check if the goal condition is satisfied, without explicitly defining

the bottom of the tower. We can define the bottom of the tower to be block

z, in this case the stop condition would be when block z becomes clear.

20

“tesi” — 2017/9/30 — 0:03 — page 21 — #41

Of course this solution would work for single tower instances only. The

planning program for any instance with a single tower, is a program in

Figure 2.2.

0. mvToTable

1. goto(0,!(clear(z)))

2. end

Figure 2.2: Planning program for placing all blocks of a single tower, on

the table

In order to represent a plan which can put the blocks, of any number of

towers, on the table, we would need to enhance the expressiveness of

the basic planning programs. One possible extension, which is further

explored in Chapter 3, is the use of the derived predicates. The basic

version of planning programs is sound and complete. The proofs have

been submitted to a journal and currently are under revision.

2.3 Hierarchies in Planning

In this section we define the domain and instance of hierarchical task

networks (HTN). HTNs are models, which enable capturing knowledge

about a certain planning domain, through hierarchical definitions of tasks.

Hierarchies in a domain can help reduce the search space, in any single in-

stance of the problem. In this section we also discuss modeling languages

for HTNs and the notation used in this work.

2.3.1 Hierarchical Task Networks

Hierarchical Task Networks models enable defining compound parame-

terized tasks which can reduce the search complexity if the adequate con-

straints can be identified during the modeling. The hierarchical structure

21

“tesi” — 2017/9/30 — 0:03 — page 22 — #42

enables the modeler to encode domain-specific knowledge. The expres-

siveness of HTNs can help to impose the constraints, which can in turn

lead to a reduction in the search complexity. The hierarchy ideally im-

poses some constraints on how tasks can be decomposed. The more con-

strained the task network, the less search has to be performed in order to

achieve a certain task.

HTNs are more expressive than STRIPS (Erol et al., 1994), which along

with the ability to construct parametric compound tasks allows for cap-

turing domain-specific knowledge. This knowledge in turn allows even

state-of-the-art HTN planners like SHOP2 (Nau et al., 2003) to rely on

the hierarchies provided in the model by applying nothing more than

blind search. In contrast most STRIPS planners use heuristic search to

find plans. However in practice HTN planners are the ones that have been

more extensively and applied in a variety of problems: military plan-

ning (Munoz-Avila et al., 1999), Web service composition (Wu et al.,

2003), unmanned air vehicle control (Miller et al., 2004), strategic game

playing (van der Sterren, 2009; Menif et al., 2013), personalized patient

care (Sánchez-Garzón et al., 2013) and business process management

(González-Ferrer et al., 2013), to name a few.

Apart from STRIPS being less expressive, another reason for the popular-

ity of HTNs is that classical planners rely on domain-independent heuris-

tics, which have to be calculated for each instance of the domain, which

leads to scalability issues. While in STRIPS planning it is enough to spec-

ify the basic actions, to create an HTN as an efficient representation, the

modeler has to identify useful hierarchies over those basic actions and in

doing so ideally impose some constraints.

Our HTN definition is inspired by Geier and Bercher (Geier and Bercher,

2011). However, just as for classical planning, we separate the definition

into a domain part and an instance part. In this work, we also impose ad-

ditional restrictions: a task network can contain at most one copy of each

task, and task decomposition is limited to progression, always decompos-

ing tasks with no predecessor.

22

“tesi” — 2017/9/30 — 0:03 — page 23 — #43

Definition 11. An HTN domain is a tuple h = 〈P ,A, C,M〉 consisting

of four sets of untyped function symbols. Specifically:

• P is the set of predicates

• A is the set of action schemata (i.e. primitive tasks)

• C is the set of compound tasks

• M is the set of decomposition methods.

Predicates and actions are defined as for the planning domains in previous

chapter but, unlike PDDL domains, HTN domains are untyped. Each

method m ∈ M has an associated tuple 〈c, tnm, pre(m)〉 where c ∈ C
is a compound task with the same arity as m, tnm is a task network and

pre(m) is a set of preconditions, defined as for actions. The task network

tnm = (T,≺) consists of a set T of pairs (t, ϕ), where t ∈ A∪C is a task

and ϕ is an argument map from m to t, and a partial order ≺ on the tasks

in T .

Definition 12. Given an HTN domain h, an HTN instance is a tuple

s = 〈Ω, init, tnI〉, where:

• Ω is a set of objects

• init is an initial state.

• tnI is an initial task network

The instance s induces sets PΩ and AΩ of fluents and grounded actions,

and sets CΩ and MΩ of grounded compound tasks and grounded meth-

ods, respectively. A grounded method m[x] ∈ MΩ has associated tu-

ple 〈c[x], tnm[x], pre(m[x])〉, where c[x] is a grounded compound task

and the precondition pre(m[x]) is derived as for grounded actions. The

grounded task network tnm[x] = (Tx,≺) is defined by Tx = {t[ϕ(x)] :
(t, ϕ) ∈ T}. In this work, we assume that the initial grounded task net-

work tnI = ({tI}, ∅) contains a single grounded compound task tI ∈
CΩ.

23

“tesi” — 2017/9/30 — 0:03 — page 24 — #44

An HTN state (s, tn) consists of a state s ⊆ PΩ on fluents and a grounded

task network tn. We use (s, tn) →D (s′, tn′) to denote that an HTN

state decomposes into another HTN state, where tn = 〈Tx,≺〉 and tn′ =
〈Ty,≺

′〉. A valid progression decomposition consists in choosing a grounded

task t ∈ Tx such that t′ 6≺ t for each t′ ∈ Tx, and applying one of the fol-

lowing rules:

1. If t is primitive, the decomposition is applicable if pre(t) ⊆ s, and

the resulting HTN state is given by s′ = s ⋉ t, Ty = Tx \ {t} and

≺′= {(t1, t2) ∈≺| (t1, t2) ∈ Ty}.

2. If t is compound, a grounded method m = 〈t, tn, pre(m)〉 with

tn = (Tm,≺m) is applicable if pre(m) ⊆ s, and the resulting HTN

state is given by s′ = s, Ty = Tx \ {t} ∪ Tm and

≺′ = {(t1, t2) ∈≺ | (t1, t2) ∈ Ty}

∪ {(t′, t1) ∈ Tm × Ty | (t, t1) ∈≺} ∪ ≺m .

The first rule removes a grounded primitive task t from tn and applies

the effects of t to the current state, while the second rule uses a grounded

method m to replace a grounded compound task t with tnm while leaving

the state unchanged. If there is a finite sequence of decompositions from

(s1, tn1) to (sn, tnn) we write (s1, tn1) →
∗
D (sn, tnn). An HTN instance

s is solvable if and only if (init, tnI) →
∗
D (sn, 〈∅, ∅〉) for some state sn,

i.e. the initial HTN state (init, tnI) is decomposed into an empty task

network. Let π be the sequence of grounded actions extracted during

such a decomposition; π corresponds to a plan that results from solving

s.

2.3.2 SHOP2 modeling language

There are many modeling languages used to encode HTNs. These lan-

guages often differ depending on the HTN solver. The HTN solvers pro-

vide different capabilities and are thus reliant on the expressiveness of the

24

“tesi” — 2017/9/30 — 0:03 — page 25 — #45

modeling language. In this work we use the JSHOP2 HTN planner, which

uses SHOP2 syntax with minor modifications. The syntax of the SHOP2

modeling language allows encoding of a highly expressive domain repre-

sentations, while incorporating many features from PDDL. In this section

we introduce only the subset of features of the SHOP language which are

relevant for this work.

The basis for SHOP2 language are the notions of operator and method.

The methods can decompose a single compound task into a list of tasks.

This list can be composed of compound and primitive tasks. The same

task is allowed to be added to the decomposition list, providing means for

recursion. The methods can only decompose a certain task if the precon-

dition list of a particular method holds in the current state. The operators

are similar to action schemata in classical planning introduced in the pre-

vious chapter, with the difference that the positive and negative effects are

given as an add and delete lists, respectively. Therefore operators are used

to achieve the primitive tasks, while the methods decompose compound

tasks.

The operators are given as: (: operator h P D A) Where:

• h - the operator name and an untyped parameter list

• P - precondition list

• D - delete list

• A - add list

The methods are given as: (: method h P T) Where:

• h - method name and an untyped parameter list

• P - precondition list

• T - task list, to which the method decomposes

The operators directly correspond to the notion of action schemata defined

in a PDDL domain. An operator in the example of TOWER domain intro-

duced in the previous chapter, is equivalent to the action schema, from the

25

“tesi” — 2017/9/30 — 0:03 — page 26 — #46

original planning domain: (mvToTable ?x ?y). Just as the original action

schema, this operator removes a clear block from a tower of blocks and

places it on the table.

In the SHOP2 syntax this operator can be written as:

(:operator (mvToTable ?x ?y)

((block ?x) (block ?y)

(clear ?x) (on ?x ?y)

)

((on ?x ?y))

((clear ?y) (on-table ?x))

)

The domains modeled in SHOP2 are not typed, so predicates that denote

types should be used throughout the HTN to impose restrictions on input

parameter types. In the case of (mvToTable ?x ?y) operator, note the

type predicates for blocks, which need to be explicitly encoded in the

preconditions.

In SHOP2 a decomposition method consists of a list of preconditions and

a task list to which it decomposes. The decomposition list may contain

both compound and primitive tasks. To distinguish the primitive tasks we

ad an exclamation mark in front of the name.

The example of a method that decomposes an achieveOnTable com-

pound task, is given as:

(:method (achieveOnTable ?x)

((block ?x) (block ?y)

(not (on-table ?x))

)

((!mvToTable ?x ?y)

(achieveOnTable ?y)

)

)

26

“tesi” — 2017/9/30 — 0:03 — page 27 — #47

This method will decompose the achieveOnTable task recursively. The

HTN planner will non-deterministically select an object to bind the free

parameter ?y, the only condition is that bound object is a block. In case

that ?y is not a block, placed below ?x, the decomposition will fail, due

to preconditions of (!mvToTable ?x ?y).

In SHOP2 the order in which the methods are defined in the HTN domain

is used as a tie-breaker, among all the methods that decompose the same

task (i.e. defined with the same name). We assume that the tasks are

totally ordered unless specified explicitly. In SHOP2 syntax the task list

is only considered unordered if preceded by :unordered keyword. In

case the task list is unordered, all possible orderings of the tasks will be

explored, until the task list is fully decomposed.

Recursion assumes that there is a well-defined base case that is eventually

reached during progression. The example of a base case for the recursion

is a method:

(:method (achieveOnTable ?x)

((block ?x)

(clear ?x) (on-table ?x)

)

()

)

This method will stop the recursion if the parameter block, is already on

the table and clear. The first version of the method will fail to decompose

due to the precondition (not (on-table ?x)), and the second version of

the method decomposes to an empty list. The base case method, could

have also been defined to decompose to an operator, which would check

if the block in already on the table.

Therefore, the decomposition methods of the achieveOnTable task, en-

code a strategy for placing a single tower of blocks on the table. The

initial task network, would then consist of a single grounded compound

task achieveOnTable, with the only clear block of the tower as a param-

27

“tesi” — 2017/9/30 — 0:03 — page 28 — #48

eter. To model a problem with more than one tower of blocks, we could

create a different compound task, with assigned methods which would

decompose it to the achieveOnTable task, for each tower.

28

“tesi” — 2017/9/30 — 0:03 — page 29 — #49

Part II

High-Level state features

29

“tesi” — 2017/9/30 — 0:03 — page 30 — #50

“tesi” — 2017/9/30 — 0:03 — page 31 — #51

Chapter 3

PLANNING PROGRAMS

WITH HIGH-LEVEL STATE

FEATURES

In this chapter we introduce an extension of planning programs with high-

level state features in form of conjunctive queries. In addition we present

a novel approach to generating high-level state features in a tight coupling

with computation of a planning program. We show that the extension of

planning programs remains sound and complete. Furthermore, we show

that planning programs with high-level state features can model a noise-

free classifier.

3.1 Introduction

A generalized plan is a single solution valid for a set of planning prob-

lems. Generalized plans are usually built with branching and repetition

constructs which allow them to solve arbitrarily large problems, and prob-

lems with partial observability and non-deterministic actions (Bonet et al.,

31

“tesi” — 2017/9/30 — 0:03 — page 32 — #52

2010; Hu and Levesque, 2011; Srivastava et al., 2011; Hu and De Gi-

acomo, 2013). For many problems, generalized plans can only be effi-

ciently computed if branching (and/or repetition) is done according to key

features that allow high-level reasoning and help to accurately distinguish

between states.

0. *i<*j

1. j=i

2. inc(i)

3. i==n

4. end

Figure 3.1: Planning program for finding the minimum element in a list

of integers of size n.

To illustrate this, consider the problem of finding the minimum element

in the following list of five integers: (2, 5, 3, 1, 4). A classical plan for

this problem is the 4-action sequence 〈inc(i), inc(i), inc(i), j = i〉 where

i and j are list iterators that initially point to the first position in the list,

inc(i) increments iterator i, and j = i assigns iterator i to j. The goal is

for iterator j to point to the minimum element in the list. The plan fails to

32

“tesi” — 2017/9/30 — 0:03 — page 33 — #53

generalize since it is no longer valid if the order of the integers in the list

is changed or if integers are added to (or deleted from) the list.

A generalized plan can solve this problem for different list orders and

sizes. In this work we focus on generalized plans in the form of planning

programs (Jiménez and Jonsson, 2015; Segovia-Aguas et al., 2016). Fig-

ure 3.1 shows the planning program for finding the minimum element in a

list of integers of any size. Instructions on lines 0 and 3, represented with

diamonds, are conditional goto instructions that, respectively, jump to line

2 when ∗i ≮ ∗j and to line 0 when i 6= n. The outgoing bottom branch

of the diamond indicates that the condition holds and the right branch

that it does not. Instructions on lines 1 and 2 are sequential instructions

and are represented with boxes. Finally, end marks the program termi-

nation.

A natural representation of this problem is to use predicates that represent

the values of pointers. In this program, conditions ∗i < ∗j and i == n

are high-level state features necessary to compactly represent a solution

that generalizes. These features abstract different list contents and sizes

as well as different values for iterators i and j. Specifically, condition

∗i < ∗j abstracts the set of states where the element pointed to by i is

smaller than that pointed to by j. Likewise, i == n abstracts the set

of states where iterator i reaches the end of the list, no matter the list

size.

In generalized planning problems, high-level state features are tradition-

ally hand-coded which requires significant human expertise. The contri-

bution of this work is to automatically generate the high-level features re-

quired to solve a given generalized planning problem. We do so updating

the notion of planning programs and extending a previous compilation of

generalized planning into classical planning (Jiménez and Jonsson, 2015;

Segovia-Aguas et al., 2016) to tightly integrate the computation of gener-

alized plans with the computation of features in the form of conjunctive

queries.

Another contribution of this work is bringing a new landscape of challeng-

33

“tesi” — 2017/9/30 — 0:03 — page 34 — #54

ing benchmarks to classical planning given that our extended compilation

naturally models classification tasks as classical planning problems. This

allows us to solve problems that integrate planning and classification us-

ing an off-the-shelf classical planner.

3.2 Generating High-Level State Features

This section defines high-level state features as conjunctive queries and

extends planning programs (Jiménez and Jonsson, 2015; Segovia-Aguas

et al., 2016) such that conditional goto instructions jump according to the

value of a conjunctive query. The section also extends the compilation

from generalized planning into classical planning to generate planning

programs with conjunctive queries using a classical planner.

3.2.1 High-Level State Features

The notion of a high-level state feature is very general and has been used

in different areas of AI and for different purposes. If we restrict ourselves

to planning, a high-level state feature can broadly be viewed as a state

abstraction to compactly represent planning problems and/or solutions to

planning problems. Diverse formalisms have been used to represent high-

level state features in planning ranging from first order clauses (Veloso

et al., 1995) to description logic formulae (Martı́n and Geffner, 2004),

LTL formulae (Cresswell and Coddington, 2004), PDDL derived predi-

cates (Hoffmann and Edelkamp, 2005) and, more recently, observation

formulae (Bonet et al., 2010).

Given a planning domain d = 〈T , <,P ,A〉, and a set of objects Ω defined

in a planning instance, states are represented in terms of fluents F which

are instantiated from a set of predicates P We consider high-level state

features that are arbitrary formulae over the predicates in P . A high-level

state feature is also known as a derived predicate if it produces a new

34

“tesi” — 2017/9/30 — 0:03 — page 35 — #55

predicate whose truth value is determined by the corresponding formula.

Derived predicates have proven useful for concisely representing planning

problems with complex conditions and effects (Thiébaux et al., 2005) and

for more efficiently solving optimal planning problems (Ivankovic and

Haslum, 2015).

equal(a, b)← ∃x1.assign(a, x1),

assign(b, x1).

lessthan-pointers(a, b)← ∃x1, x2.points-to(a, x1),

points-to(b, x2),

lessthan(x1, x2).

Figure 3.2: Derived predicates in the form of conjunctive queries for find-

ing the minimum number in a list.

In this work we restrict ourselves to formulae in the form of conjunctive

queries from database theory (Chandra and Merlin, 1977). Conjunctive

queries are a fragment of first-order logic in which formulae are con-

structed from atoms using conjunction and existential quantification (dis-

allowing all other logical symbols). A conjunctive query can be written

as

ϕ = (x1, . . . , xk).∃xk+1, . . . , xm.φ1 ∧ · · · ∧ φq,

where x1, . . . , xk are free variables, xk+1, . . . , xm are bound variables,

and φ1, . . . , φq are atoms.

Figure 3.2 shows two derived predicates, in the form of conjunctive queries,

that correspond to features a == b and ∗a < ∗b. In both predicates, a

and b act as free variables while x1 and x2 are bound variables. The first

derived predicate models whether two given iterators point to the same

memory address, while the second models whether the value pointed to

by an iterator is less than the value pointed to by another iterator. The

35

“tesi” — 2017/9/30 — 0:03 — page 36 — #56

example assumes that predicate assign models the assignment of a mem-

ory address to a pointer variable, points-to models the content of the as-

sociated memory location, and lessthan models that a value is less than

another.

Given a planning domain d and a set of object Ω, we introduce a set X of

m query variables, X = {x1, . . . , xm}, each with domain Ω. Each atom

p(v) in the derived predicate consists of a predicate p ∈ P and a tuple

v ∈ Xar(p) that assigns variables in X to arguments of p. In addition, we

make the following assumptions regarding predicates and objects:

1. We partition Ω into a set of variable objects Ωv (not to be confused

with the query variables) and a set of remaining objects Ωo.

2. For each predicate p ∈ P we designate at most one argument as

a variable argument to be filled by a variable object (WLOG the

variable argument always goes first). In the example, the first argu-

ment of predicates assign and points-to is a variable argument. For

predicates without variable arguments, such as lessthan, we simply

remove the variable argument and associated variable object.

3. In a conjunctive query, free variables can only be assigned to vari-

able arguments of predicates and have domain Ωv, while bound

variables can only be assigned to non-variable arguments and have

domain Ωo.

Note that we could get rid of variable objects and variable arguments

by redefining predicates (e.g. assign could become assign-i, assign-j and

assign-n). As a consequence, all variables of a conjunctive query would be

bound. However, variable objects offer flexibility, by allowing the vari-

able objects to vary, and by generating derived predicates that are valid

for a range of variable objects. For instance, the conditions i == n and

∗i < ∗j in the program of Figure 3.1 are generated by assigning objects

to a and b accordingly (this requires i, j and n to be variable objects of

the planning problem).

36

“tesi” — 2017/9/30 — 0:03 — page 37 — #57

3.2.2 Planning Programs with Conjunctive Queries

To incorporate conjunctive queries into planning programs we simply re-

place the fluent f of conditional goto instructions goto(i′, !f) with a con-

junctive query ϕ. The execution of a planning program with conjunctive

queries proceeds as explained in Chapter 2, except when the instruction

associated with the current program counter is a conditional goto instruc-

tion goto(i′, !ϕ). In that case, the program counter pc is set to i′ if ϕ does

not unify with the current state s, else pc is incremented.

Let ϕ = (x1, . . . , xk).∃xk+1, . . . , xm.φ1∧ · · ·∧φq be a conjunctive query,

and let u ∈ Ωk
v be an assignment of variable objects to the free variables

x1, . . . , xk. We describe a strategy for unifying ϕ with the current state s.

The idea is to maintain a subset Φ ⊆ Ωm−k
o of possible joint assignments

of objects to the bound variables xk+1, . . . , xm. We then unify the atoms

of ϕ with s one at a time, starting with φ1, and update the set Φ as we

go along. After processing all atoms, ϕ unifies with s if and only if Φ is

non-empty, i.e. if there remains at least one possible joint assignment to

the bound variables.

To illustrate this idea, consider again the example problem introduced in

Section 3.1 for finding the minimum element in the integer list (2, 5, 3, 1, 4).
Consider the derived predicate lessthan-pointers(a, b) from Figure 3.2,

and let (i, j) be the assignment of variable objects to the free variables

a, b. Assume that in the current state s, iterator i points to the third po-

sition of the list while iterator j points to the first position. Unification

proceeds one atom at a time, and initially Φ = Ω2
o, i.e. all joint assign-

ments to the bound variables x1, x2 are possible.

The first atom points-to(i, x1) unifies with x1 = 3, the element in the

third position of the list. Consequently, joint assignments in Φ that do

not assign the value 3 to x1 are no longer possible and thus removed.

Likewise, the second atom points-to(j, x2) unifies with x2 = 2, and joint

assignments that do not assign the value 2 to x2 are removed from Φ.

As a result, Φ contains a single possible joint assignment (3, 2) to x1, x2.

37

“tesi” — 2017/9/30 — 0:03 — page 38 — #58

Since 3 is not less than 2, no joint assignment in Φ unifies with the third

atom lessthan(x1, x2). As a result, Φ becomes empty, and ϕ is considered

non-unifiable with s.

3.2.3 Computing Planning Programs with Conjunctive

Queries

In this section we extend the compilation of (Jiménez and Jonsson, 2015)

to compute planning programs with conjunctive queries. The extended

compilation takes as input a generalized planning problem Ψ = {P1, . . . , PT}
and constants n, q and m (that bound the number of program lines, atoms

and bound variables, respectively) and outputs a single planning prob-

lem Pm
n,q. A solution to Pm

n,q corresponds to a planning program Π with

conjunctive queries such that Π solves Ψ.

Since programming and executing sequential and termination instructions

is identical to the original compilation, we only describe here the part of

Pm
n,q that corresponds to programming and evaluating conjunctive queries.

We define a set of bound variables X = {x1, . . . , xm} and a set of slots

Σ = {σ1, . . . , σq}. Each slot is a placeholder for an atom of a conjunctive

query, and we also define a dummy slot σ0. The compilation is extended

with the following novel fluents:

• For each pair of program lines i, i′ such that i′ 6= i + 1, a fluent

insi,goto(i′) indicating that the instruction on line i is a goto instruc-

tion goto(i′, !ϕ).

• For each slot σk ∈ Σ ∪ {σ0}, a fluent slotk indicating that σk is the

current slot.

• For each line i and slot σk ∈ Σ, a fluent eslotki indicating that slot

σk on line i is empty.

• For each line i, slot σk ∈ Σ, predicate p ∈ P , variable object

v ∈ Ωv and variable tuple (y2, . . . , yar(p)) ∈ Xar(p)−1, a fluent

38

“tesi” — 2017/9/30 — 0:03 — page 39 — #59

atom-pk
i (v, y2, . . . , yar(p)) indicating that p(v, y2, . . . , yar(p)) is the

atom in slot σk of line i.

• For each slot σk ∈ Σ and object tuple (o1, . . . , om) ∈ Ωm
o , a fluent

possk(o1, . . . , om) indicating that after processing the atoms {φ1, . . . , φk},
(o1, . . . , om) is a possible joint assignment of objects to the bound

variables x1, . . . , xm.

• A fluent eval indicating that we are done evaluating a conjunctive

query and a fluent acc representing the outcome of the evaluation

(true or false).

In the initial state, all fluents above appear as false except slot0, indicat-

ing that we are ready to program and unify the atoms of any conjunctive

query. The initial state on other fluents is identical to the original compi-

lation, as is the goal condition. We next describe the set of actions that

have to be added to the original compilation to implement the mechanism

for programming and evaluating conjunctive queries.

A conjunctive query ϕ is activated by programming a goto instruction

goto(i′, !ϕ) on a given line i. As a result of programming the goto instruc-

tion, all slots on line i are marked as empty. For each pair of program lines

i, i′, the action pgotoi,i′ for programming goto(i′, !ϕ) on line i is defined

as

pre(pgotoi,i′) = {pci, insi,nil},

cond(pgotoi,i′) = {∅✄ {¬insi,nil, insi,goto(i′)},

∅✄ {eslot1i , . . . , eslot
q
i}}.

The precondition contains two fluents from the original compilation: pci,

modeling that the program counter equals i, and insi,nil, modeling that the

instruction on line i is empty.

Once activated, we have to program the individual atoms in the slots of the

conjunctive query ϕ. After programming an atom, the slot is no longer

empty. For each line i, slot σk ∈ Σ, predicate p ∈ P , variable object

39

“tesi” — 2017/9/30 — 0:03 — page 40 — #60

v ∈ Ωv and tuple of bound variables (y2, . . . , yar(p)) ∈ Xar(p)−1, the

action patom-pk
i (v, y2, . . . , yar(p)) is defined as

pre(patom-pk
i (v, y2, . . . , yar(p))) = {pci, slotk−1, eslotki },

cond(patom-pk
i (v, y2, . . . , yar(p))) =

{∅✄ {¬eslotki , atom-pk
i (v, y2, . . . , yar(p))}}.

Note that the action patom-pk
i (v, y2, . . . , yar(p)) assigns a concrete vari-

able object v to its only free variable, i.e. the conjunctive queries that we

generate already assign variable objects to free variables.

The key ingredient of the compilation are step actions that iterate over the

atoms in each slot while propagating the remaining possible values of the

bound variables. For each line i, slot σk ∈ Σ, predicate p ∈ P , variable

object v ∈ Ωv and tuple of bound variables (y2, . . . , yar(p)) ∈ Xar(p)−1,

step action step-pk
i (v, y2, . . . , yar(p)) is defined as

pre(step-pk
i (v, y2, . . . , yar(p))) =

{pci, slotk−1, atom-pk
i (v, y2, . . . , yar(p))},

cond(step-pk
i (v, y2, . . . , yar(p))) = {∅✄ {¬slotk−1, slotk}}

∪ {{possk−1(o1, . . . , om), p(v, o(y2), . . . , o(yar(p)))}✄

{possk(o1, . . . , om)} : (o1, . . . , om) ∈ Ωm
o }.

To apply a step action, an atom has to be programmed first. The uncon-

ditional effect is moving from slot σk−1 to slot σk. In addition, the step ac-

tion updates the possible assignments to the bound variables x1, . . . , xm.

For an assignment (o1, . . . , om) to be possible at slot σk, it has to be

possible at σk−1, and the atom p(v, y2, . . . , yar(p)) programmed at slot k

has to induce a fluent that is currently true. Let o(y) denote the object

among o1, . . . , om that is associated with the bound variable y. For ex-

ample, if y = x2, then o(y) = o(x2) = o2. Then the induced fluent is

given by p(v, o(y2), . . . , o(yar(p))). Note that there is one conditional ef-

fect for each possible assignment (o1, . . . , om). If k = 1, the condition

40

“tesi” — 2017/9/30 — 0:03 — page 41 — #61

possk−1(o1, . . . , om) is removed since all assignments are possible prior

to evaluating the first atom.

Once we have iterated over all atoms, we have to check whether there

remains at least one possible assignment, thereby evaluating the entire

conjunctive query. For each line i, let evali be an action defined as

pre(evali) = {pci, slotq},

cond(evali) = {∅✄ {eval}}

∪ {{possq(o1, . . . , om)}✄ {acc} : (o1, . . . , om) ∈ Ωm
o }.

Action evali is only applicable once we are at the last slot σq. The con-

ditional effects add the fluent acc if and only if there remains a possible

assignment to x1, . . . , xm at σq.

Finally, we can now use the result of the evaluation to determine the pro-

gram line that we jump to. For each pair of lines i, i′, let jmpi,i′ be an

action defined as

pre(jmpi,i′) = {pci, insi,goto(i′), slotq, eval},

cond(jmpi,i′) = {∅✄ {¬pci,¬eval,¬acc,¬slotq, slot0}}

∪ {{¬acc}✄ {pci′}, {acc}✄ {pci+1}}

∪ {∅✄ {¬possk(o1, . . . , om) : 1 ≤ k ≤ q, ∀j.oj ∈ Ωo}}.

The effect is to jump to line i′ if acc is false, else continue execution on

line i + 1. We also delete fluents eval and acc, as well as all instances of

possk(o1, . . . , om) in order to reset the evaluation mechanism prior to the

next evaluation of a conjunctive feature. The current slot is also reset to

σ0.

41

“tesi” — 2017/9/30 — 0:03 — page 42 — #62

3.3 Properties of Planning Programs with con-

junctive queries

In this section we show that our planning programs extension is sound

and complete. As discussed in Chapter 2, the basic version of planning

programs is sound and complete. The arguments for soundness and com-

pleteness of basic planning programs still apply to the extended version,

therefore in the proofs presented in this section we only refer to the ex-

tension of the goto instruction.

Theorem 1 (Soundness). Any plan π that solves Pm
n,q induces a program

Π with conjunctive queries that solves Ψ.

Proof. Planning programs with conjunctive queries only extend the goto

instruction of basic planning programs, while the sequential and terminal

instructions remain identical. Therefore we only show that the property

holds for the extended goto instruction as well. Only empty slots are pro-

grammed by assigning atoms, which are fluents of type atom-pk
i (ω). Once

programmed the atom cannot change because of the precondition eslotki ,

of action patom-pk
i (ω). Therefore a conjunctive query with q atoms on a

line i is represented by a set of atoms ϕ. Hence, we only need to show

that after iterating over all the atoms of a conjunctive query ϕ, the fluent

acc becomes true iff ϕ unifies with the current state s.

The number of atoms in ϕ is q. By induction on k we show that af-

ter iterating over the atoms {φ1, . . . , φk}, the fluent possk(o1, . . . , ob) is

true if and only if the assignment (o1, . . . , ob) to the bound variables

v1, . . . , vb causes the set of atoms {φ1, . . . , φk} of ϕ to unify with s.

The base case is k = 0, in which case the set of atoms {φ1, . . . , φ0} is

empty and thus trivially unifies with s. For k > 0, by hypothesis of in-

duction the fluent possk−1(o1, . . . , ob) is true if and only if (o1, . . . , ob)
causes {φ1, . . . , φk−1} to unify with s. Because of the definition of action

step-pk
i (ω), possk(o1, . . . , ob) becomes true if and only if possk−1(o1, . . . , ob)

is true and the fluent p(o(ω)) induced by p, ω and (o1, . . . , ob) is true in s.

42

“tesi” — 2017/9/30 — 0:03 — page 43 — #63

This corresponds precisely to {φ1, . . . , φk} unifying with s.

Theorem 2 (Completeness). If there exists a planning program Π with

conjunctive queries that solves Ψ such that |Π| ≤ n, there exists a corre-

sponding plan π that solves Pm
n,q.

Proof. As before, planning programs with conjunctive queries only ex-

tend the goto instruction of basic planning programs. For each possible

atom p(ω), there is a corresponding action patom-pk
i (ω) that programs

p(ω) in slot σk of line i. Hence we can emulate any conjunctive query ϕ

by programming the appropriate atoms in the slots of a line. The resulting

plan π also has to check whether ϕ unifies with the current state s, but this

is a deterministic process. The only issue is that we have to ensure that the

bounds q and m are large enough to accommodate the conjunctive queries

of Π.

3.4 Classification with Planning Programs

Our extension of planning programs with conjunctive queries allows us

to model supervised classification tasks as if they were generalized plan-

ning problems. Formally, the learning of a noise-free classifier from a set

of labeled examples {e1, . . . , eT}, where each example et, 1 ≤ t ≤ T ,

is labeled with a class in {c1, . . . , cZ}, can be viewed as a generalized

planning problem Ψ = {P1, . . . , PT} such that each individual planning

problem Pt = 〈F, A, Ii, Gi〉, 1 ≤ t ≤ T , models the classification of the

tth example:

• P , Ω induces the set of fluents F representing the learning examples

and their labels.

• A contains the actions necessary to associate a given example with

a class. For instance, in a binary classification task:

A = {setPositive, setNegative}.

43

“tesi” — 2017/9/30 — 0:03 — page 44 — #64

0. jagged(X)

1. False

2. wagons(two)

3. setWest

4. end

Figure 3.3: Planning program that encodes a noise-free classifier for the

Michalski’s train problem.

• It contains the fluents that describe the tth example and Gt the fluent

that describes the label of the tth example.

The solution Π to a generalized planning problem Ψ that models a classifi-

cation task is a noise-free classifier that covers all learning examples.

This model is particularly natural for classification tasks in which both

the examples and the classifier are described using logic. Michalski’s

train (Michalski et al., 2013) is a good example of such tasks. It defines 10

different trains (5 traveling east and 5 traveling west) and the classification

target is finding rules that cause a train to travel east or west. Trains are

defined using the following relations: which wagon is in a given train,

which wagon is in front, the wagon’s shape, its number of wheels, whether

44

“tesi” — 2017/9/30 — 0:03 — page 45 — #65

it has a roof or not (closed or open), whether it is long or short, the shape

of the objects the wagon is loaded with and the class of the train.

In more detail, the generalized planning problem encoding the Michal-

ski’s train task would be:

• Fluents F induced from P = {(wagons ?Number), (hasCar ?Car),
(infront ?Car ?Car), (shape ?Car ?Shape), (wheels ?Car ?Number),
(closed ?Car), (open ?Car), (long ?Car), (short ?Car), (double ?Car),
(jagged ?Car), (load ?Car ?Shape ?Number), (eastbound), (westbound)}.

• Actions A = {setWest}. We assume that any example has ini-

tial class eastbound, causing the resulting planning programs to be

more compact.

pre(setWest) = {∅},

cond(setWest) = {∅✄ ¬eastbound}

∪ {∅✄ westbound}.

• Each initial state It defines the tth train and Gt defines its associated

class (eastbound or westbound).

Figure 3.3 shows a planning program encoding a noise-free classifier for

the Michalski’s train problem. As explained, the program assumes that

examples initially have class eastbound. Line 1 of the program is an

unconditional jump to line 3.

3.5 Evaluation

In all experiments, we run the classical planner Fast Downward (Helmert,

2006) with the LAMA-2011 setting (Richter and Westphal, 2010) on a

Intel Core i5 3.10GHz x 4 with a 4GB memory bound and time limit of

3600s.

45

“tesi” — 2017/9/30 — 0:03 — page 46 — #66

Lines Slots Vars Time Len

List 3 2 1 0.4 135

Summatory 3 2 1 11.0 40

Trains 5 (1,1,1) (1,1,1) 42.0 101

And 4 (2,2) (1,1) 0.8 49

Or 4 (2,2) (1,1) 0.4 49

Xor 4 (2,2) (2,1) 0.5 44

Table 3.1: Program lines, slots and variables of the features, time (in

seconds) elapsed while computing the solution, and plan length required

to generate and verify the solution.

We evaluate our method in two kinds of benchmarks. We first consider

benchmarks from generalized planning where the target is generating a

plan that generalizes without providing any prior high-level representa-

tion of the states. This set of benchmarks include iterating over a list

and computing the nth term of the summatory series. On the other hand,

we consider binary classification tasks which include Michalski’s train

(cf. Section 3.4) as well as generating the classifiers corresponding to

the logic functions and(X1, X2), or(X1, X2) and xor(X1, X2). Table 3.1

summarizes the obtained results. We report the number of program lines

used to solve the generalized planning problem, the number of slots and

bound variables required to learn the features (a list means that more than

one feature was learned), the time taken to generate the program, and the

plan length.

We briefly describe the features and the programs, learned for the dif-

ferent domains. In the list domain we learn the feature i == n for the

program:

0. visit

1. inc(i)

2. goto(0,i!=n)

In the summatory domain we learn the feature b = 0 for the program:

46

“tesi” — 2017/9/30 — 0:03 — page 47 — #67

0. sum(a,b)

1. dec(b)

2. goto(0,b!=0)

For Michalski’s train we learn the program and features shown in Fig-

ure 3.3. The programs for and(X1, X2), or(X1, X2) and xor(X1, X2)
have the same structure: they learn a first feature that captures if a vari-

able is false (true for the or function, and one true and one false for xor)

and a second feature to capture that the class of the example was set to

negative. This is the 4-line program for the and(X1, X2) function:

0. goto(3, !X = False)

1. setFalse

2. goto(4,class = False)

3. setTrue

4. end

3.6 Discussion

In generalized planning problems, high-level state features are tradition-

ally hand-coded which requires significant human expertise. We have

proposed a novel approach to automatically generating these features by

tightly integrating the computation of planning programs with the com-

putation of the features. This integration is achieved incorporating con-

junctive queries into planning programs and extending an existing compi-

lation from generalized planning to classical planning (Jiménez and Jon-

sson, 2015; Segovia-Aguas et al., 2016) such that it can be exploited by

an off-the-shelf planner.

Currently we are only able to generate high-level state features in the

form of conjunctive queries, and hence we cannot model features with un-

bounded transitive or recursive closures. This kind of features are known

to be useful for some planning domains, e.g. the above feature, the tran-

sitive closure of on, for the BLOCKS domain.

47

“tesi” — 2017/9/30 — 0:03 — page 48 — #68

In addition, our approach naturally models classification tasks in which

both examples and classifiers are represented using logic. The aim of this

research direction is not competing with existing ML algorithms; indeed,

we cannot deal with noisy examples. Instead, our aim is to provide a

new formalism capable of representing tasks that integrate classification

and planning. Moreover, we bring a new landscape of challenging bench-

marks to classical planning.

48

“tesi” — 2017/9/30 — 0:03 — page 49 — #69

Part III

Generating HTNs

49

“tesi” — 2017/9/30 — 0:03 — page 50 — #70

“tesi” — 2017/9/30 — 0:03 — page 51 — #71

Chapter 4

GENERATING HTNS

In this chapter we introduce a novel translation algorithm for generating

HTNs. Lifted invariant graphs are discussed as a basis for the translation.

Precondition ordering is introduced as a necessary optimization, for the

practical use of the basic algorithm. We also compare the results of the

generated HTNs, with Fast Downward blind search over a set of bench-

mark domains.

4.1 Introduction

HTNs are frequently used in real-world applications as they offer a po-

tent mechanism for reducing the search effort required to solve a family

of large-scale planning instances. This is also the reason that HTNs were

so successful in the hand tailored track of early incarnations of the Inter-

national Planning Competition (IPC): the participants were given access

to the planning domains beforehand and designed HTNs that effectively

narrowed the search to a tiny portion of the state space. It is not a coin-

cidence that the HTN planner that achieved the largest coverage at IPC-

2002 and was for a long time regarded as the state-of-the-art in HTN plan-

51

“tesi” — 2017/9/30 — 0:03 — page 52 — #72

ning, SHOP2 (Nau et al., 2003), performs blind search in the task space

to compute a valid expansion. Most of the work required to reduce the

search effort is performed while designing the HTN, and once this work

is done, there is little need to optimize search to solve each instance effi-

ciently. Identifying decomposition strategies is an arduous task even for

experts and can even lead to models, which yield solutions that are not

sound, once translated to the classical planning setting. HTN instances

only define the initial task list which needs to be decomposed in contrast

to a goal condition in the classical planning instance. This can lead to

difficulties in expressing classical planning goals. Depending on the en-

coding, tasks often do not directly correspond to the goals of the original

domain.

The success of the HTNs in practice, is due to expressive power which

enables human experts to encode prior knowledge about the hierarchical

structure of a planning domain. Arguably this is more difficult, than creat-

ing a flat PDDL domain which specifies only preconditions and effects for

each action. The effort of creating HTNs manually is still acceptable for

specific planning applications, in which the initial effort is compensated

by the subsequent reduction in search time during successive applications

of the planner. However, a large body of research in the planning commu-

nity is dedicated to finding domain-independent approaches to planning.

Traditionally, HTNs have not found a place in this body of research be-

cause of their domain-dependent emphasis.

A key motivation for this work is to explore whether it is possible to gen-

erate HTNs automatically in a domain-independent way. We also want to

investigate whether such HTNs can effectively reduce the search space,

for any instance of a planning domain. Another benefit to generating

HTNs is the possibility of consistent and provable soundness of the gen-

erated models. In the literature there exist two techniques that construct

HTNs automatically (Hogg et al., 2008; Zhuo et al., 2009). These tech-

niques rely on annotated traces of plans that solve a set of instances from

a domain. In contrast, the algorithm presented in this chapter relies only

on the planning domain and one example instance that does not need to

52

“tesi” — 2017/9/30 — 0:03 — page 53 — #73

be solved.

In this chapter we present a novel algorithm for generating HTNs auto-

matically. Our algorithm takes as input the PDDL description of a plan-

ning domain and a single representative instance. Unlike previous ap-

proaches, the algorithm does not require solution plans for a subset of

instances of the domain. Instead, our approach is to generate HTNs that

encode invariant graphs of planning domains. An invariant graph is simi-

lar to a lifted domain transition graph, but can be subdivided on types. To

traverse an invariant graph we define two types of tasks: one that reaches

a certain node of an invariant graph, achieving the associated fluent, and

one that traverses a single edge of an invariant graph, applying the associ-

ated action. These two types of tasks are interleaved, in that the expansion

of one type of task involves tasks of the other type. We test the algorithm

on a series of IPC benchmark domains, using the JSHOP2 planner, and

compare the results to Fast Downward blind search. The reason we com-

pare to FD blind search is that JSHOP2 also performs blind search, so

the comparison gives us a good idea of how much the search space is

reduced.

As a running example in this chapter, we use the IPC-2000 LOGISTICS

planning domain and this instance:

(define (problem logistics-example)
(:domain logistics)
(:objects a1 − airplane ap1 ap2 − airport

c1 c2 − city l1 l2 − location

t1 t2 − truck p1 − package)

(:init (at p1 l1) (at a1 ap2)
(at t1 l1) (incity l1 c1) (incity ap1 c1)
(at t2 l2) (incity l2 c2) (incity ap2 c2))

(:goal (and (at p1 l2))))

53

“tesi” — 2017/9/30 — 0:03 — page 54 — #74

4.2 Invariant graphs

Given a STRIPS planning problem P = 〈F, A, I, G〉, a mutex invariant is

a subset of fluents F ′ ⊆ F such that at most one is true at any moment.

Formally, |F ′ ∩ I| = 1 and any action a ∈ A that adds a fluent in F ′

deletes another. The Fast Downward planning system (Helmert, 2009)

uses the domain description to detect lifted invariant candidates. Unlike

Fast Downward, which grounds lifted invariants on actual instances, our

algorithm operates directly on the lifted invariants.

In LOGISTICS, Fast Downward finds a single lifted invariant, i.e. a set of

predicates with associated variable lists: {(in ?o ?v), (at ?o ?p)}.

All objects which appear as parameters of all predicates in the invariant

candidate are considered as bound, while the rest of the parameters are

free. In the given example, variable ?o is bound while ?v and ?p are

free. To ground the lifted invariant on an instance p, we should create one

mutex invariant F ′ for each assignment of objects to the bound variables,

and each fluent in F ′ is obtained by assigning objects to the free variables.

In our running example, assigning the package p1 to ?o results in the

following grounded mutex invariant:

{(at p1 ap1),(at p1 ap2),(at p1 l1),(at p1 l2),
(in p1 t1),(in p1 t2),(in p1 a1)}.

The meaning of the invariant is that across all LOGISTICS instances, a

given object ?o is either in a vehicle or at a location.

If a predicate p ∈ P is not part of any invariant but there are actions that

add and/or delete p, we create a new invariant

{(p ?o1 · · · ?ok),(¬p ?o1 · · · ?ok))}, where all variables are bound and

an associated fluent can either be true or false.

Given an invariant, our algorithm generates one or several invariant graphs.

In LOGISTICS, all actions affect the lone invariant above. However, when

loading or unloading a package, the bound object ?o is a package, when

54

“tesi” — 2017/9/30 — 0:03 — page 55 — #75

G1

G2

G3

(in ?p ?t) (at ?p ?l) (in ?p ?a)

(unloadtruck ?p ?t ?l) (loadplane ?p ?a ?ap)

(unloadplane ?p ?a ?ap)(loadtruck ?p ?t ?l)

(at ?t ?l)
(drivetruck ?t ?l1 ?l2 ?c)

(at ?a ?ap)
(flyplane ?a ?ap1 ?ap2)

Figure 4.1: Invariant graphs (G1, G2 and G3) in LOGISTICS.

driving a truck ?o is a truck, and when flying an airplane ?o is an airplane.

Moreover, we can either load a package into a truck or an airplane. We

differentiate between types such that each invariant may generate multiple

invariant graphs.

To generate the invariant graphs we go through each action, find each tran-

sition of each invariant that it induces (by pairing add and delete effects

and testing whether the bound objects are identical), and map the types of

the predicates to the invariant. We then either create a new invariant graph

for the bound types or add nodes to an existing graph corresponding to the

mapped predicate parameters.

Figure 4.1 shows the invariant graphs in LOGISTICS. In the top graph

(G1), the bound object is a package ?p, in the middle graph (G2) a truck

?t, and in the bottom graph (G3) an airplane ?a. Note that the predicate

in is not actually part of the two bottom graphs, since trucks and planes

55

“tesi” — 2017/9/30 — 0:03 — page 56 — #76

cannot be inside other vehicles. Nevertheless, the invariant still applies: a

truck or plane can only be at a single place at once.

Each edge of an invariant graph corresponds to an action that deletes one

predicate of the invariant and adds another. To do so, the parameters of

the action have to include the parameters of both predicates, including the

bound objects. In the figure, the invariant notation is extended to actions

on edges such that each parameter is either bound or free.

Even if actions preserve the invariant property, the initial state of a plan-

ning instance may violate the condition |F ′ ∩ I| = 1, in which case F ′

is not a mutex invariant. To verify that an invariant corresponds to actual

grounded invariants, our algorithm needs access to the initial state of an

example planning instance p of the domain. If this verification fails, the

invariant is not considered by the algorithm.

4.3 Translation algorithm

In this section we describe our algorithm for automatically generating

HTN domains. The idea is to construct a hierarchy of tasks that traverse

the invariant graphs to achieve certain fluents. In doing so there are two

types of interleaved tasks: one that achieves a fluent in a given invariant

(which involves applying a series of actions to traverse the edges of the

graph), and one that applies the action on a given edge (which involves

achieving the preconditions of the action). Figure 4.2 shows the overall

architecture facilitating the translation.

Formally, our algorithm takes as input a STRIPS planning domain

d = 〈T , <,P ,A〉 and a planning instance p = 〈Ω, init, goal〉 and outputs

an HTN domain h = 〈P ′,A′, C,M〉. We assume that the preconditions

and goals of the input planning domain are positive. The HTN domain h

can then be used to solve any other instance of the domain. Specifically,

for each instance p′ of the planning domain d, we show how to construct

56

“tesi” — 2017/9/30 — 0:03 — page 57 — #77

Figure 4.2: Architecture overview

an HTN instance s, for the HTN domain h. Solving the HTN induced by

h and s returns a plan that can be adapted to solve p′.

The input planning instance p is used for two purposes:

1. To verify that an invariant candidate is actually an invariant by test-

ing the condition |F ′ ∩ init| = 1.

2. To extract a subset of predicates PG ⊆ P that are part of the goal.

The algorithm first constructs the invariant graphs G1, . . . , Gk described

above. In the following subsections we describe the components of the

HTN domain h.

57

“tesi” — 2017/9/30 — 0:03 — page 58 — #78

4.3.1 Predicates

The set P ′ ⊇ P extends P with the following predicates:

• For each predicate p ∈ P , a predicate visited-p with arity α(p)
indicating that p has already been visited during search.

• For each predicate p ∈ P , a predicate achieving-p with arity α(p)
indicating that p or another predicate in the same invariant are al-

ready being achieved.

• For each goal predicate p ∈ PG, a predicate goal-p with arity α(p)
indicating that a fluent derived from p is a goal state.

• For each type τ ∈ T , a type predicate τ with arity 1, since HTN

domains are untyped.

• ogoal-p, with arity α(1+α(p)) indicating that a fluent derived from

goal-p is an ordered goal state. The extra parameter is an ordinal

cnt which denotes the order of the goal fluent.

• ordered-goal-p with arity α(p), which marks that the fluent in-

stantiated from goal-p has been assigned an ordinal.

4.3.2 Primitive tasks

The set A′ contains the following actions:

• Each action a ∈ A. For each element βk(a) ∈ T of the type list

of a, we add an additional precondition (βk(a), ϕk). where the ar-

gument map ϕk maps the argument xk of a to the lone argument of

the type predicate βk(a), ensuring that argument xk has the correct

type.

• For each p ∈ P , an action visit-p with arity α(p) that marks p as

visited by adding visited-p.

58

“tesi” — 2017/9/30 — 0:03 — page 59 — #79

• For each invariant graph Gi, an action occupy-i whose arity equals

the number of bound objects in Gi, and that marks each predicate

in Gi as being achieved.

• For each invariant graph Gi, an action clear-i whose arity equals

the number of bound objects in Gi, and that deletes visited-p and

achieving-p for each predicate p of Gi.

• For each goal predicate p ∈ PG, an action test-order-p with arity

0 and no effects, whose precondition tests if all goal fluents derived

from p have been ordered.

• finish-ogoal-p with arity 1+α(p), assigns an ordinal cnt to a goal

fluent by adding the ogoal-p fluent. It also adds ordered-goal-p

to mark that the goal has been ordered.

• test-order-p with arity 0, checks if all goal fluents instantiated by

the same predicate p ∈ PG, have been assigned an ordinal number.

• For each pi ∈ PG we add a test-pi task, with arity 0, which checks

if all goal fluents instantiated by the same predicate pi ∈ PG, hold

in the current state.

Note that only action schemata in A add or delete predicates in the origi-

nal setP . All other actions only have effects on predicates inP ′\P .

4.3.3 Compound tasks

The set C contains six types of compound tasks:

• For each predicate p ∈ P that appears as positive in any invariant

graph, a task achieve-p.

• For each invariant graph Gi and each p ∈ P that is positive in Gi, a

task achieve-p-i.

• For each invariant graph Gi, each predicate p ∈ P in Gi, and each

59

“tesi” — 2017/9/30 — 0:03 — page 60 — #80

outgoing edge of p (corresponding to an action a ∈ A), a task do-

p-a-i.

• order task, with arity 1, which assigns an ordinal number to each

goal fluent from the input planning problem. The only parameter is

the ordinal cnt, which is assigned to the current goal fluent.

• solve task, with arity 1. Same as order task, the only parameter

is cnt, used to identify the current fluent to be achieved.

• find-plan is the root task, used to impose an order between the

decomposition of order and solve tasks.

The achieve-p task is a wrapper task that achieves a predicate p in any

invariant, while the second and third task are the interleaved tasks for

achieving p by traversing the edges of an invariant graph Gi. Since the

preconditions and goals of the input planning domain are positive, we

never have to achieve a negated fluent. The root task solve is the wrap-

per task which selects the next achieve-p tasks to be achieved according

to the order imposed on the goal fluents. Since this is the only task speci-

fied in the task list of any problem instance it is used to recursively specify

the goal fluents which need to be achieved according to the goal ordering.

The goal ordering for fluents that we consider in this section is equivalent

to the ordering in the original PDDL instance. In the basic version of the

algorithm the order task assigns ordinals to the goal-p fluents, by the or-

der in which they appear in the PDDL instance. The only task that appears

in the initial task list to be achieved is find-plan. This task decomposes

further to the order and solve and enforces the decomposition of order

task before the solve task.

4.3.4 Methods

Finally, the set M contains the following decomposition methods. We

describe methods in pseudo-SHOP2 syntax in the following format:

60

“tesi” — 2017/9/30 — 0:03 — page 61 — #81

(:method (〈name〉[〈arguments〉])
(〈precondition〉)
(〈tasklist〉))

For each method in the first line we specify name and arguments, in the

second line we give precondition list, and finally in the third we specify

task list to which method decomposes.

Achieve methods

The first type of compound task, achieve-p, has one associated method

for each invariant graph Gi in which p appears. An outline of this method

is given by:

(:method (achieve-p[x])

((¬achieving-p[x]))

((!occupy-i[ϕi(x)]) (achieve-p-i[x]) (!clear-i[ϕi(x)])))

The argument map ϕi maps the arguments of p to the bound variables of

the invariant graph Gi. Intuitively this method delegates achieving p to

the task achieve-p-i for some invariant graph Gi. The method first adds

achieving-p′ for each predicate p′ in Gi, and clears the flags after achiev-

ing p. The precondition (¬achieving-p[x]) prevents us from achieving

p if it is part of an occupied invariant graph, which could potentially lead

to an infinite recursion.

Achieve in graph and Do methods

The second type of compound task, achieve-p-i, has one associated

method for each predicate p′ in the invariant graph Gi and each outgo-

ing edge of p′ (corresponding to an action a), and one method which is a

”base case” for a recursion:

61

“tesi” — 2017/9/30 — 0:03 — page 62 — #82

1. (:method (achieve-p-i[x])
((p′[ϕ′(x)]) (¬visited-p′[ϕ′(x)]))
((!visit-p′[ϕ′(x)]) (do-p′-a-i[ϕa(x)]) (achieve-p-i[x]))).

Action a appears on an outgoing edge from p′, i.e. a deletes p′.

Intuitively, one way to achieve p in Gi, given that we are currently

at some different node p′, is to traverse the edge associated with

a using the compound task do-p′-a-i. Before doing so we mark

p′ as visited to prevent us from visiting p′ again. After traversing

the edge we recursively achieve p from the resulting node. The

argument map ϕ′ should set the bound objects of p′ while leaving

other arguments of p′ as free variables. Likewise, the argument map

ϕa should set the bound objects of a. The precondition (¬visited-

p′[ϕ′(x)]) prevents us from visiting the same node p′ twice.

In essence, the result is a depth-first search through the invariant

graph Gi, which stops when we reach p[x]. Recall that the flags

visited-p and achiveing-p are cleared by the parent method once

we reach p[x], using the clear-i action.

2. To stop the recursion we define a ”base case” method:

(:method (achieve-p-i[x])
((p[x]))
())

This method is applicable when p[x] already holds and has empty

task list.

The third type of compound task, do-p-a-i, has only one associated method.

The aim is to apply action a to traverse an outgoing edge of p in the invari-

ant graph Gi. To do so, the task list has to ensure that all preconditions

p1, . . . , pk of a hold (excluding p, which holds by definition, as well as

any static preconditions of a). We define the method as

(:method (do-p-a-i[x])
((p[ϕ(x)]))

62

“tesi” — 2017/9/30 — 0:03 — page 63 — #83

(((achieve-p1[ϕ1(x)]) · · · (achieve-pk[ϕk(x)])) (!a[x]))

Here, (p, ϕ) is the precondition of a associated with p, while (pj, ϕj),
1 ≤ j ≤ k, are the remaining preconditions of a. The decomposition

achieves all preconditions of a, then applies a. Note that if action a has

no preconditions except p, the mutual recursion stops since the decom-

position does not contain any task of type achieve-pj . In this case our

approach is to simplify the definition of other methods by replacing any

instance of do-p-a-i with the action a itself.

Order and Solve methods

The SHOP2 syntax allows ordinal variables. We use ordinals to order the

goal fluents and to achieve them in the specified order. We always impose

an ordering over the goal fluents of any given planning instance. The

order task encodes the goal ordering strategy. In the basic translation,

the goal fluents are ordered in the order of appearance in a goal condition

of a given instance. To decompose the order task we define two types of

methods, for each goal predicate p ∈ PG, that appears in the goal of the

example instance:

1. The first method decomposes to the primitive task finish-ogoal-

p[x, cnt], which adds the fluent ogoal-p[x, cnt], where the ordi-

nal cnt denotes when the specific goal fluent should be achieved.

The same primitive task also adds the ordered-goal-p[x] fluent, to

mark that the fluent goal-p[x] has been ordered. Finally the first

method adds the order[cnt + 1] task, in order to continue the re-

cursion.

(:method (order[cnt])
((goal-p[x]) (¬ordered-goal-p[x]))
((!finish-ogoal-p[x, cnt]) (order[cnt + 1])))

2. The second type of the order method decomposes to the (!test-

order-p) with no preconditions. The (!test-order-p) operator has

63

“tesi” — 2017/9/30 — 0:03 — page 64 — #84

empty add and del lists, and is used only to terminate recursion if

and only if all goals have been ordered.

(:method (order[cnt])
()
((!test-order-p)))

The solve task has three decomposition methods:

1. The first type of method is generated for each predicate p ∈ PG.

The method attempts to achieve predicate p, only if it does not al-

ready hold in current state, and if it should be achieved next, ac-

cording to the goal order. To track which goal fluent should be

achieved next, the planner internally maintains a current value of

the counter, and the current value has to match the parameter of the

order method. After achieving p the counter is reset to zero, before

the recursively decomposing the solve task, as some of the goals

that were previously achieved may have been deleted in order to

achieve p.

(:method (solve[cnt])
((¬p[x]) (ogoal-p[x, cnt]))
((achieve-p[x]) (solve[0]))

2. The second type of method is also generated for each predicate p ∈
PG. The method decomposes task solve, increases the counter

cnt if the goal fluent p already holds in current state and continues

with the recursion. Effectively, this method skips the fluents which

have already been achieved, only if they hold in the current state,

otherwise a different decomposition method should decompose the

solve task:

(:method (solve[cnt])
((p[x])(ogoal-p[x, cnt]))
((solve[cnt + 1]))

64

“tesi” — 2017/9/30 — 0:03 — page 65 — #85

3. For the solve task, we also add a method which tests if all fluents

specified in the goal of the original planning instance, have been

achieved. This method is used to determine if the goal state has

been reached and is a ”base case” for the recursive solve meth-

ods. The method decomposes to a list of primitive tasks. Each

test-pi task, checks if all goal fluents instantiated from a predicate

pi ∈ PG, have been achieved. Therefore, the method can only be

decomposed if all the fluents specified in the goal condition of the

original instance, hold in the current state.

(:method (solve[cnt])
()
((!test-p1) · · · (!test-p|PG|))

Find-plan method

To restrict the choices when traversing the HTN, we impose a total order

on all task lists of methods, except tasks (achieve-p1) · · · (achieve-pk)
of the method do-p-a-i, since it may be difficult to determine in which

order to achieve the preconditions of an action. Therefore, we add the

find-plan method, which enforces the decomposition of the order task

before the solve task.

(:method (find-plan)
()
((order 0)(solve 0)))

4.3.5 Planning Instances

Once we have generated the HTN domain h we can apply it to any in-

stance of the domain. Given a STRIPS instance p = 〈Ω, init, goal〉, we

construct an HTN instance s = 〈Ω, init′, 〈find-plan, ∅〉〉 as follows. The

65

“tesi” — 2017/9/30 — 0:03 — page 66 — #86

set of objects Ω = Ω1 ∪ · · · ∪ Ωn is identical to that of p. The initial state

init′ is defined as

init′ = init ∪ {τj[ω] : τj ∈ T , ω ∈ Ωj} ∪ {goal-p[x] : p[x] ∈ goal}.

We thus mark the type τj of each object ω using the fluent τj[ω], and

we mark all fluents p[x] in the goal state using the fluent goal-p[x]. The

initial task network consists of a single task find-plan and an empty set

of relations: 〈find-plan, ∅〉.

4.3.6 Example

In LOGISTICS, our algorithm generates two wrapper tasks achieve-in

and achieve-at, and four tasks achieve-in-1, achieve-at-1, achieve-

at-2, and achieve-at-3, corresponding to the predicates in the three in-

variant graphs. The task achieve-at-1 has five associated methods: one

for each edge of the graph G1, plus the base case method.

The algorithm also generates six tasks do-at-loadtruck-1, do-at-loadplane-

1, do-at-unloadtruck-1, do-at-unloadplane-1, do-at-drivetruck-2,

and do-at-flyplane-3, corresponding to the six edges of the graphs. The

latter two do not have preconditions besides at (the predicate incity in

the precondition of drivetruck is static). The remaining four tasks each

achieve a single precondition: the truck or plane being at the associated

place.

To illustrate the tasks and associated methods, we sketch the task expan-

sions of the HTN instance generated from our running example. The only

goal is (at p1 ap1), so the task solve has a single valid decomposition

that contains the task (achieve-at p1 l2). Table 4.1 shows the first five

task expansions of solve task. In each case, the compound task to be

decomposed is underlined, and the new tasks inserted as a result of the

decomposition are colored in the next step. Note that the solve task is

decomposed with parameter 0, assuming that the only goal fluent has been

assigned ordinal 0 during the goal ordering.

66

“tesi”
—

2
0
1
7
/9

/3
0

—
0
:0

3
—

p
ag

e
6
7

—
#
8
7

(solve 0) (achieve-at p1 l2) (!occupy-1 p1) (!occupy-1 p1) (!occupy-1 p1) (!occupy-1 p1)

(solve 0) (achieve-at-1 p1 l2) (!visit-at p1 l1) (!visit-at p1 l1) (!visit-at p1 l1)

(clear-1 p1) (do-at-loadtruck-1 p1 t1 l1) (achieve-at t1 l1) (!occupy-2 t1)

(solve 0) (achieve-at-1 p1 l2) (!loadtruck p1 t1 l1) (achieve-at-2 t1 l1)

(!clear-1 p1) (achieve-at-1 p1 l2) (!clear-2 t1)
(solve 0) (!clear-1 p1) (!loadtruck p1 t1 l1)

(solve 0) (achieve-at-1 p1 l2)
(!clear-1 p1)
(solve 0)

Table 4.1: The first five task expansions of the solve task generated from the running example in

LOGISTICS. The colored tasks are those added by the decomposition of the underlined task in the

previous step.

6
7

“tesi” — 2017/9/30 — 0:03 — page 68 — #88

The second decomposition is produced by the lone method for (achieve-

at p1 l2). The current node associated with p1 in G1 is (at p1 l1), with

two outgoing edges, corresponding to actions loadtruck and loadplane.

Applying the method for (achieve-at-1 p1 l2) associated with (at p1

l1) and loadtruck produces the third expansion. The only method for

(do-at-loadtruck-1 p1 t1 l1) expands to (achieve-at t1 l1), which

in turn expands to (achieve-at-2 t1 l1) (the last expansion shown).

(in ?p ?t) (at ?p ?l) (in ?p ?a)

⇓ ?p = p1

(at p1 l1) (in p1 t1) (at p1 ap1)

(loadtruck p1 t1 l1)

(at p1 l2) (in p1 t2) (at p1 ap2)

(in p1 a1)

Figure 4.3: Example of search in the invariant graph G1 in LOGISTICS

domain.

The expansions shown in the Table 4.1, represent the search through the

grounded invariant graph G1, of the LOGISTICS domain. The search

through the instantiated ground invariant graph G1 and the assignment p1

to the package, is also illustrated in the Figure 4.3, where the bound pa-

rameter ?p representing the package, takes the value of p1, due to the goal

68

“tesi” — 2017/9/30 — 0:03 — page 69 — #89

(at p1 l2). As depicted the search starts with the node (at p1 l1), and

at least six edges need to be traversed to reach the goal (at p1 l2). Note

that decomposing the HTN, does not ground the whole invariant graph at

the beginning of the search, rather the grounding is performed gradually.

As the decompositions are performed, the free parameters of the methods

are chosen in a nondeterministic manner, and thus the invariant graph is

explored. In the given example of decompositions, object a1 which repre-

sents an airplane, does not appear as a parameter any any of the methods

or actions. However, given the example instance, the appropriate object

(airplane a1) is non-deterministically chosen by the HTN planner, in the

decompositions which follow the ones shown in the Table 4.1. This is also

one of the reasons why an HTN planner has to perform search to generate

a solution.

4.4 Ordering Preconditions

Achieving the preconditions of an action a in any order is inefficient since

an algorithm solving the HTN instance may have to backtrack repeatedly

to find a correct order. For this reason, we include an extension of our al-

gorithm that uses a simple inference technique to compute a partial order

in which to achieve the preconditions of a.

We define a set of predicates whose value is supposed to persist, and check

whether a path through an invariant graph is applicable given these per-

sisting predicates. While doing so, only the values of bound variables are

known, while free variables can take on any value. Matching the bound

variables of predicates and actions enables us to determine whether an

action allows a predicate to persist.

Consider a task of type do-p-a-i, i.e. using action a to delete p. Figure 4.4

shows how to order all preconditions of a except p. In the algorithm, V is

the set of preconditions to be ordered, while Z is a sequence of precondi-

tions, initially empty. The algorithm considers one precondition p′ ∈ V at

69

“tesi” — 2017/9/30 — 0:03 — page 70 — #90

1: function ORDER(a, p)

2: V ← pre(a) \ {p}, Z ← 〈〉
3: repeat

4: for p′ ∈ V do

5: W ← {p} ∪ V \ {p′}
6: for each invariant graph Gj containing p′ do

7: Perform a backwards BFS in Gj from p′

8: Test if paths applicable when W persists

9: end for

10: if each path achieving p′ is applicable then

11: V ← V \ {p′}
12: Z ← 〈p′, Z〉
13: end if

14: end for

15: until V , Z converge

16: return (V, Z)
17: end function

Figure 4.4: Algorithm ordering preconditions of a except p.

a time and checks if we can achieve p′ while all remaining preconditions

persist. If so, we remove p′ from V and place it first in Z. We then iterate

until no more preconditions can be removed from V , and return (V, Z).
In the method m associated with do-p-a-i, the preconditions in Z can be

achieved in order. On the other hand, we cannot say anything about the

order of preconditions that remain in V .

4.5 Properties of the generated HTNs

In this section we will discuss soundness and classify the domains for

which the translation is complete. We show that the HTN translation is

sound, both with and without any optimizations.

70

“tesi” — 2017/9/30 — 0:03 — page 71 — #91

The set of auxiliary operators is given asA′\A, and contains the operators

which decompose all of the primitive tasks, except for the ones based on

action schemata a ∈ A from the input domain d. The auxiliary operators

do not modify the fluents from the original input domain d.

Theorem 3 (Soundness). Let π be a valid decomposition for s, and con-

struct π′ by removing operators in A′ \ A. Then π′ solves p.

Proof. The initial state of fluents in F induced from the original planning

instance, is the same as in the input planning problem. For π to be a

valid decomposition for s, the precondition of each operator oi has to

hold following the application of o1, . . . , oi−1 and it has to terminate with

operator test-achieved-p, which verifies that the goal state G on fluents

in F holds at the end of π. Since we do progression, each time an operator

is applied in a planning state, we verify that its preconditions hold and

update the planning state. Since all of the operators from A′ \ A are

removed, the subsequence π′ of π only contains operators that directly

correspond to actions of A of the input domain d.

Consider now the subsequence π′ of π that only contains operators which

correspond to actions in A, and consider only the fluents in F . Since π is

a valid progression and satisfies the goal condition G in the end, the oper-

ators in π′ have to be the ones that achieve G, as no other operators have

effects on fluents in F . Since progression verified that the precondition of

each operator is satisfied, π′ has to be a valid plan in the original planning

instance, and since G holds at the end, π′ solves the original instance.

Once the HTN is generated, as long as the methods that decompose the

solve task do not modify or introduce an operator of the generated HTN,

and do not use the operator test-p, the HTN translation will remain

sound. The only way to terminate execution is to apply the test-p opera-

tor, which is only accessible by the method which decomposes the solve

task. The operators would remain the same, thus only the operators based

on the original actions would retain the ability to modify the original flu-

ents.

71

“tesi” — 2017/9/30 — 0:03 — page 72 — #92

While the HTN translation provides a sound framework it is not complete

in the general case. One reason is that the goal ordering in the basic vari-

ant of our algorithm (HTNPrecon), orders the goal fluents in the same

order, as they appear in the original instance, and goal ordering optimiza-

tion is not applicable to all domains. This could possibly be alleviated by

exploring all possible goal ordering, however this approach would not be

computationally feasible in practice.

A valid PDDL domain allows for the construction of the invariant graphs,

such that a precondition must be achieved before the edge that directly

requires the precondition is even reached. One such example is presented

in the Figure 4.5. Suppose that the initial state of the planning instance

is init = {x, u} and that the goal is goal = {z}. Given that the action

(yz) has one precondition v, and the only precondition of the (uv) is

x, obviously, in any valid plan, first the action (uv) would have to be

applied.

G1

G2

u v
(uv)

x y z
(xy) (yz)

Figure 4.5: Invariant graphs (G1, G2), where (uv), (xy), (yz) represent

actions, while the nodes represent predicates. The preconditions of each

action are: prec(uv) = {x}, prec(xy) = ∅, prec(yz) = {v}

In that case predicate z would have to be achieved in the second invariant

graph. The only graph in which z can be achieved is G2. Therefore fol-

lowing the HTN definitions the compound task achieve-z2 will always

be decomposed to achieve z. First the edge (xy) would be traversed.

This would lead to a state which does not contain (x) and thus the edge

(yz) would not be traversable. Since the search started in G2, even if the

72

“tesi” — 2017/9/30 — 0:03 — page 73 — #93

planner tries to traverse the edge in G1 it can not be traversed after the

action (xy) has been applied. Only when node y is reached, the achieving

the precondition v of the action (yz) is attempted, however by then it is

already too late.

As demonstrated in the example, the search can not initially advance in

the graph that doesn’t contain the goal predicate as a node, since the corre-

sponding achieve-p-i method will not be generated. Since the compila-

tion is in general not complete, we consider a restricted class of planning

instances that satisfies the following restrictions:

• We consider the version of the translation algorithm with no opti-

mizations.

• The goal fluents are trivially serializable

• The set of goal predicates PG of the example instance, is equal to

the set of goal predicates of any instance p in a given domain d.

• Each domain transition graph is reversible

• The causal graph of the input planning domain is acyclic.

We will refer to this restricted class of planning instances as ”RA” class.

Theorem 4 (Completeness). Let h be the HTN domain translation of the

planning domain d. Then for a given planning instance p which belongs

to the RA class, if a valid plan π exists, the decomposition of tasks in s

using methods defined in h will return a valid plan π′. Otherwise ”fail”

will be returned.

Proof. The instance s consists of a single task find-plan. It decomposes

to order and solve task, in the respective order. The solve solve task

iterates over the achieve-p methods. These methods achieve the goal

fluent p from p in any invariant graph which contains the target predicate

as a node.

In an invariant graph Gi, between any two connected nodes t and p, an

73

“tesi” — 2017/9/30 — 0:03 — page 74 — #94

edge can be traversed by applying an action a, iff t holds in the current

state along with all preconditions of a. If no actions fulfill this condition,

in any of the invariant graphs which contain p as a node, then the algo-

rithm returns ”fail”. If the edge is traversed and no preconditions need to

be achieved, it will only traverse an edge in the graph Gi, as the causal

graph is acyclic.

If the preconditions of a do not hold, they will first be achieved. This can

cause a traversal of an edge in another invariant graph Gprec. However, as

the causal graph is acyclic, each of the achieve-p tasks will only traverse

an edge in one invariant graph only. Therefore each achieve-p forms an

independent search in an invariant graph.

By decomposing the achieve-p tasks, any fluent instantiated from pred-

icate p can be achieved in an invariant graph which contains p, iff p is

reachable from the initial state. Since the goals are trivially serializable,

no goal will have to be reachieved.

4.6 Experimental results

To test how well the HTN domain restricts search, we performed experi-

ments with a basic version of our algorithm and the precondition ordering

optimization (HTNPrecon) over a set of IPC domains. We compare to

Fast Downward with blind search (FDBlind). In all experiments we used

JSHOP2 (the Java implementation of SHOP2), which uses blind search to

compute a valid expansion. We used a memory limit of 4GB and a time-

out of 1,800 seconds. The comparison is relevant, because Fast Down-

ward instantiates the variables in the multivalued representation, based on

mutex groups. Mutex groups are instantiated from lifted invariant candi-

dates, which HTNPrecon uses to generate the invariant graphs. However,

the Fast Downward algorithm further optimizes the set of variables, by

approximating a set cover of the mutex groups, and performs other opti-

74

“tesi” — 2017/9/30 — 0:03 — page 75 — #95

mizations before planning. In contrast, HTNPrecon does not have access

to the grounded invariant graphs at the beginning of the search. Another

reason that the comparison is relevant is that performing blind search in

both cases tells us something about how restricted the search in the gen-

erated HTN is.

HTNPrecon FDBlind

Domain Instances #s t #b #s t #b

Freecell 60 0 - - 5 53.6 4344

Blocks 103 24 91 8118 18 4.9 1111

Rovers 20 20 0.6 1.2 6 44.3 6719

Logistics 80 80 2.9 44 10 0.5 140

Driverlog 20 0 - - 7 11.9 1358

Zenotravel 20 4 25.6 4101 8 20.9 841

Miconic 150 150 0.66 0 55 50.5 8273

Satellite 20 7 0.59 1.2 6 221.9 7181

Depots 22 8 22.6 1867 4 18.7 2231

Table 4.2: Results in the IPC-2000 and IPC-2002 domains, with the total

number of instances of each domain shown in brackets. For each solver

we report number of solved instances (#s), average time in seconds (t) and

average number of backtracks in thousands (#b) respectively

Table 4.2 shows the results for 9 IPC domains. HTNPrecon solves all

the instances of LOGISTICS, ROVERS and MICONIC domains. In FREE-

CELL domain, the generated invariant graphs proved to be too large for

exploration by blind search. In addition each task is encoded with a large

number of free parameters. Most of the free parameters in this domain

are represented by auxiliary predicates, such as number and successor.

This causes a high arity of the actions (implying that there are more possi-

ble bindings of objects to the argument of actions), and is used to impose

an order for many different stacks. Our approach can solve instances of a

simplified domain representation for FREECELL.

A similar encoding with auxiliary predicates affects HTNPrecon, in ZENO-

75

“tesi” — 2017/9/30 — 0:03 — page 76 — #96

TRAVEL, where the fuel-level has to be guessed, along with the correct

city, due to lack of constraints on the free parameters of the tasks. This

leads to excessive backtracking, and in instances with large number of

objects the plan is not found in the allotted time.

Another domain in which HTNPrecon does not work well, is DRIVER-

LOG. While the invariant graphs of this domain do not have a high branch-

ing factor, there are a multitude of ways to achieve each type of goal in

this domain. The goal types are interdependent. Specifically the drivers

have many ways to reach the location, and paths which are represented as

links impose connectivity restrictions. They can either walk or drive to a

specific location. If they attempt to drive a truck this generates a series of

recursive task expansions attempting to first bring the truck to the driver.

Therefore, the generated HTNs are ineffective in such domains.

Overall the comparison shows that our translation with precondition or-

dering is competitive with Fast Downward blind search. Compared to

other approaches to generating HTNs, the advantage of our approach is

that it does not need to learn from examples. The results show limita-

tions of this approach, in domains with invariant graphs that have a high

branching factor. Another limitation is the usage of auxiliary predicates,

and high arity of actions. However, the benchmark domains with such

features can possibly be rewritten in a more suitable way. For example,

an action with high arity might be rewritten as several actions of lower

arity.

4.7 Discussion

In this chapter we presented a domain-independent algorithm for gener-

ating HTNs. While other approaches learn from examples, ours can be

seen as a compilation from PDDL to HTN. The algorithm takes as input

the planning domain, a set of invariant candidates and one representative

instance.

76

“tesi” — 2017/9/30 — 0:03 — page 77 — #97

For the invariant graphs to be constructed, the representative instance

needs to describe all relevant fluents. The set of invariant candidates is

provided by Fast Downward algorithm for invariant synthesis. The output

of the translation is an HTN domain. Additionally each original planning

instance p is trivially converted to an HTN instance format. The repre-

sentative instance is used to check if the invariant candidates hold and to

determine the goal predicates. We show that the translation is sound. We

also identify the class of planning domains for which the translation is

complete.

We compare the basic version of the algorithm with precondition order-

ing against Fast Downward blind search. Although Fast Downward per-

forms search over grounded and optimized version of invariant graphs,

the HTN translation is comparable. While in some domains the plan-

ner using the HTN translation solves all instances, in some domains the

HTNs are not constrained enough. Since the constructed HTNs are not

constrained enough, blind search is not suitable for exploring invariant

graphs with high branching factor. Actions with high arity, augment the

search space as well, in relation to the number of objects in a given in-

stance. The results further show, that in certain domains simplicity of the

invariant graphs can be exploited by the HTN planner.

While the success of the algorithm is limited in some domains, there are

still many potential benefits. The algorithm takes a fraction of a second

to generate HTNs given a PDDL domain and a single example instance.

The example instance does not need to be solved, and no plan traces are

required. Since the algorithm is domain-independent it does not require

any intervention and is easy to run. Therefore the resulting HTN could

potentially be useful even in cases where it does not perform well right

after the compilation, e.g. by extracting useful subtasks.

77

“tesi” — 2017/9/30 — 0:03 — page 78 — #98

“tesi” — 2017/9/30 — 0:03 — page 79 — #99

Chapter 5

OPTIMIZATIONS OF

GENERATED HTNS

In this chapter, optimizations over the basic algorithm for generating the

HTNs, are presented. A version of the basic algorithm with the precon-

dition ordering optimization, is then compared with a fully optimized

version, over a set of benchmark domains. Finally, we discuss the fea-

tures of the benchmark domains and show properties of the HTN compi-

lation.

5.1 Introduction

The basic algorithm for generating hierarchical task networks introduced

in the previous chapter, produces HTNs which would require a lot of

backtracking to achieve the goal, even for simple planning domains. This

was the reason for introducing the precondition ordering, in the previous

chapter. Large number of backtracks points to the fact that the search

space has not been restricted enough in certain domains. The utility

of the basic compilation for practical usage is therefore limited. The

79

“tesi” — 2017/9/30 — 0:03 — page 80 — #100

JSHOP2 planner performs a simple depth-first search over the task net-

work. Though the algorithm is domain-independent it relies on the model

itself to utilize the added expressiveness to reduce the search space. For

example, the usage of unconstrained free parameters in the decomposi-

tion methods, enlarges the search space by the total number of objects

defined in a single instance. Therefore one way to optimize is to im-

pose constraints on such parameters. Such constraints are usually tightly

coupled with the specific domain, and can be thought of as a form of high-

level features presented in Chapter 3. As an example, in the LOGISTICS

domain, we could fly the airplane directly to the designated airport,as op-

posed to performing a search in the space of all airports.

Due to the simplicity of the JSHOP2 planner, some optimizations which

work only for a particular type of the planning domain, can still be use-

ful. The domain analysis techniques similar to those presented in the

previous chapter, can be used to identify the type of the domain, in the

preprocessing step of the compilation. Identifying the type of the do-

main, ensures that only the domains with features that allow for a certain

optimization, will be optimized. In such cases we should ensure that if

the optimization fails, JSHOP2 still explores the full search space. One

way to optimize is to impose constraints on the tie-breaking mechanisms

of the JSHOP2 planner, which are explained later in this chapter. An-

other way to optimize is to specify the features in the preconditions of the

decomposition methods from the previous chapter, and create alternative

versions of such methods. However, optimizations which impose a strict

order on the goals and preconditions, do not allow for a complete search

space exploration.

In the experiments we test our approach on planning benchmarks from

the IPC and the instances used in experiments with HTN-MAKER (Hogg

et al., 2008). To solve the instances we use the JSHOP2 planner (Nau

et al., 2003), which performs blind search in the task space to compute

a valid expansion. We show that the HTNs constructed by our algorithm

solve all training and test set instances used to evaluate HTN-MAKER.

To illustrate the optimizations to our base algorithm, we will use the IPC-

80

“tesi” — 2017/9/30 — 0:03 — page 81 — #101

2000 BLOCKS planning domain and this instance:

(define (problem blocks-example)
(:domain blocks)
(:objects A B C D − block)

(:init (on A B) (on C D)
(clear A) (clear C) (ontable D)
(ontable B))

(:goal (and (on A B) (on B C) (on C D)))

Some of the optimizations that are introduced in this work, would not

fully reflect, on our running example in LOGISTICS domain. The rea-

son is that in the LOGISTICS domain, the hierarchical structure is easier

to identify in comparison with some other IPC benchmark domains. As

shown in previous chapter, the basic compilation with precondition order-

ing, performs well in LOGISTICS domain. While the optimizations of our

algorithm are general and are identified in a domain-independent manner,

some are introduced only for the domains with certain features, which can

be identified by analyzing the example instance.

5.2 Goal Ordering

Just as for preconditions, achieving goals in any order results in signifi-

cant backtracking. To order the goals we implement an algorithm similar

to the one for ordering preconditions. While the ordered preconditions

are coded into the HTN, the goals are different for each instance of the

domain. Since HTNs are instance-independent, our approach is to define

new tasks that compute a goal ordering as a preprocessing step.

To accomplish this, we first order the goals of the representative instance

passed to the algorithm. We run the precondition ordering algorithm on

81

“tesi” — 2017/9/30 — 0:03 — page 82 — #102

the set of goal predicatesPG ⊆ P , i.e. predicates whose associated fluents

appear in the goal. For each p ∈ PG and each pair of fluents p[x] and

p[y], we check if p[y] is achievable when p[x] persists (i.e. we are not

allowed to delete p[x]). Each invariant graph that contains p is partially

grounded on p[x], while the preconditions of actions that directly achieve

p are grounded on p[y]. Given an ordering of the predicates in PG, we

then order the set of fluents of each predicate p ∈ PG, again using the

precondition ordering algorithm. To do so, the invariant graphs need to

be partially grounded, on each pair of fluents to be ordered. If this partial

grounding violates the invariant, p[y] should be ordered before p[x]. Once

the invariant is invalidated by partial grounding, the algorithm stores the

indices of the parameters of p that invalidated the invariant.

Since goal ordering would not fully reflect in the LOGISTICS domain,

to the same extent as in the BLOCKS domain, we will consider the on

goal predicate from the BLOCKS domain. Since the only goal predicate

is on, PG = {on}, so the method for solve decomposes to achieve-on

to achieve goals in this domain. Figure 5.1 shows one of the invariant

graphs in BLOCKS that contains on. To define the method for order we

test each pair of goal fluents to establish an order among them. Con-

sider two goal fluents on[a, b] and on[b, c]. If we fix the fluent on[a, b]
and attempt to achieve on[b, c], the only operator stack[b, c] that directly

achieves on[b, c] has precondition holding[b], which violates the invari-

ant since on[a, b] is assumed to hold. Thus on[b, c] should be ordered

before on[a, b]. We can generalize this knowledge and derive a rule that

whenever two goal fluents of type on have the same object as the first and

second parameter, respectively, the former should be ordered before the

latter.

This general rule is coded into the methods which decompose the order

task. Just as in the previous chapter, all of the goal fluents from the in-

stance are encoded in the initial state, by instantiating the goal-p pred-

icate to denote fluents which need to be ordered. The ordering is per-

formed by decomposing the order task. As the goals are ordered, the

ogoal-p fluent is added for each goal which has been ordered in the HTN

82

“tesi” — 2017/9/30 — 0:03 — page 83 — #103

G1

G2

G3

(on ?b ?x) (holding ?b) (ontable ?b)

(unstack ?b ?x)

(stack ?b ?x)

(pickup ?b)

(putdown ?b)

(on ?x ?b) (clear ?b) (holding ?b)

(unstack ?x ?b)

(stack ?x ?b)

(pickup ?b)

(putdown ?b)

(unstack ?b ?y)

(stack ?b ?y)

(handempty) (holding ?b

(pickup ?b)

(putdown ?b)

(unstack ?b ?y)

(stack ?b ?y)

Figure 5.1: Invariant graphs (G1, G2 and G3) in the BLOCKS domain.

instance. As before, the solve task then attempts to achieve each fluent in

order, starting from 0 each time, and restarting from 0 after a goal fluent

has been achieved.

83

“tesi” — 2017/9/30 — 0:03 — page 84 — #104

5.3 Ordering the invariant graphs

Invariant graphs are generated based on invariant candidates which are in

turn generated by Fast Downward. Since the methods are generated based

on the invariant graphs, the ordering is thus imposed by the order in which

candidate invariants are evaluated at the time invariant graphs are created.

The methods that decompose these tasks are generated in such an order

as well. Since JSHOP2 uses depth-first search to expand methods which

can bind with certain parameters it has to impose an order on how the

candidate methods are evaluated. In case of SHOP2 this is done by the

order they appear in the file which describes the hierarchies. Creating

a full or partial order of methods can thus be seen as a form of search

preference. Forming such orderings can reduce the number of backtracks

significantly, if methods that reduce the search effort can be identified and

ordered first.

In case of HTNs generated by invariant analysis, it could be possible to

achieve certain predicate in more than one invariant graph. This can be

seen in the example of BLOCKS invariant graphs in Figure 5.1. For each

predicate, our algorithm generates a wrapper method, which then selects

the graph in which the fluent will be achieved. Therefore, identifying in

which invariant graph it is easier to achieve a certain predicate, would lead

to less search at the time of finding the proper decompositions. Ordering

these methods would simply impose a preference at the time of achieving

a predicate p, in a certain invariant graph. Should the search fail to de-

compose the compound task in such a way to achieve p in the preferred

invariant graph it would proceed to attempt decomposition of the remain-

ing tasks, which are generated based on other invariant graphs.

Looking at the BLOCKS invariant graphs in Figure 5.1, the on predicate,

can be achieved either in G1 or G2. While G2 is more complex, as it has

more edges that would require additional methods to be generated, it is

easier to decompose the methods that achieve the on predicate based on

G2, than those based on G1. This means that we simply need to order

the achieve-on methods which decompose to achieve-on2, before the

84

“tesi” — 2017/9/30 — 0:03 — page 85 — #105

achieve-on methods that decompose to achieve-on1.

The reason for this is the index of the bound object in the goal predicate.

For example in the BLOCKS domain, in Figure 5.1 the bound object in

any invariant graph is marked as ?b. In graph G1, in the parameters of the

on predicate, ?b is the first object, while in G2 it is second. The methods

for achieving it, in these two graphs would thus be different. Intuitively

these methods would encode two different strategies, for achieving a goal

on[a, b] for example. One would be to place the block a on an arbitrary

block, and repeat the procedure, until it is placed on the correct block

b. Another strategy is to place arbitrary blocks atop the block b, until

block a is placed on top. Using the goal ordering strategy, we can infer,

that once an arbitrary block is placed on top of block b, no further blocks

can be placed directly on top of that block. Therefore if the search starts

within G1 it is possible that the search will backtrack, due to the fact

that the block a is held by the gripper over the block b, but that block

could initially be under a number of arbitrary blocks, which should then

be cleared first. On the other hand if we start the search in G2, b would

already be the bound block, and thus arbitrary blocks can be placed on

top of it only after b becomes clear.

The goal ordering strategy gives information not only on predicates for

which invariant graphs can be ordered, but also on indices of the param-

eters in that predicate, which become blocked by the object placed in the

relation. This can be generalized to any n-ary predicate p[x1 · · · xn], such

that n > 1, for which there is a goal ordering as specified in the goal

ordering section. The goal ordering strategy gives as output the set of in-

dices In = {i1, . . . , ik}, such that 1 ≤ k < n. These indices represent the

objects which are unreachable, without reversing the effects of the action

that placed them in relation p, with indices in In. Intuitively, we assume

that the identified indices in In functionally determine the indices which

are not in In.

For each predicate p which has been ordered in the goal ordering step, the

invariant ordering identifies all the invariant graphs where the predicate p

can be achieved. The graphs are then identified, so that no bound objects

85

“tesi” — 2017/9/30 — 0:03 — page 86 — #106

for p in the graph appears in the set In. The achieve-p methods which

perform search in the identified graphs, are placed before other achieve-

p methods in the output HTN domain. This will ensure that these methods

are explored first during the search, as the achieve-p methods select the

invariant graphs in which the search will be performed.

5.4 Sorting the bindings of the free variables

Free variables in our HTN task decomposition correspond to free vari-

ables in the nodes of invariant graphs. The blind search over the HTN,

originally does not impose any order on the binding of free variables that

appear in the methods. This can lead to traversal of the wrong edge in

the graph, and possibly to backtracking. The reason for this is that the

invariant graphs are considered only in the lifted variant during the trans-

lation to HTN. However, during the actual search, a grounded version of

the invariant graph needs to be traversed to achieve each goal fluent, as

illustrated in Figure 4.3 in the previous chapter. In that case, intuitively,

the number of possible bindings of the free parameters becomes a mul-

tiplier for the edges in the invariant graph, given a particular planning

instance. Any values that satisfy the preconditions of a method can be

used to ground methods with free parameters during task decomposition.

This means that decompositions of do-p-a-i methods do not immediately

aim for the target node, even if this node is just one step away. We exploit

the ability of SHOP2 to order the bindings of free variables by imposing

an order that first attempts to traverse an edge to the target node. If this is

not possible, blind search later explores all other possibilities.

One example in the BLOCKS domain is the achieve-on1[?b] method that

decomposes directly to the primitive task stack[?b, ?x]. It is generated

to traverse the edge between holding[?b] and on[?b, ?x] in the invariant

graph G1 in Figure 5.1. The ?x of the on predicate is the free parameter

which would be arbitrary chosen during search by JSHOP2. This means

that the bound block will be placed on arbitrary blocks, until the correct

86

“tesi” — 2017/9/30 — 0:03 — page 87 — #107

block, specified in the goal, is reached. However, if the goal is to achieve

on[a, b], then the bound parameter is block a and the parameters should

be sorted in such a way, to place b first in the list of objects that can be

assigned to the free parameter ?x.

5.5 Experimental Results

We ran our algorithm on all instances in the training and test set of HTN-

MAKER (LOGISTICS, SATELLITE and BLOCKS). The tests of the al-

gorithm were also performed in other STRIPS planning domains from

the IPC. The experiments were performed with two versions of our al-

gorithm.

The first version, HTNPrecon, achieves the goals in the order they appear

in the PDDL definition. The second version, HTNGoal, implements our

goal ordering, invariant graph ordering and parameter sorting strategies,

in addition to precondition ordering. In all experiments we used JSHOP2

(the Java implementation of SHOP2), which uses blind search to compute

a valid expansion. We used a memory limit of 4GB and a timeout of 1,800

seconds.

Comparison with HTN-MAKER

We compare to the latest results of HTN-MAKER (WeakS), which uses

a C++ implementation of SHOP2 and one hour of CPU time to solve the

instances (Hogg et al., 2016). However, the instances from that paper are

not publicly available, so we could not compare directly, and we just show

their reported coverage results for reference.

Table 2 shows the coverage results over HTN-MAKER’s experiment files.

We tested HTN-MAKER’s output domains from the fifth and final trial (Hogg

et al., 2008) and we ran it over the test set only, while we ran our algo-

rithm over both the test and training sets of the experiment instances.

87

“tesi” — 2017/9/30 — 0:03 — page 88 — #108

HTNPrecon HTNGoal HTN-MAKER WeakS

LOGISTICS 93% 100% 100% 93,6%

SATELLITE 100% 100% 92% 100%

BLOCKS 0,36% 100% 63,5% 99%

ROVERS 100 % * 100% * - 100%

ZENOTRAVEL 20% * 100% * - 99,8%

Table 5.1: Coverage of HTN-MAKER’s experiment instances, scores

marked with * are scores over IPC instances

To achieve the reported results, HTN-MAKER needed 420 training in-

stances in BLOCKS and 75 training instances in LOGISTICS and SATEL-

LITE, while our algorithm used the domain and a single example instance

with no need for solving the instance or annotating the plan beforehand.

For ROVERS and ZENOTRAVEL we report coverage over the IPC-2002

instances for HTNPrecon and HTNGoal. The improvement of HTNGoal

over HTNPrecon is due to goal ordering in BLOCKS (since blocks have

to be stacked in a specific order) and parameter sorting in LOGISTICS

and ZENOTRAVEL (since airplanes can fly directly to the target destina-

tion). The instances used in HTN-MAKER’s experiments are generated

by a random generator with very few objects (e.g. maximum five blocks),

while our HTNs can be used to solve much larger instances. For example,

in BLOCKS, IPC benchmark instances include up to 50 blocks.

Comparison of HTNPrecon with HTNGoal

We ran both the HTNPrecon and HTNGoal versions of our algorithm on

other benchmark instances from IPC-2000 and IPC-2002. The results

from these experiments appear in Table 5.2.

HTNGoal achieves full coverage over the IPC-2000 and IPC-2002 bench-

mark instances of BLOCKS, SATELLITE, ROVERS, LOGISTICS, ZENO-

TRAVEL, DEPOTS and MICONIC. The improvement in average number

of backtracks is most clearly visible in the BLOCKS domain, and is due

88

“tesi” — 2017/9/30 — 0:03 — page 89 — #109

HTNPrecon HTNGoal

Domain Instances #s t #b #s t #b

Freecell 60 0 - - 0 - -

Blocks 103 24 91 8118 103 0.6 0

Rovers 20 20 0.6 1.2 20 0.5 1.1

Logistics 80 80 2.9 44 80 2.4 23.7

Driverlog 20 0 - - 3 0.4 1.3

Zenotravel 20 4 25.6 4101 20 0.5 0.3

Miconic 150 150 0.66 0 150 0.63 0

Satellite 20 7 0.59 1.2 20 0.37 0.04

Depots 22 8 22.6 1867 22 88.4 0

Table 5.2: Results in the IPC-2000 and IPC-2002 domains, with the total

number of instances of each domain shown in brackets. For each solver

we report number of solved instances (#s), average time in seconds (t) and

average number of backtracks in thousands (#b) respectively

to our goal ordering strategy. It also allowed for an increase in number

of instances solved in the DEPOTS domain, as these two domains are the

most sensitive to goal ordering. The combination of goal ordering and

free variable sorting shows an increase in performance in other domains

as well. This allows HTNGoal to solve all instances in many domains,

with very few backtracks. These domains however tend to be the ones

with a lower branching factor in the invariant graphs.

The results of our approach are comparable to that of the algorithms that

learn from examples. In some domains generated by HTNGoal the plan-

ner is able to find a solution backtrack-free for any instance appearing in

the benchmark. In case of MICONIC it is very easy to create a backtrack-

free policy and even HTNPrecon generates one, however in domains like

BLOCKS and DEPOTS some optimizations are needed. Namely ordering

of the invariant graphs helps in these cases, due to the ability to identify

invariant graphs in which the search will not result in excessive back-

tracking. The sorting of the invariant graphs is however limited to those

89

“tesi” — 2017/9/30 — 0:03 — page 90 — #110

domains where the goal-ordering strategy can be inferred, and requires a

certain fluent to be achievable in more than one invariant graph. These

domains are usually ”stacking” domains.

The unsolved instances are not due to failed decomposition, rather the

alloted time was insufficient to perform search in an insufficiency con-

strained HTN. While the results of our approach are comparable to those

of HTN-MAKER, in some domains the generated HTNs do not perform

well due to excessive backtracking (e.g. we do not solve any instances of

the IPC-2002 FREECELL domain, which is more puzzle-like and there-

fore harder to serialize as our HTNs do by achieving one goal fluent at a

time).

To test our hypothesis, that the translation does not solve any instances of

the FREECELL domain, due to high branching factor, and high arity of the

actions, we constructed a different PDDL encoding of FREECELL. This

version has actions similar to the BLOCKS domain with limited table sur-

face, and does not rely on auxiliary predicates to define stacks of cards. In

testing over the converted IPC instances, and under same conditions, the

JSHOP2 planner solves 25 out of 60 instances. This result is comparable

to the result of the ICARUS planner, which bootstraps the learning by pro-

viding hand-tailored concepts. While the 25 instances are solved in less

than a second on average, in all but one instance with more than 6 cards,

the planner exceeds the allotted time due to backtracking. The reason is

that the resulting policy of the invariant graph search, resembles a greedy

policy, which sends all blocking cards of a single column to the free cells,

and thus exhausts the resource fast. The blind search then explores all

possible options, which is not computationally feasible.

5.6 Discussion

In this chapter we presented the optimizations over the basic algorithm for

compilation from PDDL to HTN. We show that the fully optimized ver-

90

“tesi” — 2017/9/30 — 0:03 — page 91 — #111

sion of the algorithm, is competitive with the state-of-the-art algorithm

for HTN synthesis HTN-MAKER. Moreover, the results show that in

some domains the instances can be solved with no, or very few back-

tracks.

While HTN-MAKER and other approaches induce the HTN represen-

tation from a given set of labeled examples, our algorithm takes as in-

put a planning domain and an example instance. In addition to invari-

ant candidate checks, for the fully optimized HTN generator, the exam-

ple instance is used for goal ordering optimization. While the algorithm

remains domain-independent, we show that the compilation can utilize

the preprocessing step to classify the planning domain and generate HTN

which are optimized for a certain type of the planning domain. The trans-

lation remains sound, as the solve methods and the operators, remain

unaffected by the optimizations introduced in this chapter.

91

“tesi” — 2017/9/30 — 0:03 — page 92 — #112

“tesi” — 2017/9/30 — 0:03 — page 93 — #113

Part IV

Related Work

93

“tesi” — 2017/9/30 — 0:03 — page 94 — #114

“tesi” — 2017/9/30 — 0:03 — page 95 — #115

Chapter 6

RELATED WORK

Approaches to generalized planning can be divided into inductive and de-

ductive. While the inductive approach is to induce a generalized plan from

a set of examples, deductive approach is to generate a generalized plan di-

rectly from a given model of actions. Moreover generalized plans can be

represented as decision lists, finite-state machines, programs, etc. Some

of the representations encode a policy which represents a unique solution

for all the planning instances in a domain. Other representations encode a

domain-specific knowledge which reduces the search space, allowing for

efficient solutions of large-scale instances.

6.1 High-Level State Features

Our approach for learning high-level state features (and classifiers) is in-

spired by version space learning (Mitchell, 1982). The hypothesis to learn

consists of logic clauses and examples are logic facts that restrict the hy-

pothesis forcing it to be consistent with the examples. Inductive Logic

Programming (ILP) (Muggleton, 1999) also intersects Machine Learn-

ing (ML) and Logic Programming to generate hypotheses from examples.

95

“tesi” — 2017/9/30 — 0:03 — page 96 — #116

ILP has traditionally been considered a binary classification task but, in

recent years, it covers the whole spectrum of ML such as regression, clus-

tering and association analysis. The main contribution of our approach

with respect to version space learning and ILP is the use of a classical

planner to build and validate the learned hypotheses.

Previous work on computing generalized plans in the form of gener-

alized policies already attempted to automatically generate higher-level

state representations (Khardon, 1999). Two examples are learning gen-

eralized policies from solved instances using description logic (Martı́n

and Geffner, 2004) and taxonomic syntax (Yoon et al., 2008) to repre-

sent and reason about classes of objects. In these works, planning and

learning were clearly separate phases producing noisy learning examples

in many cases. In contrast, our approach tightly integrates planning and

learning.

Generating high-level state features for generalized planning is also re-

lated to previous work on First Order MDPs (Boutilier et al., 2001; Gret-

ton and Thiébaux, 2004). These works adapt traditional dynamic pro-

gramming algorithms to the symbolic setting and automatically generate

first-order representations of the value function with first-order regres-

sion. The main contribution of our approach with respect to this research

line is that we follow a compilation approach to generate useful state ab-

stractions with off-the-shelf planners.

6.2 Generating HTNs

A basic, and the only compilation from STRIPS to HTN that we know of,

was first defined by Erol et al. (1994). This compilation constructs prim-

itive tasks for each STRIPS operator and a single compound task. While

this compilation is both sound and complete, it is used only for the pur-

poses of theoretical analysis and it does not impose any restrictions on the

task network that would make it solve problems more effectively.

96

“tesi” — 2017/9/30 — 0:03 — page 97 — #117

The other approaches for generating hierarchical task models are learn-

ing from plan traces. However these approaches not only need to learn

from examples but also rely on some given task-subtask decompositions,

annotated plans, or manually added concepts. Some of them use differ-

ent methods to encode the hierarchal structure. For example ICARUS

(Langley and Choi, 2006) uses teleoreactive logic programs to represent

the hierarchies. It specifies a set of primitive and compound skills to rep-

resent decompositions and concepts represent the state features as Horn

clauses. It is able to incrementally learn new skills, using means-ends

analysis over the given set of examples. It is also able to learn new skills

directly from problem solving, i.e. when the solver cannot find a skill to

achieve a certain goal. However ICARUS depends heavily on compound

skills and concepts provided before the learning process starts.

Another algorithm that learns HTNs from plan traces is HTN-MAKER

(Hogg et al., 2008). This algorithm can be used to solve ”classically-

partitionable” problems. These problems cannot be expressed in classical-

planning without making extensions which would allow for marking tasks

rather than goals in the classical sense. It uses a set of annotated plans to

learn the hierarchy by using means-ends analysis. In contrast, our algo-

rithm requires less semantic information, and although we could use the

representative instance (or multiple instances) to generate solution plans

for learning, these plans would still have to be annotated to be used by

HTN-MAKER.

Our approach to generating HTNs from the model and a single planning

instance and using them to solve larger instances of the same planning

domain can be viewed as a form of generalized planning, which has re-

ceived a lot of recent attention, most notably in the form of the learning

track of the IPC. One popular approach to generalized planning is to iden-

tify macros (Botea et al., 2005; MacGlashan, 2010; Muise et al., 2009;

Newton et al., 2007), i.e. sequences of operators that frequently appear in

the solutions to example instances. Once identified, such macros can then

be inserted into the action space of larger instances in order to speed up

search. However, even though macros can be parameterized, they do not

97

“tesi” — 2017/9/30 — 0:03 — page 98 — #118

offer the same flexibility as HTNs in terms of representing a solution to

all instances of a planning domain.

Another approach to generalized planning is to learn reactive policies for

planning domains (Khardon, 1999; Levine and Humphreys, 2003; Mar-

tin and Geffner, 2000; Yoon et al., 2008). A third approach is to learn

domain-specific knowledge in order to improve heuristic estimates com-

puted during search (de la Rosa et al., 2011; Yoon et al., 2008). In con-

trast to most of these techniques, which are inductive, ours is a genera-

tive approach, as we construct HTNs directly by analyzing the domain

model.

Achieving fluents by traversing the edges of domain transition graphs is

the strategy used by DTGPlan (Chen et al., 2008) and similar algorithms.

There also exist other inference techniques that can solve many individ-

ual instances backtrack-free (Lipovetzky and Geffner, 2009, 2011). The

novelty of our approach compared to previous work is the ability to do

this in an instance-independent way.

Our work is also related to other approaches to hierarchical planning

(Holte et al., 1996; Marthi et al., 2008; Elkawkagy et al., 2012), with

the difference that we generate the hierarchies automatically.

98

“tesi” — 2017/9/30 — 0:03 — page 99 — #119

Part V

Conclusions and Future Work

99

“tesi” — 2017/9/30 — 0:03 — page 100 — #120

“tesi” — 2017/9/30 — 0:03 — page 101 — #121

Chapter 7

CONCLUSIONS

In this chapter we summarize the contributions of this thesis and discuss

the most promising avenues for future work. The main body of this work

focuses on planning programs and HTNs as representations of general-

ized plans. We presented novel algorithms for generating both HTNs

and an extended version of planning programs. We show the synthesis

of planning programs with conjunctive queries, which requires a set of

planning instances as an input. We also present an approach which gen-

erates an HTN, directly from the planning domain and one representative

instance.

7.1 Contributions

In this section we list main contributions of this work:

1. The extension of planning programs, which allows for usage of

high-level state features in the form of conjunctive queries. More-

over the algorithm couples the generation of the features with the

generation of the program.

101

“tesi” — 2017/9/30 — 0:03 — page 102 — #122

2. The noise-free classifiers represented by an extension of planning

programs. While not competitive with ML classifiers, the high-

level state features with planning programs bring a novel type of

domain and possible benchmark to classical planning.

3. The domain-independent algorithm for generating hierarchical task

networks based on invariance analysis. While the basic compilation

from PDDL to HTN existed before (Erol et al., 1994), it is basically

identical to the original planning problem, and is used for theoret-

ical purposes only. In this work we present a compilation which

captures the abstractions, which can effectively reduce the search

space in many planning domains.

4. A sound framework for HTN planning. We show that the HTN gen-

erator algorithm is sound in all presented variants. The algorithm

also provides a sound framework, as certain types of decomposi-

tion methods can be removed or introduced without affecting the

soundness of the plan.

5. The optimized version of generated HTNs. The introduced opti-

mizations are domain-independent. Some of the presented opti-

mizations work by pruning the search space (i.e. goal ordering) and

have possible implications on completeness, while others are used

in form of the heuristic information (i.e. invariant graph ordering).

We show that the optimizations improve coverage and reduce back-

tracking over the IPC domains, and make the translation competi-

tive with state-of-the-art HTN learning algorithms.

7.2 Future work

In this section we explore possible research directions that could arise

from the work presented in this thesis.

102

“tesi” — 2017/9/30 — 0:03 — page 103 — #123

7.2.1 Planning Programs with High-Level State Features

The extension of basic version of planning programs presented in Chap-

ter 3, only allows for conjunctive queries to be evaluated in the goto

statements of the planning program. Such an extension is not enough

for expressing more complex features, which are needed for certain do-

mains. For example, in the BLOCKS domain, it would be helpful to define

the above, a feature that detects whether a block appears above another

block in a given tower of block. This feature cannot be expressed as a con-

junctive query, due to its recursive definition. However, PDDL supports

derived predicates, from version 2.2 onwards.

Derived predicates significantly enhance the expressive power of PDDL

(Thiébaux et al., 2005). In the example of BLOCKS, we can express the

above feature as a derived predicate:

(: derived (above ?x ?y)

(or (on ?x ?y) (exists (?z)

(and (on ?x ?z) (above ?z ?y)))

)

)

The features in the form of conjunctive queries are computed in tight cou-

pling with the computation of the planning program, since the evaluation

and generation of such features is computationally feasible. The reason

is that the conjunctive query is subdivided into slots which are then pro-

grammed by assigning atoms to the slot. Such an approach would not

be possible in the case of general derived predicates, due to the different

structure.

Derived predicates can be generated directly from a PDDL domain (Miura

and Fukunaga, 2017). Miura and Fukunaga show that useful derived pred-

icates, can be extracted from a number of IPC benchmark domains. A

similar approach can be used to extract useful features in a preprocessing

step of the planning program synthesis. Subsequently the useful features

103

“tesi” — 2017/9/30 — 0:03 — page 104 — #124

can be selected during the programming phase, and programmed as a con-

dition of the goto statement.

7.2.2 Generating Hierarchical Task Networks

The basic translation of PDDL to HTN, in practice relies on a number of

domain-independent optimizations. The reason is that the exploration of

unoptimized invariant graphs, using blind search, is computationally in-

feasible. One approach, which has been explored to an extent in this work,

is to generate the constraints, which can be imposed on the generated hier-

archical task network. The results show that such optimizations presented

in Chapter 5, can significantly and consistently reduce the search space in

many planning domains.

The ordering of the invariant graphs optimization, shows that even simple

changes in the task network can lead to large improvements, in the cover-

age over the IPC benchmark domains. Further, the invariant graphs used

for the translation are not optimized in any way. One simple approach to

extending the translation, would be to prune the invariant graphs. Some

edges or nodes of an invariant graph could be removed in order to reduce

the search space Such pruning would have to be consistent, so that all goal

fluents have to be reachable in some invariant graph. This can be vali-

dated on several example instances. The decomposition methods would

have to be adjusted, to ensure that the correct invariant graphs are selected.

This optimization could work similarly to optimization performed by Fast

Downward, which approximates a set cover over mutex groups.

The generated HTNs can be optimized by adding new decomposition

methods, with additional preconditions, which can in turn represent cer-

tain features in a single planning domain. Such features can be learned

from a set of solved planning instances or from the analysis of lifted in-

variant graphs. The decomposition methods with more specific precondi-

tions, would then be ordered before the more general ones, guaranteeing

that no loss of generality occurs. Such decomposition methods could di-

104

“tesi” — 2017/9/30 — 0:03 — page 105 — #125

rectly encode a strategy for traversing the lifted invariant graph from a

certain node to the target node. This approach would still use the deduc-

tive approach to generate the basic HTN, and then refine it using a set of

examples.

For example in the LOGISTICS domain, the decomposition method (achieve-

at-1 ?p ?l), where ?p is a package, and ?l is the target location, can be

encoded in a way that transports the packages which are not in the target

city, directly to the airport. For brevity we omit the type predicates in the

following example:

(: method (achieve ?p ?l)

((not (at ?p ?l)) (in-city ?l ?c)

(at ?p ?l1) (not (in-city ?l1 ?c))

(in-city ?l1 ?c1) (at ?t ?l2)

(in-city ?l2 ?c1)

)

((!drive-truck ?t ?l2 ?l1 ?c1)

(!load-truck ?p ?t ?l1)

(!drive-truck ?t ?l1 ?ap ?c1)

(!unload-truck ?p ?t ?ap)

)

)

Such a method could be decomposed only in a specific case, and would

override the decompositions of do-p-a-i types of tasks.

The SHOP2 planner relies on the domain encoding to narrow the search

space, and uses blind search. Currently there are few domain-independent

heuristics, used in HTN planning. Recently a domain-independent admis-

sible heuristic, based on task decomposition graph (TDG), has been pro-

posed (Bercher et al., 2017). An interesting application, of the invariant

graph structures, used for the compilation presented in Chapter 4, would

be to extract the heuristics for HTN planners. Such heuristic informa-

tion can be used to guide the task-subtask decomposition. This should

at least be possible for the HTNs which are derived from a PDDL rep-

105

“tesi” — 2017/9/30 — 0:03 — page 106 — #126

resentation. As explained in Chapter 4, even though the generated HTN

is based on the invariant graphs, no graph is grounded at the beginning

of the search. However, as the search progresses, it is essentially equiv-

alent to exploration of the grounded invariant graph. The fully grounded

invariant graphs, could provide heuristic, not only for selecting the invari-

ant graph in which the fluent should be achieved, but also for selecting

the parameters of the do-p-a-i methods in our HTN translation.

106

“tesi” — 2017/9/30 — 0:03 — page 107 — #127

Part VI

Appendix

107

“tesi” — 2017/9/30 — 0:03 — page 108 — #128

“tesi” — 2017/9/30 — 0:03 — page 109 — #129

Bibliography

Bäckström, C., Jonsson, A., and Jonsson, P. (2014). Automaton plans.

Journal of Artificial Intelligence Research, 51:255–291.

Bercher, P., Behnke, G., Höller, D., and Biundo, S. (2017). An admissible

htn planning heuristic.

Bonet, B., Palacios, H., and Geffner, H. (2010). Automatic derivation

of finite-state machines for behavior control. In AAAI Conference on

Artificial Intelligence.

Botea, A., Enzenberger, M., Müller, M., and Schaeffer, J. (2005).

Macro-FF: Improving AI Planning with Automatically Learned Macro-

Operators. Journal of Artificial Intelligence Research, 24:581–621.

Boutilier, C., Reiter, R., and Price, B. (2001). Symbolic dynamic pro-

gramming for first-order mdps. In IJCAI, volume 1, pages 690–700.

Chandra, A. and Merlin, P. (1977). Optimal implementation of conjunc-

tive queries in relational data bases. In Proceedings of the ninth annual

ACM Symposium on Theory of Computing.

Chen, Y., Huang, R., and Zhang, W. (2008). Fast Planning by Search

in Domain Transition Graphs. In Proceedings of the 23rd National

Conference on Artificial Intelligence (AAAI’08), pages 886–891.

Cresswell, S. and Coddington, A. M. (2004). Compilation of ltl goal

formulas into pddl. In ECAI, pages 985–986.

109

“tesi” — 2017/9/30 — 0:03 — page 110 — #130

de la Rosa, T., Jiménez, S., Fuentetaja, R., and Borrajo, D. (2011). Scal-

ing up Heuristic Planning with Relational Decision Trees. Journal of

Artificial Intelligence Research, 40:767–813.

Edelkamp, S. and Hoffmann, J. (2004). Pddl2.2: The language for the

classical part of the 4th international planning competition. Technical

report, Technical Report 195, University of Freiburg.

Elkawkagy, M., Bercher, P., Schattenberg, B., and Biundo, S. (2012). Im-

proving Hierarchical Planning Performance by the Use of Landmarks.

In Proceedings of the 26th National Conference on Artificial Intelli-

gence (AAAI’12).

Erol, K., Hendler, J., and Nau, D. (1994). HTN planning: Complexity

and expressivity. In Proceedings of the 12th National Conference on

Artificial Intelligence (AAAI’94), pages 1123–1128.

Fern, A., Khardon, R., and Tadepalli, P. (2011). The first learning track

of the international planning competition. Machine Learning, 84(1-

2):81–107.

Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new approach to the ap-

plication of theorem proving to problem solving. Artificial intelligence,

2(3-4):189–208.

Fox, M. and Long, D. (2002). Pddl+: Modeling continuous time depen-

dent effects. In Proceedings of the 3rd International NASA Workshop

on Planning and Scheduling for Space, volume 4, page 34.

Geier, T. and Bercher, P. (2011). On the Decidability of HTN Planning

with Task Insertion. In Proceedings of the 22nd International Joint

Conference on Artificial Intelligence (IJCAI’11), pages 1955–1961.

González-Ferrer, A., Fernández-Olivares, J., and Castillo, L. (2013).

From Business Process Models to Hierarchical Task Network Planning

Domains. Knowledge Engineering Review, 28(2):175–193.

110

“tesi” — 2017/9/30 — 0:03 — page 111 — #131

Gretton, C. and Thiébaux, S. (2004). Exploiting first-order regression in

inductive policy selection. In Proceedings of the 20th conference on

Uncertainty in artificial intelligence, pages 217–225. AUAI Press.

Helmert, M. (2004). A planning heuristic based on causal graph analysis.

In ICAPS, volume 4, pages 161–170.

Helmert, M. (2006). The Fast Downward Planning System. Journal of

Artificial Intelligence Research, 26:191–246.

Helmert, M. (2009). Concise finite-domain representations for pddl plan-

ning tasks. Artificial Intelligence, 173(5-6):503–535.

Hoffmann, J. and Edelkamp, S. (2005). The deterministic part of ipc-4:

An overview. Journal of Artificial Intelligence Research, pages 519–

579.

Hogg, C., Munoz-Avila, H., and Kuter, U. (2008). HTN-MAKER: Learn-

ing HTNs with Minimal Additional Knowledge Engineering Required.

In Proceedings of the 23rd National Conference on Artificial Intelli-

gence (AAAI’08), pages 950–956.

Hogg, C., Muñoz-Avila, H., and Kuter, U. (2016). Learning hierarchical

task models from input traces. Computational Intelligence, 32(1):3–48.

Holte, R., Perez, M., Zimmer, R., and MacDonald, A. (1996). Hierarchi-

cal A*: Searching Abstraction Hierarchies Efficiently. In Proceedings

of the 13th National Conference on Artificial Intelligence (AAAI’96),

pages 530–535.

Hu, Y. and De Giacomo, G. (2011). Generalized planning: Synthesiz-

ing plans that work for multiple environments. In IJCAI Proceedings-

International Joint Conference on Artificial Intelligence, volume 22,

page 918.

Hu, Y. and De Giacomo, G. (2013). A generic technique for synthesizing

bounded finite-state controllers. In International Conference on Auto-

mated Planning and Scheduling.

111

“tesi” — 2017/9/30 — 0:03 — page 112 — #132

Hu, Y. and Levesque, H. J. (2011). A correctness result for reasoning

about one-dimensional planning problems. In International Joint Con-

ference on Artificial Intelligence, pages 2638–2643.

Ivankovic, F. and Haslum, P. (2015). Optimal planning with axioms. In

International Joint Conference on Artificial Intelligence, pages 1580–

1586. AAAI Press.

Jiménez, S., De la Rosa, T., Fernández, S., Fernández, F., and Borrajo,

D. (2012). A review of machine learning for automated planning. The

Knowledge Engineering Review, 27(4):433–467.

Jiménez, S. and Jonsson, A. (2015). Computing Plans with Control Flow

and Procedures Using a Classical Planner. In Proceedings of the Eighth

Annual Symposium on Combinatorial Search, SOCS-15, pages 62–69.

Jonsson, A., Jonsson, P., and Lööw, T. (2013). When acyclicity is not

enough: Limitations of the causal graph. In ICAPS.

Khardon, R. (1999). Learning action strategies for planning domains.

Artificial Intelligence, 113(1):125–148.

Langley, P. and Choi, D. (2006). Learning recursive control programs

from problem solving. The Journal of Machine Learning Research,

7:493–518.

Levine, J. and Humphreys, D. (2003). Learning Action Strategies for

Planning Domains Using Genetic Programming. In EvoWorkshops,

volume 2611 of Lecture Notes in Computer Science, pages 684–695.

Lipovetzky, N. and Geffner, H. (2009). Inference and Decomposition

in Planning Using Causal Consistent Chains. In Proceedings of the

19th International Conference on Automated Planning and Scheduling

(ICAPS’09).

Lipovetzky, N. and Geffner, H. (2011). Searching for Plans with Carefully

Designed Probes. In Proceedings of the 21st International Conference

on Automated Planning and Scheduling (ICAPS’11).

112

“tesi” — 2017/9/30 — 0:03 — page 113 — #133

MacGlashan, J. (2010). Hierarchical Skill Learning for High-Level Plan-

ning. In Proceedings of the 24th National Conference on Artificial

Intelligence (AAAI’10).

Marthi, B., Russell, S., and Wolfe, J. (2008). Angelic Hierarchical

Planning: Optimal and Online Algorithms. In Proceedings of the

18th International Conference on Automated Planning and Scheduling

(ICAPS’08), pages 222–231.

Martin, M. and Geffner, H. (2000). Learning Generalized Policies in

Planning Using Concept Languages. In Proceedings of the 7th Inter-

national Conference on Principles of Knowledge Representation and

Reasoning (KR’00), pages 667–677.

Martı́n, M. and Geffner, H. (2004). Learning generalized policies from

planning examples using concept languages. Appl. Intell, 20:9–19.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso,

M., Weld, D., and Wilkins, D. (1998). Pddl-the planning domain defi-

nition language.

Menif, A., Guettier, C., and Cazenave, T. (2013). Planning and Execution

Control Architecture for Infantry Serious Gaming. In Proceedings of

the 3rd International Planning in Games Workshop (PG’13), pages 31–

34.

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M. (2013). Machine

learning: An artificial intelligence approach. Springer Science & Busi-

ness Media.

Miller, C., Goldman, R., Funk, H., Wu, P., and Pate, B. (2004). A Play-

book Approach to Variable Autonomy Control: Application for Con-

trol of Multiple, Heterogeneous Unmanned Air Vehicles. In Annual

Meeting of the American Helicopter Society.

Mitchell, T. M. (1982). Generalization as search. Artificial intelligence,

18(2):203–226.

113

“tesi” — 2017/9/30 — 0:03 — page 114 — #134

Miura, S. and Fukunaga, A. (2017). Automatically extracting axioms in

classical planning. In AAAI, pages 4973–4974.

Muggleton, S. (1999). Inductive logic programming: issues, results and

the challenge of learning language in logic. Artificial Intelligence,

114(1):283–296.

Muise, C., McIlraith, S., Baier, J., and Reimer, M. (2009). Exploiting N-

Gram Analysis to Predict Operator Sequences. In Proceedings of the

19th International Conference on Automated Planning and Scheduling

(ICAPS’09).

Munoz-Avila, H., Aha, D., Breslow, L., and Nau, D. (1999). HICAP:

An Interactive Case-Based Planning Architecture and its Application

to Noncombatant Evacuation Operations. In Proceedings of the 16th

National Conference on Artificial Intelligence (AAAI’99), pages 870–

875.

Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, W., Wu, D., and Yaman,

F. (2003). SHOP2: An HTN Planning System. Journal of Artificial

Intelligence Research, 20:379–404.

Newton, M. H., Levine, J., Fox, M., and Long, D. (2007). Learn-

ing Macro-Actions for Arbitrary Planners and Domains. In Proceed-

ings of the 17th International Conference on Automated Planning and

Scheduling (ICAPS’07), pages 256–263.

Palacios, H. and Geffner, H. (2009). Compiling uncertainty away in con-

formant planning problems with bounded width. Journal of Artificial

Intelligence Research, 35:623–675.

Richter, S. and Westphal, M. (2010). The LAMA Planner: Guiding Cost-

Based Anytime Planning with Landmarks. Journal of Artificial Intelli-

gence Research, 39:127–177.

Sánchez-Garzón, I., Fernández-Olivares, J., and Castillo, L. (2013). An

Approach for Representing and Managing Medical Exceptions in Care

114

“tesi” — 2017/9/30 — 0:03 — page 115 — #135

Pathways Based on Temporal Hierarchical Planning Techniques. In

Process Support and Knowledge Representation in Health Care (Pro-

Health’12), Lecture Notes in Computer Science 7738, pages 168–182.

Sanner, S. (2010). Relational dynamic influence diagram language (rddl):

Language description. Unpublished ms. Australian National Univer-

sity, page 32.

Segovia-Aguas, J., Jiménez, S., and Jonsson, A. (2016). Generalized

planning with procedural domain control knowledge. In Proceedings of

the International Conference on Automated Planning and Scheduling.

Srivastava, S. (2011). Foundations and applications of generalized plan-

ning. AI Communications, 24(4):349–351.

Srivastava, S., Immerman, N., Zilberstein, S., and Zhang, T. (2011). Di-

rected search for generalized plans using classical planners. In Interna-

tional Conference on Automated Planning and Scheduling, pages 226–

233.

Thiébaux, S., Hoffmann, J., and Nebel, B. (2005). In defense of pddl

axioms. Artificial Intelligence, 168(1-2):38–69.

van der Sterren, W. (2009). Multi-Unit Planning with HTN and A*. In

AIGameDev Paris Game AI Conference.

Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., and Blythe, J.

(1995). Integrating planning and learning: The prodigy architecture.

Journal of Experimental & Theoretical Artificial Intelligence, 7(1):81–

120.

Winner, E. and Veloso, M. (2003). Distill: Learning domain-specific plan-

ners by example. In International Conference on Machine Learning,

pages 800–807.

Wu, D., Parsia, B., Sirin, E., Hendler, J., and Nau, D. (2003). Automating

DAML-S Web Services Composition Using SHOP2. In Proceedings

115

“tesi” — 2017/9/30 — 0:03 — page 116 — #136

of the 2nd International Semantic Web Conference (ISWC’03), pages

195–210.

Yoon, S., Fern, A., and Givan, R. (2008). Learning control knowledge for

forward search planning. The Journal of Machine Learning Research,

9:683–718.

Younes, H. L. and Littman, M. L. (2004). Ppddl1. 0: An extension to pddl

for expressing planning domains with probabilistic effects. Techn. Rep.

CMU-CS-04-162.

Zhuo, H., Hu, D., Hogg, C., Yang, Q., and Munoz-Avila, H. (2009).

Learning HTN Method Preconditions and Action Models from Partial

Observations. In Proceedings of the 21st International Joint Confer-

ence on Artificial Intelligence (IJCAI’09), pages 1804–1809.

116

