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Abstract

In this thesis we study three different problems using Numerical Relativity on
asymptotically Anti-de Sitter (AdS) spacetimes. The first is our research on the
gravitational collapse of massless scalar fields on asymptotically AdS spacetimes.
We have developed a new method that combines two different formulations of the
Einstein Field Equations to get closer and with more accuracy to the collapse. We
have numerical evidence that in the separation of the branches there is a universal
power law in the mass of the formed apparent horizons for subcritical configurations
in addition to the one for supercritical ones. This new power law confirms that there
is a gap in the mass of the apparent horizon. In the second part, we introduce a
shock waves model in AdS to study the far-from-equilibrium regime in the heavy
ion collisions through the holographic correspondence in a non-conformal theory.
In the models used until now, the shock waves correspond to conformal gauge
theories while QCD is not conformal. In order to get closer to a description of
the actual physical collisions we present the first shock waves collision in a non-
conformal theory. With this, we show how the non-conformality increases the
hydrodynamisation time and also that this can happen before the equation of state is
fulfilled. In the last part, we propose the use of spectral methods for high precision
computations. The exponential convergence of spectral methods can approximate
functions with very high accuracy with few hundred terms in our spectral expansion
while in other numerical methods it would be a few orders of magnitude larger.
This makes spectral methods very attractive because they facilitate the accessibility
to very small error simulations, removes the bottleneck of the memory demand
and also help in the computational speed because fewer points are needed for the
computation. We have tested this idea with the ANETO library for simulations in
AdS spacetimes and the gravitational collapse in an asymptotically flat spacetime
with very promising results. This library has been developed as a direct result of
this thesis and that can be downloaded as Free Software.
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Introduction

The widespread use of numerical methods in scientific applications during the
last few decades has amplified a great deal the number and the complexity of the
problems that science and technology are able to address. Although this fact can
lead to think that numerical analysis is a new branch of mathematics, this idea can
not be more wrong. We have evidence that a numerical approximation of the square
root of two was known in Mesopotamia more than three and a half thousand years
ago. During this time, this discipline has been used in problems like the estimation of
irrational numbers and to solve algebraic equations, just to mention two examples.
And from the nineteenth century, numerical methods have also been adapted to
another problem that is very relevant for this thesis, the solution of ordinary and
partial differential equations.

Since their introduction in the modelling of natural phenomena more than three
hundred years ago, differential equations have been a key mathematical tool in
physics and in other fields of science. There has been a lot of developments to
solve them analytically, specially for linear cases with the Sturm–Liouville methods.
However, in the case of non-linear PDEs, in general we can only solve them by
imposing certain additional assumptions like symmetries or particular boundary
conditions. For this reason, the introduction of numerical methods is an approach
to obtain results that, although not exact, are very close to the phenomena we want
to describe with the differential equations. In addition, the increase in the resolution
that we use, leads us asymptotically to the correct solution. But, as a drawback,
we now have to deal with myriads of fundamental arithmetical computations.
Specially for solving complex problems with a proper resolution where the necessity
of computational resources can exceed the current available technologies. Therefore,
although this problem could be approached before; is now, with the progress and
development of computers and the current technology going in its way towards
the exoscale computing1, when the possibilities of this branch of mathematics has
increased exponentially. And this is essential because the power of this technology
improves not only the computational speed and accuracy but also impels us to

1Exascale computing refers to computing systems capable of at least one exaFLOPS, 1018 floating
point operations per second. This goal is not expected to be reached before 2020.
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consider more complex models and theories.

In the field of gravitation the great revolution arrived with the work of Albert
Einstein that was culminated in 1915 with his General theory of Relativity. Since
then, we understand gravity as the manifestation of the curvature of the spacetime.
In spite of the vast mathematical complexity that this theory presents, during the
following decades several exact solutions of the field equations were found although
most of them, and certainly the most physically relevant ones, are spacetimes
with a high degree of symmetry. In this scenario, the use of numerical methods
arise as a very powerful tool to address, at least in principle, general problems
like the binary black hole problem. In this sense, the discovery of the critical
behaviour in gravitational collapse by Matthew Choptuik in 1992 is a milestone
on the development of the field of Numerical Relativity. Even now, critical collapse
remains as one of the best examples of a completely new phenomenon that was first
obtained numerically and only later it could be studied from an analytical point of
view. Another very important breakthrough came in 2005 when Frans Pretorius
presented the first dynamical evolution of a spacetime with the collision of two
orbiting black holes and with the extraction of the gravitational-wave signal emitted.
Since then, different problems in relativistic gravitation have been addressed using
Numerical Relativity and nowadays the development of theses techniques, which
also involves the analytical mathematical studies, is one of the essential branches in
the study of gravitation.

In this thesis, we take advantage of numerical methods to study different
phenomena on asymptotically Anti-de Sitter (AdS) spacetimes. Few years after
Einstein’s equations were presented, a term with a cosmological constant Λ was
added. Nowadays, the vacuum solution with positive Λ is considered to represent
an accelerated expanding universe similar to our own. On the other hand, AdS is
the maximally symmetric solution with negative cosmological constant. From the
knowledge we have from our own local universe, AdS may seem like a very exotic
spacetime, sometimes called “the infinite box”. Any point in the interior of AdS
is at infinite distance from the AdS boundary but this boundary can be reached by
light rays coming from the bulk. In the interior, the cosmological constant acts like a
spring, a particle thrown away from the centre always falls back in a fixed period
of time. Ignored for years, in the last few decades this spacetime has obtained
more and more attention. For example, the Randall–Sundrum models present a
3+1 dimensional brane embedded in a five dimensional AdS spacetime. Gravity
lives in the whole five dimensional spacetime although it is localised near the brane,
which makes these models compatible with the observations with a maximum limit
for the AdS radious of ` = 0.01 mm. Instead, matter fields are confined to live on
the brane. This is a proposal to deal with the hierarchy problem of why gravity is
several orders of magnitude weaker than the rest of interactions. This is an example
of how even the, a priori, most unrealistic results of physics can surprisingly show
up in our reality. In any case, this is not the only reason why AdS has become
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important in the last years. In the context of string theory and the thermodynamics
of black holes, Juan Maldacena introduced in 1995 the gauge/gravity duality. This
establishes a holographic correspondence between a gauge theory without gravity
and a pure gravitational theory in higher dimensions. In the most studied examples
of this duality the gravitational theory is required to be an asymptotically AdS
spacetime. Examples of the application of this duality can be found in different fields
of physics like particle collisions in accelerators, superconductors, condensed matter
and quantum information. From this point of view, Numerical Relativity on AdS
spacetimes is used as a tool to study systems in other fields of physics. Either because
of its cosmological relevance or because of its use as an instrument, the physical
properties of AdS need to be understood and in the present thesis we have studied
some aspects of the dynamics of AdS spacetimes.

In Chapter 1 we start by giving an introduction to the concepts that are going
to be used during the thesis. We begin by introducing the key elements of Albert
Einstein’s General Relativity that are needed for the rest of the chapters. We also
present a brief review of the mathematical preparations to solve Einstein’s equations
numerically in digital computers. The main motivation is to bring to the attention of
the reader some of the most important issues that this problem involves more than to
give a full guide, an impossible task in the space that can be dedicated in this thesis.
At the end of the first chapter we present the pseudo-spectral collocation method,
one of the most powerful tools to solve numerically partial differential equations.
This method is going to be used in all the chapters of the thesis and therefore is
worth to describe in some detail its main properties and mathematical foundations
in order to understand its application during the thesis.

Chapter 2 is dedicated to the problem of the gravitational collapse on
asymptotically Anti-de Sitter spacetimes. To that end, we need first to introduce
the revolutionary work of Choptuik on critical collapse and describe in detail the
structure of AdS. Once this is established, we describe a new method to simulate
the gravitational collapse of massless scalar fields in AdS. This method uses two
completely different formulations of Einstein’s equations. The simulation start with
a Cauchy evolution and when the collapse is taking place, it performs a change of
coordinates to a characteristic one to track the formation of the apparent horizon.
With this new scheme, we have discovered a new power law for the mass of
the formed black holes in configurations with less initial energy than the critical
one. This is a new phenomenon, not present in flat spacetime, for which we give
numerical evidence and that brings some intriguing questions about the critical
collapse in AdS and in another confined geometries.

AdS is not studied just for its own importance but also because of its use
as a dual tool to address other interesting problems. And this is exactly what
we have proposed in Chapter 3. There, we focus on the problem of heavy ions
collisions. When these particles collide at very high velocities, like it happens at
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the LHC and RHIC, the system forms a plasma of quarks and gluons (QGP). This
plasma is not only a good test case for the theory of the nuclear interactions, the
quantum chromodynamics, but it also has interest because current cosmological
models incorporate it in the early states of the Universe. The QGP is described
with high accuracy as a perfect fluid but the description of the dynamics between
the moment of the collision and the formation of the QGP remains a challenge. The
strong interactions between quarks and gluons in this regime make it very difficult
the treatment using perturbation theory. It is for this reason that other methods, in
particular the gauge/gravity correspondence, where we use a 4+1 asymptotically
AdS spacetimes to model the collision, are getting a lot of attention as an alternative
to deal with this phenomenon. One of the problems that these holographic collisions
usually exhibit is that the gauge models represent conformal field theories when the
real quantum chromodynamics is not. In this chapter, we present our work where
the first collisions in a non-conformal model has been simulated.

One of the problems to get a high accuracy with numerical methods on a
digital computer is directly related with the number of precision digits that we
use in the computations. This limitation generates what is known as the machine
round-off error, which can only be improved by increasing the number of digits
of our representation of the real numbers. Nowadays, in most computers, these
real numbers are represented in floating-point format, similar as they are written
in scientific notation, with 64-bits. This is equivalent to around sixteen digits of
precision. This accuracy is more than enough to deal with most of the problems
that we usually address making us forget that we are not computing with exact real
numbers but with a limited representation of them. There are physical problems
that are very sensitive to the initial conditions or that are very delicate to some of
the parameters of the system where this precision can be very limiting and we need
to go beyond the standard precision. Also, this precision can be not enough when
we have to deal with cases where there are two very different scales in our problem
that cannot be separated. The main problem to use higher precision is usually the
reduction of the computational speed. Given that current processing units (CPUs)
are adapted to double precision, computations with a different type of data types
always involve some software layer than reduces our efficiency in more than two
orders of magnitude. Based on our experience and on all the previous work, in
Chapter 4 we argue that pseudo-spectral methods can be a very powerful option
when we perform computations with arbitrary precision arithmetic. Due to their
exponential convergence for smooth problems, we can reach very high accuracy
with very few discretisation points as compared with other methods. The potential
that pseudo-spectral methods offer for the computations with arbitrary precision
arithmetic are tested using Numerical Relativity examples where we give a glimpse
of the full possibilities that these methods can offer.

As we have presented in all the previous paragraphs, in this thesis we have
studied different problems in Anti-de Sitter spacetimes using Numerical Relativity
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where we have shown the great value of the numerical methods and, more precisely,
pseudo-spectral collocation methods, in gravitation. We also show the new results
that we have discovered in the topics of gravitational collapse and the AdS/CFT and
our novel proposal to address problems with arbitrary precision arithmetic.
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Resumen

El uso generalizado de métodos numéricos en aplicaciones científicas y
tecnológicas en las últimas décadas ha incrementado enormemente el número y la
complejidad de los problemas que la ciencia y la tecnología es capaz de afrontar.
Aunque este hecho pueda llevar a pensar que el cálculo numérico es una rama
novedosa de las matemáticas, está idea no podía estar más equivocada. Tenemos
evidencias de que una aproximación numérica de la raíz cuadrada de dos ya era
conocida en Mesopotamia hace más de tres mil quinientos años. A lo largo de este
tiempo, esta disciplina ha sido usada en problemas como la estimación de números
irracionales o la resolución ecuaciones algebraicas, por poner un par de ejemplos.
Y desde el siglo diecinueve, los métodos numéricos también ha sido adaptados a
otro problema que va a ser muy relevante en esta tesis, la solución de ecuaciones
diferenciales ordinarias y en derivadas parciales.

Desde que se introdujeran en la modelización de fenómenos naturales hace
más de trescientos años, las ecuaciones diferenciales han sido una herramienta
clave en física y en otras ramas de la ciencia. En este tiempo, ha habido un
gran desarrollo en su resolución analítica, especialmente en el caso lineal con los
métodos de Sturm–Liouville. No obstante, para sistemas de ecuaciones diferenciales
en derivadas parciales no lineales, en general sólo podemos resolver casos en los
que hemos impuestos algún tipo de simetría o condiciones de contorno especiales.
Por este motivo, la inclusión de métodos numéricos es un enfoque para obtener
soluciones que, aunque no son exactas, se aproximan mucho al fenómeno que
queremos describir con las ecuaciones diferenciales. Además, el incremento de la
resolución utilizada hace que nos acerquemos asintóticamente a la solución correcta
de una manera controlada. Su principal desventaja es que hace que tengamos que
lidiar con una miríada de operaciones aritméticas fundamentales. Especialmente
cuando resolvemos problemas complejos con una resolución aceptable, la necesidad
de recursos computaciones pueden fácilmente exceder las tecnologías actuales. Por
eso aunque podíamos utilizar estos métodos anteriormente; es ahora, gracias al
progreso de los ordenadores y de la tecnología actual que se encuentra en su
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camino hacia la computación Exascale 2, cuando las posibilidades de esta rama de
las matemáticas se han incrementado exponencialmente. Y eso es esencial porque
la potencia de esta tecnología no sólo mejora la velocidad y la resolución que
podemos alcanzar sino que también nos impulsa a considerar modelos y teorías más
complejas.

En el campo de la gravitación, la gran revolución llegó en 1915 cuando Albert
Einstein culminó su trabajo en la teoría de la Relatividad General. Desde entonces,
la gravedad es interpretada como una manifestación de la curvatura del espacio-
tiempo. A pesar de su enorme complejidad matemática, en los últimos cien años se
han encontrado muchas soluciones exactas aunque la mayoría de ellas, y sin duda
las más relevantes físicamente, corresponden a casos con un alto grado de simetría.
En este escenario, el uso de métodos numéricos se alza como una herramienta
muy potente para, al menos en principio, poder enfrentarse a problemas generales
como sistemas binarios de agujeros negros. En este sentido, el descubrimiento del
comportamiento crítico en el colapso gravitacional por Matthew Choptuik en 1992
es un momento clave en el desarrollo del campo de la Relatividad Numérica. Todavía
hoy, el colapso crítico es uno de los mejores ejemplos de un fenómeno totalmente
nuevo que fue descubierto de manera numérica y sólo entonces pudo ser estudiado
desde un punto de vista analítico. Otro hito importante llegó en 2005 cuando Frans
Pretorius presentó la primera simulación dinámica de un espacio-tiempo con la
colisión de dos agujeros negros y la extracción de dos las ondas gravitacionales
emitidas. Desde entonces, muchos otros problemas en gravitación relativista han
sido considerados usando Relatividad Numérica y, hoy en día, el desarrollo de
estas técnicas, que también incluyen el tratamiento analítico, es una de las ramas
matemáticas esenciales en el estudio de la gravedad.

En esta tesis, vamos a usar métodos numéricos para estudiar diferentes
problemas en espacio-tiempos asintóticamente Anti-de Sitter (AdS). Unos pocos
años después de la publicación de las ecuaciones de Einstein, un término con
constante cosmológica Λ fue añadido. Actualmente, la solución de vacío con Λ
positiva representa un universo en expansión similar al nuestro. Por otra parte, AdS
es una solución maximalmente simétrica con constante cosmológica negativa. Según
el conocimiento actual de nuestro universo, AdS puede parecer una solución muy
exótica. A veces se le conoce como la “caja infinita”. Cualquier punto del interior está
a una distancia infinita de su frontera pero la luz que llega del interior puede alcanzar
dicha frontera. En el interior, la constante cosmológica actúa como un muelle. Si
lanzamos una partícula desde el origen de coordenadas, ésta volverá en un tiempo
fijo. Ampliamente ignorado durante todo el siglo XX, en las últimas décadas se le
está prestando mucha atención. Por ejemplos, los modelos de Randall–Sundrum
presentan una brana de 3+1 dimensiones embebida en un espacio-tiempo AdS de

2Computación Exascale se refiere a la posibilidad de llegar a construir equipos que tengan una
potencia de un exaFLOPS, 1018 operaciones en coma flotante por segundo. Este límite no se espera
que sea superado antes de 2020.
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cinco dimensiones. La gravedad vive en el espacio cincodimensional completo pero
se localiza muy cerca de brana, lo que hace a estos modelos con las observaciones
con un límite superior para el radio de AdS de ` = 0.01 mm. Por el contrario, la
materia está confinada en la brana. Esto es una propuesta para tratar el problema
de la jerarquía, la enorme diferencia en órdenes de magnitud entre la intensidad
de la gravedad y la del resto de interacciones fundamentales. Es también un buen
ejemplo de como hasta un espacio-tiempo tan extraño puede llegar a ser importante
en la descripción de la realidad. En cualquier caso, esa no es la única razón por la que
AdS ha atraído miradas en los últimos años. En el contexto de la teoría de cuerdas
y la termodinámica de los agujeros negros, Juan Maldacena introdujo en 1995 la
dualidad gauge/gravedad. Ésta establece una dualidad holográfica entre una teoría
gauge sin gravedad y una teoría gravitatoria en más dimensiones. Y en los casos
más estudiados, la teoría gravitatoria tiene que ser asintóticamente AdS. Ejemplos de
fenómenos que pueden ser descritos por esta dualidad pueden ser encontrados en
en diversos campos de la física como las colisiones de partículas que ocurren en los
aceleradores, superconductores, materia condensada e información cuántica. Desde
este punto de vista, la Relatividad Numérica en AdS se utiliza como una herramienta
para estudiar sistemas de otros campos. Ya sea por su importancia física o por su
uso como instrumento, entender las características de este espacio-tiempo es muy
importante y en esta tesis hemos estudiado algunos aspectos de la dinámica de AdS.

En el capítulo 1 vamos a dar una breve introducción a las conceptos que van a ser
claves durante toda la tesis, empezando por los elementos básicos de la Relatividad
General de Albert Einstein que son necesario para el resto de los capítulos. También
presentamos una breve revisión de los desarrollos matemáticos necesarios para
resolver las ecuaciones de Einstein numéricamente en ordenadores digitales. La
principal motivación aquí es atraer a la atención del lector algunos de los problemas
más comunes más que dar una completa guía del tema, algo imposible en el espacio
que se dedica. Al final del capítulo, presentamos los métodos de colocación pseudo-
espectrales, una de las más potentes herramientas para resolver numéricamente
ecuaciones diferenciales en derivadas parciales. Este método va a ser ampliamente
utilizado en todos los capítulos de la tesis y por tanto merece la pena describir
en detalle sus propiedades principales y sus principios matemáticos básicos para
entender su aplicación durante la tesis.

El capítulo 2 está dedicado al problema del colapso gravitatorio en espacio-
tiempos asintóticamente Anti-de Siter. Para ello, necesitamos primero necesitamos
introducir el revolucionario trabajo de Choptuik en el colapso crítico para
posteriormente describir la estructura de AdS. Una vez todo esto está establecido,
describimos en detalle el nuevo método que hemos desarrollado para simular
el colapso gravitacional de campos escalares sin masa. Este método utiliza dos
formulaciones de las ecuaciones de campo de Einstein. La simulación comienza con
una evolución de Cauchy y, para cuando ésta detecta que el colapso está empezando,
realiza un cambio de coordenadas a un esquema característico para monitorizar la



10 Resumen

formación del horizonte aparente. Con este nuevo método, hemos descubierto una
nueva ley de potencias universal para la masa de los agujeros negros que se forman
con configuraciones de energía ligeramente menores que las críticas. Esto es un
fenómeno nuevo que no está presente en espacio-tiempo plano para el cual hemos
dado evidencia numérica y origina algunas preguntas muy interesantes acerca del
colapso crítico en AdS y en otras geometrías confinadas.

Pero AdS no solamente se estudia por su propia importancia sino también por
su utilización como herramienta dual para tratar con otros problemas interesantes.
Y esto es precisamente lo que hacemos en el capítulo 3. Aquí, nos enfocamos en
el problema de la colisión de iones pesados. Cuando estas partículas colisionan
a velocidades muy altas, como pasa en aceleradores como el LHC y el RHIC, se
forma un plasma de quarks y gluones. Este plasma no es sólo un buen campo
de pruebas para la teoría de las interacciones nucleares fuertes, la cromodinámica
cuántica, sino también es interesante porque los modelos cosmológicos actuales
lo incorporan en las etapas iniciales de la Historia del Universo. El plasma de
quarks y gluones puede describirse con bastante precisión como un fluido perfecto
pero la descripción de la dinámica entre el momento de la colisión y su formación
todavía es un desafío. Las interacciones fuertemente acopladas de los quarks y los
gluones en este régimen hacen que sea muy complicado el tratamiento usando teoría
de perturbaciones. Es por esa razón que otros métodos están obteniendo mucha
atención, en particular la correspondencia gauge/gravedad donde utilizamos un
espacio-tiempo asintóticamente AdS en 4+1 dimensiones para modelizar la colisión.
Uno de los principales problemas que éstas colisiones holográficas exhiben es
que los modelos gauge representan teorías de campos conformes mientras que la
cromodinámica cuántica no lo es. En este capítulo, presentamos nuestro trabajo
donde las primeras colisiones en una teoría no conforme han sido simuladas.

Uno de los problemas para obtener una buena precisión numéricamente en un
ordenador está relacionada con el número de dígitos que usamos en las variable de
nuestro cálculo. Esta limitación genera lo que se conoce como error de redondeo,
que solo puede ser mejorado incrementando el número de dígitos que usamos en la
representación. Actualmente, en la mayoría de los ordenadores, los números reales
son representado en formato de coma flotante, muy similar a la notación científica,
con 64 bits. Esto es equivalente aproximadamente a quince o dieciséis dígitos de
precisión. En general, eso es más que suficiente para tratar con la mayoría de los
problemas a los que nos enfrentamos actualmente y eso hace que olvidemos que
nunca estamos tratando con números reales sino con representaciones limitadas
de ellos. Hay algunos problemas que ya sea porque la física es muy sensible a
las condiciones iniciales o a algún parámetro esta precisión puede limitar nuestro
estudio y que nos haga necesitar ir más allá de la precisión estándar. También en
casos en los que tenemos que lidiar con fenómenos que operan en escalas muy
diferentes y no pueden ser separados puede limitarnos operar con una precisión
fija. El problema principal al usar más precisión es la reducción en la velocidad de
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cálculo. Las CPUs actuales son capaces de realizar operaciones básicas de doble
precisión, 64 bits, y por tanto cualquier otra precisión requerirá algún tipo de capa
de software que puede reducir nuestra eficiencia hasta dos ordenes de magnitud.
Basándonos en nuestra experiencia y en todo el trabajo previo presentando en esta
tesis, en el capítulo 4 razonamos que los métodos espectrales pueden ser una opción
muy potente para realizar cálculos con un número muy grande de dígitos. Debido
a que éstos ofrecen convergencia espectral para funciones diferenciales, podemos
alcanzar muy buena precisión usando muy pocos puntos en la discretización
comparado con otros métodos. Su potencial para el tratamiento de problemas con
precisión arbitraria ha sido probado usando problemas de gravitación donde hemos
podido vislumbrar las posibilidades que estos métodos nos ofrecen.

En resumen, en esta tesis hemos estudiando diferentes problemas relaciona-
dos con los espacio-tiempos asintóticamente Anti-de Sitter usando Relatividad
Numérica donde hemos presentado el enorme valor que tienen en gravitación
los métodos numéricos y, más precisamente, los métodos de colocación pseudo-
espectrales. También hemos mostrado nuevos resultados en los importantes temas
del colapso gravitatorio y de la dualidad AdS/CFT y, además, nuestra novedosa
propuesta para tratar problemas con precisión arbitraria.
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Chapter 1

Numerical Relativity Methods

We are a way for the cosmos to
know itself

Carl Sagan

Albert Einstein’s General Relativity (GR) changed not only the way we
understand the physics of gravitation but also how we formulate it. And during
the last hundred years, a lot of scientists that came after Einstein continue to
comprehend and to discover completely new phenomena that this beautiful theory
brought to us. In this chapter we are going to make a brief introduction to the
theory of General Relativity and how we can manipulate the field equations into
a form that computers can digest for helping us to study the physics behind it.
We start by making a historical description of the gravity theory before GR and to
introduce the geometrical language in which we express Einstein’s Field Equations.
After reviewing some known analytical solutions that are relevant for this thesis,
we explain how we need to formulate the equations to solve them numerically and,
finally, we introduce the main numerical methods to discretise the partial differential
equations behind the theory. Unless otherwise stated, along this chapter we are
taking physical units in which the speed of light c is equal to unity.

1.1 General Relativity Basics

1.1.1 Gravity as Geometry

When Isaac Newton in the year 1687 wrote in his Philosophiae Naturalis
Principia Mathematica [1] the well-known law of universal gravitation, he
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established the perfect culmination of the previous work of many others like
Nicolaus Copernicus, Galileo Galilei and Johannes Kepler that, in their
determination of careful observation and scientific reasoning, were able to unlock
the building blocks of how the Universe works. But the key feature that makes
Newton’s law so important and revolutionary is not the exact formula itself but the
fact that his theory allowed him to explain phenomena apparently so different as
the movement of the planets, why an apple falls down from a tree or why the Moon
does not. The process that leads us to understand that Earth and heavens were not
separated entities with different laws but a single physical reality is a crucial idea
not only for science but also in our history as a civilisation.

The law of universal gravitation establishes that any two bodies attract
themselves with a force proportional to their masses (m1,m2) and inversely
proportional to the square of the distance that separates them (r) and can be written
as:

Fgrav ∝
m1m2

r2
. (1.1)

Since the beginning, Newton and others recognised immediately the intrinsic
problems of the previous physical law. The main one was the concept of a force
actuating instantaneously at arbitrary distances. For the previous to be true, it
supposes that the gravitational force is acting instantly and without any material
interaction between the bodies. This was of course an absurdity and Newton itself
wrote in a letter “Gravity must be caused by an agent acting constantly according to certain
laws; but whether this agent be material or immaterial, I have left to the consideration of my
readers” [2]. This lack of a mechanism that explained the gravitational interaction
was an open question for the following two hundred years. There were a lot of
different and imaginative proposals but in the end, all of them presented conflicts
with observations. One of the most well-known was the mechanical explanations of
screening by Nicolas Fatio de Duillier (1690), Georges-Louis Le Sage (1748) [3] and
others. Roughly speaking, they proposed that the universe is full of tiny particles
moving at very high speeds. The density of these particles is high enough that for an
isolated body the net force cancels in all directions. If we consider a second body, the
direction to it is partially blocked so there are less particles coming from there. This
produces a net force in the direction of the bodies that is supposed to be the force that
we explained in the law of universal gravitation. Although this theory solved some
of the problems, generated a lot more like the presence of a drag, thermal issues,
etc. Although during the years modifications of the previous model and new ones
were presented, none of them was really accepted and the real explanation of the
gravitational force was hidden, until Albert Einstein.

Between 1907 and 1915 Einstein developed the ideas that allowed him to extend
his Special Relativity theory to include gravitation. In his theory of General
Relativity [4, 5] he did not only need to create a new theory, he also had to introduce a
change in the mathematical language. From that moment, gravitation was not longer
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understood as a force but as the geometrical curvature of spacetime and Newton’s
force is just the phenomenological result of the presence of matter acting through the
spacetime at the speed of light.

1.1.2 A Geometrical Language

The central role of geometry in the theory of General Relativity replaces classical
physics concepts as forces, particles and gravitational potentials by a completely
different language. Here we are going to introduce some basic concepts that will
allow us to formulate gravity as a geometrical theory in the next section [6, 7, 8].

The key ingredient is going to be the spacetime metric gµν , a four dimensional
tensor that determines the invariant spacetime interval between two spacetime
events:

ds2 = gµνdx
µdxν , (1.2)

where dxµ is the infinitesimal interval between two events with spacetime
coordinates xµ and xµ + dxµ. Greek indices denote spacetime coordinates in a range
0-3.

For a general spacetime we can make a transformation to a system of coordinates
for any particular event to be locally at an inertial reference frame, where the metric
is the Minkowski one:

gµν = ηµν = diag(−1, 1, 1, 1), (1.3)

and its first derivative vanish at that point:

∂λgµν = 0. (1.4)

In these coordinates, the nongravitational laws of physics are locally the same as in
special relativity. This is commonly known as the Einstein Equivalence Principle
[9, 10]. Only in the case of empty flat spacetime, it is always possible to choose our
coordinates to be everywhere as the Minkowski metric.

In a coordinate basis, the basis vectors e(µ) can be written as the tangent vectors
to coordinates lines and can be written as:

e(µ) = ∂µ. (1.5)

The components of the metric tensor are given by the scalar dot products (·) between
the four the basis vectors that span the vector space tangent to the spacetime
manifold:

gµν = e(µ) · e(ν), (1.6)

where indices without the parenthesis denotes the components of the tensor
meanwhile (µ) denotes the (µ)th vector of the basis.
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With our vector basis, we define four-vectors as:

A = Aµe(µ), (1.7)

whereAµ are the contravariant components of the vector and e(µ) are, again, the (µ)th
vector of our vector basis. In the same way, we can define a basis of covectors ω(µ)

dual to our vector basis that satisfies:

ω(µ)e(ν) = δ
(µ)

(ν). (1.8)

Then, we can define also covectors:

Ã = Aµω
(µ), (1.9)

and, if the vector and covector represent the same information, they can be related
via the metric tensor as:

Aµ = gµνA
ν , (1.10)

where, in the index notation, repeated indices mean a summation over the four
values of that index.

In the same way, we can define tensors of any rank with covariant and
contravariant indices and relate them via the metric tensor:

Bµν
σ = gρσ B

µνρ = gρσ g
νγ Bµ ρ

γ , (1.11)

For a general change of coordinates1 xµ → x̄σ
′ , vectors and tensors transform as:

Aσ
′
= Mσ′

µ A
µ

Bσ′

ρ′ = Mσ′

µ B
µ
ν M

ν
ρ′ ,

(1.12)

where Mσ′
ν = ∂x̄σ

′

∂xν
is a matrix that represents the change of coordinates.

The concept of moving a vector along a path, keeping it constant all the while is
known as parallel transport and depend strongly in the path taken. The covariant
derivative measures the rate of change of a tensor field with respect to this parallel
transport. It is always a tensor of a one rank higher than the original tensor and it is
defined as:

∇σA
µ = ∂σA

µ + ΓµρσA
ρ, (1.13)

in the case of vectors and:

∇σB
µ
ν = ∂σA

µ
ν + ΓµρσA

ρ
ν − ΓρσνA

µ
ρ, (1.14)

1This describes a change of the coordinates without changing the vector basis.
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in the case of tensors. Γµρσ are the components of the Levi-Civita connection, defined
as:

Γµρσ =
1

2
gµν (∂ρgνσ + ∂σgνρ − ∂νgσρ) , (1.15)

notice here that Γµρσ is not a tensor since it does not transform under general change
of coordinates as Eqs. (1.12) dictate.

As a consequence of the equivalence principle, the real curvature of the
spacetime, and therefore gravity, can only be measured by second order derivatives
of the metric. The geometrical object that encodes the relevant information of the
spacetime curvature is the Riemann curvature tensor and is defined as:

Rµ
νσρ = ∂σΓµνρ − ∂ρΓµνσ + ΓµγσΓγνρ + ΓµγρΓ

γ
νσ, (1.16)

and from it we construct two other important objects: the Ricci tensor:

Rµν = Rρ
µρν , (1.17)

and the scalar of curvature:
R = Rρ

ρ. (1.18)

Although the Riemann tensor has rank four, the number of independent
components is lower than the total possible number because of all the symmetries
and identities that it satisfies. These symmetries are:

Rµνσρ = −Rνµσρ, (1.19)
Rµνσρ = −Rµνρσ, (1.20)
Rµνσρ = +Rσρµν , (1.21)

and also the first Bianchi identities:

Rµνσρ +Rµρνσ +Rµσρν = 0, (1.22)

as well as the second Bianchi identities:

∇λRµνσρ +∇ρRµνλσ∇σRµνσρλ = 0, (1.23)

that contracting indices µσ and νλ with the metric tensor lead to the following
important expression:

∇νRνρ =
1

2
∇ρR. (1.24)
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1.1.3 The Einstein Field Equations

With the elements introduced in the previous section, we have all the ingredients
needed to formulate gravity as geometry [6, 11, 12]. As in Newtonian gravitation
we have that matter generates a force or a gravitational field, in Einstein’s General
Relativity we need to relate the curvature of the spacetime with the presence of
matter and, as a consequence of Special Relativity, also with energy. Then our final
goal is to obtain an equation that determines the geometry of the spacetime in terms
of a given distribution of matter and energy.

The distribution of matter and energy can be modelled, convariantly, by the
stress-energy tensor Tµν , which takes different expressions depending on the matter
model we consider. Just to give a few examples, for vacuum is simple:

Tµν = 0, (1.25)

for a scalar field φ with mass m, we have:

Tµν = ∂µφ∂νφ−
1

2

(
gµν∂αφ∂

αφ+m2φ2
)
, (1.26)

and in the case of a perfect fluid the expression is:

Tµν = (ρ+ p)uµν + pgµν , (1.27)

where p is the fluid pressure, ρ its density and uµ its four velocity.

As we saw in Sec. 1.1.2, the simplest way to have non trivial (covariant) curvature
requires second order derivatives of the metric. As we need a tensor of the same rank
as the stress-energy tensor, the object to start with is the Ricci tensor. Then, it seems
straightforward to write:

Rµν = κTµν , (1.28)

as Einstein suggested at one point. But this equation has several issues. The
conservation of energy is going to require that the divergence of the stress-energy
tensor vanishes:

∇µTµν = 0, (1.29)

but this condition implies via Eq. (1.28) that the divergence of the Ricci tensor also
vanishes:

∇µRµν = 0, (1.30)

which makes no sense for a general geometry. As we saw in Eq. (1.24), as a
consequence of the Bianchi identities we can write:

∇µRµν =
1

2
∇νR, (1.31)
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and for Eq. (1.28) the scalar of curvature is proportional to the trace of the stress
energy tensor: R = κT and therefore:

∇µRµν =
1

2
∇νR =

1

2
κ∇νT, (1.32)

or just:
∂νT = 0, (1.33)

which means that the trace of the stress energy tensor needs to be constant in the
whole spacetime. This, of course, is not true aside from the case of vacuum where
T = 0 everywhere. Therefore we need to try something a different. If we require Eq.
(1.29) to be true, we need the left-hand side of the equation to be a tensor also with a
null divergence. Fortunately, we have already seen something that can be useful in
Eq. (1.31). Using that expression as the geometrical part, which is usually known as
the Einstein tensor:

Gµν = Rµν −
1

2
gµνR, (1.34)

for which it is obvious that:
∇µGµν = 0, (1.35)

and therefore we can write consistently:

Gµν = κTµν . (1.36)

From that expression, we can see that the scalar of curvature is:

R = −κT, (1.37)

and therefore rewrite Eq. (1.36) as:

Rµν = κ

(
Tµν −

1

2
gµνT

)
, (1.38)

that represents the exact same information as Eq. (1.36) but written differently.

The only thing left is to determine the meaning of the proportionality constant
κ. As the Newtonian theory of gravitation is valid with high precision in some
scenarios, Einstein’s General Relativity needs to be an extension of the previous,
reducing into the classical limit in the conditions where the first seems to be valid.
The limits that we need to force in GR to reduce to Newtonian theory are basically
two. The first is the weak-field, for example for the gravitational field produced by
a massive body this is true if we are far enough from the object. In the solar system,
the influence of GR in the calculus of the orbits of the planets is important only in
Mercury. The second limit to consider is slow motion. This is understandable if we
consider that in Newtonian theory the speed of light is effectively infinite.
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The weak-field approximation indicates that the metric in a suitable coordinate
system is a perturbation of the Minkowski one:

g00 = −1− 2Φ, (1.39)

where Φ is the Newtonian gravitational potential. For a massive object with a
distribution of matter ρ that does not carry a flux of momentum or energy through
space, the only non-zero component of the stress-energy tensor is the energy density
component:

T00 = ρ, (1.40)

and then its trace is just:
T = −ρ, (1.41)

where, since we are in the weak-field limit, we have assumed that the energy density
is much bigger than the gravitational potential:

ρ >> Φ (1.42)

We can compute the (0, 0) component of the Ricci scalar using Eqs. 1.16, 1.17:

R00 = ∇2Φ = δij∂i∂jΦ, (1.43)

where δij is the Kronecker delta and Latin indices denotes space coordinates. The
(0, 0) component of Eq. (1.38) becomes:

R00 = ∇2Φ =
1

2
κρ. (1.44)

We can compare this with the Poisson equation that describe the gravitational
potential generated by a mass distribution with density ρ:

∇2Φ = 4πGρ, (1.45)

where G, of course is Newton’s gravitational constant, and then we can identity the
constant κ:

κ = 8πG. (1.46)

With all of this we can finally write the final form of the Einstein Field Equations
(EFEs) as:

Gµν = Rµν −
1

2
gµνR = 8πGTµν , (1.47)

where, since both Gµν and Tµν are symmetric tensors, the EFEs represent a set of
ten differential equations. Both the Ricci tensor and the scalar of curvature are
constructed from contractions of the Riemann tensor that involve first and second
order derivatives of the metric so that one can imagine that the Einstein tensor
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includes the components of the metric and its derivatives mixed between them
in a non-linear way. This non-linearity means that the solutions of the EFEs can
be a very complicated task for general situations, and sometimes also in simple
cases. For example, the superposition principle no longer applies to gravity. In
Newton’s theory, the gravitational potential due to several masses is just the sum
of the individual potentials generated by the masses independently and this is not
true in GR. This non-linearity of the equations present in GR is just the mathematical
realisation of the backreaction of the action of gravity on itself.

Another important fact to consider is that, due to the second Bianchi identities,
∇µGµν = 0; we have four constrains. This is pertinent because there is always an
ambiguity choosing the coordinates that label our spacetime. In this way, four of
our equations represent constrain equations and only six of them can be dynamical
equations. In terms of the metric, this means that the metric has only six physical
degrees of freedom. This is discussed in more detail in Sec. 1.2.1.

We can always add a constant term to the field equations:

Rµν −
1

2
gµνR + Λgµν = 8πGTµν , (1.48)

where Λ is called the cosmological constant because it was introduced by Albert
Einstein in an attempt to get an stationary solution for the spacetime geometry of
the Universe. Currently, it is used for explaining a universe in accelerated expansion
as our own (de Sitter solution) with Λ > 0. The solution with Λ < 0, known as Anti-
de Sitter, is going to be the key spacetime in this thesis. This maximally symmetric
manifold corresponding to a hyperbolic geometry has been very important in the last
few years thanks to the AdS/CFT correspondence [13, 14] and some cosmological
models [15] and it is described in detail in Sec. 2.2.

1.1.4 Exact Solutions of the Einstein Field Equation

The Einstein Field Equations are a set of ten non-linearly coupled partial
differential equations. At first sight, it was thought that no analytical solution could
exist. In fact, in the original paper of Albert Einstein, the precession of the perihelion
of Mercury was calculated using an approximation. Currently, there is plenty of
spacetimes with exact analytical expressions but most of them, and certainly the
most interesting ones, are cases of high degree of symmetry that allow us to simplify
the equations in one way or another so that they become solvable.

The first of these exact solutions to be discovered, apart from the Minkowski
metric that of course is a trivial solution of the EFEs, was introduced by Karl
Schwarzschild in 1916, about a month after the publication of the final version of
the EFEs. He considered the vacuum spacetime with spherical symmetry outside
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a object of mass M and now it is known as the Schwarzschild solution and in
coordinates {t, r, θ, φ} can be expressed as:

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2, (1.49)

where dΩ2 is the metric on the unit two-sphere and can be written in terms of the
angles θ and ϕ as:

ds2 = dθ2 + sin2 θdϕ2 (1.50)

The first obvious application of this solution is to use it to model the solar system
as the vacuum solution outside the Sun and with it, the calculation of the precession
of the perihelion of Mercury was redone. The solution is obtained as a vacuum
solution an therefore it is only valid for the exterior of the star. If we observe the
expression of Eq. (1.49), there is a divergence in grr for r = 2GM . In this case, there
is no problem because the radius of the star is much greater than 2GM . Here we can
see straightforward features. In the limit M → 0 we recover the Minkowski metric
as expected. In the limit r → ∞ we also approach to Minkowski. Spacetimes that
shares the same properties at infinity are known as asymptotically flat.

A careful study of this solution indicates that Schwarzschild is the only possible
vacuum solution with spherical symmetry. This is known as Birkhoff’s theorem [16].
This is a very strong remark if we take in account that no assumptions are done
besides the need for spherical symmetry and vacuum. This is true even outside a
non-static source as a collapsing star, as long as the collapse is spherical the solution
outside will be Schwarzschild, which is static

Another different problem arises when we ask ourselves what happens if the
radius of the “star” is smaller than 2GM . In that case we call the object a black hole
(BH) and several new features appear. Looking to Eq. (1.49), we observe singularities
in the metric at r = 0 and at r = 2GM , but the two are very different. In general a
singularity in the metric does not need to mean that physical quantities blow up at
that location because it can just be a coordinate singularity due to a particular choice
of coordinates. For this reason, we need to look at invariant quantities such as the
curvature invariant:

K = RµνησRµνησ =
48G2M2

r6
. (1.51)

This shows that the origin r = 0 is a real physical singularity where the curvature of
the spacetime diverges to infinity.

On the other hand, we do not see any problem at r = 2GM and in this case we
could say now that the problem is due to the choice of coordinates, however, things
are more complicated. Although these coordinates are not optimal to describe the
solution, they are not a weird election: they represent the coordinates associated to
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an inertial observer at infinity. If we look at the null geodesics ds2 = 0 we get:

dr

dt
= ±

(
1− 2GM

r

)
, (1.52)

where we see that null geodesics reach r = 2GM at infinite time, so this point can
not be crossed, at least for the point of view of an observer at infinity. The two signs
represent that there are going to be two sets of geodesics, the outgoing (+ sign) that
are supposed to escape to infinity and the ingoing (− sign) that go in the direction of
the origin.

Let us introduce some new coordinates known as Eddington-Finkelstein
coordinates [6], which are more adapted to the null geodesics described by Eq. (1.52):

u = t− r − 2GM ln
( r

2GM
− 1
)
, (1.53)

v = t+ r + 2GM ln
( r

2GM
− 1
)
. (1.54)

In these coordinates, outgoing null geodesics are given just by u = constant and
infalling ones by v = constant.

Rewriting the metric in (v, r) coordinates we have:

ds2 = −
(

1− 2GM

r

)
dv2 + 2dvdr + r2dΩ2, (1.55)

and, although the gvv metric component vanish at r = 2GM the metric is regular and
invertible at that point. The null geodesics look a bit different as compared with the
previous case. The infalling ones:

dv

dr
= 0, (1.56)

are at v = const as we advanced before. The outgoing are:

dr

dv
=

1

2

(
1− 2GM

r

)
, (1.57)

where we see how the outgoing really behave around r = 2GM . In the outside
region, outgoing geodesics are not bounded and can continue to infinity but in the
region r < 2GM , all the null geodesics end at r = 0 with r = 2GM being the surface
that separate these two regions. This is represented in Fig. 1.1.

Now we can interpret r = 2GM as a surface that separates two casual regions
and, for that reason, we call it event horizon. Once a particle or a light ray crosses
this surface is trapped inside and cannot escape. Then, for any observer in the
outside region is impossible to know what happens inside. This is the reason why
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Figure 1.1: Future Lightcones for the Schwarzschild Geometry. In this diagram
we can see the two causal regions of the Schwarzschild geometry. The arrows
represents null geodesics. The ingoing v = 0 always ends at r = 0 in the future
but the other one reaches null infinity only for r > 2GM . The separation between
this two regions is the event horizon at r = 2GM .

this kind of objects are called black holes. As a separation between two different
causal regions, the event horizon is a null 3-dimensional hypersurface that, in order
to be located, requires the knowledge of the whole spacetime. This should not be
confused with the notion of apparent horizon (AH) that is frequently used in this
thesis and that we proceed to explain.

Let us consider a family of curves in an open region of the spacetime, for each
of its points only passes one of curves of the family. This is known as a congruence
[7]. If all the curves are null geodesics, we have a congruence of null geodesics. The
tangent vector field to this geodesics is kµ that, of course, is null and it is affinely
parametrised by λ. We define the expansion θ of the geodesics as:

θ = ∇µk
µ. (1.58)

The expansion represents the fractional rate of change of the congruence’s cross-
sectional area:

θ =
1

δA

d

dλ
δA, (1.59)

where the two-dimensional area δA is transverse to kµ. Now, we can define the
concept of trapped surface as a closed two-dimensional surface S in which for both
congruences of outgoing and ingoing null geodesics, the expansion is negative for
all the points of S. The AH, is the outermost trapped surface, the boundary of the
region that contains all the trapped surfaces, where the expansions vanish [17]. This
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can be studied locally and therefore does not require the knowledge of the whole
spacetime. The drawback is that they are slicing dependent and therefore they are
not as meaningful as the concept of event horizon. Only in simple cases like in the
case of static spacetimes, the event horizon can be seen as the continuous apparent
horizon through time.

The introduction of the null coordinates (u, v) is going to be very important for
us in the following chapters since they are very useful to track trapped surfaces. We
can use them to generate two new ways of writing the Schwarzschild metric. The
first one uses the radial coordinate r and the ingoing null time u (Eq. (1.54)):

ds2 = −
(

1− 2GM

r

)
du2 − 2dudr + r2dΩ2. (1.60)

We can also use both Eddington-Finkelstein coordinates:

ds2 = −
(

1− 2GM

r

)
dudv + r2dΩ2. (1.61)

The Schwarzschild metric is not the only analytical solution that describes objects
with event horizons, what we have called black holes. We can have more complex
objects. We are not going to enter in details because they are not relevant for this
thesis but we give here expressions of some of them for the sake of completeness. If
we have a charged object in spherical symmetry, we have the Reissner–Nordström
metric [18, 19]

ds2 = −∆dt2 + ∆−1dr2 + r2dΩ2, (1.62)

where ∆ depends on the mass M and the charge Q of the object through the
expression:

∆ = 1− 2GM

r
+
GQ2

r2
, (1.63)

In this case, we do not have vacuum anymore because the charge of the BH
generates an electromagnetic field with acts a source of energy-momentum. In Eq.
(1.63) we can see that in the case Q2 < GM2 there are two metric singularities at:

r± = GM ±
√
G2M2 −GQ2. (1.64)

A careful study indicates that both are of them are event horizons [6] that generate
a richer causal structure with three different causal region. For this reason this kind
of objects are stimulating to consider but its astrophysical interest is limited. Any
charged BH is expected to attract opposite sign charge very fast and neutralise itself
so the possibility to observe it is very tiny.
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The obvious generalisation is to look for rotating black holes. This is not only
an interesting theoretical and astrophysical consideration, but also a needed one to
rule out the possibility that all the behaviour that we have seen before was just an
artifact of the spherical symmetry. This solution was found by Roy Kerr in 1963
[20] and since then it is known as the Kerr metric. It describes an stationary object
with axial symmetry around the rotation axis, being M the mass of the object and
a its momentum per mass unit, the metric in Boyer–Lindquist coordinates can be
expressed as:

ds2 = −
(

1− 2GMr

ρ2

)
dt2 − 4GMar sin2 θ

ρ2
(dtdφ) +

ρ2

∆
dr2

+
sin2 θ

ρ2

[
(r2 + a2)2 − a2∆ sin2 θ

]
dφ2 + ρ2dθ2,

(1.65)

with ∆ = r2 − 2GMr + a2 and ρ2 = r2 + a2 cos2 θ. In the limit a→ 0, it reduces to the
Schwarzschild metric of Eq. (1.49). According to General Relativity and accepting
the no-hair theorem [21], all the BHs known in the universe from the supermassive
ones at the galactic centres to the stellar ones recently seen by LIGO (see Ref. [22])
are supposed to be described by the previous expression.

Another important type of spacetime are the maximally symmetric ones. This
means that the spacetime has the maximum of Killing symmetries [23] and all of the
points of the spacetime are indistinguishable between them. The simplest example
is Minkowski spacetime but it is not the only one. The vacuum solutions with
cosmological constant different from zero present constant curvature determined by
the value Λ. In these spacetimes the Riemann tensor is determined only by the value
of the scalar of curvature:

Rµνησ =
1

12
R (gµηgνσ − gµσgµσ) . (1.66)

From this and the EFEs we can deduce that the scalar of curvature is just:

R = 4Λ. (1.67)

The solution of positive curvature is known as de Sitter metric and it was
presented in 1917 by Willem de Sitter. It can be written in the static coordinates
as:

ds2 = −
(

1− Λ

3
r2

)
dt2 +

(
1− Λ

3
r2

)−1

dr2 + r2dΩ2, (1.68)

this solution represents a universe in accelerated expansion with a cosmological
horizon at r =

√
3/Λ.

We are more interested in the case with negative cosmological constant. The
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maximally symmetric spacetime with constant negative curvature it called Anti-
De Sitter (AdS) [12] and can be represented by the same metric of Eq. (1.68) but
considering Λ < 0. For the sake of clarity we introduce the AdS length scale
` = −3/Λ. Our study requires to deal with the boundary of AdS at r = ∞.
As computationally we can not deal with infinities, we introduce a compactified
coordinate:

r = tan(x), (1.69)

and the metric becomes:

ds2 =
`

cos2(x)

(
−dt2 + dx2 + sin2 x dΩ2

)
, (1.70)

All the details about AdS spacetime are described in Chapter 2 where this
spacetime is going to be very important but it is worth mention that with a negative
cosmological constant Λ we also have BH solutions and the spherically symmetric
uncharged is known as: Schwarzschild-AdS and can be written as:

ds2 = −
(

1− 2GM

r
+
r2

`2

)
dt2 +

(
1− 2GM

r
+
r2

`2

)
dr2 + r2dΩ2, (1.71)

in that expression is clear that when r → ∞ the metric have the same behaviour
as AdS spacetime. The same that happened before with the asymptotically flat
spacetimes, in these cases we call these spacetimes to be asymptotically AdS (AAdS).

1.2 Formulations of the EFEs for Numerical Relativity

In the previous chapter, we have seen the geometrical formulation of gravity and
its realisation in the form of the Einstein Field Equations. We have also seen some
of the most important exact solutions that have been found during the past century.
These exact solutions are very useful because they contain the full information about
the spacetime structure in a very compact and elegant way. But all the solutions
we presented are highly symmetric and simple. In general, to expect to have
analytical expressions for the general evolution problems is a bit unrealistic taking
into account the non-linear character of the EFEs. The main solution to this is to
integrate numerically the equations. Although this may seem powerful enough to
address general problems, in reality it is far from ideal. Big problems arise from a
lot of different places. The key point from the theoretical point of view is the choice
of the foliation of the spacetime and the coordinates associated with it. Actually,
this was the main obstacle to have a full 3+1 simulation of binary black holes
with gravitational-wave extraction until the work of Frans Pretorius in 2005 [24].
Another important issue is the question of the numerical algorithm to be used for
the discretization of our equations. This problem is shared between all the different
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Figure 1.2: Foliation of the Spacetime in Cauchy Hypersurfaces. The
hypersurfaces Σ are labelled by the time t = const. We use the evolution
equations to successively construct their geometry and their extrinsic curvature
that describe how the are embedded in the spacetime manifold from the initial
conditions set at Σ1. Figure taken from Ref. [8]

fields in computational physics and we are going to make a brief introduction to it
in the next section.

In this introduction, we give a glimpse of the problematic of evolving numerically
full 3+1 spacetimes in numerical relativity, focusing in some parts on the spherically
symmetric case that is specially relevant in some chapters of the thesis. For a more
detailed presentation on this topic, Refs. [8, 25, 26] can be checked.

1.2.1 The Cauchy Problem

The Einstein Field Equations, as they were presented in Sec. 1.1.3, are written
in a very beautiful and compact manner but totally unpractical from the numerical
point of view. In order to solve the EFEs in a computer, the first thing we need to do
is to break the covariant form and set up a particular coordinate system adapted to
an evolutionary problem. The first way in which we can do that is to separate the
spacetime in non intersecting spacelike hypersurfaces Σ of constant time coordinate t
as shown in Fig. 1.2 and formulate EFEs as a Cauchy problem. In this sense, since our
goal is to obtain the components gµν through time, we set initial conditions on one
hypersurface Σ1, that is, we prescribe as function of the coordinates of the slice Σ1,
gµν(t1) and ∂t gµν(t1). Then, we use the evolution equations to construct the geometry
of the next hypersurface.
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The metric is a symmetric tensor and then we have ten independent metric
components hence we need ten evolution equations to have a well-possed
formulation of the Cauchy problem. We have ten Einstein equations so it seems that
the problem is solved. The truth is more complicated. If we remember the second
contracted Bianchi identities:

∇νG
µν = 0, (1.72)

they can be written as:

∂tG
µt = −∂iGµi − ΓµνλG

νλ − ΓννλG
µλ, (1.73)

where Latin indices refers to space coordinates i = 1..3, the coordinates of the
hypersurfaces Σ.

Looking carefully at the right-hand side of the previous equation, we can see that
there are no third order time derivatives which implies that Gµt cannot contain time
derivatives of second order. Then, it is clear that the evolution equations need to
come from the following components of the EFEs:

Gij = 8πGT ij. (1.74)

In addition, if we take into account that we always have the choice to introduce
coordinate transformations on the hypersurfaces Σ without changing its geometry
and we also have the freedom to choose the initial hypersurface we end up with
having four free quantities that correspond with the two dynamical modes of the
gravitational field, the two polarisation states of a gravitational wave.

One important problem in the thesis is going to be the evolution of scalar fields
in spherical geometry. In this case, the additional symmetries reduce the degrees
of freedom in such a way that the geometry of the spacetime does no have free
propagating modes. This implies that the dynamical modes in this scenario come
from the scalar field and once it is set in an spacelike hypersurface, the geometry is
fixed.

The foliation in Fig. 1.2 is consistent with any temporal coordinate t and with
non intersecting spacelike hypersurfaces but, of course, we have a lot of freedom to
choose it. We define the unit normal vector to the hypersurfaces of constant t as:

nµ = −α∇µt, (1.75)

with:
gµνnµnν = −1, (1.76)
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and where α is the lapse function:

α =
1√

−gµν∇µt∇νt
(1.77)

that controls how the time elapses between hypersurfaces. We also define the shift
vector:

βµ = δµt − αnµ, (1.78)

that is tangent to only in the spacelike hypersurfaces (βt = 0) and defines how we
relabel the points of our space through the different hypersurfaces.

Now, we can introduce the form of the EFEs known as ADM equations [27] where
the metric is expressed as:

gµν =

(
−α2 + βkβ

k βi
βj γij

)
. (1.79)

where the γij is the 3-metric of the spacelike hypersurfaces. The constrain equations
are the Hamiltonian constrain:

R +K2 −KijK
ij = 16πρ, (1.80)

where Kij is the extrinsic curvature of the spacelike hypersurfaces that describes
how the spacelike hypersurfaces are embedded in the spacetime. We also have the
momentum constrain:

∇j

(
Kij − γijK

)
= 8πSi. (1.81)

The evolution equations are then:

∂tγij = −2αKij +∇iβj +∇jβi, (1.82)

for the space metric and:

∂tKij =α

[
Rij +KKij − 2KikK

k
j − 8π

(
Sij −

1

2
γij(S − ρ)

)]
−∇i∇jα + βk∂kKij +Kik∂jβ

k +Kkj∂iβ
k,

(1.83)

for the extrinsic curvature, where ρ, Si, Sij and S are the matter source terms defined
as:

ρ = nµnνT
µν

Si = −γijnµTµj
Sij = γiµγjνT

µν

S = γijSij.

(1.84)
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The correct choice of the lapse and shift functions is a key issue in the numerical
evolution of the Einstein equations. Although this is a great advance, the
history of numerical relativity shows that the ADM equations are not enough for
produce stable evolutions in 3+1 dimensions for configurations without symmetry.
Modifications of it have been proven more successful. Introducing the generalised
harmonic family of gauges, Frans Pretorius [24] was able to evolve for the fist time a
binary black hole (BBH) system and to extract the gravitational-wave signal emitted.
Before that, the BSSN formulation [28, 29] was shown much more stable than the
ADM equations, although the BBH evolution with gravitational wave extraction had
to wait until a better family of gauges was proposed [30, 31]. This section just give
a glimpse of the problems of evolving numerically Einstein’s Field Equations but it
does not address all the issues that it exhibits.

1.2.2 Characteristic Initial Value Problem

As it was seen in Sec. 1.1.4, the intrinsic freedom to choose the foliation of the
spacetime not only means that we can deform our space and time coordinates to
adapted to our problem. We can also use the path of light, the null geodesics, as our
coordinates in the characteristic approach to numerical relativity. Of course, most of
the mathematical developments presented in the previous section are not valid here
and we need to look for new methods. In this section, we described some coordinate
choices and uses in a general way focusing in its interest for the following chapters.
For more details about this kind of evolution, the reader can look at Refs. [32, 33].

A characteristic foliation has always null hypersurfaces u = const generated by a
two-dimensional set of null rays xA, and a coordinate λ parametrising the null rays.
We have now two kind of variables, ones that can be determined on a hypersurface
(f ) and other ones that evolve from one hypersurface to another (Φ). Then, we have
two type of equations, the ones defined on the hypersurface:

fλ = Lf [f,Φ] (1.85)

and the evolution ones:
Φuλ = LΦ[f,Φ]. (1.86)

Characteristic evolutions have proven to be very robust and stable. In fact, the
first long term simulation of a black hole was performed using this formulation [34].
A general feature of this formulation is that the initial data is not subject to elliptic
constrains. This makes the imposition of initial conditions very flexible but more
difficult to discriminate realistic ones. It also has the property that no second-order
u-time derivatives are present and therefore we reduce the integration problem to
half of variables.
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Figure 1.3: Double Null Characteristic Grid. Foliation in (u, v) coordinates in
top of a Cauchy grid (r, t). The angular coordinates are hidden so every point
in the grid represents a two-dimensional sphere. The equivalence between the
two coordinate systems are shown according with a vacuum spacetime where
u = t − r and v = t + r. In a general case, the null directions are curved in the
(r, t) plane.

One important application of the characteristic evolution exploits the fact that
gravitational waves are better defined in null coordinates [32]. This is an important
motivation for the use of this formulation. Even so, as we commented in the previous
section, one of the most important problems in Numerical Relativity, the evolution
and merge of binary black holes, was first done, and nowadays continues be treated
that way, using the Cauchy formulations. This is because, although all of the
advantages of the characteristic formulation, its main drawback is that the formation
of caustics in the light rays generating the null hypersurfaces prevents to have a good
evolution. For this reason, an alternative approach uses the characteristic evolution
to extend data generated a Cauchy evolution [35].

Another feature to be notice is the fact that null foliations adapt very well to the
formation of horizons. As a consequence the characteristic scheme has been used in
the case of gravitational collapse since the initial formulation of Christodoulou [36]
and later used for the numerical implementation by Goldwirth and Piran [37]
and Garfinkle [38]. In this thesis, we incorporate this formulation adapted to the
gravitational collapse of scalar fields in Anti-de Sitter spacetime, see Chapter 2.

The usual way of doing it is to write the metric of the spacetime in a form where
the initial conditions are set on a null hypersurface u = const. We are going to
illustrate this with the case in spherical symmetry. The coordinate used to label can
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be chosen to be a spacelike coordinate r in what case we can write the metric as:

ds2 = −guu(u, r)du2 − gur(u, r)dudr + r2dΩ2, (1.87)

or it can also be parametrised using a second null coordinate v in which case the
metric is expressed as:

ds2 = −guv(u, v)dudv + r(u, v)2dΩ2, (1.88)

that is represented in Fig. 1.3 for the vacuum case. There, it is illustrated the
double null grid in top of Cauchy grid (r, t) in which each point represents a two-
dimensional sphere.

1.2.3 Well-posedness and Hyperbolicity

The intrinsic coordinate freedom presented in the EFEs implies that the same
physical phenomena can be written in very different forms as we have seen in
the previous pages. Of course all the ways do not have the same mathematical
properties when we perform numerical evolutions. Here, we present the concepts
of well-posedness and hyperbolicity [39, 40, 41] that help us to analyse systems of
partial differential equations (PDEs) that admit the following form:

∂tW = HW, (1.89)

where H is a general operator that can contain spatial derivative operators and W is
the vector of our variables. In the previous two sections we have described the initial
value problem in which we find the solution W(t, x) integrating from initial data at
an initial time W(t = 0, x). Notice that here we are talking about general PDEs and
t is just a label. We are going to say that a system is well-posed [42] if we can define
a norm || · || such that the norm of the solution can be bounded:

||W(t, xi)|| ≤ keαt ||W(0, xi)||, (1.90)

where α and k are constants that needs to be the same for all the initial data. Well-
posedness of a system is a necessary condition for having a stable evolution so it is
going to be a condition to pursued when we analyse our problem. Although most
problems we find in physics are well-posed it is not difficult to find very simple
examples of PDEs that do not fulfil the previous condition. Some of these examples
can be found in [42].

In order to study the stability of a system we introduce the concept of
hyperbolicity. This concept is associated with systems of evolution equations that
behave as generalisations of the wave equation. We start by writing our system of
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PDEs in the following way:

∂tW +Ai∂iW = S(xi,W), (1.91)

where Ai are a set of matrices, or a single matrix in the case of one space coordinate.
Notice that way of writing the equations does not restrict ourselves to first-order
problems because it can be done with any system of partial differential equations
can be cast in this form by increasing the number of variables W.

We can construct the principal symbol of the system of equations as:

P(ni) =Mini, (1.92)

where ni is a unit vector. The system is said to be strongly hyperbolic if the eigenvalues
of this operator are real and we have a complete set of eigenvectors for all ni. If
the Mi are all symmetric, the system it is said to be symmetric hyperbolic and it is
obviously strongly hyperbolic. On the other hand, if all the eigenvalues are real but
we do not have a complete set of eigenvectors the system said to be weakly hyperbolic.

If the system is strongly hyperbolic, we can construct an invertible matrix K with
the eigenvectors as columns, so that the principal symbol can be diagonalise as:

DP = K−1P K. (1.93)

Then we can write a new set of variables Y as:

Y = K−1W, (1.94)

known as characteristic variables. The reason we care about this is because using it
we can transform the the system described in Eq. (1.91) and in the case of one space
dimension x into:

∂tY +DA∂xY = S(x,Y). (1.95)

This is important to analyse the stability of our evolution problem but it is also
fundamental in the case of multidomain methods. In the boundaries of the domains
in a multidomain scheme is very important to communicate our variables using the
characteristic ones because we now exactly how the propagate, this is given by the
eigenvalues of the previous problem or, equivalently, by the values contained in the
diagonal of DA.
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1.3 Pseudo-Spectral Collocations Methods

In the previous sections, we have discussed the formulation of the EFEs and the
proper manner that we need to set up the coordinates. But EFEs are written as
differential equations, so the last step is to transform the smooth and continuous
to a discrete and algebraic form an algorithm that computers can understand. This
is known as Numerical Methods.

The simplest and most widely used, at least historically, are the ones called finite
differences (FDs). First, we transform our continuous and differentiable spacetime
into individual discrete points. Then, we replace the differential operators by
algebraic expressions. For instance, for a smooth function and a uniform grid of
spacing ∆x we can write:

df(x)

dx

∣∣∣∣
x0

=
f(x0 + ∆x)− f(x0 −∆x)

2∆x
+O

(
∆x2

)
. (1.96)

This produces a discretisation error determined by the spacing ∆x whose proper
form can be derived using a Taylor series. In general the error scales with the spacing
as a power, i.e. ∆xn where the power is determined by particular FD expressions that
we choose. Using this type of expression we transform our differential equations into
algebraic equations in all the points of our grid. The resulting discretised equations
are coupled between them and the coupling degree is determined by the stencil, the
number of points we use to estimate our operations. Once we have replace all our
differential operators by algebraic ones, we have our system of equations that we
can solve by linear algebra methods. Discretisation of this kind can be found in
important works like Refs. [43, 24] being currently the fundamental ingredient on
numerous numerical relativity codes.

Although it is deeply used in another fields and maybe is the most important
method to discretise in engineering, the use of the finite elements methods (FEM)
is very limited in numerical relativity and we can only find a few examples like
Refs. [44, 45]. In these methods, we divide our computational domain in disjoint
subdomains, the elements. In each of the elements, we approximate our solutions by a
simple function. Then, we formulate the PDEs in its weak formulation, transforming
the differential form into an integral that involves the boundary conditions and in
this form we can define a residual function that it is minimised using variational
methods.

In this thesis, the most widely used methods are Pseudo-Spectral methods (PSC)
and in this section we introduce them showing their advantages, in particular their
unbeatable order of convergence. Their properties make them a very good option to
discretise EFEs and nowadays are deeply used in a lot of different problems.
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1.3.1 Basics of PSC Method

We start from a very general point of view. The method of mean weighted
residuals (MWR) is a set of techniques2 to discretise the solutions of differential
equations using a basis of functions to approximate the solution.

We can write the partial differential equations (PDE) in the following form:

L[u] = 0, (1.97)

where L is a differential operator and u is its solution. This set of PDEs is expressed
as an integral over the computational domain D:∫

D
L[u] Ψjdx = 0, (1.98)

where Ψj are a set of test functions that depend of the specific of the method. Any of
the solutions functions u can be represented in terms of a series of functions like:

u(x) =
∞∑
k=0

ak φk(x) (1.99)

where φk are the trial or basis functions and ak the coefficient of this expansion. This
expansion is exact as we are accounting the infinite terms of it. As we are going to
see, in the numerical computations we neglect terms above some k, generating the
discretization error that decreases as we increase the number of modes introduced in
the approximation. In the previous expression we have assumed that the differential
equations to be one-dimensional. In the case of more than one dimensions, one set
of basis functions are needed for each dimension. If we discretise all the coordinates
but one, the time t, following the method of lines [46], the expansion coefficients will
depend on this undiscretised coordinate.

One type of MRW are the Pseudo-Spectral Collocation methods (PSC) (see,
e.g. [47, 48, 49]). Here, the test functions are just Dirac distributions:

Ψj = δ (x− xj) , (1.100)

associated with the grid points xj . The imposition of this functions in the equation
1.98 set the condition that the differential equation needs to be fulfilled exactly in the
collocation points xj .

The most efficient choice for the the test functions in Eq. (1.99) depends on
the exact geometry of our problem. For example, Fourier polynomials are very

2The method of MWR can be seen as a framework where the choice of basis and test functions lead
us to PSC methods, FEM or others.
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Figure 1.4: Representation of the Spectral Coefficients of a Test Function. In the
general case order the modes decay exponentially until the reach of the round-off
error that limits the minimum error that we can obtain with this data type. With
the use of arbitrary precision, more number of digits, we can control this error.

precise with systems with periodic boundary conditions and spherical harmonics
are specially suitable where we are dealing with spherical coordinates. In the general
case the best solution are Chebyshev’s polynomials,

Tn(X) = cos
(
n cos−1(X)

)
, (1.101)

that are defined in X ∈ [−1, 1]. From the Cauchy interpolation error theorem and
the Chebyshev minimal amplitude theorem [48] can be shown that the optimal
interpolation points are the roots of the Chebyshev polynomial of order N + 1. One
of the possibilities that fulfils this condition is to take the Lobatto-Chebyshev grid that
are the roots of:

(1−X2) T ′N(X) = 0, (1.102)

that are:

Xi = − cos

(
π i

N

)
(i = 0, 1, . . . , N) . (1.103)

Assuming the use of Chebyshev polynomials as basis in one direction X ,
the coefficients depends in the undiscretised coordinate t, our standard spectral
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representation is:

uN(t,X) =
N∑
n=0

an(t)Tn(X) , (1.104)

where the an is a (t-dependent) vector that contains the spectral coefficients of the
expansion of our variables. In this representation, the order of magnitude of the
spectral coefficients decay exponentially with the degree of the polynomial:

|an| ∼ e−αn, (1.105)

where α is an arbitrary parameter. This behaviour can be seen in Fig. 1.4, so does the
discretization error provoked for taking a finite number of them.

In addition, in the case of the PSC method we also have a expansion in the
collocation points, which looks as follows:

uN(t,X) =
N∑
i=0

ui(t) Ci(X) , (1.106)

where ui(t) are the values of our variables in the collocation points and Ci(X) are
the cardinal functions [48] associated with our choice of basis functions and set of
collocation points. In our case the cardinal functions can be expressed as

Ci(X) =
(1−X2)T ′N(X)

(1−X2
i )(X −Xi)T

′′
N(Xi)

. (1.107)

Both the spectral modes and representation in the collocation points are related
via a matrix transformation and, in this sense, the computations required increase
quadratically with the number of collocation points as ∼ N2. Nevertheless, the
use of trigonometric representation of the Chebyshev polynomials and the Lobatto-
Chebyshev grid points allow to express the transformation as the Discrete Cosine
Transform (DCT). This is very useful because this transformation can be computed
as a 2N Fast-Fourier Transform (FFT) algorithm. With this, we can decrease the
number of computations and the number of operations scale as ∼ N lnN with the
number of collocation points [47, 48].

As the Chebyshev polynomials are defined in the range X = [−1,+1], the
simplest scenario is to define our computational domain in this same range. Of
course, this is not always possible, nor desirable in the general case. The solution
is to introduce a mapping between the coordinate X and another physical coordinate
x defined in an arbitrary range Ω = [xL, xR]. The simplest mapping is of course a
linear one:

X −→ x(X) =
xR − xL

2
X +

xL + xR
2

, (1.108)
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Figure 1.5: Mappings for the Spectral Grid. The upper (purple) points show
the distribution of points in an usual Lobatto-Chebyshev grid, Eqs. (1.103) and
(1.108). The middle (green) ones represent a uniform mapping as defined in Eq.
(1.109) with α = 1. In the bottom (blue), the distributions of points is the one of
Eq. (1.110) with α = 1.

where the distribution of the collocation points x are the same as the ones of X in a
different range.

Creating a non-trivial map between a general coordinates x and the spectral ones
X is not only motivated by the necessity of changing the computational domain.
The collocation points X are distributed according to Eq. (1.103) that produces an
accumulation of the points near the boundaries. The mapping x(X) can be used to
change this distribution adapting our grid to the functions we want to describe. Any
reasonable function can be used as mapping, checking that is smooth and have a
non-vanishing derivative in the coordinate range considered [50]. We give here two
examples of the several that can be used. To mimic a uniform grid, we can consider
the mapping:

X −→ x(X) = γ + β
arcsin(αX)

arcsin(α)
, (1.109)

where the uniformity of the points can be controlled by the parameter α. Setting it to
one, make the grid exactly uniform but singular. This can be avoid taking α = 1− ε
with ε very small. That reproduces an almost uniform grid without any singularity.
Setting this parameter to zero, we recover the Lobatto-Chebyshev grid. The range
of the coordinates of x can be easily controlled with β and γ. Now, we present a
mapping that accumulate points in only one of the two boundaries with a simple
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exponential function:
X −→ x(X) = γ + β eα(1+X), (1.110)

where, again, β and γ control the range and α set how strong is the accumulation.
The three mappings here defined can be found in Fig. 1.5

The change between the collocation and spectral representations is a key issue
in the PSC methods. In the case of derivatives, the computation in the physical
representation can be perform as a matrix multiplication that use all the points
of the domain. In the spectral representation this is much simpler involving just
linear operations between coefficients. So, we can transform from the physical to the
spectral representation, compute derivatives there, and finally transform back to the
physical representation as is presented in the following scheme

∂x : {Ui}
DCT−→ {an}

∂x−→ {bn}
DCT−→ {(∂xU)i} , (1.111)

where {bn} are the spectral coefficients associated with the spatial derivative ∂x, and
their relation to the spectral coefficients of the variables, {an}, is given by [47]:

bN = 0

bN−1 = 2NaN ,

bn =
1

cn

[
2(n+ 1) an+1 + bn+2

]
n = N − 2 . . . 0

(1.112)

where the coefficient cn is two for n = 0 and one otherwise. Including the use of
the FFT as DCT, the total operation scales as N log(N) as we see that the derivative
in the spectral representation is linear giving a much better performance for a large
number of N .

A considerable number of linear differential equations can be rewritten as direct
integrals as for example the simplest possible differential equation:

df(x)

dx
= g(x), (1.113)

is solved just by:

f(x) = f(x0) +

∫ x

x0

g(x̃)dx̃. (1.114)

In this sense we implement a generic integration scheme that we call integral
from the left because we choose to impose the boundary condition at x0 = X− = −1:

IL(X) = I(X−) +

∫ X

X−

dX ′ f(X ′). (1.115)
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To compute we can follow a similar scheme than in the derivative case:

∫ X
X−

: {Ui}
DCT−→ {an}

∫
−→ {bn}

DCT−→ {(
∫ X
X−
U)i} , (1.116)

where {bn} are the spectral coefficients associated with the integral IL(X), and their
relation to the spectral coefficients of the function f(X), {an}, are given by

bLN =
aN−1

2N
, (1.117)

bLn =
1

2n

{
c̄n−1 an−1 − an+1

}
n = [N − 1, 1] , (1.118)

bL0 = I(X−)−
N∑
n=1

bn (−1)n . (1.119)

Imposing the boundary condition in the right boundary x0 = I(X+) = +1, the
process is totally equivalent:

IR(X) = I(X+) +

∫ X+

X

dX ′ g(X ′), (1.120)

where the expression for the spectral coefficients for the integral are:

bRN = − 1

2N
aN−1, (1.121)

bRn = − 1

2n
(cn−1 an−1 − an∂1) n = [N − 1, 1], (1.122)

bR0 = I(X+)−
N∑
n=1

bRn . (1.123)

1.3.2 Multidomain PSC Method

The identification of the computational domain with a Lobatto-Chebyshev grid
is not very practical in general. Even with the use of the non-trivial mappings
defined in the previous section. To provide more flexibility to we are going to use a
multidomain scheme, where the computational domain, say Ω = [xL, xR], is divided
in several in several disjoint domains:

Ω =
D−1⋃
a=0

Ωa , Ωa =
[
xa,L, xa,R

]
, (1.124)
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Figure 1.6: Structure of a Dual Grid. Diagram that shows the structure of a
simple example of dual grid. The main grid(in purple) is composed of three
domains and the dual grid (in green) is shift and have ones less domain. The
blue line showed the π(x) function of Eq. (1.129).

we are going to call this the multidomain scheme. Each of the domains is mapped
into a spectral one Xa = [−1,−1] using, by convenience 3 a linear mapping:

x −→ Xa(x) =
2x− xa,L − xa,R
xa,R − xa,L

. (1.125)

and the inverse one is:

Xa −→ x(Xa) =
xa,R − xa,L

2
Xa +

xa,L + xa,R
2

. (1.126)

and the Jacobian of the transformation is given by:

dx

dXa

=
xa,R − xa,L

2
, (1.127)

where of course it is going to be different for each domain if they do not have the
same coordinate length.

As we are going to see in Sec. 4.3, sometimes the computation of the derivative
in the Lobatto-Chebyshev grid produces an accumulation of error in the points near
the boundaries respect to the interior ones. In order to increase the precision we can
use a dual grid scheme as it can be seen in Fig. 1.6. Here we superpose a second grid
with the domains centred in the middle points of the original grid domains. When
we compute the derivative in this dual grid, the points of lowest error coincide with
the place where the error is maximum in the original domains. Once we have the

3We suppose here the simplest scenario but the domains can be map in a more general manner
and also the mapping can be different in each of them.
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derivatives in both grids, we can compute the ultimate derivative as a weighted
sum of the original and the dual one as:

f ′(x) = π(x)f ′main(x) + (1− π(x))f ′dual(x) (1.128)

where π(x) is the partition function that takes values between zero and one, being
zero in the boundaries of the original domains and one in the boundaries of the
dual grid and that needs to be smooth between the boundary and the centre of the
domain. One example of a partition function is:

π(x) =
(x− xL) · (x− xR)

(x− xL) · (x− xR) + (x− x̄L) · (x− x̄R)
, (1.129)

Another advantages of the use of the multidomain scheme is the possible
parallelism that can be emerge from the independence of the different domains as we
are going to see in Sec. 4.3.3. This is obvious in the case of the derivatives where the
all the domains are completely independent but it also can be true in the integration
routines. Although the integral expression:

IL(x) = I(x0,L) +

∫ x

x0,L

dx̃ f(x̃), (1.130)

seems sequential because values of high x depend in the previous integrals, the full
integral can be computed in each domain separately

Ia(x) =

∫ x

xa,L

dx̃ f(x̃), (1.131)

and then the full integral can be computed as:

IL(x) = Oa + Ia(x), (1.132)

where Oa is a value different in each domain:

Oa = I(x0,L) +
a−1∑
i=0

I(xi,N). (1.133)

Both Eqs. 1.131 and 1.132 can be computed full independently in each domain
and the only sequential part is now 1.133. This computation represents an
insignificant part of the total computation and therefore should have very little effect
in the parallelism of the computation.

The main advantage of the use of multidomain in the PSC methods is the
flexibility that gives when we set our scheme. In a first approach, the domains can
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be distributed concentrating them in the region where we need more accuracy. This
is enough if we have the knowledge that the interesting physics is always happening
in the same region. If we do not know in advance or if the region of interest
moves during the simulation, the only way of avoid the necessity of increasing the
resolution in the whole computational domain is to use adapting mesh refinement
(AMR) techniques. In PSC methods this can be done by changing the location an
distribution of the domains according with the demands of the simulation at each
time. Not only that, the convergence of the spectral interpolation, make the regriding
between the old and the new grids very efficient and accurate introducing almost no
error during the operation. The use of AMR is going to be crucial in Chapter 2 where
it is described one particular case of application.
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Chapter 2

Critical Collapse in Asymptotically
Anti-de Sitter Spacetimes

Mirrors should think longer before
they reflect.

Jean Cocteau

The discovery of critical phenomena in the general relativistic gravitational
collapse by Matthew Choptuik [1] remains nowadays as one of the main triumphs
of Numerical Relativity. Following the question on whether gravitational collapse
can form black holes with arbitrarily small mass [2], Choptuik investigated
the gravitational collapse of a massless scalar field in spherically symmetric
asymptotically flat spacetimes at the threshold between BH formation and
dispersion, with flat spacetime as the end state. It was found that such system
exhibits critical phenomena with the critical solution being discretely self-similar.

With the growing interest in the holographic methods provided by the AdS/CFT
correspondence [3, 4], the dynamics of critical collapse and the stability of AdS have
been studied in detail in the last years. The situation in AdS is very different from
the asymptotically flat case. For space dimension d ≥ 3, it has been shown that
massless spherically symmetric scalar fields exhibit an instability [5], known as the
AdS weakly turbulent instability, consisting in the formation of an apparent horizon
(AH) in the evolution of general families of initial configurations and, in principle,
for any value of the initial energy. This can be understood in terms of the global
AdS causal structure since lightlike signals can reach the AdS timelike boundary
in a finite proper time. Then, an initial configuration with arbitrary small initial
energy bounces repeatedly off the AdS boundary while the non-linearity of gravity
transfers energy from long wavelength to short wavelength modes (and hence the
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name turbulent in analogy to what happens in the case of fluid turbulence [6]), until
the profile becomes sharp enough to form an AH.

This chapter begins with an introduction to critical collapse where we review the
problem of the stability of Minkowski spacetime and see what are the properties of
the critical collapse there. Afterwards, we explain the structure and the main features
of global AdS. In the rest of the chapter we present new work on the critical collapse
in AdS spacetimes following Refs. [7, 8]. We start by introducing the Einstein-
Klein-Gordon (EKG) system of equations and, for the spherically symmetric case,
we adapt them to a Cauchy type formulation and to a characteristic formulation.
Then, we explain our numerical scheme, which includes an initial stage of Cauchy
evolution and a transition to the characteristic one when the collapse is approaching.
Finally, using this hybrid Cauchy-characteristic scheme, we present new numerical
results on the dynamics of AH formation that are completely different from the case
of asymptotically flat spacetimes.

2.1 Gravitational Critical Collapse

2.1.1 The Stability of Minkowski Spacetime

The concept of stability is one of the recurring topics in physics and in dynamical
systems. In General Relativity plays a crucial role in the analysis of the dynamics of
our spacetimes. In a simple manner, we can say that an spacetime is dynamical stable
if a perturbation introduced in the spacetime remains bounded through time. Let us
imagine a BH where we throw a small perturbation. If the system reacts using this
perturbation to increase a bit its mass or maybe getting rid of it by emitting radiation,
the final state is going to be very close to the initial spacetime. This is an example of
a stable scenario. But we can also imagine the case where the small perturbation
excites certail modes of the system developing an instability that “destroys” the
original spacetime and converts it into a complete different system, for instance by
the formation of horizon and / or singularities. This would mean that our spacetime
is unstable. This behaviour is present in all fields of physics from atmospherics to
plasmas or structure formation in astrophysics and, of course, it can also happen
in GR. In this chapter we are going to distinguish two different cases. The case of
linear stability in which the perturbation is infinitesimal and the non-linear case in
which the perturbation can be very small but finite and then the non-linear terms
of EFEs can not be neglected in order to study the evolution. The study of stability
is crucial for several reasons. Even if a solution is stationary, we cannot expect to
find it realised in the Universe if it is not stable. The Kerr solution can be the final
state of gravitational collapse but if a small perturbation can disrupt it, any Kerr BH
would disappear before we can observe it. This is not the case and due to the no-hair
theorem [9] Kerr is expected to be the final state of gravitational collapse.
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Figure 2.1: Possible End States for the Scalar Field Evolution. For an initial
massless scalar field, there exists only two possible end states: Minkowski
spacetime for small amplitudes and Black Hole formation for non-small ones.
The plot shows the evolution of the metric perturbations for the two possible
outcomes.

In the late eighties, Demetrius Christodoulou published a series of papers
[2, 10, 11, 12, 13] where he constructed analytically a general solution for the collapse
of small perturbations of a massless scalar field in spherical symmetry. In them, he
showed that for general initial conditions, the scalar field converges near the origin
and later, it disperses recovering Minkowski spacetime at future null infinity, J +.
This result uses the restrictions of spherical symmetry and small enough amplitude
of the scalar field. In any case, this was a step forward in the study of the stability of
flat spacetime. The full nonlinear general proof of the stability can be found in the
book that Christodoulou published with Sergiu Klainerman in 1994 [14].

As in all the previous works, we have been discussing small perturbations and
the question to try to answer is about what happens for not so small perturbations.
Do we still recover Minkowski spacetime? Do we find the formation of a BH? Can a
naked singularity appear?

2.1.2 Choptuik’s Work on Gravitational Collapse

The final and revolutionary answer to this question, in the case of massless
scalar fields in spherical symmetry, was provided by Matthew Choptuik in 1992 [1],
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Figure 2.2: Study of the Threshold in the Scalar Field Evolution. Green
lines show the evolution of configurations that end dispersing themselves while
purple ones represents configurations that end up collapsing. The zoom in
area represent a range in time of 3 · 10−3 in the last stages before collapsing /
dispersing.

although previous hints were presented by Choptuik himself [15] and by Goldwirth
and Piran [16]. The use of scalar fields in this case is not only a good approach
because it is the simplest. It is also because it ignores quantum effects that may create
stable stationary states that do not collapse. Indeed, in the case of degenerate stars,
quantum properties of matter establish a lower limit for the mass of an astrophysical
BH [17]. With scalar fields there are only two possible final states: (i) The formation
of a (Schwarzschild) BH. (ii) Dispersion of the scalar field leading to flat space as
the final state of the evolution. In Fig. 2.1 we can see two evolutions that show
this situation. The plot shows the evolution of a perturbation measured by the
maximum of a particular metric function in a given time. This function is zero for a
Minkowski spacetime and it is one when an apparent horizon is formed. When the
perturbation is small the scalar field evolves until it disperses. In the case where the
amplitude is big enough the scalar field collapses forming an AH when approaching
the origin. In the works previously mentioned, different numerical schemes are
used. A multigrid Cauchy formulation in Ref. [15] and a characteristic formulations
like the one introduced by Christodoulou in Ref. [16].

This result anticipates the existence of a threshold between the two final states
described before. The study of this separation region needs very high computational
precision and that was achieved in Ref. [1] and later in Ref. [18] using the
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characteristic formalism. We can study in detail what happens when we approach
more and more this threshold as it is shown in Fig. 2.2. In that plot, we can see not
only a clear threshold around a certain amplitude, that we call the critical amplitude,
but also how in the proximity of it there appear some “oscillations” that become
more and more compact over time. Notice the zoom-in plot inside Fig. 2.2 where the
“oscillations” previously mentioned can be observed in a time range of ∆t = 3 · 10−3

before the collapse takes place.

What these oscillations indicate is a self-similar structure that appears for any
dimensionless quantity Z, that is:

Z(t, r) = Z(e∆t, e∆r), (2.1)

where ∆ is called the echoing period. When this type of symmetry is found, the critical
solution is called discrete self-similar (DSS).

Apart from this, Choptuik studied the BH formed as the end state for the
supercritical solutions, the ones above the critical amplitude. The mass of the BH
formed was found to be given by the location of the AH formed:

MBH = 2rAH . (2.2)

Considering the amplitude p of the initial scalar field configuration and the critical
amplitude pc, a representation of what happens for p & pc can be seen in the left plot
of Fig. 2.3. The mass of the formed BH presents a scaling law given by:

MBH ∼ (p− pc)γ, (2.3)

where the exponent γ of this power law can be determined by a direct linear fitting:

log (MBH) = β + γ (p− pc) , (2.4)

where the importance of β and γ will be discussed later. As a connection with
statistical mechanics, this kind of behaviour where the mass MBH presents a
continuous behaviour in the critical point is denominated critical behaviour of Type
II.

When the solution is DSS, as in the case of massless scalar fields, a finer structure
can be found [19, 20]:

log (MBH) = γ log(p− pc) + c+ f(log(p− pc)) , (2.5)

where f(x) is a periodic function with period ∆/2γ. After analysing different
families of initial conditions with different profiles, Choptuik conjectured that both
the scaling exponent, γ ≈ 0.374, and the echoing period, ∆ ≈ 3.44, are universal.
That is, they are the same for any family of initial conditions. On the other hand, β
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Figure 2.3: Scaling of the AH Mass of the Formed BHs. The left plot represents
the mass of the BH as a function of the amplitude of the perturbation. On the
right, the logarithmic scaling of the maximum of the scalar of curvature as in Eq.
(2.6) (up) and subtracting the linear part (bottom).

and pc depend on the family of initial configurations we propose.

The previous results have another important implication. We mentioned that
one of the reasons for using scalar fields is to avoid quantum effects that create
stable intermediate states. Those effects present in the physical gravitational collapse
provoke that in stellar collapse, the minimum mass that a BH can have is a
value between two and three solar masses (the Tolman–Oppenheimer–Volkoff limit
[21, 22], the exact value of this limit depends on the equation of state of the type
of matter considered). This is not the case here. As it can be seen in Eq. (2.4), it is
possible to generate arbitrary small BHs from the collapse of massless scalar fields,
and hence it is a real possibility to have BH in a range of masses smaller than the
stellar ones.

Later on, it was shown that the same analysis can be done using the scalar of
curvature at the origin [23]. The exact solution described by Eq. (2.1) exists only in
the case where p = pc but this exact value is impossible to reach numerically. From
Fig. 2.2 we can intuit that the approach to the critical solution can be done both
from the subcritical solutions and from the supercritical solutions. Since in the case
of subcritical configurations the final state is meaningless because we are always
going to recover flat spacetime, we need to use some value before the dispersion.
The quantity to track is going to be the scalar of curvature R at the origin. It can be
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Figure 2.4: Difference between the AH Mass and the Final BH Mass. From now
on, we call MAH to the mass of the first AH formed in the evolution. Not to be
confused with the asymptotic mass that coincide with the event horizon.

shown that the maximum of R during the evolution scales as:

log Rmax|r=0 = (−2γ) log(pc − p) + b+ f(ln(pc − p)) , (2.6)

where the exponent this time is 2γ and the period of f is ∆/2γ. We show this scaling
in Fig. 2.3. In the right upper plot, we can see the logarithm of the maximum of
the scalar of curvature with respect to the logarithm of the difference between the
parameter p of the initial configuration to the critical where the linear behaviour is
used to estimate the critical exponent γ. In the right bottom plot, we subtract the
linear fitting, we can see the periodic structure from where the echoing period can
be estimated. We plotRmax and notMBH for the sake of clarity. In the behavior of the
scalar of curvature, the oscillatory structure is more prominent and hance easier to
notice. If we would have plotted log(MBM) we would not have seen the oscillations
without the subtraction of the linear fitting.

In the section we have used the term BH mass but this can mean different things.
As Ref. [24] points out, when the first AH is formed, there is still energy from the
scalar field going through the AH increasing in this way the mass of the BH until all
the scalar field is disperse towards infinity or it is absorved by the AH. This is the
moment when the AH and the event horizon (EH) coincide. This process can be seen
in Fig. 2.4. What we have called MBH until now is the mass of the first AH formed
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Figure 2.5:
Left Plot: Phase Space of the Critical Collapse. The evolution of a given initial
configuration can end in one of the two fixed points (BH or flat space) depending
only in the magnitude of the parameter that characterise the family of initial
configurations. The threshold is the plane p = pc which contains an unstable
attractor (the critical solution). Figure taken from [25].
Right Plot: Conformal Diagram of the Critical Solution. Diagram for all generic
DSS continuations [26] of the scalar field critical solution where a timelike naked
singularity appears. There are also continuations where a regular centre appears
but it also contains one spacetime point with the naked singularity.

that is the quantity that presents the critical scaling found by Choptuik and that from
now on we will call the AH mass, MAH , to avoid confusion. The final mass, defined
as the asymptotic limit at J + does not present the critical scaling [25].

2.1.3 The Critical Solution

Although in the numerical work of Choptuik, the limit p = pc is not reachable,
one can approach it to a level that indicates that for p ≈ pc there exists a critical
solution acting as an intermediate attractor that separates the two stable end states
of the evolution of our system. This is illustrated in the phase space of the left plot of
Fig. 2.5. The BH threshold separates the parameter region where we end up in the
flat spacetime fixed point from the region that heads to the BH fixed point. Moreover,
tuning our initial parameter to start as close as we can to the critical one, p ≈ pc, the
evolution is attracted to the critical solution and shows the properties of it for a while
before ending in one of the stable end points.

The critical solution shows a discrete homotheticity, or scale invariance, with
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a logarithmic factor ∆, see Eq. (2.1). Few years after Choptuik’s paper, Carsten
Gundlach [27, 19, 26] used this symmetry to formulate an eigenvalue problem from
which he constructed the critical solution. In the right plot of Fig. 2.5 we can see a
spacetime continuation beyond the Cuachy horizon of the critical solution [26]. The
red region represents an asymptotically flat region with a timelike naked singularity.

This is surprising in the sense that it means that we can tune our scalar field
to p = pc and then generate a naked singularity starting from smooth initial data.
This would imply a violation of the cosmic censorship hypothesis, which states that
no observer at future null infinity should be in causal contact with any singularity.
In reality, this case is nothing to worry about because, as we have seen, the critical
solution only happens in the case of a “perfect” tuning and this will not happen in
nature.

2.1.4 Generic Gravitational Critical Collapse

The discussion up to this point is about the case of a massless scalar field in
spherical symmetry. We have focused on it because it was the first one to be analysed
in depth and also because presents a lot of similarities with the AdS case although,
of course, the change of the spacetime structure is going to modify the outcome of
the evolution.

Since the nineties, critical phenomena has been found in a variety of different
systems in gravitational collapse, finding a rich structure that only depends on the
details of the physical system. In the Einstein-Yang-Mills case [28] a new phase with
a gap in the BH mass, called Type I, appears along with the usual Type II phase.
Similar to what happens also in the massive scalar field case [29, 30]. The case of
higher dimensions have also been studied [31, 32]. The 2+1 case is not interesting in
asymptotically flat spacetime because BHs cannot exist there, but it is interesting in
AAdS spacetimes [33, 34]. In addition, AdS in 3+1 was studied in Ref. [35] and the
main results so far are reviewed in the following section.

The study of gravitational collapse is in general difficult because of the numerical
issues that arise in the moment of the collapse, specially for configurations near
the critical point. For this reason, going beyond spherical symmetry is always
a challenge. Nevertheless, there exist some examples, like the axisymmetry case
[36], that prove that critical behaviour in gravitational collapse is not an artifact
of spherical symmetry. A complete review of the different scenarios where critical
gravitational collapse has been studied can be found in Ref. [25].
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Figure 2.6: Penrose Diagram of AdS. The boundary of AdS is reachable by null
geodesics (in red) in a finite time as measured at the origin.

2.2 Anti-de Sitter Spacetime

2.2.1 “The Infinite Box”

Anti-de Sitter spacetime is the maximally symmetric solution of the Einstein
equations with negative cosmological constant [37]:

Rµν −
1

2
gµνR + Λgµν = 0. (2.7)

Indeed, as we saw in the previous chapter, in this case the Ricci tensor (and the
Riemann tensor) are fully determined by the scalar of curvature and the EFEs reduce
to:

R = 4Λ. (2.8)

As we can see from this equation, we have a spacetime of constant negative
curvature. The group of symmetries of this spacetime has ten parameters, which
is the maximum number that it is possible in four dimensions, Ref. e.g. [37], and
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hence it is maximally symmetric as it has been already mentioned, and so they are
Minkowski and de Sitter spacetimes.

In spherical coordinates, the metric of AdS can be written as:

ds2 = −
(

1− Λ

3
r2

)
dt̄2 +

(
1− Λ

3
r2

)−1

dr2 + r2dΩ2, (2.9)

where r is a radial coordinate in the range (0,∞] and the temporal coordinate t̄ is
in (−∞,∞). We can introduce the AdS length scale ` =

√
−Λ/3, a compactified

dimensionless spatial coordinate x and an dimensionless time t and then we can
write the line element in the form:

ds2 =
`2

cos2(x)

(
−dt2 + dx2 + sin2 x dΩ2

)
. (2.10)

In these coordinates we have mapped the boundary of AdS (from now on ∂AdS)
from r = ∞ to x = π/2. Since the temporal coordinate t is not bounded, reducing
one of the angular coordinates, we can see AdS as an infinite cylinder in three
dimensions. In Fig. 2.6 we show a conformal diagram where we see that the
boundary, ∂AdS, is a timelike hypersurface [38, 39]. However, for any point in the
interior region, the bulk, the distance to the boundary is infinite:

l =

∫ ∂AdS

x

gxx =∞. (2.11)

On the other hand, the radial null geodesics are just:

dx

dt
= ±1, (2.12)

and then a light ray can go to the boundary and come back. If we take an observer
at the origin, he just need to wait a time t = π for the light ray to come back. For this
reason we can say that AdS is like an infinite box.

Both the coordinates of Eq. (2.9) and Eq. (2.10) represent the “whole” spacetime
in what is usually known as global AdS. In most applications of the AdS/CFT
correspondence, only a patch of the full spacetime is used correspondence but this
will be explained in the next chapter.

One important question is how the cosmological constant affects the BH
solutions, do they still exist? The answer is yes and one example can be seen in
the conformal diagram of Schwarzschild-AdS (Fig. 2.7) where the spacetime looks
very similar to the Schwarzschild spacetime. The only difference is, of course, the
asymptotically AdS region (AAdS) outside the event horizon with the distinctive
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Figure 2.7: Penrose Diagram of Schwarzschild-AdS. The solution is similar to
the Schwarzschild metric with the different of the conformal boundary of AdS.

AdS boundary. In spherical coordinates the line element can be written as:

ds2 = −
(

1− 2GM

r
+
r2

`2

)
dt̄2 +

(
1− 2GM

r
+
r2

`2

)−1

dr2 + r2dΩ2, (2.13)

where M is the BH mass.

The case of the BTZ black hole (Bañados, Teitelboim and Zanelli; see Ref. [40]) is
also very interesting. It is a solution in 2+1 dimensions with negative cosmological
constant that represents a BH with mass, angular momentum and electrical charge.
The finding of such solution produced some surprise because in flat spacetime there
are no BH solutions for lower dimensions than 3+1. The BTZ solution shares with
the asymptotically flat Kerr solution some properties like the thermodynamics and
the horizon structure but with less dimensions, what makes it easier to study. Due
to that, the first studies in critical collapse at AAdS were done in 2+1 by Pretorius
and Choptuik ([33]) where they studied the critical solutions and the causal structure
of this spacetime. Another examples of the study of this gravitating collapse in 2+1
AAdS can be found in Refs [34, 41].
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Figure 2.8: AH Radius in AdS. The rightmost branch is the equivalent to
Choptuik’s where the collapse happens without influence of the boundary. Each
of the branches to the left of this one correspond with configurations that have
bounce off in the boundary one more time for each branch and, up to the precision
of the numerical computations, it seems that any configuration with arbitrary
small amplitude will collapse. Original figure from [5].

2.2.2 The Turbulent Instability of Global AdS

A great revolution in our understanding of the asymptotically AdS spacetimes
came in 2011 with the work of Bizoń and Rostworowski [5]. When the applications
of AdS/CFT were creating more and more expectations they raised the question, is
global AdS stable? This is of course very important if we want to develop tools to
study asymptotically AdS spacetimes. They proposed the evolution of a massless
scalar field in a Cauchy formulation similar to the one used by Choptuik [1] and also
to the one presented in Eq. (2.10). Although the matter content is the same as in the
case of cosmological constant, there is a big difference: the presence of a boundary
that confines our scalar field as described in the previous section and also illustrated
in Fig. 2.6. For low amplitudes the scalar field would disperse to infinity in an
asymptotically flat spacetime but here in AAdS this dispersion is impossible. What
it was shown in Ref. [5] is that there exist an energy transfer during the bounces of
the AdS boundary from low to high frequency modes that triggers a weakly turbulent
instability that provokes a collapse for “any” initial amplitude of the scalar field.
The plot in Fig. 2.8 shows the position of the formed AH, xAH , as a function of
the initial amplitude of the scalar field, ε. The points on the right correspond to
configurations collapsing directly without reaching the boundary. The next branch
to the left represents configurations that have collapse after one bounce off the AdS
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boundary and as we go to the left each of the branches collapses after one more
bounce.

The situation that emerges is that we have an “infinite” series, up to the numerical
precision B&R were able to achieve, of critical points {pn} with n being an integer
number from zero to, in principle, infinite. It was also suggested that, within
their numerical precision, the supercritical solutions follow the same scaling found
by Choptuik [1] in flat spacetime with the same critical exponent γ ≈ 0.37 and
that across critical points there exists a gap between the mass of the AH formed
coming from the supercritical configurations and from the subcritical ones. The exact
behaviour in the threshold between branches is going to be the key subject of this
chapter. A question that arises from the previous discussion is: is the boundary
the only responsible of the turbulent instability or the presence of a cosmological
constant also plays a role? One way of answering this question is to place an artificial
boundary in an asymptotically flat spacetime like it is done in Refs. [42, 43, 44, 45, 46].
In that system, the same general behaviour of Fig. 2.8 is observed, although in the
next sections we are going to discuss that some quantitative features of the subcritical
configurations appears to be different [7, 8, 46].

There are still some open questions about this instability, in particular about
how generic it is. Studies like those in Refs. [47, 48] show the existence of quasi-
periodic solutions for widely spread initial configurations in which all the modes
are initially populated and therefore the turbulent cascade of energy modes cannot
happen. Although the existence of this kind of solutions is known, there is a debate
about how large is the the size of the stable solutions in the space of possible
initial configurations. There is some evidence obtained by combining non-linear
perturbation methods and numerical simulations that these stable solutions can be
somehow more general [49, 50] but this result has been put in question [51, 52] so
that are still some discrepancies about the real importance of these stable solutions.

2.3 Formulation of the Field Equations

The field equations for a self-gravitating, real massless scalar field φ in an AAdS
spacetime are the EKG equations for the metric gµν :

Gµν + Λgµν = (d− 1)
(
φ;µφ;ν − 1

2
gµνφ;αφ

;α
)
, (2.14)

gµνφ;µν = 0 , (2.15)

where Gµν is the (d + 1)-dimensional Einstein tensor and Λ is the (negative)
cosmological constant.

We restrict our study to spherically symmetric configurations. This assumption
simplifies the structure of the spacetime metric and the field equations. Spherically
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symmetric spacetimes have a warped geometry, which means that their metric
tensor can be written in the form:

ds2 = gAB(xC)dxAdxB + r2(xC)γabdx
adxb, (2.16)

with A,B,C, ... = 0, 1 and a, b, c, ... = 2, ..., d. The object gAB is a Lorentzian metric,
with associated two-dimensional manifoldM2, γab is the metric on the (d−1)-sphere,
with associated manifold Sd−1, and r = r(xA) is the radial area coordinate with
depends only on the coordinates of M2. The fact that r2(xC)γab is not a true metric
on Sd−1 is what prevents the spacetime manifold Md+1 to be a true product of the
two manifolds M2 and Sd−1. Instead, it is said that the spacetime manifold is the
warped product of M2 and Sd−1 and this is sometimes denoted in the literature as
Md+1 = M2 ×r Sd−1.

We can freely choose the coordinates in the Lorentzian manifoldM2. In this work
we will consider two different choices according to the type of spacetime slicing that
they induce:

• Timelike slicing: We will consider coordinates (xA) = (t, x) so that the
spacetime is sliced in spacelike (with timelike normal 1-form) hypersurfaces
{t = const.}. In addition, we take x to be a radial coordinate that compactifies
the radial direction so that it is in the range x ∈ [0, π/2], where x = 0
corresponds to the centre of the radial coordinate system and x = π/2
corresponds to the AdS boundary. Using these coordinates we can set up a
Cauchy-type system of evolution equations with some constraints. Given the
causal structure of AAdS spacetimes, the scalar field can propagate to reach the
AdS boundary in a finite time. Previous works on this problem (see, e.g. [5, 53])
showed that we can expect the field to bounce off the AdS boundary a number
of times and eventually collapse near the centre x = 0. It is for this reason
that we use the compactified coordinate x in order to track the field up to the
AdS boundary as many times as needed. The equations for this formulation
are given in Sec. 2.3.1.

• Lightlike slicing: We will consider coordinates (xA) = (u, r) so that the
spacetime is foliated by outgoing null hypersurfaces (composed by outgoing
null rays) {u = const.}. The radial coordinate r is not a compactified radial
coordinate as in the previous case, in the sense that the AdS boundary is located
at r → ∞. This system of coordinates allows us to set up a characteristic-
type system of evolution of equations. In contrast to the coordinates (t, x), the
coordinates (u, r) do not allow us to follow the field up to the AdS boundary.
Instead, we want to use them in order to track the evolution of the field near
collapse, that is, near the centre r = x = 0. The fact that the {u = const.}
hypersurface are outgoing means that as we evolve in u we approach faster
the collapse than in the case of the Cauchy evolution. As we will see, the
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characteristic evolution allows us to get much closer to the formation of an AH
than the Cauchy evolution. The equations for this case are given in Sec. 2.3.2.

2.3.1 Cauchy-type Evolution of the EKG System

Following previous work on the evolution of scalar fields in AdS [5, 54] and our
previous discussion, the metric of an spherically symmetric AAdS spacetime in d+1
dimensions can be written as

ds2 =
`2

cos2 x

(
−Ae−2δ dt2 +

dx2

A
+ sin2 x dΩ2

d−1

)
, (2.17)

where dΩ2
d−1 is the metric of the unit (d− 1)-sphere Sd−1, A and δ are the two metric

functions that completely determine the metric and depend only on (t, x), and ` is the
AdS length scale, which is related to the cosmological constant Λ by the expression:

`2 = −d(d− 1)/2 Λ. (2.18)

The dimensionless time coordinate t has an infinite range, i.e. t ∈ (−∞,∞), whereas
x is a radial compactified coordinate that goes from x = 0 (centre) to π/2 (AdS
boundary). We can recover AdS spacetime by setting A = 1 and δ = 0.

From the Eqs. (2.14) and (2.15) we can derive partial differential equations (PDEs)
for A, δ, and ψ (see, e.g. [5]). We are interested in discretising our equation using
the pseudospectral multidomain method, see Sec. 1.3 for details. In this sense,
and to have a proper communication between the boundaries of the domains, we
need a first order formulation of the equations based on the characteristic variables
associated with our dynamics. The Klein-Gordon equation (2.15) for our metric
becomes the following second order PDE:

φ̈− A2e−2δφ′′ =
Ȧ

A
φ̇− δ̇φ̇+ Ae−2δφ′A′ − A2e−2δδ′φ′

+ (d− 1)
A2e−2δ

cosx sinx
φ′ .

To reduce the order of the equation we introduce the variables:

Π = φ̇ , Φ = φ′ . (2.19)
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The equations for our dynamical variables W = (φ,Π,Φ) constitute a first order
system of PDEs that can be derived from these definitions and from Eq. (2.19):

φ̇ = Π , (2.20)

Π̇− A2e−2δΦ′ =
Ȧ

A
Π− δ̇Π + Ae−2δA′Φ

− A2e−2δδ′Φ + (d− 1)
A2e−2δ

cosx sinx
Φ , (2.21)

Φ̇− Π′ = 0 . (2.22)

This set of first order PDEs admits the following compact form:

∂tW +A[x,W ] · ∂xW = S[x,W ] , (2.23)

where A is a matrix and S a vector that depend on the radial coordinate x and the
variablesW . From Eqs. (2.20)-(2.22), the components of the matrix A are:

A =

0 0 0
0 0 −A2e−2δ

0 −1 0

 , (2.24)

and the components of the vector S are:

S =

 Π
Ȧ
A

Π− δ̇Π + Ae−2δA′Φ− A2e−2δδ′Φ + (d− 1) A2e−2δ

cosx sinx
Φ

0

 . (2.25)

The characteristic structure of this hyperbolic system of first order PDEs is
determined exclusively by the matrix A, see Sec. 1.2.3 for details, in such a way that
the eigenvectors of A correspond to the different characteristic fields of the system
and the eigenvalues to the characteristic speeds associated with the eigenvectors. To
study the hyperbolicity of the problem, we have to solve the eigenvalue problem:

AE = σE , (2.26)

where E is a vector in the space {(φ,Π,Φ)}. By analysing Eq. (2.26) we find that we
have a complete set of real eigenvalues and eigenvectors, so our system is strongly
hyperbolic, as expected for a system of PDEs that is equivalent to the Klein-Gordon
equation. The resulting set of eigenvalues and eigenvectors is:

σ1 = 0 −→ E1 = (1, 0, 0) , (2.27)
σ2 = +Ae−δ −→ E2 = (0,−Ae−δ, 1) , (2.28)
σ3 = −Ae−δ −→ E3 = (0,+Ae−δ, 1) . (2.29)

The existence of the complete set of eigenvectors here obtained allows us to choose
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a new set of variables, the characteristic variables, that have a known propagation
velocity, these eigenvalues. The field φ does not propagate, or in other words, it
propagates with zero speed, and we also have two more characteristic fields that
propagate with speeds ∓Ae−δ. We can diagonalise the matrix A by using the matrix
transformation: A = K·DA ·K−1, whereDA = diag(0, A e−δ,−Ae−δ) andK is a matrix
whose columns are made out of the eigenvectors Ei, that is K = (E1,E2,E3). This
transformation defines a new set of variables Y as follows: Y = K−1 ·W . We can
see that the principal part of our set of equations becomes completely decoupled for
the variables Y . These are the characteristic variables. The first one is φ, with zero
associated propagation speed (eigenvalue), and the other two are:

Y+ = Φ− Π

Ae−δ
, (2.30)

Y− = Φ +
Π

Ae−δ
. (2.31)

The characteristic variable Y+ propagates with speedAe−δ and Y−with speed−Ae−δ
respectively. Since Ae−δ > 0, Y+ is a field propagating to the right and Y− is a field
propagating to the left. For the purpuse of the numerical implementation of our
equations, we rescale the variables by a cosine factor and the final version of our
characteristic variables is:

U =
1

cosd−2 x

(
φ′ − eδ

A
φ̇

)
, (2.32)

V =
1

cosd−2 x

(
φ′ +

eδ

A
φ̇

)
. (2.33)

We also introduce the normalised version of the scalar field itself:

ψ =
φ

cosd−1 x
. (2.34)

The use of the (U, V ) variables is crucial for our numerical scheme. As we have
seen, these characteristic variables have a well defined propagation direction and
that allows us to know how to deal with the fields at the boundaries between
the different domains. In Fig. 2.9 there is a diagram of the algorithm used in our
formulation. In principle, the right boundary of one domain and the left boundary
of the following represent the same physical point and therefore they must be
identified. The evolution ODEs that result from the spatial discretisation with the
PSC method are solved in just one of these two points and then copied to the
other. Which point we compute is determined by the propagation direction of the
corresponding field as, it is shown in the figure. These variables are not important
only for the domain boundaries but also for the global boundaries, x = 0 and
x = π/2. With the characteristic variables any kind of boundary conditions can be
set in a clear and simple manner.
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Figure 2.9: Diagram of the Multidomain Structure for PSC Methods. The
evolution variables need to be communicated between domains using the
characteristic variables, U and V , which have a well defined direction of
propagation. The communication is done by copying the boundary values in
the direction indicated by the arrows.

From Eqs. (2.14) and (2.15) we derive the set of PDEs for (ψ,U, V,A, δ):

(i) Evolution equations:

ψ̇ =
Ae−δ

2 cosx
(V − U) , (2.35)

U̇ = −Ae−δU,x −
(d− 2 cos2 x)

sinx cosx
U e−δ (1− A)

− 1
2

(d−1)Ae−δ

sinx cosx
(U + V ) + (d− 2) sinx

cosx
U Ae−δ , (2.36)

V̇ = Ae−δV,x +
(d− 2 cos2 x)

sinx cosx
V e−δ (1− A)

+ 1
2

(d−1)Ae−δ

sinx cosx
(U + V )− (d− 2) sinx

cosx
V Ae−δ , (2.37)

Ȧ = −1
2
A2e−δ sinx cos2d−3 x (V 2 − U2) , (2.38)
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(ii) Constraint equations1:

A′ =
d− 2 + 2 sin2 x

sinx cosx
(1− A)

− A

2
sinx cos2d−3 x

(
V 2 + U2

)
, (2.39)

δ′ = −1
2

sinx cos2d−3 x (V 2 + U2) . (2.40)

It is interesting to note that we have an evolution and a constraint equation for A.
As we have already indicated, only the scalar field sector has a hyperbolic structure,
Eqs. (2.36) and (2.37), while the evolution of A does not contain any gradients of the
variables. In practice, we can solve for A either by evolving it using Eq. (2.38) or by
solving Eq. (2.39) which only involves radial derivatives. On the other hand, from
the definitions of U and V , Eqs. (2.32) and (2.33), we can find a constraint equation
for the scalar field φ:

φ′ =
1

2
cosd−2 x (U + V ) , (2.41)

and therefore, a contrain equation also for the normalised scalar field ψ:

ψ′ = ψ
sinx

cosx
(d− 1) +

1

2

U + V

cosx
. (2.42)

Then, like in the case of A, we can solve for ψ either by evolving Eq. (2.35) or by
solving this constraint equation.

To be able to solve Eqs. (2.35)-(2.42) we need boundary conditions at the centre
x = 0 and at the AdS boundary x = π/2. Near x = 0 we find that the scalar field
variables admit the following power expansion:

ψ = ψ0 + ψ2 x
2 +O(x4) , (2.43)

U = U0 + U1 x+ U2 x
2 +O(x3) , (2.44)

V = −U0 + U1 x− U2 x
2 +O(x3) , (2.45)

and the metric functions have the expansions:

A = 1 + A2x
2 +O(x4) , (2.46)

δ = δ0 + δ2x
2 +O(x4) , (2.47)

where δ0 is a time-dependent quantity always greater than zero.

1The distinction between evolution and constraint equations we use here is not in correspondence
with the evolution and constraint equations of the well-known 3+1 ADM formalism introduced in
Sec. 1.2.1.
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We can also obtain a power expansion near the AdS boundary by introducing a
coordinate change in the radial direction:

ρ = π/2− x. (2.48)

Then, the expansions for the normalised scalar field ψ and the characteristic variables
U and V are:

ψ = ψ1ρ+O(ρ3) , (2.49)
U = U1ρ+ U2ρ

2 +O(ρ3) , (2.50)
V = U1ρ− U2ρ

2 +O(ρ3) , (2.51)

and for the metric functions A and δ:

A = 1 +O(ρd) , (2.52)

δ = O(ρ2d) . (2.53)

From this expansions we obtain the boundary conditions for the origin:

ψ = ψ0 (2.54)
U = −V (2.55)
A = 1 (2.56)
δ = δ0 (2.57)

and for the AdS boundary:

ψ = U = V = 0 (2.58)
A = 1 (2.59)
δ = 0 (2.60)

2.3.2 Characteristic-type Formulation of the EKG System

For the characteristic evolution, we adapt the scheme used in Refs. [16, 18] to the
case of AAdS spacetimes with spherical symmetry. The form of the metric is:

ds2 = −gḡ du2 − 2g dudr + r2 dΩ2
d−1 , (2.61)

where u is an outgoing null coordinate (u = const. is a family of outgoing null
geodesics) and r is the radial area coordinate. The coordinate range for (u, r) is:
u ∈ (−∞,∞) and r ∈ (0,+∞). The AdS boundary corresponds to r → ∞. The
functions g = g(u, r) and ḡ = ḡ(u, r) are always greater that some normalisation
value at the origin that we choose to be unity. The AdS limit for the metric variables
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is:
g → 1,

ḡ → 1 +
r2

`2
.

(2.62)

The coordinates (u, r) have dimensions of length and, throughout this chapter, the
numerical values that we quote are in units of the length scale `.

To write down the field equations, Eqs. (2.14) and (2.15), in the coordinates of
Eq. (2.61) we introduce two variables associated with the scalar field φ:

h̄ = φ , (2.63)

and

d− 1

2
r
d−3
2 h =

(
r
d−1
2 h̄
)
,r
. (2.64)

Then, we can recover h̄ from h by integration as follows

h̄(u, r) =
d− 1

2
r

1−d
2

∫ r

0

r′
d−3
2 h(u, r′) dr′ . (2.65)

Moreover, from the (r, r) and (u, r) components of the EFEs for the metric of
Eq. (2.61), we get:

g,r = rg(h̄,r)
2 , (2.66)(

rd−2 ḡ
)
,r

=

(
d− 2 + d

r2

l2

)
rd−3g , (2.67)

and from here, we can solve for the metric variables (g, ḡ) in terms of the scalar field
variables (h, h̄) as follows:

g(u, r) = exp

{
(d− 1)2

4

∫ r

0

dr′
(
h(u, r′)− h̄(u, r′)

)2

r′

}
, (2.68)

ḡ(u, r) =
1

rd−2

∫ r

0

dr′
(
d− 2 + d

r′2

`2

)
r′d−3 g(u, r′) . (2.69)

Therefore, we can find all the variables of the problem from h. An important
observation about Eq. (2.69) is that both the numerator and denominator of the right-
hand side go to zero as we approach the origin, i.e. r = 0, although they do it in a
way that the limit is well-defined and finite. However, this can problematic from the
point of view of the convergence of a numerical algorithm. Then, following [31, 32]
we can get an alternative form for this equation by using integration by parts. The
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result is:

ḡ(u, r) =

(
1 +

r2

`2

)
g(u, r)−

− (d− 1)2

4 rd−2

∫ r

0

dr′r′d−3

(
1 +

r′2

`2

)(
h(u, r′)− h̄(u, r′)

)2
g(u, r′) ,

(2.70)

where we have used the boundary conditions at the origin and Eq. (2.68) for g(u, r).
Now, the second term in this equation goes to zero as we approach the origin
and hence, it is more amenable for numerical computations. The only remaining
equation is the one for h, which can be obtained from the Klein-Gordon equation 2.15

∂2h̄

∂u∂r
− 1

2

∂

∂r

(
ḡ
∂h̄

∂r

)
+
d− 1

2r

(
∂h̄

∂u
− ḡ ∂h̄

∂r

)
= 0 . (2.71)

Using Eq. (2.64), the equation for h is

∂h

∂u
− 1

2
ḡ
∂h

∂r
=
h− h̄

2 r

[(
d− 2 + d

r2

`2

)
g − d− 1

2
ḡ

]
. (2.72)

We use the characteristic initial-value problem in the traditional way, integrating
the hyperbolic equations along their associated characteristic lines (see, e.g. [55, 56]).
Then, we set up initial data on an initial outgoing null hypersurface {u = uo =
const.} and evolve that data onto the next one {u = uo + ∆u = const.} through the
ingoing null geodesics (the purple lines in Fig. 2.10), which are given by

dr

du
= −1

2
ḡ . (2.73)

Integrating along the ingoing null geodesics allows us to exchange partial
derivatives of our variables by total derivatives with respect to u. For instance, in
the case of the field variable h we have

dh(u, r(u))

du
=

(
∂h

∂u

)
r=r(u)

+

(
∂h

∂r

)
r=r(u)

dr(u)

du
, (2.74)

where r(u) is an ingoing null geodesic, a solution of Eq. (2.73). In this way we can
replace Eq. (2.72) by two ODEs, one for the variable h,

dh

du
=
h− h̄

2 r

[(
d− 2 + d

r2

`2

)
g − d− 1

2
ḡ

]
, (2.75)

and another one for r(u), namely Eq. (2.73). The first one, Eq. (2.75), tells us how to
evolve h from a {u = const.} hypersurface to the next one. The second one tells us
that the coordinate r of a point in {u = const.} changes following its own ingoing
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null radial geodesic.

The expressions of Eqs. (2.65), (2.70), (2.75) are problematic at r = 0 because of
the appearance of 1/r factors. To understand whether this produces a singularity or
the final results are finite we need to study the behaviour of our variables around
r = 0. Assuming the following expansion for the scalar field φ = h̄:

h̄ = φ0 + φ1 r + φ2 r
2 +O(r3) , (2.76)

we obtain the following expansions for the rest of variables:

h = φ0 +
d+ 1

d− 1
φ1 r +

d+ 3

d− 1
φ2 r

2 +O(r3) , (2.77)

g = 1 +
1

2
φ2

1 r
2 +O(r3) , (2.78)

ḡ = 1 +O(r2) . (2.79)

As we see, the 1/r factors should cancel and the final values needs to be finite and
can be computed through this expansions.

2.3.3 Transition between the two Formulations

During the Cauchy evolution we can monitor our variables to see when we
approach the formation of an AH. Then, at that point we can make the transition
from the Cauchy evolution of Sec. 2.3.1 to the characteristic evolution of Sec. 2.3.2
in order to follow better the dynamics near collapse. This transition consists in
constructing initial data on an initial null hypersurface {u = uo = const.} from the
outcome of the Cauchy evolution. To that end, it is important to cover a portion of the
spacetime that guarantees that the characteristic evolution will cover the formation
of the AH. This is illustrated in Fig. 2.10, where the first purple line (a null outgoing
geodesic) indicates the initial slice that we choose for the characteristic evolution.
As we can see, the initial data for the characteristic evolution needs to be computed
using the information from the Cauchy evolution corresponding to an evolution time
of ∆t ≈ π/2 in this way the AH formation is covered.

This transition requires to find the relations between different objects of the
Cauchy and characteristic evolutions. First, we need to find the relation between
the coordinates (t, x), used for the Cauchy evolution, and the coordinates (u, r) of
the characteristic one. The relation between the radial coordinates x and r is quite
straightforward considering the factor in front of the metric of the unit (d−1)-sphere
in Eqs. (2.17) and (2.61), from where we get:

r = ` tanx . (2.80)
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Figure 2.10: Cauchy / Characteristic Evolutions in AdS.. The green (mostly
horizontal) lines represent the energy density as computed using the Cauchy
evolution at different times (evolution goes in the vertical time direction). Blue
dashed lines are characteristics (outgoing null geodesics) computed through the
Cauchy data. Purple lines represent the null surfaces we have evolved using
the characteristic scheme, being the thickest purple line the initial one. The
characteristic grid moves according to Eq. (2.73) and therefore the range in r
covered decreases over time.

The second important ingredient is the construction of the initial null hypersurface
for the characteristic evolution from the information extracted from the Cauchy
evolution. This can be done by finding the outgoing null geodesics from the Cauchy
evolution. From the expression of the metric in Eq. (2.17) the outgoing null geodesics
are given by:

dx

dt
= +Ae−δ ≡ v(t, x) , (2.81)

where the plus sign denotes that these radial null geodesics are outgoing (a minus
sign corresponds to ingoing null geodesics). To integrate this ODE we need the
values of the metric functionsA(t, x) and δ(t, x), from the Cauchy evolution, over the
spacetime region that includes the null geodesics of interest. Some of these geodesics
are shown in a t− x diagram in Fig. 2.10.

The next important ingredient is the construction of initial data for the
characteristic evolution on one of the null outgoing geodesics that constitute the
slicing {u = const.}. To begin with, let us apply the coordinate transformation of
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Eq. (2.80), adding also the transformation:

τ = ` t, (2.82)

to the metric in Eq. (2.17). This brings the metric to a more familiar form:

ds2 = −Ae−2δ

(
1 +

r2

`2

)
dτ 2 +

dr2

A
(
1 + r2

`2

) + r2 dΩ2
d−1 . (2.83)

The AdS limit A→ 1 and δ → 0 gives us the well-known form of the AdS spacetime
metric. With this in mind, let us perform a general coordinate transformation from
the Cauchy-formulation metric to the characteristic-formulation metric:

τ = F(u, r) , (2.84)

which transforms the metric in Eq. (2.83) into the metric

ds2 = −Ae−2δ

(
1 +

r2

`2

)
F2
u du

2

− 2Ae−2δ

(
1 +

r2

`2

)
FuFr dudr

+

[
1− A2e−2δ

(
1 +

r2

`2

)2

F2
r

]
dr2

A
(
1 + r2

`2

)
+ r2 dΩ2

d−1 , (2.85)

where Fu ≡ ∂F/∂u and Fr ≡ ∂F/∂r. Now, let us impose two conditions on
the general coordinate transformation of Eq. (2.84). The first one comes from the
comparison of this general metric to the characteristic metric of Eq. (2.61) and the
fact that the vector ∂/∂r is a null vector for the second metric. This imposes the
condition:

grr = 0, (2.86)

on the general metric of Eq. (2.85). And this translates into the following condition
on F :

Fr =
1(

1 + r2

`2

)
Ae−δ

. (2.87)

Here we have made a sign choice. In the case of ingoing null geodesics we would
have chosen the opposite sign for Fr. The second condition that we impose on
the coordinate change has to do with the freedom in rescaling the coordinate u,
which is a freedom in the choice of the quantity Fu. Our choice, motivated by the
implementation of the Cauchy-characteristic transition, is:

Fu = eδ0 , (2.88)
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where δ0 is the value of the metric function δ at x = 0 = r. Now, by comparing the
line element in Eq. (2.85) with the one for the characteristic formulation in Eq. (2.61),
and using the conditions on the function F given in Eqs. (2.87) and (2.88), we find
the following relations between (A, δ) and (ḡ, g):

g = eδ0−δ , (2.89)

ḡ = Aeδ0−δ
1

cos2 x
, (2.90)

A =
ḡ

g
(
1 + r2

`2

) . (2.91)

These are key relations for the construction of the initial data at u = u0. Given that
AH formation in the Cauchy evolution is given by the limitA→ 0, from Eq. (2.91) we
have that in the characteristic evolution we can track AH formation by monitoring
the right-hand side of this equation using the values of (r, g, ḡ).

On the other hand, from our particular coordinate change, Eqs. (2.84), (2.87),
and (2.88), we have the following relation between τ and u (and r):

τ = u+ `

∫ x

0

dx′

v(t+(x′), x′)

= u+

∫ r

0

dr′(
1 + r′2

`2

)
v(t+(r′), r′)

, (2.92)

where t+(x) denotes the solution for the outgoing null geodesics, Eq. (2.81), and v is
the function of (t, x) defined there.

Finally, we give the relations between the metric and scalar field variables in both
formulations. First, ψ and h̄ are, by definition, directly related with the scalar field:

h̄ = φ = cosd−1 xψ . (2.93)

The scalar field variable h can be constructed along the outgoing null geodesics in
term of the Cauchy variables as follows:

h = h̄+
2

d− 1
r h̄,r

= φ+
2

d− 1
r(x)

(
∂x

∂r

∂

∂x
+
∂t

∂r

∂

∂t

)
φ

= cosd−1 x

(
ψ +

2

d− 1
sinx V

)
, (2.94)

where we have used Eqs. (2.33), (2.64), (2.80), and (2.92). It is important to notice that
h depends on the scalar field itself, through the variable ψ, and the ingoing (negative
speed) characteristic variable V [see Eq. (2.33)], but not on the outgoing (positive
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speed) characteristic variable U [see Eq. (2.32)]. The reason for this is that we are
carrying out the characteristic evolution using null slices made out of outgoing null
geodesics, and hence the evolution of h from one slice to the next one takes place
along ingoing null geodesics [see Eq. (2.73)].

In summary, Eqs. (2.89)-(2.94) provide all the information we need to construct
the initial null slice using the Cauchy evolution, the associated coordinate change,
and the initial data to initiate the characteristic evolution. This completes the
design of the procedure to perform the transition from the Cauchy evolution to the
characteristic one.

2.4 Basics of the Numerical Implementation

In this section we describe the basic ingredients for the numerical implementation
of the two evolution schemes and the transition between them. In the case of
the Cauchy evolution we use pseudospectral collocation methods with multiple
domains, building on previous works that have developed this type of techniques
for the computation of the self-force on a charge particle orbiting a black-hole
spacetime [57, 58, 59]. For the characteristic evolution we use the method introduced
in Ref. [16], consisting in using a null foliation where the points of each slice follow
ingoing null geodesics (the characteristic lines). Finally, we describe how we store the
information from several Cauchy slices in order to construct the initial null slice and
initial data for the characteristic evolution.

2.4.1 Numerical Implementation of the Cauchy Evolution

In order to have a precise numerical evolution we are going to use Pseudo-
Spectral Collocation (PSC) methods for the space discretization, which in our case
is just the radial direction, the compactified radial coordinate x to be more precise.
The main tools of the PSC method that we use are described in Sec. 1.3. In a standard
spectral method the outcome of the spatial discretization of a set of hyperbolic PDEs
is a set of ODEs for the time-dependent spectral coefficients. Instead, in the PSC
method we obtain a set of ODEs for the time-dependent values of our evolution
variables, U = (U, V, ...), at the collocation points, {Ui(t) ≡ U(t, xi)}, where the
equations are forced to be satisfied exactly. The number of ODEs that we obtain is
equal to the total number of variables (Nv) times the number of collocation points
(N ), i.e. N × Nv. The numerical evolution of the resulting ODEs for the collocation
values {Ui(t)} is performed using a standard Runge-Kutta 4 (RK4) algorithm (see,
e.g. [60, 61]).

The great advantage of the PSC method is that for smooth solutions it provides
exponential convergence, i.e. the truncation error of the spectral series, which can
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be approximated by the absolute value of the last spectral coefficient, |aN |, decays as
e−N . In contrast, the cost of most operations like derivatives, computation of non-
linear terms, etc. increases as N2 with the number of collocation points, unless we
use a fast Fourier algorithm to transform from the physical space (the collocation
values of our variables) to the spectral space (the coefficients of the spectral series
for our variables), in which case the cost increases only as N logN . In addition,
the Courant-Friedrichs-Lewy (CFL) condition for the stability of the evolution of the
PDEs (see, e.g. [62]), in the case of our PSC scheme, is of the form ∆t < C N−2

(where C is a certain constant independent of N ). This is in contrast with the typical
form of standard finite-difference schemes for PDEs, where ∆t < C ′N−1 and C ′ is
another constant. This is due to the structure of the Lobatto-Chebyshev grid that we
use, where the points cluster near the boundaries of the domain. As a consequence,
the evolution in the PSC method can be significantly more expensive than in the
case of finite-difference schemes. A way to alleviate this is to use refinement via a
multidomain PSC method. The idea is to adapt the size and number of the domains
so that different regions in the radial direction with different resolution requirements
are covered by an adequate number of collocation points. We can change the number
and size of the different domains along the evolution, following the resolution
needs of the problem. The practical implementation of the AMR is described in
Sec. 2.4.2. Most computations are done at each domain in an independent way. The
different domains are connected via the corresponding matching conditions as it was
described in Sec. 2.3.1.

The Cauchy evolution allows us to follow the system from its initial conditions
to the latest stages, just before the collapse and the formation of an AH. As we have
already mentioned we can expect the scalar field to travel to the AdS boundary
(x = π/2) several times, and in this sense using the compactified radial coordinate
x gives us control over the whole space. On the other hand, when the scalar field is
close to collapse, large gradients will be generated in our variables and the AMR is
crucial in order to guarantee the high resolution requirements needed to resolve the
dynamics.

In Sec. 2.3.1 we have presented the equations we obtain from Einstein’s field
equations and from energy-momentum conservation in terms of the Cauchy-type
variables, namely (ψ,U, V,A, δ). Some variables have two equations, for instance the
metric function A can be obtained either by evolving Eq. (2.38) or by integrating
Eq. (2.39) and the same happens with the scalar field variable ψ [See Eqs. (2.35)
and (2.42)]. We have numerically implemented several combinations of equations
but, in general, we have obtained the best results and efficiency by evolving in time
U and V [with Eqs. (2.36) and (2.37)] and then obtaining ψ, A, and δ from radial
integration [with Eqs. (2.42), (2.39), and (2.40) respectively].
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From Eqs. (2.39) and (2.40) we can find an integral expression for the metric
functions A and δ in terms of radial integrals:

A(t, x)− 1 =

− cosd x eδ

2 sind−2 x

∫ x

0

dy e−δ sind−1 y cosd−3 y(U2 + V 2) , (2.95)

δ(t, x) =
1

2

∫ π
2

x

dy sin y cos2d−3 y
(
U2 + V 2

)
, (2.96)

and using Eq. (2.42) we have the following expression for the scalar field:

ψ(t, x) = − 1

cosd−1 x

∫ π/2

x

dy cosd−2 y
(
U2 + V 2

)
. (2.97)

On the other hand, we can introduce the energy density

E(t, x) = e−δ sind−1 y cosd−3 y

(
U2 + V 2

2

)
, (2.98)

and from it we can compute the energy contained inside a sphere of a given radius
x, which we call the mass function:

M(t, x) = eδ
∫ x

0

dy E(t, y) , (2.99)

which is related to the metric function A by

A(t, x) = 1− cosd x

sind−2 x
M(t, x) . (2.100)

Then, the ADM mass is just the limit:

MADM = lim
x→π/2

M(t, x). (2.101)

The ADM mass is a constant that should not change during the evolution and then
it can be used in our simulations to check the numerical accuracy of the numerical
method. In addition, we can define the following quantity:

xCM =
1

MADM

∫ x

0

dy y E(t, y) , (2.102)

which plays the role of a radial centre of mass, in the sense that we can use it to track
where the energy of the scalar field is concentrated, which is specially useful when
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Figure 2.11: Centre-of-mass Evolution. In the left plot we show the evolution
of Amin, xmin, xCM for the initial conditions in Eq. (2.113), that collapse after five
bounces. In the right plot we use an initial profile from Eq. (2.121).

evolving localised scalar field configurations, like for instance those corresponding
to the initial conditions given in Eq. (2.113). There are other possible definitions of a
radial centre of mass, for instance we can use the radial position of the minimum
of the metric function A, i.e. xmin such that A(xmin) = min(A(x)) ≡ Amin. We
compare these two definitions of radial centre of mass, xCM and xmin, in Fig. 2.11,
where their evolution is compared with the evolution of Amin for two different sets
of initial data, the one given in Eq. (2.113), which collapses after five round trips to
the AdS boundary, and the one given in Eq. (2.121). As we can see in Fig. 2.11, for
the initial profiles in Eq. (2.113) (left panel) the differences between xmin and xCM

are quite small although xmin presents some small abrupt features. These features
are more prominent for the more complex initial profile of Eq. (2.121) (right panel),
where the evolution of both xCM and xmin is more complex, but xcm appears to be a
much smoother indicator to track the evolution of the scalar field profile.

Finally, regarding more technical details of the numerical implementation, it is
important to mention that all the operations involving the spatial radial direction,
including the integrals, are performed within the framework of the multidomain
PSC method. Another important ingredient of the numerical implementation is
how to deal with the multiple domains. In our scheme, the boundaries of each
domain have duplicated information because the boundary points of one domain
are identified, with the exception of the global boundaries (x = 0 and x = π/2), with
the boundary points of the contiguous domains. Although most operations are done
locally at each domain we need to communicate the different domains through these
boundary points. This is the main reason why we have introduced the characteristic
variables U and V , which are crucial in order to establish the communication
between domains. The characteristic variable U always propagates with positive



80 Chapter 2. Critical Collapse in AAdS Spacetimes

speed (in direction to the AdS boundary) and the characteristic variable V always
travels with negative speed (towards the origin). Then, the way to communicate two
given contiguous domains during the Cauchy evolution is to take the value of the
variable U from the right boundary of the domain to the left and to copy it into the U -
value of the left boundary of the domain to the right (see Fig. 2.9) and the equivalent
procedure for V : We take the value of the variable V from the left boundary of
the domain to the right and copy it into the V -value of the right boundary of the
domain to the left. This way of communicating the characteristic variables ensures
that we will not find discontinuities in our variables across the boundaries during
the numerical evolution. In other words, we perform the communication between
domains according to the directions of propagation of the information.

2.4.2 Adaptive Mesh Refinement for the Cauchy Evolution

The typical scalar field configurations that we consider in this work, which
are localised in the radial direction, follow the same evolutionary pattern, already
described in Sec. 2.3.1. The scalar field attempts to collapse near the origin but if
the initial amplitude is below some threshold, the scalar field disperses towards the
AdS boundary. Then, it bounces off the AdS boundary and travels again towards
the origin. This sequence is repeated until the scalar field distribution is compact
enough to collapse and form an AH. This means that we need to simulate a compact
scalar field distribution back and forth and some of the scalar field variables exhibit
growing gradients as the evolution proceeds. In order to track the pronounced
features of the scalar field during the evolution in an efficient way we resort to
AMR techniques based on our multidomain PSC approach, see Sec. 1.3. The aim
is to design a method in which the resolution follows the field during the round
trips to the AdS boundary with the minimal loss of precision and without slowing
down much the evolution. In this sense, it is important to mention that although
we know the evolutionary pattern, the details can vary significantly as we change
the initial conditions. To illustrate this, in Fig. 2.12 we show the profile of the
scalar field variable U at a similar time for two different simulations where collapse
happens after one bounce. We see that the shapes are quite different and require
different grids in order to resolve them. In Fig. 2.13 we show the profile of U at
three different times of a simulation where collapse takes place after three bounces.
The snapshots of these figures are taken when the field is travelling towards the
boundary so most of the energy is concentrated in the U mode (the one propagating
to the right as shown in Fig. 2.9). These figures clearly illustrate the need for AMR
in our simulations. We have developed two AMR methods for our simulations.
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First Approach: Gradient Density Estimator

The first AMR method for our spectral multidomain grid is based on a functional
that we call the gradient density functional, defined at each domain as:

ρD =
1

N

∫
D
dx |V,x| ≥ 0 , (2.103)

where D denotes one of the domains. This indicator is based on the characteristic
variable V because is the one that concentrates the energy during the collapse and
where more precision is needed. The main idea is to distribute the domain nodes to
minimise the gradient density functional. In our numerical experiments we find
a threshold for ρD above which the evolution is no longer valid because of the
appearance of high-frequency numerical noise. Then, during the simulations we
modify the domain structure to keep ρD below that threshold, adding more domains
if needed.

This method works reasonably well for capturing the gradients generated during
the collapse but it has several caveats. In particular, it can generate numerical
noise far from the region where the scalar field is localised if we do not allow for
a minimum resolution there. It can also give problems when the scalar field presents
very sharp features that have to be propagated to the AdS boundary and back, which
are precisely the most relevant cases in our study.

Second Approach: Domains over a Curve in Configuration Space

We have developed an alternative method that appears to be more robust for
dealing with the most extreme cases where the gradients of variables like U and
V , despite being smooth functions, are very large at specific locations. The starting
point is to consider a combination of our Cauchy variables that reflects in a very
clear way the regions where more refinement is needed, that is, where we find the
largest variations in our variables, let us call it γ(A, δ, ψ, U, V ). For a fixed time, when
large gradients in our variables appear, the length of the curve defined in the plane
(x, γ(x)) has a large contribution from the relatively small x-interval where gradients
occur. In this situation, let us consider the length of this curve from the origin to a
certain radial location x:

L(x) =

∫ x

0

dx̃

√
1 + γ′(x̃)2 , (2.104)

where γ′ = (∂γ/∂A)A′ + . . . . The key idea of this refinement method is to distribute
the nodes of our domains so that they cover the same length of the curve (x, γ(x)),
in contrast with the traditional choice of taking them equally distributed over the
x direction. That is, we select the nodes of our domains, {x̄i}, such as: L(x̄i) =
i L(π/2)/D (i = 0, . . . , D), where D is the total number of domains.
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Figure 2.12: Cauchy Refinement: Comparison of Different Initial Configura-
tions. Comparison of the U profile in two different simulations at a similar time.
Both of them are supposed to collapse after one bounce but the resolution require-
ments to follow them are very different.

In our simulations we have seen that this method does not require to establish
any threshold, instead we just have to change the multidomain structure after a
certain number of time steps to adapt to the changes in the variables in a smooth way.
Every time we change the domain structure we have to interpolate the variables into
the new grid. The interpolation between the old and new grids is performed via
the pseudospectral representation and in this way the numerical error introduced is
relatively small.

The specific choice of the function γ is the key ingredient of this method and is
quite flexible in the sense that we can tune this choice to the type of initial scalar
field profiles or even to the particular state of the numerical evolution. For not
very demanding simulations in terms of gradients of our variables we can choose
γ to be just A and this provides a very good performance. For more demanding
simulations, a better choice is the scalar field characteristic variable U when the
field is travelling to the AdS boundary, and V when it is travelling towards the
origin. This is motivated by the character of these variables, see Sec. 2.4.1, U is the
eigenfunction that captures the movement with positive velocity and V the one that
captures the movement with negative velocity. In practice, we have seen that these
simple choices work quite well and allow us to resolve the large changes in these
variables that appear during the collapse in the most extreme cases.
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Figure 2.13: Cauchy Refinement: Comparison of Different Time Snapshots.
Comparison of U profiles from the same simulation at different times. This
configuration collapses after three bounces. The snapshots are taken at the same
position during the trip to the AdS boundary.

2.4.3 Numerical Implementation of the Characteristic Evolution

The characteristic evolution described in Sec. 2.3.2 is completely different from
the Cauchy one. We need to set a grid on the initial null slice in terms of the
radial coordinate r. When we evolve to the next null slice, the r-values of each
grid point change following the ingoing null geodesics, see Eq. (2.73). This has two
main effects: First, our last grid point (largest value of r, rmax) evolves making our
physical computational domain to shrink as it is shown in Fig. 2.10. Second, the
points near the origin are swallowed because, according to the equation for ingoing
null geodesics, these points should evolve to negative values of r which in principle
do not have a well-defined physical meaning. This means that we need to control the
size of our grid and be careful with the computations near the origin, but other than
that the characteristic evolution is not problematic. Actually, the reduction of the
grid as we proceed with the evolution helps us to focus our numerical resolution
around the region where the collapse takes place so that we do not need mesh
refinement methods in this case. In the cases where the collapse does not occur we
see that the field gets scattered towards infinity as it would do in the asymptotically
flat case [16, 18]. However, since we are considering AAdS spacetimes, the scalar
field has to reach the AdS boundary in a finite time, but the region around the AdS
boundary is not covered by our characteristic grid. This means that we have made
the transition from the Cauchy to the characteristic evolution too early, and therefore
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we need to continue the Cauchy evolution until we can construct an initial null slice
whose evolution covers the collapse.

To set up our initial characteristic grid it is very important to establish its
coordinate size, determined by rmax, the r-coordinate of the last grid point. Once
this is done, we can freely distribute the other points. A uniform distribution of
the grid points in the radial coordinate r is not a good choice because of the CFL
condition. For the characteristic evolution the CFL condition implies:

∆u <
1

2
min

(
ri − ri−1

ḡi

)
, (2.105)

where ri and ri−1 are two contiguous grid points and ḡi = ḡ(ri). If we have a uniform
grid, ri − ri−1 = ∆r is the same for any i. But when we go to large values of r we
have that the metric function ḡ behaves as in pure AdS spacetime (because the field
is mostly concentrated near r = 0), that is: ḡ ∼ r2. This means that the CFL condition
in this case is controlled by the outer grid points, the ones with largest r, where
∆u should be too small. But on physical grounds it should be the opposite, the
CFL condition should be dominated by the points where we need more resolution,
around the region where the AH forms. What we do is to construct a grid where the
grid point separation is constant with respect to the radial coordinate x instead of r,
thus the outer points are well separated in r. From the Cauchy evolution we extract
the values of the scalar field variable h at the different grid points and, from the
values of h we find the other variables, h̄, g and ḡ, by integration [using Eqs. (2.65)-
(2.69), or Eq. (2.70)]. The first grid point for integration is the origin, where we need
to prescribe the boundary conditions:

h̄(r = 0) = h(r = 0) ,

ḡ(r = 0) = g(r = 0) = 1 .
(2.106)

The integration proceeds to the following grid points by using Simpson’s rule:

Ii ≡
∫ ri

0

dr f(r) (2.107)

= Ii−1 +
ri − ri−1

6
[f (ri−1) + 4f (rM) + f (ri)] ,

where rM ≡ (ri + ri−1)/2 is the r-coordinate of the midpoint between ri and ri−1,
where the value of the integrand is evaluated using spline interpolation [63].

Each grid point evolves according to the ODE system of Eqs. (2.75) and (2.73). To
that end, we use again a standard RK4 algorithm (see Refs. [60, 61]).
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Figure 2.14: Convergence Analysis in the Cauchy Evolution. The upper
and middle plots show the truncation error for the variables U and V , |a(U)

N |
and |a(V )

N | respectively, as a function of the number of collocation points per
domain, N . From all the truncation errors, one at each domain, we take the
one where the variables reach their maximum values. The linear fitting with the
logarithmic scale in the vertical axis shows the expected exponential convergence
(see Sec. 2.5.1). The plot in the bottom shows that deviations in the ADM mass
during the evolution also decrease exponentially with the number of collocation
points per domain until saturation due to round-off error.

2.5 Test for Code Validation

In this section we show the performance of the different pieces of the numerical
code that we have developed to implement the Cauchy-characteristic scheme
described in the previous sections to study gravitational collapse in spherically
symmetric AAdS spacetimes.

2.5.1 Convergence Analysis for the Cauchy Evolution

The Cauchy evolution uses a PSC discretization method for the radial direction
with multiple domains. At each domain we use a Chebyshev-Lobatto grid with
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a linear mapping to the physical radial space, see Sec. 1.3.2 for details. The PSC
method provides two representations for each variable, the spectral representation
typical of general spectral methods, and the physical representation where the values
of our variables at the collocation points are the unknowns to be found numerically.
As we have mentioned before, the truncation error is estimated by using the absolute
value of the last spectral coefficient, |aN |. For smooth functions, the convergence
rate of the Chebyshev series is exponential. We check convergence for our Cauchy-
evolution code by performing a series of runs with the same number of domains
(D = 50), uniformly distributed in the radial coordinate x, and with no refinement.
We set the same initial conditions for all of them, from the family of configurations
in Eq. (2.113), and evolve them it for a fixed interval of time (tf ≈ 2, i.e. after a
bounce off the AdS boundary). Then, we look at the last spectral coefficients for the
characteristic variables U and V . Here, we only show results from the domain where
these variables present more features, which is in principle the most challenging one
from the numerical point of view, and we have checked that we obtain equivalent
results for the other domains. In Fig. 2.14, at the upper and middle panels, we show
the spectral convergence for these two variables in a logarithmic plot of the absolute
value of the last spectral coefficient versus the number of collocation points. As we
can see, the linear scaling in the logarithmic plot stops at some point, followed by
an almost flat profile, indicating that we have reached the round-off error of the
computer and hence we cannot expect to improve the truncation error any further.
In the bottom panel of Fig. 2.14, we show the variations in the ADM mass, MADM,
with respect to its initial value, MADM(t0), due to numerical inaccuracies during the
Cauchy evolution (in an ideal situation this quantity should vanish for all times).
Actually, what we show in this figure is the normalised quantity:

∆MADM(t) =
|MADM(t)−MADM(t0)|

MADM(t0)
. (2.108)

In Fig. 2.14 we see exponential convergence of the deviations from the ADM mass
(∆MADM(tf ), with t0 = 0) that saturate at a value around 10−10 for our particular test
runs.

2.5.2 Convergence Analysis for the Characteristic Evolution

In the characteristic scheme, we have a non-uniform discretization in the radial
coordinate r in the initial grid, and it turns out that the evolution of the r-coordinate
of the grid points [according to the ingoing null geodesics in Eq. (2.73)] makes our
grid even more unequally spaced. Despite of this, the resolution increases with the
number of grid points and we can study how the results converge as we increase
this number. To that end, we run simulations with different initial number of grid
points (the number of grid points changes along the evolution because we lose points
through the origin) but with the same initial scalar field profile, see Eq. (2.117). These
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Figure 2.15: Final Snapshot of the Cauchy and Characteristic Evolution
Methods. We show a snapshot of the function A just before collapse using both
methods. The differences are due to the fact that in the Cauchy evolution A
is plotted from a t = const. slice while in the characteristic one comes from a
u = const. slice. The plots coincide around r = rAH. The zoom-in plot shows, by
using a logarithmic scale, how close to AH formation (A → 0) we can get with
each evolution scheme.

initial conditions eventually form an AH and the point of the evolution that we take
to analyse the convergence is just before the formation of the AH, when A ≈ 10−8 [A
is estimated via Eq. (2.91)]. That is, we monitor how the location of AH formation
changes with the number of grid points, N . We use the following indicator:

p = log2

(
|rN/4AH − r

N/2
AH |

|rN/2AH − rNAH|

)
. (2.109)

For N = 120000 we obtain p ≈ 3.0034. This value means that the convergence
of our code is third order, in agreement with the convergence rate of the Simpson
integration rule that we use.
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2.5.3 Comparison between the Cauchy and Characteristic
Evolutions

The main reason for implementing a hybrid Cauchy-characteristic evolution
scheme is to bring together the best of these two methods of evolution in order to
tackle interesting questions about gravitational collapse in AAdS spacetimes. That
is, taking into account that the Cauchy evolution based on the PSC method allows
us to follow the possible different bounces of the matter fields (a scalar field in our
case) off the AdS boundary with high precision, whereas the characteristic evolution
allows us to get very close to the point of formation of an AH. Then, although the
two evolution schemes are used in different stages of the evolution, it is interesting
to see how they compare when they are applied to the final moments of the collapse,
when an AH forms. This comparison is also a justification for the introduction of
our hybrid scheme, which on top of the two evolution methods requires a non-trivial
transition between them. Then, we have evolved the same scalar field configurations
with both evolution schemes to get as close as possible to the point of AH formation,
which is monitored using the metric function A. In the characteristic scheme the
functionA can be computed using Eq. (2.91). We show the results of this comparison
in Fig. 2.15, where we include a zoom-in plot of the relevant region for AH formation.
In the left zoom-in plot, we show the metric function A for a Cauchy evolution until
the numerical code is not stable anymore without adding more domains, and such
that if we keep adding resolution the evolution would essentially freeze because of
the tiny time step allowed by the CFL condition. For the right zoom-in plot, we
initiated the evolution also with the Cauchy evolution scheme (in order to guarantee
that we are comparing the same physical configuration) and then changed to the
characteristic scheme until the point where the numerical noise becomes significant
or the evolution effectively stops due to a too small ∆u step. As we can see, with
the characteristic evolution we can get many orders of magnitude closer to the AH
formation than with the Cauchy scheme, as measured in terms of the metric function
A. This clearly illustrates the power of our hybrid scheme to study the collapse near
AH formation.

2.5.4 Ingoing Null Geodesics

In order to understand better the magnitude of the numerical challenge posed
by the study of gravitational collapse in AAdS spacetimes it is interesting to analyse
the ingoing null geodesics in the characteristic evolution of AAdS spacetimes and
compare them with the ingoing null geodesics in asymptotically flat spacetimes. To
begin with, let us look at the difference between the ingoing null geodesics in AdS
spacetime, Eq. (2.61), and in Minkowski spacetime, in the equivalent coordinate
system where the metric has the same form as in Eq. (2.61). The equation for the
ingoing null geodesics has also the same form in both cases, i.e. Eq. (2.73), but the
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Figure 2.16: Comparison of Ingoing Null Geodesics in Minkowski (dashed
purple lines) and AdS (green continuous lines) spacetimes. We see the strong
effect that the cosmological constant term has in the geodesics. In AdS spacetime
they reach the region near the origin much faster than in Minkowski, as measured
by the time u.
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Figure 2.17: Comparison between Ingoing Null Geodesics in Pure AdS
Spacetime (green colour) and in an AAdS Spacetime Describing Gravitational
Collapse of a Scalar Field (fuchsia colour). In the second, the geodesics focus
around the location of AH formation. The small plot is a zoom of the region
inside the red circle where it can be seen how the geodesics behave around rAH .
This size of the zoom-in plot is ∆r ' 10−4 around r ' 0.03952 and ∆u ' 10−13

around u ' 0.224673828858275.
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form of the metric function ḡ is different. In AdS spacetime we have:

ḡAdS(r) = 1 + r2/`2, (2.110)

whereas is Minkowski we have:

ḡMink(r) = 1. (2.111)

Therefore, by solving the ingoing null geodesic equation, Eq. (2.73), we get the
following expressions for the ingoing null geodesics:

uMink(r) = 2 (r0 − r) ,
uAdS(r) = 2 (arctan(r0)− arctan(r)) .

(2.112)

These geodesics have been plotted in Fig. 2.16. This illustrates what can happen with
our characteristic grid in AAdS evolutions in comparison with the asymptotically
flat case. As shown in Fig. 2.16, the grid points of an initial null slice (u = 0) move
towards the origin much faster in AdS spacetime than in Minkowski spacetime. The
conclusion we extract from this expansion for our simulations is that we must be
very careful in choosing the initial null slice, in particular its size, because the grid
points in AdS travel very fast towards the region near the origin, which means that
our grid shrinks very fast and we may miss the interesting phenomena, in particular
the formation of an AH.

On the other hand, in Fig. 2.17 we show the comparison between ingoing null
geodesics in AdS spacetime and the ones of an AAdS spacetime where the scalar
field collapses forming an AH. We compute these geodesics numerically as the
solution of Eq. (2.73). As soon as the geodesics approach the spacetime point in
the (u, r)-plane where the AH forms, all the ingoing null geodesics with r > rAH
focus at that point as it can be seen in the zoom-in area of this figure, while those
with r < rAH follow a different path.

2.6 Results from the Numerical Evolution

The landscape of the gravitational collapse in AdS spacetimes that emerged after
the pioneer work of Ref. [5] can be summarised by saying that initially-compact
scalar field configurations will sooner or later form an AH. The time required to form
the AH depends on how many round trips to the AdS boundary are needed for the
AdS turbulent instability to convert long-wavelength modes into short-wavelength
ones so that the scalar field profile gets compressed enough to form a BH. This is
illustrated in Fig. 2.18 where we show the AH radius, rAH , obtained by evolving
a number of initial configurations from the family of Eq. (2.113) with our Cauchy-
characteristic evolution scheme. This three-dimensional plot has been obtained by
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Figure 2.18: AH Location in a 2-parameter Phase Space. We show the radial
location of the AH formed from initial configurations belonging to the family in
Eq. (2.113) for different values of the amplitude, ε, and the width, σ.

varying both the amplitude, ε, and the width, σ, of the initial configurations. It
shows the different branches that appear and that represent configurations that have
bounced off the AdS boundary a fixed number of times (indicated by the colour and
branch number in Fig. 2.18) before collapsing and forming an AH. The branches are
clearly seen in the direction of the amplitude ε, where we have a high number of
points, but it can be seen that it also happens in the direction of the width σ. The
same should happen if we look at any direction in the plane (ε, σ). This is evident
since the critical collapse is independent of the family of initial conditions that we
take.

In what follows we describe new results regarding the critical collapse, that is,
analysing the configurations in Fig. 2.18 near the plane rAH = 0, and we also describe
the existence of a mass gap between branches and a new universal power-law scaling
for subcritical configurations.

2.6.1 Critical Phenomena in AAdS Gravitational Collapse

In Ref. [5] it was mentioned that at the critical points separating the branches,
the supercritical configurations form an AH with mass going to zero with the same
scaling as in the case of asymptotically flat spacetimes [1], that is: rAH ∼ (p − pn)γ
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with γ ' 0.374. In this section we give numerical confirmation for this claim for the
six first branches.

We use the following family of initial configurations:

U(to, x) = ε exp

(
−4 tan2 x

π2σ2

)
,

V (to, x) = −U(to, x) ,

(2.113)

that represents a profile centred around the origin at the initial time, and
characterised by the amplitude ε and width σ. This particular choice, and any that
fulfils the condition V (to, x) = −U(to, x), directly implies: (∂xφ)(to, x) = 0 .

As we explained in Sec. 2.1, the critical attractor that exists at p = pc
can be observed in the scaling of the apparent horizon mass of the supercritical
configurations and also in the behaviour of the maximum of the scalar of curvature
at the origin of the subcritical configurations. In AdS, since the subcritical
configurations will collapse after a bounce off the boundary, we need to monitor
the scalar of curvature before this last bounce. Having this in mind, we remember
that the scalar of curvature scales as:

Rmax|x=0 ∼ (pn − p)−2γ , (2.114)

where pn is the nth critical point and γ the critical exponent. This scaling have a finer
structure:

ln Rmax|x=0 = (−2γ) ln(pn − p) + b0 + F (ln(pn − p)) , (2.115)

where F is a periodic function with period equal to ∆/2γ. In terms of the Cauchy-
evolution variables, the scalar of curvature at the origin can be computed using the
following expression:

R|x=0 = −12

`2
− 1

2`2
(V − U)2 . (2.116)

We have carried out a series of Cauchy evolutions of initial configurations from
the family in Eq. (2.113) with fixed width, σ = 0.05, and amplitudes chosen in such a
way that the configurations are subcritical with respect to any of the first six critical
points. The results of these simulations are shown in the left plot of Fig. 2.19 with
the corresponding fittings. The values of the critical amplitudes, εn, the critical
exponents, γ, and the echoing periods, ∆, are presented in Table 2.1. We can see
that the values obtained for γ and ∆ are consistent with the known values for the
collapse of massless scalar fields in asymptotically flat spacetimes.

We have already mentioned that the characteristic evolution method, as we have
formulated it in Sec. 2.3.2, cannot be used to follow the full evolution of the scalar
field because the characteristic grid shrinks with time and hence we cannot track
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Figure 2.19: Critical Exponents for Supercritical Configurations.
Left Plot: Critical Exponents for Fixed Width (σ = 0.05). Scaling of the scalar
of curvature, R, for subcritical configuration near the critical point for different
branches, from the branch of direct collapse (b = 0, bottom) to the branch with
five bounces (b = 5, top). An offset ob has been added to the y axis to make the
plot more clear. The values of the offset are: ob = −2,−1, 0,+1,+2,+3, starting
from b = 0. The results from the fittings are given in Table 2.1.
Right Plot: Critical Exponents for the Zero Branch Using the Characteristic
Method. We show the results for the AH mass versus initial amplitude for three
different families of initial configurations with fixed width [see Eq. (2.117)] of the
branch 0 (direct collapse). The values of the critical amplitudes, critical exponent
and echoing period are given in Table 2.1.

bounces of the scalar field off the AdS boundary. However, we can in principle use
the characteristic evolution for the particular cases in which the scalar field collapses
directly, or in other words, we can in principle study the zero branch with the
characteristic evolution. Actually, this was already done in Ref. [35] using a double-
null characteristic scheme. Here, we repeat this analysis to confirm the same result
and, at the same time, to test further our characteristic evolution method. To that
end, we have to prescribe initial data on a null slice u = const. for the scalar field
variable h. We choose the following family of initial conditions:

φ(r) = h̄(r) = ε
r2

`2
exp

(
−(r − r0)2

`2 σ2

)
, (2.117)

which has three parameters: The amplitude ε, the width σ, and the centre of the
profile r0, which we always fix to the value: r0 = 0.1 ` . We have performed a series
of characteristic evolutions varying the amplitude ε for three (fixed) values of the
width σ = 0.01, 0.05 and 0.10. We compute the critical exponent γ and the echoing
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Supercritical exponents fixed width
Branch Critical Value (εn) Critical Exponent (γ) Echoing (∆)
n = 0 335.572231(5) 0.374± 0.006 3.33± 0.15

n = 1 251.09427729(1) 0.3746± 0.0008 3.45± 0.02

n = 2 216.208077165(1) 0.3743± 0.0004 3.45± 0.02

n = 3 193.9755275(1) 0.377± 0.007 3.43± 0.04

n = 4 178.070915(1) 0.376± 0.007 3.42± 0.06

n = 5 165.946674(4) 0.377± 0.010 3.46± 0.10

Exponents Zero Branch - Characteristic
Width (σ) Critical Value (ε0) Critical Exponent (γ) Echoing (∆)
0.01 7.828039(2) 0.376± 0.006 3.2± 0.4

0.05 25.907772996(3) 0.3748± 0.0004 3.33± 0.10

0.10 23.8595911(1) 0.375± 0.005 3.45± 0.10

Table 2.1: Critical Exponents for Supercritical Configurations.
Upper Table: Critical Exponents for Fixed Width (σ = 0.05). Fitting values
of the critical exponents corresponding to the critical parameters for the six first
branches (see Fig. 2.19). The number in parenthesis denotes the error to be
applied to the last digit of the computed value.
Bottom Table: Critical Exponents for Branch Zero Using the Characteristic
Method. Fitting values of the critical exponents corresponding to the critical
parameters for the zero branch using only the characteristic method (see
Fig. 2.19).

period ∆ from the AH mass, which in AAdS spacetimes with the coordinates of
Eq. ((2.61)) is given by:

MAH =
rAH

2

(
1 +

r2
AH

`2

)
, (2.118)

where the values of this mass that we quote in this chapter are in units of `. Again
we fit our characteristic only simulations to the formula:

lnMAH = γ ln(p− pn) + b0 + F (ln(p− pn)) , (2.119)

where this time we use the mass scaling and F is again a periodic function with
period ∆/2γ. The results obtained from these simulations are shown in Fig. 2.19
with the fittings to Eq. (2.119). The critical values of the amplitude, ε0, the critical
exponent γ, and the echoing period ∆ are given in Table 2.1. Again, the results are
consistent with the predictions for the asymptotically flat case.
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Figure 2.20: Mass Gap.
Left Plot: Evolution of A in the Case of AH Formation after One Bounce. The
upper panel shows the Cauchy evolution. The vertical dashed line indicates the
last time used for the transition to the characteristic evolution which A evolution
is showed in the lower panel. The zoom area represents the first attempt of
collapse.
Right Plot: Interface between the Zero and One Bounce Branches. The zoomed
area shows the behaviour as the critical point is approached from the one bounce
branch.

2.6.2 Power-law Behaviour near the Mass Gaps

We are going to focus now on near subcritical configurations for the one bounce
branch. In the left plot of Fig. 2.20 we show the evolution of the metric functionA for
one such configuration. Initially, the evolution is close to collapse (and to the critical
solution) and exhibits oscillations typical of type II critical phenomena. This moment
of the evolution is when we can find the data to study the supercritical behaviour of
Eq. (2.115). After the trip to the AdS boundary and back, the scalar field collapses
straightaway. The difficulty of this problem lies in the resolution requirements that
the subcritical configurations pose on our simulations since we have to evolve the
sharp features originated during the quasi-collapse stage to the AdS boundary and
back. From the point of view of computational cost, the most challenging part is this
last bounce and as we get closer to the critical point gets worse. But in order to have
a good precision in the values of the mass gap and power-law exponent, we need to
perform as many of them as we can in order to locate properly the critical point.

In Fig 2.18, we showed the AH mass in terms of the initial scalar field amplitude
ε and the width σ, in which the collapse can happen either directly or after a few
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bounces depending on the colour of the points there represented. Taking a slice of
constant width and focusing around the first critical point in the interface between
the branch of direct collapse and the branch of collapse after one bounce as in the
right plot of Fig. 2.20, we find that BHs formed after one bounce have a minimum
AH mass, Mg, and that the AH mass follows a power law of the type:

MAH −Mn+1
g ∝ (pn − p)ξ , (2.120)

where pn denotes the critical value of the initial-data parameter p for the n-th
branch; Mn+1

g is the mass of the (n + 1)th gap, between the branches n and n + 1,
corresponding to the minimum mass of the AH formed by subcritical configurations;
and ξ is the power-law exponent. An argument about why there are no points with
arbitrarily small mass in this side of the branch is that the subcritical configurations
have to travel to the AdS boundary and come back, suffering a finite compression due
to the non-linearity (a key ingredient for the turbulent instability), that makes them
to form BHs with an initial minimum mass.

We have computed the exponent of the power law, ξ, in several ways. First of
all, in a series of simulations for the one and two bounce branches for the family of
initial configurations of Eq. (2.113) with fixed widths σ = 0.05, 0.06, and 0.07 and
also for the three bounce branch for σ = 0.05. We complete these results in a series of
simulations for the one bounce branch at fixed initial scalar field amplitude ε = 250
that in terms of the critical collapse can be consider a different one-parameter family
and also with another family of configurations described as:

U(to, x) = ε cosh−1

(
tan(x)− tan(x0)

σ

)
,

V (to, x) = −U(to, x) ,

(2.121)

that is described by three parameters, an amplitude ε, a width σ, and the position
at which the scalar field profile is centred, x0. It turns out that the simulations
for the configurations within the parameter region of interest, those that lead to
subcritical scalar field collapse, are numerically more challenging than in the case
of the initial conditions from the family in Eq. (2.113). The reason for this is that the
energy distribution in the new family of configurations is not as compact as in the
old one. This has already been illustrated in the evolutions tracking the centre of mass
of the scalar field profile shown in Fig. 2.11. For our simulations we set x0 = 1.2
and σ = 0.2 for having the profile located near the boundary and then having a
completely different from other that is origin-centred. All of this data is shown the
Fig. 2.21 and the corresponding fitting results in Table 2.2.

The reason for choosing this data is because we want to study whether the new
scaling exponent ξ is universal both for different one-parameter families and also
for all the mass gaps. The fitting data is shown in Table 2.2. The key aspect to get
a good estimation for ξ is to get as closer as we can to the critical point pc. In this
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Figure 2.21: Mass Gap Fitting Data. We show all the data of the collapse for
subcritical configurations fitting it according to Eq. (2.120). The upper left plot
show the data of the gap 1 for fixed width initial data of Eq. (2.113). The upper
right shows fixed amplitude for the previous initial data and also the family of
Eq. (2.121). The bottom left shows the data of gap 2 and bottom right of gap 3,
both of fixed width initial data of Eq. (2.113).
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Gap 1
Parameters Critical Value (pn) Mass Gap (Mn+1

g ) Exponent (ξ)
σ = 0.05 335.572(2) 1.238(1) · 10−3 0.71± 0.02

σ = 0.06 279.642(1) 1.484(1) · 10−3 0.70± 0.01

σ = 0.07 239.692(1) 1.732(1) · 10−3 0.70± 0.02

ε = 250 0.0671138(2) 1.660(2) · 10−3 0.68± 0.04

σ = 0.2
x0 = 1.2

1.093435(1) 7.2954(8) · 10−3 0.68± 0.07

Gap 2
σ = 0.05 251.10(1) 7.6(1) · 10−4 0.65± 0.07

σ = 0.06 209.25(1) 9.0(1) · 10−4 0.64± 0.10

σ = 0.07 179.36(1) 1.05(2) · 10−3 0.67± 0.07

Gap 3
σ = 0.05 216.203(9) 5.44(2) · 10−4 0.69± 0.04

Table 2.2: Critical Exponents of the Mass Gap Power Law. Fitting values
corresponding to the subcritical data of the mass gap. We include data of first
three critical points for different initial conditions (Eq. (2.113) and Eq. (2.121).).
The fitting data correspond with the Fig. 2.21.

sense the best resolution we have is in the first gap of the initial configuration of the
family of Eq. (2.113). There we obtain a value of ξ ' 0.70 and all the rest of the values
computed are compatible with this value with lower numerical precision.

From these results we conjecture that the scaling law of the subcritical
configurations is universal with an exponent ξ ' 0.70 not only for different families
but also for the different branches. This new feature of the critical collapse in AdS
was published first in Ref. [7] and later confirmed with more results in Ref. [8]

2.7 Conclusions

The collapse of a massless scalar field in a spherically symmetric AAdS spacetime
shows a much richer phenomenology than the analogous problem in asymptotically
flat spacetimes as it was realised for the first time in Ref. [5] and is illustrated
by our Fig. 2.18. Both the long-term evolution and the dynamics of gravitational
collapse present distinctive features that are not yet fully understood. In this work
we have focused on the dynamics near collapse, when an AH is formed. To study
this question we need to resort to numerical methods, taking into account that we
are dealing with a problem that represents an important challenge for the design
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and performance of a numerical code that solves the PDEs describing the system,
despite the fact that we are dealing with a 1+1 problem (spherical symmetry). The
main reason for this lies behind the causal structure of global AdS, where light-like
signals can reach the AdS boundary in a finite time. As a consequence, an scalar
field configurations that fails to form an AH in a first attempt will travel to the AdS
boundary in a finite time, bounce and travel back towards the origin, where it will
have a second chance to form an AH. This process will be repeated until, after certain
number of bounces, the scalar field will collapse forming an AH. This is not the
whole story as we have evidence of the existence of stable scalar field configurations,
which makes the whole picture to be not yet completely well understood. The near
subcritical configurations are very challenging since they are very close to collapse,
which induces large gradients in the field variables that we have to propagate to
the AdS boundary and back. In this sense, AAdS spacetimes constitute an excellent
arena for the development of new numerical relativity methods and tools.

In this chapter we have presented a new numerical scheme to study these
situations which, in essence, is a hybrid Cauchy-characteristic evolution scheme. The
Cauchy evolution uses a multidomain PSC method for the spatial discretization and
the characteristic evolution follows the ingoing null geodesics, which allows us to
get much closer to the point of AH formation than with the Cauchy evolution. An
additional crucial part of this method is the transition between the two schemes. We
have described in detail all the analytic and numerical ingredients of this Cauchy-
characteristic evolution scheme. In doing so, we have also analysed the differences
between evolution in AAdS and asymptotically flat spacetimes, pointing out how
the effect of the cosmological constant makes our simulations more challenging. We
have also shown the convergence properties of the different parts of the scheme
and how we implement AMR techniques for the Cauchy-evolution sector. Given
that the scalar field configurations that we have considered are localised in the
radial direction, in the sense that the energy density is concentrated within a single
radial interval, we have studied how two definitions of centre of mass can track
the evolution of the field and how by using them we can also have a sense of how
compact a certain scalar field configuration is.

With this numerical scheme we have studied the subcritical scalar field
configurations near the different branches that appear depending on the number
of times that the field bounced off the AdS boundary. We found evidence that this
configurations follow the power law:

MAH −Mn+1
g ∝ (pn − p)ξ,

with the mass gap between branches (separated by the location of the critical point,
pn) given by Mn+1

g and the exponent ξ is conjectured to be universal, independent
of the initial data and also the same for all the mass gaps/branches. The numerical
support provided comes from the first three mass gaps using the initial conditions
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of Eq. (2.113) varying both the amplitude and the width and also for the gap one
with the initial data of Eq. (2.121). All these results support our conjecture for the
power law at the mass gaps and the universal character of the exponent up to our
numerical accuracy which, in all cases, has a value consistent with:

ξ ≈ 0.70.

It would be interesting to have analytical support for this numerical result but, at a
first glance, it appears to be a difficult enterprise. The reason is that the subcritical
solutions that follow this power law correspond to initial conditions that are very
close to those that define the associated critical solution, but they are separated by
a full round trip to the AdS boundary. Then, any analytical study of this power
law should consider the details of the non-linear dynamics during the round trip
together with the influence of the AdS boundary, which in our view seems even
more complicated than the analytical study of the critical solution itself, and hence
beyond the scope of our work.

Another open question is the precise role of the AdS boundary. In Ref. [64],
the introduction of an artificial boundary at a finite distance from the origin in
asymptotically flat spacetime leads to an scaling law for the subcritical solutions
with the same exponent γ as in the supercritical case. The comparison between
their results and ours indicates that there is a difference between global AdS and the
system with an artificial boundary in asymptotically flat spacetimes. In this sense
it is interesting to note that our value for the exponent is quite close to 2 γ ≈ 0.74.
Apart from this, the global AdS and the asymptotically flat case with an artificial
boundary do not show differences neither in the structure of the AH phase space
(see Fig. 2.18) nor in the scaling for supercritical configurations.

On the other hand, we have also obtained the critical exponents associated with
the multiple critical points that appear in the case of AAdS spacetimes. By tracking
supercritical configurations using only the Cauchy evolution we have been able to
find the critical points associated with the branches 0 to 5. We have confirmed the
expected result [5] that at AH formation the presence of the negative cosmological
constant is irrelevant. Indeed, the critical exponents and echoing periods that we
have found are consistent with the values of the asymptotically flat case.
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[38] Piotr Bizoń. Is AdS stable? Gen. Rel. Grav., 46(5):1724, 2014.

[39] Leszek M. Sokołowski. The bizarre anti-de Sitter spacetime. Int. J. Geom. Meth.
Mod. Phys., 13(09):1630016, 2016.

[40] Máximo Bañados, Claudio Teitelboim, and Jorge Zanelli. The Black hole in
three-dimensional space-time. Phys. Rev. Lett., 69:1849–1851, 1992.
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Chapter 3

Holographic Collisions in
Non-conformal Theories

All you really need to know for the
moment is that the universe is a lot
more complicated than you might
think, even if you start from a
position of thinking it’s pretty
damn complicated in the first
place.

The Hitchhiker’s Guide
to the Galaxy

Douglas Adams

The gauge/gravity duality, also known as holography, has provided interesting
insights into the far-from-equilibrium properties of hot, strongly-coupled, non-
Abelian plasmas that are potentially relevant for the quark-gluon plasma (QGP)
created in heavy ion collision experiments at RHIC and LHC. The GQP is also
very important because, according to the current cosmological model, it played a
crucial role in the early stages of our Universe. Holographic models have shown that
“hydrodynamisation", the process by which the plasma comes to be well described
by hydrodynamics, can occur before “isotropisation", the process by which all
pressures become approximately equal in the local rest frame. In order to make
closer contact with quantum chromodynamics (QCD), and therefore with the QGP,
it is important to understand non-conformal theories where it exists an equation
of state that is not fixed by symmetry, and hence it needs not to be obeyed out of
equilibrium. The relaxation process therefore involves an additional channel, the
evolution of the energy density and the average pressure towards asymptotic values
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related by the equation of state. We will refer to this process as “EoSisation" and once
it has taken place we will say that the system has “EoSised”. This chapter is based
on the published work of Refs. [1, 2] where it is shown that hydrodynamisation
can occur before EoSisation. Another paper with more details about the numerical
scheme and giving more evidence about the physical process has been recently
released [3].

3.1 Holography and Heavy Ion Collisions

The idea of holography has been around in theoretical physics for several
decades. One of the first suggestions came in the seventies in studies about the
thermodynamics of black holes. The discovery that the black hole area cannot
decrease [4] lead to an analogy with the laws of thermodynamics, the definition of
the entropy of black holes and the final definition of a generalised second law of
thermodynamics [5, 6]. The Bekenstein-Hawking entropy can be expressed as:

SBH =
1

4

κA

l2
, (3.1)

where κ is the Boltzmann constant, A the area of the horizon of the BH and l2 = G~ is
the Planck area. This is very surprising because it indicates that a three dimensional
quantity like the entropy is determined just by two dimensional information, the
black hole horizon. The evolution of this idea came in the nineties with Gerald
’t Hooft and Leonard Susskind when they formulated the Holographic Principle.
In the case of BHs it can be formulated like this: the horizon contains the same
information as the full three dimensional space and therefore the laws of physics
in the surface are equivalent to the ones in the bulk and therefore the 3D space, and
consequently also gravity, can be seen as the holographic realisation of the horizon.

Based on the previous ideas, Juan Maldacena published in 1997 a revolutionary
paper (see Ref. [7]) in which he conjectured the equivalence of a field theory in
3+1 dimensions that lives in the boundary of a 4+1 AdS spacetime (AdS5), i.e. a
purely gravitational theory in one more dimensions. Later works [8, 9] have helped
to sistemise and to formalise the principle now known as the gravity/gauge or
AdS/CFT correspondence. Although a fundamental interpretation of this can be
useful for advancing in the understanding of a quantum theory of gravity or the
BH information paradox by using our knowledge of the gauge theory, here we are
interested in the other way around: the use of the gravity side thanks to Numerical
Relativity methods in AdS spacetimes to solve the dual problem asociated with the
gauge field theory. In the usual formulation, the CFT stands for a conformal field
theory and AdS5 does not exactly refers to the AdS that we saw in the last chapter.
There we studied global AdS spacetime and here we formulate the correspondence
in a portion of it, the Poincaré patch. A simple scheme of the relation between the
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x
=

0

x
=
π
/2

x
=
π
/2

Poincaré horizon

Figure 3.1: The Poincaré Patch Embedded in Global AdS: The blue area
represents the Poincaré patch where it is defined the usual formulation of
AdS/CFT. This is a patch of the global AdS spacetime that is limited by the
Poincaré horizon.

global spacetime and the specific region corresponding to the Poincaré patch can be
seen in Fig.3.1 and a more detailed description of it can be found in Ref. [10]. The
metric in the Poincaré patch can be expressed as:

ds2 =
`2

u2

(
gµν(x, u)dxµdxν + du2

)
, (3.2)

where u is the AdS radial coordinate, the AdS boundary is located at u = 0. The
object gµν is the 3+1 metric of the u = const 3 + 1 hypersurfaces and ` is again the
AdS length scale.

The usual realisation of the gauge/gravity duality is formulated in aN = 4 super
Yang-Mills theory as a field theory that can be used to model heavy ion collisions. A
dictionary between these two formulations is well known, allowing for systematic
computations in both directions [11]. The setup of fields in the boundary determines
completely the bulk geometry and, from the metric in the interior, the expected value
of the stress energy tensor of the dual theory can be recovered using:

〈Tµν(x)〉 = g(4)
µν (x), (3.3)
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Figure 3.2: Relativistic Heavy Ion Collisions: This graph shows the stages
present in the evolution of heavy ion collisions. Soon after the collision the
system hydrodynamises into the QGP phase until the hadronization phase and
the creation of the particles that reach the detectors. This graph is taken from
Refs. [13, 14].

where g(4)
µν is a term of the series expansion of the 3+1 metric near the boundary:

gµν(x, u) ∼ ηµν +
∞∑
n=4

g(n)
µν (x)un. (3.4)

This is just a simple description of the general picture of the AdS/CFT
correspondence but the exact details of our work in the non-conformal case are a
bit different and they are explained later.

Heavy ion collisions at the energies that the current technology allows are a
very good framework to study the fundamental physics behind some of the most
fundamental particles that we know at the moment: quarks and gluons. Colliders
like the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC)
use heavy nuclei like gold and lead to produce, during a very short time, a few fm/c,
a plasma of quarks and gluons (QGP) that is very well described by hydrodynamics.
This QGP is known to be formed very quickly after the collision, in less than 1 fm/c.
In order to have an idea of the scale of this time, it is what it takes for light to go
across a proton [12].

Fig. 3.2 shows the whole process of the collision of two heavy nuclei. After the
QGP is formed, it last for around 10 fm/c. Then, the “free” particles are generated
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u

∂AdS

time

collision direction

Figure 3.3: Left Plot: Holographic Model of two Motionless Particles: The
scheme shows a simple picture of the AdS/CFT correspondence. The particles
that we set in the CFT along the AdS boundary, u = 0, translate into shock waves
in the bulk of AdS.
Right Plot: Energy Density in the Boundary for the Full Holographic Collision:
The plot shows the energy density in the boundary, the peak in the figure
represents the moment of collision and sets t = 0, after which the system
thermalise. Figure from Ref. [15]

and thrown into the detectors. Since the formation of the QGP to the particle
detection, the basic details of the process are more or less understood but there is
still a key issue missing: how the QGP is created from the collision. The theory that
we have to deal with is, of course, QCD in a regime where the interactions between
quarks and gluons are very strong. And to solve this is very difficult. The fully non-
perturbative strongly coupled regime is something that we cannot handle in QCD.
There exists some approaches but perturbation theory is not very suitable for strong
coupling and lattice simulations are not very good with dynamics. Here, we are
going to address the problem using holography. The left plot of Fig. 3.3 shows an
schematic representation of how QGP are modeled using holography. If we set two
particles, two heavy nuclei, in the boundary where the field theory lives, according
with the correspondence, this translates into two shock waves into the bulk. Then,
we can evolve the metric in the AAdS spacetime and recover the information of the
dual theory using Eq. (3.3).

The main problem we find using holography is that there is no well-defined
theory of the dual of QCD. The theory that we are going to use shares common
properties with QCD [16, 17] but has its limitations [18]. Current formulations
require the number of colours to be very large Nc → ∞. This is a problem because
in QCD Nc = 3. However, this is not the greatest obstacle because the limit of large
Nc is well known thanks to ’t Hooft [19]. The real equivalence is defined between a
gauge theory and a string theory. In order to be useful we need to take the limit in
which string theory reduces to classical gravity and this requires, in the gauge side,
the theory to be strongly coupled for all scales. This property excludes the possibility
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of asympotic freedom and “contaminates” our theory with extra degrees of freedom
that are not present in real QCD. Although one could think that another limitation is
that the theory needs to be conformal, this is not mandatory and in this chapter we
are going to show shock wave collisions in a non-conformal theory [1, 2].

In Refs. [20, 21], Paul Chesler and Laurence Yaffe presented a model of the
heavy ion collisions using N = 4 super-Yangs-Mills theory. There, they set the
initial conditions for the heavy ions as Gaussian profiles and then they constructed
the initial configuration for the bulk as shock wave perturbations. The conformal
field theory represents infinite planar shocks where the only degree of freedom is
the collision direction so effectively a 1+1 theory and its dual, a 2+1 AAdS. They
studied how after the collision, the system hydrodynamises in a short time. The
model was used in Refs. [15, 22] to describe different configurations like thinner
shocks or asymmetric collisions and it is going to be extended in the next section to
address the problem of non-conformal collisions. A model in 2+1 dimension in the
gauge theory was presented in Ref. [23], where they drop one degree of symmetry to
simulate off-centred collisions. Simulations in global AdS have been also presented
in examples like Refs. [24, 25].

3.2 Setup for the Non-conformal Shock Waves

In the previous section, we have briefly explained the first models of shock wave
collisions that were done for systems where the dictionary between the gauge theory
and the gravitational one was fully known. One of their problems was that the
gauge theory that was used to mimic QCD was conformal while QCD is not. In
order to make close connection to the system we want to study, it is important to
understand non-conformal theories. One crucial difference between the two cases
is that in non-conformal theories, the equation of state, the relation between the
energy density and the average pressure, is not fixed by symmetry, and hence it
needs not to be obeyed out of equilibrium. The relaxation process therefore involves
an additional channel, namely the evolution of the energy density and the average
pressure towards asymptotic values related by the equation of state. We will refer to
this process as “EoSization" and once it has taken place we will say that the system
has “EoSized”. One purpose of this chapter is to show that hydrodynamisation can
occur before EoSization.

We will consider gravitational shock wave collisions in a five-dimensional
bottom-up model [1, 2] consisting of gravity coupled to a scalar field with a non-
trivial potential. At zero temperature, the dual four-dimensional gauge theory
exhibits a Renormalization Group (RG) flow from an ultraviolet (UV) fixed point
to an infrared (IR) fixed point. The source Λ1 for the relevant operator that triggers

1From now on, in this chapter, Λ is going to be used to denote sources in the gauge theory and not
for the cosmological constant that is hidden into the AdS length scale `.
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the flows is responsible for the breaking of conformal invariance. The dual gravity
solution describes a domain-wall geometry that interpolates between two AdS
spaces. We emphasise that our choice of model is not guided by the desire to mimic
detailed properties of QCD but for simplicity: the UV fixed point guarantees that
holography is on its firmest footing, since the bulk metric is asymptotically AdS; the
IR fixed point guarantees that the solutions are regular in the interior and turning on
a source for a relevant operator is the simplest way to break conformal invariance.

3.2.1 The Physical Model

We consider the dynamics in a five-dimensional holographic model consisting of
gravity coupled to a scalar field φ with a non-trivial potential V (φ) [1, 2]. The action
for our Einstein-scalar model is

S =
2

κ2
5

∫
d5x
√
−g
[

1

4
R− 1

2
(∇φ)2 − V (φ)

]
, (3.5)

where κ5 is the five-dimensional Newton constant. From this action, we obtain the
field equations:

Rµν −
R

2
gµν = 8πTµν , (3.6)

�φ =
∂V

∂φ
, (3.7)

where the stress-energy tensor has the usual form for an scalar field with potential
V (φ)

8πTµν = 2∂µφ∂νφ− gµν
(
gαβ∂αφ∂βφ+ 2V (φ)

)
. (3.8)

The potential V (φ) sets the details of the dual gauge theory. We have chosen a simple
potential characterised by a single parameter, φM, which reads:

`2V (φ) = −3− 3

2
φ2 − 1

3
φ4 +

(
1

2φ4
M

+
1

3φ2
M

)
φ6 − 1

12φ4
M

φ8 . (3.9)

Note that V (φ) is negative, possesses a maximum at φ = 0 and a minimum at
φ = φM > 0.

This choice of potential leads to interesting properties of the associated vacuum
solution. In the ultraviolet (UV) limit, the resulting geometry is an AAdS5 spacetime
with radius ` because V (0) = −3/`2. Moreover, at φ = 0, the second derivative
of the potential implies that the scalar field has mass m2 = −3/`2. Following the
standard quantisation analysis, this means that, in the UV, this scalar field is dual
to an operator in the gauge theory, O, with dimension ∆UV = 3. The solution near
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φ = φM, the infrared (IR), is going to be again an AAdS5 spacetime but this time with
radius

`IR =

√
− 3

V (φM)
=

1

1 + 1
6
φ2

M

` , (3.10)

where the effective mass of the scalar field is given by:

m2
IR =

12

`2

(
1 +

1

9
φ2

M

)
=

12

`2
IR

(
1 + 1

9
φ2

M

)(
1 + 1

6
φ2

M

)2 , (3.11)

and, as a consequence, the operator O at the IR fixed point has dimension:

∆IR = 2 + 2

√
1 +

m2
IR`

2
IR

4
= 6

(
1 +

φ2
M

9

)(
1 +

φ2
M

6

)−1

. (3.12)

In most places, we are going to take ` = 1, but we write it explicitly where the
expressions or plots could present some ambiguities.

In order to compute the vacuum state of these theories, one needs to take an
ansatz for the solution. In Fefferman-Graham (FG) coordinates [26, 27], the solution
with translation invariance and no horizon can be written in the following form:

ds2 =
du2

FG

u2
FG

+ exp [2aFG(uFG)] ηµν dx
µdxν , (3.13)

being aFG(uFG) the non-trivial field that characterise the metric and uFG the FG radial
(holographic) coordinate. The computation of the vacuum state is simplified when
the potential can be derived from a super-potential W (φ) as:

V (φ) = −4

3
W (φ)2 +

1

2
W ′ (φ)2 . (3.14)

For the potential that we chose in Eq. (3.9), the superpotential is:

`W (φ) = −3

2
− φ2

2
+

φ4

4φ2
M

. (3.15)

In this case, the scalar field profile φ(uFG) and the metric coefficient aFG(uFG) can be
obtained from the equations

− u2
FG

d aFG

duFG

= −2

3
W, −u2

FG

d φ

duFG

=
∂W

∂φ
. (3.16)
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Fortunately, the equations have an analytic solution for our super-potential chosen,

e2aFG(uFG) =
φ2

0

φ2

(
1− φ2

φ2
M

)φ2M
6

+1

e−
φ2

6 , (3.17)

φ(uFG) =
φ0 uFG√

1 +
φ20
φ2M
u2

FG

, (3.18)

where φ0 is an arbitrary constant that controls the magnitude of the non-normalisable
mode of the scalar field. As we will see, in the dual gauge theory side, φ0 is identified
with the source of the dimension-3 operator O. The presence of this source is what
breaks conformal invariance explicitly.

3.2.2 Gauge Theory Physical Quantities

The small field behaviour of the superpotential, Eq. (3.15), is identical to the one
of the GPPZ flow [28]. Therefore, we can determine the vacuum expectation values
(VEV) of the stress tensor and the scalar operator. We begin by expanding the metric
and the scalar field in powers of uFG in the vicinity of uFG → 0. Following [29], we
write the 5-dimensional metric for AAdS geometries in generic FG form:

ds2 =
1

u2
FG

(
du2

FG + gµν dx
µdxν

)
, (3.19)

and we write the power expansion for the metric and the scalar field near uFG = 0 as

gµν = ηµν + g(2)
µν u

2
FG + g(4)

µν u
4
FG + ... , (3.20)

φ = φ0uFG

(
1 + φ(2)u2

FG + . . .
)
. (3.21)

The expectation values of the field theory operators are then given by

〈Tµν〉 =
2`3

κ2
5

[
g(4)
µν +

(
Λ2 φ(2) − Λ4

18
+

Λ4

4φ2
M

)
ηµν

]
, (3.22)

〈O〉 = −2`3

κ2
5

(
2Λφ(2) +

Λ3

φ2
M

)
, (3.23)

where Λ = φ0
`

. Eqs (3.22) and (3.23) imply the Ward identity for the trace of the stress
tensor 〈

T µµ
〉

= −Λ 〈O〉 . (3.24)

We adopt a renormalization scheme such that 〈Tµν〉 = 〈O〉 = 0 in the vacuum
state. Henceforth, we omit the expectation value signs and work with the rescaled
quantities

(E , Pxi ,V) =
κ25
2`3

(−T tt , T x
i

xi ,O) . (3.25)
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Using these variables, the Ward identity takes the form

E − 3P̄ = ΛV , (3.26)

where
P̄ =

1

3

∑
i

Pxi , (3.27)

is the average pressure. Out of equilibrium the average pressure is not determined
by the energy density because the scalar field expectation value V fluctuates
independently. In contrast, in equilibrium, V is determined by the energy density
and the Ward identity becomes the equation of state

P̄ = Peq(E) , (3.28)

with
Peq(E) = 1

3
[E − ΛVeq(E)] . (3.29)

3.2.3 Thermodynamics and Transport

To explore the thermodynamics of our model, we look for static black brane
solutions of the action (3.5) following the approach of [30]. Since for these solutions
the scalar field is a monotonic function of uFG, we may use it as a coordinate
when solving the dynamical equations. The value of φ at the black brane horizon,
φH, univocally characterises the black brane solution. Therefore, by imposing the
appropriate horizon boundary conditions at different φH values one can compute all
the equilibrium geometries. Then, finding the thermodynamics amounts to finding
a family of black brane solutions parametrised by φH, and obtaining their Hawking
temperatures, T , and entropy densities s. This construction can be found in detail in
Ref. [1].

For our purposes here, it is enough to note that we find a set of values (φH, T, s)
for each model, characterised by φM. With these values, one can compute all the
thermodynamic quantities of interest as well as the bulk viscosity ζ . In Fig. 3.4 we
plot the dimensionless quantity

sR =
κ2

5

2π4`3

s

T 3
, (3.30)

as a function of the inverse temperature for two different values of φM. Since the
theory is conformal both at the UV and at the IR limits, the high and low temperature
behaviour of the entropy density must coincide with that of a relativistic conformal
theory and scale as T 3. In the intermediate region, this scaling is not fulfilled and
therefore we can interpret this quantity as a measure of the non-conformality of the
gauge theory.
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Figure 3.4: Ratio of the Entropy Density sR to the Temperature: The two plots
show the entropy-temperature ratio as a function of the inverse temperature for
two different potentials: on the left for φM = 3 and on the right for φM = 10. The
dashed line corresponds to `IR/`. Figure from Ref. [1].

For a relativistic CFT, s/T 3 is proportional to the number of degrees of freedom
in the theory, which for an SU(N) gauge theory with matter in the adjoint
representation scales as N2. For example, for N = 4 SYM we have:

s

T 3
=
π2

2
N2, (3.31)

but the precise coefficient depends on the specific theory. In terms of the parameters
of the dual gravity description this quantity becomes:

s

T 3
=

2π4`3

κ2
5

. (3.32)

In our bottom-up setup, the above argument allows us to define the number of
degrees of freedom at the fixed points holographically in terms of the effective
AdS radius. In particular, the quantity sR should approach to the unity at high
temperatures and (`IR/`)

3 at low temperatures, which is confirmed by the plots
shown in Fig. 3.4.

The non-conformal behaviour already observed in the equation of state of
the system is also reflected in the transport properties of the dual gauge theory
plasma. Since this is isotropic, at leading order in gradients transport phenomena
is controlled by only two coefficients, the shear viscosity η and the bulk viscosity
ζ . Because of the universality of the shear viscosity to the entropy ratio [31] in all
theories with a two-derivative gravity dual, we have that this ratio in our model
takes the same value as in the conformal N = 4 theory, that is

η

s
=
π

4
. (3.33)
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In contrast, the bulk viscosity, which would vanish identically in a CFT, is non-zero
in our model. Following Ref. [32] we determine the bulk viscosity by studying the
dependence of the entropy on the value of the scalar field at the horizon using the
expression:

ζ

η
= 4

(
d log s

dφH

)−2

. (3.34)

3.2.4 The Metric of the Shock Wave

In Fefferman-Graham coodinates, it is possible to find a quasi-analytic solution
for a single travelling shock wave on a vacuum background. The form of the metric
simply corresponds to the vacuum metric, Eq. (3.13), plus the addition of the term
f(uFG)h(x±)dx2

±,

ds2 =
du2

FG

u2
FG

+ f(uFG)h(x±)dx2
± + e2aFG(uFG)

(
−dx+dx− + dx2

⊥
)

, (3.35)

where x± = z ± t, z is the direction of propagation of the shock wave, and x⊥ are
the perpendicular directions to it. The function h(x±) is an arbitrary function that
describes the profile of the shock wave.

The propagation of the shock wave at the speed of light does not alter the vacuum
profiles of aFG and φ and therefore, they are the same ones as in vacuum. There,
the only remaining function to be determined is f . The equation for f(uFG) is a
second order differential equation that comes from the EFEs and needs to be solved
numerically:

u2
FG

∂2f

∂u2
FG

+uFG
∂f

∂uFG

−f

[
2

(
u2

FG

∂2aFG

∂u2
FG

+ uFG
∂aFG

∂uFG

)
+ 4

(
−uFG

∂aFG

∂uFG

)2
]

= 0, (3.36)

from where we can derive an integral expression for f(uFG):

f(uFG) = 4 e2aFG(uFG)

∫ uFG

0

dũ

ũ
e−4aFG(ũ). (3.37)

An additional difficulty for the numerical computation of the function f(uFG) is
that it grows exponentially with uFG. However, this problem can be solved by
computing instead the redefined function g(uFG) = e2aFG(uFG)f(uFG) which, takes
values between 0 and 1.
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3.3 Numerical Framework for the Holographic
Collisions

In this section we describe all the ingredients to formulate the physical problem
described previously and to simulate it numerically. We start, of course, with the
expressions of the EFEs in the appropriate coordinates and the correct manner to
write the metric coefficient for them to be finite in our computational domain. We
also describe the discretisation of the AAdS spacetime and the procedure to construct
proper initial conditions. Finally, we explain how to compute our desired gauge
theory quantities from the gravitational variables.

3.3.1 Field Equations

We follow the notation of [20] and begin by writing the 5D metric using
Eddington-Finkelstein (EF) coordinates

ds2 = −Adt2 + Σ2
(
eBdx2

⊥ + e−2Bdz2
)

+ 2dt(dr + Fdz) , (3.38)

where A, B, Σ, and F are functions of the radial coordinate r, the time t, the
coordinate corresponding to the collision direction z and x⊥ = (x1, x2) denotes the
two perpendicular directions. Note that t is a null time coordinate (in the literature
it is usually called v when using EF coordinates), t = const surfaces are null, and not
spacelike.

Written in this form, the form of the metric is invariant under the following
transformations

r → r̄ = r + ξ(t, z)

Σ→ Σ̄ = Σ

B → B̄ = B

A→ Ā = A+ 2∂tξ(t, z)

F → F̄ = F − ∂zξ(t, z)

. (3.39)

Upon plugging the metric (3.38) into Eq. (3.6) the resulting system of PDEs
conveniently obeys a particular nested structure. This structure consists of a
sequence of radial ODEs at each t = const null slice that can be solved in a certain
order, see e.g. [33].

The equations of motion for our present case are given by

Σ′′ = −1

6
Σ
(

3 (B′)
2

+ 4 (φ′)
2
)
, (3.40a)

Σ2F ′′ = Σ
(

6Σ̃B′ + 4Σ̃′ + 3F ′Σ′
)

+ Σ2
(

3B̃B′ + 2B̃′ + 4φ̃φ′
)
− 4Σ̃Σ′ , (3.40b)
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12Σ3(d+Σ)′ = e2B
[
Σ2
(

4B̃F ′ − 4
(

˜̃B + φ̃2
)
− 7B̃2 + 2F̃ ′ + (F ′)

2
)

+ 2Σ
(

Σ̃
(
F ′ − 8B̃

)
− 4˜̃Σ

)
+ 4Σ̃2

]
− 8Σ2

(
Σ2V (φ) + 3(d+Σ)Σ′

)
, (3.40c)

6Σ4(d+B)′ = e2B
[
Σ2
(
−B̃F ′ + B̃2 + ˜̃B − 2F̃ ′ + 4φ̃2 − (F ′)

2
)

+ Σ
(

Σ̃
(
B̃ + 4F ′

)
+ 2˜̃Σ

)
− 4Σ̃2

]
− 9Σ3 ((d+Σ)B′ + (d+B)Σ′) , (3.40d)

3Σ′Σ2(d+φ) = −e2BΣ
(

2B̃φ̃− φ̃F ′ + ˜̃φ
)

+ e2BΣ̃φ̃

+ Σ3
(
−
(
V ′(φ)− 2(d+φ)′

))
+ 3(d+Σ)Σ2φ′ , (3.40e)

6Σ4A′′ = 3e2B
(

Σ2
(

4
(

˜̃B + φ̃2
)

+ 7B̃2 − (F ′)
2
)

+ 8Σ
(

2B̃Σ̃ + ˜̃Σ
)
− 4Σ̃2

)
+ 2Σ4 (−9(d+B)B′ + 4V (φ)− 12(d+φ)φ′) + 72(d+Σ)Σ2Σ′ , (3.40f)

2Σ2(d+F )′ = −Σ2
(

2B′
(
Ã+ 2(d+F )

)
+ 2Ã′ + 6(d+B)B̃

)
− Σ2

(
4 ˜(d+B) + 8(d+φ)φ̃+ A′F ′

)
+ 2Σ

(
Σ′
(
Ã+ 2(d+F )

)
− 6(d+B)Σ̃− 4 ˜(d+Σ)− 3(d+Σ)F ′

)
+ 8(d+Σ)Σ̃ , (3.40g)

where, for any function g, the tilde means:

g̃ ≡ (∂z − F∂r) g, (3.41)

the prime stands for:
g′ ≡ ∂rg (3.42)

and the d+ operator denotes:

d+g ≡
(
∂t +

A

2
∂r

)
g . (3.43)

Note that these equations can be arranged in the following general form

[αg(r, t, z)∂rr + βg(r, t, z)∂r + γg(r, t, z)] g(r, t, z) = −Sg(r, t, z) , (3.44)

where g = Σ, F, d+Σ, d+B, d+φ, A, d+F . These equations are solved by imposing
reflecting boundary conditions at the AdS boundary, at u = 1/r = 0, which take the
form

A(u, t, z) =
1

u2
+

2ξ(t, z)

u
− 2∂tξ(t, z) + ξ(t, z)2 − 2φ2

0

3
+ φ0∂tφ2(t, z) + u2a4(t, z)
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− 2

3
u3(3a4(t, z)ξ(t, z) + ∂zf2(t, z)) +O(u4), (3.45a)

B(u, t, z) = u4b4(t, z) +O(u5), (3.45b)

Σ(u, t, z) =
1

u
+ ξ(t, z)− φ2

0u

3
+

1

3
φ2

0u
2ξ(t, z)

+
1

54
φ0u

3
(
−18φ0ξ(t, z)

2 − 18φ2(t, z) + φ3
0

)
+O(u4), (3.45c)

F (u, t, z) = ∂zξ(t, z) + u2f2(t, z)

+ u3

(
4

15
(φ0∂zφ2(t, z)− 6∂zb4(t, z))− 2f2(t, z)ξ(t, z)

)
+O(u4), (3.45d)

φ(u, t, z) = φ0u− φ0u
2ξ(t, z) + u3

(
φ0ξ(t, z)

2 + φ2(t, z)
)

+ u4
(
−φ0ξ(t, z)

3 − 3ξ(t, z)φ2(t, z) + ∂tφ2(t, z)
)

+O(u5), (3.45e)
d+B(u, t, z) = −2u3b4(t, z) +O(u4), (3.45f)

d+Σ(u, t, z) =
1

2u2
+
ξ(t, z)

u
+

1

2
ξ(t, z)2 − φ2

0

6

+
1

36
u2
(
18a4(t, z) + 18φ0φ2(t, z)− 5φ4

0

)
+O(u3), (3.45g)

d+φ(u, t, z) = −φ0

2
+ u2

(
φ3

0

3
− 3

2
φ2(t, z)

)
+O(u3), (3.45h)

d+F (u, t, z) = ∂tzξ(t, z)− uf2(t, z) +O(u2). (3.45i)

The functions a4(t, z) and f2(t, z) are free functions defined on the boundary
whose evolution can be determined using the conservation of the stress energy
tensor in the boundary [21], from where we obtain the equations:

∂ta4 = −4

3
(∂zf2 + φ0∂tφ2) , (3.46a)

∂tf2 =
1

4

(
−∂za4 − 8∂zb4 +

4

3
φ0∂zφ2

)
, (3.46b)

where b4 can be obtained fromB through (3.45b) and both φ2 and ∂tφ2 are determined
from φ through (3.45e).

The function ξ(t, z) encodes the residual gauge freedom associated with the radial
shifts [21]. A convenient choice is to treat ξ(t, z) as another evolved variable and to
choose its evolution equation by requiring that the apparent horizon position lies at
some constant radial coordinate value r = rh. We thus want to impose

Θ|r=rh = 0 , ∂tΘ|r=rh = 0 , (3.47)
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at all times, where Θ is the expansion of the outgoing null geodesics for metric (3.38).
At the surfaces r = const, Θ is given by

Θ = −1

2
e2BF (3F∂rΣ− 2∂zΣ) + e2BΣ (2F∂zB + ∂zF )− 3Σ2d+Σ . (3.48)

A simple way to impose the condition in Eq. (3.47) numerically is the following

(∂tΘ + κΘ) |r=rh = 0 , (3.49)

where κ is a positive parameter typically chosen to be one. The advantage of
imposing such a condition is that it is constructed to drive the Θ = 0 surface back to
r = rh whenever numerical errors accumulate. This turns out to work very well in
practice.

Equation (3.49) can be expanded and then we have an equation for ∂tξ of the form[
αξ(t, z)∂zz + βξ(t, z)∂z + γξ(t, z)

]
∂tξ(t, z) = −Sξ(t, z) , (3.50)

that we solved at r = rh. This is a second order linear ODE in the coordinate z.

3.3.2 Field Redefinitions and Evolution Algorithm

To integrate the system of the Eqs. (3.40), we need to impose the boundary
conditions. It is very convenient to introduce u = 1/r as our radial coordinate and
redefine the variables so that the divergent pieces at u = 0 are absent. Motivated by
Eq. (3.45), we set the definitions

B(u, t, z) ≡ u4Bf (u, t, z), (3.51a)

Σ(u, t, z) ≡ 1

u
+ ξ(t, z)− uφ

2
0

3
+ u2φ

2
0

3
ξ(t, z) + u3Σf (u, t, z), (3.51b)

F (u, t, z) ≡ ∂zξ(t, z) + u2Ff (u, t, z), (3.51c)

A(u, t, z) ≡ 1

u2
+

2ξ(t, z)

u
− 2∂tξ(t, z) + ξ(t, z)2 − 2φ2

0

3
+ u2Af (u, t, z), (3.51d)

φ(u, t, z) ≡ uφ0 − u2φ0ξ(t, z) + u3φ3
0φf (u, t, z), (3.51e)

d+Σ(u, t, z) ≡ 1

2u2
+
ξ(t, z)

u
+
ξ(t, z)2

2
− φ2

0

6
+ u2Σ̇f (u, t, z), (3.51f)

d+B(u, t, z) ≡ u3Ḃf (u, t, z), (3.51g)

d+φ(u, t, z) ≡ −φ0

2
+ u2φ3

0φ̇f (u, t, z), (3.51h)

d+F (u, t, z) ≡ ∂tzξ(t, z) + uḞf (u, t, z), (3.51i)
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where the variables with the f subscript are the ones that are used for the numerical
evolution.

Now that we have worked out all the necessary details, the evolution algorithm
is then as follows:

1. At any given time tn, which can be the initial time after having performed the
transformation of Eq. (3.39) that puts the apparent horizon at constant u, we
know Bf (u, tn, z), φf (u, tn, z), ξ(tn, z), a4(tn, z) and f2(tn, z);

2. Successively solve the elliptic equations (3.40) with the redefinitions of Eq.
(3.51). The equations are solved in a specific sequence in a way that a given
equation only depends on the previous one. This order is Σf , Ff , Σ̇f , Ḃf , φ̇f ,
Af . All of them are radial ODEs subject to the boundary conditions (3.45) ;

3. Eq. (3.50) is solved to get ∂tξ(tn, z) and afterwards, ∂tBf (tn, u, z) and
∂tφf (tn, u, z) can be obtained through equation (3.43) using (3.51d);

4. Obtain ∂ta4(tn, z) and ∂tf2(tn, z) through (3.46) and, together with the already
obtained ∂tξ(tn, z), ∂tBf (u, tn, z), ∂tφf (u, tn, z), advance all these quantities to
time tn+1 with a Runge-Kutta or Adams-Bashforth ODE solver.

5. Return to step 1.

3.3.3 Discretization

Eqs. (3.40) are written in a form that appear decoupled in the radial coordinate
u and in the collision direction coordinate z. Then, they can be solved as ODEs in
the u direction for each point in z. The z direction is discretized using a uniform grid
where periodic boundary conditions are imposed, while along the u direction we use
a Lobatto-Chebyshev grid with Nu + 1 points, for details about this grid and the PSC
method, see the Sec. 1.3. The collocation points are given by

Xi = − cos

(
π i

Nu

)
(i = 0, 1, . . . , Nu) , (3.52)

are defined in the range [−1,+1], and can be mapped to our physical grid using the
linear mapping:

ui =
uR + uL

2
+
uR − uL

2
Xi (i = 0, 1, . . . , Nu) , (3.53)

where uL = 0 and uR are the limits of the computational domain of u.

Since the differential equations (3.40) are solved in u for each z point, the only
important operation performed in the z direction are the partial derivatives with
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z

u

Figure 3.5: Shock Wave Grid Scheme: Two dimensional grid for the AAdS space.
The radial direction u is discretised using a Chebyshev-Lobatto pseudo-spectral
grid (see Sec. 1.3 for details). All the operations that involve only this coordinate
(in red) are performed using PSC methods. In the z direction the grid points are
set uniformly.

respect to that direction present in the equations. To evaluate them we use a fourth-
order accurate (central) finite difference approximation:

df(z)

dz

∣∣∣∣
zi

=
1

∆z

[
f(zi−2)

12
− 2 f(zi−1)

3
+

2 f(zi+1)

3
− f(zi+2)

12

]
, (3.54)

for the first order derivatives and:

d2f(z)

dz2

∣∣∣∣
zi

=
1

∆z

[
−f(zi−2)

12
+

4 f(zi−1)

3
− 5 f(zi)

2
+

4 f(zi+1)

3
− f(zi+2)

12

]
, (3.55)

for the second order ones. In this direction, we find spurious noise that accumules
the form of the high-frequency modes of our variables. This is common to finite
differences schemes. In order to remove it, or at least to reduce it to a level that
we can control, we add numerical dissipation. We have therefore implemented a
Kreiss-Oliger dissipation method [34] whereby, after each time step, all our evolved
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quantities f ∈ {Bf , φf , a4, f2, ξ} are added a term of the form

DKOfi ≡
σ

64
(fi−3 − 6fi−2 + 15fi−1 − 20fi + 15fi+1 − 6fi+2 + fi+3) , (3.56)

where i labels the grid point in the z direction and σ is a tuneable dissipation
parameter which must be smaller than one for stability. In our computations we
have typically fixed it to be 0.2. This procedure works effectively as a low-pass filter
that eliminates the high-frequency modes that are related with the noise.

In the radial direction u, the use of PSC methods allows us to have good accuracy
in operations involving this coordinate. As we mentioned previously in Eq. (3.44),
the radial equations for solving the metric coefficients can be written in a general
form

[αg(u, t, z)∂uu + βg(u, t, z)∂u + γg(u, t, z)] g(u, t, z) = −Sg(u, t, z) ,

where, again, g represents the metric coefficients Σ, F, d+Σ, d+B, d+φ, A, d+F .
Once our coordinate is discretized, the differential operator becomes a matrix one
acting over the vector of the values of the functions at the collocation points. The
discrete form is:[

αig(t, z)Dijuu + βig(t, z)Diju + γig(u, t, z)
]
gj(t, z) = −Sjg(t, z) ,

where Du and Duu represent the first and second order derivative operators for a
Lobatto-Chebyshev grid in the physical representation, and (i, j) are indices in the
u coordinate. We now construct the operator (matrix) defined inside the brackets
and then invert it to solve for the collocation values of the function g. Boundary
conditions are imposed by replacing full rows in this operator by the values we need
to fix. In the general case, for a second order operator we replace the rows j = 0,
j = N by the value of the function and its derivative at u = 0 according to Eq. (3.45).

Another useful tool associated with spectral methods is the possibility of filtering,
which plays the role of the dissipation term seen in the finite difference scheme.
We can also damp high order modes that may originate in the computation but, in
this case, directly in the spectral representation. After each time step, we apply an
exponential filter to the spectral coefficients of our u-dependent evolved quantities
f̂ ∈ {B̂f , φ̂f}. The complete scheme for an exponential filter is:

{fi }
FFT−→

{
f̂k

}
−→

{
f̂k e

−α(k/Nu)γNu
}

FFT−→ {fi} (3.57)

where α and γ are tuneable parameters of the filter which we typically fix to
α = 36.0437 and γ = 8. In the spectral representation of the PSC method, the absolute
value of the coefficients should decay exponentially. In this sense, the higher order
coefficients are the ones that acumulate the noise that little by little grow and affect
to more coefficients. This filter, eliminates this higher order coefficients before the
noise piles up.
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3.3.4 Initial Data

As we described in Sec. 1.2.2, the characteristic formulation of Einstein’s Field
Equations allows to specify the initial data needed for an evolution by freely setting
the functions B(u, z), φ(u, z), ξ(z), a4(z) and f2(z). For our intended applications, we
wish to have initial data resembling an ultra-relativistic projectile, such as the shock
wave metric in AdS. The starting point to construct such initial data is thus the shock
wave metric in FG coordinates in Eq. (3.35). Once the function f(uFG) is computed,
one can proceed to transform the metric to the EF coordinate system (3.38) in which
the numerical integration is performed. Taking into account that both the FG and
the EF metrics have an explicit Killing vector, one can use the following ansatz for
the coordinate transformation between the two frames:

xFG
⊥ = xEF

⊥ ,

uFG = u+ λ1(u, t+ z) ,

x+ = t+ z + λ2(u, t+ z) ,

x− = t− z + λ3(u, t+ z) ,

(3.58)

for a left-moving shock [21] while for a shock moving to the right these expressions
are:

xFG
⊥ = xEF

⊥ ,

uFG = u+ λ1(u, t− z) ,

x+ = t+ z + λ2(u, t− z) ,

x− = t− z − λ3(u, t− z) .

(3.59)

The differential equations for the transformation functions λ1(u, z), λ2(u, z), and
λ3(u, z) are obtained from the change of coordinates, see Eq. (1.12). Equivalently, one
can use the fact that the EF coordinate u is a non-affine parameter for ingoing null
geodesics

∂2
uk

µ(u) + Γµαβ∂uk
α(u)∂uk

β(u) = F (u)∂uk
µ , (3.60)

where kµ(u) is the geodesic tangent vector and F (u) is chosen to be F (u) = −2
25u

.
The geodesic equations have the advantage of depending explicitly on t + z and,
therefore, its solution reduces to a set of ODEs in u at each point of the coordinate z
for t = 0 . We thus write our initial data for a left-moving shock with width ω and
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height µ3√
2πω

as

h(z) =
µ3

√
2πω

e−
(z−z0)

2

2ω2 , (3.61)

E(z) = E0 + h(z) , (3.62)
f2(z) = h(z) , (3.63)

φ(u, z) =
φ0uFG√

1 +
u2FG

3φ0
(φ3

0 − 6φ2)
, (3.64)

e3B(u,z) =
e2aFG(uFG)

∂zλ21
u2FG
− (∂zλ2 + 1) (∂zλ3 − 1) e2aFG(uFG) + (∂zλ2 + 1)2 f(uFG)h(z)

, (3.65)

where uFG, λ1,2,3 are functions of u and z obtained from Eq. (3.58). E is the energy
density of the boundary field theory and E0 the corresponding background value
(which we typically set to E0 = 0.02 µ3√

2πω
). Having chosen Eo, we know the solution

in the absence of shocks (withB = 0), and its corresponding z-independent φ2 value,
the equilibrium value for the specified energy density. With the above construction,
we set φ2 to its equilibrium value, for the given background energy density E0, and
a4 is trivially determined from Eqs. (3.68) and (3.62).

At this point, we have constructed a shock moving in one direction. The
contruction of the second shock needs to be done separately because the metric
of Eq. (3.38) only described one of the two shocks. The solution for the other
shock can be obtained by a mirror reflexion in the collision direction: z → −z and
then we can add the two solutions. We want to construct two shocks than in the
boundary are separated but no matter how big this separation is, there is going to
be a region in the bulk where the shocks overlap and the superposition is not correct
in the sense that it is not longer a solution of the EFEs. In any case, we can always
choose a separation large enough for the shocks to overlap beyond the horizon uh
and therefore guarantee that the superposition is correct [21].

3.3.5 Code Convergence and Validation

We have implemented the numerical scheme that we have developed here in a
standalone C code. There, we use the GSL library [35] to solve the linear systems
of Eqs. (3.40) through a LU decomposition. For the evolution we use a fourth-order
Adams-Bashforth method to integrate the functions B(u, z), φ(u, z), a4(z), f2(z) and
ξ(z) forward in time, using the procedure outlined in section 3.3.2. The code is
trivially parallelised with OpenMP dividing in blocks the z direction.

Numerical simulations using finite differences techniques typically approximate
the continuum solution of the problem with an error that depends polynomially on
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Figure 3.6: Convergence Analysis: A configuration with φM = 10, `φ0 = 2,
ω/` = 0.32, `4 µ3√

2πω
= 1 and `4E0 = 0.02 is evolved until t = 10` with three

different resolutions in z: hc = `/20, hm = `/30 and hf = `/40. We plot the
absolute differences between the coarse and medium resolution (blue solid line)
and the medium and fine (red dashed line) resolutions. The latter has been re-
scaled by a factor Q = 5.94 the one expected for fourth order convergence.

the grid spacing h,
f = fh +O(hn) . (3.66)

Different numerical implementations produce different convergence orders, n. In
our case, since we make use of fourth order finite difference stencils, we expect to
see n = 4. One simple way to check the consistency of a code is evolving the same
configuration with coarse, medium and fine resolutions, hc, hm and hf respectively.
One can then compute a convergence factor using the following expression:

Q ≡ fhc − fhm
fhm − fhf

=
hnc − hnm
hnm − hnf

, (3.67)

where fh is an arbitrary evolved variable obtained using numerical resolution h
in the spatial discretisation. Since in the radial direction we make use of pseudo-
spectral methods, which provide exponential convergence, our error is dominated
by the resolution used in the z direction, to which the grid spacing h alludes to. In
the analysis presented in this section we always make use of the same resolution in
the u direction.

We have evolved a configuration with physical parameters: φM = 10, `φ0 = 2,
ω/` = 0.32, `4 µ3√

2πω
= 1 and `4E0 = 0.02. We take resolutions in the z direction:

hc = `/20, hm = `/30 and hf = `/40. The convergence factor expected for fourth
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order convergence would therefore be Q ≈ 5.94. The results obtained for the energy
density at t = 10` can be seen in Fig. 3.6, where the differences |fhm − fhf | have
been amplified by the factor Q = 5.94. The results show fourth-order convergence.
We have further verified that the values obtained for our medium resolution run are
within ∼ 0.4% of the fourth-order Richardson extrapolated [36] ones, giving us an
estimate of the error incurred in the simulation.

3.3.6 Connecting the Gauge Theory with the Shock Wave
Evolution

Until now we have developed the full scheme that we need to simulate
numerically the shock wave collision in the AAdS gravity theory so we are ready
to perform our simulations. However, we can not forget that our goal is to study the
gauge theory that lives in the boundary. Therefore, we need to relate the variables of
our gravitational shock wave collision with the quantities that we want to study in
the gauge theory. For this we use the near-boundary behaviours, Eqs. (3.45), together
with the Fefferman-Graham expansions, Eqs. (3.20) and (3.21), to find the coordinate
transformation relating the fall-off coefficients. Now, with the expectation values of
Eqs. (3.22) and (3.23), we can write the expressions for the gauge theory values in
terms of (b4, a4, f2, φ2) as

E = −
(

3

4
a4 + φ0φ2 +

9− 7φ2
M

36φ2
M

φ4
0

)
, (3.68)

PL = −a4

4
− 2b4 +

φ0φ2

3
+

(
− 5

108
+

1

4φ2
M

)
φ4

0 , (3.69)

PT = −a4

4
+ b4 +

φ0φ2

3
+

(
− 5

108
+

1

4φ2
M

)
φ4

0 , (3.70)

JE = f2 , (3.71)

V = −2φ2 +
φ3

0

3
− φ3

0

φ2
M

, (3.72)

where PL and PT are the longitudinal and transverse pressures.

3.4 Non-conformal Collisions

In the conformal shock wave model, the physics of the collision only depends on
the dimensionless “thickness” µω [15] of the initial shocks. This is different in the
non-conformal case where the physics also depends on the initial transverse energy
density in units of the source, µ/Λ. We simulate collisions of 1/2 -shocks and 1/4 -
shocks in the terminology of [15] (µω = 0.30 and µω = 0.12, respectively) for several
different values of µ/Λ. We then extract the boundary stress tensor and we focus on
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its value at the centre, in the z coordinate where the collision takes place as a function
of time. We employ as a background a thermal bath with an energy density between
0.8% and 2.5% of the one at the centre of the initial shocks. We simulate each collision
with several different regulators and extrapolate to zero regulator. We choose t = 0
as the time at which the two shocks would have exactly overlapped in the absence
of interactions [15].

We define the hydrodynamisation time, thyd, as the time beyond which both
pressures are correctly predicted by the constitutive relations of first-order viscous
hydrodynamics [21],

P
hyd
L = Peq + Pη + Pζ , (3.73a)

P
hyd
T = Peq − 1

2
Pη + Pζ , (3.73b)

with a 10% accuracy, so that: ∣∣∣PL,T − P hyd
L,T

∣∣∣
P̄

< 0.1 . (3.74)

In Eqs. (3.73) we have denoted the shear and the bulk contributions to the
hydrodynamic pressures by Pη and Pζ , respectively, which are proportional to the
corresponding viscosities. We define the EoSization time, tEoS, as the time beyond
which the average pressure P̄ coincides with the equilibrium pressure within a 10%
accuracy, meaning that ∣∣P̄ − Peq

∣∣
P̄

< 0.1 . (3.75)

On physical ground, we expect that increasing the initial energy in the
shocks increases the energy deposited in the resulting plasma and hence the
hydrodynamisation temperature of it. We have confirmed that indeed, Thyd/Λ
increases monotonically with µ/Λ. On the gravity side this means that, for
sufficiently large (small) µ/Λ, the horizon forms in the UV (IR) region of the
solution, where the geometry is approximately AdS. As a consequence, in these
two limits the plasma formation and subsequent relaxation proceeds approximately
as in a CFT. In contrast, for µ ∼ Λ, the relaxation of the plasma takes place in
the most non-conformal region where the bulk viscosity effects are the largest.
In this intermediate region we see several effects that are absent in a CFT. First,
hydrodynamisation times are longer than in a CFT. This is illustrated by the dashed
red curve in the left bottom plot of Fig. 3.7 whose maximum, indicated by the second
vertical line from the left, is 2.5 times larger than the conformal result, which is
indicated by the horizontal line.2 As expected, at high Thyd/Λ we see that thydThyd

asymptotically approaches its conformal value (we have checked that at Thyd/Λ = 4.8

2This value differs from the one in [15] because there they used a 20% criterion to define thyd.
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Figure 3.7: Non-conformal Shock Wave Evolution Results:
Left upper plot: Bulk viscosity over entropy density as a function of temperature.
Left bottom plot: Hydrodynamisation and EoSization times as a function of the
hydrodynamisation temperature for collisions of 1/2 -shocks. The vertical grid
lines lie at T/Λ = {0.15, 0.19, 0.31, 0.38} and mark, respectively, the lowest value
of Thyd/Λ that we have simulated, the maximum of thydThyd, the point with the
largest ratio of tEoS/thyd, and the intersection between the two curves. The bulk
viscosity at these temperatures is ζ/s = {0.025, 0.028, 0.023, 0.017}. The top hori-
zontal line indicates the result in a CFT, thydThyd = 0.56.2.
Right upper plot: Longitudinal and transverse pressures with their hydrody-
namic approximations, all in units of Λ4, for a collision of 1/4 -shocks with
µ/Λ = 0.94. The hydrodynamisation temperature is Thyd/Λ = 0.24. Because the
transverse pressure hydrodynamises much faster than the longitudinal one, PT
and P hyd

T are virtually on top of one another for the times shown.
Right bottom plot: Average pressure with its hydrodynamic approximation and
the equilibrium pressure extracted from the equation of state for the same config-
uration as in the right upper plot. Hydrodynamisation and EoSization take place
at thydΛ = 4.2 and tEoSΛ = 9.6, respectively, as indicated by the vertical lines. At
thyd the difference between P̄ and Peq is 18%, whereas the difference between P̄

and P̄hyd is 2%. At tEoS the difference between PL and P
hyd
L is 3%. The PT /PL

ratio is 4.4 at thyd and 1.9 at tEoS.
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the difference is 0.5%). We expect the same to be true at low Thyd/Λ. The increase
in the hydrodynamisation time is qualitatively consistent with the increase in the
lifetime of non-hydrodynamic quasi-normal modes found in [37, 38, 39, 1]. An
heuristic explanation on the gravity side comes from realising that the larger the
non-conformality, the steeper the scalar potential becomes. As the plasma expands
and cools down, the horizon “rolls down the potential”. It is therefore intuitive that
steeper potentials make it harder for the non-hydrodynamic perturbations of the
horizon to decay. Second, the equation of state is not obeyed out of equilibrium.
This is illustrated in the right bottom plot of Fig. 3.7 for a collision of 1/4 -shocks
with µ/Λ = 0.94, for which the hydrodynamisation temperature is Thyd/Λ = 0.24.
We see that the equilibrium and the average pressures are not within 10% of one
another until a time tEoS = 9.6/Λ = 2.4/Thyd. This is further illustrated in the left
bottom plot of Fig. 3.7, which shows the dependence of the EoSization time on
the hydrodynamisation temperature for 1/2 -collisions. We see that for sufficiently
large µ/Λ the EoSization time becomes negative, meaning that the average and
the equilibrium pressures differ by less than 10% even before the shocks collide.
The reason is simply that in these cases the energy density in the Gaussian tails in
front of the shocks, which start to overlap at negative times, becomes much higher
than Λ. At these energy densities the physics becomes approximately conformal
and the equation of state becomes approximately valid as a consequence of this
symmetry. An analogous argument implies that tEoS should also become negative
for collisions with sufficiently small µ/Λ. Third, hydrodynamisation can take place
before EoSization. Indeed, we see in the left bottom plot of Fig. 3.7 that thyd < tEoS for
collisions for which the hydrodynamisation temperature is between the first and the
fourth vertical line. Comparing with the left upper plot of Fig. 3.7 we see that at these
two temperatures the viscosity-to-entropy ratios are ζ/s = 0.025 and ζ/s = 0.017,
respectively. Note that the first value of ζ/s would decrease if we were to consider
the lower temperature at which we expect that the two curves in the left bottom plot
of Fig. 3.7 will have a second crossing. Also, note that the ordering of thyd and tEoS

depends on the accumulated effect of the bulk viscosity along the entire history of
the collision. Notwithstanding these caveats, we will take the value ζ/s = 0.025 as
a conservative estimate of the minimum bulk viscosity needed to have thyd < tEoS

for 1/2 -collisions. The maximum value of the ratio tEoS/thyd for 1/2 -collisions is
tEoS/thyd = 2.56.

Eqs. (3.73) imply that the hydrodynamic viscous correction to the equilibrium
pressure is controlled by the bulk viscosity alone, since

P̄hyd = Peq + Pζ , (3.76)

whereas the viscous deviation from isotropy is controlled by the shear viscosity
alone, since

P
hyd
L − P hyd

T = 3
2
Pη . (3.77)

We see from Eq. (3.76) that the reason why hydrodynamisation can take place
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before EoSization is because hydrodynamics becomes applicable at a time when
bulk-viscosity corrections are still sizeable. This is illustrated in right bottom plot
of Fig. 3.7 by the fact that hydrodynamics provides an excellent prediction (within
2%) for P̄ at thyd, whereas at this time P̄ and Peq still differ by 18%. The above
statement is the analogue of the fact that hydrodynamisation can take place before
isotropisation because hydrodynamics becomes applicable at a time when shear-
viscosity corrections are still sizeable [20]. In our model the bulk viscosity is rather
small compared to the shear viscosity, since ζ/η = 4πζ/s ' 0.35 at the temperature at
which ζ attains its maximum value. Presumably this is the reason why the difference
between PL and PT at thyd is much larger than that between P̄ and Peq.

3.5 Conclusions

In this chapter we have presented the first shock wave collisions in a non-
conformal theory [1, 2, 3]. This describes an holographic model for the evolution
of plasma in a non-conformal gauge theory. This scheme uses the evolution of two
shock waves with a scalar potential in an asymptotically AdS spacetime to obtain the
details of the gauge theory in which we want to study the formation of the quark-
gluon plasma in the heavy ion collision.

The introduction of the non-conformality implies that the time between the
collision and the time when the system can be described by hydrodynamics is longer
than in a conformal field theory. Moreover, we have showed that the equation of
state is not obeyed outside of equilibrium and that the system can be described by
hydrodynamics before the equation of state is fulfilled.
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Chapter 4

Pseudo-Spectral Collocation Methods
and Arbitrary Precision

"Fast is fine, but accuracy is
everything."

Xenophon

In previous chapters of this thesis, we have seen how spectral methods can be
used for solving problems in numerical relativity. Thanks to their high accuracy
and their unbeatable order of convergence, they can make a huge difference in the
cases where very high precision is needed. For this reason, they are extensively used
in different fields of computational science like fluid dynamics, the generation of
gravitational-wave templates or weather prediction, see e.g Refs. [1, 2, 3, 4]. In this
chapter we go one step further showing that spectral methods can also be very useful
when we need to increase the numerical precision of our computations.

In many scientific problems, it is reasonable to assume that 64-bit (double
precision) floating point arithmetic, roughly fifteen or sixteen significant digits, is
enough to get accurate results. Or even in some cases maybe with 32-bit (single
precision), seven or eight significant figures, can be sufficient; but for many another
cases this is not true [5]. In systems where long-term solutions depend strongly in
the initial conditions or where the physical properties are very sensitive to the value
of the parameters, the control of the precision is going to be very relevant. And
more important, the lack of capacity of controlling our precision can also lead to
unpleasant surprises. The fast convergence of spectral methods makes them one of
the best options to go beyond the 64-bit floating point arithmetic. For this precision,
maximum accuracy is reached with a very low number of discretisation points and
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then it is not that computationally expensive to go further. Also, this means high-
compression in the information that we need to store. The number of points, or
modes in spectral language, needed to reach very high accuracy is much less than in
any other method and the memory demand reduces drastically.

To show these claims, we are going to use a new tool called ANETO (Arbitrary
precisioN solvEr with pseudo-specTral MethOds) implemented as C++ templates.
This implementation gives us total flexibility and can be used with the faster, highly
optimised but limited in accuracy C++ standard data types like float and double.
In addicion, it can also be used with user defined types like quadruple precision
(float128) or arbitrary precision ones like MPFR (Multiple Precision Floating-Point
Reliable) [6, 7]. As the structure of the library is very adaptable, it is easy to build
a code on top of it with standard, fast, types and then, once the performance and
requirements needed are fully comprehended, translate it to arbitrary precision
ones. The library is realised as Free Software and can be downloaded at [8] where
documentation and examples can also be found. Although we have used ANETO
only for solving different problems in Numerical Relativity with spherical symmetry,
its use can easily be extended to different one-dimensional problems or evolution
problems with one space coordinate of different disciplines. Moreover, we think
that the conclusions reached here can also be extrapolated to general high precision
problems.

4.1 Floating Point Numbers

The representation of real numbers in a manner that computers can understand
and calculate with is not an easy problem. Nor it is unique. For integers it is
straightforward, the binary representation can be used directly with the precaution
of saving one bit for the sign. But if we consider that real numbers have, in
principle, infinite digits, the exact translation of the number into bits is going to
conditionate not only the performance but also our numerical error. The first thing
one can imagine is that real numbers can be approximated by a couple of integers
as rational numbers. This way can be very efficient and all the computations have
no numerical error but it restricts ourselves to the domain of the rational number
and the error is determined by the maximum possible integer that we can expressed.
Another approach is to consider a fixed point representation. We take two integers,
one representing the integer before the binary point and the other one with the
integer after the binary point. Plus one for the sign of course. This has an obvious
limitation. The precision in the integer representation limits the maximum and
minimum possible values that we can deal with. For example, with a precision
of 10−10 we can only have numbers with absolute value in the range (10−10, 10+10)
what would make impossible to deal with problems that have values with different
magnitudes. And this is the usual scenario in science. Imagine the simple problem of
computing the Newtonian force of the Sun and the Earth in the international system.
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mantissa
52 bits

exponent
11 bits

sign
1 bit

63 52 0

Figure 4.1: Floating Point Internal Representation for Double Precision. The
bits in green express the mantissa in 52 bits , usually normalised. The blue, the
exponent in base 2 with 11 bits and finally, the last bit indicates the sign. The
numbers below represent the indix i of the representation. See Eq. (4.1) for the
exact formula.

The mass of the Sun is 10+30, the distance is 10−11 and the Newtonian constant is
10−23. To perform this simple computation we would need a precision of 1030 ≈ 2100.
In other words, around a hundred bits.

Of course we can do better and nowadays all the processors use another
representation called floating point where the idea is similar to scientific notation.
We assign some bits to the significant part, or mantissa, another to the exponent, and
of course, again, one for the sign. See Fig. 4.1 for a diagram of it. The number of
bits dedicated to the mantissa determine the precision and the ones for the exponent
the greatest reachable number and the smallest positive one. For instance, standard
single precision (32 bits) reserves 8 bits for the exponent and 23 for the mantissa
and for double precision (64 bits) we have 52 bits for the mantissa and 11 for the
exponent. If we call bm to the mantissa bits that are labelled from b0, the value of a
floating point number x is:

x =

(
1 +

bm−1∑
i=1

bi × 2−i

)
× 2E, (4.1)

where E is the exponent and we suppose that the numbers are normalised and then
b0 = 1, this is equivalent to demand in scientific notation that the mantissa is in the
range [1, 10). With this expression we can also comment about the precision that this
representation gives us. The gap between 1.00 and the next first floating number is
taken as the precision of the machine:

ε0 = 2bm−1. (4.2)

It can be easily checked that this is not constant in all the range of real numbers. In
fact the gap between numbers gets bigger as we move away from x ≈ 1.00. It can be
easily computed that the gap between 2E and the next one is just:

εE = 2E × 2bm−1. (4.3)
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Data Type f(a, b)

float (32 bits) 1.17260396

double (64 bits) 1.1726039400531787

quad (128 bits) 1.17260394005317863185883490452018

Table 4.1: Rump’s Example for Standard Data Types. Evaluation of the
expression of Eq. (4.4) for the standard data types. It can be seen that increasing
the precision of the computation, the result seems to improve.

Putting some numbers in the case of double precision we have that the machine
precision is ε = 2−52 ≈ 2 ·10−16 and the maximum possible number is 101024 ≈ 10308.

Double precision is usually chosen because most of the processors nowadays
incorporate a floating point unit (FPU) that performs operations of floating points in
64 bits. Operations of this kind are very quickly but the floating point arithmetic can
lead to unpleasant surprises when are performed with a blinded faith. To illustrate
one of the issues that can arise in the numerical computations we review Rump’s
example [9]. Let us consider the expression:

f(a, b) = (333.75− a2) b6 + a2(11 a2 b2 − 121 b4 − 2) + 5.5 b8 +
a

2b
, (4.4)

that we evaluate for the values a = 77617 and b = 33096 using standard data types
that are shown in Table 4.1. These results indicate that increasing the precision,
the same number is obtained with more significant digits and therefore we can say
that we have obtained a good approximation of f ≈ 1.17260394005 and that our
computation is correct. This should be the end of our discussion but it was observed
that the case was more complicated. Let us evaluate the same expression with the
MPFR library [6, 7] that allows us to choose the number of bits of our floating point
numbers and hence the digits of precision. The results obtained can be seen in
Table 4.2. For low number of bits, until 24, the behaviour of f is difficult to explain.
The evaluation failed and compute in some cases very large numbers that does not
correspond with the correct value. These results are mixed with the same value that
we have computed with the standard ones and that we supose it is the correct one.
From 28 to 36 bits this value stabilises so it could seem that is the correct one. The
surprise come after 40 bits of precision. Then, we obtain a complete different value
of f ≈ −0.82739605994682 that appears to be correct even when computing with 150
precision bits.

To analise what happens we need to realise that the values of a and b chosen fulfil
the equation:

a2 = 5.5b2 + 1, (4.5)



4.1. Floating Point Numbers 143

Precision bits f(a, b)

4 6.4904 10+32

6 1.172604

8 −7.92281625 10+28

12 9.671406556917 10+24

16 −5.9029581035870565 10+20

20 1.17260394005317863186

24 8796093022209.172603940053

28 1.1726039400531786318588349045

32 1.17260394005317863185883490452018

36 1.172603940053178631858834904520183708

40 −0.82739605994682136814116509547981629199906

44 −0.827396059946821368141165095479816291999033112

48 −0.8273960599468213681411650954798162919990331157839

52 −0.82739605994682136814116509547981629199903311578438483

56 −0.827396059946821368141165095479816291999033115784384819916

60 −0.8273960599468213681411650954798162919990331157843848199178...

100 −0.8273960599468213681411650954798162919990331157843848199178...

150 −0.8273960599468213681411650954798162919990331157843848199178...

Table 4.2: Rump’s Example for Different Bit Precision Using MPFR. Evaluation
of the expression of Eq. (4.4) for different bit precision. The behaviour of the
obtained value is more difficult to explain. Until 24 bits, the evaluation failed
computing in some cases very large numbers that does not correspond with the
correct computation. These results are mixed with the same value that we have
computed with the standard ones and from 28 to 36 bits the previous value seems
to stabilised. The surprise is that after 40 bits of precision, we obtain a complete
different value that this time does appear to be correct.

from where it is obvious that the higher order terms of Eq. (4.4) cancel and it reduces
to:

f =
1

2b
− 2 = −0.82739... (4.6)

The problem now is clear. An analytical cancellation need to happen to get the
correct result and numerically this is done properly only when a very high number
of bits is used. This exposes the fact that the control in the expressions that we use
is fundamental in order to avoid numerical instabilities. A proper identification of
the terms where a cancellation of this kind can happen is always a good practice that
allows us to deal with them. Sometimes is enough with a clever rearranging of the
expressions, controlling the rounding mode or using higher precision just for this
difficult terms. The lesson of this simple example is that dealing with floating-point
arithmetic can be very problematic sometimes and that having a full control of the
numerical precision can help to detect instabilities. It is also very important to notice
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that precision convergence does not guarantee at all that our computation is correct.

Current processors incorporate a FPU unit that allows to compute operations
with floating point numbers, usually 64 bit. Therefore, the algorithms working in
this precision are going to be the fastest ones1. Going further than this is going
to require a software layer that makes the code to run slower. This is studied and
discussed in Sec. 4.3.2.

4.2 ANETO Library Structure

All of the tests that we have done to study the use of PSC methods for
arbitrary precision are going to be implemented using the ANETO library. This
is implemented as C++ templates and it can use it with any data type available.
The library is release as Free Software and be found and downloaded at [8]. In
that website, apart from the source code that can be taken and reused, there is a
full documentation of the classes and functions available as well as examples of its
functionalities. The features of the library can be applied with two different classes.
One is spectral_grid<> and generate an individual Lobatto-Chebychev grid. The
other one is multidomain<> and generates a mesh composed by several Lobatto-
Chebychev domains. All the details of the grid and the PSC methods are explained
in Sec. 1.3. In this section we are going to go over the main functionalities of both
classes.

4.2.1 Class Spectral Domain

The class spectral_grid<> generates a Lobatto-Chebyshev grid defined in X =
[−1, 1] of N points. A function discretised using PSC methods is defined by its
value in the collocations points of the grid in what we call the physical representation.
In general the information of the function is stored in this representation but
usually the internal operations are performed used the spectral representation, the
coefficients of the expansion in Chebychev polynomials. The grid that we have
introduced makes the transformation between the two straightforward using a
discrete cosine transformation (DCT). The library can performed this through a
matrix transformation, that scales as ∼ N2 or using a fast Fourier algorithm (FFT),
that scales as ∼ N logN and it is included through the Eigen library [10]. The last
one is optimised for the case in which the number of points is a power of two, and
therefore the recomended use, that is the default one, is to use the FFT in these
cases and the matrix transformation otherwise. The main operations that the spectral
domain class can perform are:

1Here we do not consider optimisations done for lower bit precision data types like vectorisation
because double precision is the minimum that we are interested in.
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Indefinite Integrals: The class can perform indefinite integrals. It takes the value
of a function in the collocation points and return the value in the collocation
points of the accumulative integral compute from the left boundary, X− = −1
or from the right boundary X+ = +1. The arbitrary integration constant can be
specified as the value in one of the boundaries. The exact expressions are:

IL(X) = I(X−) +

∫ X

X−

dX ′ f(X ′), (4.7)

IR(X) = I(X+) +

∫ X+

X

dX ′ g(X ′), (4.8)

and for details Eqs. (1.115) and (1.120) in Sec. 1.3.1 can be checked.

Derivatives: It can also perform the derivative of a given function:

d(x) =
df(x)

dx
, (4.9)

the details of the produce are in Eq. (1.111) of Sec. 1.3.1 .

Interpolation: One of the highest benefits of the use of spectral methods is the
accuracy of the interpolation obtained inside a domain, check Sec. 1.3.1 for
details. This is done using the spectral representation:

y =
N∑
n=0

an(t)Tn(X), (4.10)

check Eq. (1.104) for details. The class computes the value of the function
in any interior point of the domain. Once they are computed, the spectral
coeffients are stored inside the class so they can be used afterwards to get
values of the function in other interior coordinate without recomputing the
spectral coeeficients This can be done not only for the funciton values but also
for the first and second derivatives.

Root Finding: The accuracy of the interpolation inside a domain of the PSC methods
makes it very efficient and accurate the use of algorithms for root finding:

f(XR) = fR.

In the library it is implemented an iterative Newton’s method to find the root
until the precision of the datatype used is reached. If no root is present in the
domain, the function will return the closest value and if there is more than one,
just one of them it is returned.
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4.2.2 Class Multidomain

The multidomain<> class generates a multidomain structure with the number of
domains and points per domain specified. The distribution of the domains can be set
to be uniform or to specify the bondaries of them to generate a more adapted mesh.
The multidomain<> class manage the internal operations of the different domains
and once it is created, the main features can be accessed without noticing the internal
structure.

Indefinite Integrals: The class extends the indefinite integrals mentioned in the
spectral domain class but in addition to it we extend the possibility to specify
the boundary condition in an arbitrary interior point xC :

IC(x) = I(xC) +

∫ x

xC

f(x̃)dx̃ (4.11)

Derivatives: For the computation of the derivative one can choose to perform
normal derivatives or the dual grid scheme defined in Eq. (1.128) of Sec. 1.3.2.
This second option allows to improve a lot the derivative accuracy in the points
near the domain boundaries.

Interpolation: The interpolation function just expands the functionalities of the
spectral grid interpolation adapting it to the multidomain structure.

Root Finding: In the multidomain, it has been added two important cases of root
finding one for monotonic increasing functions and another one for monotonic
decreasing functions. In both of them the root, if it exists, will be unique. If
there is no root in the whole computational domain, the function will return an
error. For general functions, we can find the root indicating the domain where
we think the value we are looking belongs to but the result it is not checked
returning the closest value if there is no root in the domain.

4.3 Library Performance

In this section we check the performance both in accuracy and speed of several
of our library routines. For the following test, we use either standard types as float
and double, also the quadruple precision type2 and the general datatype where we
can choose the bit precision: the GNU’s MPFR [6] with a C++ wrapper [7].

2The quadruple precision is based on the float128 type in Boost Multiprecision library
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4.3.1 Integrals

As a test function for the integrals routines, we are going to take a simple cosine
function:

f(x) = cos(x), (4.12)

to which we consider the integration over a spectral domain. As it can be seen in
the left plot of Fig. 4.2, for this simple example as long as you have enough points
in your grid, the error should scale with the round-off error fixed by the number of
significant digits that is essentially dbits · log10(2)e. This is true even for a low number
of points as N = 47 until 260 precision bits where the error saturates because of the
discretization error is more important than the round-off. It is enough to use N = 71
to decrease the error easily up to 10−120. Using the multidomain with only four
domains and 23 and 47 points per domain structure, the same behaviour is observed
in the right plot of Fig. 4.2. For the first case the discretisation error is reach around
10−50 but for the second one we easily reach again 10−120. The horizontal lines show
the round-off error with the single, double and quadruple precision respectively that
are much higher than the error we can reach using arbitrary precision.

Notice that thanks to the exponential convergence of spectral methods is very
easy to obtained very small error with a low number of points. In the previous
example with less than two hundred points we can reach an incredible small
numerical error. Although the integral was done for simple function very well
adapted to the method, the same is true whatever is the integral to compute,
assuming that our functions are smooth. In the previous figure it seems that in the
multidomain approach needs the total number of points to be higher to get the same
error but in the general case a multidomain can be faster, more flexible and better for
other operations.

4.3.2 Double Precision versus Arbitrary: Computational Time

In the previous section we have seen how the use of arbitrary precision can be
extremely useful for obtaining better accuracy. We emphasise this property in the
following sections but first we need to consider the drawbacks of its use. Most of the
available computers nowadays use a 64-bit processor and the use of double precision
is highly optimised to work there. The approach to go beyond this precision requires
a software implementation that slows down the computation.

We use the test case of Eq. (4.12) to quantify this effect for three different grid
configurations that can be seen in Fig. 4.3. In the plot, we show how much slower
is the use of MPFR compared with the computational time used by the standard
double precision. In the range analysed, until 512 bits or around 150 significant
digits, the computational time seems to increase linearly, being a factor 150-300
times slower than the double case. This is even worse if we consider that to take
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Figure 4.2: Maximum Error of a Test Integral for Different Bit Precision. The left
plot shows the error of the integration routine on the spectral grid and the right
one in the case of the multidomain grid. In both cases, the points show the error
of two different grid configuration respect to the bit precision and the horizontal
lines correspond to the error for single, double and quadruple precision.

advantage the significant digits we need to increase the number of domains/points.
This is something that we need to take in consideration before the use of any kind of
arbitrary precision.

Looking at Fig 4.3, it is also worth mentioning the small jumps in the
computational time. Although the general behaviour is linear, at small scales the
function is more or less flat, increasing in multiples of 64 bits. This is not surprising
because the tests have been done using a 64-bit processor and is related with the
way the MPFR library uses double precision numbers to stored the arbitrary floating
points variables.

4.3.3 Parallelization with OpenMP

In the previous subsection we have seen the main problems of the use of arbitrary
precision: speed. As the current processors are designed for 64-bit precision
computations, all the arbitrary precision libraries emulate this using symbolic
calculations or a software layer to compute the arbitrary precision operations. Both
options slows the computation, in our case around 150-300 times. In order to
overcome this drawback, we are going to show that some kind of parallelism can
help us a lot. The use of parallel computing adapts perfectly to our multidomain
scheme because most our computations are done independently in each of the
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Figure 4.3: Computational Time of MPFR’s Arbitrary Precision. The plot
represents the computational time for the test integral presented in section 4.3.1
at three different grid configurations. All the times are normalise with the time of
the double precision operation of this grid. In the general scale the computational
time seems to be linear with the bit precision. The vertical lines separate multiples
of 64 bits. The computational time essentially increases in these boundaries. The
runs with 64 and 128 points per domain are done via FFT and the one with 127
with matrix transformation. Notice that higher does not mean greater absolute
computational time. All the simulations with (14,127) domains/points are much
slower than the ones with (14,128).

domains.

The shared-memory OpenMP [11] is the simplest option to show the possibilities
of the parallelization because we can profit of the independence of our domains
without adding any communication overhead. In Fig. 4.4 we show a measure of
the computational time speedup(Sp) as we increase the number of OpenMP cores.
This is defined as:

Sp = T/Tp, (4.13)

where T is the time used by a sequential computation and Tp is the time of a
computation that uses p cores. Of course, the ideal unreachable limit is Sp = p as it is
shown as a dash line in the plot and our goal is to get as close as we can to it. We have
performed tests for the integral and the derivative for double precision and float128,
quadruple precision, where we see that we are very close to the maximum speed-up.
It is also interesting to notice that the derivative are closer to full parallelism. This is
expected as this operation is fully independent in each of the domains while in the
case of the integrals we need to communicate partial integrals. Anyway, in all the
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Figure 4.4: Speed-up with OpenMP in Multigrid Routines. The plot represent
the speed-up at integral and derivative routines for double and quadruple
precision. Derivatives present a better speed-up but both cases show that
multidomain is a very good option for parallelization.

cases the final behaviour is more than reasonable.

What we have discussed in this section is parallelization at the level of the
multidomain. This is very helpful for speedup the computation but still it does
not address the key problem. The computational time increases because what
before was fundamental operation, it is not anymore. A different approach is to
look the parallelism in the fundamental operations of arbitrary precision. This is
already investigated in some projects like [12] where they use CUDA to compute
basic operation. This approach can be very useful when we use higher precision
computations.

4.3.4 Multidomain Derivatives: The Dual Grid

The computation of derivatives at points near the domain boundaries tends to
accumulate a big error that can be one or two orders of magnitude higher than in the
central region of the domain. And this phenomenon is worse with a high number
of collocation points in a domain. As we commented in Secs. 1.3.2 and 4.2.2, we
can deal with it creating a dual grid structure as the one presented in Fig. 1.6. For
this example, we take a Gaussian function as a test function and a partition function
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Figure 4.5: Dual Grid Derivatives. The left plots shows the error for the first
derivative computed with the dual grid setup (left bottom) or without it (left
top). it can be seen that in the domain boundaries there is a huge reduction of
the error. The magnitude of the improvement can be seen in the top right plot.
The quotient of the error in both cases quantifies the improvement in the points
near the boundaries between one and two orders of magnitude. The bottom right
plot shows the same for the second derivative where the improvement increases
from two to three orders of magnitude.

defined by:

π(x) =
(x− xL) · (x− xR)

(x− xL) · (x− xR) + (x− x̄L) · (x− x̄R)
, (4.14)

where the bar indicates the boundaries of the dual grid.

In the left top plot of Fig. 4.5, the error of a derivative computed in one grid of ten
domains is shown. Here, it is very easy to notice where are the boundaries of these
domains as the error have a peak of more than one order of magnitude in most of the
cases. The brown line of the left bottom plot shows the error when we do the same
computation with the dual grid scheme. The peaks disappear completely and the
error in the derivative is now very flat. This improvement can be seen on the right
top plot where we present the quotient between the error of the derivative computed
with and without the dual grid. Near the boundaries we refine our computation
between one and two orders of magnitude. Doing the same for the second derivative
(right bottom plot) the enhancement is even better with all the boundaries reducing
the error in two/three orders of magnitude.
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4.4 Applications to Numerical Relativity

The main methods presented here and the interest of exploring arbitrary
precision come from the previous work about the gravitational collapse of scalar
fields in Anti-de Sitter (AdS) that was presented in Chapter 2 and published in Refs.
[13, 14]. In this section we improve the two schemes that we use there, specially the
characteristic one. Thanks to a different coordinate system and a small change in
the computation of the metric variables, we have been able to incorporate the PSC
method to the impletation of this formulation.

4.4.1 Gravitational Collapse

We start reformulating the problem of gravitational collapse in characteristic
coordinates. This was introduced in Sec. 2.1 and we used the characteristic
formulation in AdS spacetimes in Secs.2.3.2 and 2.4.3. We rewrite our original
characteristic formulation [15, 16, 17, 18] using now a double null metric. For
simplicity we deal with the case of zero cosmological constant but the difference
with AAdS is very small. The line element is:

ds2 = −2f(u, v) rv(u, v) dudv + r2(u, v)dΩ2, (4.15)

where f and r are two arbitrary functions of (u, v) and rv is the partial derivative of
r with respect to the coordinate v. The idea of a double-null folation is to take both
directions of the propagation of light rays as coordinates. In Fig. 4.6 an scheme of
this idea can be seen for the case of an empty spacetime. In our case, the spacetime
is curved by the presence of the scalar field so (u, v) would not be perpendicular to
the (t, r) coordinates.

With the intention of reducing the order of the system and to separate variables
we introduce the following new variables for the scalar field:

h =
(rφ)v
rv

h̄ = φ,

(4.16)

and also a new metric variable:
f̄ = −2ru. (4.17)

With this new variables, from the vv and the uv components of the EFEs we get
two equations:

fv =
f rv
r

(h− h̄)2

f̄v =
rv
r

(
f − f̄

) (4.18)
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Figure 4.6: Scheme of an Evolution in Double Null Coordinates. The horizontal
and vertical lines are the axis of the (r,t) coordinates. We set our initial conditions
in a u =const (wide purple) and evolve each point of the grid following the
arrows. This scheme is true in the case of an empty spacetime where null
coordinates form 45 degrees with (r,t). In a general case, the (u,v) coordinates
will be curved but the idea is the same.

We prescribe initial conditions in the profile h(v) in an initial u=const and then
we compute all the needed information with the expressions:

h̄ =
1

r

∫ v

v0(u)

h rvdv

f = f(v0) exp

∫ v

v0(u)

rv
r

(h− h̄)2 dṽ

f̄ =
1

r

∫ v

v0(u)

rvf dṽ

(4.19)

where v0 is the value of v where r = 0 and for regularity at this point we impose
h̄(v0) = h(v0) and f̄(v0) = f(v0). The last expression can be rewritten by using
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integration by parts as:

f̄ = f − 1

r

∫ v

v0(u)

rvf(h− h̄)2 dṽ. (4.20)

Once we have all the information in one u =const, we evolve the field using the
conservation of the stress-energy tensor:

hu =
1

2 r
(f − f̄)(h− h̄) (4.21)

and also from Eq. (4.17) and 4.18 we can obtain the other evolution equations:

ru = −1

2
f̄ ,

(rv)u = −1

2
rv

[
f − f̄
r

]
.

(4.22)

The only piece missing in the scheme is the f(v0) that appears in Eqs. 4.19. This
indicates a residual gauge freedom about the change in the coordinate v thought
hypersurfaces of u =const. In practice, this is going to fix how the origin r = 0
moves in the (u, v) plane. Considering vo, the coordinate of the origin, its trajectory
can be computed with:

dvo(u)

du
=

fo
2rv

∣∣∣∣
o

, (4.23)

so we are going to take f(v0) = 2 rv|o and then the origin moves as:

v0(u) = vo(u0) + u. (4.24)

We prescribe a Gaussian as initial condition in the scalar field:

h(u0, v) = ε e
(v−b)
ω2 , (4.25)

where we select ε = 2.00, b = 0.15 and ω = 0.05, a configuration above the critical
threshold and therefore that will form an AH. The evolution is performed with an
standard Runge-Kutta 4 algoritm. In our coordinates, the presence of an AH will be
noticed by the condition rv → 0 or, equivalently, f̄/f → 0. This limit is not reachable
in our coordinates but we assume the AH forms when these quantities reach a value
less than 10−8. At this point, we stop the simulation and we analyse the solution.

Using the spectral representation, Eq. (1.104), the error can be estimated from the
absolute value of the last spectral coefficient. The value of the coefficients ai decay
exponentially, reaching or not the round-off error. If round-off is not reached, the
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Figure 4.7: Convergence of the Position of the AH Formation: The left plot
shows the truncation error (estimated from last spectral coefficient) at the moment
of AH formation for several different grid configurations, all of them with 20
domains. Each data set corresponds to simulations done with different bit
precision. The error decays exponentially (spectral convergence) until maximum
precision is reached. On the right we see the impact of having more domains
added. All sets of data have spectral convergence but the number of domains has
an impact in the α factor of the exponential decay e−αN . These simulations are
done with 300 bit precision.

last spectral coefficient represents an estimation of the truncation error for ignoring
the rest of terms of the spectral series. Otherwise, if the last coefficient is the round-
off error the last coefficient represents the precision reached. In both cases, it can be
used for a good estimation of the error.

In Fig. 4.7 we show this error at the end of the evolution for the case presented.
As we have different errors at each domain, we consider the highest of all of them
that corresponds with the domain where the collapse is taking place. In that figure
we only show the error of the function rv because is the one that have the highest
error of all the three evolution variables.

Moreover, in the left plot of Fig. 4.7, we use a setup with twenty domains and we
change the number of points for different bit precision. In all the cases, the error has
an exponential decay (spectral convergence), notice the log scale in the y axis, until
the reach of the precision limit that, of course, improves as we increase the number
of bits of our data types. The first one represents a 53 bit precision equivalent to
the double standard and allows us to get a maximum precision of 10-10-10-11. Notice
that this is few orders of magnitude above the theoretical limit of sixteen digits, but
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this is not strange considering that during the evolution noise is going to pile-up
reducing our maximum precision. In addition, the number of domains used in our
test evolution is not optimal. This is just a comparison of the same exact scheme
for several bit precisions. Increasing the number of significant bits we improve the
maximum error and with 150 bits (around 45 significant digits) we easily decrease
the error up to almost 10−40.

In the right plot of Fig. 4.7 we study the influence of the number of domains
in the error. If we change the number of points per domain keeping the number
of domains constant, the error presents an exponential decay ∆rv ≈ exp(−αN).
Varying the number of domains changes the factor of the exponential decay α. In this
case we can reach the minimum error adding domains with less points per domain.
This can be a good idea considering that adding domains has, in general, a linear
impact on the computational time while increasing N has an impact of N logN or
N2 according if the operations in the spectral domain are performed with FFT or
with matrix transformations.

4.4.2 (in)Stability in Anti-de Sitter Spacetimes

In this section we recover the Cauchy evolution in Anti-de Sitter spacetimes as
it was presented in Secs. 2.3.1 and 2.4.1 and adapted in a simplified version for
arbitrary precision. In Chapter 2 it was shown that a perturbation in AdS has no
mechanism to disperse and must bounce in the boundary several times before it
becomes compact enough to collapse. Some stable configurations have been found
for some cases but the exact meaning of these is still under debate. In order to study
these cases, long and accurate evolution are needed. In this section we present a test
case where we evolve one of these configurations during two bounces and compare
the accuracy obtained using double precision and 300 bit precision.

We solve the EFEs as in the previous section but this time we consider the
spacetime metric of Sec. 2.3.1:

ds2 =
`2

cos2 x

(
−Ae−2δ dt2 +

dx2

A
+ sin2 x dΩ2

2

)
, (4.26)

where A = A(t, x) and δ = δ(t, x) are two arbitrary functions, t is the time coordinate
and x is a compactified spatial coordinate where the AdS boundary is located at
x = π/2. The full equations of this example can be found in Sec. 2.3.1
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Figure 4.8: Mass Error During an Evolution in AAdS Spacetimes. We compare
three different grid/precision configurations with ten domains. Using double
precision, the use of N=18 points per domain (red line) is enough for reaching the
round-off error. The same number of points with 300-bit precision (turquoise line)
allows us to reduce a few orders of magnitude the error during the evolution. It
is interesting to notice how, when the error is determined by the discretization
error, several fluctuations are present while in the one determined by round-off
the error remain very flat during the time evolution. The grey vertical line shows
the instant of time at which we measure the error for the study of Fig 4.9 .

To see how the use of arbitrary precision can help in this case we take a initial
perturbation similar to a Gaussian function centred at zero:

U(t0, x) = ε exp

(
−4 tan2 x

π2σ

)
,

V (t0, x) = −U(t0, x),

(4.27)

with ε = 2.0 and σ = 0.4. We set up a multidomain grid of ten domains and we
change the number of collocation points per domains to see how the error changes
according to this for both double precision and for a 300-bit MPFR variable. We
evolve this initial perturbation during the time corresponding off two bounces in the
boundary. As we need a very precise time evolution, we use a sixth order Runge-
Kutta 10,6(7) (see Refs. [19, 20] for details). This algorithm uses ten intermidiate
steps to generate a sixth order time integration with the seventh order as stimation
of the error.
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Figure 4.9: Convergence of the Error in AdS Evolutions. The figure shows how
we can control the error in the AAdS evolution using double (red points) or 300-
bit precision variables (turquoise ones). The plots represent the normalise mass
error (left) and the truncation error of U (centre) and V (right) with respect of the
number of collocation points per domain. This information is measured at the
same time (t = 6) after two bounces in the boundary for grid configurations with
ten domains.

At any time step, we can compute the energy contained inside a sphere of a given
compactified radius x, which we call the mass function:

M(t, x) = eδ
∫ x

0

dy e−δ sin2 y

(
U2 + V 2

2

)
, (4.28)

and then the total energy contained in the spacetime is M(t) = M(t, π/2). Its
conservation can be controlled by using a mass error function defined as:

∆M(t) =
|M(t)−M(t0)|

M(t0)
. (4.29)

In Fig. 4.8 we present the evolution of this mass error function. The purple line
shows an evolution with a low number of points (N = 12) with double precision.
The error oscillates in the range 10−12 − 10−11. Increasing the number of points, in
the plot we have consideredN = 18, we can decrease the mass error down to around
10−14. It is interesting to notice the different behaviour between the two lines. In the
first case there is plenty of oscillations and we consider the error as the maximum
value of those. This is because here the error is determined by the discretization
error in such a way that the total error can oscillate between the discretization and
the round-off errors. In the second case we have, by far, reached the round-off error
and the profile is very flat and, of course, it can not be improved by using double
precision. Just changing from double precision to 300-bit precision variables with



4.5. Conclusions and Future Prospects 159

the same number of points per domain, the error drops more than two orders of
magnitude and, again, it is determined by the discretization.

Once two full bounces are completed (t ≈ 2π), we consider not only the error
mass at that moment but also the error of the U and V functions from the last
spectral coefficient in the domain where the error is maximum. This is shown in
Fig.4.9 for grid configurations of ten domains with different number of points and
precisions. As expected, all three quantities decays exponentially until they have
reached the round-off error. For double precision (red points) this happens at values
of the 10−14− 10−15 that is easily overcome using higher precision as in the turquoise
points of this plot. With this we can easily evolve the configuration with an accuracy
below 10−24 with a very low number of collocation points per domain as 28, for a
total of 290 points.

4.5 Conclusions and Future Prospects

In this chapter we have presented the potential of the PSC methods in arbitrary
precision computations using the C++ ANETO library that we have developed.
The basic examples shown in Sec. 4.3 already give a glimpse of the potential that
PSC methods with very few collocation points are capable to achieve increadible
precisions when we allow the use of high precision arithmetic. In Sec. 4.4, this is
proven with the use of complex problems in numerical relativity when again the use
of high number of significant digits shows how far we can go.

In Sec. 4.3.2, we have seen that the main problem of arbitrary precision arithmetic
is that usually is implemented via a software layer that slows tremendously
our computation respect to the use of standard double precision. In this sense
spectral methods can help because due to the exponential order of convergence,
the discretization points required are smaller and therefore less computational
demanding. Secondly, the multidomain scheme here presented is very suitable for
parallelization as we have showed with the use of OpenMP. The scalability of the
multidomain is very good for now but for making the library more powerful can
be interesting to explore more low level approach that address the problem of the
arbitrary precision arithmetic.

The current version of the library have been release with the basics to be useful
for evolution problems but its functionalities are just few of the total possibilities
that PSC methods offer and that ANETO it expected to incorporate in the future.
Maybe one of the main ones is the possibility of solving linear and non-linear general
Ordinary Differential Equations. Also some kind of Adapting Mesh Refinement
method to allow the grid to be more flexible under problems different conditions
or in a farther future the incorporation of more than one dimensions. Another
aspect that we have not discuss in this paper is time integration. As the demand for
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accuracy increase, this aspect become very important and a high-order integration
can help a lot to reduce the number of steps in an evolution. For this reason, a
spectral time integration like the ones used in Refs. [21, 22, 23] can be a very
interesting to improve the accuracy of the evolutions with arbitrary prevision
arithmetic.
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Overview and Conclusions

In this thesis we have studied several open problems using numerical methods
as the main tool, showing the great potencial of Numerical Relativity to address
problems in gravitation. This branch of General Relavity help us to solve problems
that are very difficult or prohibitive by another means. Moreover, it opens the door
to constructing new solutions of the Einstein Field Equations for spacetimes without
symmetries or any special properties. Even in cases with some symmetry, as in
the problems that we have discussed in this thesis, it is unreasonable to think that
they could be treated without appropiate numerical tools. Anyway, it is also not
very wise to think that we can work only with numerical methods and therefore
the combination of numerical, analytic and perturbative tecniques is vital and very
fruitful.

On the other hand, the study of the dynamics of AdS spacetimes is very
important for several reasons The first one is theoretical. The discovery of the
turbulent instability common to AdS and another confined geometries is useful to
understand the structure of the equations of General Relativity and the features
of relativistic gravitation. Another interesting aspect is the possible role of AdS in
the Randall–Sundrum scenarios. And the last, but not least important, is its use in
the holographic correspondence that we have used in parts of this thesis. For all
these reasons, the interest and applications on AdS has increased in the last couple
of decades and it seems that is going to rise even more in the next years.

Our research on the gravitational collapse of massless scalar fields in AAdS
spacetimes, Chapter 2, has brought a very interesting outcome. First of all, we have
developed a new method that combines two different formulations of the Einstein
Field Equations to get closer to the collapse and with more accuracy. The first one is
a Cauchy scheme similar to the ones used in the literature but with a multidomain
grid and a pseudo-spectral collocation method that gives a very good precision to
deal with the dynamics of this spacetime. This is important because the boundary
of AdS confines the scalar field and then it is forced to bounce there. For this reason,
it needs to be tracked with high accuracy, specially for configurations near to the
critical points. The second scheme is based on characteristic coordinates and help
us to track the formation of the apparent horizon. The transformation between the
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two is performed during the simulation. The collapse of the scalar field happens
after a number of bounces with the critical points being the separation between
the different branches. We have numerical evidence that in the separation of the
branches there is a power law for subcritical configurations in addition to the one for
supercritical ones. This new power law have a universal exponent ξ ≈ 0.70 to any
initial conditions and to the different branches. It also confirms that there is a gap
in the mass of the apparent horizon. This work has been published in two papers in
the Physical Review Letters and Physical Review D journals. Despite of the numerical
evidence, the exact interpretation of this new power law and its relation with the
already known critical behaviour is still uncertain and remains as a question for
future research. In addition, it would be interesting to study the influence of more
complex matter content, like massive scalar fields, in the new power law that we
have found. Also in other confined geometries. In this sense, there have been works
that report the same phenomena in flat spacetime with an artificial boundary but a
different value of the exponent was found. This could be an stimulating difference
that needs to be analysed in more detail.

We have also described the shock waves model in AdS to study the far-from-
equilibrium studies in the heavy ion collisions and the formation of the QGP through
the holographic correspondence. This has attracted a lot of attention in the last
few years because of the possibility of simulating strongly coupled systems but, as
a drawback, we do not know yet the exact dual of the QCD that should explain
the phenomena. In the models used until now, the shock waves corresponds to
conformal gauge theories while QCD is not conformal. And this an important
limitation. For this reason, in order to get closer to a description of the actual
physical collisions, we need to study non-conformal theories. In Chapter 3, we
have presented the first shock wave collisions in a non-conformal theory. The results
obtained on this have been presented in two papers in Journal of High Energy Physics
and another one with more details is about to be released. We show how the non-
conformality increases the hydrodynamisation time and also that this can happen
before the equation of state is fulfilled. The continuation of the study of non-
conformal theories is going to be important to approach to this system meanwhile
a better dual for QCD is discovered. The reduction of some symmetries and the
simulation in higher dimensional AAdS scenarios is also essential.

The last chapter has been dedicated to the proposal of the pseudo-spectral
collocation method as a very strong candidate for high precision computations. The
use of an arbitrary large number of digits has two main problems. The first is the
necessity of increasing a lot the discretisation points to reach the precision we want.
The other one is the slowing down in the computational performance due to the
fact that we need to emulate the fundamental operations with software because
the processors are not adapted to carry out computations with precision different
from the standard one, double or float. The exponential convergence of spectral
methods can approximate functions to a very high accuracy with a few hundred
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terms in our spectral expansion while in other numerical methods it would be a few
orders of magnitude larger. This makes these methods very atractive because they
facilitate the accessibility to very small error simulations, removes the bottleneck of
the memory demand and also help in the computational speed because fewer points
are needed for the computation. We have tested this idea with the ANETO library
for simulations in AdS spacetimes and the gravitational collapse in an asymptotically
flat spacetime with very promising results. This library has been developed as a
direct result of this thesis and that can be downloaded as Free Software. The results
are very promising and it should be applicable also for long-term simulations. For
these long-term simulations the usual algorithms to perform the time integratation
maybe are not enough and it can be a good idea to improve them with spectral
methods. Other prospect for the future is to use pseudo-spectral methods with
arbitrary precision for problems in other fields of science where high accuracy is
currently being used.








	DSO_COVER
	dsantos_thesis
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Resumen
	Numerical Relativity Methods
	General Relativity Basics
	Gravity as Geometry
	A Geometrical Language
	The Einstein Field Equations
	Exact Solutions of the Einstein Field Equation

	Formulations of the EFEs for Numerical Relativity
	The Cauchy Problem
	Characteristic Initial Value Problem
	Well-posedness and Hyperbolicity

	Pseudo-Spectral Collocations Methods
	Basics of PSC Method
	Multidomain PSC Method


	Critical Collapse in Asymptotically Anti-de Sitter Spacetimes
	Gravitational Critical Collapse
	The Stability of Minkowski Spacetime
	Choptuik's Work on Gravitational Collapse
	The Critical Solution
	Generic Gravitational Critical Collapse

	Anti-de Sitter Spacetime
	``The Infinite Box''
	The Turbulent Instability of Global AdS

	Formulation of the Field Equations
	Cauchy-type Evolution of the EKG System
	Characteristic-type Formulation of the EKG System
	Transition between the two Formulations

	Basics of the Numerical Implementation
	Numerical Implementation of the Cauchy Evolution 
	Adaptive Mesh Refinement for the Cauchy Evolution
	Numerical Implementation of the Characteristic Evolution

	Test for Code Validation 
	Convergence Analysis for the Cauchy Evolution
	Convergence Analysis for the Characteristic Evolution
	Comparison between the Cauchy and Characteristic Evolutions
	Ingoing Null Geodesics

	Results from the Numerical Evolution
	Critical Phenomena in AAdS Gravitational Collapse
	Power-law Behaviour near the Mass Gaps

	Conclusions

	Holographic Collisions in Non-conformal Theories
	Holography and Heavy Ion Collisions
	Setup for the Non-conformal Shock Waves
	The Physical Model
	Gauge Theory Physical Quantities
	Thermodynamics and Transport
	The Metric of the Shock Wave

	Numerical Framework for the Holographic Collisions
	Field Equations
	Field Redefinitions and Evolution Algorithm
	Discretization
	Initial Data
	Code Convergence and Validation
	Connecting the Gauge Theory with the Shock Wave Evolution

	Non-conformal Collisions
	Conclusions

	Pseudo-Spectral Collocation Methods and Arbitrary Precision
	Floating Point Numbers
	ANETO Library Structure
	Class Spectral Domain
	Class Multidomain

	Library Performance
	Integrals
	Double Precision versus Arbitrary: Computational Time
	Parallelization with OpenMP
	Multidomain Derivatives: The Dual Grid

	Applications to Numerical Relativity
	Gravitational Collapse
	(in)Stability in Anti-de Sitter Spacetimes

	Conclusions and Future Prospects

	Overview and Conclusions


