
Enabling Caches in Probabilistic
Timing Analysis

Leonidas Kosmidis

Computer Architecture Department

Universitat Politècnica de Catalunya

A thesis submitted for the degree of

PhD in Computer Architecture

30th of May, 2017

mailto:leonidas.kosmidis@bsc.es
http://www.ac.upc.edu/
http://www.upc.edu

2

Enabling Caches in Probabilistic Timing
Analysis

Leonidas Kosmidis

May 2017

Universitat Politècnica de Catalunya

Computer Architecture Department

Thesis submitted for the degree of
Doctor of Philosophy in Computer Architecture

Advisors: Eduardo Quiñones, Barcelona Supercomputing Center (BSC), (Advisor)
Jaume Abella, Barcelona Supercomputing Center, (Co-advisor)
Francisco Cazorla, IIIA-CSIC and BSC, (Co-advisor)
Mateo Valero, Universitat Politècnica de Catalunya and BSC, (Tutor)

The work reported in this thesis has been conducted at the Computer Architecture and
Operating Systems Interface (CAOS) group of the Barcelona Supercomputing Center (BSC),
and has been financially supported by the Spanish Ministry for Education under the FPU grant
AP-2010-4208 and by the European Commission through the FP7 projects PROARTIS (FP7-
ICT1.3.4-249100) and PROXIMA (611085).

i

To my tireless companion
in the beautiful journey of life,

my wife, Maritina

Acknowledgements

Σὰ βγεῖς στὸν πηγαιμὸ γιὰ τὴν ᾿Ιθάκη,

νὰ εὔχεσαι νἆναι μακρὺς ὁ δρόμος,

γεμάτος περιπέτειες, γεμάτος γνώσεις.

[...]

Κι ἂν πτωχικὴ τὴν βρῇς, ἡ ᾿Ιθάκη δὲν σὲ γέλασε.

῎Ετσι σοφὸς ποὺ ἔγινες, μὲ τόση πείρα,

ἤδη θὰ τὸ κατάλαβες ᾑ ᾿Ιθάκες τί σημαίνουν.

Ιθάκη, Κωνσταντίνος Π. Καβάφης (1911)

As you set out for Ithaka
hope the voyage is a long one,

full of adventure, full of discovery.
[...]

And if you find her poor, Ithaka won’t have fooled you.
Wise as you will have become, so full of experience,

you will have understood by then what these Ithakas mean.

Ithaka, Constantine P. Cavafy (1911)
(Translation by Edmund Keeley/Philip Sherrard)

Six years, two European and an ESA project later a journey comes to
its end. A journey full of learning, hard work and innovation.

The first years were rough. A couple of paper rejections, the difficulty
to convince the critical real time systems community for a solution
so different from the traditional way followed for decades. Eventually
came redemption, to replace the initial disappointment with joy and
relief. I could never imagine back then, that there will be one day that
the proposals of this thesis would be widely accepted and even establish
a new field in the real-time systems research and implementation.

This thesis wouldn’t be possible without the PROARTIS project, which
brought together exceptional researchers from different backgrounds to
collaborate intensively and invest significant resources to a ground-
breaking and controversial idea. This collaborative effort laid the
foundations of Probabilistic Timing Analysis and in particular the
Measurement-Based variant (MBPTA) which this thesis is based on
and offered me the opportunity to propose hardware and software so-
lutions to make it possible in practice. I’m proud to have been part of
the initial PROARTIS team and its industrialisation-focused successor
PROXIMA, and have contributed significantly to their success.

Of course, this would have never happened without my advisors: Dr.
Eduardo Quiñones, Dr. Jaume Abella, Dr. Francisco Cazorla and prof.
Mateo Valero. First of all, I would like to thank them for making the
aforementioned projects possible with successful project and grant pro-
posals, and with the effective coordination of their activities. Second, I
would like to express my gratitude for having given me the opportunity
to participate in those innovative European and ESA funded projects –
PROARTIS, PROXIMA and PROARTIS for SPACE (P4S) – and for
having proposed me this interesting and challenging topic. I am also
grateful for their constant assistance during my research in any form;
from the endless discussions and explanations to the encouragement
they gave me until the last moment. Next to them I learned not only
how to do research but also what I should avoid in this endeavour.

During these years I had the opportunity to meet and collaborate with
exceptional people: prof. Tullio Vardanega from University of Padua
has been an extraordinary teacher from whom I learned a lot on real-
time systems theory and implementation as well as project manage-
ment; his PhD students (led by my friend Dr. Enrico Mezzetti: Andrea
Baldovin, Davide Compagnin, Luca Bonato, Marco Ziccardi) provided
the RTOSes for several case studies running on the platforms which
were hardware or software randomised based on the contributions of
this thesis; Airbus France folks Franck Wartel and Benôıt Triquet who
always made me to feel welcome in every visit at Airbus facilities in
Toulouse. They taught me a lot about the PowerPC architecture inter-
nals and avionics systems, and they scrutinised every bit of my propos-
als to ensure their applicability to the avionics domain; all INRIA group
members led by Dr. Liliana Cucu with whom we established the first
version of MBPTA theory upon which this thesis is built; prof. Emery
Berger and his student Charlie Curtsinger who implemented Stabilizer,
the tool we used to implement dynamic software randomisation.

All the people of the CAOS group with whom we shared an office and
we had a wonderful time all these years. They are not only good col-
leagues but also good friends. From those I need to specially thank for
their direct or indirect technical contributions on this thesis: Mikel Fer-
nandez who got the responsibility to maintain and extend the simulator
I built for my thesis and PROARTIS, so that it could be widely used
in our group as well as in other European and ESA funded projects;
David Morales who under my supervision continued my work on dy-
namic software randomisation by porting it to the SPARC LEON3
FPGA board and by integrating it with various industrial RTOSes
and helped to collect results with TASA; Roberto Vargas who proto-
typed the TASA parser in a couple of days and with whom we spent
endless hours exchanging opinions and solutions on technical matters;
Dr. Carles Hernandez who implemented the hardware proposals of this
thesis in the LEON 3 RTL together with Cobham Gaisler colleagues
to produce the first ever MBPTA-compliant processor in the market.

Since the process of obtaining a PhD title is the uttermost celebration
of education, in addition to the people related to my doctoral stud-
ies, I would like to thank all the people that affected my education
since my young age to shape my character and to continue pursuing
knowledge during my entire life. Similar to Alexander the Great, one
of the most important figures of both Greek and global history, who
used to praise his tutor Aristotle, saying that he owed his existence to
his father and his welfare to his tutor. [Plutarch, Parallel Lives, Life of
Alexander, Section 8.4]. Starting from my uncle Eftychios who when I
was 6 years old he gifted me my first encyclopedia and he wrote in his
dedication: ”A very small stone to the building of your knowledge”.
Thank you uncle for the solid foundations! I would like also to thank
my family members, friends and my teachers across all educational lev-
els that helped me to become the man I am, either by supporting me,
or teaching me principles, life lessons or knowledge of any kind.

Raised in the Greek public educational system – the gem of our small
country, which has produced and continues to produce many brilliant
scientists and it must be protected and improved as an investment for
the future generations – from primary school to my bachelor’s degree,
I was blessed to have received a very high quality education. I had
exceptional educators in their entirety, full of passion about their job
and love for their students, who were trying their best every day even
with the limited resources they were provided with.

From those I would like to specifically mention my advisors at my alma
mater, the Computer Science Department of University of Crete, prof.
Angelos Bilas and prof. Manolis Katevenis, for giving me solid foun-
dations on computer architecture and creating the spark for pursuing
a doctoral degree in this fascinating area.

Last but not least, I want to thank my beloved wife Maritina, for her
patience and her continuous support and encouragement during the
period of my doctoral thesis’ research. She offered me a warm family
and she makes my life beautiful every single day.

This work has been funded by the Spanish Ministry for Education un-
der the FPU grant AP-2010-4208, the European Commission through
the projects PROARTIS (FP7-ICT1.3.4-249100) and PROXIMA (611085).

Abstract

Hardware and software complexity of future critical real-time systems
challenges the scalability of traditional timing analysis methods. Meas-
urement-Based Probabilistic Timing Analysis (MBPTA) has recently
emerged as an industrially-viable alternative technique to deal with
complex hardware/software. Yet, MBPTA requires certain timing prop-
erties in the system under analysis that are not satisfied in conventional
systems. In this thesis, we introduce, for the first time, hardware and
software solutions to satisfy those requirements as well as to improve
MBPTA applicability. We focus on one of the hardware resources with
highest impact on both average performance and Worst-Case Execu-
tion Time (WCET) in current real-time platforms, the cache. In this
line, the contributions of this thesis follow three different axes: hard-
ware solutions and software solutions to enable MBPTA, and MBPTA
analysis enhancements in systems featuring caches.

At hardware level, we set the foundations of MBPTA-compliant pro-
cessor designs, and define efficient time-randomised cache designs for
single- and multi-level hierarchies of arbitrary complexity, including
unified caches, which can be time-analysed for the first time.

We propose three new software randomisation approaches (one dy-
namic and two static variants) to control, in an MBPTA-compliant
manner, the cache jitter in Commercial off-the-shelf (COTS) proces-
sors in real-time systems. To that end, all variants randomly vary
the location of programs’ code and data in memory across runs, to
achieve probabilistic timing properties similar to those achieved with
customised hardware cache designs.

We propose a novel method to estimate the WCET of a program using
MBPTA, without requiring the end-user to identify worst-case paths
and inputs, improving its applicability in industry. We also introduce
Probabilistic Timing Composability, which allows Integrated Systems
to reduce their WCET in the presence of time-randomised caches.

With the above contributions, this thesis pushes the limits in the use
of complex real-time embedded processor designs equipped with caches
and paves the way towards the industrialisation of MBPTA technology.

Contents

1 Introduction 1
1.1 Specific Requirements . 2

1.1.1 High Performance . 2
1.1.2 Timing Analysability . 4
1.1.3 Time Composability . 6

1.2 Benefits and Challenges of Caches 7
1.3 Contributions . 8

1.3.1 Hardware Solutions . 9
1.3.2 Software Solutions . 9
1.3.3 Timing Analysis aspects related to the use of caches in MBPTA 10

1.4 Structure of the Thesis . 11
1.5 List of Publications . 12

1.5.1 Accepted Publications . 12
1.5.2 Other Publications . 13

2 Background 16
2.1 Timing Analysis . 16

2.1.1 Static Deterministic Timing Analysis 19
2.1.2 Measurement-based Deterministic Timing Analysis 21
2.1.3 Probabilistic Timing Analysis 23
2.1.4 Introduction to SPTA/MBPTA Requirements 28

2.2 Caches in Real-Time Systems . 30

3 Experimental Setup 32
3.1 Simulation Framework . 32

3.1.1 Simulator Description . 32
3.1.2 Simulation Methodology . 34

3.2 Metrics . 35
3.3 Benchmarks . 37

xi

CONTENTS CONTENTS

4 MBPTA-Compatible Processor Design 39
4.1 Introduction . 39
4.2 Requirements on Hardware Design 40
4.3 Modelling the Timing Behaviour of Processor Resources 41

4.3.1 Analysis and Operation Phases 41
4.3.2 Deterministic and Probabilistic Upper-bounding 42
4.3.3 Benefits . 43
4.3.4 Taxonomy of Hardware Resources 43
4.3.5 Assigning ETP to Individual Processor Resources 45
4.3.6 ETP of several execution components 45
4.3.7 More Complex Single-core Processor Architectures 46
4.3.8 First Steps Towards MBPTA-friendly Multi-cores 47

4.4 Case Study . 48
4.4.1 Designing an MBPTA-friendly Processor Architecture 48
4.4.2 Deriving ETP . 49
4.4.3 Checking the i.i.d. Hypothesis 50
4.4.4 pWCET . 51
4.4.5 MBPTA-friendly Architectures Performance 52

4.5 External Results . 53
4.6 Conclusion . 54

5 Single Level Hardware Time-Randomised Caches 56
5.1 Introduction . 56
5.2 Timing Behaviour of Random Caches 57

5.2.1 Random Replacement (RR) 58
5.2.2 Random Placement (RP) . 60
5.2.3 Putting All Together: Set-Associative Caches 64

5.3 Hardware Design of a Random Cache 66
5.3.1 Random Replacement . 66
5.3.2 Random Placement . 66

5.4 Results . 68
5.4.1 Experimental Setup . 68
5.4.2 Quality of the Parametric Hash Function Implementation . . 68
5.4.3 Behaviour of the Parametric Hash Function Implementation 69
5.4.4 Fulfilling the i.i.d properties 70
5.4.5 Performance Analysis . 71
5.4.6 MBPTA: EVT projections 74
5.4.7 Power and Delay Analysis 76

5.5 External Results . 78
5.6 Related Work . 79
5.7 Summary . 80

xii

CONTENTS CONTENTS

6 Multiple Level Hardware Time-Randomised Caches 81
6.1 Introduction . 81
6.2 Cache Characteristics and Assumptions 82
6.3 Time Randomised Multi-level Caches 83

6.3.1 No Inclusivity Control (NIC) 84
6.3.2 Inclusive Caches . 87
6.3.3 Generalising the Latency/Probability Cache Model 89
6.3.4 Hardware Considerations . 91

6.4 Actual Probabilities . 91
6.5 Exclusive Caches . 93
6.6 Evaluation . 95

6.6.1 Experimental Framework . 95
6.6.2 Compliance with MBPTA requirements 95
6.6.3 Reduction in pWCET Estimates 96
6.6.4 Detailed pWCET Analysis 98

6.7 External Results . 99
6.8 Related Work . 100
6.9 Summary . 100

7 Dynamic Software Randomisation 102
7.1 Introduction . 102
7.2 Compiler and Runtime Support for MBPTA 103

7.2.1 Random Location of Memory Objects 104
7.2.2 Formal Justification for Applicability of MBPTA 105
7.2.3 Effect of Replacement Policy 106
7.2.4 Randomising Compiler and Runtime System 107
7.2.5 Detailed Implementation Description 108

7.3 Results . 110
7.3.1 Experimental Setup . 110
7.3.2 Independence and Identical Distribution Tests 110
7.3.3 pWCET Estimates . 110
7.3.4 Overhead . 112

7.4 External Results . 112
7.5 Related Work . 114
7.6 Summary . 115

8 Static Software Randomisation at Compiler/Linker Level 116
8.1 Introduction . 116
8.2 Static Software Randomisation . 117

8.2.1 Functional Verification of Software 117

xiii

CONTENTS CONTENTS

8.2.2 Static Code Placement Randomisation
(SSR-code) . 117

8.2.3 Static Stack Frame Randomisation
(SSR-stack) . 120

8.2.4 Static Global/Static Variable Randomisation (SSR-globals) . 121
8.3 Deploying DSR and SSR . 121

8.3.1 DSR . 121
8.3.2 SSR . 122

8.4 Evaluation . 122
8.4.1 Memory Overheads . 123
8.4.2 Performance . 126

8.5 Related Work . 126
8.6 Summary . 126

9 Static Software Randomisation at Source Code Level 127
9.1 Introduction . 127
9.2 TASA . 129

9.2.1 Executable Structure . 129
9.2.2 Code Placement Randomisation 130
9.2.3 Stack Frame Randomisation 131
9.2.4 Program Data Randomisation 132
9.2.5 Compound Structure Randomisation 134
9.2.6 Multi-source Binaries . 134
9.2.7 Compiler Optimisations . 135

9.3 Evaluation . 135
9.3.1 Experimental Setup . 135
9.3.2 Certification Compliance and Transparency 137
9.3.3 Impact of Optimisation Disabling 137
9.3.4 Average Execution Time . 138
9.3.5 pWCET Estimates and MBPTA Compliance 139
9.3.6 Memory Overheads . 140

9.4 External Results . 143
9.5 Related Work . 144
9.6 Summary . 145

10 Path Upper-Bounding for MBPTA 146
10.1 Introduction . 146
10.2 Path Coverage . 147
10.3 Principles of PUB . 149

10.3.1 Definitions . 149
10.3.2 Instruction Sequence Subordinance 150

xiv

CONTENTS CONTENTS

10.3.3 Cache Subordinance . 152
10.3.4 Theorem 1 in Time-Deterministic Caches 154

10.4 Proof for Theorem 1 and Theorem 2 154
10.5 Applying PUB . 156

10.5.1 Address Merging (PUBam) 157
10.5.2 Address Aging (PUBaa) . 161
10.5.3 Creating the PUB Code . 162
10.5.4 Core Latency . 163
10.5.5 Steps . 164

10.6 PUB for Instruction Caches . 164
10.7 Evaluation . 166

10.7.1 Code Replication Size . 167
10.7.2 pWCET Estimates . 168

10.8 Exploiting User Knowledge to Reduce pWCET 169
10.9 Related Work . 171
10.10Summary . 172

11 Probabilistic Timing Composability 174
11.1 Introduction . 174
11.2 Incremental qualification . 176
11.3 Time Composability . 176

11.3.1 Software Structure of Real-Time Functions 177
11.3.2 Problem Statement and Assumptions 178

11.4 Probabilistic Time Composability 179
11.4.1 Software Support . 183

11.5 Experimental Results . 185
11.5.1 Experimental Framework . 185
11.5.2 Results . 186

11.6 Summary . 190

12 Conclusions and Future work 191
12.1 Contributions . 191
12.2 Impact . 193
12.3 Future Work . 195

References 215

xv

List of Figures

1.1 Evolution of avionics software size. 3
1.2 Example of pWCET distribution. 5
1.3 Logical Organisation of this Thesis’ contributions. 8

2.1 Distribution of possible execution times of a task. 17
2.2 Example of the CCDF and tail projection. 25

3.1 General Organisation of modelled architecture. The dashed compo-
nent (L2 cache) can be disabled. 33

3.2 Simulation methodology . 34
3.3 Execution time collection for MBPTA 35

4.1 Deterministic and probabilistic upper-bounding latencies 42
4.2 Probabilistic timing behaviour of a single instruction for each type

of resource . 44
4.3 Reference core architecture. L2 cache (dashed component) is not

used in the case study. 49
4.4 pWCET estimates for the puwmod benchmark program on different

architectural setups. 51

5.1 Probability tree of the sequence < A,B,C,A >. Each box repre-
sents the cache state after a given access. Black boxes indicate that
the current access misses in cache, while white boxes indicate that
the current access hits. 58

5.2 Block diagram of the cache design. 61
5.3 Parametric hash function proposed for the random-placement cache. 65
5.4 4KB direct-mapped cache considering an idealised random place-

ment and the actual hardware implementation of the random place-
ment (labelled as Idealised Rand Plac and Real Rand Plac respec-
tively). 70

xvi

LIST OF FIGURES LIST OF FIGURES

5.5 CPI (cycles per instruction) for tblook benchmark for some RP+RR
and LRU+mod cache configurations. In particular, we show, from
left to right, FA, 32-way, 8-way, 4-way, 2-way and DM caches. . . . 73

5.6 CPI (cycles per instruction) for rspeed benchmark for some RP+RR
and LRU+mod cache configurations. In particular, we show, from
left to right, FA, 32-way, 8-way, 4-way, 2-way and DM caches. . . . 73

5.7 CPI (cycles per instruction) for aifftr benchmark for some RP+RR
and LRU+mod cache configurations. In particular, we show, from
left to right, FA, 32-way, 8-way, 4-way, 2-way and DM caches. . . . 73

5.8 EVT projection for a2time. 74
5.9 EVT projection for ttsprk. 74

6.1 Access tree and cache state for the access sequence <A1, B1, A2, B2>. 92
6.2 (a) Average and (b) pWCET execution time for different cache con-

figurations normalised to the single-cache level setup 97
6.3 pWCET distributions and actual measurements for (a) a2time and

(b) canrdr. 98

7.1 Different cache locations of functions fa and fb in a direct-mapped
cache implementing a modulo placement policy. Red (shaded) lo-
cations correspond to cache conflicts among the two functions. . . . 104

7.2 Cache locations and layouts of functions fa and fb in a deterministic
two-way set-associative cache. Red regions denote the cache way
conflicts between the two functions. 106

7.3 Randomisation of code frames of functions fa and fb into the main
memory. 108

7.4 Randomisation of stack frames of functions fa and fb into the main
memory. 109

7.5 pWCET estimations of caches implementing modulo + LRU and
modulo + random replacement (labelled as mod+lru and mod+rr
respectively). 111

8.1 Algorithm to randomly place functions in the binary. 118
8.2 pWCET distribution in processor cycles for an industrial program. . 120
8.3 Binary size overheads for the sensitivity study varying function

number between 10 and 1,000 and cache way size between 1KB
and 8KB. 125

9.1 Code fragments showing code and stack randomisation scenarios. 128
9.2 Code fragments under various data randomisation scenarios. 132
9.3 (a) Memory layout for corresponding source code fragments from Fig-

ure 9.2. (b) Struct memory layout. 133

xvii

LIST OF FIGURES LIST OF FIGURES

9.4 Average execution time measured in processor cycles for TASA and DSR

(STAB). 138
9.5 Worst Case Execution Time for TASA and Stabilizer 139
9.6 Memory overhead for different binary sections. Results are normalised

to the corresponding toolchain (gcc or llvm) without software randomi-

sation. Values for TASA are the average for all binaries. 142

10.1 Current and proposed methodologies based on MBPTA. 148
10.2 Example of comparison of pET . 151
10.3 Illustration of possible cases in Proof 1. For each access, e.g A1, the

superindex indicates whether it is a hit Am
1 or a miss Am

1 . Arrows
shown which access in each sequence can be paired up according to
IEUB definition . 156

10.4 Examples of data cache branch upper-bounding 158
10.5 Impact on code size of PUB . 167
10.6 Impact on pWCET estimates of PUB with respect to MBPTA ap-

plied over the original program with the user-provided input vectors. 168
10.7 a2time loop structure . 170
10.8 a2time loop structure with simple code restructuring to help the

compiler identify mutual exclusive paths 170

11.1 The effect of the number of accesses, the number of unique addresses
and reuse distances. Accesses marked with ∗ have non-infinite reuse
distance. 180

11.2 Example of a micro-benchmark . 184
11.3 Survivability as a function of the number of unique accesses in the

disturbing code for caches with different number of lines. 186
11.4 Characterisation of the Mälardarlen benchmarks used 187
11.5 pWCET estimates obtained with MBPTA for different (ui, ud) val-

ues for the bs benchmark . 188
11.6 pWCET percentage improvement (reduction) of (ui,ud) against (flush,flush)

for 10−13 cutoff probability . 188
11.7 Effect of instruction data and caches flushing (4KB cache) 189

xviii

Chapter 1

Introduction

For decades computers have been used almost exclusively for large scale scientific
computation, business/office automation and entertainment. Recently, this trend
has abruptly changed with computers intervening in a growing number of crit-
ical aspects of human life related to health, finance, security and safety among
others [Duranton et al. (2013)][Duranton et al. (2015)][Girbal et al. (2013)]. The
digitisation of activities critical to the society brings huge potential benefits includ-
ing personalised healthcare, safer and lower-emission transportation, and improve-
ments in cost reduction in industrial production [ARTEMIS, ITEA, and EUREKA
(2015)]. For this reason, the embedded computing systems domain, which includes
handhelds, Internet of Things (IoT) devices and control systems, is experiencing an
unprecedented growth. In particular, while in the past the larger share of the semi-
conductor industry revenue came from the high-performance and server market,
nowadays the embedded computing is the main contributor, forcing big industry
players to reconsider their strategy [Forbes (2015)] [Financial Times (2015)].

However, to effectively consolidate the new digitisation opportunities, changes
are required at both hardware and software level of embedded systems and more
specifically to their Critical Real-Time Embedded Systems (CRTES) subset. These
changes go in the line of increasing time analysability: unlike other computing do-
mains, CRTES do not require only functional correctness, but time plays an impor-
tant role for correct operation too, since tasks performed by CRTES have specific
time boundaries, called deadlines. The potential impact of increased analysability
is significant since CRTES are present in markets such as avionics, automotive,
railway, aerospace, telecommunication and medical, and constitute a large share of
the embedded market. Further, the CRTES domain has experienced an unprece-
dented growth in the last decade and this trend is expected to continue in the fu-
ture. In the automotive domain alone, it is estimated that the annual production
will reach the 100,000,000 vehicles per year, by 2020, increasing the global number
of existing automobiles over 50% [Jeffrey Owens, Delphi Automotive (2015)].

1

1. INTRODUCTION 1.1 Specific Requirements

Last decades have also witnessed a dramatic change in the way CRTES are
designed, transitioning from federated architectures to integrated architectures.
Taking as example the avionics domain, in the past, conventional avionics systems
were based on the federated architecture paradigm [Hoyme & Driscoll (1992)], in
which each computer was a fully dedicated unit to execute a single system func-
tion. However, due to the need to reduce costs – in terms of size, weight and power
as well as development and maintenance costs – and since most of the federated
computers perform essentially the same functions (input acquisition, processing
and output generation), a natural optimisation of resources is to share the de-
velopment effort by identifying common subsystems, standardising interfaces and
encapsulating services; in other words, adopting a modular approach. That is
the intent of the Integrated Modular Avionics (IMA) concept [Prisaznuk (1992)]
[Pelton & Scarbrough (1997)], whose integration refers to the sharing of (plat-
form) resources by multiple subsystems. Therefore, federated architectures have
been replaced by Integrated Architectures [Watkins & Walter (2007)], in which the
same computer can host multiple applications, potentially operating at distinct
criticality levels (mixed-criticality). Although this paradigm shift comes from the
IMA concept inbred to the avionics community, it is also applicable to other ap-
plication domains. In the automotive sector for example, software components
can be supplied from multiple sources, integrated on the same hardware platform
or physically distributed and possibly moved from one CPU to another without
loss of functional and time correctness, while also providing a guaranteed level of
reliability [Di Natale & Sangiovanni-Vincentelli (2010)].

1.1 Specific Requirements

Integrated mixed-criticality CRTES have specific requirements including – but not
limited to – high performance, and timing analysability and composability. Below
we examine those requirements and their implications on the CRTES design.

1.1.1 High Performance

Although CRTES were traditionally mechanical, they have gradually incorporated
more and more electronic controls in critical operations, like engine and brake man-
agement. Further, every new generation features new functionalities, e.g. driver
assistance systems in the automotive industry such as Anti-lock Braking Systems
(ABS), traction control, and collision avoidance up to fully autonomous self-driving
systems. Hence, critical software is increasingly used for autonomous operation
and decision-making in all domains. As a result critical software is increasing in
complexity and computing performance requirements. For example in the avion-

2

1. INTRODUCTION 1.1 Specific Requirements

1K 4K 23K 200K 2M
4M

100M

200M

400M

0

50

100

150

200

250

300

350

400

450

1965 1970 1975 1980 1985 1990 1995 2000 2005

MB
Avionics Software Size Evolution

INS A300B A300FF
A310

A320

A380

A3400‐600

777

CONCORDE

747‐200

Figure 1.1: Evolution of avionics software size.

ics domain (Figure 1.1), the size of aircraft software has been doubling in size
approximately every two years up to 1990, while after that it has been still grow-
ing with an exponential rate [Potocki de Montalk (1991)] [Butz (2007)]. Current
trends show that critical software will consume highest ever levels of computing
performance, e.g. advanced driver assistance systems are predicted to use at least
100x more compute performance by 2024 compared to 2016 systems [Winstanley
(2015)].

In order to satisfy the increasing computational power requirements of those
new functionalities (while trying to reduce power, size and cost and keep com-
petitiveness in the market) CRTES industries started increasing the number of
processing elements in their products. However, this resulted in a rapid multipli-
cation of the computational elements used: for example, as of 2014, a high-end car
includes more than 100 ECUs (Electronic Control Units) [Jim Tung, MathWorks,
Inc and James Buczkowski, Ford Motor Company (2014)].

The processors used in CRTES of these systems were – and many of them
are still today – microcontrollers with very simple architectures [Charette (2009)]
[Fleming (2011)] [Wang et al. (2012)], lacking many performance enhancing fea-
tures found in modern processors (e.g. memory hierarchies or branch predictors).
As a result, the only way to cover the increased performance demands of critical
software has been by replication. This leads designers not only to face a scalabil-
ity wall, but also increased reliability concerns, since the multiplication of ECUs
requires a higher number of less-reliable elements such as cables and connectors.

In this scenario, the only viable solution for the CRTES industry to attain
these unprecedented performance needs at competitive costs, is by using aggressive
computer designs including parallel complex multicore platforms. The other side
of the coin is that the massive use of stateful resource features in high-performance
hardware heavily complicates to provide guaranteed performance, which is already

3

1. INTRODUCTION 1.1 Specific Requirements

an extremely time-consuming step in the typical embedded design process using
much simpler processor designs, as discussed in the following section.

1.1.2 Timing Analysability

CRTES follow a strict validation and verification process, which is directly related
to the organisation of those systems [Littlewood & Strigini (1993)] [Knutson &
Carmichael (2001)] [Michael et al. (2011)]. These necessary verification and val-
idation steps of CRTES are performed before system deployment and they are
estimated to consume almost 50% of the development cost [Croxford & Sutton
(1996)]. Furthermore, the use of complex hardware can easily make this percent-
age to reach unaffordable values.

Complex hardware impacts negatively the existing static and measurement-
based (deterministic) timing analysis techniques: Static deterministic analysis
methods (SDTA), further detailed in the Background Chapter, are challenged by
the increasing complexity of modern systems’ internal state: while each hardware
component may have deterministic behaviour, their complex relation is hard to
track and model. Moreover, complex hardware cause an explosion in the number
of possible hardware states, which makes SDTA to face scalability issues [Mezzetti
& Vardanega (2011b)] [Nowotsch et al. (2014)]. In addition, the lack of details on
processor internals, due to intellectual property restrictions or incomplete specifi-
cations, limits the information available for analytical timing models [Abella et al.
(2015)]. Those models, therefore, resort to worst-case assumptions to account for
the unknown, leading to pessimistic predictions. To favour SDTA, simple hard-
ware is proposed to be used in the design of real-time systems [Thiele & Wilhelm
(2004)]. However, these proposals include severe design changes and performance-
capping features that result in average performance loss and, therefore, are not
adopted in general by the mainstream processor design industry.

Measurement-based deterministic timing analysis (MBDTA) techniques are
based on the execution time observation of the program on the actual hardware,
in order to measure the high-watermark execution time. An engineering mar-
gin based on user experience is added on this longest execution time to obtain
a WCET bound to cover unknown parameters that can potentially increase the
execution time [Wartel et al. (2013)]. However, complex hardware complicates
the selection of an appropriate reliable margin. This is caused by the difficulty to
derive evidence that worst-case system behaviour is captured in the measurement
runs, which impacts negatively the users’ confidence on the derived timing bounds.
Although there exist MBDTA variants which take into account the structure of
the program to increase the confidence over the WCET estimate [Rapita Systems
(2008)], they face the same limitations when applied on high-performance complex
hardware.

4

1. INTRODUCTION 1.1 Specific Requirements

target probability

pWCET estimate

EVT projection
(CCDF)

Figure 1.2: Example of pWCET distribution.

Probabilistic Timing Analysis (PTA) [Cazorla et al. (2013a)] [Hansen et al.
(2009)] [Cucu-Grosjean et al. (2012)] has recently emerged as an attractive alter-
native to existing techniques to handle the complexity of high-performance hard-
ware. The key differentiating element with traditional Deterministic-Timing Anal-
ysis (DTA) techniques is that, rather than computing a single WCET value, PTA
derives a probabilistic WCET (pWCET) distribution that assigns to each WCET
estimate the probability of the program to overrun its deadline. An example of
such distribution is shown in Figure 1.2 in the form of a Complementary Cumu-
lative Distribution Function (CCDF). Note that the probability distribution can
reach arbitrary low values and the target probability can be selected as low as
required, based on the specification of the analysed system.

PTA considers timing bounds in the same manner as the embedded safety-
critical systems domain addresses system reliability, which is expressed as a com-
pound function of the probabilities of hardware failures and software faults. PTA
extends this probabilistic notion to timing correctness. PTA seeks WCET bounds
for arbitrarily low probabilities, so that even if violation events may in principle
occur, they would only do with a probability well below system safety require-
ments as defined in safety standards for CRTES [International Organization for
Standardization (2009)] [RTCA and EUROCAE (1992)]. Indeed, a probability of
exceedance in the region of 10−50 per activation for a critical software function is
well below the probability of a meteorite falling on the aircraft.

However, Probabilistic Timing Analysis and, in particular, its Measurement-
Based variant (MBPTA) [Cucu-Grosjean et al. (2012)], which we consider in this
Thesis, cannot be naively used on every system. It requires certain timing proper-
ties not provided in current conventional hardware/software platforms. First, all

5

1. INTRODUCTION 1.1 Specific Requirements

the jittery hardware elements (i.e. those with variable latency) have to be con-
trolled so that their impact on execution time is captured in the tests performed
at analysis. The end goal is that, the jitter captured in the measurements must
upperbound the one that can potentially occur during system operation. Second,
the execution times of programs during analysis – which are made to upperbound
those during operation by construction – need to have a distinct probability of
occurrence so that their behaviour can be modelled by a random variable. This
random variable needs to be independent and identically distributed (i.i.d), which
means that the observed execution times are independent among them and must
follow the same probability distribution. This second requirement originates from
the fact that the execution times, which are collected in the same manner as in
conventional Measurement-Based timing analysis, are subsequently processed by
well established mathematical tools such as Extreme Value Theory (EVT) [Kotz
& Nadarajah (2000)] in order to upper-bound the extremes of the execution time
distribution.

1.1.3 Time Composability

One fundamental requirement of integrated architectures (e.g. IMA in avionics)
is to enable incremental qualification [RTCA (2005)] [Wilson & Preyssler (2008)]
[Elmqvist et al. (2008)], whereby each partition (functional subsystem) can be
subject to verification and validation – including timing analysis – in isolation,
independent of the other partitions, with obvious benefits for cost, time and effort.
From the perspective of timing analysis, incremental qualification rests on the
hypothesis that each hardware and software component that is part of the system
exhibits the property of time composability at run time [Puschner & Schoeberl
(2008)] [Puschner et al. (2009)].

In the most general definition, composability ensures that, given a property of
each item of a collection, that property can be determined for each item taken in
isolation and it does not change when that item is brought together with other
items. Time composability refers to the fact that the execution time of a software
partition, determined in isolation by the timing analysis, is not affected by the
presence of other partitions in the same system. However, the access to physical
execution resources may introduce run time dependence across partitions, which
breaks time composability. That is, the execution time of a partition that accesses
a given hardware resource (e.g., the cache) may depend on the state of that resource
as left by previous accesses from other partitions. As a result, execution time may
vary depending on the actual scheduling of software components, which in IMA
is a function of system integration. IMA platforms achieve single-core temporal
isolation by flushing the cache at partition switch and assuming pessimistic worst-
case bounds for the response time of Operating System (OS) services.

6

1. INTRODUCTION 1.2 Benefits and Challenges of Caches

1.2 Benefits and Challenges of Caches

Caches are one of the most, if not the most, important resource when it comes
to improve the performance of a processor architecture. However, cache memories
represent one of the biggest challenges in timing analysis, because their timing
heavily depends on their internal state and it introduces large variations in the
execution time. In fact, cache memories have been shown to significantly im-
pact average and WCET, and have been historically acknowledged as one of the
most important elements impacting WCET estimation [Mueller & Harmon (1993)]
[Ferdinand & Wilhelm (1999)] [Mueller (2000)] [Ferdinand et al. (2001)] [Lesage
et al. (2009)] [Hardy & Puaut (2008)]. Moreover, cache resources are abundant
in a processor architecture, including the first level instruction and data caches,
translation lookahead buffers (TLBs), second level caches, etc.

A memory access in the presence of a cache has different latencies depending
on whether the corresponding data are present in the cache (hit) or not (miss).
These two latencies usually differ in orders of magnitude. Therefore, pessimistic
assumptions regarding accesses, can degrade Worst-Case Execution Time (WCET)
estimates very fast.

SDTA for caches is based on abstract interpretation [Cousot & Cousot (2004)]
in order to perform cache analysis [Ferdinand & Wilhelm (1999)]. This analysis
consists of three separate sub-analyses: must analysis, may analysis and persis-
tence analysis. These analyses perform a classification of each memory access.
The first determines whether a cache block is always present in the cache (hit),
the second whether it may be in the cache and the latter whether it is not evicted
after it is loaded. It has been shown that this process does not scale with large
industrial size programs since it requires huge amount of data for this processing.
More importantly though, it relies on knowing the exact memory addresses, which
is not always possible. As a consequence, lack of information impacts significantly
the tightness of the WCET estimates [Abella et al. (2014a)]. For example, even a
single access to an unknown memory address with a 4-way set associative cache,
leads static approaches to assume that an entire way of each set has been inval-
idated, because it is unable to determine which set was accessed and provably
evicted. In other words, one quarter of the effective cache size is assumed lost.

MBDTA methods face difficulties in providing confidence on minimum guar-
anteed hit rates based only on observations. The main reason for this is that, due
to the inherent properties of conventional cache designs, which exploit temporal
and spatial locality, usually the observed hit rates are high. However, under spe-
cial circumstances, particular memory access patterns can yield very low hit rates
(cache thrashing), known as pathological cases or cache risk patterns [Vardanega
et al. (2007)][E.Mezzetti et al. (2008)], resulting in unusually long execution times.
Since these events happen very rarely and can only be occasionally observed, they

7

1. INTRODUCTION 1.3 Contributions

Figure 1.3: Logical Organisation of this Thesis’ contributions.

cannot be quantified in existing cache designs [Quiñones et al. (2009)], therefore
reducing the confidence of the obtained values. In fact, in order to compensate
for these cases, as well as for other system unknowns, the current industrial prac-
tice is to add an engineering margin (e.g. 20% in some avionics systems [Wartel
et al. (2013)]) over the highest observed execution times, resulting in system over-
provisioning and still unknown confidence.

1.3 Contributions

This Thesis sets the foundations of MBPTA compatible designs, by demonstrat-
ing how processor components used in a processor architecture can be modified
in order to comply with its requirements. Subsequently, this Thesis applies these
modifications on a particular resource, the cache. Further this Thesis focuses on
proposing hardware/software designs that enable the use of caches in the context
of Probabilistic Timing Analysis techniques. Moreover, this Thesis elaborates on
the implications of the cache as a central element in those designs. The ultimate
goal in this process is to satisfy both, MBPTA requirements as well as modern crit-
ical systems design principles such as integrated systems, in order to facilitate its
adoption by the CRTES industry. The contributions of this Thesis can be divided
into three major themes, as they are visually depicted in Figure 1.3: Hardware
Solutions for MBPTA compatibility; Software Solutions for enabling the use of
existing systems with caches in MBPTA; and Timing Analysis Aspects.

8

1. INTRODUCTION 1.3 Contributions

1.3.1 Hardware Solutions

The first contribution of the Thesis is to set the foundations of MBPTA compatible
processor designs. We define a taxonomy of hardware resources based on their
timing behaviour, categorising them according to their possible working latencies
(jitter). In the case of buffers and other jitter-less resources, which only propagate
latencies, we show that they do not break MBPTA requirements [Kosmidis et al.
(2013e)]. Next, we show that jittery resources (i.e. with different possible latencies)
can be either time-randomised, when these latencies differ significantly as it is the
case for caches, or, when their jitter is small, e.g. floating point-units, redesigning
them to work on their worst latency [Kosmidis et al. (2014d)].

Secondly, we propose hardware solutions with novel and efficient cache organ-
isations that are compatible with Probabilistic Timing Analysis. We propose a
low-overhead random placement policy [Kosmidis et al. (2013a)] [Kosmidis et al.
(2014a)] that enables the use of Measurement-Based Probabilistic Timing Analysis
in single level direct-mapped and set-associative cache structures, for use either
for instruction or data caches and TLBs.

Next we extend this concept to arbitrarily complex memory hierarchies [Kos-
midis et al. (2013b)], by studying various cache configurations that can be found
in systems with multiple levels of cache. In particular, we study inclusive and non-
inclusive caches, as well as write-back and write-through policies. We show that
PTA can be used to effectively analyse these complex organisations. Furthermore,
we also show, for the first time, that the timing analysis of unified instruction and
data caches is possible.

1.3.2 Software Solutions

Although attractive, hardware solutions cannot be applied to legacy CRTES and
naturally take longer to hit the market than software solutions. To cover this
gap we propose a software-only compiler-based solution [Kosmidis et al. (2013c)],
which randomises the placement of memory objects (instructions and stack) in
memory dynamically at runtime. For this reason we term it Dynamic Software
Randomisation (DSRand in Figure 1.3). This way, the mapping of the objects in
cache becomes random, and so do cache evictions among them. We show that
using this method, we enable the use of MBPTA on conventional caches.

The dynamic nature of this technique, though, challenges the certification of
this technique in automotive systems, since self-modifying software creates some
difficulties in its adoption in such systems. For this reason, in [Kosmidis et al.
(2014c)], we propose a modification of this method, applied in an entirely static
manner and named Link-Level Static Software Randomisation (LL-SSRand in Fig-
ure 1.3). This is achieved by a combination of compiler transformations together
with link time randomisation of functions placement in the binary.

9

1. INTRODUCTION 1.3 Contributions

Despite that the previous method is more amenable to certification than the
dynamic variant, it still consists of a compiler part which requires the requalifi-
cation of existing compiler toolchains. Moreover, changing an industrial compiler
toolchain to enable MBPTA is not always possible, due to their closed source na-
ture, and in addition it needs to be retargeted for each supported platform. In order
to overcome this limitation, we propose TASA (Toolchain Agnostic Software Ran-
domisation) [Kosmidis et al. (2016c)], which applies static software randomisation
at source-code level, being independent of the underlying compiling infrastructure.

1.3.3 Timing Analysis aspects related to the use of caches
in MBPTA

The use of MBPTA on real systems, which has been achieved with the hardware
and software proposals of this Thesis, opens the door for cost effective optimisa-
tions on large scale industrial systems, like the ones used in avionics.

Conventional MBPTA results [Cucu-Grosjean et al. (2012)] are valid only for
the exercised paths at analysis time. To relieve users from the need to provide
full path coverage or to identify inputs leading to WCET, which is also the case
in traditional deterministic timing analysis (DTA), we propose a software method
called Path Upper-bounding (PUB) [Kosmidis et al. (2014b)], which probabilisti-
cally upper-bounds the execution time of any path of the program independently
from the input.

Moreover, due to the complexity of those industrial software architectures, the
development and the timing verification of individual software parts are performed
independently. In order to guarantee that the timing analysis results are valid in
the presence of composition, regardless of the hardware state left in the processor
from the previously executed piece of software, the hardware state, and especially
cache contents, is assumed to be in its worst state (e.g., empty caches). However,
the particular structure of avionics systems requires the repetitive execution of
software units, which leaves a lot of potential for reusing cache contents across
executions, something not possible with traditional timing analysis methods. The
use of MBPTA gives the opportunity to exploit these contents, hence reducing
the WCET of units of composition, and therefore increasing the schedulability of
the system. In order to achieve this, we propose a method to obtain Probabilistic
Timing Composability [Kosmidis et al. (2013d)].

10

1. INTRODUCTION 1.4 Structure of the Thesis

1.4 Structure of the Thesis

We keep one contribution per chapter and present them in the aforementioned
order. In addition, since several of the Thesis contributions have been recently
validated in industrial setups, each relevant chapter contains a short summary of
the obtained results and refers to the appropriate published articles.

• In Chapter 2 we present the necessary Background on Real-Time Systems
and a survey of the various Timing Analysis methods which are used to
estimate the WCET. Special attention is given to Probabilistic Methods and,
especially, MBPTA and its requirements upon which this Thesis is built.

• In Chapter 3 we describe the experimental setup used for the evaluation of
the contributions of this Thesis, as well as the followed methodology.

• In Chapter 4 we introduce the problem statement – the requirements that
MBPTA places on processor architectures–, we present the taxonomy of
processor resources and we show their required changes to achieve MBPTA
compliance.

• Chapters 5 and 6 are dedicated to hardware proposals for cache designs, with
the former focusing on single-level cache designs and the latter on multi-level
cache hierarchies.

• Chapters 7 to 9 describe software solutions, starting with Dynamic Soft-
ware Randomisation, followed by static variants, at link-level and source-
level (TASA). Chapter 9 includes also a quantitative comparison between
Dynamic Software Randomisation and TASA.

• Chapters 10 and 11 focus on the timing analysis aspects related to the uses
of caches in MBPTA. The former introduces the Path Upper-bounding tech-
nique (PUB) while the latter presents Probabilistic Timing Composability.

• Finally Chapter 12 draws the conclusions of the Thesis, quantifies its impact
and concludes with future directions for research in this area.

11

1. INTRODUCTION 1.5 List of Publications

1.5 List of Publications

Below we list the publications that the research of this Thesis has produced.

1.5.1 Accepted Publications

• L. Kosmidis, R. Vargas, D. Morales, E. Quiñones, J. Abella, F. J. Cazorla.
TASA: Toolchain Agnostic Software Randomisation. International Confer-
ence on Computer Aided Design (ICCAD), Austin, Texas, November 2016.

• L. Kosmidis, J. Abella, E. Quiñones, F. Wartel, G. Farrall, F. J. Cazorla.
Containing Timing-Related Certification Cost in Automotive Systems De-
ploying Complex Hardware. Best Paper Award. In Design Automation
Conference (DAC), San Francisco, CA, June 2014.

• L. Kosmidis , E. Quiñones, J. Abella, T. Vardanega, I. Broster, F. J. Ca-
zorla. Measurement-Based Probabilistic Timing Analysis and Its Impact on
Processor Architecture. In Euromicro Conference on Digital System Design
(DSD), Verona, Italy, August 2014.

• L. Kosmidis, J. Abella, E. Quiñones, Francisco J. Cazorla. Efficient Cache
Designs for Probabilistically Analysable Real-Time Systems. In IEEE Trans-
actions on Computers (ToC), Volume 63, Issue 12, 2998-3011, 2014.

• L. Kosmidis, J. Abella, F. Wartel, E. Quiñones, A. Collin, F. J. Cazorla.
PUB: Path Upper-Bounding for Measurement-Based Probabilistic Timing
Analysis. In Euromicro Conference on Real-Time Systems (ECRTS), Madrid,
Spain, July 2014.

• L. Kosmidis, J. Abella, E. Quiñones, F. J. Cazorla. Multi-Level Uni-
fied Caches for Probabilistically Time Analysable Real-Time Systems. In
IEEE Real-Time Systems Symposium (RTSS), Vancouver, Canada, Decem-
ber 2013.

• L. Kosmidis, T. Vardanega, J. Abella, E. Quiñones and Francisco J. Ca-
zorla. Measurement-Based Probabilistic Timing Analysis to Buffer Resources..
In 13th International Workshop on Worst-Case Execution Time Analysis
(WCET), Paris, France, July 2013.

• L. Kosmidis, E. Quiñones, J. Abella, T. Vardanega, and F. J. Cazorla.
Achieving Timing Composability with Probabilistic Timing Analysis. The
16th IEEE Computer Society Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC), June 2013.

12

1. INTRODUCTION 1.5 List of Publications

• L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla. A Cache Design
for Probabilistically Analysable Real-Time Systems. Design, Automation,
and Test in Europe (DATE), Grenoble, France, March 2013.

• L. Kosmidis, C. Curtsinger, E. Quiñones, J. Abella, E. Berger, and F.
J. Cazorla. Probabilistic Timing Analysis on Conventional Cache Designs.
Design, Automation, and Test in Europe (DATE), Grenoble, France, March
2013.

1.5.2 Other Publications

Below we list other publications that, although do not constitute contributions
of this Thesis, are directly related to it. These works can be classified in three
categories:

a) Works validating the solutions proposed and developed in this Thesis in a
realistic industrial environment, by using industrial case studies executed on the
simulation environment created in this Thesis or real hardware platforms. The real
hardware platforms include both Commercial off-the-shelf (COTS) processors, as
well as an RTL-implementation of the hardware proposals introduced in this Thesis
on an FPGA.

b) Works continuing research on time-randomised hardware and software ran-
domisation building on the foundations laid by this Thesis.

c) Publications related to the fundamental theory of Probabilistic Timing Anal-
ysis and especially its Measurement-Based variant which this Thesis is focused on.

• F. Cros, L. Kosmidis, F. Wartel, D. Morales, J. Abella, I. Broster, F.
J. Cazorla. Dynamic Software Randomisation: Lessons Learned From an
Aerospace Case Study. In 20th Design Automation and Test in Europe Con-
ference (DATE), Lausanne, Switzerland, March 2017.

• M. Fernandez, D. Morales, L. Kosmidis, A. Bardizbanyan, I. Broster, C.
Hernandez, E. Quiñones, J. Abella, F. J. Cazorla, P. Machado, L. Fos-
sati. Probabilistic Timing Analysis on Time-Randomized Platforms for the
Space Domain. In 20th Design Automation and Test in Europe Conference
(DATE), Lausanne, Switzerland, March 2017.

• F. J. Cazorla, J. Abella, J. Anderson, T. Vardanega, F. Vatrinet, I. Bate,
I. Broster, M. Azkarate-Askasua, F. Wartel, L. Cucu, F. Cross, G. Farrall,
A. Gogonel, A. Gianarro, B. Triquet, C. Hernandez, C. Lo, C. Maxim, D.
Morales, E. Quiñones, E. Mezzetti, L. Kosmidis, I. Agirre, M. Fernan-
dez, M. Slijepcevic, P. Conmy and W. Talaboulma. PROXIMA: Improving

13

1. INTRODUCTION 1.5 List of Publications

Measurement-Based Timing Analysis through Randomisation and Probabilis-
tic Analysis. In Euromicro Conference on Digital System Design (DSD),
Limassol, Cyprus, August 2016.

• P. Benedicte, L. Kosmidis, E. Quiñones, J. Abella, F. J. Cazorla. A
Confidence Assessment of WCET Estimates for Software Time Random-
ized Caches. In International Conference on Industrial Informatics (INDIN),
Futuroscope-Poitiers, France, July 2016.

• L. Kosmidis, D. Compagnin, D. Morales, E. Mezzetti, E. Quiñones, J.
Abella, T. Vardanega and F. J. Cazorla. Measurement-Based Timing Analy-
sis of the AURIX Caches. In WCET Analysis Workshop (WCET), Toulouse,
France, July 2016.

• P. Benedicte, L. Kosmidis, E. Quiñones, J. Abella and F. J. Cazorla. Model-
ing the Confidence of Timing Analysis for Time Randomised Caches. In 11th
IEEE International Symposium on Industrial Embedded Systems (SIES),
Krakow, Poland, May 2016.

• L. Kosmidis, E. Quiñones, J. Abella, T. Vardanega, C. Hernandez, A.
Gianarro, I. Broster, F. J. Cazorla. Fitting Processor Architectures for
Measurement-Based Probabilistic Timing Analysis. In ELSEVIER Micro-
processors and Microsystems - Embedded Hardware Design. Vol 47, Part B.
2016.

• F. Wartel, L. Kosmidis, A. Gogonel, A. Baldovin, Z. Stephenson, B. Tri-
quet, E. Quiñones, C. Lo, E. Mezzetti, I. Broster, J. Abella, L. Cucu-
Grosjean, T. Vardanega, F. J. Cazorla. Timing Analysis of an Avionics
Case Study on Complex Hardware/Software Platforms. In 18th Design, Au-
tomation and Test in Europe Conference (DATE), Grenoble (France), March
2015.

• M. Slijepcevic, L. Kosmidis, J. Abella, E. Quiñones, F. J. Cazorla. Time-
Analysable Non-Partitioned Shared Caches for Real-Time Multicore Systems.
In Design Automation Conference (DAC), San Francisco, CA, June 2014.

• J. Jalle, L. Kosmidis, J. Abella, E. Quiñones, F. J. Cazorla. Bus Designs
for Time-Probabilistic Multicore Processors. In The Design, Automation,
and Test in Europe (DATE) Conference, Dresden, Germany, March 2014.

• M. Slijepcevic, L. Kosmidis, J. Abella, E. Quiñones and F. J. Cazorla.
Timing Verification of Fault-Tolerant Chips for Safety-Critical Applications
in Harsh Environments. In IEEE Micro (Special Series on Harsh Chips),
Volume 34, Issue 6, p8-19, 2014.

14

1. INTRODUCTION 1.5 List of Publications

• M. Slijepcevic, L. Kosmidis, J. Abella, E. Quiñones, F. J. Cazorla. DTM:
Degraded Test Mode for Fault-Aware Probabilistic Timing Analysis. In 25th
IEEE Euromicro Conference on Real-Time Systems (ECRTS), Paris, France.
July 2013.

• F. Wartel, L. Kosmidis, C. Lo, B. Triquet, E. Quiñones, J. Abella, A.
Gogonel, and A. Baldovin. Measurement-based probabilistic timing analysis:
Lessons from an integrated-modular avionics case study. 8th IEEE Interna-
tional Symposium on Industrial Embedded Systems (SIES), June 2013.

• L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kos-
midis, J. Abella, E. Mezzetti, E. Quiñones, and F. Cazorla. Measurement-
based probabilistic timing analysis for multi-path programs. In 24th Euromi-
cro Conference on Real-Time Systems (ECRTS), Pisa, Italy, July 2012.

• F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat,
E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C.
Lo, and D. Maxim. PROARTIS: Probabilistically Analysable Real-Time Sys-
tems. ACM Transactions on Embedded Computing Systems (ACM-TECS),
Volume 12, Issue 2s, 2013

15

Chapter 2

Background

Significant efforts have been devoted by industry and academia to devise methods,
and the corresponding tools, to verify whether real-time systems fulfil their timing
constraints. The increasing complexity of the systems’ components (both hardware
and software) has driven industry and academia towards increasingly sophisticated
timing analysis solutions [Heckmann et al. (2003)] [Wilhelm et al. (2008)] able to
derive tight and reliable WCET estimates in the presence of such complexity. Yet,
current sophisticated solutions find difficulties providing tight and trustworthy
WCET bounds on modern platforms. This is particularly true for large real-time
applications running on top of processors with advanced hardware features (e.g.
complex cache memories and multi-core processors) which remains as an open
challenge [Abella et al. (2015)].

In this Chapter, we review the basic concepts and the main works in the lit-
erature regarding the state of the art in the real-time systems domain related to
this Thesis. In the first part, we discuss the concept of timing analysis as well as
the main families of techniques to perform it. In addition, we introduce the foun-
dations of the timing analysis method which has been the basis of this Thesis, the
Probabilistic Timing Analysis. We specifically focus on its Measurement-Based
variant (MBPTA), a result of our collaborative effort with several people and in-
stitutions inside the PROARTIS project as well as its industrially-viable evolution
produced by the PROXIMA project. The second part reviews relevant works in
the timing analysis of caches in the real-time domain, both in the deterministic
and in the probabilistic analysis domain.

2.1 Timing Analysis

The execution time of a program depends on the environment (execution condi-
tions) in which it is executed. At hardware level, intuitively a given program is

16

2. BACKGROUND 2.1 Timing Analysis

0
0

Time

D
is

tr
ib

u
ti

o
n
 o

f
ti

m
es

Best

observed

execution

time (BOET)

Maximum

observed

execution

time (MOET)

Upper

bound

WCET
BCET

Figure 2.1: Distribution of possible execution times of a task.

expected to have a larger execution time when run on simple hardware than when
run on advanced (high-performance) hardware. However, while this rule holds
in general, we can find scenarios where programs run slowly on top of advanced
hardware. Moreover, there are also cases when a program is executed on modern
architectures under the same (theoretical) execution conditions, but its timing be-
haviour exhibits variability (jitter) due to the hard-to-predict (or undocumented)
nature of hardware components.

Another factor adding variability to the execution time is the input set of the
application. For instance, program’s input data impacts its control flow, i.e. the
execution path taken, and hence the execution time of the program. Input also
affects the execution time of each individual path. For instance, the latency of some
Floating Point (FP) instructions, e.g. division or multiplication, depends on the
particular values of the input operands. So when different inputs result in different
values operated in the FP units, the same path may have different durations.
Finally, the presence of other programs running on the same hardware and sharing
the same resources (processor, memory, etc.) also affects its timing behaviour,
due to contention, also referred to as interference in the literature [Rosen et al.
(2007)] [Pellizzoni et al. (2010)] [Dasari et al. (2011)]. Figure 2.1 illustrates this
phenomenon. In particular it shows how the execution time of a task running on
a specific hardware in isolation can vary. In general, it is not possible to obtain
the complete execution time distribution, because an exhaustive exploration of all
the possible factors that have an impact on the execution time would be required.

17

2. BACKGROUND 2.1 Timing Analysis

However, we can distinguish some important parts of this distribution. In the
left end there is the minimum execution time of the task, also known as Best-Case
Execution Time (BCET). In the other extreme, there is the maximum execution
time, called Worst-Case Execution Time (WCET) [Wilhelm et al. (2008)]. These
extremes are hard to predict, in general, by running the task in a naive way
because in the edges of the execution time distribution, the chance of occurrence
is very low. Instead, by observing the execution time we can find a minimum and
a maximum observed execution times, which are termed Best Observed Execution
Time (BOET) and Maximum Observed Execution Time (MOET) respectively.
Unfortunately, there is not an easy way to find out how close to the actual limits
these values are.

The execution time distribution lies between the BCET and the WCET. In
high-performance computing the main objective is to speed up the execution of
frequent events [Hennessy & Patterson (2007)], in order to move the central part
of the distribution to the left so that the average execution time is reduced, even at
the expense of increasing the WCET if this happens rarely. A prominent example
of this type is the speculative execution due to branch prediction, which requires a
misprediction penalty to be paid for each wrong speculative event. If the prediction
accuracy is high, the central part of the distribution is moved on the left, however
the WCET is increased and no guarantees about the prediction accuracy can be
provided so that it will not be reached. Conversely, in real-time systems the critical
execution time is the WCET (though average case performance is also important),
since it determines the time budget that must be granted to a task. For this reason,
research on this area has two goals: decreasing the WCET and providing accurate
bounds to the WCET. The former aims to improve the worst-case performance
of the system, so more complex functionality could be added to the system while
still having strong guarantees that all tasks will finish their execution in time. The
latter refers to the computation of accurate WCET estimates, i.e. trustworthy and
tight: when the WCET estimate is lower than the actual WCET it means that it
may result in timing violations. Conversely, if the WCET estimate is largely above
the actual WCET it means that we will allocate more resources than needed to
run the application, thus leading to an expensive over-provisioned system.

The WCET estimate for a piece of software is computed by a process called
timing analysis. Currently, there are two main families of timing analysis meth-
ods used by industry, the static and the measurement-based ones [Wilhelm et al.
(2008)]. The analysis methods can also be classified into deterministic and prob-
abilistic ones, depending whether they are applied in time-deterministic or time-
randomised systems. Independently of the category, all methods try to estimate
trustworthy and tight WCET bounds. This requires that the assumptions made
by the timing analysis method can be satisfied [Abella et al. (2015)]. Moreover,

18

2. BACKGROUND 2.1 Timing Analysis

each method comes with an associated cost for its application in both time and
effort, which needs to be below the budget that the industrial users are willing or
can afford to spend for each system. In this respect, no timing analysis method is
absolutely trustworthy or superior over the others. Industrial users are aware of
benefits/costs of each technique and for this reason they do not use a single timing
analysis technique for all their developed systems, but they select the appropriate
one that better fits the characteristics, requirements and budget of each system.

It is worth clarifying that a task overrun (timing failure) does not necessar-
ily cause a failure in the system behaviour, which would mean a bad-designed
safety design [Abella et al. (2015)]. Instead, a safety process is followed defining
safety goals and a safety strategy to mitigate the risk that hardware or software
misbehaviour causes a system fault [RTCA and EUROCAE (1992)] [International
Organization for Standardization (2009)]. As the criticality of the task under
analysis increases, more mechanisms are put in place (replication, online monitor-
ing, watchdog) to detect and react to undesired situations. The same principle
is followed for hardware faults: it is assumed that despite processors have fault
detection and correction mechanisms, there is a risk they fail. Hence, mechanisms
to react to hardware faults are needed. High-quality WCET estimates are needed
to favour the system to continuously operate in normal (non-error) mode and the
design of a safe system.

In the following, we introduce each of the analysis techniques, together with
their assumptions, which can affect their trustworthiness.

2.1.1 Static Deterministic Timing Analysis

Static refers to the fact that the WCET is computed statically by analysing how
the program’s would behave in its time domain on the target platform, without
actually executing it [Cousot & Cousot (2004)].

Static Deterministic Timing analysis (SDTA) is built on top of mathematical
foundations in order to provide strong guarantees over the single WCET estimate
it computes. SDTA has been applied in certain high-criticality systems. The
trustworthiness of its derived estimate heavily depends on the satisfaction of the
conditions under which it is assumed to work. While these conditions can be
shown to hold on simple hardware designs and small scale software used in current
certified real time systems, the complexity required in both hardware and software
to provide the performance needs of future real-time systems, makes these condi-
tion hard to satisfy, if at all possible [Mezzetti & Vardanega (2011b)] [Abella et al.
(2015)]. SDTA involves several steps [Wilhelm et al. (2008)] mainly classified in
low-level and high-level analyses. In general, the former deals with the details of
the processor architecture while the latter with the behaviour of the program.

19

2. BACKGROUND 2.1 Timing Analysis

The low-level analysis, also found in the literature under the name Processor-
Behaviour Analysis, is heavily based on the construction of an accurate timing
model of the processor architecture under analysis. The possible hardware states
of programs are modelled by means of abstract interpretation [Cousot & Cousot
(2004)] in order to compute a WCET estimate. Interestingly, the trustworthiness
of SDTA techniques is limited to the accuracy and the correctness of the timing
model. However, hardware vendors are usually reluctant to release a detailed in-
formation about their designs, since this possibly reveals their internal structure
and could be exploited by the competitors. Even in the case that this information
is available, it is frequently scattered in lengthy documents. Moreover, due to the
complexity of the hardware design and validation process [Abella et al. (2015)],
their trustworthiness is questionable as these documents are accompanied by sev-
eral versions of errata documents, which are updated as soon as a new inaccuracy
is found. In fact, the latter is the same obstacle faced by the hardware industry
in the adoption of formal verification methods, despite their strong mathematical
guarantees for the correctness of a hardware design. As a result of these difficulties,
latest works on SDTA rely on measurements on actual hardware [Nowotsch et al.
(2014)]. However this process requires significant effort from the tool provider
since the hardware cannot be analysed only by measurements using a black box
approach. Finally, the construction of an accurate model for complex designs
beyond the 8-bit and 16-bit micro-controllers traditionally used in the CRTES do-
main, challenges the scalability of this solution [Heckmann et al. (2003)]. For this
reason, the static timing analysis community defined design principles that would
ease the computation of WCET [Thiele & Wilhelm (2004)] [Axer et al. (2014)].

The High-Level analysis studies the program structure using its control-flow
graph (CFG). The different paths that can be taken at runtime are derived with
Implicit Path Enumeration (IPET) [Li & Malik (1995)] techniques. Furthermore,
the value analysis [Thesing et al. (2003)] step is used in order to find infeasible
paths and resolve addresses of memory accesses. While value analysis can be used
in order to derive statically some actual data values or ranges which will take place
at program execution, the dynamic nature of programs makes this infeasible for all
program values. For this reason the path analysis is also based on flow-facts [Kirner
& Puschner (2005)] provided in the form of annotations by an experienced pro-
grammer. These flow facts describe information about the software structure that
cannot be determined automatically such as maximum loop bounds. However, the
trustworthiness of this step heavily depends on the experience and the knowledge
of the user about the software under analysis. Moreover, this information might
be difficult or infeasible to be obtained in large-scale industrial software [Mezzetti
& Vardanega (2011b)].

20

2. BACKGROUND 2.1 Timing Analysis

For the above reasons, the static deterministic timing analysis is currently used
in certain industrial contexts, where its assumptions can be satisfied. However,
with the increase in complexity of both hardware and software required to meet
the performance needs of future real-time systems, SDTA will find difficulties to
satisfy its assumptions.

2.1.2 Measurement-based Deterministic Timing Analysis

Measurement-based deterministic timing analysis techniques (MBDTA) [Kirner
et al. (2004)][Wenzel et al. (2005b)][Deverge & Puaut (2005)][Williams (2005)]
compute WCET bounds with a process similar to profiling, by executing the pro-
gram under analysis on the target platform. Due to its simple applicability, this
is the most used method to date in industry, including certified systems [Wilhelm
et al. (2008)] [Law & Bate (2016)]. This family of analysis techniques has its own
challenges though.

Measurement-based solutions are composed by two distinct stages: a) analysis
and b) system operation. The measurements obtained during the analysis phase
are used to predict the maximum execution time of the program during the oper-
ation phase, and therefore providing a WCET estimate that upperbounds it. In
order this to be effective, the execution conditions at analysis must be as close as
possible to the actual execution conditions that may occur during system opera-
tion, otherwise there is a risk of underestimating the WCET. Hence, this is one of
the most challenging parts of measurement-based approaches.

Another challenge of measurement-based analysis lies on the means used to
collect measurements. Various software methods can be used for this task, which
affect the quality of collected measurements. Software instrumentation, for in-
stance, modifies the code layout and therefore impacts the measured performance
in non-obvious ways [Mezzetti & Vardanega (2011a)] [Diaz et al. (2016)] in addi-
tion to the extra latency added from the instrumented code. Due to the intrusive
nature of instrumentation, the current industrial practice is to retain instrumen-
tation code in the deployed system, despite the runtime overhead that introduces.
This is an example of a measure taken in order to guarantee that the deployed
system operates under the same conditions as the ones used during the analysis
stage.

The execution path of a program during a specific run on top of a particular
hardware configuration is determined significantly by its input set, also known as
input vector. The effectiveness of measurement-based techniques is based on the
identification of the worst-case input, which can lead to traverse the longest pos-
sible path leading to the WCET. In general, the worst-case input is difficult to be
determined due to the large input space of a program, and because different events
triggered by the software interact in non-obvious ways. This process depends on

21

2. BACKGROUND 2.1 Timing Analysis

an expert user who, based on his experience and the knowledge about the applica-
tion, has to determine which is the input that likely stresses the most the program
under study. However, neither it is guaranteed that such input is indeed, the one
leading to the WCET, nor skilled users may exist since significant portions of the
code used in CRTES is legacy code [Mezzetti & Vardanega (2011b)], and therefore
the original developer may not be involved in this process. Moreover, the source
code of these applications may not be available and binaries must be analysed,
so the identification of the worst-case input set becomes even more challenging.
Even if the source code is available and skilled users of the program under analysis
work on its timing analysis, they can provide some hints but not absolute answers
because of the complexity of the application and the effects of the hardware in
the execution time. For instance, users can identify those paths leading to the
WCET, but may be unable to produce those initial execution conditions leading
to the WCET such as the placement of memory objects leading to the worst-case
cache behaviour.

In order to cope with the input vector problem, path coverage is required from
the end user [Deverge & Puaut (2005)] and measurements from different executions
are recorded. Note that path coverage is slightly different from the code coverage
methods used in the domain of functional testing, such as Random Testing, Basic
Block Coverage, Condition/Decision Coverage and Modified Condition/Decision
Coverage (MC/DC) [Bünte et al. (2011)], which, if used instead, may make the
WCET be underestimated. The reason for this is that the interaction of the
different hardware resources is hard – if at all feasible – to predict, so no true
guarantee exists on the confidence of the WCET estimate obtained by those means.

Some other techniques, instead of using end-to-end measurements of the pro-
gram’s execution time, use multiple measurement points. In this case, the control
flow graph of the program is used, in order to determine the execution time of each
individual part of the program (e.g., basic blocks, functions, etc.). Additionally,
this way offers information about the input path that is covered by each input set,
and the coverage of the code. This type of timing analysis can obtain very accurate
results for simple hardware. However, this variant also suffers from the proper se-
lection of the input sets, the lack of control of the initial execution conditions and
the number of the executions as it is the case of end-to-end measurement-based
analysis techniques.

Alternative solutions to the worst input problem, include automated test gen-
eration methods [Wenzel et al. (2005b)] [Williams (2005)] [Law & Bate (2016)].
These methods identify input vectors that either exercise all feasible paths using
techniques similar to the IPET employed by static timing analysis, or select a
subset of those which lead to high execution times based on genetic or simulated
annealing algorithms. The former are subject to scalability limitations with soft-

22

2. BACKGROUND 2.1 Timing Analysis

ware complexity similar to the static analysis, while the latter make the search for
the input vector more tractable, with simulated annealing-based solutions being
superior than the genetic-based ones.

In Figure 2.1 the lower part of the distribution (red) depicts an example of re-
sults obtained by measurements. The maximum execution time which is observed
is called Maximum Observed Execution Time (MOET) or High Watermark. The
main problem of measurement-based techniques, is that, in general there is no
evidence about how close MOET and WCET are. For instance, as it is shown in
Figure 2.1 the maximum observed execution time can be far away from the actual
WCET.

For this reason, the MOET is increased by a margin derived based on the expe-
rience of the user about the target platform, in order to cover for the uncertainties
of the system’s timing behaviour. For example, a typical safety margin used in the
avionics industry is 20% [Wartel et al. (2013)], which has been shown sufficient
since no overruns have been observed with this method for decades. However,
this margin is not selected based on any scientific method and, most importantly,
it does not necessarily hold when the target platform changes. For instance, ac-
cording to [Fernández et al. (2012)] the 20% is insufficient for multicore processors
such as the ones designed for the next generation aerospace applications, since the
interference between cores can lead to much more significant slowdowns.

From the above discussion it is evident that the effectiveness of measurement-
based methods is highly dependent on the selection of the input sets, the initial
execution conditions of the program and the number of the experiments that are
performed. Unfortunately, this number should be extremely high in order to be
able to achieve some meaningful degree of confidence. Even in that case, exist-
ing hardware does not have a probabilistic behaviour and therefore, there is no
guarantee that with sufficient number of executions during the analysis phase, the
events with statistical relevance regarding the WCET will be captured.

Overall, measurement-based deterministic timing analysis techniques, although
widely used in industry, have a number of limitations: their trustworthiness de-
pends heavily on)i) the input sets, and (ii) the correspondence of execution con-
ditions and hardware state between the analysis and system operation as well as
(iii) on the number of the experiments performed during the analysis phase. How-
ever, it is not clear whether these solution are going to scale with the complexity
of future hardware and software critical real-time systems which will complicate
both the derivation of stressful inputs as well as viable engineering margins.

2.1.3 Probabilistic Timing Analysis

The notion of probabilities in the analysis of real-time systems has appeared in
the literature for long time [Abeni & Buttazzo (1998)] [Gardner & Lui (1999)] [Tia

23

2. BACKGROUND 2.1 Timing Analysis

et al. (1995)] [Atlas & Bestavros (1998)]. However, it was not until early 2000s
when probabilistic timing analysis was applied to critical systems [Edgar & Burns
(2001)] [Bernat et al. (2002)]. In general, those works assume a source of ran-
domisation resulting in a probabilistic execution time. This line of work became
widely accepted by the real-time community only recently with the publications
[Cazorla et al. (2013a)] and [Cucu-Grosjean et al. (2012)] – the initial outcomes of
the PROARTIS and PROXIMA projects – when for the first time, the assumptions
and requirements for probabilistic analysis were analysed together with a demon-
stration of a practical way to be satisfied in practice. In these articles this was a
hardware means, a fully-associative cache with random replacement policy. In the
next section, we examine in detail those requirements, since the main purpose of
this Thesis is to show how they can be achieved in the general case with careful
hardware and software design.

Various references exist to probabilistic and stochastic methods, however not
all of them are consistent with the probabilistic timing analysis as it is defined by
these two seminal works, which is the basis of most recent related works and it
is also the one used in this Thesis. [Cazorla et al. (2013a)] gives a comprehensive
survey of previous work in the area and clarifies the diverse terminology regarding
probabilistic timing analysis.

The proposed methods in the literature can be generally classified on statistical
methods and pure probabilistic methods. The first class considers the application
of statistical methods to observations in order to extract information about the
worst-case execution [Edgar & Burns (2001)] [Hansen et al. (2009)]. Initially,
those methods have been applied only to soft real-time systems [Abeni & Buttazzo
(1998)] [Gardner & Lui (1999)] [Tia et al. (1995)] [Atlas & Bestavros (1998)]. This
allowed to simplify the analysis and scheduling of hard to analyse tasks such as
multimedia applications, without affecting the timing guarantees for hard real-
time tasks obtained with classical methods. Around a decade later, the concept
has been also extended to hard-real time systems, however, the proposed works are
based on assumptions of properties that are not satisfied in the general case [Griffin
& Burns (2010)].

The second category includes solutions that consider at least one parameter
of the system, to be modelled by a random variable, mainly the execution time
[Lehoczky (1996)] [Zhu et al. (2002)] or the probability of a path to be taken [Liang
& Mitra (2008)]. Similarly, the trustworthiness of these solutions depends on the
satisfaction of their assumptions [Abella et al. (2015)], which is challenging – if at
all possible – to achieve in a real-platform [Abella et al. (2015)]. For example, the
execution times on conventional platforms are not described by random variables,
although the observed execution time may experience some variability due to ex-
ternal to the program reasons, e.g. the memory layout [E.Mezzetti et al. (2008)]

24

2. BACKGROUND 2.1 Timing Analysis

1,0E‐20

1,0E‐18

1,0E‐16

1,0E‐14

1,0E‐12

1,0E‐10

1,0E‐08

1,0E‐06

1,0E‐04

1,0E‐02

1,0E+00

0 1 2 3 4 5 6 7 8 9 10 11

Ex
ce
ed

an
ce
 P
ro
ba

bi
lit
y

pWCET

target probability

pWCET estimate

actual measurements
(CCDF)

EVT projection
(CCDF)

Figure 2.2: Example of the CCDF and tail projection.

[Mytkowicz et al. (2009)] or DRAM refreshes [Agirre et al. (2016)]. Moreover,
even if variability can be probabilistically characterised, not all programs follow
the same distributions.

Interestingly, some works take path frequencies (as observed during analysis
time) as probabilities. However, in general it is not possible to reason about
the frequencies of execution of each path during system operation [Cazorla et al.
(2013b)].

In the seminal papers [Cazorla et al. (2013a)] and [Cucu-Grosjean et al. (2012)],
we find the first attempts to our knowledge, of making randomisation to emerge
from the computing platform, rather than assuming that is provided by user inputs
in some way. Both works focus on fully-associative random replacement caches.
Although such caches are impractical to be used in real designs with large cache
sizes due to the high power dissipation, increased hardware implementation cost
and long access latency, these works paved the way for Probabilistic Timing Anal-
ysis (PTA), to be considered nowadays as a real alternative to current timing
analysis techniques. In this Thesis we contribute in this aspect by proposing so-
lutions in the same line. We propose affordable hardware and software solutions
that provide random timing behaviour at platform level.

Similar to the deterministic methods, two variants of Probabilistic Timing
Analysis exist: Static PTA (SPTA) [Cazorla et al. (2013a)] and Measurement-
Based PTA (MBPTA) [Cucu-Grosjean et al. (2012)] [Abella et al. (2017)]. Al-
though their functioning is different, both methods provide a complementary cu-
mulative distribution function (CCDF), or pWCET function such as the blue curve
depicted in Figure 2.2. This distribution upper-bounds the execution time of the
program under analysis, guaranteeing that the execution time of a program only
exceeds the corresponding execution time bound with a probability lower than a
given target probability (e.g., 10−15 per run).

25

2. BACKGROUND 2.1 Timing Analysis

It is worth to note that safety standards [RTCA and EUROCAE (1992)] [In-
ternational Organization for Standardization (2009)] specify maximum probability
rates for safety critical systems, with lower probabilities corresponding to higher
integrity levels. However, those probabilities refer to hardware failures, which
result in functional misbehaviour of the system. Therefore, there is no direct rela-
tion of these probabilities to the timing behaviour of the system, neither the target
probability selection in PTA. Current software and timing verification on the other
hand follows a qualitative approach based on sufficient evidence that the software
behaves correctly and timely according to its specification, with an extremely low
residual risk, since no method is able to provide absolute confidence [Spanfelner
et al. (2012)]. PTA on the other hand allows the timing verification process to
become quantitative, being able to estimate the residual risk, which in this case is
the remaining probability below the cut-off point [Stephenson et al. (2013)].

The probabilistic timing behaviour of a program (or an instruction) can be
represented with Execution Time Profiles (ETPs). An ETP defines the different
execution times of a program (or latencies of an instruction) and its associated
probabilities. That is, the timing behaviour of a program/instruction can be de-

fined by the pair of vectors (
→
l ,
→
p) = {l1, l2, ..., lk}{p1, p2, ..., pk}, where pi is the

probability the program/instruction taking latency li, with
∑k

i=1 pi = 1.
The ETP for a program (or instruction) for a given input set leading to a single

execution path is obtained as follows for SPTA and MBPTA:

SPTA In SPTA [Cazorla et al. (2013a)] [Altmeyer & Davis (2014)] [Davis et al.
(2013)], ETPs for individual binary-level instructions are determined statically
from a model of the processor and software. SPTA is performed by calculating the
convolution of the discrete probability distributions which describe the execution
time for each instruction; this provides a probability distribution, or ETP, repre-
senting the timing behaviour of the entire sequence of instructions. For instance the
convolution of ETP1 = {{1, 7}, {0.4, 0.6}} and ETP2 = {{2, 4}, {0.5, 0.5}} con-
sists in adding the timing vectors and multiplying the probability vectors, resulting
in ETP3 = {{3, 5, 9, 11}, {0.2, 0.2, 0.3, 0.3}}. SPTA techniques have been studied
for relatively simple processor architectures that use time-randomised caches [Ca-
zorla et al. (2013a)] [Altmeyer & Davis (2014)] [Davis et al. (2013)] and are not
yet close to industry [Abella et al. (2015)].

MBPTA Given a set of R runs of a program, on an MBPTA-compliant platform
as we explain in Chapter 4, one could compute the pWCET function of the pro-
gram as the exceedance cumulative distribution function (ECDF). ECDF provides
the probability of occurrence of each of the observed execution times based on the
histogram of execution times. Unfortunately, ECDF can only provide execution
time estimates for probabilities down to 1

R
in the best case. For smaller probabili-

26

2. BACKGROUND 2.1 Timing Analysis

ties, techniques such as Extreme Value Theory (EVT) [Kotz & Nadarajah (2000)]
[Cucu-Grosjean et al. (2012)] are used to project an upper-bound of the tail of the
exceedance function, enabling MBPTA techniques to provide pWCET estimates
for target probabilities largely below 1

R
. Figure 2.2 shows a hypothetical result of

applying EVT to a collection of 1,000 observed execution times. The continuous
line represents the ECDF function, derived from the observed execution times.
The dotted line represents the projection obtained with EVT. The EVT curve can
be read as follows: the pWCET estimate which corresponds to 9.5ms for the target
probability 10−16, indicates that this execution time can be exceeded with at most
that low probability in a given execution of that program.

A difference between SPTA and MBPTA, besides the level of abstraction at
which ETPs are to be constructed, is that while SPTA requires ETPs for each
instruction to be determined, MBPTA simply needs those ETPs for the program
or its components (e.g., instructions) to exist, but not to be known. ETP may differ
for different input sets leading to different execution paths. Each PTA technique
has its own methods to combine results from different execution paths. We refer
the reader to those methods for further details [Cazorla et al. (2013a)] [Cucu-
Grosjean et al. (2012)]. [Abella et al. (2014a)] presents the first comprehensive
comparison among STA, SPTA and MBPTA techniques.

The trustworthiness of pWCET estimates obtained with MBPTA on top of ran-
dom placement caches has been the subject of study in [Reineke (2014)] [Mezzetti
et al. (2015)]. [Abella et al. (2014b)] conducts a thorough analysis of corner cases
with the use of MBPTA and proposes ways to address them. [Benedicte et al.
(2016)] extends the work of [Abella et al. (2014b)] and provides two additional
and more accurate methods to increase the confidence of MBPTA.

MBPTA is not the only method in the literature to use Extreme Value Theory.
In [Yue et al. (2011)], the authors use EVT for for time-deterministic architec-
tures to derive execution time bounds. Similarly, [Berezovskyi et al. (2014)] [Bere-
zovskyi et al. (2016)], apply EVT to measurements collected on a deterministic
GPU architecture, in order to derive pWCET of GPGPU kernels. However, the
main difference between these works and classical MBPTA ([Cazorla et al. (2013a)]
[Cucu-Grosjean et al. (2012)]) as considered in this Thesis, is that there is no guar-
antee that the execution conditions at the analysis time upperbound or match the
ones at the system operation. In contrast, the use of time randomised architec-
tures, either in software or hardware, facilitates the satisfaction of this property.
[Cazorla et al. (2013b)] discusses the advantages of using EVT in the context of
time-randomised architectures, that is MBPTA, in comparison to applying EVT to
time-deterministic architectures. In the same way, [Lima et al. (2016)] highlights
the importance of using representative inputs at analysis, to those that are used
in the deployed system.

27

2. BACKGROUND 2.1 Timing Analysis

MBPTA as conceived in [Cucu-Grosjean et al. (2012)] and described in detail in
the next subsection, requires independence and identical distribution properties in
the collected execution time measurements which are processed by EVT. [Santinelli
et al. (2014)] relaxes the requirements of using EVT, showing that EVT can be also
used under non strict independence scenarios. In particular, a weak dependence
or independence of maxima is sufficient. However, in this Thesis we apply EVT
only on independent measurements, which are a byproduct of our hardware and
software designs as well as how the experiments are performed.

Conventional hardware/software platforms fail to provide the features required
by PTA so that pWCET estimates can be computed. Moreover, since measurement-
based solutions are closer to industry, the focus of this Thesis is delivering hard-
ware/software platforms whose timing behaviour fulfils the requirements of MBPTA
and remove the need for controlling the initial execution conditions, thus reducing
the burden on the user to generate those tests leading to the worst-case path.

2.1.4 Introduction to SPTA/MBPTA Requirements

PTA techniques require that the events under analysis, program execution times for
MBPTA and instruction latencies for SPTA, can be modelled with i.i.d. random
variables [Cazorla et al. (2013a)]: two random variables are said to be independent
if they describe two events such that the occurrence of one event does not have
any impact on the occurrence of the other event. Two random variables are said
to be identically distributed if they have the same probability distribution.

The existence of an ETP ensures that each potential execution time of the
program (for MBPTA) or instruction (for SPTA) has an actual probability of
occurrence, which is a sufficient and necessary condition to achieve the desired
probabilistic i.i.d. execution time behaviour.

Regardless of whether ETPs are obtained for instructions or full programs, they
cannot be derived with current deterministic architectures since events affecting
execution time, e.g. cache hits/misses, on those architectures cannot be attached
a probability of occurrence. Overall, an SPTA- and MBPTA-analysable system
must provide the following properties:

SPTA requires the i.i.d. hypothesis to strictly hold at the granularity level
at which ETP are built, i.e. instructions. If the timing probability distribution
captured by the ETP of the instruction is fully independent of the execution his-
tory, the ETP of the instruction would hold constant across all executions of the
instruction. However, this complicates SPTA because different execution paths
and even the outcome of the random events in a single path alter the probabil-
ity vector. SPTA, as presented in [Cazorla et al. (2013a)], advocates for doing
per-path WCET analysis which are then combined to obtain the WCET estimate

28

2. BACKGROUND 2.1 Timing Analysis

for the program. Within a path, the timing vector of the ETP is insensitive to
execution history but the probability vector is not, and therefore, there is a need
for bounding probabilistically this dependence.

Since SPTA requires the knowledge of the exact ETP, as discussed in the previ-
ous section, its sensitivity in lack of information is equivalent to SDTA techniques
[Abella et al. (2014a)]. Moreover, the computation of WCET in SPTA requires
analytical computations for the convolution at the level of instructions in ETPs
for the entire program, therefore its scalability is limited, similar to the SDTA
techniques. In this Thesis we focus on the MBPTA variant, which is closer to the
industrial needs, due to its simple application process. Therefore, the analytical
formulation of ETPs in our proposals are not meant to be exact, that is, it may
not be used in the context of SPTA. Instead, they are approximations which show
their existence as required by MBPTA.

MBPTA The observed execution times fulfil the i.i.d. property if observations
are independent across different runs and a probability can be attached to each
potential execution time. To that end, it is enough if we make the events that
may affect the execution time of a program random events. Hence, taking mea-
surements from a program is equivalent to rolling a dice, with each face having a
probability of occurrence. Making enough rolls of the different paths relevant for
WCET is enough to apply MBPTA, which derives upper-bounds of the execution
time distribution by means of Extreme Value Theory (EVT) [Kotz & Nadarajah
(2000)][Cucu-Grosjean et al. (2012)]. Note that the existence of the ETPs for each
instruction ensures that the execution times are probabilistic and therefore MBPTA
can be applied.

As a measurement-based technique, MBPTA computes a pWCET based on
observations collected during the program analysis phase. Therefore, in order the
pWCET to be trustworthy, the second fundamental requirement of MBPTA is
that the execution conditions during the analysis must match or upperbound the
ones that will take place during operation. In other words, the potential execution
time latencies and their probabilities (ETPs) during the system operation must
be guaranteed not to be higher than the ones which have been observed during
the analysis [Cazorla et al. (2013b)]. As we discuss in Chapter 4, we achieve the
execution conditions’ upperbounding by forcing the hardware to take its worst
case latency at analysis time, or make sure that the same execution conditions
exist in both phases by introducing timing randomisation. In the latter case, the
hardware will follow a probabilistic timing behaviour modelled by the same ETP
during both analysis and operation.

As explained for the SPTA case earlier, ETPs for memory instructions may
have dependences. This is also the case for MBPTA, however, due to the second
MBPTA requirement, it is enough that those dependences are probabilistic, so

29

2. BACKGROUND 2.2 Caches in Real-Time Systems

that the measurements (execution times) obtained by running the program prob-
abilistically capture the effect of such dependence.

In this Thesis we focus on MBPTA because it is closer to industrial practice.
In Chapter 4 we examine in detail the requirements of MBPTA and how they can
be satisfied by a hardware design.

2.2 Caches in Real-Time Systems

Caches are undoubtedly one of the resources with the highest performance impact
in a processor system. Most high performance processors come equipped with two
levels of cache or even three like the ORACLE SPARC T5, the IBM POWER8
or the Intel Xeon and Core i7. This is also the case of some processors used in
the real-time domain such as the ARM Cortex A9 and A15 [ARM Ltd. (2013)],
the Freescale P4080 [Freescale Semiconductors (2008)] and the Cobham Gaisler
NGMP [Cobham Gaisler (2011)].

Cache memories also impact noticeably the worst-case execution time and have
been object of intense study during the last decades by the real-time community.
This has motivated researchers to develop models that allow to derive the be-
haviour of the cache [Mueller & Harmon (1993)] [Ferdinand & Wilhelm (1999)]
[Mueller (2000)] [Ferdinand et al. (2001)] [Lesage et al. (2009)] [Hardy & Puaut
(2008)] to determine whether cache accesses hit or miss.

Cache analysis [Ferdinand & Wilhelm (1999)] has been used in the context
of static timing analysis to predict the WCET of software by analysing its cache
behaviour. For each particular access, its outcome is predicted based on whether it
can be ensured to be in the cache (must analysis), may be in the cache (may anal-
ysis) or not evicted after it has been loaded (persistence analysis). Those models
have been particularly successful for the instruction single-level caches, however,
the data cache in the general case remains a major challenge for static WCET
analysis methods due to the difficulty of statically determining the address of each
data memory access at run-time. This difficulty compels analysis techniques to
make pessimistic assumptions, which in turn result in pessimistic WCET esti-
mates. Multi-level caches aggravate these problems; in fact, to our knowledge,
few works deal with multi-level caches and only particular setups of multi-level
instruction [Hardy & Puaut (2008)] and data caches [Lesage et al. (2009)] have
been considered so far, evidencing the dimension of the challenge.

The predictability of replacement policies has been characterised by [Reineke
et al. (2007)]. In particular several replacement policies have been studied and
two metrics have been proposed, evict and fill, to describe how quickly a cache
converges to a statically predicted known state.

[Quiñones et al. (2009)] proposed non-deterministic caches in real-time systems,

30

2. BACKGROUND 2.2 Caches in Real-Time Systems

to reduce the chance of pathological cases [Bernat et al. (2007)] due to cache risk
patterns [E.Mezzetti et al. (2008)] in real-time systems.

While static timing analysis techniques demand caches that are deterministic
in their temporal behaviour, the introduction of Probabilistic Timing Analysis
techniques [Cazorla et al. (2013a)] [Cucu-Grosjean et al. (2012)] changes the re-
quirements to be accomplished by caches. In particular, PTA requires caches to
have a time-randomised behaviour that make memory accesses to have a probabilis-
tic behaviour and be assigned an ETP.

In addition to caches, another type of local memory found in some systems is
the scratchpad [Banakar et al. (2002)]. Examples of processors using scratchpads
are the Emotion Engine [Oka & Suzuoki (1999)] chip used in Sony’s Playstation
2, the Cell processor [Riley et al. (2007)] used in Sony’s Playstation 3 and IBM’s
Blade Servers and modern NVIDIA graphics cards [NVIDIA (2009)]. In the real-
time domain, several microcontrollers and processors for the automotive market are
based on scratchpads such as the AURIX Tricore [Infineon (2012)]. Scratchpads are
software-managed hardware structures, which are used to obtain full predictability
in the local memory accesses. However their flexibility is reduced, since they
move the burden to the programmer or the compiler for managing the transfers
between the main memory and the scratchpads and also to make efficient use of
them [Alvarez et al. (2015a)] [Alvarez et al. (2015b)]. For this reason, all the
aforementioned processors use a memory hierarchy that is not based exclusively
on scratchpads but contains caches, too.

Scratchpads have been also studied in the literature for real-time systems [Suhen-
dra et al. (2005)] [Suhendra et al. (2006)] [Kim et al. (2014)] [Kim et al. (2016)].
Most works propose algorithms to select which parts of code/data should be placed
in scratchpads in order to minimise WCET, typically following a set of ILP (In-
teger Linear Programming) formulations. However this problem is NP-complete,
since it is equivalent to the Knapsack problem [Garey & Johnson (1990)].

In order to offer more predictability to caches, cache locking has been im-
plemented in several processors. In an attempt to reduce WCET, several algo-
rithms have been proposed for code [Puaut & Decotigny (2002)] or data cache
locking [Vera et al. (2003)]. These solutions though, similarly to the scratchpads
face difficulties to scale with big program sizes [E.Mezzetti et al. (2008)][Mezzetti
& Vardanega (2011b)].

31

Chapter 3

Experimental Setup

3.1 Simulation Framework

Measurement Probabilistic Timing Analysis imposes requirements on the hard-
ware design, which are not found in any currently available processor. We have
proposed several hardware designs compatible with these principles which have
been introduced in the Background and we extend to the entire processor archi-
tecture in Chapter 4. We have evaluated them based on simulation: an essential
tool for research development and evaluation, especially in new unexplored areas.

In addition to our simulation infrastructure, we use a set of benchmarks to
perform the evaluation of the proposed cache designs. We have used two fami-
lies of benchmarks that are widely used in the real-time community, Mälardalen
[Gustafsson et al. (2010)] and EEMBC [Poovey (2007)].

3.1.1 Simulator Description

We use the SystemC component library SoCLib [Pouillon et al. (2009)] as a base-
line platform in order to create a cycle accurate execution-driven simulator that
fulfils our needs. We developed an emulator for a PowerPC 750 processor core, a
processor used in current avionics systems [Wartel et al. (2013)] based on the model
of PowerPC 405 embedded processor provided by SoCLib, which we enhanced with
a Floating Point Unit (FPU) and a Memory Management Unit (MMU). Moreover,
we implemented a timing simulator modelling an in-order 4-stage pipeline (fetch,
decode, execute and write-back), which is compliant with the embedded processors
used in several existing CRTES.

The hardware designs and the analysis methods we propose in this Thesis are
based on the cache organisations (random placement, random replacement) we
introduce in Chapter 5. We created a custom, fully configurable and flexible cache
component in our hardware simulator, able to model a system with an arbitrary

32

3. EXPERIMENTAL SETUP 3.1 Simulation Framework

Figure 3.1: General Organisation of modelled architecture. The dashed component
(L2 cache) can be disabled.

Table 3.1: Simulator configuration

Processor Configuration

Pipeline stages 4, in-order instruction execution
Branch Prediction no, stall until branch resolved
Floating Point Unit yes
Memory Management Unit yes

Memory Configuration

Caches L1 Instruction and Data caches, L2 split and Unified
TLBs Instruction and Data
Placement policies Modulo, Random-Placement
Replacement policies LRU, Random Replacement
Inclusivity Inclusive, No-inclusive
Write Policy Write-Through, Write-Back
MSHR 32 entries
Cache control Locking, Disabling
Main Memory latency 100 cycles access

number of cache levels using different placement, replacement and inclusivity con-
figurations, as well as with configurable cache hit/miss latencies. Moreover, the
same cache model has been used for modelling other cache-like structures such as
TLBs.

Figure 4.3 depicts a general model of the architecture we model. As shown in
Table 3.1, the cache configuration is completely flexible. Depending on the pro-

33

3. EXPERIMENTAL SETUP 3.1 Simulation Framework

Figure 3.2: Simulation methodology

posal under evaluation, the L2 cache can be disabled completely or when present
can be configured as unified or split, and be inclusive of L1 caches. We refer
the reader to the Experimental Evaluation section of each Chapter for the actual
configuration parameters of the simulator.

Table 3.1 summarises the capabilities of our cache simulator. Caches are in-
dexed with virtual addresses and tagged with physical ones. TLBs are accessed in
parallel with caches and in case of miss the pipeline is stalled until it is resolved.

3.1.2 Simulation Methodology

The approach we follow in order to achieve our goals is based on the methodology
shown in Figure 3.2. We go through a cyclic refinement process while performing a
high level design space exploration. We use a complete simulation framework com-
posed of a processor simulator and a set of benchmarks where we can implement
and evaluate our proposals.

For each proposal we first characterise its timing behaviour with a set of an-
alytical mathematical expressions which are based on the probability of each in-
struction and its latencies, called Execution Time Profile (ETP) as introduced in
the Background Chapter. In this way, we show a priori that our proposed system
is compliant with Probabilistic Timing Analysis by construction.

Next the proposal is evaluated in our simulation framework, to demonstrate
that our mathematical model holds. This is performed by using Measurement-

34

3. EXPERIMENTAL SETUP 3.2 Metrics

Based Probabilistic Timing Analysis (MBPTA) [Cucu-Grosjean et al. (2012)].
Each benchmark is executed a number of times (∼1000) on our simulator and the
execution times of independent end-to-end runs in cycles is collected, as shown in
Figure 3.3. We verify that the execution time distribution of each benchmark is
independent and identically distributed, so MBPTA can be used.

After this is ensured, we compute the pWCET distribution for each benchmark
by applying Extreme-Value Theory (EVT) [Feller (1968)]. Finally, after analysing
the different pWCET results, we refine our proposal if it is needed, to provide
tighter pWCET estimates.

Figure 3.3: Execution time collection for MBPTA

3.2 Metrics

MBPTA-compatible proposals can be verified and evaluated in multiple aspects.
First, since MBPTA imposes certain requirements on the platform, those proper-
ties need to be verified, before MBPTA can be applied to provide a pWCET curve.
Second, the performance of the proposed solution is evaluated.

Requirements. In terms of requirements, as explained in the Background,
EVT, the statistical method that MBPTA is based on, requires that its input
data, the end-to-end execution times in our case, are independent and identically
distributed. As we discuss in the next chapter, our time-randomisation solutions
provide this property by design. However, in order to ensure that this property is
not violated by mistake in any step throughout our process, we use appropriate
statistical tests to validate these properties. In fact, those tests can only indicate
the opposite, whether the data are not independent or identically distributed.
Moreover, the outcome of these tests is associated with a given confidence level.
That is, there is a probability as high as this confidence level, for the tests to
report false positives or false negatives.

For independence we use the Wald-Wolfowitz (WW) test [Bradley (1968)]. For
identical distribution hypothesis we use the Kolmogorov-Smirnov (KS) goodness-

35

3. EXPERIMENTAL SETUP 3.2 Metrics

of-fit test [DeGroot & Schervish (2002)]. We use a 5% significance level (a typical
value for this type of tests), whereby absolute values obtained with the WW test
must be below 1.96 to prove independence, and the outcome of the KS tests should
be above the threshold (0.05) to assert identical distribution.

The second required property for the application of MBPTA is that execution
conditions at analysis need to match or upperbound those at operation, in order
to avoid experiencing at operation longer latencies than the ones observed during
the analysis phase of the system. This property is ensured in our proposals by
construction and therefore it is only assessed qualitatively. In particular, as we
explain in the next Chapter, for the cache we have opted the timing randomisation
option, which ensures that it will follow the same probabilistic timing behaviour in
both analysis and operation time, and therefore operate under the same execution
conditions. For other jittery resources with lower jitter, such as the floating point
unit, we design them to operate in their highest latency during analysis, so that
analysis observations are always upperbounding the execution time at operation.

Performance. The performance of each proposal can be assessed either in
worst case terms, which is more relevant for CRTES, or in the average case.

For the worst case we use a pWCET estimate derived with MBPTA at the level
of cut off probability 10−15. This value provides a sufficiently low residual risk
appropriate for use in CRTES, comparable – but not directly related, as discussed
in the Background – with the maximum hardware failure rates found in safety
standards in avionics [RTCA and EUROCAE (1992)], where the highest criticality
software should have a maximum failure rate of 10−9 per hour of operation. In
the case that an equivalent MBPTA compatible solution is available, i.e. when we
improve over our previous proposals, the corresponding pWCET at this probability
level for both proposals is used for the comparison. It is worth to note however,
that we do not provide any comparison with other timing analysis methods, since
this task has been performed in [Abella et al. (2014a)], where it is shown that
a fair comparison can only be performed with assumptions or on a platform not
being the best fit for any of the methods.

Finally, while the average performance is not the primary goal in CRTES, it
is still important to be known. Average performance is a key metric of interest
in high-performance computing and therefore, showing that MBPTA solutions do
not penalise significantly the average performance is very important for adoption
of our proposals in those platforms. Moreover, average performance is important
in the CRTES domain, in order to know whether the pWCET estimate is close to
the average execution time, and therefore it is not overestimated significantly. For
this reason, we also include average performance results for our proposals, which
are computed as the arithmetic mean of the collected execution times.

36

3. EXPERIMENTAL SETUP 3.3 Benchmarks

3.3 Benchmarks

The benchmarks we use come from two big families which are commonly used in the
CRTES domain, EEMBC and Mälardalen. The EEMBC automotive suite [Poovey
(2007)] is developed by the Embedded Microprocessor Benchmark Consortium and
is specially designed to measure performance of embedded processors by execut-
ing common tasks performed in an automotive system as control of gear rotation,
ignition system, etc. These benchmarks have the following structure: they are
composed of a main loop, which is executed a high number of iterations depending
on the benchmark, with few function calls in its body. The input data are em-
bedded in the application emulating memory mapped sensor data, so during each
iteration a different value is processed.

The other benchmark suite that we use is the Mälardalen one [Gustafsson et al.
(2010)], which consists of a set of open-source benchmarks. Similarly to EEMBC,
each application comes with an embedded input set, and has simple structure
with mostly linear code and a few small loops. Due to this fact, is one of the most
common choices for timing analysis techniques. In Table 3.2 we present a short
description of each benchmark in each benchmark suite.

For each benchmark we collect the execution time of a number of end-to-end
runs, which is usually 1000, as shown in Figure 3.3.

37

3. EXPERIMENTAL SETUP 3.3 Benchmarks

Table 3.2: Benchmarks used in our simulation environment

EEMBC Autobench
a2time Angle to Time Conversion
basefp Basic Integer and Floating Point
bitmnp Bit Manipulation
cacheb Cache ”Buster”
canrdr CAN Remote Data Request
aifft Fast Fourier Transform (FFT)
aifirf Finite Impulse Response (FIR) Filter
aiifft Inverse Fast Fourier Transform (iFFT)
aiirflt Infinite Impulse Response (IIR) Filter
matrix Matrix Arithmetic
pntrch Pointer Chasing
puwmod Pulse Width Modulation (PWM)
rspeed Road Speed Calculation
tblook Table Lookup and Interpolation
ttsprk Tooth to Spark
Mälardalen benchmarks
adpcm Adaptive pulse code modulation algorithm
bs Binary search for the array of 15 integer elements
bsort Bubblesort program.
cnt Counts non-negative numbers in a matrix
compress Data compression program.
cover Program for testing many paths
crc Cyclic redundancy check computation on 40 bytes of data
duff Using ”Duff’s device” from the Jargon file to copy 43 byte array
edn Finite Impulse Response (FIR) filter calculations.
expint Series expansion for computing an exponential integral function.
fac Calculates the faculty function.
fdct Fast Discrete Cosine Transform.
fft1 1024-point Fast Fourier Transform using the Cooly-Turkey algorithm.
fibcall Simple iterative Fibonacci calculation, used to calculate fib(30).
fir Finite impulse response filter over a 700 items long sample.
insertsort Insertion sort on a reversed array of size 10.
janne complex Nested loop program.
jfdctint Discrete-cosine transformation on a 8x8 pixel block.
lcdnum Read ten values, output half to LCD.
lms LMS adaptive signal enhancement.
ludcmp LU decomposition algorithm.
matmult Matrix multiplication of two 20x20 matrices.
minver Inversion of floating point matrix.
ndes Bit manipulation, shifts, array and matrix calculations.
ns Search in a multi-dimensional array.
nsichneu Simulate an extended Petri Net.
prime Calculates whether numbers are prime.
qsort-exam Non-recursive version of quick sort algorithm.
qurt Root computation of quadratic equations.
recursion A simple example of recursive code.
select Selection of the Nth largest number in a floating point array.
sqrt Square root function implemented by Taylor series.
st Statistics program.
statemate STAtechart Real-time-Code generated code
ud Calculation of matrixes.

38

Chapter 4

MBPTA-Compatible Processor
Design

4.1 Introduction

Measurement-Based Probabilistic Timing Analysis (MBPTA) methods [Cazorla
et al. (2013a); Cucu-Grosjean et al. (2012); Hansen et al. (2009)], as explained
in the Introduction and Background chapters, allow the execution time of appli-
cations to be accurately modelled – at some level of execution granularity – by
a probability distribution. Under MBPTA, at a given level of granularity of ex-
ecution, the response time of each execution component (e.g. an instruction) at
that level is assigned a distinct probability of occurrence. This trait is described
by a probabilistic Execution Time Profile (ETP), which is expressed by the pair:
<timing vector; probability vector>. The timing vector in the ETP of an exe-
cution component enumerates all its possible response times. For each response
time in the timing vector, the probability vector lists the associated probability of

occurrence. Hence, for execution component Ci we have ETP (Ci) =<
→
ti,
→
pi>where

→
ti= (t1i , t

2
i , ..., t

Ni
i) and

→
pi= (p1i , p

2
i , ..., p

Ni
i), with

∑Ni

j=1 p
j
i = 1.

The processor architecture may facilitate ensuring that individual instructions
have an associated ETP. As this feature in turn enables a sound and effective appli-
cation of MBPTA, this is the level of execution granularity at which we concentrate
in this Chapter.

Contribution. In this Chapter, we describe the architecture features that a pro-
cessor should possess to guarantee MBPTA fitness by construction (also termed
MBPTA-friendliness or MBPTA-compliance) and we also offer insight on the costs
that may be incurred in actual implementation. To that end we categorise proces-
sor resources according to their timing behaviour and detail how they should be
designed so that they can be used in a MBPTA-friendly processor. Without loss

39

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.2 Requirements on Hardware Design

of generality, we consider the inner operation of the processor to employ a number
of passive resources (e.g. cache, buffers, buses, etc). We assume each processor
instruction to use some of those resources in a given order, whether in sequence
or in parallel. We design processor resources so that each can be assigned a given
ETP. To achieve this for all resources, we use time randomisation in some, actually
very few, of them. Resources that are not time-randomised must be assigned a
local upper bound to their response time that can be safely composed.

Given the relatively simple processors used in CRTES, and since MBPTA com-
pliance is introduced for the first time, we focus on single-core in-order architec-
tures employing cache structures as main performance enhancing feature. More
sophisticated architectures found in mainstream and high-performance comput-
ing such as multi-cores, many cores, General Purpose Graphics Processing Units
(GPGPU), Non-Uniform Memory Access (NUCA) hierarchies etc., are not cov-
ered. Note however, that CRTES industry is very conservative in the use of new
features, e.g. in many systems caches are disabled for “safe” operation [Rebau-
dengo et al. (2003)] [Santini et al. (2014)]. Further note that the same design
principles defined in this Chapter can be applied to construct MBPTA-compatible
processors with those features, as it is already the case of follow-up studies of this
Thesis regarding multi-cores – briefly discussed later in this Chapter.

4.2 Requirements on Hardware Design

PTA, as understood in this Thesis, can be applied in either a static (SPTA) [Ca-
zorla et al. (2013a)] or measurement-based (MBPTA) [Cucu-Grosjean et al. (2012)]
fashion. In this Chapter, as well as in this Thesis, we focus on the measurement-
based variant of PTA. We refer the reader to the Chapter 2 for the basics of PTA.

MBPTA considers events resulting from the observation of end-to-end measure-
ment runs of the program, thus at coarser granularity than processor instructions.
MBPTA uses a statistical method called Extreme Value Theory (EVT) [Kotz &
Nadarajah (2000)][Cucu-Grosjean et al. (2012)] to compute pWCET estimates and
therefore needs the observed execution times to describe probabilistically indepen-
dent events. EVT requires that the observed execution times of program runs
(of the same path) have a distinct probability of occurrence and can be modelled
with independent random variables. The MBPTA method described in this The-
sis also causes those variables to be identically distributed, so that MBPTA treats
i.i.d. random variables1. In addition to this property, unlike SPTA which only re-

1Two random variables are said to be independent if they describe two events such that
the occurrence of one event does not have any impact on the occurrence of the other event.
Two random variables are said to be identically distributed if they have the same probability
distribution. Unfortunately, these properties are not met by current processors due to their

40

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.3 Modelling the Timing Behaviour of Processor Resources

quires i.i.d., MBPTA places strong requirements on how the observations are made
(which of the many possible runs are considered) and what they can observe of
all possible outcomes (which execution paths they cover). In particular, MBPTA
requires that the execution conditions under which the observations are collected,
to match or be worse than those that will take place at system operation.

The axiomatic existence of an ETP per dynamic instruction (by which we mean
an individual instance of that program instruction in a given run of the program)
ensures that, under MBPTA, each potential execution time of the program has
a distinct probability of occurrence, that is every program run has an associated
ETP, which is a sufficient and necessary condition to achieve the prerequisite i.i.d.
execution time behaviour [Abella et al. (2013)].

Unfortunately, regardless of whether ETP are sought for program instructions
or full programs, they cannot be granted with current processor architectures
since the events that affect their execution time, e.g. cache hits/misses, cannot be
attached a probability of occurrence. So we need to set out to understand what
features a processor architecture should possess to allow ETP to exist.

4.3 Modelling the Timing Behaviour of Proces-

sor Resources

In order to enable the use of MBPTA, the latencies with which each resource
responds should have an attached probability of occurrence. The execution time
of the instructions using those resources can then also be captured probabilistically.
In this respect, the probabilistic execution time of an instruction is a function of
the ETP of the resources it uses and how they are arranged, in series or in parallel.
Ultimately, this enables capturing the execution of the whole program, which is
comprised of instructions, in a probabilistic manner.

For a processor architecture to be MBPTA-friendly, the pWCET estimates
obtained for the programs that run on it must hold valid for the whole operational
life of the system, hence for every run of the programs of interest under all execution
conditions. To understand how the timing behaviour of processor resources needs
to be modelled for those guarantees to be obtained, we first need to appreciate
how the MBPTA process works.

4.3.1 Analysis and Operation Phases

As a measurement-based technique, MBPTA has two phases: analysis and opera-
tion. Execution time observations are collected during analysis in order to make

state-sensitive nature.

41

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.3 Modelling the Timing Behaviour of Processor Resources

(a) deterministic-latency resource (b) probabilistic-latency resource

Figure 4.1: Deterministic and probabilistic upper-bounding latencies

accurate predictions regarding the execution times at system operation. As a con-
sequence, systems amenable to MBPTA have two distinct modes of use: one for
the analysis phase, and another for the operation one.

• The analysis mode is used to obtain pWCET estimates that hold valid during
system operation. To this end, the timing behaviour of the system in that
mode must upper bound that of the system after deployment, as used in real
scenarios. This guarantees that any circumstance that can occur during the
lifetime of the system cannot alter its timing behaviour in a way that has
not already been upper bounded at analysis time.

• The operation mode is used during actual deployment of the final system.
In this mode, timing conditions are unrestricted and can thus lead to lower
execution times than those experienced in the analysis mode.

4.3.2 Deterministic and Probabilistic Upper-bounding

By intent, the analysis mode requires that the timing behaviour of the system
as a whole and of its individual components in isolation (seen at the granularity
of execution of interest) either upper bounds or matches that which will occur
in operation mode. For MBPTA-friendly processor architectures, this condition
can be achieved in either a deterministic or a probabilistic manner. Accordingly,
any pWCET estimate obtained by analysis is a trustworthy upper bound of the
execution times that may occur after deployment in operation. Next we discuss
what needs to be done for different hardware resources.

Figure 4.1 provides a schematic view of the meaning of (a) deterministic upper-
bounding and (b) probabilistic upper-bounding. In both sides of the figure, the
x-axis represents execution time, and the y-axis the probability for any particular
latency to occur (this is obviously 1 in the case of deterministic resources). In
Figure 4.1(a), the solid vertical line represents the analysis-mode bound (am),

42

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.3 Modelling the Timing Behaviour of Processor Resources

Bounddetam for the latency of a component. If in the operation-mode (dm), the actual
latencies, {latdetdm}, are below Bounddetam, which is shown with the dotted lines, then
the obtained bound is trustworthy. If it cannot be ensured that this is the case,
the operation-time actual latencies (dashed lines) can be bigger than the analysis-
mode bound {latdetdm} > Bounddetam, hence the bound is not trustworthy and cannot
be used. In Figure 4.1(b) the solid curve represents the analysis-mode upper-
bound ETP of the latency of the resource, Boundproam. We say that ETPi ≥ ETPj,
that is, ETPi probabilistically upper-bounds ETPj, if for any cutoff probability
the execution time of ETPi is higher or equal than the execution time of ETPj.
Hence, if actual latencies for the resource are like the dotted curve, then they
are probabilistically upper-bounded by Boundproam (solid line). However, if actual
latencies match those described by the dashed curve, they are not probabilistically
upper-bounded by Boundproam.

4.3.3 Benefits

Upper-bounding, in either its deterministic or probabilistic form, allows to ensure
that the execution conditions at analysis time, will match or upper-bound the
ones at operation. Moreover, it removes the dependence of low-level sources of
execution time variation on the input data values, simplifying the analysis [Cazorla
et al. (2013b)]. This way, the end-user is relieved from the burden to control these
sources of execution time variation. In fact, the sole requirement of the analysis
process is reduced to provide only sufficient path coverage [Cucu-Grosjean et al.
(2012)], as opposed to deterministic measurement based timing analysis methods.

4.3.4 Taxonomy of Hardware Resources

We term jitterless resources the processor resources that have a fixed latency, in-
dependent of the input request and of the past history of service. several hardware
resources in current processor architectures are jitterless. Jitterless resources are
easy to model for all types of static timing analysis. For MBPTA techniques, the
ETP of a jitterless resource jl is given by: ETPjl =< (l), (1.0) >, where l is the
latency of the resource. Its PDF is shown in Figure 4.2(a).

Other resources, for instance cache memories, have a variable latency: we call
them jittery resources ; their latency depends on their history of service, i.e. the
execution history of the program, the input request, or a combination of them.
Let us discuss each such case in turn:

• Dependence on execution history. Some resources are stateful and their state
is affected by the processing of requests. If latency depends on the internal
state of the resource and this state is in turn affected by previous requests,

43

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.3 Modelling the Timing Behaviour of Processor Resources

(a) Jitterless resource (b) Jittery upper-bounded (c) Jittery time-randomised

resource resource

Figure 4.2: Probabilistic timing behaviour of a single instruction for each type of
resource

then we say that the resource latency depends on the execution history of
the program. With caches, the latency of an access request depends on
whether the access is a hit or a miss, which in turn depends on the sequence
of previous accesses to memory.

• Dependence on input request. The latency is determined by the data carried
by the request: for a processor, data are usually encoded in the instruction
that issues the request, or stored in its input registers.

Jittery resources have an intrinsically variable impact on the WCET estimate
for a given program. The significance of this impact depends on the magnitude of
the jitter, the program under study, and the analysis method. For any given jittery
resource, either all requests to it are assumed to incur the worst-case latency – as
long as timing anomalies can be excluded [Reineke et al. (2006)] – or the resource
is time-randomised. The design choice for a given resource needs to trade the
design cost for time randomising against the degradation of WCET tightness for
always assuming worst-case latency.

The ETP for a resource rwl, assumed or configured to worst-case latency,
can be expressed as ETPrwl

=< (lmax), (1.0) >, where lmax is the worst-case
latency of the resource. An example of the impact of such upper bounding is
shown in Figure 4.2(b). In the example, the actual probabilities for each la-
tency are unknown; only frequencies can be obtained; upper bounding there-
fore is needed. Conversely, the ETP of a time-randomised jittery resource rj
is: ETPrj =< (l1j , l

2
j ..., l

k
j), (p1j , p

2
j , ...p

k
j) > where lij and pij represent the different

latencies of the resource rj and their associated probabilities of occurrence. This
is shown in Figure 4.2(c).

44

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.3 Modelling the Timing Behaviour of Processor Resources

4.3.5 Assigning ETP to Individual Processor Resources

The probability for a given latency is different from its frequency. This is best

shown by an example. Consider a resource R1 with
→
t1= (t11, t

2
1): latency t11 in

the timing vector would have a true probability of occurrence p11 = 0.5 if – in
the implementation of that resource – on every request to it we tossed a coin
and the request had latency t11 if we saw heads and t21 otherwise. In contrast,

if for a deterministic stateful resource R2 with latency
→
t2= (t12, t

2
2) we observed

that, for a given program, 50% of the requests take t12 and 50% t22, we would have
a 50% observed frequency for each possible latency of that resource, but not a
true 50% probability. This is so because for events that are strictly dependent
on the history of execution, information on past events cannot be used to provide
guarantees about the appearance of future events.

For the purposes of MBPTA, the timing behaviour of jitterless and jittery
(either upper-bounded or time-randomised) resources can all be described proba-
bilistically by ETP.

4.3.6 ETP of several execution components

A composite ETP can easily be determined for every individual program compo-
nent (ETPpc), e.g. a dynamic instruction, that uses processor resources, which has
an associated ETP describing their latency. That is ETPpc = f (ETP1, ETP2, ..., ETPn),
where ETPi is the probabilistic execution time of resource ri.

Sequential composition: sequential composition of ETP, fs (ETP1, ETP2, ..., ETPn),
leads to an ETP where latencies and probabilities are determined by the type of
dependence across the input ETP (whether systematic or probabilistic, as shown
in [Abella et al. (2013)]). Sequential composition as intended here is architectural
and not mathematical, hence different from the convolution used in the context of
SPTA for combining ETPs of static instructions (e.g. instructions in the object
code of the program).

Let us assume two ETPs, ETP1 =< (1, 2), (0.5, 0.5) > and ETP2 =
< (5, 10), (0.5, 0.5) >. Further assume that whenever ETP1 takes latency 1, then
ETP2 =< (5, 10), (0.8, 0.2) > and whenever ETP1 takes latency 2, then the second
ETP is ETP2 =< (5, 10), (0.2, 0.8) >. In this case, ETP1+2 = fs (ETP1, ETP2),
leading to ETP1+2 =< (6, 7, 11, 12), (0.4, 0.1, 0.1, 0.4) >. Still, ETP2 takes, for
instance, latency 5 with probability 0.5 because P (ETP1 = 1) × P (ETP2 =
5) + P (ETP1 = 2)× P (ETP2 = 5) is 0.5× 0.8 + 0.5× 0.2 = 0.5.

The key appreciation here is that the dependence that ETP2 has on ETP1

can be modelled probabilistically. As a result, the executions carried out during
analysis, capture the behaviour of this dependence and hence, cause it to be covered
by the pWCET estimate derived to bound the execution time during operation.

45

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.3 Modelling the Timing Behaviour of Processor Resources

Parallel composition: processor resources may also be arranged in parallel.
Examples of parallel resources are some particular designs of cache memories and
TLB, where cache access and address translation can occur in parallel. With
parallel arrangements, no dependence across ETP can exist, since for that to
exist some sequential relation across ETP should occur, which should be ad-
dressed by sequential composition. The probabilities of the parallel composi-
tion (fp (ETP1, ETP2, ..., ETPn)) correspond to the multiplication of probabil-
ities across ETP. However, the latencies correspond to the maximum latency
of the probabilities multiplied. This is illustrated with the following example.
Let the ETP for two program components be ETP1 =< (1, 4), (0.4, 0.6) > and
ETP2 =< (2, 3), (0.3, 0.7) > respectively. The ETP from their parallel composi-
tion, ETP1+2 = fp (ETP1, ETP2), is ETP1+2 =< (2, 3, 4), (0.12, 0.28, 0.6) >.

4.3.7 More Complex Single-core Processor Architectures

We have shown that jittery deterministic resources need to be redesigned to make
their timing behaviour amenable to MBPTA by construction. This can be done
by either randomising their timing behaviour or enforcing them to their worst-case
latency. Resources with probabilistic latency perfectly fit the MBPTA principles.
However, jittery processor resources exist that do not easily fit in the taxonomy
we used in Section 4.3.4. This is the case of resource buffers, also known as FIFO
queues or simply buffers.

A buffer resource may stall if it gets full, which increases the latency of the
requests that use it. Stalls across pipeline stages may for example occur owing to
contention for buffer space; those stalls would be real enough to fear, but difficult
to predict causally.

The main characteristic of buffer resources, however, is that they are not sources
of jitter but rather jitter propagators1 [Kosmidis et al. (2013e)]. The intuition here
is that if all jitter that occurs in a processor is probabilistic, that is, it is solely
due to time-randomised resources, any combination of random events has a given
probability of occurrence. Now, as every single combination of events causes the
program to incur a distinct execution time, each execution time has a distinct prob-
ability of occurrence. For each combination of random events, resource buffers may
get full and consequently increase the execution time of the program. However,
buffers themselves do not introduce any change in the probability distribution of
random events. The presence of buffers may well cause the execution time of the
program to vary, but each execution time continues to have a true probability of
occurrence, which is what MBPTA requires.

1This is another contribution of this thesis. However, in order to keep the size of this thesis
in reasonable size, we discuss it briefly in the current section instead of a separate chapter.

46

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.3 Modelling the Timing Behaviour of Processor Resources

In general, all hardware resources can be made MBPTA-friendly: it suffices
that they either do not introduce jitter on their own (hence they are fixed-latency
or else just jitter propagators) or their jitter can be upper-bounded or else it
can be randomised. In that manner, initial conditions no longer need to be ac-
counted for as sources of execution time variation [Cazorla et al. (2013b)], and
trustworthy pWCET estimates can be obtained. Those pWCET bounds can also
be tight because MBPTA-friendly architectures cause the build-up effects of abrupt
pathologically large variations in execution time (for the same random variable)
to naturally smooth out so that pessimism can be much reduced.

4.3.8 First Steps Towards MBPTA-friendly Multi-cores

In multi-core architectures, in addition to all the sources of execution time vari-
ability that appear in a single-core architecture, a further one arises: inter-task
interference1. In single-core architectures, given two instructions ix and iy of the
same program, where the subscripts determine the order in which each instruction
is fetched into the processor, iy may have a potential impact on the execution time
of ix only if y < x, meaning that iy executes prior to ix. In a multi-core, when
several tasks run in parallel, the execution time of one instruction iT1

x belonging
to task T1 may be affected by any other instruction iT2

y from task T2. If there
is precedence ordering in task execution such that T2 executes after T1, then the
inter-task interference generated by iT2

y does not affect iT1
x . If no precedence order-

ing can be asserted instead, T1 and T2 can execute in any order. Hence they may
execute in parallel on different cores, so that iT2

y may cause inter-task interference
on iT1

x . It is evident that we cannot conceivably capture the effect that any single
instruction of any task iTk

j may have on any other instruction of any other task
iTm
l in the system. Should this be required, MBPTA would become intractable.

To prevent this, the design of MBPTA-friendly multi-cores must ensure that the
worst effect that one task can have on the execution of any other task due to
inter-task interference can be probabilistically bounded.

Interestingly, the MBPTA-friendly design principles already outlined for single-
core processors extend quite well to the design of multi-core architectures. The
resources for which this approach is most advantageous are those that are shared
upward the processor hardware architecture off the core, where they may cause
massive inter-task interference.

• Shared bus. The authors of [Jalle et al. (2014)] show that the arbitra-
tion latency of a shared bus can either be upper bounded at analysis time

1This term does not include the interference that in single core processor occurs in caches
and TLBs owing to context switches. This is intentional as this overhead can be quantified
probabilistically [Davis et al. (2013)].

47

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.4 Case Study

or randomised so that the timing behaviour observed at analysis matches
or upper-bounds that which may emerge during operation. In fact, upper
bounding the bus arbitration latency has been shown to be viable also for
time-deterministic systems [Paolieri et al. (2009a)].

• Shared memory controller. The same cited work [Jalle et al. (2014)]
shows that the latency of a shared memory controller can be upper bounded,
which is fine for MBPTA-friendliness. Again, that approach is in line with
findings for time-deterministic systems [Paolieri et al. (2009b)].

• Shared cache. Cache partitioning has been proved to be a practical way
to attenuate the interference effects from cache sharing. This solution was
first shown for time-deterministic systems [Paolieri et al. (2009a)]. However,
since it eliminates all cache conflicts among tasks running on different cores,
it cancels out the multi-core side of the cache problem, and allows using, for
each CPU, the solutions devised for single-core processors.

An alternative approach has been put forward in [Slijepcevic et al. (2014)],
where a hardware feature is proposed to limit the eviction frequency caused
by individual tasks on a shared time-randomised cache. That mechanism
allows controlling inter-task interference without resorting to cache parti-
tioning, which reduces the pWCET against the partitioned case.

4.4 Case Study

4.4.1 Designing an MBPTA-friendly Processor Architec-
ture

We use a 4-stage pipelined core architecture as depicted in Figure 4.3. The four
stages operate as follows: Instructions are fetched in-order from the instruction
cache (IC) into the processor. The ITLB is accessed in parallel to translate pages.
Instructions are decoded in one cycle. Decoded instructions are issued in-order
to the execute stage. Instructions are executed in one cycle, except for memory
operations. Read operations access the data cache (DC) during this cycle, blocking
the execution of further instructions until data are fetched. The DTLB is accessed
in parallel with the DC. The instructions commit in one cycle. Write operations
update the data cache during this cycle.

IC and DC are 16 KB in size, 8-way set-associative, with 16 bytes per line.
The DC and IC use the random placement and replacement policies presented in
Chapter 5.The DC is write-through, so that all store instructions are propagated
to memory. The DC is write-allocate, hence data are fetched on a store miss.

48

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.4 Case Study

Figure 4.3: Reference core architecture. L2 cache (dashed component) is not used
in the case study.

ITLB and DTLB are 8-entry fully-associative random-replacement, with 1 KB
page size, and their misses are handled by a hardware page-walker. The hit and
miss latencies are 1 and 80 cycles respectively. The TLBs are accessed in parallel
with the caches so that instructions are stalled in the corresponding stage until
both the cache and the TLB can serve the request.

4.4.2 Deriving ETP

In the example architecture, there are two main sources of execution time vari-
ability: TLB and caches, which inject random events in the execution time of a
program.

We differentiate between two types of instructions: those that operate on the
core (e.g. add, div, mult); and those that operate on memory (e.g. load, store).
Core operations take a variable latency depending on whether they hit in the
instruction cache and instruction TLB, whose ETP (ETPIC and ETPITLB respec-
tively) are composed in parallel, and memory latency, which is accessed in case of
a miss and whose ETP (ETPIM) is composed sequentially with the composition
of the instruction cache and the instruction TLB. This leads to what we term
the ETP of the front-end (fend): ETPfend = fs (fp (ETPIC , ETPITLB) , ETPIM).
Then, the resulting ETP, ETPfend needs to be composed with the ETP of the
buffer between the front-end and the back-end, ETPbuf1, the ETP for core opera-
tions, ETPexec, the ETP of the buffer after execution, ETPbuf2, and the ETP of the
write-back stage, ETPwb. While ETPexec and ETPwb have the form < (l), (1.0) >,

49

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.4 Case Study

ETP for buffers have as many latencies as potential stalls they may produce,
and their probability vector is 0.0 for all latencies but one, whose probability is
1.0. Which latency has probability 1.0 is determined by the state left by previ-
ous instructions. More details about how buffers increase execution time without
expanding the number of probabilistic states can be found in [Kosmidis et al.
(2013e)]. Since all those actions occur sequentially, the ETP for core operations is
as follows:

ETPcore = fs (ETPfend, ETPbuf1,

ETPexec, ETPbuf2, ETPwb) (4.1)

Memory operations have the same front-end ETP as core operations. The
back-end latency, instead of depending on ETPexec, depends on the time of the
data memory path (dmpath) composed by the data cache and the data TLB,
which are accessed in parallel, and memory latency, which is accessed sequen-
tially: ETPdmpath = fs (fp (ETPDC , , ETPDTLB) , ETPDM). Therefore, the ETP
for memory operations is as follows:

ETPmem = fs (ETPfend, ETPbuf1,

ETPdmpath, ETPbuf2, ETPwb) (4.2)

4.4.3 Checking the i.i.d. Hypothesis

The existence of an ETP for individual instructions ensures that the program
execution times exhibit the prerequisite i.i.d. property of MBPTA. With MBPTA,
we empirically ascertain whether this claim holds, by using proper i.i.d. tests
applied on the execution times of running EEMBC benchmarks [Poovey (2007)]
on the processor architecture.

For independence we use the Wald-Wolfowitz (WW) test [Bradley (1968)]. For
identical distribution hypothesis we use the Kolmogorov-Smirnov (KS) goodness-
of-fit test [DeGroot & Schervish (2002)]. We use a 5% significance level (a typical
value for this type of tests), whereby absolute values obtained with the WW test
must be below 1.96 to prove independence, and the outcome of the KS tests should
be above the threshold (0.05) to assert identical distribution.

For each benchmark, less than 1, 000 runs were needed for each program, in
line with previous experience [Cucu-Grosjean et al. (2012)]. Running 1, 000 times
a program whose typical execution time is in the order of few milliseconds (typical
value for many CRTES) implies that pWCET estimates for that program can be
obtained in a few seconds altogether, which is a rather affordable overhead for an
industrial development timescale. Under the heading ‘Statistical tests’ Table 9.1
reports the results of both tests for all benchmarks. Both tests are passed in all

50

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.4 Case Study

Table 4.1: Independence and identical distribution test results (2nd and 3rd
columns), and average execution time and pWCET bounds of the complex
MBPTA-friendly processor vs. an equivalent conventional processor (4th and 5th
columns)

Benchmarks Statistical tests Timing analysis results
Inde- Identical Average pWCET
pence distribution Exec. Time 10−16

a2time 0.949 0.387 1.04 1.13
aifirf 0.380 0.791 1.09 1.12
cacheb 0.063 0.668 1.14 1.45
canrdr 0.126 0.529 1.01 1.04
puwmod 0.253 0.993 1.00 1.01
rspeed 0.635 0.628 1.00 1.04
tblook 0.127 0.252 0.87 0.94
ttsprk 0.696 0.187 1.13 1.25

Figure 4.4: pWCET estimates for the puwmod benchmark program on different
architectural setups.

cases, which proves that the example architecture meets the i.i.d. requirement of
our MBPTA approach.

4.4.4 pWCET

In this section we show the type of probabilistic WCET estimates that can be ob-
tained, for the example architecture, with the method presented in [Cucu-Grosjean
et al. (2012)]. The dashed line in Figure 4.4 plots the pWCET estimates obtained

51

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.4 Case Study

for the puwmod benchmark program of the EEMBC suite, run on the example
architecture. The solid line plots the result from running the same program on the
example architecture without the DC and the DTLB. The X-axis shows the exe-
cution time and the Y-axis the probability of exceeding it. Assuming for the sake
of argument that an exceedance event represents a timing failure in the system,
we may concentrate on exceedance probabilities of 10−13 and 10−16 per run, in the
range of acceptable probabilities of hardware failures in the safety regulation of
automotive and avionics systems.

Decreasing the exceedance probability (moving down in the Y axis) does not
translate into large increases in the WCET estimates (moving right in the X axis);
quite the contrary in fact, as the pWCET curves appear to have a very steep
slope. In general, the larger the number of random events entailed in a run (e.g.
the number of cache accesses), the less likely abrupt performance variations occur.
Thus, execution time variation is moderate and the pWCET curve is steep.

As the example processor architecture demonstrably meets the requirements
needed for MBPTA, it can be argued that MBPTA can be applied to performance-
aggressive hardware features. To sustain this claim, we observe that the dotted line
in Figure 4.4 plots the pWCET estimates obtained after reinstating the DC and
the DTLB in the processor architecture. Interestingly, the MBPTA process stays
unchanged in procedure and effort, while the pWCET estimates become consid-
erably smaller (around 20% in the specific experiment) owing to the performance
boost of using the DC and the DTLB.

To the best of our knowledge, complex architectures including caches, TLB, and
staged pipelines with buffers, have not been unrestrictedly used with static timing
analysis, unless with cautionary restrictions that mitigate the rapid degradation in
the tightness of the WCET estimates that arise from resources being used whose
state cannot be determined exactly. Measurement-based timing analysis also is at
a loss with those processor architectures, because no suite of observation runs can
possibly cover the whole state space of all resources exhaustively. Those techniques
are also known to be fragile even to the way the program is built, because small
changes in the way program objects are allocated in memory, which are hard to
capture in test suites, may lead to abrupt changes in execution time.

4.4.5 MBPTA-friendly Architectures Performance

The above results show that the proposed MBPTA techniques, united with the
proposed modification to the design of processor resources, enable CRTES design-
ers to aim at considerably higher levels of guaranteed performance.

Notably, there is a further angle of interest to quantify the benefit of the
MBPTA approach discussed in this chapter. Under the heading ‘Timing anal-
ysis results’, Table 9.1 reports average execution times and pWCET estimates

52

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.5 External Results

for an exceedance threshold of 10−16 per run, obtained for the EEMBC bench-
mark programs on the example processor architecture. The values are normalised
against those obtained running the same programs on an analogous architecture
that implements modulo placement LRU replacement caches and TLB instead of
random placement and replacement. The average execution time of the MBPTA-
friendly architecture is only 4% worse than the time-deterministic alternative, thus
showing that time randomisation fares well even in the average case. Even more
interesting, pWCET estimates are, on average, only 12% higher than the average
performance obtained for a processor architecture implementing LRU as the re-
placement policy for all caches. Whereas the WCET values for those programs
on the time-deterministic architecture are not available (computing them would
require the port of static timing analysis tools, which was outside of the scope
of this work), relevant literature shows that WCET values are intrinsically very
conservative and can be many times greater than the average case [Gustafsson &
Ermedahl (2007)]. Our study shows that, for our MBPTA-friendly processor ar-
chitecture, the observed inflation was up to 45% for cacheb, which allows arguing
that MBPTA-friendly processors are viable for CRTES industry.

In concluding our outline of the application of MBPTA to our example proces-
sor, it is worth noting that the ETPs for individual dynamic instructions in our
processor are non-independent across them [Abella et al. (2013)]. This is so because
random-placement caches (as an instance of a state-sensitive time-randomised re-
source) create dependence across instructions in the same run since any (random)
cache set conflict occurring during a particular run holds systematically across the
whole run. Such dependence across ETPs for different instructions is captured in
the observations taken at analysis time and hence, is accounted for in the pWCET
estimate derived with MBPTA.

4.5 External Results

In the previous section we presented simulation results. As part of the PROX-
IMA project, it was validated the feasibility and the effectiveness of the proposed
MBPTA design principles in a real processor design [Kosmidis et al. (2016b)]. In
particular, as a result of the collaboration between BSC and Cobham Gaisler,
an MBPTA-compliant multi-core processor based on Gaisler’s LEON3 processor
(used by the European Space Agency in several missions) was designed in RTL
level and synthesised on an Altera Stratix IV GX EP4SGX230 FPGA achieving a
clock rate of 100 MHz.

The design incorporates both design changes for jittery resources proposed in
this Chapter: probabilistic upper-bounding, in the form of time-randomisation,
was applied in the cache structures (L1 instruction and data caches, instruction

53

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.6 Conclusion

and data TLBs) and in the bus interconnect between cores, whereas deterministic
upper-bounding has been implemented in the floating point unit design.

The time-randomised components are supplied with random numbers by a
hardware implemented pseudo-random generator [Agirre et al. (2015)]. Cache
structures implement both random placement and random replacement as briefly
introduced in this Chapter and they are examined in greater detail in the fol-
lowing Chapter. The modifications in the floating point unit are focused on the
implementation of the division and square root instructions whose latency is input
dependent in the original LEON3 implementation. The division latency varies
between 15 and 18 cycles, while the square root between 23 and 26.

The repetition of the experiments described in the previous section on the
hardware implementation confirm the same conclusions. The i.i.d. hypothesis is
confirmed in all benchmark executions. Also the performance compared to the
original non-MBPTA compatible design has been shown to be in the same range
with the simulated one. In particular, the average performance is roughly the same
with the original design, while the pWCET estimates are on average 9% higher
than the average performance of the baseline. Finally, the inflation produced by
MBPTA over the execution time measurements has been significantly lower than
the ones observed in Section 4.4, up to 8.44%, which is well below the current
industrial practice of 20% margin used in the avionics domain [Wartel et al. (2013)].

The processor design is included in Gaisler’s processors portfolio and it is avail-
able for licensing similarly to the rest of Gaisler’s IP designs [Gaisler (2016)], thus
becoming the first processor in the market compatible with MBPTA.

4.6 Conclusion

In this Chapter we have shown that, in order for the measurement-based variant of
probabilistic timing analysis (MBPTA) to be usable economically and assuredly,
the target processors should be designed such that every program instruction has a
distinct probabilistic Execution Time Profile (ETP). We have shown that this ETP
can be built incrementally from the timing behaviour of the processor resources
used by that instruction.

Using MBPTA on MBPTA-friendly processor architectures, the timing inter-
ference between competing applications, which is one of the key problems in mixed-
criticality systems, can be studied from the angle of exceedance probability: the
probability that the execution time of a program exceeds a given threshold. We
have shown that this threshold is tight, owing to the natural attenuation of mul-
tiple worst-case events generated as i.i.d. random variables. We have shown that
the probabilistic worst-case execution time bounds obtained with the proposed
technique are only marginally greater (around 12% in our case study) than the

54

4. MBPTA-COMPATIBLE PROCESSOR DESIGN
4.6 Conclusion

average-case performance of time-deterministic processor architectures. This al-
lows achieving higher guaranteed (feasible) utilisation for mixed-criticality systems,
because little would be lost, if at all, in raw processor performance, and a great
reduction would be had in the pessimistic over-provisioning incurred with tradi-
tional techniques. The use of Extreme Value Theory allows setting bounds for
execution-time budgets at levels of exceedance probability that satisfy the system
assurance requirements. Normal mitigation measures can be taken if protection
guarantees had to be provided for higher-criticality applications at conditions past
the given exceedance threshold.

55

Chapter 5

Single Level Hardware
Time-Randomised Caches

5.1 Introduction

In the previous chapter we identified the requirements and properties that MBPTA
imposes on the hardware we design. As we have discussed, those properties are
not met by current processors due to their deterministic nature. For instance,
if we run a given program fed with the same input data several times on the
same processor, we will observe some variation in its execution time due to, for
instance, the fact that it is allocated in different locations in memory resulting
in different execution times. However, those execution times are not necessarily
probabilistically modellable, i.e. cannot be modelled with random i.i.d. variables.

In this chapter and in the following ones, we focus on the biggest contribu-
tor in average and worst case performance, the cache. At the cache level, the
deterministic behaviour of the placement (e.g. modulo) and replacement (e.g.
least recently used or LRU for short) policies make memory operations not to be
modellable probabilistically. According to the design guidelines we introduced in
Chapter 4, MBPTA requirements in jittery resources can be satisfied either by
redesigning them to work on their highest latency, or by randomising their timing
behaviour. Moreover, since the difference between the two possible latencies, hit
and miss, usually differ one or more orders of magnitude, the latter option is the
most appropriate one.

This solution has already been applied in previous works in the PTA literature
and in particular in the form of fully-associative (FA) caches deploying random
replacement (RR) policy for both PTA variants, SPTA [Cazorla et al. (2013a)] and
MBPTA [Cucu-Grosjean et al. (2012)]. FA-RR caches allow obtaining an actual
hit/miss probability for each memory access, so that when a program runs several
times on a processor with such a cache the obtained execution times are modellable

56

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.2 Timing Behaviour of Random Caches

with i.i.d. random variables. Furthermore, the execution time of programs does not
depend on their memory layout, thus following the same probabilistic behaviour
at both analysis and operation as also required by MBPTA. Unfortunately, only
small FA caches can be used in general due to their power hungry and costly
implementation, thus constraining PTA applicability.

In this chapter, we focus on the MBPTA variant of PTA. We propose a new
random placement policy that allows applying MBPTA not only to FA-RR caches
but to set-associative and direct-mapped caches. While random replacement has
been used in the past [Cobham Gaisler (2011)] [ARM (2006)], existing placement
functions have a purely deterministic behaviour and thus, they cannot be used in
the context of MBPTA because there is no way to determine the probability of
each cache placement to occur during operation. To solve this problem, we propose
a new cache design implementing a parametric random placement function with
the following properties:

1. The placement function is deterministic during the execution of the pro-
gram enabling cache lookup to be performed analogously to deterministic-
placement caches.

2. Placement is randomised across executions by modifying the seed of the para-
metric hash function used for placement. In this way, each memory access
has hit/miss probabilities so that execution times attain i.i.d. properties as
needed for MBPTA.

3. Our cache design has similar average performance to that of deterministic
caches, which is important not to jeopardise other metrics such as energy
consumption.

4. Similarly to FA-RR caches, our design also reduces drastically the amount
of information required by the analysis to derive WCET estimates since
knowing the memory addresses accessed is not needed anymore.

5.2 Timing Behaviour of Random Caches

In this chapter we demonstrate that randomising the replacement and placement

policies allows constructing ETPs for memory instructions: (
→
l ,
→
p) =

{lhit, lmiss}{phit, pmiss}, where lhit and lmiss are the latency of hit and miss re-
spectively and phit and pmiss the associated probability in each case. In particular,
in this section, we show that phit and pmiss can be computed analytically based on
the properties of RR and our random placement (RP) policy. As pointed out in
the Background, the existence of the ETPs ensures that the execution times are
probabilistic and therefore the system fulfils the i.i.d. properties.

57

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.2 Timing Behaviour of Random Caches

Figure 5.1: Probability tree of the sequence < A,B,C,A >. Each box represents
the cache state after a given access. Black boxes indicate that the current access
misses in cache, while white boxes indicate that the current access hits.

5.2.1 Random Replacement (RR)

RR policy ensures that every time a memory request misses in cache, a way in the
corresponding cache set is randomly selected and evicted to make room for the
new cache line. This ensures that (1) there is independence across evictions and
(2) the probability of a cache line to be evicted is the same across evictions, i.e.
for a W -way associative cache, the probability for any particular cache line to be
evicted is 1

W
for each set. In the particular case of a fully-associative (FA) cache,

such probability holds for the only cache set.
Given a sequence of cache accesses, the ETP for each of them (i.e. its hit/miss

probabilities) can be determined by computing how likely previous accesses can
evict the corresponding cache line. For instance, in the sequence <A, B, C, A>,
B and C can evict A with a given probability that depends on the number of
cache ways and whether B and C were fetched before or not. In order to illustrate
this, let us assume a FA cache with two ways W = 2 that initially contains B
and C, each one in a different way. Figure 5.1 shows all possible cache states with
their associated probabilities after executing each access in the sequence <A, B,
C, A>. Black boxes represent cache states in which a miss occurs, while white
boxes represent cache states in which a hit occurs. For instance, if the first access
to A evicts C (leftmost branch in the tree), B survives and the access B hits in
cache. In that case, the next access to C will miss in cache and may or may not
evict A (a similar reasoning can be followed for the other subtrees). Overall, the
second occurrence of A will hit in cache if and only if the replacement policy does
not evict A when B and C are accessed. This means that the second occurrence
of A has a hit probability of 3

8
.

58

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.2 Timing Behaviour of Random Caches

Computing hit probabilities for an arbitrarily large number of cache accesses
would be costly with this method. For this reason we focus on MBPTA, for which
the existence of those probabilities [Cucu-Grosjean et al. (2012)] is enough, but
there is no need for computing them.

Since cache lines evicted are chosen randomly, whether an access hits or misses
depends solely on random events for a given sequence of accesses regardless of their
absolute addresses, and thus hit/miss outcome is truly probabilistic. In particu-
lar, the hit probability (Phit) of a given access Aj in the sequence < Ai, Bi+1, ...,
Bj−1, Aj >, where Ai and Aj correspond to accesses to the same cache line and no
Bk accesses cache line A, can be approximated as follows, with Pmiss = 1 − Phit

for any access:

PhitAj
=

(
W − 1

W

) j−1∑
k=i+1

PmissBk

(5.1)

PhitAj
is the probability of A surviving all evictions performed by < Bi+1, ...,

Bj−1 >, which depends on the probability of surviving one eviction times the
number of evictions in that sequence. The probability of A to survive one random
eviction is W−1

W
. Meanwhile, given that one random eviction is performed on

every miss, the total number of evictions equals the expected number of misses in

between Ai and Aj, which is
j−1∑

k=i+1

PmissBk
. In the worst case PmissBk

= 1 and so

j−1∑
k=i+1

PmissBk
= (j − i− 1).

Using Equation 5.1 the hit/miss probabilities of each access can be approx-
imated sequentially starting from the first cache access. If no access has been
performed to A before Aj, then the hit probability is zero. Overall, the use of RR
allows deriving an ETP for each memory operation, thus enabling MBPTA.

Cache layouts: In this subsection, we further elaborate on the distinct num-
ber of cache states during the execution of a sequence of accesses, and introduce
the concept of cache layout as a means to link random replacement and random
placement caches.

On every access to a FA cache, an associative search is done among all the
different cache ways. On an eviction, the new fetched cache line can be placed
in any cache way. We define cache layout as the resultant address-to-cache-line
mapping after assigning one or several memory objects into the cache. In the case
of a FA cache, a new cache layout is built at every cache miss because, on every
miss the newly fetched address (object) is placed in a random line.

59

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.2 Timing Behaviour of Random Caches

Table 5.1: Cache layouts for the sequence <A, B, C, A> in a 2-way FA cache

Way 1 Way 2
A1, B, C, A2

A1, B, C A2

A1, B, A2 C
A1, C, A2 B
B, C, A2 A1

A1, B C, A2

A1, C B, A2

A1, A2 B, C

This makes, for a given sequence of memory addresses, the number of cache
layouts depend on the number of evictions happening in that sequence, which is
bounded by the number of cache accesses in the sequence (m). For instance, m = 4
in our previous example (<A, B, C, A>). The total number of cache layouts is
thus upper-bounded by the mth moment of a probability distribution of random
permutations [Graham et al. (1988)]:

E(Xm) =
W∑
j=0

Sm,j (5.2)

where X stands for the random variable that models the cache behaviour, i.e. the
random replacement policy, and Sm,j stands for the Stirling number of the second
kind with parameters m and j [Cargal (1988)]. The mth moment is the number
of partitions of a set of cache accesses (m) into no more than W cache ways.
In our example, E(Xm) = 8. Table 5.1 provides the 8 different cache layouts
for our example, where A1 and A2 stand for the first and second occurrence of
A respectively. Note that the order is not relevant for cache layouts since, for
instance, mapping A1, B and C in the first cache line and A2 in the second line
is analogous to mapping A2 in the first cache line and A1, B and C in the second
line.

5.2.2 Random Placement (RP)

The RP policy we are after has to ensure that the cache set in which a cache
line is mapped is randomly selected. Ideally, assuming a cache with S sets, the
probability for a cache set to be selected is 1

S
.

One fundamental difference between placement and replacement policies is that
placement assigns sets to cache lines based on the index bits of the memory address,

60

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.2 Timing Behaviour of Random Caches

(a) standard (b) proposed

Figure 5.2: Block diagram of the cache design.

Figure 5.2(a). As a result, if the placement policy assigns two memory addresses to
the same cache set, they will collide systematically during the entire execution of
the program. To deal with this deterministic nature while randomising the timing
behaviour of the placement policy, we propose a new parametric hash function that
makes use of a random number as an input. Such random number can be generated
either by hardware or software. Our hash function, given a memory address and
a random number called random index identifier (RII), provides a unique and
constant cache set (mapping) for the address along the execution, see Figure 5.2(b).
If the RII changes, the cache set in which the address is mapped changes as well, so
cache contents must be flushed for consistency purposes. We propose changing the
RII only across program execution boundaries so that programs can be analysed
with end-to-end runs without any further consideration than assuming that the
cache is initially empty1. We assume that given a memory address and a set of
RIIs, the probability of mapping such address to a given cache set is the same, i.e.
1
S

, although this is not needed as long as such mapping is probabilistic. How we
approximate this ideal distribution by hardware is shown in Section 5.3.

Next we describe how to quantify the probability of each memory address to
be mapped into a given cache set, and so conflicting with other memory addresses.
Given u different memory objects and S cache sets, a new cache layout results
when the placement policy assigns (maps) the u memory objects into the S cache
sets. Every time the program is executed, a new RII is generated leading to a new
random mapping function corresponding to a new cache layout.

Note that different cache layouts cause different cache conflicts among memory
addresses, resulting in different execution times. Further note that different cache
layouts may lead to the same execution time. For instance, if we have three memory

1The RII could also be changed periodically as a means to increase the degree of randomi-
sation; however, it would be necessary to flush caches. The maximum execution time impact of
this process (cache flushing and serving as many misses as cache lines) should be then accounted
for. As shown in [Wartel et al. (2013)], this is not needed for real applications as the degree
of randomisation achieved by changing the RII across execution boundaries is enough to obtain
WCET estimates close to the actual performance on conventional caches.

61

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.2 Timing Behaviour of Random Caches

Table 5.2: Possible cache layouts for the different accesses of the sequence <A, B,
C, A> in a idealised random placement cache with two sets.

Cache layout Conflicts (id) Playout

A0B0C0 A, B and C (1) (1
2
)3

A0B0C1 A and B (2) (1
2
)2(1− 1

2
)

A0B1C0 A and C (3) (1
2
)2(1− 1

2
)

A0B1C1 B and C (4) (1− 1
2
)3

A1B0C0 B and C (4) (1− 1
2
)3

A1B0C1 A and C (3) (1
2
)2(1− 1

2
)

A1B1C0 A and B (2) (1
2
)2(1− 1

2
)

A1B1C1 A, B and C (1) (1
2
)3

objects (A, B and C) and 4 cache sets, any cache layout where A is mapped in
one cache set (e.g., set 0) and B and C in a different cache set (e.g., set 1) will be
equivalent in terms of execution time.

To develop our argument let us assume a random placement direct-mapped
cache composed of S = 2 cache sets, where no replacement policy is needed and
hence, only the placement determines the cache layout and so the execution time.
Table 5.2 identifies all possible cache layouts of a program consisting of u = 3
memory objects mapping into different cache lines (<A, B, C, A>). The subscript
in each address in the first column indicates the cache set on which each address
is mapped, 0 or 1 in this example.

With random placement we can derive the probability of each cache layout to
occur. The column labelled as Playout in Table 5.2 shows the probability of each
cache layout to happen: The probability of the cache layout in which A, B and C
are mapped into the same set (A0B0C0 and A1B1C1) is (1

2
)3 each. Similarly, the

probability of the cache layout in which A is mapped in a different entry to B and
C (A0B1C1 and A1B0C0) is (1− 1

2
)3.

However, we are not interested in all cache layouts, but only in those that may
produce different execution times. For instance, in Table 5.2, cache layouts A0B0C1

and A1B1C0 result in exactly the same cache conflicts (and so the same execution
time), because they will experience exactly the same misses under both cache
layouts. The total number of cache conflict layouts is given by the uth moment of
a probability distribution of random permutations [Graham et al. (1988)]:

E(Xu) =
S∑

j=0

Su,j (5.3)

The uth moment is the number of partitions of u unique memory addresses into
no more than S cache sets. Thus, E(Xu) provides the number of unique cache

62

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.2 Timing Behaviour of Random Caches

conflicts among the u memory addresses. In the example above, the number of
possible cache layouts is 4, identified by a number in parenthesis in the second
column of Table 5.2.

With this, we can compute the probability of each cache layout and hence the
probability of its resulting execution time for a given program. If we consider the
example shown in Table 5.2, and we assume a hit latency of 1 cycle and a miss
latency of 10 cycles, we can derive the following probability distribution function
for the observed execution times: {(31, 40), (0.25, 0.75)}. Cache layouts (1), (2)
and (3) lead to an execution time of 40 cycles with an associated probability of 0.25
each. Cache layout (4) leads to an execution time of 31 cycles with an associated
probability of 0.25. Note that still non-equivalent cache layouts may lead to the
same execution time as it is the case for cache layouts (1), (2) and (3) depending
on how accesses to the u memory objects interleave. Thus, analogously to E(Xm)
for random-replacement caches, E(Xu) is an upper bound of the number of cache
layouts for random-placement caches.

By using a new RII on each execution, a random cache layout is chosen and
pathological scenarios can only occur with a given probability. This allows deriving
a hit probability for each access.

In an arbitrary sequence A,B1, B2, ...Bq, A where ∀i, j : i 6= j and Bi 6= Bj,
the probability of the second occurrence of A to survive (and so being a hit) in a
direct-mapped cache is determined by those cache layouts in which the q objects in
between are placed in a different cache set to A. If we consider that A is placed in a
particular set, the number of cache layouts in which the other q objects are placed
in different cache sets is (S − 1)q: the q objects can be placed in all sets except
the one where A is placed. Because A can be placed in any position, the number
of cache layouts in which A survives is (S − 1)q · S. Therefore, and considering
that the number of possible cache layouts is Sq+1, the probability of the second
occurrence of A being a hit can be approximated using the following equation:

PhitA =
(S − 1)q · S

Sq+1
=

(
S − 1

S

)q

(5.4)

The reuse distance of A, defined as the number of unique cache line addresses (q)
between two occurrences of the same memory address, determines how likely A
will result in a hit/miss. The higher the q-distance is between two occurrences of
A, the less likely the second occurrence of A to survive. For instance, A is more
likely to be evicted in the sequence A, B, C, A (q = 2) than in the sequence A, B,
B, B, B, B, A (q = 1).

Overall, the hit probability for any access exists (and so the miss probability).
Therefore, the use of RP allows deriving an ETP for each memory operation, thus
enabling MBPTA as it is the case for RR, because execution times will be i.i.d.

63

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.2 Timing Behaviour of Random Caches

5.2.3 Putting All Together: Set-Associative Caches

The number of cache layouts for a set-associative cache implementing random
placement and replacement can be computed as the combination of the number
of cache layouts provided by the placement and replacement policies. Thus, the
number of cache conflict layouts can be computed as the product of the uth and
mth moments of a probability distribution of random permutations:

E(Xm) · E(Xu) =
W∑
j=0

Sm,j ·
S∑

j=0

Su,j (5.5)

E(Xu) and E(Xm) are the number of cache layouts given by the random place-
ment and random replacement policies respectively.

For example, if we consider a program composed of the sequence of memory
accesses <A, B, C, D, A, B, A, C, A, D, A, B, A, C, A, D>, in which u = 4
and m = 16, and a cache with 4 cache lines, we can compute the number of
cache layouts for different cache configurations. In particular, for this example, we
consider a direct-mapped random-placement (DM-RP) cache with S = 4, a set-
associative random placement and random replacement (SA-RP+RR) cache with
S = 2 and W = 2, and a fully-associative random replacement (FA-RR) cache
with W = 4.

The number of cache layouts of those cache configurations is 15 for DM-RP,
26,244 for SA-RP+RR and 178,973,355 for FA-RR. It can be seen that the higher
the associativity, the higher the number of cache layouts is. This is an expected
result because the number of cache layouts for DM and FA caches depends on the
number of unique cache line addresses (u) and the number of total cache accesses
(m) respectively, and u ≤ m. The number of cache layouts for SA caches must
be always somewhere in the middle. This has an important implication in the
worst-case performance of caches. Both caches have the same worst-case cache
layout, i.e. the one in which all memory objects are mapped into the same cache
entry, resulting in the largest number of cache misses. However, the probability
of experiencing such cache layout is much lower for the FA-RR cache. In our
example such probability is 1/15 and 1/178973355 for the DM-RP and FA-RR
caches respectively. Hence, by using a set-associative cache with random placement
and replacement policies (SA-RP+RR) the probability of experiencing the worst-
case performance decreases rapidly with respect to the DM-RP: the number of
cache layouts increases as the degree of randomness increases as well.

The ETP of a memory operation accessing to a S · W set-associative cache
with random placement and replacement policies is the combination of the ETPs
of both policies. That is, the random placement will allocate memory objects into

64

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.2 Timing Behaviour of Random Caches

Figure 5.3: Parametric hash function proposed for the random-placement cache.

the S sets with a probability of 1
S

while the random replacement policy will evict
a way to allocate a new fetched cache line with a probability of 1

W
. In particular,

given the sequence < Ai, B1, ..., Bk, Aj >, where Ai and Aj are two accesses to the
same cache line and no Bl (where 1 ≤ l ≤ k) accesses cache line Ai the probability
of miss of Aj can be formulated as follows:

PmissAj(SA[S,W]) = PmissAj(DM [S]) · PmissAj(FA[W]) (5.6)

By combining Equation 5.1 and Equation 5.4 into Equation 5.6, the probability
of miss and hit respectively of Aj can be approximated as:

PmissAj
(S,W)=

1−
(
W − 1

W

)l=k∑
l=1

PmissBl

·(1−
(
S − 1

S

)k
)

(5.7)

PhitAj
=

(
W − 1

W

) j−1∑
l=i+1

PmissBl

·
(
S − 1

S

)k

(5.8)

Such hit probability is used to compute the ETP of each cache access as follows
where lhit and lmiss are the cache hit and miss latency respectively:

ETPcache = {{lhit, lmiss},
{PhitAj

(S,W), 1− PhitAj
(S,W)}} (5.9)

In summary, hit/miss probabilities exist for all accesses, and so their ETPs.
As a consequence, execution times will be i.i.d. and MBPTA can be safely applied
on top of a SA cache.

65

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.3 Hardware Design of a Random Cache

5.3 Hardware Design of a Random Cache

This section describes how to implement both random placement and replacement
policies.

5.3.1 Random Replacement

Random replacement policies have been extensively used in various processor ar-
chitectures, both in the high-performance and embedded markets. Examples for
the latter market are the Cobham Gaisler NGMP [Cobham Gaisler (2011)] or some
processors of the ARM family [ARM (2006)]. The most relevant element of a ran-
dom replacement policy is the hardware generating random numbers which selects
the way to be evicted on a miss. In general, pseudo-random number generators
(PRNG) are implemented. Given that efficient implementations of a PRNG exist
in the aforementioned processors, we omit the details of our implementation of the
PRNG. The particular PRNG we have used in our proposal is the Multiply-With-
Carry (MWC) [Marsaglia & Zaman (1991)] PRNG, since we have tested that (i)
it generates numbers with a sufficiently high level or randomness, (ii) its period
is huge, and (iii) it can be efficiently implemented in hardware. Further work on
PRNGs in the context of MBPTA has been done in [Agirre et al. (2015)] proving
that they can be used in high-integrity systems and go through strict certification
processes.

5.3.2 Random Placement

In this section, we propose an implementation of a random placement policy. The
key components of this design are (1) a low-cost PRNG if the RII is produced by
hardware and (2) a parametric hash function, see Figure 5.2(b).

In order to keep cache latency and energy low, the implementation of both
components must be kept simple. Moreover, both components are placed ‘in front’
of the cache, so the cache design is not changed, see Figure 5.2(b), but some extra
logic is added before accessing cache. As for random replacement, we use the
MWC PRNG if the RII is produced by hardware.

The Parametric Hash Function is used to randomise cache placement. To be
effective, the parametric hash function must have the following two properties:

• Small variations in the address bits or the RII must produce arbitrary vari-
ations in the output bits determining the set where the address is mapped.

• For any given pair of addresses, modifying the RII must produce different
variations so that both addresses do not collide systematically in the same

66

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.3 Hardware Design of a Random Cache

cache set. Ideally, both addresses should collide into the same set with a
probability around 1

S
for different RII values.

Those properties can be attained if the address and RII bits are used to control
rotating blocks whose input is, for instance, the address to be accessed or the RII.
In particular, RII bits must be used to control a rotate block1 whose input is the
address or vice versa. A single bit modification in either the address or the RII can
change all output bits of the rotate block if such bit is one of the control bits. Note
that using address bits to control a rotate block whose input is the address itself
would be ineffective because changing the RII across runs would have no effect.
Analogously using the RII bits only would also be ineffective because variations in
the output of the rotate block would be identical for all addresses.

Figure 5.3 shows our implementation of the parametric placement function.
The hash function has two inputs, the bits of the address used to access the set
(index bits), ‘@’ in Figure 5.3, and a RII. In the configuration of the particular
example, 32 bytes per cache line and 32-bit addresses are assumed. Therefore, the
5 lowermost bits are discarded (offset bits) and only 27 bits are used.

The hash function rotates the address bits, based on some bits of the RII as it is
shown in the three rightmost rotate blocks of the figure. By doing this, we ensure
that when a different RII is used, the mapping of that address changes, and this
change is different for different addresses. Analogously, the RII bits are rotated
based on some address bits to obtain a different layout of RII bits for each address.
This operation, which is performed by the three leftmost rotate blocks, changes
the way the address bits are shifted. Note that addresses are padded with zeros to
obtain a power-of-two number of bits, so address bits can be rotated without any
constraint. Otherwise, rotation values between 27 and 31 would require special
treatment.

Finally, all bits of the rotated addresses, the original address and the RII (192
bits in the example), are XORed successively, until we obtain the desired number
of bits for indexing the cache sets. For example, a 16KB cache with 32 bytes per
line would need 9 index bits for a direct-mapped organisation, 8 bits for a 2-way
set-associative, and so on and so forth. Hence, 5 XOR gate levels are enough to
produce the index. The number of rotate blocks in each group is odd deliberately
to avoid the case where bits controlling the rotation match across rotate blocks,
thus producing the same output bits, which could systematically generate zeros
when XORed.

As shown in Figure 5.3, the hardware implementation of the hash function
consists of 6 rotate blocks and 5 levels of 2-input XOR gates. Each rotate block
can be implemented with a 5-level multiplexer [Huntzicker et al. (2008)]. Since

1Control bits of a rotate block are those determining how many positions the input bits are
rotated.

67

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.4 Results

the latency and the energy per access of a fully-associative cache is much larger
than the one of direct-mapped or set-associative caches, the relative overhead of
the hash function is small. We have corroborated this observation by integrating
our parametric hash function into the CACTI tool [Muralimanohar et al. (2009)].
Results for several cache configurations show that energy per access grows less than
4% and delay grows by 40% (it is still less than half the delay of a fully-associative
cache). Note that hit latency has low impact in WCET since it is typically some
orders of magnitude lower than miss latency. Nevertheless, we assume the same
hit latency for our DM and SA configurations, and the FA one, which plays against
our proposal. Detailed power and delay results are provided later in Section 5.4.7.

5.4 Results

5.4.1 Experimental Setup

We use the experimental setup (simulation framework and EEMBC benchmarks)
described in Chapter 3. Both instruction and data cache size is 4-KB with 16-
byte line size. Associativities considered are 1-way (direct-mapped); 2-way, 4-way,
8-way and 32-way (set-associative); and 256-way (fully-associative). Both caches
implement random replacement and our random placement policy. We assume
100-cycles memory access latency.

The latency of the fetch stage depends on whether the access hits or misses
in the instruction cache: 1 cycle in case of hit and 100 in case of miss. After the
decode stage, memory operations access the data cache so they can last 1 or 100
cycles depending on whether they miss or not. The remaining operations have a
fixed execution latency (e.g. integer additions take 1 cycle).

We model a single-core processor. WCET estimates are obtained for run-to-
completion executions. Studying the interaction between our time-randomised
cache design in the presence of system effects such as preemptions is out of the
scope of this thesis and is part of our future work. Our results in Chapter 11
show, that time-randomised caches simplify time composability, one of the most
important metrics to optimise in current and future integrated real-time systems.

5.4.2 Quality of the Parametric Hash Function Implemen-
tation

We have evaluated the quality of our random placement function by using the
test battery provided by the US National Institute of Standards and Technol-
ogy [Rukhin et al. (2010)]. Those tests evaluate the quality of the bit sequences
produced by the PRNGs by studying the distribution of ones and zeros, their pat-

68

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.4 Results

terns, whether subpatterns repeat, etc. In particular, we have generated a sequence
of 40,000,000 bits consisting of the set number produced by our parametric hash
function given a particular random address and a sequence of 5,000,000 random
numbers. Given that the cache considered is the same as above (4KB direct-
mapped 16B/line), there are 256 cache sets and thus, each set identifier consists
of 8 bits. Our hardware implementation of the parametric hash function passed
99.9% of the tests. None of the 9 PRNGs provided together with the test battery
achieved a higher pass rate. Only two of them obtained the same pass rate, the
Secure Hash Generator and the Micali-Schnorr Generator whose implementation
is described in [Rukhin et al. (2010)].

In the same experiment we have also tested the distribution across sets that our
parametric hash function achieves. Given 5,000,000 set identifiers and 256 sets,
we should expect our function to generate around 19,531 times each set identifier.
Results show that the normalised standard deviation of the counts for the different
sets is only 0.46% with respect to the expected value (90.4 with respect to 19,531).
Maximum and minimum counts obtained are 19,769 and 19,333, so 1.2% and 1.0%
away from the expected value.

Finally, we have tested how independent is the randomisation of different ad-
dresses. For that purpose we have generated 4 random addresses (say A, B, C
and D) and have evaluated how many times addresses B, C and D are mapped
into the same set as A for 230 random seeds. In the ideal case we should obtain 222

matches for each individual address (e.g., B being mapped into the same set as
A), 214 for each different pair of addresses (e.g., B and C being mapped into the
same set as A simultaneously) and 26 matches for the case where all addresses are
mapped simultaneously in the same set. Results show that individual matches are
within 0.2% of the ideal value (4,186,839 real vs. 4,194,304 expected), pairs are
within 1.3% of the ideal value (16,591 real vs. 16,384 expected) and all of them
collide in the same set 59 times when the expected value is 64 times.

Overall, we can conclude that our hardware implementation of the parametric
hash function achieves both (i) a high degree of randomisation, (ii) a near-optimal
distribution of placement choices across sets and (iii) independent randomisation
of addresses.

5.4.3 Behaviour of the Parametric Hash Function Imple-
mentation

In order to compare the behaviour of the implementation of our parametric hash
function with an idealised random placement where each address is randomly
mapped into one of the S sets, we compute the complementary cumulative distri-
bution function (CCDF) of a representative benchmark, a2time for both schemes

69

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.4 Results

Figure 5.4: 4KB direct-mapped cache considering an idealised random placement
and the actual hardware implementation of the random placement (labelled as
Idealised Rand Plac and Real Rand Plac respectively).

(labeled Real Rand Plac and Idealised Rand Plac respectively) for a 4KB direct-
mapped cache as shown in Figure 5.4. It can be seen that there is not meaningful
difference between the two CCDF. Results only differ slightly in the tail of the
queue. This indicates that the actual implementation of the parametric hash
function randomises address mapping quite well across sets. Discrepancies in the
tail of the queue can occur due to the loss of accuracy of the measurements for that
region1. The results obtained for the other benchmarks match those presented in
Figure 5.4.

5.4.4 Fulfilling the i.i.d properties

The use of random replacement and placement policies guarantees that an ETP
exists by construction for each memory operation, and so observed execution times
fulfil the properties required by MBPTA. We further verify this point empirically
by analysing whether execution times of EEMBC benchmarks on 6 different cache
configurations (see Section 5.4.1) are independent and identically distributed.

1Few measurements build the tail of the distribution. The particular behaviour of each of
those measurements due to purely random events may create deviations with respect to the real
ideal distribution.

70

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.4 Results

Table 5.3: IPC of RP+RR and modulo+LRU caches in our architecture

1w-256s 2w-128s 4w-64s 8w-32s 32w-8s 256w-1s
DM SA SA SA SA FA

RP+RR
avg 2.10 1.78 1.73 1.73 1.74 1.75
std 0.32 0.12 0.08 0.06 0.04 0.01

mod+LRU avg 2.67 1.57 1.60 1.61 1.64 1.74

In order to test independence we use the Wald-Wolfowitz independence test
[Bradley (1968)]. We use a 5% significance level (a typical value for this type of
tests), which means that absolute values obtained after running this test are lower
than 1.96 if there is independence, and higher otherwise. For identical distribution,
we use the two-sample Kolmogorov-Smirnov identical distribution test [Boslaugh &
Watters (2008)] as described in [Cucu-Grosjean et al. (2012)]. For 5% significance,
the outcome provided by the test should be above the threshold (0.05) to indicate
identical distribution, and non-identical distribution otherwise.

Our results show that output values for the independence test values are largely
below the threshold (1.96 for a 5% threshold) and p-values for the KS test are well
above 0.05, thus proving that all our cache designs provide i.i.d. as needed by
MBPTA.

5.4.5 Performance Analysis

Next, we compare the average performance of deterministic and random caches. In
particular, we compare different random placement+replacement (RP+RR) caches
against modulo placement and LRU replacement (mod+LRU) caches for differ-
ent associativities. Table 5.3 shows the average CPI (cycles per instruction) for
all EEMBC benchmarks under different cache configurations and 1,000 runs per
benchmark for RP+RR caches. Standard deviation is also shown for RP+RR
caches.

• As shown, execution time variation is quite stable for cache in the range
4-way to 256-way. Most of the benchmarks get little benefit due to the
extra associativity and, in fact, some of them lose some performance (higher
CPI) when increasing the associativity due to capacity misses. Note that
in the extreme case, a program with a working set slightly larger than the
cache size suffers more misses in a fully-associative cache than in a lowly-
associative one. This is so because in lowly-associative caches some data may
fit in few particular sets and deliver extra hits in front of a fully-associative
one where all data are replaced short before being reused. This is the case
for some programs in our setup (for instance, aifftr and aiifft). This effect

71

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.4 Results

is less noticeable for RP+RR caches because randomness breaks systematic
pathological cases.

• When associativity becomes very low (2-way caches), most of the bench-
marks observe little performance variation for mod+LRU caches and those
exceeding slightly cache capacity get further improvements (so lower CPI).
As stated before, this effect is not so relevant for RP+RR caches, where some
benchmarks observe some execution time degradation with 2-way caches due
to the conflicts introduced by random placement in some runs.

• Finally, if 1-way (direct-mapped) caches are used, conflicts dominate cache
behaviour. While this introduces plenty of pathological cases in mod+LRU
caches, pathological cases occur only randomly for RP+RR caches. There-
fore, RP+RR caches offer lower execution time (so lower CPI) than mod+LRU
under direct-mapped setups.

If we consider execution time variations in RP+RR caches, we observe that
decreasing cache associativity may lead to more extreme scenarios. For instance,
if a program accesses few different cache lines, those can evict each other some
times in a fully-associative cache until they are finally placed in different cache
lines. If we use a lowly-associative cache (e.g., 2-way or 4-way) most of the times
those addresses will be placed into different cache sets, thus leading to slightly
higher performance (so lower CPI) than a fully-associative cache. However, in
some cases those addresses will be mapped into the same cache set and will expe-
rience many more conflicts, thus increasing the execution time (and so the CPI).
As a consequence, although the average CPI is roughly the same for RP+RR
cache configurations between 2-way and 256-way, their CPI variation increases as
associativity decreases. As shown later, this variation has a direct impact on the
pWCET estimates obtained for low exceedance probabilities. Just as a matter of
fact, if we consider the average execution time plus 3 times the standard devia-
tion (µ + 3 · σ), we can expect the execution time of around 99.9% of the runs
to be below this value, so we should expect only 1 every 1,000 runs to exceed
it. Then, we realise that this value is 1.78 for 256-way caches and 2.14 for 2-way
caches. Thus, although higher associativity may not provide better average CPI,
it provides more stable performance.

Example: Detailed results for tblook, rspeed and aifftr benchmarks are shown
in Figures 5.5, 5.6 and 5.7 respectively. tblook shows some significant CPI degra-
dation when associativity decreases down to 2-way and 1-way. Also, variability
for RP+RR caches increases as associativity decreases. rspeed instead is the ex-
ample of a highly stable benchmark fitting very well in cache so that its CPI is
highly insensitive to cache associativity. Only for direct-mapped RP+RR caches
variability increases due to few executions where those few cache lines reused are

72

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.4 Results

Figure 5.5: CPI (cycles per instruction) for tblook benchmark for some RP+RR
and LRU+mod cache configurations. In particular, we show, from left to right,
FA, 32-way, 8-way, 4-way, 2-way and DM caches.

Figure 5.6: CPI (cycles per instruction) for rspeed benchmark for some RP+RR
and LRU+mod cache configurations. In particular, we show, from left to right,
FA, 32-way, 8-way, 4-way, 2-way and DM caches.

Figure 5.7: CPI (cycles per instruction) for aifftr benchmark for some RP+RR
and LRU+mod cache configurations. In particular, we show, from left to right,
FA, 32-way, 8-way, 4-way, 2-way and DM caches.

randomly mapped into the same cache set. aifftr is a clear example of a program
not fitting completely in cache. Therefore, its execution time decreases as associa-
tivity decreases for mod+LRU configurations, except when a direct-mapped cache
is used because then conflicts dominate its behaviour. Instead, RP+RR caches
show much more stable performance across different cache setups. Conflicts across
different cache lines are abundant in all setups, but extreme conflicts never occur
due to the low probability of extreme scenarios. This can be easily explained with

73

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.4 Results

Figure 5.8: EVT projection for a2time.

Figure 5.9: EVT projection for ttsprk.

an example. If we flip 1,000 coins, it is extremely unlikely to get a number of tails
(or faces) out of the range 400-600. In the case of mod+LRU, those 1,000 coins
have been glued to each other, so whatever it happens, is either very good (no
conflict at all) or very bad (systematic conflicts).

5.4.6 MBPTA: EVT projections

In this section we provide several pWCET estimates obtained with the method
provided in [Cucu-Grosjean et al. (2012)]. Note that MBPTA has been used so far
only on top of FA-RR caches. Although FA-RR caches fulfil the properties required
by MBPTA, they have high hardware implementation cost and low scalability.
Therefore, this chapter provides the first SA and DM cache designs amenable for
MBPTA.

74

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.4 Results

Our selection of the exceedance probability, 10−15, i.e. the probability that
an instance of a task misses its deadline, is based on the allowed probabilities
for random hardware failures in safety standards in the automotive and avionics
domains, as in previous chapters.

Following the iterative method described in Chapter 3 we carried out 1,000
experiments and used EVT to extract pWCET estimates. Figures 5.8 and 5.9
show the EVT projections generated with MBPTA [Cucu-Grosjean et al. (2012)]
for a2time and ttsprk considering a FA-RR cache (labelled as 256w-1s), several
set-associative RP+RR caches (labelled as 32w-8s, 8w-32s, 4w-64s and 2w-128s)
and a DM-RP cache (labelled as 1w-256s). As expected, the FA-RR cache pro-
vides the lowest pWCET estimates. That is, the random replacement policy has
lower probability of resulting in cache layouts with multiple cache conflicts because
random choices are taken on every miss instead of across different runs. However,
as we reduce the associativity of the cache, and so we increase the number of sets,
the number of cache layouts decreases, thus increasing the probability of having
more cache conflicts.

The pWCET increment due to the reduction of the cache associativity depends
on the application: for instance, a2time is very sensitive to cache associativity as
shown in Figure 5.8. For an exceedance probability of 10−15, the pWCET of a 8-
way cache for a2time grows 311% with respect to the FA-RR cache and more than
24x in the case of the DM-RP cache. Instead, ttsprk experiences pWCET estimate
increments of only 9% and 43% when considering 32-way and 8-way caches and
around 3x when considering a DM-RP cache, with respect to the FA-RR cache.

Table 5.4 shows the pWCET increment of all set-associative and direct-mapped
caches with respect to the fully-associative one for all benchmarks when considering
an exceedance probability of 10−15. Overall, our RP+RR cache designs provide
the best tradeoff between hardware complexity and pWCET for MBPTA while
not requiring information about the actual addresses accessed by the programs
analysed. Moreover, second level caches can be used to mitigate the large impact
of misses in both average performance and pWCET estimates. We discuss second
level-caches in the next Chapter.

The lower the associativity the higher the pWCET bound is. The reason for
that behaviour is that, although average performance does not change noticeably
across cache configurations, execution time variation grows when decreasing cache
associativity. While this variation may be relatively small in the 1,000 runs of a
particular benchmark for a given cache setup, it may grow orders of magnitude
at very low probabilities (e.g., 10−15), and so MBPTA must account for that.
Thus, pWCET estimates for direct-mapped caches are around 10X those for fully-
associative ones even if average execution time is only 20% higher. For reasonable
cache setups pWCET increments with respect to the ideal fully-associative cache

75

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.4 Results

Table 5.4: pWCET increment of the SA and DM caches with respect to the FA
one, considering an exceedance probability of 10−15

Benchmarks 32w-8s 8w-32s 4w-64s 2w-128s 1w-256s
(SA) (SA) (SA) (SA) (DM)

a2time 95% 228% 311% 862% 2404%
aifftr 39% 41% 68% 138% 532%
aifirf 111% 152% 317% 452% 777%
aiifft 38% 53% 54% 97% 571%

cacheb 1% 10% 16% 75% 1008%
canrdr 11% 26% 90% 191% 614%
iirflt 178% 329% 419% 543% 1945%

puwmod 16% 36% 45% 250% 626%
rspeed 9% 22% 84% 230% 475%
tblook 56% 152% 185% 299% 784%
ttsprk 9% 43% 70% 142% 210%

are far more moderate. For instance, they are 99% and 151% higher for 8-way and
4-way caches respectively than for fully-associative caches. Note that, as stated
earlier, cache sizes (4KB) have been chosen to create conflict and capacity misses
in several benchmarks. Thus, if larger caches are used instead (e.g., 8KB or 16KB)
or if L2 caches are set up to mitigate miss latencies, then pWCET estimates for
lowly-associative caches would get closer to those of fully-associative ones.

Results have been obtained assuming that cache latency is not increased due to
the hash function. If this is not the case, cache latency should be increased by up
to 1 cycle. We have corroborated that, as stated before, increased cache latency
has negligible impact in pWCET estimates, which grow on average between 1.1%
and 5.5% only across different associativities.

5.4.7 Power and Delay Analysis

This section evaluates the power and delay overhead of the parametric hash func-
tion when used together with different cache configurations. We have integrated
our parametric hash function into the CACTI tool [Muralimanohar et al. (2009)]
and have run experiments for a set of configurations. Cache sizes considered are
4KB, 8KB, 16KB, 32KB and 64KB; associativities are 1-way (direct-mapped), 2-
way, 4-way, 8-way and fully-associative. Cache line size has no meaningful impact,
so we have considered 16 bytes per line as in the rest of the evaluation. Other rel-
evant parameters are technology node (32nm), type of transistors (low operating
power ones), access mode (sequential tag and data access for low power) and ports
(1 read/write port).

76

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.4 Results

Table 5.5: Relative energy increase of (i) random placement (top rows) and (ii)
fully-associative (bottom rows) caches w.r.t. modulo placement cache designs

8-way 4-way 2-way DM
RP vs base RP vs base RP vs base RP vs base

4KB 6.8% 7.7% 8.3% 8.3%
8KB 4.8% 5.4% 5.6% 5.7%
16KB 3.4% 3.5% 3.6% 3.6%
32KB 2.2% 2.3% 2.3% 2.4%
64KB 1.5% 1.5% 1.5% 1.5%

FA vs FA vs FA vs FA vs
8-way base 4-way base 2-way base DM base

4KB 588.3% 680.3% 743.2% 743.6%
8KB 822.8% 932.1% 959.5% 981.9%
16KB 1199.0% 1220.7% 1254.8% 1272.2%
32KB 1559.4% 1608.6% 1630.2% 1662.3%
64KB 2039.0% 2074.4% 2107.0% 2085.3%

Table 5.5 shows the relative energy overhead per read access for all non-FA
configurations implementing RP with respect to the design without the paramet-
ric hash function, whose energy consumption ranges between 3.8pJ and 22.2pJ per
access for different configurations. Also, the overhead of a FA cache implement-
ing random replacement is shown with respect to the same baseline (its energy
consumption ranges between 32.9pJ and 474.3pJ per access for different config-
urations). We observe that the energy overhead per read access ranges between
1.5% and 8.3% across all configurations for our RP cache (around 0.3pJ). Since
such parametric function is independent of the cache size, the larger the cache
size, the lower the relative energy overhead is. This overhead is largely below that
incurred by a MBPTA-friendly FA cache whose energy overhead is between 588%
and 2107%.

Analogously, Table 5.6 shows the relative access time increase per read access.
The relative access time increase for our RP cache is between 28% and 54% (around
0.2ns), being lower for larger caches since the delay of the parametric hash function
is almost independent of the cache size, whereas delay for caches increases from
around 0.37ns (4KB) to around 0.71ns (64KB). In fact, for sufficiently large caches
fewer XOR levels may be needed, thus further reducing the relative delay of the
RP caches. Instead, FA caches have much higher access times for 8KB caches and
above (between 1.53ns and 67.27ns), and a bit higher average access time for tiny
4KB caches (0.59ns). Overall, the access time may only impact hit latency, which,
as stated before, is not the dominant factor in WCET.

77

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.5 External Results

Table 5.6: Relative access time increase of (i) random placement (top rows) and
(ii) fully-associative (bottom rows) caches w.r.t. modulo placement cache designs

8-way 4-way 2-way DM
RP vs base RP vs base RP vs base RP vs base

4KB 54.4% 52.7% 49.1% 52.6%
8KB 49.3% 45.8% 45.6% 45.6%
16KB 39.2% 40.5% 40.5% 40.5%
32KB 34.6% 34.6% 34.6% 34.7%
64KB 28.3% 28.3% 28.4% 29.2%

FA vs FA vs FA vs FA vs
8-way base 4-way base 2-way base DM base

4KB 60.3% 55.5% 44.8% 55.1%
8KB 275.6% 248.6% 247.1% 247.1%
16KB 840.8% 872.8% 872.8% 872.8%
32KB 2918.9% 2919.2% 2919.3% 2929.7%
64KB 9365.1% 9367.3% 9396.9% 9664.9%

Overall, our RP cache is a much more efficient design than exotic fully-associative
caches enabling MBPTA. Furthermore, the larger the cache size, the lower the rel-
ative overheads introduced by our parametric hash function. Thus, our design is
both efficient and scalable.

5.5 External Results

In addition to the results obtained in the scope of this thesis and presented so far
in this Chapter, we have evaluated random placement random replacement designs
in the the context of the FP7 projects PROARTIS and PROXIMA in collaboration
with industrial partners.

In particular in [Wartel et al. (2013)] an avionics case study has been evalu-
ated on top of the simulation environment we have developed in this thesis and
described in Chapter 3, implementing random placement and replacement caches
and TLBs and the MBPTA-compliant architecture described in Chapter 4. This
work demonstrates the scalability of MBPTA in large scale applications deployed
in IMA systems and the fitness of time-randomised caches in industrial environ-
ments.

The results indicate that although the average performance of RP-RR caches is
lower than the one of deterministic caches, the degradation in average performance
of the application is less than 1%. However, the most important outcome is that
compared with the current industrial practice of 20% inflation factor over the
maximum observed execution time (MOET), enabling the use of MBPTA with
time-randomised caches allows the computation of tighter pWCET values, with a
scientifically sound method.

78

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.6 Related Work

In the context of PROXIMA project, our hardware proposals have been imple-
mented in LEON 3 RTL – a CRTES processor extensively used in the aerospace
domain – and are synthesised on an a Terasic DE4 FPGA [Hernandez et al. (2015)].
This work demonstrates the feasibility of our proposals to be implemented in real
hardware designs, to build MBPTA-compatible processors. The evaluation of this
design with EEMBC benchmarks also indicate a difference within 1% of the de-
terministic designs. Furthermore, a space case study from the European Space
Agency has been evaluated on this platform showing a negligible performance
difference compared to the deterministic platform [Fernandez et al. (2017)].

5.6 Related Work

WCET impact of caches has been studied extensively [Reineke et al. (2007)], in-
cluding several levels of cache [Lesage et al. (2009)] and locking mechanisms [Puaut
& Decotigny (2002)] to increase predictability and hence, provide tighter WCET.

Some embedded processors already implement random replacement policies on
set-associative caches [ARM (2006)] [Cobham Gaisler (2011)]. Randomised caches
in high-performance processors have been proposed to remove cache conflicts by
using pseudo-random hash functions [Topham & González (1999)] [Seznec & Bodin
(1993)]. However, the behaviour of all those cache designs is fully deterministic,
and therefore, whenever a given input set produces a pathological access pattern,
it will happen systematically for such input set. Therefore, although the frequency
of pathological cases is reduced, they can still appear systematically because there
is no way to prove that their probability is bound.

Some work on PTA has been done based on the assumption that execution
times are truly i.i.d. and that frequencies for execution paths provided by the user
match actual probabilities of those paths [David & Puaut (2004)]. Later work
has shown how to perform PTA with no assumption on the probabilities of execu-
tion paths and how to use random caches in PTA systems [Cazorla et al. (2013a)]
[Cucu-Grosjean et al. (2012)]. Concretely, authors showed that randomised re-
placement effectively avoids pathological behaviour of deterministic replacement
policies while achieving reasonable performance. Some authors have tried to per-
form PTA on top of conventional cache designs [Liang & Mitra (2008)]. Unfor-
tunately, this can only be done if the user is able to provide the true probability
(not the frequency) of each cache layout and each execution path to occur for all
instances of the system deployed, which is, in general, unattainable.

To the best of our knowledge, our work is the first enabling the use of the most
common and efficient cache designs, i.e. set-associative and direct-mapped caches,
in probabilistically analysable CRTES while preserving the properties needed by
sound PTA techniques [Cazorla et al. (2013a)] [Cucu-Grosjean et al. (2012)].

79

5. SINGLE LEVEL HARDWARE TIME-RANDOMISED CACHES
5.7 Summary

5.7 Summary

MBPTA enables affordable analysis of complex hardware in safety-critical real-
time systems by reducing the amount of information about the hardware and
software state required to provide trustworthy WCET estimates. Yet, MBPTA
relies on some properties that existing hardware fails to provide. In particular
MBPTA requires that the execution times of the program on the target platform
can be modelled with i.i.d. random variables and that execution conditions during
analysis match or upperbound those at operation.

In the case of the cache, the deterministic behaviour of placement and replace-
ment policies makes it impossible to attach a true probability to different execution
times or guarantee same execution conditions at both analysis and operation. Only
unaffordable fully-associative caches with random replacement would allow deriv-
ing true probabilities, which hold the same at both analysis and operation inde-
pendently of the memory layout. This chapter presents the first random placement
policy based on a parametric hash function so that i.i.d. execution times are ob-
tained, thus enabling the use of efficient set-associative and direct-mapped caches
in the context of probabilistic timing analysis. We further show that our cache
design can be implemented with little overhead in terms of complexity, energy and
performance.

While in this chapter we have focused on devising random placement and re-
placement policies and implementations for first level caches, in the next Chapter
we extend random placement policies to arbitrary complex memory hierarchies,
with multiple levels of caches.

80

Chapter 6

Multiple Level Hardware
Time-Randomised Caches

6.1 Introduction

In this chapter we extend our work on single-level random placement-random
replacement caches introduced in the previous chapter, and we analyse for the
first time in the literature the worst-case timing behaviour of multi-level time-
randomised caches. Our analysis, which scales to an arbitrary number of cache
levels, covers unified data and instruction caches, different write, write-allocation
and inclusion policies among the different levels. Our analysis builds upon some of
the properties of time randomised caches. First, the particular memory address of
an access does not determine the cache set in which it is mapped since the place-
ment in cache is time randomised (Chapter 5) and second, the hit/miss probability
of a given access to an address @x only depends on probabilistic events such as
whether the accesses between the current and the last access to @x miss in cache.
Based on these properties, our analysis identifies those events that cause accesses
to the different cache levels as well as their probability of occurrence.

We evaluate 2-level time-randomised cache setups with a unified second level
cache (shared among data and instructions). We consider inclusive and non-
inclusive caches, as well as write-through and write-back first level caches. Our
results prove that (1) multi-level time-randomised caches fulfil the requirements of
measurement-based PTA (MBPTA) [Cucu-Grosjean et al. (2012)]. We also show
how multi-level time-randomised caches decrease execution time by 30% on av-
erage. Reduction in terms of WCET estimates is even higher (55% on average)
since multi-level caches also reduce the probability of pathological cache behaviour
resulting in large execution times, hence execution time variability, with respect
to single-level cache setups.

81

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.2 Cache Characteristics and Assumptions

6.2 Cache Characteristics and Assumptions

In a multi-level cache design, inclusivity of the lower cache levels (those closer to
the cores) into the upper cache levels (those closer to memory), imposes that all
contents in the lower level cache are also included in the upper level cache1. This
implies that, whenever a cache line is evicted from the upper level cache, all cache
lines in the lower level cache holding some or all contents of the cache line evicted
in the upper level cache, are also evicted. When exclusivity is applied2, cache lines
can be stored only in one of the two levels involved. When a new cache line is
fetched by the processor, it is typically fetched into the lower level and removed
from the upper level. When a cache line is evicted from the lower level it is moved
up to the next level. Non-inclusive caches are those where no constraint is imposed
on whether cache lines are stored in upper or lower cache levels. This is a common
choice for instruction caches since they are typically read-only and, thus, cache
lines can be simply removed on an eviction.

Upper cache levels can be either shared among data or instructions or kept
private. While private caches have been regarded as easier to analyse, unified
(shared) ones are the most common choice due to their lower overheads. Thus,
unlike previous works, we enable for the first time the analysis of unified upper
cache levels storing data and instructions.

Write operations introduce complexities in the behaviour of the cache that are
handled with a cache-write policy and a write allocation policy. There are two main
write policies, namely, write-through (WT) and write back (WB). In the former,
write operations occur in the current cache and are forwarded to the next cache
level so that both caches hold consistent data. In WB caches, write operations
occur only in the lower level cache, and the update of the next level is postponed
until the cache lines containing the dirty data are evicted from the lower level
cache. There are two write allocation policies. With write allocate (WA), on a
write miss, data are fetched into cache, as it is the case for read misses, and, once
fetched, the write operation occurs. With no-write allocate (nWA), on a write
miss, the write operation is simply forwarded to the next cache level (or memory).
Both WT and WB can use either of these write-allocation policies, but we only
consider WB-WA and WT-nWA caches, since they are the most common choices.
Though, nothing prevents our analysis to be extended to other combinations.

1Note that contents may not be up-to-date in both caches if write operations are not propa-
gated immediately as explained later, but at least an older version of the data is in place in both
caches.

2We use the term exclusive cache rather than non-inclusive, because the latter just implies
that inclusivity is not controlled, which is different than requiring exclusivity.

82

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.3 Time Randomised Multi-level Caches

Table 6.1: Events in a NIC cache hierarchy with WT-nWA L1 and WB-WA L2

Event id latency L1 L2 L2 dirty? actions probabilities

1) Latld1 L1 ld hit (a) Send data from DL1 to the core P@A
L1,hit

2) Latld2 L1 ld miss L2 ld hit (b) Send data from UL2 to DL1 P@A
L2,hit × P@A

L1,miss
and to the core

3.1) Latld3 L2 ld miss L2 dirty (c) Write dirty line to mem, P@A
L2,miss × P@A

L1,miss × Pvctm
L2,dirty

(d) load new line into L2 and (b)

3.2) Latld4 L2 clean (d) and (b) P@A
L2,miss × Pvctm

L1,miss × Pvctm
L2,clean

1) Latst1 L1 st hit L2 st hit (e) write data into L1 and P@A
L2,hit × P@A

L1,hit
(f) write data into L2

2.1) Latst2 L2 st miss L2 dirty (c), (d), (e) and (f) P@A
L2,miss × P@A

L1,hit × Pvctm
L2,dirty

2.2) Latst3 L2 clean (d), (e) and (f) P@A
L2,miss × P@A

L1,hit × Pvctm
L2,clean

3) Latst4 L1 st miss L2 st hit (f) P@A
L2,hit × P@A

L1,miss

4.1) Latst5 L2 st miss L2 dirty (c), (d) and (f) P@A
L2,miss × P@A

L1,miss × Pvctm
L2,dirty

4.2) Latst6 L2 clean (d) and (f) P@A
L2,miss × P@A

L1,miss × Pvctm
L2,clean

6.3 Time Randomised Multi-level Caches

In this section, we focus first on random-replacement fully-associative multi-level
caches for the sake of clarity. In Section 6.3.3 we extend our analysis to random
placement featured in set-associative and direct-mapped caches. With the same
aim and without loss of generality we focus on a 2-level cache hierarchy. In the
first level we find an instruction (IL1) and a data cache (DL1). In the second
level we have a unified L2 cache (UL2). We generalise our analysis for more
than 2 levels also in section 6.3.3. We consider a WT-nWA DL1 and a WB-WA
UL2 caches, as this is a very common organisation and allows us reasoning about
both types of cache-write and write allocation policies. Note that cache-write
and write allocation policies are irrelevant for IL1, as its contents are read-only.
We provide the analysis for both non-inclusive and inclusive caches, as they are
the common case. Later, in Section 6.5, we also describe the case of exclusive
caches. Considerations related to the hardware implementation are described in
section 6.3.4.

In the remaining of this section we refer to the probability of an <event>, such
as a hit or a miss, in each cache level as: P<op>

<L>,<event>, where L is the cache level,
i.e. IL1, DL1 or UL2, < op > is the type of access, i.e. load (ld) 1 and store (st), or
the address of the access when the type of operation does not affect its probability.
Each probability is provided under a cache configuration that determines the write,
allocation and inclusivity policies.

For computing the probabilities in the probability vector of the ETP of every
memory operation, we consider the following sequence of accesses:
< Imop@A

0 I ld11 Ist12 I ld23 ... Ir... Istms ... I ldnt Imop@A
t+1 >, where the subindex

is the instruction id, the superindex indicates the number of load and store oper-
ation, and where Imop@A

t+1 is the memory operation whose hit/miss probability we

1A load can be an instruction load sent by the instruction cache or a data load sent by the
data cache.

83

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.3 Time Randomised Multi-level Caches

Table 6.2: Events in an inclusive cache hierarchy with WT-NWA L1 and WB-WA
L2 and their associated probabilities

Event id latency L1 L2 L2 dirty? actions probabilities

1) Latld1 L1 ld hit (a) Send data from L1 to the core P@A
L1,hit

2) Latld2 L1 ld miss L2 ld hit (b) Send data from UL2 to L1 and (a) P@A
L2,hit × P@A

L1,miss

3) L2 ld miss (c) Check inclusivity of evicted line P@A
L2,miss × P@A

L1,miss

3.1) Latld3 L2 dirty (d) write dirty line to mem, (e) load P@A
L2,miss × P@A

L1,miss × Pvctm
L2,dirty

new line into L2, (b) and (a)

3.2) Latld4 L2 clean (e), (b) and (a) P@A
L2,miss × P@A

L1,miss × Pvctm
L2,clean

1) Latst1 L1 st hit (f) write data into L1, (g) write data P@A
L1,hit

into L2

2) Latst2 L1 st miss L2 st hit (g) P@A
L2,hit × P@A

L1,miss

3) L2 st miss (c) P@A
L2,miss × P@A

L1,miss

3.1) Latst3 L2 dirty (d), (e) and (g) P@A
L2,miss × P@A

L1,miss × Pvctm
L2,dirty

3.2) Latst4 L2 clean (e) and (g) P@A
L2,miss × P@A

L1,miss × Pvctm
L2,clean

want to derive for each cache organisation. Note that mop stands for any memory
operation (either ld or st). We use it in those cases where the particular type of
memory operation being considered is irrelevant. The load and store operations
between the accesses to @A access different cache lines in DL1, IL1 and UL2 to
those where @A and the instruction loading @A are stored.

6.3.1 No Inclusivity Control (NIC)

When no inclusivity control is used among the different cache levels, the hit ac-
cesses and the evictions carried out in one level have no impact on previous or
next cache levels. Table 6.1 shows the different events in each level of the cache,
the actions taken in the cache on that event and the associated probability.

When a load access hits in DL1 (1), which happens with a probability P@A
DL1,hit,

data are sent to the core. In case of miss in DL1 and hit in UL2 (2), data are
sent from UL2 to DL1 and the core. Given that the RIIs used for each cache are
different as explained later, their placement functions are different and thus, the
events ‘hit in DL1’ and ‘hit in UL2’ are independent. Hence, the probability of
both events to occur can be obtained by multiplying their respective probabilities.
In case of a miss in both DL1 and UL2 (3), data are loaded from memory to UL2
and DL1, and sent to the core. If the line evicted is dirty1 (3.1), it is written back
to memory before the new line is loaded from memory to UL2. If it is clean (3.2)
no line is written back. Note that the instruction cache (IL1) events are the same
as the load events for the DL1.

Stores update DL1 when they hit and are always forwarded to UL2. If they
hit in UL2, UL2 is updated (1). In case of miss in UL2 (2), first a cache line

1Write operations in a WB cache make cache lines to be inconsistent with upper levels in
the memory hierarchy, so on an eviction their contents must be updated in upper levels. Those
lines are referred to as dirty lines.

84

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.3 Time Randomised Multi-level Caches

(victim) is selected for eviction and, if it is dirty (2.1), which happens with a
probability PL2,dirty(vctm), it is written back to memory. Then, the new line is
fetched from memory into UL2 and it is updated with the data carried out by
the store operation. If the line was clean (2.2), the same actions, but writing the
victim to memory, are carried out.

In case of miss in both DL1 and UL2 (3), the line is written into UL2, but not
brought to DL1. In case of miss in both (4.1 and 4.2), the evicted line is written
to memory in case it is dirty, the new line is brought into UL2 and updated with
the new data.

The most important appreciation from Table 6.1 is that all the events that may
potentially happen in all caches have an associated probability (PUL2,hit/miss(@),
PIL1,hit/miss(@), PDL1,hit/miss(@) and PUL2,dirty(@)). Next, we derive how those
probabilities can be approximated. Note, however, that, assuming that core oper-
ations can be analysed probabilistically, the fact that cache events are probabilistic
makes the application of MBPTA correct, since EVT makes no assumption on the
particular probability distribution function of the events under consideration or
on whether they depend on each other.

A.1. PDL1,miss(@). The miss probability of an access to @A in a WT-nWA DL1,
PDL1,miss(@A), with a WB-WA UL2 with no inclusivity control is affected by the
intermediate accesses carried out in between that access to @A and the previous
access to @A. In particular, PDL1,miss(@A) is given by the number of memory oper-
ations between both accesses to @A, and the probability of miss of each access. The
higher the number of accesses and their respective miss probabilities, the higher
the probability of miss of the second access to @A, which can be approximated as:

PDL1,miss(@A) = 1−
(
WDL1 − 1

WDL1

)n+m∑
i=1

PDL1,miss(DL1acci)

where WDL1 is the number of ways in DL11, n+m is the number of intermediate
loads and stores, and PDL1,miss(DL1acci) their associated miss probabilities.

A.2. PUL2,miss(@). The probability of missing in UL2 for a given access to address
@A (regardless of whether it is a data or instruction address) is given by the number
of accesses performed to UL2 between the current access and the previous access
to @A. This includes both, UL2 instruction accesses coming from the IL1 and UL2
data accesses coming from DL1 as shown in the formula below, where WUL2 is the
number of lines in the UL2.

1Recall that in this section we focus on fully-associative caches, so the number of cache ways
of the cache is also the number of cache lines.

85

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.3 Time Randomised Multi-level Caches

PUL2,miss(@A)=1−

(WUL2−1

WUL2

) t∑
i=1

Pmiss,IL1(Ii)×Pmiss,UL2(Ii)

×

(
WUL2−1

WUL2

)n+m∑
i=1

Pmiss,DL1(mopi)×Pmiss,UL2(mopi)


The exponent in the first element in the formula above accounts for the effect
of instruction misses (between both accesses to @A) in the IL1 (and hence accesses
to the UL2) that also miss in UL2. The exponent in the second element is the
probability of a memory operation to miss in the DL1 and UL2. We can simplify

the above formula as PUL2,miss(@A) = 1 −
(

WUL2−1
WUL2

) k∑
i=1

PUL2,miss(L2acci)

, where the

exponent is the accumulated miss probability of all UL2 accesses between the
current and the previous access to @A.

A.3. PUL2,dirty. When @A misses in UL2, a random line in the corresponding set
is selected for eviction. There is a probability that the selected line is dirty. While
hit and miss probabilities only depend on the accesses in between the current
and the previous accesses to a particular address, PUL2,dirty depends on all past
accesses since the beginning of the execution of the program (assuming an initial
empty cache state). Therefore, and only for approximating PUL2,dirty we consider

the following sequence: <Imop@0

0 , Imop@1

1 , ..., I
mop@i−1

i−1 , Imop@A
i >, in which we assume

that Imop@A
i misses in cache, resulting in a cache line being randomly evicted. We

obtain PUL2,dirty(Ii), that is, the probability of a dirty line to be evicted when Ii
is executed, as the fraction of dirty lines in the cache set where @A is when the
second access to @A occurs. In other words, the accumulated probability that each
line in that set has not been evicted from cache since it was last accessed by a
store operation.

PUL2,dirty(Ii) =
i−1∑
j=0

P dirty
surv (@j, i)

In the equation above, P dirty
surv (@j, i) is the probability of instruction Ij to leave a

dirty line in cache and this line to be still present when instruction Ii (the one
accessing @A) is executed. It is defined as follows:

P dirty
surv (@j, i) =


0 if isload(Ij)(

WL2−1
WL2

) i−1∑
k=j+1

Pmiss(@k)

if isstore(Ij)

86

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.3 Time Randomised Multi-level Caches

In the equation above, isload(Ik) is true when Ik is a load instruction, similarly
isstore(Ik) is true when Ik is a store. Lines dirtied by stores survive with a given
probability that depends on the number of misses between them and the access to
@A.

6.3.2 Inclusive Caches

The main difference between inclusive caches with respect to caches without in-
clusivity control (NIC) is that UL2 evictions may require evicting some cache lines
in DL1. If a line being evicted from UL2 is present in DL1, it is also evicted from
DL1. Note that inclusivity is typically deployed only for data caches since this
simplifies hardware design to deal with either write operations in write-through
caches or dirty lines evicted in write-back ones. Instruction caches typically do not
support any type of write operation (other than filling cache lines when fetched),
so there is no need for making them inclusive.

Table 6.2 shows the different events that may happen to a cache access and
their associated probability. On an UL2 miss, a victim is selected to be evicted.
In addition to checking whether it was dirty, in which case it is written back to
memory, it must be checked whether that line is present in DL1 (in fact in all L1
inclusive caches), in which case it is invalidated from the corresponding L1 cache.
As DL1 is WT, the invalidation consists simply in setting an ‘invalid’ bit (no further
transaction is initiated). Therefore, we consider that the latency of checking for
invalidations is the same regardless of whether a line is finally invalidated. How
to deal with WB caches and dirty lines is later described in Section 6.3.3. We also
observe that in inclusive caches the event ‘DL1 hit and UL2 miss’ is not possible,
since all DL1 contents are also present in the UL2.

As for NIC caches, the events that may potentially happen in the different
caches have an associated probability (PUL2,hit/miss(@), PIL1,hit/miss(@),
PDL1,hit/miss(@) and PUL2,dirty(@)). The value of some of those probabilities change
with respect to the NIC case as detailed next.

B.1. PDL1,miss(@). The probability of miss in DL1 of an access to @A, PDL1,miss(@A),
with an inclusive UL2 is affected by the accesses carried out in between that access
to @A and its previous access, and the probability of miss of those intermediate
accesses. There are two types of accesses to the DL1 that can happen. First,
memory accesses (MA) between the two accesses to @A sent from the core to the
DL1. And second, Data Inclusivity Requests (DIR) sent from the UL2 to DL1 due
to the UL2 accesses between the two accesses to @A that evict lines from UL2,
thus causing a subsequent eviction in DL1 of the line evicted from UL2.

The number of data memory accesses sent to UL2 from the core are given by

PMAmiss =
k∑

i=1

PDL1,miss(mopi), where mopi are the loads and stores in between

87

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.3 Time Randomised Multi-level Caches

the two accesses to @A and PDL1,miss(mopi) is the miss probability of each access
computed as for single-level caches. Analogously, instruction accesses sent to UL2

are given by PImiss =
k∑

i=1

PIL1,miss(Ii), where Ii stands for any instruction in be-

tween the two accesses to @A and PIL1,miss(Ii) is the miss probability of each such
instruction computed as for single-level caches.

When a data or instruction access between two accesses to @A causes a UL2
miss, this generates a UL2 eviction which can evict @A from UL2, which would
imply removing @A from DL1 to keep inclusivity. The number of DIRs is given
by number load and store operations between two accesses to @A that miss in
DL1 plus the number of instructions fetched between those two accesses to @A

that miss in IL1. Note that though the UL2 is inclusive of DL1, hits to DL1 are
ensured to also hit in UL2, hence not generating any eviction that could evict the
line in UL2 where @A is. This is particularly important for store operations that
access UL2 regardless of whether they hit DL1. We approximate the accumulated
probability due to inclusivity evictions as follows:

PDIRev =
n+m∑
i=1

(
PDL1,miss(mopi)×PUL2,miss(mopi)×

1

WUL2

)
+

t∑
i=1

(
PIL1,miss(Ii)×PUL2,miss(Ii)×

1

WUL2

)
where n+m is the number of loads and stores and t the number of instructions

between both accesses to @A. The first element in the first row of the equation
is the probability that any data access in between two accesses to @A misses in
the data cache. The second element is the probability that those DL1-missing
accesses, that access the UL2, miss in the UL2. The last element is the probability
that each evicted L2 cache line contains @A. The second row of the formula is
analogous for IL1.

Overall, the miss probability of @A in DL1 can be approximated as

PDL1,miss(@A) = 1−
(

WDL1−1
WDL1

)PMAmiss+PDIRev

.

B.2. PUL2,miss(@). There is a probability that an access to @A in the UL2 (re-
gardless of whether it is a data or an instruction access), and so its PUL2,miss(@A),
is affected by the inclusivity policy. An instruction with instruction address (i.e.
Program Counter) @A accesses UL2 if it misses in IL1. Since DL1 contents are
included in UL2, the access @A cannot hit in those WDL1 lines of the UL2 keeping
the contents of the DL1. Similarly, a DL1 miss cannot hit in the UL2 lines keeping
the contents of DL1. Hence, @A can only hit in WUL2−WDL1 lines, which we call
WUL2nonDL1 being its miss probability approximated by:

88

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.3 Time Randomised Multi-level Caches

PUL2,miss(@A)=1−
(
WUL2nonDL1−1

WUL2nonDL1

) k∑
i=1

PUL2,miss(L2acci)

where the exponent is the miss probability of the accesses between @A and its last
access.

B.3. PUL2,dirty. It is not affected by the inclusivity control, so it remains as
described for the NIC case.

6.3.3 Generalising the Latency/Probability Cache Model

For the sake of simplicity, we have assumed that all accesses in the different
sequences we have used to describe the hit/miss probability of each event, i.e.
<Imop@A

0 I ld11 Ist12 I ld23 ... Ir... Istms ... I ldnt Imop@A
t+1 > and <Imop@0

0 , Imop@1

1 , ...,

I
mop@i−1

i−1 , Imop@A
i >, go to a different cache line each, but the first and last access

to @A that access the same line. Considering the case in which intermediate ac-
cesses may access the same cache line addresses just makes the computation of
probability approximations more complex, since events are probabilistically de-
pendent; however, the events affecting the timing behaviour of the cache are still
probabilistic as required for the application of MBPTA (see Section 6.4.) Recall,
that MBPTA makes no assumption on the probability distribution function of any
random event. Note also, that the probabilities computed assuming that accesses
are assumed to go to different addresses represent an upper-bound of the actual
probabilities when they may go to the same address line. This is so, because when
two accesses go to the same address, their reuse distance reduces and so do their
miss probabilities.

Besides that, there are several dimensions in which our model can be gen-
eralised. First, random placement since in our analysis above we consider only
random replacement. Second, different cache line sizes between different levels.
Third, considering more than 2 cache levels. And fourth, different inclusivity
arrangements between different cache levels.

Random Placement. Random placement requires taking into account the prob-
ability that any of the k different (unique) accesses between the two accesses to @A

access the set where @A is placed. This is given by the formula
(
S−1
S

)k
, where S is

the number of sets. As we have done for the random replacement in previous sec-
tions, for each cache level we can compute the number of those potential accesses.
For the IL1 these are the number of unique instruction requests between the two
accesses to @A. For the DL1 we have the number of unique memory operations
plus the number of unique data inclusivity requests. The UL2 is accessed as many
times as the number of DL1 and IL1 misses are experienced. The effect of the

89

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.3 Time Randomised Multi-level Caches

placement on the probability of hit of accesses can be multiplied by the effect of
replacement computed in previous sections as both are independent, as show in
the previous Chapter.

Different cache line sizes. So far we have considered the case where all caches
use the same cache line size. However, it may be the case that cache lines in the
upper level are larger than those in the lower levels. Let us assume that UL2 lines
are q times larger than those of the DL1 and IL1. There are two main ways in
which different cache line sizes in each level affect the probability of hit/miss of
each access. First, the distribution of accesses on the different cache lines changes.
For instance, while accesses @B and @C in the sequence <@A@B@C@A> access
different cache lines under a line size setup, they can access the same line if the
cache line size is increased. In the latter case, the probability of evicting @A is
smaller since @C will always hit and hence, will never produce an eviction. This
simply reduces the miss probability of @A. Note, however, that if the cache size
remains constant, increasing the line size implies reducing the number of sets or
ways, which will increase the probability of miss of @A. In any case, hit/miss
events remain probabilistic regardless of the cache line sizes and hence, analysable
with MBPTA. Second, for some inclusivity control policies, when a dirty line is
evicted from UL2, the contents of that line have to be evicted from DL1. If UL2
lines are larger than DL1 ones and hence, contain several DL1 lines, this would
produce a potentially larger number of invalidations, reducing the probability of
hit of DL1 accesses.

Several cache levels. For setups with several (more than 2) cache levels, the
only difference in our analysis consists in taking into account, when analysing
a given cache level Li, the accesses that any other cache level can introduce on
Li. This depends on the inclusivity arrangement selected and the write-miss and
allocation policies of each level. This would make the number of events to consider
higher, but each event would be still fully probabilistic. As a result, an ETP for
each cache access still exists, and hence, MBPTA can be applied.

Inclusivity Arrangements. Similarly, to the previous case, inclusivity policies
affect the number of accesses that a given program does to the different cache
levels. It also affects, the actual size available in a given level. For instance, when
the DL1 is inclusive of the UL2, every miss in DL1 that becomes an access to the
UL2, can only hit in the UL2 lines not devoted to keep DL1 information. As we
have seen, this can easily be taken into account in the analysis. Analogously, if
DL1 is WB and inclusive, dirty lines may be evicted. This may have an impact
in latency. To consider this, one should split the case of DL1 evictions into 2
subcases considering whether a dirty line from DL1 is evicted or not. Deriving
such probability of dirtiness in DL1 is analogous to the case of UL2.

Overall, the effect of all these variations is purely probabilistic and therefore,

90

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.4 Actual Probabilities

analysable with MBPTA. MBPTA does not need to compute ETPs and hence, it
is enough those events to be probabilistic to ensure ETPs exist, which is in turn
enough to apply MBPTA.

6.3.4 Hardware Considerations

In random placement multi-level caches it is important guaranteeing that place-
ment choices in every cache are independent to prevent any correlation between
the random events in the different caches. This is achieved by simply using differ-
ent RII values for each cache. Therefore, those addresses conflicting in a particular
cache set in a first level cache, thus producing some misses, are very unlikely to
be placed in the same set in the second level cache so that the same conflicts do
not repeat.

Regarding the overhead of the random placement and replacement caches, it
has been shown to be low with respect to modulo-placement LRU-replacement: as
shown in the previous chapter the overhead in area and access time is very small
and its relative impact further decreases for large caches such as UL2 ones.

6.4 Actual Probabilities

As indicated in Chapter 5, hit/miss probabilities provided in this thesis are an
approximation to the actual ones, since MBPTA only requires their existence
but not their exact value [Cucu-Grosjean et al. (2012)]. To illustrate how ac-
tual probabilities can be derived, we use an example where a sequence of accesses
<A1, B1, A2, B2> access cache lines A and B in a fully-associative cache with 4
cache lines. Figure 6.1 depicts the sequence of accesses, the different events that
can occur and their probabilities. At the bottom of the figure probabilities for
each sequence of events are provided.

A1 always misses in cache and A is in cache after this access. Then, B1 misses
in cache, but two different cache states may be reached: with a probability of 0.75
B replaces any of the empty lines and with a probability of 0.25 (1 out of 4) B
replaces A so that B is the only valid line in cache. A2 accesses cache and hits
if the cache contents were {A,B,−,−}, which occurs in one of the two different
sequences of events at this stage. If A2 hits (leftmost path in the graph), cache
state remains the same ({A,B,−,−}), otherwise it may happen again that A
replaces an empty line (0.75 probability) or B (0.25 probability). Finally, B2 hits
in cache in two of the three different sequences of outcomes.

Overall, if we compute the actual probabilities from the graph, we obtain the
probability vectors in Table 6.3. As shown, the probability vector for B2 differs
across the exact computation and the approximation provided by Equation 5.7.

91

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.4 Actual Probabilities

Figure 6.1: Access tree and cache state for the access sequence <A1, B1, A2, B2>.

Table 6.3: Probability vectors for the accesses in the sequence <A1, B1, A2, B2>
for a fully-associative 4-entry

Access Prob. vector real Prob. vector Equation 5.7
{phit, pmiss} {phit, pmiss}

A1 {0.0, 1.0} {0.0, 1.0}
B1 {0.0, 1.0} {0.0, 1.0}
A2 {0.75, 0.25} {0.75, 0.25}
B2 {0.9375, 0.0625} {0.9306, 0.0694}

This occurs because the probabilities of hit and miss across different sequences of
events differ. However, although those probabilities are not independent, whether
a hit or a miss occurs depends solely on random events, which follow exactly
the same probability distribution (ETP) at both analysis and operation, so all
properties needed by MBPTA [Kosmidis et al. (2014d)] are fulfilled.

Note that, as opposed to SPTA [Cazorla et al. (2013a)], MBPTA does not need
to determine the actual probabilities. SPTA, indeed, needs actual probabilities
to be upper-bounded and those probabilities must be independent so that they
can be convolved to obtain the probability distribution for the whole program.
Obtaining actual probabilities can be done in two main ways: (i) Performing an

92

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.5 Exclusive Caches

Table 6.4: Probabilities of experiencing 0, 1 and 2 hits in the sequence
<A1, B1, A2, B2>.

Real Convolution

P(0 hits) 0.0625 0.0156

P(1 hit) 0.1875 0.2813

P(2 hits) 0.75 0.7031

‘infinite’ number of runs and measuring actual probabilities, or (ii) Computing the
probability of each particular cache state left by the sequence of hits and misses for
previous accesses, and accumulating the probabilities for those cache states where
the current cache access would result in a hit/miss, as we do in our example.
Unfortunately, even if exact probabilities are obtained, they cannot be convolved,
so if SPTA is to be used, a way is needed to compute probability vectors that
upper-bound those under any sequence of events for each access, i.e. by making
sure that the miss probability used is equal or higher than the miss probability
under any sequence of events [Cazorla et al. (2013a)].

For the sake of illustration, we provide in Table 6.4 the probabilities of experi-
encing 0, 1 and 2 hits when executing the sequence <A1, B1, A2, B2> (i) directly
from the probability graph in Figure 6.1 and (ii) by convolving the probability
vectors in Table 6.3. For instance, the actual (real) probability of having exactly
one hit is 0.1875, which occurs when A2 misses and B2 hits. When applying con-
volutions, such probability of having exactly one hit is obtained as the addition of
the probabilities of (1) A2 missing and B2 hitting (0.25 · 0.9375 = 0.2344) and (2)
A2 hitting and B2 missing (0.75 ·0.0625 = 0.0469), which indeed cannot occur. As
expected, probabilities obtained with convolutions neither match nor upper-bound
real ones (e.g., SPTA would underestimate the probability of having 0 hits, which
is the one leading to the highest execution time).

Overall, deriving actual probabilities would require a more complex formulation
than the one we have used in this chapter to derive approximations. The purpose of
deriving the probability approximations is proving that hit and miss events occur
with a given probability, which is a sufficient condition for enabling the application
of MBPTA in multilevel caches.

6.5 Exclusive Caches

In this section we briefly discuss some considerations for exclusive caches. In
exclusive caches, contents cannot be replicated across multiple caches. Therefore,
on a DL1 and UL2 miss, the new line is fetched from memory to DL1, the line
evicted from DL1 is moved to UL2, and the line evicted from UL2 is invalidated (if

93

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.5 Exclusive Caches

clean) or written back to memory (if dirty). Analogously, on a DL1 miss and UL2
hit, the line from UL2 is moved to DL1. One line from DL1 is evicted and placed
in UL2, which can also produce a cascade eviction since placement functions in
DL1 and UL2 are independent and so, although both lines (the one fetched and
the one evicted) are placed into the same set in DL1, they are very unlikely to
be placed in the same set in UL2. In general, exclusive caches are not common
because of the number of cache line transfers on a DL1 miss.

Exclusive caches are ill-advised in combination with WT policy, as it is the
case of the DL1 considered in this work. This is so because on a DL1 store hit,
the write operation is sent to UL2, where it is guaranteed to miss due to the
exclusivity constraint. This would enforce evicting such particular cache line from
DL1 to put it in UL2 (potentially causing a UL2 eviction) or sending the write
operation straight to memory, thus jeopardising performance and power due to
the increased number of memory accesses.

The events that may potentially happen in the different caches have an associ-
ated probability (PUL2,hit/miss(@), PIL1,hit/miss(@), PDL1,hit/miss(@) and PUL2,dirty(@)).
The values of some of those probabilities change with respect to the non-inclusive
and inclusive cases as detailed next.

C.1. PDL1,miss(@). It is not affected by the inclusivity control, so it remains as
described for the non-inclusive case, since UL2 cannot produce any eviction in
DL1.

C.2. PUL2,miss(@). There is a probability that an access @A to the UL2, and so
its PUL2,miss(@A), is affected by the exclusivity policy. On a DL1 miss, data can
be found in any UL2 line. Since DL1 and UL2 are exclusive, a miss in UL2 occurs
if and only if data are not in the WUL2 + WDL1 lines of DL1 and UL2 together,
being its miss probability approximation:

PUL2,miss(@A)=1−
(
WUL2 +WDL1−1

WUL2 +WDL1

) k∑
i=1

PUL2,miss(L2acci)

where the exponent is the miss probability of the accesses between @A and its last
access.

C.3. PUL2,dirty. It is not affected by the inclusivity control, so it remains as
described for the other cases.

94

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.6 Evaluation

6.6 Evaluation

6.6.1 Experimental Framework

We use the simulation environment introduced in Chapter 3 configured with L2
cache enabled. The modelled core is similar to the LEON4 [Cobham Gaisler
(2011)] and incorporates bypasses to remove pipeline stalls due to dependences
across instructions. During the execution stage, the time-randomised data cache
is accessed. We model 4KB, 32-byte line, 4-way set-associative instruction (IL1)
and data caches (DL1), both deploying random replacement and random place-
ment.The UL2 is a unified cache keeping data and instructions. It is 128KB with
32-byte lines and 8-way set associativity. The UL2 access latency is 10 cycles and
the latency to access memory 100. The DL1 deploys WT-nWA policies and the
UL2 is WB-WA.

We use several inclusivity arrangements: a first setup where we make DL1
inclusive of the UL2 (L1-L2inc) and a second setup in which we do not exercise any
inclusivity policy (L1-L2nic). We also evaluate the effect of making the DL1 write-
back when inclusivity is exercised (L1-L2wb). DL1 and IL1 caches are connected
to the UL2 through fully-dedicated bidirectional buses, whose access latency can
be bounded using the technique presented in [Paolieri et al. (2009a)].

The objective of our analysis is to effectively reduce the pWCET estimates that
can be obtained for programs when several levels of cache are used. Of course,
only on those cases in which the average execution time of the program reduces
when several levels of cache are deployed, we can expect some reduction in the
pWCET. As a reference point we use a setup with a single level of cache in which
DL1 and IL1 have the same size they have in the other setups, i.e. 4KB.

For the evaluation we use the simulation framework and the EEMBC Auto-
bench benchmark suite, described in Chapter 3.

6.6.2 Compliance with MBPTA requirements

On the one hand, the core architecture presented in previous section has been
shown to be MBPTA compliant (Chapter 4). On the other hand, we can derive
a probability of every event affecting the timing behaviour of a cache access (see
Section 6.4), or approximate such probabilities (see Section 6.3) . As a result, for
each instruction an ETP exists, which makes our multi-level cache processor ar-
chitecture MBPTA-compliant by construction. This is so, because (1) the latency
of each instruction can be modelled with i.i.d. random variables, and (2) the ex-
ecution of a sequence of instructions leads to another ETP, i.e. random variable,
which at the coarsest granularity level represents the ETP of the program.

95

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.6 Evaluation

Table 6.5: Independence and identical distribution tests results (outcome indepen-
dence test / outcome i.d. test).

Benchmarks L1-L2 INC L1-L2 NIC L1-L2 WB L1 (only)

a2time 0.03/0.29 0.83/0.41 0.46/0.44 0.90/0.49

aifftr 0.71/0.74 0.95/0.33 0.82/0.59 1.19/0.33

aifirf 0.40/0.11 1.04/0.20 0.13/0.94 1.04/0.79

aiifft 0.68/0.32 0.50/0.41 0.96/0.17 1.09/0.94

cacheb 0.63/0.93 1.11/0.72 1.20/0.35 0.79/0.66

canrdr 0.79/0.16 0.75/0.54 1.00/0.37 0.32/0.91

iirflt 0.96/0.85 0.68/0.41 0.78/0.50 0.07/0.22

puwmod 1.39/0.67 0.99/0.25 0.94/0.75 0.30/0.71

rspeed 0.47/0.43 1.33/0.51 0.91/0.24 1.35/0.42

tblook 1.33/0.92 0.52/0.86 0.34/0.26 0.76/0.44

ttsprk 0.19/0.43 0.89/0.52 0.21/0.42 0.67/0.63

In order to show that the execution times of the program fulfil i.i.d. require-
ments, we use the tests described in Chapter 3, similar to [Cucu-Grosjean et al.
(2012)]. Table 9.1 shows the results of both tests for all EEMBC benchmarks
under all multi-level cache configurations. As expected, both tests are passed in
all cases so independence and identical distribution hypotheses cannot be rejected.
This statistical results reinforce the probabilistic analysis we did in Section 6.3 on
the timing behaviour of multi-level caches.

6.6.3 Reduction in pWCET Estimates

We consider the same exceedance probability of 10−15 per run as in the evaluation
of the single level caches in the previous Chapter (Section 5.4.6).

The objective of our analysis is to effectively enable the use of multi-level caches
such that significant reductions can be obtained in the pWCET estimates derived
by MBPTA. The reduction that can be obtained depends on each application and
in the particular use of cache that the application does. Applications requiring
little cache space are very unlikely to benefit from having a UL2 cache in place in
terms of average performance and pWCET estimates.

Figure 6.2a shows the average performance that each EEMBC obtains when the
different cache setups are deployed. All results are normalised to the single-level
cache setup. We observe that some benchmarks are quite insensitive to having
a two-level cache hierarchy achieving a small execution time reduction. Those
benchmarks – aifirf, canrdr, puwmod, rspeed and ttsprk – achieve an average
performance reduction in the range 5%-15%. This is mainly due to the fact that
those benchmarks have a small code footprint and data working set that fit in

96

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.6 Evaluation

(a) Average execution time (b) pWCET estimates

Figure 6.2: (a) Average and (b) pWCET execution time for different cache con-
figurations normalised to the single-cache level setup

IL1 and DL1 respectively. The rest of the benchmarks significantly benefit from
having a UL2 cache. a2time, aifftr, aiifft, cacheb, iirflt and tblook achieve
execution time reductions in the range 40%-60%.

It must be also noted that the difference between inclusive and non-inclusive
caches is negligible. However, whenever the DL1 is WB and WA, execution time
increases. This is particularly noticeable for cacheb, whose execution time doubles
for the WB-WA configuration. The reason is as follows: when the DL1 is WT-
nWA, store instructions can be served without stalling the pipeline. However,
under a WB-WA configuration, if store operations miss in DL1, the pipeline is
stalled until data are fetched into DL1. In general, this has a relatively low effect
on benchmarks whose most store operations hit in DL1, thus not causing any stall.
Only few store operations miss in DL1 and increase execution time. However, the
store operations in cacheb often miss in DL1 and UL2, so they stall the pipeline
for long periods of time, thus increasing execution time noticeably.

Figure 10.6 shows the pWCET estimates obtained for every EEMBC bench-
mark under each cache setup, normalised to the pWCET estimates for the single-
level cache setup. pWCET reductions obtained with multi-level caches are more
significant than those in terms of average performance. The average performance
reduction is around 30% whereas the average pWCET reduction is around 55%.
The reason for this behaviour lies on the fact that random placement may map dif-
ferent cache lines to the same set with a relatively high probability in L1 caches,
thus causing misses and increasing execution time with non-negligible probabil-
ity. This effect basically increases the probabilities of high execution times, so
MBPTA accounts for that deriving Gumbel distributions [Cucu-Grosjean et al.
(2012)] with a lower slope, which basically increases pWCET estimates as the ex-
ceedance probability decreases. This effect is detailed in the next section through
particular examples. On the other hand, whenever a UL2 cache is in place, those

97

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.6 Evaluation

(a) a2time (b) canrdr

Figure 6.3: pWCET distributions and actual measurements for (a) a2time and
(b) canrdr.

conflicts that may arise in L1 caches in few executions have low impact in execu-
tion time because UL2 latency is much lower than that of main memory (10 versus
100 cycles). Moreover, since random placement functions in different caches are
independent, L1 conflicts are extremely unlikely to also occur in UL2. Overall,
whenever a UL2 cache is used, both execution time and execution time varia-
tion decrease, thus leading to much lower pWCET estimates since the Gumbel
distribution slope is sharper.

6.6.4 Detailed pWCET Analysis

This section analyses in detail the effect of UL2 caches in pWCET estimates by
considering exemplary benchmarks. In particular, we consider a2time and canrdr.
The pWCET estimates we obtain are shown in Figures 6.3a and 6.3b respectively.
In those figures we also show complementary cumulative distribution functions
(CCDF)1.

For both benchmarks, the observed execution times (in red and reaching only
probabilities down to 10−3) exhibit little variability when the UL2 cache is in place.
This leads to sharp slopes for the Gumbel distributions describing the pWCET es-
timates for those benchmarks. In the case of a2time all setups with a UL2 have
very similar average performance and pWCET distributions are practically iden-
tical. In the case of canrdr, execution time when UL2 is used exhibits somewhat
higher (still low) variation. This creates some pessimism for pWCET estimates,

1The probability distribution function (or PDF) gives the probability of each execution time
to occur. The cumulative distribution function (CDF) accumulates probabilities and the com-
plementary CDF or CCDF, is computed as 1-CDF.

98

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.7 External Results

as shown for the L1-L2 NIC setup, whose average performance resembles that of
the L1-L2 INC setup, but whose pWCET estimate for an exceedance probability
of 10−15 per run resembles that of the L1-L2 WB setup.

Finally, we observe how execution time observations for the single-level setup
for both benchmark are higher and exhibit much higher variability. This leads to
a right-shifted pWCET distribution with lower slope and thus, significantly higher
pWCET estimates.

6.7 External Results

In addition to the simulation results presented in the previous Section, in the
PROXIMA project we had the opportunity to evaluate a certain multi-level cache
configuration on a realistic industrial setup. In particular, as a result of industrial
cooperation inside PROXIMA, the proposals of this thesis have been implemented
in an RTL-implementation of a LEON3 processor [Hernandez et al. (2015)] [Kos-
midis et al. (2016b)].

The implemented memory hierarchy consists of two levels of cache similar to
the one presented in Figure 4.3. The L2 cache is unified and it is inclusive of
L1 instruction and data caches. The L1 data cache implements a write-through
policy, while the L2 is write-back. The size of each L1 cache is 16KB and the
size of the L2 is 128KB, each implemented as a 4-way set-associative cache, with
random placement and random replacement policy. The processor has 4 cores,
but the relevant results for this thesis presented below are obtained in isolation,
using the partition feature of the L2 cache, which assigns a cache way to each core.
Therefore, each core has exclusive access to a single cache way of 32KB.

For the evaluation, 4 industrial case studies have been used from the CRTES
domains of avionics, aerospace and railway [Agirre et al. (2016)]. The results vary
per application, however in 3 out of 4 case studies the difference between the
deterministic setup and the time-randomised configuration is around 10% for both
the average execution time and Maximum Observed Execution Time (MOET). For
one application (railway) the difference is higher, 40% for the average execution
time and 50% for MOET respectively.

It is important to note that the above overhead does not come exclusively from
the time-randomised cache hierarchy, but also from the deterministic upperbound-
ing of the floating point unit as introduced in Chapter 4 in order to guarantee the
same conditions at analysis and operation. Therefore, the lower execution times of
the deterministic platform need to be upperbounded with some (unknown) margin
to account for the possible different execution conditions during operation. As a
consequence, this not only results in a smaller actual difference between the per-
formance of the two platforms, but also shows that the measurements obtained on
the time-randomised configuration can be used with higher confidence.

99

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.8 Related Work

Finally, the time-randomised platform allows the easy computation of pWCET
estimations with a second level of cache, which contributes significantly in the re-
duction of both average and worst-case execution time as shown in the previous
Section. However, in current critical systems, even when the used processors fea-
ture a second level cache, as it is the case for the MPC755 in avionics [Wartel et al.
(2015)], it is disabled since its effect on the WCET cannot be safely predicted with
existing methods, sacrificing a significant amount of performance.

6.8 Related Work

The Background on Timing analysis and Cache memories in real-time systems
has been presented in Chapter 2. However, in this section we present related
work to multi-level caches and complex memory hierarchies. To the best of our
knowledge, multi-level cache hierarchies are deemed as hard to analyse and few
works have considered them [Hardy & Puaut (2008)][Lesage et al. (2009)]. In
[Hardy & Puaut (2008)] authors focus on instruction memory accesses on a 2-level
non-unified deterministic cache architecture, while in [Lesage et al. (2009)] authors
focus on data memory accesses on a non-unified cache hierarchy.

One commonality of all the approaches above is that they work on determin-
istic caches. One of the main characteristics of deterministic caches is that the
particular addresses in which objects (i.e. code and data) are located plays a
key role in cache performance. This makes that static cache analysis techniques
have to deal with an increasingly complex challenge, namely, determining the run
time addresses of each access, in addition to having an accurate model of the
underlying hardware, i.e. the cache in our case [Wilhelm et al. (2008)]. While
such information can be obtained for relatively simple programs, deriving run-
time addresses, in particular for data accesses, can be regarded as unattainable for
industrial-size applications [Mezzetti & Vardanega (2011b)]. Furthermore, hard-
ware efficiency imposes some constraints on cache design, such as using unified
second-level caches for data and instructions, considering different inclusion poli-
cies, and dealing with write-through and write-back caches as well as write-allocate
and non-write-allocate caches.

6.9 Summary

The increasing demand for performance in Critical Real-Time Embedded Systems
(CRTES) pushes for the adoption of high-performance features such as multi-level
cache hierarchies. However, deriving trustworthy and tight execution time upper-
bounds in the presence of such features is deemed as expensive – if at all possible.–

100

6. MULTIPLE LEVEL HARDWARE TIME-RANDOMISED
CACHES 6.9 Summary

Therefore, there is a need for low-cost industrial-viable means to determine trust-
worthy and tight Worst-Case Execution Time (WCET) estimates in the presence
of multi-level caches.

The advent of Measurement-Based Probabilistic Timing Analysis (MBPTA)
together with time-randomised caches has enabled the use of single-level cache
memories in an industrial context at low cost. In this chapter, we prove that
multi-level time-randomised caches are also MBPTA-compliant by showing that
the probabilities of the different events exist. In particular, and for the first time,
we enable the use of unified data and instruction second-level caches, implementing
different inclusion, cache-write and write-allocation policies without impacting the
cost of the WCET estimation. Our results show that 55% average pWCET reduc-
tions can be achieved by enabling the use of multi-level caches for CRTES, which
obviously decreases the hardware required to schedule critical tasks in CRTES.

101

Chapter 7

Dynamic Software Randomisation

7.1 Introduction

In the previous chapters we have discussed hardware solutions to enable MBPTA.
We have shown that those solutions simplify significantly the computation of the
pWCET and allow to efficiently analyse complex hardware such as memory hierar-
chies featuring several levels of cache, including unified caches which are possible
to be analysed for the first time. Moreover, those benefits are combined with
low impact on average performance, addressing the performance needs of future
CRTES in terms of both average and worst-case performance.

As explained in the external results of the previous chapters, recently, the hard-
ware proposals of this thesis have reached a particularly high Technology Readi-
ness Level (TRL) within the PROXIMA project. A hardware implementation of
a LEON3 MBPTA-compatible processor design at RTL-level has been validated
and evaluated on an FPGA level, and it is currently available for licensing by
Cobham Gaisler [Gaisler (2016)]. Moreover, the MBPTA-compatible features of
this processor can be enabled and disabled on will, leaving the choice to the user
to decide whether it is going to be used on an MBPTA-compatible mode or on a
deterministic setup.

Despite the success of the hardware solutions, the adoption of the proposed
hardware modifications by other CRTES semiconductor design firms, which may
target larger markets (e.g. automotive) or offer alternative processors in the same
markets, may take several years. In addition, the CRTES domain – especially
avionics – is traditionally fairly conservative, choosing typically older proven-by-
use hardware, whose properties are well understood by its experts. As a result,
this may increase significantly the adoption horizon of MBPTA. Moreover, new
hardware solutions cannot be used on legacy systems based on COTS processors.

In order to cover this gap and facilitate the adoption of MBPTA by the CRTES
industry, we propose equivalent software solutions, that can enable MBPTA on
existing hardware. To that end,

102

7. DYNAMIC SOFTWARE RANDOMISATION
7.2 Compiler and Runtime Support for MBPTA

in this chapter we extend the applicability of MBPTA to conventional hard-
ware, including direct-mapped and set-associative caches with deterministic place-
ment and replacement policies such as modulo and LRU respectively. We show
that the use of randomising compiler techniques that place object code and data
in random locations in memory suffices to provide both MBPTA requirements. In
particular, random software placement causes the execution time of the software
to become random between different executions, with i.i.d. properties preserved.
Moreover, it allows each instruction to have an ETP, similar to the hardware
solutions, which is the same at both analysis and operation phases of MBPTA,
complying with the second MBPTA requirement. Finally, we demonstrate empir-
ically that the randomisation comes at an affordable cost, thus making MBPTA
practical for the first time on conventional hardware.

7.2 Compiler and Runtime Support for MBPTA

A memory object refers to a memory entity, normally stored in consecutive memory
addresses (e.g., functions, basic blocks, data structures), which is manipulated by
a software component. These objects can be created off-line by the compiler and
the linker, or on-line by the program loader and runtime memory-related libraries.

We define a cache layout as the result of mapping all memory objects that
form a program into the N cache sets of the cache. Under each cache layout
of a program, memory objects conflict in a different manner in cache, which,
in combination with the replacement policy, may potentially result in different
execution times for the program.

Given a set of memory objects and a fixed sequence of memory accesses, deter-
ministic cache designs generate a single cache layout due to deterministic place-
ment, mapping objects into the exact same cache sets on every execution, and the
same sequence of accesses in each cache set due to deterministic replacement. As
a result, the execution time does not vary across program invocations1 as long as
(i) objects are always placed in the same memory location and (ii) the same input
data set is used, under which a single path in the program is exercised.

Therefore, forcing randomised timing behaviour on conventional caches, re-
quires the assistance from a specialised compiler and runtime system that ran-
domises the location of objects in memory, and so the cache layout, before execu-
tion begins. For the sake of clarity, we first assume that caches are direct-mapped
with modulo placement, so there is no replacement policy. We next generalise our
approach by considering set-associative caches implementing a replacement policy.

1We consider that other activities, e.g. OS noise, are not considered at WCET analysis but
at system integration.

103

7. DYNAMIC SOFTWARE RANDOMISATION
7.2 Compiler and Runtime Support for MBPTA

Figure 7.1: Different cache locations of functions fa and fb in a direct-mapped
cache implementing a modulo placement policy. Red (shaded) locations correspond
to cache conflicts among the two functions.

7.2.1 Random Location of Memory Objects

The location of memory objects in random memory positions has the effect of
leading deterministic direct-mapped caches to behave similar to random ones. The
reason is that randomised layouts lead the cache set to be randomly selected at
every new memory allocation, mimicking the behaviour of a random placement
policy and so generating random cache layouts across program invocations.

Consider a program formed by a loop in which two leaf functions are called: fa
and fb, each composed of sequential code. Assume that we execute this program on
a processor with a direct-mapped cache implementing a modulo placement policy,
and that the total size of the two functions is smaller than the cache size.

Figure 7.1 shows three different possible cache layouts. In Figure 7.1(a) the
two functions are placed in consecutive memory positions that do not collide with
each other, thereby having no cache conflicts among objects (inter-object conflict).
However, if they are placed in memory positions such that the modulo function
makes two pairs of addresses from the two functions collide into the same cache set,
the effectiveness of the cache will be decreased because of inter-object conflicts, as
shown in Figures 7.1(b) and 7.1(c). Randomly mapping memory objects results
in random cache layouts, each leading to potentially different execution times.

Note, however, that cache conflicts within memory objects (intra-object con-
flicts) are deterministic. For instance, if the size of fa size exceeds the size of the
cache, some of its cache lines would be mapped into the same cache set and would
conflict. MBPTA requires execution times collected to capture the behaviour of
the program under analysis. Such behaviour can manifest in only two ways: (i)
constant or (ii) probabilistic, because deterministic non-constant behaviour cannot
be modelled with probabilities. If memory objects are defined at a granularity (e.g.,
function code, stack data) so that their internal layout cannot change, all runs of
the program will have identical intra-object conflicts and so variation on execution
time will be only produced due to random placement of objects in memory.

104

7. DYNAMIC SOFTWARE RANDOMISATION
7.2 Compiler and Runtime Support for MBPTA

7.2.2 Formal Justification for Applicability of MBPTA

MBPTA requires the existence of an ETP for each instruction [Cucu-Grosjean
et al. (2012)]. We now argue why randomised layouts guarantee the existence
of an ETP for each instruction i accessing to a given cache line, i.e. ETP (i) =
{lhit, lmiss}{1− Pmissi , Pmissi}.

A memory operation i accessing cache line ca belonging to object a will conflict
in the cache if there exists another cache line cb belonging to another object b that
is mapped into the same cache set. A modulo placement policy uses some index
bits of the memory address to identify the cache set. This approach logically
divides the address space into M

N
different chunks, where M is the total memory

size divided by the cache line size. Within each chunk, memory addresses are
mapped to the N cache sets in the same manner. Therefore, the memory chunk in
which a memory object is placed is not relevant, but the offset within the chunk.
Thus, if we randomly place those objects with respect to memory chunk boundaries
(either in a new chunk or in an already in-use chunk if objects do not overlap),
inter-object conflicts will occur randomly, and each object will have exactly 1

N

different placements with respect to the cache (memory objects must be aligned
to cache line boundaries, which is usually the case).

Hence, assuming an arbitrary sequence of memory accesses to cache lines
ca, cb1 , cb2 , · · · cbm , ca belonging to objects a, b1, b2, · · · bm, a respectively, the proba-
bility that the second access to ca is a miss is Pmiss(i) = 1−

(
N−1
N

)m
, where N−1

N
is

the probability that a particular cache line is not placed into a particular cache set
and m is the number of unique cache lines accessed in between the two accesses
to the cache line ca.

As a consequence, each execution of the program results in a potentially differ-
ent cache miss count since different execution times occur with different probabil-
ities, as a consequence of the fact that program instructions have ETP describing
their timing. Thus, this results in a random total execution time. Moreover, since
each program execution is independent of the other executions, and the placement
of the objects in memory is random, the resulting execution time has i.i.d. prop-
erties. Provided that software randomisation is not only used at analysis time,
but also during operation, the ETP of each instruction exists at both MBPTA
phases. In addition, those ETPs have exactly the same values across those phases,
hence satisfying the second MBPTA requirement, that requires events at analy-
sis to upperbound or match – in a probabilistic manner in the particular case –
the events occurring during operation. Therefore, software randomisation satisfies
both MBPTA requirements.

105

7. DYNAMIC SOFTWARE RANDOMISATION
7.2 Compiler and Runtime Support for MBPTA

Figure 7.2: Cache locations and layouts of functions fa and fb in a deterministic
two-way set-associative cache. Red regions denote the cache way conflicts between
the two functions.

7.2.3 Effect of Replacement Policy

A cache with a deterministic replacement policy can be made to behave as if it
was using random replacement by randomising the order of memory accesses to
each particular cache set. Random layout changes the mapping of objects to sets
on each execution, thus randomising the order of accesses to each cache set in a
random (and thus probabilistic) way.

This effect is illustrated in the following example. Figure 7.2(a) shows the cache
layout of placing fa (left) and fb (right) into a two-way set-associative cache. None
of the functions has a sequential structure and so they allocate two lines in some
cache sets, and only one or zero lines in other sets. This example reflects the cache
utilisation of the dynamic invocation of functions when some parts of the code can
be skipped due to jump instructions.

When the two functions are co-located in the same cache (Figures 7.2(b) and
(c)), cache lines belonging to fa and fb may conflict in some cache sets. Such
conflicts will depend on where functions have been randomly placed. Thus, if
functions are located as shown in (b), there will be conflicts in 3 cache sets (marked
in red), as 3 or 4 different cache lines are candidates for only two ways. This is
not the case for the last cache set, in which cache lines belonging to fa and fb fit.
Instead, if functions are located as shown in (c), there will be conflicts in only 2
cache sets (marked in red), different from the ones that occur in (b).

As shown, random layout of memory objects randomises the cache lines from
each object colliding into each set, so the accesses to each cache set (those de-
termining the behaviour of deterministic replacement policies such as LRU) will
be determined by random events (the particular random layout). This ensures
that inter-object conflicts do not occur deterministically, and their effects can be
captured by ETPs.

106

7. DYNAMIC SOFTWARE RANDOMISATION
7.2 Compiler and Runtime Support for MBPTA

Note that using a hybrid solution, combining randomised layout with hardware
random replacement, would also cause both inter- and intra-object conflicts to
occur probabilistically but would increase the degree of randomisation [Cobham
Gaisler (2011)] [ARM (2006)].

7.2.4 Randomising Compiler and Runtime System

Dynamic Software randomisation performs the randomisation of memory objects
dynamically at runtime, using Stabilizer [Curtsinger & Berger (2013)]. This tool
is composed of a combination of a compiler pass (using LLVM [Lattner & Adve
(2004)]) that modifies appropriately the application’s code and a runtime system
that is in charge of performing the relocation of objects in memory. Stabilizer
uses the DieHard memory allocator [Berger & Zorn (2006)] as the basis of its
runtime system to perform efficient (O(1)) dynamic layout randomisation. The
entire process is applied in user space, however some support from the operating
system is required.

The memory objects whose location can be randomised are code (functions),
stack frames, global data and dynamically allocated objects from heap.

In code randomisation, the compiler pass keeps track of the functions that
are going to be relocated during the program’s execution. These functions are
visited during program start-up and a trap generating instruction is placed in
their beginning. Whenever a function is visited, the generated trap is assigned
to a signal handler which performs the following actions: allocates memory in a
random location for the function, copies the code of the function and replaces the
first instruction of the original location of the function with a jump to the new
function location. Therefore all new calls to the function are redirect to the new
random location.

Stack randomisation is implemented by making the stack non-contiguous. The
compiler pass inserts code in each function’s prolog and epilog, which adjusts the
stack frame with an offset (ranging between 0 and the way size of the largest cache
of the memory hierarchy) read from a table assigned to this function. This table is
initialised in the program start-up with a random positive value, which randomises
the location of the stack frame’s initial address.

Global data are randomised at program’s start up, using redirection tables.
The random placement of dynamically allocated objects from the heap is im-

plemented using a random memory allocator (Die-Hard). The same allocator is
used for the all the dynamic allocations used by runtime (code, global data).

In all cases, the random offset introduce among objects, i.e. functions, stack,
global data and dynamic memory, ranges between 0 and at least the way size of
the largest cache of the memory hierarchy.

107

7. DYNAMIC SOFTWARE RANDOMISATION
7.2 Compiler and Runtime Support for MBPTA

7.2.5 Detailed Implementation Description

Code randomisation: The randomisation of functions is done by relocating
each function’s code into a random memory location at program startup time.
A Relocation Table (RT) is placed at the end of each new relocated function to
identify the addresses of all globals and functions accessed by the relocated function
(see Figure 7.3). Stabilizer’s [Curtsinger & Berger (2013)] compiler transformation
rewrites all accesses to globals and other functions to indirect accesses through the
RT. Figure 7.3 shows an example of two functions fa and fb with the latter calling
the former (dotted line). The Figure also shows the layout of the functions once
reallocated. Function relocation is carried out in two phases:

Figure 7.3: Randomisation of code frames of functions fa and fb into the main
memory.

• Initialisation-Relocation. At program startup, the Stabilizer runtime library
allocates, for each function and in a random location, a sufficiently large block
of memory from the DieHard [Berger & Zorn (2006)] allocator and copies its
code to this location. The runtime then generates a RT immediately after
the new function location, with all entries pointing to the original locations
of any called functions and globals.

108

7. DYNAMIC SOFTWARE RANDOMISATION
7.2 Compiler and Runtime Support for MBPTA

Figure 7.4: Randomisation of stack frames of functions fa and fb into the main
memory.

• Redirection. Then, Stabilizer overwrites the first instruction of the original
function location with a static jump to the new location. This forwards all
future calls to the random function location.

Stack Randomisation: Stabilizer randomises the stack by making it non-
contiguous. Stabilizer allocates a block of memory for every <function,nesting
level> pair, with the allocation being done at function call time. Hence, if under
the main function we have the sequence of calls fa(); fb(); fa();, on the first call
to fa() stabilizer allocates a block, which is not deallocated and reused for the
second call to fa(). If a function is called nestedly (e.g., fa() calls fa()), Stabilizer
allocates a new block of memory for every recursion level.

Every function has a depth counter and frame table that maps the depth to the
corresponding stack frame (see Figure 7.4). The depth counter is incremented at
the start of the function and decremented just before returning. On every call, the
function loads its stack frame address from the frame table. If the frame address
is null, the Stabilizer runtime allocates a new frame.

Global/static Variables Randomisation: Globals1 location can be ran-
domised analogously to function code at program startup and access to globals is
then performed through indirections and pointers.

1We refer to global and static variables as globals for the sake of convenience.

109

7. DYNAMIC SOFTWARE RANDOMISATION
7.3 Results

7.3 Results

7.3.1 Experimental Setup

All measurements presented here are conducted on the simulation environment
described in Chapter 3, modelling a single level memory hierarchy composed of
separate instruction and data caches and main memory. Both caches model a
conventional 4KB set-associative cache with 8 ways, 32 sets and 16-byte line size,
implementing a modulo placement policy with LRU or random replacement policy.

The data cache implements a write-through, no-allocate write policy. The only
source of execution time variation in the processor is the cache, which in both
instruction and data has a hit latency of 1 cycle and miss latency of 100.

In this chapter we selected to present only a subset of the EEMBC Autobench
benchmark suite [Poovey (2007)] for evaluation: a2time01, cacheb01 and puw-
mod01, in order to demonstrate the different types of behaviour that software can
experience in term of pWCET distributions. In later Chapter (Section 9.3 and
Figures 9.4 and 9.5 we present detailed results for all benchmarks, using a cut-off
probability of 10−15 per run for comparison with the proposed software randomisa-
tion variant of that chapter). To compute pWCET estimates, we use the method
in [Cucu-Grosjean et al. (2012)].

7.3.2 Independence and Identical Distribution Tests

In order to test independence and identical distribution, we use the Wald-Wolfowitz
independence test [Bradley (1968)] and the two-sample Kolmogorov-Smirnov iden-
tical distribution test [Boslaugh & Watters (2008)] as described in [Cucu-Grosjean
et al. (2012)]. We have evaluated i.i.d. properties for the three benchmarks un-
der analysis considering two cache configurations implementing modulo placement
and LRU replacement policies (labelled as mod+lru) and modulo placement and
random replacement policies (labelled as mod+rr). For all cases, the p-values ob-
tained (not shown due to space constrains) pass the tests (p − value > 0.05 for
identical distribution and p−value < 1.96 for independence), indicating that both
cache configurations provide i.i.d. execution times when we randomise function
and stack layout.

7.3.3 pWCET Estimates

Figure 7.5 shows the pWCET estimates obtained with MBPTA [Cucu-Grosjean
et al. (2012)] for a2time (a), cacheb (b) and puwmod (c), considering our two cache
configurations. In all cases, we require less than 1,000 runs to project the tail.

110

7. DYNAMIC SOFTWARE RANDOMISATION
7.3 Results

(a) a2time01 (b) cacheb01

(c) puwmod01

Figure 7.5: pWCET estimations of caches implementing modulo + LRU and mod-
ulo + random replacement (labelled as mod+lru and mod+rr respectively).

The effect of using a random replacement policy instead of LRU replacement
policy depends on the program. If we consider the pWCET estimates at an ex-
ceedance probability of 10−15, random replacement increases the pWCET estimate
of puwmod by 5% over LRU. However, for a2time, random replacement reduces
the pWCET estimate by 2% over LRU. For cacheb, there is almost no variation in
pWCET estimates between random and LRU replacement policies (less than 1%).

111

7. DYNAMIC SOFTWARE RANDOMISATION
7.4 External Results

These results support the analysis of Section 7.2: software randomisation makes
it possible to apply MBPTA without requiring additional hardware support such as
a random replacement policy. Nonetheless, the use of a random replacement policy
remains desirable as it further randomises inter-object and intra-object conflicts.

7.3.4 Overhead

Our software randomisation approach introduces some overhead due to the relo-
cation of functions and stacks. The former copies each function to a new location.
The latter causes each function call to move the stack to a new location.

In order to understand the impact on pWCET estimates, we repeat the same
experiment as in the previous section but on top of a FA-RR cache, where software
randomisation has no effect on timing behaviour. As a result, the pWCET estimate
increment observed with respect to not applying software randomisation is only
due to the overhead. We have designed a specific synthetic benchmark consisting
of a loop which contains calls to four distinct functions. This structure is very
similar to EEMBC.

When considering the pWCET estimate increment at an exceedance probability
of 10−16 of the synthetic benchmark when applying both function and stack random
memory location, we observe that, as we increase the number of iterations, the
compiler overhead is reduced, as the relative impact of the initialisation part is
reduced. Executing only 100 iterations, the software approach increases pWCET
estimates by almost 10x. Such an increment is reduced to 2x when executing 1,000
iterations and only 66% when executing 10,000 iterations.

7.4 External Results

In addition to the results obtained in the scope of this thesis and presented so
far in this Chapter, we have also evaluated the proposed dynamic randomisation
technique in the the context of the FP7 projects PROARTIS and PROXIMA in
collaboration with industrial partners.

In particular in [Wartel et al. (2015)] two avionics case studies have been eval-
uated on top of the simulation environment we have developed in this thesis and
described in Chapter 3, implementing a conventional PowerPC 750 processor. This
work demonstrates the applicability of our dynamic software randomisation solu-
tion in large scale applications deployed in IMA systems.

According to the obtained results, our method is able to provide the i.i.d.
properties which are required for the MBPTA applicability and the estimated
pWCET is tighter than the ones obtained with the current industrial practice of
20% margin on top of the maximum observed execution time (MOET). In fact the
pWCET is found to be only 12.2% higher than the MOET. Moreover, the average

112

7. DYNAMIC SOFTWARE RANDOMISATION
7.4 External Results

performance degradation with respect to the non-software randomised application
variant is between 0.7% and 12% for each application respectively. Finally, this
work performs a comparison between hardware and software randomisation on
these avionics application. The overhead of software randomisation with respect to
the hardware randomisation is only 10.9% higher. This way we show that although
hardware solutions are more efficient, software randomisation is competitive and
less intrusive as the hardware can remain unchanged.

In the context of the PROXIMA project, our dynamic software randomisation
technique has reached a high Technology Readiness Level (TRL) by being ported
and evaluated on several COTS platforms and industrial real-time operating sys-
tems. In particular the dynamic software randomisation has been ported to the
SPARC v8 ISA, supported by the LEON3 processor as well as to the PowerPC-
based P4080. Moreover it has been integrated with numerous personalities of
a commercial real-time operating system developed by SYSGO (PikeOS native,
PikeOS RTEMS, PikeOS ARINC 653 and RTEMS-SMP) on both hardware plat-
forms.

For the evaluation, four industrial case studies have been executed on the
LEON3 platform, the same ones used for the external results provided for the
hardware solutions in Section 6.7, while on the P4080 only the two avionics case
studies – the same ones with [Wartel et al. (2015)] – have been evaluated [Agirre
et al. (2016)]. The results from the evaluation of the aerospace case study have
been also published in [Kosmidis et al. (2017)].

Apart from the particular microarchitecture (pipeline stages, in-order/out-of-
order, branch prediction, instruction and data cache sizes, etc), the only difference
between the architecture considered in the previous section and those hardware
platforms is the presence of a second level unified cache. Similarly to the case of
the multilevel hardware designs introduced in Chapter 6, software randomisation
works also in the presence of multiple levels of cache, providing ETPs for each
instruction. From the implementation perspective, software randomisation needs
to consider random placement in chunks equal to the larger cache way of the
available caches, which is the last level cache in both considered platforms.

In general, results on both COTS platforms are in line with the evaluation
presented in this Chapter [Agirre et al. (2016)]. In all the cases software randomi-
sation was able to provide identically distributed execution times, but in few cases
the independence test has been failed. This was the case for some small tasks
(functions) under analysis which fit perfectly in the cache, so that software ran-
domisation was not able to create enough variability in the small number of the
different placements experienced in cache. In terms of performance, the obtained
pWCET estimates with MBPTA were lower than the current industrial practice
of adding a 20% margin over MOET or very close to it.

113

7. DYNAMIC SOFTWARE RANDOMISATION
7.5 Related Work

Regarding the comparison of the FPGA hardware randomised LEON3 versus
the software randomisation on the FPGA COTS LEON3, the measurements con-
firm the results obtained with our simulation platform [Wartel et al. (2015)]. In
particular, software randomisation has a higher overhead compared to the hard-
ware solutions, but it is within an affordable range. Interestingly, in the space
case study, software randomisation provided higher average performance than the
deterministic execution, due to an 1% increase in the cache hit ratio. This was
a result of the default memory layout of the application, which happened to be
problematic, and software randomisation allowed to explore better cache layouts
yielding higher performance despite the additional redirections used at runtime.

Despite the small overhead introduced by software randomisation, current
CRTES already experience significant performance loss from disabling second level
caches and the addition of engineering margins over MOET. However, software ran-
domisation and the use of MBPTA which it enables, allow CRTES to get higher
performance out of existing COTS hardware, while providing high confidence over
the obtained pWCET estimations.

To sum up, software randomisation has been proven as a good alternative when
hardware solutions cannot be applied and can be a significant MBPTA enabler to
industrial systems, until MBPTA-compliant hardware is available.

7.5 Related Work

Dynamic software randomisation has found several applications in the literature.
Bhatkar et al. [Bhatkar et al. (2005)] introduce stack randomisation as a method for
thwarting stack-smashing based security exploits. Berger and Zorn’s DieHard sys-
tem [Berger & Zorn (2006)] randomises the layout of objects on the heap to provide
probabilistic memory safety, tolerating memory management errors. Mytkowicz
et al. [Mytkowicz et al. (2009)] show that the memory layout may degrade a pro-
gram’s performance by as much as 300%, and propose a random function layout in
memory, varying the link and the size of environmental variables. Curtsinger and
Berger [Curtsinger & Berger (2013)] propose dynamic software randomisation as a
means of performance evaluation, in order to isolate the effect of statistically rel-
evant data from platform noise, showing that the performance difference between
-O2 and -O3 optimisation levels in the LLVM is indistinguishable from noise.

Despite the popularity of software randomisation in the fields of security and
high performance, it has not found any applicability in CRTES, where WCET of
the program must be derived and deterministic behaviour has traditionally been
considered the ideal. Therefore, our proposal for using software randomisation in
order to enable the use of MBPTA on COTS hardware is the first work of this
kind in the CRTES literature.

114

7. DYNAMIC SOFTWARE RANDOMISATION
7.6 Summary

7.6 Summary

This chapter presents an approach that extends the applicability of MBPTA to
conventional cache designs, e.g. implementing modulo placement and both LRU
and random replacement policies, via a software-only randomising compiler and
runtime system. Placing functions and stack frames in random memory locations
causes deterministic modulo placement policies to exhibit the same behaviour as a
random placement policy, yielding observed execution times that satisfy both prop-
erties required by MBPTA: a) they are independent and identically distributed
(i.i.d.) and b) they follow the same probabilistic behaviour at both analysis and
operation. We provide a formal argument explaining how software randomisa-
tion enables the derivation of execution time profiles (ETPs) for each memory
operation. Finally, we empirically show that software-only randomisation causes
deterministic caches to behave as if they were random, making it possible to use
MBPTA on top of conventional hardware.

115

Chapter 8

Static Software Randomisation at
Compiler/Linker Level

8.1 Introduction

In the previous chapter, we proposed dynamic software randomisation as a manner
to enable MBPTA to be used on conventional hardware. We have shown that this
technique has reached a significantly high TRL inside the PROXIMA project, and
that it has been evaluated in industrial setups. However, the dynamic software ran-
domisation cannot be applied on certain architectures that prevent self-modifying
code, such as the ones used in the automotive domain. Moreover, the presence of
self-modifying code and pointer redirections, require additional effort for the verifi-
cation and validation (V&V) in particular CRTES domains, which can potentially
increase the cost of adopting those solutions.

In order to cover this gap, in this chapter we propose a new approach to soft-
ware randomisation in which randomisation is performed statically. While dynamic
software randomisation (DSR) relies on including some randomisation code in the
program executable so that, every time the program is invoked, memory objects
are randomly placed, static software randomisation (SSR) relies on generating
several binaries for the same program. In each binary memory objects are shifted
appropriately to produce the same effect as if those objects are placed at random,
yet statically determined, locations at runtime. By using SSR, modifications on
the binary introduce neither indirections nor extra pointers. As a consequence,
functional verification remains no more complex than without software randomi-
sation, requiring a qualified compiler that generates the SSR binaries. Analogously
to DSR, SSR allows computing the probability that a given arrangement of objects
in memory leads to a timing violation.

116

8. STATIC SOFTWARE RANDOMISATION AT
COMPILER/LINKER LEVEL 8.2 Static Software Randomisation

8.2 Static Software Randomisation

This section introduces how DSR challenges functional verification, and how this
problem is addressed by our SSR techniques. We also review the implications of
performing SSR.

8.2.1 Functional Verification of Software

Programs implementing safety-related functions need to meet ISO26262 stan-
dard [International Organization for Standardization (2009)] requirements in the
automotive domain. Rigor is needed to meet standard requirements, and thus, a
number of software design principles are listed in those standards to facilitate a suc-
cessful software functional verification. Among those principles, in the ISO26262
we can find the following ones: (i) a limited use of pointers, (ii) recommendations
against the use of dynamic objects, and (iii) no hidden data flow or control flow.
This is particularly true for the highest safety levels (e.g. ASIL-C and ASIL-D).

DSR challenges functional verification of software in different ways. First,
indirections for functions, stack frames and global/static variables occur through
pointers. Second, functions (code), globals and stack frames use dynamic objects
allocated by the DieHard [Berger & Zorn (2006)] allocator. And third, data and
control flow occurs through pointers, thus making it non-obvious.

As a consequence, generating use cases for software testing is challenging as the
analysis of boundary values and error guessing, as listed in ISO26262, is hard when
pointers and dynamic objects are used. Furthermore, the fact that functions are
copied dynamically in new memory locations, thus writing code in data memory
segments for its later execution, makes programs have self-modifying code, which
some architectures may not support as the memory management unit may prevent
memory pages in the data segments from being fetched for their execution.

8.2.2 Static Code Placement Randomisation
(SSR-code)

DSR-code relies on placing functions (code) at random locations every time the
program is run. For that purpose, functions are compacted in the binary (no empty
space between functions) and they are copied to the desired random locations when
the program is run. Such an approach increases the memory space needed in the
data segments at runtime to copy the code, but the size of the binary is increased
negligibly to include the function copy code and indirect function calls.

In the case of our new SSR-code, random locations for functions are determined
statically at compile time and such locations are already reflected in the function
layout in the binary. This could be done by simply introducing some random shift

117

8. STATIC SOFTWARE RANDOMISATION AT
COMPILER/LINKER LEVEL 8.2 Static Software Randomisation

(1) Input: F function list
(2) WS = cache way size (bytes)
(3) LS = cache line size (bytes)
(4) Fplace = ∅
(5) for i = 1 until cardinality(F) do

(6) pad =
(
random() mod WS

LS

)
· LS

(7) Fplace = Fplace
⋃
{F, sizeof(F), pad}

(8) end for
(9) Align = 0
(10) Binary = empty file
(11) While Fplace 6= ∅ do
(12) MinPad = WS
(13) for i = 1 until cardinality(Fplace) do
(14) Waste = (Fplace(i)→pad + WS −Align) mod WS
(15) if Waste ≤MinPad then
(16) Best = Fplace(i)
(17) MinPad = Waste
(18) end if
(19) end for
(20) Binary = append(Binary,MinPad,Best)
(21) Align = (Best→pad + Best→size) mod WS
(22) Fplace = Fplace −Best
(23) end while
(24) Return: Binary

Figure 8.1: Algorithm to randomly place functions in the binary.

(padding) between functions; however, this would increase binary size inordinately.
In order to achieve the same effect efficiently, a number of steps must be taken to
place functions randomly while minimising the size of the binary. Those steps are
described in the algorithm in Figure 8.1.

We assume a cache deploying modulo placement as it is one of the most common
placement functions. Given a cache of CS bytes with W ways, the size of a way is
given by WS = CS

W
. Given a function whose initial (instruction) address is @A, its

first instruction will be placed in cache set SA =
⌈
@A mod WS

LS

⌉
where LS is the line

size in bytes. Note that, if we shift the initial address by WS, @A +WS, the first
instruction will still be placed in SA. Further, no assumption is made regarding
the cache line alignment of instructions. Their original alignment with respect to
the cache line is preserved when introducing a random shift if its size is a multiple
of the cache line size.

118

8. STATIC SOFTWARE RANDOMISATION AT
COMPILER/LINKER LEVEL 8.2 Static Software Randomisation

Given the function list (F), we traverse it computing a random offset (or
padding) for each function that determines its alignment w.r.t. the beginning
of the cache way (lines 5-8). This padding (pad in the figure) is a multiple of the
cache line size1. Fplace is a tuple containing the function, its size and the padding
assigned to that function.

Once each function has its own padding (offset), any given function ki can be
described as a contiguous memory area whose first instruction is mapped to set
Sinit
ki

and whose last instruction is mapped to set Slast
ki

. The algorithm then looks
for the function k0 whose Sinit

k0
is the closest to 0 (or even 0). Once this function

is placed in the binary, the algorithm looks for a function, from the list of not-yet-
allocated functions, k1, whose initial set is as close as possible to the set in which
the last instruction of k0 was assigned (lines 13-19). That is, the algorithm reduces
the wasted space between Slast

ki
and Sinit

ki+1
(lines 15-18). Note that the problem of

minimising the total padding in-between functions is a NP-complete problem. In
the algorithm, once each function has its own offset with respect to the first set
of a cache way, we initialise the next alignment available (line 9) that can be
used to place a function and the binary (line 10). Then, we traverse the set of
functions, which includes their respective sizes and paddings (line 11). We initialise
the minimum padding found to the largest value possible in line 12 (the size of a
cache way). For each function in the set (line 13) we compute how much space
would be wasted in between this function and the last one placed in the binary
if we placed the current function next (line 14). If such wasted space is equal or
lower than the smallest one found (line 15), then we pick the current function as
the best candidate to be placed next (line 16) and update the minimum padding
found (line 17). Once all functions have been examined and the best candidate
found, we append such function to the binary adding the corresponding padding
(line 20), update the alignment desired for the next function to be placed (line 21)
and remove the function placed from the set (line 22). This process repeats until
all functions are placed and the layout of all functions in the binary is obtained.
The algorithm we propose for SSR-code is a greedy algorithm whose cost is O(N2)
w.r.t. the number of functions.

Once the functions are conveniently arranged in the binary, their initial ad-
dresses are fully known and can be used for calling them, as in a non-randomised
program. Therefore, indirections needed for DSR-code are no longer needed. More-
over, since functions do not have to be written into the data memory space, as it
is the case for DSR-code, which relies on self-modifying code, memory protection
is not challenged. Instead, instructions are fetched only from the code segment.

1We assume that functions are cache line aligned as this improves spatial locality, although
SSR-code is not limited to this assumption.

119

8. STATIC SOFTWARE RANDOMISATION AT
COMPILER/LINKER LEVEL 8.2 Static Software Randomisation

Figure 8.2: pWCET distribution in processor cycles for an industrial program.

8.2.3 Static Stack Frame Randomisation
(SSR-stack)

While functions exist in the binary, stack frames are created dynamically. In a
non-randomised binary, the stack frame for a new function call is created right
after the last stack frame. DSR-stack, instead, allocates stack frames in random
locations and uses them to break such determinism. However, the location of those
stack frames is unknown statically.

To make the location of randomly allocated stack frames known at compile
time, we propose SSR-stack which, just before allocating a new stack frame, adds
a random padding in the stack frame, computed at compile time. The added
padding, as for the case of functions, ranges between 0 and the size of a cache
way (WS) since address placement in cache wraps up beyond the cache way size.
By doing so, stack frame placement is random and different across functions with
SSR-stack as it is the case for DSR-stack. Note that, unlike DSR-stack, SSR-stack
imposes that nested calls to the same function use the same (random) padding.
Although this decreases the degree of randomisation (nested calls use the same
padding value), padding is still random across different images (binaries) so i.i.d.
properties across images still hold as needed by MBPTA.

SSR-stack adds to each function an instruction that decreases the stack pointer
by padding bytes. Since the value of padding is known at compile time, no extra
pointers are used and all addresses can be determined as in a non-randomised
binary, thus not increasing functional verification complexity.

120

8. STATIC SOFTWARE RANDOMISATION AT
COMPILER/LINKER LEVEL 8.3 Deploying DSR and SSR

8.2.4 Static Global/Static Variable Randomisation (SSR-
globals)

As indicated before, the case of globals is analogous to that of functions. Therefore,
the algorithm in Figure 8.1 can also be used to randomise the location of globals.
If globals are placed in different segments (i.e. .data and .bss segments), then
the algorithm must be applied individually to each segment. Still, the complex-
ity of the problem is the same as for code since objects characteristics are fully
known at compile time and hence, their location in the binary can be randomised
analogously.

8.3 Deploying DSR and SSR

In this section we study the impact of deploying DSR and SSR in an automotive
computing system, which requires understanding the pWCET estimates obtained
with MBPTA. Figure 8.2 shows the pWCET obtained for a representative pro-
gram [Wartel et al. (2013)]. The X-axis shows time, with the scale not starting
at 0, and the Y-axis probabilities in logarithmic scale. The function represents
the pWCET estimate for the program. We observe that the pWCET function
has a steep gradient. This means that the increase in pWCET experienced when
decreasing the cutoff exceedance probability is small. For instance, the increase in
pWCET from 10−12 to 10−16 is less than 1%1.

8.3.1 DSR

With DSR, code and data placement are randomised across executions of the
binary of a program, so that the exceedance probabilities of the pWCET estimates
obtained for that program apply at the end-to-end run granularity. For instance,
an exceedance probability of 10−16 implies that an execution of the program can
exceed the corresponding pWCET estimate with at most that probability for that
execution instance alone. In order not to exceed a timing failure rate per hour (e.g.,
10−16), if the program is executed, for instance 103 times per hour, the system
designer should choose as pWCET estimate the value at exceedance threshold
10−19, so that it is guaranteed probabilistically that the accumulated timing failure
rate of all instances of execution of the program in one hour is below 10−16.

1To appreciate how small the 10−16 cutoff probability is, consider that Extinction Level
Events (ELE), such as an asteroid hitting the Earth, are estimated to happen about once every
100 million years, hence at an arrival rate of 10−16 per second, or 10−12 per hour.

121

8. STATIC SOFTWARE RANDOMISATION AT
COMPILER/LINKER LEVEL 8.4 Evaluation

8.3.2 SSR

With SSR, code and data placement are randomised across images (binaries).
Thus, i.i.d. properties are attained at image level rather than at end-to-end run
granularity. Thus, timing failures apply at the granularity of binary instead of at
end-to-end run granularity. In order to derive pWCET estimates with MBPTA,
during the analysis phase, SSR deploys an automated approach in which N exper-
iments are run, each with a different binary. The collected execution time from
each run is fed to MBPTA to derive a pWCET estimate. Note that N is in the
order of hundreds as shown in previous studies [Cucu-Grosjean et al. (2012)[Wartel
et al. (2013)].

For the system operation (in contrast to analysis, the two phases in MBPTA
applications as introduced in Section 4.3.1) there are two different approaches
possible for SSR: (i) deploying a different binary in each system or (ii) deploying
one of such binaries in all systems.

SSR with different binaries per system unit : In this approach the probability
of timing failure of the program per system unit deployed is independent across
units. If the pWCET of the program is not to be exceeded with a probability
higher than 10−22 and 106 units are delivered, there is a probability of 10−16 of
exactly one system in which that program binary experiences timing failures and
10−32 that it would happen in two different units. The downside of this approach
is that it implies each unit having a different binary1, which may not be acceptable
if each individual unit is not fully tested.

SSR with the same binary : In this approach a single binary is generated with
SSR and deployed in all systems. Then, if the binary exceeds the pWCET, it may
do so in all units. However, this can be made to occur with negligible probability,
in the same order of probability of an Extinction Level Event (ELE) to occur.
Hence, if for instance, the pWCET is not to be exceeded with a probability higher
than 10−16 it is much more likely to experience an ELE than a timing failure.

8.4 Evaluation

In this section we evaluate the overheads introduced by SSR. Since SSR is per-
formed statically, there is no need to link any runtime library as it is the case for
DSR. Finally, performance overheads have been inferred from the application of
DSR on the cycle-accurate execution-driven simulator we developed for this thesis
and described in Chapter 3 modeling a conventional memory hierarchy composed
of first level separated instruction and data caches (1 cycle hit, 100 cycles miss),

1As binaries are randomly generated, it can be the case that different units get identical
binaries, although this is highly unlikely to occur.

122

8. STATIC SOFTWARE RANDOMISATION AT
COMPILER/LINKER LEVEL 8.4 Evaluation

Table 8.1: Binary size overheads for the case study.

Way size 1KB 2KB 4KB 8KB

Code 4,866,386 4,923,387 5,040,105 5,288,843

% increase 2.8% 4.0% 6.5% 11.7%

Data 673,145 693,159 734,608 815,765

% increase 4.1% 7.2% 13.6% 26.1%

Code+data 5,539,531 5,616,546 5,774,713 6,104,608

% increase 2.9% 4.4% 7.3% 13.4%

and main memory. Both instruction and data caches are 8KB 8-way set-associative
with 32B lines. Both caches implement modulo placement and LRU replacement
policies. The data cache implements a write-through, no-allocate write policy.

8.4.1 Memory Overheads

SSR-code and SSR-globals

SSR-code and SSR-globals are the main source of memory overheads when applying
SSR. As shown in Section 9.2.2, some space is left between functions (and also
between globals) in the binary so that their placement in cache is random. Next we
analyse the overheads incurred when applying SSR-code to an industrial-size (case-
study) application [Wartel et al. (2013)]1. This application consists of around 5,000
functions whose sizes range between few bytes and 300KB. The total size of those
functions is 4.7MB if they are enforced to be aligned with cache line boundaries
assuming a cache line size of 32B. To analyse the sensitivity of SSR-code to cache
way size we consider cache way sizes of 1KB, 2KB, 4KB and 8KB. Table 8.1
reports the average size in bytes of the code segment obtained for each way size
for 1,000 different static software randomisations of the application together with
the relative size increase w.r.t. the original code segment size. Maximum values
are relatively close to the average , thus proving the stability of our approach.
Also, as the way size increases, inefficiency also increases because the average size
of the padding between different functions in the binary also grows.

The same analysis can be applied to globals as for functions in the industrial
application. In this case the application consists of around 70,000 globals whose
sizes range between few bytes and 24KB. Those globals are all in the .bss segment,
as it is initialised to zero values. Uninitialised segments such as the .data one are
not recommended for safety-critical applications.

1We have corroborated that the characteristics of this avionics application reasonably resem-
ble some real automotive applications in terms of function count and function size.

123

8. STATIC SOFTWARE RANDOMISATION AT
COMPILER/LINKER LEVEL 8.4 Evaluation

The total size of those globals is 2.3MB if they are enforced to be aligned with
cache line boundaries assuming a cache line size of 32B and only 640KB otherwise.
In order to reduce such inefficiency we have packed globals so that they fill full
cache lines and therefore, they can be kept cache line aligned. This leads to 18,000
objects, but most of them fill just one cache line. Small objects are prone to leave
many gaps in between in the binary that cannot be filled. In particular, for a 1KB
way size we observe a 60% data segment increase with 32B objects. Thus, we have
packed globals into larger objects (1KB each) whenever possible for a total of 590
objects by simply packing the largest objects that do not exceed the cache line
size. This still leads to around 32590 ≈ 10900 different potential object placements
for a 1KB way size1, so the degree of randomness attained is still huge. Note that
as discussed in the previous chapter, the degree of randomness has been proven not
to affect the correctness of the approach, but the value of the pWCET estimates, if
few different object placements can be obtained, which is not our case at all. Note
that by packing globals into sizes not exceeding the cache way size, no conflict can
occur across those globals and such behaviour holds both at analysis time and at
deployment. Results are shown in Table 8.1. Overheads are similar to those for
SSR-code.

Total results for the binary, including code and data segments are also reported
in Table 8.1. As shown, binaries are expected to grow little due to SSR, with cache
way sizes in this range.

Sensitivity Analysis: We have also performed a sensitivity study considering
random function sizes between 128B and 2048B varying the number of functions
between 10 and 1,000. Results are shown in Figure 8.3. As for the case study,
inefficiency grows for larger cache ways. Furthermore, we also observe that the
larger the number of functions, the lower the relative overhead since it is easier
to find functions to be placed with little padding. In particular if cache way size
is 1KB the binary size overhead decreases from 19.2% (10 functions only) down
to 2.0% (1,000 functions). Conversely, large cache ways are particularly harmful
when few functions are placed since large padding cannot be avoided in-between
those functions. For instance, for an 8KB way size the binary size is in the range
of 2.5 to 3 times the original one if only 10 functions are placed. However, as
the number of functions increases such overhead decreases. Finally, note that this
sensitivity analysis for functions (Figure 8.3) is also valid for globals as they are
analogous problems. Thus, the larger the number of globals or the larger their
size, the lower the relative overhead due to SSR.

1The number of atoms in the Universe is estimated to be 1080.

124

8. STATIC SOFTWARE RANDOMISATION AT
COMPILER/LINKER LEVEL 8.4 Evaluation

Figure 8.3: Binary size overheads for the sensitivity study varying function number
between 10 and 1,000 and cache way size between 1KB and 8KB.

SSR-stack

Regarding SSR-stack, it is not stored in the binary. Instead, when functions are
called some space may be wasted in the stack due to stack frame padding. As for
functions and globals, the largest padding must be smaller than the cache way size.
Thus, the overhead is incurred dynamically when functions are called and it can
be upper-bounded by the maximum function call depth1 in the program multiplied
by the cache way size. Since programs implementing safety-critical functions do
not use complex call structures [Wartel et al. (2013)], call depth is typically low
(largely below 10 nested calls), thus wasting little memory space. For instance, for
a maximum call depth of 5 functions and a cache way size of 2KB, up to 10KB of
memory would be wasted dynamically (5KB on average) for SSR-stack.

If such overhead is regarded as excessive due to RAM memory availability
constraints, the random padding could be added just once at the beginning of
the program. The effect would be analogous to packing globals: determinism
introduced (all stack frames consecutively placed) remains identical at analysis
and deployment, but the degree of randomisation is reduced, thus potentially
increasing pWCET estimates.

Note that by randomising at least the starting address of the stack, any further
call, including interrupts, will get its stack in a random location. It will not be
random w.r.t. other stack frames, but this does not challenge MBPTA as the
states observed at analysis time match those at deployment.

1The maximum stack depth refers only to the user code stack, excluding system stack which
is not modified by our method.

125

8. STATIC SOFTWARE RANDOMISATION AT
COMPILER/LINKER LEVEL 8.5 Related Work

8.4.2 Performance

In the previous chapter DSR has been shown to have moderate or low execution
time overheads. SSR introduces fewer instructions (1 per stack frame) than DSR
(several for each function/stack indirection) and does not require any initialisation
process, as opposed to DSR. Hence, SSR reduces DSR overheads. In particular,
SSR execution time overheads are largely below 1% w.r.t. non-randomisation even
for programs with a large number of function calls to small functions – the worst
scenario for SSR due to stack frame padding.

8.5 Related Work

Software randomisation has been used in the context of security [Li et al. (2006)]
and bug tolerance [Berger & Zorn (2006)], in addition to the context of WCET
estimation we proposed in Chapter 7. In all cases such software randomisation has
been performed dynamically.

While timing guarantees obtained with MBPTA have been proven to fit func-
tional safety standards [Stephenson et al. (2013)], DSR has some side effects on
the functional verification of software since extra pointers and indirections take
values unknown at analysis time. To the best of our knowledge, our proposal on
static software randomisation is the first solution reconciling MBPTA on COTS
hardware and affordable functional verification.

8.6 Summary

MBPTA delivers trustworthy and tight WCET estimates, but poses some require-
ments on the underlying platform that can be achieved on top of COTS hardware if
software randomisation is delivered. Unfortunately, software randomisation chal-
lenges functional verification of software against safety standards due to the use
of pointers and indirections.

In this chapter we propose a simple solution to override those limitations of
dynamic software randomisation by providing static software randomisation. We
show how static software randomisation can be implemented, identifying its advan-
tages (affordable functional verification, simple implementation) and its limitations
(some extra storage space required).

126

Chapter 9

Static Software Randomisation at
Source Code Level

9.1 Introduction

Both software randomisation solutions presented in Chapters 7 and 8 require
changing system toolchains, i.e. introducing modifications in the compiler and
runtime libraries, which mandate their requalification against safety standards like
ISO26262 for automotive [AUTOSAR (2006)]. While those solutions have been
shown to be successful in enabling MBPTA on top of COTS hardware, and DSR
in particular has achieved a high Technology Readiness Level, the cost of toolchain
requalification can potentially delay their adoption in some CRTES domains. The
reason is that the verification process, including tools, is a costly procedure since
70% of design time is estimated to be spent in verification and this continues to
grow as design-size increases [Bailey (2007)].

Moreover, most compilers used in safety-critical industry are proprietary –
due to tool qualification requirements –, so the development of the compiler and
linker modifications relies completely on the companies selling them. This creates
a major obstacle in the wide adoption of MBPTA, since certain platforms, e.g.
in automotive, completely lack support for open-source compilers. Finally, the
introduced modifications in both the compiler and linker are platform dependent,
so they need to be reimplemented for each ISA.

In order to facilitate the wide adoption of software randomisation to enable
MBPTA on (virtually) any platform used in CRTES, in this chapter we propose
a novel certification-friendly and Toolchain-Agnostic Software randomisation Ap-
proach (TASA), that randomises the location in which memory objects are defined
within the source-code of the program. TASA is based on the principle that there
is a direct relation between the order of memory objects in the source-code and

127

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.1 Introduction

int a (int i)
{
int m=5;
return i+m;
}

void b(int j)
{
char k [2]={1 ,0} ;
double f= a (j)+k [0] ;
}

(a) Initial Code
Fragment

int a (int i) ;
void b(int j) ;

void b(int j){
char k [2]={1 ,0} ;
double f= a (j)+k [0] ;
return ;
asm volat i le (”nop”) ;
asm volat i le (”nop”) ;
return ;
}
int a (int i){
int m=5;
return i+m;
asm volat i le (”nop”) ;
return 0 ;
}

(b) Same Fragment
Code-randomised

int a (int i)
{

volat i le double
StPad [1] ;

int m=5;
return i+m;

}

void b(int j)
{

double f ;
char k [2]={1 ,0} ;
f= a (j)+k [0] ;

}

(c) Stack Ran-
domised Code

(d) Stack frame layout for (a)
and (c). Alignment padding
shown in gray.

Figure 9.1: Code fragments showing code and stack randomisation scenarios.

their memory position, because compilers typically generate the elements of the ex-
ecutable (code, data, etc.) in the same order as they are encountered in the source
file. Therefore, by adding functionally-neutral padding code and data and reor-
ganising the declaration of variables and functions across runs, TASA reaches the
randomisation properties as previous approaches with the following advantages:
(1) TASA provides finer granularity software randomisation, by randomising the
internal of the stack frames and fields of compound structures. (2) TASA does
not require system toolchain to be modified, as randomisation is applied at source
code level. As a result, functional verification and debugging of the system can
be performed without the need to modify nor re-certify existing tools. While the
tool implementing TASA still needs to be certified, its complexity is lower than
the one of a compiler’s backend, due to the higher-level (source-code) in which it is
applied. (3) Finally, the application of changes at source code level makes TASA
to be transparently portable to any platform.

We evaluate TASA on a LEON3 processor used in the space domain. Moreover,
we apply TASA on top of two compilers to demonstrate its transparency to dif-
ferent system toolchains. Our results with the industry-standard real-time bench-
marks EEMBC Automotive demonstrate that TASA maintains compliance with
MBPTA – passing all required statistical tests –, with small impact on memory
footprint (7% increase), preserves average performance and provides low pWCET
estimates, outperforming the state-of-the-art software randomisation techniques.

128

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.2 TASA

9.2 TASA

Software randomisation adds a random padding among memory objects and re-
orders them from run to run so that a randomised MBPTA-analysable execution
time behaviour is achieved. The challenge lies on doing so while keeping certifica-
tion friendliness, requiring no change in the application-domain tool chain, keeping
MBPTA compliance assessed by passing. i.i.d tests, and keeping the competitive
edge in terms of tight pWCET estimates and reduced memory overheads.

TASA applies source-code level static software randomisation (SL-SSR) to en-
able MBPTA on conventional caches while meeting the constraints presented
above. Similar to LL-SSR, the integration of TASA and MBPTA requires TASA
generating several images – each with a random allocation of memory objects
– that are run on the target platform. Execution times are collected and used
to feed MBPTA that delivers a pWCET estimate. At deployment, one of those
randomly generated images is used as discussed in the previous Chapter. TASA
requires some compiler optimisations to be disabled, incurring minimum impact
on average performance as discussed in Section 9.2.7 and experimentally evaluated
in Section 9.3.

9.2.1 Executable Structure

In this section, prior to detailing how TASA works, we explain the structure of an
executable and how it is related to the source code. Although TASA’s principles
apply to any binary format, we consider the elf binary format [Tool Interface Stan-
dard(TIS) (1995)] for the sake of the discussion, which is the most used one. An elf
executable comprises four sections: .text, .rodata, .data and .bss. Before the
program is executed, the linker loads each section in memory, at its corresponding
address specified in the executable. The .text section contains the executable
code of the program. The .rodata section contains all read-only program data,
which includes global and local static (i.e. local variables that retain their values
across function calls) variables declared as const, and string literals defined any-
where in the program. Both segments are placed consecutively so that in systems
which implement memory protection mechanisms, the entire range of these ad-
dresses is write-protected. The .data section has the initialised global and local
static variables. Finally, the .bss section contains global and local static variables
which are not initialised or their initial value is zero.

Besides these sections, the binary loader creates at runtime two additional
special segments: heap and stack. The former provides space for dynamically
allocated objects and it starts after the end of .bss section. The latter provides
space for each function’s stack frame, where its local variables and arguments live,
and it starts at the highest address of the memory space and grows towards the

129

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.2 TASA

heap (lower addresses). The heap segment is ignored in this study since in CRTES
dynamic allocation is not allowed.

The elements that compose the executable’s sections cannot be arbitrarily
placed in memory but certain architectures require the address of memory accesses
to be always aligned to the size of the access (e.g. MIPS, SPARC), while others
exhibit significant performance penalty when this alignment is not followed (e.g.
x86, PowerPC). Hence, compilers generate code that complies with the alignment
requirements of the target platform (unless instructed otherwise). For instance,
the starting address of each stack frame is aligned to the maximum access size,
called stack frame alignment (usually 8 bytes), and its size is rounded up to be
multiple of this size. This stack frame size adjustment can create empty space
called compiler-introduced stack frame alignment padding (sfap). Likewise, each
variable is allocated in a memory position multiple of the alignment size as well,
e.g. a double precision variable (8 bytes) must be allocated in a memory address
multiple of 8, while a char variable has no placement requirements since every
address location is multiple of 1 byte. This empty space between consecutive vari-
ables is called alignment padding (ap). This padding plays a fundamental role in
our proposal.

9.2.2 Code Placement Randomisation

TASA performs code randomisation via two mechanisms.
Function ordering. Code randomisation relies on the appreciation that, by

default, the location of functions in the binary takes place in the same order that
they are encountered in the source file, unless certain compiler optimisations are
enabled [McFarling (1989)]. As a result, randomising the order of functions in
the source file achieves the goal of randomising the placement of the functions in
the object file. This is illustrated in Figure 9.1. In the original file (Figure 9.1a),
function a() precedes function b(), so the compiler generates code in the same
order in the object file. Figure 9.1b, shows the corresponding randomised code, in
which the functions are swapped. Moreover, in order to guarantee correct cross
function dependencies, function prototypes are introduced in the beginning of the
file (if not present).

Function Padding. Although random function reordering provides different
mappings in the instruction cache, the number of different cache layouts is limited
by the number of function permutations.This is mitigated by artificially increasing
the size of each function by a random padding. TASA adds padding in the form of
an arbitrary number of additional instructions at end of the function as shown in
Figure 9.1b. The number of added instructions ranges from 0 up to the number
of instructions that fit in a cache way since this covers all the potential mappings
of instructions to cache sets. The new inserted instructions have no functional or

130

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.2 TASA

timing effect on the executed code, which is achieved by using nop instructions.
C programs can directly call assembly instructions using the asm directive. While
in general using assembly instructions limits source code portability, note that
this particular instruction does not harm the portability of the technique due to
its ubiquitous nature. Moreover, the volatile qualifier in the asm instruction is
required to prevent the compiler from removing the introduced assembly instruc-
tions during its optimisation passes. Further, in order to avoid that the introduced
instructions affect functions’ execution time, we ensure that the new inserted code
is never reached by introducing a return statement (if not present in the code)
with a return value compatible with function’s return type (e.g. function b()). In
the case that the function features more than a single return point, this padding
is applied only to the last one, since the purpose to pad the size of the function,
without any functional effect.This solution requires dead code elimination and un-
reachable code elimination optimisations of the compiler to be disabled, otherwise
the added code would be automatically removed by the compiler.

9.2.3 Stack Frame Randomisation

We achieve stack randomisation through 2 different complementary and combin-
able methods.

Stack Padding. Since the size of the stack frame is determined by the number
and the size of the function’s local variables and the arguments of the functions
that it calls, we can randomise the stack by introducing a randomly sized local
array in the list of local variables, see function a() in Figure 9.1c. We use the
volatile qualifier to instruct the compiler not to perform any optimisation on these
variables. In order to effectively increase the stack frame, even when the frame
size is rounded up to the alignment size, the array is declared as double. Similarly
to code placement randomisation, the size of the array, and therefore the padding
introduced, is randomly sized up to the size of a cache way.

Figure 9.1d shows how the stack frame of a() changes after applying stack
randomisation. In the original code, the stack frame contained only a 32-bit vari-
able plus the always included return address and the old stack pointer. Assuming
a 32-bit environment, the size each of the return address and the stack pointer is 4
bytes, therefore the compiler rounds up the stack frame size to 16 bytes, in order
to comply with the stack frame alignment requirements, instead of using a 12 byte
stack frame. In the randomised scenario, the stack frame also holds a double vari-
able increasing the stack frame size, which with stack alignment padding reaches
24 bytes size. Note that if instead of double, the type of StPad were float or
integer, the desired effect would not be achieved, and in both cases the stack frame
of a() would have the same size.

Local Variable Declaration Order. The stack can also be randomised by chang-

131

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.2 TASA

const char msg []= ”OK” ;
long l ;
long m=3L ;
unsigned int f ;
const double pi =3.14;

int c (void){
stat ic int i =1;
i f (i==MAX){

i =0;
p r i n t f (” r e s e t ”) ;

}
return i++;

}

void d(int i){
stat ic long time ;
stat ic long t i c k s=1L ;
time = c lock () ;
t i c k s++;
p r i n t f (”%l ms” , time) ;

}

(a) Initial Code Fragment

const double pi =3.14;
const char msg []= ”OK” ;
long m=3L ;
unsigned int f ;
long l ;

void d(int i){
stat ic long time ;
stat ic long t i c k s=1L ;
time = c lock () ;
t i c k s++;
p r i n t f (”%l ms” , time) ;

}

int c (void){
stat ic int i =1;
i f (i==MAX){

i =0;
p r i n t f (” r e s e t ”) ;

}
return i++;

}

(b) Global & Static Vari-
able rand.

Figure 9.2: Code fragments under various data randomisation scenarios.

ing the declaration order of local variables, as they are allocated on the stack
based on their position from the stack pointer. Such a fine-grain stack randomisa-
tion, which cannot be achieved by the existing software randomisation solutions,
is of particular interest because it achieves randomisation of intra-object [Kosmidis
et al. (2013c)] conflicts (intra-stack in particular). Figure 9.1d shows the impact
that the order in which local variables are declared in function b() defined in Fig-
ure 9.1c has on the stack frame. The compiler introduces an alignment padding
(sfap) between k and f to ensure that f is placed on an address multiple of 8. Such
alignment padding however may not be required when shuffling the local variable
declaration as shown in Figure 9.1d.

9.2.4 Program Data Randomisation

Global data which includes variables defined in the global scope of a program, static
variables defined in each function and string literals, reside in the corresponding
sections .rodata, .data and .bss, depending on whether they are constants and
have/lack initial values.

Figure 9.3a shows the content of sections .text, .rodata, .data and .bss

for the initial code fragment shown in Figure 9.2a, including the corresponding
alignment. Despite compiler’s optimisations, the location of each variable in the

132

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.2 TASA

Figure 9.3: (a) Memory layout for corresponding source code fragments from Figure 9.2.
(b) Struct memory layout.

binary is heavily dependent on its relative position in the source code file with
respect to the variables mapped in the same binary section. In other words, swap-
ping the order of two variables will only affect the mapping if it changes their
relative position regarding the rest of the variables mapped in the same section.
For example swapping variables l and m in the source code shown in Figure 9.2a
would not change the mapping in the binary which is displayed in Figure 9.3a as
they reside in different data sections, .bss and .data respectively. On the other
hand swapping msg and pi would, as both variables reside in the same section
(.rodata).

TASA guarantees that variables from different sections are shuffled by grouping
variables belonging to the same section first before shuffling each group individu-
ally. Similarly to the stack frame, changes in the order of symbols in the sections
may produce changes in the alignment padding. This affects the position (and
size) of the subsequent variables in the same section and the position of the sym-
bols in the following sections. Figure 9.2b shows the source code after applying
program data randomisation, while its corresponding memory layout is shown on
the right part of Figure 9.3a.

Static variables and string literals : The position of these types of variables
in the corresponding section is bound to the position in the source code of the
function they are declared in, e.g. as shown in the string literals used in printf in
Figures 9.2 and 9.3. If c() and d() were not swapped, their position in .rodata

133

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.2 TASA

would remain unchanged. The same effect happens for static variables i and
ticks. Hence, static variables and strings cannot be randomised freely, unless
code randomisation is enabled too. This is an important difference with LL-SSR
we proposed in Chapter 8, where these variables can be shuffled independently
from the code of their function. However, in large applications which contain
many functions and static data, the memory layout is not meaningfully affected
by this binding.

9.2.5 Compound Structure Randomisation

None of the existing software randomisation solutions manages efficiently com-
pound constructs, like programming language structures (Figure 9.3b). This is
because the access structures’ member variables are allocated in a relative posi-
tion (offset) from the starting address of the structure, based on their declaration
order in the structure definition and taking into account each member’s type align-
ment requirements. This offset is hard-coded into the binary, and so neither DSR
nor LL-SSR can modified structures’ member positions Instead, TASA can shuffle
structures’ members in order to randomise data access patterns when used in ar-
rays, and intra-object conflicts, provided the size of the structure is bigger than a
cache line. Similarly to stack randomisation (see Section 9.2.3), due to members’
alignment padding, the size of each structure depends on the particular ordering
of its members, which in turn affects the memory layout. This is illustrated in the
example of Figure 9.3b. This process requires the aggregate initialisator (if any)
to be shuffled respectively and the packed attribute, which prevents alignment
padding, to be absent from the the structure’s definition.

9.2.6 Multi-source Binaries

When a program with multiple sources is compiled, each file is first compiled to
produce an object file. Each object file is comprised by the same sections as the
final executable. During the linking phase, these sections are joined together, in
the order that the object files are passed to the linker, to form the sections of the
final executable. Hence, if TASA were applied in each source file independently, the
elements of each section could only be randomised with respect to the elements in
the source file in which they are declared. To avoid this problem, TASA merges all
files in a single source file, taking into account symbol linkage. Then the previously
described randomisations are applied with global scope.

134

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.3 Evaluation

9.2.7 Compiler Optimisations

In order TASA to be applied, a few compiler optimisations need to be disabled
as identified in the previous sections. Concretely, function/data reordering and
dead-code/unreachable code elimination.1 These optimisations can be divided
in two groups: a) performance optimisations and b) size optimisations. All but
one optimisation, fall in the latter group. In particular, the only performance
enhancing optimisation which is disabled is function reordering for performance.
While this can be effective for small code, its effectiveness is reduced when the
number and the size of functions is increased. This is the case in modern safety
critical systems, since the total software size for avionics systems exceeds 100
MBs [Edelin (2009)]. Moreover, this process is NP-complete for a large number
of functions [Mezzetti & Vardanega (2010)], therefore can lead to extremely long
compilation times. For this reason, this optimisation is typically disabled in such
systems.

The rest of the optimisations have no performance cost, but memory size cost.
These optimisations try to find function and data ordering that minimise the
overall memory footprint. Similarly, these optimisations don’t scale well for large
code bases, increasing significantly the compilation times.

Disabling dead-code/data and unreachable code elimination, if they are effec-
tive, impacts size only. Safety critical systems must execute only code that is
verified at deployment. Unremoved dead-code/data as well as the padding in-
troduced by TASA are non-functional elements that are never executed or used.
Thus, this constraint is still met.

Section 4.3 shows that disabling those optimisations on EEMBCs has no per-
formance or memory impact.

9.3 Evaluation
In this section we assess TASA in terms of average performance, tightness of
pWCET estimates, memory overhead, compliance with certification and trans-
parency to the underlying toolchain.

9.3.1 Experimental Setup

We developed a source-to-source compiler for ANSI C programs implementing all
software randomisation techniques described in Section 9.2. In order to demon-
strate the ability of TASA to work independently of the particular industrial
toolchain, we use two different compilers to compile the TASA-transformed code:
gcc-4.4.2 and vanilla llvm 3.1.

1The use of volatile in code/stack randomisation is not included in this list, since it prevents
only the removal of the TASA introduced padding.

135

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.3 Evaluation

Several compiler flags are used to maintain transformations implemented by
TASA as shown in Section 9.2.7: (1) -fno-toplevel-reorder instructs the com-
piler to generate functions and globals in the order encountered in the binary; (2)
-fno-section-anchors prevents placing static variables used in the same func-
tion, in nearby locations in order to be accessed with a single base and (3) -fno-dce
disables dead-code elimination.

Benchmarks. We use the EEMBC Autobench benchmark suite [Poovey
(2007)] as explained in Section 3.3.

Platform. We focus on a FPGA version of the Sparc v8 LEON3 [Cobham
Gaisler (2005)] processor developed by Cobham Gaisler, a widely-used processor
in the CRTES domain, especially in aerospace. It features a 4-way set associative
instruction cache with 128 sets per way and 32-byte cache lines, and a 4-way set
associative data cache with 256 sets and 16 bytes per cache line. In order to
limit the memory overheads of TASA we select the maximum random padding
to be equal to 1/20th of each cache way size, that is at most 50 instructions and
stack padding 50 doubles. The FPGA implements a quad-core LEON3 processor,
although we execute applications in a single-core mode due to the single-threaded
nature of the applications.

Methodology. We follow the same methodology introduced in Chapter 3,
with the only difference that we use a real platform instead of the simulator. For
each benchmark we perform 1,000 passes of the original source code with TASA, in
order to generate an equal number of binaries with different layouts. Each binary is
executed once and its end-to-end execution time is collected with grmon [Cobham
Gaisler (2005)] accessing the cycle performance counter of LEON3.

Reference Software Randomisation Technique. We compare TASA with
the dynamic software randomisation technique we proposed in Chapter 7. The
compiler pass of the original open source tool works only on LLVM 3.1, for this
reason we used that old version of LLVM. For each benchmark we perform all
software randomisation techniques described in Chapter 7 and collect 1,000 end-
to-end execution times. In addition to porting Stabilizer on Sparc V8 (supported
only x86, x86-64 and PowerPC), we modified it to make it more friendly to the
CRTES domain and directly comparable to TASA, with the modifications improv-
ing Stabilizer results. In particular, we implemented: a) eager function relocation
– relocation of all functions at start up, not at the moment of their invocation –,
b) non-trap invoked relocations, c) no re-randomisation and d) reduced padding
for code and stack in values smaller than pages. We show that even with these
modifications, the overheads of DSR are higher than those of TASA.

136

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.3 Evaluation

Since TASA is functionally equivalent to the static randomisation proposed
in the previous Chapter (LL-SSR), we do not provide a comparison with it. In
fact TASA provides identical benefits, but also exhibits the following advantages
over LL-SSR: No changes are required in the original toolchain, while LL-SSR
requires modifications in both the compiler and the linker. Moreover the level
of randomisation which can be achieved is finer as a) stack randomisation can
be enhanced with intra-stack frame randomisation, instead of the monolithic stack
frame displacement provided by DSR, introduced in Chapter 7and b) TASA is able
to provide intra-structure randomisation which has effects in every data aspect
(global/stack). On the downside, TASA provides coarser grain randomisation of
static variables (which are less frequently used than stack frames and structures)
and string literals.

9.3.2 Certification Compliance and Transparency

In CRTES applications follow a number of software design principles to meet safety
standards. For example in the automotive domain the standard ISO26262 [Inter-
national Organization for Standardization (2009)] requires among others: a limited
use of pointers, no use of dynamic objects, and no hidden data or control flow. This
is particularly true for the highest safety levels (e.g.ASIL-C and ASIL-D). Simi-
lar standards exist for avionics [RTCA and EUROCAE (1992)], aerospace [JPL
(2009)] and other critical systems [MISRA (2013)]. From the description in Sec-
tion 9.2 it follows that TASA is compliant with all these principles. From Sec-
tion 9.2 it also follows that TASA is transparent to the underlying toolchain,
which we show by showing results of TASA on top of gcc-4.4.2 and vanilla llvm
3.1.

9.3.3 Impact of Optimisation Disabling

In order to evaluate the impact of the compiler optimisations that we need to
disable for TASA to be applied, as summarised in Section 9.2.7, we compared the
original non-randomised application with optimisations enabled and disabled in
terms of both memory footprint and performance. We have observed that for gcc
there was no effect of those optimisation neither in memory consumption nor in
performance. For llvm the result was exactly the same; none of the 3 dead code
elimination (dce) passes (dce, advanced dce and global dce) removed any dead
or unreachable code1. This can be explained by the fact that EEMBC have a
small/controlled codebase which does not contain any dead code.

1To our knowledge LLVM doesn’t have any reordering pass for code/data.

137

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.3 Evaluation

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ex

e
cu

ti
o

n
 T

im
e

 x
1

0
9

GCC

LLVM

TASA

STAB

Figure 9.4: Average execution time measured in processor cycles for TASA and DSR
(STAB).

9.3.4 Average Execution Time

Besides WCET, average performance is important in CRTES to optimise non-
functional metrics such as power and energy. Figure 9.4 shows the average ex-
ecution time for EEMBC benchmarks when compiled with GCC, LLVM, TASA
(using the LLVM compiler) and Stabilizer (using the LLVM compiler). For both
variants, all randomisations that each tool supports are enabled. Note that for
TASA we provide execution times only with LLVM for a straightforward compari-
son with Stabilizer, which is based on LLVM. In general both TASA and Stabilizer
provide average execution times close to the default generated code by GCC and
LLVM, with TASA being on average within 0.4% of LLVM’s average performance.
In two cases, the average performance of both randomised configurations is sig-
nificantly different to that of the non-randomised one such as aifftr (worse) and
canrdr (better). This is related to the default memory layout selected by the
compiler, which happens to be very good or very bad compared to the set of po-
tential memory layouts, which randomisation can explore. Finally in almost all
cases, the execution times of Stabilizer are longer than for TASA, with significant
differences at times (basefp, matrix). The reason is due to Stabilizer’s execution
time overhead: At start-up the runtime performs some required operations before
the execution of the program such as the code relocations, while other additional
stack-randomisation are performed at runtime. Additionally, the increase of the
.bss section due to the introduced metadata (see Section 9.3.5) induces a sig-
nificant performance degradation issue, since this section needs to be zeroed-out
before the execution of the system. While this operation is optimised in desktop

138

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.3 Evaluation

0.0

1.0

2.0

3.0

4.0

5.0

a2
ti
m
e

ai
ff
tr

ai
fi
rf

ai
if
ft

b
as
ef
p

b
it
m
n
p

ca
ch
eb

ca
n
rd
r

id
ct
rn

iir
fl
t

m
at
ri
x

p
n
tr
ch

p
u
w
m
o
d

rs
p
ee
d

tb
lo
o
k

tt
sp
rk

p
W

C
ET

 e
st

im
at

e
s

(i

n
 b

ill
io

n
 c

yc
le

s)

TASA STAB

Figure 9.5: Worst Case Execution Time for TASA and Stabilizer

systems by techniques like copy-on-write, in an embedded system without operat-
ing system like our target, it cannot. Therefore the bigger the .bss is, the longer
this operation takes.

9.3.5 pWCET Estimates and MBPTA Compliance

Since TASA targets real-time systems, it is vital it results in tight and trustworthy
pWCET estimates. pWCET estimates are obtained as explained in Chapter 3.
Instead of showing the pWCET curve as presented in Figure 1.2, we show the
pWCET estimates obtained with the different techniques for a cut-off probability
of 10−15 per run. This value has been chosen since it has been shown appropri-
ate for applications with the highest criticality levels in several domains such as
avionics [Wartel et al. (2013)][Wartel et al. (2015)].

As explained in the Background, the safe application of MBPTA requires the
obtained execution time observations to be modellable with independent and iden-
tically distributed (i.i.d.) variables. This can be assessed by using the correspond-
ing statistical tests discussed in Section 3.2.

In Table 9.1 we show the results of those tests for TASA. We observe that in
all cases the results of the tests confirm that the execution time observations take
from the different binaries, each with a randomised layout, can be modelled with
i.i.d variables, making TASA compliant to MBPTA.

Figure 9.5 shows the pWCET for EEMBC benchmarks, at a cut-off probability
of 10−15, with all possible randomisations enabled w.r.t. the actual execution
time on LLVM with no randomisation. We observe that in the vast majority

139

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.3 Evaluation

Table 9.1: I.I.D. tests for TASA

benchmark Identical Distribution Independence

a2time 0.67 0.53

aifftr 0.08 0.16

aifirf 0.33 1.33

aiifft 0.93 0.79

basefp 0.99 0.88

bitmnp 0.83 0.23

cacheb 0.80 1.32

canrdr 0.44 0.88

idctrn 0.65 1.56

iirflt 0.83 0.24

matrix 0.25 0.50

pntrch 0.99 1.13

puwmod 0.99 1.13

rspeed 0.21 0.50

tblook 0.99 1.01

ttsprk 0.66 0.96

of the benchmarks TASA provides lower (6% on average) execution times than
Stabilizer, following the same trend as for average performance, due to the start-up
and runtime overhead of dynamic software randomisation. However, in few cases
(a2time, aifftr) the pWCET of TASA is higher than Stabilizer’s one despite
the lower average performance. This occurs because TASA can explore some rare
memory layouts (3% of the explored ones) with much higher execution time than
the average one, that Stabilizer was not able to generate, due to its coarser-grain
randomisation.

9.3.6 Memory Overheads

Real-time systems are resource-constrained, especially in terms of memory, so
low-memory requirements are essential. Figure 9.6 shows the increase in mem-
ory consumption of the text (Figure 9.6(a)), data((Figure 9.6(b)) and bss (Fig-
ure 9.6(c)) segments for the EEMBC Automotive benchmarks when using TASA
with gcc and llvm (labelled as TASA-GCC and TASA-LLVM respectively), and
Stabilizer with LLVM (labelled as LLVM-STAB). Each software-randomised setup
is normalised to the same non-randomised configuration, e.g. TEXT TASA-GCC
provides the relative increase in the text segment when TASA is applied over the
non-randomised one, when in both cases gcc was used for compilation.

Code Segment. Code padding increases the code footprint of the application.
As shown in Figure 9.6a, TASA introduces an overhead less than 1.13% on average

140

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.3 Evaluation

when used with gcc (TEXT TASA-GCC), applying a random padding up to 50 nop
instructions per function (200 bytes). Using TASA with LLVM (TEXT TASA-
LLVM) this overhead is only 7%, because the generated code with gcc is more
compact, therefore the relative increase is smaller.

Stabilizer however introduces a significant memory overhead. In particular
Stabilizer doubles the size of the executable on average (STAB). This increase
comes by the runtime code which is linked with the application. Since the runtime
is written in C++ and the code is heavily-based on templates, this contributes
significantly in the increase. Note that the original code size of the applications
is in the range of 70-100 KBs, therefore linking with a library of 130 KB adds
an important overhead. Moreover, Stabilizer increases the memory consumption
of text segment at run-time, during which the code relocation takes place once
per function. In original Stabilizer, each function can have a padding up to one
page, therefore two pages (8K) are allocated. The runtime places the function in
a random offset inside a page, so that random placements are not biased towards
starting offsets near the beginning of the page. This implementation results in
an increase of the memory consumption of code of 6.5× for these benchmarks.
Obviously this implementation is inappropriate for CRTES which are memory
constrained and increases linearly with the number of functions of the program.

In order to perform a fair comparison, in Figure 9.6a we show the code memory
consumption of the dynamic software randomisation using a random padding equal
to TASA (up to 200 bytes).

It is important to note that the original implementation of Stabilizer, as de-
scribed in Chapter 7 has a lower average memory consumption for code, because
it relocates only the functions that are actually called at runtime. While this is
true for general purpose programs, this creates issues in CRTES, which require
worst-case guarantees for the memory consumption. Allocating all functions at
the initialisation phase of the program satisfies this requirement. Besides, in crit-
ical real-time systems there is a requirement not to use source code of functions
which are not verified (and so never called) in the final binary. Therefore for real-
time systems, both Stabilizer implementations (vanilla and our modified for the
comparison) have the same (worst and average) code memory consumption, which
is 75% bigger than TASA.

Data Segments. Per-segment results show the following.
Stack. For the stack size, results not shown in Figure 9.6, TASA increases

the stack space used per function around 25% on average, using a stack padding
size up to 50 doubles (400 bytes). When local variables randomisation is enabled
there is a variability of the stack size of ±1%. Original Stabilizer adds a padding
between stack frames up to a page, similarly to code. Again in order to achieve the
same effect with TASA and for the purpose of a fair comparison, we modify this

141

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.3 Evaluation

0.0X

0.5X

1.0X

1.5X

2.0X

2.5X

3.0X

N
o

rm
al

iz
e

d
 S

iz
e

TEXT TASA-GCC

TEXT TASA-LLVM

TEXT STAB-LLVM

(a) code

0.0X

0.5X

1.0X

1.5X

2.0X

2.5X

3.0X

N
o

rm
al

iz
e

d
 S

iz
e

DATA TASA-GCC

DATA TASA-LLVM

DATA STAB-LLVM

(b) data

0.0X

0.5X

1.0X

1.5X

2.0X

2.5X

3.0X

N
o

rm
al

iz
e

d
 S

iz
e

BSS TASA-GCC

BSS TASA-LLVM

(c) bss

Figure 9.6: Memory overhead for different binary sections. Results are normalised to
the corresponding toolchain (gcc or llvm) without software randomisation. Values for
TASA are the average for all binaries.

142

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.4 External Results

size to 400 bytes. While the maximum stack consumption in both Stabilizer and
TASA is the same, Stabilizer introduces 8 instructions in the function’s prologue
and epilogue to adjust the stack pointer, leading to a 35% increase in code on
average.

Data. For the data section, the overhead of TASA for most benchmarks is less
than 7% for both toolchains (Figure 9.6b), while Stabilizer’s is 8%.

Bss. For the .bss (Figure 9.6c) TASA’s overhead is 80% on average, but its
contribution in the total footprint is small, since in represents less than 10% of the
memory footprint in our benchmarks. The reason for the increase is that EEMBCs
contain large uninitialised arrays which are used to simulate data output. Note
that in a real system those arrays would not exist. Randomising the location of
these large arrays results in big size differences due to the alignment padding, as
we have explained. Stabilizer’s impact on .bss is enormous and it is not depicted
in the Figure. In absolute numbers the bss increases from 2KB to 33MB. This
increase comes from the functions’ metadata which are generated by Stabilizer’s
compiler pass and used by the runtime for the relocations as well as the data
structures that the runtime uses.

Overall, taking into account both code and data segments, TASA incurs a 7%
increase on the memory footprint of EEMBC Automotive benchmarks.

9.4 External Results

Unlike the previous contributions of this thesis that have been first evaluated on
a simulator and later on real hardware, TASA has been designed from the very
beginning to work on real hardware. The reason is that at the moment of TASA’s
inception, software randomisation solutions as described in the previous chap-
ters had reached a mature state, especially the dynamic software randomisation
variant. In the PROXIMA project we considered 3 COTS hardware platforms:
LEON3, P4080 and AURIX, in order to cover processors that are well established
or considered for future use in the CRTES domains represented by the project’s
industrial partners in the domains of aerospace, avionics, railway and automotive.
We enabled MBPTA on both LEON3 and P4080 using dynamic software randomi-
sation, by porting and adapting our proposed solution in the open source LLVM
infrastructure, which supports both SparcV8 and PowerPC ISA respectively.

However, this was not the case for AURIX Tricore. AURIX, a microcontroller
used extensively in the automotive market, supports only three proprietary compil-
ers: Tasking from Altium, and HighTec and Diab from WindRiver. All compilers
are only distributed in binary form and require an expensive license. Tasking and
Diab compilers are completely closed source, while HighTec is gcc-based. Although
the source code for an old version (last updated in 2008) of the compiler is avail-
able from [HighTec (2008)] as required by the GPL licence of gcc, that version is

143

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.5 Related Work

not compatible with recent boards that are available in the market, like the ones
used in the project. Therefore, despite the success of our previous software ran-
domisation solutions with several real boards, they could not be used on AURIX,
due to the unavailability of the compiler sources.

Moreover, even in the case that the sources were available, AURIX has limited
support for self-modifying code and features a very small (32KB) RAM mem-
ory – Local Memory Unit (LMU) in AURIX architecture terminology –, which is
compensated by a large flash memory (4MB).

As a consequence, TASA has been designed to specifically address a real need
of enabling MBPTA on the AURIX TriCore platform [Infineon (2012)], which was
not possible by our previous software randomisation proposals, due to the platform
and ecosystem peculiarities.

Therefore, in addition to the TASA evaluation on LEON3 presented in the
previous section, TASA has been also evaluated on AURIX using the free evalua-
tion version of the HighTec compiler, the open source real-time operating system
ERIKA [Evidence (2012)] and an automotive case study developed in the CON-
CERTO [CONCERTO (2016)] project. The result of this work has been published
in [Kosmidis et al. (2016a)] and confirms that TASA is both toolchain-agnostic
and completely portable across different hardware platforms. Moreover, it shows
that MBPTA can be enabled using software randomisation, passing all statisti-
cal tests, even on a completely deterministic processors such as AURIX, which
exhibits zero jitter when the same binary is executed under the same input set.

In addition, it is demonstrated that TASA provides a uniform distribution
of the code in the instruction cache sets, validating that indeed the source code
modifications impact the placement in the cache. Finally, the MBPTA curves
derived for each function of the case study provide 5-15% tighter pWCET estimates
than current industrial practice (e.g. applying an 20% engineering margin over
MOET) even for 10−12 exceedance probability per run.

9.5 Related Work

Many studies have shown that the program’s memory layout affects significantly
its performance in modern processors [McFarling (1989)] [Gloy & Smith (1999)]
[Mytkowicz et al. (2009)]. [Mytkowicz et al. (2009)] has shown that the linking
order of object files affects significantly the execution time of the program. More-
over, it has demonstrated the impact of small changes of the memory layout in
performance, eg. environmental variables. Based on this observation [Curtsinger
& Berger (2013)] used software randomisation to isolate this effect from the actual
performance benefit of various compiler optimisations.

Software Randomisation has found also various applications in the literature.

144

9. STATIC SOFTWARE RANDOMISATION AT SOURCE CODE
LEVEL 9.6 Summary

[Xu et al. (2003)] proposed software randomisation for security, to avoid attacks
exploiting the static memory layout of a program (eg buffer overrun). This idea has
been implemented in commodity operating systems to enhance security [Bhatkar
et al. (2003)] [Shacham et al. (2004)]. Similarly [Berger & Zorn (2006)] used
software randomisation for reliability to avoid crashes due to programming errors.

9.6 Summary

MBPTA’s promising results can only be obtained in those platforms adhering
to MBPTA’s requirements. Prior attempts to make systems compatible with
MPBTA require changes in different parts of the toolchain stack, such as the com-
piler, linker, runtime or even hardware, thus increasing the cost of its adoption
in industrial environments due to additional costs related to the development and
certification of the modified toolchain. We overcome this limitation by proposing
TASA, a software randomisation technique applicable in the source level of the
application, and therefore portable to any platform. We show experimentally us-
ing EEMBC benchmarks running on a COTS processor from the CRTES domain,
that TASA is not only superior than existing software randomisation techniques
in terms of memory and execution time overhead for real-time systems, but also
provides finer-grain randomisation.

145

Chapter 10

Path Upper-Bounding for
MBPTA

10.1 Introduction

In contrast to the earlier chapters, which presented hardware and software solutions
to enable the use of cache memories in the context of MBPTA, in the following
two ones we introduce solutions dealing with timing analysis aspects which arise
from the use of caches in this timing analysis method.

As discussed briefly in the Introduction and in the Background, MBPTA pro-
vides pWCET estimates that upper-bound the execution time of those paths ex-
ercised with the input vectors provided by the user1. Unfortunately, in general,
the user cannot determine all those paths leading to the highest execution times
and hence, may not provide input vectors that exercise them. Typically, timing
analyses rely on the ability of the user to provide loop bounds and/or generate
input vectors exercising the highest loop bounds, which is already a challenging
task. However, conditional control-flow constructs (CFC) such as if-then and if-
then-else, are not easy to bound. This is so because detailed knowledge about
the processor state (e.g., cache state) is required to determine which path (i.e.
sequence of branches) across different CFC impacts execution time the most, with
the number of paths growing exponentially with the number of dynamic CFC2.

In this chapter we propose PUB , a path upper-bounding method that extends
MBPTA such that the provided pWCET estimates upper-bound any path in the
program, even when the input vectors do not exercise the worst-case path. To

1‘user’ refers to the system designer, integrator or whoever uses MBPTA.
2Dynamic CFC stands for the sequence of CFC traversed during execution. For instance,

if there is one static CFC in the code but it is executed N times within a loop, it leads to N
dynamic CFC producing up to 2N different execution paths.

146

10. PATH UPPER-BOUNDING FOR MBPTA
10.2 Path Coverage

that end, PUB generates an extended version of the program by adding instruc-
tions in the different branches of CFC so that the execution time of any path of
the extended program upper-bounds the execution time of all paths in the original
program. Interestingly, the extended program can be used only to generate the
pWCET at analysis time, while at deployment time the original unmodified pro-
gram can be used. We also introduce a variant of PUB that reduces the overhead
of the original version for some specific CFCs.

Unlike MBPTA that requires full-path coverage to provide the pWCET for a
program, PUB requires few input vectors, i.e. end-to-end traversals of the pro-
gram. This requirement is much less than basic block coverage, which in fact is
required for functional verification. For instance, modified condition/decision cov-
erage (MC/DC) is required for the highest design assurance level (DAL), DAL A,
in avionics. Hence, in the general case, PUB makes no input vector be required for
timing verification of the system beyond those input vectors provided for functional
verification. This significantly reduces the cost of applying the analysis technique.

PUB builds upon the observation that caches deploying random placement and
replacement, introduced in Chapter 5, a.k.a time-randomised caches, required for
MBPTA are much less history-dependent than conventional caches based on, for
instance, modulo placement and least recently used (LRU) replacement. Cache
history dependence on PTA-compliant hardware platforms is made probabilistic
and the dependence between the memory address assigned to a particular piece
of data and its assigned set in cache is broken. As a result, upper-bounding the
effect of the different branches of CFC in the state of a time-randomised cache can
be done with lower complexity than for a time-deterministic cache.

Our results show that PUB provides pWCET estimates that upper-bound the
execution time of every path in the program, while increasing pWCET estimates
only by 11% for EEMBC benchmarks and 5% for Mälardarlen with respect to
the pWCET estimates provided by MBPTA using user-provided input vectors1.
Code size of the extended version of the program grows on average by 26% and 3%
respectively for EEMBC benchmarks and Mälardarlen, and such growth is related
to the number of CFC and their degree of nesting.

10.2 Path Coverage

One of the most challenging steps in applying MBPTA and, in fact, any measurement-
based technique, is the generation of test data. The user must provide a range of
input data to the program, designed to stress the program and produce worst-case

1For some benchmarks the actual paths exercised may not include the worst path, which
plays against PUB since the execution time difference between the exercised paths and the
actual worst one is deemed as PUB overestimation.

147

10. PATH UPPER-BOUNDING FOR MBPTA
10.2 Path Coverage

Figure 10.1: Current and proposed methodologies based on MBPTA.

behaviour. The choice of the data may affect the timing behaviour of the soft-
ware, hence properly selecting test vectors ensures trustworthiness and efficiency
of the overall analysis. It is also the case that common code coverage criteria from
the domain of functional testing, including Random Testing, Basic Block Cov-
erage, Condition/Decision Coverage and Modified Condition/Decision Coverage
(MC/DC), can underestimate the WCET in the context of measurement-based
techniques [Bünte et al. (2011)]. In particular, MBPTA depends on the input
vectors provided by the user in terms of (1) loop bounds and (2) WCET-relevant
execution paths. Providing input vectors with WCET-relevant loop bounds can
be regarded as attainable for the user in general given that the highest values are
the WCET-relevant ones. However, determining which execution paths – out of
the combination of all branches of all dynamic CFC – are the ones leading to the
WCET is, at best, very difficult. Further, generating input vectors exercising those
paths can be regarded as unattainable in the general case.

The analysis of the timing behaviour of caches and its interaction with control-
flow analysis have been deeply analysed for deterministic systems [Grund (2012)]
[Wilhelm et al. (2008)]. Time-randomised caches remove any dependence on the
location of objects (e.g. code, libraries, OS, heap, etc.) in memory and so, on the
particular cache location in which they are located, which simplifies the analysis
of cache addresses across different paths. Despite that, the dependence among
different accesses is not completely removed, but that dependence is made prob-
abilistically modellable. In Section 10.3 we present how PUB builds upon the
features of time-randomised caches to allow upper-bounding different branches of
CFC at low cost.

148

10. PATH UPPER-BOUNDING FOR MBPTA
10.3 Principles of PUB

10.3 Principles of PUB

PUB allows MBPTA to derive pWCET estimates that probabilistically upper-
bound the execution time of any path in the program even when the user-provided
input vectors do not exercise the worst-case path. The picture on the left in Fig-
ure 10.1 shows the MBPTA flow, where end-to-end execution time measurements
are collected for paths exercised with the user-provided input vectors. pWCET
estimates obtained are only guaranteed to upper-bound the execution times of
exercised paths. Nothing can be stated about any other execution path. Instead
PUB , see right picture in Figure 10.1, operates either on the original source code1

or the object code adding instructions in the different branches of CFC such that,
regardless of which particular branch is traversed in each dynamic CFC in the
modified code, the pET for the extended program upper-bounds the pET of the
original program for any traversal (i.e. path) of the conditional constructs. That
is, if the original program has EP org different execution paths and the extended
has EP ext, the following equation holds, where pET (p) is the pET of the execution
path p:

∀(epi ∈ EP ext, epj ∈ EP org) : pET (epi) ≥ pET (epj) (10.1)

Let us assume a CFC with two conditional branches, being the sequence of
instructions executed in each branch ISleft

org and ISright
org respectively. The main

idea behind PUB is adding new operations O, both core operations (e.g. add)
and memory operations, with neutral impact on functionality and that result in
the extended instruction sequences ISleft

ext and ISright
ext . Added operations O ensure

that the pET of the sequence IStotal
ext consisting of any of the extended instruction

sequences and any subsequent sequence ISafter is equal or higher than the pET
of the sequence IStotal

org consisting of any of the original instruction sequences and
ISafter.

10.3.1 Definitions

PUB relies on some of the properties brought by time-randomised caches and the
way PTA techniques represent the cache state at any given point in the execution
of a program. In this section we present those properties

PTA techniques keep a probabilistic state of the cache unlike static timing
analysis techniques that keep a state of the cache to determine, at any point in the
program, which addresses “must”, “may” and “won’t” be in the cache. We call this
state of the cache kept by STA techniques [Wilhelm et al. (2008)], deterministic
cache state.

1This option requires controlling the compiler backend passes when the executable code is
actually generated.

149

10. PATH UPPER-BOUNDING FOR MBPTA
10.3 Principles of PUB

During the rest of the chapter we assume that the size of the memory unit
accessed with a given address @k, usually known as word, matches the cache line
size. The generalisation to the (actual) case in which a cache line may contain
several words is straightforward.

Definition 1. Probabilistic Cache State (PCS). A given PCS provides the actual
probability that any given address @k is present in a time-randomised cache at
a given instant ti of the execution of a program, and thus provides the hit/miss
probability for any given address at any point of the execution.

Definition 2. Probabilistic Execution Time of a Instruction Sequence. We de-
fine the probabilistic execution latency (time) of a sequence of instructions, ISi, as
the execution time distribution it takes the sequence of instructions to be executed:
pET (PCSin, ISi, PCSout), where PCSin and PCSout stand for the PCS right be-
fore ISi is executed and the PCS after its execution respectively. Eventually, we
also use pET (PCSin, ISi) if the PCS after the execution of ISi is irrelevant (e.g.,
end of the execution of the program), and pET (ISi) if, additionally, the initial
PCS is irrelevant (or provided by the context).

We say that pET (ISi) ≥ pET (ISj) if for any cutoff probability the execution
time of ISi is higher or equal than the execution time of ISj. Figure 10.2 shows
the pET of two different sequences ISi and ISj where pET (ISi) ≥ pET (ISj).

Definition 3. Probabilistic Survivability. We define the probabilistic survivability,
or simply survivability, of a given access to an address @k, at any point in the
execution of the program as the probability of hit of that access. It is represented
as Surv(@k) and can be approximated by Equation 5.8.

A cache access may change the PCS of the program that was prior to the
execution of such access. This would affect the survivability of all addresses.
Given a sequence of cache accesses, the addition of an access A1 to an address @A,
1) increases or leaves unchanged the survivability of all future accesses A2 to @A;
and 2) decreases or leaves unchanged the survivability of all other addresses. If
@A is in cache when A1 executes, it does not alter cache contents since with EoM
evictions occur only on the event of a miss. If @A is not in cache, A1 will fetch it,
thus increasing or leaving unchanged the probability of hit of any A2, though the
eviction caused by A1 can evict other addresses from cache.

10.3.2 Instruction Sequence Subordinance

Definition 4. Instruction Sequence Subordinance. Starting from an initial PCS,
PCSin, a given instruction sequence ISi is a subordinate instruction Sequence
(SIS) of another instruction sequence ISj if the pET of ISi is larger or equal than

150

10. PATH UPPER-BOUNDING FOR MBPTA
10.3 Principles of PUB

Figure 10.2: Example of comparison of pET

the probabilistic execution time of ISj. That is:(PCSin, ISi) ⊆SIS (PCSin, ISj)↔
pET (PCSin, ISi, PCSouti) ≥ pET (PCSin, ISj, PCSoutj).

PCSouti and PCSoutj are the PCS left after the execution of ISi and ISj

respectively 1.

Definition 5. Instruction Eviction Upper-Bounding. An instruction Aj is an
instruction eviction upper-bounding (IEUB) of Bj if the miss probability of Aj is
higher or equal than the miss probability of Bj. This is the case, for instance, if
Aj is known to be a miss (e.g., it has not been accessed before). Next we deal with
the general case where A may have been accessed in the past. Let us consider the
following sequences: ISA =<Ai, ..., Aj> and ISB =<Bi, ..., Bj> where Ai and Aj

access address A and no access in between, {Xi}, accesses A; and where Bi and
Bj access address B and no access in between, {Yi}, accesses B. No relation is
established between the addresses in both sequences, so addresses may repeat (e.g.,
A and B could be the same address).

Aj is an IEUB of Bj, if we can match all accesses in between Bi and Bj with
accesses in between Ai and Aj so that in each pair, the access in the sequence
ISA is exposed to a larger or equal number of evictions than that of the access in
sequence ISB. In this scenario, the miss probability of the access of the pair in
ISA is equal or higher than that in ISB. Therefore, the miss probability – and so
the pET – of Aj is higher or equal than for Bj.

Note that in a EoM cache, the element determining whether a given access
misses in cache or not, is the number of evictions carried out in between that

1Note that no cache subordinance, as defined in Section 10.3.3, is established among PCSouti

and PCSoutj .

151

10. PATH UPPER-BOUNDING FOR MBPTA
10.3 Principles of PUB

access and the previous access to the same address. Further, note that number of
evictions that each access suffers depends on the particular initial PCS for each
sequence.

As an example let us assume the sequences of accesses < A1, B1, A2, C1, B2>
and <D1, E1, F1, D2, E2> and an empty initial cache state, with Xi accessing ad-
dress X. In this case D2 is a IEUB of A2. This is so because we can pair up B1

with, for instance, E1 (both are misses). Similarly, E2 is a IEUB of B2 since we
can pair up C1 with F1 (both are misses) and A2 with D2 since D2 has to survive
to 2 evictions whereas A2 has to survive to 1 eviction.

Definition 6. Sequence Eviction Upper-Bounding. ISi is a sequence eviction
upper-bounding (SEUB) of sequence ISj if we can match all accesses in ISj with
accesses in ISi so that in each pair the access in ISi is a IEUB of the access in
ISj. Then, the pET of ISi is higher or equal than the pET of ISj. This makes
ISi a SIS of ISj.

SEUB definition is particularly useful to compare sequences whose initial PCS
is the same as shown later. The definition of SEUB is related to a similar obser-
vation done in the context of probabilistic time composability, which is discussed
in the next chapter.

Theorem 1. Starting from an initial cache state PCSin, the execution time of the
instruction sequence ISorig increases if one access, C1, to any address C – regardless
of whether there are other accesses to C in ISorig –, is introduced at any point of
this sequence, thus obtaining ISext = ISorig ∪ C1. That is, (PCSin, ISext) ⊆SIS

(PCSin, ISorig). This is so because ISext is a SEUB of ISorig.

The proof to this Theorem is provided in Section 10.4.
Applicability to PUB : The fact that adding cache accesses increases the pET

of a sequence allows us to add accesses in the different branches of the CFC until
all branches in the extended code include all sequences of accesses in all branches
in the original code. Therefore, any branch in the new code will be a SIS of all
branches in the original code. This property helps understanding the PUB variant
called PUBam (Section 10.5.1).

10.3.3 Cache Subordinance

Definition 7. Unique Address. A given cache access is called unique or said
to access a unique address @un if it can be ensured that its survivability is zero.
This happens when @un is accessed for the first time or it can be ensured that it
was evicted since last time it was accessed, because an invalidation instruction is
executed on that address after its last access. For the rest of the discussion, it

152

10. PATH UPPER-BOUNDING FOR MBPTA
10.3 Principles of PUB

is assumed that unique addresses are evicted right after they is accessed, so its
survivability is always zero.

Definition 8. Probabilistic Address Subordinance. A given PCSi subordinates
another PCSj for a given access to address @k if the probability of hit of that
access, i.e. its survivability, is lower or equal in PCSi than in PCSj. That is,
PCSi(@k) ⊆ PCSj(@k)↔ Surv(PCSi,@k) ≤ Surv(PCSj,@k).

Definition 9. Probabilistic Cache Subordinance. A given PCSi subordinates an-
other PCSj if for any address, @k, the survivability of an access to @k is lower or
equal in PCSi than in PCSj, which is represented as follows:

PCSi ⊆ PCSj ↔ ∀@k : PCSi(@k) ⊆ PCSj(@k).
If PCSi ⊆ PCSj, and assuming that core operations have a fixed impact on

pET, then the pET for any sequence ISi = {I1, I2, ..., In} is higher when the initial
cache state for ISi is PCSi than when it is PCSj. This means that for any
exceedance probability, the execution time is higher or equal when the initial cache
state is PCSi than when it is PCSj. This is so because under PCSi every single
access has a lower hit probability than under PCSj, which translates into a equal
or higher pET when starting with PCSi.

Let us consider the sequence of accesses to memory
ISorg = <I1, I2, ..., In>. In this sequence there is no constraint on whether each
Ii(i ∈ [1..n]) accesses a different cache line or one already accessed by another Ij,
or whether data were in cache before.

Theorem 2. Let us assume a given PCSorg and the instruction sequence, ISorg,
whose execution moves the cache state to PCSorg−out. Further assume that we
replace an access Ii by an access, C1, to a unique address C in any position in
ISorg, so that we obtain ISext =< I1, I2, ..., Ii−1, C1, Ii+1,, In >. In this scenario:
(1) The pET of ISext is higher or equal to that of ISorg, that is, pET (ISext) ≥
pET (ISorg), and (2) the PCS after executing ISext, PCSext−out, is a subordinate
of PCSorg−out, i.e. PCSext−out ⊆ PCSorg−out for all addresses.

This theorem talks about the fact that if we replace any access in a sequence
by an access to a unique address (especial address that cannot be in cache before
it is accessed and it is evicted immediately after being fetched so that further
accesses to C cannot hit in cache), the pET of the ISext and any subsequent
sequence ISl is higher than the pET of ISorg and ISl. That is, pET (ISext+ISl) ≥
pET (ISorg + ISl). This property helps understanding the PUB variant called
PUBaa (Section 10.5.2).

153

10. PATH UPPER-BOUNDING FOR MBPTA
10.4 Proof for Theorem 1 and Theorem 2

10.3.4 Theorem 1 in Time-Deterministic Caches

In time-deterministic caches Theorem 1 does not apply. For instance let us assume
a fully-associative two-entry cache deploying LRU replacement. Further assume
the sequence ISorg = <A1, B1, C1, A2>, where accesses Ai access address A, ac-
cesses Bi access address B and accesses Ci access address C. Further A, B and C
correspond to different addresses (mapped to different cache lines). That sequence
experiences exactly 4 misses when accessing cache. If we add one access to address
A after B1, so ISext = <A1, B1, A3, C1, A2>, the new sequence experiences only 3
misses (A1, B1 and C1) despite the insertion of an extra access since A3 and A2

would hit in cache. As a result, the execution time of ISext is shorter than the
execution time of ISorg, while the cache state left is the same (A and C, with C
being the LRU element).

10.4 Proof for Theorem 1 and Theorem 2

Proof Theorem 1. The new access to address C (C1) is introduced in a particular
location in the sequence. If C1 hits in cache, each instruction in ISext is a IEUB
of its counterpart instruction in ISorig, that is, each instruction is subject to the
same number of evictions in both sequences. As a result, ISext is an SEUB of
ISorig. In essence, the pET of ISext increases by the latency of a cache hit w.r.t
ISorig.

If C1 misses in ISext and C is never accessed again, all instructions in ISext are
an IEUB of their counterpart instruction in ISorig and hence ISext is a SEUB of
ISorig. In this case, the pET of ISext increases by the latency of a cache miss w.r.t
ISorig. This case would correspond to that in Theorem 2.

If there is an access to C, C2, after C1, given that C1 misses in ISext and it
occurs before C2 (Figure 10.3a), C2 is effectively a miss in ISorig. C1 in ISext is an
IEUB of C2 in ISorig since both are misses. However, C2 in ISext may become a
hit in cache, thus reducing the number of evictions suffered by the accesses to any
address after C2. In other words, sequences like this ISorig = <A1, ..., C2, ..., A2>,
where Ai and Ci access different addresses and in between them there can be any
sequence of accesses to addresses other than A and C, may observe some gains,
i.e. reduction in pET, for A2 when C1 is added before C2. Note that we focus on
the case where A2 misses in ISorg and potentially hit in ISext (if A2 were a hit in
ISorg the inclusion of C1 would not reduce its latency any further). Despite that,
it is still the case that, ISext is a SEUB of ISorig. In both sequences we ignore
the effect on the other accesses other than A1 and A2. Once the whole analysis
is complete, it can be extended to any other access. We identify the following
scenarios:

154

10. PATH UPPER-BOUNDING FOR MBPTA
10.4 Proof for Theorem 1 and Theorem 2

• If C1, which misses in cache, is introduced between the two accesses to A,
leading to the instruction sequence ISext = <A1, ..., C1, ..., C2, ..., A2> and
this may make C2 become a hit, still A2 in ISext will suffer as many evictions
in ISext as in ISorig – at least one in the former and exactly one in the latter,
see Figure 10.3a. Hence A2 in ISext is a IEUB A2 in ISorig. As before C1 in
the extended sequence is a IEUB of C2 in the original.

• If C1 is added before A1, hence leading to ISext = <C1, ..., A1, ..., C2, ..., A2>,
we identify two cases: (1) A2 misses in ISorig, because it is evicted by an
access B1, with B1 and C2 accessing different addresses; and (2) and no
access B1 evicts A2 and C2 may evict A2.

– Under (1) whether C2 becomes a hit due to the inclusion of C1 has no
effect on A2. As a result, C1 and A1 in ISext are IEUB of C2 and A1 in
ISorig, while A2 remains being a miss (see Figure 10.3b).

– Under (2), we identify two final sub-scenarios: (2.a) A1 is a miss in
ISorig and (2.b) it is a hit.

Under (2.a), we can match C1 and A1 of ISext with C2 and A1 of ISorig,
since all of them are misses. We can also match C2 of ISext with A2 of
ISorig, as they suffer one eviction — C2 suffers the eviction caused by A1

in ISext and A2 suffers the eviction caused by C2 in ISorig (Figure 10.3c).

Under (2.b), we can match C1, A1 and C2 of ISext with C2, A2 and A1

of ISorig respectively as C1 (ISext) and C2 (ISorig) miss both, A1 (ISext)
and A2 (ISorig) suffer one eviction each (by C1 and C2 respectively),
and C2 (ISext) can be a hit in the best case and A1 (ISorig) is a hit
(Figure 10.3d).

In summary, in all cases adding an access C1 to the original sequence ISorig

makes that the new sequence, ISext, becomes a SEUB of ISorig, and so have
a higher pET. Hence, ISext, where ISext = ISorig ∪ C1, is a SIS of ISorig as
pET (PCSin, ISext) ≥ pET (PCSin, ISorig).

We further illustrate this with an example of a complex sequence. Let us assume
ISorig = <A1, B1, C1, D2, B2, C2, A2> and ISext = <A1, D1, B1, C1, D2, B2, C2, A2>
after adding D1. The initial PCS is empty. We can match the following pairs
from [ISext, ISorig]: [A1, A1], [B1, B1], [C1, C1], [D1, D2] as all of them are misses;
[D2, B2] as they suffer both 2 evictions (and they generate δ evictions); [B2, C2] as
they suffer 1 + δ evictions (and generate γ evictions); and [A2, A2] as they suffer
3 + γ evictions in ISorig and 3 + γ + θ evictions in ISext where θ is the number of
evictions produced by C2 in ISext. Overall, ISext is a SEUB of ISorig.

155

10. PATH UPPER-BOUNDING FOR MBPTA
10.5 Applying PUB

Figure 10.3: Illustration of possible cases in Proof 1. For each access, e.g A1, the
superindex indicates whether it is a hit Am

1 or a miss Am
1 . Arrows shown which

access in each sequence can be paired up according to IEUB definition

Proof Theorem 2. Obviously, the survivability of the accesses executed before C1

is not affected by C1. Since C is not present in cache, access C1 introduces exactly
one eviction in a random line in cache – with each line having 1

W
probability to be

evicted. This decreases, or does not affect, the survivability of subsequent accesses.
The assumption that C is evicted after it is accessed makes that no future access
to C benefits from it. Further, the execution of C (miss latency) is equal or higher
to that of the access it replaces, thus increasing (or leaving unmodified) the pET
of the extended sequence, making pET (ISext) ≥ pET (ISorg).

10.5 Applying PUB

Based on Theorems 1 and 2, next we show how PUB extends programs so that
they upper-bound the probabilistic timing behaviour of their original counterparts.

CFC increase the complexity of the WCET estimation using MBPTA. In or-
der for PUB to produce an upper-bound of the pWCET of CFCs, requirement
PUBReq1 or requirement PUBReq2 should hold:

PUBReq1. PUB has to derive a bound, pETB, to the longest pET of the
execution of any of the i branches, ISbbi , in the CFC plus any instruction sequence
ISafter after the CFC. Note that the pET of ISafter is affected by the particular
branch that is executed in the CFC. Overall, PUBReq1 imposes that pETB ≥
pET (ISbbi) + pET (ISafter),∀bbi.

PUBReq2. PUB has to upper-bound the longest pET of all the branches in
the CFC and the worst probabilistic cache state left by any of the branches of the
CFC. If this is achieved for every CFC, the probabilistic execution time of any
path in the extended code is higher than the execution time of any path in the
original code.

156

10. PATH UPPER-BOUNDING FOR MBPTA
10.5 Applying PUB

To reach its goal PUB deploys different solutions for the core latency and for
cache (either data or instruction) latency. We focus on cache latency next and we
address core latency in Section 10.5.4. We start with the application of PUB to
the data cache. Its extension to the instruction cache is straightforward and it is
covered in Section 10.6.

The following example illustrates the principle of PUB for the data cache.
Example 1: Let us assume an if-then-else construct prior to which the cache
is in a given PCS, PCSin. The purpose of PUB is to extend both branches of
the conditional statement, ISleft

org and ISright
org , into ISleft

ext and ISright
ext such that the

impact in the pET of the whole program of both branches in the extended code,
ISleft

ext and ISright
ext , upper-bounds the pET of the program for both branches in the

original code, ISleft
org and ISright

org .
We propose two different alternatives Address Merging (PUBam) and Address

Aging (PUBaa) respectively.

10.5.1 Address Merging (PUBam)

PUBam makes the different branches of the extended CFC perform at least the
same data accesses (same addresses) and in the same order as any of the branches
of such CFC in the original code. For instance, let us assume an if-then-else

construct as shown in Figure 10.4(a) where addresses @A, @B and @C are accessed
in the “if” branch and @D and @E in the “else” branch. In this case, PUB has to
ensure that accesses @A, @B, @C , @D and @E occur in both branches, making sure
that the relative order of @A, @B and @C is maintained, and so it is also for @D and
@E. Thus, for instance, we could access
<@A,@B,@C ,@D,@E>, or <@D,@E,@A,@B,@C>, or <@A,@D,@B,@E,@C>,
but not <@A,@E,@D,@C ,@B>.

While the solution based on replicating all accesses in all branches of the CFC
can always be used, it can be optimised by avoiding unnecessary replication of ac-
cesses. For that purpose, we identify the longest sequence of accesses that occurs
to the same addresses and in the same order (although not necessarily consecu-
tively) in all branches, and do not repeat them. Then, those accesses in the other
branch excluding the repeated ones must be interleaved with the ones in the cur-
rent branch in a way that the relative order of the accesses in the other branches
is maintained. This is better illustrated with an example. Figure 10.4(b) shows
an example of an if-then-else construct with a sequence of accesses that re-
peats in both branches, and how the code could be modified to upper-bound both
branches regardless of the branch taken. As shown in the figure, a sequence with 3
accesses in the same order occur in both branches of the if-then-else construct:
<@A,@C ,@C>. Branches are upper-bounded by properly placing accesses @F ,
@G and @H in the “if” branch, and @B, @D, @A and @E in the “else” branch.

157

10. PATH UPPER-BOUNDING FOR MBPTA
10.5 Applying PUB

(a) Simple Code Replication (b) Max. Common Pattern Identi-

fication and Code Replication

(c) Code Replication for a nested if

Figure 10.4: Examples of data cache branch upper-bounding

158

10. PATH UPPER-BOUNDING FOR MBPTA
10.5 Applying PUB

Different ways to interleave branches are also valid. For instance, <@D,@A> and
<@F ,@G> could be swapped. In any case, the new sequence of accesses upper-
bounds the execution time of the original code in any of both branches in terms
of cache behaviour.

Link to Theorem 1: Let us denote the initial cache state before the CFC as
PCSin, the sequence of (memory) instructions in any of the branches as ISi and
the one after the CFC as ISafter. We observe that:

• Adding to ISi a data access present in any of the other branches of the CFC,
leads to the extended sequence ISj. According to Theorem 1, (PCSin, ISj ∪
ISafter) ⊆SIS (PCSin, ISi ∪ ISafter), so the total pET of ISj ∪ ISafter in-
creases when ISj executes instead of ISi since ISj ∪ ISafter is a SIS (subor-
dinate instruction sequence) of ISi ∪ ISafter.

• We can repeat this process incrementally adding those accesses in the other
branches of the CFC, one by one, keeping the same relative order of those
accesses in their original branches. Every time we add a new data access, the
resulting sequence is a SIS of all previous sequences, and so of the original
branch ISi.

• Given that for each branch, b, we add all the accesses that are in the other
branches but not in b, also makes the extended version of each branch be a
SIS of all original branches.

This process can be carried out using a bottom-up approach starting from the
innermost CFCs until the whole program is analysed adding the corresponding
data accesses. By doing so PUBReq1 is met.

Different CFC. So far we have considered simple if-then-else constructs.
Next, we consider other types of CFC such as if-then, switch, loop and nested
if-then-else constructs.

If-then. An if-then construct can be treated analogously to if-then-else

ones assuming that the “else” branch is empty, so that the accesses in the “if”
branch are simply added in the new “else” branch.

Switch. In switch (or if-then-elsif-elsif-...) constructs, the number of
branches can be larger than 2. The sequence of repeated accesses should, therefore,
exist in all branches. All accesses in all the remaining branches excluding the
repeated sequence (repeated in all branches) are placed appropriately by PUB in
the current branch.

Nested Conditionals. Regarding nested CFC, our mechanism can be applied
recursively starting from the innermost CFC. When moving one level up, since all
the branches of the innermost CFC are trustworthy upper-bounds of the original
branches, any of them can be used. When a number of instructions is to be

159

10. PATH UPPER-BOUNDING FOR MBPTA
10.5 Applying PUB

inserted in one branch of the outer CFC, they must be inserted identically in
all branches of all inner CFC. An example of nested CFC, with if-then-else

and if-then constructs is shown in Figure 10.4(c). The first column shows the
original code. The second column the branch upper-bounding for the innermost
if-then that becomes an if-then-else. Finally, the last column shows the code
after branch upper-bounding for the outermost CFC. As shown, the “if” branch
of the outermost if-then-else construct must be also extended with the accesses in
the if-then-else construct inside the “else” branch.

Loops. Branch upper-bounding is trustworthy even in the case of loops because
although data cache accesses may change across iterations (e.g. vector traversals),
accesses in any of the branches of the CFC remain the same. Note that not
replicated accesses are only those that can be guaranteed to access the same address
in all branches of the CFC in every iteration. For instance, if two accesses occur to
a position in an array in the different branches of a CFC and they are guaranteed to
access the same position (e.g., a[i] where i is the loop index), then the mechanism
is trustworthy. If those accesses cannot be proven to access the same position in
all iterations (e.g., a[i] and a[j]), then they are assumed not to access the same
address and are replicated in the different branches of the CFC.

Infeasible paths, error codes and modes of operation. Unless instruct-
ed otherwise PUBam balances the different branches on every CFC. However, there
are several circumstances in which one or several of the branches of a CFC do not
need to be considered in the computation of the pWCET, or at least do not have
to be considered together. For example, if the user deems some CFC as non-
relevant for the WCET because their execution does not affect the WCET (e.g.,
code to deal with error conditions), the user can instruct PUB , e.g., by means
of annotations, not to balance instructions in those branches, thus reducing PUB
overhead.

Operation modes is another example in which the user can help PUB . Software
with different operation modes, which can be mutually exclusive, encapsulates
different functionalities for each of which a different pWCET can be derived to
reduce the pessimism that an across-modes pWCET would incur. In order to
prevent PUB from generating a pWCET that upper-bounds all those together,
the user must correctly identify them and indicate to PUB the code belonging
to different operation modes. Then the user can provide path coverage for those
operation modes (i.e. one input per mode). For instance, in a switch statement
in which each case represents a different mode, it would be simple to annotate the
code to prevent PUB from balancing the different branches of the switch.

Function Calls. If a function is called in one branch of a CFC, its effect on
the cache has to be replicated on the other branches. This can be done either (1)
by creating a dummy function that accesses the same addresses in the same order,

160

10. PATH UPPER-BOUNDING FOR MBPTA
10.5 Applying PUB

or (2) by means of the Address Aging technique presented next. Further, if the
function is called in all branches of a CFC with the same inputs then the function
can be considered the ‘common pattern’ in all branches of the CFC, applying PUB
only to the code before the call and after the call to the function.

10.5.2 Address Aging (PUBaa)

The fact that PUBam requires merging accesses of all branches of a CFC may
lead to pessimistic pWCET estimates, which we call PUBam inefficiency. This
pessimism manifests itself when the code in any branch of a CFC in the extended
version has significantly higher number of accesses than that in any branch of the
original version. This results in a PCS after the execution of the extended version
of any of the branches of a CFC that is worse (i.e. the hit probabilities of any
subsequent accesses is lower) than the worst PCS obtained after executing any of
the branches in the original CFC.

PUBam introduces low overhead on if-then-else CFCs in which in one of
the branches b1−org few accesses to cache are carried out. In that scenario the
addresses of the other branch b2−org are copied into b1−org leading to b1−ext, with
b2−ext almost unchanged with respect to b2−org since b1−org contains few accesses. In
this case the worst cache behaviour in the extended version, which happens when
b2−ext executes, is almost the same as when b2−org executes. Similarly, PUBam
introduces little overhead if both CFC branches perform similar access sequences
as few extra accesses need to be added. Note that PUBam also handles efficiently
if-then constructs, which is the case when one of the branches is empty as PUBam
keeps the worst path untouched and only increases the code in the missing path.

PUBam is inefficient when in each branch of a CFC different sets of addresses
are accessed. In that case, all branches have to be extended adding the accesses
present in the others, making that the execution time and the PCS after executing
any of the extended branches are much worse than those obtained after executing
any of the original ones. For instance, if we have a 10-case switch such that in each
of its branches 2 different addresses are accessed, this would result in an extended
switch containing 20 accesses in each branch.

In order to handle this inefficiency of PUBam we propose a new technique called
address aging (or PUBaa). Instead of copying addresses of one branch on the rest,
PUBaa adds accesses to addresses accessed nowhere else in the program, which
lead to a miss and fetch no useful data. In particular, it adds as many accesses as
the maximum number of accesses in any of the branches. In the previous example
of a 10-case switch in which each branch has 2 different accesses, in each branch
PUBaa adds 2 accesses to unique addresses.

Link to Theorems 2 and 1: The idea is that in the original switch the worst
situation happens when the branch executed incurs two misses. If we consider only

161

10. PATH UPPER-BOUNDING FOR MBPTA
10.5 Applying PUB

the 2 added accesses which miss and fetch no useful data, then their execution time
and the PCS they leave are worse than those in the original code in all branches.
If we consider that those two accesses virtually replace the accesses in the other
branches of the original program, Theorem 2 applies, meeting PUBReq2. The fact
that in the branch the two missing accesses are added back (those in the original
code) only increases the execution time according to Theorem 1, hence meeting
PUBReq1 .

Note that PUBaa is particularly good when the number of branches in the
CFC is high. Conversely, if the number of branches is low and they potentially
present a high imbalance, PUBam is more efficient. This makes PUBam and
PUBaa complement each other.

PUBaa can be implemented with or without hardware support. If no hardware
support is in place, accesses added by PUBaa are ensured to miss by accessing
addresses never accessed before. A data structure (dummy) and a pointer (next)
are created so that the address accessed by any of those accesses is the one pointed
by next (so dummy[next]) and next is increased by the cache line size of the
affected caches. Alternatively, PUBaa can be implemented with hardware support
by adding a special instruction, MissPubaa that creates a miss in cache, hence
creating a random eviction, and accesses memory, but that brings no useful content
to cache.

10.5.3 Creating the PUB Code

Adding memory operations can be done in several ways depending on the hardware
characteristics. If a non-modifiable register exists (e.g., register r0 in SPARC and
MIPS architectures, which is hardwired to zero), new accesses can be translated
into r0 = LOAD @A, where @A is the particular address to be accessed. If such
a register does not exist, then a free register must be used to hold the data read
from memory. Such data will not be used, but the semantics of the instruction set
architecture (ISA) must be respected when reading data from memory. Finally,
note that in some cases accessing an address @A that was not accessed in the
original program may create an exception. This is not often the case since most
memory operations can be guaranteed not to access beyond the memory bounds
of the program. For the remaining accesses, if PUBaa is applied, as mentioned
before, it is required creating a data structure so that unique accesses to that
structure age the cache state appropriately if no hardware support is in place.

Code Alignment. When applying PUB , code (instruction accesses) may get
unaligned with respect to the original code, thus altering the timing behaviour
in a way that may end up not upper-bounding the original code. It is important
realising that the survivability of a given access, i.e. its hit probability, does
not depend on the particular address it is mapped in memory. The address in

162

10. PATH UPPER-BOUNDING FOR MBPTA
10.5 Applying PUB

a deterministic cache would determine the particular set in which the address is
mapped in cache, but this is not the case in a time-randomised cache, since the
placement is randomised breaking the dependence between the address of an access
and its assigned cache set. Given two accesses to cache what really affects their
hit/miss probability is whether they are mapped to the same cache line or not,
which in turn affects their reuse distance (represented as k in Equation 5.8). Hence,
a principle we follow when applying PUB is not to unalign basic block boundaries,
so that, instructions that in the original code are mapped to the same line out of the
basic block being modified remain mapped to the same line in the extended code
and vice-versa. Also, the code in the basic block – whose all instructions are always
traversed sequentially – keeps the same cache-line alignment at its boundaries so
that it has the same behaviour as is the original code increased with the access to
some extra cache lines. This is achieved by ensuring that PUB -added instructions
are added so that the total size of the code added in each of the branches of the
CFC is a multiple of the cache line size. This makes that the rest of the code
keeps exactly the same cache-line alignment as in the original code. Again, note
that altering the actual addresses of the pieces of code is irrelevant given that
MBPTA-compliant designs such the ones proposed in the Chapter 4 or this thesis
are built upon random placement caches or software randomisation is used on top
of deterministic placement (e.g., modulo placement) caches.

10.5.4 Core Latency

We focus on a processor architecture deploying time-randomised instruction and
data caches with a core pipeline similar to the LEON4 [Cobham Gaisler (2011)]
processor in which processor instructions have a fixed latency, as it has been shown
to be PTA-compliant [Kosmidis et al. (2013a)]. Core operations, besides their
access to the instruction cache, which is covered in Section 10.6, do not affect the
PCS of the data cache.

PUB computes the core latency of the instructions in the different branches
of a CFC and adds core instructions to each branch such that the core latency of
all branches is equalised1. PUB adds the minimum number of instructions taking
into account the timing effect that they introduce. Added instructions will be
typically arithmetic-logic operations, such as integer or floating point additions,
multiplications, etc. that have a neutral effect on the functional behaviour of the
program by either writing the same value read (e.g., multiplying by 1) or writing
into a hardwired constant-value register.

1In this step memory operations (loads and stores) are ignored.

163

10. PATH UPPER-BOUNDING FOR MBPTA
10.6 PUB for Instruction Caches

10.5.5 Steps

PUB carries out several steps that should be applied in the following order: First,
core latency and data cache latency are upper-bounded in any order. Then, in-
struction cache latency is upper-bounded (excluding code alignment) for efficiency
reasons, since it can make use of those instructions already added by the previous
steps. Finally, code alignment is performed.

10.6 PUB for Instruction Caches

The same principles applied to the data cache apply to the instruction cache,
although the instruction cache has several peculiarities. Three main aspects are
considered by PUB to deal with the instruction cache: code invocation, function
calls and code alignment.

Code Invocation. For the sake of this explanation let us assume an if-then-else

construct where ISleft is executed in the “then” branch and ISright in the “else”
branch. We would like to apply the same solution as for data, where accesses in
other branches of a CFC are reproduced in the current one. Ideally, this could be
conceptually achieved if we could access all the instruction addresses of the CFC,
every time any branch of the CFC is executed. In the if-then-else, if we were
able to create ISjoin = ISleft ∪ ISright, then ISjoin would be a SIS for both ISleft

and ISright, or formally stated:

(PCSin, ISjoin) ⊆SIS (PCSin, ISleft)

(PCSin, ISjoin) ⊆SIS (PCSin, ISright)

Then, we would like to have ISjoin in both branches of the if-then-else

construct so that the whole if-then-else construct in the extended version
CFCideal =< if ISjoin else ISjoin > is a SIS of the whole if-then-else con-
struct in the original version CFCorg =< if ISleft else ISright >

However, this is not possible because the only way to access an instruction
address is to fetch and execute the instruction placed in this memory location.
In the case of the CFC this requires to modify the control flow of the execution
such that both branches of the CFC are executed always, which would have un-
desirable functional effects. Since the particular addresses are irrelevant for time
randomised caches, we can produce the same timing effect by building CFCreal =<
if ISjoin−left else ISjoin−right > where ISjoin−left = ISleft∪ISright′ and ISjoin−right =
ISright ∪ ISleft′ , such that ISleft′ and ISright′ have the same pattern of access to
the instruction cache as ISleft and ISright respectively. Later we explain how to
make ISleft′ and ISright′ not to have any functional effect.

If CFCreal is executed just once, its timing behaviour will be exactly the same
as for CFCideal.

164

10. PATH UPPER-BOUNDING FOR MBPTA
10.6 PUB for Instruction Caches

If the CFCideal is executed several times (which is the case in a loop), being ISi,
ISj, ... the sequences of instruction executed after every time CFCideal runs, then
we would have the following sequence of execution: ISjoin, ISi, ISjoin, ISj, ISjoin,
ISk, ISjoin, ...

With CFCreal, any of the branches ISjoin−left or ISjoin−right can be executed
instead of ISjoin. Hence, if in the different runs of the CFC, the same branch
is always executed, the reuse distances and so the hit/miss probabilities – and
so the pET – will be the same as in the ideal case where ISjoin is executed
always. However, if different branches are executed as, for instance, in the fol-
lowing sequence: ISjoin−left,ISi,ISjoin−right,ISj ,ISjoin−right,ISk,ISjoin−left, ... then,
reuse distances grow w.r.t. ISjoin. As a consequence, any sequence of paths of
if ISjoin−left else ISjoin−right experiences the same execution patterns as
if ISjoin else ISjoin, but with equal or higher reuse distances, and thus with equal
or higher pET. Therefore, if ISjoin−left else ISjoin−right is a SIS of
if ISjoin else ISjoin, which is already a SIS of if ISleft else ISright.

So far we have assumed that ISleft′ and ISright′ do not have any effect on the
functional behaviour of the program. This challenge can also be addressed easily
by making sure that the added instructions do not impact the functional behaviour
— for example making write operations access addresses not used by the program.
In the simplest case, if the code to be replicated from other branches is sequential
(no CFCs or loops), one can simply add as many nop1 as needed so that the code
size of any branch of the conditional construct has the total size of adding all code
in all branches. PUB therefore adds some instructions in the different branches of
the CFC. However, since data cache and core instructions branch upper-bounding
may have already added some instructions, we only need to add the remaining
ones (if any).

The solution described can be applied as it is in the context of PUBam. In
the case of PUBaa one cannot easily introduce instructions that always miss in
cache without hardware support. However, the MissPubaa instruction described
before can be made also pay an instruction miss. For this purpose, whenever the
instruction is fetched (which may hit in the instruction cache), instead of fetching
the next one, an instruction miss operation is started. Whenever complete, a cache
line is evicted from the cache and fetch resumes.

Function Calls. The same solution used for data cache branch upper-bounding
solves the issue for the instruction cache. If a function is called from all branches
of the conditional CFC with the same inputs, they will exercise the same code on
the instruction cache – note that all branches of the function will be also upper-

1A nop, no-operation, instruction is any instruction producing no functional effect in the
execution of the program. In some ISAs such an instruction exists. If this is not the case, it is
always possible performing operations like adding “0” to any particular register.

165

10. PATH UPPER-BOUNDING FOR MBPTA
10.7 Evaluation

bounded so it will be irrelevant the actual branches exercised in each invocation
of the function.

Code Alignment. Code alignment issues have been already explained in
Section 10.5.3. Note, however, that code alignment must be the last step in the
process.

10.7 Evaluation

We use the experimental setup (simulator and benchmarks) described in Chap-
ter 3.1.2. Our architecture ensures that requests sent to each resource are issued
in program order and are also served in program order to prevent timing anomalies
by construction [Wenzel et al. (2005a)].

The size of both the I-cache and the D-cache is 8-KB with 16-byte lines and
8-way set-associativity. Both caches, instruction and data, implement random
placement and replacement policies. The D-cache is write back. On a dirty line
eviction the pipeline is stalled. In our architecture stores may have lower impact
on execution time than loads due to the use of a store buffer. To handle this PUB
added memory operations are loads.

The latency of the fetch stage depends on whether the access hits in I-cache (1
cycle) or misses (100 cycles). After the decode stage, memory operations access
the D-cache whose behaviour is analogous to that of I-cache.

We use benchmarks from the EEMBC Autobench [Poovey (2007)] and Mälar-
darlen [Gustafsson et al. (2010)] suites as reference for the analysis. EEMBC
Autobench is a well-known benchmark suite that reflects the current real-world
demand of some embedded systems. Mälardarlen benchmarks [Gustafsson et al.
(2010)] are also commonly used in the community to evaluate and compare differ-
ent types of WCET analysis tools and methods.

For several of these benchmarks we have the input set leading to the worst-
case path. For some of them, the number of iterations they carry out depends
on the input data. The input data we have for them provide the worst-case path
for the a given loop-iteration count that we assume fixed. The benchmarks in
this group are: bs, cnt, fir, lcdnum, prime, insersort, edn, matmult, janne,
cover, fdct, fibcall, jfdctint. For these benchmarks, the ratio between the
WCET estimation with PUB and the one with MBPTA corresponds to the actual
WCET overestimation introduced by PUB. For the rest of the benchmarks, for
which we could not derive the worst-case path, PUB WCET overestimation is an
upper-bound of its actual WCET overestimation, since another input set could
exist that exercises the worst path, making MBPTA pWCET estimate to increase
and be closer to the one provided by PUB.

166

10. PATH UPPER-BOUNDING FOR MBPTA
10.7 Evaluation

Figure 10.5: Impact on code size of PUB .

Note that the effort and time to implement PUB in a compiler framework
exceeds by far what is feasible for a thesis. For this reason we opted to apply PUB
manually in the source code, by adding data references in each path. This way we
mimic its overheads and gain some insight on the cost of the technique.

10.7.1 Code Replication Size

It is important to note that with PUB the extended program can be used only
at analysis time to derive pWCET estimates, while at deploy time the original
program can be used .

Figure 10.5 shows the code-size overhead introduced by PUB . We observe that
for most of the benchmarks the overhead is below 20%, with only few benchmarks
introducing higher overhead. The case of few EEMBC benchmarks (e.g., puwmod,
matrix and a2time) is remarkable since the code size is increased noticeably. In
contrast, some Mälardarlen did not require any change (e.g., cover, edn, fdct, fibcall,
insertsort, janne, jfdctint, matmult and ns) since they do not have any conditional
CFC or those conditional CFCs exist but they are already fully balanced (e.g.,
cover has some constructs where a given variable is incremented or decremented
in different branches but cache is not accessed).

Regarding those benchmarks experiencing a significant code size increase due to
PUB , we have observed that this highly correlates with the number of conditional
CFCs and their degree of nesting. For instance, the four EEMBC benchmarks with
lowest number of conditional CFCs (up to 6) are aifftr, aifirf, aiifft and cacheb,
and are the ones experiencing the lowest code increase. Conversely, puwmod is the
benchmark with highest number of conditional CFCs (66) and frequent conditional
CFC nesting (often 3 conditional CFCs nested).

167

10. PATH UPPER-BOUNDING FOR MBPTA
10.7 Evaluation

Figure 10.6: Impact on pWCET estimates of PUB with respect to MBPTA applied
over the original program with the user-provided input vectors.

10.7.2 pWCET Estimates
In this section we compare the pWCET estimates obtained with PUB and MBPTA.
Following the iterative method described in Chapter 3.1.2 we carried out 1,000

experiments.MBPTA then uses those execution time measurement and EVT to
extract pWCET estimates. In all experiments we apply the Wald-Wolfowitz in-
dependence test and the two-sample Kolmogorov-Smirnov identical distribution
test. We use a 5% significance level (a typical value for this type of tests). We also
apply the ET test for Gumbel convergence testing. All three tests were passed for
all EEMBC and Mälardarlen benchmarks.

PUBaa exploits the case in which there is little overlap between the (long)
address sets in each branch of a CFC. This would lead to PUBam generating long
extended versions of each branch with many accesses to all those addresses, which
in fact generates worse PCSs than feasible with the original version of the code.
Such a case has not been found in the benchmarks evaluated in this study, making
PUBaa not to have any benefit over PUBam. As part of our future work, we aim
at finding benchmarks that allow us to illustrate quantitatively scenarios where
PUBaa outperforms PUBam.

Figure 10.6 shows the pWCET increase introduced by PUB with respect to
the original MBPTA. We observe that for EEMBC and Mälardarlen the average
pWCET slowdown is 11% and 5% respectively. Only three benchmarks suffer an
slowdown between 20% and 50%. a2time, for instance, uses a data working set
fitting quite well into the D-cache, so when applying PUB more data are accessed
on each iteration, the working set exceeds cache size and execution time (and so
pWCET) increases noticeably. However, most of the benchmarks experience low
or even negligible pWCET degradation when applying PUB .

168

10. PATH UPPER-BOUNDING FOR MBPTA
10.8 Exploiting User Knowledge to Reduce pWCET

Similar to other timing analysis techniques, PUB benefits from information on
infeasible paths. In particular, for a2time, pntrch and ns, we have used semantic
knowledge of the infeasibility of some paths. We detected that some path combi-
nations were infeasible by semantic construction of the program. This is the case
of a2time, detailed in the next section, in which there is a sequence of if-then

constructs out of which exactly one can be executed in any traversal. Therefore,
since every execution is indeed triggering the worst (and only) timing behaviour,
there is no need for balancing those if-then constructs. If this semantic infor-
mation is not provided by the user, PUB assumes that all CFC can be executed
in each traversal, thus producing some non-negligible and ‘artificial’ overhead. If
the user prevents PUB from balancing CFC in which some path combinations are
deemed to be infeasible the overheads of PUB can be reduced.

10.8 Exploiting User Knowledge to Reduce pWCET

In this section we discuss the exploitation of user knowledge about the application
in order to reduce the PUBam overhead which is caused by infeasible paths.

Applications can have path combinations that are not possible to be exercised
under any circumstances at deployment time. An example of such combinations
are paths that come from different operation modes in the application, e.g., take-
off and cruise mode. Another case appears when there are conditional paths in
the program, whose conditions are impossible to be satisfied at the same time. In
both cases, when applying timing analysis in an application agnostic way, if the
program’s Worst Case path includes paths from infeasible combinations, it will
result in an overestimation of the WCET. To overcome this problem the WCET
either needs to be computed in a per-operation mode manner, or by not taking
into account those paths that cannot be taken together. As an example of this
behaviour we present the a2time benchmark of the EEMBC automotive suite.

The structure of this program follows the pattern of EEMBC automotive bench-
marks: a loop with a specified number of iterations. The loop body is unrolled
explicitly 3 times, which makes the sequence of input sensing and calculations
inside the loop body to be repeated 3 times.

In Figure 10.7 we can see the pseudocode of the a2time’s loop body. The
compiler cannot know that the 8 paths are mutually exclusive, which is actually
the case. Therefore PUB will balance all paths with an else construct.Since exactly
one of the 8 conditions is true, this will cause the program to execute 7 expensive
else paths unnecessarily (multiplied by 3 as the loop is unrolled 3 times), as those
paths are infeasible. This results in a 2.3X times increase in the execution time.

Users knowledge about the application can be used to reduce this overhead.
This can be done by: a) using compiler directives, in order to instruct the compiler

169

10. PATH UPPER-BOUNDING FOR MBPTA
10.8 Exploiting User Knowledge to Reduce pWCET

for i < ITERATIONS do
if angleA ≤ angle < angleB then

firing time = complex math expression 1 // Cylinder 1
end if
if angleC ≤ angle < angleD then

firing time = complex math expression 2 // Cylinder 2
end if
...
if angleO ≤ angle < angleP then

firing time = complex math expression 8 // Cylinder 8
end if
// Same blocks repeated 2 more times

end for

Figure 10.7: a2time loop structure

for i < ITERATIONS do
if angleA ≤ angle < angleB then

firing time = complex math expression 1 // Cylinder 1
else if angleC ≤ angle < angleD then

firing time = complex math expression 2 // Cylinder 2
...

else if angleO ≤ angle < angleP then
firing time = complex math expression 8 // Cylinder 8

end if
// Same blocks repeated 2 more times

end for

Figure 10.8: a2time loop structure with simple code restructuring to help the
compiler identify mutual exclusive paths

not to balance these paths; or b) restructuring the code to make clear to the
compiler that these paths are exclusive to each other.

The former requires using compiler directives (e.g., # pragma no balance) and
has the advantage that keeps the application unmodified, which is of particular
benefit in case of legacy applications that are already certified.

The latter consists in a simple restructuring of the application in order to make
explicit that the paths are infeasible. For example, in Figure 10.8, the individual
if statements are changed to else if conditions, which shows that only one of
the 8 paths can be true at any moment. This way, PUBam would only add
a single balance path in this construct, which would be never exercised, so no
overhead would be induced. Application of PUBam to the rest of the paths in the
benchmark, leads to a 47% increase in the WCET, compared to the 2.3X without
taking advantage of knowledge about the application.

170

10. PATH UPPER-BOUNDING FOR MBPTA
10.9 Related Work

10.9 Related Work

Several approaches have been proposed to deal with the complexity of WCET
analysis when different input data cause the code to execute on different exe-
cution paths with differing execution times. The Single-Path approach [Puschner
(2003)][Puschner (2005)] transforms CFC into a sequential set of instructions based
on the concept of predicated execution [Mike & Schlansker (1991)]. Predicated
instructions have a predicate, such that the instruction is only executed if its pred-
icate evaluates to true, otherwise the processor assumes it to be a nop operation.
For instance, for an if-then-else, the instructions in each branch are changed by
sequential code with conditional-move assignments for each of the conditionally
changed variables. PUB does not make the execution of a program single-path,
but instead changes the branches in conditional CFCs such that extended paths
take longer to execute than any of the original branches of the conditional CFC.
Further note that the extended code is only used at analysis time; at deployment
time the original code is used, hence adding no overhead on average performance.

Several studies such as [David & Puaut (2004)] focus on probabilistic schedu-
lability analysis and assume, for each task to be scheduled, a known distribution
of execution times. Other studies focus on WCET estimation such that WCET
estimates are probabilistic, which is our focus. Some of those studies focus on
time-deterministic architectures and assume that the external events affecting the
execution time of a program, i.e. input data vectors, are assumed to be random
variables. Based on this assumption authors associate to each potential execution
path of the program a probability. To this end, each condition is associated a
probability. For instance in the statement if (a > b) then S1; else S2; if a
and b are input data, these approaches assume that it is known the probability
of the condition to be true, and hence the probability S1 to be executed, can be
computed. This puts high requirements on the user to provide input data that
is probabilistically representative of deployment time behaviour. In that respect,
it is worth mentioning that the primary goal of MBPTA is to provide pWCET
estimates that hold under execution conditions that may occur during actual op-
eration: whereas those conditions may not be exactly identical to those captured
by the observation runs made at analysis time, analysis time conditions must still
reproduce or upper-bound the probabilities of the execution times that may occur
during operation [Cazorla et al. (2013b)]. MBPTA controls the hardware and the
software behaviour, for instance by proposing time-randomised caches, so that the
requirements on the user to provide representative execution conditions is heavily
reduced [Cazorla et al. (2013b)].

171

10. PATH UPPER-BOUNDING FOR MBPTA
10.10 Summary

Other authors [Lu et al. (2012)] let the application run long enough on a time-
deterministic architecture collecting the observed execution times. Those execu-
tion times are then randomly sampled to apply Extreme Value Theory. However,
the representativity of the obtained results (i.e. pWCET estimates) depends on
how representative the collected observed execution times are, with respect to the
application’s execution times, and those techniques provide no guarantees on that
matter [Cazorla et al. (2013b)].

Authors in [Liang & Mitra (2008)] define the concept of probabilistic cache
behaviour on a deterministic fully-associative cache. To that end, for every point
in the program the (static) deterministic cache state in which the program is at
that point is associated the probability of reaching that program point. On the
one hand, authors also assume that the events affecting the execution time are
random so that a probability can be associated to each path with the casuistic
shown above. On the other hand, this differs from our concept of probabilistic
cache state, in which each access has a distinct associated probability of hit and
execution paths have no associated probability.

In addition to previous related works that we have described above, there are
also relevant works that build on top of our PUB contribution and improve it
in order to reach a high TRL level. In particular, Extended Path Coverage or
EPC [Ziccardi et al. (2015)] is a technique based on the same concept as PUB,
to remove the burden of input vector from the end user in order to compute the
WCET. Similarly, EPC works on time-randomised caches, however it does not
require changes to the compiler, thus reducing its implementation cost. Instead
of padding the application code, it modifies the probability distribution of each
path to negatively compensate for any potential benefit from the non-exercised
paths that may lead to pWCET underestimation. In the PROXIMA project,
EPC has been implemented in a commercial measurement-based timing analy-
sis tool [Rapita Systems (2008)] and has been assessed with an industrial case
study [Mezzetti et al. (2017)].

10.10 Summary

Obtaining trustworthy and tight worst-case execution time (WCET) estimates
is of prominent importance in safety-critical real-time embedded systems. How-
ever, the WCET estimation process has to be affordable for the user to apply
it. Measurement-Based Probabilistic Timing Analysis (MBPTA) has emerged re-
cently to respond to this challenge by providing means to easily determine accurate
WCET estimates. Unfortunately, MBPTA still relies on the user providing path
coverage, which is often beyond of what the user can provide.

172

10. PATH UPPER-BOUNDING FOR MBPTA
10.10 Summary

In this chapter we propose a Path Upper-Bounding method, PUB , which works
in conjunction with MBPTA. PUB allows deriving pWCET estimates for all paths
of the program, including those not exercised by the input vectors given. This
makes that the coverage needed for functional verification is also enough for the
timing analysis, thus drastically reducing the cost of timing analysis. Our results
show that PUB increases pWCET estimates only by 5% and 11% on average for
Mälardarlen and EEMBC with respect to MBPTA.

173

Chapter 11

Probabilistic Timing
Composability

11.1 Introduction

In this chapter we address an important issue related to the use of time-randomised
caches in Integrated Architectures. Those systems, as discussed in the Introduction
are increasingly used in safety critical systems, in order to accommodate more
complex software functions of mixed criticality.

Due to the critical nature of these systems, placing multiple functions – pos-
sibly at different criticality levels – on the same hardware, requires space isola-
tion and time isolation [APEX Working Group (2013)]. The former prevents any
data-related misbehaviour of one function from affecting the data sources of other
functions. The latter, which is our focus, ensures that the worst-case execution
time (WCET) bound determined for one function is guaranteed (hence can never
be exceeded) in the face of other functions competing for execution on the same
processor. This interpretation of time isolation directly follows from the property
known as time composability (TC). Achieving both forms of isolation enables a
drastic reduction of development costs as each subsystem can be independently
developed and then incrementally integrated and qualified in the system with-
out risks of regression at system level [RTCA (2005)] [Wilson & Preyssler (2008)]
[Elmqvist et al. (2008)] [International Organization for Standardization (2009)].

Classic timing and schedulability analysis assume time composability in the
software components that constitute the system. Their assumption however is
safeguarded by conservative and pessimistic assumptions, which fatally defeat the
industrial goal stated above.

174

11. PROBABILISTIC TIMING COMPOSABILITY
11.1 Introduction

State-of-the-art static timing analysis techniques are intrinsically limited by
the complexity of constructing a sufficiently accurate model of the hardware and
of the software executing on top of that hardware. Any inaccuracy or lack of the
required knowledge about the hardware timing or the software execution behaviour
may have an inordinate impact on the tightness of the resulting WCET estimates.
As the hardware becomes increasingly complex and software functions increase
in number and size, building accurate models of the hardware and software to
determine tight WCET bounds becomes prohibitive, if at all feasible [Mezzetti &
Vardanega (2011b)] [Kirner & Puschner (2008)] [Puschner et al. (2009)].

MBPTA, which has been the focus of this thesis, has been proven to be a viable
method to perform timing analysis of programs in CRTES. However there is still
a lack of understanding of what MBPTA-conformance – as defined in Chapter 4
– offers in the way of time composability. The question is how MBPTA tight yet
safe WCET bounds can be in comparison to those obtained by state-of-the-art
techniques.

The contributions of this chapter are the following:

1. We identify how time composability can be achieved in probabilistic systems
while keeping pWCET estimates tight. We focus on the effect of cache
memories, as they are the typical example of a hardware acceleration feature
known that severely challenges classic WCET analysis.

2. We describe the information required from software components to be able
to time compose their pWCET estimates. In particular, we show that the
reuse distance1 of memory accesses is enough to fully characterise the time
composability properties of a software component.

3. We illustrate how to compose pWCET estimates in a processor set-up with
complex cache configurations and provide methods to generate pWCET es-
timates suitable for composition in MBPTA systems. We demonstrate that
smart compositions allow using tighter pWCET estimates of the components.

Using the simulation environment introduced in Chapter 3.1.2, our results show
that MBPTA makes pWCET estimates attractive to time composability. In par-
ticular, we observe up to 25% reduction in our pWCET bounds with respect to
the WCET obtained by flushing the processor state prior to program execution,
which is the standard industrial practice to attain time composability.

1Reuse distance stands for the number of memory accesses in-between two consecutive ac-
cesses to a particular address.

175

11. PROBABILISTIC TIMING COMPOSABILITY
11.2 Incremental qualification

11.2 Incremental qualification

For many real-time embedded systems, the hardware and software components of
the system have to be developed in parallel and integrated incrementally. A key
design principle to contain verification costs in Integrated Architectures such as
AUTOSAR for automotive [AUTOSAR (2006)] and Integrated Modular Avion-
ics (IMA) for avionics [SAE (2001)] is to secure the possibility of incremental
qualification [RTCA (2005)] [Wilson & Preyssler (2008)] [Elmqvist et al. (2008)]
[International Organization for Standardization (2009)], whereby each software
component can be subject to verification and validation – including timing analy-
sis – in isolation. This goal is achieved by guaranteeing that no interaction occurs
between isolated functions, in time and space, in their sharing of execution re-
sources. At functional level, this translates into providing for space isolation, such
that no misbehaving function may corrupt the data used by other functions. At
timing level, this requires time composability, such that the timing behaviour of
a function (in terms of its known lower and upper bounds) is not affected by the
execution of other functions, whereby software functions enjoy time isolation. This
property determines that the timing behaviour of an individual component does
not change in the face of composition with other components.

11.3 Time Composability
Time composability applies to the interaction between the Operating System (OS)
and the user-level application or between the user level application themselves.

Regarding the interaction between applications and the OS, in [Baldovin et al.
(2012)] the authors present the design of a time composable OS. In the cited work,
the latency of every system call that may affect the pWCET of application-level
program units is designed to be constant and to not perturb the state retained in
the processor at the time of the call: in this manner the execution of the OS has
no effect on pWCET bounds of the caller program unit.

In this study we focus on time composability (TC) at application level. The TC
we seek (i) allows tight pWCET estimates to be obtained for program units and
(ii) incurs affordable design, implementation and verification costs. We dismiss
approaches to TC that hinder functional design and scalability: for example, the
use of static (table-driven) scheduling for the execution of program units and
making pessimistic allowances for the execution slots assigned to them.

Next we describe the typical structure of industrial-quality user-level CRTES
applications and then discuss how state retention in hardware, with focus on cache
memories, and in software components threatens TC. Finally, we state the problem
and the assumptions on top of which we build our case for probabilistic time
composability.

176

11. PROBABILISTIC TIMING COMPOSABILITY
11.3 Time Composability

Algorithm 1 Static schedule of main procedures with run-to-completion execution
semantics (top) and Example control flow of a Main procedurei

void Main procedurei() {
Inner procedurei,1()
Inner procedurei,2()
Inner procedurei,1()
for (j = 0; j ≤ 5; j + +) do

Inner procedurei,3()
Inner procedurei,4()
Inner procedurei,2()

end for
}
—————————————————————–
while true do

Main procedure1()
Main procedure2()
...
Main proceduren()

end while

11.3.1 Software Structure of Real-Time Functions

We regard the software design to include a collection of independent main proce-
dures each of which in turn contains a number of inner procedures. Main proce-
dures are called indefinitely as long as the system is operational according to some
system level schedule (see Algorithm 1). We consider inner procedures to be the
unit of software development and verification. Integration and validation occur
incrementally.

The system-level schedule determines how the execution of main procedures
interleave with one another. The Control-Flow Graph of each main procedure de-
termines the way inner procedures are called and what interleaving occurs between
any two successive executions of any of them. However, as inner procedures are
the unit of parallel development hence also the Unit of Composition (UoC), their
exact internal structure is only known late in the development process.

We term Program Unit the software component on which pWCET analysis is
to be performed. This can be at the granularity of either the main procedure or
the inner procedure. The pWCET value that matters for system-level scheduling
is that of main procedures, which in turn results from the pWCET bounds deter-
mined for its inner procedures. It is therefore safe to assume that pWCET analysis
operates on inner procedures and proceeds upward from them.

177

11. PROBABILISTIC TIMING COMPOSABILITY
11.3 Time Composability

11.3.2 Problem Statement and Assumptions

The main factor affecting TC in the execution of a UoC is the state retained in the
processor hardware (e.g., cache contents) and in the software (e.g., data on which
path decisions are dependent). We ignore software state issues because MBPTA is
capable of handling the impact of software state in the determination of pWCET
estimates [Cucu-Grosjean et al. (2012)].

We concentrate on the processor state whose retention may affect TC. Given
a UoC B representing an inner procedure to which MBPTA is to be applied to
obtain a pWCET estimate, we assume that (i) a time-composable OS is used
such that the latency of each OS service call is constant and its execution has no
effect on the state retained in the target processor [Baldovin et al. (2012)]; and
(ii) run-to-completion semantics is granted for all UoC so that the interference
effects resulting from preemption do not need to be accounted for in the analysis.
Assumption (ii) matches current IMA practice in civil avionics [Watkins & Walter
(2007)].

Let us now consider two consecutive execution instances of B. Let us call
them Bp and Bq respectively, with the subscript representing the ordinal execution
number of the UoC instance, with q > p, so that Bp precedes Bq. The amount of
useful processor state that Bq can reuse from Bp and how much benefit this reuse
can cause on the execution time of Bq, and thus on its pWCET, depends on: (1)
How much internal reuse B makes, which we call intrinsic reuse and which depends
on the size of B’s working set. (2) The execution ‘duration’ of B. The longer the
execution the lower the relative effect that different initial conditions can have on
Bq. (3) The size of the cache(s) that retains Bp’s state in hardware. And (4) what
portion of B’s working set is not evicted by the code executed between Bp and Bq.
We term that foreign code disturbing code and its effect state disturbance.

Standard analysis of the Control-Flow Graph of the main procedure to which
B belongs allows determining when different inner procedures are called (see Al-
gorithm 1).

An easy yet pessimistic way to attain time composability for B is to compute its
pWCET assuming that all processor state is flushed prior to its every execution.
This assumption has the advantage that it makes no assumption on the code
executed before B is called. Yet, as we show later in Section 11.5, this approach
to time composability may introduce significant degradation in both average and
guaranteed performance (pWCET) for B. Achieving time composability in this
manner allows too little load in the system, which goes counter the industrial need
presented in Section 11.1.

We want to allow useful processor state retention to be considered in the deter-
mination of tight pWCET estimates and want to do so in a manner that achieves
time composability and that is economically viable to implement. The partic-

178

11. PROBABILISTIC TIMING COMPOSABILITY
11.4 Probabilistic Time Composability

ular problem we solve can be formulated as follows: provide hardware/software
mechanisms such that the pWCET estimate for a UoC stays valid in the face of
composition with any other UoC during system integration. These hardware/soft-
ware mechanisms must not require any change in existing MBPTA techniques,
applied to MBPTA-conformant processor architectures.

11.4 Probabilistic Time Composability

Previous studies [Cazorla et al. (2006)] show that when flushing the processor
state, programs recover their core (pipeline) state – including the branch predictor
state – in a few hundred cycles. This is not true for caches instead: depending on
the cache size in fact, it may take an amount of time several orders of magnitude
higher than core state recovery, before the working set is restored in the cache
after a flush. For this reason in this work we focus on on-chip cache resources and
instead simply flush the core (pipeline) on every entry to a UoC.

We assume time-randomised caches on which there is a probability for each
cache access to hit or miss in cache, as needed by MBPTA, so its timing behaviour
can be modelled with an ETP: ETP (i) = {thit, tmiss}, {phit, pmiss}, where thit, tmiss

express the latency in case of a hit and an miss respectively, and phit, pmiss the
associated probabilities. This can be achieved for both set-associative and fully-
associative caches implementing random placement and replacement policies as we
explained in Chapter 5.

On time randomised caches, on every access that incurs a miss, a cache line
is randomly evicted from cache as the new location in which the fetched line is
placed, i.e the cache set and the cache way, is randomly selected. We showed
in Chapter 5 that given any two accesses to a given address @A, the number of
evictions occurring between those two accesses affects the hit probability of the
second instance of @A. In fact, the higher the number of misses, the lower the hit
probability of the second occurrence of @A. The reason is that the probability of
selecting (and so evicting) the cache set and the cache way in which @A resides
increases.

We note that the number of evictions is upper-bounded by the number of ac-
cesses occurring both accesses to @A. However, upper-bounding the number of
misses of the disturbing code with the number of cache accesses is overly pes-
simistic since only a subset of the accesses are misses. For the specific sake of time
composability, we seek a set of metrics me that characterise a program unit such
that given two disturbing codes dc1 and dc2, we can prove that the cache ageing
caused by dc1 is higher than that caused by dc2 if dc1 produce worse effects than
dc2 on the same program unit for all me. That is, for 1 ≤ i ≤ M where M is the
number of metrics to consider of a program unit, if me1i ≥ me2i the effect of dc1 is

179

11. PROBABILISTIC TIMING COMPOSABILITY
11.4 Probabilistic Time Composability

Figure 11.1: The effect of the number of accesses, the number of unique addresses
and reuse distances. Accesses marked with ∗ have non-infinite reuse distance.

worse than the effect of dc2. Under this situation, if we obtain a pWCET bound
for Bq under the composition scenario Bpdc1Bq we know that such pWCET bound
is a true upper-bound value for the Bpdc2Bq composition scenario.

In Figure 11.1 we show several examples that illustrate which metrics (me) we
use.

Example 1 A large number of accesses of a given disturbing code does not
guarantee that it is an upper-bound for any other disturbing code with fewer
accesses. In particular dc1 performs only 2 accesses that produce 2 misses, whereas
dc2 performs 4 accesses that produce just 1 miss since the last 3 accesses are
guaranteed to hit. The number of unique addresses1 is the critical factor here since
the first access to any given address will miss and produce an eviction, whereas
other accesses may miss (marked ∗ in the figure) or hit if the data they look for
are still in cache.

Example 2 While the number of unique addresses matters, the number of ac-
cesses also does. In particular, dc2 will produce at least as many evictions as dc1.
In fact, both dc1 and dc2 can evict up to 2 of the cache lines left in cache by Bp.
We deepen on this issue later in this section.

Example 3 Reuse distance also matters. In particular, dc1 and dc2 access the
same addresses the same number of times, but in a different order. However, reuse
distances are different. Their respective reuse distances are (∞,∞,∞, 0, 2, 4) and
(∞,∞,∞, 2, 2, 2) respectively2, which have different impact on the hit probability
of accesses. It is therefore unclear how to determine which disturbing code upper-
bounds others. Similarly, it is unclear whether dc3 bounds dc1 and dc2 even if it
has a larger number of accesses and the same number of unique addresses.

1Unique addresses are those remaining once repetitions are removed.
2∞ denotes the first access to a given memory location in the sequence,

180

11. PROBABILISTIC TIMING COMPOSABILITY
11.4 Probabilistic Time Composability

Reuse distance. Given a sequence of accesses to cache @A@B@C@D...@A, the
hit probability of the second instance of @A depends on the number of intermediate
accesses occurring in between the first and the second occurrence of @A and the
reuse distance of each of those accesses : rdB, rdC , rdD, We define the reuse
distance for an access @A as the number of memory accesses occurred since the
last access to the same address. For instance, in dc1 in Example 3 of Figure 11.1,
the reuse distance is 4 for the second instance of @1. The reuse distance of an
access determines its hit probability: the higher the reuse distance, the lower the
hit probability of that access. In the extreme case, when the reuse distance an
access is infinite its hit probability is 0. We call such an access a unique access. The
hit probability of the second instance of @A is inversely proportional to the miss
probability of intermediate accesses, which in turn depends on the reuse distance
of those accesses.

Determining the reuse distance of two subsequent executions of a UoC B allows
obtaining the pWCET estimates of the second execution of B such that it benefits
from the cache state left by the previous execution of it. These pWCET estimates
must be obtained making the least assumptions on the disturbing code executed
in between those instances of B.

Hence, our first approach considers the reuse distances of the instruction and
data accesses of the disturbing code: me = {rdi, rdd}. Given two disturbing codes,
dc1 and dc2, we say that the former produces worse interference than the latter if
each instruction and data access of dc2 can be paired up with an instruction and
data access respectively of dc1 with higher reuse distance. The rationale behind
this approach is that the higher the reuse distance of an access, the higher its
miss probability thus the higher the probability of an eviction, which reduces the
survivability of cache contents. In other words, if dc1 performs at least as many
instruction and data accesses as dc2 and the miss probabilities for dc1 accesses are
higher than those for dc2, dc1 upper-bounds dc2 cache ageing. An easy mechanism
to check how the reuse distances for data and instructions for dc1 upper-bound
their counterparts for dc2 is shown in Algorithm 2.

Below we show some examples of reuse distance vectors for dc1 and dc2. In
each case we show when dc1 upper-bounds dc2. For this example, we only consider
data accesses, but the same considerations apply to instruction accesses.

• dc1 upper-bounds dc2: rd1 = {7, 5, 3, 2}, rd2 = {6, 5, 2}. 7 > 6, 5 ≥ 5, 3 > 2,
2 > ∅. Hence, dc1 upper-bounds dc2.

• dc1 does not upper-bound dc2: rd1 = {9, 8, 7, 0}, rd2 = {1, 1, 1, 1}. 9 > 1,
8 > 1, 7 > 1, ∅ < 1. No reuse distance of dc1 is paired up with the last one
of dc2, so dc1 cannot be proven to upper-bound dc2.

181

11. PROBABILISTIC TIMING COMPOSABILITY
11.4 Probabilistic Time Composability

Algorithm 2 Checking whether disturbing code dc1 upper-bounds another dis-
turbing code dc2 for MBPTA with EoM

Check if dc1 upper-bounds dc2
C = set of caches in the processor
for all ci ∈ C do

r1 = reuse distances for dc1 in ci
r2 = reuse distances for dc2 in ci
if |r2| > |r1| then return false
end if
r1sort = sort r1 from higher to lower
r2sort = sort r2 from higher to lower
for all r2sortj ∈ r2sort do

if r2sortj > r1sortj then return false
end if

end for
end for
return true

Although the approach described so far is conceptually applicable and can pro-
duce tight upper-bound values, modelling the reuse distances of all the disturbing
code that may possibly execute between Bp and Bq is too complex. It would be
interesting, therefore, to find alternative approaches to bound the effect that a
given dc can cause on different instances of a UoC B, which can reduce the char-
acterisation information that the user has to provide about the disturbing code.
Next we present one such approach.

Using the number of unique accesses One way to achieve tight and safe
bounding consists in having the user provide the number of unique accesses ui, ud
that the dc to be bound may perform. Let’s assume that dc1 performs the following
sequence of accesses @A@B@A@B, so the number of accesses (N) is 4 and the
number of unique accesses (u) is 2. Next, we show that such a program can evict
at most u cache lines of the contents stored prior to its execution. The first time
@A is accessed it misses in cache evicting data of Bp, which we call prior data.
The first access to @B will also miss but it can evict data of Bq or @A. The second
access to @A will only cause a miss if @B evicted A and no element of Bp is in cache.
Analogously, the second access to @B will only evict data in cache from Bp only if
the first instance of @B evicted the first instance of @A and the second instance of
@A evicted the first of @B. Overall, a disturbing code of N accesses and u unique
accesses can evict at most u elements that were in cache prior to its execution.
The reuse distance of the N accesses will determine the actual probability that u

182

11. PROBABILISTIC TIMING COMPOSABILITY
11.4 Probabilistic Time Composability

prior data are evicted. For example, the sequence @A@A@A@B@B@B that has the
same N and u that the sequence @A@B@A@B@A@B is much less likely to evict u
prior data.

Given a dc1 with ui, ud unique accesses, we want to synthetically generate
a disturbing code dc2 whose probability of evicting ui and ud prior data in the
instruction and data cache respectively is higher than for any other dc1 with ui, ud
unique accesses regardless of the number of times they are accessed and the reuse
distance of those accesses.

Note that the user is only asked to provide ui, ud for the disturbing code, which
can be easily obtained by means of profiling at the integration stage.

Next, we must derive how a dc must look like so that it bounds a program
whose number of unique instruction and data cache lines accessed is ui, ud. To
that end, it can be proven that for a cache with S entries, the number of distinct
entries evicted (dee) after l random evictions is as follows [Feller (1968)]:

dee =

[
1−

(
1− 1

S

)l
]
× S (11.1)

In other words, if we want to evict at least u distinct entries so that dee = u, the
number of evictions required can be obtained as follows:

l =

⌈
log
(
1− u

S

)
log
(
1− 1

S

)⌉ (11.2)

Therefore, a dc causing at least l evictions bounds the impact of any program with
up to u unique accesses.

11.4.1 Software Support

With MBPTA, we make observation runs on the target system that capture the
effect of disturbing code on the UoC of interest. Hence, disturbing code cannot be
solely a conceptual artefact but it has to be concretely created at either hardware
or software level.

We need to implement simple programs, which we term micro-benchmarks. A
micro-benchmark produces a sequence of accesses to each cache memory such each
access addresses a different cache line. As obtaining that effect for data and in-
struction caches simultaneously is difficult, a first part of the micro-benchmark
can produce evictions for data and a second part of it can cause evictions for
instructions. The number of evictions required in each cache is determined with
equations 11.1 and 11.2. Data evictions simply require a loop with a load in-
struction whose stride is equal or higher than the largest cache line in any data

183

11. PROBABILISTIC TIMING COMPOSABILITY
11.4 Probabilistic Time Composability

Figure 11.2: Example of a micro-benchmark

cache. For instance, if we use a data cache with 32-byte cache lines and a data
TLB (translation look-aside buffer) with 1KB pages, performing maxd loads with
a distance of at least 1KB ensures that no reuse occurs in any of the data caches
across those maxd accesses. A similar effect can be produced for instructions by
executing branches with a stride equal or higher than the largest cache line in any
instruction cache.

An example of how to build such a micro-benchmark is shown in Figure 11.2.
First, a loop performs all the needed data cache evictions. The micro-benchmark
code iterates as many times as data cache evictions are required,
maxd, (MaxDataLines in the figure) accessing data with a stride matching the
maximum data cache line size (MaxDataLineSize). Note that data space must be
allocated to guarantee that the micro-benchmark does not make any access beyond
the program bounds. The second section of the micro-benchmark consists of linear
code that jumps as many times as instruction cache evictions are required, maxi,
(MaxInstLines in the figure) with a stride matching the maximum instruction
cache line size (MaxInstLineSize).

In order to produce composable pWCET estimates of Main procedurei() in
Algorithm 1 therefore, we must analyse each instance of Inner procedurei,j against
its disturbing code. For instance, if we focus on the second instance of
Inner procedurei,2, its disturbing code is Inner procedurei,3 and Inner procedurei,4.

The pWCET estimate for the second instance of Inner procedurei,2 is deter-
mined by MBPTA [Cucu-Grosjean et al. (2012)]) as follows. We run
Inner procedurei,2 alone, then a particular instance of the micro-benchmark and
finally the Inner procedurei,2 again measuring its execution time in that last run.

184

11. PROBABILISTIC TIMING COMPOSABILITY
11.5 Experimental Results

To simplify that process, several values are chosen for maxd and maxi for the
micro-benchmark are used. The higher the number of combinations considered,
the tighter the pWCET, but for more experiments to run.

With that data, MBPTA produces the pWCET estimate considering the in-
terference effect of the assumed disturbing code. This process is repeated for all
disturbing codes considered. At integration time the user must select the lowest
pWCET for those scenarios where the micro-benchmark considered bounds the
real disturbing code, such that maxd ≥ ld and maxi ≥ li, where li and ld are
obtained with equation 11.2.

This approach to timing composability has the key property of being oblivious
to the particular location in memory where the data and instructions of the disturb-
ing code are because probabilistically analysable caches such as random placement
and replacement caches break the structural relation between the address and lo-
cation of cache contents.

11.5 Experimental Results

This section evaluates our Time Composability approach. First we introduce the
experimental framework and show how cache size and disturbing code characteris-
tics impact the survivability of cache lines. Then, pWCET estimates are obtained
for several relevant benchmarks under different scenarios.

11.5.1 Experimental Framework

We use the simulation environment we described in Chapter 3.1.2. Both instruction
and data caches are 8-way set associative with 16-byte lines. The hit latency for
all caches is 1 cycle. The miss latency is set to 100 cycles, including the time to
access main memory. This value is arbitrary but it serves the purpose of producing
a significant jitter without being unrealistic.

We used a sample of Mälardarlen benchmarks [Gustafsson et al. (2010)], which
are commonly used in the real-time community to evaluate WCET analysis tools
and methods. Of those, we used: bs (BS), crc (CRC), qsort (QSO) and select
(SEL). BS and CRC illustrate extreme cases with very large reuse and almost no
reuse across executions respectively. QSO and SEL correspond to intermediate
cases with moderate reuse across executions.

pWCET estimations and i.i.d. validation follow the procedure described in
Chapter 3.1.2. The minimum number of runs we needed was always below 1, 000,
and all execution time traces passed the i.i.d. tests successfully.

185

11. PROBABILISTIC TIMING COMPOSABILITY
11.5 Experimental Results

Figure 11.3: Survivability as a function of the number of unique accesses in the
disturbing code for caches with different number of lines.

11.5.2 Results

Survivability

We saw earlier that the potential reuse that Bq can make of the data and instruc-
tion state left by Bp is inversely proportional to the size of the disturbing code.
To illustrate this point, we assume a cache in which after the execution of Bp all
cache lines have reuse distance 0. Figure 11.3 shows the survivability of each line
for a range of different cache sizes as we increase the number of unique addresses
(and therefore also accesses) to the cache in the disturbing code. The cache size
range corresponds to the typical number of cache lines for L1 and L2 caches.

Survivability with small-sized caches is low if all accesses of the disturbing code
cause evictions. Conversely, for relatively large caches (e.g., in the order of some
thousands of cache lines, which match the size of L2 caches) survivability increases
noticeably and data in cache can be reused across execution instances. This is true
even if the disturbing code accesses thousands of different cache lines, which is very
unlikely for our target scenarios where small inner procedures are executed several
times within their enclosing procedure (cf. Section 11.3).

Characterising the maximum benefit of TC

The potential benefit we can get with our approach to time composability depends,
in addition to the intrinsic reuse of the application as shown in previous section,
on the number of instruction and data accesses the functions in the disturbing
code have.

186

11. PROBABILISTIC TIMING COMPOSABILITY
11.5 Experimental Results

(a) pWCET speedup (b) Instruction and Data access count

Figure 11.4: Characterisation of the Mälardarlen benchmarks used

Figure 11.4 shows the instruction and data accesses of the selected Mälardarlen
benchmarks as well as the execution time reduction due to data and instruction
reuse. The number of different cache lines accessed by each benchmark are shown
on top of the corresponding columns for data and instructions. The experiments
show that BS achieves the highest pWCET reductions (pWCET empty cache

pWCET zero disturbing code
)

since the number of accesses per cache line is low, hence the relative benefit of
finding those lines in cache is significant. QSO and SEL show lower yet signif-
icant pWCET reductions because the relative impact of the lines reused across
executions is lower. CRC shows the smallest reductions due to the relative low
impact of the 99 (59+40) potential extra hits in a program performing almost
9,000 (7,189+1,655) total cache accesses.

TC of pWCET estimates

As mentioned in Section 11.4, flushing the processor state prior to the analysis of
the UoC is the easiest way to TC. This solution prevents the execution time of
the UoC under analysis from being affected from previous history of execution,
which makes its WCET bound time composable, but at the cost of unnecessary
pessimism. We refer to this approach as (flush,flush), meaning that we flush the
instruction and data caches prior to execution.

Figure 11.4(b) shows that instruction access counts vary from a few hundreds
to around 7, 000 while the data access counts range between a few dozens to almost
1, 700. Based on these values we use 6 different sets of values for ui and ud to build
the micro-benchmark as described in Section 11.4: (ui, ud) = (100,100), (200,200),
(500,500), (1000,1000), (2000,2000) and (7000,7000).

187

11. PROBABILISTIC TIMING COMPOSABILITY
11.5 Experimental Results

Figure 11.5: pWCET estimates obtained with MBPTA for different (ui, ud) values
for the bs benchmark

4KB cache 32KB cache
evicts bs select qs crc bs select qs crc

(0, 0) 31.8 35.5 28.3 4.3 56.5 33.4 27.0 6.4
(200,200) 10.0 10.7 2.4 0.4 25.6 20.0 17.9 4.4
(500,500) 8.6 4.2 2.2 0.4 16.0 8.5 11.6 1.5
(1,000,1,000) 8.4 3.8 0.9 0.3 12.0 5.4 9.0 0.6
(2,000,2,000) 5.9 2.4 0.6 0.1 6.3 2.3 1.9 0.4
(7,000,7,000) 4.8 1.9 0.1$ 0.0 5.6 0.5 0.9 0.4

Figure 11.6: pWCET percentage improvement (reduction) of (ui,ud) against
(flush,flush) for 10−13 cutoff probability

Figure 11.5 shows the pWCET distribution for BS for various micro-benchmark
settings. pWCET improvements diminish as the number of evictions performed
increases, especially for small caches. Larger caches (e.g., 32KB) still provide
significant pWCET improvements over the empty cache case despite the large
number of evictions. Figure 11.6 details the results for all benchmarks for an
exceedance probability of 10−13 per run. pWCET reductions are significant for
some benchmarks as long as the number of evictions per cache does not exceed
1,000 evictions. Beyond that point benefits quickly diminish. However, given the
context where probabilistic time composability is exploited (see Section 11.3), the
disturbing code consists of small inner procedures.

Our representative benchmarks show that the number of unique cache lines
accessed is 70 instruction lines and 20 data lines on average (see Figure 11.4 (b)).

188

11. PROBABILISTIC TIMING COMPOSABILITY
11.5 Experimental Results

cutoff (flush,0) (0,flush)
probability icache flushing dc flushing

10−13 5.9% 22.8%
10−16 6.4% 19.9%

Figure 11.7: Effect of instruction data and caches flushing (4KB cache)

By using the method in Equation 11.2 and a 4KB cache, the number of evic-
tions required in instruction and data caches to safely upper-bound the effects
of disturbing code would be 82 and 21 for instruction and data caches if only
one inner procedure with 70 and 20 unique instruction and data lines accessed
respectively is executed in between two consecutive executions of the UoC under
analysis. If the number of such inner procedures increases, so does the number
of evictions required. For instance, two such inner procedures would require 203
and 44 instruction and data unique accesses to bound their effect. As the number
of inner procedures grows, their effect also grows, thus decreasing the pWCET
improvement due to time composability. For instance, after 5 inner procedures we
would not expect any cache line to be still in the instruction cache based on the
method in equation 11.2 so we should simply assume that the instruction cache
has been flushed. Conversely, the data cache would still provide some pWCET
improvement as only 127 evictions would be needed.

The results are much better for the 32KB cache as it mitigates the impact
of larger disturbing pieces of code. For instance, if only one inner procedure is
executed in between two consecutive executions of the UoC under analysis, the
number of instruction and data evictions required would be 72 and 21 respectively.
Five inner procedures would only require 384 and 103 evictions respectively.

In summary, if the number of inner procedures between consecutive executions
of the UoC under analysis is below 10, then the pWCET improvements will be in
the range dictated by the (200,200) or (500,500) cases. Thus, significant pWCET
improvements of 5%-10% can be observed for some inner procedures if caches
are small (e.g., 4KB) and 10%-25% if caches are larger (e.g., 32KB) as shown in
Figure 11.6.

Breaking down TC benefits across data and instruction caches

Flushing instruction and data caches has different effects on pWCET estimates.
Figure 11.7 shows the average relative pWCET reduction across all benchmarks
when only one cache is flushed, with respect to the pWCET estimate when both
caches are flushed. As we can observe, when the instruction cache is empty, the
pWCET reduction is quite small, in the range of 6%. On the other hand, if
instruction cache contents are preserved, even in the complete absence of data in
the data cache, the pWCET reduction is around 20%.

189

11. PROBABILISTIC TIMING COMPOSABILITY
11.6 Summary

Thus, the maximum benefit is provided by the reuse of instructions, which
is explained by the structure of the Mälardarlen benchmarks and is the typical
behaviour of inner procedures in our context. In particular, their code consist
of linear code with few small loops. Thus, the number of instruction cache lines
fetched is relatively large (quite linear code) and cold misses account for most of
the misses. This opens the door to a significant reuse across executions. Data sets
are relatively small and highly reused inside inner procedures. Thus, there are
fewer data cold misses, which decreases the relative impact of data reuse across
executions.

11.6 Summary

MBPTA has been proven to enable the use of complex hardware acceleration
features such as caches while providing tight guaranteed execution time bounds
(WCET). The Time Composability properties of a MBPTA-conformant system
however were not yet understood. As Time Composability is needed by embed-
ded systems industry to enable incremental development, failing to provide argu-
ments about how software components can be time composed defies the benefits
of MBPTA.

In this chapter we have shown how program units executed on a MBPTA-
conformant processor can be time composed. We have focused on the challenges
to time composability caused by caches. In particular, we have considered time-
randomised cache memories . We have shown that the amount of information
required to characterise the disturbing effect of foreign code execution, which is
needed to make the program unit time composable, is relatively low: the number
of unique data and instruction accesses of the disturbing code.

This is in contrast with approaches based on deterministic architectures that
require knowledge of all addresses for any potential disturbing code to determine
which cache contents may be reused across executions.

190

Chapter 12

Conclusions and Future work

12.1 Contributions

Critical real-time systems have a constant need for higher guaranteed performance
in order to stay competitive in the market and provide increased functional value.
This need for increased performance can only be satisfied with a constant increase
in hardware and software complexity, delivered in the form of more advanced
processor designs than the ones traditionally used in the CRTES domain and
with a dramatic growth in the amount of their code. At the same time, cost,
power and weight constraints lead to the increased use of Integrated Architectures,
which are based on the consolidation of many functionalities on a single platform.
Timing Analysis is of paramount importance in these systems, comparable to
their functional correctness. However, Deterministic Timing Analysis methods
face scalability problems in the presence of this increased complexity.

In this Thesis we contribute in the state of the art of current and future CRTES
towards the adoption of more complex hardware and software, by facilitating their
analysis. We achieve this goal by focusing on the Measurement-Based Probabilistic
Timing Analysis (MBPTA), which has been shown to have several advantages.

However, the flexibility of MBPTA comes with a price, since certain require-
ments need to be satisfied on the target platform, which is not the case with
existing systems. This Thesis presents several hardware and software mechanisms
that enable the use of MBPTA in current and future complex architectures – fea-
turing advanced memory hierarchies such as the ones found in high-performance
processors – in order to facilitate the wide adoption of this analysis method in the
CRTES domain.

The contributions of this Thesis are divided in 3 main categories: a) hardware
proposals for MBPTA, b) software solutions for MBPTA and c) timing analysis
aspects of MBPTA on systems with caches.

191

12. CONCLUSIONS AND FUTURE WORK 12.1 Contributions

In the hardware solutions, we target the design of future CRTES processors
with 3 main contributions:

• The first contribution of this Thesis sets the foundations of the MBPTA-
compliant processor design. We present a taxonomy of hardware resources
based on their execution time jitter and which modifications are needed to
their design to achieve MBPTA-conformance. In fact we show that these
changes are few and can be easily achieved in current designs, either by
enforcing worst case performance at analysis time or through randomising
their timing behaviour.

• For the rest of the Thesis, we focus on the hardware resource with the highest
contribution in average and worst-case performance as acknowledged by the
real-time community, the cache. Based on the time-randomisation principle
identified in the previous contribution, we propose efficient time-randomised
set-associative cache designs which can be implemented in real hardware de-
signs. In concrete, in addition to the random replacement policy, we propose
a random placement policy, which is implemented by a means of a parametric
hash function, able to provide different mappings across program executions,
and therefore satisfying MBPTA’s needs.

• Finally, by composing together single-level time-randomised caches, we ex-
tend the previous solution to arbitrarily complex memory hierarchies. We
show that MBPTA can effectively analyse those complex designs, regardless
their number of levels, inclusivity and write policy, including unified last-
level caches, the analysis of which has been made possible for the first time
in the literature.

Our software solutions focus on existing legacy systems, to enable the fast
industrial adoption of MBPTA.

• Our first contribution in this direction is the proposal of a dynamic soft-
ware randomisation (DSR) scheme, which provides the same properties of
time-randomised caches on top of conventional caches. This is achieved by
a combination of a compiler-pass and a runtime system, which provide ran-
dom placement of program objects such as code, stack and global variables
for each program run. Our proposal has been demonstrated to be scalable
even with industrial size software, and despite its execution time overhead
compared to the pure hardware solution it provides pWCETs competitive
with it.

192

12. CONCLUSIONS AND FUTURE WORK 12.2 Impact

• In order to increase the industrial fitness of software randomisation, in our
next contribution we address the issue of software certification which is es-
sential in critical systems. Software using dynamic software randomisation
(DSR) uses pointers and self-modifying code, which can complicate certifi-
cation in certain CRTES domains. Therefore, we present a static method
without a runtime, which is implemented in the linker and compiler level,
offering the same advantages of DSR with respect to MBPTA properties,
but more amenable to certification and with lower overheads.

• In our last software contribution, the static variant is refined further in order
to work on source-code level, providing a solution against the tool qualifi-
cation need that is imperative in CRTES. This way software randomisation
does not require any change from industrial compilation toolchains and be-
comes completely independent from them, therefore facilitating the transfer
of this technology to industry.

In the last part of this Thesis we address Timing Analysis aspects related to the
presence of caches in MBPTA and its application in Integrated CRTES Systems.

• One of the most difficult processes in measurement-based techniques is the
identification of worst case paths and inputs that exercise them. In order
to simplify this process we propose PUB, a Path Upper Bounding technique
working on time-randomised caches, which removes the requirement of the
end-user to identify worst-case paths and inputs. This way PUB allows the
computation of a WCET with MBPTA using a single input, that upper-
bounds the pWCET of any program path.

• Finally, in the last contribution of this Thesis, we exploit a property of time-
randomised caches in order to provide tighter WCET estimates in Integrated
Systems. We propose probabilistic timing composability which allows soft-
ware units to be time analysed in isolation, while retaining the validity of
their pWCET estimations when composed together for the final system de-
ployment. Furthermore, the probabilistic nature of time-randomised caches,
enable system integrators to account for reuse between invocations of same
software units, as opposed to current analysis methods on conventional hard-
ware which require pessimistic assumptions such as empty cache.

12.2 Impact

With the previously mentioned contributions we cover extensively the area of com-
plex architectures in CRTES and especially memory hierarchies in MBPTA, pro-
viding solutions close to industry needs. In particular, the initial contributions and

193

12. CONCLUSIONS AND FUTURE WORK 12.2 Impact

promising results of this Thesis obtained during the PROARTIS FP7 project, have
served as a basis and helped to secure further funding for new projects and define a
new research line within the CAOS group, towards MBPTA technology. Moreover,
the increased scientific production of research articles within PROARTIS based on
the contributions of this Thesis has helped to establish an increased interest of
the real-time community in Probabilistic Timing Analysis and a wide acceptance
of this method, having a significant impact on global level. As a consequence,
recent editions of the top real-time conferences Real-Time Systems Symposium
(RTSS) and Euromicro Conference on Real-Time Systems (ECRTS) among oth-
ers, included special sessions in probabilistically analysable real-time systems.

As already mentioned in the external results section of each chapter, the pro-
posed techniques have also been implemented in industrial tools and real hardware,
and assessed against real avionics, automotive, railway and space case studies as
part of several research projects funded by the European Commission (PROAR-
TIS, PROXIMA) and the European Space Agency (Proartis4Space). This process
not only allowed to corroborate the results of this Thesis on realistic setups, but
also resulted in the production of a complete toolset that can enable MBPTA in
practice and helped to increase the TRL of the developed tools to transfer this
technology to industry.

Our time-randomised cache design has resulted in a patent owned by BSC,
while our hardware proposals (MBPTA-compatible processor design and time-
randomised caches) have been implemented in RTL-level in Cobham Gaisler’s
LEON3 processor. The design produced by both BSC and Cobham Gaisler, code-
named LEOPARD, is currently available for licensing from Cobham Gaisler as part
of their IP portfolio [Gaisler (2016)]. This processor, which is the first MBPTA-
compatible hardware design in the market, has been also awarded with a HiPEAC
technology transfer award in 2016.

Our dynamic software randomisation solution has reached the highest TRL
compared to the rest of our software solutions. It has been ported to several
architectures (PowerPC, SPARCv8), integrated with industrial RTOSes (SYSGO’s
PikeOS native, PikeOS ARINC 653, PikeOS RTEMS and RTEMS SMP) and
tested on real boards (LEON3, LEON4, P4080) with several real industrial case
studies (2 avionics, 2 aerospace, 1 automotive and 1 railway).

The static randomisation variant at source-level (TASA) has been validated
with an automotive case study and ERIKA RTOS on the AURIX TriCore auto-
motive microcontroller and on LEON3 using a variety of compilation toolchains
(LLVM, gcc, HighTec). Currently, TASA works only with ANSI C, therefore it
has lower TRL than dynamic software randomisation.

194

12. CONCLUSIONS AND FUTURE WORK 12.3 Future Work

Both dynamic and static software randomisation solutions have attracted sig-
nificant industrial interest, because they offer a faster exploitation path for MBPTA
adoption. This interest has translated into on-going and future collaborations in
new proposals for research projects, in order to increase further the TRL of those
solutions, support new architectures and provide support for further aspects such
as power and security, not only timing.

Other work in progress is performed in the context of other PhD and Master
theses, some of which have led to joint publications, referenced in the Introduction.
These include, but are not limited to, time-randomised multi-core architectures,
with focus on shared resources among other cores such as shared caches, buses,
networks-on-chip and memory controllers, as well as studies on the fundamental
theory of MBPTA.

12.3 Future Work

Future work directions are endless, since this is a completely new field with a lot
of unexplored possibilities. For example our PUB proposal opens the door to the
research on easier-to-implement path coverage techniques over time-randomised
caches. Researchers at the University of Padua and BSC, in collaboration with the
Rapita timing analysis company are working on a technique called EPC (Extended
Path Coverage) which achieves tighter pWCET than PUB, at the expense of block
coverage instead of the full path coverage required by existing methods. EPC
builds upon the principles identified in PUB and looks for achieving them without
the need to modify the compiler.

Moreover, the benefits of the hardware and software designs devised on this
Thesis have ramifications towards other problems such as security, power efficiency,
etc., since randomisation is expected to provide also advantages on those fronts,
and therefore research on these topics is expected in the future.

Finally, while the hardware solutions proposed in this Thesis are effective,
further research on random placement and replacement implementations can be
carried out. Moreover other hardware components can be studied in order to
become MBPTA-compliant such as branch predictors, prefetchers, etc. Our vision
in the long term is to reduce the performance gap of processors used in the CRTES
domain and the ones used in everyday systems, so that they can both include high-
performance features and be analysed using MBPTA.

195

References

Abella, J., Cazorla, F.J., Quiñones, E. & Vardanega, T. (2013).
Measurement-Based Probabilistic Timing Analysis and i.i.d property. White Pa-
per. http://www.proartis-project.eu/publications/MBPTA-white-paper.
41, 45, 53

Abella, J., Hardy, D., Puaut, I., Quiñones, E. & Cazorla, F.J. (2014a).
On the Comparison of Deterministic and Probabilistic WCET Estimation Tech-
niques. In Euromicro Conference on Real-Time System (ECRTS-14). 7, 27, 29,
36

Abella, J., Quiñones, E., Wartel, F., Vardanega, T. & Cazorla, F.J.
(2014b). Heart of Gold: Making the Improbable Happen to Extend Coverage in
Probabilistic Timing Analysis. In Euromicro Conference on Real-Time System
(ECRTS-14). 27

Abella, J., Hernàndez, C., Quiñones, E., Cazorla, F.J., Conmy, P.R.,
Azkarate-askasua, M., Perez, J., Mezzetti, E. & Vardanega, T.
(2015). WCET analysis methods: Pitfalls and challenges on their trustworthi-
ness. In 10th IEEE International Symposium on Industrial Embedded Systems,
SIES 2015, Siegen, Germany, June 8-10, 2015 , 39–48. 4, 16, 18, 19, 20, 24, 26

Abella, J., Padilla, M., Castillo, J. & Cazorla, F.J. (2017).
Measurement-Based Worst-Case Execution Time Estimation Using the Coef-
ficient of Variation. In ACM Transactions on Design Automation of Electronic
Systems (TODAES). 25

Abeni, L. & Buttazzo, G. (1998). Integrating Multimedia Applications in Hard
Real-Time Systems. In Proceedings 19th IEEE Real-Time Systems Symposium,
4–13. 23, 24

Agirre, I., Azkarate-askasua, M., Hernandez, C., Abella, J., Perez,
J., Vardanega, T. & Cazorla, F.J. (2015). IEC-61508 SIL 3 Compliant
Pseudo-Random Number Generators for Probabilistic Timing Analysis. In 2015

196

http://www.proartis-project.eu/publications/MBPTA-white-paper

REFERENCES REFERENCES

Euromicro Conference on Digital System Design, DSD 2015, Madeira, Portugal,
August 26-28, 2015 , 677–684. 54, 66

Agirre, I., Azkarate-askasua, M., Saenz, I., Cros, F., Jegu, V.,
Maxim, C., (UoY), B.L., Kosmidis, L., Mezzetti, E. & Griffin, D.
(2016). D4.8 Final Case Studies Experiments Results. PROXIMA project deliv-
erable. 25, 99, 113

Altmeyer, S. & Davis, R.I. (2014). On the Correctness, Optimality and Preci-
sion of Static Probabilistic Timing Analysis. In Proceedings of the Conference on
Design, Automation & Test in Europe, DATE ’14, 26:1–26:6, European Design
and Automation Association, 3001 Leuven, Belgium, Belgium. 26

Alvarez, L., Moreto, M., Casas, M., Castillo, E., Martorell, X.,
Labarta, J., Ayguade, E. & Valero, M. (2015a). Runtime-Guided Man-
agement of Scratchpad Memories in Multicore Architectures. In 2015 Interna-
tional Conference on Parallel Architecture and Compilation, PACT 2015, San
Francisco, CA, USA, October 18-21, 2015 , 379–391. 31

Alvarez, L., Vilanova, L., Moreto, M., Casas, M., Gonzalez, M.,
Martorell, X., Navarro, N., Ayguade, E. & Valero, M. (2015b).
Coherence Protocol for Transparent Management of Scratchpad Memories in
Shared Memory Manycore Architectures. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture, Portland, OR, USA, June
13-17, 2015 , 720–732. 31

APEX Working Group (2013). Draft 3 of Supplement 1 to ARINC Specifica-
tion 653: Avionics Application Software Standard Interface. 174

ARM (2006). Cortex-R4 and Cortex-R4F Technical Reference Manual . 57, 66,
79, 107

ARM Ltd. (2013). Cortex-A series. http://www.arm.com/products/

processors/cortex-a/index.php. 30

ARTEMIS, ITEA, and EUREKA (2015). Smart Industry: Impact of Software
Innovation. Co-summit. 1

Atlas, A. & Bestavros, A. (1998). Statistical Rate Monotonic Scheduling. In
Proceedings 19th IEEE Real-Time Systems Symposium, 123–132. 24

AUTOSAR (2006). Technical Overview V2.0.1 . AUTomotive Open System AR-
chitecture. 127, 176

197

http://www.arm.com/products/processors/cortex-a/index.php
http://www.arm.com/products/processors/cortex-a/index.php

REFERENCES REFERENCES

Axer, P., Ernst, R., Falk, H., Girault, A., Grund, D., Guan, N.,
Jonsson, B., Marwedel, P., Reineke, J., Rochange, C., Sebastian,
M., Hanxleden, R.V., Wilhelm, R. & Yi, W. (2014). Building Timing
Predictable Embedded Systems. ACM Trans. Embed. Comput. Syst., 13, 82:1–
82:37. 20

Bailey, B. (2007). The Functional Verification of Electronic Systems. In Pub-
lisher: International engineering consortium. 127

Baldovin, A., Mezzetti, E. & Vardanega, T. (2012). A Time-Composable
Operating System. In 12th International Workshop on Worst-Case Execution
Time Analysis, WCET 2012, July 10, 2012, Pisa, Italy , 69–80. 176, 178

Banakar, R., Steinke, S., Lee, B.S., Balakrishnan, M. & Marwedel,
P. (2002). Scratchpad Memory: Design Alternative for Cache On-chip Memory
in Embedded Systems. In Proceedings of the Tenth International Symposium on
Hardware/Software Codesign, CODES ’02, 73–78, ACM, New York, NY, USA.
31

Benedicte, P., Kosmidis, L., Quinones, E., Abella, J. & Cazorla, F.J.
(2016). Modelling the Confidence of Timing Analysis for Time Randomised
Caches. In 2016 11th IEEE Symposium on Industrial Embedded Systems (SIES),
1–8. 27

Berezovskyi, K., Santinelli, L., Bletsas, K. & Tovar, E. (2014). WCET
Measurement-based and Extreme Value Theory Characterisation of CUDA Ker-
nels. In 22nd International Conference on Real-Time Networks and Systems,
RTNS ’14, Versaille, France, October 8-10, 2014 , 279. 27

Berezovskyi, K., Guet, F., Santinelli, L., Bletsas, K. & Tovar, E.
(2016). Measurement-Based Probabilistic Timing Analysis for Graphics Proces-
sor Units. In Architecture of Computing Systems - ARCS 2016 - 29th Interna-
tional Conference, Nuremberg, Germany, April 4-7, 2016, Proceedings , 223–236.
27

Berger, E.D. & Zorn, B.G. (2006). DieHard: Probabilistic Memory Safety for
Unsafe Languages. In Proceedings of the ACM SIGPLAN 2006 Conference on
Programming Language Design and Implementation, 158–168, ACM Press. 107,
108, 114, 117, 126, 145

Bernat, G., Colin, A. & Petters, S. (2002). WCET Analysis of Probabilis-
tic Hard Real-Time Systems. In IEEE Real-Time Systems Symposium (RTSS
2002), Austin, Texas (USA). 24

198

REFERENCES REFERENCES

Bernat, G., Colin, A., Esteves, J., Garcis, G., Moreno, C., Holsti,
N., Vardanega, T. & Hernek, M. (2007). Considerations on the LEON
Cache Effects on the Timing Analysis of On-Board Applications. In Proceedings
of the Data Systems in Aerospace Conference (DASIA), vol. 638 of ESA Special
Publication, 18. 31

Bhatkar, E., Duvarney, D.C. & Sekar, R. (2003). Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory Error Exploits. In
Proceedings of the 12th USENIX Security Symposium, 105–120. 145

Bhatkar, S., Sekar, R. & DuVarney, D.C. (2005). Efficient Techniques
for Comprehensive Protection from Memory Error Exploits. In Proceedings of
the 14th Conference on USENIX Security Symposium - Volume 14 , SSYM’05,
17–17, USENIX Association, Berkeley, CA, USA. 114

Boslaugh, S. & Watters, D.P.A. (2008). Statistics in a Nutshell . O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 1st edn. 71, 110

Bradley, J. (1968). Distribution-Free Statistical Tests . Prentice-Hall. 35, 50, 71,
110

Bünte, S., Zolda, M., Tautschnig, M. & Kirner, R. (2011). Improv-
ing the Confidence in Measurement-Based Timing Analysis. In 14th IEEE In-
ternational Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing, ISORC 2011, Newport Beach, California, USA, 28-31
March 2011 , 144–151. 22, 148

Butz, H. (2007). The Airbus Approach to Open Integrated Modular Avionics
(IMA): Technology, Methods, Processes and Future Road Map. In Workshop on
Aircraft System Technologies . 3

Cargal, J. (1988). Discrete Mathematics for Neophytes: Number Theory, Prob-
ability, Algorithms, and Other Stuff . 60

Cazorla, F.J., Knijnenburg, P.M., Sakellariou, R., Fernandez, E.,
Ramirez, A. & Valero, M. (2006). Predictable Performance in SMT pro-
cessors: Synergy Between the OS and SMTs. IEEE Transaction on Computers ,
55. 179

Cazorla, F.J., Quiñones, E., Vardanega, T., Cucu, L., Triquet, B.,
Bernat, G., Berger, E.D., Abella, J., Wartel, F., Houston, M.,
Santinelli, L., Kosmidis, L., Lo, C. & Maxim, D. (2013a). PROARTIS:
Probabilistically Analyzable Real-Time Systems. ACM Trans. Embedded Com-
put. Syst., 12, 94. 5, 24, 25, 26, 27, 28, 31, 39, 40, 56, 79, 92, 93

199

REFERENCES REFERENCES

Cazorla, F.J., Vardanega, T., Quiñones, E. & Abella, J. (2013b).
Upper-bounding Program Execution Time with Extreme Value Theory. Interna-
tional Workshop On Worst-Case Execution Time Analysis (WCET 2013). 25,
27, 29, 43, 47, 171, 172

Charette, R.N. (2009). This Car Runs on Code. In IEEE Spectrum online. 3

Cobham Gaisler (2005). Leon3 Processor . Cobham Gaisler, http://gaisler.
com/index.php/products/processors/leon3. 136

Cobham Gaisler (2011). Quad Core LEON4 SPARC V8 Processor - LEON4-
NGMP-DRAFT - Data Sheet and Users Manual . 30, 57, 66, 79, 95, 107, 163

CONCERTO (2016). ARTEMIS JU . http://www.concerto-project.org/.
144

Cousot, P. & Cousot, R. (2004). Basic Concepts of Abstract Interpretation. In
Building the Information Society, IFIP 18th World Computer Congress, Topical
Sessions, 22-27 August 2004, Toulouse, France, 359–366. 7, 19, 20

Croxford, M. & Sutton, J. (1996). Breaking Through the V and V Bottle-
neck. In Proceedings of the Second International Eurospace - Ada-Europe Sym-
posium on Ada in Europe, 344–354, Springer-Verlag, London, UK, UK. 4

Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C., Vardanega,
T., Kosmidis, L., Abella, J., Mezzetti, E., Quinones, E. & Cazorla,
F. (2012). Measurement-Based Probabilistic Timing Analysis for Multi-path
Programs. In 24th Euromicro Conference on Real-Time Systems (ECRTS) 2012 ,
91–101. 5, 10, 24, 25, 27, 28, 29, 31, 35, 39, 40, 43, 50, 51, 56, 59, 71, 74, 75, 79,
81, 91, 96, 97, 105, 110, 122, 178, 184

Curtsinger, C. & Berger, E.D. (2013). STABILIZER: Statistically Sound
Performance Evaluation. In Proceedings of the Eighteenth International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems , ASPLOS ’13, 219–228, ACM, New York, NY, USA. 107, 108, 114, 144

Dasari, D., Nelis, V. & Andersson, B. (2011). WCET Analysis Considering
Contention on Memory Bus in COTS-based Multicores. In ETFA2011 , 1–4. 17

David, L. & Puaut, I. (2004). Static Determination of Probabilistic Execution
Times. In Proceedings of the 16th Euromicro Conference on Real-Time Systems ,
ECRTS ’04, 223–230, IEEE Computer Society, Washington, DC, USA. 79, 171

200

http://gaisler.com/index.php/products/processors/leon3
http://gaisler.com/index.php/products/processors/leon3
http://www.concerto-project.org/

REFERENCES REFERENCES

Davis, R.I., Santinelli, L., Altmeyer, S., Maiza, C. & Cucu-Grosjean,
L. (2013). Analysis of Probabilistic Cache Related Pre-emption Delays. In Eu-
romicro Conference on Real-Time System (ECRTS-13). 26, 47

DeGroot, M. & Schervish, M. (2002). Probability and Statistics . Addison-
Wesley, Reading MA. 36, 50

Deverge, J. & Puaut, I. (2005). Safe Measurement-Based WCET Estimation.
In 5th International Workshop on Worst-Case Execution Time (WCET) Anal-
ysis, July 5, 2005, Palma de Mallorca, Spain. 21, 22

Di Natale, M. & Sangiovanni-Vincentelli, A. (2010). Moving From Feder-
ated to Integrated Architectures in Automotive: The Role of Standards, Meth-
ods and Tools. Proceedings of the IEEE . 2

Diaz, E., Abella, J., Mezzetti, E., Agirre, I., Azkarate-Askasua,
M., Vardanega, T. & Cazorla, F.J. (2016). Mitigating Software-
Instrumentation Cache Effects in Measurement-Based Timing Analysis. In 16th
International Workshop on Worst-Case Execution Time Analysis, WCET 2016,
July 5, 2016, Toulouse, France, 1:1–1:11. 21

Duranton, M., Black-Schaffer, D., De Bosschere, K. & Maebe, J.
(2013). The HiPEAC Vision for Advanced Computing in Horizon 2020. 1

Duranton, M., Black-Schaffer, D., De Bosschere, K. & Maebe, J.
(2015). The HiPEAC Vision for Advanced Computing in Horizon 2020. 1

Edelin, G. (2009). Embedded systems at Thales: the ARTEMIS challenges for
an industrial group. ARTIST Summer School . 135

Edgar, S. & Burns, A. (2001). Statistical Analysis of WCET for Scheduling. In
Proceedings of the 22Nd IEEE Real-Time Systems Symposium, RTSS ’01, 215–,
IEEE Computer Society, Washington, DC, USA. 24

Elmqvist, J., Nadjm-Tehrani, S., Forsberg, K. & Nordenbro, S. (2008).
Demonstration of a Formal Method for Incremental Qualification of IMA Sys-
tems. In 2008 IEEE/AIAA 27th Digital Avionics Systems Conference, 5.D.3–1–
5.D.3–8. 6, 174, 176

E.Mezzetti, N.Holsti, A.Colin, G.Bernat & T.Vardanega (2008). At-
tacking the Sources of Unpredictability in the Instruction Cache Behavior. In
Proceedings of the 16th International Conference on Real-Time and Network
Systems (RTNS08). 7, 24, 31

201

REFERENCES REFERENCES

Evidence (2012). Erika Enterprise RTOS . http://erika.tuxfamily.org/

drupal/. 144

Feller, W. (1968). An Introduction to Probability Theory and Its Applications ,
vol. 1. Wiley. 35, 183

Ferdinand, C. & Wilhelm, R. (1999). Efficient and Precise Cache Behavior
Prediction for Real-Time Systems. Real-Time Systems Journal , 17, 131–181. 7,
30

Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt,
M., Theiling, H., Thesing, S. & Wilhelm, R. (2001). Reliable and Precise
WCET Determination for a Real-Life Processor. First International Workshop
on Embedded Software (EMSOFT 2001). 7, 30

Fernández, M., Gioiosa, R., Quiñones, E., Fossati, L., Zulianello, M.
& Cazorla, F.J. (2012). Assessing the Suitability of the NGMP Multi-Core
Processor in the Space Domain. In ACM international conference on Embedded
software (EMSOFT). 23

Fernandez, M., Morales, D., Kosmidis, L., Bardizbanyan, A.,
Broster, I., Hernandez, C., nones, E.Q., Abella, J., Cazorla, F.,
Machado, P. & Fossati, L. (2017). Probabilistic Timing Analysis on Time-
Randomized Platforms for the Space Domain. In Proceedings of the 2017 Design,
Automation & Test in Europe Conference & Exhibition, DATE ’17. 79

Financial Times (2015). Internet of things drives Intel revenues (14/3/2015).
http://www.ft.com/cms/s/0/66dc4a3e-e2e8-11e4-bf4b-00144feab7de.

html#axzz3sqFFU8D3. 1

Fleming, B. (2011). Microcontroller Units in Automobiles. In 2011 IEEE Vehic-
ular Technology Magazine, 4–8. 3

Forbes (2015). Weak Desktop Sales Impact Intel’s Q1’15 Earnings,
Data Center, IoT & NAND See Double Digit Growth (15/3/2015).
http://www.forbes.com/sites/greatspeculations/2015/04/15/

weak-desktop-sales-impact-intels-q115-earnings-data-center-iot_

nand-see-double-digit-growth/. 1

Freescale Semiconductors (2008). P4 Series. P4080 Multicore Proces-
sor (White Paper). http://www.freescale.com/files/netcomm/doc/fact_

sheet/QorIQ_P4080.pdf. 30

202

http://erika.tuxfamily.org/drupal/
http://erika.tuxfamily.org/drupal/
http://www.ft.com/cms/s/0/66dc4a3e-e2e8-11e4-bf4b-00144feab7de.html#axzz3sqFFU8D3
http://www.ft.com/cms/s/0/66dc4a3e-e2e8-11e4-bf4b-00144feab7de.html#axzz3sqFFU8D3
http://www.forbes.com/sites/greatspeculations/2015/04/15/weak-desktop-sales-impact-intels-q115-earnings-data-center-iot_nand-see-double-digit-growth/
http://www.forbes.com/sites/greatspeculations/2015/04/15/weak-desktop-sales-impact-intels-q115-earnings-data-center-iot_nand-see-double-digit-growth/
http://www.forbes.com/sites/greatspeculations/2015/04/15/weak-desktop-sales-impact-intels-q115-earnings-data-center-iot_nand-see-double-digit-growth/
http://www.freescale.com/files/netcomm/doc/fact_sheet/QorIQ_P4080.pdf
http://www.freescale.com/files/netcomm/doc/fact_sheet/QorIQ_P4080.pdf

REFERENCES REFERENCES

Gaisler, C. (2016). LEON3 Probabilistic Platform. http://www.gaisler.com/
index.php/products/processors/leon3. 54, 102, 194

Gardner, M. & Lui, J. (1999). Analyzing Stochastic Fixed-Priority Real-Time
Systems. In the 5th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS99), 44–58. 23, 24

Garey, M.R. & Johnson, D.S. (1990). Computers and Intractability; A Guide
to the Theory of NP-Completeness . W. H. Freeman & Co., New York, NY, USA.
31

Girbal, S., Moretó, M., Grasset, A., Abella, J., Quiñones, E., Ca-
zorla, F.J. & Yehia, S. (2013). On the Convergence of Mainstream and
Mission-critical Markets. In Proceedings of the 50th Annual Design Automation
Conference, DAC ’13, 185:1–185:10, ACM, New York, NY, USA. 1

Gloy, N. & Smith, M.D. (1999). Procedure Placement Using Temporal-
Ordering Information. ACM Trans. Program. Lang. Syst., 21, 977–1027. 144

Graham, R.L., Knuth, D.E. & Patashnik, O. (1988). Concrete Mathematics .
Addison-Wesley, Reading MA. 60, 62

Griffin, D. & Burns, A. (2010). Realism in Statistical Analysis of Worst Case
Execution Times. In 10th International Workshop on Worst-Case Execution
Time Analysis (WCET 2011), 44–53. 24

Grund, D. (2012). Static Cache Analysis for Real-time Systems: LRU, FIFO,
PLRU . Druck und Verlag. 148

Gustafsson, J. & Ermedahl, A. (2007). Experiences from Applying WCET
Analysis in Industrial Settings. In ISORC ’07. 10th IEEE International Sym-
posium on Object and Component-Oriented Real-Time Distributed Computing,
2007 , 382–392. 53

Gustafsson, J., Betts, A., Ermedahl, A. & Lisper, B. (2010). The
Mälardalen WCET Benchmarks: Past, Present And Future. In B. Lisper, ed.,
10th International Workshop on Worst-Case Execution Time Analysis (WCET
2010), vol. 15 of OpenAccess Series in Informatics (OASIcs), 136–146, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. 32, 37, 166,
185

Hansen, J.P., Hissam, S.A. & Moreno, G.A. (2009). Statistical-Based
WCET Estimation and Validation. In 9th International Workshop on Worst-
Case Execution Time Analysis, WCET 2009, Dublin, Ireland, July 1-3, 2009 .
5, 24, 39

203

http://www.gaisler.com/index.php/products/processors/leon3
http://www.gaisler.com/index.php/products/processors/leon3

REFERENCES REFERENCES

Hardy, D. & Puaut, I. (2008). WCET Analysis of Multi-level Non-Inclusive
Set-Associative Instruction Caches. In Proceedings of the 2008 Real-Time Sys-
tems Symposium, RTSS ’08, 456–466, IEEE Computer Society, Washington,
DC, USA. 7, 30, 100

Heckmann, R., Langenbach, M., Thesing, S. & Wilhelm, R. (2003). The
Influence of Processor Architecture on the Design and the Results of WCET
Tools. Proceedings of the IEEE , 91, 1038–1054. 16, 20

Hennessy, J. & Patterson, D. (2007). Computer Architecture: A Quantitative
Approach. Morgan-Kaufmann, 4th edn. 18

Hernandez, C., Abella, J., Cazorla, F.J., Andersson, J. & Gianarro,
A. (2015). Towards Making a LEON3 Multicore Compatible with Probabilistic
Timing Analysis. In DASIA 2015 20th Data Systems In Aerospace Conference.
79, 99

HighTec (2008). Source code of HighTec GPL software. HighTec, http://www.
hightec-rt.com/en/downloads/sources.html. 143

Hoyme, K. & Driscoll, K. (1992). SAFEbus. In Proceedings IEEE/AIAA 11th
Digital Avionics Systems Conference, 68–73. 2

Huntzicker, S., Dayringer, M., Soprano, J., Weerasinghe, A., Harris,
D. & Patil, D. (2008). Energy-Delay Tradeoffs in 32-bit Static Shifter Designs.
In Computer Design, 2008. ICCD 2008. IEEE International Conference on,
626–632. 67

Infineon (2012). AURIX - TriCore Datasheet. Highly Integrated and Performance
Optimized 32-bit Microcontrollers for Automotive and Industrial Applications.
31, 144

International Organization for Standardization (2009). ISO/DIS
26262. Road Vehicles – Functional Safety . 5, 19, 26, 117, 137, 174, 176

Jalle, J., Kosmidis, L., Abella, J., Quiñones, E. & Cazorla, F.J. (2014).
Bus Designs for Time-probabilistic Multicore Processors. In Proceedings of the
Conference on Design, Automation & Test in Europe, DATE ’14, 50:1–50:6,
European Design and Automation Association, 3001 Leuven, Belgium, Belgium.
47, 48

Jeffrey Owens, Delphi Automotive (2015). The Design Innovation that
Drives Tomorrow. Keynote at the Design Automation Conference 2015 . 1

204

http://www.hightec-rt.com/en/downloads/sources.html
http://www.hightec-rt.com/en/downloads/sources.html

REFERENCES REFERENCES

Jim Tung, MathWorks, Inc and James Buczkowski, Ford Motor Com-
pany (2014). Delivering Smart Automobiles Through Electronics and Software.
Keynote at the Design Automation Conference 2014 . 3

JPL (2009). JPL Institutional Coding Standard for the C Programming Language.
JPL DOCID D-60411, Jet Propulsion Laboratory, CalTech. 137

Kim, Y., Broman, D., Cai, J. & Shrivastava, A. (2014). WCET-aware Dy-
namic Code Management on Scratchpads for Software-Managed Multicores. In
20th IEEE Real-Time and Embedded Technology and Applications Symposium,
RTAS 2014, Berlin, Germany, April 15-17, 2014 , 179–188. 31

Kim, Y., Cai, J., Kim, Y., Lee, K. & Shrivastava, A. (2016). Splitting
Functions in Code Management on Scratchpad Memories. In Proceedings of
the 35th International Conference on Computer-Aided Design, ICCAD 2016,
Austin, TX, USA, November 7-10, 2016 , 60. 31

Kirner, R. & Puschner, P. (2005). Classification of WCET Analysis Tech-
niques. In Object-Oriented Real-Time Distributed Computing, 2005. ISORC
2005. Eighth IEEE International Symposium on, 190–199. 20

Kirner, R. & Puschner, P. (2008). Obstacles in Worst-Case Execution Time
Analysis. In 11th IEEE International Symposium on Object Oriented Real-Time
Distributed Computing (ISORC) 2008 , 333–339. 175

Kirner, R., Puschner, P. & Wenzel, I. (2004). Measurement-based Worst-
Case Execution Time Analysis Using Automatic Test-Data Generation. In Pro-
ceedings of the IEEE Workshop on software technology for future embedded and
ubiquitous systems (SEUS’05), 7–10. 21

Knutson, C. & Carmichael, S. (2001). Verification and Validation for Em-
bedded Software. In Embedded System Programming Journal . 4

Kosmidis, L., Abella, J., Quiñones, E. & Cazorla, F.J. (2013a). A Cache
Design for Probabilistically Analysable Real-time Systems. In Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’13, 513–518,
EDA Consortium, San Jose, CA, USA. 9, 163

Kosmidis, L., Abella, J., Quiñones, E. & Cazorla, F. (2013b). Multi-
level Unified Caches for Probabilistically Time Analysable Real-Time Systems.
In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, 360–371. 9

Kosmidis, L., Curtsinger, C., Quinones, E., Abella, J., Berger, E. &
Cazorla, F.J. (2013c). Probabilistic Timing Analysis on Conventional Cache

205

REFERENCES REFERENCES

Designs. In Design, Automation Test in Europe Conference Exhibition (DATE),
2013 , 603–606. 9, 132

Kosmidis, L., Quiñones, E., Abella, J., Vardanega, T. & Ca-
zorla, F.J. (2013d). Achieving Timing Composability with Measurement-
Based Probabilistic Timing Analysis. In 16th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, ISORC
2013, Paderborn, Germany, June 19-21, 2013 , 1–8. 10

Kosmidis, L., Vardanega, T., Abella, J., Quiñones, E. & Cazorla, F.J.
(2013e). Applying Measurement-Based Probabilistic Timing Analysis to Buffer
Resources. International Workshop On Worst-Case Execution Time Analysis
(WCET 2013). 9, 46, 50

Kosmidis, L., Abella, J., Quiñones, E. & Cazorla, F.J. (2014a). Effi-
cient Cache Designs for Probabilistically Analysable Real-Time Systems. IEEE
Transactions on Computers , 63, 2998–3011. 9

Kosmidis, L., Abella, J., Wartel, F., Quiñones, E., Colin, A. & Ca-
zorla, F.J. (2014b). PUB: Path Upper-Bounding for Measurement-Based
Probabilistic Timing Analysis. In Euromicro Conference on Real-Time Systems
(ECRTS-14). 10

Kosmidis, L., Quiñones, E., Abella, J., Farrall, G., Wartel, F. & Ca-
zorla, F.J. (2014c). Containing Timing-Related Certification Cost in Automo-
tive Systems Deploying Complex Hardware. In Proceedings of the 51st Annual
Design Automation Conference, Best Paper Award, DAC ’14, 22:1–22:6, ACM,
New York, NY, USA. 9

Kosmidis, L., Quiñones, E., Abella, J., Vardanega, T., Broster, I.
& Cazorla, F.J. (2014d). Measurement-Based Probabilistic Timing Analysis
and Its Impact on Processor Architecture. In 17th Euromicro Conference on
Digital System Design, DSD 2014, Verona, Italy, August 27-29, 2014 , 401–410.
9, 92

Kosmidis, L., Compagnin, D., Morales, D., Mezzetti, E., Quiñones,
E., Abella, J., Vardanega, T. & Cazorla, F.J. (2016a). Measurement-
Based Timing Analysis of the AURIX Caches. In 16th International Workshop
on Worst-Case Execution Time Analysis, WCET 2016, July 5, 2016, Toulouse,
France, 9:1–9:11. 144

Kosmidis, L., Quiñones, E., Abella, J., Vardanega, T., Hernández,
C., Gianarro, A., Broster, I. & Cazorla, F.J. (2016b). Fitting Proces-

206

REFERENCES REFERENCES

sor Architectures for Measurement-based Probabilistic Timing Analysis. Micro-
processors and Microsystems - Embedded Hardware Design, 47, 287–302. 53,
99

Kosmidis, L., Vargas, R., Morales, D., Quiñones, E., Abella, J. & Ca-
zorla, F.J. (2016c). TASA: Toolchain-agnostic Static Software Randomisation
for Critical Real-time Systems. In Proceedings of the 35th International Confer-
ence on Computer-Aided Design, ICCAD ’16, 59:1–59:8, ACM, New York, NY,
USA. 10

Kosmidis, L., Wartel, F., Morales, D., Abella, J., Broster, I. & Ca-
zorla, F. (2017). Dynamic Software Randomisation: Lessons Learned From an
Aerospace Case Study. In Proceedings of the 2017 Design, Automation & Test
in Europe Conference & Exhibition, DATE ’17. 113

Kotz, S. & Nadarajah, S. (2000). Extreme Value Distributions: Theory and
Applications . World Scientific. 6, 27, 29, 40

Lattner, C. & Adve, V. (2004). LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the International Sym-
posium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization, CGO ’04, 75–, IEEE Computer Society, Washington, DC, USA.
107

Law, S. & Bate, I. (2016). Achieving Appropriate Test Coverage for Reliable
Measurement-Based Timing Analysis. In 28th Euromicro Conference on Real-
Time Systems, ECRTS 2016, Toulouse, France, July 5-8, 2016 , 189–199. 21,
22

Lehoczky, J.P. (1996). Real-Time Queueing Theory. In Proceedings of the 17th
IEEE Real-Time Systems Symposium, RTSS ’96, 186–, IEEE Computer Society,
Washington, DC, USA. 24

Lesage, B., Hardy, D. & Puaut, I. (2009). WCET Analysis of Multi-Level
Set-Associative Data Caches. 9th International Workshop on Worst-Case Exe-
cution Time (WCET) Analysis . 7, 30, 79, 100

Li, L., Just, J. & Sekar, R. (2006). Address-Space Randomization for Win-
dows Systems. In Computer Security Applications Conference, 2006. ACSAC
’06. 22nd Annual , 329–338. 126

Li, Y.T.S. & Malik, S. (1995). Performance Analysis of Embedded Software Us-
ing Implicit Path Enumeration. In Proceedings of the 32Nd Annual ACM/IEEE

207

REFERENCES REFERENCES

Design Automation Conference, DAC ’95, 456–461, ACM, New York, NY, USA.
20

Liang, Y. & Mitra, T. (2008). Cache Modeling in Probabilistic Execution Time
Analysis. In Proceedings of the 45th Annual Design Automation Conference,
DAC ’08, 319–324, ACM, New York, NY, USA. 24, 79, 172

Lima, G., Dias, D. & Barros, E. (2016). Extreme Value Theory for Estimating
Task Execution Time Bounds: A Careful Look. In 28th Euromicro Conference
on Real-Time Systems, ECRTS 2016, Toulouse, France, July 5-8, 2016 , 200–
211. 27

Littlewood, B. & Strigini, L. (1993). Validation of Ultrahigh Dependability
for Software-based Systems. Commun. ACM , 36, 69–80. 4

Lu, Y., Nolte, T., Bate, I. & Cucu-Grosjean, L. (2012). A Statistical
Response-Time Analysis of Real-Time Embedded Systems. In Real-Time Sys-
tems Symposium (RTSS), 2012 IEEE 33rd , 351–362. 172

Marsaglia, G. & Zaman, A. (1991). A New Class of Random Number Gener-
ators. Annals of Applied Probability , 1, 462–480. 66

McFarling, S. (1989). Program Optimization for Instruction Caches. In Pro-
ceedings of the Third International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems , ASPLOS III, 183–191, ACM, New
York, NY, USA. 130, 144

Mezzetti, E. & Vardanega, T. (2010). Towards a Cache-Aware Development
of High Integrity Real-Time Systems. In Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2010 IEEE 16th International Conference
on, 329–338. 135

Mezzetti, E. & Vardanega, T. (2011a). Cache Optimisations for LEON Anal-
yses (COLA) Final Report. Tech. Rep. COLA-FR-001-i1r1, ESA/ESTEC. 21

Mezzetti, E. & Vardanega, T. (2011b). On the Industrial Fitness of WCET
Analysis. In In Proceedings of the 11th International Workshop on Worst-Case
Execution Time Analysis (WCET 2011). 4, 19, 20, 22, 31, 100, 175

Mezzetti, E., Ziccardi, M., Vardanega, T., Abella, J., Quiñones, E.
& Cazorla, F.J. (2015). Randomized Caches Can Be Pretty Useful to Hard
Real-Time Systems. Leibniz Transactions on Embedded Systems , 2, 01–1–01:10.
27

208

REFERENCES REFERENCES

Mezzetti, E., Fernandez, M., Bardizbanyan, A., Agirre, I., Abella,
J., Vardanega, T. & Cazorla, F.J. (2017). EPC Enacted: Integration
in an Industrial Toolbox and Use Against a Railway Application. In 23rd IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS). 172

Michael, J.B., Drusinsky, D., Otani, T.W. & Shing, M.T. (2011). Veri-
fication and Validation for Trustworthy Software Systems. IEEE Software, 28,
86–92. 4

Mike, J.C.H.P. & Schlansker (1991). On Predicated Execution. Tech. rep.,
Hewlett Packard. HPL-91-58. 171

MISRA (2013). Guidelines for the Use of the C Language in Critical Systems .
137

Mueller, F. (2000). Timing Analysis for Instruction Caches. Real-Time Syst.,
18, 217–247. 7, 30

Mueller, F. & Harmon, D.B.W.M. (1993). Predicting Instruction Cache Be-
havior. In In ACM SIGPLAN Workshop on Language, Compiler, and Tool Sup-
port for Real-Time Systems . 7, 30

Muralimanohar, N., Balasubramonian, R. & Jouppi, N. (2009). CACTI
6.0: A Tool to Understand Large Caches. HP Tech Report HPL-2009-85 . 68, 76

Mytkowicz, T., Diwan, A., Hauswirth, M. & Sweeney, P.F. (2009). Pro-
ducing Wrong Data Without Doing Anything Obviously Wrong! In Proceedings
of the 14th ASPLOS , 265–276. 25, 114, 144

Nowotsch, J., Paulitsch, M., Buhler, D., Theiling, H., Wegener,
S. & Schmidt, M. (2014). Multi-core Interference-Sensitive WCET Analy-
sis Leveraging Runtime Resource Capacity Enforcement. In Real-Time Systems
(ECRTS), 2014 26th Euromicro Conference on, 109–118. 4, 20

NVIDIA (2009). NVIDIA’s Next Generation CUDA Computer Architecture:
Fermi, White Paper. 31

Oka, M. & Suzuoki, M. (1999). Designing and Programming the Emotion
Engine. IEEE Micro, 19, 20–28. 31

Paolieri, M., Quiñones, E., Cazorla, F.J., Bernat, G. & Valero, M.
(2009a). Hardware Support for WCET Analysis of Hard Real-Time Multicore
Systems. In 36th Annual International Symposium on Computer Architecture
(ISCA-09). 48, 95

209

REFERENCES REFERENCES

Paolieri, M., Quiñones, E., Cazorla, F.J. & Valero, M. (2009b). An
Analyzable Memory Controller for Hard Real-Time CMPs. Embedded Systems
Letters , 1, 86–90. 48

Pellizzoni, R., Schranzhofer, A., Chen, J.J., Caccamo, M. & Thiele,
L. (2010). Worst Case Delay Analysis for Memory Interference in Multicore
Systems. In DATE . 17

Pelton, S.L. & Scarbrough, K.D. (1997). Boeing Systems Engineering Ex-
periences from the 777 AIMS Program. IEEE Transactions on Aerospace and
Electronic Systems , 33, 642–648. 2

Poovey, J. (2007). Characterization of the EEMBC Benchmark Suite. North
Carolina State University. 32, 37, 50, 110, 136, 166

Potocki de Montalk, J.P. (1991). Computer Software in Civil Aircraft. In
IEEE/AIAA 10th Digital Avionics Systems Conference, 324–330. 3

Pouillon, N., Becoulet, A., de Mello, A., Pecheux, F. & Greiner,
A. (2009). A Generic Instruction Set Simulator API for Timed and Untimed
Simulation and Debug of MP2-SoCs. In Rapid System Prototyping, 2009. RSP
’09. IEEE/IFIP International Symposium on, 116–122, http://www.soclib.
fr/trac/dev. 32

Prisaznuk, P.J. (1992). Integrated Modular Avionics. In Proceedings of the
IEEE 1992 National Aerospace and Electronics Conference (NAECON), 39–45
vol.1. 2

Puaut, I. & Decotigny, D. (2002). Low-Complexity Algorithms for Static
Cache Locking in Multitasking Hard Real-Time Systems. In In IEEE Real-Time
Systems Symposium (RTSS), 114–123. 31, 79

Puschner, P. (2003). The Single-Path Approach Towards WCET-Analysable
Software. In 2003 IEEE International Conference on Industrial Technology,,
vol. 2, 699–704 Vol.2. 171

Puschner, P. (2005). Experiments with WCET-Oriented Programming and
the Single-Path Architecture. In 10th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems . 171

Puschner, P. & Schoeberl, M. (2008). On Composable System Timing, Task
Timing, and WCET Analysis. In Proc. of the 8th Int. Workshop on WCET
Analysis . 6

210

http://www.soclib.fr/trac/dev
http://www.soclib.fr/trac/dev

REFERENCES REFERENCES

Puschner, P., Kirner, R. & Pettit, R. (2009). Towards Composable Timing
for Real-Time Software. In Proceedings of the 1st International Workshop on
Software Technologies for Future Dependable Distributed Systems, as part of
ISORC . 6, 175

Quiñones, E., Berger, E.D., Bernat, G. & Cazorla, F.J. (2009). Us-
ing Randomized Caches in Probabilistic Real-Time Systems. In 21st Euromicro
Conference on Real-Time Systems, ECRTS 2009, Dublin, Ireland, July 1-3,
2009 , 129–138. 8, 30

Rapita Systems (2008). RapiTime. http://www.RapitaSystems.com/

RapiTime. 4, 172

Rebaudengo, M., Reorda, M.S. & Violante, M. (2003). An Accurate Anal-
ysis of the Effects of Soft Errors in the Instruction and Data Caches of a Pipelined
Microprocessor. In 2003 Design, Automation and Test in Europe Conference and
Exposition (DATE 2003), 3-7 March 2003, Munich, Germany , 10602–10607. 40

Reineke, J. (2014). Randomized Caches Considered Harmful in Hard Real-Time
Systems. Leibniz Transactions on Embedded Systems , 1, 03:1–03:13. 27

Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I.,
Eisinger, J. & Becker, B. (2006). A Definition and Classification of Timing
Anomalies. International Workshop On Worst-Case Execution Time Analysis
(WCET 2006). 44

Reineke, J., Grund, D., Berg, C. & Wilhelm, R. (2007). Timing Pre-
dictability of Cache Replacement Policies. Real-Time Systems , 37, 99–122. 30,
79

Riley, M., Warnock, J. & Wendel, D. (2007). Cell Broadband Engine Pro-
cessor: Design and Implementation. IBM J. Res. Dev., 51, 545–557. 31

Rosen, J., Andrei, A., Eles, P. & Peng, Z. (2007). Bus Access Optimization
for Predictable Implementation of Real-Time Applications on Multiprocessor
Systems-on-Chip. In RTSS . 17

RTCA (2005). DO-297 Integrated Modular Avionics (IMA) Development Guid-
ance and Certification Considerations . 6, 174, 176

RTCA and EUROCAE (1992). DO-178B / ED-12B, Software Considerations
in Airborne Systems and Equipment Certification. 5, 19, 26, 36, 137

211

http://www.RapitaSystems.com/RapiTime
http://www.RapitaSystems.com/RapiTime

REFERENCES REFERENCES

Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S.,
Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J. & Vo,
S. (2010). A Statistical Test Suite for the Validation of Random Number Gener-
ators and Pseudo Random Number Generators for Cryptographic Applications.
Special publication 800-22rev1a, US National Institute of Standards and Tech-
nology (NIST). 68, 69

SAE (2001). Guidelines and Methods for Conducting the Safety Assessment Pro-
cess on Civil Airborne Systems and Equipment. ARP4761 . 176

Santinelli, L., Morio, J., Dufour, G. & Jacquemart, D. (2014). On
the Sustainability of the Extreme Value Theory for WCET Estimation. In 14th
International Workshop on Worst-Case Execution Time Analysis, WCET 2014,
July 8, 2014, Ulm, Germany , 21–30. 28

Santini, T., Rech, P., Nazar, G.L., Carro, L. & Wagner, F.R. (2014).
Reducing Embedded Software Radiation-Induced Failures Through Cache Mem-
ories. In 19th IEEE European Test Symposium, ETS 2014, Paderborn, Germany,
May 26-30, 2014 , 1–6. 40

Seznec, A. & Bodin, F. (1993). Skewed-Associative Caches. In Proceedings of
the 5th International PARLE Conference on Parallel Architectures and Lan-
guages Europe, PARLE ’93, 304–316, Springer-Verlag, London, UK, UK. 79

Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N. & Boneh,
D. (2004). On the Effectiveness of Address-space Randomization. In Proceedings
of the 11th ACM Conference on Computer and Communications Security , CCS
’04, 298–307, ACM, New York, NY, USA. 145

Slijepcevic, M., Kosmidis, L., Abella, J., Quiñones, E. & Cazorla,
F.J. (2014). Time-Analysable Non-Partitioned Shared Caches for Real-Time
Multicore Systems. In 51st Annual Design Automation Conference on Design
Automation Conference (DAC’14). 48

Spanfelner, B., Richter, D., Ebel, S., Wilhelm, U., Branz, W. & Patz,
C. (2012). Challenges in Applying the ISO 26262 for Driver Assistance Systems.
In 5th Conference Driver Assistance Systems (Tagung Fahrerassistenz). 26

Stephenson, Z., Abella, J. & Vardanega, T. (2013). Supporting Industrial
Use of Probabilistic Timing Analysis With Explicit Argumentation. In 2013 11th
IEEE International Conference on Industrial Informatics (INDIN), 734–740. 26,
126

212

REFERENCES REFERENCES

Suhendra, V., Mitra, T., Roychoudhury, A. & Chen, T. (2005). WCET
Centric Data Allocation to Scratchpad Memory. In Proceedings of the 26th IEEE
International Real-Time Systems Symposium, RTSS ’05, 223–232, IEEE Com-
puter Society, Washington, DC, USA. 31

Suhendra, V., Raghavan, C. & Mitra, T. (2006). Integrated Scratchpad
Memory Optimization and Task Scheduling for MPSoC Architectures. In Pro-
ceedings of the 2006 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems , CASES ’06, 401–410, ACM, New York, NY,
USA. 31

Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Lan-
genbach, M., Wilhelm, R. & Ferdinand, C. (2003). An Abstract
Interpretation-Based Timing Validation of Hard Real-Time Avionics Software.
In Dependable Systems and Networks, 2003. Proceedings. 2003 International
Conference on, 625–632. 20

Thiele, L. & Wilhelm, R. (2004). Design for Timing Predictability. Real-Time
Syst., 28, 157–177. 4, 20

Tia, T., Deng, Z., Shankar, M., Storch, M., Sun, J., Wu, L. & Liu, J.
(1995). Probabilistic Performance Guarantee for Real-Time Tasks with Varying
Computation Times. In the 2nd IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS95), 164–174. 23, 24

Tool Interface Standard(TIS) (1995). Executable and Linking Format
(ELF) Specification. 129

Topham, N. & González, A. (1999). Randomized Cache Placement for Elim-
inating Conflicts. IEEE Trans. Comput., 48, 185–192. 79

Vardanega, T., Bernat, G., Colin, A., Estevez, J., Garcia, G.,
Moreno, C. & Holsti, N. (2007). PEAL Final Report. Tech. Rep. PEAL-
FR-001, ESA/ESTEC. 7

Vera, X., Lisper, B. & Xue, J. (2003). Data Cache Locking for Higher Pro-
gram Predictability. In Proceedings of the 2003 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems , SIG-
METRICS ’03, 272–282, ACM, New York, NY, USA. 31

Wang, H., Deng, J., Yu, M. & Hei, Y. (2012). A Compact and Robust MCU
for Automotive Body Applications. In 2012 IEEE 11th International Conference
on Solid-State and Integrated Circuit Technology , 1–3. 3

213

REFERENCES REFERENCES

Wartel, F., Kosmidis, L., Lo, C., Triquet, B., Quiñones, E., Abella,
J., Gogonel, A., Baldovin, A., Mezzetti, E., Cucu, L., Vardanega,
T. & Cazorla, F.J. (2013). Measurement-Based Probabilistic Timing Anal-
ysis: Lessons from an Integrated-Modular Avionics Case Study. In 8th IEEE
International Symposium on Industrial Embedded Systems, SIES 2013, Porto,
Portugal, June 19-21, 2013 , 241–248. 4, 8, 23, 32, 54, 61, 78, 121, 122, 123,
125, 139

Wartel, F., Kosmidis, L., Gogonel, A., Baldovin, A., Stephenson, Z.,
Triquet, B., Quiñones, E., Lo, C., Mezzetti, E., Broster, I., Abella,
J., Cucu-Grosjean, L., Vardanega, T. & Cazorla, F.J. (2015). Timing
Analysis of an Avionics Case Study on Complex Hardware/Software Platforms.
In Proceedings of the 2015 Design, Automation & Test in Europe Conference &
Exhibition, DATE ’15, 397–402, EDA Consortium, San Jose, CA, USA. 100,
112, 113, 114, 139

Watkins, C. & Walter, R. (2007). Transitioning from Federated Avionics
Architectures to Integrated Modular Avionics. In Proceedings of 26th Digital
Avionics Systems Conference. DASC ’07 . 2, 178

Wenzel, I., Kirner, R., Puschner, P. & Rieder, B. (2005a). Principles of
Timing Anomalies in Superscalar Processors. Proceedings of the Fifth Interna-
tional Conference on Quality Software, 295–306. 166

Wenzel, I., Kirner, R., Rieder, B. & Puschner, P. (2005b). Measurement-
Based Worst-Case Execution Time Analysis. In Third IEEE Workshop on Soft-
ware Technologies for Future Embedded and Ubiquitous Systems (SEUS’05), 7–
10. 21, 22

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S.,
Whalley, D., G.Bernat, Ferdinand, C., R.Heckmann, Mitra, T.,
Mueller, F., Puaut, I., Puschner, P., Staschulat, G. & Stenströem,
P. (2008). The Worst-Case Execution-Time Problem Overview of Methods and
Survey of Tools. ACM Transactions on Embedded Computing Systems , 7, 1–53.
16, 18, 19, 21, 100, 148, 149

Williams, N. (2005). WCET Measurement Using Modified Path Testing. In 5th
International Workshop on Worst-Case Execution Time (WCET) Analysis, July
5, 2005, Palma de Mallorca, Spain. 21, 22

Wilson, A. & Preyssler, T. (2008). Incremental Certification and Integrated
Modular Avionics. In 2008 IEEE/AIAA 27th Digital Avionics Systems Confer-
ence, 1.E.3–1–1.E.3–8. 6, 174, 176

214

REFERENCES REFERENCES

Winstanley, A. (2015). ARM Expects Vehicle Compute Performance to Increase
100x in Next Decade (23/04/2015). https://www.arm.com/about/newsroom/
arm-expects-vehicle-compute-performance-to-increase-100x-in-next_

decade.php. 3

Xu, J., Kalbarczyk, Z. & Iyer, R. (2003). Transparent Runtime Random-
ization for Security. In Reliable Distributed Systems, 2003. Proceedings. 22nd
International Symposium on, 260–269. 145

Yue, L., Bate, I., Nolte, T. & Cucu-Grosjean, L. (2011). A New Way
About Using Statistical Analysis of Worst-Case Execution Times. In ACM
SIGBED Review . 27

Zhu, H., Hansen, J., Lehoczky, J. & Rajkumar, R. (2002). Optimal par-
titioning for quantized EDF scheduling. 202 – 213. 24

Ziccardi, M., Mezzetti, E., Vardanega, T., Abella, J. & Cazorla, F.J.
(2015). EPC: Extended Path Coverage for Measurement-Based Probabilistic
Timing Analysis. In Real-Time Systems Symposium (RTSS) 2015 , 338–349. 172

215

https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next_decade.php
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next_decade.php
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next_decade.php

	1 Introduction
	1.1 Specific Requirements
	1.1.1 High Performance
	1.1.2 Timing Analysability
	1.1.3 Time Composability

	1.2 Benefits and Challenges of Caches
	1.3 Contributions
	1.3.1 Hardware Solutions
	1.3.2 Software Solutions
	1.3.3 Timing Analysis aspects related to the use of caches in MBPTA

	1.4 Structure of the Thesis
	1.5 List of Publications
	1.5.1 Accepted Publications
	1.5.2 Other Publications

	2 Background
	2.1 Timing Analysis
	2.1.1 Static Deterministic Timing Analysis
	2.1.2 Measurement-based Deterministic Timing Analysis
	2.1.3 Probabilistic Timing Analysis
	2.1.4 Introduction to SPTA/MBPTA Requirements

	2.2 Caches in Real-Time Systems

	3 Experimental Setup
	3.1 Simulation Framework
	3.1.1 Simulator Description
	3.1.2 Simulation Methodology

	3.2 Metrics
	3.3 Benchmarks

	4 MBPTA-Compatible Processor Design
	4.1 Introduction
	4.2 Requirements on Hardware Design
	4.3 Modelling the Timing Behaviour of Processor Resources
	4.3.1 Analysis and Operation Phases
	4.3.2 Deterministic and Probabilistic Upper-bounding
	4.3.3 Benefits
	4.3.4 Taxonomy of Hardware Resources
	4.3.5 Assigning ETP to Individual Processor Resources
	4.3.6 ETP of several execution components
	4.3.7 More Complex Single-core Processor Architectures
	4.3.8 First Steps Towards MBPTA-friendly Multi-cores

	4.4 Case Study
	4.4.1 Designing an MBPTA-friendly Processor Architecture
	4.4.2 Deriving ETP
	4.4.3 Checking the i.i.d. Hypothesis
	4.4.4 pWCET
	4.4.5 MBPTA-friendly Architectures Performance

	4.5 External Results
	4.6 Conclusion

	5 Single Level Hardware Time-Randomised Caches
	5.1 Introduction
	5.2 Timing Behaviour of Random Caches
	5.2.1 Random Replacement (RR)
	5.2.2 Random Placement (RP)
	5.2.3 Putting All Together: Set-Associative Caches

	5.3 Hardware Design of a Random Cache
	5.3.1 Random Replacement
	5.3.2 Random Placement

	5.4 Results
	5.4.1 Experimental Setup
	5.4.2 Quality of the Parametric Hash Function Implementation
	5.4.3 Behaviour of the Parametric Hash Function Implementation
	5.4.4 Fulfilling the i.i.d properties
	5.4.5 Performance Analysis
	5.4.6 MBPTA: EVT projections
	5.4.7 Power and Delay Analysis

	5.5 External Results
	5.6 Related Work
	5.7 Summary

	6 Multiple Level Hardware Time-Randomised Caches
	6.1 Introduction
	6.2 Cache Characteristics and Assumptions
	6.3 Time Randomised Multi-level Caches
	6.3.1 No Inclusivity Control (NIC)
	6.3.2 Inclusive Caches
	6.3.3 Generalising the Latency/Probability Cache Model
	6.3.4 Hardware Considerations

	6.4 Actual Probabilities
	6.5 Exclusive Caches
	6.6 Evaluation
	6.6.1 Experimental Framework
	6.6.2 Compliance with MBPTA requirements
	6.6.3 Reduction in pWCET Estimates
	6.6.4 Detailed pWCET Analysis

	6.7 External Results
	6.8 Related Work
	6.9 Summary

	7 Dynamic Software Randomisation
	7.1 Introduction
	7.2 Compiler and Runtime Support for MBPTA
	7.2.1 Random Location of Memory Objects
	7.2.2 Formal Justification for Applicability of MBPTA
	7.2.3 Effect of Replacement Policy
	7.2.4 Randomising Compiler and Runtime System
	7.2.5 Detailed Implementation Description

	7.3 Results
	7.3.1 Experimental Setup
	7.3.2 Independence and Identical Distribution Tests
	7.3.3 pWCET Estimates
	7.3.4 Overhead

	7.4 External Results
	7.5 Related Work
	7.6 Summary

	8 Static Software Randomisation at Compiler/Linker Level
	8.1 Introduction
	8.2 Static Software Randomisation
	8.2.1 Functional Verification of Software
	8.2.2 Static Code Placement Randomisation (SSR-code)
	8.2.3 Static Stack Frame Randomisation (SSR-stack)
	8.2.4 Static Global/Static Variable Randomisation (SSR-globals)

	8.3 Deploying DSR and SSR
	8.3.1 DSR
	8.3.2 SSR

	8.4 Evaluation
	8.4.1 Memory Overheads
	8.4.2 Performance

	8.5 Related Work
	8.6 Summary

	9 Static Software Randomisation at Source Code Level
	9.1 Introduction
	9.2 TASA
	9.2.1 Executable Structure
	9.2.2 Code Placement Randomisation
	9.2.3 Stack Frame Randomisation
	9.2.4 Program Data Randomisation
	9.2.5 Compound Structure Randomisation
	9.2.6 Multi-source Binaries
	9.2.7 Compiler Optimisations

	9.3 Evaluation
	9.3.1 Experimental Setup
	9.3.2 Certification Compliance and Transparency
	9.3.3 Impact of Optimisation Disabling
	9.3.4 Average Execution Time
	9.3.5 pWCET Estimates and MBPTA Compliance
	9.3.6 Memory Overheads

	9.4 External Results
	9.5 Related Work
	9.6 Summary

	10 Path Upper-Bounding for MBPTA
	10.1 Introduction
	10.2 Path Coverage
	10.3 Principles of PUB
	10.3.1 Definitions
	10.3.2 Instruction Sequence Subordinance
	10.3.3 Cache Subordinance
	10.3.4 Theorem 1 in Time-Deterministic Caches

	10.4 Proof for Theorem 1 and Theorem 2
	10.5 Applying PUB
	10.5.1 Address Merging (PUBam)
	10.5.2 Address Aging (PUBaa)
	10.5.3 Creating the PUB Code
	10.5.4 Core Latency
	10.5.5 Steps

	10.6 PUB for Instruction Caches
	10.7 Evaluation
	10.7.1 Code Replication Size
	10.7.2 pWCET Estimates

	10.8 Exploiting User Knowledge to Reduce pWCET
	10.9 Related Work
	10.10 Summary

	11 Probabilistic Timing Composability
	11.1 Introduction
	11.2 Incremental qualification
	11.3 Time Composability
	11.3.1 Software Structure of Real-Time Functions
	11.3.2 Problem Statement and Assumptions

	11.4 Probabilistic Time Composability
	11.4.1 Software Support

	11.5 Experimental Results
	11.5.1 Experimental Framework
	11.5.2 Results

	11.6 Summary

	12 Conclusions and Future work
	12.1 Contributions
	12.2 Impact
	12.3 Future Work

	References

