UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Self-healing and secure low-power memory systems

Madalin Neagu

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l'acceptacié de les seguents
condicions d'Us: La difusi6 daquesta tesi per mitja del repositori institucional
UPCommons (http://upcommons.upc.edu/tesis) [el repositori cooperatiu TDX
(http://www.tdx.cat/) ha estat autoritzada pels titulars dels drets de propietat intel-lectual
Unicament per a usos privats emmarcats en activitats d'investigacié i docéncia. No s’autoritza
la seva reproduccié amb finalitats de lucre ni la seva difusié i posada a disposicié des d’'un lloc
alié al servei UPCommons o TDX. No s’autoritza la presentacié del seu contingut en una finestra
o marc alie a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentacio
de la tesi com als seus continguts. En la utilitzacio o cita de parts de la tesi és obligat indicar el nom
de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptacion de las siguientes
condiciones de uso: La difusion de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
Unicamente para usos privados enmarcados en actividades de investigacion y docencia. No
se autoriza su reproducciéon con finalidades de lucro ni su difusion y puesta a disposicion desde
un sitio ajeno al servicio UPCommons No se autoriza la presentacion de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentaciéon de la tesis como a sus contenidos. En la utilizaciéon o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you're accepting the following use conditions:
Spreading this thesis by the institutional repository UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it's obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

SELF-HEALING AND SECURE
LOW-POWER MEMORY SYSTEMS

Supervisors:
Joan FIGUERAS
Salvador MANICH

Author:
Madalin NEAGU

September 2017

ii

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Departament d’Enginyeria Electronica

SELF-HEALING AND SECURE
LOW-POWER MEMORY SYSTEMS

Tesi doctoral presentada per a I’obtencié del titol de Doctor per la Universitat
Politecnica de Catalunya, dins el Programa de Doctorat en Enginyeria Electronic

Supervisors:
Joan FIGUERAS
Salvador MANICH

Author:
Madalin NEAGU

Barcelona, September 2017

ii

Abstract

Memory systems store critical information in any digital system, thus they are sus-
ceptible to transient errors and are the focus of various types of attacks. It is crucial
for a memory system to keep the information as accurate as possible. There is a
need to design, implement and test systems capable of handling errors by them-
selves, thus, to run autonomously. Self-healing capabilities for memory systems
translates into error detecting and correcting codes and replacing/replicating meth-
ods of memory elements. Security and data privacy is difficult to implement in
memory systems, due to the overwhelming variety of attacks. This thesis pro-
poses strategies against specific attacks that can occur in memory systems. The
self-healing methodology and the security solutions are evaluated from varied per-
spectives: performance, area and delay overhead, and power consumption.
Keywords— error detection, error correction, memory systems, data scram-
bling, cache memories, side-channel attack, simple and differential power analysis

iii

v

Prologue

The main objective of this thesis is to bring new contributions to the self-healing
and secure systems domain. In particular, to develop a self-healing technique for
memory systems and to increase security of memory systems, techniques which
favor low-power consumption. In order to achieve the main objective, three ma-
jor research objectives were proposed: design of an error detection and correction
scheme for errors that occur in memory systems and integrate them in a memory
system, design techniques to increase the security and data privacy of memory sys-
tems against different types of attacks and to combine the previous two into a single
solution, in order to achieve a self-healing and secure low-power memory system.
The low-power aspect of the proposed solutions and techniques is evaluated dur-
ing design stage and afterwards through simulation. Also, the architectures are
evaluated from several other points of view, such as error detecting and correcting
performance, area and delay overhead, and security efficiency.

I want to thank all the people who have helped and supported this doctoral
thesis. 1 would like to express my sincere gratitude to prof. Salvador Manich
for introducing me to the security domain, for the continuous support of my Ph.D
study and related research, for his patience, motivation and immense knowledge.
His guidance helped me in all the time of research and writing of this thesis. I
also want to thank prof. Joan Figueras for indicating a research direction and for
stimulating me during the doctoral program and, last but not least, I want to thank
prof. Liviu Miclea for the support and encouragement.

I would like to thank my family, especially my wife and parents for supporting
me spiritually throughout writing this thesis and my life in general.

This PhD thesis has been partially sponsored by the Spanish government project
TEC2013-41209-P.

vi

Contents

(I__Introduction| 1
M COoNEXT -« o o v vt et e e e e 1
[2 Stateoftheart. 2

[L21 Motivationl 2
(.22 Introduction|. 4
[1.2.3 The Selt-Healingconcepf 8
[1.2.4 Memory systems| 9
[1.2.5 Low-powersystems| 10
[1.2.6 Security in memory systems| 12
(1.3 Objectives| 13
1.4 Structure]. 15

17
RI Tntroduction] 17
22 Motivationl. o i e e e e e 18
[2.3 Theoretical background| 19

2.3.1 Memorysystems| 20
2.3.2 Sources of errors in SRAM and DRAM memories| 29
[2.3.3 Selt-healing memory systems through error detection and |

[correction schemes| 32

2.4 Proposedsolution| 46
[2.4.1 Modified Bergercodes| 46
242 Coding schemes| 49
243 Errorlocalizationl 52
244 Erorcorrection|. oL 0oL 58
245 Errorescapes| L. 59

2.5 Implementation| oo 60
[2.5.1 Cadence implementation| 60

vii

viii CONTENTS
[2.5.2 Integrating the proposed self-healing technique in memory |

| SYSIEMS| e e e 61
[2.6 Experimental results and evaluation| 68
26.1 Codedelay| 72
[2.6.2 Coderedundancy|. 72
[2.6.3 Error localization ambiguity| 73
2.64 Errorcorrection]. Lo 73
[2.6.5 Errorescapes|, 74
[2.6.6 Area of the code generator and memory resources|. 75
[2.6.7 Power consumption|. 77

6.8 Delayo 77

2.69 Overallevaluation| 80

R7 Conclusions| 82
3 Security in cache memories (IST)| 85
3.1 Introduction| Lo 85
[3.2 Theoretical background|, 86
3.3 Datascrambling., 87
[3.4 Statement of the problem|o 92
[3.5 Proposed solution: Interleaved Scrambling Technique (IST)[. . . . 93
3.5.1 Scrambler Tablel 94
3.5.2 CacheMemory| 100
[3.5.3 Readand writecycles| 101

[3.6 IST performance and efficiency|. 104
[3.6.1 Time performance| 104
[3.6.2 Powerefficiency| 105

[3.7 Evaluation and experimental results| 108
B71 CACTItoolevaluationl 108
372 FPGA modelevaluationl 112

3.8 Conclusions| oL 114
efeating an 115
4.1 Introduction| 115
K42 Motivation].o 116
4.3 Theoretical background| L. 116
[4.3.1 Attacksonmemory|. 116
432 Cold-bootattacksl 117

4.4 Securing memory at hardware level] 119
[4.4.1 Mammemory|., 119

442 Cachememory| 120

CONTENTS ix

4.4.3 Interleaved Scrambling Technique| 121

|4.5 Power (P) and Electromagnetic (EM) Radiation Analysis| 122
4.5.1 Simple P or EM Radiation Analysis Attack| 124
4.5.2 Differential P or EM Radiation Analysis Attackl 125
453 Attackmodell o000 126

4.6 Statementofthe Probleml 127
4.6.1 Objective] e 129

|4.7 Proposed solution for defeating SPEMA| 129
4. 7.1 eDLC review and integration with IST|. 129
|4.7.2 Scrambling vector redundancy filter] 132

|4.8 Proposed solution for defeating DPEMA|. 136
4.8.1 Example of DPEMA attack on ISTe| 137
4.82 DPEMA countermeasuref 140

483 Howitworks 142

|4.9 Evaluation and experimental results| 144
4.9.1 Leakagefunction| 144
H92 Resultsdo v 147

4.9.3 Implementationcosts|. 153

4.10 Conclusions| 161
5__Conclusions| 163
51 Scientific contributions] L. 166
[5.2 Future research and developments| 170

Bibliography 171

CONTENTS

List of Figures

[[.TConceptual model of the autonomic system [9] 5
[I.27SOC Consumer Portable Design Complexity Trends [1]] 7
[T.37SOC Consumer Portable Power Consumption Trends 1] 7
[[.4— Common construction of a memory hierarchy [13]] 10
[[.5 Components of a cache memory [14] 11
[2.1 ~ The triangle of balance for EDCs and ECCs.|. 20
22 Basic6TSRAMcelllo 21
D3 Older 32MB DRAM AESIEN] . « -« o o o oot 22
2.4 Modified DRAM design [49].f. 23
2.5 PDRAM memory controller [50[]. 24

. asic cell [32]] 25

35 35

erence to store the discharged state logic value (immune to radi- |

ations), useful data are stored in 2 other cells, D and D’. If the 2 |

values are different, the original data 1s sure to be the opposite of |

the reference cell value [S1].] 26
[2.8 Principle of DRAM read operation| 27
[2.9 " Soft Error Rate (SER) per bits in DRAM and SRAM [53] 30
[2.10 DRAM cell upset distribution [53]].|. 31
21T DRAM Bit Error Rate BER) 53] - « - « « o o v v e e e e o 31
[2.12 Neutron strikes on DRAM Togic [30]] 32
[2.13 Memory cell interleaving [S3] 33
[2.14 General algorithm for Hamming codes| 34
[2.15 Hamming-decoder circuit [I37].f 36
[2.16 Block diagram of concatenated Hamming and R-S codes [43] . . 37

[2.17 (a) 10:4 parallel counter tree and check bits generation for (b) an |

uncorrupted word and codes and (c) a corrupted data word (2 bits |

gofromItoO)andcodes [33]. 39

X1

xii LIST OF FIGURES
[2.18 Proposed architecture in [33].|. 40
[2.19 Block diagram of the proposed Hi-ECC architecture [39].. 42
[2.20 Design of "bit-fix” scheme for 10bits [40]] 43
[2.21 Reliability-enhancement circuit proposed in [67)].] 45
[2.22 Combination of restricted single-error correction codes and col- |

| umn replacement proposedin [68]] 46
[2.23 Error recovering principle proposed 1n [S1]. One cell 1s used as |

| reference (REF) to store the discharged state logic value (immune |

| to radiations), useful data are stored in 2 other cells, Dand D’| . . 47
[2.24 Generation of the check bits for CS-1 Berger, CS-2 Berger and |

| plain Berger code K = 6. The number of information bits 1s N = |

| 18. The plain Berger code requires six levelsof FA| 48
[2.25 Tree-shaped design for 9 information bits and the corresponding |

[FAlevelsl 50
[2.26 Unidirectional error states graph for A = 1. On the left, all pos- |

| sible single errors are indicated. On the right, the corresponding |

| check bits for 51 and By scheme with single error transitions| . . . 53
[2.2°7 Example of possible error words for 3 information bits and 2 check |

| bits, with one error occurring (the first level of FAs 1s considered |

[K=DJ] ... 54
[2.28 Example of possible error words for 3 information bits and 2 check |

| bits, with 2 errors occurring (the first level of FAs 1s considered |

[K=1D .. 55
[2.29 Example of possible error words for 3 information bits and 2 check |

| bits, with 3 errors occurring (the first level of FAs 1s considered |

[K=1D] .. e 56
[2.30 General architecture of the implementation.| 62
[2.31 Implementation for the 1st level of the FA tree for 9 information bits.| 63
[2.32 Implementation for the 2nd level of the FA tree for 9 information |

I 7 63
[2.33 Implementation of digital comparator with input sizes of 2 bits.|. . 64
[2.34 Error detection and localization circuit (example for 9 information |

| bits, 6 checkbitsand K =1).| 65
[2.35 Error correction for uncorrectable segments using a spare segment.| 65
[2.36 General architecture of the implementation.| 66
[2.37 Pipelining Operation.| 69
[2.38 Timing results in the proposed pipeline architecture.|. 70
[2.39 Example of .txt stimulus file containing values for one bit of the |

| mputs of an implementation.| 71
[2.40 Code delay ot CS-K Bergercodes.. 72

LIST OF FIGURES

Xiii

[2.41 Code redundancy for CS- K Berger codes and original Berger codes.| 73

[2.42 " Error localization ambiguity for the first level of FAs in CS-1 Berger

| code. Stmultaneous errors are changed from 1 to5 74
[2.43 Error correction per segments for the CS-1 Berger code, errors |

| fromluptoSbits|, 75
[2.44 Error escapes probability for CS-1 Berger code for 2,3 and 5 mul- |

| tipleerrors.| 76
[2.45 Area of the code generator computed for CS-1,2,3 and the original |

| Berger codes and different word sizes.| 76
[2.46 Area of the code generator computed as percentage from the Berger |
L code area for the first three levels of Full Adders) 77
[2.47 Memory utilization area for codes CS-1,2,3 and Berger code, when |
[SRAMand DRAMcellsareused) 78
[2.48 Area of the code generator and memory resource necessary for CS- |

| 1,2,3and Bergercodes.| 78
[2.49 Power consumption comparison between the 1st and 2nd level of |

| the FA tree and Berger code (the values are negative because the |
| electric current 1s measured at the ground node of the circuit).|. . . 79
[2.50 Delay comparisons between the 1st and 2nd level of the FA tree |

| and Bergercode.| o oL 81
3.1 Designusedin [[75]f. 89
[3.2 Pure (left) and conditional (right) scrambling [74]].|. 90
[3.3 MECU architecture from [78]].| 91
[3.4 Counter-mode encryptionused in [23].f. 92

The scrambler table block and entri re ... 95

[3.6 Cache memory entries structure and main functional blocks.| . . . 100
3.7 ISTwritecycle 101
3.8 ISTreadcycle| 102
[3.9 Simulation of the ST table management of the scrambling vectors. |

| The scheme 1s SAU, the number of data blocks 1s 64 and the num- |
| ber of lines in the ST internal table 1s 4. CPU addresses are gener- |
| atedrandomly.|. oo o 103
[3.10 Simulation of the ST table management of the scrambling vectors. |

| The scheme 1s SAU, the number of data blocks 1s 64 and the num- |
| ber of lines 1n the ST internal table 1s 4. CPU addresses are gener- |
| ated incrementally with a random increment between 0 and 3.| 103
[3.11 Representation of Equations [3.11]and [3.12f assuming a miss ratio |

[n=0.009]. 106

Xiv LIST OF FIGURES

[3.12 Representation of Equations [3.13[and [3.14] assuming a miss ratio

[n=0.000and £, =20¢.). oo 107
4.1 Simplified model of a computer memory system.| 117
4.2 Cold-boot attack on main memory.| 118
4.3 Cold-boot attack without removing memory chips| 119
|4.4 Published proposals securing memory at hardware level against |

[cold-bootattacks) 120
4.5 Interleaved Scrambling Technique. Hardware protection for cache |

| that can be integrated into a global protection scheme.|. 121
4.6 Switching drivers and bus line currents excite power peaks and |

| electromagnetic pulses which leak information about data flowing |

[mtothednversandbuses). 123
4.7 Example of SPEMA attack.|. 125
4.8 Example of DPEMA attack.| 127
4.9 The error detection, correction and localization technique (eDLC).| 130
.10 Histogram of number of maximums found in the D™ set for 12 data |

| bits after 3.000 attacks. Average1s 3792 135
.11 Overview of the IST with SPEMA protection.| 136
[4.12 Overview of the writing cycle in the IST — eDLC technique.| 137
.13 Overview of the RM-ISTe technique.|. 141
|4.14 Architecture flowchart of the write cycle in the RM-ISTe tech- |

| nique. An example on 9 bitsisincluded.|o 141
.15 Communication channel model used to evaluate the leakage| . . . 145
|4.16 Evaluation of entropies in an attack scenario.| 146
|4.17 Simulation of the circuit in Figure 4.16] and Equation [4.14] and |

| theoretical curve derived from Equation4.10}| 148
|4.18 Information leakage achieved with SPEMA attacks. 150
|4.19 Information leakage achieved by DPEMA attack applied on tech- |

| niques without random masking for a 63-bit architecture.| 151
4.20 Information leakage achieved with DPEMA attacks applied on ran- |

| dom masking techniques for 63-bit architecture size.| 152

List of Tables

[2.1 ~ Example of 5, coding scheme for I bitinerror| 51
[2.2 Example of B; coding scheme for 1 bitinerror,| 52
[2.3 Example of ambiguity for one bitinerror| 57
2.4 Example of ambiguity for two bitsmnerror.| 57
[2.5 Correctable error patterns in the information bits (K = 1) 59
[2.6 Correctable error patterns in the check bits (K = 1) 59
[2.7 Examples of multiple error escapes.| 60
[2.8 Actions based on the check bit comparison. A; are the check bits |
| generated from the information segment of the code during the ver- |
| ification and validation. B; are the check bits extracted from the |
| code. See Figure[2.30[| 60
2.9 Detection and localization circuit behaviour. A;, 5;,C;, D, are |
| outputs of circuit in Figure[2.34}| 61
[3.1 Evaluation of Equations|3.10[forn =32 99
3.2 CACTI results for different cache sizes, 1-way set associative.| . . 109
3.3 CACTI results for different cache sizes, 2-way set associative.| . . 110
3.4 CACTTI results for different cache sizes, 4-way set associative.| . . 111
[3.5 Area utilization and overhead 1n the FPGA device implementation.| 113
[3.6 Power consumption comparison in normal operation.| 113
[3.7 Delay for data and clock path| 114
4.1 Example of unique maximum.| 131
4.2 Example of multiple maximums.| 132
4.3 Codeword and non-codeword spaces for D° and S° respectively, . 133
4.4 Hamming weights for the data vector and scrambling vector spaces.| 134
4.5 Number of elements in the set of maximums D™ 135

4.6 Zero and one data vector sets for the DPEMA attack in a three bit |

busexample.| 138

XV

Xvi LIST OF TABLES
4.7 Example of DPEMA attack applied to a three bit data bus with |
| ISTe scrambling technique. (1) is the matrix of hamming weights |
| generated 1n the data bus after the scrambling. (II), (III) and (IV) |
| are the average hamming weights used to estimate bit so, s; and sg |
| respectively.|o 139
4.8 DPEMA attack applied to RM-ISTe countermeasure.| 143
4.9 Information leakage measured for DPEMA attacks 1n different ar- |
| chitecture sizes and techniques. Attacking data vector set 1s 1000. |
| Number of scrambling vectors tested 1s 1000. In gray background |
| cells at least one scrambling vector has been correctly estimated.| . 153
{4.10 Implementation costs of the previous and current proposed tech- |
| niques, 1-way set associative cache.| 155
4.11 Implementation costs of the previous and current proposed tech- |
| niques, 1-way set associative cache (continued).| 156
|4.12 Implementation costs of the previous and current proposed tech- |
| niques, 2-way set associative cache.| L., 157
{4.13 Implementation costs of the previous and current proposed tech- |
| niques, 2-way set associative cache (continued).| 158
|4.14 Implementation costs of the previous and current proposed tech- |
| niques, 4-way set associative cache.| 159
|4.15 Implementation costs of the previous and current proposed tech- |
| niques, 4-way set associative cache (continued).| 160

List of Acronyms

BCH Bose Ray-Chaudhuri

CPU Central Processing Unit

DCM Duty Cycle Modulator

DRAM Dynamic Random Access Memory
ECC Error Correcting Code
EDC........... Error Detecting Code

EDLC Error Detecting, Localization and Correcting
FA Full Adder

IC............. Integrated Circuit

IST Interleaved Scrambling Technique

KB Kilo Bytes

LFSR Linear Feedback Shift Register

LUT Look-Up Table

MECU Memory Encryption Control Unit
OSV Old Scrambling Vector

PRNG Pseudo-Random Number Generator
R-S............ Reed-Solomon

SAS ... Set Address Synchronized

SAU Set Address Unsynchronized
SEC-DED...... Single Error Correction, Double Error Detection
SEC-6ED 5 Errors Correction, 6 Errors Detection
SER Soft Error Rate

SRAM Static Random Access Memory

ST ... Scrambling Table

YSV ..o Young Scrambling Vector

Xvii

Xviii LIST OF TABLES

Chapter 1

Introduction

1.1 Context

In nowadays technology, there are more and more huge and complex digital sys-
tems. Because of the continuous evolution of the technology node, the components
and circuits are getting smaller, they occupy less area, have higher speeds and fa-
vor low-power consumption. Thus, the systems are more complex and can handle
huge amounts of data at the same time. As the complexity increases, devices be-
come resource and power hungry, hence it must be kept under balance. For any
given domain, a system must be able to perform complex computations, to output
high speed and to keep the information as accurate as possible.

Modularity plays an important role in any system, each one is composed of
several subsystems, which perform specific tasks (e.g. monitoring, planning, op-
timization, data acquisition, etc.). This characteristic is better understood when
considering the reliability and maintainability points of view, because if one sub-
system fails, it can be easily replaced by a spare one. Also, the system can be easily
extended because the architecture of such a system is highly scalable.

Autonomous systems are also a current tendency. Such systems are able to
monitor themselves, they can repair themselves if a subsystem is faulty, and they
can adapt to environment changes (e.g. new components, errors occurrence, etc.).
The main characteristic of autonomous systems is the capability to run without
human intervention. To achieve such features, there are several “self-*” type prop-
erties, like: self-configuration, self-management, self-healing, self-optimization,
self-protection, etc. Each one of these properties is a priority for autonomous sys-
tems.

Although the technology node decreases almost every 2 years and offers higher
density and higher speeds for integrated circuits, the occurrence of errors increases

2 CHAPTER 1. INTRODUCTION

and needs to be mitigated. The errors severely affect any component of a system,
but can be mitigated through several methods, techniques and algorithms.

Another relevant trend is the security of devices and systems. There are a
large variety of attacks which target memory systems and try to retrieve important
information such as encryption and public keys, digital signatures, biometric in-
formation, etc. However, developing a system that is secure against every type of
attack is nearly impossible due to the diversity and nature of attacks and infeasible
because of performance, power and size considerations.

There is a need to design, implement and test systems that can handle errors,
to be tolerant to faults. Memory systems are a special and critical category, be-
cause they store data which is afterwards used by the system. When errors occur,
the system must be able to perform self-healing, to detect and correct the errors,
which is achieved by implementing several self-healing methods and techniques.
On the other hand, when attacks eventuate, the system must either repel them or
disclose useless data. However, the cost for implementing a self-healing memory
system must be as low as possible and a trade-off between performance and cost is
necessary.

1.2 State of the art

1.2.1 Motivation

Most modern systems present novelty through the self-healing concept, which can
be modeled on any given type of system and can be built through several methods,
functions and techniques that must accomplish the self-healing objective. This
tendency can be extended to high availability and stability (measured by uptime),
increased reliability, high maintainability and scalability. Any modern system is
desired to have no errors (if some occur, they should be corrected) and to keep the
above tendencies as high as possible. So far, the self-healing concept is widely used
in distributed network systems, along with other “self-*" features. Nevertheless, it
can also be employed on any system, even on memory systems which encounter
high error rates and are accustomed to any type of attacks.

Memory systems are critical in any large and complex digital design. This is
because memory systems retain the information which is then used in processing
elements of the digital design. The concerns regarding memory systems are be-
cause the technology minimum feature size keeps decreasing, therefore, the mem-
ory elements are shrinking, have higher density and speed. In addition, the percent-
age of memory area in System on a Chip (SOC) integrating circuits is expected to
grow significantly during the next decade. According to the ITRS Roadmap 2013
[[L], the size of the area occupied by memory increases faster than the area dedi-

1.2. STATE OF THE ART 3

cated to logic. There is a need to keep the information as accurate as possible by
using mitigation techniques. Because the size of the circuitry is getting smaller
and smaller, high-energy neutrons and alpha-particle strikes (background radia-
tion) can generate soft (i.e. transient) errors in a memory system and can affect
more than one location. Therefore, multiple-bits errors may occur in any memory
system, whether it is SRAM or DRAM. There is a need to keep them error free,
since critical data is stored at any given time.

Self-healing methods, techniques and algorithms have been employed in order
to mitigate these types of errors. For memory systems, self-healing is perceived
as error detecting and correcting codes and replacing/replicating methods for the
elements of a memory system. Self-healing is mainly used for autonomous systems
(i.e. systems that can adapt themselves to the given circumstances and perform
repair of erroneous elements), but the concept is widely used for any system that
can perform self-monitoring, planning and repair operations without the human
assistance.

On the other hand, a low-power trend has emancipated and targets all systems
to use as less energy as possible by using intelligent architectures, designs and
techniques. This trend is mainly for limited energy source devices, because max-
imizing the life of the device is the main concern for these types of devices. The
main idea of the low-power concept is to use as less power as possible when a
device is operating and use no power when it’s idle (i.e. no processing is done).
However, this approach may limit the computation speed of a device. Therefore,
a balance between power consumption and performance is needed and it depends
very much on the design and implementation of the device. Any modern self-
healing technique must have low area overhead and low power consumption, while
the performance degradation must be kept to a minimum.

Data security in memory systems is another growing trend in the last decade.
Modern day ICs contain significant information that must be highly secured, so
that it stays hidden. In the last 5 years, there have been reported a large variety of
attacks against ICs and memories, mostly targeting the vulnerabilities of cache and
main memories, smartcards, etc.

In a recent report [2]], the author pointed out that 62% of companies world-
wide were subject to payment fraud in 2014 and that credit/debit cards are the
second most frequent target of payment fraud. Mobile payments are a relatively
new payment method, but this trend is increasing among large companies and or-
ganizations. However, there are several uncertainties about it such as disclosure of
sensitive information or secure transfer of information.

Ensuring the confidentiality of sensitive information is becoming more and
more crucial because targets such as credit cards and other kind of legal supports
store biometric and personal information [3]]. Very often general purpose devices

4 CHAPTER 1. INTRODUCTION

like desktops, laptops or smartphones are used for private transactions with finan-
cial entities or health-care issues, among others. In the case of devices without
specialized hardware, all cryptographic operations are executed in software, result-
ing in an intensive use of memory [4]]. This poses sensitive data at risk, including
that stored in the cache memory [5]].

Solving the challenges imposed by the trends explained above is the main pur-
pose of this work, which are important in any modern device or system. Achieving
data security, low power consumption, high performance, small area overhead and
new self-healing techniques for memory systems is a priority in nowadays elec-
tronic engineering.

1.2.2 Introduction

In modern technology, the concept of a self-healing system is becoming increas-
ingly common in memory systems. This trend revealed itself due to some factors
and requirements: autonomous systems, employing “self- features”, the evolution
of the technology node, multiple random errors, etc. Nowadays, the technology
node used is 45nm, 32nm and even 22nm, but it’s still decreasing [1]]. By scal-
ing down the components of any system, a gateway for errors and faults has been
created. This scaling affects the dimensions of circuits, the operating voltage and
current, and the power consumption [1l]. Decreasing the operating voltage favors
low power consumption when the circuit is active, but implies lower limits and
thresholds for detecting the operating state (e.g. voltage levels for 1 and 0). Also,
when a circuit is idle or deactivated, the leakage current must be negligible. Due to
the reduced dimensions, the packaging is very dense, in order to achieve a consid-
erable size. This high density favors, in a negative way, the occurrence of soft and
hard errors. The balance is achieved somewhere in the middle, because the new
technologies allow higher performance and higher switching speed, but have the
disadvantage to be susceptible to any kind of errors.

In order to increase the reliability of systems against soft and hard errors, the
self-healing concept emerged. This concept is part of the auto-management fea-
tures that appeared in autonomous systems. The idea was developed by IBM
in 2001 [6] with the purpose of creating a distributed system capable of self-
management, which adapts to environmental conditions and defects that may oc-
cur, based on certain high-level decisions and policies. In such a self-manageable
system, the human intervention is minimal and has the role to define the general
policies and rules that govern the system. Thus, IBM defined four self-* properties:

e Self-configuration: automatic configuration of components and devices

e Self-healing: automatic discovery and correction of errors and faults

1.2. STATE OF THE ART 5

Autonomic System
IN, B2 Know-how |::> ourT,
IN, Logic [> ourT,
a N ... N
5 S; Sy
Sensors

Figure 1.1: Conceptual model of the autonomic system [9]

o Self-optimization: automatic self-monitoring and resource control to ensure
optimal functioning with respect to the requirements defined

e Self-protection: proactive identification and protection against random ma-
licious attacks

Depending on the evolutionary level, IBM defined five levels of implemen-
tation [7]: the first level is the basic one which shows the current situation for
manually managed systems, levels two to four introduce new automated manage-
ment functions, and level five is the ultimate goal of autonomous systems, the
self-management. Moreover, the complexity of an autonomous system can be sim-
plified by using various design patterns, like Model-View-Controller (MVC) to
improve the separation between system functions [8].

A basic concept of the autonomous systems is closed control loops. These
loops monitor specific resources (hardware and software) and try to maintain au-
tonomously specific parameters in a desired range. Depending on the size and
complexity of the system, the control loops can be hundreds, even thousands.

The conceptual model of an autonomous system contains several vital ele-
ments: sensors, knowledge and logic (Figure[L[.I). The sensors allow the system to
observe the running operations, as well as the external environment. The knowl-
edge is basically the intention and the “know-how” to self-management, without
external intervention. Current operations are dictated by the logic system, which is
responsible for making the correct decisions, based on the internal knowledge and
the information from sensors.

6 CHAPTER 1. INTRODUCTION

The model highlights the fact that the operation of an autonomous system is
driven by purpose, by intention. This includes the mission (e.g. the service that
it must provide), system policies (e.g. what defines the behavior) and “survival
instinct”. If this system would be a control system, it would be coded as a function
of errors with feedback or as an algorithm combined with a set of heuristics, in an
heuristic assisted system.

Although autonomous systems may have different objectives and behaviors,
each autonomous system must exhibit a minimum set of properties to achieve its
own goals. Thus, an autonomous system must be automatic, i.e. to be able to
self-control internal functions and operations. Also, it must be independent and
can start automatically, without external intervention. Another important feature is
adaptability. It should be able to change the current operations (e.g. configuration,
status, etc.), so allows the system to cope with spatial and temporal changes in the
context of operations, either on long term (e.g. optimization, modifying specific
parameters), or short term (e.g. malicious attacks, defects, faults, errors, etc.).
The last important property is defined as the awareness of the autonomous system,
meaning it is able to monitor (via sensors) the operational context, as well as the
internal state, in order to achieve its computational objectives.

A memory system with self-healing features is a relatively new concept in the
digital era and requires the existence of algorithms, methods and techniques im-
plemented in the memory system, that try to keep the information as accurate as
possible.

As technology evolves, memory systems have developed from small, slow and
simple architectures to huge, fast and complex designs. This evolving trend was
governed by the technology node which kept shrinking continuously. Therefore,
the density and speed of integrated circuits have increased exponentially and the
trend was described by Moore’s law in 1965. However, the sources which generate
errors and faults were not completely removed and still exist in several forms. This
leads to developing techniques, methods and algorithms needed for the mitigation
of errors in any given system.

In the ITRS Roadmap 2013 [1]], it is shown that the area occupied by memory
in SOC integrated circuits increases faster than the area dedicated to logic (Figure
[1.2).

Low-power consumption is another trend for most systems, they favor low
power consuming operations, conservation of energy and maximizing the life of
limited energy sources. Figure[I.3]shows the power consumption trends for SOC
integrated circuits, based on the ITRS Technology Roadmap 2013 [[1]].

Because there are several and different types of self-healing techniques and
low-power architectures, the scope of this chapter is to summarize the existing
and proposed methods of self-healing and models for low-power capabilities for

1.2. STATE OF THE ART

. 357 - 500

T 30 - 7
= 400 £
= 15 -

f <
.2 20 - 300 YEE
2215 200 g
10 =
S 100 =
E 5 It
-

_-: D T T T T T T T T T T T T T T T T T D

& 2013201420152016201720182019202020212022202320242023202620272028

-

C—INumber of Processing Engines (Right Y Axis)
== Total Logic Size (Normalized to 2013, Left Y Axis)
== Total Memory Size (Normalized to 2013, Left ¥ Axis)

Figure 1.2: SOC Consumer Portable Design Complexity Trends [1]]

10.00 7
8.00 -
6.00 -
4.00 -

2.00

Power |W]|
L

R |

b

b

Rl |

B |
AN
b |
SR |

B |
HESERRSSRRESRNEE
A] |
Bttt il |
bt E LA Sk |
B |
B |
RN R A RS AR AR R R |

0.00 -~ T T T T T T T T T T T T T T T 1
2013 1014 2015 2016 1017 2018 201% 2020 1021 2021 2013 2024 1025 2016 1027 2028

Year

MPU Power [W] #GPU Power [W] WPE [W] WIO[W] ERF [W]

Figure 1.3: SOC Consumer Portable Power Consumption Trends

8 CHAPTER 1. INTRODUCTION

memory systems.

This work is focused on current self-healing techniques for systems in general,
but more in detail for memory systems. Also, because there are several types of
memories that are used nowadays, the most important ones are taken into consider-
ation: SRAM and DRAM. Also, data security in memory systems is tackled from
different perspectives and security models and methodologies are proposed and
analyzed.

1.2.3 The Self-Healing concept

Self-healing can be described in numerous ways, but when speaking about a self-
healing system, the best definition is: ”System automatically detects diagnoses and
repairs localized software and hardware errors” [10]. Self-healing is just a type of
the more general self-* properties. For example, self-configuration is defined as
automated configuration of components and systems follows high-level policies.
Self-optimization is known as automated tuning of the system parameters in order
to improve performance and efficiency. Self-protection is well-known in security
systems where they have the ability to defend against malicious attacks or cas-
cading failures. Usually, an autonomic system must support these four features.
An autonomic system is composed of several autonomic elements, each containing
internal resources and delivers services to other autonomic elements.

Given the autonomic manager (which controls and represents an element), the
managed element could be a hardware resource (e.g. storage), a CPU, hardware
device or a software resource (e.g. database, directory service, etc.) Each element
is responsible for managing its internal state and behavior and for managing its
interactions with an environment that consists of messages and signals from other
elements.

Self-healing techniques have been in continuous development, beginning with
1970s when fault tolerant computing was achieved through fault model specifi-
cations, fault avoidance, detection and masking. In 1980s, the methods have ad-
vanced to dependable computing where they focused reliability, availability, in-
tegrity, degradation and maintainability of systems. From 1990 until now, the term
of self-healing was used more often when describing systems with capabilities of
dependability, modeling, monitoring, diagnosis, planning and adaptation for repair.

Nowadays, a self-healing system can modify its behavior in response to the
changes occurring in the environment. In [11]], the author states that a self-healing
system has in its lifecycle four major activities: monitoring the system at runtime,
planning the changes, deploying the change descriptions and adopting the changes.
Based on these activities, the architecture of such a system should include: mon-
itoring the system’s performance and recognition of faults or anomalies, adapt-

1.2. STATE OF THE ART 9

ability to structural, dynamic and run-time aspects, communication integrity and
internal state consistency and ability to address the anomalies when discovered
(planning, deploying and enacting the necessary changes).

In [12], the authors define, in a formal way, several “self” properties from
the perspective of distributed systems. From the self-healing definition, we can
infer that this technique is focused on maintaining or restoring a system’s safety
properties. When these are violated, healing may take an arbitrary but finite amount
of time and guarantees the recovery from that subset of actions that perturbs its
state. Systems with self-healing will often exhibit a degraded level of performance
when the external action causes a crash failure. Most of the self-healing solutions
are non-masking or reactive, but there are several proactive versions, known as
predictive self-healing. These systems anticipate failures from symptoms of erratic
behavior, but protect the system from catastrophic service disruption by internal
restarting certain modules (also known as micro-rebooting) and masking the failure
from the user.

Self-healing can be employed in a system by using different measures, most of
them rely on the problems/errors/faults that can occur in the given system and, of
course, on the architecture and design of that system. Thus, self-healing techniques
implementations and proposals are addressed in Chapters 2, 3 and 4.

1.2.4 Memory systems

The memory system is the repository of information (data) in any computer system.
A CPU will read the data, perform operations and writes it back to the memory.
The memory system is composed of a collection of storage locations, organized
in memory words and has a numerical address. A key performance parameter of
a memory system is the effective speed of the memory. Capacity is important as
well, but these properties are always in conflict. Usually, technology tradeoffs are
employed to optimize between the two factors (note that cost also influences the
tradeoffs). So, there are large but slow memories and fast but small ones.

Because latency (i.e. the delay from when the processor first requests a word
from the memory until that word arrives and it’s available for use) plays an impor-
tant role when designing a memory system, it is important to engineer a memory
system with the lowest latency. Therefore, a simple solution for a memory hierar-
chy is to use a small but very fast memory in front of the large, slow memory. This
idea led to the hierarchy in Figure [I.4] which nowadays is very common.

At the top of the hierarchy are the CPU registers (very small and very fast),
then the next level is a special, high-speed semiconductor memory known as cache
memory and the last level is the main memory, semiconductor as well, but slower
and denser than a cache. The cache memory is usually divided in several distinct

10 CHAPTER 1. INTRODUCTION

Main

Cache < Memory

\ 4

\ 4

Figure 1.4: Common construction of a memory hierarchy [13]]

levels (nowadays, at least 2 or 3 levels) and is situated on the CPU chip itself. This
is explained below by how the cache memory works. Figure[I.5]exhibits a common
cache memory design.

Because the cache memory acts like an intermediate between the main memory
and CPU, it contains copies of data from the main memory. But because it has a
small capacity, only some data is copied, depending on which technique is used.
Common techniques are based on temporal and spatial locality. Spatial locality is
the property that an access to a given memory location greatly increases the prob-
ability that adjacent locations will be accessed immediately. Temporal locality is
based on the fact that an access to a given memory location increases the proba-
bility that the same location will be accessed again. These techniques are used for
cache management strategy, when the cache memory is full and free blocks are nec-
essary. Also, common cache memories can be associative, or content-addressable.
An associative memory, the address of a memory location is stored along with its
content.

When reading from the cache memory, a hit occurs if the needed word is found
in a level of the hierarchy, however if a miss occurs the request must be sent to the
next lower level. So, for multi-level caches, the processor proceeds by checking
the smallest level I cache first and if it hits, the processor runs at high speed. If
level 1 cache misses though, the next larger level 2 cache is checked and so on,
until the main memory is finally checked.

1.2.5 Low-power systems

This concept is currently employed in most modern chips in order to reduce the
dynamic power (when the circuit or device is executing instructions — normal oper-
ations) and the static power (when the device or circuit is in idle mode). Although

1.2. STATE OF THE ART 11

ta index offset state tag data
S [TT — ©oor]

Decode /’
d
| :] :] o
I e m—
nY 1 1] e
7 | |
—> :] :] []
N
D AN Compare Incoming & Stored Tags
P \\ and Select Data Word
Data Word l Hit/Miss

Figure 1.5: Components of a cache memory [14]

the density and the speed of integrated circuits computing elements have increased
almost exponentially for several decades (trend described by Moore’s Law), these
are limited primarily by power dissipation concerns [[15].

There are several methods and techniques to reduce the power consumption
low enough so that the device or circuit still performs in normal parameters. Dy-
namic power is mainly reduced to a minimum by using a “full static logic” which
can stop the clock and hold their state indefinitely, thus using no dynamic power,
but they still have a small static power consumption caused by leakage current [16].
The static power appears when there is no switching (idle mode) and it’s the result
of sub-threshold leakage, which is important if the circuits keep on shrinking. A
simple technique to reduce this loss is to raise the threshold voltage and decrease
supply voltage, but this will reduce the performance. Some modern circuit use dual
supply voltages to provide speed for critical parts of the circuit, and lower power
for non-critical paths [[17]. Another method is to use sleep transistors to disable
entire blocks when not in use.

Another method to reduce the dynamic power when changing states is to reduce
the operating voltage of the circuit or to reduce the voltage change involved in a
state change (use only a fraction of the supply voltage). For clocked logic circuit,
the technique of clock gating [18]] is used, to avoid of functional blocks that are not
required for a given operation when changing the state.

A power management technique in computer architecture is dynamic voltage
scaling [[19], where the voltage of a component is increased or decreased, depend-

12 CHAPTER 1. INTRODUCTION

ing on the circumstances. Undervolting is used to conserve power, especially in
devices with a limited energy source. Most modern components and devices allow
voltage regulation to be controlled through software (e.g. BIOS).

To summarize, the main advantages of low-power systems is that they have
a reduced power consumption, but at the expense of computation power. Several
methods, techniques and implementations have been proposed so far, each having
its own advantages and disadvantages. However, because the low-power designs
depend very much on the architecture of the memory system or on the techniques
proposed, examples of low-power implementations are included in each chapter.
The low-power aspect is considered in each method and technique from each chap-
ter and mainly focuses on designs that have low power consumption, hence the
impact is minimal.

1.2.6 Security in memory systems

Modern day integrated circuits (ICs) contain significant information that must be
highly secured, so that it stays hidden. In the last 5 years, there have been reported
a large variety of attacks against smartcards and ICs dedicated to security mostly
targeting the vulnerabilities of cache and main memories. This problem broadens
when the attacks focus on devices used by general public like credit cards and
other kind of legal supports containing biometric information [3]]. Another report
[2] points out that 62% of companies worldwide were subject to payment fraud
in 2014 and that credit/debit cards are the second most frequent target of payment
fraud. Mobile payments are a relatively new payment method, but this trend is
increasing among large companies and organizations. However, there are several
uncertainties about it such as disclosure of sensitive information or secure transfer
of information.

Ensuring the confidentiality of sensitive information is becoming more and
more crucial [3]]. Very often general purpose devices like desktops, laptops or
smartphones are used for private transactions with financial entities or health-care
issues, among others. In the case of devices without specialized hardware, all
cryptographic operations are executed in software, resulting in an intensive use of
memory [4]. This poses sensitive data at risk, including that stored in the cache
memory [20].

Computer systems have drawn a lot of attention, because of the fact that sen-
sitive information is stored in the memory during runtime. Some attacks on the
main memory have been investigated because the stored information is still visible
a small period of time after the system loses power (known as memory remanence).
These attacks, called cold-boot attacks [21} [22], target the recovery of the last in-
formation which was stored in the main memory. Thus, relevant information such

1.3. OBJECTIVES 13

as encryption keys could be retrieved. Moreover, by keeping the memory module
at low temperatures, the information can remain recoverable for as long as 5 min
[21].

In memory systems, the main memory has usually a low level of protection be-
cause it is more accessible than other levels of memory and thus it can be removed
by the attacker by simpler technical means. In cold-boot attacks, the information
is frozen for a long enough period of time such that the memory modules can be
removed and the attacker can download the content into a backup system which
stores data in plain text. To avoid this, security is improved by encrypting data
while the memory transaction is undertaken [22] 23] [24] [25]]. The decrease of bus
throughput can be compensated by an increase of L2 cache size.

Unlike the main memory nowadays, for performance reasons, the cache mem-
ory is placed in the same central processing unit (CPU) package, either stacked
on or embedded within it. This configuration provides a higher protection degree
at a free cost. Because of this and also to avoid strong penalty in the throughput
between cache and CPU, the information is stored in plain text. Even more, some
encryption algorithms are designed to run all the rounds using only cache memory
and avoiding main memory transfers [20].

Attacks that target the cache memory and retrieve sensitive data have been
analyzed and investigated in several works [24} 25, 26 27, 28]]. Most of these are
side-channel attacks, which are based on the information leaked by a cryptographic
device, such as power consumption, timings and so on. Attacks against Advanced
Encryption Standard (AES) algorithms have been reported that target the stored
private keys [24} 25, 26]]. It cannot be ruled out the possibility of direct reading of
the cache content [27]. If the cache is conveniently frozen, a power-up sequence
can derive to the recovery of the same content existing before the power-up [29].

To sum things up, ensuring data security and privacy in digital devices is chal-
lenging and, because of the large variety of attacks, there are several methods and
techniques that can be implemented. In Chapter 3 and 4, existing security measures
are analyzed and discussed, as well as known attacks against memory systems are
explained in detail.

1.3 Objectives

The main objective of this thesis is to bring new contributions to the self-healing
systems domain. In particular, to develop a self-healing technique for memory
systems, technique that favors low-power consumption and provides security of
data against different types of attacks.

A self-healing low-power memory system is usually achieved by using error

14 CHAPTER 1. INTRODUCTION

detection and correction codes and/or replacement techniques using spare ele-
ments. Data security and privacy on the other hand, can be achieved through several
methods and means. Thus, there were defined three major research objectives.

The first one is the design of error detection and correction codes for memory
systems. This was motivated by the fact that the memory systems are susceptible to
soft and hard errors, in particular, DRAMs present unidirectional errors. This led
to the Berger code, an error detection code for unidirectional errors, with a simple
and straightforward design. The new codes must also be evaluated from different
points of view, such as error detection and correction rate and performance and
area overhead. A specific task here is to integrate the proposed codes in a memory
system, in order to achieve a self-healing methodology for memory systems. Also,
other mitigation techniques can be used, in order to improve the capability of the
self-healing technique (especially when dealing with uncorrectable errors). The
overall system design must also be evaluated, especially from the perspective of
speed, area overhead of additional circuitry and power consumption. The low-
power feature is achieved through the design of the proposed codes.

The second research direction is related to data security and privacy in memory
systems. Considering the performance peculiarities of cache memories and the
existence of a large variety of attacks against them, data scrambling can be used
and integrated due to the minimal penalty they impose in performance. Hence, this
research direction targets the design and implementation of a novel methodology
that can obscure the critical data in the cache memory, rendering it useless for the
attacker.

The third and last research direction is to integrate the results of the first two
research directions in order to obtain a secure self-healing low-power memory sys-
tem. The motivation behind is related to power analysis side-channel attacks, in
particular simple and differential power or electromagnetic attacks. These types
of attacks are widely used in memory systems because they are very powerful and
resourceful in breaking systems protected by keys. By combining error detection
and correction codes with data scrambling techniques, memory systems can be
designed to defend themselves against a large variety of attacks. The overall de-
sign must be evaluated in terms of performance, delay penalty, area overhead and
security.

In order to better exhibit and demonstrate the objectives, below are some ques-
tions (related to the objectives) which are answered in the final chapter, 5.

e Which was the main objective of this thesis?
o [s the main objective accomplished?

e How is the self-healing memory system achieved?

1.4. STRUCTURE 15

o [s the low-power perspective fulfilled?
e How is the security in memories dealt with?

e From the evaluation point of view, can the proposed methodology be consid-
ered a good solution?

e Can the self-healing technique be further researched and used in other sys-
tems?

1.4 Structure

The thesis is organized in five chapters. The first chapter contains a short intro-
duction of the domain and subject of the thesis, motivation, objectives and this
sub-chapter Also, the biggest sub-chapter here contains survey of previous works
in this domain. It begins with a motivation of the thesis and continues explaining
the systems focused in this work. Then, the self-healing concept is presented and
afterwards memory systems are described. Note that the review of memory systems
contains both SRAM and DRAM, old and new designs. Also, the unidirectional
nature of errors is explained and referenced. The security in cache memories is
described from several points of view, data scrambling is introduced and power
analysis attacks are explained. The rest of the chapter contains recent proposals
and implementations of self-healing techniques for memory systems, as well as
low-power strategies.

Chapter [2] contains the design of the proposed error detection and corrections
codes, which are used for the self-healing technique. The codes are explained and
illustrated through several figures and methods. Then, they are analyzed from the
following points of view: coding scheme, error localization, error correction and
error escapes. For the latter three, metrics are defined, in order to evaluate the
code effectiveness. The rest of this chapter contains the integration of the proposed
codes into memory systems, presented as DRAM repair strategies.

In Chapter[3] the security in cache memories is illustrated and explained. Data
scrambling is presented as a method to obscure the stored data in the cache and
the design methodology is exhibited. The implementation is explained, illustrated
and evaluated from several points of view. Finally, the experimental results are
presented and discussed accordingly.

Chapter [] consists of the merge between error detection and correction codes
from Chapter 2 and the data scrambling technique presented in Chapter 3. The
power analysis side-channel attacks are introduced and explained in a sub-chapter
and then the methodology proposed against these types of attacks is presented. The

16 CHAPTER 1. INTRODUCTION

evaluation process contains metrics such as performance, area overhead, power

consumption and, in the end, the experimental results are unveiled.
The final Chapter, El, contains the conclusions of the work, scientific contribu-

tions and future research directions.

Chapter 2

Unidirectional eDLC

2.1 Introduction

The continuous shrinking of memory cells size as the technology evolves has made
them more susceptible to errors. The sources that cause the single or multi cell
upsets, and therefore generates multi-bit errors, have been observed and studied
intensively. As reported in [30]], [31], soft errors due to memory cell upset can be
induced from terrestrial cosmic rays (i.e. high-energy neutrons), nowadays more
important than alpha-particle induced errors. Because of the high packing density
of the DRAM cells, the upset can be on multiple adjacent cells and creating burst
errors in the word line [32]].

The memory cell upsets in DRAM are unidirectional, which means that the
errors occur for all memory cells from 1 to 0 or from O to 1, but not in both ways.
This is because a charge in the capacitor of the memory cell represents either logic
1 or 0, depending on the implementation [33]. A particle strike can upset the cell,
discharging the capacitor, thus changing its original value.

Error detection and correction codes (EDC & ECC) have been used in mem-
ories in order to deal with errors of low multiplicity. These codes are based on
computing the check bits for the original information data and appending them to
the data bits. The simplest form is the parity bit which is an extra bit added to the
data that represents the XOR (or its complement) of all the information bits. If an
odd number of errors occur, the parity bit will have a different value, hence the
error(s) are detected. For an even number, the errors will not be detectable.

In order to detect and correct errors, Hamming codes have been widely used.
The most commonly known is SEC-DED (Single Error Correct — Double Error De-
tect) such as Hamming codes [34], [35], upon which various improvements have
been made in order to be able to detect and correct multiple errors [36l], [37]], [38].

17

18 CHAPTER 2. UNIDIRECTIONAL EDLC

Although these codes are powerful, they require large hardware overhead, thus
increasing chip area and requiring higher power consumption and higher latency
when computing the check bits. Power also increases due to detecting and correct-
ing the errors because of the complex computations. Obviously these classes of
codes are not adequate for errors of high multiplicity concentrated in one word.

BCH codes are a class of parameterized error-correcting codes. The advantage
of these codes is the simplicity of the electronic hardware to perform the syndrome
decoding. Based on these codes, a good example of error correcting code which
has the ability to correct 5 and detect 6 errors (called SEC6ED) is proposed in
[39]. The authors use this ECC architecture to correct errors in a memory which
has more than 2 errors on a line. Also, because it is a high latency ECC, they use a
mechanism of disabling the specific erroneous line called bit-fix [40]. Single errors
are handled by a quick and simple ECC, thus reducing the power and improving
speed. The downside is when multiple errors occur, because the erroneous word
line is disabled and cannot be used until corrected, if possible.

Even more powerful codes such as the Reed-Solomon (RS) [34] have been
proposed. The processing is done in symbols; a symbol consists of several bits. The
code is efficient when detecting and correcting random multiple-bit burst errors.
For ¢ check symbols, the RS code can detect up to ¢ erroneous symbols and correct
up to t/2 symbols. However, the computations for detecting and correcting are
complex and, thus, it has a low speed and a high area overhead. Because of the
complex algorithm, several proposals have been made in order to improve the speed
and minimize area and power [41]], [42]]. An interesting concatenation of RS and
Hamming codes has been proposed in [43].

None of the codes above consider the fact that DRAM cell upsets produce
unidirectional errors. A well known EDC is the Berger code [44]. The check
bits are created by expressing in binary the sum of all the 1s (called B; encoding
scheme) or Os By encoding scheme) in the information bits. Berger codes are
able to detect any number of errors appearing in the information bits. However,
localization and correction of errors is not possible. Other issues are the speed and
area overhead, especially for large word sizes. Several proposals have been made
in order to improve the speed and area. In [33], the authors propose a tree-shaped
parallel counter using partial sums to compute the Berger code check bits.

2.2 Motivation

Developing and employing error detection and correction codes for memories is?
challenging. There are several facts that need to be taken into consideration, such
as:

2.3. THEORETICAL BACKGROUND 19

1. Every EDC/ECC imposes a performance penalty on the memory operation.
Hence, an adequate scheme/solution must be chosen, considering the mem-
ory type, usage and performance.

2. EDCs and ECCs generate redundant bits for specific number of data bits,
hence hardware overhead estimation is needed.

3. What kind of errors (permanent or transient) does it need to detect and cor-
rect? And what system is it for?

While employing an existing code into a memory system is somehow common,
most of the time these solution might overkill the functionality and performance of
the memory system. Hence, error detection and correction codes tend to become
more flexible, more usable in almost every scenario. This trend has motivated
the development of a new technique, designed for a specific memory (DRAM),
with resilient characteristics due to its architecture and capable of detecting and
correcting multiple unidirectional errors.

Unidirectional soft errors are common in DRAM cells due to the capacitor
architecture. A charged capacitor in a cell usually indicates a binary value of 1
(it can be a zero, depending on the other components in the cell), which basically
means that any change in the capacitor voltage results in an alternation to the binary
value. Soft errors in DRAM cells are possible to be induced from high-energy
neutrons or alpha-particle rays. But these can only alter a charged capacitor, thus
to discharge it. The reverse action is nearly impossible in a normal environment,
except research laboratories.

Flexible error detection and correction codes are desired in any memory sys-
tem, because of the architectural nature or characteristics. It can be scaled to any
size, type or access times, etc. No need to adapt every time new data enters the
system, basically it self-adapts to the information size. Data redundancy can be
high if correcting multiple errors, but a balance can be obtained, a balance be-
tween redundancy, power consumption and performance overhead. This balance
is illustrated in Fig. [2.1] as a triangle. Good data redundancy and good power
consumption might result in a bad error detecting and correcting performance, but
good data redundancy and good error correcting performance ensues a bad/higher
power consumption. On the other hand, having good error correcting performance
with minimal power consumption generates a high/bad data redundancy.

2.3 Theoretical background

In this section, a short review of the current state-of-the-art is performed. The
following subsections present several static and dynamic memory designs, sources

20 CHAPTER 2. UNIDIRECTIONAL EDLC

Code/data
redundancy

Power Performance
consumption

Figure 2.1: The triangle of balance for EDCs and ECCs.

of errors and error types in memories, error detecting and correcting codes and
self-healing memory systems from the scientific literature.

2.3.1 Memory systems

The most used cell for cache memories is the SRAM. The most common imple-
mentation is 6T SRAM. As the name imposes, 6 MOSFET are used to store each
memory bit. There are several implementations of SRAM, some that use more
transistors than 6 in [45]], [46] or even less in [47], [48]].

The basic 6T SRAM is shown in Figure Access to the cell is enabled by
the word line (W L) which controls the two access transistors M and Mg, which,
in turn, control whether the cell is connected to the bit lines BL and BL. They are
used to transfer data for both reading and writing operations.

The SRAM operations are related to three different states: standby when the
circuit is idle, reading when the data has been requested and writing when updating
the contents. The standby state is when the word line is not asserted, therefore the
access transistors My and Mg disconnect the cell from the bit lines. For reading,
we assume that the content of the cell is a 1, stored at (). The reading cycle starts
with pre-charging both bit lines to 1, then asserting the word line, enabling both
access transistors. Next, the values stored in Q and () are transferred to the bit lines

2.3. THEORETICAL BACKGROUND 21

WL

oL L

S
A= 4

—e J=_ ~—

Ql

BL

Figure 2.2: Basic 6T SRAM cell.

by leaving BL at its pre-charged value and discharging BL through M; and Mj5
to a logical 0. On the BL side, the transistors M4 and Mg pull the bit line towards
Vpp, alogical 1. The start of the writing cycle begins with applying the value to
be written to the bit lines. For a logical 0, BL is set to 0 and BL to 1. Word line is
then asserted and the value that is to be stored is latched in. This works because the
bit line input drivers are much stronger than the relatively weak transistors in the
cell itself, so that they can easily override the previous state of the cross-coupled
inverters.

The main memory consists of cells of the same type, organized in arrays of
rows and columns and may have several banks of these arrays. Nowadays, the
most common basic cell can be a SRAM or DRAM. However, SRAM is more
expensive, but faster and significantly less power hungry than DRAM. Also, they
have a complex internal structure, therefore less dense than DRAM and is not used
for high-capacity, low-cost applications such as the main memory.

A simplified design of an older 32MB DRAM chip is shown in Figure 2.3] A
combination of the two control signals, the Row Address Strobe (RAS) and Column
Address Strobe (CAS) selects a specific memory location, one byte in the figure

22 CHAPTER 2. UNIDIRECTIONAL EDLC

[Bank 7
| Bank J
[Bank
Bank 0
BAQ ——
BAl— MEMORY ARRAY
8,192 Rows
cs——— 1,024 Columns
WE —_— Each location has B bits

L1

ACTIVE DATA ROW |

11

CONTROL Dao -
LOGIC y ? DQ7

Figure 2.3: Older 32MB DRAM design.

below, for reading and writing. Note in the figure that the external pins no longer
exist in modern DRAMs because the RAS and CAS signals are generated internally
in response to external commands.

A newer design of the functional block of a DRAM is the one in Figure [2.4]
The authors in [49] propose an efficient and flexible distributed interface for 3D-
stacked DRAM. The term 3D-stacked DRAM is symbolized in Figure[2.4]by using
more than one layer of active elements (they are integrated both vertically and hor-
izontally into a single circuit): 4 banks of 128MB memory array, 4 row decoders
and 4 column decoders. The improvement is the data bus (colored in red) which
is bidirectional, and there are two independent buses for read and write operations,
each of 32 bits. Note that in a conventional DRAM design, the data bus is bidirec-
tional as well, but is only one bus that connects to the memory for both read and
write operations and the bus width is 4 bits.

Another interesting design is the one in Figure[2.3] In [50], the authors propose
a hybrid architecture for the main memory that uses 2 types of memories: DRAM
and PRAM. Phase-change random access memory (PRAM) has lower read access
time and standby power compared to DRAM, while having a comparable through-

2.3. THEORETICAL BACKGROUND 23

J

CES.
ras o o
we g g e, T Bank0
—™ 83 M o] % &192”> Memory Array
BA| & g ! = J" 128MB
A
I I Sense Amplifier Dg_s
l 1 16k WR
ctrl mas
Logic 10 MASKING RD
DLL
[1a | Address 112 coL

DECODER

Figure 2.4: Modified DRAM design [49]].

put. Also, the PRAM is designed to retain its data even after the power is turned
off, unlike DRAMSs which need constant refreshing power (i.e. to refresh the value
stored in the capacitor, which wears out due to leakage and frequent accesses).

However, all these advantages come with a price. There is a higher power cost
when writing a value to a PRAM cell and it has limited write endurance (10° —
10'2) cycles. In order to balance the advantages and disadvantages of both types of
RAMs, the authors propose a hybrid memory architecture which consists of both
DRAM and PRAM. Also, because the PRAM has limited write endurance, they
propose a hybrid hardware-software based solution. The hardware is based in the
memory controller which manages the access information to different PRAM pages
based on an addition cache memory (Figure [2.3). The software portion is part of
the operating system (OS) memory manager (in this case, page manager), which
performs the wear leveling by page swapping/migration. The results based on
several benchmarks demonstrate that the hybrid memory system proposed achieves
up to 37% energy savings at low overhead, better overall energy and performance
efficiency.

A DRAM stores each bit of data in a separate capacitor within an integrated
circuit. The charged or discharged state of the capacitor represents the two values
of a bit, a logic 1 for charged or O for discharged (or vice-versa, depending on
the implementation). However, since capacitors leak charge, the information will
eventually fade unless the capacitor is refreshed periodically. Only one transistor
and one capacitor are needed for 1 bit, therefore a DRAM is much denser than
SRAM and is mainly used in the main memory. Figure exhibits a DRAM cell
with one transistor and one capacitor.

24 CHAPTER 2. UNIDIRECTIONAL EDLC

DRAM PRAM
_—Access Map

Access Map Cache
DATAl TCommandsT lDATA

" [Page Addr| Write Count
0x1001 500
Ox10ff 77

Memory Controller

* DATA
} * Page Swap/Bad Page Interrupt

Memory Request T

CPU

Figure 2.5: PDRAM memory controller [S0].

Electrical and magnetic interference inside a system may cause a single bit
DRAM to spontaneously flip to the opposite state. Research has shown that the
majority of the one-off soft errors in DRAM chips occur as a result of background
radiation, chiefly high-energy neutrons from cosmic rays secondaries or alpha-
particle strikes, which may change the contents of one or more memory cells or
interfere with the circuitry used to read/write them (in Figure symbol “’n”).
For SRAMs, neutron or alpha-particle strikes can upset the storage or access tran-
sistors, thus flipping its original value. But because the density of SRAMs is lower
than DRAMs, fewer cells will be upset per unit strike. Figure[2.7|displays the “in-
sensitive state” of a DRAM cell [51]] (i.e. the state of the storage capacitor which
cannot be modified by radiation).

There is a concern that as DRAM density increases further, thus the compo-
nents are smaller and operating voltages will decrease, more DRAM cells will be
affected by such radiation, producing multiple-bit errors. However, a recent study
in [30] shows that single event upsets due to cosmic radiation have been dropping
dramatically with process geometry.

These problems can be mitigated by using DRAM modules that include extra
memory bits and memory controllers that exploit these bits. These extra bits are
used to record parity or to use an error-detecting or correcting code (EDC/ECC).
These codes will be discussed in detail in this chapter.

2.3. THEORETICAL BACKGROUND

Read/Write Select

Word Line

Bit Line Select

Read/Write Data

n

K\ Transistor

[1

N=wvmevis ——

Sense Amp

C
storage
capacitor

Figure 2.6: Basic DRAM cell [32].

25

26

Reference = ‘0’
(insensitive state)

-

L

0 == ==

=

o I
Reference = 'O
(insensitive state)

o™

1T}

7}

<L

(8]

CHAPTER 2. UNIDIRECTIONAL EDLC

— 7y
- | ==
o -—= |==
T —
D=’ D’ =’ _
3| e s 7~

What was original value ?
- Opposite of reference cell value

Figure 2.7: The "insensitive state” of a DRAM cell. One cell is used as reference to
store the discharged state logic value (immune to radiations), useful data are stored
in 2 other cells, D and D’. If the 2 values are different, the original data is sure to
be the opposite of the reference cell value [51].

2.3. THEORETICAL BACKGROUND

= 1 1 1 1
o — 1. L[I L
3 L L - L
(7 L1 L7 Lt L
2 IT| T| T| T
L = = = =
EIDI:‘ 1 1 i 1
= “_,—_—I_ ‘,_l—j_ ._r—mj_ ._r—lj_
3 L s L L
o = = = =
1 1 T 1
lr—|_1 -— lj !—'_1 P—'_i
T| T| T| T
RAS ’.1 o, .111 () .'1 :'1 | HE’?E{T)
7 v 3 | R o,
LATCH |
- | i $ [
sotn | DATA SELECTOR (4 TO 1 MUX) |

D.O. (DATA OUT)
BUS

Figure 2.8: Principle of DRAM read operation

27

28 CHAPTER 2. UNIDIRECTIONAL EDLC

In order to read a bit from a column, there are several operations that take
place and are shown in Figure (4 by 4 matrix). First, the sense amplifier is
disconnected, then the bit lines are pre-charged to exactly equal voltages that are
in-between high and low logic levels. Afterwards the pre-charge circuit is switched
off. Because the bit lines are relatively long, they have enough capacitance to main-
tain the pre-charged voltage for a brief time. The desired row’s word line is driven
high to connect a cell’s storage capacitor to its bit line. This causes the transistor
to conduct, transferring charge between the storage cell and the connected bit line.
If the capacitor is discharged, it will greatly decrease the voltage on the bit line
as the pre-charge is transferred to the storage capacitor. However, if the capacitor
is charged the bit line voltage will increase slightly. Then, the sense amplifier is
switched on and the positive feedback takes over and amplifies the small voltage
difference between bit lines until one bit line is fully at the lowest voltage and the
other one is at maximum high voltage. Once this has happened, the row is ”open”.
All columns are sensed in simultaneously and the results sampled into the data
latch. A provided Column Address then selects which latch bit is connected to the
external port. Many reads can be performed quickly without extra delay sense for
the open row since all data has been already sensed and latched. While the reading
of all columns proceeds, current flows back up from the sense amplifiers to the
bit lines of the storage cells, thus refreshing the charge in them by increasing the
voltage in the capacitor if it was initially charged, or by decreasing it if it was ini-
tially discharged. When the reading of all the columns in the current row is done,
the word line is switched off to disconnect the cell storage capacitors (i.e. row is
“closed”), the sense amplifier is also switched off and the bit lines are pre-charged
again.

To write a value to a cell, the row is opened again and a given column’s sense
amplifier is temporarily forced to the desired high or low voltage state, thus driving
the bit line to charge or discharge the cell storage capacitor to the desired value.
Due to the positive feedback, the amplifier will hold its state even after the forc-
ing is removed. During a write to a particular cell, all the columns in a row are
first sensed simultaneously just as in reading, then a single column’s cell storage
capacitor charge is changed, and finally the entire row is written back in.

The refresh logic is provided in the DRAM controller which automates the
periodic refresh, so no other software or hardware has to perform it. Some systems
even refresh every row in a burst of activity involving all rows in order to reduce
the power consumption.

2.3. THEORETICAL BACKGROUND 29

2.3.2 Sources of errors in SRAM and DRAM memories

As explained in the previous section, memory systems are susceptible to soft errors
when facing high energy neutrons or alpha-particle strikes. These types of radia-
tions can create upsets that generate transient errors in a memory. However, hard
errors must not be neglected. Hard (i.e. permanent) errors are usually caused by
faulty components or by being induced on the datapath. They are strongly corre-
lated between them and are usually caused due to high system utilization, unlike
soft errors which are random. Bianca Schroeder et. al. reported that the soft er-
ror rate (SER from now on) is much higher than previously stated [52]]. Also, the
uncorrectable error rate per machine is only 1.3%, thus, a first conclusion drawn
is that error correcting codes are critical for reducing the large number of memory
errors. Despite the high SER, the authors claim that hard errors still dominate soft
errors. This is because each soft error will eventually be detected, either by the
memory scrubber or by being accessed by an application. Also, events that cause
soft errors happen randomly over time and are not in correlation with other errors,
like hard errors. This work is focused on soft errors caused by radiation or leakage,
which occur in DRAMs. Note that the self-healing strategies proposed can also
work for hard errors.

Any memory cell, in SRAM or DRAM memories, stores a bit of information
by accumulating a certain amount of charge in one or more parasitic capacitances.
In SRAM cells the feedback maintains this amount of charge constant while in
DRAM cells it decreases caused by the capacitor leakage and needs to be refreshed
periodically. When a particle strike hits the cell it may change the bit state (produce
a soft error) if it is able to inject an amount of charge over a critical amount Q.
in the parasitic capacitances storing the bit. The ()..;; threshold directly depends
of the size of this capacitance and is affected by the technology node.

The SER is defined as the rate at which a system encounters or is predicted
to encounter soft errors and is expressed in Failures-In-Time (FIT=failures in 10"
hours). In [52], the SER is reported as a FIT of 25,000 to 70,000 per Mbit and more
than 8% of DIMMs affected per year. Both SRAMs and DRAMs are susceptible
to soft errors, therefore it would be expected that the SER would increase as the
technology node scales down because as the technology node decreases the thresh-
old Q).+ for a soft error would be reduced. However, studies in [53]], [5], [54]
have shown that DRAMs will have a lower SER as the technology node decreases
while SRAMs will have a constant SER (Figure [2.9). Note that the SER is calcu-
lated as FIT/bit and 1 FIT is 1 upset per 10° hours. The trend of SER for SRAMs
is flat because the decrease in the cell critical charge Q)..;; caused by the process
shrink is compensated by the decrease in cell area. Notice that a smaller area re-
duces the probability that a particle strike fully hits a single cell, therefore limiting

30 CHAPTER 2. UNIDIRECTIONAL EDLC

1E-02 - A
A ‘ A A
&

= i 2 : 4 ta z A f
o A aa A A
E 1E-041 ‘4 a
L A

1E-05 -
e
z
® 1E-06-
% 1E-07 s
2 B W DRAM Data
w —DRAM Trend

.08 -]
g esa . 4 SRAM Data
==SRAM Trend
1E-09 - n® I
B
1E-10 . i x y y ;
0 50 100 150 200 250 300

Design Rule (nm)

Figure 2.9: Soft Error Rate (SER) per bits in DRAM and SRAM [53]).

the amount of charge injected. In DRAMs, the trend is downwards because the
cell capacitance of C (Figure [2.6) is constant despite the cell area reduction which
gives a constant Q)..;; too. As a result, the area reduction dominates and the SER
is expected to decrease in next generations of DRAM memories.

Although these recent studies show that DRAMs will have less SER as tech-
nology node shrinks, the problem is that because of this higher packaging density,
a Single Event Upset (SEU from now on) may generate multi-bit errors. This is
shown in Figure 2.10| and 2.T1] Note that the SEU rate (Rsgy) is calculated as
SER per 1 GB chip, and the Bit Error Rate (BER) contains both cell and address
& control logic upsets. Also, the problem gets even worse when considering the
two types of upsets that can be produced: cell and logic. The cell upsets are the
ones that affect the DRAM cell itself, while the logic upsets occur after a particle
strike in the memory address & control circuitry (Figure[2.12). As can be observed
in Figure [2.10]logic upsets tend to generate a large number of multiple bit errors,
over 1,000 in the figure.

The authors in the references above propose several ideas and the use of exist-
ing techniques to mitigate cell and logic upsets that may occur in the memory. The
errors produced by cell upsets can be reduced or even removed by using memory
cell interleaving”, parity bit or different types of Error Correcting Codes (ECC).
The errors caused by upsets in logic are much more difficult to deal with and miti-
gation techniques can be employed on a limited scale (for example: Triple Modular

2.3. THEORETICAL BACKGROUND

single cell /

upset (1 bit)

Bit Error Rate (FIT/Gb)

Ry, (FITIGD)

1.E+05

1.E+04 -

1.E+03 1

1.E+02 -

1E+D1

1.E+00 |

1.E-01

A170/180nm
X110nm
0890nm

1.E+M T T T T LT LT T T T T T T T T T T L LTI T T T T

1.E+01

1.E+00

1LE01 §

{.E-02 =
100
Blts In Error

multi-cell upset (2-16 bits) logic upset (1028-8192 bits)

Figure 2.10: DRAM cell upset distribution [53].

X
X X
R X logic bit
0 ° error rate
© Cell Upset P -
-
= = -Cell Trend 0
% Logic Upset Pie -
Logic Trend s - - o
-
- . .
g 6.-8 ‘g\ cell bit
error rate
68 R
- 8
0 50 100 150 200

DRAM Design Rule (nm)

Figure 2.11: DRAM Bit Error Rate (BER) [33].

31

32 CHAPTER 2. UNIDIRECTIONAL EDLC

| Y Da

Memeory Core Memeory Core

0|60 ssaippy

\

\ Address Logic | Address Logic
\

21601 |onuen

21607 jonyuon

¥mory Core f g Memory Core / f
\ / g \ —/
| \e [/ | | \ oo | A
17 N [7
v v v L\ 4 v v A 4 /
cell upsets (single logic upsets
and multi-cell) (kcell)

Figure 2.12: Neutron strikes on DRAM logic [30].

Redundancy - TMR).

Memory cell interleaving is efficient when multi-cell upsets can occur in a word
line, therefore generating multi-bit errors. By increasing the bit interleave physical
distance, it separates the cells in the same word line (Figure[2.13). Thus, multi-cell
upsets will produce multiple single bit errors and can be handled separately by a
Single Error Correction - Double Error Detection (SEC-DED) ECC which have
low overhead and can correct 1 or detect 2 errors. But, if no interleaving is used
between the cells of a word line, multi-bit error correction codes are necessary
which require greater overhead and circuitry and have lower speed.

2.3.3 Self-healing memory systems through error detection and cor-
rection schemes

Parity bit is the simplest form of error detecting code and it needs only one bit to
express if a word has an even or odd parity (by XOR-ing the ones or zeros in that
word) and it’s appended to the word. Is the simplest form of detecting if a word
doesn’t have errors [34].

Triple Modular Redundancy (TMR) is a concept in which each processing
unit/circuit is multiplied and there is a voting element for each one [55], [56].

2.3. THEORETICAL BACKGROUND 33

Neutron or Alpha
Multi-cell Hit Bit Intarleave Distance

—
w ,"' w If" = N
S HH
g ‘\ I' a ‘\ ,’
2 9 N O g o g
| BIT LINE | | BIT LINE |

Figure 2.13: Memory cell interleaving [53]].

The output is displayed after the comparison of the voting elements. It’s based on
the idea that errors cannot occur in all the processing units, but it has the disad-
vantage if the final voting element is corrupted and this design also implies a lot of
redundancy and area overhead.

Soft errors are not permanent, they are transient and can be corrected by a
simple re-write, re-compute or circuit reset operation. On the other hand, hard
errors may also occur in chips which are the result of some permanent (or possibly
temporary) physical change of the characteristics of a device.

Considering the above, the most efficient techniques to mitigate such errors in-
clude deploying error detection and correction codes (EDC, ECC) and mitigation
techniques using spare elements (i.e. rows, columns, circuits, etc.) for replac-
ing/replication of memory elements. These mitigation techniques are addressed in
detail in this section.

Error detection and correction codes (EDC & ECC) have been used in mem-
ories in order to deal with error of low multiplicity. These codes are based on
computing check bits for the original information data and appending them to the
data bits. There are several types of EDC and ECC for memories, each having his
own advantages and disadvantages. All of the EDC or ECC for memories are for-
ward error correction which means a word in a memory contains the information
(data) bits and the additional check bits and if errors occur, the original information
can be reconstructed using the check bits.

An ECC widely used in memories are the Hamming codes [34]], [35)]. These
codes are linear error-correcting codes that can detect up to 2 simultaneous bit

34 CHAPTER 2. UNIDIRECTIONAL EDLC

Bit position 123 4|56/ 7 8910111213 14 15|16 17 18|19 20
Encoded data bits p1/p2 d1 pd4 d2 d3 d4|p8 d5|d6 d7 d& d9 d10|d11 p16 d12|d13 d14 d15

pl X X X X X X X X X X
Parity p2 XX XX XX XX X | X
bit pd XK X X XX X | X X
coverage = g X|X|X|[X[X|X]| X | X
p16 XX X X X

Figure 2.14: General algorithm for Hamming codes

errors and correct single-bit errors. However, there are several implementations
and proposals that improve the correcting and detecting capability, by using more
check bits and circuitry (increased code and area overhead).

The Hamming codes are based on a parity-check matrix constructed by listing
all the columns of length m (number of parity or check bits) that are pair wise
independent. To better understand the general algorithm of constructing the parity-
check matrix, the table in Figure[2.14]displays how the general algorithm generates
a single-error correcting code for any number of bits.

In the figure above, by using 5 parity bits (green boxes on the left), an infor-
mation of 15 bits is encoded. Parity bit 1 (p;) covers all bit positions which have
the least significant bit set to 1 (i.e. 3, 5, 7, etc.), parity bit 2 (p2) covers all bit
positions which have the second least significant bit set to 1 (i.e. 3, 6, 7, 10, 11,
etc) and so on until the last parity bit. The idea of the Hamming code is that any
given bit is included in a unique set of parity bits. To detect for errors, the parity
bits are checked. The patterns of errors are called error syndromes which identify
the bit in error. The sum of the positions of the erroneous parity bits identifies the
erroneous bit. For example, if the parity bits in positions 1, 2 and 8 indicate an
error, then the bit 1+2+8=11 is in error. If only one parity bit indicates an error, the
parity bit itself is in error.

A simple popular Hamming code in memory systems is the (7,4), also known
as SEC-DED (Single Error Correction — Double Error Detection). (7,4) indicates
that 4 data bits are encoded into 7 bits by adding 3 parity bits.

Hamming codes can be computed in linear algebra computation, using matri-
ces. For the purposes of Hamming codes, there are 2 matrices that can be defined:
generator matrix G and parity-check matrix H. The generator matrix G has 7 rows
(the total number of bits) and 4 columns (the number of data bits). The parity-check
matrix H has a dimension of 3 rows by 7 columns, which corresponds to the 3 par-
ity bits and its 7 total encoded bits of a Hamming (7,4) code. Practically, the rows

2.3. THEORETICAL BACKGROUND 35

of the H matrix are the rows of parity bits p1, p2 and p4 in Figure These rows
are used to compute the syndrome vector, which is null when the word is error-free
or non-zero otherwise (the value will also indicate the flipped bit position).

The encoding of the original data bits is done by multiplying the generator
matrix with the value of the data bits (organized as a 1 column, 4 rows matrix
and starting with the first bit value). This will result in a matrix of 7 rows and
1 column. Then the received encoded word is multiplied with the parity-check
matrix and if the result matrix is null it means the word is error-free. Otherwise,
the result matrix will indicate the bit in error (the position of that bit in the encoded
word). Therefore, the erroneous bit it’s flipped. Once the received word is error
free, the decoding process involves multiplying the received error-free word with
an R matrix which is similar to the inverted G matrix, with the data bits on rows (a
value of 1 where the data bit is positioned in the encoded word) and the columns
for the parity bits are null. The result of this multiplication is the original word.
Note that all the operations are done in modulo 2.

Although Hamming codes are largely used in memory systems, they have lim-
ited capabilities for correcting and detecting errors. These capabilities can be ex-
tended to more bits at the expense of more parity bits [36]]. Also, as described
above, the Hamming codes impose lots of additional circuitry and several time-
consuming computations (when writing and reading a word), thus increased power
consumption, all of which can be critical when multi-bit errors occur in a word and
the algorithm must be performed in run-time specifications.

In [37/]], the authors propose an implementation of the Hamming Code decoding
circuit for high-speed semiconductor memory. The design is shown in Figure|2.1
The idea is to balance between serial and parallel stages. By using more parallel
stages (i.e. more processing elements for decoding), the decoding time decreases
from 20.48 ns to 1.28 ns for 512 bits. Although the number of processing elements
for decoding increases, they don’t have a significant area cost because the authors
use simple XOR and AND gates.

The authors in [38]] propose a modification of the Hamming Codes by mini-
mizing the column weight, row weight and total weight of the H-matrix. In order
to do this, they use several constraints when calculating the H-matrix. By reducing
the weights of the H-matrix, less XOR2 gates can be used when computing the
check bit generator, thus reducing the area overhead, power consumption and even
the speed of the code (this is because less XOR?2 gates imply fewer levels of gates).
The savings in terms of area overhead and power consumption are of 14.4 - 17.7%
and in terms of access time, about 12.5 — 16.6%, all compared for different sizes
with several original Hamming Code implementations.

BCH (Bose-Chaudhuri-Hocquenghem) are a class of parameterized error cor-
recting codes [34]. They can achieve multi-bit error correction by using the sim-

36 CHAPTER 2. UNIDIRECTIONAL EDLC

10x
N
) 10x
B N
e \
[D) \] XOR 1b
=)

4 ANDs
bit multipliers

4-bit input
10-bit register

shiftreg

parity matrix

522x10 ROM

512b data out

.\yndnnnc L'Ulﬂp'dﬂlll!f

Figure 2.15: Hamming-decoder circuit [37]].

plicity of electronic hardware to perform the syndrome decoding, but at the expense
of computation time and area overhead. A BCH code is a polynomial code over
a finite field with a particularly chosen generator polynomial. While the encoding
of words can be done pretty easy, the decoding part is more complex and time-
consuming. Therefore, there are many algorithms for decoding a BCH code. The
most common ones follow a guideline of 4 operations: calculate the syndrome val-
ues for the received vector, calculate the error polynomials, calculate the roots of
this polynomial to get the error locations positions and finally calculate the error
values at these error locations. In [57], the authors propose a new method to im-
plement an ultra-fast-efficient BCH decoder. It is based on the Berlekamp-Massey
algorithm [34], but reformulated and inversion less, which can reduce the hard-
ware complexity. Also, when determining the roots of the polynomials, the Chien
Search algorithm [57]] was extended and modified to compute in parallel reducing
the computation complexity and area by 33% compared to the regular method.

In [39]], the authors propose a BCH code which can correct 5 errors and detect
6 errors (called SEC-6ED). The authors use this ECC architecture to correct errors
in a memory which has more than 2 errors on a word line. This paper will be
addressed in detail further in this section because it combines ECC with other error
mitigation techniques and offers a low-power refresh rate.

Even more powerful ECC are the Reed-Solomon (RS) codes [34]]. They use
symbols, each one consists of several bits. The code is efficient for large amounts
of data and can detect and correct random multiple-bit burst errors. For ¢ check
symbols, the RS code can detect up to ¢ erroneous symbols and correct up to /2
symbols. Reed-Solomon codes are a “’simplified” version of BCH codes, so the

2.3. THEORETICAL BACKGROUND 37

Outer Inner
uter]]:IIE‘I
Encoder Encoder
Channel
Outer Inner
| uter | et |
Decoder Decoder

Figure 2.16: Block diagram of concatenated Hamming and R-S codes [43]].

algorithms for encoding and decoding are mainly the same. This means it inherits
the complex decoding computations, including the error detection and correction
algorithms (there are several implementations, each with advantages and disadvan-
tages), the large area overhead and low speed when it is needed.

Other proposals have been made in order to enhance the speed and to minimize
area and power consumption. The authors in [41] compare 2 types of reconfig-
urable hardware architectures. They conclude that the bottleneck of Reed-Solomon
codes is the syndrome calculation when decoding because the power consumption
and computation times are high. The Chien Search Algorithm for finding the roots
of the polynomials is overlooked because this block is less frequent in operation
(only when errors occur).

In [43]], the authors propose an interesting design, a concatenation between
Reed-Solomon and Hamming codes for the DRAM controller. The block diagram
of the concatenated code is displayed is Figure 2.16] The outer code is Reed-
Solomon, while the inner code is a combination between two shortened RS and
Hamming codes. This concatenation can prove to be successful because the short-
ened RS codes with an outer RS encoder improve the error correction capability for
burst errors, whereas a Hamming code covers dispersed random errors. The results
demonstrate the ability of concatenated ECCs, thus achieving low power dissipa-
tion, low area cost and a symbol error rate lower than the normal implementation
of codes.

Error Detecting Codes (EDC) are mainly used just for detection of errors.
While the simplest form is the parity bit, a more complex and comprehensive code
is the Berger code [44]. Mostly used in telecommunications, this code is a uni-

38 CHAPTER 2. UNIDIRECTIONAL EDLC

directional EDC. Unidirectional errors are errors that only flip ones into zeros or
zeros into ones, but not in both directions. The Berger code check bits are com-
puted as the sum of all the ones (called B; encoding scheme) or zeros (called By
encoding scheme) in the information word. The sum is expressed in binary and
appended to the information bits. If the information word consists of n bits, the
Berger code check bits needs & = [log, (n + 1) | check bits, which gives a Berger
code length of k 4+ n. Berger codes can detect any number of one-to-zero bit-flip
errors, as long as no zero-to-one errors occur in the same word. The detection pro-
cess consists of comparing the check bits from the received word with the newly
computed check bits from the information word. If the check bit values are equal,
the word is error-free. If the values are not equal, depending on the implementation
(Bj or By encoding scheme), the result of the comparison shows that there is at
least one error in the information or check bits.

In [32]], the author explains the causes of soft errors in DRAM cells when the
sources are high-energy neutrons or an alpha-particle strikes and what causes a
burst of charge in the cell area. If the charge collected is greater than a critical
charge Q).+ required to preserve the data in the capacitor of the cell, the bit will be
upset and lead to an error. This means that if the capacitor contains a charge, after
a high-energy neutron or an alpha-particle strike, the capacitor will discharge, thus
changing the value stored. Depending on the DRAM implementation, the presence
or absence of a charge in the capacitor can symbolize a logical value of ‘1’ or ‘0’.
Therefore, if the presence of a charge in the capacitor means that a value of ‘1’ is
stored inside the cell, after the hit, this will be ‘0’. Otherwise, if the presence of
a charge in the capacitor means that a value of ‘0’ is stored inside the cell, after
the hit the value will change to ’1°. But in any case a high-energy neutron or an
alpha-particle strike cannot charge the capacitor of a cell and therefore they only
provoke unidirectional errors.

Considering the above, Berger codes can be used in DRAMs to detect all unidi-
rectional errors that can occur after radiation hits. In this scope, the authors in [33]]
propose a tree-shaped parallel counter using partial sums to compute the Berger
code check bits for DRAMs unidirectional errors. The tree-shaped parallel counter
uses full adders (FA from now on) to count the number of 1s or Os (depending on
which encoding scheme is used). An example of 10:4 bits is in Figure

The authors in [33]] propose that the computation can stop before the last level
of FA, in order to achieve greater computation speed (for the check bits) and less
area overhead, at the expense of more Berger code check bits. For example, in
Figure[2.17]they consider 10 information bits and by stopping at the first level (Cy),
there are 7 check bits, with a delay of 1 FA stage and only 3 adders are used. If the
computation stops at the second level of FA (C;), there are 5 check bits generated
with a delay of 2 FA stages and 5 adders are used. The last level (C;) generates the

2.3. THEORETICAL BACKGROUND

(a)
c; = (Sp);
¢, = (Sy. 51
¢, = (S0 S, 5, Sy

code length |c,| = 4 bits;
|c,| = 5 Dits;
[c,| = 7 bits;

39

1011100101 =—=> 1001000101

0 [l &
0 0
. B Lol
- I R
B o)
B B
o] 0]
1 1]
0] 0
[1] 1]
E €=((0),(10),, L e ~(1),(01),,
3-bit i = (11),,(01),) n)i (01),,(01),)
ey B/ =0230) fgfy) “(LLD
r==) phl btk _ 1
: ‘ E/E ¢,=(1,5) %-: =(1,3)
Lo [[[1] [o] (o] [8] (5]

¢;=((0110),)~(6)

(®)

delay =1 sta

ge;

¢;=((0100),)=(4)

(©

delay = 5 stages; ckt size =8 adders (Berger code)
delay = 2 stages; ckt size =35 adders
ckt size =3 adders

Figure 2.17: (a) 10:4 parallel counter tree and check bits generation for (b) an
uncorrupted word and codes and (c) a corrupted data word (2 bits go from 1 to 0)

and codes [33]].

40 CHAPTER 2. UNIDIRECTIONAL EDLC

ﬂCHECK BITS MEMORY | |

JINDID UOT)INIP J0LID — A AV

DRAM

Jojesedwon
piom eep nding

Input data word

uoijesauab syq ¥29y9H

Check bits generation

WRITE cycle — check bits generation

Figure 2.18: Proposed architecture in [33].

Berger code check bits (4 bits in this example) at the expense of 5 FA stages and 8
total adders. If the original information bits increase, there are more than 3 levels
of FA that are generated using the same logic of parallel counter tree. However,
there is a certain stage where the parallel counter tree has to use a ripple-carry adder
design in order to generate the correct check bits. This is because a full adder has
3 inputs (one of which is a carry-in) and has 2 outputs: a carry-out which has a
weight of 2! and a sum with the weight of 2°. The main idea of this proposal is to
find a balance between the number of check bits that are generated and the speed
of generating those check bits (calculated in FA stages), so code redundancy (i.e.
check bits divided by the total amount of bits) versus number of FA stages. The
proposed architecture in [33]] is displayed in Figure[2.18] Note that during the write
cycle, the check bits are generated, appended to the original information and stored
in the memory system. When reading, the check bits are computed again from the
information bits and compared with the stored value. Any discrepancy between the
2 values means that at least one error occurred in the information bits. Because the
check bits are stored together with the information bits, the authors suggest using
enhanced memory cells (less leaky and radiation hardened) to reduce the number
of false errors (i.e. errors in the check bits).

More complex codes similar to the Berger code are ¢-symmetric error correct-
ing / all unidirectional error detecting (t-SyEC/AUED) codes [33]], [58], [59], [60],
[61]. The design consists of binary blocks which are capable of correcting up to ¢
symmetric errors and detect all unidirectional errors. Note that if ¢ = 0, these codes

2.3. THEORETICAL BACKGROUND 41

become the Berger codes. However, these types of codes are suited for asymmetric
channels, such as digital transmissions.

EDCs are a faster and economical alternative to ECC, without the correction
part. So, the errors are detected and other mitigation techniques are used in order to
eliminate the errors. This is a solution when considering the energy consumption,
performance degradation and time. The energy consumption is greatly reduced be-
cause the detection process is fast and simple, rather than the complex decoding
circuit of the BCH or Reed-Solomon codes. There is no performance degrada-
tion in the system during the error detection phase, but when an ECC reaches the
correcting stage, the overall system performance is reduced due to the complex
computations. Also, any ECC is time consuming especially when the errors are
random, unrelated and affect more than one bit.

Besides ECC and EDC, there are other mitigation techniques for soft errors
in memory systems, which use spare elements that replace or replicate, based on
specific algorithms, various memory elements. Because soft errors are transient
(temporary) and not permanent, the need of replacing a specific memory element
is not that pressing or important. However, when considering the current trends for
Soft Error Rate (SER), the fact that neutron or alpha-particle strikes can provoke
multi-bit errors in the same word line and also affect the circuitry of a memory,
these techniques of replacing and replicating are becoming more and more useful.

The authors in [39] propose a multi-bit error correction system (Hi-ECC) for
embedded DRAM (eDRAM) which incorporates a strong BCH code with the abil-
ity to correct 5 and detect 6 errors (SEC6ED). Because most multi-bit ECCs have
a low-latency decoder that has a large area overhead, the authors propose a simple
ECC decoder optimized for 99.5% of the lines that require little or no correction.
For more complex multi-bit correction, they propose using the BCH code SEC6ED.
But because for correcting multi-bit errors creates high latency processing, the Hi-
ECC architecture disabled the lines with multi-bit errors (while the correction is
being done). The block diagram of the proposed Hi-ECC is displayed in Figure

The ”Quick ECC” block contains the syndrome generation logic and the error
correction logic for lines with zero or one failure (SEC-DED code). If a line has
multi-bit errors, it is transferred to the ”High latency ECC processing” block which
contains the BCH error correcting code SEC6ED. Also, in order to further reduce
the power overhead, the author propose the use of a structure that keeps track of
lines that have been referenced in the last 30us (retention time baseline for the
considered eDRAM) called Recently Accessed Lines Table (RALT). They use this
structure because the recently referenced lines implies a refresh, so retention errors
will not occur for 30us after a line has been read.

To avoid incurring the high latency of the BCH ECC when multiple-bit errors

42 CHAPTER 2. UNIDIRECTIONAL EDLC

Address

tional
C |%ar TAG/ECC
P \:l LLL Y]] IM.
u vV High latency
Quick |] ECC
ECC Wﬁ processing

v v

Figure 2.19: Block diagram of the proposed Hi-ECC architecture [39].

occurred in a line, the dotted block optional repair could be any type circuit that
disables those cache lines until they are corrected. But if they are multiple lines
that have errors, the cache capacity is reduced a lot. Therefore, they propose the
use of a complex mechanism called “’bit-fix” [40] which is able to minimize the
capacity lost to disabling. However, the result show that the Hi-ECC architecture
reduces the cache refresh power by 93% compared to an eDRAM with no error
correction, and by 66% compared to a eDRAM with single error-correcting code
SEC-DED, with only 2% storage overhead and without the loss of any cache state.

The ”bit-fix” scheme [40] mentioned above is displayed in Figure [2.20] The
idea is to use multiplexers to remove the defective pair of bits from a vector of
bits and apply a patch by shifting-in, based on the repair pointer. The authors of
[40]] also use this scheme to disable cache words or lines (i.e. removing defective
word or cache line). The defective part can be corrected by an ECC or it can be re-
initialized, and then used again. This mechanism/scheme can prove to be effective
for large amounts of information bits when multiple-bit errors occur in the same
word and there is the possibility to localize the part or parts of the information bits
that are defective (i.e. localize the errors).

Embedded DRAM follows the same principle of low power in conjunction
with error detection capabilities. In [62]], the authors propose an on-line consis-

2.3. THEORETICAL BACKGROUND

10-bit bit vector divided up into 5 2-bit segments. X marks
a defective bit

Repair
pointer
010 (2)

v

Repair
pointer
Decoder

Mux control
bits from
the decoder

Figure 2.20: Design of "bit-fix” scheme for 10 bits [40].

00

00

X1

11

11

h 4

A 4

00

00

01

01
2-bit
patch
is
shifted
in.

New 10-bit vector after defective pair “X1™ has
been removed and patch 017 has been applied

44 CHAPTER 2. UNIDIRECTIONAL EDLC

tency checking based on the modulo-2 address characteristic, which can ensure
low error detection latencies and reduced power consumption. With the use of ex-
tra logic, the proposed design checks memory locations for errors during a refresh
cycle. A similar idea of using ECC to reduce refresh rates for DRAMs is explored
in [63]]. This has proven to be effective because the read operation in DRAM is
destructive and all reads are immediately followed by restore operations. Hence,
the information is refreshed more often if an ECC runs as a ”background” opera-
tion (similar to a data scrubbing method [32]], [64], [65)], which means less power
consumed when the normal refresh cycle performs. However, more hardware is
needed to provide information about the latest refreshed memory locations (use of
timestamps [66l]). A trade-off between hardware overhead and power consumption
is needed, as explored in [39] and [40].

In [67]], the authors propose a simple method to improve the reliability of a
SRAM. The method proposed prevents a SRAM from executing successive mul-
tiple read operations on the same position. Figure depicts the proposed re-
liability enhanced scheme. The “successive read detector” circuit will detect if
multiple successive reads are made to the same memory location by comparing the
memory addresses. If this is the case, the SRAM will remain in idle mode (be-
cause CEN’ is 1) and the data at the output of the SRAM is the same as the first
read. Nowadays, embedded SRAM memories tend to have a Built-In-Self-Repair
(BISR) circuit which consists of: a Built-In-Self-Test (BIST) component, a Built-
In Redundancy-Analysis (BIRA) component and reconfiguration component. The
BIST detects the targeted functional faults and BIRA allocates the redundancy (i.e.
spare component) according to the fault pattern. Then the defective element is re-
placed by the corresponding reconfiguration spare element. In [67], a new BISR
scheme is proposed, which includes, besides BIST and the reconfiguration mech-
anism, the reliability-enhancement circuit and a test collar. The test collar is used
to switch the RAM between BISR mode and normal mode (done by multiplex-
ers). The idea is to whether the faults are repaired or not. The proposal increases
the repair rate with 6% to 10% compared with a SRAM with normal BISR, at the
expense of 2% area cost for two spare rows and two spare columns.

Column replacement techniques have been widely used in memories to replace
a defective column by a spare one. This does not actually remove or correct the
error, it masks it. In [68], the authors propose the use of a column replacement
mechanism with a special case of Single-Error Correcting (SEC) codes, called re-
stricted SEC (RSEC). They are characterized by programmable parity-check matri-
ces which allow the correction of different sets of errors. In order to generate these
matrices, the authors use the built-in test results which will indicate the columns
with defective storage cells. They propose the use of the redundant spare columns
either to store RSEC check bits or to replace completely the defective columns.

2.3. THEORETICAL BACKGROUND 45

A . = A
WEN ——¢———— > WEN
CEN — | SRAM
: | CEN’
: ' ™ CLK
: | i
EN 7 SR
i Y VY |
. | Successive Read | Q D
; Detector | Y
CLK - . f

Reliability—enhancement circuit

Figure 2.21: Reliability-enhancement circuit proposed in [67]].

Figure [2.22] displays the combination of RSEC and column replacement in case of
a segmented memory (for a memory read access).

Because the matrices of restricted SEC are constructed after the built-in test
results, RSEC has limited capability and offers reduced protection against soft er-
rors. Otherwise, for hard errors, the proposed scheme can improve the memory
repair capability with limited performance overhead.

Because only one state of a DRAM cell is sensitive to radiations (unidirectional
errors) the authors in [51] propose a new mitigation technique used for detecting
errors. The idea is based on finding the insensitive state of a DRAM cell and then
storing the opposite value (which corresponds to the charged state) as the reference
value in a cell. Consider a memory system implemented with the same type of
DRAM cells and the charged state corresponding to a logic value of ‘1°. If radiation
upsets a cell, this will change the value to ‘0’, therefore the insensitive state is
the discharged state (which corresponds to a logical value of ‘0’). If radiation
hits the cell when it’s discharged, the value in the capacitor will not change (i.e.
unidirectional error). So, by storing the insensitive state value in a cell, this can
be used as a reference value when errors occur in 2 cells (Figure [2.23). However,
by using this proposed principle, the additional resources can reach 49.9% because
every useful data bit must be stored twice, and the insensitive state must be known
before using this principle.

46 CHAPTER 2. UNIDIRECTIONAL EDLC

Repair Main
Information Storage |Memory
Storage Array bank
A Address Bus (A,...A,) Il
Nz —>
A n=k+r
n+1 ¥ .
n » Column Replacement v
» PRSEC

4
k ﬁ,
Y /k
e
/lv’ k
Data Bus

24

Figure 2.22: Combination of restricted single-error correction codes and column
replacement proposed in [68]].

2.4 Proposed solution

2.4.1 Modified Berger codes

The proposed error detection, localization and correction scheme is based on a
modification of the original Berger code implementation. The information bits of
each memory word will be divided into segments of a specific size, while the check
bits will be generated by layers or levels of Full Adders. The highest level will gen-
erate the Berger code check bits. A segment represents a group of information bits,
which have a specific size, established at design time. The information bits will
therefore consist of several segments of equal length. By doing this splitting, when
one or more errors occur, the segment(s) can be identified as erroneous. Moreover,
if a specific error pattern applies, the segment can even be corrected.

Stopping before the Berger code check bits is advantageous when considering
higher speeds and low latencies for fast DRAMs and, also, provides information
regarding the erroneous segments. Hence, error localization and correction is pos-
sible.

In order to compute the check bits for the Berger code, a full adder tree-shaped
parallel one’s counter is used. The idea is to choose a carry-save strategy which do

2.4. PROPOSED SOLUTION

Column 0: references

AN
—
co-C1 . Cn \ [o{1] . Cx
Lo
L1 M i
REF D D7 ‘O
.- |
I] | I | D]
i Ly -
Ln Bank O Bank 1
co — bt CcO —
I o] rer|RTTTTT S
by om . b
Bank 2 Bank 3

47

Figure 2.23: Error recovering principle proposed in [51]]. One cell is used as refer-
ence (REF) to store the discharged state logic value (immune to radiations), useful

data are stored in 2 other cells, D and D’

48 CHAPTER 2. UNIDIRECTIONAL EDLC

18 Information Bits

3 bits 3 bits | 3 bits [3 bits | 3hbits 3 bits
‘ Full Adder ‘ ‘ Full Adder ‘ Full Adder ‘ ‘ Full Adder ‘ Full Adder ‘ ‘ Full Adder ‘

[I [I 1 I i (I | I

2\ 2f\ 21 2[. 21 2“ 21 2[. 21 2L 2\ 2[.

| | | | | | | | | | | |

| K=1, 12 Redundant bits |
| 1 [! | [1 1]’J l
Full Adder l Full Adder Full Adder | ‘ Full Adder
Ny
[K=2, 8 Redundant bits |
e ¥ ! ! } ! l l ! s

|

[k=6, 5 Redundant bits |

5 Berger Code Check Bits

Figure 2.24: Generation of the check bits for CS-1 Berger, CS-2 Berger and plain
Berger code K = 6. The number of information bits is NV = 18. The plain Berger
code requires six levels of FA.

not propagate the carry bit to the output. Therefore, at each stage or level of the
tree-shaped parallel counter, the output will be a sequence of partial sum bits and
another sequence of carry bits. We will name this scheme as Carry Save K Berger
(CS-K Berger, from now on), where K denotes the level of FAs which is in use.

As explained in the previous chapter, if a radiation strike occurs in a DRAM
cell, a burst of charge near the capacitor will discharge the capacitor, thus changing
its initial state and value. However, if the capacitor is initially discharged, the state
and value will remain the same, state which is also known as the insensitive state.

The tree-shaped parallel counter generates at each level partial check bits of the
Berger code, in the Sum and Carry outputs from the FAs. Therefore, at each level of
FAs, a unique code can be formed. Each of these codes has its own advantages and
disadvantages: the lower the level, the faster it gets computed, but at the expense of
more check bits; while at higher levels, check bits are computed more slowly than

2.4. PROPOSED SOLUTION 49

previous levels, but with the benefit of having less check bits. In the end, the last
level of FAs generate the Berger code check bits. Note that the computing tree of
the Berger code needs a ripple-carry adder design because the overall partial check
bits have to be added into a single binary outcome - the Berger code check bits.
Because of this, the design for this tree-shaped parallel counter grows quickly as
the word size increases as it is illustrated in the following figures for small sizes of
the information bits. Figure [2.24] depicts the tree-shaped design for 18 information
bits and exposes all the FA levels required by the Berger code check bits.

Consider N to be the number of information bits. The first level has [% | FAs
and [N - ()] outputs; the second level has [[N - (2)] - 3| FAsand [[N - (3)] - (3)]
outputs, and so on. These expressions continue to expand until the ripple-carry
adder design is reached. Note that for the first level, only 3 information bits
are necessary to generate 2 check bits, while for the second level, at least 9 bits
are necessary to generate 4 check bits. The minimum information bits size for
a specific level will be called segment from now on and this value is multiplied
when considering higher information bits sizes. The total number of levels of the
tree-shaped parallel counter grows as O(logy(N)) and the total number of FAs is
O(N logy(N)).

Figure [2.25] displays the same tree-shaped parallel counter, but for 9 bits of
information. Note that the first level of FAs has 6 check bits, the second level
has 4 check bits and the rest of levels implement the ripple-carry adder which
produce the Berger code of 4 check bits defined by the expression: k = [logy(N)],
where k is the number of check bits. Each level of FAs adds an extra delay as
can be seen in Figure in which the computation of the Berger code check
bits from 18 information bits takes 6 FA delays, while for 128 bits of information
it would take about 12 adder delays which would increase the computation time
significantly. The total delay can be reduced by stopping at the first levels of the
FA tree at the expense of having more check bits, despite this does not compromise
the detectability of errors. Actually, it provides localization and even correction
performances given by the fact that there are more partial check bits than the Berger
code and that each partial check bits are “responsible” of a sector of the information
bits.

2.4.2 Coding schemes

The Berger code check bits are computed either by summing all the 1’s (called
Bj coding scheme) in the information bits, either by summing all the 0’s (called
By coding scheme). The B; scheme offers no protection if false errors appear in
the coded word (i.e. errors in both information and check bits) because, in some
cases, the error could escape, but, when considering the first levels of the FA tree,

50 CHAPTER 2. UNIDIRECTIONAL EDLC

FA FA FA
1| | 0 1 | | (4] 1 | | o
[First level partial check bits i
| i i 5 - |

T o, W
] [—

FA FA

2 1 1
Second level partial check bits

I r I

FA
2

I Third level partial check bits

—

Fa

3| |2 1 0

Figure 2.25: Tree-shaped design for 9 information bits and the corresponding FA
levels.

2.4. PROPOSED SOLUTION 51

Table 2.1: Example of By coding scheme for 1 bit in error.

Original word | By Error Words | Check bits comparison
110 01 100 01 10 > 01
11001 01001 10 > 01
11001 110 00 01 > 00

the B; scheme can be used to localize and correct errors. On the other hand, the
By scheme does not have false errors, and cannot be used to localize, nor correct
errors.

Each coding scheme has its own advantages and disadvantages which are ex-
plained below. Consider that the original value of the information bits is 110. Con-
sidering the By coding scheme, the check bits of the 1% level of the FA tree have
a value of 01. Table displays the possible error words: if the error occurred in
the information bits, the possible error words are 100 01 or 010 01; if the error oc-
curred in the check bits, the possible error word would be 110 00. For the first two
error words in the table below, comparing the check bits would be 10 > 01 (2 zero
bits in 100 versus the original value of 01 from the coded word). For the third error
word, the comparison would be 01 > 00. In all three cases, the newly computed
value of the check bits is higher than the original stored value, no matter if the error
occurred in the information or check bits. This gives the code inconsistency when
trying to recover to the previous value. This is the main characteristic of the By
coding scheme: the newly computed check bits will have always a higher value
than the original value of the check bits from the coded word. This means that
any number of errors will be detected, no matter where they appear and no false
errors can occur (i.e. errors in both parts will be detected as well). But, by using
the By coding scheme, the check bits don’t provide any information regarding the
positions of the erroneous bits and, as a consequence, nor can be used to correct
errors.

Consider the same original value for the information bits 110, but the check
bits being generated using the B; coding scheme. Table displays the possible
error words. Note that, in the first two cases, the comparison of the check bits will
be 01 < 10, which means that the error is in the information bits, with 2 possible
locations (the zero value bits). For the last error word, the comparison will be
10 > 00, which means that the error is in the check bits. Furthermore, in the last
case, the error can be corrected because only 1 possible location could have been
in error.

As stated before, the conventional Berger code can detect unidirectional errors
all localized in the information bits or in the check bits. If a word has one or more

52 CHAPTER 2. UNIDIRECTIONAL EDLC

Table 2.2: Example of B; coding scheme for 1 bit in error.

Original word | B; Error Words | Check bits comparison
110 10 100 10 01 <10
110 10 010 10 01 <10
110 10 110 00 10 > 00

unidirectional errors in the information bits, the newly computed check bits will
be less than the original computed value of the Berger code check bits. Or if the
error is in the check bits, the value is greater. Errors in both information and check
bits are unlikely to happen, but it is a possibility and may cause an error escape
(i.e. undetectable error). The probability of error escapes is discussed in [2.4.5]
The proposed codes have error detection, localization and in some cases correction
capability as will be shown in the following paragraphs.

In order to better illustrate how errors can affect the information and check bits,
Figure [2.26] shows the error states graph for the simple case of a single segment of
3 information bits. Each segment generates 2 check bits (using a full adder circuit
- FA). On the left of Figure [2.26] the error states for a segment of 3 bits can be
observed. If one error occurs, any bit with the value of 1 can change to a zero
(illustrated by the arrows). If two errors occur, 2 bits of value 1 will change to 0.
This can happen when we have at least two bits with the value of 1. Three errors
can occur only when the initial state is 111 and transits to 000. On the right side of
the figure, the check bit error states are illustrated, for both By (counting 1s) and
By (counting 0s) coding scheme. The By scheme offers no error escapes, a limited
localization and no error correction. Note that from now on, only the B; coding
scheme is used and only transitions from 1 to O are considered.

2.4.3 Error localization

The error localization is measured by the ambiguity of the possible error locations.
It expresses the total possible error locations consistent with the received code.
Given an error in a word, the possible error locations are the bits with values of 0,
because they could have been modified from an original value of 1.

In order to generate the error localization, correction and escapes graph all the
possible error words are considered. They are created through a recursive C++
combinatorial program which calculates for all possible information words, all
possible error locations depending on the number of errors that can occur. The
locations that have a value of 1 are set to 0, thus simulating an error. The error
words are generated (maximum number of errors is 5) and in each word the algo-
rithms for error localization, correction and escapes are executed to evaluate the

2.4. PROPOSED SOLUTION 53

|111| 11 00
(110] (101 (011] [10] [o01]

(100) (010] (001) 0 1 10

000 (00) [(11]

Figure 2.26: Unidirectional error states graph for K = 1. On the left, all possible
single errors are indicated. On the right, the corresponding check bits for B; and
By scheme with single error transitions

codes.

Consider the following example for 3 information bits and 2 check bits (the
first level of a FA tree). In Figures 2.27] 2.28| and [2.29] all possible information
and error words are presented. Look at the 3" coded word from Figure the
information bits are 010 and the check bits 01. With the coding scheme B; the
error can only occur on the bits with value 1. In this case, two possible locations
can happen: one in the information bits and one in the check bits. Therefore, there
are two possible error words: 00001 or 01000.

If the number of errors increase to two, the same word 01001 can have a single
error word: 00000 (Figure [2.28). This case is problematic because there is no
information related to the original word. In comparison, the previous case (same
original word, but only one error) has two possible error words which have error
that can be localized or even corrected.

Increasing the number of errors to three the number of possible error words
decreases, as visible in Figure [2.29] Because the locations for errors are the bits
with the value of 1, the number of possible error words is actually computed as
combinations between the number of bits with a value of 1 and the number of
errors. Thus, for the original word of 11111, with three errors occurring there are
ten possible error words.

The error localization is measured by the ambiguity of the possible error lo-

54

Information Bits Check Bits

000 00

CHAPTER 2. UNIDIRECTIONAL EDLC

= Mo possible error words

001 01 ——=999 33
010 01— 3595 20

010 10
011 10 =——o0n 1

100 01

000 O
100 00

100 10
101 10-%5%1 10

110 10-%53%3 10

111 11

010 10
110 00
011 11
101 11
110 11
111 01
111 10

Figure 2.27: Example of possible error words for 3 information bits and 2 check
bits, with one error occurring (the first level of FAs is considered K = 1).

2.4. PROPOSED SOLUTION

Information Bits Check Bits

000
001

010
011

100
101

110

111

00 -
01 .
01 .
10 ——
01 -
10 =—+

Mo possible emror words

000 00
000 00
000 10
001 00
010 00
000 00
000 10
001 00
100 00
000 10
010 00
100 00
001 11
100 11
110 01
111 00
011 10
101 10
110 10
017 07
1017 01
110 01

55

Figure 2.28: Example of possible error words for 3 information bits and 2 check
bits, with 2 errors occurring (the first level of FAs is considered K = 1).

56

Irformation Bits Check Bits

000
001
010

011
100
101
110

111

00

01
01

10
01
10
10

11

CHAPTER 2. UNIDIRECTIONAL EDLC

= Mo possible emor words

& MO possible emor words

& Mo possible emor words

¥

000 00

e Mo possible error words

=000 00

0

00
11
01
01
01
10
10

10
00

g8
=

=T
838

=] =

o=
o2 230
Sl

= _1.|
_\.l-n

Figure 2.29: Example of possible error words for 3 information bits and 2 check
bits, with 3 errors occurring (the first level of FAs is considered K = 1).

2.4. PROPOSED SOLUTION 57

Table 2.3: Example of ambiguity for one bit in error.

Original word | Error word | Ambiguity
01001 000 01 3/5
010 00 0
110 10 01010 2/5
100 10 2/5
110 00 0

Table 2.4: Example of ambiguity for two bits in error.

Original word | Error word | Ambiguity
110 10 000 10 3/5
100 00 3/5
010 00 3/5

cations. It expresses the total number error locations consistent with the received
code. Given an error in a word, the possible error locations are the bits with values
of 0, because they could have been modified from an original value of 1.

In Table we consider a simple example of 5 bit words where there are 3
bits of information and the corresponding 2 check bits. The original information
is 010 and the corresponding check bits are 01. If one error occurs, the possible
erroneous words (given the position of the values of 1) will be 000 01 and 010 00.
For the first case the error is in the information part ; we have 3 possible locations,
therefore an ambiguity of 3/5. In the second case we have 2 possible locations for
the error, but because only 1 error occurred this is a correctable pattern and has an
ambiguity of 0. There is only one cell that could be upset (given the information
bits of 010), so there is no ambiguity regarding the possible error location.

For the same amount of information and check bits if the number of errors is
increased we get slightly higher values of ambiguity. An example is in Table [2.4
The original word is 11010 and with two errors occurring, there are 3 possible error
words and all have the same localization ambiguity of 3/5.

The ambiguity for a word is expressed as:

N¢(0)

N

2.1)

AmbiQUityword (NC (0) ’ ne) =
where:

1. N¢c(0) expresses the number of ‘0’s which could have been changed from
an original "1°.

58 CHAPTER 2. UNIDIRECTIONAL EDLC

2. n, is the number of errors.

3. ny 1s the size of the word in bits.

For a given size for the information bits denoted n;, there are 2™ possible word
values. Therefore, the average ambiguity for all the words in the code:

Ambiguity g, = = Ambwmtygiird(NC((”’ e g0 @)

Consider the first level of full adders. Each 3 bit segment in the information bits
is related to a FA and generates 2 check bits. The advantage of this configuration is
speed at expense of high redundancy. By stopping at this level, we can detect each
segment that is modified if at least one error occurs in the corresponding segment.
Each pair of check bits from a FA are appended at the end of information bits such
that if an error occurs in the check bits the localization is done in these segments of
2 bits.

For the second level of FAs (K = 2), the minimum size of a segment is 9
bits that generate 4 check bits. The error localization ambiguity metric will be
lower than for the case of K = 1. This is because the check bits correspond to 9
information bits, giving place to more possible error locations for the same amount
of errors. The localization ambiguity is analyzed in sub-chapter [2.6] where the
impact of the word size is obtained by exhaustive simulation.

2.4.4 Error correction

The error correction capability depends on the error pattern which occurs in the
erroneous segment. There are several error patterns for which correction is possi-
ble. Correctable error patterns for the information and check bits are displayed in
the following tables (Table 2.5 for the information bits and Table [2.6|for the check
bits). For the rest of this section, consider words of 5 bits with a segment of 3
information bits and its corresponding 2 check bits.

For the first level of FAs the condition to guarantee the correction of single,
double and triple errors is that they occur in the segment of the information bits:
the initial value must be 11111. Therefore if 1, 2 or 3 errors occur the check bits
(the last 2 bits) will be 11 and will lead to the correction of all the zeros that appear
in the information bits (bit flipping the values of 0 to 1). For other information
segment values, different from 111, correction is not possible. This is because the
localization ambiguity is not null (i.e. there are more than one possible locations
for errors). If the error is in the check bits there are 3 patterns that can be corrected.
Because the information bits remain the same, by counting the number of 1s, the
corrected value for the check bits can be generated.

2.4. PROPOSED SOLUTION 59

Table 2.5: Correctable error patterns in the information bits (K = 1).

Original word Error words # of errors
111 11 110 11 or 101 11 or 011 11 1
10011 or 010 11 or 001 11 2
000 11 3

Table 2.6: Correctable error patterns in the check bits (K = 1).

Original word Error words # of errors

11111 11101 or 111 10 1

111 00 2
110 10 110 00 1
101 10 101 00 1
01110 01100 1
100 01 100 00 1
01001 010 00 1
001 01 001 00 1

The error correction efficiency (EC'E) is calculated per segments and has the
following expression:

Ncorrectable error
patterns
ECEsegment (ne> = N (2.3)
error patterns

where: Neorrectable error patterns 18 the number of correctable error patterns that
can appear in a segment (as explained above) and Ne,ror patterns 18 the total number
of error patterns in a segment. The average error correction efficiency for all the
possible values is:

E ES@ men e
ECE oqe(ne) = 2. BCBseqment (ne) (2.4)

Nsegments

where: Ngegments 1 the total number of segments in the code. The error correction
efficiency is analyzed further below.

2.4.5 Error escapes

A special case of errors are the ones that escape. This happens when some multiple
error combinations occur simultaneously in the information bits and its correspond-
ing check bits. They are not traceable because when comparing the original check
bits with the newly computed ones, the values are equal, which is interpreted as a

60 CHAPTER 2. UNIDIRECTIONAL EDLC

Table 2.7: Examples of multiple error escapes.
Original word | Error words | # of errors
100 01 000 00 2
111 11 001 01 3

Table 2.8: Actions based on the check bit comparison. A; are the check bits gen-
erated from the information segment of the code during the verification and valida-
tion. B; are the check bits extracted from the code. See Figure[2.30]

Comparator output Action/Description
A, = B; Values are equal, word is error free
A; < B; Error in the information bits
A; > B; Error in the check bits

correct word. Table shows a couple of possible error escapes. In sub-chapter
the probability of occurrence of these rare events is computed and its depen-
dence on word size is illustrated in a graph. Note that for word sizes above 30 bits
the percentage of error escapes (ne = 2, 3, 5) remains below 0.01%.

Usually, the error detection process is performed when a memory word or line
is read. But these codes can also be used in a pipelined architecture to further in-
crease the detection of latent errors, in combination with a data scrubbing method.
In the scrubbing method each location is periodically checked for errors when the
memory is idle. The pipelined architecture consists of generating the check bits for
the next word while the previous word is being checked for errors. As soon as the
detection process ends for the current memory word, the check bits of the second
word are pushed to the digital comparators and the check bits of the third word are
generated.

2.5 Implementation

2.5.1 Cadence implementation

Depending on the number of levels each code can be implemented separately in
hardware with verification and validation circuits. In the verification and validation
process, the first step is to compare the check bits in the coded word with the newly
ones computed from the information bits. If the values are equal the word is valid
(i.e. no errors occurred) , but if the values are not equal, depending on the encoding
scheme (B or By), the error(s) can be in either parts, information or check bits as
classified in Table 2.§].

2.5. IMPLEMENTATION 61

Table 2.9: Detection and localization circuit behaviour. A;, B;, C;, D; are outputs
of circuit in Figure[2.34]

Output; Description/Action
A; OK (no errors)
B; REPLACE extended segment; (SE;)
C; CORRECT information;
D; CORRECT check;

A magnitude comparator is used after the verification process. Figure [2.30|
exposes the general structure of the codes and the architecture of the verification
and validation circuits. Depending on which level of the FA tree is used and on
the number of pairs of partial check bits (more information bits means more pairs),
more digital comparator circuits are included to increase the detection speed. The
check bits generated at time i (Cb’) are compared to the check bits from moment
i — 1 (Cb*~!) and the comparator shows if there are any discrepancies.

Figures[2.3T]and [2.32]display the implementation in Cadence environment (the
65nm library) for the 1% and 2™ level of FAs. The implementations are for 9
information bits and were used to find the delay and power consumption. Note that
the inputs are files which contain all the possible word values, which were found
through an exhaustive simulation of all the possible cases.

The implementation of the magnitude comparator is shown in Figure [2.33
Note that a standard design is used for the implementation and evaluation of the
codes and a faster and less-power hungry design is employed for the magnitude
comparator [66]].

2.5.2 Integrating the proposed self-healing technique in memory sys-
tems

Error detection and localization is performed by comparing the check bits for each
segment. Therefore, for K = 1, each segment of 3 bits will generate 2 check bits
which will be compared to the old values stored in the same code word. In Figure
the error detection, localization and correction controller hardware needed for
a word of 15 bits is shown. Table below summarizes the actions that need to
perform for the B; encoding scheme according to the result of the comparison.
The outputs of the EDLC (Error Detection, Localization and Correction con-
troller) combinational circuit indicates if the extended segment (i.e. segment of
information plus its corresponding check bits) is correct, if we have at least one
error in the information bits or check bits, or if it is uncorrectable. Since each seg-
ment of information and its corresponding check bits have a unique EDLC circuit,

62 CHAPTER 2. UNIDIRECTIONAL EDLC

Information bits Check bits

Check bits generation

Cb Cb*1

Digital Comparator

Cbi < Cb1 | | Cbi > Cb*

Cb' = Cbi

Figure 2.30: General architecture of the implementation.

2.5. IMPLEMENTATION 63

Figure 2.31: Implementation for the 1st level of the FA tree for 9 information bits.

Figure 2.32: Implementation for the 2nd level of the FA tree for 9 information bits.

64 CHAPTER 2. UNIDIRECTIONAL EDLC

Figure 2.33: Implementation of digital comparator with input sizes of 2 bits.

the erroneous segment will be easily localized and the EDLC outputs will control
the error correction circuit. The error correction is performed on the segments in
error when this is possible which includes error escapes (sub-chapter[2.4.5), other-
wise if the errors are uncorrectable a spare segment is used for replacement (Figure
2.35).

The B; output from the EDLC circuit denotes the segment that needs replace-
ment. If more than one segment needs replacement, a priority is defined at design
time. In Figure a single spare segment is presented where the most signif-
icant segments have higher priority in front of uncorrectable multiple erroneous
segments.

The strategy used for uncorrectable errors is to shift-out the erroneous segment
and to replace it with a spare one. The damaged segment is reset to an initial
value and can be used again. This strategy can also be used for hard errors, but
the damaged segment is replaced completely and not reset since the errors are per-
manent. Note that the number of spare segments is decided when implementing
the code, taking into consideration the number of possible errors that can occur in
the memory system during normal operation. The figure above contains only one
spare segment to illustrate the replacement method. Likewise, the priority when
replacing is decided at run time.

2.5. IMPLEMENTATION 65

9 Information Bits 6 Check Bits
| 3 bits | 3 bits | 3 bits | 2 bits | 2 bits | 2 bits |
Full Adder | | Full Adder | | Full Adder |
I f
EDLC EDLC EDLC
Circuit Circuit Circuit
Ag B Ca Dy Al By o

I 117 1111 T1T 17

Figure 2.34: Error detection and localization circuit (example for 9 information
bits, 6 check bits and K = 1).

[Tnformation | check | [infermation | check | [information | check | [information | check |
B,B:B,B;

MUX MUK ML

1 —

Figure 2.35: Error correction for uncorrectable segments using a spare segment.

66 CHAPTER 2. UNIDIRECTIONAL EDLC

Information word

Write|cycle
Check bits generation
Encoded word
DRAM
=1
Check bits generation
Read) cycle and
error|detection & correction
Comparator
Error Error
in the in the
check information
bits bits
No error

Figure 2.36: General architecture of the implementation.

The error correction capability depends entirely on the patterns explained be-
fore. Therefore, the implementation is able to detect these patterns and flip the
bit(s) in error. A simple and efficient design in terms of speed and area is using
XOR gates. By XOR-ing a bit with a value of 1, the output is O if the bit is 1 and
0 otherwise. Thus, the erroneous bits can be forced to a value of 1. The general
design used during run-time is visible in Figure 2.36] The fast cache DRAM is
in the center of the implementation. Consider that the memory is addressable by
word line and that each one holds an encoded word (information plus check bits).
During the write cycle, the check bits are generated from the information bits, then
appended to the original information word and stored in the DRAM as a word line.
The read cycle begins by generating the check bits from the information bits of a
specific word line, followed by a comparison between the newly generated check
bits and the check bits stored in the encoded word.

2.5. IMPLEMENTATION 67

Given the fact that the proposed codes are based on the Berger code Bj, the
detection process is made with a simple comparison between the check bits. The 3
outputs from Figure[2.36] are inputs to the localization and correction circuit. This
is a straightforward implementation where each stage (error detection, localization
and correction) is clearly defined. However, a more optimal solution is to design
and implement a single circuit that does all three functions faster and with less area
requirements. Both solutions are applicable and valid; it all depends on the memory
systems’ final requirements. The first solution offers modularity (i.e. each phase is
done by a different circuit), therefore if one of them has a fault or is not functioning
properly it can be easily replaced. The second alternative is based on an “all-in-
one” circuit (called EDLC), which comprises all the necessary circuitry for all
phases. The latter is presented in the previous paragraphs. Note that both proposed
solutions for the error detection, localization and correction phases support the self-
healing concept. Likewise, other techniques as memory scrubbing or operation
pipelining can be used in combination with the proposed code, in order to create a
self-healing memory system. These techniques are also discussed in the following
paragraphs.

The two solutions explained above are usually enforced at run-time and de-
tect and correct errors “on-the-fly”. This can be problematic if we consider large
amounts of errors (multiple random errors) and the fact that the performance of a
system can be lower than in normal operation (i.e. degraded performance). Thus,
it can be more efficient to run these operations when the memory system is idle.
The memory scrubbing technique is employed in memory systems as a background
operation, which runs when the memory is not active (i.e. idle state, when no read
or write operations are running). Therefore, the proposed codes are used to check
every memory location to see if errors have occurred. This can prove to be effec-
tive since radiation upsets are mostly random and unexpected. Employing memory
scrubbing on DRAM s is also effective in terms of reducing the refresh power, be-
cause the checked memory locations are automatically refreshed (i.e. the value is
re-written) and the refresh timer is reset.

Another integration solution is to pipeline the operations in order to save com-
puting time. Before each phase (detection, localization and correction) the corre-
sponding memory word(s) need to be ready for processing. Note that each phase
is different and needs specific information as inputs, therefore pipelining is possi-
ble. By pipelining the operations, we prepare in advance the inputs for the circuits.
Figure describes in more detail the proposed pipeline operation . The idea
is to generate the check bits for the next word while the previous word is being
checked for errors. As soon as the detection process ends for the current memory
word, the check bits of the second memory word are “pushed” in to the digital
comparators and the check bits of the third word are generated. Please consider the

68 CHAPTER 2. UNIDIRECTIONAL EDLC

fact that after the detection process, if errors occur and are detected the pipeline
architecture expands with two new branches: the correcting stage (if the errors can
be corrected) and the replacement stage using spare segments (if the errors are un-
correctable). The replacement mechanism is displayed in Figure and has the
following steps:

1. The errors are detected and localized, but cannot be corrected.

2. The segment of the memory word containing the errors is replaced by a spare
one.

3. The replaced segment from the memory word is re-initialized to a default
value (default value is 0) and can be used again (by default is set as a new
spare segment).

The timing analysis for the proposed pipeline architecture is illustrated in Fig-
ure Note that at time 7;_; the previous code word check bits are compared
while the check bits of the next code word are generated. This proposed pipeline
method, used in conjunction with a memory scrubbing technique, can achieve up to
50% speed improvement and significant less refresh power consumption because
the checked memory locations are automatically refreshed. However, in order to
achieve lower refresh power consumption, the refreshed memory words by the
scrubbing method need to have a time-stamp, which can be kept in a Lookup Table
(LUT) or an array of recently refreshed memory lines/words.

2.6 Experimental results and evaluation

In this chapter, several metrics calculated for the proposed code are illustrated and
applied to evaluate the metrics of the CS-K Berger codes when the word size in-
creases. In order to demonstrate the advantages given by the proposed codes, all
the evaluations are compared with the original Berger code. The delay of codes
code delay is evaluated as the number of FA gate levels generating the partial-
check bits. The proposed code delay is then compared to the delay of the Berger
code implementation from [41].

The proposed CS-K Berger codes have a constant delay, depending on which
FA level of the tree-shaped design is used. Thus, the first level has a delay of only 1
FA, the second level has a delay of 2 FAs and so on. Because the Berger code check
bits are generated by the last level of the parallel tree-shaped design, including the
ripple-carry adder, the slope of delay increases much faster when considering large
word sizes.

2.6. EXPERIMENTAL RESULTS AND EVALUATION

Previous memory code word

Next memory code word

T,
Check bits generator
T
TI_1 i-1
Comparator
T
Result

Figure 2.37: Pipelining Operation.

69

70

CHAPTER 2. UNIDIRECTIONAL EDLC

Check buts >
generation
Comparator
>
>

-2 Ti1 T;

Figure 2.38: Timing results in the proposed pipeline architecture.

2.6. EXPERIMENTAL RESULTS AND EVALUATION 71

| bit8 - Notepad

File Edit Format View Help

Oe-9 1
4.99e-9 1
2e-9 0

Figure 2.39: Example of .txt stimulus file containing values for one bit of the inputs
of an implementation.

The code redundancy is computed as the ratio between the number of check
bits divided by the total number of bits (information plus check bits). Further
explanations are in sub-chapter Area overhead is calculated in terms of
number of FAs which are needed for each level of the tree-shaped parallel design,
in comparison with the ones needed for the Berger code, for different word sizes.
First, the number of FAs needed for each code is compared, then the percentage of
each proposed code FAs out of the Berger code FAs is calculated.

Because the CS-K Berger code offer error detection, localization and correc-
tion three metrics have been defined and evaluated: error localization ambiguity,
error correction and error escapes. Each of these are further discussed and ana-
lyzed in the following sub-chapters. A C++ program has been developed which
calculates and evaluates each metric exhaustively.

The power consumption is calculated in Cadence environment, by using an
implementation for nine information bits for a library of 65nm technology node.
The inputs of each implementation are fed with ”.txt” stimulus files which contain
values of the information bits at specific time intervals. An example of an stimulus
file is shown in Figure [2.39] The format for the input values is the following:

< time >< value of the in formation bit > (2.5)

The simulations start with a transient analysis of each circuit implementation,
ran for a specific time (depending on the number of transitions which are set in the
stimulus file). Note that in Figure [2.39] only one transition from 1 — 0 is set, in
order to simulate one random error in the eighth information bit. During simulation
the power consumption is calculated by measuring the intensity of current which

72 CHAPTER 2. UNIDIRECTIONAL EDLC

35 4
30 © —~Berger —=K=1
— 25 -
2 K2 —-K=3
[3+]
..ca” 20 -
:g'; 15 - k=4 K increases
k)
a 10 -
5 4/
O T T T T T T 1
8 16 32 64 128 256 512 1024
Word size (bits)

Figure 2.40: Code delay of CS-K Berger codes.

flows through the power supply line during transitions multiplied by Vj,; voltage
(set to 1.0 V by default). The results are presented in sub-chapter [2.6.7]

2.6.1 Code delay

The code delay of CS-K Berger codes (for the first four levels of FAs) can be
observed in Figure[2.40} The code delay is expressed as number of FA layers, for
each information word size raging from 8 to 1024 bits. The values for the Berger
code are from reference [41]]. For the proposed codes, the delay remains constant
regardless of the word size and is indicated by the value of K (i.e. level of FAs).

2.6.2 Code redundancy

For the original Berger code, the code redundancy can be calculated by the follow-
ing expression (n; is the information size):

[logy(ni + 1)]

Cpr =
B 0 4 Tlogy(ni + 1)

-100 (2.6)

Figure 2.4 illustrates the code redundancy for information word sizes from 8
to 1024 bits and K = 1, 2, 3, 4, Berger code is also added for comparison.

For K = 1 and segments of 3 bits (the first level of FAs), the code redundancy
is about 40%. This is because a FA generates a code redundancy of 40% (3 inputs

2.6. EXPERIMENTAL RESULTS AND EVALUATION 73

70%

60% ——Berger #-K=1 -+-K=2 -<K=3 +K=4
o

R)

C

(€2

S

>
|

g o I\.\.
40% - = ol

Code redundancy (
3
I

K

10% - l increases

0% T T T T T T 1
8 16 32 64 128 256 512 1024
Word size (bits)

Figure 2.41: Code redundancy for CS- K Berger codes and original Berger codes.

for information bits and 2 outputs for check bits, which gives a redundancy ratio
of 2/5). But because a word contains the information and check bits, some values
are not exactly a power of 2 giving small variations to the code redundancy.

For K = 2, the minimum amount of information bits is 9 and generates 4
check bits. So, the code redundancy is 4/13. But it can fluctuate as explained in
the above paragraph.

2.6.3 Error localization ambiguity

As explained in sub-chapter[2.4.3] the error localization is quantified with the met-
ric error localization ambiguity. The ambiguity expresses the number of possible
error locations divided by the total number of possible locations. In Figure [2.42]
this metric is assessed for CS-1 Berger code considering a number of simultaneous
errors from 1 to 5. First we see that, as expected, more simultaneous errors worsen
this metric. However, when the word size increases the metric improves (decreases
its value). This result is specially interesting for memories where the size of word
could be made significantly large like in cache memories.

2.6.4 Error correction

The graph in Figure 2.43]illustrates the error correction metric for a maximum of
5 simultaneous randomly distributed errors. Depending on the number of errors

74 CHAPTER 2. UNIDIRECTIONAL EDLC

100.00% —-1-error
X -2 error
P
3 10.00% 3 error
-g =<4 error
<
c -5 error
2 1.00% -
S
E
S 010% -
S
i,

0-01% T T T T T
0 500 1000 1500 2000 2500

Word size (bits)

Figure 2.42: Error localization ambiguity for the first level of FAs in CS-1 Berger
code. Simultaneous errors are changed from 1 to 5.

that occur in a word, one or more segments can have errors. All possibilities of
error occurrences are considered. As was explained in sub-section [2.4.4] not all
error patterns can be corrected. This is visible in the figure, through the maximum
percentage for error correction metric. It reaches a value close to 45% for the one
error case and/or the largest word sizes. Like in the previous metric, the trend of the
error correction that improves with the enlargement of the word size is particularly
interesting for cache memories.

2.6.5 Error escapes

A special case of errors are the escapes (for the B coding scheme), when the errors
occur in both information and check bits as explained in the sub-chapter 2.4.5]

The error escape metric, EES, is calculated as a probability over 100 accord-
ing to the following expression:

1 1\"

EES =nege - — - | — - 100 2.7)
2Mi N

In the above expression, n.. is the exhaustive number of possible error escapes for

each word size , n; is the number of information bits, n,, is the word size in bits

and n. is the number of errors.

2.6. EXPERIMENTAL RESULTS AND EVALUATION 75

50% -
o 45% | .
X
Z 40% -
[
2 35% -
S
s 30% - ~~T-error
[0 |
.% 25% =2 error
S 20% -
S 15% - 3error
E 10% =<4-error
L

5% 1 -5 error

O% ™ T T

50 500

Word size (bits)

Figure 2.43: Error correction per segments for the CS-1 Berger code, errors from
1 up to 5 bits.

In Figure [2.44] error escapes are shown for CS-1 Berger code with 2, 3 and 5
multiple errors. Note that for 1 or 4 multiple errors, error escapes are not possible.
All word sizes not represented in the graph have an EES probability of 0.

2.6.6 Area of the code generator and memory resources

The area of the code generator can be calculated by using the number of CMOS
transistors (derived from the number of FAs) needed for each level and compared
with the code generator for the Berger code, for a range of specific word sizes. We
used the 8 transistor Full Adder design from [69]. Figure @] exposes the area or
the code generator (expressed as number of transistors) calculated for each code
and Figure [2.46] exposes the area of the code generator in percentage occupied by
each code design in comparison with the Berger code design.

Please note that the comparison circuit has not been taken into consideration
because all of these codes use the same type of circuit.

The memory resource needed for different K levels is computed with the help
of code redundant bits. Each level generates different amounts of redundant bits
and are compared with the Berger code check bits. Furthermore, their redundant
bits are scaled for SRAM 6T and DRAM 1T cell types. The word sizes are similar
to the previous two figures. Figure illustrates the memory resource necessary
for each code. Finally, in Figure[2.48]is displayed both code generator and memory

76

CHAPTER 2. UNIDIRECTIONAL EDLC

1.00E-01 -
‘_—"“‘~—*——_____;

< 1.00E-02 - o DY
g 1.00E-03 - -\-\‘\‘_\.\‘
@ 1.00E-04 -
L% 1.00E-05 - —-2errors =3 errors

1.00E-06 - -5 errors

1.00E-07 -

1.00E-08 w T ‘ ‘ ‘ ‘

0 5 10 15 20 25 30

Word size (bits)

Figure 2.44: Error escapes probability for CS-1 Berger code for 2,3 and 5 multiple

€ITors.

10000

9000

8000

7000

6000

5000

4000

3000

2000

Area of the code generator (# of transistors)

-#-CS-1

~4=CS-2 /

=4=CS-3 /

-=Berger Code /

1000 -

8 16 32 64 128 256 512 1024
Word size (bits)

Figure 2.45: Area of the code generator computed for CS-1,2,3 and the original
Berger codes and different word sizes.

2.6. EXPERIMENTAL RESULTS AND EVALUATION 77

100.00%
90.00% w=CS-1
= CS-2
S 80.00% AN
= \ —CS-3
% 70.00% |—
o > H——c
$ 60.00%
(@)
L 50.00% — —
[e]
o 4000%
£
%5 30.00% ,% —— - PO
©
2 20.00%
<
10.00%
0.00% : : : : : : : ‘
8 16 32 64 128 256 512 1024

Word size (bits)

Figure 2.46: Area of the code generator computed as percentage from the Berger
code area for the first three levels of Full Adders.

resources needed for CS-1,2,3 and compared to the Berger code.

2.6.7 Power consumption

The power consumption is calculated also in comparison with the Berger code. The
results show that the 1st level of FAs use only ~28% of the Berger code implemen-
tation, while the 2nd level of FAs uses ~63% of the Berger code implementation,
for 9 bits of information. Figure [2.49] displays a simple comparison of the power
consumption between the first two levels of the FA tree and the Berger code. Note
that only 2 transitions of 1 — 0 are assumed during the whole simulation (to im-
itate 2 random errors), in order to clearly see the lower power consumption of the
proposed codes. Thereby, the 1st level of FAs uses ~25 uW in each transition, the
2nd levels of FAs uses 40 uWW for the first and ~70 uWW for the second transition
because more FAs are involved in generating the check bits than in the 1st level of
FAs , while the Berger code has higher power consumption than the first two: ~60
uW for the first and ~110 uW for the second transition.

2.6.8 Delay

The delay for the implementation of the proposed code was computed as the time
needed to obtain the check bits from 9 bits of information. In order to simulate

78 CHAPTER 2. UNIDIRECTIONAL EDLC

4000 —8-CS-1 for SRAM /;
3500 ~#=CS-1 for DRAM

—=CS-2 for SRAM /
3000

—%=CS-2 for DRAM /
2500 /

—o—CS-3 for SRAM /
2000

——CS-3 for DRAM / /'
1500

———Berger Code for SRAM

1000

Memory resource (# of transistors)

Berger Code for DRAM
500

8 16 32 64 128 256 512 1024
Word size (bits)

Figure 2.47: Memory utilization area for codes CS-1,2,3 and Berger code, when
SRAM and DRAM cells are used.

10000
—#—CS-1 for SRAM
9000 a
—#=CS-1 for DRAM
8000
=—=CS-2 for SRAM
7000
g =%#=CS-2 for DRAM
% 6000
> ~o—CS-3 for SRAM
& 5000
f —+—CS-3 for DRAM
© 4000
2’ ——Berger Code for SRAM
3000
Berger Code for DRAM
2000
1000
0 — . . . : : ‘

8 16 32 64 128 256 512 1024
Word size (bits)

Figure 2.48: Area of the code generator and memory resource necessary for CS-
1,2,3 and Berger codes.

2.6. EXPERIMENTAL RESULTS AND EVALUATION 79

15t level of FAs

50

1 o
=50
B
2 100
—
()
8
a =150
200
’5({) 1 <) V 4
Time(ns)
2" Jevel of FAs
S —_—
0
-50
=
2
o -100
[
2
o
a
-15
200
25 '
2305 1 s 4 3
Time(ns)
Berger code
50
0
-50
=
=
— -100
(]
2
)
Q.
-150
200,
250
) 1 . 4
Time(ns)

Figure 2.49: Power consumption comparison between the 1st and 2nd level of the
FA tree and Berger code (the values are negative because the electric current is
measured at the ground node of the circuit).

80 CHAPTER 2. UNIDIRECTIONAL EDLC

this, the inputs were activated at a specific time (2 ns and 4 ns) and the transitions
are visible in Figure [2.50] below. Note that the comparison is between the first and
second level of FAs and the Berger code. The logical voltage level for 1 is 1V,
while for 0 is 0 V. As illustrated, the 1st level of FAs needs 0.1 ns and 0.2 ns to
generate 6 check bits, the 2nd level of FAs requires 0.3 ns and 0.4 ns to produce 4
check bits, while the Berger code demands 0.4 ns and 0.6 ns to generate 4 check
bits.

2.6.9 Overall evaluation

As displayed in the graphs above, the proposed codes are clearly much faster at
generating the check bits, consume less power than the Berger code implemen-
tation, have a lower area overhead and have error localization and correction (in
comparison with the Berger code which has none). However, the code redundancy
is higher than the original Berger code.

The simulations were run for all possible values of the information word and
the results show improvements over the common Berger code scheme. Note that if
the size of the information bits increases, the improvement is even higher, due to
the fact that the first or second level of FAs has a constant delay, while the Berger
code tree complexity increases simultaneously with the size of the information bits
(as visible in Figure[2.40). Regarding the power consumption, the results show that
the 1st level of FAs use only ~28% of the Berger code implementation, while the
2nd level of FAs uses about ~63% of the Berger code implementation, for 9 bits
of information. The proposed codes have error correcting capabilities and perform
better if higher code redundancy (best for the first level of FAs), Also, the codes
provide error localization capabilities which has an ambiguity of ~5% for word
sizes over 512 bits.

The area overhead is also lower that the original Berger code implementation.
For a word size of 1024 bits, the code from the 3rd level of FAs occupies ~63%
of the Berger code area, the code from the 2nd level of FAs occupies ~50% of the
Berger code area and the code from the 1st level occupies ~30% of the Berger code
area. Code redundancy when high if compared to Berger code, but if considering
high word sizes, a trade-off between speed and which proposed code should be
implemented is needed.

The error localization ambiguity expresses the total possible locations for er-
rors, if any occur in the word. As the word size increases, the error localization
ambiguity decreases very fast, going under 5% for a word size of 512 bits. This
means that the higher the word size gets, there are less possible locations for errors,
and thus the errors can be localized.

Error correction is also possible, although the maximum percentage is almost

2.6. EXPERIMENTAL RESULTS AND EVALUATION 81

15t level of FAs
135
00— = - — I L} r
E
=
(V]
oo 5
©
=
(@]
>
.25
; N N
-25
0 1.0 20 3.0 4.0 5.0
Time(ns)
2"d Jevel of FAs
1.25 T
|
|
|
10 ! A
|
|
|
E 75 ‘
o |
0o |
© |
g - |
> 1
i
|
25 [
|
|
| U
|
(] | ~
i
|
.25 |
0 1.0 2.0 3.0 4.0 5.0
Time(ns)
Berger code
1.25 T
\
|
|
10 4 } ‘ P
| |
| |
|
2 75 }
oo |
g, |
5 °) 1
>
25
9 ~
-25
0 1.0 = 4.0 5.0
Time(ns)

Figure 2.50: Delay comparisons between the 1st and 2nd level of the FA tree and
Berger code.

82 CHAPTER 2. UNIDIRECTIONAL EDLC

45%. Thus, almost half of the errors detected and localized can be corrected, re-
gaining the original information.

Error escapes appear only when using the B; coding scheme and if errors occur
in both information and check bits. However, the trend is below 10~2%, because
there are few patterns that provoke error escapes and the errors must occur random,
in the same segment (highly unlikely).

The proposed codes can detect, localize and correct multiple unidirectional
errors that appear in DRAMs and trade-off speed for code redundancy. However,
the code redundancy can be reduced if the number of FA stages is increased. All
in all, high-speed caches implemented with DRAM cells are advisable to be used.

2.7 Conclusions

Self-healing systems are becoming more and more important due to the numerous
error sources, which translates into keeping the information as accurate as possible.
Any system with such techniques must have a well defined architecture, capable of
monitoring, planning and must adapt to errors. Self-healing techniques and meth-
ods must be implemented to run autonomously, with no human intervention, being
capable of modifying its structure and run-time parameters in real-time operation.

Because there are multiple architectural designs for systems, self-healing tech-
niques as well, the final objective/scope of the system is the most important one.
For memory systems, the accuracy of the stored data is crucial, because the data
gets used later on by the processing unit. The self-healing techniques for such sys-
tems include error detection and correction codes and are usually used with other
replacing methods (using spare components), in order to reduce the computing time
and high data redundancy. The monitoring operation is also important (e.g. sen-
sors, background software process), as well as the detection/correction part, which
can run when the system is idle or during run-time.

Any systems that implements self-healing techniques and methods must be
evaluated from the performance perspective (the normal run-time operation of the
system must not be highly/severely diminished), the additional circuitry must have
a low area overhead and a low power consumption (the latter two are modern
trends). The performance of such a system includes processing speed (how fast
can it detect and correct errors) and the number of errors that can be detected and
corrected (the more, the better). All evaluations must be compared with existing
proposals and solutions.

The design and implementation of the self-healing techniques must be done
for the first time in a virtual simulation environment. There are a lot of software
solutions that provide a good and complex simulating environment. Fine tuning can

2.7. CONCLUSIONS 83

be done afterwards (e.g. logic synthesis to adjust the design), in the perspective
of obtaining the best results in the considered metrics. Also, because the self-
healing concept implies autonomous computing, it is important that the system can
execute these techniques and methods during normal run-time operation, with no
human intervention. The latter is a necessity when designing and implementing
self-healing techniques and methods.

In the present work, a new family of error detecting and correcting codes are
proposed and evaluated from the perspective of speed, code redundancy, area over-
head, power consumption and several specific evaluations: error localization, error
correction and error escapes. Because of the low delay, they can be considered very
efficient for fast cache DRAM memory, where the code overhead is not important.
The proposed codes are efficient from almost each point of view evaluated in this
work. As regarding the power consumption, the design is less power-hungry in
comparison with the original Berger code implementation. In order to achieve a
memory system with low-power consumption and EDC/ECC, the error detection
and correction can be done either when the memory is idle or inactive, either when
a word is read. The operations can be executed in a refresh-time period, with high
consistency, at the expense of more check bits. Also, when comparing the values of
the partial check bits, if more comparators are used, the detection speed improves
with the cost of higher area overhead and power consumption. The operations can
also be pipelined so than no time or power is wasted.

84

CHAPTER 2. UNIDIRECTIONAL EDLC

Chapter 3

Security in cache memories (IST)

3.1 Introduction

Modern day ICs contain significant information that must be highly secured, so
that it stays hidden. In the last 5 years, there have been reported a large variety of
attacks against ICs and memories, mostly targeting the vulnerabilities of cache and
main memories, smart-cards, etc. This problem broadens when the attacks target
credit cards and other kind of legal supports including biometric information [3].

Computer systems have drawn a lot of attention, due to the fact that sensitive
information is stored in the memory during runtime. Some attacks on the main
memory have been investigated because the stored information is still visible a
small period of time after the system loses power (known as memory remanence).
These attacks, called cold-boot attacks [21]], [22], target the recovery of the last
information which was stored in the main memory. Thus, relevant information
such as encryption keys could be retrieved. Also, by keeping the memory module
at low temperatures, the information can remain intact for as long as 5 minutes
[21].

In memory systems, the main memory has usually a low level of protection be-
cause it is more accessible than other levels of memory and thus it can be removed
by the attacker by simpler technical means. In cold-boot attacks, the information
is frozen for a long enough period of time such that the memory modules can be
removed and the attacker can download the content into a backup system which
stores data in plain text. To avoid this, security is improved by encrypting data
while the memory transaction is undertaken [22], 23], [70], [25]. The decrease of
bus throughput can be compensated by an increase of L2 cache size. Unlike the
main memory nowadays, for performance reasons, the cache memory is placed in
the same CPU package, either stacked on or embedded within it. This configura-

85

86 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

tion provides a higher protection degree at a free cost. Because of this and also to
avoid strong penalty in the throughput between cache and CPU, the information is
stored in plain text in the cache. Even more, some encryption algorithms are de-
signed to run all the rounds using only cache memory and avoiding main memory
transfers [26]].

Attacks that target the cache memory and retrieve sensitive data have been
analyzed and investigated in several works [25]], [26], [27], [28]. Most of these are
side-channel attacks, which are based on the information leaked by a cryptographic
devices, such as power consumption, timings, etc. Attacks against AES algorithms
have been reported that target the stored private keys [26], [27], [28]. It cannot
be ruled out the possibility of direct reading of the cache content. If cache is
conveniently frozen, a power-up sequence can derive to the recovery of the same
content existing before the power-up [27].

In this chapter, a new methodology, Interleaved Scrambling Technique (IST),
is proposed to conceal the plain text data from the L2 cache memory. It pursues
to make data unusable in case of an attacker retrieves it and to avoid the trans-
fer of regular patterns between CPU and cache which leaks significant informa-
tion through side-channel attacks. A data scrambling technique is selected which
scrambles data in the write cycle and descrambles when data is read from the cache.
It periodically refreshes the scrambling vectors using a unique random source and
a table that keeps track of the expired vectors avoiding the need of updating the
whole cache content at a time. This gives a significant reduction of the power
consumption if compared to standard scrambling techniques. The elapsed time be-
tween refreshes is data dependent and thus it makes more unpredictable than if it
were done at constant time intervals.

3.2 Theoretical background

The cache memory is in the middle of any memory system. Every time the CPU
requests data from the main memory, it passes through the cache. The L2 cache
will store the last accessed information which was requested by the CPU. Also,
when the CPU generates new information, the data is first retained in the cache
and then passed to the main memory. Considering the above, the cache memory
security is a priority because of the sensitive information which can be retained for
a period of time.

Physical attacks on static cache memories (SRAM) are possible in powered-off
state. A recent paper [/1] tries to increase the security of SRAMs by specialized
circuitry to eliminate any data remanence.

Protecting against side-channel attacks is also widely explored and discussed.

3.3. DATA SCRAMBLING 87

Authors in [[72] propose the use of a dual-rail precharge principle, applied either
by cutting the power supply or by cutting the feedback loop. The results show sig-
nificantly lower variations of supply current compared to standard SRAM designs,
thus better resistance against power-analysis.

The authors in [27] state that the traditional way of reading data from RAMs
or FLASH memories (invasive attacks using mechanical probing, depackaging the
chip, etc.) is becoming very difficult due to the shrinking of the feature size or
because of hardware access control circuits. Semi-invasive attacks (chip is still
depackaged, but no direct electrical contact) are explored, including optical prob-
ing (induced transient faults in some logic gates to cause information leakage) and
eddy current attacks (inducing a large transient magnetic field near the surface of
the chip), each of them carried out while the chip is in a frozen state.

Despite the reading of a cache memory content (or any RAM) is difficult and
hard to perform with basic technical means, in a presentation from Black Hat [73]],
the author talks about the possibility of memory data acquisition: software-based
(additional software, OS-dependent) and hardware-based (PCI/PCMCIA cards,
DMA access, OS-independent). However, the hardware-based approach still needs
direct access to the machine, while the software-based acquisition is not reliable.

As presented above, retrieving sensitive data from cache memories is possible
and several techniques have been proposed to increase its security. Data scrambling
is a simple yet efficient technique to obscure plain data and can be employed in
cache memories, if specific rules are defined and followed. The next section covers
the principles of data scrambling, in respect to cache memories.

3.3 Data scrambling

Scrambling is the function of replacing a character (or byte) of data with a differ-
ent character (or byte) of data. Simply put, typical scrambling technologies would
replace, for example, the letter A with G. While this example is very simple, it
would be very easy for someone with a hacker mentality to figure out this sim-
plistic way of scrambling. A modern solution actually uses random generation of
characters to replace existing data with scrambled data. Because the characters are
random in nature, a hacker will be unable to figure out what the original data was.

In the following, D will denote the plain data, as sent by the processor on the
bus. The scrambling process transform D into a new value SD by applying an
injective (i.e. one-to-one) function f to D (i.e. SD = f(D)). The inverse process
is done at the receiver’s end.

A scrambler consists of two main blocks: a randomizer (a random pattern gen-
erator, e.g., a linear feedback shift register- LFSR), that produces a new pattern

88 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

S at each new bus cycle, and the block mixer, which performs the modulo-2 ad-
dition (i.e., bitwise XOR) between the D and S. Thus, the scrambled word is:
SD =D & S [14].

The additive scrambler is the simplest method to scramble any information.
Basically, it transforms the input data stream by applying a pseudo-random binary
sequence (by modulo-two addition). Sometimes, this sequence is stored in a ROM,
but more often is generated by a linear feedback shift register (LFSR).

The multiplicative scrambler, also known as feed-through, performs the mul-
tiplication of the input signal by using a transfer function in Z-space, thus they
are discrete linear time-invariant. While the multiplicative scrambler is recursive,
the descrambler is non-recursive. In telecommunications, the additive scrambler
needs a sync-word before transmitting the scrambled word, while the multiplica-
tive scramblers don’t need frame synchronization (also called self-synchronizing).
Both types of scramblers/descramblers are defined similarly by a polynomial of
theirs LFSRs (i.e. transfer function) and initial state.

Data scrambling is a methodology widely used in communications, to make
data unreadable to the human eye. When transmitting, a random (unique) vector is
XORed with the original data, thus scrambling it. At the receiving end, the data is
descrambled using the same vector and the original information is retrieved. It is
assumed that both parts know the unique vector which is usually generated from a
random source.

Consider D as the original plain data and SD as the scrambled data. When
transmitting, the scrambling process transforms D into a new value SD by applying
an injective function f to D:

SD = f (D) — D = f~1(SD) (3.1)

The inverse process is done at the receiver’s end. The function used is generally
a modulo-2 addition (i.e. bitwise XOR):

SD=D¢S—-D=SDaS (3.2)

Proposals and implementations of data scrambling methods and techniques in-
clude the same components as the additive or multiplicative scrambler. A US patent
from Hsu et. al. [75] in 2002 defines a scrambling circuit to protect data in a read
only memory. The implementation includes an initial value generator, a shift regis-
ter, a logic circuit, an adder and a lock circuit. The general architecture is displayed
in Figure[3.1] The scrambled data is obtained by adding the data stored in the read
only memory with the data stored in the shift register. Thus, no de-scrambling
circuit can be provided for this scrambling circuit. This is a basic and simple im-
plementation of an additive scrambler, but has the downside of not being able to

3.3. DATA SCRAMBLING &9

F1
__ 5
~2 ! ~20 ~30
! ROM DATA
|
| Pseudo ENCODED SCRAMBLED
! 2
ROM ! Seed1/Seed random DATA Adder DATA
| generator
I Clock ROM DATA OFFH :
|] I
|
1 l
1 |
r-—- T T T T T 7 |
! ~10 !
| |
! Initial value LOCK !
I | generator ‘r
? J
| |
L e e e e e —_—— e .l
~3
Reference
clock
generator

Figure 3.1: Design used in [73].

descramble the information. If the outputs of the pseudo-random generator would
be stored in a LUT or something similar, descrambling would be possible.

The authors in [74] focus on protecting the information exchange on the data
bus interface, by scrambling the information transmitted. They consider 2 types
of scrambling: pure and conditional, both designs are visible in Figure A
pure scrambler consists of 2 main blocks: a random pattern generator (block ran-
domizer, e.g. LFSR), that produces a new pattern r at each new bus cycle, and
the block ”@”, which performs modulo-2 addition (i.e. bitwise XOR) between D
(plain data) and r. By keeping the sender’s and receiver’s clocks synchronized, and
by using the same initial seed for the two LFSRs, correct decoding is guaranteed.
Conditional scrambling is slightly different from pure scrambling because the ran-
domization is controlled by an external signal, called FS (Force Scrambling). The
DCM (Duty Cycle Modulator) block works as a switch driven by FS that, at each
cycle, determines what operand v’ must be supplied to the modulo-2 adder. Thus,
if FS equals 1, the r’ operand is r, else ' = 0.

To improve the energy savings, the authors in [[74] consider using bus-invert
pure and conditional scrambling. In Bus-Invert, the current word is compared with
the previously transmitted one and if the Hamming distance between the two ex-
ceeds N/2 (for N bus lines), the complement of the word is sent on the bus. How-
ever, 2 extra bus lines are required: one signal for the occurrence of scrambling
and another to signal the transmission of an inverted pattern. By combining the

90 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

S

D, D
D 6} D, Dy D i >
> I -
BUS

BUS

"

r
r
clk | | Randomizer |— DCM
clk || Randomizer [~ ES T

Figure 3.2: Pure (left) and conditional (right) scrambling [74]].

two techniques, authors achieve a ~ 7.8% of energy saving. The proposals from
[74]) are effective for obscuring the data which is transmitted on the communication
bus (e.g. CPU-cache memory bus). For a cache memory, the methods proposed
can also be employed, with few minor changes regarding the descrambling part.

Very similar to [[74], the authors in [76] propose the same pure and conditional
bus scrambling combined with a coupling aware algorithm (they consider the effect
of coupling capacitance). The results show an improvement of ~ 10% energy
saving over generic scrambling. Because of the similarities between [74] and [76],
the same comments apply.

The authors in [77] address the problem of designing keyed permutations of
compact shape, that generate a large set of permutations when the key runs over
the key space and offers good properties against chosen plain-text attacks in the
context of physical probing. The functions proposed can be used for very fast on-
chip data scramblers, which integrate keyed permutations. Most notable results are
for a size of 32 bits: the design has only five levels of gates (depth), key size of 80
and 224 multiplexers needed. The proposal basically strengthens the encryption of
the data against plain-text attacks (e.g. probing attacks), at a cost determined by
the information size, depth, key size and number of multiplexers. It can be viewed
as a more complex solution than simple additive scrambling, but simpler than the
AES algorithm.

The authors from [78] propose a Memory Encryption Control Unit (MECU)
that encrypts all the memory transfers between the Level 2 Cache and main mem-
ory, to ensure plain data is never written to the persistent medium. Basically, the
additional unit is on the memory bus and all memory operations are mediated by
this MECU. The encryption process is based on any encryption algorithm (e.g.

3.3. DATA SCRAMBLING 91

Smartcard

Addr [* ¥ ﬁ Addr | Addr
Main O : L1/L2
:] Processor
Memory | j : Cache
Wdata | : @ |-— <« | Wdata «—| Wdata

Rdata :4p Rdata —»| Rdata

Figure 3.3: MECU architecture from [78]].

DES, AES), but with reduced overhead, by using encryption blocks or pads (gen-
erated by the MECU) which are afterwards XORed with the plain data. Because
the MECU itself can be attacked, some vital information of the encryption process
(like master key, state counter) is stored in a removable device (i.e. smart-card),
which is assumed to be removed on suspend (see Figure 3.3)). The overall addi-
tional unit has an overhead of 9% for the worst case and less than 2% for average
workloads. The proposal can be found useful for protecting the main memory
against attacks because the unit basically resides on the memory bus. However,
placing the unit on the memory bus between the CPU and L1/L2 cache is some-
how problematic because the cache memory is actually on the same chip with the
processor and timing delays must be investigated from several points of view, given
the fast speed of a cache memory.

Another work that focuses on protecting the main DRAM memory against cold
boot attacks is [22]. Here, the authors propose a solution to scramble the data
before writing it to the DRAM. The scrambling is done using a XOR circuit, a
Galois Field Multiplication of order 128 (GF128) and a Pseudo Random Number
Generator (PRNG). The GF128 block will take the address to the DRAM and a
session key as inputs to perform arithmetic operation. The outputs of this block will
XOR with the plain data to form scrambled data when writing to the DRAM. The
descramble operation is done by XORing the GF128 output with the scrambled
data. The session key is given by the PRNG and is software invisible, kept in a
hardware register until the next reset. All the design blocks are integrated into a
single chip and act as an interface between the bus and DRAM controller. Thus,

92 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

| plaintext data block | | counter data block |

0 1

XOR @ < [BlockcipherJ <—— Secret key

II Secure Processor Boundary

ciphertext data block main memory

Figure 3.4: Counter-mode encryption used in [23].

any data sent to the DRAM is scrambled. As in [[78], the design is good for securing
the DRAM against attacks, but reduces the performance of the memory system (not
sure if viable for the cache memory) and has an additional cost for implementing
the scrambling and descrambling logics.

Phase change memory (PCM) is a new technology for computer memory sys-
tems, but has some problems with the lifetime and privacy protection. In this
scope, the authors from [23]] propose a new mechanism to improve PCM-based
main memory systems. Because PRAM is non-volatile, there are privacy concerns
over the contents residing in the main memory. Thus, the proposal in [23] uses the
counter mode encryption (Figure [3.4), with the secret keys stored inside the pro-
cessor, but with additional counters for each data block (each cache line already
has a counter). This type of encryption technique is good for memories with lim-
ited lifetime (like PRAM) because it can improve the lifetime. This encryption can
also be used in DRAMS because it needs constant refresh of the data stored, thus,
reducing the power for refreshing the information. However, for cache memories,
the encryption method using counters is somehow expensive and needs a lot of
additional circuitry.

3.4 Statement of the problem

As mentioned in(3.1] as the data in cache is stored in plain text any successful attack
could reveal sensitive information. Data scrambling can solve the dissemination re-
quirement of the data stored in the cache at a reasonable performance cost because
it uses only a layer of XOR gates to combine the scrambling vector with plain data

3.5. PROPOSED SOLUTION: INTERLEAVED SCRAMBLING TECHNIQUE (IST)93

and thus the performance penalty is limited. Note that cache operates at very high
speeds and any reduction in the bus throughput has an immediate effect in the CPU
performance. To guarantee a reasonable level of security, the scrambling technique
needs to consider the following milestones.

1. Regular refresh of the scrambling vector. In order to dodge side chan-
nel attacks, the principles for dissemination must be altered regularly. The
scrambling vector which is used in the data scrambling operation needs to
be refreshed periodically. Thus, any possible leaked information retrieved
by side-channel attacks will vary from time to time, making it very difficult
to catch the true pattern.

2. Generate scrambling vectors with a high quality random source. The
periodical refresh of the scrambling vectors implies the use of random gener-
ators. True random number generators make the modeling of the source very
difficult and thus the prediction of the dissemination rules harder. Pseudo-
random number generators are classified as fast circuits, while the former are
considered slow. By mixing the two types of generators, a respectable speed
can be achieved, combined to a high degree of randomness.

3. Softly refresh of scrambling vectors, producing minimum disturbances
in time and power. Memories containing scrambled data have the problem
that any change in the scrambling vector corrupts the stored data and thus
updating strategies are needed. It is vital to avoid long elapsed periods of
time or large data transfers, because it could be detected by power or time
measurements and, thus, raise the attention of the attacker. This milestone is
the most difficult one because it involves the reprocessing of large amounts
of data in very short periods of time.

The proposed technique has the objective of securing the cache memory with
data scrambling schemes, considering the previous milestones and giving special
attention to the third one.

3.5 Proposed solution: Interleaved Scrambling Technique
(IST)

For memory systems, data scrambling is crucial when trying to secure and obscure
the stored information. In the special case of the cache memory, the speed when
generating scrambled data is vital, and thus, fast scrambling methods are advisable.

94 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

Unidirectional scrambling is not a solution because the protected information must
be descrambled when it’s needed by the CPU.

Given the previous sections, the data from the cache can be scrambled by using
a simple pure scrambler. If conditional scrambling is used (to reduce the power
consumption), a more complex logic design is needed because the critical data
must be isolated, thus scrambling only the important information. For the rest of
this section the proposed solution is presented as for scrambling the entire cache
memory. However, the same technique can be enhanced with conditional scram-
bling.

A global overview of the IST (Interleaved Scrambling Technique) proposed is
presented in Figures and [3.8] later these two figures will be discussed in more
detail. Besides the CPU and cache memory the new module containing the core of
the IST is the scrambler table (ST). In Figure@] the main content of ST is shown.

3.5.1 Scrambler Table

The central part of the ST is the ST internal table. It contains & rows of five fields
each. From left to right: sw is the youth flag, C° is the age counter zero, S° is the
scrambling vector zero, C'! is the age counter one, and S' is the scrambling vector
one. The idea is that when the CPU writes data to the cache they are scrambled
using one of the two scrambling vectors, S° or S', depending on the youth flag
(sw) state. During CPU reading, both S or S! can be used for descrambling, it
will depend of the information stored in the cache memory. Flag sw always point
to the young scrambling vector (S) which is used for writing while S*¥ is the
old scrambling vector only used for descrambling data read by CPU from the cache
memory. In the same row j the young and old roles of the scrambling vectors are
always paired.

Age counters (C°,C") account for the number of times the corresponding
scrambling vector has been used for scrambling data and for the persistence of
these data in the cache memory. Thus, if new scrambled data is stored using
S5 age counter C*" is increased by one. Furthermore, if existing data in cache
that was scrambled with S*% is overwritten with scrambled data using a different
scrambling vector then C®% is decreased by one. Consider NB¢y; be the number
of data blocks in the cache memory that contain scrambled data, the following
equality will always be satisfied,

k—1
NBey = (CP+C}) (33)
=0

While this is always true, in the IST the values of the individual age counters are

3.5. PROPOSED SOLUTION: INTERLEAVED SCRAMBLING TECHNIQUE (IST)95

Scrambler Table (ST)
ST controller
Rnd |
S S
sr(l) l U from cache
L r Lo]
from CPU —3
LT [|[_hit |
/
ST internal table
[wo [S | s& | S [S |
/ k
j——{wi | ¢ | st | S [Si 1 ows
|SWk71I Cl?—l I Sl?& | Cli1 | Si—l I
from ST contro]ler %\ MUX /

To scrambling circuit and cache memory

Figure 3.5: The scrambler table block and entries structure.

96 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

dynamically changed such that it becomes difficult to know at a given time instant
how many data blocks are using a particular scrambling vector.

The ST controller is the managing unit and contains several key registers that
are now explained. [* and 7™ are the index and tag fields obtained from the ad-
dress generated by the CPU during the write operation. From these two fields the
ST internal table index j is generated according to either schemes: the Set Ad-
dress Unsynchronized (SAU) or the Set Address Synchronized (SAS). In the SAU
scheme both I* and T™* are considered while generating j as follows,

j=I"®T* (mod k) (3.4)

which implies that the selection of the scrambling vector is a function of these
two address fields and the youth flag. In the SAS scheme only the I* is taken to
generate the ST internal table index j as follows,

j=TI" (mod k) (3.5)

While the scheme SAS is simpler to work with and as discussed later can generate
smaller STs, the SAU scheme will generate more unpredictable behaviors in the
selection of the scrambling vectors.

Inside the ST controller, register Rnd contains the last random value generated
by a TRNG module that is included in the Functional units block. The content
of this register is refreshed on demand of the ST controller and is triggered each
time a new scrambling vector is refreshed. Each time an old age counter (C*%)
of an old scrambling vector (S*7) is decremented down to 0, the content of the
scrambling vector is refreshed (S*% <— Rnd) and the TRNG is triggered again.

Register Cryr is the age counter threshold and is used for the management of
the youth flag (sw). As said before, sw always points to the young scrambling vec-
tor (S*"), which is always used for scrambling during CPU writing to the cache
operations. Consequently, age counter (C*") will tend to increase as different
writings succeed. After a number of operations the roles of young and old scram-
bling vector are changed by modifying the state of sw such that S < S*¥ is not
used for writing anymore. Inverting the youth flag state occurs if the two following
conditions are satisfied,

(C3 > Crm) A (CF™

J

first. S¥W « Rnd
:0):»{ r ;o (3.6)

second. sw; < SW;

The young age counter while increasing must equal or surpass the threshold and
the old age counter while decreasing must reach 0. Once at this point the old
scrambling vector is refreshed with the content of Rnd register and the youth flag
state is flipped.

3.5. PROPOSED SOLUTION: INTERLEAVED SCRAMBLING TECHNIQUE (IST)97

Next flags and registers in the ST controller are necessary for the management
of the age counters. Flag V'(I*) has the valid bit corresponding to the data block
pointed by I* for writing, see Figure According to the cache controller pol-
icy one of the data blocks of line I* will be selected for writing and therefore is
necessary to know if the previous scrambled data there was valid. If it wasn’t
then neither age counter is decremented. Furthermore for the same reason, after
reset with all data blocks in cache memory invalid, age counters will only be incre-
mented. Flag sr’/(I*) is the youth flag stored previously in the data block pointed
by I'* and at which the writing must proceed, see Figure Register 7"(I*) con-
tains the tag of the previous data block stored in the cache memory and pointed by
I* and selected by the cache controller for writing. The flag hit is set if the tags
T* and T" are equal with independence of the scrambled data content. This last
flag is generated even during writing, since it is necessary for the management of
the age counters.

As explained so far, after writing there are always two age counters that must
be updated, one for increment and another for decrement. The rules are specified
in the following state change formulas,

o o {hit\/(sw;ﬁsr’)\/V’, Civ+1

else, o3
. , (3.7
o5 o (hit V (sw # sr)) AV!, O —1
7 else, C’j,r,

in which j was defined in Equation 3.4/and j' = I* & T’ (mod k) for the SAU
scheme or j/ = I* (mod k) for the SAS scheme. The young age counter is
incremented only if the block of data to be written is not valid or if the previous
scrambling vector was not the same. Otherwise it remains constant. The age
counter to be decreased, commonly old but in the SAU scheme it can be a young
age counter too, is decreased if the block of data to be written is valid and the
previous scrambling vector was not the same, otherwise the age counter is kept the
constant.

3.5.1.1 ST table resource requirements

The resources in terms of area of the ST is directly related to the ratio of scrambling
vector refresh expected. Imagine the two opposite situations:

1. ST has only one row, £ = 1. Thus, a pair of scrambling vectors interleave
as young and old in order to periodically refresh their value. In this situation
the old scrambling vector will be able to refresh its content and to become

98 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

young again when the cache memory would be fully written back. Therefore,
refresh is expected to happen less often but the requirements of area will be
minimum.

2. ST has as many rows as number of data blocks in the cache memory, k£ =
NBcys. Thus each data block has associated a pair of scrambling vectors
which interleave to allow refreshment. Therefore, at any write a new scram-
bling vector will be refreshed. In this case the refreshment rate is the highest
and the needs of area will be the maximum.

It is seen then that adding more or less rows in ST becomes a trade off between the
frequency of scrambling vector refreshment and the needs of area. The higher the
refreshment rate is wished the larger area for the ST table is needed. Let’s assume
F,, to be the average writing frequency in cache memory. The average refreshment
rate of scrambling vectors 1is,

= Fs __k (3.8)

YT FE,” NBoy

where Fg if the scrambling vector average refreshment frequency.

The area requirements can be estimated at a first approximation as the number
of bits stored in the ST internal table. One row of the ST table has the following
number of bits: scrambling vectors have the same length as the data blocks n, and
the number of bits of the age counters is m. Thus the total number of bits of a ST
internal table row is (2n + 2m + 1) including the youth flag. Parameter m depends
on the scheme selected, SAS or SAU, as discussed previously in Equations[3.4]and
3.5

In the SAU scheme any age counter might accumulate a value equal to the
number of data blocks in the cache memory plus one, despite this maximum has
very low probability. Therefore, mgq,, = [logs(NBcas + 1)]. In the SAS scheme
the maximum value expected in any age counter is the number of data blocks in
the cache memory divided by the number of ways (W) and the number of rows k
of the ST internal table plus one. Hence, m,s = [logy(NBen /(W - k) +1)].

The area occupied by the cache memory Acns will be proportional to the num-
ber of bits stored, then Acyy = NBens - n. The area occupied by the ST internal
table it will depend on k and the scheme selected. Thus, the occupancy ratio of the
ST table is,

Asrsany (20 + 2[logy(NBay +)] +1) - &
Aeny NBcy - n

Agr(sas) (2n + 2[logo(NBey /(W - k) +1)] +1) - k
Aoy NBcyr - n

Qsaqu =
3.9)

Gsas =

3.5. PROPOSED SOLUTION: INTERLEAVED SCRAMBLING TECHNIQUE (IST)99

where Ag7 is the total number of bits stored in the ST internal table.

As a good trade off between refresh ratio and occupancy ratio the following

design criteria is proposed: ksqy = vV NBcy and kgos = +/NBeoy/W. As a
result, Equations [3.8]and [3.9|become,

Usau = 1/\/ NBCM
asau = (2n + 2[logy(NBear + 1)1+ 1) /(VNBew - n)

(SAS) {Usas = 1/\/ NBC]V[W

(SAU) {

asqs = (2n + 2[logy(\/ NBey /W + 1)1 + 1) /(VNBcar - W - n)
(3.10)

In Table these equations are evaluated for an architecture of 32 bits. Sizes for
the cache memory are varied from 1K to 400K data blocks. SAS schemes are
assessed for cache memories of 1, 2 and 4 ways. The maximum values are found
for the smaller cache memory (1K data block) with a refresh rate of 3.162 meaning
that on average one scrambling vector is updated after each 32 writes. Also in this
case, the area of the ST table represents an 8.4 % of the cache memory area.

Table 3.1: Evaluation of Equations[3.10|for n = 32.

W =1 W =2 W =4
NBcoyr Usau Qsau Usas Gsas Usau Qsas Usau Gsas
K % % % % % % % %

3.162 | 8400 | 3.162 | 7.412 | 2.236 | 5.171 | 1.581 | 3.607
2.236 | 6.079 | 2.236 | 5.311 | 1.581 | 3.706 | 1.118 | 2.585
1.581 | 4.398 | 1.581 | 3.805 | 1.118 | 2.655 | 0.791 | 1.853
1.195 | 3.399 | 1.195 | 2.913 | 0.845 | 2.034 | 0.598 | 1.419
1 1.000 | 2.906 | 1.000 | 2.469 | 0.707 | 1.724 | 0.500 | 1.203
20 | 0.707 | 2.099 | 0.707 | 1.768 | 0.500 | 1.234 | 0.354 | 0.862
40 | 0.500 | 1.516 | 0.500 | 1.266 | 0.354 | 0.884 | 0.250 | 0.617
70 | 0.378 | 1.169 | 0.378 | 0.969 | 0.267 | 0.677 | 0.189 | 0.472
100 | 0.316 | 0.978 | 0.316 | 0.810 | 0.224 | 0.566 | 0.158 | 0.395
200 | 0.224 | 0.706 | 0.224 | 0.580 | 0.158 | 0.405 | 0.112 | 0.283
400 | 0.158 | 0.509 | 0.158 | 0.415 | 0.112 | 0.290 | 0.079 | 0.203

SN B~

Cache memory internal structure needs to include an additional flag to make it
compatible with the IST technique. Next the main parts are described.

100 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

Cache Memory
Cache controller
N hit
T VvV, v ... | toscrambler
from CPU — D st s v table (ST)
(SD through 7 3
scrambling Sw L vl v...
circuit)
SD," vSD,”...|—f—> to CPU (SD through
scrambling circuit)
Memory
Youth Scrambled
Index Valid flag Tag Data
D=V [s] T] sb” v [s"[T D,
AN V/ I\”. Y” J
BI BI

Figure 3.6: Cache memory entries structure and main functional blocks.

3.5.2 Cache Memory

In Figure [3.6]the block diagram is presented. As formerly indicated, the size of the
cache memory is NBcys blocks of data. Considering an organization in ways, the
number of rows pointed by index I is NBcyy /W . At the same time each block of
data can be subdivided in words pointed by the less significant bits of the address,
but this internal sub-structure is not commented here because is not relevant to the
IST.

One block of data has the following internal structure B = {V, sr, T, SD} in
which V is the valid flag, sr is the youth flag of the scrambling vector used to
scramble SD, T is the tag field and SD is the scrambled data. During the writing
operation the CPU generates an index I* which points to blocks B}, B} and so on.
The selection of the way = {',”)", ...} depends on the internal cache controller
policy. It is relevant to the ST because some information of the previous data block
must be feedback in order to manage the age counters. Henceforth, for easing the
explanation way is assumed {’} unless otherwise specified. During the reading
operation the transaction is simpler because the data block is selected according to
the matching of the tag field and the age counters are not modified.

The Cache controller receives index I* and tag 7™ from the CPU. If the oper-
ation is for writing, it also receives the scrambled data SD* and the youth flag sw
from the scrambling circuit. In case of reading operation these two last data are not
required.

3.5. PROPOSED SOLUTION: INTERLEAVED SCRAMBLING TECHNIQUE (1ST)101

Scrambler Table (ST)
f)

Controller TRNG

i T«
CPU stj|c?| S0 |c}| s}

J

.9
Addressi i Data T 1" l
H—A - - J T sr’,V', hit
f \ Scrambling vector
T 1” D" Youth bit

S SW
Cache Memory
e A
sw Controller
L |— D'®S—SD’ - .
|
=
v]s] 1] sp/ |-
\ y,

Figure 3.7: IST write cycle.

The following data is sent to ST corresponding to the data block selected during
the writing operation. The flag hit, the valid flag V", the youth flag s’ and the tag
field T”, all of them necessary for the age counters management as specified in
Equation During reading, the hit flag is sent to the CPU, the s’ flag and T’
field are sent to the ST in order to make the correct selection of the scrambling
vector, and in its turn the scrambled data SD' is sent to the scrambling circuit for
descrambling and to recover the original plain data required by the CPU.

3.5.3 Read and write cycles

In Figure the elements involve in the write operation are presented. It begins
with the CPU generating the memory address and data, {7, [*, D*}. Address
{T*, I*} is sent to the ST and from it the youth flag (sw) and the young scrambling
vector (.5) are retrieved. Plain data vector (D*) is XORed with the scrambling
vector SD* < D* @ S and is sent to the cache memory together with the address
and the youth flag {T™*, I*, SD, sw}. At the same time, the cache controller sends
previous data flags {7”, sr’, V', hit} to ST to allow the correct management of the

102 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

Scrambler Table (ST)
()

Controller TRNG

i T«
CPU L.swj|cj°| S0 |c}| St

J J

Addressi T Data T | l
e ———1»» -
L[] [o [n {

sr

S
Cache Memory
e ™
Controller
|| —foewesk——
\—»V‘|sr,| HEEE
\ y,

Figure 3.8: IST read cycle.

age counters. The cycle ends with the write of SD* at the data block selected by
the cache controller.

In Figure [3.8] the elements involved in the read operation are presented. It
begins with the CPU generating only the memory address {7, /} and checking
if the hit flag is active. If it is, the following actions are done: the youth flag
(sr) is read from cache and is sent to the ST and from it the scrambling vector S
is retrieved. Once scrambled data SD is available from cache it is descrambled,
D < SD @ S, and the plain data is transferred to the CPU.

In Figures [3.9]and [3.10] two illustrative examples of the IST operation are pre-
sented. The dimensions of the cache memory and ST table here are limited to
demonstrate the management of the scrambling vectors in detail. The model for
the cache memory is simple, 64 data blocks one way. The ST table has four pairs
of scrambling vectors with the corresponding age counters and Cryy = 16. In both
examples 3000 writing operations are simulated following different strategies for
the generation of the address.

In Figure the CPU generates random address. The lines plotted show the
accumulated values of the type zero, > C? (dotted line) and type one, > C* (con-

3.5. PROPOSED SOLUTION: INTERLEAVED SCRAMBLING TECHNIQUE (1ST)103

60

50

JRPRRti

40 i

30 i

Age counters

20 4%

10 + Refresh time
instants of
scrambling

[S P S V> S [> S [N [- Y- S = O — Sg(l) vectors
0 T T)
0 500 1000 1500 2000 2500 3000
Write cycle

Figure 3.9: Simulation of the ST table management of the scrambling vectors. The
scheme is SAU, the number of data blocks is 64 and the number of lines in the ST
internal table is 4. CPU addresses are generated randomly.

60

iilttvne

50 - i
40 i E

30 i

Age counters

20 -

i
? ‘:

10 - H 3 o@) Refresh time
KoK= KKK = = F KKK H K = KKK~ Ko KK K- = XK= = K= K KKK =K 3K K K- = K XK 3 :
DA B LB A AN A AL D BALL bbb A BDBBAALD DA A oAbt A s — SO o) instants of
0 0-0-0--00 0-0-0 - - ©000-0--0 W) S, scrambling
0 00600 ---0-00---0---00-00-00000-----0.0-00-60 00000 0-6-6-6:0-0- <— S vectors
. . . y .
0 500 1000 1500 2000 2500 3000

Write cycle

Figure 3.10: Simulation of the ST table management of the scrambling vectors.
The scheme is SAU, the number of data blocks is 64 and the number of lines in the
ST internal table is 4. CPU addresses are generated incrementally with a random
increment between 0 and 3.

104 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

tinuous line) age counters separately. This information indicates after each write
how many scrambled data vectors are in the cache memory using type zero and
one scrambling vectors respectively. At any time the sum of these two lines must
be equal to 64. For the same reason their average is 32.

Some conclusions can be drawn. It is seen that the amount of scrambling vec-
tors of each type tilt over time, following an irregular profile. Never the maxi-
mums/minimums reach exactly the same value and neither the fluctuations last the
same number of write operations. At the bottom of the Figure the time instants at
which each scrambling vector is refreshed is indicated, it is marked by the dots.
There are four lines for each pair of scrambling vectors. Looking at the time inter-
vals of these refreshes they are irregular and different in each line, that makes the
prediction of them difficult from the point of view of an adversary.

In Figure[3.10]the same information is presented but now the addresses are gen-
erated with a different profile. CPU generates index incrementally by one at each
write operation, and the tag is incremented using random increments between 0
and 3. The results observed demonstrated that the refresh rate is increased because
now there are less write operations hitting the same tag. As before, the distribution
of type zero and one scrambling vectors tilts and is irregular. The time instants of
the refreshes are more frequent but again the distribution is irregular, as expected.

3.6 IST performance and efficiency

In this subsection the improvement of performance achieved by IST is estimated.
Both, the time performance and the power reduction are considered. IST is com-
pared to non-interleaved scrambling technique, i.e. after writing NBcyy/k times
into the cache memory using the same scrambling vector it is refreshed using the
TRNG and the content of the cache is updated completely for the NBcy, data
blocks by reading and scrambling data from the main memory.

3.6.1 Time performance

Assume that the average time for writing to the cache is ¢,, and for reading ¢,. If
the miss ratio is 7 then the cache reading performance is,

_ (1 B n)tr
P= 0=)t + ntw
For example for a standard cache with ¢,, = 20¢,, and n = 0.005 we would have a
performance of p = 0.909. In the IST, times for reading and writing will be some
larger amount but the performance will follow the same Equation because
there aren’t special interruptions during reading and writing cycles.

(3.11)

3.6. IST PERFORMANCE AND EFFICIENCY 105

If the standard scrambling technique is applied, after NBcy/k writings the
scrambling vector is changed and thus additional NB¢y, writes will be necessary
to refresh the content of the cache. As k is increased, k = 1,2, 3, ... the refresh rate
increases similarly to the IST with the same k. Considering this and the previous
definitions the reading performance is,

. _ (NBewm /k)(1 —n)tr
g (NBen /k) (1 —)ty + (NBew [k + NBen)ntw (3.12)
(1 - n)tr ’

(1 - n)tr + 77(1 + k)tw

that taking the same data of the IST case it gives p* = 0.833, 0.768, 0.666, 0.525,
0.369 for £ = 1,2,4,8,16, which are significantly lower performance than the
IST.

In Figure Equations and are plotted for reading to writing time
ratios between 10 to 39 and for values of £ = 1,2,4,8,16. As expected, in the
standard scrambling technique, as the refresh frequency increases the reading per-
formance becomes worse.

3.6.2 Power efficiency

Let’s assume that p,, is the average power consumption during the writing cycle of
the cache and p, is the average reading power. Then, for a standard cache memory
the power efficiency, i.e. the proportion of energy which is already used for reading
is,

S € el)/ (3.13)

(1 - n)prtr + NPwtw

During the writing cycle the amount of power needed is much higher than
during reading cycle because external lines of the chip are switched. As a first
approximation we can assume that the same proportion is like in time, i.e. p,, =
20p,. Taking the rest of values from the previous estimation we obtain an efficiency
of ¢ = 0.332. Like before, in the IST technique the model for the efficiency is the
same, Equation except that the values for the average power will be slightly
higher because of the data scrambling and the ST management, but we can expect
the same ratio between reading and writing power.

In a standard scrambling technique, during the data update phase also an extra
power p,, is consumed for a time of NBcyst,,. Thus the energy efficiency is,

106 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

0.9 -

0.7

0.5 -

reading time performance

0.3 -

0.2 -

0.1

0 T T T 1
0 10 20 30 40

t,/t,

Figure 3.11: Representation of Equations and [3.12] assuming a miss ratio
n = 0.005.

3.6. IST PERFORMANCE AND EFFICIENCY 107

0.5 - o
o
o g
o
0.4 -
)
kS
L2 03 4
=
[«5)
o}
=
2
@ 02 -
=
5
0.1 -
O T T T 1
0 10 20 30 40

P/ P,

Figure 3.12: Representation of Equations [3.13| and assuming a miss ratio
n = 0.005 and ¢,, = 20%,.

- (NBCM/k)(l - n)prtr
(NBeas 90— nipets + (NBw -+ VBl
14)
(1 - n)prtr

(1 —=n)prtr +0(1 + E)puwtw

Again, substituting with the numbers of the estimation we obtain an efficiencies
of ¢* = 0.199, 0.142, 0.090, 0.052, 0.028 for k¥ = 1,2,4,8,16. Like in the
evaluation of the time performance, the power efficiency is significantly lower in
the standard scrambling technique. This is reason why the IST is considered a low
power scrambling technique.

In Figure [3.12] the Equations [3.13] and [3.14] are plotted for = 0.005 and
tw = 20t,. Power ratio is varied from 10 to 39 and refresh coefficient in the stan-
dard scrambling technique are £k = 1,2,4,8,16. For the IST the maximum and

108 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

minimum efficiencies are 0.499 and 0.203 respectively. For the standard scram-
bling technique the maximum efficiency is achieved in the case of £k = 1 with a
value of 0.332 and the minimum is found for £ = 16 with a value of 0.015.

In the next section the performance degradation introduced by the IST to a
standard cache design is shown.

3.7 Evaluation and experimental results

In order to evaluate the proposed technique a comparison between standard L2
cache and IST is made. Area overhead, power consumption and performance are
analyzed. CACTI tool [79] is selected for the estimation of the area and power for
different size architectures while a Xilinx FPGA implementation is used for the
performance evaluation in a 16 KB L2 cache memory.

3.7.1 CACTI tool evaluation

CACTTI is a tool from HP that evaluates alternative implementations of caches for
different technologies. It includes technology data from different vendors. For this
work a 45nm technology has been selected. Different sizes of cache memories
have been generated and compared for access times, area occupied and power con-
sumption. The same simulation tool is used to create the scrambler table because
the ST is mostly a memory itself. Thus, we can obtain a good approximation of the
area occupied and power consumption, in comparison to an actual implementation.

Equation @] dictates the size of the scrambler table, based on the L2 cache
size. The results obtained from the CACTI tool are illustrated below, in Tables
[3.3]and [3.4] We consider cache sizes from 16 to 2048 KB, a line size of 16 bytes,
one bank and 1-way, 2-way and 4-way set associative.

It can be observed that as the size of the cache increases, both the area overhead
and the power consumption increase is less significant, and the access times follows
a similar trend. Area overhead is below 5% for caches larger than 128 KB, while
power consumption and access time overhead is below 28% for sizes larger than
128 KB. The access times increase reaches almost 37% for a cache size of 64 KB
(for a 1-way cache), but the values decrease down to ~<12% when the size of the
cache reaches 2048 KB (for 2-way and 4-way caches). CACTI tool wasn’t able
to simulate very small cache sizes (usually below 0.5 KB), hence the tables can
contain some "N/A” (i.e. not available) values.

Thereupon the performance evaluation is considered for the FPGA model.

3.7. EVALUATION AND EXPERIMENTAL RESULTS

Table 3.2: CACTI results for different cache sizes, 1-way set associative.

109

Power

Size (KB) Area (mm?) consumption(mW) Access time (ns)
L2 cache 16 | 0.1479 | 9455 | 0.3652 |
IST-SAU| 034 208% | N/A N/A N/A N/A N/A N/A
IST-SAS| 031 1.90% | NA N/A N/A N/A N/A N/A
L2+SAU | 1634 2.08% | 01494 N/A | 94.99 N/A | 03662 N/A
L2+SAS | 1631 1.90% | 0.1494 N/A | 94.99 N/A | 03662 N/A
L2 cache 32 | 0.2395 | 97.28 | 0402 |
IST-SAU| 05 154% | NA N/A N/A N/A N/A N/A
IST-SAs| 044 136% | NA N/A N/A N/A N/A N/A
L2+#SAU | 325 154% | 02419 N/A | 97.89 N/A | 0.403 N/A
L2+SAS | 3244 136% | 02419 N/A | 97.89 N/A | 0.403 N/A
L2 cache 64 | 05493 | 159.38 | 05015 |
IST-SAU| 072 111% | 00243 424% | 7832 32.95% | 0.2938 36.94%
IST-SAS| 062 096% | 00237 4.14% | 7853 33.01% | 0.2895 36.60%
L2+SAU | 64.72 1.11% | 05549 4.24% | 16051 32.95% | 0.5033 36.94%
L2+SAS | 6462 0.96% | 05549 4.14% | 16051 33.01% | 0.5033 36.60%
L2cache | 128 | 1.1452 | 280.19 | 0.6239 |
IST-SAU| 1.04 081% | 00318 270% | 8154 2254% | 0.2845 31.32%
IST-SAS| 088 068% | 00253 216% | 78.07 21.79% | 0.3005 32.51%
L2+SAU | 129.04 081% | 1.1565 2.70% | 281.94 2254% | 0.6257 31.32%
L2+SAS | 128.88 0.68% | 1.1452 2.16% | 280.19 21.79% | 0.6239 32.51%
L2cache | 256 | 1.5605 | 385.37 | 0.7614 |
IST-SAU| 149 058% | 00346 217% | 8107 17.38% | 0.2952 27.94%
IST-SAS| 127 049% | 0033 207% | 8124 17.41% | 0.2895 27.55%
L2+SAU | 257.49 058% | 15704 217% | 387.17 17.38% | 0.7634 27.94%
L2+SAS | 257.27 0.49% | 15704 2.07% | 387.17 17.41% | 0.7634 27.55%
L2cache | 512 | 3.1233 | 6437 | 0.9832 |
IST-SAU| 216 042% | 00377 1.19% | 766 10.63% | 0.3024 23.52%
IST-SAs| 18 0.35% | 0.0366 1.16% | 80.95 11.17% | 0.3018 23.49%
L2+SAU | 514.16 0.42% | 3.1346 1.19% | 64534 10.63% | 0.9843 23.52%
L2+SAS | 5138 0.35% | 3.1319 1.16% | 644.98 11.17% | 0.9843 23.49%
L2cache | 1024 | 5.6764 | 1034.14 | 1.3061 |
IST-SAU| 31 030% | 0.042 0.73% | 7811 7.02% | 03135 19.36%
IST-SAS| 26 0.25% | 0.0397 0.69% | 77.32 6.96% | 0.3083 19.10%
L2+SAU | 1027.1 0.30% | 56963 0.73% | 1036.98 7.02% | 1.3084 19.36%
L2+SAS | 1026.6 0.25% | 5.6877 0.69% | 1035.73 6.96% | 1.3073 19.10%
L2cache | 2048 | 10.5372 | 1762.71 | 1.822 |
IST-SAU| 448 022% | 00707 067% | 7533 4.10% | 03275 15.24%
IST-SAS| 368 018% | 00494 047% | 90.38 4.88% | 0329 15.30%
L2+SAU | 205248 0.22% | 11.722 0.67% | 2396.03 4.10% | 1.7501 15.24%
L2+SAS | 2051.68 0.18% | 105372 0.47% | 2391.71 4.88% | 1.822 15.30%

110 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

Table 3.3: CACTI results for different cache sizes, 2-way set associative.

Power
Size (KB) Area (mm?) consumption(mW) Access time (ns)
L2 cache 16 | 0.1341 127.89 | 0.5899 |

IST-SAU| 034 208% | N/A N/A N/A N/A N/A N/A
IST-SAs| 021 130% | NA N/A N/A N/A N/A N/A
L2+SAU | 1634 208% | 0136 N/A | 12803 N/A | 0591 N/A
L2+SAS | 1621 1.30% | 01354 N/A | 12802 N/A | 05909 N/A
L2 cache E7 0.1949 135.93 0.6297 |

IST-SAU| 049 151% | N/A N/A N/A N/A N/A N/A
IST-sAs| 03 093% | N/A N/A N/A N/A N/A N/A
L2+SAU | 3249 151% | 01971 N/A | 13655 N/A | 06307 N/A
L2+SAS | 323 0.93% | 01963 N/A | 13633 N/A | 06306 N/A
L2 cache 64 | 0.375 169.09 06771 |

IST-SAU[0.7 1.08% | 00241 10.90% | 7839 36.47% | 0.2924 31.68%
IST-SAs| 043 067% | NA N/A N/A N/A N/A N/A
L2+SAU | 647 1.08% | 03786 10.90% | 170.08 36.47% | 0.6783 31.68%
L2+SAS | 6443 0.67% | 03769 N/A | 16969 N/A | 06774 NIA
L2cache | 128 | 0.6825 217.97 0.7793 |

IST-SAU| 1.02 0.79% | 0.0314 4.40% | 8163 27.25% | 0.2829 26.63%
IST-SAS| 061 047% | 00235 333% | 7861 2651% | 0288 26.98%
L2+SAU | 12902 0.79% | 0.6879 4.40% | 21879 27.25% | 0.781 26.63%
L2+SAS | 12861 0.47% | 06844 3.33% | 21819 26.51% | 0.7797 26.98%
L2cache | 256 | 1.2159 317.97 0.9134 |

IST-SAU| 146 057% | 0.0342 2.74% | 811 20.32% | 0.2938 24.34%
IST-SAS| 086 033% | 00251 202% | 7811 19.72% | 02992 24.67%
L2+SAU | 25746 057% | 1.2225 2.74% | 369.1 20.32% | 0.9149 24.34%
L2+SAS | 256.86 0.33% | 1.2192 2.02% | 31851 19.72% | 0.9138 24.67%
L2cache | 512 | 2.324 460.76 1.2126 |

IST-SAU| 212 041% | 0.0377 1.60% | 76.6 14.25% | 0.3024 19.96%
IST-SAS| 124 024% | 0033 1.40% | 8124 14.99% | 02895 19.27%
L2+SAU | 51412 0.41% | 2.3338 1.60% | 46255 14.25% | 1.2147 19.96%
L2+SAS | 51324 0.24% | 23274 1.40% | 46135 14.99% | 1.2132 19.27%
L2cache | 1024 | 5.4559 1291.69 | 1.5686 |

IST-SAU| 304 030% | 00414 0.75% | 7791 5.69% | 03122 16.60%
IST-SAS| 176 017% | 00361 066% | 8097 590% | 03005 16.08%
L2+SAU | 1027.04 030% | 5471 0.75% | 1293.02 5.69% | 15704 16.60%
L2+SAS | 1025.76 0.17% | 5.4642 0.66% | 1292.2 5.90% | 1569 16.08%
L2cache | 2048 | 10.119 2235.16 2.1584 |

IST-SAU| 439 021% | 00715 0.70% | 7553 3.27% | 03271 13.16%
IST-SAs| 254 012% | 00391 038% | 7712 334% | 0307 12.45%
L2+SAU | 205239 0.21% | 101399 0.70% | 223751 3.27% | 216 13.16%
L2+SAS | 2050.54 0.12% | 10.1264 0.38% | 2235.83 3.34% | 2.1586 12.45%

i

i

i

i

i

3.7. EVALUATION AND EXPERIMENTAL RESULTS

Table 3.4: CACTI results for different cache sizes, 4-way set associative.

Power
Size (KB) Area (mm?) consumption(mW) Access time (ns)
L2 cache 16 0.1637 77.65 0.5926
IST-SAU| 0.33 2.02% N/A N/A N/A N/A N/A N/A
IST - SAS 0.14 0.87% N/A N/A N/A N/A N/A N/A
L2+SAU 16.33 2.02% | 0.1659 N/A 78.19 N/A 0.5938 N/A
L2+SAS 16.14 0.87% 0.164 N/A 77.73 N/A 0.5933 N/A
L2 cache 32 0.1963 145.99 0.6309
IST-SAU| 0.8 1.48% N/A N/A N/A N/A N/A N/A
IST - SAS 0.2 0.62% N/A N/A N/A N/A N/A N/A
L2+SAU 32.48 1.48% | 0.1985 N/A 146.57 N/A 0.6319 N/A
L2+SAS 32.21 0.62% | 0.1972 N/A 146.19 N/A 0.631 N/A
L2 cache 64 0.4032 142.59 0.6906
IST-SAU| 0.68 1.05% 0.0241 5.64% 78.39 35.47% | 0.2924 29.75%
IST-SAS| 0.29 0.45% N/A N/A N/A N/A N/A N/A
L2+SAU 64.68 1.05% | 0.4061 5.64% 1433 35.47% | 0.6918 29.75%
L2+SAS 64.29 0.45% | 0.4052 N/A 143.14 N/A 0.6911 N/A
L2 cache 128 0.6799 2194 0.7715
IST-SAU| 0.99 0.77% | 0.0314 4.41% 81.63 27.12% | 0.2829 26.83%
IST - SAS 0.41 0.32% N/A N/A N/A N/A N/A N/A
L2+SAU | 128.99 0.77% | 0.6837 4.41% | 219.84 27.12% | 0.7722 26.83%
L2+SAS | 128.42 0.32% | 0.6818 N/A 219.62 N/A 0.7719 N/A
L2 cache 256 1.2171 321.63 0.9153
IST - SAU 1.43 0.56% 0.0342 2.73% 81.1 20.14% | 0.2938 24.30%
IST-SAS| 059 0.23% | 0.0235 1.89% 78.61 19.64% | 0.288 23.93%
L2+SAU | 257.43 0.56% 1.2237 2.73% 322.8 20.14% | 0.9167 24.30%
L2+SAS | 256.59 0.23% | 1.2187 1.89% 3219 19.64% | 0.9154 23.93%
L2 cache 512 2.2562 480.72 1.2029
IST-SAU| 2.07 0.40% | 0.0377 1.64% 76.6 13.74% | 0.3024 20.09%
IST-SAS| 084 0.16% | 0.0251 1.10% 7811 13.98% | 0.2992 19.92%
L2+SAU | 514.07 0.40% | 22655 1.64% | 48242 13.74% | 1.2042 20.09%
L2+SAS | 512.84 0.16% | 2.2593 1.10% | 481.27 13.98% | 1.2031 19.92%
L2 cache 1024 4.9412 1054.92 1.5827
IST-SAU| 2.97 0.29% | 0.0414 0.83% 77.91 6.88% | 0.3122 16.48%
IST - SAS 121 0.12% | 0.0326 0.66% 813 7.16% 0.288 15.40%
L2+SAU | 1026.97 0.29% | 51758 0.83% | 1095.76 6.88% | 1.5876 16.48%
L2+SAS | 1025.21 0.12% 5.165 0.66% | 1093.99 7.16% 1586 15.40%
L2 cache 2048 10.1175 2239.42 2.1392
IST - SAU 4.3 0.21% | 0.0704 0.69% 75.16 3.25% | 0.3256 13.21%
IST - SAS 1.72 0.08% | 0.0357 0.35% 80.99 3.49% | 02992 12.27%
L2+SAU | 2052.3 0.21% | 10.1385 0.69% | 2241.77 3.25% | 2.1407 13.21%
L2+SAS | 2049.72 0.08% | 10.125 0.35% | 2240.09 3.49% | 2.1394 12.27%

112 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

3.7.2 FPGA model evaluation

The evaluation is based on the VHDL model implementation for FPGA device
Spartan6 XC6LX16-CS234. Basically, we compare our proposal versus the L2
cache memory. The IST model consists of the following components: L2 cache
memory, scrambler table, scrambler table controller, random number generator and
two data scrambling circuits.

3.7.2.1 L2 cache memory

The size of the memory selected is 16 KB, 1-way associative, line size is 128-bit
wide, while the data bus is 32-bit wide (4 words per line). Also, 4 additional bits
are appended to the word line for youth flags (one bit for every word). The address
bus is 32-bit wide: 20 tag bits, 10 index bits and 2 word bits.

The tag bits are used for the memory tag (or cache directory), while the index
bits select one set out of 1024 total sets. The last 2 bits from the address array are
used for pointing out which word is selected out of the 4 words in a line.

3.7.2.2 Scrambler table

For the cache size specified above, we considered 32 entries for the ST, SAS con-
figuration. This means that one entry can be used for 128 words (the specified L2
cache has 1024 sets of 4 words each). Each counter has 6 bits, which means that
the attached scrambling vector can be used for 32 write cycles. The scrambling
vector is 32-bit wide, like the data bus. These specifications assure that the scram-
bled data which is stored in the cache is well disseminated. The index of the ST
internal table has 5 bits and address a total of 32 rows (k = 32). Each row has 75
bits, which means that the size of the ST internal table sums up to a value of 2400
bits.

3.7.2.3 Additional circuits

The random number generator circuit used in the FPGA evaluation model is basi-
cally a pseudo-random number generator that produces a new number every clock
cycle. However, a new random vector is necessary only when conditions of Equa-
tion [3.6 are satisfied. The data scrambling and descrambling is performed by two
different 32-bit wide XOR circuits. The address j for the ST internal table is com-
puted from index bits of the memory address, by a separate 5-bit wide XOR gate
inside the ST controller.

Table [3.5]below illustrates the area utilization in the targeted FPGA device for
the L2 cache and for the IST model (ST Controller plus L2 cache). The numbers

3.7. EVALUATION AND EXPERIMENTAL RESULTS 113

Table 3.5: Area utilization and overhead in the FPGA device implementation.

Design Reg. LUT | Slice | IO Block BUFG
memory

L2 cache 2114 | 3250 | 997 103 8 2

IST model | 2169 | 3374 1038 102 8 2

Overhead | 2.6% |38% |41% | - - -

Table 3.6: Power consumption comparison in normal operation.

L2 cache L2
cache+IST
technique
Clocks (W) 0.026 0.027
Logic (W) 0.017 0.018
Signals (W) 0.014 0.017
BRAMs (W) 0.007 0.007
10s (W) 0.043 0.052
Device static (W) 0.021 0.021
Total (W) 0.129 0.141

9.3%

express how much of the FPGA board resources are used. Note that the only
noticeable increase is in the FPGA slices, which are the configurable elements -
Configurable Logic Blocks (CLBs) such as: look up tables, flip-flops and latches.
Thus, we can induce the area overhead for each resource: 2.6% more registers and
3.8% more LUTs are used by the IST technique, in comparison with a plain L2
cache.

The power analysis of the model is based on the power consumption of the de-
sign in normal operation when 480 consecutive write and read operations are per-
formed. To get conclusive results, we used the XPower Analyzer tool [80] from the
Xilinx suite which computes power consumption through the whole implemented
design, based on timing constraints and simulation read and write operations. Table
displays the power consumption summary of the plain L2 cache memory and
with the IST technique working in normal operation mode. Based on the results,
the total power consumption increase is approximately 9.3%, which makes the pro-
posed IST technique a viable low-power solution to scramble the data written in
the L2 cache.

The speed evaluation of the proposed technique is based on calculating the
average delay of the two most used paths: data input from CPU to cache memory

114 CHAPTER 3. SECURITY IN CACHE MEMORIES (IST)

Table 3.7: Delay for data and clock path.

L2 cache L2 cache +
IST technique
Read operation - Average delay (ns) | 7.544 8.691
Delay increase 15.2%
Write operation - Average delay (ns) | 3.228 4.009
Delay increase 22.3%
Average delay increase 18.75%

(write operation) and data output from cache memory to CPU (read operation).
Both the clock and data paths are considered in the comparison, therefore the delay
is calculated as the minimum period of time needed to generate the correct output,
since the clock signal appears on the path. For a clock period of 10 ns, the delay on
the longest path of the L2 cache memory with the IST technique has an increase of
18.75%;, as it is displayed in Table

3.8 Conclusions

Data scrambling techniques used on cache memories are a viable solution to im-
prove the security of the sensitive data with a minimal impact in the power con-
sumption and area overhead. In this chapter, the Interleaved Scrambling Technique
is proposed and explained, it can be employed in any cache memory, independently
of the size or type of implementation. Essentially, this technique solves the prob-
lem of high volume of data update required in memories when the scrambling vec-
tors are refreshed. It is demonstrated that the impact in average reading time, area
overhead and power consumption is very low if compared to a standard scrambling
technique. Also, using the CACTI tool and FPGA implementations, the impact
of the IST methodology on caches is evaluated. The size of the scrambler table
scales similar to the square root of the cache memory size (for the SAS scheme,
as explained in a previous section), which means that for higher cache sizes, the
impact of area overhead is small or insignificant. Also, power consumption and
delay overhead percentage decrease with almost the same ratio (see CACTI and
FPGA results tables).

Chapter 4

Defeating SPEMA and DPEMA

4.1 Introduction

Some algorithms running with compromised data select cache memory as a type of
secure memory where data is confined and not transferred to main memory. How-
ever, some attacks, like cold-boot attack, which was designed for main memories,
can also target cache memories. It exploits data remanence, i.e. a parasitic effect
present in DRAMs and even more present in SRAMs often used in caches. Thus,
a sudden power shutdown may not delete data entirely if after a short time lapse
power is up again, giving the opportunity to steal data. Many systems use cache
memory firmware cleanup but this may not be sufficient, as said below. The biggest
challenge for any technique aiming to secure the cache memory is performance
penalty. CPU and cache memory speeds are closely tied, and therefore any signif-
icant reduction of the latter becomes catastrophic to the former. Techniques based
on data scrambling have demonstrated that security can be improved with a limited
reduction in performance. However, they still cannot resist side-channel attacks
like power or electromagnetic analysis. This chapter presents a review of known
attacks on memories and countermeasures proposed so far and an improved scram-
bling techniques for defeating SPEMA and DPEMA. The methods are designed
to protect the cache memory against cold-boot attacks, even if these are boosted
by side-channel techniques like power or electromagnetic analysis. Furthermore,
the proposed solutions can be integrated as part of a wider security solution for the
memory system. The techniques are analyzed in terms of area, power and speed
whereas the level of security is evaluated using adversary models and simulated
attacks.

115

116 CHAPTER 4. DEFEATING SPEMA AND DPEMA

4.2 Motivation

In a recent report [2], the author pointed out that 62% of companies worldwide
were subject to payment fraud in 2014 and that credit/debit cards are the second
most frequent target of payment fraud. Mobile payments are a relatively new pay-
ment method, but this trend is increasing among large companies and organiza-
tions. However, there are several uncertainties about it such as disclosure of sensi-
tive information or secure transfer of information. Ensuring the confidentiality of
sensitive information is becoming more and more crucial [3]]. Very often general
purpose devices like desktops, laptops or smartphones are used for private trans-
actions with financial entities or health-care issues, among others. In the case of
devices without specialized hardware, all cryptographic operations are executed in
software, resulting in an intensive use of memory [4]. This poses sensitive data at
risk, including that stored in the cache memory [20]].

Research on SRAMs has demonstrated that data can be maintained almost in-
tact for a couple of minutes if the chip is kept at low temperatures or even at room
temperature and without power supply [81l]. This phenomenon is known as data
remanence and results show that chip manufacturers do not control memory re-
tention time as part of their manufacturing quality process. However, memory
retention time varies between devices from the same manufacturer and of the same
type but of different subtype or series. Also, low power versions of the same chips
always seem to have longer retention times. This has opened up a whole new do-
main that has been widely investigated in the last decade. The scope of this work
is in this realm.

When the CPU is running, it needs to work with sensitive data in plain form
and, depending on the operating system, it may generate several copies in memory,
exposing data to different kinds of attacks [4]]. The problem with data remanence
is that an adversary can use a cold-boot attack to extract critical data from memory
by completely circumventing the software controlling the CPU [21]. This problem
is discussed in depth in the following paragraphs.

4.3 Theoretical background

4.3.1 Attacks on memory

A simplified model of a computer memory system is presented in Fig. d.1] Only
cache and main memories are shown. Cache memory usually has two levels, L1
and L2, but this work focuses on the L2 cache because it is the larger of the two
and its size allows enough data to be stored for full computations, being considered
in some cases as a secure memory [82]. Cache memory is always integrated in the

4.3. THEORETICAL BACKGROUND 117

Memory

A
_______________________ A e
Cache Main
E b Wre data E Wrm data
| CPU D | D
: D :
; Rdc E Rdm
E High Low
b speed speedy

Chip — integrated External

Figure 4.1: Simplified model of a computer memory system.

CPU package, even embedded in the CPU chip or assembled with it using 3D
technology in the most advanced versions. This makes it feasible to use a high
speed bus for reading and writing data, keeping CPU performance at the maximum
level. Main memory is commonly external; it can be expanded and communicates
with cache through a lower speed bus. It reads data only in the event of cache miss
and writes according to some policies like write-through or write-back.

Since the CPU reads more frequently than it writes, and often does so in similar
address ranges, the main memory bus is much less used than the cache memory
bus, typically 20 times less. For this reason, loss in transmission speed in the main
memory bus has less impact on CPU performance than in the cache memory bus.

4.3.2 Cold-boot attacks

An overview of a cold-boot attack on main memory is illustrated in Fig. While
the software that stores sensitive data in memory is running, the power supply is
suddenly disconnected and the main memory is rapidly removed, connected to
a backup system and powered up again. Then, the victim’s memory content is
downloaded into a backup machine and from there critical data like encryption
keys or any other type of sensitive data is extracted [21]]. By cooling the memory
modules, degradation of volatile memory is slowed down; hence, an adversary has
more time to act. The results of the attacks in [21] and [83]] show that by cooling
a memory chip at -50°C, decay within a 1MB region is 0.13% (after 60 minutes).
Also, after a single minute without power supply, 99.9% of bits were recovered
correctly.

This attack is not feasible on a cache memory because the latter cannot be

118 CHAPTER 4. DEFEATING SPEMA AND DPEMA

Physically
removed
f—)%
Cache Main
Wre data data
CPUD D % ~ Fake
D % » CPU
Rdc Rdm
- v
Y
Sudden power cut
“ J

~
Data remanence

comes into play Power restored from
a backup system

Figure 4.2: Cold-boot attack on main memory.

physically removed. However, a variation in Fig. illustrates how an adversary
using cold-boot attack could steal data.

Once the CPU has run the software of interest and sensitive data has been
stored in memory, power is suddenly cut off and immediately afterwards the sys-
tem is booted up with an ad-hoc fake program which makes a backup copy of the
memory. Next, data is analyzed and sensitive information extracted. As an ex-
ample, this kind of cold-boot attack was conducted on several smartphones [29].
A simple reboot from an ad-hoc operating system (FROST) immediately made a
backup copy of the memory content and the secret keys of encrypted flash data
and other sensitive data were extracted with specialized software tools. The tech-
nique used managed to recover email messages, contact lists, credit card data and
other login credentials after cooling the device to 5°C. These smartphones had a
boot locking mechanism that ensured the deletion of data in the user’s partition and
cache memory. However, not all models had this option activated by default, which
might have been unknown to users.

In a recent work [82f], several techniques to improve the security of smart-
phones and tablets were discussed. In these architectures, two types of memories
internal to the CPU package can execute basic functionalities without accessing the
main RAM, i.e. iRAM and L2 cache. They are considered secure mainly because
after reboot, and this includes unexpected power cut offs, firmware cleans them
up completely. Unfortunately, as said in [84], firmware can be attacked in many
different ways, and thus it cannot be regarded as a strong security pillar.

4.4. SECURING MEMORY AT HARDWARE LEVEL 119

Power restored < ?
A

r N\
Fake
boot up OS
% Cache Main Data remanence
Wre data Wrm data comes into play
D
CPU D D
D
Rdc Rdm

“ ~ J J/
Sudden power cut |

Figure 4.3: Cold-boot attack without removing memory chips.

4.4 Securing memory at hardware level

In order to provide stronger security against cold-boot attacks, more close to the
hardware solutions are needed, as pointed out in [82]]. These can be complemented
by other firmware and software techniques, leading to a whole solution reaching
different abstraction levels of the system. A review of existing hardware solutions
is first presented, and then other possible alternatives are proposed. Most can be
placed in the general scheme of Fig. 4.4]

4.4.1 Main memory

The most secure way to protect main memory data is to encrypt it in real time. A
session key is generated and a strong, secure algorithm like AES [85]] or a low-
latency one like PRINCE [86] is used to encrypt and decrypt according to CPU
demand. The main advantage of this method is that the circuit providing the session
key will change it if a reset condition occurs, which will invalidate all memory
data completely, thwarting any attempt to read the memory after boot. Memory
bus encryption makes use of time clearance provided by the cache memory such
that the performance loss is buffered [87, 188} (89, 90, [91]]. The drawback of this
solution is that encryption must be executed by an independent co-processor to
reach enough speed and robustness, and for power consumption to remain below
reasonable limits. That is why portable devices are not expected to use this strategy
mainly owing to power consumption. Some smartphones and tablets use a kind of
memory encryption but this action is only applied during user locking / unlocking

120 CHAPTER 4. DEFEATING SPEMA AND DPEMA

More prone to
side-channel

attacks

Session S Session key

Cache Main

data Wrm data

En(SD)

i

SD

ESD

S
ty
1%
!

Rdm

Figure 4.4: Published proposals securing memory at hardware level against cold-
boot attacks.

[82]]. In [88]], a refresh mechanism was added to the above scheme which changes
the key periodically, thus strengthening protection against side-channel attacks.
The key is generated by a specialized smart card IP. In [89], this strategy was
selected to protect systems with non-volatile memory, like ferromagnetic RAM.
Encryption is executed incrementally and, in case of unexpected reboot, the whole
memory is encrypted in 5 seconds. In [90,[91], memory encryption includes a time
stamp to counteract replay attacks.

4.4.2 Cache memory

A similar protection scheme can be used for cache memory. However, no en-
cryption process can be easily selected because of the high speed required by the
bus. Scrambling techniques provide a lighter security degree. Data vectors are
scrambled/descrambled with a session scrambling vector (S) by an XOR opera-
tion [92] 93]]. As before, the circuit providing the S will change it after each reset,
invalidating data in case of attempt to read cache after boot. The advantages are
that high speed can be achieved by the scrambling and that the impact on power
consumption is negligible. In fact, Intel uses this technique to transmit memory
bus data, reducing high current peaks that could aggressively disturb the power
supply lines [94f]. The main drawback lies in that scrambling is not a securing but
an obscuring technique which provides a low degree of security and are prone to
side-channel attacks aiming to discover the S. Hence, frequent refresh of the S
could improve the level of security, but cache data could become invalidated, and
would need therefore to be updated. This would require the cache controller to shut
down completely. In [92]], scrambling was applied to data and addresses. The tech-
nique aims to defend cache memory against a wide range of side-channel attacks.

4.4. SECURING MEMORY AT HARDWARE LEVEL 121

More prone to
side-channel Dynamic

attacks e Session key
IST Power up
% refresh ey
. D~ :
\ scrambling Expired E l_q Wr stack .
! ve‘ctgjlrs' S T /l En(S) I Maln
1 able o e—
! 1
: Cache :
o Wrc i 55(0) data i Wrm
T C T
CPU = % |
D 1 se(sp) \ Enc_rypted
Rdc 1+ — 1 ' Rdm expired
i ' ES scrambling
R e ! | vectors
Expired

[oees) |
Ss ﬂ Rd stack

Figure 4.5: Interleaved Scrambling Technique. Hardware protection for cache that
can be integrated into a global protection scheme.

It consists in a two-step scrambling process for both data and addresses with two
different encryption keys stored in the main memory. Hence, a cold-boot attack on
the main memory can disclose the memory section containing the encryption keys.
In [93]], a data scrambling technique was proposed to protect cache data as follows:
the first half of a word is scrambled with the first bit of the first half, and the second
half is then XORed with the scrambled result of the first half. The advantage is
that since no scrambling vectors have to be stored in additional hardware, no data
or area overhead has to be added. However, the patterns created by this method
can be easily understood and peculiar data samples provide adversaries with a lot
of information.

4.4.3 Interleaved Scrambling Technique

Interleaved Scrambling Technique (IST) is a security solution for cache protection
against cold-boot attacks presented in Chapter [3and in [95]]. It enhances standard
scrambling [92, 93] because the scrambling vectors can be refreshed continuously
without interrupting communication between the CPU and cache. It can also be
integrated into a global protection scheme, as illustrated in Fig. 4.5]

Internally, IST works with pairs of interleaving scrambling vectors. One (the
young one) is used for writing data to and reading data from the cache memory
whereas the other (the old one) is used only for reading. Therefore, when the
pair is active, the cache memory becomes filled with data scrambled by the young

122 CHAPTER 4. DEFEATING SPEMA AND DPEMA

scrambling vector while being emptied of data scrambled by the old one. Once
the cache is cleared of all data scrambled by the old scrambling vector, this vector
expires and the pair is renewed such that the young scrambling vector becomes old
and a newly generated scrambling vector becomes the young one. After reset, new
scrambling vectors are generated again, invalidating cache data completely. IST
can be used alone to protect the cache memory, as in [93]], or be integrated into
a global security solution. Fig. 4.5 shows one possible scheme which maintains
high bus speed and a low level of power consumption compared to alternatives that
encrypt bus data. In this approach, scrambled data is also written back to main
memory. The scrambling and descrambling process is all concentrated in the same
unit, which is located close to the CPU. As scrambled data flow through all buses,
they help to keep current levels stable, as pointed out by Intel in [94]]. Data stored
in memory but not copied in cache will need the corresponding scrambling vectors
to be made available in case the CPU needs them. Thus, whenever a scrambling
vector expires, it is made available encrypted with a session key in a buffer such
that the CPU can store it in a non-cached memory page. In this way, encryption
speed requirements are much lower than those of data transfer, scrambling vectors
generated internally cannot be reverse engineered and cold-boot attacks on main
memory data and scrambling vectors are thwarted.

4.4.3.1 Side-channel attacks on IST

Even though IST refreshes scrambling vectors periodically, memories protected by
IST are still prone to side-channel attacks because the scrambling technique is not
intrinsically robust against this type of attacks. By using power or electromagnetic
radiation analysis, an adversary could discover the scrambling vector in use for
writing after several attacks. Although this would be difficult in practice, he could
theoretically descramble cache or main memory data downloaded after a cold-boot
attack. In the coming paragraphs, this weakness is explained and the methodology
to improve IST robustness against this type of side-channel attack is presented and
evaluated.

4.5 Power (P) and Electromagnetic (EM) Radiation Anal-
ysis

For the sake of clarity and without loss of generality, our discussion focuses on
a scrambling circuit using a single scrambling vector. Let us assume that a data
vector D is placed in the data bus. Before it being sent to the cache, IST mixes it
with a scrambling vector S through XOR gates such that the scrambled data vector

4.5. POWER (P) AND ELECTROMAGNETIC (EM) RADIATION ANALYSIS123

Data

] S
! ,‘)(NN, memory
N
>

Y
b
¢
!

CPUD L \f/\ Sp
>0,

GND Magnetic GND
field

Figure 4.6: Switching drivers and bus line currents excite power peaks and elec-
tromagnetic pulses which leak information about data flowing into the drivers and
buses.

SD = D & S is generated. Reverting this transformation (descrambling) is simple,
SD®S =DdSdS = D. A simplified model of the elements involved in
information leakage is shown in Fig. 4.6

Transmitting data flowing in a bus involves charging and discharging load ca-
pacitances, the parasitic capacitances of the lines themselves and of the next stage
logic. This means that in each clock cycle some of the lines first source current
from the power supply line and then drain it to ground. All switching bus lines
source currents from the power supply line Ppp whose intensity is strongly related
to the amount of scrambled data transmitted through the bus. Similarly, the mag-
netic fields of these currents add up and generate an electromagnetic wave EM pp
whose intensity depends on the scrambled data too. Hamming weight is a metric
that adds up the contributions of individual bits in a word. Hence, it is often used
to find correlations between data and power or radiated electromagnetic intensity
[96].

Let us assume that data vector D of n bits is scrambled. Once the vector is in
the bus, the hamming weight is

n—1
HW = SD(i) “.1)
i=0
where SD(%) is each one of the individual bits of the scrambled data vector. As
a result of this operation, average current intensity and average radiated electro-
magnetic power are

124 CHAPTER 4. DEFEATING SPEMA AND DPEMA

Ipp = (HW) 42)
EMpp = Y(HW)

Functions ®() and V() are unknown to an attacker but he can assume the fol-
lowing powerful hypothesis: 1) they are time invariant, and 2) they are monotonic.
With (1) any pre-attack characterization of the function is useful for a later attack,
and with (2) he can establish a one-to-one relationship between the physical mag-
nitudes and HW. Moreover, owing to (2) any minimum, maximum and average
values of the physical magnitudes can be estimated without confusion by assessing
HW and vice versa. By using a model in a simulator, the attacker estimates the
values of HW and calculates the physical magnitudes to generate a rough profile
of functions ®() and V() using measurements of the real system. Based on this,
any attack can then be conducted by assessing HW . The attacks are presented in
the context of cache memory scrambling technique in the following paragraphs.

4.5.1 Simple P or EM Radiation Analysis Attack

In a Simple P or EM radiation Analysis (SPEMA), the adversary sends profiling
data vectors D, to the cache memory bus and by measuring Ipp or EMpp he
selects the data vector maximizing HW [96]. For an n-bit bus, the maximum
hamming weight is HW,,,,, = n when all bits of the scrambled data vector are
ones, SD* = (11..1). Then, once the adversary knows the maximizing data vector
D;, he can extract .S as follows:

Dy — HWyp — HW(SD*) =n — SD* = (11..1)
o (4.3)
S*® D; = (11.1) —» S* = D,

where S* is the scrambling vector estimated by the adversary, which coincides
with the real S if the attack has been successful. Because the scrambling circuit
is linear, the attack can be conducted by subsets of bits which reduce the number
of profiling data vectors to try significantly. In this case, the scrambling vector is
estimated by subsets S fori = 0,1,2,... ; for example, S; may contain the first
subset of three bits, S7 the second subset and so on. In the end, the final S is the
intersection of all subsets:

st =5 (4.4)
Vi

4.5. POWER (P) AND ELECTROMAGNETIC (EM) RADIATION ANALYSIS125

Hamming
Profiling data Scrambling vector Scrambled data weight
D, S SD HW (SD)
0 0 0 1 0 1 1 0 1 2
0 0 1 1 0 0 1
—1 0 1 0 D 1 1 1! sp* 3 HW,_,
P
0 1 1 C) 1 1 0 2
1 0 0 0 0 1 1
1 0 1 0 0 0 0
1 1 0 0 1 1 2
1 1 1 0 1 0 1
Estimated scrambling vector
B; S
1 0 1

Figure 4.7: Example of SPEMA attack.

4.5.1.1 Example

For illustrative purposes, let us suppose a simple case of three bits, n = 3. The
numerical analysis is shown in Fig.

The true scrambling vector is S = 101. The adversary performs the attack
by trying all possible profiling data vectors D,, shown at the left side of the figure.
The scrambling circuit internally generates the scrambled data vectors SD shown at
the right side. By measuring the leakage, the adversary discovers the combination
producing the maximum hamming weight, printed in bold, which is D, = 010.
Finally, Dy is inverted to estimate the scrambling vector giving S* = 101, which
matches the true scrambling vector S.

4.5.2 Differential P or EM Radiation Analysis Attack

DPEMA is an even more powerful attack than SPEMA despite requiring a longer
time to be completed. In the context of cache memory, this attack does not discover
the whole scrambling vector at once but estimates it on a bit by bit basis [96].

Let us assume that the adversary attempts to estimate bit s; of the scram-
bling vector. He first builds two subsets of profiling vectors (data vectors): subset
D(d; = 0) contains all combinations of values at which data bit located at the same
position, d;, is constant at O and subset D(dj = 1), which is similar but now bit d;
is constant at 1. Then he applies the first subset D(d; = 0) in a continuous loop
and estimates the average hamming weight HW,,4(d; = 0) of the scrambled data.
He repeats the same action again with the second subset D(d; = 1) and estimates

126 CHAPTER 4. DEFEATING SPEMA AND DPEMA

the average hamming weight HW,,(d; = 1). Finally, he guesses bit s; of 5% as
follows:

. {o,ifﬂwavg(djz())<ﬂwwg(dj=) “5)
0

1
S, —
J 1, if HWayg(dj = 0) > HWgpg(dj = 1)

This operation is repeated for each bit and once all bits are estimated, the
scrambling vector is built as the concatenation of:

S* = (52—1752—27"'75175@ (4.6)

The strength of this attack lies in the fact that it is not necessary to apply all
combinations of the rest of bits which are not kept constant. It is even better to
change them randomly, thus reducing the amount of vectors significantly and ob-
taining a tighter estimate of the average hamming weight with very low noise.
Furthermore, the hamming weight is not really necessary since the comparison in
eq. can be made directly with the physical magnitudes Pppqyg(d; = 0) and
Pppavg(dj = 1) or EMppauvg(dj = 0) and EMppgug(d; = 1) measured by the
external instruments. One of the most dangerous points is that the physical magni-
tude can be averaged over thousands of samples, which would greatly reduce the
effect of (accidental or intentional) noise and would strengthen the signal induced
by the sought information.

4.5.2.1 Example

Fig. 4.8 shows an example of a DPEMA attack in which bit number 2 if a scram-
bling vector of 3 bits is estimated. In the first phase (top of figure), the bit in
the profiling vectors is kept constant at O while the rest of bits are changed in a
continuous loop. Meanwhile, the hamming weight is estimated from the physical
measurements of P or EM. In the example, this value is HWW, gvg(Q) = 2. In the
second phase (bottom of figure), the run is repeated but keeping the bit constant to
1 and again the average hamming weight is estimated, HW 2, 9(2) = 1. Finally, the
comparison is made and the estimated bit is S*(2) = 1, which matches the bit of

the true scrambling vector S(2).

4.5.3 Attack model

For the rest of the chapter it is assumed that the adversary can measure current con-
sumption using sensors attached to the power supply or measure electromagnetic
power radiation by means of antenna probes. These can detect internal activity in

4.6. STATEMENT OF THE PROBLEM 127

Phase bit at 0 Scrambling vector
S Hamming
Profiling data 1 0 1 Scrambled data weight
Applied in a Dy (2) SD HW,, (2)
continuus loop 0 0 0 1 0 1 2
0 0 1 /AR 1 0 0 1
0 1 0 \J 1 1 1 3
0 1 1 1 1 0 2
Average Hamming weight = 2]
Phase bit at 1 Scrambling vector
S Hamming
Profiling data 1 0 1 Scrambled data weight
Applied ina D;(2) sD HW,,, (2)
continuus loop 1 0 0 0 0 1 1
1 0 1 /AR 0 0 0 0
1 1 0 N 0 1 1 2
1 1 1 0 1 0 1
Average Hamming weight = 1
Estimated scrambling bit
sS°(2) _
1 <—
+

Figure 4.8: Example of DPEMA attack.

the memory bus. He knows the model of the L2 cache and understands the IST pro-
cess/operation. Moreover, he has control over some data vectors generated by the
CPU, which allow him to estimate the scrambling vector in use. He cannot read
cache memory sensitive data directly from the CPU, since it is assumed that the
operating system blocks protected memory addresses when the critical program is
in operation, therefore to do so the system must undergo a cold-boot attack such as
those described above. The adversary cannot read cache content from the outside
of the CPU because the former cannot be detached from the latter.

4.6 Statement of the Problem

Cold-boot attacks against cache memories protected by scrambling techniques fail
because this kind of attacks requires a brief interruption of the power supply. This
action always places the system in a reboot sequence and forces a change in the
scrambling vector that immediately invalidates the reading of cache data.

Let us consider a data word D. Once it is stored, it becomes the scrambled data
vector SD1 = D1 @ S1. Now the cold-boot attack is applied and the scrambling
vector changes to So. If the scrambled data vector S D; is then read from the cache,

128 CHAPTER 4. DEFEATING SPEMA AND DPEMA

the adversary will obtain Dy = SD1®.Sy = D1 ®S1®.52 # D1, which is different
from the original data.

However, using SPEMA or DPEMA the scrambling vector can be estimated
before and after the cold-boot attack. In this way, the adversary would know S
and So, which would allow him to produce the following result: Dy @ (51 ® S3) =
SD1® Sy (Sl D SQ) =D ®S1DS® (Sl (&) SQ) = D1, and therefore he would
recover the original data.

In Chapter[3Jand [97] a countermeasure against Simple Power Analysis (SPEMA)
attacks on caches using the scrambling technique, in particular the IST, was pro-
posed. SPEMA [96]] aims to discover S by doing a trace of the P or EM radiation
and from the picks and valleys the S is estimated. Using this side-channel leakage
an adversary can undergo the cache memory to a Simple Power or Electromagnetic
Analysis (SPEMA) or even to a more powerful Differential Power or Electromag-
netic Analysis (DPEMA). The aim of the attack is to recover the internal .S with
which the cold-boot attack can succeed afterwards.

Assume that the victim cache has sensitive data in it, scrambled with vector
S1. Immediately, the adversary attacks the victim with an SPEMA or DPEMA,
estimates the scrambling vector ST and carries out the cold-boot attack by abruptly
disconnecting the supply and booting the system with an ad-hoc operating system.
Promptly after, the adversary reads out the sensitive data from the victim cache
and stores them in a backup memory. However, if the scrambling technique is like
IST from Chapter [3] after the cold_boot attack the scrambling vector will change
to a new one, e.g. S2 such that the stolen data recovered by the adversary will be
now SD = D @& 51 ® S, in which D is the sensitive data wanted. Therefore, the
adversary will have to perform a second SPEMA or DPEMA attack to estimate .S5.
In the final step, the double scrambling is undone by the adversary on the stolen
data (SD = D& S1 & S2) © ST & S5 — D and the sensitive data is recovered
provided that the estimations of ST and S5 are correct.

However, it was seen that the countermeasure proposed was not resistant against
differential P or EM analysis attacks (DPEMA) which is explained in this chapter.
In sub-chapter ??, the limitation of this SPEMA countermeasure against DPEMA
is compared with the efficiency of the solution proposed in this work. In this chap-
ter, the SPEMA countermeasure is extended to fight against DPEMA attacks too,
so that the complete solution becomes resilient against both types of side chan-
nel attacks. The rest of the work is focused on the DPEMA attacks, however the
solution proposed and the results presented will include SPEMA attacks too.

4.7. PROPOSED SOLUTION FOR DEFEATING SPEMA 129

4.6.1 Objective

The objective of this chapter is presenting two techniques for the defeating of the
SPEMA and DPEMA side-channel attacks. In an initial phase SPEMA combines
the error detection correction and localization technique presented in Chapter [2]
with the IST technique to pursue this objective. In the next phase the same SPEMA
is improved including a masking strategy to extend the protection to DPEMA at-
tacks. Therefore, the final defeating technique proposed for DPEMA is in fact
also defeating SPEMA attacks. However, they are presented in these two steps for
better understanding the roles of each one of the techniques proposed.

4.7 Proposed solution for defeating SPEMA

In this section, the protection against SPEMA attacks is achieved by combining
an Error Detection, Localization and Correction technique (eDLC) presented in
Chapter [2| with the securing Interleaved Scrambling Technique (IST) presented in
Chapter[3] In the next paragraphs the eDLC technique is quickly reviewed and how
it is combined with the IST is explained.

4.7.1 eDLC review and integration with IST

Permanent faults in memories are difficult to mitigate, but are barely encountered.
On the other hand, transient faults that generate soft errors due to radiation are more
likely to happen and the main causes are usually high-energy neutrons and alpha-
particles. Dynamic RAMs are susceptible to radiation-type errors that manifest as
unidirectional bits flips (due to the capacitor inside the DRAM cell). eDLC creates
a full adder tree that generates redundant bits (carry and sum) at each subset of
three data bits, during the writing operation of the cache memory as it is illustrated
in Figure The redundant bits count the number of 1ns in the data subset and
are appended to the data bits when they are stored in the cache memory. During the
reading phase, the redundant bits are checked in the eDLC unit and in presence of
an error they are used for localizing and correcting the data transferred to the CPU.

When data include eDLC bits the IST is organized as follows. After the CPU
sends data, the eDLC unit adds redundant bits, data vector D becomes (D, v (D))
where 1) (D) are the redundant bits. In the scrambler table of the IST technique, the
scrambling vectors are also extended with additional bits to scramble the redundant
bits of the data. Thus we have (S, Sy) being S’ the bits scrambling data D and .S,
the bits scrambling the redundancy (D). The scrambled data stored in the cache
memory, (SD, SR) are finally generated as follows,

130 CHAPTER 4. DEFEATING SPEMA AND DPEMA

Writing S—
phase "“:“: ::_";ﬂ’;m
FAtres —
data bits data bits —
S I S g =
D D
data redundant
data
‘ Reading ’
phase

CPU eDLC] ~ pe=(J== L2 Cache

D FA trze D
corrected r=dundant
data -‘ data bits data

data bits

Figure 4.9: The error detection, correction and localization technique (eDLC).

SD=Da&§
SR =1 (D) & Sy

As was explained before, when the SPEMA attack is conducted it searches for
the maximum hamming weight in the cache memory data bus carrying the scram-
bled data, (SD, SR)". However, now the search that the adversary makes in the
data space cannot be exhaustive because the redundant bits v (D) are internally
calculated from D and cannot be freely imposed. During the search, e.g. think
of the brute force strategy, two possible end points can be reached: [} only one
maximum, (SD, SR); orl 2| More than one maximum are found, (SD, SR)},

4.7)

1. In the case of (SD, SR);; the attack is straightforward. If the number of bits
in SR is less than the number of bits in SD the unique maximum must be
((11...1), SR) being SR of no relevance for the attack. Then the scrambling
vector is found with S = D",

2. Inthe case of (SD, SR)}, the maximum is not unique and this means that dif-
ferent values of D} may give the same hamming weight HW* = HW (D} & S)+
HW (¢ (D}) @ Sy) fori = 1,2,.... This introduces an uncertainty to the
adversary because now the reversing function Sp = D" may not be valid. In

4.7. PROPOSED SOLUTION FOR DEFEATING SPEMA 131

Scrambling vector

S S,
1 0 1]1 0| Hamming
Data with eDLC Scrambled data weight

D v (D) SD SR H
0 0 0]0 O 1 0 1(1 o0 3
0 0 1]0 1 1 0 01 1 3

0 1 o0j0 1 1 1 1(1 1 5] *
0 1 1)1 0O 1 1 0|0 O 2
1 0 00 1 0 0 1|1 1 3
1 0 1(1 o0 0 0 0|0 O 0
1 1 01 o 0 1 1]0 O 2
1 1 1|1 1 0 1 0|0 1 2

Table 4.1: Example of unique maximum.

general, there will be several values to consider and in particular even none
of them may include the expected SD = (11...1).

4.7.1.1 Example of unique maximum

Table [4.1] presents a numeric example of case|[l]

At the left we have 3 data bits with 2 check bits counting the number of ones in
data. All possible values of data bits are listed. At the top we have the scrambling
vector (101,10) and below that, the scrambled data (SD, SR). At the right, the
hamming weight is evaluated. We can see that a unique maximum exists with a
value of 5 and it corresponds to SD = (111). Therefore, the scrambling vector
can be discovered by complementing the data D* = (010) giving S = (101).

4.7.1.2 Example of multiple maximums

Table [4.2] presents the numeric example of case 2] The content of the Table is the
same except that now Sy, = (01) instead of (10). When the scrambled data is
calculated, two maximums are found with hamming weights equal to 4, being the
corresponding data D* = {(011),(110)}. None of them contain the scrambled
data SD = (111) and as a consequence the scrambling vector cannot be obtained
inverting any of both data.

The fact that case [I] or 2] happen it depends on the scrambling vector, and in
particular of the Sy, segment of it. The countermeasure against SPEMA attack
is based on the following principle. Segment S is not completely generated at

132 CHAPTER 4. DEFEATING SPEMA AND DPEMA

Scrambling vector

S S,
1 0 1[0 1| Hamming
Data with eDLC Scrambled data weight

D w(D) SD SR H
0 0 0|0 O 1 0 1(0 1 3
0 0 1|0 1 1 0 00 O 1
0 1 0]0 1 1 1 1(0 O 3

0 1 1|1 O 1 1 01 1 4 | *
1 0 0|0 1 0 0o 1]0 O 1
1 0 1(1 O 0 0 0|1 1 2

1 1 01 O 0 1 1]1 1 4 | *
1 1 1|1 1 0 1 0|1 O 2

Table 4.2: Example of multiple maximums.

random but a filter is applied to the random generator such that case [2] always
happens.

4.7.2 Scrambling vector redundancy filter

The eDLC coding subdivides data in subsets of three bits and adds two additional
bits corresponding to the Berger code of them, like the configuration shown in the
examples of tables and Let’s assume that D3 = (dg,dy,dp) is one of
these subdivisions. eDLC coding adds the carry and sum bits of the addition of
these bits such that we have the codeword space D% = (da,dy,dy, ¢, s), where
(¢,8) = >, di- To guarantee that after scrambling we will reach case [2| scram-
bling vectors are generated in the non-codeword space such that never all 1ns are
found in the scrambled data. Let’s assume that our subset of bits scrambling D? is
S® = (82,51, 50, 8¢, 85). The following generating function assures this condition,
that set S° ¢ D5 and that multiple maximum hamming weights will always exist
in the scrambled data.

82, 81, 80, S¢) = rand
(82,51, 50, S¢) () 48)
S§s = S2D 51 D so

where rand () is the random generator function and bit sg is the NXOR of the
three most significant bits. Table shows the codeword space of D and the
non-codeword space of S°

4.7. PROPOSED SOLUTION FOR DEFEATING SPEMA 133

Table 4.3: Codeword and non-codeword spaces for D> and S° respectively.

D5 55

b2|b1|b0|c|s s,2|sl|so|sc|sS
0J]0 O O 0 O 110 0 0 0 1
510 0 1 0 1 310 0 0 1 1
910 1 0 0 1 410 0 1 0 O
14({0 1 1 1 O 6|0 0 1 1 O
71 0 0 0 1 810 1 0 0 O
211 0 1 1 0 (0 1 0 1 0
261 1 0 1 O 13/0 1 1 0 1
31{1 1 1 1 1 510 1 1 1 1
611 0 0 0 O

811 0 0 1 0

211 0 1 o0 1

2311 0 1 1 1

2511 1 0 0 1

271 1 0 1 1

2811 1 1 0 0

$(1 1 1 1 0

4.7.2.1 How it works

Consider the case where the adversary attacks the system by scanning all possible
values of the data in a subset base. First, he takes the three data bits D3 and gen-
erates all possible combinations, detects the maximums of the energy and records
the values giving these maximums D3*. Then moves to the next subset D$, repeats
the procedure and identifies the maximums D3*. He continues until all subsets are
scanned and the maximum subsets are created. Finally, he combines all the max-
imum subsets to create the set of data D* giving the maximum hamming weighs
which are the candidates to extract the scrambling vector S using the equation
S = D". However, most of the times this equation will fail because of the multi-
plicity of the maximum hamming weights.

In Table[.4]this multiplicity number is presented, all possible hamming weights
for the scrambled data SD®> = D® @ S° are shown. At the top and at the left we
have all possible values for S° and D° respectively. When the adversary scans all
possible values for the data vector, this is equivalent to sweep the matrix column-
wise. For each of the columns we count the number of maximums found. This
information is summarized below the table.

In a non-protected cache using a scrambling technique the number of elements

134 CHAPTER 4. DEFEATING SPEMA AND DPEMA

Table 4.4: Hamming weights for the data vector and scrambling vector spaces.
HW (SD?®) s®

1 3 4 6 8 10 13 15 16 18 21 23 25 27 28 30
o121 2|1|2|3|4(1|2)|3|4[3]4]|3]|4
51121123412 (3|4)1|2(3]4]|3|4
9112341212343 |4(1]2]|3]|4

DS 4143121212143 |4|3[4]3]2]|1
7112343434221 |2|1]2]|3]|4
2413121434321 |2(1]4]3|[2]1
26|14 (341321432143]21|2]1
3114134343214 |3[2]1]2|[1]2]1

maxHW*(4 3 4 4 4 4 4 4 4 4 4 4 4 4 3 4
#off 4 4 2 2 2 2 2 2 2 2 2 2 2 2 4 4

Top number of maximums = 4 (for 4 cases)
Bottom number of maximums = 2 (for 12 cases)
Average humber of maximums = 2.5

in the set D* is one and then .S can be extracted immediately. With the protection in
the most favourable situation any DZ-5 will have at least 2 maximums and therefore
the total number of elements in the set D* will be the combination of all the subset
values, that is 2! where [is the number of subsets. In the worst case the number of
maximums in all the subsets will be 4 and thus the total number of elements in D*
will be 4'. In the Table 4.5/ these two limits are calculated for different sizes of data
words. The average number of maximums is 2.5' as indicated in Table It can
be seen that after 32 bits the number of elements that the hacker has to investigate
is significantly large and for higher number of bits it becomes impractical.

A program has been made in C++ that emulates the eDLC and ITS units using
the non-codeword generation for the scrambling vectors. For 12 data bit lengths,
brute force attacks have been programmed scanning all the data space. One attack
means that a scrambling vector is generated and data is scanned exhaustively while
the maximum hamming weights are saved and counted. These results have been
registered for 3,000 attacks and are shown in the histogram of Figure 4.10]

As it can be observed, in 1.008 attacks, the number of maximum hamming
weights have been 16 while in 15 attacks the number of maximums have increased
to 256, as predicted in Table[d.5] The average number of maximums is 37.92, very
close to the predicted average. In any attack a unique maximum is not found which
confirms the validity of the technique against SPEMA attack.

In Fig. an overview of the SPEMA cache protection is shown and in
Figure 4.12] a detailed scheme for the writing cycle can be seen. From now on this

4.7. PROPOSED SOLUTION FOR DEFEATING SPEMA

Occurrences

Table 4.5: Number of elements in the set of maximums D*.

Data word |# subsets # Elements in D *
length [min avg max
8 3 8 15 64
10 4 16 39 256
12 4 16 39 256
14 5 32 97 1024
16 6 64 244 4096
20 7 128 610 16384
24 8 256 1525 65536
28 10 1024 9536 1048576
32 11 2048 23841 4194304
40 14 16384 372529 | 268435456
48 16 65536 2328306 | 4,295E+09
56 19 524288 | 3,638E+07 | 2,749E+11
64 22 4194304 | 5,684E+08 | 1,759E+13
1400 -
1216
1200
1000
800 -
600 -
400
200 - 105
15
0 .

16

32

64

of maximums in D*

128

256

135

Figure 4.10: Histogram of number of maximums found in the D* set for 12 data
bits after 3.000 attacks. Average is 37.92.

136 CHAPTER 4. DEFEATING SPEMA AND DPEMA

MNon-code
word random
generator

Scrambling
table

(5.5y)

> o
A =

(D,¥(D)) (SD,SR)

redundant data

CPU L2 Cache

eDLC

o |8

Figure 4.11: Overview of the IST with SPEMA protection.

combined technique IST-eDLC will be refered as ISTe.

4.8 Proposed solution for defeating DPEMA

This section presents the solution to protect the cache memory against cold-boot
attacks boosted with DPEMA. The idea is to reduce the amount of information
leaking from the system and to modify the correlations such that confusion pre-
vents proper operation of the attack model, that is to prevent the analysis with
DPEMA from revealing the true scrambling vector. This solution is build over the
countermeasure ISTe explained in Section In order to extend the ISTe tech-
nique to the protection of DPEMA attacks a small modification of Equations {.8]is
applied as it is explained in the next paragraphs. The purpose of this modification
is to reduce to the half the non-codeword map shown in Table but by keeping
the properties of the technique. With this reduction we will obtain some additional
protection as it will be shown in the experimental results Section, particularly for
the extension of the DPEMA countermeasure.

As a quick remind of the ISTe technique, remember that data vector bits (D?)
are separated in groups of three bits to which two bits are appended corresponding
to the sum and carry bits. Therefore, each data vector D3 = {..., (da,d1,dp)?, ...}
is first appended with the error detection and correction bits and transformed to the
new vector D° = {..., (da,d1,dp)?, ¢!, s%,...}. Then the scrambling transforma-
tion is applied as in any regular scrambling technique, cf. Figure In corre-
spondence, the scrambling vector provides redundant bits S% = {. .. (s2, 51, 80)’,

4.8. PROPOSED SOLUTION FOR DEFEATING DPEMA 137

Scrambling vector S°

s D’ | e (8,8,8) S0 s sD’
| :)
2 \ /C) > ss'
gbiue b«
CPU»[+—<+* (dddy) > (s
n to cache
2 LS oo -t gt memory
A 9Cul ______________ _____>SCHI
>(d,dd) 1= === === > (sdysdysd,)"
3
N 7

Figure 4.12: Overview of the writing cycle in the IST — eDLC technique.

st st ...} to protect data redundancy.

c? = 8?

These bits s, s% are generated in such a way that the set of scrambling vectors
belong to the non-codeword of the data vectors. This can be achieved using the
Equations 4.8| which generate a set of 16 non-codewords and is the case proposed
for the ISTe when it is applied standalone. This non-codeword set can be reduced

to the half if the following equations are applied

(s2,81,80) = rand()

Se = not(carry(sa, $1,80)) = S251 + $250 + $150 4.9

ss = not(sum(sa, s1,50)) = s2 © 51 D So

in which now the bit s is also calculated from the random bits (s2, s1,s0) and
that gives additional protection. Contrary to the intuition, generating s’ and s’ ran-
domly would otherwise compromise the security. This last facts will be illustrated
in the results sub-chapter 4.9

In the following subsection it is demonstrated that ISTe is not secure enough
against DPEMA attacks.

4.8.1 Example of DPEMA attack on ISTe

In a DPEMA attack, differences in the physical magnitude (current consump-
tion/EM radiation power) are correlated to the state of internal bits [96]. With
regard to cache memories, the internal bits to be correlated with the physical mag-
nitude are the scrambled data ones, SD° (Figure .

For simplicity and without loss of generality, consider a bus of three bits, i.e.
the three data bits plus two redundant bits as illustrated in Figure First the
adversary prepares data vector sets for the attack (refer to Subsection #.5.2)), the

138 CHAPTER 4. DEFEATING SPEMA AND DPEMA

Table 4.6: Zero and one data vector sets for the DPEMA attack in a three bit bus
example.

Ds(a’2 =0) Ds(dl =0) Ds(d0 =0)
d,d d, c s d,d d, c s d,d d, c s
0 0 0 0 O 00 0 0 O 000 0 O
0 01 0 1 00 1 0 1 01 0 0 1
0 1 0 0 1 1 0 0 0 1 1 00 0 1
0 1 1 1 O 1 0 1 1 O 1 1.0 1 O

Ds(d2 =1) Ds(d1 =1) Ds(d0 =1)
d,d d, ¢ s d,d d, c s d,d d, c s
1 0 0 0 1 01 0 0 1 0 01 0 1
1 01 1 0 01 1 10 011 1 0
1 1 0 1 0 11 0 1 O 1 01 1 0
1 1 1 1 1 11 1 1 1 1 11 1 1

zero vector set D(d; = 0) and the one vector set D®(d; = 1) as shown in Table
It includes the sets for each one of the data bits.

The attack consists in estimating the average hamming weights for each one
of these sets. The adversary activates the system and, for example, starts by ap-
plying the zero set D®(dy = 0) in a continuous loop such that he excites current
consumption and EM radiation power at a stable rate. He calculates the aver-
age of these physical magnitudes and then estimates the average hamming weight
HWye(do = 0). By repeating the same process with the one set, he obtains
HW44(d2 = 1). Finally, with Equation he guesses bit so of the scrambling
vector as,

0,3 f HWapg(da = 0) < HWapy(dy = 1)
53 =4 7, if HWang(dy = 0) = HWapy(dy = 1)
1,if HWopg(dy = 0) > HWopg(dy = 1)

Following the same methodology bits s1 and sg are guessed too, it is unnecessary
to do predictions for bits s. and s because they are only part of the error correction
scheme.

In Table the complete calculations are shown. It is divided in four sub-
tables: (I) has the matrix of hamming weights generated in the data bus after
scrambling the data vector D° (shown at the left side of the matrix) with all pos-
sible scrambling vectors S5 (at the top side of the matrix), (II) has the average
hamming weights HW,,4(d2 = 0) and HW,4(d2 = 1) generated after running

4.8. PROPOSED SOLUTION FOR DEFEATING DPEMA 139

Table 4.7: Example of DPEMA attack applied to a three bit data bus with ISTe
scrambling technique. (I) is the matrix of hamming weights generated in the data

bus after the scrambling. (II), (IIT) and (IV) are the average hamming weights used
to estimate bit so, s; and sq respectively.

D <

N~

HW,, (d, =0) g eed23 $23 $23 F18 433 428 428 428
HW,, (d, =1) Eeeel 28 428 428 433 $18) $23 P23 23 ||

Estimated s, [T
D

C
HW,,, (d, =0) RS ed+2.3 <423 433 428 423 18 428 428
HW,, (d, =1) aPeed 2.8 428 418 23 428 433 23 #23
SN EICR 0--- -0--- -1--- -1--—- -0-- -0--- -1-- -1---

HW,,, (d, =0) PR R 23 433 423 428 $23 428 418 428
HW,,, (d, =1) IoeBed {28 <+1.8 428 423 428 423 33 23
SR -0-- -1~ --0-- -1-- -0-- -1-- -0- -1--

vV

140 CHAPTER 4. DEFEATING SPEMA AND DPEMA

the sets D3(dy = 0) and D?(dy = 1) respectively. From these averages the esti-
mation of bit s9 is made and shown at the bottom of this sub-table. Sub-tables (I1I)
and (IV) show the same information but for bits 1 and O of the data and scrambling
vectors giving the estimations of s; and s(respectively.

Let’s focus on one particular case. Assume that the internal scrambling vec-
tor is S° = (101 01), cf. label (A) in the Table. When the CPU sends data
vectors D® = {000 00,001 01, ...,111 11} to the scrambling circuit, the ham-
ming weights HW = {3,1,3,4,1,2,4,2} are excited in the data bus, see column
under label (A). Based on this fact, the adversary starts exciting the scrambling
circuit with the zero data vector set D3(dy = 0) that will excite in the data bus
only the hamming weights {3,1,3,4}. After averaging them the adversary ob-
tains the average hamming weight, | HWy,4(d2 = 0) = 2.8, cf. label (B). Next,
he excites the scrambling circuit with the one data vector set D®(dy = 1) that
will produce in the data bus only the hamming weights {1, 2, 4,2} and obtains the
new average hamming weight HW,,,(d2 = 1) = 2.3 cf. label (C). Finally, since
HWang(da = 0) > HWyye(da = 1), bit s is correctly estimated as s5 = 1,
according to Equation cf. label (D). The estimates of bit sy for the rest of
scrambling vectors are provided along the same rows. The smallest of the average
hamming weights is the one that always determines the corresponding scrambling
vector bit, cf. red arrows. Sub-tables III and IV repeat the attack for bits s; and sg.
In all cases, the estimate of the scrambling vector matches the bits of S°.

Next, the countermeasure against DPEMA attacks is presented.

4.8.2 DPEMA countermeasure

Random masking 1STe (RM-ISTe) is a strategy for balancing average hamming
weights HW,4(d; = 0) and HW,,4(d; = 1) to make them equal or randomly
unequal in order to render Equation4.5]useless. The circuit schematic of this coun-
termeasure is shown in Figure 4.13]in which the red part shows the modifications
to include this random masking.

A random bit generator providing bit r is added to the previous design. In fact
this generator already exists and only an extra function is added to it. This bit
changes randomly after each CPU write cycle. For » = 0, the scrambling vector is
taken as it is whereas for » = 1 the scrambling vector is inverted before scrambling
the data vector. Once the scrambled data is stored in the cache, bit r is appended
to it. Therefore, the scrambled data vector which is sent to the cache memory is
SD3 = (SD?,), where bit r equally affects all scrambled data bits.

To better understand how the countermeasure works, Figure [4.14] presents the
flowchart of the write cycle including an example on 9 bits. When the write cycle
begins, the CPU generates the data vector D? that needs to be stored in the L2

4.8. PROPOSED SOLUTION FOR DEFEATING DPEMA 141

Scrambling vector S°

| (stlso)i Si S,
L /J, | ‘ N
Random bit 3 | K\
generator]7 L
7
D3 D° 1 r N
)
'
| sD°
i g ; ;
s' A ss'
e A :
3 N s ,
CPUpo 7 s (d,d,d,)’ (sdsd;sdy) | L gps
. o to cache
T I > 88 memory
BN et > g0ttt
> (d,did)) M --r e > (sd,sd,sd,)™
N 7 J
Figure 4.13: Overview of the RM-ISTe technique.
METHODOLOGY EXAMPLE
Retrieve scrambling .
CPU generates data vector () from Data vector Scrambling vector
vector (%) scrambling table 011100101 010011110
Append carry and sum Append 2 redundant bits
N R R Append carry and sum Append redundancy
e || g imiobiiors | | aisorior s
Generate the .
random masking Generalte rbit
(r) bit 2
Y Y
Invert §° 101 01 100 10 001 10
N —
XOR vectors D° and $° XOR vectors D° and $°
generate scrambled data SD° 001 00111 00011 11

Store SD° and Store SD° and r
rin L2 cache 0010011100011111

Figure 4.14: Architecture flowchart of the write cycle in the RM-ISTe technique.
An example on 9 bits is included.

142 CHAPTER 4. DEFEATING SPEMA AND DPEMA

cache. At the same time, a scrambling vector S is retrieved from the scrambler
table. The redundancy is calculated for the data vector (for every 3 bits of data, a
carry and sum bit are appended) and D? is generated. Similarly, the redundancy for
S3 is computed according to Equation and S° is generated. Then, the random
masking bit r is obtained from the random generator and its value is checked. If
it is 1, S° is inverted and XORed with D® generating the scrambled data SD?
otherwise the inversion of S° is not performed. Finally, SD? is stored in the cache,
together with the random masking bit r.

4.8.3 How it works

Table [4.8] presents the same DPEMA attack example as in Table but for the
RM-ISTe technique. It exemplifies how the countermeasure works and as before
it is made on a three bit data bus architecture. Notice that, since the scrambling
technique is bit-wise, the conclusions of this example can be extended to any data
bus size.

The table is divided in the same four sub-tables (I)—(IV) as before. Sub-table (I)
contains the matrix of the hamming weights generated in the data bus by the scram-
bling operations and sub-tables (II) to (IV) have the average hamming weights used
by the adversary to estimated the scrambling vector bits. Unlike in the previous ex-
ample (Table[.7) now the top row of matrix (I) has not only all possible scrambling
vectors S° for three bits but their inversions S®. That is because each time the CPU
writes, the data vector D° can be randomly scrambled with S° or S5. A second
difference in matrix (I) is that the hamming weights are printed in three columns
(HW /2, HW / t1, HW / t0) for each scrambling vector S°. Each of these columns
indicate a random selection of the scrambling vector S® or S° so at three differ-
ent time instants (¢2, t1 and t0) the hamming weight obtained after the scrambling
operation can be different. The background color of each number indicates what
scrambling vector has been used (green S %) or (pink ?).

As before, we will examine the case for the scrambling vector S° = (101 01),
cf. label (A) whose inverted value is S5 = (010 10), cf. label (B). Suppose that
the adversary starts, at time instant ¢2, attacking bit s9 and for this purpose he first
excites once the scrambling circuit with the zero set D5(de = 0). He captures
the hamming weights {2, 1, 3, 4}, cf. label (C), and obtains the average hamming
weight HW4,,4(d2 = 0) = 2.5, where three out of four values correspond to the
use of S° and one to the use of S5. Then, he applies the one set D°(dy = 1)
and captures the new values for the hamming weights {1, 3, 4,3}, cf. label (D),
and estimates the average hamming weight HW,4(d2 = 1) = 2.8. In this second
estimation, two out of four hamming weights are generated by S® while the other
two are generated by S. He finally applies eq. and estimates s5 = 0, cf. label

4.8. PROPOSED SOLUTION FOR DEFEATING DPEMA 143

Table 4.8: DPEMA attack applied to RM-ISTe countermeasure.

Randomly Randomly Randomly Randomly
inverted inverted inverted inverted
HW [HW [HW v HW [HW [HW v HW [HW [HW v HW [HW [HW v
t2 | tl t0 11100 t2 | t1 t0 11001 t2 t1 t0 10101 t2 t1 t0 10010
3 2 3 & 3 2 2 3 2 3 3 3 k 2 3 3 2
3 2 3 3 3 3 3 4 1 1 4 1 1 1
2 2 3 3 4 1 1 2 2 3 2 1 1 1 :
5 2 3 2 1 1 il 1 1 il 4 il 3 3 2 3 I
D 2| 2|3 44| 2 1|41 3|32
3 2 3 1 4 4 - 2 3 3 1 4 4
2 3 2 3 2 2 2 1 il 4 il 1 1 1
3 3 2 3 3 2 3 3 2 3 2 2 3 3
HW,,, (d, = 0) (et 25 s 28 1 23 U 25
HW,, (d, =1) BReees
Estimated s ,
HW,,, (d; = 0) PUJeS
HW,, (d, =1) Pibges

HW,, (d, =

avg

Randomly Randomly]\ B Randomly Randomly
inverted inverted inverted inverted
HW [HW [HW v HW [HW [HW M
t2 tl t0 [001 10 t2 t1 t0 00011
3 2 2 2 2 3 2 3 2 2
3 3 3 3 2 3 3 3 3 2
1 4 4 4 4 3 2 2 3 2
DS 1 4 1 2 2 3 3 3 I
1 1 1 1 4 2 3 3 2
1 4 1 1 2 3 2 3
2 3 2 2 2 2 3 3|
2 2 2 3 2 3 3 2
HW,,, (d, = 0) Q%
HW,,, (d, =1) pEogeed

Estimated s,

Estimated s ;

144 CHAPTER 4. DEFEATING SPEMA AND DPEMA

(E), which becomes wrong because so = 1.

Next, the adversary repeats the procedure to obtain bit s;, but now when he
applies the zero and one sets at time instant 1, he will obtain different selections
for the S° and S° scrambling vectors, cf. labels (F) and (G). After calculating the
averages, he will obtain two equal values, HW,4(di = 0) = HWyye(di = 1) =
2.5, and consequently it will not be possible to reliably estimate the corresponding
scrambling vector bit s] =7, cf. label (H). Finally, by repeating the process at the
time step t0 for the last bit, the estimation obtained is s;, = 1, which in this case is
correct by chance, cf. label (I).

DPEMA are attacks applied in loops because they benefit from the reduction
of noise. Note that, in RM-ISTe coding, if the sets are applied in loops or similarly
over thousands of data samples, the estimates of the hamming weights will balance
each other for the two sets tending to reach the same value, i.e. HW,4(d2 = 1) —
2.5 and HW,4(d2 = 0) — 2.5. Therefore, random masking hides the sensitive
information as the attack extends over time.

The metric used in the results section to evaluate countermeasure leakage is
reviewed in the following section.

4.9 Evaluation and experimental results

The proposed technique RM-ISTe is evaluated on a virtual implementation of the
scrambled cache memory where several switches configure different kinds of coun-
termeasures. The experiments are compared to the previous techniques IST and
ISTe presented in Sections and ?? [95,197].

The evaluation of the security is done by calculating the information that leaks
through the hamming weight. The leakage function L(s) which is based on infor-
mation entropy [98]], evaluates how much close are the estimated scrambling bits
s; from the real ones s;. This function is bounded in the interval 0 < L(s) <1lin
which 0 means an always wrong estimation while 1 corresponds to always correct
estimation. The derivation of this function is presented in the following subsection.

4.9.1 Leakage function

In information theory, the term entropy refers to Shannon entropy [99], which
quantifies the expected value of the information contained in a message and is
typically measured in bits, nants (natural logarithms or powers of e) or bans (dec-
imal digits, base 10 logarithms). Basically, it is a measure of the uncertainty in a
random variable, the average unpredictability, which is also equivalent to its infor-
mation content (with the opposite sign). If the information can be represented as

4.9. EVALUATION AND EXPERIMENTAL RESULTS 145

Ambient
(countermeasure)
noise

H(s|s")

H(s) Communication 1(s,s°)

N |:> channel :> s

(attack)

Figure 4.15: Communication channel model used to evaluate the leakage.

a sequence of independent and identically distributed random variables, the limit
of Shannon’s entropy provides the best lossless encoding or compression. With re-
spect to the proposed model, the entropy can be used to create a metric to evaluate
the attack success. The success of an attack relies on the energy dissipated during
the attack, therefore the hamming weight in the scrambled data. This metric must
evaluate how close the adversary is from revealing the original scrambling vector.
We consider the hamming weight as an accurate depiction for the radiated energy
since a bit value of 1 symbolizes a transition. Hence, the consumed radiated en-
ergy is proportional to the hamming weight and this metric will be considered in
the analysis for the rest of the chapter.

By leakage it is meant the amount of information extracted from the scrambling
vector to produce an accurate estimate of it. Information entropy is a metric for
the measurement of the amount of information carried by a set of symbols and
is commonly used as an indication of leakage in secure systems. The evaluation
of the leakage exploited by an adversary during an attack can be modeled as the
communication channel shown in Figure

Assume that s is a scrambling vector bit and s* is its estimate obtained by
the attack. The attack can be viewed as a communication channel through which
two types of information are sent: signal values (scrambling vector bits) and noise
produced by the countermeasures in use. The ability of the attack to separate the
signal from the noise will determine the degree of leakage achieved. According to
the definitions of communication channels in [57], entropy H (s) is the amount of
information contained in scrambling vector bits. Conditional entropy H (s|s*) is

146 CHAPTER 4. DEFEATING SPEMA AND DPEMA

Random bit P(s)=1/2
generator H(s)=1

C
N H(c)=H(s|s")

Attack — 5

Figure 4.16: Evaluation of entropies in an attack scenario.

the information responsible for errors in the communication channel. In our prob-
lem, it represents the noise injected by the countermeasures, which make estimates
of s* more or less correlated with s. Finally, I(s, s*) in the output channel is the
entropy of the bit ensemble s, s* and represents the amount of information from
the input channel s that reaches the output channel s*. This entropy represents the
amount of leakage achieved by the attack and will be renamed as leakage function
L(s) or simply leakage. According to [98]], this leakage function is evaluated in
the channel as

L(s)=1(s,s") = H(s) — H(s|s") (4.10)

which represents the balance of information in the channel. The evaluation of
entropies H () proceeds as follows.

Scrambling vector bits s are obtained from a random source. Hence, it can be
assumed that their probability is P(s) = P(s = 1) = 1/2. Since entropy is the
average of all information (log function) contained in binary symbols, we have that
H(s) = —[P(s)-logaP(s)+ P(5) - log2 P(5)], where base 2 log is used, and thus
H(s) = 1, Figure This indicates that scrambling vectors are generated with
the maximum amount of information possible, and accordingly have the highest
uncertainty.

Conditional entropy H (s | s*) is calculated from the bit probability using the
following equation:

H(s|s)=— Y_ P(i,j) logaP(i| j)

1=s,S
j:‘g* 78*

(4.11)

where P(7,7) and P(i | j) are the joint and conditional probabilities, respec-
tively. These probabilities can be assessed in real experiments using the XOR

4.9. EVALUATION AND EXPERIMENTAL RESULTS 147

logic function, cf. Figure[d.16] If the probability in one of the inputs of the XOR
is P(s) = 1/2, then the following symmetries are observed in these probabilities:

P(s,5") = P(s,s*) = P(c)/2
P(3,s") = P(s,5%) = P(c)/2
P(§ | E*) = P(s ’ 3*) = P(g) 4.12)
P(s | 5%) = P(s |5*) = P(¢)

whose substitution in Equation . 11| results in output ¢ entropy of the XOR:

H(s|s*) = H(c) = —[P(c) - logaP(c) + P(c) - loga P(¢)] (4.13)

By considering Equations[4.10]and [4.13]and taking the boundary conditions in
Figure the final expression for the leakage function is

L(s)=1— H(c) (4.14)

For an open system, the evaluation of the leakage function starts by collecting
the individual bits of the scrambling vector S and estimated scrambling vector S*.
Since the attack will be repeated many times using different (usually random) data
vectors, after each one the result of the comparison vector C' must be generated,
probability P(c) is estimated from its bits and then the leakage function is eval-
uated. To improve the accuracy of the estimate, several attacks can be performed
keeping the same scrambling vector S and then all the bits of the set of vectors
C are collected together to estimate the leakage function. Finally, if the strength
of the countermeasure needs to be tightly assessed, then the same procedure must
be applied but now including some experiments where the scrambling vector is
changed too.

In order to illustrate Equation a short Monte-Carlo simulation was made
for the circuit in Figure .16 A total of 2000 random bits were generated for each s
and s* pair and the correlation between them in the [—1, 1] interval was modified.
Figure summarizes the results of Equation 4.14] including 200 simulations
and the theoretical curve derived from Equation It is interesting to see that
the maximum amount of information is leaked by predicting not only the same bit
s = s*(cor(s, s*) = 1) but also the inverted one s = s*(cor(s, s*) = —1).

4.9.2 Results

An ad hoc simulation environment is programmed in C++ which includes the con-
trol of the data bus, the scrambling circuit and the cache memory. A wrapper em-
ulates the behavior of the attack in the virtual environment and virtual instruments

148 CHAPTER 4. DEFEATING SPEMA AND DPEMA

e} 1 o
&3 q
% 0.9 - ;#
]

o 0.8 - f
o

! £

0‘ 4
%@ 7 ¥

cor(s,s*)

Figure 4.17: Simulation of the circuit in Figure 4.16]and Equation .14} and theo-
retical curve derived from Equation 4.0

monitor the performance of the different countermeasures. The wrapper also gives
us full control over the generation of scrambling vectors and observation of scram-
bled data. This environment runs on a Supermicro workstation with the following
specifications: 64 AMD cores of 64 bits, 256 GB of memory, 6 TB of disc space
and with CentOS Linux operating system.

The virtual environment allows the modification of architecture size. Users
have full control over the data bus through which bursts of data vectors can be
repeatedly sent to carry out attacks. An internal monitor measures the hamming
weight generated during data transfer to the cache, including transformations made
by the scrambling circuit. Monitoring the hamming weight as a direct metric for the
attack is a conservative way to evaluate the strength of countermeasures because it
is an upper bound of the physical measures that the adversary would achieve by the
observation of power consumption or EM radiation intensity, as has been explained
in previous sub-chapter @.5] Furthermore, periodical refreshes of scrambling vec-
tors that are made by IST and the derived techniques in order to limit the effec-
tiveness of attacks is disabled. In these experiments the same scrambling vector
is kept in use throughout the attack because we are more interested in evaluation
of the random masking scheme strength than in the whole scheme effectiveness.

4.9. EVALUATION AND EXPERIMENTAL RESULTS 149

Therefore results must be understood as an upper bound of the attack success.
The emulated configurations are:

S3 - IST scrambling technique (Section [3.5) [93].

S5R5 - ISTe” SPEMA countermeasure, but where the two redundant bits of
the scrambling vector s, si are generated randomly. This configuration is
presented to illustrate the comment made in Subsection that full ran-
dom generation of the redundancy decreases the security instead of increas-
ing it.

S5R4C1 - ISTe’ SPEMA countermeasure, but where bit s, is generated ran-
domly while s’ is calculated according Equation This configuration is a
middle step between S5R5 and S5SR3C2 (Section ??) [97].

S5R3C2 - ISTe SPEMA countermeasure as proposed in Equation 4.9 [100]

S3M - same as S3 but with random masking RM-IST. No figure illustrates
explicitly this configuration but consider Fi gure where bits {..., ¢!, s, . ..
are not added to the data vector and bits {...,s%, s’ ...} are not generated
for the scrambling vector. However, a random bit generator flips the content
of the scrambling vector randomly and bit r is stored in the cache together

with scrambled data SD.
S5R5M - Same as S5R5 but with random masking RM-ISTe”.
S5R4C1M - Same as S5R4C1 but with random masking RM-ISTe'.

S5R3C2M - Same as SSR3C2 but with random masking, Figure This
is the full RM-ISTe proposed in this work for defense against SPEMA and
DPEMA attacks which renders the minimum leakage.

4.9.2.1 SPEMA attack

In SPEMA, one scrambling vector is set up and then the attack is carried out by
generating data vectors and capturing the hamming weight. The data vectors pro-
ducing the maximum hamming weight, HW ., are selected to estimate the scram-
bling vector, cf. Figure and leakage is estimated according to Equation {4.14]
Because the scrambling technique is linear, data vectors can be generated in such
a way that all maximums can be found independently of the number of bits in the
configuration. Each data vector is divided into subsets of bits, the HW,,,,. is found
for each subset and then combinations of subsets are produced to build the final
set of maximums. This attack was simulated for 1000 scrambling vectors selected

150 CHAPTER 4. DEFEATING SPEMA AND DPEMA

1,000 1,000
1,0 4 -

09 -
0,8 -
0,7
0,6 -

33 bits
0,468

04 | 63 bits

03 -
o] 0052 210
01 - X

=/

S5R3C2 S5R4C1 S5R5 S

0,300

0,190

"L

Figure 4.18: Information leakage achieved with SPEMA attacks.

randomly following the rules of each technique. Then, the average information
leakage was evaluated. Figure shows leakage levels for a 33 and 63-bit archi-
tectures for each of the four scrambling configurations in which random masking
is not used.

The basic scrambling technique S3 was found to be totally vulnerable to SPEMA
attack. All attacks for the 1000 scrambling vectors estimated the scrambling vec-
tor correctly, and therefore leakage is 1.000. When error detection was applied
and boosted by the scrambling technique (ISTe), some protection was found if all
scrambling vector bits were generated randomly, including those that scrambled er-
ror correction redundancy (S5RS5). Although this reduces leakage to 0.300 for the
63-bit architecture, 2 accurate estimates of the scrambling vector can still be found.
Nonetheless, in a real attack the adversary has no way to distinguish which of the
estimated scrambling vectors is the good one, hence the lower leakage. On the
other hand, configurations SSR4C1 and S5R3C2 exhibited O correct estimations.
Therefore, information leakage is significantly lower but not 0 because subsets of
bits are still correctly guessed. It should also be noted that SSR3C2, where the
scrambling vector redundant bits were not randomly generated, shows the lowest
leakage, 0.052, as opposed to 0.095 for SSR4C1.

4.9.2.2 DPEMA attack in non-random-masking techniques

DPEMA attack results are first presented for an architecture of 63 bits. Data vec-
tor sets D3/°(d; = 0/1) used during the attacks are of lengths from 20 to 1000
vectors. The attacks are repeated for 1000 different scrambling vectors and the
leakage function L(s) is averaged between them. Figure m plots the results for
the techniques without random masking, {S3, S5R5, S5R4C1, S5R3C2}. The z-

4.9. EVALUATION AND EXPERIMENTAL RESULTS 151

63 bit 1.00 1.00

o
©
~

0.71

Q

Q
B
5

‘ol N

L

A ETEEEY

20 40 80 160 320 640 1000
Data vector set size

Figure 4.19: Information leakage achieved by DPEMA attack applied on tech-
niques without random masking for a 63-bit architecture.

axis shows the number of vectors in the attacking data set and the y-axis gives the
values of the leakage metric L(s).

The low effectiveness of the techniques without random masking against DPEMA
is worth nothing. The left column of each group shows that leakage L(s) increases
from 0.06 to 0.81 for the most effective technique in this group, SSR3C2, when
the data vector set is changed from 20 to 1000 vectors. For the leakage level of
0.81 the number of correctly estimated scrambling vectors is 131 over 1000. The
other techniques exhibit a similar trend but with higher leakage levels, giving in the
worst case 1 which means that all the estimations were correct. In particular the
worse behavior of SSR4C1 and S5RS is caused by the random generation of the re-
dundancy in the scrambling vectors. The case S3 without SPEMA countermeasure
is the one that also presents the poorest results under DPEMA attacks.

Another significant trend observed is that the leakage increases when the at-
tacking data vector set enlarges, independently of the technique used. Notice that
for a set of 20 the leakages of the four techniques are {0.06, 0.08,0.08,0.14} while
for a set of 1000 the leakages are {0.81,0.82,0.82,1}. This is an important infor-
mation for the adversary because he knows that for a large enough set he can break
the system completely independently of the internal countermeasure.

4.9.2.3 DPEMA attacks in random-masking techniques

The previous experiments are repeated but with the techniques using random mask-
ing {S3M, S5R5M, S5R4C1M, S5R3C2M}, results are plotted in Figure

152 CHAPTER 4. DEFEATING SPEMA AND DPEMA

63 bit
0.1
0.09 -
0.08 -
0.07
0.06
0.04 (RM-ISTe)
0.03 R 2, ”-a\,%‘)‘ 2, %, % ~ ’?Q,’!g)%‘ff o %%, %, %% %
A B WA ISR
0.02 = \% %/ N E
L . | . |
| 0 i\/ E\/ 0
80 160 320 640 1000

Data vector set size

Figure 4.20: Information leakage achieved with DPEMA attacks applied on ran-
dom masking techniques for 63-bit architecture size.

For the attacking set of 1000 vectors, a significant decrease of the leakage from
0.81 to 0.016 is observed for SSR3C2M (the proposed RM-ISTe technique). It is
remarkable that, among all predictions none of the scrambling vectors are correct.
It is also worth noting that the leakage is approximately the same for all data vec-
tor set sizes without following any expected trend. This is particularly interesting
because one of the procedures that an adversary can use to drive the attack is to pre-
dict the variation of the leakage vs. the number of data vectors applied. In the tech-
niques using random masking, the above prediction does not provide any useful
feedback. Finally, the combination of techniques designed against SPEMA attacks
in [97] provide an additional degree of protection when used with random mask-
ing. Compare for the case of 1000 data vectors the case without SPEMA counter-
measure (S3M) to the case with SPEMA countermeasure (SSR3C2M), which give
leakages of 0.026 and 0.016 respectively.

4.9.2.4 DPEMA attacks for different architecture sizes

Table [4.9] summarizes the results for several architecture sizes going from 9 to 63
bits, for attacks carried out with data vector sets of 1000 vectors. All the numbers
are averaged for 1000 attacks using different scrambling vectors. First column
(Arch. size) indicates the size of the bus. Second column (S3 / IST) lists the
leakage for all architectures using the S3 technique, which gives a leakage of 1 in
all cases. The next three columns (S5R5 / ISTe”, S5R4C1 / ISTe/, SSR3C2 / ISTe)
correspond to the techniques without random masking but including a SPEMA
countermeasure. In this group, a maximum leakage of 1 is found for all techniques

4.9. EVALUATION AND EXPERIMENTAL RESULTS 153

Table 4.9: Information leakage measured for DPEMA attacks in different architec-
ture sizes and techniques. Attacking data vector set is 1000. Number of scrambling
vectors tested is 1000. In gray background cells at least one scrambling vector has
been correctly estimated.

Arch. S3 S5R5 S5R4C1 S5R3C2 S3M S5R5M S5R4CIM S5R3C2M
size IST | ISTe™ ISTe' I1STe RM-IST RM-1STe" RM-1STe' RM-ISTe
9 1 1.000 0.0% | 1.000 0.0% | 1.000 0.0% | 0.198 80.2% 0.142 85.8% 0.142 85.8% 0.110 89.0%
12 1 0.999 0.1% | 0.999 0.1% | 1.000 0.0% | 0.147 85.3% 0.108 89.2% 0.108 89.2% 0.088 91.2%
15 1 0.997 0.3% | 0.997 03% | 0999 01% | 0121 87.9% 0.087 91.3% 0.087 91.3% 0.065 93.5%
18 1 0.993 0.7% | 0.993 0.7% | 0.997 0.3% | 0.090 91.0% 0.070 93.0% 0.070 93.0% 0.054 94.6%
21 1 0.990 1.0% | 0.990 1.0% | 0993 0.7% | 0.080 92.0% 0.057 94.3% 0.057 94.3% 0.050 95.0%
24 1 0.984 1.6% | 0.984 16% | 0986 1.4% | 0.064 93.6% 0.052 94.8% 0.052 94.8% 0.046 95.4%
27 1 0973 2.7% | 0973 27% | 0981 1.9% | 0.055 94.5% 0.047 95.3% 0.047 95.3% 0.036 96.4%
30 1 0.963 3.7% | 0.963 3.7% | 0974 2.6% | 0.059 94.1% 0.043 95.7% 0.043 95.7% 0.037 96.3%
33 1 0.952 4.8% | 0.952 48% | 0957 43% | 0.050 95.0% 0.039 96.1% 0.039 96.1% 0.033 96.7%
36 1 0.930 7.0% | 0.930 7.0% | 0945 55% | 0.048 952% 0.034 96.6% 0.034 96.6% 0.033 96.7%
39 1 0.928 7.2% | 0.928 7.2% | 0928 7.2% | 0.045 95.5% 0.033 96.7% 0.033 96.7% 0.029 97.1%
42 1 0.914 8.6% | 0914 86% | 0921 7.9% | 0.039 96.1% 0.031 96.9% 0.031 96.9% 0.025 97.5%
45 1 0.895 10.5%| 0.895 10.5%| 0.903 9.7% | 0.037 96.3% 0.027 97.3% 0.027 97.3% 0.025 97.5%
48 1 0.883 11.7%| 0.883 11.7%| 0.889 11.1%| 0.035 96.5% 0.027 97.3% 0.027 97.3% 0.023 97.7%
51 1 0.872 12.8%| 0.872 128%| 0.883 11.7%| 0.033 96.7% 0.024 97.6% 0.024 97.6% 0.021 97.9%
54 1 0.850 15.0%| 0.850 15.0% | 0.859 14.1%| 0.032 96.8% 0.024 97.6% 0.024 97.6% 0.021 97.9%
57 1 0.838 16.2%| 0.838 16.2%| 0.845 155%| 0.029 97.1% 0.023 97.7% 0.023 97.7% 0.021 97.9%
60 1 0.828 17.2%| 0.828 17.2%| 0.821 17.9%| 0.028 97.2% 0.023 97.7% 0.023 97.7% 0.018 98.2%
63 1 0.815 18.5%| 0.815 185%| 0.813 18.7%| 0.026 97.4% 0.021 97.9% 0.021 97.9% 0.018 98.2%

in the smallest architectures while minimum leakages are 0.815, 0.815 and 0.813
respectively for the largest architecture, representing a reduction of 18.7%. In all
the cases at least one scrambling vector has been estimated correctly, this is shown
painting the background in gray shadow.

The following four columns (S3M / RM-IST, S5R5M / RM-ISTe”, SSR4CIM /
RM-ISTe’, SSR3C2M / RM-ISTe) correspond to the techniques with random mask-
ing and therefore all of them are DPEMA countermeasures. Except the first, the
rest also include a SPEMA countermeasure. The maximum leakage is found for
the smallest architecture size with 0.198 for (S3M / RM-IST), representing a re-
duction of 80.2% in leakage while the minimum leakage is found in (SSR3C2M /
RM-ISTe) for the biggest architecture size with 0.018 that represents a reduction
of 98.2%. In all four cases none of the scrambling vectors are correctly estimated
for architecture sizes larger than 18 bits, this is shown with the white background
of the cells.

4.9.3 Implementation costs

The evaluation of real and optimized implementation costs requires the use of sili-
con compilers which are costly for the architecture sizes evaluated in this work and
are not accessible in our case.

To evaluate the implementation costs we have followed the same strategy as
in Chapter 3] ([101][102]) which consists in predicting them with the CACTI tool

154 CHAPTER 4. DEFEATING SPEMA AND DPEMA

[79]]. This tool generates cost predictions for cache memory architectures that can
be tuned for several parameters including line size, associativity, number of banks,
technology nodes, etc. It allows to do space exploration of different alternatives
during the design phase.

We consider the following methodology. The particular logic implementation
whose costs needs to be evaluated is split in sub-blocks whose architecture needs to
resemble as close as possible to a cache memory. Then, different cache memories
are dimensioned according to the sub-block parameters and technology and their
cost predictions obtained with the CACTI. Finally an artifact is created to combine
the predictions of the sub-blocks following the rules of the global design from
which the final cost predictions are generated.

In our particular case all the scrambling techniques that we present are based on
the IST (Interleaved Scrambling Technique) architecture (Section [93])). This
technology consists of two main blocks, the L2 cache memory itself and the scram-
bler table which contains sets of scrambling vectors that are selected according to
certain replacement rules and additional auxiliary registers and flags. The other
three main sub-blocks are the redundancy generator and checking code modules,
the scrambling circuit and the random generator. The extraction of parameters and
artifacts for the cost estimation are as follows:

e 1.2 cache memory — In all IST versions each cache line needs one extra
flags. In RM-IST an additional flag is included per word. In ISTe, words are
extended with data redundancy.

e Scrambler vector table — In IST the size of this table grows as the square
root of the L2 cache memory size according to the rules from Chapter [3] In
the ISTe cases the scrambling vectors (two per line) of the table are extended
with the redundancy. With respect to the effect of the delay (access time) of
the cache emulating this table, it is added to the L2 cache memory time as a
worst case scenario. With respect to the area and power they are added too.

e Redundancy generator and checking code modules, and scrambling circuit
— They grow linearly with the size of the data bus so it is assumed that the
memory cache ports (L2 cache and scrambler table) properly emulate the
cost overhead of these three elements too.

e Random generator — we do not consider the cost of the random generator be-
cause it is constant and independent of the architecture size. If implemented
as a pseudo-random generator its impact is negligible with respect to the
other sub-blocks.

4.9. EVALUATION AND EXPERIMENTAL RESULTS 155

Table 4.10: Implementation costs of the previous and current proposed techniques,
1-way set associative cache.

Power
Size (KB) Area (mmz) consumption(mW) Access time (ns)
L2 cache 6 | 0.1479 | 94.55 0.3652 |
IST - SAU 034 208% | NA N/A N/A N/A N/A N/A
IST - SAS 031 190% | NA N/A N/A N/A N/A N/A

ISTe - SAU 11.02 40.78% | 0.1207 44.94% | 83.95 47.03% | 0.3577 49.48%

ISTe - SAS 10.98 40.70% | 0.1207 44.94% | 8395 47.03% | 0.3577 49.48%
RM - IST - SAU 0.47 2.85% N/A N/A N/A N/A N/A N/A
RM - IST - SAS 0.43 2.62% N/A N/A N/A N/A N/A N/A
RM -ISTe-SAU| 11.14 41.05% | 0.1219 45.18% | 84.45 47.18% | 0.359 49.57%
RM -ISTe-SAS] 11.1 40.96% | 0.1207 44.94% | 83.95 47.03% | 0.3577 49.48%

L2 cache 32 0.2395 | 97.28 0402 |
IST - SAU 05 154% | N/A N/A N/A N/A N/A N/A
IST - SAS 044 136% | N/A N/A N/A N/A N/A N/A

ISTe - SAU 21.84 40.56% | 0.1914 44.42% | 79.05 44.83% 0.39 49.24%
ISTe - SAS 21.78 40.50% | 0.1914 44.42% | 79.05 44.83% 0.39 49.24%
RM - IST - SAU 0.75 229% | 0.0245 9.28% 7826 44.58% | 0.2952 42.34%
RM - IST - SAS 0.69 211% | 0.0241 9.14% 7839 44.62% | 0.2924 42.11%
RM -ISTe-SAU| 22.09 40.84% | 0.1926 4457% | 79.41 4494% | 0391 49.31%
RM - ISTe-SAS| 22.03 40.77% | 0.1926 4457% | 79.41 4494% | 0391 49.31%

L2 cache 64 | 0.5493 | 159.38 0.5015 |
IST - SAU 072 111% | 00243 4.24% | 7832 32.95% | 0.2938 36.94%
IST - SAS 062 096% | 00237 414% | 7853 33.01% | 0.2895 36.60%

ISTe - SAU 4339 40.40% | 0.2941 34.87% | 111.03 41.06% | 0.4269 45.98%
ISTe - SAS 4329 40.35% | 0.2941 34.87% | 111.03 41.06% | 0.4269 45.98%
RM - IST - SAU 1.22 1.87% | 0.0326 5.60% 81.3 33.78% | 0.288 36.48%
RM - IST - SAS 1.12 1.72% | 0.0322 5.54% 81.46 33.82% | 0.286 36.32%
RM -ISTe-SAU| 43.89 40.68% | 0.2965 35.06% | 111.63 41.19% | 0.4279 46.04%
RM - ISTe - SAS| 43.79 40.63% | 0.2965 35.06% | 111.63 41.19% | 0.4279 46.04%

L2 cache 128 | 1.1452 | 280.19 0.6239 |
IST - SAU 104 081% | 00318 270% | 8154 22.54% | 0.2845 31.32%
IST - SAS 088 068% | 00253 2.16% | 78.07 21.79% | 0.3005 32.51%

ISTe - SAU 86.38 40.29% | 0.6735 37.03% | 183.84 39.62% | 0.5441 46.58%
ISTe - SAS 86.22 40.25% | 0.6735 37.03% | 183.84 39.62% | 0.5441 46.58%
RM - IST - SAU 2.04 157% | 0.0372 3.15% 76.41 21.43% | 0301 32.54%
RM - IST - SAS 1.88 1.45% | 0.0372 3.15% 7641 2143% | 0301 32.54%
RM-1STe-SAU| 87.38 40.57% | 0.6792 37.23% | 184.94 39.76% | 0546 46.67%
RM - ISTe-SAS| 87.22 40.53% | 0.6792 37.23% | 184.94 39.76% | 0.546 46.67%

156 CHAPTER 4. DEFEATING SPEMA AND DPEMA

Table 4.11: Implementation costs of the previous and current proposed techniques,
1-way set associative cache (continued).

Power
Size (KB) Area (mmz) consumption(mW) Access time (ns)
L2 cache 256 | 1.5605 | 385.37 | 0.7614
IST - SAU 149 058% | 0.0346 2.17% | 81.07 17.38% | 0.2952 27.94%
IST - SAS 127 049% | 0033 207% | 8124 17.41% | 0.2895 27.55%

ISTe - SAU 17216 40.21% | 1.3946 47.19% | 318.2 4523% | 0.6665 46.68%
ISTe - SAS 171.94 40.18% | 1.3946 47.19% | 318.2 45.23% | 0.6665 46.68%
RM - IST - SAU 3.49 1.34% | 0.0482 3.00% 89.93 18.92% | 0.3267 30.02%
RM - IST - SAS 3.27 1.26% | 0.0465 2.89% 89.47 18.84% | 0.3237 29.83%
RM - ISTe - SAU| 174.16 40.49% | 1.4059 47.39% | 319.92 45.36% | 0.6683 46.74%
RM - ISTe - SAS] 17394 40.46% | 1.4059 47.39% | 319.92 45.36% | 0.6683 46.74%

L2 cache 512 | 3.1233 | 643.7 | 0.9832
IST - SAU 216 042% | 00377 119% | 766 10.63% | 03024 23.52%
IST - SAS 18 0.35% | 00366 1.16% | 80.95 11.17% | 0.3018 23.49%

ISTe - SAU 3435 40.15% | 2.3881 43.33% | 352.77 35.40% | 0.9027 47.87%
ISTe - SAS 343.14 40.13% | 2.3881 43.33% | 352.77 35.40% | 0.9027 47.87%
RM - IST - SAU 6.16 1.19% | 0.0514 1.62% 51.7 7.43% | 03162 24.33%
RM - IST - SAS 5.8 1.12% | 0.0496 1.56% 50.9 7.33% | 03137 24.19%
RM-ISTe-SAU| 3475 40.43% | 2.4083 43.54% | 355.82 35.60% | 0.9068 47.98%
RM - ISTe - SAS| 347.14 40.41% | 2.4083 43.54% | 355.82 35.60% | 0.9068 47.98%

L2 cache 1024 | 5.6764 | 1034.14 | 1.3061
IST - SAU 3.1 030% | 0042 073% | 7811 7.02% | 03135 19.36%
IST - SAS 26 0.25% | 0.0397 069% | 7732 6.96% | 0.3083 19.10%

ISTe - SAU 685.77 40.11% | 3.9877 41.26% | 779.66 42.98% | 1.1008 45.74%
ISTe - SAS 685.27 40.09% | 3.9877 41.26% | 779.66 42.98% | 1.1008 45.74%
RM - IST - SAU 111 1.07% | 0.1207 2.08% 83.95 7.51% | 0.3577 21.50%
RM - IST - SAS 10.6 1.02% | 0.1178 2.03% 82.95 7.43% | 03549 21.37%
RM - ISTe - SAU| 693.77 40.39% | 4.0274 41.50% | 7854 43.16% | 1.1052 45.83%
RM - ISTe - SAS| 693.27 40.37% | 4.0274 4150% | 7854 43.16% | 1.1052 45.83%

L2 cache 2048 | 10.5372 | 1762.71 | 1.822
IST - SAU 448 022% | 00707 0.67% | 7533 410% | 03275 15.24%
IST - SAS 368 0.18% | 00494 047% | 9038 4.88% | 0329 15.30%

ISTe - SAU 1369.82 40.08% | 7.5687 41.80% | 1339.86 43.19% | 1.5311 45.66%
ISTe - SAS 1369.02 40.06% | 7.5687 41.80% | 1339.86 43.19% | 1.5311 45.66%
RM-IST-SAU| 20.48 0.99% | 0.1836 1.71% 76.92 4.18% | 0.3851 17.45%
RM-IST-SAS | 19.68 0.95% | 0.1719 161% | 101.66 545% | 0.3821 17.34%
RM - ISTe - SAU| 1385.82 40.36% | 8.8219 4557% | 1359.36 43.54% | 1.4971 45.11%
RM - ISTe - SAS| 1385.02 40.34% | 8.8219 4557% | 1359.36 43.54% | 1.4971 45.11%

4.9. EVALUATION AND EXPERIMENTAL RESULTS

157

Table 4.12: Implementation costs of the previous and current proposed techniques,
2-way set associative cache.

Power
Size (KB) Area (mm?) consumption(mW) Access time (ns)
L2 cache 6 | 0.1341 | 127.89 0.5899 |
IST - SAU 034 208% | NA N/A N/A N/A N/A N/A
IST - SAS 021 130% | NA N/A N/IA N/A N/A N/A
ISTe - SAU 1101 40.76% | 01207 47.37% | 83.95 39.63% | 0.3577 37.75%
ISTe - SAS 10.88 40.48% | 01207 47.37% | 83.95 39.63% | 0.3577 37.75%
RM-IST-SAU| 04 244% | NA N/A N/IA N/A N/A N/A
RM-IST-SAS| 027 166% | N/A N/A N/IA N/A N/A N/IA
RM-ISTe-SAU| 11.07 40.89% | 0.1207 47.37% | 83.95 39.63% | 03577 37.75%
RM-ISTe-SAS| 1094 40.61% | 01207 47.37% | 83.95 39.63% | 0.3577 37.75%
L2 cache 32 | 0.1949 | 135.93 0.6297 |
IST - SAU 049 151% | N/A N/A N/IA N/A N/A N/A
IST - SAS 029 090% | NA N/A N/A N/A N/A N/IA
ISTe - SAU 2183 40.55% | 0.1914 4955% | 79.05 36.77% | 039 38.25%
ISTe - SAS 2163 40.33% | 01902 49.39% | 787 36.67% | 0389 38.19%
RM-IST-SAU| 062 190% | 00237 10.84% | 7853 36.62% | 0.2895 31.49%
RM-IST-SAS| 042 130% | NI/A N/A N/A N/A N/A N/A
RM-ISTe-SAU| 21.96 40.70% | 0.1926 49.70% | 79.41 36.88% | 0391 38.31%
RM-ISTe-SAS| 2175 40.47% | 01914 49.55% | 79.05 36.77% | 0.39 38.25%
L2 cache 64 | 0.375 | 169.09 06771 |
IST - SAU 0.7 1.08% | 00241 6.04% | 7839 31.68% | 0.2924 30.16%
IST - SAS 043 067% | NA N/A N/A N/A N/A N/A
ISTe - SAU 4337 40.39% | 0.2941 43.95% | 111.03 39.64% | 0.4269 38.67%
ISTe - SAS 431 40.24% | 0.2918 43.76% | 110.44 39.51% | 0.4259 38.61%
RM-IST-SAU| 095 146% | 00258 6.44% 78 3157% | 03031 30.92%
RM-IST-SAS| 068 1.05% | 0.0241 6.04% | 7839 31.68% | 0.2924 30.16%
RM-ISTe-SAU| 4362 40.53% | 02941 43.95% | 111.03 39.64% | 0.4269 38.67%
RM-ISTe-SAS| 4335 40.38% | 02941 43.95% | 111.03 39.64% | 0.4269 38.67%
L2 cache 128 | 1.2159 | 317.97 0.9134 |
IST - SAU 102 079% | 00314 252% | 8163 20.43% | 0.2829 23.65%
IST - SAS 059 0.46% | 00235 1.90% | 78.61 19.82% | 0.288 23.97%
ISTe - SAU 86.36 40.29% | 0.6735 35.65% | 183.84 36.64% | 05441 37.33%
ISTe - SAS 8593 40.17% | 0.6735 35.65% | 183.84 36.64% | 05441 37.33%
RM-IST-SAU| 152 117% | 00346 277% | 8107 20.32% | 02952 24.42%
RM-IST-SAS| 109 084% | 0.0318 255% | 8154 20.41% | 0.2845 23.75%
RM-ISTe-SAU| 86.86 40.43% | 06792 35.84% | 18494 36.77% | 0546 37.41%
RM-ISTe-SAS| 86.43 40.31% | 0.6735 35.65% | 183.84 36.64% | 0.5441 37.33%

158 CHAPTER 4. DEFEATING SPEMA AND DPEMA

Table 4.13: Implementation costs of the previous and current proposed techniques,
2-way set associative cache (continued).

Power
Size (KB) Area (mm?) consumption(mW) Access time (ns)
L2 cache 256 | 1.5605 385.37 | 0.7614 |
IST - SAU 146 057% | 0.0342 214% | 811 17.39% | 0.2938 27.84%
IST - SAS 086 033% | 00251 158% | 7811 16.85% | 0.2992 28.21%

ISTe - SAU 17213 40.21% | 1.3946 47.19% | 318.2 45.23% | 0.6665 46.68%
ISTe - SAS 17153 40.12% | 1.3946 47.19% | 318.2 45.23% | 0.6665 46.68%
RM - IST - SAU 2.46 0.95% | 0.0391 2.44% 7712 16.67% | 0.307 28.73%
RM - IST - SAS 1.86 0.72% 0.037 2.32% 80.94 17.36% | 0.3031 28.47%
RM-ISTe - SAU| 173.13 40.34% | 1.4059 47.39% | 319.92 45.36% | 0.6683 46.74%
RM - ISTe - SAS| 17253 40.26% | 1.3946 47.19% | 318.2 45.23% | 0.6665 46.68%

L2 cache 512 | 2.324 460.76 | 1.2126 |
IST - SAU 212 041% | 00377 160% | 766 14.25% | 0.3024 19.96%
IST - SAS 121 024% | 0033 140% | 8124 14.99% | 02895 19.27%

ISTe - SAU 34346 40.15% | 2.3881 50.68% | 352.77 43.36% | 0.9027 42.67%
ISTe - SAS 34255 40.09% | 2.3881 50.68% | 352.77 43.36% | 0.9027 42.67%
RM - IST - SAU 4.12 0.80% | 0.0694 2.90% 74.77 13.96% | 0.3242 21.10%
RM - IST - SAS 3.21 0.62% | 0.0591 2.48% 7054 13.28% | 0.305 20.10%
RM - ISTe - SAU| 34546 40.29% | 2.3881 50.68% | 352.77 43.36% | 0.9027 42.67%
RM - ISTe - SAS| 34455 40.23% | 2.3881 50.68% | 352.77 43.36% | 0.9027 42.67%

L2 cache 1024 5.4559 1291.69 1.5686
IST - SAU 3.04 0.30% | 0.0414 0.75% 77.91 5.69% | 0.3122 16.60%
IST - SAS 1.76 0.17% | 0.0361 0.66% 80.97 5.90% | 0.3005 16.08%

ISTe - SAU 685.71 40.11% | 3.9877 42.23% | 779.66 37.64% | 1.1008 41.24%
ISTe - SAS 684.43 40.06% | 3.9791 42.17% 7784 37.60% | 1.0997 41.21%
RM - IST - SAU 7.04 0.68% | 0.0914 1.65% 85.28 6.19% | 0.3379 17.72%
RM - IST - SAS 5.76 0.56% | 0.0493 0.90% 50.77 3.78% 0.313 16.63%
RM -ISTe - SAU| 689.71 40.25% | 4.0075 42.35% | 78253 37.73% 1103 41.29%
RM - ISTe - SAS| 688.43 40.20% | 3.9989 42.29% | 781.27 37.69% | 1.1019 41.26%

L2 cache 2048 | 10.119 2235.16 | 2.1584 |
IST - SAU 439 021% | 00715 0.70% | 7553 3.27% | 0.3271 13.16%
IST - SAS 247 012% | 0.0391 038% | 7712 3.34% | 0307 12.45%

ISTe - SAU 1369.73 40.08% | 7.5687 42.79% | 1339.86 37.48% | 1.5311 41.50%
ISTe - SAS 1367.81 40.04% | 7.5601 42.76% | 1338.6 37.46% | 1.5299 41.48%
RM-IST-SAU| 12.39 0.60% | 0.1293 1.26% 86.99 3.75% 0.366 14.50%
RM-IST-SAS | 10.47 051% | 0.1178 1.15% 82.95 3.58% | 0.3549 14.12%
RM - ISTe - SAU| 1377.73 40.22% | 8.777 46.45% | 1353.67 37.72% | 1.4931 40.89%
RM - ISTe - SAS| 1375.81 40.18% | 7.6005 42.89% | 1344.41 37.56% | 1.5347 41.56%

4.9. EVALUATION AND EXPERIMENTAL RESULTS 159

Table 4.14: Implementation costs of the previous and current proposed techniques,
4-way set associative cache.

Power
Size (KB) Area (mm?) consumption(mW) Access time (ns)
L2 cache 16 | 0.1637 | 7765 | 0.5926 |
IST - SAU 0.33 2.02% N/A N/A N/A N/A N/A N/A
IST - SAS 0.14 0.87% N/A N/A N/A N/A N/A N/A
ISTe - SAU 11 40.74% | 0.1207 42.44% 83.95 51.95% | 0.3577 37.64%

ISTe - SAS 10.81 40.32% | 0.1195 42.20% | 83.45 51.80% | 0.3563 37.55%
RM - IST - SAU 0.36 2.20% N/A N/A N/A N/A N/A N/A
RM - IST - SAS 0.17 1.05% N/A N/A N/A N/A N/A N/A

RM-ISTe-SAU| 11.03 40.81% | 0.1207 42.44% | 83.95 51.95% | 0.3577 37.64%
RM -ISTe -SAS| 10.84 40.39% | 0.1195 42.20% | 83.45 51.80% | 0.3563 37.55%

L2 cache 32 | 0.1963 | 145.99 | 0.6309 |
IST - SAU 048 148% | N/A N/A N/A N/A N/A N/A
IST - SAS 0.2 062% | NIA N/A N/A N/A N/A N/A

ISTe - SAU 2182 40.54% | 0.1914 4937% | 79.05 35.13% 0.39 38.20%

ISTe - SAS 2154 40.23% | 0.1902 49.21% 78.7 35.03% | 0.389 38.14%
RM - IST - SAU 0.55 1.69% | 0.0231 10.53% 78.9 35.08% | 0.2845 31.08%
RM - IST - SAS 0.26 0.81% N/A N/A N/A N/A N/A N/A
RM-ISTe-SAU| 21.88 40.61% | 0.1926 49.52% | 79.41 35.23% | 0.391 38.26%
RM -ISTe -SAS| 21.6 40.30% | 0.1902 49.21% 78.7 35.03% | 0.389 38.14%

L2 cache 64 | 0.4032 | 14259 | 0.6906 |
IST - SAU 068 1.05% | 0.0241 5.64% | 7839 3547% | 0.2924 29.75%
IST - SAS 028 044% | N/A N/A N/A N/A N/A N/A

ISTe - SAU 4336 40.39% | 0.2941 42.18% | 111.03 43.78% | 0.4269 38.20%

ISTe - SAS 4295 40.16% | 0.2918 41.99% | 110.44 43.65% | 0.4259 38.15%
RM - IST - SAU 0.81 1.25% | 0.0249 5.82% 7816 35.41% | 0.2979 30.14%
RM - IST - SAS 0.41 0.64% N/A N/A N/A N/A N/A N/A
RM-ISTe-SAU| 43.48 40.45% | 0.2941 42.18% | 111.03 43.78% | 0.4269 38.20%
RM -ISTe -SAS| 43.08 40.23% | 0.2918 41.99% | 11044 43.65% | 0.4259 38.15%

L2 cache 128 | 0.6799 | 2194 | 0.7715 |
IST - SAU 099 077% | 00314 441% | 8163 27.12% | 0.2829 26.83%
IST - SAS 04 031% | NA N/A N/IA N/A N/A N/A

ISTe - SAU 86.33 40.28% | 0.6735 49.76% | 183.84 4559% | 0.5441 41.36%
ISTe - SAS 85.74 40.11% | 0.6735 49.76% | 183.84 4559% | 0.5441 41.36%
RM - IST - SAU 1.24 0.96% 0.033 4.63% 81.24 27.02% | 0.2895 27.29%
RM - IST - SAS 0.65 0.51% | 0.0239 3.40% 7845 26.34% | 0.291 27.39%
RM-ISTe-SAU| 86.58 40.35% | 0.6792 49.97% | 18494 45.74% | 0.546 41.44%
RM -ISTe-SAS| 8599 40.18% | 0.6735 49.76% | 183.84 4559% | 0.5441 41.36%

160 CHAPTER 4. DEFEATING SPEMA AND DPEMA

Table 4.15: Implementation costs of the previous and current proposed techniques,
4-way set associative cache (continued).

Power
Size (KB) Area (mm?) consumption(mW) Access time (ns)
L2 cache 256 12171 | 321.63 | 0.9153
IST - SAU 1.43 0.56% 0.0342 2.73% 81.1 20.14% | 0.2938 24.30%
IST - SAS 0.58 0.23% 0.0235 1.89% 78.61 19.64% 0.288 23.93%

ISTe - SAU 172.1 40.20% | 1.3946 53.40% | 318.2 49.73% | 0.6665 42.14%
ISTe - SAS 17125 40.08% | 1.3946 53.40% | 318.2 49.73% | 0.6665 42.14%
RM - IST - SAU 1.93 0.75% | 0.0374 2.98% 80.93 20.10% | 0.3044 24.96%
RM - IST - SAS 1.08 0.42% | 0.0318 2.55% 81.54 20.22% | 0.2845 23.71%
RM-ISTe-SAU| 1726 40.27% | 1.3946 53.40% | 318.2 49.73% | 0.6665 42.14%
RM -1STe-SAS| 171.75 40.15% | 1.3946 53.40% | 318.2 49.73% | 0.6665 42.14%

L2 cache 512 | 2.2562 | 480.72 | 1.2029
IST - SAU 207 040% | 00377 1.64% | 766 13.74% | 0.3024 20.09%
IST - SAS 082 016% | 00251 110% | 78.11 13.98% | 0.2992 19.92%

ISTe - SAU 34341 40.15% | 2.3881 51.42% | 352.77 42.32% | 0.9027 42.87%
ISTe - SAS 342,16 40.06% | 2.3881 51.42% | 352.77 42.32% | 0.9027 42.87%
RM - IST - SAU 3.07 0.60% 0.058 251% | 101.87 17.49% | 0.3114 20.56%
RM - IST - SAS 1.82 0.35% | 0.0366 1.60% 80.95 14.41% | 0.3018 20.06%
RM - ISTe - SAU| 34441 40.22% | 2.3881 51.42% | 352.77 42.32% | 0.9027 42.87%
RM -ISTe - SAS| 343.16 40.13% | 2.3881 51.42% | 352.77 42.32% | 0.9027 42.87%

L2 cache 1024 | 4.9412 | 1054.92 | 1.5827
IST - SAU 297 029% | 0.0414 083% | 7791 6.88% | 03122 16.48%
IST - SAS 118 012% | 0.0326 0.66% | 813 7.16% | 0288 15.40%

ISTe - SAU 685.65 40.10% | 3.9877 44.66% | 779.66 42.50% | 1.1008 41.02%
ISTe - SAS 683.85 40.04% | 3.9791 44.61% | 7784 42.46% | 1.0997 41.00%
RM - IST - SAU 4.97 0.48% | 0.0453 0.91% 48.82 4.42% | 0.3044 16.13%
RM - IST - SAS 3.18 0.31% 0.042 0.84% 78.11 6.89% | 0.3135 16.53%
RM - ISTe-SAU| 687.65 40.17% | 3.9989 44.73% | 781.27 42.55% | 1.1019 41.05%
RM - 1STe - SAS| 685.85 40.11% | 3.9877 44.66% | 779.66 42.50% | 1.1008 41.02%

L2 cache 2048 | 10.1175 | 2239.42 | 2.1392
IST - SAU 43 021% | 00704 069% | 7516 3.25% | 03256 13.21%
IST - SAS 167 0.08% | 00357 0.35% | 80.99 3.49% | 0.2992 12.27%

ISTe - SAU 1369.64 40.08% | 7.5687 42.79% | 1339.86 37.43% | 1.5311 41.72%
ISTe - SAS 1367.01 40.03% | 7.5601 42.77% | 1338.6 37.41% | 15299 41.70%
RM - IST - SAU 8.3 0.40% | 0.1051 1.03% 78.46 3.38% | 0.3422 13.79%
RM - IST - SAS 5.67 0.28% 0.049 0.48% 50.64 2.21% | 03123 12.74%
RM - ISTe - SAU| 1373.64 40.15% | 7.5919 42.87% | 1343.15 37.49% | 15335 41.75%
RM - ISTe - SAS| 1371.01 40.10% | 7.5773 42.82% | 1341.12 37.46% | 1.5323 41.73%

4.10. CONCLUSIONS 161

Results from the CACTI simulation tool are presented in Tables {4.10]
K.12] [4.13] [4.14] [4.15] Column (Size (KB)) contains the capacity of the base 1.2
cache memory and the equivalent size extension of the cache necessary to imple-
ment each one of the scrambling techniques. At the right side of each number the
increment in percentage is shown with respect to the base L2 cache memory. Eight
base L2 cache memory sizes have been considered: 16, 32, 64, 128, 256, 512,
1024 and 2048 KB and in each one of them the four scrambling techniques are
implemented {IST, ISTe, RM-IST, RM-ISTe}, but each one having two different
addressing schemes: SAU and SAS. We considered 1-way, 2-way and 4-way set
associative cache implementations, with a single memory bank.

In the rest of columns three costs are shown: (Area occupied), (Power con-
sumption) and (Access time). All of them are obtained for a technology node of 45
nm. It is remarkable to see that the overheads decrease for larger cache memory
sizes, which is caused by the slower increase of the scrambler table as indicated
above. As denoted in Chapter [3) some values in these tables are "N/A” (i.e. not
available) due to the limitations of the CACTI tool (i.e. cache sizes below 0.5 KB).

As expected, the RM-IST techniques have higher area overhead, power con-
sumption and access times than the regular IST solutions because of the additional
stored bits. The area overhead is below 7% when cache sizes is above 64 KB,
power consumption has a maximum value of 45% for a cache size of 32 KB, but
decreases to almost 2% when the cache size is 2048 KB, and the access times also
decrease from 43% (32 KB cache, 1-way set associative) to 13% (2048 KB cache,
4-way set associative).

When including the eDLC code to either IST or RM-IST, the overhead in-
creases dramatically due to the high number of redundant bits. All four ISTe and
RM-ISTe solutions have almost similar overhead for all three metrics, but the RM-
ISTe techniques are a little bit more costly. The results for area overhead are almost
the same and they don’t follow a specific pattern, they are independent of the cache
size, but with some exceptions. Thus, the highest area overhead is 53%, while the
lowest is 36% (average value is 44.74%). The overhead for power consumption
and access time are follow a similar trend as the area overhead, irregular and in-
dependent of the cache size. The highest power consumption percentage reaches
51%, while the lowest is 35% (average value is 41.78%). The highest overhead for
access time reaches 49%, while the lowest is 37% (average value is 42.68%).

4.10 Conclusions

In this chapter cold-boot attacks on cache memories boosted by static and dif-
ferential power and electromagnetic analysis (SPEMA and DPEMA) are consid-

162 CHAPTER 4. DEFEATING SPEMA AND DPEMA

ered. While it is known that scrambling techniques, like the Interleaved Scrambling
Technique (IST) can be effective against cold-boot attacks it is demonstrated that
a SPEMA or DPEMA can be used to discover the internal scrambling vector and
consequently to make the cold-boot attack effective, thus breaking the security of
IST.

In this chapter new strategies are presented that can be added to the IST mak-
ing this robust against SPEMA and DPEMA. Detection, correction and localiza-
tion codes presented in Chapter |2[(eDLC) are extended to design a countermea-
sure against SPEMA, ISTe. Its advantages are demonstrated against SPEMA at-
tacks and also its limitations against DPEMA attacks. This protection is again
extended with random masking (RM) and a complete solution is presented RM-
ISTe which becomes effective against cold-boot attacks boosted by SPEMA (static)
and DPEMA (dynamic) attacks aiming to discover the internal scrambling vectors.
Several examples illustrate the operation of the methodology proposed and exper-
iments are presented to evaluate its effectiveness for different architecture sizes. It
is seen that the leakage emanating from the power or electromagnetic radiation is
reduced to a 98.2% with respect to the plain IST technique. The cost of the im-
plementation considering a technology node of 45 nm, for a cache memory size of
128 KB, 2-way set associative, is: 35% for the area overhead, 36% for the power
consumption overhead and 37% for the access time overhead, respectively.

Chapter 5

Conclusions

Self-healing systems are becoming more and more important due to the numerous
error sources and threats, which translates into keeping the information as accu-
rate as possible. Any system with such techniques must have a well defined ar-
chitecture, capable of monitoring, planning and must adapt to errors and attacks.
Self-healing techniques and methods must be implemented to run autonomously,
with no human intervention, being capable of modifying its structure and run-time
parameters in real-time operation. Implementing security and data privacy in mem-
ory systems is difficult due to the variety of threats, different attack models must
be considered and analyzed.

Because there are multiple architectural designs for systems, self-healing tech-
niques as well, the final objective/scope of the system is the most important one.
For memory systems, the accuracy of the stored data is crucial, because the data is
used later on by the processing unit. The self-healing techniques for such systems
include error detection and correction codes and are usually used with other replac-
ing methods (using spare components), in order to reduce the computing time and
high data redundancy. The monitoring operation is also important (e.g. sensors,
background software process), as well as the detection/correction part, which can
run when the system is idle or during run-time. Security can be enforced in numer-
ous ways, but it mostly depends on the type of threat which is encountered. For
memory systems, information leakage is costly, which denotes that such systems
must control the data that is leaked. It is almost impossible to develop a memory
system that doesn’t leak any data due to the variety of attacks, hence a common
countermeasure is to leak non-relevant information.

Any systems that implements self-healing techniques and methods must be
evaluated from the performance perspective (the normal run-time operation of the
system must not be highly/severely diminished), the additional circuitry must have

163

164 CHAPTER 5. CONCLUSIONS

a low area overhead and a low power consumption (the latter two are modern
trends). The performance of such a system includes processing speed (how fast can
it detect and correct errors) and the number of errors that can be detected and cor-
rected (the more, the better). Evaluating the security is troublesome and sensitive,
and it’s usually done by utilizing attack and threat models and patterns. Because
information leakage is worrisome, a simple and efficient metric is to measure how
much data and what type of information is leaked by the memory systems. All in
all, the evaluations must be compared with existing proposals and solutions.

The design and implementation of the self-healing techniques must be done for
the first time in a virtual simulation environment. There are a lot of software so-
lutions that provide a good and complex simulating environment. Fine tuning can
be done afterwards (e.g. logic synthesis to adjust the design), in the perspective of
obtaining the best results in the considered metrics. Also, because the self-healing
concept implies autonomous computing, it is important that the system can execute
these techniques and methods during normal run-time operation, with no human in-
tervention. The latter is a necessity when designing and implementing self-healing
techniques and methods. For security efficiency and information leakage, attacks
can be imitated through several models and a monitoring component can track the
outcome.

In the present work, a new family of error detecting and correcting codes are
proposed and evaluated from the perspective of speed, code redundancy, area over-
head, power consumption and several specific evaluations: error localization, error
correction and error escapes. Because of the low delay, the can be considered very
efficient for fast cache DRAM memory, where the code overhead is not important.
The proposed codes are efficient from almost each point of view evaluated in this
work. As regarding the power consumption, the design is less power-hungry in
comparison with the original Berger code implementation. In order to achieve a
memory system with low-power consumption and EDC/ECC, the error detection
and correction can be done either when the memory is idle or inactive, either when
a word is read. The operations can be executed in a refresh-time period, with high
consistency, at the expense of more check bits. Also, when comparing the values of
the partial check bits, if more comparators are used, the detection speed improves
with the cost of higher area overhead and power consumption. The operations can
also be pipelined so than no time or power is wasted.

Regarding security and data privacy for memory systems, a new technique that
uses data scrambling is presented. It is designed to minimize the impact of cold-
boot attacks on memories, by scrambling the stored data. Experiments include
simulations with the CACTI tool and a FPGA model, while the evaluation process
consists of measuring area overhead, power consumption and delay. The results
demonstrate that the impact of the proposed technique is low when compared to a

165

standard scrambling technique.

Against simple and differential power and electromagnetic attacks, two novel
techniques are proposed. These strategies are based on a family of error detection
and correction codes and merged with a data scrambling technique. The evaluation
of the security efficiency is achieved by measuring the amount of leaked informa-
tion. For this, numerous attacks have been simulated. The implementation costs
were assessed by simulating different architectures in the CACTI tool and com-
paring the results for area overhead, power consumption and access time. The
proposed solutions greatly reduce the information leakage, while the overhead for
area, power consumption and delay is very small when considering large cache
sizes.

In Chapter 1, seven questions related to the objectives of the thesis where for-
mulated. Now, they are answered, in order to see if the objectives are fulfilled.

e Which was the main objective of this thesis?

The main objective of the thesis is to design a self-healing and secure technique for
memory systems, which favors low-power consumption.

e [s the main objective accomplished?

Yes, the self-healing technique is achieved through the design and implementation
of a new family of error detecting and correcting codes, based on the Berger code.
The security of the memory system is accomplished through the design and im-
plementation of several strategies that use data scrambling. Each technique and
strategy is tested and evaluated from different points of view.

e How is the self-healing and secure memory system achieved?

The proposed codes are able to detect, localize and correct errors that occur in the
memory system. Also, memory repair strategies which include the proposed codes
are exhibited, explained and evaluated. The security strategies can mitigate cold-
boot and SPEMA/DPEMA attacks, by using data scrambling merged with error
detecting and correcting codes. The security methodology is explained in detail
and evaluated from several points of view.

o [s the low-power perspective fulfilled?
Yes, the proposed solutions favor a low-power consumption, when compared to

standard architectures. All of the proposed strategies and techniques are evaluated
from the power consumption point of view.

166 CHAPTER 5. CONCLUSIONS

e How is the security in memories dealt with?

The security in caches is strengthen with 3 separate solutions: one for cold-
boot attacks, another for SPEMA and the last for DPEMA. The techniques use data
scrambling and error detecting and correcting codes and each solution is evaluated
from several points of view: performance and efficiency, information leakage, area
overhead, power consumption and delay.

e From the evaluation point of view, can the proposed methodology be consid-
ered a good solution?

The evaluations from Chapter [2 show that the proposed codes are good from every
point of view (speed, power consumption, etc.), except code redundancy, which
is higher than the original Berger code redundancy. Regarding the cache security,
the results exhibit that the proposed security methodology handles very well cold-
boot, SPEMA and DPEMA attacks, when considering the following metrics: time
performance, energy efficiency, information leakage and performance estimation.

e Can the self-healing and secure technique be further researched and used in
other systems?

Yes, the self-healing technique can be considered a gateway for future research,
for example, in the telecommunications domain or in security for integrated cir-
cuits. Other systems that exhibit unidirectional soft errors can employ the proposed
codes, while the entire self-healing technique can be used also for permanent er-
rors. The security solutions can be further improved, in order to cope with other
types of attacks.

5.1 Scientific contributions
In the next paragraphs, the scientific contributions are presented.
e Chapter|T]
— Introduction

A complete analysis of the current situation in self-healing memory systems
is realized. The analysis consists of types of errors for memory systems and how
do they occur, how self-healing is achieved and implemented in self-healing mem-
ory systems, methods and techniques for mitigating errors and how low-power is
fulfilled in self-healing memory systems. The security and privacy in memories is

5.1. SCIENTIFIC CONTRIBUTIONS 167

also covered, starting with basic security principles and policies, continuing with
an analysis of attack types on memories and ending with memory security tech-
niques and methodologies.

e Chapter[2]

— Unidirectional Error Detection, Localization and Correction Codes for
DRAMs

The proposed codes for achieving a self-healing low-power memory system
are presented. They are basically a modification of the Berger code tree-shaped
implementation and gain error localization and error correction (not possible by
using the Berger code). Thus, the codes are analyzed from several perspectives,
especially error localization, error correction and error escapes. For each perspec-
tive, a new metric is defined, explained and evaluated. In this chapter, the proposed
codes are implemented using Cadence virtual simulation environment. The codes
are tested in several ways, in order to obtain low-power consumption and small
delay when generating the check bits. Memory repair strategies are exhibited, as
well as how pipelining is achieved, in order to accomplish a self-healing low-power
memory system. The evaluation of the proposed codes is presented. The metrics
evaluated are the following: speed and delay, power consumption, area overhead,
error localization, error correction and error escapes. All of the evaluations are
done by exhaustive testing and simulation of all possible error patterns that occur
in the memory system. The metrics for error detection, correction and escapes have
been defined separately, by creating a C++ program which calculates the metrics
by generating all possible values for the information bits and all possible error (ran-
dom and burst) locations. The contributions of this chapter have been disseminated
as follows:

1. Neagu, M., Miclea, L., “Modified Berger Codes for On-Line DRAM Repair
Strategies”, Proceedings of the 2012 18th IEEE International Conference on
Automation, Quality and Testing, Robotics (AQTR), pp. 296 — 301, 2012,
https://doi.org/10.1109/AQTR.2012.6237720

2. Neagu, M., Mois, G., Miclea, L.,”On-Line Error Detection for Tuning Dy-
namic Frequency Scaling”, Proceedings of the 2012 18th IEEE International
Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 290
—295,2012, https://doi.org/10.1109/AQTR.2012.6237719

3. Neagu, M., Miclea, L., Figueras, J., “Unidirectional error detection, local-
ization and correction for DRAMs: Application to on-line DRAM repair

https://doi.org/10.1109/AQTR.2012.6237720
https://doi.org/10.1109/AQTR.2012.6237719

168 CHAPTER 5. CONCLUSIONS

strategies”, Proceedings of the 2011 IEEE 17th International On-Line Test-
ing Symposium (IOLTS), pp. 264-269, 2011, https://doi.org/10.
1109/I0LTS.2011.5994540

4. Neagu, M., Miclea, L.,”On-Line Error Detecting Codes for DRAMs”, ACAM
Journal: Automation, Computers, Applied Mathematics, Vol. 20, Nr. 2, pp.

133-138,2011,http://acam.tucn.ro/pdf/CA_20%282011%29no2.

pdf
e Chapter[3]
— Interleaved Scrambling Technique

The Interleaved Scrambling Technique (IST) was proposed to increase the se-
curity of data from cache memories, especially protection against cold-boot at-
tacks. This attack can extract data from any type of memory, including caches,
but it requires unobstructed physical access to the memory itself. The methodol-
ogy presented in this chapter hides the plain text data by scrambling them with
secret keys, thus making cold-boot attacks useless. If such an attack occurs, the
extracted data is scrambled and therefore worthless. The methodology presented
in this chapter commences with a short review of previous works, then data scram-
bling is explained and the statement of the problem is addressed. The following
section exhibits the proposed methodology, designed to make cold-boot attacks
useless. The main block design is exposed and each block is explained in detail, as
well as the operation mode of the design when the read and write cycles occur in
the cache memory. The proposed solution is then evaluated from several points of
view, including: performance estimation, time performance and energy efficiency.
The CACTI tool for cache designs was used to compare several implementations
of caches, thus comparing a plain L2 cache with the proposed design. For the same
comparison, a FPGA implementation is used and the evaluation metrics are the
following: area utilization and overhead in the FPGA device, power consumption
in normal operation and delay for data and clock path. The contributions of this
chapter have been disseminated as follows:

1. Neagu, M., Miclea, L., Salvador, M., "Improving Security in Cache Mem-
ory by Power Efficient Scrambling Technique”, IET Computers & Digital
Techniques, Volume 9, Issue 6, pp. 283 — 292, 2015, http://dx.doi.
org/10.1049/1iet—-cdt.2014.0030

2. Neagu, M., Miclea, L., Salvador, M., "’Interleaved Scrambling Technique:
A Novel Low-Power Security Layer for Cache Memories”, Proceedings of

https://doi.org/10.1109/IOLTS.2011.5994540
https://doi.org/10.1109/IOLTS.2011.5994540
http://acam.tucn.ro/pdf/CA_20%282011%29no2.pdf
http://acam.tucn.ro/pdf/CA_20%282011%29no2.pdf
http://dx.doi.org/10.1049/iet-cdt.2014.0030
http://dx.doi.org/10.1049/iet-cdt.2014.0030

5.1. SCIENTIFIC CONTRIBUTIONS 169

the 2014 19th IEEE European Test Symposium (ETS), pp. 241 — 243, 2014,
https://doi.org/10.1109/ETS.2014.6847844

3. Neagu, M., Sebestyen, G., “Increasing Memory Security through Informa-
tion Entropy Models”, 15th IEEE International Symposium on Computa-
tional Intelligence and Informatics (CINTI), pp. 49-53, Budapest, Hungary,
2014, https://doi.org/10.1109/CINTI.2014.7028727

4. Neagu, M., Miclea, L., “Protecting Cache Memories through Data Scram-
bling Technique”, 10th International Conference on Intelligent Computer
Communication and Processing (ICCP), pp. 297 — 303, Cluj-Napoca, Ro-
mania, 2014, https://doi.org/10.1109/ICCP.2014.6937012

5. Neagu, M., Miclea, L., "Data Scrambling in Memories: A Security Mea-
sure”, Proceedings of the 2014 19th IEEE International Conference on Au-
tomation, Quality and Testing, Robotics (AQTR), pp. 1 — 6, Cluj-Napoca,
Romania, 2014, https://doi.org/10.1109/AQTR.2014.6857847

e Chapter[4]
— Defeating SPEMA and DPEMA

This chapter contains a security methodology designed for defeating simple
and differential power and electromagnetic analysis attacks. These types of attacks
are powerful and can target cache memories, but the attacker model must also in-
clude a cold-boot attack. SPEMA attacks are easier to overcome, in contrast to
DPEMA which are very difficult to defeat. The chapter contains a short review
of power and electromagnetic radiation analysis and continues with the proposed
solutions for defeating these types of attacks. The methodology for SPEMA is
presented and evaluated, while for DPEMA, the latter is improved in order to cope
with these type of attacks. For each methodology, a leakage function is defined,
which is based on information entropy theory and is used to calculate the leaked
information from the scrambled data. Independent C++ programs were designed
to evaluate and to provide experimental results for both solutions, while the CACTI
tool was used to compare several implementations of cache memories. The contri-
butions of this chapter have been disseminated as follows:

1. Neagu, M., Salvador, M., "Defending cache memory against cold-boot at-
tacks boosted by power or EM radiation analysis”, Microelectronics Journal,
Volume 62, pp. 85-98, 2017, https://doi.org/10.1016/j.mejo.
2017.02.010

https://doi.org/10.1109/ETS.2014.6847844
https://doi.org/10.1109/CINTI.2014.7028727
https://doi.org/10.1109/ICCP.2014.6937012
https://doi.org/10.1109/AQTR.2014.6857847
https://doi.org/10.1016/j.mejo.2017.02.010
https://doi.org/10.1016/j.mejo.2017.02.010

170 CHAPTER 5. CONCLUSIONS

2. Neagu, M., Miclea, L., Manich, S., "Defeating Simple Power Analysis At-
tacks in Cache Memories”, in Proceedings of the 2015 30th Conference on
Design of Circuits and Integrated Systems (DCIS), pp. 1 — 6, Estoril, Portu-
gal, 2015, https://doi.org/10.1109/DCIS.2015.7388557

3. Neagu, M., Miclea, L., Manich, S., ”On the use of error detecting and cor-
recting codes to boost security in caches against side channel attacks”, Work-
shop on Trustworthy Manufacturing and Utilization of Secure Devices”, Pro-
ceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition: 9-13 March 2015, Grenoble, France, p. 1-6, 2015, http:
//upcommons .upc.edu/e-prints/handle/2117/26828

5.2 Future research and developments

The proposed self-healing technique for memory systems can be further researched,
because they can be used in other domains, like telecommunications or integrated
circuits security.

First of all, the proposed codes from Chapter [2] used in the the self-healing
technique, can be further researched, by implementing them in real-time memory
systems or FPGAs. Because there are plenty of high-speed circuits and chips in the
nowadays electronic technology, the proposed codes can scale very well in modern
systems and can have even better results. The proposed codes favor low-power
consumption, thus they can be employed in devices with limited power source like
handhelds or in the wireless communications domain. The security methodology
described in Chapter [3|and | can be further improved when considering the nowa-
days variety of attacks. However, the attacker model must be defined and specified
prior to the security design, since this domain is overwhelming and attacks are
updated continually.

https://doi.org/10.1109/DCIS.2015.7388557
http://upcommons.upc.edu/e-prints/handle/2117/26828
http://upcommons.upc.edu/e-prints/handle/2117/26828

Bibliography

[1]

(2]
[3]

[4]

[5]

[7]

[10]

ITRS. ITRS roadmap of 2013. Technical report, ITRS, 2013. URL http:
//www.itrs2.net/itrs—reports.html.

Morganm J.P. Payments fraud and control survey, 2015.

F. Paget. Financial fraud and internet banking: Threats and countermea-
sures. Technical report, McAffee Avert Labs, 2009.

David R Piegdon and L Pimenidis. Hacking in physically addressable mem-
ory. In Seminar of Advanced Exploitation Techniques, WS 2006/2007, vol-
ume 12, 2007.

Charles Slayman. Soft errors—past history and recent discoveries. In Infe-
grated Reliability Workshop Final Report (IRW), 2010 IEEE International,
pages 25-30. IEEE, 2010.

IBM. Ibm unveils new autonomic computing deployment model. Techni-
cal report, IBM, 2001. URL http://people.scs.carleton.ca/
~soma/biosec/readings/autonomic_computing.pdf.

IBM. Autonomic computing: Ibm’s perspective on the state of information
technology. Technical report, IBM, 2002. URL http://www-03.1ibm.
com/press/us/en/pressrelease/464 .wsslk

Edward Curry and Paul Grace. Flexible self-management using the model-
view-controller pattern. IEEE software, 25(3), 2008.

Deepak Halan. Autonomic computing without human intervention, 2015.
URL http://electronicsforu.com/technology—trends/
autonomic—-computing-without-human-intervention.

Jeffrey O Kephart and David M Chess. The vision of autonomic computing.
Computer, 36(1):41-50, 2003.

171

http://www.itrs2.net/itrs-reports.html
http://www.itrs2.net/itrs-reports.html
http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf
http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf
http://www-03.ibm.com/press/us/en/pressrelease/464.wss
http://www-03.ibm.com/press/us/en/pressrelease/464.wss
http://electronicsforu.com/technology-trends/autonomic-computing-without-human-intervention
http://electronicsforu.com/technology-trends/autonomic-computing-without-human-intervention

172

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BIBLIOGRAPHY

Goutam Kumar Saha. Software-implemented self-healing system. CLEI
Electronic Journal, 10(2), 2007.

Andrew Berns and Sukumar Ghosh. Dissecting self-* properties. In Self-
Adaptive and Self-Organizing Systems, 2009. SASO’09. Third IEEE Inter-
national Conference on, pages 10-19. IEEE, 2009.

R.C. Dorf. The Electrical Engineering Handbook. Electrical Engineering
Handbook. CRC-Press, 1998. ISBN 9780849385742. URL https://
books.google.ro/books?id=VGOFngEACAAJ.

Mark D Hill. A case for direct-mapped caches. Computer, 21(12):25-40,
1988.

Thomas Vogelsang. Understanding the energy consumption of dynamic ran-
dom access memories. In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 363-374. IEEE Com-
puter Society, 2010.

Nam Sung Kim, Todd Austin, David Baauw, Trevor Mudge, Krisztidn Flaut-
ner, Jie S Hu, Mary Jane Irwin, Mahmut Kandemir, and Vijaykrishnan
Narayanan. Leakage current: Moore’s law meets static power. computer, 36
(12):68-75, 2003.

David Nguyen, Abhijit Davare, Michael Orshansky, David Chinnery, Bran-
don Thompson, and Kurt Keutzer. Minimization of dynamic and static
power through joint assignment of threshold voltages and sizing optimiza-
tion. In Proceedings of the 2003 international symposium on Low power
electronics and design, pages 158—-163. ACM, 2003.

Hamid Mahmoodi, Vishy Tirumalashetty, Matthew Cooke, and Kaushik
Roy. Ultra low-power clocking scheme using energy recovery and clock
gating. IEEE transactions on very large scale integration (VLSI) systems,
17(1):33-44, 2009.

Howard David, Chris Fallin, Eugene Gorbatov, Ulf R Hanebutte, and Onur
Mutlu. Memory power management via dynamic voltage/frequency scal-
ing. In Proceedings of the 8th ACM international conference on Autonomic
computing, pages 31-40. ACM, 2011.

Keith Harrison and Shouhuai Xu. Protecting cryptographic keys from mem-
ory disclosure attacks. In 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN’07), pages 137-143. 1IEEE,
2007.

https://books.google.ro/books?id=VGOFngEACAAJ
https://books.google.ro/books?id=VGOFngEACAAJ

BIBLIOGRAPHY 173

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten. Lest we remember: cold-boot attacks on en-
cryption keys. Communications of the ACM, 52(5):91-98, 2009. doi:
10.1145/1506409.1506429.

Joo Guan Ooi and Kok Horng Kam. A proof of concept on defending cold
boot attack. In Quality Electronic Design, 2009. ASQED 2009. Ist Asia
Symposium on, pages 330-335, July 2009. doi: 10.1109/ASQED.2009.
5206245.

Jingfei Kong and Huiyang Zhou. Improving privacy and lifetime of pcm-
based main memory. In Dependable Systems and Networks (DSN), 2010
IEEE/IFIP International Conference on, pages 333-342, June 2010. doi:
10.1109/DSN.2010.5544298.

Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifert, and Huiyang Zhou. Ar-
chitecting against software cache-based side-channel attacks. IEEE Trans-
actions on Computers, 62(7):1276-1288, 2013.

Z. Wang and R. B. Lee. New cache designs for thwarting software cache-
based side channel attacks. In Computer Architecture (ISCA’07), 34th Sym-
posium on, pages 494-505, 2007.

Guido Bertoni, Vittorio Zaccaria, Luca Breveglieri, Matteo Monchiero, and
Gianluca Palermo. Aes power attack based on induced cache miss and
countermeasure. In Information Technology: Coding and Computing, 2005.
ITCC 2005. International Conference on, volume 1, pages 586-591. IEEE,
2005.

David Samyde, Sergei Skorobogatov, Ross Anderson, and J-J Quisquater.
On a new way to read data from memory. In Security in Storage Workshop,
2002. Proceedings. First International IEEE, pages 65-69. IEEE, 2002.

Yuemei He, Haibing Guan, Kai Chen, and Alei Liang. A new software
approach to defend against cache-based timing attacks. In Information En-
gineering and Computer Science, 2009. ICIECS 2009. International Con-
ference on, pages 1-4. IEEE, 2009.

Tilo Miiller and Michael Spreitzenbarth. Frost: Forensic recovery of scram-
bled telephones. In Proceedings of the 11th International Conference on
Applied Cryptography and Network Security, ACNS’13, pages 373-388,

174

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

BIBLIOGRAPHY

Berlin, Heidelberg, 2013. Springer-Verlag. ISBN 978-3-642-38979-5. doi:
10.1007/978-3-642-38980-1_23.

Ludger Borucki, Guenter Schindlbeck, and Charles Slayman. Comparison
of accelerated dram soft error rates measured at component and system level.
In Reliability Physics Symposium, 2008. IRPS 2008. IEEE International,
pages 482-487. IEEE, 2008.

Norbert Seifert, P Slankard, M Kirsch, Balaj Narasimham, Victor Zia, Chris
Brookreson, A Vo, Subhasish Mitra, Balkaran Gill, and J Maiz. Radiation-
induced soft error rates of advanced cmos bulk devices. In Reliability
Physics Symposium Proceedings, 2006. 44th Annual., IEEE International,
pages 217-225. IEEE, 2006.

Charles W Slayman. Cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations. IEEE Trans-
actions on Device and Materials Reliability, 5(3):397-404, 2005.

Balaji Narasimham and Wing K Luk. A multi-bit error detection scheme
for dram using partial sums with parallel counters. In Reliability Physics
Symposium, 2008. IRPS 2008. IEEE International, pages 202-205. 1EEE,
2008.

Shu Lin and Daniel J. Costello. Error Control Coding, Second Edition.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004. ISBN 0130426725.

David JC MacKay. Information theory, inference and learning algorithms.
Cambridge University Press, 2003.

Jianwu Zhao and Yibing Shi. A novel approach to improving burst errors
correction capability of hamming code. In Communications, Circuits and
Systems, 2007. ICCCAS 2007. International Conference on, pages 1193—
1196. IEEE, 2007.

Elaine Ou and Woodward Yang. Fast error-correcting circuits for fault-
tolerant memory. In Memory Technology, Design and Testing, 2004. Records
of the 2004 International Workshop on, pages 8—12. IEEE, 2004.

Sang-uhn Cha and Hongil Yoon. High speed, minimal area, and low power
sec code for drams with large i/o data widths. In Circuits and Systems,
2007. ISCAS 2007. IEEE International Symposium on, pages 3026-3029.
IEEE, 2007.

BIBLIOGRAPHY 175

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Chris Wilkerson, Alaa R Alameldeen, Zeshan Chishti, Wei Wu, Dinesh So-
masekhar, and Shih-lien Lu. Reducing cache power with low-cost, multi-bit
error-correcting codes. In ACM SIGARCH Computer Architecture News,
volume 38, pages 83-93. ACM, 2010.

Chris Wilkerson, Hongliang Gao, Alaa R Alameldeen, Zeshan Chishti,
Muhammad Khellah, and Shih-Lien Lu. Trading off cache capacity for re-
liability to enable low voltage operation. In Computer Architecture, 2008.
ISCA’08. 35th International Symposium on, pages 203-214. IEEE, 2008.

Arjan C Dam, Michel GJ Lammertink, Kenneth C Rovers, Johan Slagman,
and Arno M Wellink. Hardware/software co-design applied to reed-solomon
decoding for the dmb standard. In Digital System Design: Architectures,
Methods and Tools, 2006. DSD 2006. 9th EUROMICRO Conference on,
pages 447-455. IEEE, 2006.

Arshad Ahmed, Naresh R Shanbhag, and Ralf Koetter. An architectural
comparison of reed-solomon soft-decoding algorithms. In Signals, Systems
and Computers, 2006. ACSSC’06. Fortieth Asilomar Conference on, pages
912-916. IEEE, 2006.

Sunwook Rhee, Changgeun Kim, Juhee Kim, and Yong Jee. Concatenated
reed-solomon code with hamming code for dram controller. In Computer
Engineering and Applications (ICCEA), 2010 Second International Confer-
ence on, volume 1, pages 291-295. IEEE, 2010.

Jay M Berger. A note on error detection codes for asymmetric channels.
Information and Control, 4(1):68-73, 1961.

Jaydeep P Kulkarni, Keejong Kim, and Kaushik Roy. A 160 mv robust
schmitt trigger based subthreshold sram. IEEE Journal of Solid-State Cir-
cuits, 42(10):2303-2313, 2007.

Prashant Upadhyay, Rajesh Mehra, and Niveditta Thakur. Low power de-
sign of an sram cell for portable devices. In Computer and Communication
Technology (ICCCT), 2010 International Conference on, pages 255-259.
IEEE, 2010.

Hooman Jarollahi and Richard F Hobson. Power and area efficient St-sram
with improved performance for low-power soc in 65nm cmos. In Circuits
and Systems (MWSCAS), 2010 53rd IEEE International Midwest Sympo-
sium on, pages 121-124. IEEE, 2010.

176

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

BIBLIOGRAPHY

J-P Noel, O Thomas, C Fenouillet-Beranger, M-A Jaud, and A Amara. Ro-
bust multi-v t 4t sram cell in 45nm thin box fully-depleted soi technology
with ground plane. In IC Design and Technology, 2009. ICICDT’09. IEEE
International Conference on, pages 191-194. IEEE, 2009.

Igor Loi and Luca Benini. An efficient distributed memory interface for
many-core platform with 3d stacked dram. In Proceedings of the Conference
on Design, Automation and Test in Europe, pages 99—104. European Design
and Automation Association, 2010.

Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. Pdram: A hybrid pram
and dram main memory system. In Design Automation Conference, 2009.
DAC’09. 46th ACM/IEEE, pages 664—669. IEEE, 2009.

Antonin Bougerol, Florent Miller, and Nadine Buard. Novel dram mitiga-
tion technique. In On-Line Testing Symposium, 2009. IOLTS 2009. 15th
IEEFE International, pages 109-113. IEEE, 2009.

Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. Dram errors
in the wild: a large-scale field study. In ACM SIGMETRICS Performance
Evaluation Review, volume 37, pages 193-204. ACM, 2009.

Charles Slayman. Soft error trends and mitigation techniques in mem-
ory devices. In Reliability and Maintainability Symposium (RAMS), 2011
Proceedings-Annual, pages 1-5. IEEE, 2011.

Ludger Borucki, Guenter Schindlbeck, and Charles Slayman. Impact of
dram process technology on neutron-induced soft errors. In Integrated Reli-
ability Workshop Final Report, 2007. IRW 2007. IEEE International, pages
143-146. IEEE, 2007.

F Lima Kastensmidt, Luca Sterpone, Luigi Carro, and M Sonza Reorda.
On the optimal design of triple modular redundancy logic for sram-based
fpgas. In Proceedings of the conference on Design, Automation and Test in
Europe-Volume 2, pages 1290-1295. IEEE Computer Society, 2005.

Masashi Horiguchi and Kiyoo Itoh. Nanoscale memory repair. Springer
Science & Business Media, 2011.

Robert Chien. Cyclic decoding procedures for bose-chaudhuri-
hocquenghem codes. IEEE Transactions on information theory, 10(4):357-
363, 1964.

BIBLIOGRAPHY 177

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Sandip Kundu and Sudhakar M. Reddy. On symmetric error correcting and
all unidirectional error detecting codes. IEEE transactions on computers, 39
(6):752-761, 1990.

Chi-Sung Laih and Ching-Nung Yang. On the analysis and design of group
theoretical t-syec/aued codes. IEEFE transactions on computers, 45(1):103—
108, 1996.

Sulaiman Al-Bassam and Bella Bose. Asymmetric/unidirectional error cor-
recting and detecting codes. [EEE Transactions on Computers, 43(5):590-
597, 1994.

Dimitris Nikolos, Nicolas Gaitanis, and George Philokyprou. Systematic
t-error correcting all unidirectional error detecting codes. In Fehlerto-
lerierende Rechensysteme, pages 177-188. Springer, 1984.

Philipp Ohler and Sybille Hellebrand. Low power embedded drams with
high quality error correcting capabilities. In Test Symposium, 2005. Euro-
pean, pages 148—153. IEEE, 2005.

Philip G Emma, William R Reohr, and Mesut Meterelliyoz. Rethinking
refresh: Increasing availability and reducing power in dram for cache appli-
cations. IEEE micro, 28(6), 2008.

Abdallah M Saleh, Juan J Serrano, and Janak H Patel. Reliability of scrub-
bing recovery-techniques for memory systems. IEEE transactions on relia-
bility, 39(1):114-122, 1990.

Shubhendu S Mukherjee, Joel Emer, Tryggve Fossum, and Steven K Rein-
hardt. Cache scrubbing in microprocessors: Myth or necessity? In Depend-
able Computing, 2004. Proceedings. 10th IEEE Pacific Rim International
Symposium on, pages 37—42. IEEE, 2004.

William Robert Reohr. Memories: Exploiting them and developing them.
In SOC Conference, 2006 IEEE International, pages 303-310. IEEE, 2006.

Jin-Fu Li, Tsu-Wei Tseng, and Chih-Sheng Hou. Reliability-enhancement
and self-repair schemes for srams with static and dynamic faults. [EEE
Transactions on very large scale integration (visi) systems, 18(9):1361-
1366, 2010.

Samuel Evain, Yannick Bonhomme, and Valentin Gherman. Programmable
restricted sec codes to mask permanent faults in semiconductor memories.

178

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

BIBLIOGRAPHY

In On-Line Testing Symposium (IOLTS), 2010 IEEE 16th International,
pages 147-153. IEEE, 2010.

Vinny Wilson. Analysis and performance evaluation of 1-bit full adder using
different topologies. International Journal of Engineering Research and
General Science, 5(1):196-210, 2017. ISSN 2091-2730.

Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifert, and Huiyang Zhou. Ar-
chitecting against software cache-based side-channel attacks. IEEE Trans-
actions on Computers, 62(7):1276-1288, 2013.

Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifert, and Huiyang Zhou. Ar-
chitecting against software cache-based side-channel attacks. /EEE Trans-
actions on Computers, 62(7):1276-1288, 2013.

Vladimir Rozié, Wim Dehaene, and Ingrid Verbauwhede. Design solutions
for securing sram cell against power analysis. In Hardware-Oriented Se-
curity and Trust (HOST), 2012 IEEE International Symposium on, pages
122-127. IEEE, 2012.

Joanna Rutkowska. Beyond the cpu: Defeating hardware based ram acqui-
sition. Proceedings of BlackHat DC, 2007, 2007.

Luca Benini, Angelo Galati, Alberto Macii, Enrico Macii, and Massimo
Poncino. Energy-efficient data scrambling on memory-processor interfaces.
In Proceedings of the 2003 international symposium on Low power elec-
tronics and design, pages 26-29. ACM, 2003.

Chih-Jen Hsu, Yuh-Chin Huang, and Mu-Chi Hsu. Scramble circuit to pro-
tect data in a read only memory, June 18 2002. US Patent 6,408,073.

K.S. Sainarayanan, J.V.R. Ravindra, C. Raghunandan, and M.B. Srinivas.
Coupling aware energy-efficient data scrambling on memory-processor in-
terfaces. In Industrial and Information Systems, 2007. ICIIS 2007. Interna-
tional Conference on, pages 421-426, Aug 2007. doi: 10.1109/ICIINFS.
2007.4579214.

Eric Brier, Helena Handschuh, and Christophe Tymen. Fast primitives for
internal data scrambling in tamper resistant hardware. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 16—
27. Springer, 2001.

BIBLIOGRAPHY 179

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

W. Enck, K. Butler, T. Richardson, P. McDaniel, and A. Smith. Defending
against attacks on main memory persistence. In Computer Security Appli-
cations Conference, 2008. ACSAC 2008. Annual, pages 65-74, Dec 2008.
doi: 10.1109/ACSAC.2008.45.

HP. Cacti tool v5.3. URL http://quid.hpl.hp.com:9081/
cacti/l

Xilinx. Xpower analyzer v14.7. URL http://www.xilinx.com/
products/design_tools/logic_design/verification/
xpower.htm.

Sergei Skorobogatov. Low temperature data remanence in static ram, 2002.

Patrick Colp, Jiawen Zhang, James Gleeson, Sahil Suneja, Eyal de Lara,
Himanshu Raj, Stefan Saroiu, and Alec Wolman. Protecting data on smart-
phones and tablets from memory attacks. ACM SIGPLAN Notices, 50(4):
177-189, 2015.

Michael Gruhn and Tilo Miiller. On the practicability of cold boot attacks.
In Availability, Reliability and Security (ARES), 2013 Eighth International
Conference on, pages 390-397. IEEE, 2013.

Ang Cui, Michael Costello, and Salvatore J Stolfo. When firmware modifi-
cations attack: A case study of embedded exploitation. In NDSS, 2013.

Vincent Rijmen and Joan Daemen. Advanced encryption standard. Proceed-
ings of Federal Information Processing Standards Publications, National
Institute of Standards and Technology, pages 19-22, 2001.

Julia Borghoff, Anne Canteaut, Tim Giineysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R Knudsen, Gregor Leander, Ventzislav Nikov, Christof
Paar, Christian Rechberger, et al. Prince—a low-latency block cipher for per-
vasive computing applications. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 208-225.
Springer, 2012.

Lifeng Su, Albert Martinez, Pierre Guillemin, Sébastien Cerdan, and Re-
naud Pacalet. Hardware mechanism and performance evaluation of hierar-
chical page-based memory bus protection. In Proceedings of the Conference
on Design, Automation and Test in Europe (DATE), 2009.

http://quid.hpl.hp.com:9081/cacti/
http://quid.hpl.hp.com:9081/cacti/
http://www.xilinx.com/products/design_tools/logic_design/verification/xpower.htm
http://www.xilinx.com/products/design_tools/logic_design/verification/xpower.htm
http://www.xilinx.com/products/design_tools/logic_design/verification/xpower.htm

180

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

BIBLIOGRAPHY

William Enck, Kevin Butler, Thomas Richardson, Patrick McDaniel, and
Adam Smith. Defending against attacks on main memory persistence. In
2008 Annual Computer Security Applications Conference (ACSAC). Insti-
tute of Electrical & Electronics Engineers (IEEE), 2008. doi: 10.1109/acsac.
2008.45.

Siddhartha Chhabra and Yan Solihin. i-nvmm: a secure non-volatile main
memory system with incremental encryption. In ACM SIGARCH Computer
Architecture News, volume 39, pages 177-188. ACM, 2011.

I. Anati, J. Doweck, G. Gerzon, S. Gueron, and M. Maor. A tweak-
able encrypion mode for memory encryption with protection against re-
play attacks, 2012. URL http://www.google.com/patents/
W02012040679A3?cl=en. WO Patent App. PCT/US2011/053,170.

S. Gueron, U. Savagaonkar, FX. Mckeen, C.V. Rozas, D.M. Durham,
J. Doweck, O. MULLA, I. Anati, Z. Greenfield, and M. Maor. Method and
apparatus for memory encryption with integrity check and protection against
replay attacks, 2013. URL http://www.google.com/patents/
W02013002789A12c1=pt—-PT. WO Patent App. PCT/US2011/042,413.

Boris Dolgunov and Arseniy Aharonov. Memory randomization for protec-
tion against side channel attacks, 2014. US Patent 8,726,040.

R Vijay Sai, S Saravanan, and V Anandkumar. Implementation of a novel
data scrambling based security measure in memories for vlsi circuits. Indian
Journal of Science and Technology, 8, 2015.

Intel. 5th generation intel® core™ processor family, intel® core™ m

processor family, mobile intel® pentium(®) processor family, and mobile
intel®) celeron®) processor family, 2015.

Maidalin-Ioan Neagu, Liviu Miclea, and Salvador Manich. Improving secu-
rity in cache memory by power efficient scrambling technique. IET Comput-
ers & Digital Techniques, 9(6):283-292, 2015. doi: 10.1049/iet-cdt.2014.
0030.

Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction
to differential power analysis. Journal of Cryptographic Engineering, 1(1):
5-27,2011. doi: 10.1007/s13389-011-0006-y.

Maidilin Neagu, Liviu Miclea, and Salvador Manich. Defeating simple
power analysis attacks in cache memories. In Design of Circuits and In-
tegrated Systems (DCIS), 2015 Conference on, pages 1-6. IEEE, 2015.

http://www.google.com/patents/WO2012040679A3?cl=en
http://www.google.com/patents/WO2012040679A3?cl=en
http://www.google.com/patents/WO2013002789A1?cl=pt-PT
http://www.google.com/patents/WO2013002789A1?cl=pt-PT

BIBLIOGRAPHY 181

[98] Robert M Fano. The transmission of information. Massachusetts Institute
of Technology, Research Laboratory of Electronics, 1949.

[99] Robert M Gray. Entropy and information. Springer, 1990.

[100] Maédilin Neagu and Salvador Manich. Defending cache memory against
cold-boot attacks boosted by power or em radiation analysis. Microelec-
tronics Journal, 62:85-98, 2017.

[101] Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. Raidr: Retention-
aware intelligent dram refresh. In ACM SIGARCH Computer Architecture
News, volume 40, pages 1-12. IEEE Computer Society, 2012.

[102] Panagiota Papavramidou and Michael Nicolaidis. Reducing power dissipa-
tion in memory repair for high defect densities. In 2013 18th IEEE European
Test Symposium (ETS), pages 1-7. IEEE, 2013.

	Introduction
	Context
	State of the art
	Motivation
	Introduction
	The Self-Healing concept
	Memory systems
	Low-power systems
	Security in memory systems

	Objectives
	Structure

	Unidirectional eDLC
	Introduction
	Motivation
	Theoretical background
	Memory systems
	Sources of errors in SRAM and DRAM memories
	Self-healing memory systems through error detection and correction schemes

	Proposed solution
	Modified Berger codes
	Coding schemes
	Error localization
	Error correction
	Error escapes

	Implementation
	Cadence implementation
	Integrating the proposed self-healing technique in memory systems

	Experimental results and evaluation
	Code delay
	Code redundancy
	Error localization ambiguity
	Error correction
	Error escapes
	Area of the code generator and memory resources
	Power consumption
	Delay
	Overall evaluation

	Conclusions

	Security in cache memories (IST)
	Introduction
	Theoretical background
	Data scrambling
	Statement of the problem
	Proposed solution: Interleaved Scrambling Technique (IST)
	Scrambler Table
	Cache Memory
	Read and write cycles

	IST performance and efficiency
	Time performance
	Power efficiency

	Evaluation and experimental results
	CACTI tool evaluation
	FPGA model evaluation

	Conclusions

	Defeating SPEMA and DPEMA
	Introduction
	Motivation
	Theoretical background
	Attacks on memory
	Cold-boot attacks

	Securing memory at hardware level
	Main memory
	Cache memory
	Interleaved Scrambling Technique

	Power (P) and Electromagnetic (EM) Radiation Analysis
	Simple P or EM Radiation Analysis Attack
	Differential P or EM Radiation Analysis Attack
	Attack model

	Statement of the Problem
	Objective

	Proposed solution for defeating SPEMA
	eDLC review and integration with IST
	Scrambling vector redundancy filter

	Proposed solution for defeating DPEMA
	Example of DPEMA attack on ISTe
	DPEMA countermeasure
	How it works

	Evaluation and experimental results
	Leakage function
	Results
	Implementation costs

	Conclusions

	Conclusions
	Scientific contributions
	Future research and developments

	Bibliography

