

Multicore architecture optimizations
for HPC applications

by

Uglješa Milić

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l
UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX
(h t t p : / / w w w . t d x . c a t /) ha estat autoritzada pels titulars dels drets de propietat intel·lectual
únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza
la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc
aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra
o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació
de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom
de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the i n s t i t u t i o n a l r e p o s i t o r y UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

Multicore Architecture Optimizations
for HPC Applications

by

UGLJEŠA MILIĆ

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Architecture

Departament d’Arquitectura de Computadors

Departament d’Arquitectura de Computadors (DAC)

Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

Advisor: Dr. Alex Ramı́rez Co-advisor: Dr. Paul M. Carpenter

September 2017

Abstract

From single-core CPUs to detachable compute accelerators, supercomputers made

a tremendous progress by using available transistors on chip and specializing hard-

ware for a given type of computation. Today, compute nodes used in HPC employ

multi-core CPUs tailored for serial execution and multiple accelerators (many-core

devices or GPUs) for throughput computing. However, designing next-generation

HPC system requires not only the performance improvement but also better en-

ergy efficiency. Current trend of reaching exascale level of computation asks for

at least an order of magnitude increase in both of these metrics.

This thesis explores HPC-specific optimizations in order to make better utilization

of the available transistors and to improve performance by transparently executing

parallel code across multiple GPU accelerators. First, we analyze several HPC

benchmark suites, compare them against typical desktop applications, and identify

the differences which advocate for proper core tailoring. Moreover, within the HPC

applications, we evaluate serial and parallel code sections separately, resulting in

an Asymmetric Chip Multiprocessor (ACMP) design with one core optimized for

single-thread performance and many lean cores for parallel execution. Our results

presented here suggests downsizing of core front-end structures providing an HPC-

tailored lean core which saves 16% of the core area and 7% of power, without

performance loss.

Further improving an ACMP design, we identify that multiple lean cores run the

same code during parallel regions. This motivated us to evaluate the idea where

lean cores share the I-cache with the intent of benefiting from mutual prefetching,

without increasing the average access latency. Our exploration of the multiple

parameters finds the sweet spot on a wide interconnect to access the shared I-

cache and the inclusion of a few line buffers to provide the required bandwidth

and latency to sustain performance. The projections presented in this thesis show

iii

Contents iv

additional 11% area savings with a 5% energy reduction at no performance cost.

These area and power savings might be attractive for many-core accelerators either

for increasing the performance per area and power unit, or adding additional cores

and thus improving the performance for the same hardware budget.

Finally, in this thesis we study the effects of future NUMA accelerators com-

prised of multiple GPU devices. Reaching the limits of a single-GPU die size,

next-generation GPU compute accelerators will likely embrace multi-socket de-

signs increasing the core count and memory bandwidth. However, maintaining

the UMA behavior of a single-GPU in multi-GPU systems without code rewrit-

ing stands as a challenge. We investigate multi-socket NUMA GPU designs and

show that significant changes are needed to both the GPU interconnect and cache

architectures to achieve performance scalability. We show that application phase

effects can be exploited allowing GPU sockets to dynamically optimize their indi-

vidual interconnect and cache policies, minimizing the impact of NUMA effects.

Our NUMA-aware GPU outperforms a single GPU by 1.5×, 2.3×, and 3.2× while

achieving 89%, 84%, and 76% of theoretical application scalability in 2, 4, and

8 sockets designs respectively. Implementable today, NUMA-aware multi-socket

GPUs may be a promising candidate for performance scaling of future compute

nodes used in HPC.

Contents

Abstract iii

Contents iv

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 High Performance Computing . 1

1.2 Evolution of a Single Compute Node 3

1.2.1 Multicore Processors . 4

1.2.2 Compute Accelerators . 5

1.2.3 Multiple Compute Accelerators on a Single Node 7

1.3 Programming Models for Single Node
Architectures . 8

1.3.1 OpenMP for Shared Memory Multicore Processors 9

1.3.2 OpenACC for Programming Accelerators 10

1.3.3 CUDA for Programming GPUs 11

1.4 Thesis Contributions . 12

1.5 Timeline . 14

1.6 Thesis Organization . 15

2 Background and Related Work 17

2.1 From General-purpose to Specialized
Systems-on-Chip . 17

2.2 Efficient CMP Design for HPC . 20

2.3 More Performance per Compute Node 23

3 Methodology 27

3.1 Code Instrumentation . 27

3.2 Simulation Frameworks . 28

3.2.1 Sniper . 28

3.2.2 TaskSim . 29

3.2.3 GPUSim . 31

v

Contents vi

3.3 Benchmark Suites . 32

3.3.1 Workloads for Shared-memory CMPs 32

3.3.2 CUDA workloads for GPU analysis 35

4 HPC Workload Characterization 37

4.1 Microarchitecture Independent
Characterization . 37

4.1.1 Branch Instructions . 38

4.1.2 Instruction Footprint . 39

4.1.3 Basic Blocks . 41

4.1.4 Difference Between Sequential and Parallel Code
Sections in HPC Workloads 42

4.2 Microarchitecture Dependent
Characterization . 43

4.2.1 Branch Predictor . 43

4.2.2 Branch Target Buffer . 47

4.2.3 Instruction Cache . 48

4.3 Impact on Performance, Power and Area 50

4.3.1 Experimental Setup . 51

4.3.2 Results . 52

5 Sharing the I-cache among Lean Cores 55

5.1 Sequential and Parallel Code within HPC applications 55

5.2 Lean Cores and the Code They Execute 57

5.3 Shared I-cache Architecture . 58

5.3.1 Core Front-End . 58

5.3.2 Shared I-cache and Interconnect 60

5.4 Simulation Setup . 61

5.5 Evaluation . 61

5.5.1 Naive I-cache Sharing . 62

5.5.2 Scalable I-cache Sharing . 64

5.5.3 Miss Analysis . 65

5.5.4 Area and Power Savings . 66

5.5.5 A Single I-cache Shared Among All Cores on an ACMP . . . 69

6 Multi-socket GPU Design 73

6.1 System of Interest and Simulation Setup 74

6.2 NUMA-Aware GPU Runtime . 76

6.2.1 Performance Through Locality 78

6.3 Asymmetric Interconnects . 81

6.3.1 Dynamic Bandwidth Distribution 81

6.3.2 Results and Discussion . 83

6.4 NUMA-Aware Cache Management 85

6.4.1 Design Considerations . 86

Contents vii

6.4.2 Results . 89

6.5 Discussion . 91

6.5.1 Combined Improvement . 91

6.5.2 Scalability . 93

6.5.3 Multi-Tenancy on Large GPUs 94

6.5.4 Power Implications . 94

6.5.5 Scheduling Improvements 95

6.5.6 Other Asymmetric Link and Cache Partitioning
Proposals . 96

7 Conclusions 99

7.1 Future Extensions . 101

7.2 Work Published . 103

Bibliography 105

Abbreviations 105

List of Figures

1.1 High-level overview of a single core pipeline. 3

1.2 Comparison of UMA and NUMA multicore CPUs. 5

1.3 Accelerated computing offloads parallel portions of the application
to the accelerator, while the remainder of the code still runs on the
CPU. 6

1.4 Heterogeneous node with one CPU and two GPUs. 7

1.5 The OpenMP execution flow. 9

1.6 Thesis timeline. 14

2.1 Different CMP configurations. 20

2.2 Potential speedup obtained by different CMP designs depending on
the serial code fraction. 21

2.3 Percentage of workloads that are able to fill future larger GPUs
(average number of concurrent thread blocks exceeds number of
SMs in the system). 24

2.4 The evolution of GPUs from traditional discrete PCIe devices to
single logical, multi-socketed accelerators utilizing a switched inter-
connect. 25

3.1 Sniper interval simulation model. 28

3.2 Temporal flow of a simulation process with TaskSim. 30

4.1 Dynamic branch instruction breakdown for each benchmark suite
as the percentage of total instructions. 38

4.2 Distribution of branch directions. Conditional branches are domi-
nantly decided in one direction, either taken or not taken. Desktop
applications have more evenly distributed directions of conditional
branches. 39

4.3 Static instruction footprint and memory we need to store 99% of
dynamic instructions per benchmark suite. 40

4.4 Average dynamic basic block length and distance between taken
branches for each benchmark suite. 41

4.5 Branch MPKI for different branch predictor configurations and bench-
mark suites. 45

ix

List of Figures x

4.6 Branch MPKI breakdown for gshare branch predictor and a subset
of workloads. We distinguish mispredictions on not taken, taken
backward, and taken forward branches. 46

4.7 BTB MPKI for different number of entries and associativity. We
use branch address to index BTB. 48

4.8 The average I-cache MPKI values for all benchmark suites. The
cache line is 64 B. 49

4.9 I-cache MPKI values for some specific benchmarks. The cache size
is 16 KB. 49

4.10 Normalized execution time, power, energy, and energy-delay (ED)
product for different CMP configurations and averaged per bench-
mark suite. We analyse only cores and L2 caches since the rest
of CMP is shared and same for all configurations. Asymmetric++
CMP has the same area budget as Baseline CMP. 51

4.11 Execution time for a subset of benchmarks, normalized to a baseline
CMP configuration. 52

5.1 The average dynamic basic block length in serial and parallel parts
of the code. 56

5.2 The I-cache MPKI values in serial and parallel parts of the code
using a 32 KB, 8-way associative I-cache with 64 B lines, and LRU
replacement policy. The I-cache MPKI values in parallel code are
very low. 56

5.3 Percentage of instruction sharing across all threads running on an
eight-core CMP per HPC benchmark (parallel sections only). 57

5.4 Baseline ACMP architecture with respect to the instruction part of
memory hierarchy. 59

5.5 Shared I-cache ACMP architecture. Master core is not modified. . . 60

5.6 Naive scaling. Execution time for different levels of sharing a 32 KB
I-cache among worker cores. We use four line buffers and a single
bus as the interconnection network. 63

5.7 Naive scaling. Normalized CPI stack per benchmark for the highest
level of sharing (cpc = 8). 63

5.8 I-cache access ratio for different number of line buffers. More than
eight line buffers does not reduce the I-cache access ratio signifi-
cantly. 64

5.9 Trade-off between adding more line buffers and doubling the in-
terconnection bandwidth when a single 16 KB I-cache is shared
(cpc = 8). The execution times are normalized to the baseline
architecture (private, 32 KB I-caches). 65

5.10 MPKI values for an I-cache shared among all eight lean cores in its
two sizes, 32 KB and 16 KB, normalized to a baseline ACMP (pri-
vate 32 KB I-caches). Numbers above the graph represent absolute
MPKI values for each benchmark with private I-caches. 67

List of Figures xi

5.11 Energy and area savings adding more line buffers and doubling the
interconnection bandwidth when a single 16 KB I-cache is shared
(cpc = 8). All the values are normalized to the baseline architecture
and averaged across the benchmarks. 68

5.12 Execution time ratio dependence on the serial code fraction. 69

6.1 Schematic representation of proposed transparent multi-socket GPU
system consisting of four GPU sockets and one CPU. 74

6.2 Comparison of round-robin and first-touch allocation policies on a
dual-GPU system. 77

6.3 Comparison of traditional and locality optimized CTA scheduling. . 78

6.4 Performance of a 4-socket NUMA GPU relative to a single GPU
and a hypothetical 4× larger (all resources scaled) single GPU. Ap-
plications shown in grey achieve greater than 99% of performance
scaling with SW-only locality optimization. 79

6.5 Example of dynamic link assignment to improve interconnect effi-
ciency. 80

6.6 Normalized link bandwidth profile for HPC-HPGMG-UVM showing asym-
metric link utilization between GPUs and within a GPU. Vertical
black dotted lines indicate kernel launch events. 82

6.7 Relative speedup of the dynamic link adaptivity with respect to the
baseline architecture by varying sample time and assuming switch
time of 100 cycles. In red, speedup achievable by doubling link
bandwidth. 84

6.8 Potential L2 cache organizations to balance capacity between re-
mote and local NUMA memory systems. 85

6.9 Performance of NUMA-aware dynamic cache partitioning in a 4-
socket GPU compared to memory-side L2 and previously proposed
static partitioning. 89

6.10 How different L2 cache organizations shown on Figure 6.8 affect the
execution time in case of HPC-AMG. Vertical dotted lines stand for
kernel launch events while colors show the number of remote accesses. 90

6.11 Performance overhead of extending current GPU software based
coherence into the GPU L2 caches. 91

6.12 Final NUMA-aware GPU performance compared to a single GPU
and 4× larger single GPU with scaled resources. 92

6.13 NUMA-aware 1–8 socket GPU scalability compared to hypothetical
larger single GPU with scaled resources. 93

6.14 Time line of HPC-Lulesh with 10 time-steps executing on a dual-
socket GPU. Vertical dotted lines stand for kernel launch events,
and color intensity represent the number of remote memory accesses. 95

List of Tables

3.1 Evaluated shared-memory OpenMP benchmarks. 33

3.2 Evaluated CUDA applications with memory footprint and time
weighted average number of thread blocks available during execution. 34

4.1 The average percentage of backward and forward taken branches
per benchmark suite. 39

4.2 Size parameters and hardware cost of evaluated branch predictors.
Parameter n stands for the number of address bits used to index
the tables, and parameter m stands for branch history length. . . . 44

4.3 I-cache, BP, and BTB share in total area and power budget on a
Cortex-A9 core level. BP has 12-cycle miss penalty. The num-
bers are obtained using McPAT and CACTI tools with processing
technology of 40 nm. 53

5.1 Configuration parameters for the simulated ACMP. 62

6.1 Simulation parameters for evaluation of single and multi-socket
GPU systems. 75

6.2 Cache partitioning procedure for NUMA-aware L1 and L2 caches. . 88

xiii

Chapter 1

Introduction

1.1 High Performance Computing

Theory and experimentation have stood as vital tools for solving problems and

challenges since the beginning of scientific methodology. Today, major break-

throughs in all areas of science and engineering depend on computational ap-

proaches. Scientific computing is widely used in situations where solving a prob-

lem using traditional scientific methods may be dangerous, even impossible, too

expensive, time-consuming, or too complex. Modeling real systems on a computer,

researchers are able to gain new insights in fields such as weather prediction, fluid

dynamics, stochastic probability, molecular interaction, pattern recognition, new

material characterization, machine learning, etc.

In order to solve even larger problems, with less time and higher accuracy, re-

searchers and engineers turn to High Performance Computing (HPC). HPC gen-

erally refers to a practice of using clusters of computers, called compute nodes, that

work together running a particular workload, and thus delivering higher perfor-

mance than a single desktop computer or workstation. Large clusters of computers

form a supercomputer, a system with many compute nodes connected through a

fast interconnection network with access to a distributed and shared storage sys-

tem. Today’s computer technology is driven by the development of supercomputers

with architectures and organizations that moved from traditional sequential ma-

chines to parallel and distributes systems. Given that most challenging problems

1

Chapter 1. Introduction 2

always require more resources than can be provided by the fastest available super-

computer, the need for a system that provides more performance is continuously

present [1].

Supercomputers nowdays stand as a serious long-term investment in research and

science. The Top500 site [2] maintains a list of the most powerful supercomputers

in the world. In general, supercomputers represent large installations with signif-

icant cost of deployment and maintenance. Looking at the order of magnitude

values, they cost ∼10s of millions US dollars, occupy ∼100s of m2 in area, con-

sume ∼10s of MW in power, and provide ∼10s of Petaflops performance (1015 of

floating point operations per second). For example, Europe’s fastest supercom-

puter, named Piz Daint [3], achieves theoretical peak performance of 7.8 Petaflops

comprising 5272 compute nodes and drawing 1.3 MW of power. With such a high

cost of utilizing and running these systems, the current trend in HPC is not only

to increase the performance of future supercomputers but also to improve their

energy-efficiency (FLOPS per watt). There is a global effort to build the first ca-

pable exascale computing system (performance of an Exaflops) which operates in

a power envelope of 20 to 30 MW [4]. To reach this goal, the Piz Daint supercom-

puter would have to improve its performance by ∼100× but also its FLOPS/W

ratio by ∼10×.

HPC applications implement parallel algorithms to make use of systems such as

supercomputers. A programmer is responsible for identifying the parallelism and

writing the parallel code using explicit constructs provided by the programming

model. The most popular and standardized model for distributed memory archi-

tectures is Message Passing Interface or MPI [5]. Typically, an application spawns

multiple processes, one process per node, decomposing the computational work-

load and distributing its data across local memories. Communication between

processes is achieved through explicit data movement from the address space of

one process to that of another through cooperative operations on each process.

Interchangeably switching between computation and communication phases, pro-

cesses iterate over input data, converging to the solution. In a well designed

algorithm, most of the time is spent inside computational phases. Improving the

performance of a single compute node directly translates to shorter execution time

of the entire application. This thesis focuses on optimizing the hardware budget

and improving the performance on a compute node level.

Chapter 1. Introduction 3

Core Front-End
(instruction fetch and decode)

Core Back-End
(instruction execution)

Instruction
Buffer

branch outcomes / jump addresses

D
e
c
o
d
e
r

Instruction
Cache

(I-cache)

Branch
Predictor

Branch
Target
Buffer

Register File

FPUs

ALUs

Load/Store Units

Vector Units

Data
Cache

(D-cache)

Figure 1.1: High-level overview of a single core pipeline.

1.2 Evolution of a Single Compute Node

Initially, compute nodes accommodated one or few single-core processors with local

main memory, designed for floating point performance [6]. Throughout most of the

80’s and 90’s, engineers were able to design more capable CPUs by making use of

more available transistors on chip, a driving performance force known as Moore’s

Law [7]. With more transistors, CPUs became more complex trying to optimize

the execution flow and do more work per cycle. Cores were able to commit multiple

instructions per cycle through out-of-order execution, speculation, predication, on-

chip cache memories, data prefetching, etc. As shown in Figure 1.1, general core

execution pipeline can be divided into core front-end, responsible for instruction

fetching and decoding, and core back-end, in charge of executing and committing

instructions. These two mechanisms act as a ’producer’ and ’consumer’, connected

through the instruction buffer. With multiple units tailored for different types of

instructions and out-of-order execution, core back-end is capable of consuming

more than one instruction per cycle (IPC). To keep these pipeline stages busy, the

core front-end also had to be improved with complex branch prediction, instruction

prefetching, and decoding more instructions at the time. Many complex features

are implemented in today’s cores to increase fetch bandwidth, such as multiple

branch predictions per cycle [8], instruction alignment [9], branch target buffer [10],

trace cache [11], etc. Together with the IPC improvement, as the size of transistors

shrunk, power was proportional to the area of the transistors so the entire core

could operate at higher frequencies for the same power, a trend known as Dennard’s

Scaling [12]. Architectural innovations in exploiting instruction level parallelism

(ILP) and frequency scaling were the two main sources of continuous improvement

of single-core performance.

Chapter 1. Introduction 4

1.2.1 Multicore Processors

In approximately 2004, processor engineers had reached the transistor size where

Dennard’s Scaling could not be applied anymore. More transistors were available

coming from Moore’s Law but it was not possible to keep the power envelope

constant anymore. Energy consumption became a new constraint introducing

energy-efficiency as a key metric for designs. Thus, major vendors moved to mul-

ticore processors giving up on higher clock rates. To exploit this peak performance

provided by a multicore CPU, applications had to be rewritten and parallelized

by exposing thread level parallelism (TLP).

The first chip multiprocessors (CMP) were symmetric, with the same multiple

cores interconnected and attached to the shared local memory. This approach sim-

plified the runtime management and user’s view of a system given that a running

process can be executed on any of the existing cores providing the same perfor-

mance. With multiple cores on chip, the memory subsystem had to be improved.

A small amount of fast memory, or cache, was added per core, keeping data close

to the CPU and available for reuse without extra cycles to store and fetch data

from slow main memory. Typically, CMPs today implement several levels of cache

hierarchy, with the closest ones to the core being private (L1 and L2), and the last

one (LLC) being shared. Furthermore, L1 cache is usually separated, with one part

storing instructions (I-cache) and another reserved for data (D-cache). Symmetric

CMPs with a single main memory are known as Uniform Memory Access (UMA)

CMPs since the memory access time does not depend on the memory location.

Figure 1.2a depicts a typical UMA CMP. It shows a four-core CMP where each

core has private L1 and L2 caches, with all the L2s connected to the shared LLC

and main memory through the network on chip (NoC).

With more cores per CMP, UMA organization became unscalable as the memory

capacity per core and the memory bandwidth between cores and main memory

could not follow the increase in compute performance. One way to address this

issue was by introducing multi-socket nodes with Non-Unified Memory Access

(NUMA) CMPs. Cores are organized into sockets each with its own local memory.

The memory of other socket is accessible but the latency is increased. Figure 1.2b

shows a dual-socket CMP with two cores per each socket. A running thread on

Socket0 can access the data stored in Memory1 but this remote memory access

takes more cycles than accessing local data. Multi-socket NUMA organizations

Chapter 1. Introduction 5

L1

NoC

Memory

Core

L1

Core

L1

Core

L1

Core

L2 L2 L2 L2

LLC

(a) Shared memory CMP
(UMA)

Memory 0

Core Core

L2 L2

LLC

L1 L1

Memory 1

Core Core

L2 L2

LLC

L1 L1

Socket 0 Socket 1

NoC NoC

Interconnect

(b) Shared memory, multi-socket
CMP (NUMA)

Figure 1.2: Comparison of UMA and NUMA multicore CPUs.

stand as a favorable design increasing the total number of cores, total memory

capacity, and memory bandwidth. Still, it introduces a complexity for users and

runtime systems. To extract the maximal performance, the number of remote

memory accesses has to be reduced, with processes fetching its data mostly from

the local memory.

1.2.2 Compute Accelerators

Architects start designing more energy-efficient CMPs with the end of Dennard

scaling. This includes workload characterization and appropriate hardware opti-

mization. HPC applications usually consist of sequential and parallel code regions.

Cores in a CMP have already been designed to improve scalar performance, with

power-hungry pipeline stages able to exploit available ILP. On the other side, par-

allel code sections in HPC workloads have different characteristics compared to

serial code. Relaying on the abundant TLP, and for a given area and power bud-

get, it was more beneficial to implement many low-power cores instead of a few

heavyweight ones. According to Amdahl’s law [13] and with more cores on a chip

and increasing available TLP, the sequential part of the code eventually becomes

the bottleneck. To support both serial and parallel code executions, supercom-

puters start employing accelerators together with the latency-optimized CMPs,

forming heterogeneous compute nodes.

Chapter 1. Introduction 6

CPU

Application Code

Rest of
Sequential
Code

Accelerator
Parallel
Code

System
Memory

Interconnect Accelerator
Memory

Figure 1.3: Accelerated computing offloads parallel portions of the
application to the accelerator, while the remainder of the code still runs

on the CPU.

The main idea was to offload the compute intense part of an application to be

executed on the accelerator. General overview of the execution flow is shown

on Figure 1.3. Accelerators base their compute power and energy-efficiency by

exploiting data parallelism, executing the same instructions or tasks on different

data portions in parallel. Since the early 2000s, the fastest supercomputers from

the Top500 and the most energy-efficient ones from Green500 [14] lists have used

various computer accelerators.

ClearSpeed first introduced its CSX600 accelerator designed for HPC applica-

tions [15]. It was based on a Single Instruction Multiple Data (SIMD) execution

model, with an array of 96 processing elements running under 25 W of power

envelope. At that time, rewriting HPC code for a specific hardware was not a

popular practice, and manufacturing an HPC accelerator was not profitable for

the company. Luckily, video and gaming industry was driving the development of

data parallel accelerators. IBM presented its Asymmetric CMP (ACMP) design

with the Cell/B.E. and PowerXCell architectures [16] implementing one big and 8

energy-efficient cores. In 2008, supercomputer Roadrunner [17] was ranked first on

Top500 and fourth on Green500 list, with 12960 IBM PowerXCell and 6480 AMD

Opteron dual-core processors. Following the path, Intel developed its Larrabee [18]

and Xeon Phi [19] throughput-oriented CMP with many lean cores targeting both

graphics and HPC workloads. NVIDIA and AMD offered their graphical process-

ing units (GPUs) [20] originally designed for multi-dimensional rendering in video

games. Today, HPC-optimized GPUs implement massively parallel architectures

with thousands of processing units reaching peak performance of ∼10 Teraflops

Chapter 1. Introduction 7

Core Core

Device Memory

Unified Virtual Memory

Crossbar

LLC

Core Core

System
Memory

LLC

Device Memory

Crossbar

LLC

PCIe Switch
GPU GPU CPU

Figure 1.4: Heterogeneous node with one CPU and two GPUs.

and memory bandwidths of ∼1 TB/s making them particularly suitable for data

parallel HPC workloads [21].

1.2.3 Multiple Compute Accelerators on a Single Node

With the increased amount of data to be processed, HPC workloads contain suffi-

cient data parallelism to fill accelerators that are 2–8× larger than today’s biggest

GPU. For that reason, current systems implement nodes with one CMP optimized

for serial and multiple devices (many-core accelerators or GPU) for parallel exe-

cution, interconnected through PCIe links or some other proprietary low-latency,

high-bandwidth interconnect. At the moment, the most energy-efficient super-

computer on Green500 list is NVIDIA’s DGX SATURNV, made out of compute

nodes with 8 GPUs, for 9462 Megaflops/W. Figure 1.4 presents the example of a

heterogeneous compute node with two GPUs deployed as accelerators. The CPU

is optimized for single-thread performance and latency, with several levels of cache

hierarchy, large control units, large main memory, and low memory bandwidth.

Contrarily, the GPUs are designed for parallel performance and throughput, with

many simple floating-point and integer units, simplified control logic, and small

caches. To provide enough data to this increased amount of processing elements,

GPUs have high-bandwidth main memory, typically smaller in capacity compared

to the one in CPUs. With multiple physical memories available on a node, the

problem of optimal data placement still exists, just as for multi-socket NUMA

Chapter 1. Introduction 8

CMPs. Current runtime systems lessen the burden on the programmer by allowing

different memories to appear as a single unified memory space. Code complexity

is reduced since explicit data movement is no longer required. However, to gain

the most of performance, developers need to optimize the application by providing

data placement hints to the compiler and runtime.

In this thesis, we try to optimize the compute nodes for parallel code execution.

The focus is on reducing the execution time as well as power and area consumption

through better utilization of available transistors on chip. For many-core accel-

erators we evaluate the idea of sharing the first level instruction cache (I-cache)

among multiple low-power cores. For the applications that provide parallelism

even beyond a single GPU accelerator, we study the architectural improvements

needed for efficient and transparent multi-GPU executions.

1.3 Programming Models for Single Node

Architectures

The variety of single node architectures comes with the same variety of program-

ming models. Every time architects introduce performance improvement by ex-

ploiting new parallelism, applications had to be rewritten. The vector era of the

1970s and 1980s brought code vectorization in order to exploit vector processors.

When commodity scalar processors connected by a network proved to be more

cost-effective than vector machines, algorithms were again redesigned for parallel

programming using MPI. With CMPs, the next boost in performance came from

parallelization across multiple cores sharing a single physical memory. Each MPI

process had to be further parallelized spawning multiple threads, typically one

thread per core. With the rise of NUMA systems, programming models had to

provide the interface to the users for optimal data placement, process and thread

scheduling, synchronization, use of specific on-chip memories, etc. Heterogeneous

nodes introduced yet another code adaptation, with parallel code being executed

on different instruction set architecture (CPU vs GPU) thus requiring different set

of compilers and libraries. Code rewriting and tunning for new architectures and

programming models stand as a serious decision for HPC users.

Chapter 1. Introduction 9

Master Thread

Master Thread

Parallel Region

Worker
Threads

F O R K

J O I N

OpenMP Parallel Code

void main()

{

 int N = ReadInputSize();

 #pragma omp parallel for

 for (int i = 0; i < N; i++)

 {

 HugeComputation(i);

 }

}

Sequential Code

void main()

{

 int N = ReadInputSize();

 for (int i = 0; i < N; i++)

 {

 HugeComputation(i);

 }

}

Program Start

Figure 1.5: The OpenMP execution flow.

1.3.1 OpenMP for Shared Memory Multicore Processors

As multicore processors emerged, there was a need to provide a portable, standard-

ized, and scalable programming model for users to parallelize their applications.

OpenMP [22] stands as an interface, specified for C/C++ and Fortran program-

ming languages, that provides a way for the sequential programs to expose their

thread based parallelism. It is designed for multicore, shared memory UMA or

NUMA machines. The main idea is to identify the most time consuming parts

of a workload, typically loops, and distribute the loop iterations across multiple

threads by inserting compiler directives. OpenMP uses the fork-join model of par-

allel execution. An application starts as a sequential program run by the master

thread. At the moment it reaches a directive for creating a parallel region (#pragma

omp parallel), the master thread creates a team of worker threads now running

in parallel (fork), usually one thread per core. Upon termination, all threads syn-

chronize, leave the parallel region with only the master thread to continue the

execution (join). Worker threads do not maintain the exact consistency thus it

is a programmer responsibility to ensure the correct update of shared variables

by using critical sections, semaphores, or atomic operations. Figure 1.5 compares

the sequential and OpenMP version of the same code section. In case of serial

code, a single thread iterates N times and performs some long computation for

each iteration. Just by inserting #pragma omp parallel for directive, OpenMP

version spawns multiple worker threads, running them in parallel. Each thread

takes only a subset of iterations in this parallel loop. For example, if we create

8 threads inside the parallel region, thread0 computes only for i in [0, N/8),

thread1 for i in [N/8, N/4), etc.

Chapter 1. Introduction 10

Parallelizing an application using OpenMP may be as simple as inserting one-

line compiler directives inside a serial version, but it also provides a rich set of

calls for more performance tuning. For example, by setting different environment

variables, an advanced user can impose better loop distribution if the default one

provides a significant load imbalance. Some applications may prefer to run neigh-

boring threads on the same socket to make use of constructive data prefetching

in the shared memory structures (main memory or LLC). To exploit this pro-

gram behavior, an OpenMP runtime may define proper thread to core binding.

Recently, OpenMP added new constructs to support task-based parallelism and ef-

ficient execution on vector units [23]. With the appearance of accelerators, runtime

now supports the offload of parallel regions to another device, GPU or many-core

CMP. Due to its simplicity and support from major hardware and software ven-

dors, OpenMP is today a standard programming model for parallelism on a node

level in HPC. In this thesis, we evaluate OpenMP applications running on HPC

systems, find some intrinsic properties, and propose better hardware utilization

on a CMP level to increase the performance per power and area unit.

1.3.2 OpenACC for Programming Accelerators

OpenACC [24] is short for Open Accelerators, the effort of applying directive-

based programming to compute accelerators. The idea of OpenACC is similar

to OpenMP, with the extension that compiler hints should be portable across

accelerators of various kinds. The main advantage of this programming model

is performance portability. The most popular accelerators (many-core devices

from Intel and ARM, GPUs, FPGAs) have different parallelism profiles, different

amounts of SIMD parallelism, number of cores, and different sorts of sharing inside

the memory hierarchy. In order to extract performance from a single code version,

OpenACC provides flexibility in how that parallelism gets mapped to the target

hardware.

Still, with portability comes less performance. The advanced users tend to nar-

row the gap between peak theoretical and achieved performance, turning to code

redesigning and tuning.

Chapter 1. Introduction 11

1.3.3 CUDA for Programming GPUs

Developed by NVIDIA, the Compute Unified Device Architecture (CUDA) pro-

gramming model [25] allows a user to program GPUs as compute accelerators

where sequential code runs on the CPU (also known as host) and parallel code runs

on one or more GPUs (devices). An application written with CUDA is launched

on the host, manages physical memories on both the host and device, and invokes

kernels which are parallel code sections executed on the device. These kernels are

run by many GPU threads grouped in thread blocks or cooperative thread arrays

(CTAs). Each block is executed by one SM and does not migrate, while the num-

ber of concurrent blocks that can reside on SM depends on available resources

(register and on-chip memory usage). Threads within a CTA can synchronize and

communicate, while different CTAs can not, and the program correctness should

not depend on the order of CTA execution. Different threads and blocks can be

distinguished by their unique ID making them easier to identify and distribute

the workload. Blocks make a grid which presents a top level abstraction of thread

hierarchy. The number of threads per block and the number of blocks in a grid

can be set at runtime for each kernel launch. The device itself is consisted of

streaming multiprocessors (SM) so that each block of threads is running on one of

them. Threads within a block are grouped into warps as a basic unit of scheduling.

All threads in a warp execute the same instruction since they share same program

counter but operate on different data. This design point is similar to vector units

in CPUs, where initial instruction fetching and decoding is the same for all threads

in a warp, thus doing it once per warp instead of once per thread saves the energy.

Communication and data transfers between the host and CUDA device is done

using global memory. It is the largest but also the slowest one in memory hier-

archy on a GPU. Each thread from any block can both read and write to global

memory. Beside that, each SM has small programmable shared memory and/or

non-programmable D-cache. Proper and extensive use of on-chip shared memory

can significantly increase performance of kernels. In GPUs, a prolonged memory

access causes a current running warp to stall. The warp scheduler on a SM then

picks some other warp that has ready operands for its next instruction. With a

huge number of threads running, SMs in a GPU switch between warps hiding the

memory latency. This Single Instruction Multiple Threads (SIMT) execution is

similar to fine-grained multithreading on CPUs [26, 27], while threads in a warp

Chapter 1. Introduction 12

execute the instructions like vector units [28]. To provide data to all the running

threads, memory hierarchy is designed for bandwidth. Per-SM cache structures

filter the memory accesses going to global memory and coalesce potential cache

misses.

Until CUDA version 4, users had to explicitly allocate memory on host or device

and copy data before they launch a kernel to run on a GPU device. CUDA

has supported Unified Virtual Addressing (UVA) since CUDA 4, which provide a

single virtual memory address space for all physical memories in the system. This

feature simplified the user code complexity by allowing mem-copy calls to be used

without exactly knowing where data resides. Still, UVA does not automatically

migrate data from one physical location to another. CUDA 6 [29] introduced

a concept of Unified Virtual Memory (UVM) where the runtime automatically

migrates data from one physical memory to another (CPU or GPU) making any

data accessible to the both CPU and GPU(s) using a single pointer. CUDA

8 [30] further improved UVM by enabling on-demand page migration and using

system-wide atomic operations. Our optimizations in multi-GPU compute nodes

are based on these features.

Extracting the maximal performance from a GPU device requires significant ap-

plication tuning and knowledge of both programming model and underlying hard-

ware organization. Attractive with the theoretical peak performance they provide,

GPUs are the most commonly used accelerators in HPC today. As stated above,

the current trend for supercomputers is to have multiple GPU devices per compute

node. To utilize them, yet another code rewriting is needed, typically partitioning

serial code into multiple contexts (MPI processes or OpenMP threads), one con-

text per GPU. Parallel code is again enclosed into kernels, now launching them on

every GPU. This thesis explores the architectural enhancements needed to support

efficient and transparent execution on multi-GPU systems.

1.4 Thesis Contributions

The main objective of this thesis is to optimize the hardware budget and improve

the performance of compute nodes used in HPC. The following are summarized

Chapter 1. Introduction 13

novel contributions of this thesis, while we provide more details in the following

chapters.

• We first focus on the HPC code characteristics and core front-end which fac-

tors around 30% of core power and area on the emerging lean-core type of

processors used in HPC. Separating serial from parallel code sections inside

applications, we characterize HPC benchmarks and compare them to a tra-

ditional set of desktop integer workloads. HPC applications have biased and

mostly backward taken branches, small dynamic instruction footprints, and

long basic blocks. Our findings suggest smaller branch predictors (BP) with

the additional loop BP, smaller branch target buffers (BTB), and smaller

I-caches with wider lines. The difference between serial and parallel code

sections in HPC applications points to an ACMP design, with one baseline

core for sequential and many HPC-tailored cores designed for parallel code.

Without performance degradation, we demonstrate potential power and area

saving by 7% and 16% respectively, by avoiding over and under provisioning

of hardware resources.

• With the previous findings, we also detect that parallel threads in HPC

applications execute the same code at approximately the same time. This

makes sharing the core front-end structures a potentially beneficial solution.

We explore further tailoring of an ACMP design for HPC by sharing a smaller

I-cache among worker cores. Our analysis of the multiple parameters finds

the sweet spot on a wide interconnect to access the shared I-cache and the

inclusion of a few line buffers to provide the required bandwidth and latency

to sustain performance. The evaluation on a rich set of HPC benchmarks

shows 11% area saving with 5% energy reduction at no performance cost.

• With more lean cores available on chip, we are entering the area of accel-

erators and GPUs. Most of the single-GPU optimized workload already

contain sufficient data parallelism to fill even larger GPUs than we have to-

day. Transparent workload scaling seems attractive from the programmers

perspective. We examine the performance of a future multi-socket GPU to

understand the effects that NUMA will have when executing applications

designed form UMA GPUs. Optimizing GPU microarchitecture for NUMA-

awareness is essential to preserve data locality and reduce the inter-socket

Chapter 1. Introduction 14

Many-core
Accelerators

Multi-GPUs

Programming
Models

Internships

Milestones

2013 2014 2015 2016 2017

HPC Workload
Characterization

Optimizing Many-core
Accelerators

(sharing the I-cache)

OpenMP 4.0
supports accelerators
and SIMD parallelism

OpenACC 2.6 proposing the
transparent management
of multiple accelerators

Nvidia K80
(dual-GPU in a card) Nvidia SLI (2004)

AMD CrossFire (2005)

Nvidia Cray

IBM PowerXCell (2008)
Intel Knights Ferry (2010)

Thesis
Conclusion

Nvidia DGX-1
(8 GPUs in a box)

CUDA 8 improves Unified
Memory with on-demand

paging and system-wide atomics

NUMA-aware
Multi-socket GPUs

Intel Knights Landing
Knights Hill

Enrolled in
PhD Program

Figure 1.6: Thesis timeline.

bandwidth. To overcome this bottleneck we propose two classes of improve-

ments. First, we show that inter-socket links should be dynamically and

adaptively reconfigured at runtime to maximize link utilization. Second, we

propose that GPU caches should be made NUMA-aware and dynamically

adapt their caching policy to minimize NUMA effects. Our NUMA-aware

GPU outperforms a single GPU by 1.5×, 2.3×, and 3.2× while achieving

89%, 84%, and 76% of theoretical application scalability in 2, 4, and 8 sock-

ets designs respectively. We show that multi-socket NUMA-aware GPUs

can allow traditional GPU programs to scale efficiently, providing significant

room before developers must re-architect applications to obtain additional

performance.

1.5 Timeline

Figure 1.6 gives an overview of the major thesis milestones, within a context of

related events coming from the industry. By the time work on this thesis had

started, IBM with PowerXCell and Intel with Knights Ferry already have intro-

duced compute accelerators for HPC. OpenMP Advisory Board followed up with

support for compute offloading to accelerators and SIMD parallelism for vector

units. As Intel continued to improve the single-thread performance of their cores

Chapter 1. Introduction 15

in Knights Landing, in this thesis we improve the utilization of hardware bud-

get by sharing the I-cache. Multiple accelerators per compute node were already

entering the market at that time, like in an example of NVIDIA introducing the

K80 as a dual-GPU card, although, multi-GPU solutions were known to improve

graphics performance (NVIDIA SLI and AMD CrossFire). By the end of 2015,

OpenACC proposes transparent management of multiple accelerators as a fea-

ture in their upcoming 2.6 version of specification. Finally, NVIDIA enhance the

CUDA to provide Unified Memory with on-demand paging and system-wide atom-

ics. Based on these features, we evaluate NUMA-aware multi-GPU systems as a

way of improving the scalability in compute nodes with multiple GPU devices.

The course of this thesis was backed by two industrial internships. The first one at

the Cray Research Center (Bristol, UK) for performance analysis and evaluation

of multi-core and many-core HPC systems was done from September to December

2015. The second internship was at NVIDIA (Santa Clara, USA) from August to

December 2016. Together with the beginning of 2017, it was focused on enabling

and improving transparent multi-GPU execution in HPC.

1.6 Thesis Organization

The rest of the thesis is organized as follows. The next chapter presents an overview

of motivational facts, background, and related work. After that, Chapter 3 pro-

vides an overview of methodology we were using throughout of this thesis, de-

scribing simulation frameworks and evaluated benchmarks. Chapters 4, 5, and 6

present the results and discuss the contributions of this thesis. Finally, Chapter 7

concludes this work and provides some potential directions of future work.

Chapter 2

Background and Related Work

2.1 From General-purpose to Specialized

Systems-on-Chip

With more transistors per chip coming and single-thread performance reaching

its plateau, architects moved to specialized core design to suit particular set of

applications. In the mobile industry, ARM’s low-power cores [31, 32] have been

designed to provide long battery life and efficient support for typical mix of mobile

workloads. Although still behind Intel’s and IBM’s general-purpose cores in terms

of brute performance, there is an effort to put ARM’s licensed CPUs inside data-

center and HPC systems [33, 34], thanks to their better energy-efficiency. Deep

learning applications now rapidly gain attraction, with some companies finding it

cost-effective to manufacture accelerators for this type of workloads [35]. Gaming

industry develops their own Systems-on-Chip (SoC) giving more realistic expe-

rience to the users consuming video-interactive context [36, 37]. Understanding

the workload characteristics is important in the design of efficient computer ar-

chitectures. Focusing on sequential execution, researchers have evaluated desktop

SPEC CPU [38] and other server suites to analyze potential improvements for

next-generation chip designs [39–41]. In the first part of this thesis, we focus on

HPC workload characterization, with the goal of tuning today’s CMP microarchi-

tecture to suit the particular features and requirements of HPC applications.

17

Chapter 2. Background and Related Work 18

Today’s HPC compute nodes are made of CMPs tailored for desktop and server

applications. They usually have few heavyweight cores capable of exploiting the

available ILP through wide super-scalar out-of-order execution. The core front-end

is designed to support large instruction footprints and to predict the outcomes of

branches in complex control flows. On the other side, HPC workloads are different,

running in parallel, thus demanding throughput-oriented CMPs. Keeping the same

power and area budget, a handful of heavy cores are replaced by many lean ones,

integrated as an alternative to exploit TLP and data parallelism. For example,

Intel’s Xeon Phi and IBM’s BlueGene/Q [42] CMP architectures integrate many

power-efficient lean cores targeting parallel HPC workloads. With the current

configuration of the front-end structures, an embedded processor spends 42% of

its energy on instruction supply [43]. Instruction fetches and branch predictions

consume 30% of the total power in the ARM Cortex-A15 core [44]. McPAT tool

for power and area estimations shows that lean cores, such as ARM’s Cortex-

A9 and Sun’s Niagara2, spend 25% of the total core area, and 30% of the total

core power on instruction delivery [45]. Therefore, it is important to evaluate

microarchitectural optimizations to lessen front-end activity and area which can

have significant impacts on overall power consumption.

There is a broad scope of previous application performance analyses run in HPC

systems. Most of them evaluate inter-node communication overheads, scalabil-

ity, bandwidth requirements, and data access behavior [46–48]. Exploiting the

available data parallelism, vector processors became particularly useful for HPC

applications. A single vector instruction can replace an entire loop, and so the

instruction fetch and decode bandwidth needed to keep multiple functional units

busy is reduced. Many aspects of the analysis performed in this thesis was done

in the past in the context of vector machines [49–51]. Scientific and engineering

applications have small instruction footprints, long basic blocks, and low control

divergence which makes them suitable for SIMD execution. Nowadays, Intel’s

Xeon Phi cores [52] or Fujitsu’s SPARC64 series of chips [53] implement wide vec-

tor units to exploit these code characteristics and gain performance. Our work

here revisits these findings considering modern HPC workloads and in the context

of CMPs and accelerators made out of lean cores.

GPU devices used as accelerators in HPC systems have completely redesigned

Chapter 2. Background and Related Work 19

front-end compared to traditional CPUs. Power-hungry branch prediction struc-

tures are not implemented, and pipeline stalls caused by prolonged branch reso-

lution are leveraged by running many threads concurrently. A programmer has

to be aware of reducing the control divergence among threads in a warp, since

they all execute the same instructions at any given cycle. Recent study shows

that about 95% of branches executed on GPUs can be correctly predicted either

with a bimodal or a branch predictor based on local history tables [54]. The cache

hierarchy that services the instruction supply is finely tuned for HPC applications.

The first-level I-cache is small (4 KB) with wide cache lines (256 B) [55]. All of the

scalar cores in a single SM share one I-cache, with threads fetching and executing

the same instruction in lock-step mode every cycle [56]. We show that similar

front-end organization should be designed for future CMPs used in HPC, allowing

each core to run its thread independently.

Focusing on the microarchitectural changes, there are examples where commodity

CPUs have been redesigned to suit better an application domain. A recent study

calls for a change in future core design identifying the key micro-architectural

needs for emerging scale-out workloads as the opposite of traditional scale-up

applications used in data centres [57]. Server applications have large instruction

footprints and most stall cycles come from I-cache misses [41]. Because of that,

ARM’s Cortex-A57 cores, used in micro-servers, have a larger 48 KB I-cache to

reduce the impact of I-cache misses [58]. An Intel Xeon Phi core has 512-bit

wide vector processing unit so it can exploit the SIMD characteristics of scientific

codes [59]. Our findings suggest that a similar core tailoring can be applied to

lean-core CMPs used in HPC by redimensioning the existing structures based on

application demands.

The first contribution of this thesis covers the HPC workload characterization fo-

cusing on the core front-end. We evaluate several OpenMP benchmark suites and

compare them with traditional desktop applications, found in SPEC CPU INT.

We analyze architecture independent code properties, followed by architecture de-

pendent implications. Our results show that HPC applications expose different

code characteristics, quantifying each of them. With those findings, we give rec-

ommendations on how to adequately dimension the core front-end structures of

lean cores for HPC workloads to get maximal area and power savings without per-

formance impact. Moreover, we analyze the difference between serial and parallel

Chapter 2. Background and Related Work 20

Core A Core A

Core A Core A

(a) Symmetric CMP
(4 big cores)

Core B

Core B

Core B

Core B

Core B

Core B

Core B

Core B

Core B

Core B

Core B

Core B

Core B

Core B

Core B

Core B

(b) Symmetric CMP
(16 small cores)

Core B

Core B

Core B

Core B

Core A

Core B

Core B

Core B

Core B

Core B

Core B

Core B

Core B

(c) Asymmetric CMP
(1 big and 12 small cores)

Figure 2.1: Different CMP configurations.

code sections inside HPC workloads. Not just that HPC cores should be tailored

differently from desktop, but also the master core has to be tailored differently

from worker cores.

2.2 Efficient CMP Design for HPC

As we have mentioned earlier, HPC applications run both in sequential and parallel

manner. In case of OpenMP programming model, master thread running on a

master core executes the serial code sections and joins the worker threads, which

run on worker cores, to execute parallel code regions. To reach an efficient CMP

design we need to understand both serial and parallel code in order to improve

the utilization of available transistors avoiding over and under provisioning.

On a CMP level, previous work suggested an Asymmetric CMP (ACMP) design,

where multiple single-ISA cores exist on a chip, but with different power, area, and

performance characteristics [60]. Let’s assume there is a CMP hardware budget

(whether it is power, area, or some combination of different factors) equal to 16 core

units. Next, we can consider Pollack’s rule [61] and assume that core performance

increase is proportional to square root of increase in complexity. In other words, if

we quadruple the hardware budget in a core, it will deliver 2× more performance.

The question is how to distribute the total hardware budget among multiple cores

to efficiently execute both serial and paralle code regions in HPC?

Figure 2.1 shows three possible solutions. First two, shown on Figures 2.1a

and 2.1b, present Symmetric CMPs (SCMP) with all the cores on chip being

Chapter 2. Background and Related Work 21

0 1 2 5 10 15 20 25 30
Serial code fraction [%]

2

4

6

8

10

12

14

16
S
p
e
e
d
u
p

ACMP
outperforms SCMP

Symmetric CMP (4 big cores)

Symmetric CMP (16 small cores)

Asymmetric CMP (1 big + 12 small cores)

Figure 2.2: Potential speedup obtained by different CMP designs depending on
the serial code fraction.

the same in performance. The total hardware budget can be spent either by im-

plementing four big cores (CoreA), each providing 2× more performance, or by

implementing 16 small cores (CoreB), each with 1× performance. Another option

is Asymmetric CMP (ACMP) design, with one big core for executing sequential

code, and the rest of small cores for parallel code.

Figure 2.2 shows the potential speedup that different CMP designs can provide

depending on the serial code fraction for a parallel workload. An ACMP outper-

forms both symmetric CMP designs when the application has more than 2% of

serial code fraction. As the number of cores on a chip increases, the amount of

time spent inside the serial code becomes larger. An ACMP design stands out as a

solution capable of efficiently executing both parallel and sequential code regions,

combining a latency-oriented core with a set of throughput-oriented cores. In this

thesis, we evaluate an ACMP design with one big and eight lean cores. We note

that the throughput-designed cores execute the same code at approximately the

same time, thus analyze the idea of sharing a single I-cache among these cores.

We show that such cache organization does not hurt the performance but saves

power and energy.

As soon as we start sharing resources among cores in a CMP, we enter the blurred

space between multicore and multithreaded processors. The first papers dealing

with simultaneous multithreaded (SMT) processors already identified the shared

front-end as one of the major bottlenecks [62]. There have been proposals and

products for multithreaded processors with a lower resource sharing degree than

Chapter 2. Background and Related Work 22

SMT. Conjoined cores [63], CASH [64], IBM Cyclops64 [65], and AMD’s Bulldozer

module [66] propose a CMP where adjacent cores share some of the hardware

structures such as the I-cache, the data cache, and the floating point unit.

All of the previous proposals focus on sharing resources among two adjacent heavy-

weight cores, while our intention is to provide a thorough analysis on sharing only

the I-cache among many worker cores on an ACMP. Since the rest of the core

front-end is not shared, this design improves scaling and it allows sharing among

more than two cores. Our work points the limiting factors with more cores shar-

ing an I-cache, with the main objective of increasing performance for the same

hardware budget.

The I-cache sharing has also been studied for OLTP workloads [67], which have

instruction footprints that exceed the capacity of the I-cache in general-purpose

processors. Their design advocates for sharing a larger capacity I-cache to re-

duce the number of misses in the I-cache. We show that a single shared I-cache,

smaller than a private one, reduces the number of I-cache misses due to inter-

thread prefetching, and also leads to area (and power) savings. In their work, the

authors focus only on miss analysis not concerning the implication of the proposed

design on execution time, as we do here.

Sharing the I-cache among many low-power embedded processors has also been

evaluated [68]. Their work is focused on embedded micro-kernels and caches of

1 KB in size. They observe performance improvements up to 60 %, and identify

conflicting accesses to the shared I-cache as a potential source of problems. In this

paper, we evaluate mechanisms to hide the extra latency involved in conflicting

accesses to the shared I-cache and interconnect.

Finally, in the context of HPC workloads, NVIDIA GPU accelerators [69] already

use a shared I-cache for all CUDA cores in a SM. Threads in a warp fetch and

execute the same instruction in lock-step mode every cycle, which prevents con-

flicting I-cache accesses and latency variations. We evaluate this approach in a

more general way focusing on ACMPs where each thread has its own program

counter and executes a separate instruction stream without any constraints.

Decoupling latency-optimized core(s) from throughput-optimized ones leads to a

heterogeneous compute node. For serial code, nodes today use general-purpose

CPUs while parallel code is offloaded to an accelerator, a many-core CMP or a

Chapter 2. Background and Related Work 23

GPU. Our shared I-cache proposal can be applied to many-core accelerators such

as Intel’s Xeon Phi. With hardware savings and without performance degradation,

this contribution points one way of increasing the performance per area and power

unit, the ultimate goal of energy-efficient computing.

2.3 More Performance per Compute Node

However, if we are interested in solely scaling the performance, we need to explore

the other ways of having more capable compute nodes. Particularly looking at

the parallel code sections, the question is can we make it run faster. This means

either improving the single-thread performance for each lean core in an accelera-

tor, or increasing the throughput by putting more cores. The first option balances

between having more simple cores and less beefier ones. Intel Xeon Phi CMPs

are following this path, with the latest Knights Landing cores providing 3× more

single-thread performance than the previous, Knights Corner generation [70]. The

second option seems to be pursued by GPU manufacturers, increasing the num-

ber of SMs per device from one generation to another. This performance scaling

was based on Moore’s Law and significant growth in per-GPU transistor count

and main memory DRAM bandwidth. For example, NVIDIA’s GPUs based on

Fermi architecture integrated 1.95B transistors on a 529 mm2 die, with only 16

SMs [71], while the latest Pascal architecture contained 12B transistors within

610 mm2 die, having 56 SMs. Unfortunately, transistor density is slowing signif-

icantly and many integrated circuit manufacturers are not providing roadmaps

beyond 7 nm. Moreover, GPU die sizes, which have been also slowly but steadily

growing generationally, are expected to slow down due to limitations in lithography

and manufacturing cost.

Building larger GPUs with more SMs is a laudable goal, but we must first un-

derstand if today’s single-GPU applications have enough parallelism to exploit

them. Today NVIDIA’s largest GPUs contain 56 SMs; across a benchmark set

of 41 applications (later described in Section 3.3.2), Figure 2.3 shows that most

single GPU optimized workloads already contain sufficient data parallelism to fill

GPUs that are 2–8× larger than today’s biggest GPUs. While these applications

Chapter 2. Background and Related Work 24

Current GPU
[56 SMs]

2x GPU
[112 SMs]

4x GPU
[224 SMs]

8x GPU
[448 SMs]

16x GPU
[896 SMs]

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
W

o
rk

lo
a
d
s

A
b
le

 t
o
 F

ill
 F

u
tu

re
 L

a
rg

e
 G

P
U

s 41/41
37/41

35/41
33/41

31/41

Figure 2.3: Percentage of workloads that are able to fill future larger GPUs
(average number of concurrent thread blocks exceeds number of SMs in the

system).

are unlikely to ever scale to tens of thousands of GPUs across an entire data cen-

ter, we believe that programmer transparent workload scaling (up to 8×) will be

attractive to many GPU developers.

Without either larger or denser dies, GPU architects must turn to alternative

solutions to significantly increase GPU performance. Recently 3D die-stacking

has seen significant interest due to its successes with high bandwidth DRAM [72].

Unfortunately 3D die-stacking still has a significant engineering challenges related

to power delivery, energy density, and cooling [73] when employed in power hungry,

maximal die-sized chips such as GPUs. Thus we propose GPU manufacturers

are likely to re-examine a tried and trued solution from CPU world, multi-socket

GPUs, to scaling GPU performance while maintaining the current ratio of FLOPS

and DRAM bandwidth.

Multi-socket GPUs are enabled by the evolution of GPUs from external periph-

erals to central computing components, considered at system design time. GPU

optimized systems now employ custom package designs that accommodate high

pin count socketed GPU modules [74] with inter-GPU interconnects resembling

NVLink, QPI or HyperTransport [21, 75, 76], as shown in Figure 2.4. Additionally,

high port-count PCIe switches are now readily available and the PCI-SIG roadmap

is projecting PCIe 5.0 bandwidth to reach 128 GB/s in 2019 [77]. The expansion of

GPUs from single pluggable devices to closely coupled multi-socket designs is a nat-

ural progression towards exploiting available data parallelism. These multi-GPU

Chapter 2. Background and Related Work 25

GPUGPU

CPUCPU

GPUGPU

GPUGPU

CPUCPU
GPUGPU

GPUGPU

GPUGPU

Logical Programmer Exposed GPU(s)

PCIe

PCIe

GPUGPU

CPUCPU

PCIe

GPUGPU GPUGPUGPUGPU

PCIe

GPUGPU

PCIe

GPUGPU GPUGPUGPUGPU

PCIe

High BW GPU-GPU Interface

High BW GPU-GPU Interface

GPUGPU

GPUGPU

Figure 2.4: The evolution of GPUs from traditional discrete PCIe devices
to single logical, multi-socketed accelerators utilizing a switched

interconnect.

systems can provide high aggregate throughput when running multiple concur-

rent GPU kernels, but to accelerate a single GPU workload they require layering

additional software runtimes on top of native GPU programming interfaces such

as CUDA or OpenCL [25, 78]. Unfortunately, by requiring application re-design

many workloads are never ported to take advantage of multiple GPUs.

Several groups have previously examined aggregating multiple GPUs together un-

der a single programming model [79, 80]; however this work was done in an era

where GPUs had limited memory addressability and relied on high latency, low

bandwidth PCIe interconnects. As a result, prior work focused primarily on im-

proving the multi-GPU programming experience rather than achieving highly scal-

able performance. Building upon this work, we propose a multi-socket NUMA-

aware GPU architecture and runtime that aggregates multiple GPUs into a single

programmer transparent logical GPU. We show that in the era of unified vir-

tual addressing [29] and cache line addressable high bandwidth interconnects [21],

scalable multi-GPU performance may be achievable under existing single GPU

programming models.

Chapter 2. Background and Related Work 26

Next three Chapters stand for the three main contributions of the thesis. We first

provide a detail HPC workload characterization targeting core front-end struc-

tures. Next, we evaluate the idea of sharing the I-cache among multiple lean cores

in an ACMP or many-core accelerator. The third chapter tackles the challenges

in further performance scaling of compute nodes with multiple GPU devices as

accelerators.

Chapter 3

Methodology

3.1 Code Instrumentation

We use Pin [81] as a tool for dynamic instrumentation of application binaries. It

provides an infrastructure for writing program analysis tools called PinTools. In

a PinTool, the user defines instrumentation routines and what characteristics of

an application to instrument. Then, at runtime, those instrumentation routines

insert calls to user defined analysis methods where inspection and data collection is

performed. The workload runs on top of Pin, which captures relevant information

from the workload and passes it to the pintool.

In case of architecture independent characterization, they only collect the statistic

in their analysis routines. For example, in the case of branch instruction analysis,

a PinTool counts the number of branches, checks for each one if it is taken or

not taken, etc. For architecture dependent characterization, PinTools simulate

specific HW structures. In the case of instruction fetching, a PinTool configures

an I-cache and instruments each instruction analyzing if its address hits or misses

in the I-cache.

Fast and simple, this instrumentation library provides a common tool for workload

characterization. In this thesis, we implement and use different PinTools to analyze

code behavior regarding core front-end structures such as I-cache, branch predictor

(BP), and branch target buffer (BTB). Still, for performance and power modeling,

we switch to more accurate and validated simulation frameworks.

27

Chapter 3. Methodology 28

Interval
Simulator

Functional
Simulator

(instrumentation using Pin)

Branch Predictor
Module

Memory Hierarchy
Module

Instruction Window

Core

Core

Core

Core

Figure 3.1: Sniper interval simulation model.

3.2 Simulation Frameworks

3.2.1 Sniper

Sniper [82] is an event-driven multi-core simulator based on interval simulation. It

trades simulation accuracy for speed in order to provide an infrastructure for design

space exploration on the level of homogeneous and heterogeneous CMPs. The main

idea is to use analytic and mechanistic core model, applying fixed latencies for

every miss event that occurs and breaks the perfect instruction flow. Abstracting

core performance, interval simulation drives the timing of each particular core

without the need to keep a detailed track of all individual instructions. That

way, Sniper reduces the simulation time by an order of magnitude compared to

detailed cycle-accurate simulators [83], within an error of 5% on average for both

single-threaded and multi-threaded applications.

Figure 3.1 represent a high-level organization. Functional model feeds the simu-

lator with instruction streams using Pin as an instrumentation library. In case of

multi-threaded OpenMP applications, there are as many instructions streams as

running threads. Interval simulator models a set of cores by keeping an instruction

’window’ per core as an approximation of ROB in out-of-order pipelines. Under

the perfect conditions, without any miss events, instructions are dispatched at

the maximal dispatch rate (dispatch width) taking into consideration instructions

dependencies and execution latencies. Still, miss events coming from Branch and

Memory Hierarchy Modules break this smooth instruction flow. Each of this par-

ticular miss events and latencies feed back into the analytical core model so it

Chapter 3. Methodology 29

can recalculate the timing for each interval. Core modules run concurrently and

independently reducing the complexity of simulating multi-threaded applications.

Sniper integrates the McPAT [45] library for power and area modeling of CMPs.

McPAT is based on CACTI [84], an integrated model for estimating power, area,

and performance tradeoffs when designing memory subsystems. To estimate static

power and area of core components, McPAT uses the configuration file from Sniper

to provide necessary data, such as cache sizes, associativities, BP hardware budget,

etc. At the end of the simulation, Sniper redirects its output data, such as the

number of cache accesses, reads, misses, branch mispredictions, load and store

instructions, so that McPAT can estimate dynamic power.

We use Sniper simulator in this thesis for several reasons. First, it is free to use

and well established in academia research. Second, it models in detail all the core

components we are interested in: instruction cache, branch predictor, and BTB.

Next, it provides an infrastructure fast and accurate enough for us to simulate the

entire applications, not just the representative regions. That way, we are able to

evaluate both serial and parallel code sections. Finally, Sniper comes with tested

and validated configuration files and tools making it attractive for our analysis of

ACMP design.

3.2.2 TaskSim

Unfortunately, Sniper does not simulate accurately contention on shared resources.

To get the better speedup at the cost of accuracy, it implements lax synchronization

where communication on a shared resource is not performed on every access, but

only on those where the receiver is behind the sender. Since our next step was to

evaluate the idea of sharing the I-cache among multiple lean cores, we had to switch

to another simulation framework that will accurately model the contention on

shared interconnection networks. Still, as we surveyed a set of existing simulators,

we did not find one that had a front-end pipeline modeled at such level of detail

that allowed us to reason about the baseline and shared I-cache organizations.

For example, having a pipelined front-end implementation is crucial in our analysis

since an access to the shared I-cache can take multiple cycles. Also, the core front-

end includes a set of line buffers that behave as a micro-cache or loop-buffer [85, 86]

reducing the number of accesses to the I-cache (private or shared). Our core

Chapter 3. Methodology 30

PinTool
- Instruction addresses
- Branches
- Sync Events

Performance
Counters

- IPC per parallel and
serial section

TaskSim

Instruction @
Branch @ :: the Outcome
Instruction @
…
SyncEvent :: Parallel Start
IPC set
Instruction @
Instruction @
…
SyncEvent :: Parallel End
IPC set
…
Instruction @
Branch @ :: the Outcome
…

CMP Model

1

2

3

Trace per Thread / Core

Instruction @
Branch @ :: the Outcome
Instruction @
…
SyncEvent :: Parallel Start
IPC set
Instruction @
Instruction @
…
SyncEvent :: Parallel End
IPC set
…
Instruction @
Branch @ :: the Outcome
…

Instruction @
Branch @ :: the Outcome
Instruction @
…
SyncEvent :: Parallel Start
IPC set
Instruction @
Instruction @
…
SyncEvent :: Parallel End
IPC set
…
Instruction @
Branch @ :: the Outcome
…

Instruction @
Branch @ :: the Outcome
Instruction @
…
SyncEvent :: Parallel Start
IPC set
Instruction @
Instruction @
…
SyncEvent :: Parallel End
IPC set
…
Instruction @
Branch @ :: the Outcome
…

Figure 3.2: Temporal flow of a simulation process with TaskSim.

implementation thus had to model these features together with the rest of front-

end structures in a cycle-accurate way.

For that reason, we turned to TaskSim [87], a trace-driven cycle-level simulator

for parallel architectures running multithreaded applications. We use Pin [81] as

the instrumentation framework for tracing the benchmarks. At runtime, our Pin-

Tool creates a trace file per thread storing the sequence of executed instruction

addresses. For branch instructions, beside the address, it also stores its outcome

(taken or not-taken) as well as branch target address. That way, we store all

the information needed for reproducing the instruction stream. To resolve the

weaknesses of trace-driven simulation such as inter-thread ordering and synchro-

nization, we introduce synchronization events inside the trace files. We implement

five events that cover all OpenMP primitives in the evaluated workloads: parallel

start, parallel end, wait and signal on critical sections and semaphores, and bar-

rier. The simulation framework thus has a double role. First, it models the entire

CMP of interest, reads the trace files, and sends the requests to the I-caches for

every fetch address. Second, it mimics the runtime system by managing the state

of every thread according to the synchronization events in order to reproduce the

same static scheduling of the application running in the real machine.

Figure 3.2 illustrates the simulation process. PinTool produces the traces, one per

thread, capturing the instruction stream (step 1). Using performance counters

from the real executions, we add IPC values to the traces, for each parallel and

Chapter 3. Methodology 31

sequential code section (step 2). Finally, TaskSim reads the traces and models

the entire CMP (step 3).

Modeling a CMP organization inside TaskSim is based on defining a set of modules

and their interconnections. Module can be any entity able to receive a request

and send a response, such as cores, caches, crossbars, buses, DMAs, memories,

etc. Any two modules can be interconnected through the input-output pair of

ports so that the input of Module0 is connected to the output of Module1 and vice

versa. Each input port has a queue to store the requests, defined latency after

which the request on top can be processed, and defined width so the engine can

calculate how many cycles is needed for a given request to be transfered through

the port. For example, if the request size is 64 B and it has to be sent through

the port which is 32 B wide, while respond latency of the module is 5 cycles, it

will take in total 7 cycles for the current module to process the request. Knowing

this, each module signals the simulation timing engine what is the earliest point in

time to be awaken, avoiding time wasting process of awakening each module every

cycle. This mechanism is crucial for our analysis of shared I-cache among cores

in a CMP, giving us the ability to simulate the interconnection network between

multiple cores and shared I-cache in a cycle-accurate way. With satisfying level of

details, we evaluate different tradeoffs regarding interconnection topology, latency,

and contention, port width, level of cache multibanking, etc. We provide more

details on simulation setup in the following Chapters.

3.2.3 GPUSim

To evaluate multi-GPU systems, we use yet another simulation framework. It is an

NVIDIA proprietary, cycle-level, trace-driven simulator for single and multi-GPU

systems. The idea is similar to TaskSim, where modules communicate through

the input and output ports, exchange the signals and packets, with the separate

functional model that drives the logic runtime policies. To generate execution

traces, we use SASSI instrumentation tool [88].

Chapter 3. Methodology 32

3.3 Benchmark Suites

3.3.1 Workloads for Shared-memory CMPs

We use 29 workloads from three benchmark suites to evaluate the benefits of

tailoring the core front-end structures for HPC. Additionally, we analyze a set

of 12 desktop applications to identify the differences between them and HPC

workloads. An overview of benchmarks is given in Table 3.1.

• ExMatEx applications. This suite stands as a recent set of eight HPC

applications with real scientific workloads, numerically intensive kernels and

kernels bounded by memory, I/O, and communication [89]. We use default

input parameters for each of these workloads. Half of the applications from

this suite are implemented using OpenMP while the other half combine MPI

and OpenMP.

• SPEC OMP 2012 benchmark suite. An objective and representative

set of HPC workloads for measuring the performance of shared-memory

CMPs [90]. The suite covers 11 scientific and engineering applications, from

computational fluid dynamics to image manipulation, although, the suite

has three more applications which are identical to the corresponding ones

from the following NPB suite. These benchmarks were analyzed using the

reference input set.

• NAS Parallel Benchmark suite. NPB suite is a set of 10 pseudo-

applications derived from computational fluid dynamics apps [91]. Devel-

oped and maintained by NASA, it is a widely-used and standard set of HPC

workloads. We use the C input set for analysing this suite.

• SPEC CPU INT 2006 suite. These benchmarks represent a standard

set of applications for measuring the system’s processor and memory per-

formance [38]. This suite is included as a comparison between HPC and

desktop applications. Using reference input set, we analyze only integer

benchmarks (all 12 of them) since floating point workloads are derived from

scientific applications and many of them are already covered by the SPEC

OMP suite.

Chapter 3. Methodology 33

Suite Benchmark Programming Model Input size

E
x
M

at
E

x

ASPA OpenMP default
CoEVP OpenMP default
CoGL OpenMP default
CoHMM OpenMP input2.txt file
CoMD MPI+OpenMP default
CoSP MPI+OpenMP 1024 matrix
LULESH MPI+OpenMP -s=200 -i=10
VPFFT MPI+OpenMP default

S
P

E
C

O
M

P

md OpenMP reference
bwaves OpenMP reference
nab OpenMP reference
botsalgn OpenMP reference
botsspar OpenMP reference
ilbdc OpenMP reference
fma3d OpenMP reference
swim OpenMP reference
imagick OpenMP reference
smithwa OpenMP reference
kdtree OpenMP reference

N
P

B

BT OpenMP C
CG OpenMP C
DC OpenMP C
EP OpenMP C
FT OpenMP C
IS OpenMP C
LU OpenMP C
MG OpenMP C
SP OpenMP C
UA OpenMP C

S
P

E
C

C
P

U
IN

T

astar sequential reference
bzip2 sequential reference
gcc sequential reference
gobmk sequential reference
h264 sequential reference
hmmer sequential reference
libquantum sequential reference
mcf sequential reference
omnetpp sequential reference
perlbench sequential reference
sjeng sequential reference
xalan sequential reference

Table 3.1: Evaluated shared-memory OpenMP benchmarks.

Chapter 3. Methodology 34

Benchmark Kernels Time-weighted Memory
Average CTAs Footprint (MB)

ML-GoogLeNet-cudnn-Lev2 1 6272 1205
ML-AlexNet-cudnn-Lev2 1 1250 832
ML-OverFeat-cudann-Lev3 1 1800 388
ML-AlexNet-cudnn-Lev4 1 1014 32
ML-AlexNet-ConvNet2 1 6075 97
Rodinia-Backprop 2 4096 160
Rodinia-Euler3D 346 1008 25
Rodinia-BFS 24 1954 38
Rodinia-Gaussian 510 2599 78
Rodinia-Hotspot 1 7396 64
Rodinia-Kmeans 3 3249 221
Rodnia-Pathfinder 20 4630 1570
Rodinia-Srad 4 16384 98
HPC-SNAP 118 200 744
HPC-Nekbone-Large 300 5583 294
HPC-MiniAMR 33 76033 2752
HPC-MiniContact-Mesh1 500 250 21
HPC-MiniContact-Mesh2 127 15423 257
HPC-Lulesh-Unstruct-Mesh1 2000 435 19
HPC-Lulesh-Unstruct-Mesh2 200 4940 208
HPC-AMG 88 241549 3744
HPC-RSBench 1 7813 19
HPC-MCB 1 5001 162
HPC-NAMD2.9 1 3888 88
HPC-RabbitCT 1 131072 524
HPC-Lulesh 105 12202 578
HPC-CoMD 350 3588 319
HPC-CoMD-Wa 350 13691 393
HPC-CoMD-Ta 350 5724 394
HPC-HPGMG-UVM 359 10436 1975
HPC-HPGMG 317 10506 1571
Lonestar-SP 11 75 8
Lonestar-MST-Graph 87 770 86
Lonestar-MST-Mesh 71 895 75
Lonestar-SSSP-Wln 1000 60 21
Lonestar-DMR 3 82 248
Lonestar-SSSP-Wlc 1300 163 21
Lonestar-SSSP 102 1046 38
Other-Stream-Triad 5 699051 3146
Other-Optix-Raytracing 1 3072 87
Other-Bitcoin-Crypto 1 60 5898

Table 3.2: Evaluated CUDA applications with memory footprint and
time weighted average number of thread blocks available during

execution.

Chapter 3. Methodology 35

3.3.2 CUDA workloads for GPU analysis

We study the scalability of multi-socket NUMA GPUs using 41 workloads taken

from a range of production codes based on the HPC CORAL benchmarks [92],

graph applications from Lonestar [93], HPC applications from Rodinia [94], in

addition to several NVIDIA in-house CUDA benchmarks. This set of workloads

covers a wide spectrum of GPU applications used in machine learning, fluid dy-

namic, image manipulation, graph traversal, and scientific computing. For some of

the workloads we obtain traces with different inputs (like HPC-MiniContact-Mesh1

and HPC-MiniContact-Mesh2) or different algorithm being implemented to solve

the problem (like HPC-CoMD-Wa and HPC-CoMD-Ta). Each of our benchmarks is

hand selected to identify the region of interest deemed representative for each

workload, which may be as small as a single kernel containing a tight inner loop

or several thousand kernel invocations. We run each benchmark to completion for

the determine region of interest. Table 3.2 provides both the memory footprint

of these workloads as well as the average number of active CTAs in the work-

load (weighted by the time spent on each kernel) to provide a representation of

how many parallel thread blocks (CTAs) are generally available during workload

execution.

Chapter 4

HPC Workload Characterization

This chapter presents a characterization of HPC applications running on a shared-

memory CMPs. Our focus is on the core front-end structures such as instruction

cache (I-cache), branch predictor (BP) and branch target buffer (BTB). We eval-

uate three HPC benchmark suites and compare them with traditional desktop ap-

plications, found in SPEC CPU INT. Moreover, this work analyses the difference

between serial and parallel code sections inside HPC workloads. We find that HPC

workloads have fewer branch instructions, more biased and backward taken con-

ditional branches, smaller instruction footprints, and longer basic blocks. Those

findings suggest the use of smaller I-caches with wider lines, smaller BPs with loop

BPs, and smaller BTBs. Still, observing that serial parts in HPC benchmarks are

more close to desktop applications, we advocate for an ACMP design from the

core front-end perspective. Downsizing the front-end structures on throughput-

oriented cores our estimations show 16% of area and 7% of power savings with no

impact on performance.

4.1 Microarchitecture Independent

Characterization

Here, we provide intrinsic code characteristics of HPC applications. We focus on

aspects affecting the core front-end: branches, instruction footprints, and basic

37

Chapter 3. HPC Workload Characterization 38

ExMatEx
[HPC]

SPEC OMP
[HPC]

NPB
[HPC]

SPEC CPU INT
[Desktop]

0

5

10

15

20

25

30

35

B
ra

n
ch

 i
n
st

ru
ct

io
n

b
re

a
kd

o
w

n
 [

%
]

to
ta

l

se
ri

a
l

p
a
ra

lle
l

call

indirect call

direct branch

indirect branch

syscall

return

Figure 4.1: Dynamic branch instruction breakdown for each benchmark suite as
the percentage of total instructions.

blocks. We also point to a difference between sequential and parallel code sections

we observed among workloads.

4.1.1 Branch Instructions

We start our analysis determining the dynamic mix of branch instructions. The

PinTool inspects every branch instruction and counts its frequency and type.

Figure 4.1 shows the dynamic branch instruction breakdown. All branch instruc-

tions factor out 13% of the total dynamic instruction mix for ExMatEx suite and

around 7% for SPEC OMP and NPB, compared to 19% on average for SPEC CPU

INT workloads (total bars). This indicates that HPC workloads probe branch pre-

dictors less often. The number of system calls is negligible. Indirect jumps (both

branches and calls) are rare except for EP, UA, md, kdtree, and CoEVP. On average,

they are less than 0.5% of all branches, and up to 2.5% in case of CoEVP. The

majority of dynamic branch instructions are conditional and unconditional direct

branches. This figure points a big difference between serial and parallel code sec-

tions inside the HPC applications. Closer to SPEC CPU INT, sequential parts

have almost 3× more branch instructions than parallel parts on average.

Figure 4.2 presents a more detailed analysis of dynamic conditional direct branches.

It gives a stacked bar for each suite showing the distribution of branches depending

on the percentage of times they are taken. HPC workloads have between 90% (in

case of NPB) to 80% (in case of ExMatEx) of dynamic branches dominantly either

Chapter 3. HPC Workload Characterization 39

ExMatEx
[HPC]

SPEC OMP
[HPC]

NPB
[HPC]

SPEC CPU INT
[Desktop]

0

20

40

60

80

100

Fr
a
ct

io
n
 o

f
d
y
n
a
m

ic
co

n
d
it

io
n
a
l
b
ra

n
ch

e
s

[%
]

to
ta

l

se
ri

a
l

p
a
ra

lle
l Percent taken

0-10%

10-20%

20-30%

30-40%

40-50%

50-60%

60-70%

70-80%

80-90%

>90%

Figure 4.2: Distribution of branch directions. Conditional branches are
dominantly decided in one direction, either taken or not taken. Desktop

applications have more evenly distributed directions of conditional branches.

Table 4.1: The average percentage of backward and forward taken branches per
benchmark suite.

Suite Serial code Parallel code
backward forward backward forward

ExMatEx 72% 28% 69% 31%
SPEC OMP 73% 27% 74% 26%
NPB 71% 29% 80% 20%
SPEC CPU INT 56% 44%

taken or not taken. On the other side, SPEC CPU INT applications have more

distributed directions of conditional branches. Interestingly, serial and parallel

code sections have similar behavior, except that not-taken branch instructions are

more frequent in sequential code. Additionally, Table 4.1 breaks down all taken

branches on backward and forward ones. While for HPC suites around 75% of

taken branch instructions jump backwards, SPEC CPU INT benchmarks have

almost the same number of forward and backward taken branches. Again, serial

and parallel code sections show similar ’75-to-25’ ratio between backward and for-

ward taken branches. These results show bias in direction with the potentially

high predictability of branches among HPC workloads. They suggest that the use

of a simple and smaller branch predictor would yield a low misprediction ratio,

especially in parallel code regions. We analyze this assumption in Section 4.2.1.

4.1.2 Instruction Footprint

To find out the required I-cache design, we analyze the sizes of both static and

dynamic instruction footprints. We use a PinTool that stores the size of each basic

Chapter 3. HPC Workload Characterization 40

ExMatEx
[HPC]

SPEC OMP
[HPC]

NPB
[HPC]

SPEC CPU INT
[Desktop]

0

50

100

150

200

250

300

In
st

ru
ct

io
n
 f

o
o
tp

ri
n
t

[K
B

]

to
ta

l

se
ri

a
l

p
a
ra

lle
l

99% of Dynamic Static

Figure 4.3: Static instruction footprint and memory we need to store 99% of
dynamic instructions per benchmark suite.

block in bytes and counts how many times that basic block has been executed.

That way, we find the static and dynamic instruction footprints per basic block

and, thus, for the whole application.

Figure 4.3 shows the total static instructions footprint and the amount of memory

needed to fit 99% of dynamic instructions, averaged per benchmark suite. Work-

loads from SPEC OMP and NPB suites have small static code size, up to 252 KB

(for UA) and around 121 KB on average. Workloads from ExMatEx suite have

larger static instruction footprint, up to 800 KB for VPFFT and 242 KB on aver-

age. These benchmarks are more recent, close representatives of real applications,

linked with external libraries (such as LAPACK, BLAS, FFTW) that increase to-

tal instruction footprint. Among HPC workloads, sequential code has larger static

instruction footprint, but still smaller than desktop applications. There is high

spatial code locality. Most of the HPC workloads (17 out of 29) fetch almost 100%

of instructions from one or two KB of memory. Still, cases such as LULESH and

CoGL from ExMatEx or BT from NPB suite, fetch between 60% and 90% of in-

structions from 16 KB of memory. On average, HPC workloads in parallel execute

99% of instructions from just 14 KB of memory. Serial code sections also show

high spatial locality, even higher compared to parallel sections for SPEC OMP

and NPB suites. Among these benchmarks, the total number of instructions exe-

cuted sequentially is small, thus the existence of any loop(s) (the majority of taken

branches is backward-taken according to Table 4.1) results in high code spatial lo-

cality. In this case, the serial code inside parallel HPC applications show different

behavior from SPEC CPU INT.

Chapter 3. HPC Workload Characterization 41

ExMatEx
[HPC]

SPEC OMP
[HPC]

NPB
[HPC]

SPEC CPU INT
[Desktop]

0

50

100

150

200

250

300

350

400

B
y
te

s

to
ta

l

se
ri

a
l

p
a
ra

lle
l

Avg BBL Avg distance between taken branches

Figure 4.4: Average dynamic basic block length and distance between taken
branches for each benchmark suite.

These results indicate that most of the HPC benchmark’s dynamic code fit in less

than 32 KB of memory. For many of them, even 4 KB of memory is enough to store

almost every instruction. HPC applications spend most of their time inside loops,

so few basic blocks are fetched and executed over and over again. Nevertheless,

to know exactly how these characteristics impact the number of I-cache misses,

we need to observe temporal behavior as well. We cover this analysis later, in

Section 4.2.3.

4.1.3 Basic Blocks

Due to the low frequency of branch instructions, we expect to find long basic

blocks in HPC benchmarks. Traditional desktop and server applications are known

to have short basic blocks [95, 96]. Our analysis confirms this. Many complex

features are implemented in today’s CPUs to overcome the problem of short basic

blocks and increase fetch bandwidth, such as multiple branch predictions per cycle,

instruction alignment, and a trace cache. Tailoring an HPC core, these may not

be needed.

Figure 4.4 shows the average dynamic basic block length and the average distance

between taken branches per benchmark suite. The average basic block size for

HPC applications is around 78 bytes. Some of them have very long basic blocks,

for example, BT (312 B), swim (152 B), and LULESH (126 B). We present per-

benchmark values later in Section 5.1. The distance between taken branches is

even longer. It suggests the usage of wider I-cache lines that would still have high

Chapter 3. HPC Workload Characterization 42

usefulness and keep fragmentation low. For those benchmarks where basic blocks

are not long, reuse distance is short. That is the case with CoHMM, CoSP, botsspar,

CG, and IS, where the average basic block size is around 32 B, but the majority of

them are executed with a reuse distance between one and two basic blocks. Once

fetched, a wide cache line would be frequently reused without sending new fetch

requests to the I-cache, acting as a prefetch buffer [97]. Compared with SPEC

CPU INT applications, HPC workloads have around 4× longer basic blocks and

5× longer distance between taken branches with parallel code sections. Sequential

parts are similar to desktop applications. These results are important for a design

of the I-cache, as we show in Section 4.2.3.

4.1.4 Difference Between Sequential and Parallel Code

Sections in HPC Workloads

Our previous measurements demonstrate that ExMatEx benchmarks have slightly

bigger code sizes, less biased branches, and shorter basic blocks compared to SPEC

OMP and NPB. There are two reasons for such a behaviour.

First, this suite includes benchmarks with a considerable amount of instructions

executed in sequential regions bringing its characteristics overall closer to SPEC

CPU INT. Run on an eight-core CMP, CoEVP has a master thread that executes

around 35% of its instructions sequentially, between parallel sections. The sim-

ilar behaviour is observed for CoMD (8% of instructions is executed in sequential

parts), CoSP (9%), and LULESH (11%) applications, all from the ExMatEx suite.

Comparing basic block lengths, CoMD and LULESH have 2× and 3× longer basic

blocks in parallel than in sequential code sections, respectively. Among SPEC

OMP and NPB workloads, master thread executes less than 1% of all instructions

in sequential regions, except for nab and fma3d (around 4% in sequential parts).

On the previous graphs, the total bars are always between serial and parallel for

ExMatEx, while for SPEC OMP and NPB total is almost the same as parallel.

Second, ExMatEx benchmarks include many external libraries which increase their

instruction footprint. This consequently increases the number of branch instruc-

tions, and as we shall see, complexity in predicting them, increasing the number of

misses in the appropriate front-end structures. If our analysis were done only with

Chapter 3. HPC Workload Characterization 43

SPEC OMP and NPB benchmarks, we could have ignored the impact of these

facts, leading us to some wrong conclusions and findings.

On the other side, the amount of instructions executed in serial directly depends

on the number of threads running the application and the size of input set. For

example, running fma3d and nab benchmarks from SPEC OMP with train in-

puts and eight threads gives around 25% of all instructions executed in serial by

master thread. With the same inputs as we use here (reference) but running 64

threads, the fraction of serial code increases to 18% and 19% (from 4% with eight

threads). Today, Intel’s Xeon Phi cards and IBM’s Power8 CMPs support around

200 threads. As the number of cores and/or hardware threads per CMP increases,

handling the serial parts of parallel applications may become crucial. Our analysis

so far shows not just that the HPC benchmarks are different from desktop, but

that also serial code sections are different from parallel inside an HPC application.

4.2 Microarchitecture Dependent

Characterization

Driven by the observations in the previous section, we analyze how to accom-

modate the core front-end structures for HPC applications. We focus on branch

predictors, branch target buffers, and instruction caches.

4.2.1 Branch Predictor

Previous findings demonstrate the existence of a small number of biased branches

in HPC applications. It suggests the high predictability and use of simpler and

smaller branch predictors that can provide the same performance as the ones we

can currently find in today’s CPUs. To evaluate this idea, we implement a PinTool

with three different branch predictors:

• gshare - branch prediction that uses one global history table and branch

history register (BHR) XORed with branch address to index the history

table [98].

Chapter 3. HPC Workload Characterization 44

Table 4.2: Size parameters and hardware cost of evaluated branch predictors.
Parameter n stands for the number of address bits used to index the tables, and

parameter m stands for branch history length.

Predictor Hardware cost (bits)
Size parameters

∼2 KB (small) ∼16 KB (big)

gshare 2m+1 m = 13 m = 16
tournament 2n(m + 2) + 2m+2 n = 10,m = 8 n = 12,m = 14
TAGE according to [101] 2 tables 12 tables

• tournament - the branch predictor implemented in the Alpha 21264 proces-

sor [99]. It has two branch predictors, one based on private and the other on

global history tables, and the one which is currently more successful predicts

the outcome of a branch.

• TAGE - a modern branch predictor that relies on tagging the entries and

capturing different global history lengths [100]. It uses a base predictor

(bimodal) and a set of tagged tables indexed using different history lengths

that form a geometric series.

To make a fair comparison between branch predictors, we evaluate configurations

that have the same hardware cost. Table 4.2 gives an overview of the parameters

used for different branch predictors, so they have approximately the same size. We

define two sets of configuration parameters, small with a 2 KB hardware budget

and big with 16 KB. We take this as a reasonable assumption in a lean-core design

given that on the 2nd Championship Branch Prediction competition [101], 4 KB

and 32 KB budgets are used for heavyweight cores.

Since HPC workloads spend most of their time inside loops and the majority of

taken branches are backwards, we also check how a loop branch predictor (LBP)

affects mispredictions when it is added to the small predictors analyzed here. An

LBP tries to identify loops with a constant number of iterations. The prediction

is by default provided by the base predictor, but, in cases where high confidence

is achieved by the LBP, the prediction from an LBP is taken as the final decision.

We implement a 64-entry LBP with an approximate hardware budget of 512 B.

Figure 4.5 shows the number of branch mispredictions per kilo instructions (branch

MPKI) for every branch predictor and three configurations per BP: big, small, and

small with an LBP (bars with prefix L on a graph). There are several things to

Chapter 3. HPC Workload Characterization 45

ExMatEx
[HPC]

SPEC OMP
[HPC]

NPB
[HPC]

SPEC CPU INT
[Desktop]

0

5

10

15

20
B

ra
n
ch

 M
P
K

I
gshare-big

tournament-big

tage-big

gshare-small

tournament-small

tage-small

L-gshare-small

L-tournament-small

L-tage-small

Figure 4.5: Branch MPKI for different branch predictor configurations and
benchmark suites.

observe here. First, Figure 4.5 demonstrates the difference between desktop and

HPC workloads for the same configurations and types of branch predictors. As

pointed out before, HPC workloads have fewer branch instructions per execution

and more biased branches. This results in SPEC CPU INT applications having

around 3× higher branch MPKI compared to ExMatEx ones, and around 5× com-

pared to SPEC OMP and NPB ones. For every HPC benchmark suite, sequential

parts have higher branch MPKI than its parallel parts, but lower than SPEC CPU

INT.

Second, it is clear that TAGE outperforms the other two branch predictors for

all cases. This holds not just on per suite, but also, on per benchmark level.

TAGE is much better in reducing the interference or aliasing which occurs when

different branch instructions point to the same prediction bits. With the simple

usage of lower address bits or XORing them with a history register, different branch

instructions can map to the same prediction entry which reduces the effective usage

of a prediction table. It can even be destructive if the branch instructions take

different directions. By (partially) tagging its entries, TAGE eliminates (reduces)

this effect. Also, TAGE has multiple components each for a different global history

length from very short to very long. Compared to the other two branch predictors

and for HPC benchmarks, TAGE provides almost the same branch MPKI values

regardless of its size. With just a 2 KB hardware budget, small TAGE is better

than 16 KB big gshare or tournament predictor.

Figure 4.5 also demonstrates how desktop and HPC applications are different in

Chapter 3. HPC Workload Characterization 46

CoEVP CoMD botsspa imagick EP FT astar gobmk xalan
0

5

10

15

20

25

30

35
B

ra
n
ch

 M
P
K

I

[ExMatEx] [SPEC OMP] [NPB] [SPEC CPU INT]

g
sh

a
re

-b
ig

g
sh

a
re

-s
m

a
ll

L-
g
sh

a
re

-s
m

a
ll

On Not Taken On Taken Backward On Taken Forward

Figure 4.6: Branch MPKI breakdown for gshare branch predictor and a subset of
workloads. We distinguish mispredictions on not taken, taken backward, and

taken forward branches.

exploiting the LPB. For each benchmark suite, it shows the reduction of branch

MPKI values when an LPB is implemented together with a small base predictor.

It barely reduces the number of misses for desktop applications. On the other

hand, HPC applications, both sequential and parallel code sections, benefit from

an LPB. Still, reducing the size of branch predictor increases the MPKI values in

serial parts. These results show that a core used to execute parallel HPC code

should have a branch predictor tuned differently than the one used to run desktop

applications. With biased and mostly backward taken branches, long basic blocks,

and low fraction of branch instructions in the instruction mix, smaller and properly

configured branch predictors can be used in HPC cores without performance loss.

Figure 4.6 breaks down the branch MPKI values obtained with gshare predic-

tor for a subset of workloads. A branch misprediction can be caused by a not

taken, a taken backward, or a taken forward branch instruction. As expected, the

presence of a loop BP reduces the number of branch mispredictions on taken back-

ward branches, especially for HPC workloads. While it has a moderate effect on

branch MPKI values for benchmarks like CoEVP and CoMD, in cases of botsspar

and imagick, an LBP eliminates the branch mispredictions, not just the taken

backward, but also the not taken ones. After the last loop iteration when the

branch should not be taken, a two-bit entry in a gshare table would miss because

the saturating counter is in a strongly-taken prediction state, while an LBP knows

exactly how many iteration that loop will execute. Still, there are some HPC

benchmarks where the presence of a loop BP has no effect on a branch MPKI

value such as in case of EP. Looking at the SPEC CPU INT benchmarks, taken

Chapter 3. HPC Workload Characterization 47

backward misses exist but they are not reduced by an LBP since those are not part

of loop structures. It is interesting to note that the majority of all mispredictions

comes from the not taken branches, for all benchmark suites.

TAGE branch predictor shows similar behavior as gshare on Figure 4.6 but with

lower branch MPKI values and without the difference between big and small con-

figurations for HPC benchmarks. An LBP is also beneficial for TAGE but mostly

reducing mispredictions on not taken branches. When the control flow inside the

loop is regular, TAGE predictor is able to predict loops with constant number of

iterations, just as an LBP. On the other hand, when the control flow in the loop

body is changeable, TAGE predictor may fail to correctly predict the exit of the

loop [101].

4.2.2 Branch Target Buffer

The branch predictor provides information about whether the next branch will be

taken or not taken. Still, it does not supply the target address in case the branch

is predicted as taken. For that, we use the branch target buffer (BTB) which is

implemented as a cache that stores the branch target address for taken branches.

We use the current instruction address to index and lookup in the BTB and, if

the address is found, then the instruction being fetched is a taken branch, and the

data part of the entry contains the next PC after the branch. In the BTB, we store

only branches predicted as taken since not-taken ones will continue fetching from

the next sequential instruction. With a correctly predicted outcome of a branch

and a correct target address stored in the BTB, we have a zero branch penalty.

Figure 4.7 shows how the number of misses in the BTB depends on its size and

associativity. Changing the BTB size from 256 to 1024 entries, has no impact on

the number of misses for HPC applications. High associativity is needed to reduce

the aliasing problem, especially for ExMatEx benchmarks, mostly due to a simple

modulo indexing to the BTB. Our previous findings state that HPC benchmarks

have a small number of branches and they are strongly biased. Once when BTB

stores a destination address for a taken branch, that branch is probably going to

be taken the next time it occurs with the same destination address. This results in

the same MPKI values regarding the size of the BTB. Desktop applications show

higher BTB MPKI values for the same BTB configurations compared to HPC

Chapter 3. HPC Workload Characterization 48

ExMatEx
[HPC]

SPEC OMP
[HPC]

NPB
[HPC]

SPEC CPU INT
[Desktop]

0

2

4

6

8

10

12

14

16

B
T
B

 M
P
K

I
256-entry, 2-way

256-entry, 4-way

256-entry, 8-way

512-entry, 2-way

512-entry, 4-way

512-entry, 8-way

1K-entry, 2-way

1K-entry, 4-way

1K-entry, 8-way

Figure 4.7: BTB MPKI for different number of entries and associativity. We use
branch address to index BTB.

applications. Bigger branch target buffers provide significantly lower BTB MPKI,

such as in cases of gcc, gobmk, and sjeng.

4.2.3 Instruction Cache

Section 4.1.2 explains how HPC applications have a small dynamic instruction

footprint. Moreover, most of the execution time is spent in loops where only a few

basic blocks are executed many times. Figure 4.3 shows that for parallel parts of

HPC benchmarks about 99% of all instructions are fetched from less than 32 KB

of memory. On the other side, an I-cache factors out a considerable part of power

and area on lean cores. We check how different I-cache sizes and associativities

impact the number of misses.

Our pintool simulates the I-cache behavior throughout the execution. In the be-

ginning, it creates a cache structure with the specified characteristics such as cache

size, line width, and associativity. We implement LRU replacement policy.

Figure 4.4 points that HPC applications have long basic blocks. Once we fetch an

I-cache line, we extract the instructions sequentially, without accessing the I-cache

again, until we reach the end of a line or a taken branch. Due to the long distance

between taken branches and without any alignment techniques, even 128B-wide

I-cache lines have a high usefulness, 71% on average. We define usefulness as the

Chapter 3. HPC Workload Characterization 49

ExMatEx
[HPC]

SPEC OMP
[HPC]

NPB
[HPC]

SPEC CPU INT
[Desktop]

0

2

4

6

8

10

12
I-

ca
ch

e
 M

P
K

I

8KB, 2-way

8KB, 4-way

8KB, 8-way

16KB, 2-way

16KB, 4-way

16KB, 8-way

32KB, 2-way

32KB, 4-way

32KB, 8-way

Figure 4.8: The average I-cache MPKI values for all benchmark suites. The
cache line is 64 B.

CoEVP CoGL fma3d xalan omnetpp
0

5

10

15

20

25

I-
ca

ch
e
 M

P
K

I

[ExMatEx] [SPEC OMP] [SPEC CPU INT]

32B-line, 2-way

32B-line, 4-way

32B-line, 8-way

64B-line, 2-way

64B-line, 4-way

64B-line, 8-way

128B-line, 2-way

128B-line, 4-way

128B-line, 8-way

Figure 4.9: I-cache MPKI values for some specific benchmarks. The cache size is
16 KB.

number of different bytes accessed in a line out of the total line size. For the same

line width, SPEC CPU INT has only 33% usefulness. Besides that, wider cache

lines also reduce the number of accesses to the I-cache.

Figure 4.8 shows how the number of misses in the I-cache depends on its size

and associativity, averaged per benchmark suite. Desktop applications, with their

large static code footprints, need larger I-caches. Reduction in size is not an option

for them since the use of a 16 KB I-cache increases the MPKI 2.5× compared to

a 32 KB I-cache. For all benchmarks in SPEC OMP (except the fma3d) and NPB

suites, even an 8 KB I-cache provides MPKI values bellow 1. ExMatEx applica-

tions stress more the I-cache. They have larger static and dynamic instruction

Chapter 3. HPC Workload Characterization 50

footprints, as we have seen in Figure 4.3. For them, an 8 KB I-cache is not an

option. With high associativity and 128 B lines, a 16 KB I-cache increases the

MPKI from 1 to 2 on average, compared with a standard-size 32 KB I-cache (for

per-benchmarks values see Figure 5.2). Instructions executed in sequential re-

gions miss by 50% more on average, and in case of CoSP up to 2×, compared to

instructions from parallel regions.

There is an interesting observation analyzing the impact of the I-cache line width

on the MPKI values. Figure 4.9 shows these dependencies for a subset of bench-

marks. While wider lines reduce the number of misses in the I-cache for HPC

applications, for SPEC CPU INT workloads is the opposite. For a fixed size and

associativity, HPC applications miss by 16% less in a 128B-line than in a 32B-line

I-cache. For the same comparison, SPEC CPU INT benchmarks have 19% more

I-cache misses on average. With short basic blocks and short distance between

taken branches, wider cache lines used with desktop applications have low useful-

ness and reduce the number of total cache lines available in a fixed-size I-cache.

On the other side, HPC workloads benefit from wider I-cache lines, not just due to

reducing the number of accesses to the I-cache but also from the high usefulness

of wide lines. The existence of hot code regions, such as loops, forces the running

thread to execute a few basic blocks multiple times. No matter how large static

code is (due to external library linking or any other reason), dynamic instruction

footprint remains small and able to fit in less than 32 KB of cache memory.

4.3 Impact on Performance, Power and Area

As our Section 4.1 highlights, HPC workloads have specific code characteristics.

They have a low number of biased, and mostly backward taken branches. Dynamic

instruction footprints are small and basic blocks long. Those results suggest a

redimensioning of the core front-end structures for HPC, such as I-cache, branch

predictor, and BTB. We use Sniper [82] to simulate the performance impact and

McPAT [45] library to project power and area savings by tailoring the core front-

end for HPC applications.

Chapter 3. HPC Workload Characterization 51

ExMatEx SPEC
OMP

NPB SPEC
CPU INT

0.0

0.2

0.4

0.6

0.8

1.0

1.2
E
x
e
cu

ti
o
n
 t

im
e

Baseline CMP (8B cores)

Tailored CMP (8T cores)

Asymmetric CMP (1B+7T cores)

Asymmetric++ CMP (1B+8T cores)

(a) Execution time

ExMatEx SPEC
OMP

NPB SPEC
CPU INT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
o
w

e
r

(b) Power

ExMatEx SPEC
OMP

NPB SPEC
CPU INT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
n
e
rg

y

(c) Energy

ExMatEx SPEC
OMP

NPB SPEC
CPU INT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
D

(d) Energy-Delay

Figure 4.10: Normalized execution time, power, energy, and energy-delay (ED)
product for different CMP configurations and averaged per benchmark suite. We
analyse only cores and L2 caches since the rest of CMP is shared and same for all
configurations. Asymmetric++ CMP has the same area budget as Baseline CMP.

4.3.1 Experimental Setup

We have selected the ARM Cortex-A9 configuration file from the McPAT bundle

because it has been validated against real silicon and is representative of lean cores.

It also has similar area footprint compared to an IBM BlueGene/Q core and recent

research works consider ARM a potential player in the HPC market [33]. In Sniper,

we configure an eight-core CMP with Cortex-A9-like cores, private 256 KB L2, and

4 MB shared L3 cache. HPC applications are run with eight threads while SPEC

CPU INT are run sequentially. For our baseline core model, we use 32 KB, 64B-

line I-cache, 16 KB tournament BP, and 2K-entry BTB. Based on the results from

our previous Sections, for the alternative HPC-core design we simulate 16 KB,

128B-line I-cache, 2 KB tournament predictor with loop BP, and 256-entry BTB.

We refer to it as a tailored core model.

Chapter 3. HPC Workload Characterization 52

CoEVP CoMD fma3d FT h264 gobmk
0.0

0.2

0.4

0.6

0.8

1.0

1.2
E
x
e
cu

ti
o
n
 t

im
e

[ExMatEx] [SPEC OMP] [NPB] [SPEC CPU INT]

Baseline CMP (8B cores)

Tailored CMP (8T cores)

Asymmetric CMP (1B+7T cores)

Asymmetric++ CMP (1B+8T cores)

Figure 4.11: Execution time for a subset of benchmarks, normalized to a baseline
CMP configuration.

4.3.2 Results

Figure 4.10a shows the average execution time normalized to the baseline CMP

configuration. Figure 4.11 is similar, presenting the same metric for a subset of

benchmarks. As expected, reducing the sizes of front-end structures is not accept-

able for desktop applications, although, in some particular cases, it provides no

performance degradation (like for h264). They need large branch prediction struc-

tures to handle complex branch instructions and large I-cache to store the code.

SPEC OMP and NPB benchmarks increase their execution time by less than 1%

when they are executed on a CMP made out of tailored cores compared to the

baseline ones. Among NPB workloads, there is no a single benchmark with more

than 3% of execution time increase, while for SPEC OMP, only fma3d demon-

strates a significant performance loss of 6%, mostly due to the I-cache misses.

Running ExMatEx benchmarks on an eight-core tailored CMP increases the exe-

cution time by almost 6% on average, hurting four out of eight workloads (CoHMM,

CoEVP, CoMD, and CoGL). The highest is CoEVP, whose execution time goes up by

22%.

As we mentioned before, CoEVP benchmark with default inputs and running eight

threads spends around 35% of its time inside the serial code. Binding the master

thread to run on a baseline core, while the rest of threads run on tailored cores

(Asymmetric CMP) provides the same performance as running this benchmark on

an eight-core Baseline CMP. This shows that heterogeneity which already exists

in HPC systems with accelerators, should be implemented even deeper, on a CMP

Chapter 3. HPC Workload Characterization 53

Table 4.3: I-cache, BP, and BTB share in total area and power budget on a
Cortex-A9 core level. BP has 12-cycle miss penalty. The numbers are obtained

using McPAT and CACTI tools with processing technology of 40 nm.

Area[mm2] Power[W]
B

as
el

in
e Total core 2.49 (100%) 0.85 (100%)

I-cache (32KB, 64B line) 0.31 0.075

Big BP (16KB) 0.14 0.032

BTB (2K entries) 0.125 0.017

T
ai

lo
re

d Total core 2.11 (84%) 0.79 (93%)
I-cache (16KB, 128B line) 0.14 0.049

Small BP with LBP (2.5KB) 0.04 0.011

BTB (256 entries) 0.022 0.002

level. Used as a stand-alone component, accelerators as Intel Xeon Phi may suf-

fer from either under-dimensioning the master core (and slowing down the serial

part), or over-dimensioning the workers (and wasting resources on them). Asym-

metric CMP designs are already present in different markets (IBM’s Cell or ARM’s

big.LITTLE), and our results show that a similar approach has an advantage in

HPC as well.

In the baseline configuration, a 32 KB I-cache with 64 B lines contributes with 12%

and 9% of the total area and power core budget, respectively. A 16 KB branch

predictor, implemented as a tournament predictor in McPAT and thus in Sniper

for consistency, factors out around 5% in area and 4% of core power. A 2K-entry

BTB in baseline contributes with 5% and 2% of the total core area and power

budget. Table 4.3 provides these numbers in absolute values.

As results suggest the use of a smaller I-cache, smaller BP with LBP, and a BTB

with less entries, we compare the baseline numbers with the ones obtained con-

figuring a 128B-line 16 KB I-cache, 2 KB BP, and a 256-entry BTB. Reducing the

sizes of these hardware structures gives 16% savings in area and 7% savings in

power at the core level.

Saving this amount of area per core on an asymmetric eight-core CMP, opens the

opportunity to add an extra core. With the abundant TLP, we can scale per-

formance with core count under the same area budget. Figures 4.10a and 4.11

compare the execution times of HPC workloads on an Asymmetric++ CMP com-

posed out of one baseline and eight tailored cores to a Baseline CMP composed out

Chapter 3. HPC Workload Characterization 54

of eight baseline cores. For the same area budget, Asymmetric++ CMP provides

12% time reduction on average and up to 20% for FT.

The rest of plots on Figure 4.10 show normalized power, energy, and energy-

delay (ED) product for different CMP configurations. There is an interesting

tradeoff present on Figure 4.10b. Power is estimated as a sum of the static and

dynamic power of private structures: cores and L2 caches. Downsizing the front-

end structures we save static power and reduction of dynamic power comes mostly

due to the increased execution time for a Tailored CMP. With an additional core,

Asymmetric++ CMP increases the power budget by 4% compared to Baseline

CMP, on average. With 12% performance improvement and within the same area,

this translates into 8% of energy savings and reduction of ED product by 18%.

Chapter 5

Sharing the I-cache among Lean

Cores

In the previous chapter, we have shown the difference between serial and parallel

code sections inside HPC applications. Parallel code regions have less branch

instructions, longer basic blocks, and smaller instruction footprints. Here, we

evaluate the idea of having an I-cache shared among lean cores that run parallel

code. We motivate this idea by finding that dynamic instruction footprint for all

running threads is 99% the same. Thus, sharing the I-cache we can potentially

reduce the number of misses due to constructive code prefetching between the

threads but also reduce the total area occupied by a set of private I-caches. On the

other side, prolonged access time to the shared resource may hurt the performance.

In this chapter we analyze this treadeoff focusing on the ACMP design used in

HPC.

5.1 Sequential and Parallel Code within HPC

applications

On an ACMP, the large core executes sequential code and it joins the workers

executing parallel code regions. Using Pin [81] as an instrumentation library, we

instrument only the master thread and characterize the HPC applications sepa-

rating the serial and parallel sections by looking at the average basic block size

55

Chapter 5. Sharing the I-cache among Lean Cores 56

B
T

C
G

D
C E
P

FT IS LU M
G S
P

U
A

m
d

b
w

a
v
e
s

n
a
b

b
o
ts

sp
a
r

b
o
ts

a
lg

n
ilb

d
c

fm
a
3

d
im

a
g
ic

k
sm

it
h
w

a
kd

tr
e
e

C
o
E
V

P
C

o
M

D
C

o
S
P

LU
LE

S
H

a
m

e
a
n

0

50

100

150

200

250

300

350

A
v
e
ra

g
e
 b

a
si

c
 b

lo
ck

 l
e
n
g
th

 [
B

]

serial code parallel code

Figure 5.1: The average dynamic basic block length in serial and parallel parts of
the code.

B
T

C
G

D
C E
P

FT IS LU M
G S
P

U
A

m
d

b
w

a
v
e
s

n
a
b

b
o
ts

sp
a
r

b
o
ts

a
lg

n
ilb

d
c

fm
a
3

d
im

a
g
ic

k
sm

it
h
w

a
kd

tr
e
e

C
o
E
V

P
C

o
M

D
C

o
S
P

LU
LE

S
H

a
m

e
a
n

0

10

20

30

40

50

60

70

I-
ca

ch
e

 M
P
K

I

serial code parallel code

Figure 5.2: The I-cache MPKI values in serial and parallel parts of the code
using a 32 KB, 8-way associative I-cache with 64 B lines, and LRU replacement

policy. The I-cache MPKI values in parallel code are very low.

and the I-cache MPKI values. Here, we show the values for each evaluated work-

load, while sections 4.1.3 and 4.2.3 show the same numbers but averaged across

benchmark suites.

Figure 5.1 shows the average dynamic basic block size for each workload we use in

this evaluation (a subset of benchmarks described in Section 3.3.1). HPC applica-

tions have 3× longer basic blocks in parallel than in sequential code. This means

that HPC benchmarks, while executed in parallel, provide high usefulness of the

I-cache lines, increasing the useful fetch bandwidth without any techniques such

as trace cache or multiple branch prediction per cycle [8, 11]. A single I-cache

line fetched inside the parallel region contains more instructions to feed the core

Chapter 5. Sharing the I-cache among Lean Cores 57

B
T

C
G

D
C E
P

FT IS LU M
G S
P

U
A

m
d

b
w

a
v
e
s

n
a
b

b
o
ts

sp
a
r

b
o
ts

a
lg

n
ilb

d
c

fm
a
3

d
im

a
g
ic

k
sm

it
h
w

a
kd

tr
e
e

C
o
E
V

P
C

o
M

D
C

o
S
P

LU
LE

S
H

0

20

40

60

80

100

In
st

ru
ct

io
n
 s

h
a
ri

n
g
 [

%
]

static code dynamic code

Figure 5.3: Percentage of instruction sharing across all threads running on an
eight-core CMP per HPC benchmark (parallel sections only).

back-end than an I-cache line from a serial region. Still, there are benchmarks,

such as nab and CoEVP, where basic blocks are longer in serial sections. We will

refer to these interesting cases later in Section 5.5.5.

Figure 5.2 gives the I-cache MPKI values for each benchmark obtained in serial

and parallel code regions. Not just that sequential code sections miss more in a

standard-size 32 KB I-cache, but parallel code sections have I-cache MPKI values

far below 1 (except for CoEVP). HPC applications spend most of their time inside

loops, so few basic blocks are fetched over and over again, resulting in a few I-cache

misses.

These findings point out the difference between sequential code executed by the

large, master core and parallel code executed by all cores. With its aggressive back-

end and short basic blocks, the large core needs quick access to the instruction

memory to deliver enough instructions every cycle. On the other hand, lean cores

have less demanding back-ends and 3× longer basic blocks, so a prolonged I-cache

access latency is less likely to introduce additional stall cycles. Moreover, parallel

code sections have negligible I-cache MPKI.

5.2 Lean Cores and the Code They Execute

Figure 5.3 shows an intrinsic property of HPC applications: inside the parallel

regions, most of the threads execute the same code. It gives the percentage of

Chapter 5. Sharing the I-cache among Lean Cores 58

instruction footprint shared among all the threads running the application. In-

struction sharing is extremely high for HPC workloads. On average, around 99%

of dynamically executed instructions are the same for all running threads. Differ-

ent threads work on different sets of data but the same set of instructions, as in

parallel loops and parallel tasks, which results in a large amount of duplication

across private I-caches.

These facts motivate our study on sharing the I-cache among lean cores in an

ACMP. The potential benefits include improved I-cache hit rates due to construc-

tive cross-thread instruction prefetching, as well as savings in chip area and static

power. For example, factoring out around 15% of per-core private real estate for an

eight lean core cluster, opens an opportunity to spend that saving on an additional

core. The main potential drawback is a larger I-cache access latency due to the

introduction of a shared-access interconnection network. In this Chapter we eval-

uate this tradeoff and provide an optimal solution tuned to increase performance

per power and area.

5.3 Shared I-cache Architecture

For a baseline configuration, we consider an ACMP composed of one large and

eight lean cores with private L1 and L2 caches, connected to an on-chip memory

controller giving access to off-chip memory. Figure 5.4 shows the instruction side

of the baseline and proposed ACMP architectures. It presents four worker cores

for simplicity. In our study, we use a configuration with one big and eight small

cores. We first detail the core model, based on a decoupled front-end architecture.

After that, we present the evaluated ACMP architecture with a shared I-cache

among lean cores.

5.3.1 Core Front-End

Figure 5.4 shows the baseline architecture. The core model decouples the I-cache

from the branch predictor with a fetch target queue (FTQ) [102]. With the ob-

jective of increasing fetch bandwidth, the branch predictor and FTQ work with

fetch blocks (FB) instead of basic blocks. An FB is a sequence of instructions that

Chapter 5. Sharing the I-cache among Lean Cores 59

DRAM

L2

Master
Core

Worker
Core

Worker
Core

Worker
Core

Worker
Core

Worker
Core

Worker
Core

Worker
Core

Worker
Core

L2-DRAM interconnection

Core

Fetch
Predictor

I$ Back-end

L2 L2 L2 L2 L2 L2 L2 L2

to and from
L2 cache

FTQ line buffers

Instruction
Buffer decode Front-end

branch target misprediction

Figure 5.4: Baseline ACMP architecture with respect to the instruction part of
memory hierarchy.

ends at a taken branch and, thus, it may contain multiple basic blocks if their

instructions are consecutive.

The Fetch Predictor (which is actually the branch predictor) generates the fetch

address for the next fetch request and stores it in the FTQ. An FTQ entry contains

the starting address and the length of the FB. The private I-cache is then accessed

using the FB starting address at the front of the FTQ. If the instructions to be

requested to the I-cache happen to be already in one of the line buffers, no request

is made to the I-cache, and the contents of that line buffer are reused instead. With

more line buffers, the front-end is capable of having more outstanding requests to

its I-cache, one request per line buffer. When the requested I-cache line is returned

from the cache, it is stored in one of the line buffers, which act as prefetch buffers.

Using shift and rotate logic, instructions are extracted from the line buffer and

stored in the instruction queue. From that point, the back-end, representing the

rest of the pipeline, executes and retires those instructions. In case of a branch

misprediction, the pending I-cache requests are discarded and all front-end stages

of the pipeline flushed.

Figure 5.5 details the shared I-cache architecture. The FB predictor, FTQ, line

buffers and decode logic are as in the baseline architecture. The main difference

is that the I-cache is placed outside of the core and connected to multiple cores.

Depending on the sharing degree, more or less cores may share one I-cache. In

Chapter 5. Sharing the I-cache among Lean Cores 60

DRAM

Master
Core Worker

Core
Worker

Core
Worker

Core
Worker

Core

L2-DRAM interconnection

Core

Fetch
Predictor

Back-end

L2 L2 L2 L2 L2 L2 L2 L2

to and from
I-interconnect

FTQ line buffers

Instruction
Buffer decode Front-end

branch target misprediction

L2
I$

Worker
Core

Worker
Core

Worker
Core

Worker
Core

I$
I-interconnect

Figure 5.5: Shared I-cache ACMP architecture. Master core is not modified.

the figure, four lean cores share one I-cache thus, there are two I-caches for eight

cores.

5.3.2 Shared I-cache and Interconnect

Multi-banked caches consist of several cache banks, providing multiple accesses

in the same cycle, up to one access per bank. This technique is attractive for

last-level caches since they are usually shared among cores. The same logic can

be applied to a shared I-cache. Instead of serializing core accesses to the I-cache,

multiple requests can be served as long as they fetch from different banks.

To fully utilize a multi-banked cache, all cores must be connected to all banks,

which means using a crossbar switch as interconnect or multiple buses. Although

crossbar and multi-buses provide higher bandwidth and reduce the congestion,

they are expensive in area and power. The area cost of a crossbar increases

quadratically with the number of cache banks, whereas the area of a bus increases

linearly. Given our main objective of reducing area and power without hurting

the performance, we evaluate this tradeoff in Section 5.5.2.

Chapter 5. Sharing the I-cache among Lean Cores 61

5.4 Simulation Setup

Here, we use TaskSim to model our system of interest. Table 5.1 shows the config-

uration parameters for the simulated ACMP. The cache hierarchy, fetch predictor,

shared I-interconnect, memory controller, and off-chip memory are modeled in

detail. Cores-per-cache or cpc stands for the number of worker cores that share

one I-cache. For example, with eight worker cores in total and cpc = 4 there are

two groups of four cores where each group share one I-cache. The I-cache size,

line width, associativity and latency remain the same for any degree of sharing.

We focus our evaluation on the parameters that most affect the impact of our

proposal: different degrees of sharing (cpc), the number of line buffers, and the

I-interconnect bandwidth.

We evaluate our proposal using three HPC benchmark suites: NAS Parallel Bench-

marks (NPB suite), SPEC OMP 2012 (SPECOMP suite), and ExMatEx Appli-

cations. We run all of the 10 benchmarks from NPB suite with input set C, and

10 benchmarks from SPECOMP suite with reference inputs. We also use four

ExMatEx Applications (CoEVP, CoMD, CoSP, and LULESH) with default input pa-

rameters. Our evaluation is based on 24 HPC workloads in total, all of them

implemented using the OpenMP programming model.

We evaluate OpenMP applications in this paper but our conclusions are also ap-

plicable to other HPC programming models, including distributed memory models

like MPI. Although MPI tasks run on separate processes, they still run the same

executable. In such case, the OS maps all the code regions to the same physical

page, since code pages are read only. The same applies for shared libraries. This

means that multiple processes in MPI applications, running on a single node, share

the same code as they access the same physical code pages.

5.5 Evaluation

In this section we present the evaluation of sharing the I-cache among lean cores

on an ACMP. We start by checking how simple I-cache sharing affects the per-

formance. Increasing the I-cache access latency by putting a shared bus between

worker cores and the I-cache, we measure the performance loss for some workloads

Chapter 5. Sharing the I-cache among Lean Cores 62

Table 5.1: Configuration parameters for the simulated ACMP.

Parameter Value(s)

ACMP 1 master and 8 worker cores
master core IPC values from an Intel’s i7 core
worker core IPC values from an ARM’s Cortex-A9 core

Cores-per-cache (cpc) [1, 2, 4, 8]
1 stands for a baseline (private I-caches)

I-cache size = 32 KB, 8-way
latency = 1 cycle
line width = 64 B

Line buffers [2, 4, 8]
width = 64 B

I$-interconnect type = single or double bus
latency = 2 cycles + contention
width = 32 B
arbitration = round-robin

Fetch predictor 16 KB gshare + 256-entry loop predictor

L2 cache size = 1 MB, 32-way
latency = 20 cycles
line width = 64 B

L2-DRAM bus latency = 4 cycles + contention
width = 32 B

DRAM size = unlimited
timing parameters = standard

especially with the higher degrees of sharing. We evaluate how adding more line

buffers and doubling the bandwidth of a shared bus overcomes this problem as a

tradeoff between the performance and energy consumption. At the end, we find

the scalability limits of this proposal and answer the question if a single I-cache

can be shared among all cores on an ACMP, including the master core.

5.5.1 Naive I-cache Sharing

First, we evaluate sharing a 32 KB I-cache among two, four, and eight small cores,

and compare with the baseline architecture (private, 32 KB I-caches). Figure 5.6

shows the normalized execution time with respect to the baseline architecture for

different levels of sharing. For some benchmarks, a single I-cache shared among

eight cores increases execution time, up to 18% in the case of UA. Figure 5.7 gives

Chapter 5. Sharing the I-cache among Lean Cores 63

B
T

C
G

D
C E
P

FT LU M
G S
P

U
A

m
d

b
w

a
v
e
s

n
a
b

b
o
ts

sp
a
r

b
o
ts

a
lg

n
ilb

d
c

fm
a
3
d

im
a
g
ic

k
sm

it
h
w

a
kd

tr
e
e

C
o
E
V

P
C

o
M

D
C

o
S
P

LU
LE

S
H

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 E

x
e
.
T
im

e

cpc=2 cpc=4 cpc=8

Figure 5.6: Naive scaling. Execution time for different levels of sharing a 32 KB
I-cache among worker cores. We use four line buffers and a single bus as the

interconnection network.

B
T

C
G

D
C E
P

FT LU M
G S
P

U
A

m
d

b
w

a
v
e
s

n
a
b

b
o
ts

sp
a
r

b
o
ts

a
lg

n
ilb

d
c

fm
a
3
d

sm
it

h
w

a
kd

tr
e
e

C
o
E
V

P
C

o
M

D
C

o
S
P

LU
LE

S
H

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 C

P
I
st

a
ck

baseline CPI

I-bus latency

I-bus congestion

I-cache latency

branch miss

rest

Figure 5.7: Naive scaling. Normalized CPI stack per benchmark for the highest
level of sharing (cpc = 8).

the normalized CPI stack per benchmark when a single I-cache is shared among

all eight cores. Very few additional stall cycles are caused by the latencies from

I-cache misses, branch misses, and fetch requests to the upper levels of memory

hierarchy. HPC applications have predictable branches and a simulated 16 KB

gshare augmented with a loop predictor provides a low number of branch mispre-

dictions (with 3.8× higher branch MPKI values in serial code than in the parallel

sections). The majority of stall cycles are due to the extra latency brought by the

intermediate shared bus. Most stall cycles are caused by contention on the I-bus.

We explore two potential features to overcome these stall cycles: putting more line

buffers or increasing the bandwidth of the shared interconnect.

Chapter 5. Sharing the I-cache among Lean Cores 64

B
T

C
G

D
C E
P

FT IS LU M
G S
P

U
A

m
d

b
w

a
v
e
s

n
a
b

b
o
ts

sp
a
r

b
o
ts

a
lg

n
ilb

d
c

fm
a
3
d

im
a
g
ic

k
sm

it
h
w

a
kd

tr
e
e

C
o
E
V

P
C

o
M

D
C

o
S
P

LU
LE

S
H

0

20

40

60

80

100

I-
ca

ch
e
 a

cc
e
ss

 r
a
ti

o
 [

%
]

2 line buffers 4 line buffers 8 line buffers

Figure 5.8: I-cache access ratio for different number of line buffers. More than
eight line buffers does not reduce the I-cache access ratio significantly.

5.5.2 Scalable I-cache Sharing

With more line buffers, the front-end is capable of having more outstanding re-

quests to its I-cache, one request per line buffer. Every time the starting address

of the current fetch block exists in a line previously brought into one of the line

buffers, the front-end reuses that line buffer and does not issue a request to the

I-cache. This reduces the number of accesses to the shared I-cache and contention

on the shared bus.

Figure 5.8 shows how using more line buffers reduces the I-cache access ratio,

defined as the number of lines fetched from the I-cache divided by the total number

of fetch requests. This is expected due to high temporal locality that is present

in the code. It is interesting how this temporal locality complements our analysis

on average basic block length (see Figure 5.1). For almost all of the benchmarks

where the average basic block length is small, the I-cache access ratio is also low

(CG, IS, botsalgn, botsspar, CoSP). On the other side, when the basic blocks

are long, almost all the accesses are to the I-cache (BT, LU, ilbdc, and LULESH).

Another way of reducing the contention on a shared interconnection is to increase

its bandwidth. Instead of a single bus, we use a shared multi-banked I-cache so

that each bank now has its own bus connected to all worker cores. For example,

having an I-cache with two banks, one with even and one with odd cache lines, we

connect a separate bus for each bank, so that the I-cache requests of even cache

Chapter 5. Sharing the I-cache among Lean Cores 65

B
T

C
G

D
C E
P

FT LU M
G S
P

U
A

m
d

b
w

a
v
e
s

n
a
b

b
o
ts

sp
a
r

b
o
ts

a
lg

n
ilb

d
c

fm
a
3

d
im

a
g
ic

k
sm

it
h
w

a
kd

tr
e
e

C
o
E
V

P
C

o
M

D
C

o
S
P

LU
LE

S
H

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d

E
x
e
cu

ti
o
n
 T

im
e

cpc=8 + 4 line buffers + single bus

cpc=8 + 8 line buffers + single bus

cpc=8 + 4 line buffers + double bus

Figure 5.9: Trade-off between adding more line buffers and doubling the
interconnection bandwidth when a single 16 KB I-cache is shared (cpc = 8). The

execution times are normalized to the baseline architecture (private, 32 KB
I-caches).

line addresses route through the first bus, and the requests with odd line addresses

route through the second bus. That way, a shared multi-banked I-cache is able

to provide two cache lines per cycle as long as they are found in different cache

banks. Doubling the number of buses increases the area of the I-interconnect

by 4× compared to a single bus proposal. With the cost of dedicating more

area and power budget to this solution, we reduce the contention on the shared

I-interconnect.

Figure 5.9 shows how these two techniques affect the total execution time. Adding

more line buffers is beneficial for some benchmarks where it reduces the I-cache

access ratio, such as UA. But, in most cases, the baseline with four line buffers

already captures most executed basic blocks and hot loops, thus adding more line

buffers to this set has a limited effect. On the other hand, doubling the bandwidth

of the interconnection network between the lean cores and the shared I-cache

completely removes the stall cycles caused by prolonged I-cache access latency.

By using two I-buses instead of one, we halve the number of cores requesting the

I-cache line per bus, and reduce the contention.

5.5.3 Miss Analysis

Figure 5.10 shows how sharing an I-cache among all worker threads (cpc = 8)

affects the number of misses per kilo instruction (MPKI). The numbers above the

Chapter 5. Sharing the I-cache among Lean Cores 66

bars represent the absolute MPKI values obtained with a set of private, 32 KB I-

caches. As we have seen before on Figure 5.2, HPC applications miss very few times

accessing an I-cache in parallel regions. On average, sharing the I-cache reduces

the number of misses by 50%, and up to 90% in case of LU and SP, compared to a

baseline architecture (private I-caches). Even a smaller I-cache shared among all

lean cores (cpc = 8 :: 16KB) provides fewer misses than the set of per core 32 KB

I-caches. This is a direct consequence of the code sharing among threads in HPC

workloads. Threads prefetch instructions for each other in a shared I-cache and we

have observed in some cases a complete absence of cold misses for some threads.

Sharing the I-cache increases the number of non-compulsory misses for some bench-

marks due to the lower overall capacity (botsalgn, smithwa). In those cases the

MPKI values are still reduced, which implies that compulsory misses are domi-

nant. In some other cases (SP, imagick, LULESH), even non-compulsory misses

are reduced due to almost perfect time alignment among threads accessing the

same line in the shared I-cache.

The most interesting case is the CoEVP benchmark. That is the only HPC workload

we analyse for which the I-cache MPKI value is above 1 for a private, 32 KB I-

cache. Sharing a single I-cache among all worker cores halves the number of

misses, and with a double I-bus we provide enough bandwidth so that congestion

does not introduce additional stall cycles. With these two things combined, we

even observe a 2% performance improvement, as shown on Figure 5.9. For HPC

applications where I-cache misses introduce a significant performance degradation,

our proposal of sharing the I-cache among lean cores stands not just as an area

and power saving technique, but also to increase the performance.

5.5.4 Area and Power Savings

We estimate the area and power savings relative to a set of lean cores with private

I-caches as the baseline. Master core, LLC and NoC are not included in this

analysis. Sharing an I-cache among cores reduces the occupied area and total

power but at the same time the additional shared bus introduces overheads.

We use McPAT [45] and CACTI [103] to estimate the area and energy consumption

of cores, I-caches, I-buses, and line buffers. We have selected the ARM Cortex-A9

configuration file from the McPAT bundle because it has been validated against

Chapter 5. Sharing the I-cache among Lean Cores 67

B
T

C
G

D
C E
P

FT LU M
G S
P

U
A

m
d

b
w

a
v
e
s

n
a
b

b
o
ts

sp
a
r

b
o
ts

a
lg

n
ilb

d
c

fm
a
3

d
im

a
g
ic

k
sm

it
h
w

a
kd

tr
e
e

C
o
E
V

P
C

o
M

D
C

o
S
P

LU
LE

S
H

0

20

40

60

80

100
I-

ca
ch

e
 M

P
K

I
[%

]
(N

o
rm

a
liz

e
d
 t

o
 b

a
se

lin
e
 A

C
M

P
)

0
.0

1

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

1

0
.0

0

0
.0

1

0
.0

1

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

1
.2

7

0
.0

0

0
.0

0

0
.0

0

cpc=8 + 32KB I-cache

cpc=8 + 16KB I-cache

Figure 5.10: MPKI values for an I-cache shared among all eight lean cores in its
two sizes, 32 KB and 16 KB, normalized to a baseline ACMP (private 32 KB

I-caches). Numbers above the graph represent absolute MPKI values for each
benchmark with private I-caches.

real silicon and is representative of lean cores. We run McPAT for different ACMP

configurations and I-cache sizes and use statistics from simulation outputs and

performance counters. Then, we obtain the area and power numbers and compare

them with the baseline values.

Both wires and logic of the shared bus contribute to interconnection overhead.

When a bus is wired without array structures underneath, logic can be placed

under the bus without additional area overhead [104]. The area occupied by a

bus is determined by the number of wires, the wire pitch and length. In our

model, bus width is the same as the I-cache line width, which determines the

number of wires plus address lines. The wire pitch for a 45 nm technology is

205 nm [105]. The length of the bus is estimated as the number of cores times the

bus width [106]. This gives a quadratic dependence of bus area on line width. For

power estimation we use the power-to-area relation taken from the McPAT values

of the NoC component (bus). It gives a linear dependence of total power on area.

With previously obtained area values for the bus, we apply this coefficient to get

its total power numbers. For dynamic power, we set the number of transactions

on the NoC as the number of accesses to the shared I-cache and apply the same

dynamic-to-total power ratio, once we calculate the total power.

Figure 5.11 presents execution time, energy, and area consumption of eight worker

cores for different design points, averaged across the benchmarks and normalized

Chapter 5. Sharing the I-cache among Lean Cores 68

baseline cpc=8
 4 line buffers

 single bus

cpc=8
 4 line buffers
 double bus

cpc=8
 8 line buffers

 single bus

cpc=8
 8 line buffers
 double bus

0.80

0.85

0.90

0.95

1.00

1.05
Execution Time Energy Area

Figure 5.11: Energy and area savings adding more line buffers and doubling the
interconnection bandwidth when a single 16 KB I-cache is shared (cpc = 8). All
the values are normalized to the baseline architecture and averaged across the

benchmarks.

to the baseline. For the highest level of sharing (cpc = 8), we focus on the trade-

off between using more line buffers or doubling the bandwidth. Compared to the

baseline, sharing an I-cache reduces the area and static power. The number of

accesses to the shared I-cache increases 8× but since we share smaller, 16 KB

I-cache, its dynamic power is also lower compared to a set of private I-caches.

We calculate the energy as the product of total power (dynamic and static) and

execution time. Configurations with only one I-bus have the highest area savings

but modest energy savings, mostly due to the increased execution time. With

the methodology explained in the previous paragraph, we estimate that the area

budget of a double I-bus is around 45% of a 16 KB I-cache. More line buffers

brings less activity on the bus and less accesses to the I-cache but more area and

energy for a line buffer access.

Figure 5.11 also presents optimal designs for different metrics. In case we are

mostly interested in area savings, sharing the I-cache among eight cores with four

line buffers and single bus, stands as the optimal design. Unfortunately, it also

brings 4% of performance degradation on average. If hurting the performance is

not an option, the best configuration is an I-cache shared among eight lean cores

with four line buffers and a double I-bus that provides savings of 5% in energy

and 11% of area.

These savings can be used to increase performance for the same power and area

budget. A shared I-cache architecture among worker cores allows adding an extra

Chapter 5. Sharing the I-cache among Lean Cores 69

0 5 10 15 20 25

Serial code [%]

0.99

1.00

1.01

1.02

1.03

1.04

1.05

E
x
e
cu

ti
o
n
 T

im
e
 R

a
ti

o
(a

ll-
sh

a
re

d
 o

v
e
r

w
o
rk

e
r-

sh
a
re

d
 I
-c

a
ch

e
)

EP

FT

IS

UA

fma3d CoEVP

CoMD

LULESH

nabCoMD
(with 1 line buffer)

Group 3
(with a single bus)

Group 1

Group 0

Group 2

Figure 5.12: Execution time ratio dependence on the serial code fraction.

core for the same area. This can be attractive for many-core designs such as

Xeon Phi, configuring the processing elements in octa-core clusters each with a

single shared I-cache. Another possibility is to increase other hardware structures,

such as data cache and SIMD execution unit. HPC codes benefit from additional

thread- and data-level parallelism, therefore leading to higher CMP performance

per unit of area and energy efficiency.

5.5.5 A Single I-cache Shared Among All Cores on an

ACMP

Besides executing serial parts of the code, the master core acts as an additional

worker core during parallel code sections. Here, we analyse whether the master

core can be joined to the set of worker cores sharing a single I-cache. That way, it

can benefit from inter-thread code prefetching and contribute further to the area

and energy savings by discarding its private I-cache. In this analysis we use shared

32 KB I-cache, so that we do not hurt the master core execution by reducing the

I-cache size. Configuring the I-interconnect as a double bus, we compare all-share

proposal (master and workers share a single I-cache) with the previously evaluated

worker-shared proposal (the I-cache is shared only among worker cores).

Figure 5.12 explains why for some benchmarks it is harmful to share a single I-

cache among all cores. It shows how the performance ratio between all-shared and

worker-shared proposals depends on the fraction of serial code. In general, with

Chapter 5. Sharing the I-cache among Lean Cores 70

higher percentage of serial code, all-shared needs more time to complete the same

job compared to worker-shared configuration. The master core has more aggressive

back-end (heavyweight core) and it runs alone in serial code parts that have shorter

basic blocks on average. Sharing an I-cache, every time it fetches the sequential

code it has to send the request through the I-interconnect bringing back fewer

instructions. With the increased I-cache access latency and shorter basic blocks,

the master core does not provide enough instructions to its back-end, introducing

stall cycles and hurting the performance. We estimate this dependency with the

area between two diagonal black lines on Figure 5.12. Still, there are few outliers

that we break down into groups, each with different reasons being distant from

the general dependency:

• Group 0 - default behavior: Most of the benchmarks belong to this

group as they have a negligible amount of instructions executed in serial

parts. Benchmarks like fma3d and LULESH show the general trend, for every

5% of serial code fraction the performance degrades for 1% compared to

worker-shared configuration.

• Group 1 - code locality in serial code: Although with significant amount

of instructions executed in serial by master core (especially for CoMD) the

execution time is the same as in worker-shared setup. The reason is high

code locality of serial code. For example, when we configure the core front-

end with four line buffers (baseline), CoMD rarely accesses the shared I-cache

when executing sequential code. Only one line buffer is not enough to exploit

the serial code locality, thus CoMD moves to Group 0.

• Group 2 - long basic blocks in serial code: Figure 5.1 shows that HPC

applications have short basic blocks in sequential code regions, with two

benchmarks as exceptions, nab and CoEVP. That is the reason why these two

benchmarks do not belong to Group 0. With longer basic blocks, the master

core behaves like worker cores in parallel regions.

• Group 3 - scalability limitations: If we use a single I-bus, EP, FT, and UA

benchmarks show performance degradation when the master core also shares

the I-cache. This time, the stall cycles are not caused due to prolonged I-

cache access latency in serial code sections, but in parallel ones. Adding

one more core to a single I-bus increases the congestion and the execution

Chapter 5. Sharing the I-cache among Lean Cores 71

time. This finding exposes the scalability limits. Sharing an I-cache among

more than eight cores introduces additional stall cycles which can not be

mitigated with a double bus interconnect and four line buffers. With higher

interconnection bandwidth and line buffers, the performance degradation

can be reduced, but the extra area and energy cost do not justify such an

investment, leading to a design with the same performance and the same

area and power budget as the baseline ACMP.

This final analysis further stresses the difference between parallel code commonly

run on HPC systems and serial bottleneck that exists in every parallel application.

There is a need to tailor the cores on a CMP differently, depending on the parts

of the code they execute. Although attractive with the additional energy and

area savings, sharing an I-cache among all cores on an ACMP shows performance

degradation as the amount of serial code increases. Our findings suggest that an

I-cache can be shared among worker cores providing energy and area savings for

the same performance, but the master core should be left with its private I-cache.

Chapter 6

Multi-socket GPU Design

The presence of accelerators in today’s HPC compute nodes is a standard case

given their ability to run parallel code more efficiently than general-purpose CPUs.

Over the past 10 years, GPUs have become the most common compute accelerator

devices not just in HPC, but also in datacenters and machine learning installa-

tions, improving the performance of many workloads beyond what Moore’s Law

would have predicted. They achieve high throughput and power efficiency by em-

ploying many small single instruction multiple thread (SIMT) cores, utilizing a

uniform memory system and leveraging data parallelism exposed via the program-

ming model. Future performance improvement of GPU devices depends on the

growth of these SIMT core count. Still, Moore’s law is slowing and while GPU die

sizes have been increasing quickly over the past several generations, this growth is

expected to slow down due to limitations in lithography and manufacturing costs.

Without larger or denser dies, GPUs manufacturers are likely to embrace some

sort of multi-GPU integration. One way seems to be already available, such in

case of NVIDIA’s DGX-1 compute nodes, where multiple GPUs stand as a set

of pluggable devices. Another way considers closely coupled multi-socket GPU

designs where transistors are more readily available. However, when moving to

such designs, maintaining the illusion of a uniform memory system is increasingly

difficult. In this Chapter, we first analyze the necessary runtime support in or-

der to establish a proper baseline performance and make transparent multi-GPU

executions available. After that, we investigate multi-socket non-uniform memory

access (NUMA) GPU designs and show that significant changes are needed to both

the GPU interconnect and cache architectures to achieve performance scalability.

73

Chapter 6. Multi-socket GPU Design 74

1

Switch

DRAM

CUDA

runtime

Application

Kernel A

Sub-kernel A3

Sub-kernel A1 Sub-kernel A0

Sub-kernel A2

CPU

x

L
2
 c

a
c
h
e

D
R
A
M

S
c
h
e
d
u
le

r

S
c
h
e
d
u
le

r

x

L
2
 c

a
c
h
e

D
R
A
M

x

L
2
 c

a
c
h
e

D
R
A
M

S
c
h
e
d
u
le

r

S
c
h
e
d
u
le

r

x

L
2
 c

a
c
h
e

D
R
A
M

GPU 0 GPU 1

GPU 2 GPU 3

Figure 6.1: Schematic representation of proposed transparent multi-socket GPU
system consisting of four GPU sockets and one CPU.

We show that application phase effects can be exploited allowing GPU sockets to

dynamically optimize their individual interconnect and cache policies, minimizing

the impact of NUMA effects.

6.1 System of Interest and Simulation Setup

To evaluate the performance of future NUMA-aware multi-socket GPUs we use

a proprietary, cycle-level, trace-driven simulator for single and multi-GPU sys-

tems. Our baseline GPU in both single GPU and multi-socket GPU configura-

tions, approximates the latest NVIDIA Pascal architecture [21]. Each streaming

multiprocessor (SM) is modeled as an in-order processor with multiple levels of

cache hierarchy containing private, per-SM, L1 caches and multi-banked, shared,

L2 cache. Each GPU is backed by local on-package high bandwidth memory [72].

Our multi-socket GPU systems contain two to eight of these GPUs interconnected

through a full bandwidth GPU switch as shown in Figure 6.1. Table 6.1 provides

a more detailed overview of the simulation parameters. Section 3.3.2 explains the

set of workloads we are using in this Chapter.

GPU coherence protocols are not one-size fits all [107–109]. This work examines

clusters of large discrete GPUs but smaller more tightly integrated GPU–CPU

Chapter 6. Multi-socket GPU Design 75

Table 6.1: Simulation parameters for evaluation of single and multi-socket GPU
systems.

Parameter Value(s)

Num of GPU sockets 4

Total number of SMs 64 per GPU socket

GPU Frequency 1 GHz

Max number of Warps 64 per SM

Warp Scheduler Greedy then Round Robin

L1 Cache Private, 128 KB per SM, 128 B lines, 4-way,
Write-Through, GPU-side SW-based coherency

L2 Cache Shared, 4 MB per socket, 128 B lines, 16-way,
Write-Back, Memory-side non-coherent

GPU–GPU Interconnect 128 GB/s per socket (64 GB/s each direction)
8 lanes 8 B wide each per direction
128-cycle latency

DRAM Bandwidth 768 GB/s per GPU socket

DRAM Latency 100 ns

designs exist today as system on chips (SoC) [110, 111]. In these designs GPUs

and CPUs can share a single memory space and last-level cache, necessitating a

compatible GPU–CPU coherence protocol. However, closely coupled CPU-GPU

solutions are not likely to be ideal candidates for GPU-centric HPC workloads.

Discrete GPUs each dedicate tens of billions of transistors to throughput com-

puting, while integrated solutions dedicate only a fraction of the chip area. While

discrete GPUs are also starting to integrate more closely with some CPU coherence

protocols [109, 112], PCIe attached discrete GPUs (where integrated coherence is

not possible) are likely to continue dominating the market, thanks to broad com-

patibility between CPU and GPU vendors.

This work examines the scalability of one such cache coherence protocol used by

PCIe attached discrete GPUs. The protocol is optimized for simplicity and without

need for hardware coherence support at any level of the cache hierarchy. SM-side

L1 private caches achieve coherence through compiler inserted cache control (flush)

operations and memory-side L2 caches, which do not require coherence support.

While software-based coherence may seem heavy handed compared to fine grained

MOESI-style hardware coherence, many GPU programming models (in addition

to C++ 2011) are moving towards scoped synchronization where explicit software

acquire and release operations must be used to enforce coherence. Without the

Chapter 6. Multi-socket GPU Design 76

use of these operations, coherence is not globally guaranteed and thus maintaining

fine grain CPU-style MOESI coherence (via either directories or broadcast) may

be an unnecessary burden.

6.2 NUMA-Aware GPU Runtime

Current GPU software and hardware is co-designed together to optimize through-

put of processors based on the assumption of uniform memory properties within

the GPU. Fine grained interleaving of memory addresses across memory channels

on the GPU provides implicit load balancing across memory but destroys memory

locality. As a result, thread block (CTA) scheduling policies need not be sophisti-

cated to capture locality, which has been destroyed by the memory system layout.

For future NUMA GPUs to work well, both system software and hardware must

be changed to achieve both functionality and performance. Before focusing on

architectural changes to build a NUMA-aware GPU we describe the GPU runtime

system we employ to enable multi-socket GPU execution.

Prior work has demonstrated it is possible to design a framework and a runtime

system that transparently decomposes GPU kernels in sub-kernels and executes

them on multiple PCIe attached GPUs in parallel [80]. For example, on NVIDIA

GPUs this can be implemented by intercepting and remapping each kernel call,

GPU memory allocation, memory copy, and GPU-wide synchronization issued by

the CUDA driver. Special care needs to ensure that per-GPU memory fences

are promoted to system level and seen by all GPUs as well as guaranteeing that

sub-kernel CTA identifiers are properly managed to reflect those of the original

kernel. In [80] these two problems were solved by introducing code annotations and

an additional source-to-source compiler which was also responsible for statically

partitioning data placement and computation.

In this work, we follow a similar strategy but without using a source-to-source

translation. Unlike prior work, we are able to rely on NVIDIA’s Unified Vir-

tual Addressing [29] to allow dynamic placement of pages into memory at run-

time rather than static memory placement. Similarly, technologies with cache line

granularity interconnects like NVIDIA’s NVLink [21] allow transparent access to

remote memory without the need to modify application source code to access local

Chapter 6. Multi-socket GPU Design 77

DRAM 0

CTA B

CTA A

Round-robin policy First-touch policy

Page0 Page3

Page1 Page2

Hypothetical
access order

CTA B

CTA A Page0 Page3

Page1 Page2
time time

Page0 Page2

GPU 0

CTA A

x

DRAM 1

Page1 Page3

GPU 1

CTA B

x

DRAM 0

Page0 Page3

GPU 0

CTA A

x

DRAM 1

Page1 Page2

GPU 1

CTA B

x

Hypothetical
access order

Figure 6.2: Comparison of round-robin and first-touch allocation policies on a
dual-GPU system.

or remote memory addresses. Due to these advancements, we assume that through

dynamic compilation of PTX to SASS at executions, the GPU runtime will be able

to statically identify and promote system wide memory fences as well as manage

sub-kernel CTA identifiers.

Current GPUs perform fine grained memory interleaving at a sub-page granularity

across memory channels. In a NUMA GPU this policy would destroy locality and

result in 75% of all accesses going to remote memory in a 4 GPU system, an unde-

sirable effect in NUMA systems. Similarly, a round-robin page level interleaving

could be utilized, like with the Linux INTERLEAVE page allocation strategy, but

despite the inherent memory load balancing, this still results in 75% of memory

accesses occurring over low bandwidth NUMA links. Instead we leverage UVM

page migration functionality to migrate pages on-demand from system memory to

local GPU memory as soon as the first access (also called first-touch allocation)

is performed as described by Arunkumar et. al [113]. Figure 6.2 schematically

depicts the concept and differences between round-robin and first-touch memory

page allocation policies.

One way of improving the locality is to bring the data close to its accessing thread

blocks through the page allocation policy. Another way is to move thread blocks

close to the data through improved CTA scheduling and distribution. On a single

GPU, fine grain dynamic assignment of CTAs to SMs is performed to achieve

Chapter 6. Multi-socket GPU Design 78

GPU 0

CTA 0

CTA 4

CTA 8

CTA N-4

GPU 1

CTA 1

CTA 5

CTA 9

CTA N-3

GPU 2

CTA 2

CTA 6

CTA 10

CTA N-2

GPU 3

CTA 3

CTA 7

CTA 11

CTA N-1

… … … …

(a) Modulo-interleaving CTA
scheduling

GPU 0

CTA 0

CTA 1

CTA 2

CTA N/4-1

GPU 1

CTA N/4

CTA N/4+1

CTA N/4+2

CTA N/2-1

GPU 2

CTA N/2

CTA N/2+1

CTA N/2+2

CTA 3N/4-1

GPU 3

CTA 3N/4

CTA 3N/4+1

CTA 3N/4+2

CTA N-1

… … … …

(b) Block-contiguous CTA
scheduling

Figure 6.3: Comparison of traditional and locality optimized CTA scheduling.

good load balancing. Extending this policy to a multi-socket GPU system is not

possible due to the relatively high latency of passing sub-kernel launches from

software to hardware. To overcome this penalty the GPU runtime must launch

a block of CTAs to each GPU-socket at coarse granularity. To encourage load

balancing, each sub-kernel could be comprised of an interleaving of CTAs using

modulo arithmetic, such as shown on Figure 6.3a. Alternatively a single kernel can

be decomposed into N sub-kernels, where N is the total number of GPU sockets

in the system, assigning an equal amount of contiguous CTAs to each GPU. This

design choice, presented on Figure 6.3b, potentially exposes workload unbalance

across sub-kernels, but it has been shown to preserve data locality present in

applications where neighboring CTAs access contiguous memory regions [80, 113].

6.2.1 Performance Through Locality

Figure 6.4 shows the relative performance of a 4-socket NUMA GPU with respect

to a single GPU under the two possible CTA scheduling and memory placement

strategies explained above. The green (darker) bars show the relative perfor-

mance of traditional single GPU scheduling and memory interleaving policies when

adapted to a NUMA GPU. The blue (lighter) bars show the relative performance

of using locality optimized GPU scheduling and memory placement, consisting of

contiguous block CTA scheduling and first-touch page migration. We can clearly

see that the Locality-Optimized solution almost always outperforms the traditional

Chapter 6. Multi-socket GPU Design 79

R
o
d
in

ia
-E

u
le

r3
D

H
P
C

-A
M

G
H

P
C

-R
S
B

e
n
ch

H
P
C

-C
o
M

D
-T

a
H

P
C

-L
u
le

sh
-U

n
st

ru
ct

-M
e
sh

2
H

P
C

-L
u
le

sh
H

P
C

-N
e
kb

o
n
e

Lo
n
e
st

a
r-

M
S
T
-M

e
sh

H
P
C

-L
u
le

sh
-U

n
st

ru
ct

-M
e
sh

1
Lo

n
e
st

a
r-

S
P

H
P
C

-C
o
M

D
-W

a
H

P
C

-H
P
G

M
G

-U
V

M
R

o
d
in

ia
-B

FS
H

P
C

-C
o
M

D
Lo

n
e
st

a
r-

S
S
S
P
-W

lc
H

P
C

-M
C

B
M

L-
A

le
x
N

e
t-

cu
d
n
n
-L

e
v
2

R
o
d
in

ia
-G

a
u
ss

ia
n

O
th

e
r-

O
p
ti

x
-R

a
y
tr

a
ci

n
g

H
P
C

-M
in

iC
o
n
ta

ct
-M

e
sh

2
Lo

n
e
st

a
r-

M
S
T
-G

ra
p
h

H
P
C

-N
a
m

d
2

.9
Lo

n
e
st

a
r-

S
S
S
P
-W

ln
H

P
C

-M
in

iC
o
n
ta

ct
-M

e
sh

1
M

L-
G

o
o
g
Le

N
e
t-

cu
d
n
n
-L

e
v
2

R
o
d
in

ia
-H

o
ts

p
o
t

H
P
C

-S
N

A
P

M
L-

A
le

x
N

e
t-

cu
d
n
n
-L

e
v
4

R
o
d
n
ia

-P
a
th

fi
n
d
e
r

Lo
n
e
st

a
r-

S
S
S
P

H
P
C

-M
in

iA
M

R
H

P
C

-H
P
G

M
G

Lo
n
e
st

a
r-

D
M

R
R

o
d
in

ia
-S

ra
d

R
o
d
in

ia
-B

a
ck

p
ro

p
O

th
e
r-

S
tr

e
a
m

-T
ri

a
d

O
th

e
r-

B
it

co
in

-C
ry

p
to

M
L-

A
le

x
N

e
t-

C
o
n
v
N

e
t2

H
P
C

-R
a
b
b
it

C
T

M
L-

O
v
e
rF

e
a
t-

cu
d
n
n
-L

e
v
3

R
o
d
in

ia
-K

m
e
a
n
s

A
ri

th
m

e
ti

c
M

e
a
n

G
e
o
m

e
tr

ic
 M

e
a
n

0

1

2

3

4

5

S
p
e
e
d
u
p

Single GPU

Hypothetical 4x Larger Single GPU

4-Socket NUMA GPU :: Traditional GPU Scheduling and Memory Interleaving

4-Socket NUMA GPU :: Locality-Optimized GPU Scheduling and Memory Placement (Baseline)

Figure 6.4: Performance of a 4-socket NUMA GPU relative to a single GPU and
a hypothetical 4× larger (all resources scaled) single GPU. Applications shown in

grey achieve greater than 99% of performance scaling with SW-only locality
optimization.

GPU scheduling and memory interleaving. Without these runtime locality opti-

mizations, in average a 4-socket NUMA GPU is not able to even match the per-

formance of a single GPU despite the large increase in hardware resources. Thus

from now on, using variants of prior proposals [80, 113], we only consider this

locality optimized GPU runtime for the remainder of this work.

Despite the performance improvements that can come via locality optimized soft-

ware runtimes, many applications do not scale well on our proposed NUMA GPU

system. To illustrate this, Figure 6.4 shows the speedup achievable by a hypo-

thetical (unbuildable) 4× larger GPU with a red dash. This red dash represent an

approximation of the maximum theoretical performance we could expect from a

perfectly architected (both HW and SW) NUMA GPU system. Figure 6.4 sorts the

applications by the gap between relative performance of the Locality-Optimized

NUMA GPU and hypothetical 4× larger GPU. We observe that on the right side

of the graph some workloads (shown in the grey box) can achieve or surpass the

maximum theoretical performance. In particular for the two far-most benchmarks

on the right, the locality optimized solutions can outperform the hypothetical 4×

Chapter 6. Multi-socket GPU Design 80

(a) Symmetric Link Bandwidth Assignment

(b) Asymmetric Link Bandwidth Assignment

GPU
GPU

Switch

32 of 64 GB/s

64 of 64 GB/s
+

96 of 128 GB/s

GPU
GPU

Switch

32 of 32 GB/s

96 of 96 GB/s
+

128 of 128 GB/s

Saturated lane Unsaturated lane Dynamically allocated lane

[75% BW Utilization]

[100% BW Utilization]

Figure 6.5: Example of dynamic link assignment to improve interconnect
efficiency.

larger GPU due higher cache hitrates because contiguous block scheduling is more

cache friendly than traditional GPU scheduling.

However, for the applications on the left side there is a large gap between the

Locality-Optimized NUMA design and theoretical performance. These are work-

loads in which either locality does not exist or the Locality-Optimized GPU run-

time is not effective, resulting in large amount of remote data accesses still oc-

curring. Because our goal is to provide scalable performance for single GPU opti-

mized applications, in the rest of the paper we aim to close this performance gap

through microarchitectural innovation. To simplify later discussion, we choose

to exclude benchmarks that achieve ≥99% of the theoretical performance with

SW-only locality optimizations. However, we include all benchmarks in our final

results to show the overall performance scalability achievable with NUMA-aware

multi-socket GPUs.

Chapter 6. Multi-socket GPU Design 81

6.3 Asymmetric Interconnects

6.3.1 Dynamic Bandwidth Distribution

Figure 6.5(a) shows a switch connected GPU with symmetric and static link band-

width assignment. Each link is comprised of equal number of uni-directional high-

speed lanes in both directions, collectively comprising a symmetric bi-directional

link. Traditional static design time link capacity assignment is very common and

has several advantages. For example, only one type of I/O circuitry (egress drivers

or ingress receivers) along with only one type of control logic need to be imple-

mented at each on-chip link interface. Moreover, the multi-socket switches result

in simpler designs that can easily support a statically provisioned bandwidth re-

quirements. On the other hand, multi-socket link bandwidth utilization can have

a large impact on overall system performance. Static partitioning of bandwidth,

when application needs are dynamic, can leave performance on the table. Because

I/O bandwidth is a limited and expensive system resource, NUMA-aware inter-

connects designs must look for innovations that can keep wire and I/O utilization

high.

In multi-socket NUMA GPU systems, we observe that many applications have

different utilization of egress and ingress channels on both a per GPU-socket basis

and during different phases of execution. For example, Figure 6.6 shows a link

utilization snapshot over time for HPC-HPGMG-UVM application running on a SW

locality optimized 4-socket NUMA GPU. Vertical dotted black lines represent

kernel invocations that are split across the 4 GPU-sockets. We can see that several

small kernels have negligible interconnect utilization. However, for the later larger

kernels, GPU0 and GPU2 fully saturate their ingress links, while GPU1 and GPU3

fully saturate their egress links. At the same time GPU0 and GPU2, and GPU1

and GPU3 are underutilizing their egress and ingress links, respectively.

In many workloads we observe one common scenario, in which all CTAs writing to

the same memory range at the end of a kernel (i.e. parallel reductions, data gath-

ering). For CTAs running on one of the sockets, GPU0 for example, these memory

references are local and do not produce any traffic on the inter-socket intercon-

nections. However CTAs dispatched to other GPUs must issue remote memory

writes, saturating their egress links while ingress links remain underutilized, but

Chapter 6. Multi-socket GPU Design 82

0.0
0.2
0.4
0.6
0.8
1.0

B
a
n
d
w

id
th

 G

P
U

 0

GPU Egress GPU Ingress

0.0
0.2
0.4
0.6
0.8
1.0

B
a
n
d
w

id
th

 G

P
U

 1

0.0
0.2
0.4
0.6
0.8
1.0

B
a
n
d
w

id
th

 G

P
U

 2

Time
0.0
0.2
0.4
0.6
0.8
1.0

B
a
n
d
w

id
th

 G

P
U

 3

Figure 6.6: Normalized link bandwidth profile for HPC-HPGMG-UVM showing
asymmetric link utilization between GPUs and within a GPU. Vertical black

dotted lines indicate kernel launch events.

causing ingress traffic on GPU0. Such communication patterns typically utilize

only 50% of available interconnect bandwidth. In these cases, dynamically increas-

ing the number of ingress lanes for GPU0 (by turning around direction of egress

lanes) and switching the direction of ingress lanes for GPUs 1–3, can substantially

improve the achievable interconnect bandwidth. Motivated by these findings, we

propose to dynamically control multi-socket link bandwidth assignments on a per-

GPU basis resulting in dynamic asymmetric link capacity assignments as shown

in Figure 6.5(b).

To evaluate this proposal we model point-to-point links containing multiple lanes,

similarly to NVLink [21]. In these links, 8 lanes with 8 GB/s capacity per lane

yield an aggregate bandwidth of 64 GB/s in each direction. We propose replacing

uni-directional lanes with bi-directional lanes to which we apply an adaptive link

bandwidth allocation mechanism that works as following. For each link in the

system, at kernel launch the links are always reconfigured to contain symmetric

link bandwidth with 4 lanes per direction. During kernel execution the link load

Chapter 6. Multi-socket GPU Design 83

balancer periodically samples the saturation status of each link. If the lanes in

one direction are not saturated, while the lanes in the opposite direction are 99%

saturated, the link load balancer reconfigures and reverses the direction of one of

the unsaturated lanes after quiescing all packets on that lane.

This sample and reconfigure process stops only when directional utilization is not

oversubscribed or all but one lane is configured in a single direction. If both ingress

and egress links are found to be saturated and in an asymmetric configuration, links

are then reconfigured back towards a symmetric configuration to encourage global

bandwidth equalization. While this process may sound complex, the circuitry

for dynamically turning high speed single ended links around in a short number

of cycles already is in use by modern high bandwidth memory interfaces such as

GDDR; where the same set of wires is used for both memory reads and writes [114].

6.3.2 Results and Discussion

There are two important parameters that will affect the performance of our pro-

posed mechanism (i) SampleTime: The frequency at which the scheme samples

for a possible reconfiguration and (ii) SwitchTime: The cost of turning the direc-

tion of an individual lane. Figure 6.7 shows the performance improvement, with

respect to our SW locality optimized GPU by exploring different values of the

SampleTime indicated by green bars and assuming a SwitchTime of 100 cycles.

The red bars in Figure 6.7 provide an upper-bound of performance speedups when

doubling the available interconnect bandwidth to 256 GB/s. For workloads on the

right of the figure, doubling the link bandwidth has little effect, thus dynamic

link policy will also show little improvement due to low GPU–GPU interconnect

bandwidth needs. On the left side, we can see that for some applications, where

improved interconnect bandwidth has a large effect, dynamic lane switching can

improve application performance by as much as 80%. For some benchmarks like

Rodinia-Euler-3D, HPC-AMG, and HPC-Lulesh, doubling the link bandwidth pro-

vides 2× speedup, while our proposed dynamic link assignment mechanism is not

able to significantly improve performance. Those are the workloads that saturate

both link directions, so there is no opportunity to provide additional bandwidth

by turning links around.

Chapter 6. Multi-socket GPU Design 84

R
o
d
in

ia
-E

u
le

r3
D

H
P
C

-A
M

G
H

P
C

-R
S
B

e
n
ch

H
P
C

-C
o
M

D
-T

a
H

P
C

-L
u
le

sh
-U

n
st

ru
ct

-M
e
sh

2
H

P
C

-L
u
le

sh
H

P
C

-N
e
kb

o
n
e

Lo
n
e
st

a
r-

M
S
T
-M

e
sh

H
P
C

-L
u
le

sh
-U

n
st

ru
ct

-M
e
sh

1
Lo

n
e
st

a
r-

S
P

H
P
C

-C
o
M

D
-W

a
H

P
C

-H
P
G

M
G

-U
V

M
R

o
d
in

ia
-B

FS
H

P
C

-C
o
M

D
Lo

n
e
st

a
r-

S
S
S
P
-W

lc
H

P
C

-M
C

B
M

L-
A

le
x
N

e
t-

cu
d
n
n
-L

e
v
2

R
o
d
in

ia
-G

a
u
ss

ia
n

O
th

e
r-

O
p
ti

x
-R

a
y
tr

a
ci

n
g

H
P
C

-M
in

iC
o
n
ta

ct
-M

e
sh

2
Lo

n
e
st

a
r-

M
S
T
-G

ra
p
h

H
P
C

-N
a
m

d
2

.9
Lo

n
e
st

a
r-

S
S
S
P
-W

ln
H

P
C

-M
in

iC
o
n
ta

ct
-M

e
sh

1
M

L-
G

o
o
g
Le

N
e
t-

cu
d
n
n
-L

e
v
2

R
o
d
in

ia
-H

o
ts

p
o
t

H
P
C

-S
N

A
P

M
L-

A
le

x
N

e
t-

cu
d
n
n
-L

e
v
4

R
o
d
n
ia

-P
a
th

fi
n
d
e
r

Lo
n
e
st

a
r-

S
S
S
P

H
P
C

-M
in

iA
M

R
H

P
C

-H
P
G

M
G

A
ri

th
m

e
ti

c
M

e
a
n

G
e
o
m

e
tr

ic
 M

e
a
n

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
p
e
e
d
u
p

Static 128GB/s NVLink

Dynamic 128GB/s NVLink :: 1K Cycle Sample

Dynamic 128GB/s NVLink :: 5K Cycle Sample

Dynamic 128GB/s NVLink :: 10K Cycle Sample

Dynamic 128GB/s NVLink :: 50K Cycle Sample

Static 256GB/s NVLink

Figure 6.7: Relative speedup of the dynamic link adaptivity with respect to the
baseline architecture by varying sample time and assuming switch time of 100

cycles. In red, speedup achievable by doubling link bandwidth.

Using a moderate 5 K cycle sample time (5 µs), dynamic link policy can improve

performance by 14% on average over static bandwidth partitioning. If the link

load balancer samples too infrequently application dynamics can be missed and

performance improvement is reduced. However if the link is turned around too

frequently, bandwidth is lost due to the overhead of turning the link. While we

have assumed a pessimistic link turn time of 100 cycles, we performed sensitivity

studies that show even if link turn time were increased to 500 cycles, our dynamic

policy loses less than 2% of performance. At the same time, using a faster lane

switch (10 cycles) does not significantly improve the performance over a 100 cycle

link turn time. We note that the link turnaround times of modern high-speed on-

board links such as GDDR5 [114] are about 8 ns including both link and internal

DRAM turn-around latency (which is less than 10 cycles at 1 GHz).

Our results demonstrate that asymmetric link bandwidth allocation can be very

attractive when inter-socket interconnect bandwidth is constrained by the number

of on-PCB wires (and thus total link bandwidth). The primary drawback of this

solution is that both types of interface circuitry (TX and RX) and logic need to be

implemented for each lane in both the GPU and switch interfaces. We conducted

an analysis of the potential cost of doubling the amount of I/O circuitry and logic

Chapter 6. Multi-socket GPU Design 85

(a) Mem-Side Local
Only L2

(b) Static R$
(c) Shared Coherent

L1+L2
(d) NUMA-Aware

L1+L2

Cache
Partitioning
Algorithm

SW
-b

as
e

d

C
o

h
e

re
n

t

NVLink

SM …

L1

SM

L1

NoC

L2

DRAM

…

R$

N
o

t
C

o
h

e
re

n
t

SW
-b

as
e

d

C
o

h
e

re
n

t

NVLink

SM …

L1

SM

L1

NoC

L2

DRAM

…

N
o

t
C

o
h

e
re

n
t

SW
-b

as
e

d

C
o

h
e

re
n

t

NVLink

SM …

L1

SM

L1

NoC

DRAM

…

Coherent L2 SW
-b

as
e

d

C
o

h
e

re
n

t

NVLink

SM …

L1

SM

L1

NoC

DRAM

…

Coherent L2

Figure 6.8: Potential L2 cache organizations to balance capacity between remote
and local NUMA memory systems.

based on a proprietary state of the art GPU I/O implementation. Our results show

that doubling this interface area increases total GPU area by less than 1% while

yielding a 12% improvement in average interconnect bandwidth which results in

a 14% application performance improvement. One additional caveat worth noting

is that the proposed asymmetric link mechanism optimizes link bandwidth in a

given direction for each individual link, while the total switch bandwidth remains

constant.

6.4 NUMA-Aware Cache Management

In Section 6.3 we have shown that inter-socket bandwidth is an important factor

in achieving scalable NUMA GPU performance. Unfortunately, because either the

outgoing or incoming links must be underutilized for us to reallocate that band-

width to the saturated link, if both incoming and outgoing links are saturated,

dynamic link rebalancing yields minimal gains. To improve performance in sit-

uations where dynamic link balancing is ineffective, system designers can either

increase link bandwidth, which is very expensive, or try and decrease the amount

of traffic that crosses the low bandwidth communication channels. To decrease

off-chip memory traffic, architects typically turn to caches to capture locality.

GPU cache hierarchies differ from traditional CPU hierarchies wherein they are

not supported by strong hardware coherence protocols [115]. They also differ

from CPU protocols in that caches may be both processor side (where some form

Chapter 6. Multi-socket GPU Design 86

of coherence is typically necessary) or they may be memory side (where coherence

is not necessary). As described in Table 6.1 and Figure 6.8(a), a GPU today is

typically composed of relatively large SW managed coherent L1 caches located

close to the SMs, while a relatively small, distributed, non-coherent memory side

L2 cache resides close to the memory controllers. This organization works well for

GPUs because their SIMT processor designs often allow for significant coalescing

of requests to the same cache line, so having large L1 caches reduces the need for

global crossbar bandwidth. By then placing the L2 caches memory-side they do

not need to participate in the coherence protocol, reducing complexity.

6.4.1 Design Considerations

In NUMA designs remote memory references occurring across low bandwidth

NUMA interconnections results in poor performance, as shown in Figure 6.4. Sim-

ilarly, in NUMA GPUs utilizing traditional memory side L2 caches (that depend

on fine grained memory interleaving for load balancing) is a bad decision. Be-

cause memory side caches only able to cache accesses that originate in their local

memory-side, they cannot cache memory from other NUMA zones and thus can

not reduce NUMA interconnect traffic. Previous work has proposed that GPU L2

cache capacity should be split between memory-side caches and a new processor-

side L1.5 cache that is an extension of the GPU L1 caches [113] to enable caching of

remote data, shown in Figure 6.8(b). By balancing L2 capacity between memory

side and remote caches (R$), this design limits the need for extending expensive

coherence operations (invalidations) into the entire L2 cache while still minimizing

crossbar or interconnect bandwidth.

Flexibility: Designs that statically allocate cache capacity to local memory and

remote memory, in any balance, may achieve reasonable performance in specific in-

stances but they lack flexibility. Much like application phasing was shown to affect

NUMA bandwidth consumption the ability to dynamically share cache capacity

between local and remote memory has the potential to improve performance under

several situations. First, when application phasing results in some GPU-sockets

primarily accessing data locally while others are accessing data remotely, a fix

partitioning of cache capacity is guaranteed to be sub-optimal. Second, while we

show that most applications will be able to completely fill large NUMA GPUs, this

Chapter 6. Multi-socket GPU Design 87

may not always be the case. GPUs within the data center are being virtualized

and there is on-going work to support concurrent execution of multiple kernels

within a single GPU [116, 117]. If a large NUMA GPU is sub-partitioned, it is

intuitive that system software attempt to partition it along the NUMA boundaries

(even within a single GPU-socket) to improve the locality of small GPU kernels.

To effectively capture locality in these situation, NUMA-aware GPUs need to be

able to dynamically re-purpose cache capacity at runtime, rather than be statically

partitioned at design time.

Coherence: To-date, single socket GPUs have not moved their memory-side

caches to processor side because the overhead of cache invalidation (due to coher-

ence) is an unnecessary performance penalty. Within a single socket GPU with

a uniform memory system, there is little performance advantage to implement-

ing L2 caches as processor side caches. However in a multi-socket NUMA design,

the performance tax of extending coherence into L2 caches is offset by the fact

that remote memory accesses can now be cached locally and may be justified;

Figure 6.8(c) shows a configuration with a coherent L2 cache where remote and

local data contend for L2 capacity as extensions of the L1 caches, implementing

identical coherence policy.

Dynamic Partitioning: Building upon coherent GPU L2 caches, we posit that

while conceptually simple, allowing both remote and local memory accesses to

contend for cache capacity (in both the L1 and L2 caches) in a NUMA system

is flawed. In UMA systems it is well known that performance is maximized by

optimizing for cache hit rate, thus minimizing off-chip memory system bandwidth.

However in NUMA systems, not all cache misses have the same relative cost per-

formance impact. A cache miss to a local memory address has a smaller cost

(in both terms of latency and bandwidth) than a cache miss to a remote mem-

ory address. Thus, it should be beneficial to dynamically skew cache allocation

to preference caching remote memory over local data when it is determined the

system is bottle-necked on NUMA bandwidth.

To minimize inter-GPU bandwidth in multi-socket GPU systems we propose a

NUMA-aware cache partitioning algorithm, with cache organization and brief sum-

mary shown in Figure 6.8(d) and Table 6.2. Similar to our interconnect balancing

algorithm, at initial kernel launch (after GPU caches have been flushed for coher-

ence purposes) we allocate one half of the cache ways for local memory and the

Chapter 6. Multi-socket GPU Design 88

Table 6.2: Cache partitioning procedure for NUMA-aware L1 and L2 caches.

Cache Partitioning Algorithm

Step 0 Allocate 1/2 ways for local and 1/2 for remote data
Step 1 Estimate NVLink incoming and monitor local DRAM outgoing BW
Step 2 If NVLink is saturated and local DRAM BW not

RemoteWays++ and LocalWays--
Step 3 If local DRAM BW is saturated and NVLink not

RemoteWays-- and LocalWays++
Step 4 If both are saturated

Equalize allocated ways (++ and --)
Step 5 None of them is saturated

Do nothing
Step 6 Go back to Step 1 after SampleTime cycles

remaining ways for remote data (Step 0). After executing for a 5 K cycles pe-

riod, we sample the average bandwidth utilization on local memory and estimate

the GPU-socket’s incoming read request rate by looking at the outgoing request

rate multiplied by the response packet size. By using the outgoing request rate

to estimate the incoming bandwidth, we avoid situations where incoming writes

may saturate our link bandwidth falsely indicating we should preference remote

data caching. Projected link utilization above 99% is considered to be bandwidth

saturated (Step 1). In cases where the interconnect bandwidth is saturated but

local memory bandwidth is not, the partitioning algorithm attempts to reduce

remote memory traffic by re-assigning one way from the group of local ways to

the remote ways grouping (Step 2). Similarly, if the local memory BW is satu-

rated and NVLink is not, the policy re-allocates one way from the remote group,

and allocates it to the group of local ways (Step 3). To minimize the impact

on cache design, all ways are consulted on look up, allowing lazy eviction of data

when the way partitioning changes. In case where both the interconnect and local

memory bandwidth are saturated, our policy gradually equalizes the number of

ways assigned for remote and local cache lines (Step 4). Finally, if neither of the

links are currently saturated, the policy takes no action (Step 5). To prevent

cache starvation of either local or remote memory (which causes memory latency

dramatically increase and a subsequent drop in performance), we always require

at least one way in all caches to be allocated to either remote of local memory.

Chapter 6. Multi-socket GPU Design 89

R
o
d

in
ia

-E
u
le

r3
D

H
P
C

-A
M

G
H

P
C

-R
S
B

e
n
ch

H
P
C

-C
o
M

D
-T

a
H

P
C

-L
u
le

sh
-U

n
st

ru
ct

-M
e
sh

2
H

P
C

-L
u
le

sh
H

P
C

-N
e
kb

o
n
e

Lo
n
e
st

a
r-

M
S

T
-M

e
sh

H
P
C

-L
u
le

sh
-U

n
st

ru
ct

-M
e
sh

1
Lo

n
e
st

a
r-

S
P

H
P
C

-C
o
M

D
-W

a
H

P
C

-H
P
G

M
G

-U
V

M
R

o
d
in

ia
-B

FS
H

P
C

-C
o
M

D
Lo

n
e
st

a
r-

S
S

S
P
-W

lc
H

P
C

-M
C

B
M

L-
A

le
x
N

e
t-

cu
d
n
n
-L

e
v
2

R
o
d
in

ia
-G

a
u
ss

ia
n

O
th

e
r-

O
p
ti

x
-R

a
y
tr

a
ci

n
g

H
P
C

-M
in

iC
o
n
ta

ct
-M

e
sh

2
Lo

n
e
st

a
r-

M
S
T
-G

ra
p
h

H
P
C

-N
a
m

d
2

.9
Lo

n
e
st

a
r-

S
S

S
P
-W

ln
H

P
C

-M
in

iC
o
n
ta

ct
-M

e
sh

1
M

L-
G

o
o
g
Le

N
e
t-

cu
d
n
n
-L

e
v
2

R
o
d
in

ia
-H

o
ts

p
o
t

H
P
C

-S
N

A
P

M
L-

A
le

x
N

e
t-

cu
d
n
n
-L

e
v
4

R
o
d
n
ia

-P
a
th

fi
n
d
e
r

Lo
n
e
st

a
r-

S
S

S
P

H
P
C

-M
in

iA
M

R
H

P
C

-H
P
G

M
G

A
ri

th
m

e
ti

c
M

e
a
n

G
e
o
m

e
tr

ic
 M

e
a
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p

e
e
d
u
p

Mem-Side Local Only L2

Static Partitioning

Shared Coherent L1+L2

NUMA-aware L1+L2

5.01
4.89
7.42

15.16
15.16

5.83
5.69
5.27

Figure 6.9: Performance of NUMA-aware dynamic cache partitioning in a
4-socket GPU compared to memory-side L2 and previously proposed static

partitioning.

6.4.2 Results

Figure 6.9 compares the performance of 4 different cache configurations in our

4-socket NUMA GPU. Our baseline is a traditional GPU with memory side local-

only L2 caches. To compare against prior work [113] we provide a 50–50 static

partitioning where the L2 cache budget is split between the GPU-side coherent

remote cache which contains only remote data, and the memory side L2 which con-

tains only local data. In our 4-socket NUMA GPU static partitioning improves

performance by 54% on average, although for some benchmarks, it hurts the perfor-

mance by as much as 10% for workloads that have negligible inter-socket memory

traffic. We also show the results for GPU-side coherent L1 and L2 caches where

both local and remote data contend capacity. On average, this solution outper-

forms static cache partitioning significantly despite incurring additional flushing

overhead due to cache coherence.

Finally, our proposed NUMA-aware cache partitioning policy is shown in dark grey.

Due to its ability to dynamically adapt the capacity of both L2 and L1 to optimize

performance when backed by NUMA memory, it is the highest performing cache

configuration. By examining simulation results we find that for workloads on the

Chapter 6. Multi-socket GPU Design 90

0 1.0
GPU0
GPU1
GPU2
GPU3

Mem-Side Local Only L2

0 0.51
GPU0
GPU1
GPU2
GPU3

Static Partitioning

0 0.63
GPU0
GPU1
GPU2
GPU3

Shared Coherent L1 + L2

0 0.34

Normalized Time

GPU0
GPU1
GPU2
GPU3

NUMA-aware L1 + L2

0

400000

800000

1200000

1600000

2000000

2400000

2800000

3200000

#
R

e
m

o
te

 A
cc

e
ss

e
s

Figure 6.10: How different L2 cache organizations shown on Figure 6.8 affect the
execution time in case of HPC-AMG. Vertical dotted lines stand for kernel launch

events while colors show the number of remote accesses.

left side of Figure 6.9 which fully saturate the NVLink bandwidth, NUMA-aware

dynamic policy configures the L1 and L2 caches to be primarily used as remote

caches. However, workloads on the right side of the figure tend to have good

GPU-socket memory locality, and thus prefer L1 and L2 caches store primarily

local data. NUMA-aware cache partitioning is able to flexibly adapt to varying

memory access profiles and can improve average NUMA GPU performance 76%

compared to traditional memory side L2 caches, and 22% compared to previously

proposed static cache partitioning despite incurring additional coherence overhead.

To visualize the effect of different cache configurations, Figure 6.10 shows per-GPU

execution time of HPC-AMG application, normalized to memory side local-only L2

cache setup. Vertical dotted lines identify kernel launch events that are subject

to sub-kernel completion requirements before the next kernel can be launched.

Execution time is proportional to the number of remote accesses. Allowing L2

cache to store remote data in any kind (Static Partitioning or Shared Coherent

L1+L2) reduces the pressure on the NVLink inter-socket connection links and

thus, reduces the execution time. With NUMA-aware L1+L2 dynamic cache

partitioning policy, we achieve almost 3× speedup over the baseline by dedicating

the entire L2 to cache remote data.

Chapter 6. Multi-socket GPU Design 91

R
o
d
in

ia
-E

u
le

r3
D

H
P
C

-A
M

G
H

P
C

-R
S
B

e
n
ch

H
P
C

-C
o
M

D
-T

a
H

P
C

-L
u
le

sh
-U

n
st

ru
ct

-M
e
sh

2
H

P
C

-L
u
le

sh
H

P
C

-N
e
kb

o
n
e

Lo
n
e
st

a
r-

M
S
T
-M

e
sh

H
P
C

-L
u
le

sh
-U

n
st

ru
ct

-M
e
sh

1
Lo

n
e
st

a
r-

S
P

H
P
C

-C
o
M

D
-W

a
H

P
C

-H
P
G

M
G

-U
V

M
R

o
d
in

ia
-B

FS
H

P
C

-C
o
M

D
Lo

n
e
st

a
r-

S
S
S
P
-W

lc
H

P
C

-M
C

B
M

L-
A

le
x
N

e
t-

cu
d
n
n
-L

e
v
2

R
o
d
in

ia
-G

a
u
ss

ia
n

O
th

e
r-

O
p
ti

x
-R

a
y
tr

a
ci

n
g

H
P
C

-M
in

iC
o
n
ta

ct
-M

e
sh

2
Lo

n
e
st

a
r-

M
S
T
-G

ra
p
h

H
P
C

-N
a
m

d
2
.9

Lo
n
e
st

a
r-

S
S
S
P
-W

ln
H

P
C

-M
in

iC
o
n
ta

ct
-M

e
sh

1
M

L-
G

o
o
g
Le

N
e
t-

cu
d
n
n
-L

e
v
2

R
o
d
in

ia
-H

o
ts

p
o
t

H
P
C

-S
N

A
P

M
L-

A
le

x
N

e
t-

cu
d
n
n
-L

e
v
4

R
o
d
n
ia

-P
a
th

fi
n
d
e
r

Lo
n
e
st

a
r-

S
S
S
P

H
P
C

-M
in

iA
M

R
H

P
C

-H
P
G

M
G

A
ri

th
m

e
ti

c
M

e
a
n

G
e
o
m

e
tr

ic
 M

e
a
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
p
e
e
d
u
p

Single GPU

4-Socket GPU :: NUMA-aware Coherent L1+L2 With L2 Invalidations

4-Socket GPU :: NUMA-aware Coherent L1+L2 Without L2 Invalidations

Figure 6.11: Performance overhead of extending current GPU software based
coherence into the GPU L2 caches.

When extending the software controlled GPU coherence protocol into the GPU

L2 caches, L1 coherence operations (flushes) must also be extended into the GPU

L2 caches. To further understand the impact these coherence operations have on

our NUMA-aware cache performance we evaluated a hypothetical L2 cache which

need not perform these operations. Figure 6.11 shows the impact that coherence

operations have on application performance in our 4-socket NUMA GPU. While

significant for some applications, on average SW based GPU coherence overheads

are only 10% even when extended into all GPU-socket L2 caches; we conclude that

despite the coherence overheads the benefit of NUMA-aware coherent L2 caches

on multi-socket GPUs is a worthy trade-off.

6.5 Discussion

6.5.1 Combined Improvement

Sections 6.3 and 6.4 provide two techniques aimed at more efficiently utilizing

scarce NUMA bandwidth within future NUMA GPU systems. The proposed meth-

ods for dynamic interconnect balancing and NUMA-aware caching are orthogonal

Chapter 6. Multi-socket GPU Design 92

R
o
d
in

ia
-E

u
le

r3
D

H
P
C

-A
M

G
H

P
C

-R
S
B

e
n
ch

H
P
C

-C
o
M

D
-T

a
H

P
C

-L
u
le

sh
-U

n
st

ru
ct

-M
e
sh

2
H

P
C

-L
u
le

sh
H

P
C

-N
e
kb

o
n
e

Lo
n
e
st

a
r-

M
S
T
-M

e
sh

H
P
C

-L
u
le

sh
-U

n
st

ru
ct

-M
e
sh

1
Lo

n
e
st

a
r-

S
P

H
P
C

-C
o
M

D
-W

a
H

P
C

-H
P
G

M
G

-U
V

M
R

o
d
in

ia
-B

FS
H

P
C

-C
o
M

D
Lo

n
e
st

a
r-

S
S
S
P
-W

lc
H

P
C

-M
C

B
M

L-
A

le
x
N

e
t-

cu
d
n
n
-L

e
v
2

R
o
d
in

ia
-G

a
u
ss

ia
n

O
th

e
r-

O
p
ti

x
-R

a
y
tr

a
ci

n
g

H
P
C

-M
in

iC
o
n
ta

ct
-M

e
sh

2
Lo

n
e
st

a
r-

M
S
T
-G

ra
p
h

H
P
C

-N
a
m

d
2
.9

Lo
n
e
st

a
r-

S
S
S
P
-W

ln
H

P
C

-M
in

iC
o
n
ta

ct
-M

e
sh

1
M

L-
G

o
o
g
Le

N
e
t-

cu
d
n
n
-L

e
v
2

R
o
d
in

ia
-H

o
ts

p
o
t

H
P
C

-S
N

A
P

M
L-

A
le

x
N

e
t-

cu
d
n
n
-L

e
v
4

R
o
d
n
ia

-P
a
th

fi
n
d
e
r

Lo
n
e
st

a
r-

S
S
S
P

H
P
C

-M
in

iA
M

R
H

P
C

-H
P
G

M
G

A
ri

th
m

e
ti

c
M

e
a
n

G
e
o
m

e
tr

ic
 M

e
a
n

0

1

2

3

4

5

S
p
e
e
d
u
p

Single GPU

Hypothetical 4x Larger Single GPU

4-Socket NUMA GPU :: Baseline

4-Socket NUMA GPU :: Asymmetric NVLink

4-Socket NUMA GPU :: Asymmetric NVLink
and NUMA-aware Cache Partitioning

Figure 6.12: Final NUMA-aware GPU performance compared to a single GPU
and 4× larger single GPU with scaled resources.

and can be applied in isolation or combination. Dynamic interconnect balancing

has an implementation simplicity advantage in that the system level changes to

enable this feature are isolated from the larger GPU design. Conversely, enabling

NUMA-aware GPU caching based on interconnect utilization requires changes to

both the physical cache architecture and the GPU coherence protocol.

Because these two features target the same problem, when employed together

their effects are not strictly additive. Figure 6.12 shows the overall improvement

NUMA-aware GPUs can achieve when applying both techniques in parallel. For

benchmarks such as CoMD, these features contribute nearly equally to the overall

improvement, but for others such as ML-AlexNet-cudnn-Lev2 or HPC-MST-Mesh1,

interconnect improvements or caching are the primary contributor respectively. On

average, we observe that when combined we see 2.1× improvement over a single

GPU and 80% over the baseline software locality optimized 4-socket NUMA GPU

using memory side L2 caches; best performance is clearly obtained when applying

both features in unison.

Chapter 6. Multi-socket GPU Design 93

R
o
d
in

ia
-E

u
le

r3
D

H
P
C

-A
M

G
H

P
C

-R
S
B

e
n
ch

H
P
C

-C
o
M

D
-T

a
H

P
C

-L
u
le

sh
-U

n
st

ru
ct

-M
e
sh

2
H

P
C

-L
u
le

sh
H

P
C

-N
e
kb

o
n
e

Lo
n
e
st

a
r-

M
S
T
-M

e
sh

H
P
C

-L
u
le

sh
-U

n
st

ru
ct

-M
e
sh

1
Lo

n
e
st

a
r-

S
P

H
P
C

-C
o
M

D
-W

a
H

P
C

-H
P
G

M
G

-U
V

M
R

o
d
in

ia
-B

FS
H

P
C

-C
o
M

D
Lo

n
e
st

a
r-

S
S
S
P
-W

lc
H

P
C

-M
C

B
M

L-
A

le
x
N

e
t-

cu
d
n
n
-L

e
v
2

R
o
d
in

ia
-G

a
u
ss

ia
n

O
th

e
r-

O
p
ti

x
-R

a
y
tr

a
ci

n
g

H
P
C

-M
in

iC
o
n
ta

ct
-M

e
sh

2
Lo

n
e
st

a
r-

M
S
T
-G

ra
p
h

H
P
C

-N
a
m

d
2

.9
Lo

n
e
st

a
r-

S
S
S
P
-W

ln
H

P
C

-M
in

iC
o
n
ta

ct
-M

e
sh

1
M

L-
G

o
o
g
Le

N
e
t-

cu
d
n
n
-L

e
v
2

R
o
d
in

ia
-H

o
ts

p
o
t

H
P
C

-S
N

A
P

M
L-

A
le

x
N

e
t-

cu
d
n
n
-L

e
v
4

R
o
d
n
ia

-P
a
th

fi
n
d
e
r

Lo
n
e
st

a
r-

S
S
S
P

H
P
C

-M
in

iA
M

R
H

P
C

-H
P
G

M
G

Lo
n
e
st

a
r-

D
M

R
R

o
d
in

ia
-S

ra
d

R
o
d
in

ia
-B

a
ck

p
ro

p
O

th
e
r-

S
tr

e
a
m

-T
ri

a
d

O
th

e
r-

B
it

co
in

-C
ry

p
to

M
L-

A
le

x
N

e
t-

C
o
n
v
N

e
t2

H
P
C

-R
a
b
b
it

C
T

M
L-

O
v
e
rF

e
a
t-

cu
d
n
n
-L

e
v
3

R
o
d
in

ia
-K

m
e
a
n
s

A
ri

th
m

e
ti

c
M

e
a
n

G
e
o
m

e
tr

ic
 M

e
a
n

0

2

4

6

8

10

S
p
e
e
d
u
p

Single GPU

2-Socket NUMA-aware GPU

4-Socket NUMA-aware GPU

8-Socket NUMA-aware GPU

2x Larger Single GPU

4x Larger Single GPU

8x Larger Single GPU

Figure 6.13: NUMA-aware 1–8 socket GPU scalability compared to hypothetical
larger single GPU with scaled resources.

6.5.2 Scalability

Ultimately, for vendors to produce multi-socket NUMA GPUs they must achieve

high enough parallel efficiency to justify their design. To understand the scal-

ability of our approach Figure 6.13 shows the performance of a NUMA-aware

multi-socket GPU compared to a single GPU, when scaled across 2, 4, and 8 sock-

ets respectively. On average a 2 socket NUMA GPU achieves 1.5× speedup, while

4 sockets and 8 sockets achieve 2.3× and 3.2× speedups respectively. Depending

on perspective these speedups may look attractive or lackluster; particularly when

per-benchmark variance is included. However, the scalability of NUMA GPUs is

not solely dependent on just NUMA GPU microarchitecture. We observe that for

some applications, even if the application was run on larger hypothetical single

GPUs, performance would scale similarly. This may be due to a variety of reasons

beyond NUMA effects, including number of CTAs available, frequency of global

synchronization, and other factors. Comparing our NUMA-aware GPU implemen-

tation to the scaling that applications could achieve on a hypothetical large single

GPU, we see that NUMA-GPUs can achieve 89%, 84%, and 76% the efficiency of

a hypothetical single large GPU in 2, 4, and 8 socket configurations respectively.

Chapter 6. Multi-socket GPU Design 94

This high efficiency factor indicates that our design is able to largely eliminate the

NUMA penalty in future multi-socket GPU designs.

6.5.3 Multi-Tenancy on Large GPUs

In this work we have shown that many workloads today have the ability to sat-

urate (with sufficient parallel work) a GPU that is at least 8× larger than to-

day’s GPUs. With deep-data becoming commonplace across many computing

paradigms, we believe that the trend of having enough parallel thread blocks to

saturate large single GPUs will continue into the foreseeable future. However when

GPUs become larger at the expense of having multiple addressable GPUs within

the system, questions related to GPU provisioning arise. Applications that cannot

saturate large GPUs will leave resources underutilized and concurrently will have

to multiplex across the GPU cooperatively in time, both undesirable outcomes.

While not the focus of this work, there is significant effort in both industry and

academia to support finer grain sharing of GPUs through either shared SM execu-

tion [118], spatial multiplexing of a GPU [116], or through improved time division

multiplexing with GPU pre-emptability [117]. To support large GPU utilization

any of these solutions could be applied to a multi-socket GPU in the cases where

applications may not completely fill a larger GPU. Alternatively, with additional

GPU runtime work multi-socket GPU designs could also be dynamically parti-

tioned with a granularity of 1–N logical GPUs being exposed to the programmer,

providing yet another level of flexibility to improve utilization.

6.5.4 Power Implications

As discussed earlier, arbitrarily large monolithic single GPUs are unfeasible, so

multi-GPU systems connected with onboard high-speed links and switches are be-

coming an attractive solution for continuing GPU performance scaling. However,

these onboard high-speed links and switches require additional power. We esti-

mated the link overhead by assuming 10 pJ/b of on board interconnect energy for

combined links and switch (extrapolated from publicly available information for

cabinet level Mellanox switches and links [119, 120]). Using this estimate we calcu-

late an average (Geometric Mean) 30 W of communication power for the baseline

Chapter 6. Multi-socket GPU Design 95

0 1.0

GPU0

GPU1

Static CTA partitioning

0 0.73

Time

GPU0

GPU1

Adaptive CTA partitioning

0

100000

200000

300000

400000

500000

600000

700000

800000

#
R

e
m

o
te

 A
cc

e
ss

e
s

Figure 6.14: Time line of HPC-Lulesh with 10 time-steps executing on a
dual-socket GPU. Vertical dotted lines stand for kernel launch events, and color

intensity represent the number of remote memory accesses.

architecture composed of 4 GPUs, and 14 W after our NUMA-aware optimiza-

tions are applied. Some applications such as Rodinia-Euler3D, HPC-Lulesh,

HPC-AMG, HPC-Lulesh-Unstruct-Mesh2 are communication intensive, resulting

in ≈130 W of power consumption after our optimizations are considered. Assum-

ing a typical TDP of 250 W per GPU module, in a 4-GPU system, the extra power

due to the communication represents a 5% overhead across the full range of 41

evaluated benchmarks. While this power tax is not trivial, without alternative

methods for building scalable large GPUs, interconnect power will likely become

a large portion of the overall GPU power budget.

6.5.5 Scheduling Improvements

Through program inspection we have identified that many workloads have a com-

mon pattern where the application launches a single GPU kernel multiple times,

with only variations in parameters or input data. To improve transparent multi-

socket GPU load balancing we propose exploiting this repetitive behavior by

adding an adaptive heuristic to the baseline static CTA partitioning, in which

the TMG runtime tracks the execution times of each issued sub-kernel. If a sin-

gle kernel is then executed multiple times, the runtime will adaptively skew the

consecutive CTA range assigned to each sub-kernel in an attempt to balance the

individual GPU execution times.

To illustrate this effect, Figure 6.14 shows the impact of static CTA partitioning

on application execution time with regard to load imbalance. For simplicity, we

show a multi-socket system comprised of two GPUs. Statically splitting most

Chapter 6. Multi-socket GPU Design 96

of these GPU kernels into two identically sized sub-kernels results in substantial

idle time in GPU1 (shown in white); because GPU0’s execution is slowed down

due to a high number of remote accesses compared to GPU1 (shown in red). By

dynamically balancing the number of CTAs launched to each GPU across kernel

invocations, GPU1 can perform more useful computation, despite incurring more

remote memory access; ultimately increasing application throughput. While more

sophisticated load balancing heuristics certainly exist, we describe this simple yet

effective policy, called Adaptive CTA partitioning, to illustrate the problem of

load-imbalance in a multi-socket context.

6.5.6 Other Asymmetric Link and Cache Partitioning

Proposals

Modern multi-socket CPU and GPU systems leverage advanced interconnect tech-

nologies such as NVLink, QPI and Infinity [74, 75, 121]. These modern fabrics

utilize high speed serial signaling technologies over unidirectional lanes collec-

tively comprising full-duplex links. Link capacity is statically allocated at design

time and usually is symmetric in nature. In this paper we propose to dynami-

cally re-allocate available link bandwidth resources by using same system wiring

resources and on-chip I/O interfaces, while implementing both receiver and trans-

mitter driver circuitry on each lane. This approach resembles previously proposed

tristate bi-directional bus technologies [122] or former technologies such as the Intel

front-side bus [123], albeit with just two bus clients. However our proposal lever-

ages fast singled ended signaling while allowing a dynamically controlled asym-

metric bandwidth allocation via on-the-fly reconfiguration of the individual lane

direction within a link.

Static and dynamic cache partitioning techniques were widely explored in the con-

text of CPU caches and QoS [124–128]. For example, Rafique et. al [126] proposed

architectural support for shared cache management with quota-based approach.

Qureshi et. al [127] proposed to partition cache space between applications. Jaleel

et. al [128] improved on this by proposing adaptive insertion policies. Recently,

cache monitoring and allocation technologies were added to Intel Xeon processors,

targeted for QoS enforcement via dynamic repartitioning of on-chip CPU cache

resources [125] between applications. Efficient cache partitioning in the GPU has

Chapter 6. Multi-socket GPU Design 97

been explored in context of L1 caches [129] to improve application throughput.

While dynamic cache partitioning has been widely used for QoS and L1 utiliza-

tion, to the best of our knowledge it has never been used to try to optimize

performance when caches are backed by NUMA memory systems.

Chapter 7

Conclusions

A major goal in HPC today is to develop more capable supercomputers for a given

power budget. In order to reach the level of sustainable exascale computation, the

fastest HPC systems today will need to improve their performance by ∼100× and

energy efficiency by ∼10×. This laudable goal requires joined effort coming from

every layer of future supercomputer design.

Compute nodes have a history of evolution from single-core processing units to het-

erogeneous nodes with multiple accelerators. Constant growth of available tran-

sistors per chip initially introduced power-hungry CPUs optimized for sequential

execution exploiting the available ILP. Reaching the limitations of single-thread

performance, the following design moved to CMPs shifting the focus from ILP to

TLP optimizations on the level of an entire compute node. Programming models

have been supporting these new parallel architectures, exposing the existing data-

parallelism within the applications. With more time spent inside the parallel code

regions, computer accelerators found their use inside the supercomputers. Instead

of a handful of heavyweight processors and for the same hardware budget, accel-

erators implement many lean cores, improving the throughput and executing the

parallel code in less time. This thesis contributes to future HPC compute node

organization through: better utilization of already available transistors on chip

and performance improvement by aggregating multiple accelerators.

In this thesis, we found a set of valuable insights about HPC workloads regarding

their requirements and effect on the core front-end hardware structures. HPC

applications have fewer branch instructions, which are highly biased, and mostly

99

Chapter 7. Conclusions 100

backward taken. The dynamic code footprint of HPC applications is small, and

most of them fit in 16 KB. Basic blocks are long, and the distance between taken

branches even longer, which enables the usage of wider I-cache lines. Branch pre-

dictors should be tailored for HPC applications and augmented with a loop branch

predictor. Moreover, the results show that HPC benchmarks are not sensitive to

the size of the BTB (due to the small number of branch instructions) as long as

BTB associativity is high.

Compared to traditional desktop and server applications, we find that the demands

of HPC applications are lower with regards to the core front-end structures. The

conclusion is that the front-end is overdimensioned for these applications and,

therefore, we propose a downscaling to save area and power while maintaining the

same performance. This holds for cores running the parallel regions of the code

but not for the one that runs the sequential sections. Our tailored core front-end

configuration requires 16% less area and 7% less power in a lean-core design.

Next, our fundings presented here show the parallel code regions are executed by

worker threads running the same code. In this thesis we evaluate different tradeoffs

when sharing the I-cache among multiple lean cores in an ACMP. Due to initially

low I-cache MPKI values and with the mutual code prefetching among threads, the

shared and smaller I-cache feeds instructions to lean worker cores using a simple

double bus as an I-interconnect, and a standard, small set of prefetch buffers.

Our results show considerable area and energy savings of around 11% and 5%,

respectively, without performance loss. The analysis suggests that constructive

interference between threads reduces the number of I-cache misses and almost

eliminates cold I-cache misses. In cases where the initial I-cache MPKI values

were high, sharing an I-cache among worker cores even increases the performance.

Finally, this thesis tackles the problem of further performance improvement. With

transistor count growth slowing and single-GPU size reaching the reticle limits,

the future of scalable single GPU performance is in question. We propose that

much like CPU designs have done in the past, the natural progression for continu-

ous performance scalability of traditional GPU workloads is to move from a single

to multi-socket NUMA design. This thesis shows that applying NUMA scheduling

and memory placement policies inherited from the CPU world is not sufficient

to achieve good performance scalability. We point out that future GPU designs

will need to become NUMA-aware both in their interconnect management and

Chapter 7. Conclusions 101

within their caching subsystems to overcome the inherent performance penalty

that NUMA memory systems introduce. By leveraging software policies that pre-

serve data locality and hardware policies that can dynamically adapt to application

phases, our proposed NUMA-aware multi-socket GPU is able to outperform cur-

rent GPU designs by 1.5×, 2.3×, and 3.2×, while achieving 89%, 84%, and 76%

of theoretical application scalability in 2, 4, and 8 GPU sockets respectively. Our

results indicate that the challenges of designing a multi-socket NUMA GPU can be

solved through a combination of runtime and architectural optimization, making

NUMA-aware GPUs a promising technology for scaling GPU performance beyond

a single socket.

With all the major contributions presented in this thesis, we expect that future

compute nodes used in HPC will continue to be heterogeneous. Tailored for single-

thread performance, CPUs will be used for sequential code execution. For parallel

code, we foresee the number of accelerators per compute node to be increased. De-

pending on the level of integration, those accelerators might be discrete pluggable

devices, or tightly connected sockets, or chip modules on a single package, or any

combination of those. With multiple physical memories, the runtime system has to

provide the abstraction of unified virtual address space allowing users to envision

such a system as a single compute device. To hide NUMA effects, microarchitec-

tural policies have to be NUMA-aware, like cache partitioning and interconnection

link distribution presented here. In case of many-core accelerators, we show how

better utilization of available transistors through the shared I-cache can increase

the energy-efficiency, something that GPUs already implement. With the main

objectives of increasing the performance and energy efficiency, this thesis brings

us a step closer to the design of future HPC systems.

7.1 Future Extensions

Serial vs. parallel code: This thesis presented the difference between sequential

and parallel code regions inside HPC applications from the perspective of the core

front-end structures. While we find the similar behavior between serial sections in

HPC and desktop applications, we need a deeper understanding on how different

this code is. Once the parallel code is offloaded to the accelerator, we need to

Chapter 7. Conclusions 102

evaluate the serial code properties left to be executed on the master core and

tailor it properly.

We also think that a similar study should be performed considering the core back-

end. Evaluating the difference between serial and parallel code among HPC work-

loads in terms of data access pattern, prefetching, or similar, might lead to further

core tailoring and improved energy-efficiency.

Extending the idea of sharing the I-cache among lean cores: Here, we

show that a single smaller I-cache can be shared among up to 8 lean cores without

performance degradation and with 11% of area savings. We believe that higher

scalability can be achieved by evaluating more advanced fetching policies. This

thesis analyzes a simple round-robin fetching policy implemented on the shared

I-interconnect. Taking into account load imbalance, instruction count, or some

other parameter while deciding which core has the priority when fetching the I-

cache line, might potentially improve the performance.

Also, the rest of the front-end structures, such as branch predictor and branch

target buffer, could be shared among the cores. Just like in case of I-cache, these

structures might benefit from the mutual prefetching and training.

Other NUMA-aware policies to improve the scalability of multi-socket

GPUs: In this thesis we have proposed two hardware policies to increase the per-

formance of a multi-socket GPU. Both asymmetric link assignment and dynamic

cache partitioning exploit per-application and per-GPU phase behavior, trying to

overcome the bandwidth asymmetry between the local and remote memories. Al-

though simple, we think they can be fine tuned to extract more performance. For

example, if the policy detects that inter-socket links need to be rebalanced, instead

of gradually turning individual links, we might speedup this process by turning a

gang of links at once. Similar applies for NUMA-aware dynamic cache partition-

ing. For both aspects, we think that our proposals here will serve as baselines for

future work on policy refining.

Next major boost of performance in transparent multi-GPU systems will come

from the runtime being NUMA-aware. We already show one way to do so, through

the adaptive thread block scheduling. Another is to improve the static first-touch

page allocation policy, by allowing memory pages to migrate at runtime. Read-only

pages that cause the significant amount of remote accesses might be replicated. We

Chapter 7. Conclusions 103

find runtime improvements orthogonal to the microarchitectural features presented

in this thesis.

7.2 Work Published

[130] Ugljesa Milic, Paul Carpenter, Alejandro Rico, and Alex Ramirez. ”Rebal-

ancing the Core Front-End through HPC Code Analysis” in proceedings of 2016

IEEE International Symposium on Workload Characterisation (IISWC 2016)

[131] Ugljesa Milic, Alejandro Rico, Paul Carpenter and Alex Ramirez. ”Sharing

the Instruction Cache Among Lean Cores on an Asymmetric CMP for HPC Ap-

plications” in proceedings of 2017 IEEE International Symposium on Performance

Analysis of System and Software (ISPASS 2017)

[113] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic, Eiman

Ebrahimi, Oreste Villa, Aamer Jaleel, Carole-Jean Wu, David Nellans. ”MCM-

GPU: Multi-Chip-Module GPUs for Continued Performance Scalability”, in pro-

ceedings of 2017 IEEE International Symposium on Computer Architecture (ISCA

2017)

[132] Ugljesa Milic, Oreste Villa, Evgeny Bolotin, Akhil Arunkumar, Eiman

Ebrahimi, Aamer Jaleel, Alex Ramirez, David Nellans. ”Beyond the Socket:

NUMA-Aware GPUs”, in proceedings of 2017 IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO 2017)

Abbreviations

HPC - High Performance Computing

CPU / GPU - Central / Graphics Processing Unit

NUMA / UMA - (Non-)Unified Memory Access

CMP - Chip Multiprocessor

SCMP / ACMP - Symmetric / Asymmetric CMP

FLOPS - Floating Point Operations per Second

ILP / TLP - Instruction / Thread Level Parallelism

I-cache - Instruction Cache

BP - Branch Predictor

BTB - Branch Target Buffer

MPKI - Misses per Kilo Instructions

CUDA - Compute Unified Device Architecture

SIMD - Single Instruction Multiple Data

CTA - Cooperative Thread Array

SM - Streaming Multiprocessor

SIMT - Single Instruction Multiple Threads

UVM - Unified Virtual Memory

105

Bibliography

[1] EXDCI. First Set of Recommendations and Reports Toward Applications.

https://exdci.eu/sites/default/files/public/D3.1.pdf, 2016. [On-

line; accessed 2017-04-04].

[2] TOP500. Top 500 Supercomputing Cites. https://www.top500.org/

lists, 2016. [Online; accessed 2017-04-04].

[3] Swiss National Supercomputing Center. Piz Daint and Piz Dora. http:

//www.cscs.ch/computers/piz_daint_piz_dora/index.html, 2016. [On-

line; accessed 2017-04-04].

[4] Paul Messina. The U.S. ExascaleComputing Project. https://

exascaleproject.org/new-ecp-overview-presentation/, 2017. [Online;

accessed 2017-04-04].

[5] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A High-

Performance, Portable Implementation of the MPI Message Passing Inter-

face Standard. Journal of Parallel Computing, 22, 1996.

[6] Timothy G Mattson and Greg Henry. An Overview of the Intel TFLOPS

Supercomputer. 1998.

[7] Gordon E Moore. Cramming More Components onto Integrated Circuits.

Electronics, 38, 1965.

[8] Tse-Yu Yeh, Deborah T Marr, and Yale N Patt. Increasing the Instruction

Fetch Rate via Multiple Branch Prediction and a Branch Address Cache. In

ACM International Conference on Supercomputing. ACM, 2014.

[9] Thomas M Conte, Kishore N Menezes, Patrick M Mills, and Burzin A Patel.

Optimization of Instruction Fetch Mechanisms for High Issue Rates. In ACM

SIGARCH Computer Architecture News, volume 23. ACM, 1995.

107

https://exdci.eu/sites/default/files/public/D3.1.pdf
https://www.top500.org/lists
https://www.top500.org/lists
http://www.cscs.ch/computers/piz_daint_piz_dora/index.html
http://www.cscs.ch/computers/piz_daint_piz_dora/index.html
https://exascaleproject.org/new-ecp-overview-presentation/
https://exascaleproject.org/new-ecp-overview-presentation/

Bibliography 108

[10] Chris H Perleberg and Alan Jay Smith. Branch Target Buffer Design and

Optimization. IEEE Transactions on Computers, 42, 1993.

[11] Eric Rotenberg, Steve Bennett, and James E Smith. Trace Cache: a Low

Latency Approach to High Bandwidth Instruction Fetching. In ACM/IEEE

International Symposium on Microarchitecture (MICRO). IEEE Computer

Society, 1996.

[12] Robert H Dennard, Fritz H Gaensslen, Leo V Rideout, Ernest Bassous, and

Andre R LeBlanc. Design of Ion-Implanted MOSFET’s with Very Small

Physical Dimensions. IEEE Journal of Solid-State Circuits, 9, 1974.

[13] Gene M Amdahl. Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities. In Proceedings of Spring Joint Com-

puter Conference. ACM, 1967.

[14] TOP500. The Green500 List. https://www.top500.org/green500/, 2016.

[Online; accessed 2017-04-04].

[15] Yuri Nishikawa, Michihiro Koibuchi, Masato Yoshimi, Kenichi Miura, and

Hideharu Amano. Performance Improvement Methodology for ClearSpeed’s

CSX600. In International Conference on Parallel Processing (ICPP). IEEE,

2007.

[16] James A Kahle, Michael N Day, H Peter Hofstee, Charles R Johns,

Theodore R Maeurer, and David Shippy. Introduction to the Cell Multi-

processor. IBM Journal of Research and Development, 2005.

[17] Kevin J Barker, Kei Davis, Adolfy Hoisie, Darren J Kerbyson, Mike Lang,

Scott Pakin, and Jose C Sancho. Entering the Petaflop Era: the Architecture

and Performance of Roadrunner. In Proceedings of the 2008 ACM/IEEE

Conference on Supercomputing, 2008.

[18] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,

Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert

Cavin, et al. Larrabee: a Many-core x86 Architecture for Visual Computing.

In ACM Transactions on Graphics (TOG), volume 27, 2008.

[19] James Jeffers and James Reinders. Intel Xeon Phi Coprocessor High-

performance Programming. Newnes, 2013.

https://www.top500.org/green500/

Bibliography 109

[20] Volodymyr V Kindratenko, Jeremy J Enos, Guochun Shi, Michael T Show-

erman, Galen W Arnold, John E Stone, James C Phillips, and Wen-mei

Hwu. GPU Clusters for High-performance Computing. In IEEE Interna-

tional Conference on Cluster Computing, 2009.

[21] NVIDIA. NVIDIA Tesla P100. https://images.nvidia.com/content/

pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf, 2016.

[Online; accessed 2017-04-04].

[22] Leonardo Dagum and Ramesh Menon. OpenMP: an Industry Standard

API for Shared-memory Programming. IEEE Computational Science and

Engineering, 5, 1998.

[23] OpenMP ARB. OpenMP 4.0 Specification. http://www.openmp.org/

specifications/, 2013. [Online; accessed 2017-04-04].

[24] OpenACC Organization. OpenACC 2.0 Specification. http://www.

openacc.org/specification/, 2013. [Online; accessed 2017-04-04].

[25] Nvidia. CUDA C Programming guide. http://docs.nvidia.com/cuda/

cuda-c-programming-guide/, 2017. [Online; accessed 2017-04-04].

[26] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous Multi-

threading: Maximizing On-chip Parallelism. In ACM SIGARCH Computer

Architecture News, volume 23. ACM, 1995.

[27] Debbie Marr, Frank Binns, D Hill, Glenn Hinton, D Koufaty, et al. Hyper-

threading Technology in the Netburst R© Microarchitecture. 14th Hot Chips,

2002.

[28] Richard M Russell. The CRAY-1 Computer System. Communications of

the ACM, 21, 1978.

[29] NVIDIA Corporation. Unified Memory in CUDA 6. http://devblogs.

nvidia.com/parallelforall/unified-memory-in-cuda-6/, 2013. [On-

line; accessed 2017-04-04].

[30] Nikolay Sakharnykh. Beyond GPU Memory Limits with Unified

Memory on Pascal. https://devblogs.nvidia.com/parallelforall/

beyond-gpu-memory-limits-unified-memory-pascal/, 2016. [Online;

accessed 2017-04-04].

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://www.openmp.org/specifications/
http://www.openmp.org/specifications/
http://www.openacc.org/specification/
http://www.openacc.org/specification/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/parallelforall/beyond-gpu-memory-limits-unified-memory-pascal/

Bibliography 110

[31] ARM. Cortex-A9: Technical Reference Manual. https://www.arm.com/

products/processors/cortex-m/cortex-a9.php, 2012. [Online; accessed

2017-04-04].

[32] ARM. Cortex-A15: Technical Reference Manual. https://www.arm.

com/products/processors/cortex-a/cortex-a15.php, 2012. [Online; ac-

cessed 2017-04-04].

[33] Nikola Rajovic, Paul M Carpenter, Isaac Gelado, Nikola Puzovic, Alex

Ramirez, and Mateo Valero. Supercomputing with Commodity CPUs: Are

Mobile SoCs Ready for HPC? In Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis (SC).

ACM, 2013.

[34] Michael Feldman. Cray to Deliver ARM-Powered Supercom-

puter to UK Consortium. https://www.top500.org/news/

cray-to-deliver-arm-powered-supercomputer-to-uk-consortium/,

2017. [Online; accessed 2017-04-04].

[35] Norman Jouppi. Google Supercharges Machine Learning Tasks with TPU

Custom Chip. Google Blog, May, 18, 2016.

[36] John Sell and Patrick O’Connor. The Xbox One System on a Chip and

Kinect Sensor. IEEE Micro, 34, 2014.

[37] Dan Bouvier, Brad Cohen, Walter Fry, Sreekanth Godey, and Michael Man-

tor. Kabini: An AMD Accelerated Processing Unit System on a Chip. IEEE

Micro, 34, 2014.

[38] John L Henning. SPEC CPU2006 Benchmark Descriptions. ACM SIGARCH

Computer Architecture News, 34, 2006.

[39] Sarah Bird, Aashish Phansalkar, Lizy K John, Alex Mericas, and Rajeev In-

dukuru. Performance Characterization of SPEC CPU Benchmarks on Intel’s

Core Microarchitecture Based Processor. In SPEC Benchmark Workshop,

2007.

[40] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The

PARSEC Benchmark Suite: Characterization and Architectural Implica-

tions. In Proceedings of the International Conference on Parallel Architec-

tures and Compilation Techniques (PACT). ACM, 2008.

https://www.arm.com/products/processors/cortex-m/cortex-a9.php
https://www.arm.com/products/processors/cortex-m/cortex-a9.php
https://www.arm.com/products/processors/cortex-a/cortex-a15.php
https://www.arm.com/products/processors/cortex-a/cortex-a15.php
https://www.top500.org/news/cray-to-deliver-arm-powered-supercomputer-to-uk-consortium/
https://www.top500.org/news/cray-to-deliver-arm-powered-supercomputer-to-uk-consortium/

Bibliography 111

[41] Pınar Tözün, Ippokratis Pandis, Cansu Kaynak, Djordje Jevdjic, and Anas-

tasia Ailamaki. From A to E: analyzing TPC’s OLTP Benchmarks: the

Obsolete, the Ubiquitous, the Unexplored. In Proceedings of the Interna-

tional Conference on Extending Database Technology. ACM, 2013.

[42] Ruud Haring, Martin Ohmacht, Thomas Fox, Michael Gschwind, David Sat-

terfield, Krishnan Sugavanam, Paul Coteus, Philip Heidelberger, Matthias

Blumrich, Robert Wisniewski, et al. The IBM Blue Gene/Q Compute Chip.

IEEE Micro, 2012.

[43] William J Dally, James Balfour, David Black-Shaffer, James Chen, R Cur-

tis Harting, Vishal Parikh, Jongsoo Park, and David Sheffield. Efficient

Embedded Computing. Computer, 41, 2008.

[44] Nvidia. NVIDIA Tegra 4 Family CPU Architecture. http://www.nvidia.

com/docs/IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf, 2013.

[Online: accessed 2017-04-04].

[45] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M

Tullsen, and Norman P Jouppi. McPAT: an Integrated Power, Area, and

Timing Modeling Framework for Multicore and Manycore Architectures. In

International Symposium on Microarchitecture (MICRO). IEEE, 2009.

[46] Sadaf R Alam, Richard F Barrett, Jeffery A Kuehn, Philip C Roth, and

Jeffrey S Vetter. Characterization of Scientific Workloads on Systems with

Multi-core Processors. In International Symposium on Workload Character-

ization (IISWC). IEEE, 2006.

[47] Razvan Cheveresan, Matt Ramsay, Chris Feucht, and Ilya Sharapov. Charac-

teristics of Workloads Used in High Performance and Technical Computing.

In International Conference on Supercomputing. ACM, 2007.

[48] Prasanna Balaprakash, Darius Buntinas, Anthony Chan, Apala Guha, Rinku

Gupta, Sri Hari Krishna Narayanan, Andrew A Chien, Paul Hovland, and

Boyana Norris. Exascale Workload Characterization and Architecture Im-

plications. In Proceedings of the High Performance Computing Symposium.

International Society for Computer Simulation, 2013.

[49] Kimming So and Vittorio Zecca. Cache Performance of Vector Processors.

In ACM SIGARCH Computer Architecture News, volume 16. ACM, 1988.

http://www.nvidia.com/docs/IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf
http://www.nvidia.com/docs/IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf

Bibliography 112

[50] Leonidas I Kontothanassis, Rabin A Sugumar, GJ Faanes, James E Smith,

and Michael L Scott. Cache Performance in Vector Supercomputers. In

ACM/IEEE Conference on Supercomputing, 1994.

[51] David J Kuck, Paul P Budnik, Shyh-Ching Chen, Duncan H Lawrie, Ross A

Towle, Richard E Strebendt, Edward W Davis, Joseph Han, Paul W Kraska,

and Yoichi Muraoka. Measurements of Parallelism in Ordinary FORTRAN

Programs. Computer, 7, 1974.

[52] Avinash Sodani. Knights Landing (KNL): 2nd Generation Intel R© Xeon Phi

Processor. In IEEE Hot Chips 27 Symposium (HCS). IEEE, 2015.

[53] Takumi Maruyama, Toshio Yoshida, Ryuji Kan, Iwao Yamazaki, Shuji Ya-

mamura, Noriyuki Takahashi, Mikio Hondou, and Hiroshi Okano. Sparc64

VIIIfx: A New-generation Octocore Processor for Petascale Computing.

IEEE Micro, 30, 2010.

[54] Manish Arora, Siddhartha Nath, Subhra Mazumdar, Scott B Baden, and

Dean M Tullsen. Redefining the Role of the CPU in the Era of CPU-GPU

Integration. IEEE Micro, 32, 2012.

[55] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and

Andreas Moshovos. Demystifying GPU Microarchitecture Through Mi-

crobenchmarking. In IEEE International Symposium on Performance Anal-

ysis of Systems & Software (ISPASS). IEEE, 2010.

[56] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym.

NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE

Micro, 28, 2008.

[57] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mo-

hammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu,

Anastasia Ailamaki, and Babak Falsafi. Clearing the Clouds: a Study of

Emerging Scale-out Workloads on Modern Hardware. In ACM SIGPLAN

Notices, volume 47. ACM, 2012.

[58] Jag Bolaria. Cortex-A57 Extends ARM’s Reach. Microprocessor Report,

2012.

Bibliography 113

[59] Arunmoezhi Ramachandran, Jerome Vienne, Rob Van Der Wijngaart, Lars

Koesterke, and Ilya Sharapov. Performance Evaluation of NAS Parallel

Benchmarks on Intel Xeon Phi. In International Conference on Parallel

Processing (ICPP). IEEE, 2013.

[60] Mark D Hill and Michael R Marty. Amdahl’s Law in the Multicore Era.

Computer, 41, 2008.

[61] Andrew Danowitz, Kyle Kelley, James Mao, John P Stevenson, and Mark

Horowitz. Cpu DB: Recording Microprocessor History. Communications of

the ACM, 55, 2012.

[62] Dean M Tullsen, Susan J Eggers, Joel S Emer, Henry M Levy, Jack L Lo,

and Rebecca L Stamm. Exploiting Choice: Instruction Fetch and Issue on an

Implementable Simultaneous Multithreading Processor. In ACM SIGARCH

Computer Architecture News. ACM, 1996.

[63] Rakesh Kumar, Norman P Jouppi, and Dean M Tullsen. Conjoined-core

Chip Multiprocessing. In IEEE/ACM International Symposium on Microar-

chitecture (MICRO). IEEE Computer Society, 2004.

[64] Romain Dolbeau and André Seznec. CASH: Revisiting Hardware Sharing in

Single-chip Parallel Processor. 2002.

[65] George Almási, Cǎlin Caşcaval, Jose G Castanos, Monty Denneau, Derek

Lieber, José E Moreira, and Henry S Warren Jr. Dissecting Cyclops: A De-

tailed Analysis of a Multithreaded Architecture. ACM SIGARCH Computer

Architecture News, 2003.

[66] Michael Butler, Leslie Barnes, Debjit Das Sarma, and Bob Gelinas. Bull-

dozer: An Approach to Multithreaded Compute Performance. IEEE Micro,

2011.

[67] Partha Kundu, Murali Annavaram, Trung Diep, and John Shen. A Case for

Shared Instruction Cache on Chip Multiprocessors Running OLTP. In ACM

SIGARCH Computer Architecture News. ACM, 2003.

[68] Daniele Bortolotti, Francesco Paterna, Christian Pinto, Andrea Marongiu,

Martino Ruggiero, and Luca Benini. Exploring Instruction Caching Strate-

gies for Tightly-coupled Shared-memory Clusters. In International Sympo-

sium on System on Chip (SoC). IEEE, 2011.

Bibliography 114

[69] John Nickolls and William J Dally. The GPU Computing Era. IEEE Micro,

2010.

[70] David Kanter. Knights Landing Reshapes HPC. Microprocessor Report,

2015.

[71] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architec-

ture: Fermi. http://www.nvidia.es/content/PDF/fermi_white_papers/

NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf, 2009. [Online;

accessed 2017-04-04].

[72] JEDEC. High Bandwidth Memory(HBM) DRAM - JESD235. http://

www.jedec.org/standards-documents/results/jesd235, 2015. [Online;

accessed 2017-04-04].

[73] Jouke Verbree, Erik Jan Marinissen, Philippe Roussel, and Dimitrios Velenis.

On the Cost-Effectiveness of Matching Repositories of Pre-tested Wafers for

Wafer-to-Wafer 3D Chip Stacking. In IEEE European Test Symposium, 2010.

[74] NVIDIA. The World’s First AI Supercomputer in a Box. http://

www.nvidia.com/object/deep-learning-system.html. [Online; accessed

2017-04-04].

[75] INTEL Corporation. An Introduction to the In-

tel QuickPath Interconnect. http://www.intel.

com/content/www/us/en/io/quickpath-technology/

quick-path-interconnect-introduction-paper.html, 2009. [Online;

accessed 2017-04-04].

[76] HyperTransport Consortium. HyperTransport 3.1 Specification. http:

//www.hypertransport.org/ht-3-1-link-spec, 2010. [Online; accessed

2017-04-04].

[77] Broadcom. PCI Express Switches. https://www.broadcom.com/products/

pcie-switches-bridges/pcie-switches/, 2017. [Online; accessed 2017-

04-04].

[78] KHRONOS GROUP. OpenCL 2.2 API Specification (Provisional). https:

//www.khronos.org/opencl/, 2016. [Online; accessed 2017-04-04].

http://www.nvidia.es/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.es/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.jedec.org/standards-documents/results/jesd235
http://www.jedec.org/standards-documents/results/jesd235
http://www.nvidia.com/object/deep-learning-system.html
http://www.nvidia.com/object/deep-learning-system.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.hypertransport.org/ht-3-1-link-spec
http://www.hypertransport.org/ht-3-1-link-spec
https://www.broadcom.com/products/pcie-switches-bridges/pcie-switches/
https://www.broadcom.com/products/pcie-switches-bridges/pcie-switches/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/

Bibliography 115

[79] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. Trans-

parent CPU-GPU Collaboration for Data-Parallel Kernels on Heterogeneous

Systems. In International Conference on Parallel architectures and compi-

lation techniques (PACT). IEEE Press, 2013.

[80] Javier Cabezas, Llúıs Vilanova, Isaac Gelado, Thomas B. Jablin, Nacho

Navarro, and Wen-mei W. Hwu. Automatic Parallelization of Kernels in

Shared-Memory Multi-GPU Nodes. In Proceedings of the 29th ACM on

International Conference on Supercomputing, ICS, 2015.

[81] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.

Pin: Building Customized Program Analysis Tools with Dynamic Instru-

mentation. In ACM SIGPLAN notices, volume 40. ACM, 2005.

[82] Trevor E Carlson, Wim Heirmant, and Lieven Eeckhout. Sniper: Explor-

ing the Level of Abstraction for Scalable and Accurate Parallel Multi-core

Simulation. In International Conference for High Performance Computing,

Networking, Storage and Analysis (SC). IEEE, 2011.

[83] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt,

Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna,

Somayeh Sardashti, et al. The gem5 Simulator. SIGARCH Computer Ar-

chitecture News, 39, 2011.

[84] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Nor-

man P Jouppi. CACTI 5.1. Technical report, Technical Report HPL-2008-20,

HP Labs, 2008.

[85] Jim Turley. Cortex-A15 “Eagle” flies the coop. Microprocessor Report,

November 2010.

[86] Baruch Solomon, Avi Mendelson, Ronny Ronen, Doron Orenstien, and Yoav

Almog. Micro-operation Cache: A Power Aware Frontend for Variable In-

struction Length ISA. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 2003.

Bibliography 116

[87] Alejandro Rico, Alejandro Duran, Felipe Cabarcas, Yoav Etsion, Alex

Ramirez, and Mateo Valero. Trace-driven Simulation of Multithreaded Ap-

plications. In International Symposium on Performance Analysis of Systems

and Software (ISPASS). IEEE, 2011.

[88] Mark Stephenson, Siva Kumar Sastry Hari, Yunsup Lee, Eiman Ebrahimi,

Daniel R Johnson, David Nellans, Mike O’Connor, and Stephen W Keckler.

Flexible Software Profiling of GPU Architectures. In ACM International

Symposium on Computer Architecture (ISCA), volume 43. ACM, 2015.

[89] Timothy C Germann, Allen L McPherson, James F Belak, and David F

Richards. Exascale Co-Design Center for Materials in Extreme Environ-

ments. http://www.exmatex.org/proxy-over.html, 2013.

[90] Vishal Aslot, Max Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B

Jones, and Bodo Parady. SPEC OMP: A New Benchmark Suite for Measur-

ing Parallel Computer Performance. In International Workshop on OpenMP

Applications and Tools. Springer, 2001.

[91] Hao-Qiang Jin, Michael Frumkin, and Jerry Yan. The OpenMP Implemen-

tation of NAS Parallel Benchmarks and its Performance. 1999.

[92] CORAL Benchmarks. https://asc.llnl.gov/CORAL-benchmarks/, 2014.

[Online; accessed 2017-04-04].

[93] M. A. O’Neil and M. Burtscher. Microarchitectural Performance Character-

ization of Irregular GPU Kernels. In International Symposium on Workload

Characterization (IISWC), 2014.

[94] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaf-

fer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A Benchmark Suite for

Heterogeneous Computing. October 2009.

[95] Sanjay J Patel, Tony Tung, Satarupa Bose, and Matthew M Crum. Increas-

ing the Size of Atomic Instruction Blocks Using Control Flow Assertions.

In IEEE/ACM International Symposium on Microarchitecture (MICRO).

IEEE, 2000.

[96] Alex Ramirez, Luiz André Barroso, Kourosh Gharachorloo, Robert Cohn,

Josep Larriba-Pey, P Geoffrey Lowney, and Mateo Valero. Code Layout

http://www.exmatex.org/proxy-over.html
https://asc.llnl.gov/CORAL-benchmarks/

Bibliography 117

Optimizations for Transaction Processing Workloads. In ACM SIGARCH

Computer Architecture News, volume 29. ACM, 2001.

[97] Glenn Reinman, Brad Calder, and Todd Austin. Fetch Directed Instruction

Prefetching. In International Symposium on Microarchitecture (MICRO).

IEEE, 1999.

[98] Scott McFarling. Combining Branch Predictors. Technical report, Technical

Report TN-36, Digital Western Research Laboratory, 1993.

[99] Richard E Kessler, Edward J McLellan, and David A Webb. The Alpha

21264 Microprocessor Architecture. In International Conference on Com-

puter Design (ICCD). IEEE, 1998.

[100] André Seznec and Pierre Michaud. A Case for (partially) TAgged GEometric

History Length Branch Prediction. Journal of Instruction Level Parallelism,

8, 2006.

[101] André Seznec. The L-TAGE Branch Predictor. Journal of Instruction-Level

Parallelism, 2007.

[102] Glenn Reinman, Todd Austin, and Brad Calder. A Scalable Front-end Ar-

chitecture for Fast Instruction Delivery. In ACM SIGARCH Computer Ar-

chitecture News. IEEE Computer Society, 1999.

[103] Premkishore Shivakumar and Norman P Jouppi. Cacti 3.0: An Integrated

Cache Timing, Power, and Area Model. Technical report, Technical Report

2001/2, Compaq Computer Corporation, 2001.

[104] Rakesh Kumar, Victor Zyuban, and Dean M Tullsen. Interconnections in

Multi-core Architectures: Understanding Mechanisms, Overheads and Scal-

ing. In International Symposium on Computer Architecture (ISCA). IEEE,

2005.

[105] Junghee Lee, Chrysostomos Nicopoulos, Sung Joo Park, Madhavan Swami-

nathan, and Jongman Kim. Do We Need Wide Flits in Networks-on-chip?

In IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE,

2013.

[106] Smäıl Niar, Lieven Eeckhout, and Koenraad De Bosschere. Comparing Mul-

tiported Cache Schemes. In PDPTA, 2003.

Bibliography 118

[107] Matthew D Sinclair, Johnathan Alsop, and Sarita V Adve. Efficient GPU

Synchronization Without Scopes: Saying No to Complex Consistency Mod-

els. In Proceedings of the 48th International Symposium on Microarchitec-

ture. ACM, 2015.

[108] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M. Beck-

mann, Mark D. Hill, Steven K. Reinhardt, and David A. Wood. Heteroge-

neous System Coherence for Integrated CPU-GPU Systems. December 2013.

[109] Amir Kavyan Ziabari, Yifan Sun, Yenai Ma, Dana Schaa, José L Abellán,

Rafael Ubal, John Kim, Ajay Joshi, and David Kaeli. UMH: A Hardware-

Based Unified Memory Hierarchy for Systems with Multiple Discrete GPUs.

ACM Transactions on Architecture and Code Optimization (TACO), 2016.

[110] Benjamin Munger, David Akeson, Srikanth Arekapudi, Tom Burd, Harry R

Fair, Jim Farrell, Dave Johnson, Guhan Krishnan, Hugh McIntyre, Edward

McLellan, et al. Carrizo: A High Performance, Energy Efficient 28 nm APU.

Journal of Solid-State Circuits, 2016.

[111] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat, Anirudha

Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and Adi Yoaz.

Inside 6th-Generation Intel Core: New Microarchitecture Code-Named Sky-

lake. IEEE Micro, 2017.

[112] Neha Agarwal, David Nellans, Eiman Ebrahimi, Thomas F Wenisch, John

Danskin, and Stephen W Keckler. Selective GPU Caches to Eliminate CPU-

GPU HW Cache Coherence. In International Symposium on High Perfor-

mance Computer Architecture (HPCA). IEEE, 2016.

[113] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic, Eiman

Ebrahimi, Oreste Villa, Aamer Jaleel, Carole-Jean Wu, and David Nellans.

MCM-GPU: Multi-Chip-Module GPUs for Continued Performance Scalabil-

ity. In International Symposium on Computer Architecture (ISCA). IEEE,

2017.

[114] Hynix. Hynix GDDR5 SGRAM Part H5GQ1H24AFR Datasheet Re-

vision 1.0. https://www.skhynix.com/eolproducts.view.do?pronm=

GDDR5+SDRAM&srnm=H5GQ1H24AFR&rk=26&rc=graphics, 2009. [Online; ac-

cessed 2017-04-04].

https://www.skhynix.com/eolproducts.view.do?pronm=GDDR5+SDRAM&srnm=H5GQ1H24AFR&rk=26&rc=graphics
https://www.skhynix.com/eolproducts.view.do?pronm=GDDR5+SDRAM&srnm=H5GQ1H24AFR&rk=26&rc=graphics

Bibliography 119

[115] Inderpreet Singh, Arrvindh Shriraman, Wilson W. L. Fung, Mike O’Connor,

and Tor M. Aamodt. Cache Coherence for GPU Architectures. In Inter-

national Symposium on High-Performance Computer Architecture (HPCA),

February 2013.

[116] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. Chimera: Collab-

orative Preemption for Multitasking on a Shared GPU. ACM SIGARCH

Computer Architecture News, 2015.

[117] Zhen Lin, Lars Nyland, and Huiyang Zhou. Enabling Efficient Preemption

for SIMT Architectures with Lightweight Context Switching. In Proceedings

of the International Conference for High Performance Computing, Network-

ing, Storage and Analysis. IEEE Press, 2016.

[118] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro,

and Mateo Valero. Enabling Preemptive Multiprogramming on GPUs. In

ACM/IEEE International Symposium on Computer Architecture (ISCA),

2014.

[119] Switch-IB 2 EDR Switch Silicon - World’s First Smart Switch. http:

//www.mellanox.com/related-docs/prod_silicon/PB_SwitchIB2_EDR_

Switch_Silicon.pdf, 2015. [Online; accessed 2017-04-04].

[120] ConnectX-4 VPI Single and Dual Port QSFP28 Adapter Card User Manual.

http://www.mellanox.com/related-docs/user_manuals/ConnectX-4_

VPI_Single_and_Dual_QSFP28_Port_Adapter_Card_User_Manual.pdf,

2016. [Online; accessed 2017-04-04].

[121] AMD. AMD’s Infinity Fabric Detailed. http://wccftech.com/

amds-infinity-fabric-detailed/, 2017. [Online; accessed 2017-04-04].

[122] John R. Spence and Michael M. Yamamura. Clocked Tri-State Driver Cir-

cuit. https://www.google.com/patents/US4504745, 1985.

[123] Intel. Intel Xeon Processor with 533 MHz Front Side Bus at 2 GHz to

3.20 GHz. http://download.intel.com/support/processors/xeon/sb/

25213506.pdf. [Online; accessed 2017-04-04].

[124] J. Chang and G. S. Sohi. Cooperative Cache Partitioning for Chip Multi-

processors. Proceedings of International Supercomputing Conference (ISC),

June 2007.

http://www.mellanox.com/related-docs/prod_silicon/PB_SwitchIB2_EDR_Switch_Silicon.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_SwitchIB2_EDR_Switch_Silicon.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_SwitchIB2_EDR_Switch_Silicon.pdf
http://www.mellanox.com/related-docs/user_manuals/ConnectX-4_VPI_Single_and_Dual_QSFP28_Port_Adapter_Card_User_Manual.pdf
http://www.mellanox.com/related-docs/user_manuals/ConnectX-4_VPI_Single_and_Dual_QSFP28_Port_Adapter_Card_User_Manual.pdf
http://wccftech.com/amds-infinity-fabric-detailed/
http://wccftech.com/amds-infinity-fabric-detailed/
https://www.google.com/patents/US4504745
http://download.intel.com/support/processors/xeon/sb/25213506.pdf
http://download.intel.com/support/processors/xeon/sb/25213506.pdf

Bibliography 120

[125] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, and

R. Iyer. Cache QoS: From Concept to Reality in the Intel Xeon Processor

E5-2600 v3 Product Family. International Symposium on High-Performance

Computer Architecture (HPCA), 2016.

[126] N. Rafique, W.T. Lim, and M. Thottethodi. Architectural Support for OS-

driven CMP Cache Management. Proceedings of Parallel Architectures and

Compilation Techniques (PACT), Sep 2006.

[127] M. Qureshi and Y. Patt. Utility-Based Cache Partitioning: A Low-Overhead,

High-Performance, Runtime Mechanism to Partition Shared Caches. Inter-

national Symposium on Microarchitecture (MICRO), Dec 2006.

[128] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, Jr S. Steely, and J. Emer.

Adaptive Insertion Policies for Managing Shared Caches. International Sym-

posium on Microarchitecture (MICRO), Oct 2008.

[129] D. Li, M. Rhu, D. R. Johnson, M. O’Connor, M. Erez, D. Burger, D. S.

Fussell, and S. W. Keckler. Priority-Based Cache Allocation in Through-

put Processors. International Symposium on High-Performance Computer

Architecture (HPCA), 2015.

[130] Ugljesa Milic, Paul Carpenter, Alejandro Rico, and Alex Ramirez. Rebalanc-

ing the Core Front-end Through HPC Code Analysis. In IEEE International

Symposium on Workload Characterization (IISWC). IEEE, 2016.

[131] Ugljesa Milic, Alejandro Rico, Paul Carpenter, and Alex Ramirez. Sharing

the Instruction Cache Among Lean Cores on an Asymmetric CMP for HPC

Applications. In IEEE International Symposium on Performance Analysis

of System and Software (ISPASS). IEEE, 2017.

[132] Ugljesa Milic, Oreste Villa, Evgeny Bolotin, Akhil Arunkumar, Eiman

Ebrahimi, Aamer Jaleel, Alex Ramirez, and David Nellans. Beyond the

Socket: NUMA-Aware GPUs. In International Symposium on Microarchi-

tecture (MICRO). IEEE/ACM, 2017.

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 High Performance Computing
	1.2 Evolution of a Single Compute Node
	1.2.1 Multicore Processors
	1.2.2 Compute Accelerators
	1.2.3 Multiple Compute Accelerators on a Single Node

	1.3 Programming Models for Single Node Architectures
	1.3.1 OpenMP for Shared Memory Multicore Processors
	1.3.2 OpenACC for Programming Accelerators
	1.3.3 CUDA for Programming GPUs

	1.4 Thesis Contributions
	1.5 Timeline
	1.6 Thesis Organization

	2 Background and Related Work
	2.1 From General-purpose to Specialized Systems-on-Chip
	2.2 Efficient CMP Design for HPC
	2.3 More Performance per Compute Node

	3 Methodology
	3.1 Code Instrumentation
	3.2 Simulation Frameworks
	3.2.1 Sniper
	3.2.2 TaskSim
	3.2.3 GPUSim

	3.3 Benchmark Suites
	3.3.1 Workloads for Shared-memory CMPs
	3.3.2 CUDA workloads for GPU analysis

	4 HPC Workload Characterization
	4.1 Microarchitecture Independent Characterization
	4.1.1 Branch Instructions
	4.1.2 Instruction Footprint
	4.1.3 Basic Blocks
	4.1.4 Difference Between Sequential and Parallel Code Sections in HPC Workloads

	4.2 Microarchitecture Dependent Characterization
	4.2.1 Branch Predictor
	4.2.2 Branch Target Buffer
	4.2.3 Instruction Cache

	4.3 Impact on Performance, Power and Area
	4.3.1 Experimental Setup
	4.3.2 Results

	5 Sharing the I-cache among Lean Cores
	5.1 Sequential and Parallel Code within HPC applications
	5.2 Lean Cores and the Code They Execute
	5.3 Shared I-cache Architecture
	5.3.1 Core Front-End
	5.3.2 Shared I-cache and Interconnect

	5.4 Simulation Setup
	5.5 Evaluation
	5.5.1 Naive I-cache Sharing
	5.5.2 Scalable I-cache Sharing
	5.5.3 Miss Analysis
	5.5.4 Area and Power Savings
	5.5.5 A Single I-cache Shared Among All Cores on an ACMP

	6 Multi-socket GPU Design
	6.1 System of Interest and Simulation Setup
	6.2 NUMA-Aware GPU Runtime
	6.2.1 Performance Through Locality

	6.3 Asymmetric Interconnects
	6.3.1 Dynamic Bandwidth Distribution
	6.3.2 Results and Discussion

	6.4 NUMA-Aware Cache Management
	6.4.1 Design Considerations
	6.4.2 Results

	6.5 Discussion
	6.5.1 Combined Improvement
	6.5.2 Scalability
	6.5.3 Multi-Tenancy on Large GPUs
	6.5.4 Power Implications
	6.5.5 Scheduling Improvements
	6.5.6 Other Asymmetric Link and Cache Partitioning Proposals

	7 Conclusions
	7.1 Future Extensions
	7.2 Work Published

	Bibliography
	Abbreviations

