Universitat Politecnica de Catalunya

PhD Dissertation

Low-Rank Regularization for High-Dimensional
Sparse Conjunctive Feature Spaces in
Information Extraction

Audi Primadhanty

Supervisors

Xavier Carreras
Ariadna Quattoni

Tutor

Horacio Rodriguez Hontoria

e

Computer Science Department
Ph.D. Program in Artificial Intelligence
Universitat Politécnica de Catalunya

September 2017

Abstract

One of the challenges in Natural Language Processing (NLP) is the unstructured
nature of texts, in which useful information is not easily identifiable. Information
Extraction (IE) aims to alleviate it by enabling automatic extraction of structured
information from such text sources. The resulting structured information will
facilitate easier querying, organizing, and analyzing of data from texts.

In this thesis, we are interested in two IE related tasks: (i) named entity classification
and (ii) template filling. Specifically, this thesis examines the problem of learning
classifiers of text spans and explore its application for extracting named entities and
template slot-fillers.

In general, our goal is to construct a method to learn classifiers that: (i) require less
supervision, (ii) work well with high-dimensional sparse feature spaces and (iii) are
able to classify unseen items (i.e. named entities/slot-fillers not observed in training
data).

The key idea of our contribution is the utilization of unseen conjunctive features.
A conjunctive feature is a combination of features from different feature sets. For
example, to classify a phrase, one might have one feature set for the context and
another set for the phrase itself. When learning a classifier, only a factor of these
conjunctive features will be observed in the training set, leaving the rest (i.e. unseen
features) unusable for predicting items in test time. We hypothesize that utilizing
such unseen conjunctions is useful to address all of the aspects of the goal.

We develop a general regularization framework specifically designed for sparse
conjunctive feature spaces. Our strategy is based on employing tensors to represent
the conjunctive feature space, and forcing the model to induce low-dimensional
embeddings of the feature vectors via low-rank regularization on the tensor parame-
ters. Such compressed representation will help prediction by generalizing to novel
examples where most of the conjunctions will be unseen in the training set.

We conduct experiments on learning named entity classifiers and template filling,
focusing on extracting unseen items. We show that when learning classifiers under
minimal supervision, our approach is more effective in controlling model capacity
than standard techniques for linear classification.

Keywords
low-rank regularization, minimal supervision, named entity classification, slot-
filling

Acknowledgement

I would like to thank my advisors, Xavier Carreras and Ariadna Quattoni, for the
continuous guidance, for the support in every step of the way, for the motivation,
patience and inspiration. Thank you for believing in me.

I would also like to thank my tutor, Horacio Rodriguez for the invaluable advices
and support.

Thanks to my office mates, in Barcelona and Grenoble, for the fun times and fruitful
discussions. Special thanks to Pranava Swaroop for the collaboration and for sharing
your insights, knowledge and wisdom.

I thank my family-ibu, bapak, ade, ebin—for their endless support, understanding
and unconditional love.

Finally, to everyone not mentioned here, gracias!

Contents

1 Introduction

1.1 Motivation and Goal

1.1.1 Information EXtraction v v v v v v v v v v v v ..

1.1.2 Challenges in Information Extraction Systems

1.1.3 Goal
1.2 Contributions

1.2.1 Development of Low-Rank Regularization Method for Sparse

Conjunctive Feature Spaces

1.2.2 Experiments on Named Entity Classification and Template Filling
1.3 Publications
1.4 Navigating The Thesis . . .

2 Related Work

2.1 Low-Rank Learning in NLP .

2.1.1 Low Rank Constraint for Generating Low-Dimensional Embed-

ding

2.1.2 Low Rank Decomposition for Matrix/Tensor Completion . . .

2.1.3 Low Rank Regularization for Controlling Model Capacity . . .
2.2 Named Entity Classification and Related Tasks
2.2.1 Named Entity Recognition and Classification (NERC)
2.2.2 Named Entity Extraction (NEE)
2.2.3 Named Entity Linking (NEL)
2.3 Template Filling and Related Tasks
2.3.1 Event Template Completion

2.3.2 Knowledge Base Population

2.4 Supervision in Machine Learning for NLP

2.4.1 Unsupervised Learning

2.4.2 Supervised Learning

2.4.3 Semi-Supervised Learning

2.4.4 Labeled Examples from Minimal Supervision.

3 Low Rank Regularization for Sparse Conjunctive Feature Space

3.1 Notations

3.2 Linear Feature-based Model

11

3.2.1 Conjunctive Feature Spaces
3.2.2 ParameterTensor
3.3 Low-RankLearning
3.3.1 Low-Rank and Nuclear Norm Regularization
3.3.2 Optimization oo v it e e
3.4 Conclusion e

Low Rank Regularization for Named Entity Classification
4.1 Introductiont i i i e e
4.1.1 Contributions e

40

4.2 Low-Rank Named Entity Classification Models with Minimal Supervision 41

4.2.1 Minimal Supervision for Named Entity Classification
4.2.2 Low-rank Named Entity Classification Models
4.3 EXperiments v i e e e e e e e e e e e e e e
4.3.1 Task Definition and Evaluation Metric
4.3.2 Dataand Setting
4.3.3 Ambiguity Assumptions on CoNLL-2003 Data
4.3.4 Evaluation of Unseen Entities on State-of-The-Art Systems . .
4.3.5 Comparing Regularizers
4.3.6 Comparison with State-of-The-Art Systems
4.4 Conclusion e e

Low Rank Regularization for Template-Filling

5.1 Introduction i e
5.1.1 Contributions e

5.2 Low-Rank Template Filling Model with Document-Level Supervision

53 Experiments i e e e e e e e
5.3.1 Task Definition and Evaluation Metric
5.3.2 Dataand Setting
5.3.3 MUC-4 Data Characteristics
5.3.4 Most Frequent Class Baseline
5.3.5 Comparing Regularizers
5.3.6 Comparison with State-of-The-Art Systems

5.4 Conclusion

Conclusion and Future Work
6.1 Contributions e
6.1.1 Development of Low-Rank Regularization Method for Sparse
Conjunctive Feature Spaces

41

74

6.1.2 Experiments on Named Entity Classification and Template Filling 74

6.2 Futurework e
6.2.1 Incorporation of Unlabeled Data in Semi-Supervised learning
6.2.2 Enforcing Low-Rank Tensor Regularization

75
75
76

6.2.3 Combining sparse regularization and low-rank regularization

A Low-Rank Regularization for Sparse Conjunctive Feature Spaces: An
Application to Named Entity Classification

B InToEventS: An Interactive Toolkit for Discovering and Building Event
Schemas

Bibliography

77

78

89

94

Vi

List of Figures

1.1

1.2

3.1

3.2

3.3

4.1
4.2
4.3
4.4

4.5

4.6
4.7

5.1

5.2

5.3
5.4

5.5

An example article (DEV-MUC3-1229) from MUC-4 (Sundheim, 1992)

corpus annotated with PERSON named entities.
An example of ATTACK template for article DEV-MUC3-1229 from MUC-
o) 1

Maximum memory used and average time per iteration using dense
implementation and sparse implementation for data with varying pa-
rameter matrix Size. L. oo
Maximum memory used and average time per iteration using dense
implementation and sparse implementation for data with varying pa-
rameter matrix gradientrank. L. oL L.
Final objective after 5 iterations using dense implementation and sparse
implementation for data with varying parameter matrix gradient rank.

Sentences annotated with named entity of type PERSON.
The 12 entity tags used to represent entity candidates.
Proportion of ambiguous entity mentions in various NER datasets. . . .
Proportion of ambiguous entity mentions in seen entities in the devel-
opment and test set of CONLL-2003 data.
Average F1 of classification of unseen entity candidates on development
data, with respect to the size of theseed.
Avg. F1 on development set for increasing dimensions.
Weights of conjunctive features in the parameter matrix.

Document DEV-MUC3-0047 and its corresponding event templates from
MUC-4dataset. it
List of slot types used in this thesis and their respective slot names in
MUC-4keys. o
Proportion of ambiguous slot-filler mentions in MUC-4 dataset.
Proportion of seen/unseen slot-fillers in in the development and test set
of MUC-4data.
F1 score of unseen slot-fillers in test set of MUC-4 data, using ¢2 and /.
regularization.

55
57

66

Vii

List of Tables

4.1

4.2

4.3

4.4
4.5
4.6

5.1

For each entity class, the seed of entities for the 10-30 set, together
with the number of mentions in the training data that involve entities
in the seed for various sizes of theseeds.
The number of mentions and number of unique candidates for each
entity type of CONLL-2003 data used in our experiments.
Average-F1 of classification of unseen entity candidates on development
data, using the 10-30 training seed and /¢ regularization, for different
COMJUNCEIVE SPACES. . « .« ¢ v v v e v e e e e e e e e e e e e e e e e e
Evaluation of NERC systems on CoNLL-2003 dataset
Features used by NERC systems on CoNLL-2003 dataset.
Results (Precision/Recall/F1) on the test set for models trained with
different sizesof theseed.

Number of slot fillers in the MUC-4 Test Set

viii

1.1

Introduction

This thesis investigates the use of linear models with a low-rank constraint, as well
as their application in the tasks of Information Extraction (IE). Specifically, we focus
on addressing the challenge of feature sparsity in Named Entity Classification (NEC)
and template filling.

We will describe the tasks in Section 1.1, in which we will also motivate our research.
We will then describe the specific contributions of this thesis in Section 1.2. Finally,
Section 1.4 will provide a guide to navigating this thesis.

Motivation and Goal

Throughout the history of human civilization, the use of written text has been key
in passing knowledge from one generation to another. With the advancement of
technology, it is getting more and more easy to produce text and share knowledge to
each other. The world wide web alone has allowed the existence of an innumerable
amount of pages of texts to be available to almost everyone in the world. Not to
mention efforts in automating the digitization of printed materials, the transcription
of audio recordings, and more recently, the captioning of images and videos.

In a modern era like today, one can find themselves drowned in a sea of literature
in search of particular information of their interest. Since it is nearly impossible
for anyone to read all existing texts, the ambition is to have machines do it for us,
synthesize all the information and present them to us by request.

It is this very idea that fuels research efforts in Natural Language Processing (NLP),
which aims to allow machines to analyze human languages for different purposes.
Such ability is useful for many applications, from assisting people in their day-to-
day activities (e.g. voice-driven assistants, natural-language search) to assisting
corporations in their business ventures (e.g. sentiment analysis for automated
trading, social media analytics, customer care).

One of the primary challenges in analyzing texts is its nature of being mainly un-
structured or semi-structured, in which useful information are not easily identifiable.
A subfield of NLP, called Information Extraction (IE), aims to enable automatic
extraction of structured information from such text sources.

INVESTIGATIONS UNDER WAY THROUGHOUT THE COUNTRY HAVE BEEN FRUITLESS
REGARDING THE ALLEGED PRESENCE OF SPANISH, BRITISH, ISRAELI, OR ITALIAN
TERRORISTS IN COLOMBIA, FOLLOWING THE FOILED ATTACK ON SEVEN GENERALS,
EIGHT COLONELS, AND OTHER TOP COMMANDERS OF THE ARMY AND NATIONAL
POLICE IN MEDELLIN.

MEANWHILE, GENERAL MIGUEL ALFREDO MAZA MARQUEZ, DIRECTOR OF THE
ADMINISTRATIVE DEPARTMENT OF SECURITY, IDENTIFIED EUGENIO EXENDESTE,
AN IDEOLOGIST OF THE BASQUE FATHERLAND AND LIBERTY [ETA] SEPARATIST
ORGANIZATION, AS THE LINK BETWEEN THE MEDELLIN CARTEL AND THE SPANISH
TERRORISTS.

POLICE OPERATIONS DIRECTOR GENERAL OCTAVIO VARGAS SILVA SAID THAT ALL
SECURITY ORGANIZATIONS ARE ON MAXIMUM ALERT. HE NOTED THAT THE SECRET
ORGANIZATIONS HAVE COMPOSITE SKETCHES OF THE SUSPECTED ETA MEMBERS
AND THE TWO COLOMBIANS WHO COORDINATED ALL THE STEPS TO CARRY OUT
THE ATTACK THAT WAS INTENDED TO KILL MANY CIVILIANS AS A RESULT OF A
ROCKET ATTACK ON A GASOLINE TRUCK THAT CARRIED 3,000 GALLONS OF FLIGHT
FUEL.

Fig. 1.1.: An example article (DEV-MUC3-1229) from MUC-4 (Sundheim, 1992) corpus
annotated (in bold, purple colored, underlined) with PERSON named entities.

1.1.1 Information Extraction

IE is concerned with identifying predefined types of information from text (Riloff,
1999). It represents documents as sets of entities and frames that are another way
of formally describing the relationships between the entities (Feldman and Sanger,
2007).

For example, consider a text article such as in Figure 1.1, an important step in
understanding the article is to identify information relevant to the news story; what
type of event is described, where does it take place, who is involved, what are their
relations, etc. It is the goal of IE to identify such information from text and organize
it in a manner that benefits people or other systems. In this thesis, we are interested
in identifying two types of information; (i) Named Entities (NE) and (ii) template
slot-fillers.

Named Entities Named Entities (NE) are objects that can be referred to with a
proper name, such as a person, a location, an organization or a disease. For example,
in Figure 1.1, we identify some proper names of individuals and annotate the text
with such information. The annotated text contains the original news story, the
information of the people involved in it and the location of their mentions in the
text. Such is the expected result of a Named Entity Recognition and Classification
(NERC) system. The types of entity extracted by a system are application-specific,
depending on the domain of interest. Such information can be useful for further
processing, such as linking the entities to a knowledge base entry, extracting relation
between the entities or as an additional information for other NLP tasks.

1.1 Motivation and Goal

2

Weapon ROCKET
Perpetrator (individual) TERRORISTS

Perpetrator (organization) BASQUE FATHERLAND AND LIBERTY [ETA] SEPARATIST
ORGANIZATION;
MEDELLIN CARTEL

Target GASOLINE TRUCK

Fig. 1.2.: An example of ATTACK template for article DEV-MUC3-1229 from MUC-4 corpus.

Template slot-fillers A template is typically related to a description of an event, and
the slots are the predefined types of information related to the event. For example,
one might have a template describing an event of airline ticket booking with slots for
the city of departure, the city of arrival, and the date of the intended trip. Another
example could be a template describing an attack, with slots for the weapons, the
perpetrators and the targets. For instance, from the text in Figure 1.1, a template
filling system could be expected to extract information for an attack event such as
shown in Figure 1.2. With this type of structured information, it could be easier to
perform tasks such as text summarization or automated customer service.

1.1.2 Challenges in Information Extraction Systems

In general an IE system could use hand-crafted rules, machine-learning models or
a combination of both. Although rules and heuristics might perform well, it could
be costly, especially when dealing with large corpora with many entity/slot types.
Moreover, it is also task specific; one should create a new set of rules for a new
domain. In this thesis, we opt for making use of machine learning to model the
problem. We identify the main areas of concern for our research below.

1.1.2.1. Extracting entities/role-fillers

In extracting named entities/slot-fillers, one must address two sub-tasks; (i) recogniz-
ing if a mention is an entity/slot-filler and (ii) classifying it as one of the predefined
named entity/slot-filler types. The task of classifying could become more challenging
when mentions are ambiguous, i.e. the same phrase could belong to different types
in different contexts. In our case, we observe that entity/slot-filler candidates are
mostly unambiguous'. Unambiguous mentions suggest one can design a system
that memorizes the types of entities it sees during training and use them to predict
mentions of the same entities during test time. Therefore, in this case, the important
challenge is on extracting named entity/slot-filler candidates that are not observed
during training (i.e. unseen candidates).

ILess than 3% of entity/slot-filler candidates in CoNLL 2003 named entity task corpus (Tjong Kim Sang
and De Meulder, 2003) and MUC-4 template filling task corpus (Sundheim, 1992) are ambiguous.

1.1 Motivation and Goal

3

1.1.2.2. Utilizing high-dimensional sparse parameter spaces

To train a statistical model, we need to represent our entity/slot-filler candidates in
a parameter space that encodes linguistic information. In NLP, such parameter space
is often high-dimensional and sparse. For example, a typical representation called
“bag-of-words” represents a text span with the list of all words contained in the span.
It would induce a parameter space that includes all words in the dictionary. With
such feature spaces, the challenge is to control the capacity of the model to prevent
overfitting of training data.

Conjunctive feature spaces To enrich the model, one might want to leverage
conjunctions of different feature sets, such as combinations of features of the context
and features of the candidate mentions. These sets of features can be grouped
into vectors which we call elementary feature vectors, and their combinations are
referred as conjunctive features. Ideally, we would like to train a classifier that can
utilize all conjunctions of elementary features, since among them there might be
some that are discriminative for the classification task at hand. Using conjunctive
features will produce an even higher dimensional sparse feature space. Thus it is
even more crucial to control the capacity of the model.

Unseen conjunctions Although conjunctive features can help models to learn better
during training, such fine features might not influence prediction during test time,
especially for unseen candidates. In models like linear classifiers, the score of a
prediction is determined by weights associated to its features. A model learns such
weights based on examples it observes during training. Conjunctive features that
do not occur in the train set (i.e. unseen conjunctions), therefore, will not have
non-zero weights, and thus will not affect predictions.

A standard approach to control the capacity of a model is to use ¢; or /5 regularization
on the parameter vector. However, this type of regularization does not seem to be
effective when dealing with sparse conjunctive feature spaces. The main limitation is
that ¢; and /¢ regularization can not let the model give weight to unseen conjunctions.
Without such ability it is unlikely that the model will generalize to novel examples,
where most of the conjunctions will be unseen in the training set. Therefore, figuring
out how to utilize such unseen conjunctions is another important challenge to
resolve.

Of course, one could impose a strong prior on the weight vector so that it assigns
weight to unseen conjunctions, but how can we build such a prior? What kind of
reasonable constraints can we put on unseen conjunctions?

Another common approach to handle high dimensional conjunctive feature spaces is
to manually design the feature function so that it includes only a subset of “relevant”
conjunctions. But designing such a feature function can be time consuming and one

1.1 Motivation and Goal

4

1.2

might need to design a new feature function for each classification task. Ideally, we
would have a learning algorithm that does not require such feature engineering and
that it can automatically leverage rich conjunctive feature spaces.

1.1.2.3. Minimal Supervision

Machine learning, unfortunately, does not always remove the need for human effort
in annotating corpora. Therefore, we seek to reduce the annotation requirement
to a minimal level; requiring only a few examples of each entity/slot type. This
is a typical scenario in an industrial setting for many NLP classification tasks. For
instance, developers might be interested in classifying entities according to their own
classification schema and can only provide a handful of examples of each class.

The challenge is then to design a system that is effective in such setting. Using only
a few examples for each type means most mentions in the test set are unseen during
training. Moreover, having less training data will require to train the model with
an even more sparse feature space where less feature conjunctions are observed.
Under such circumstances, it is imperative for the system to be able to extract unseen
mentions and utilize unseen feature conjunctions effectively. Improvements on
these two fronts will, in the end, improve the performance of models trained with
minimal supervision and allow the construction of competitive models with less
supervision.

1.1.3 Goal

In summary, the goal of this thesis is to investigate a method for: (i) extracting
unseen items of predefined types, (ii) utilizing a high dimensional conjunctive feature
space and (iii) minimizing required supervision. The practical goal is to apply such
method on two important sub-tasks of IE; named entity classification and template
filling.

Contributions

In this thesis, we attempt to address the goals mentioned above with two main
contributions. First, we develop a regularization framework specifically designed
for sparse conjunctive feature spaces. Second, we conduct experiments on learning
entity classifiers and template filling, both with minimal supervision.

1.2.1 Development of Low-Rank Regularization Method for
Sparse Conjunctive Feature Spaces

An important key feature of our method is enabling an effective utilization of
conjunctive features, including those that are unseen during training. For the unseen

1.2 Contributions

conjunctions to be useful, we need to be able to give weights to them. Such ability
will enable more unseen mentions to be classified and thus allows for building

competitive models with less supervision.

To do that, we construct a regularization scheme for training linear feature-based
models in high-dimensional sparse conjunctive feature spaces. Our approach results
in a more effective way of controlling model capacity, and it does not require feature
engineering. More importantly, it allows unseen conjunctive features to be mapped
closer and thus makes it possible to give weights to the unseen ones.

Our strategy is based on:

* Employing tensors to represent the parameter space in the scoring function of
the model.

* Forcing the model to induce low-dimensional embeddings of elementary vec-
tors via low-rank regularization on the tensor parameters.

Parameter tensor The standard approach to handling conjunctive feature spaces in
NLP is to regard the parameters of the linear model as long vectors of weights for
all possible conjunctions. In our models, the parameters are tensors that represent
weights of the elementary features and their conjunctions. To perform computations
on the tensor, we employ the technique of tensor matricization, which turns the
tensor into a matrix and allows the computations to be performed on the resulting
matrix instead of the original tensor form.

Low-rank constraint We show that the rank of the parameter matrix has a very
natural interpretation. It can be seen as the intrinsic dimensionality of a latent
embedding of the elementary feature vectors. Therefore, by imposing a low-rank
penalty on the matrix parameters, we are encouraging the model to induce a low-
dimensional projection of the elementary feature vectors. In a lower dimensional
space, unseen feature conjunctions can be projected closer to seen conjunctions that
are similar and thus weighted similarly.

Convex optimization Using the low-rank regularization constraint in the learning
algorithm would result in a non-convex optimization. Instead, we follow a standard
approach to use the nuclear norm as a convex relaxation of the rank. We also present
a simple convex learning algorithm that alternates between gradient update and
proximal projection of the parameters. In addition, we also describe implementation
details of the algorithm that addresses with memory issues.

1.2 Contributions

1.3

1.4

1.2.2 Experiments on Named Entity Classification and
Template Filling

To evaluate the efficacy of our method, we conduct experiments on learning entity
classifiers and extracting slot-fillers, both with minimal supervision.

Minimal supervision and unseen evaluation To minimize supervision, we define
the required supervision as a list of phrase examples for each entity/slot-filler types.
Considering that our candidates are mostly unambiguous, we then assume that
all mentions of these phrases in the corpus always belong to the same type as
specified in the list. This method allows us to use a handful of seed phrases to obtain
many examples for training. Meanwhile, to measure the ability of the method in
extracting unseen items, we adapt the evaluation procedure to focus on unseen
entities/role-fillers.

Results Some focused experiments were done in the framework of named entity
and slot-filler classification. The experiments show that nuclear norm regularization
(¢,) improves over /¢y regularization. A full development of named entity and
slot-filler extraction for comparison with state-of-the-art is left for future work.

Publications

Publications related to this thesis are as follows:

* Primadhanty et al. (2015)
Low-rank regularization for sparse conjunctive feature spaces: An appli-
cation to named entity classification.
Audi Primadhanty, Xavier Carreras, Ariadna Quattoni. ACL 2015
This publication contains the main contributions for Chapter 3 and Chapter 4.

e Ferrero et al. (2017)

Intoevents: An interactive toolkit for discovering and building event schemas

Germdn Ferrero, Audi Primadhanty, Ariadna Quattoni. EACL 2017
This publication is related to the task in Chapter 5.

We are also pursuing another publication related to Chapter 5.

Navigating The Thesis

The thesis is organized as follows: Chapter 2 provides some background and presents
some related work. Our main contribution is described in Chapter 3, with its
applications to named entity classification and template filling described in Chapter
4 and 5, respectively. Finally, in Chapter 6, we summarize our conclusions and
discuss possible future works to improve different aspects of our contributions.

1.3 Publications

2.1

Related Work

In this chapter, we will present studies or methods related to aspects of this thesis,
including low-rank learning, Named Entity (NE) classification, template filling and
minimal supervision. We start in Section 2.1 by presenting the use of low-rank
learning in different Natural Language Processing (NLP) applications. We then
describe methods used in solving NE classification tasks in Section 2.2, and event
role filler extraction in Section 2.3. In Section 2.4 we briefly describe the use of
different supervision settings in NLP systems in general, focusing on works on IE
with minimal supervision for training a supervised model. The literature presented
here are by no means exhaustive; we will briefly describe some papers and highlight
those relevant to aspects of this thesis.

Low-Rank Learning in NLP

Our objective in using low-rank constraint in this thesis is to (i) control the capacity
of our model and (ii) to allow the model to give weight to conjunctions of features
not observed at training by (iii) implicitly induces a low dimensional embedding of
feature vectors. The use of low-rank constraints to achieve each of these objectives
is not a novel concept in machine learning. We will show below how low-rank
constraints have been used to achieve them in NLP.

In Section 2.1.1 we present some works whose objective is to generate a latent
low dimensional embedding of words. In these works, low-rank tensor or matrix
decomposition was used as an essential (if not the main) part of their methods.
In Section 2.1.2, we present works that use low-rank to perform matrix or tensor
completion on different NLP tasks. The utilization of low-rank in such is analogous
to giving weights to unseen parameters in our method. Finally, in Section 2.1.3 we
present methods that make use of low-rank to control the capacity of their model.

2.1.1 Low Rank Constraint for Generating Low-Dimensional
Embedding

Numerous efforts in NLP have focused on generating low-dimensional word/term
representations that can capture their semantic meanings. Examples of early efforts
include Latent Semantic Analysis (LSA) (Landauer and Dumais, 1997), Probabilistic
LSA (PLSA) (Hofmann, 1999) and Latent Dirichlet Allocation (LDA) (Blei et al.,
2003). Results of some recent work on word embeddings, such as Word2vec (Mikolov
et al., 2013a,b,c), GloVe (Pennington et al., 2014), SENNA (Collobert et al., 2011)

and the work of Lebret and Collobert (2014), have also been used in many NLP
applications for different tasks.

Many of such works adopted the use of a low-rank matrix or tensor decomposition,
including Levy and Goldberg (2014); Levy et al. (2015); Madhyastha et al. (2014,
2015); Pennington et al. (2014); Salle et al. (2016). One can view the idea of
creating word embeddings using low-rank decomposition as a way of projecting a
high-dimensional representation of words to a lower dimensional space where one
projects words with a similar linguistic properties close to one another.

Even though our model implicitly induces a low dimensional embedding of feature
vectors, in contrast to the works mentioned above, it is not the goal of our method.
Nevertheless, these studies showed that embeddings generated by using low-rank
constraint were able to capture useful semantic meanings of words and terms. In
fact, Levy and Goldberg (2014) pointed that some popular neural-network-inspired
word embedding models! are implicitly factorizing a word-context matrix. They also
showed that explicitly using low-rank matrix factorization method can result in a
better embedding for certain tasks.

Low-rank bilinear form Similar to our model, Madhyastha et al. (2014) and Mad-
hyastha et al. (2015) use low-rank bilinear forms to induce their embeddings. They
learned embeddings of the lexical space tailored to the target linguistic relation and
showed that such method effectively learns using embeddings of a few dimensions.
Like in our case, the low-dimensional latent projections in this paper are learned
implicitly by imposing low-rank constraints on the predictions of the model. While
the techniques they employed are similar to ours, as mentioned before, they are not
novel techniques in machine learning. Both their and our studies are making use of
available techniques and focusing on different properties of them for different hy-
potheses. The focus of their work is in inducing task-specific word embeddings from
a more general ones, while in our case, we analyze the use of such techniques to per-
form multiclass classifications in sparse conjunctive feature spaces. Our hypothesis
is that there are feature conjunctions that could be helpful for classification, but are
unseen during training, thus by using low-rank constraint, we should be able to give
weights to such—otherwise zero-weighted—conjunctions. Meanwhile, their hypothesis
is that it is possible to induce low-dimensional word embeddings that are tailored
for the target linguistic relation task. In our case, representations of an item are
not necessarily word embeddings, and can be composed of-theoretically-unlimited
number of elementary feature sets, hence unlimited dimension parameter tensor.
The use of low-rank constraint in our case is crucial to give weights to unseen feature
conjunctions, while in their case, unseen feature conjunctions do not exist. Not
only such differences lead to different task settings and discussions, but practically,

1Such as Skip-Gram with Negative Sampling (SGNS) (Mikolov et al., 2013a,b) and Noise-Contrastive
Estimation (NCE) embedding method (Mnih and Kavukcuoglu, 2013)

2.1 Low-Rank Learning in NLP

9

they also lead to different computational requirements, for which we propose an
alternative implementation details to cater for bigger tensors that requires more
memory. Our proposed implementation is specifically designed for sparse feature
spaces, as presented in Section 3.3.2.1.

2.1.2 Low Rank Decomposition for Matrix/Tensor
Completion

One can view the idea of giving weight to unobserved feature conjunctions as a prob-
lem of matrix completion of the parameter matrix. Different methods had framed
NLP tasks as a matrix completion problem, and the use of low-rank constraints
was shown to be effective in such cases. Some examples include general weighted
automata (Balle and Mohri, 2012), Finite-State Transducers (FST) (Bailly et al.,
2013a), Weighted Context Free Grammars (WCFG) (Bailly et al., 2013b), relation
extraction (Chang et al., 2013, 2014; Fan et al., 2014; Nickel et al., 2012; Riedel
et al., 2013; Singh et al., 2015; Yao et al., 2012) and entity classification (Yao et al.,
2013).

We discuss some works related to classification tasks, specifically relation extraction
and entity classification task.

2.1.2.1. Relation extraction

Relation extraction is a task of identifying semantic relationship between two objects
such as nouns (Socher et al., 2012), named entities (Gormley et al., 2015; Yu et al.,
2015) or Knowledge Base (KB) items (Bordes et al., 2011, 2013, 2014; Ngomo and
Auer, 2011; Socher et al., 2013; Weston et al., 2013).

Among the different approaches to relation extraction, some low rank matrix com-
pletion approaches have also been used. For instance, Nickel et al. (2012) used
it to address the problem of learning relations on Semantic Web’s Linked Open
Data(LOD). They performed a low-rank factorization of a sparse tensor that repre-
sent the labeling between two entities and a relation type. By performing such tensor
completion, they were able to detect correlations between different relation types,
and thus able to make decisions about unobserved relations between two entities.

Riedel et al. (2013), Yao et al. (2012) and Fan et al. (2014) also worked on relation
extraction task by framing it as a matrix completion problem, where the rows of the
matrix represent entity pairs and the columns represent the relations. In Riedel et al.
(2013) and Yao et al. (2012), the columns are combinations of different relation
schemas, such as relation in the schemas of pre-existing databases and surface form
predicate relations (as in OpenlE (Etzioni et al., 2005)). In Fan et al. (2014), the
columns are relational labels and textual features of the relation mentions. Recently,

2.1 Low-Rank Learning in NLP

10

Singh et al. (2015) combined both matrix and tensor factorization to incorporate
per-entity information for a similar schema as in Riedel et al. (2013). Such per-entity
information, they found, is useful to label unseen entity pairs.

Matricization It is interesting to note that while all the above work tried to complete
values of entity-entity-relation triples, some represent them in a matrix instead of
a tensor. In this thesis, we also propose such use of tensor matricization, i.e.
representing a tensor as a matrix, and enforcing the low-rank constraint on the
matrix.

2.1.2.2. Entity Classification

Yao et al. (2013) utilized the schema used in (Riedel et al., 2013) to address the
problem of entity classification. Each row in the matrix corresponds to an entity
and each column an entity type. In their case, the types include types appearing in
natural language and those in pre-existing databases. They marked cells observed
during training as true, and matrix completion will attempt to fill other cells that are
unobserved by using probabilistic matrix factorization. By doing so, they were able
to leverage various patterns of co-occurrences among entity types.

Even though we are also applying the low-rank constraint to entity classification,
the notion of entity classification in our work is different. To put it simply, we
define the task as classifying mentions of entities while for them it is a multi-label
classification of entities based on pooled information of the mentions. Moreover,
the utilization of the concept of matrix completion in our method is different; it is
useful for completing a parameter matrix instead of an instance-class matrix. That
is, we do not directly complete unknown labels of unobserved entities, but rather
finding values of unobserved parameters, which indirectly will also help in classifying
unobserved entities.

2.1.3 Low Rank Regularization for Controlling Model
Capacity

In this section, we will discuss related work in NLP that uses low-rank constraints as
a way to control their model parameters. Specifically, we will highlight some work
that uses low-rank constraints in conjunctive feature spaces as well as those using
nuclear norm penalty.

In this thesis, we use the low-rank constraint as a penalty in our learning objective
to guide the learning algorithm to favor parameter matrix/tensor with lower rank.
Our parameter space is a high-dimensional feature space that includes conjunctions
of features from different features sets. To be able to use a convex optimization
method, we relax such objectives using nuclear norm penalty.

2.1 Low-Rank Learning in NLP

11

2.1.3.1. High-dimensional conjunctive feature representation

Lei et al. (2014) used low-rank tensor learning in the context of dependency parsing,
where like in our case dependencies are represented by conjunctive feature spaces.
Their parameters are combinations of a sparse and low-rank tensor; each represents
different sets of features. They induced the low-rank tensor from conjunctions of
high-dimensional features of the head, modifier, and the dependency arc between the
head and the modifier itself, by explicitly looking for a low-dimensional factorization
of the tensor using a greedy alternating optimization.

In a more recent work, Yu et al. (2016) proposed a general framework using low-
rank tensor for high-dimensional lexical features. They represent complex lexical
features—comprised of parts of words, contextual information and labels—in a
tensor that captures conjunction information among these parts. They reduced the
tensor size by embedding each part of the features into a lower dimensional space,
which results in smaller weight tensors. The embedding and the weight tensor is
then learned jointly with a non-convex objective using stochastic gradient descent
(SGD) with fixed rank. Such framework was able to achieve state-of-the-art results
on tasks in relation extraction, PP-attachment, and preposition disambiguation.

Their setting is very similar to our work; our parameter space is also a combination
of similar sets of features, i.e. words/mention, context and label. Their work
helps to confirm our hypothesis that using low-rank constraints is suitable for a
high dimensional conjunctive space. While the motivation is similar, our technical
solution is different. In our case, we propose the technique of matricization of
a tensor combined with a nuclear-norm relaxation to obtain a convex learning
procedure.

2.1.3.2. Nuclear norm penalty

To impose a low-rank constraint, many methods, such as the Factorization Machine
(Rendle, 2012), work with a fixed rank. In our case, we use a convex relaxation
of the low-rank constraint by using nuclear norm regularization. Such relaxation
was proposed by Srebro and Shraibman (2005) and has been used in a number of
applications in machine learning. In NLP, for instance, Quattoni et al. (2014) pro-
posed a model to learn latent-variable max-margin sequence taggers by combining
a nuclear norm regularized optimization with a spectral technique. They showed
that such regularizer constraint is an effective way to control the capacity of the
model and that it outperforms standard 12 regularization. Madhyastha et al. (2014)
and Madhyastha et al. (2015), which we have mentioned in Section 2.1.1, also uses
nuclear norm relaxation in their learning objectives to generate embeddings and
made a similar observation on comparison with ¢; and ¢, regularization.

2.1 Low-Rank Learning in NLP

12

2.2

Hutchinson et al. (2012) generalize a large class of ¢; regularized models by adding
a low-rank component to learn a language model. They decomposed the model
parameters into a low-rank component that learns regularities in the training data
and a sparse component that learns exceptions. They regularize the sparse compo-
nent with /1, the low-rank component with nuclear-norm regularizer, and use ¢5 on
both. They incorporated the low-rank component as a way to exploit similarities that
might exist between different features, which a sparse solution cannot capture.

The methods and optimization method of these works are similar to our proposal,
which is to use nuclear-norm constraint as learning penalty. Moreover, they also
adopt a learning algorithm similar to ours; alternating between gradient step and
penalty thresholding. Other than the application of such method to a different
family of tasks, we also focus on the use of conjunctive feature spaces, an aspect
not explored in other works. In our case, we assume the parameter space comes
from a tensor space having at least three parts (word/mention, context and thus the
integration of such space to our method is also an interesting aspect to explore.

Named Entity Classification and Related Tasks

One of the earliest cited papers in NE research is the work of Rau (1991) on
extracting company names from text. Such task gained more attention after the
Sixth Message Understanding Conferences (MUC-6) (Grishman and Sundheim,
1996) introduced a Named Entity sub-task where the goal is identifying and labeling
the names of all the people, organization and geographic locations in a text, as
well as identifying temporal terms, numeric expressions, monetary expressions
and percentages. Henceforth, numerous scientific events and research had been
dedicated to the task (Nadeau and Sekine, 2007).

In its development, NE research has expanded to encompass different problem
definitions, including differences in NE types, corpus domains and languages. In
general, we observe three main branches of NE studies?: (i) NE Recognition and
Classification (NERC), (ii) NE Extraction (NEE) and (iii) NE Linking (NEL). Our task
of NE classification is a sub-task of NERC.

In this section, we will provide a brief description of each task and their relationship
to each other and to our work. Note that we will focus on the goals and settings of
the different tasks, and not discuss the specific methods used to solve such tasks.

2In the literature, one might use different terms to refer to these tasks, for example, using Named
Entity Recognition (NER) to refer to NERC or NEE. We clarify the intended use of such terms in
this thesis by providing a brief description for each of them in this section.

2.2 Named Entity Classification and Related Tasks

13

2.2.1 Named Entity Recognition and Classification (NERC)

We define NERC as a task of identifying occurrences of named entities in a text
and labelling them with one of the predefined classes. NERC is typically context-
dependent, i.e. the same phrase or word in different contexts may refer to different
NE types.

As the name suggested, we can further divide NERC into two sub-tasks: (i) recog-
nition and (ii) classification. In Named Entity Recognition (NER), the goal is to
identify text spans in a document that refers to an NE; this entails placing the exact
beginning and end boundaries of each NE in a text sequence. In Named Entity
Classification (NEC), we label each of the recognized NE into one of the predefined
classes. One might attempt to solve both sub-tasks jointly (typically as a sequence
tagging problem) or as separate elements (typically in a pipeline architecture).

In this thesis, we focus on the problem of NE classification, such as done in Fleis-
chman (2001), Fleischman and Hovy (2002) and Elsner et al. (2009). In these
papers, it is assumed that the named entities mentions have already been correctly
extracted from the text and the task is to label them with correct entity types.

Fleischman and Hovy (2002) addressed the problem of subcategorization of person
names into a more fine-grained types including athlete, politician/government, clergy,
businessperson, entertainer/artist, lawyer, doctor/scientist and police. Their work
extended a previous work on subcategorization of location into country, city, street,
territory, region, water, mountain and artifact (Fleischman, 2001). In their settings,
they assumed that all person/location names in the text have been correctly pre-
identified by a different system.

Our domain is similar to Elsner et al. (2009), which focused on labeling identified
named entity mentions as either a person, an organization or a location. They used
pre-annotated corpus and extracted all strings in NE tags as their mentions. In our
case, we add another category: miscellaneous, which refers to other named entities
outside of person, organization and location, e.g. “russian”, “german”, “british”. We
also introduce noise in the set of identified named entity mentions to include phrases
that do not refer to a named entity (e.g. common phrases such as “year”, “thursday”,
“government”). In a way, we might view our task as also performing a part of the
NER sub-tasks; we also need to recognize which text spans are referring to named

entities.

2.2.2 Named Entity Extraction (NEE)

In this thesis, we use the term NEE to refer to the task of compiling or expanding a
list of named entities, such as extending an ontology (Alfonseca and Manandhar,
2002), extracting collections certain NE types (Etzioni et al., 2005) or completing

2.2 Named Entity Classification and Related Tasks

14

2.3

mappings of NE to classes of ontology and surface patterns (Yao et al., 2013). One
can also refer to this task as a gazetteer expansion task.

The main difference of such tasks with NERC is that NEE typically use a pooled
information of all NE occurrences in a text —or even a corpus— to make a decision.
Meanwhile, an NERC system needs to make separate decisions for each possible NE
mention in a text.

2.2.3 Named Entity Linking (NEL)

NEL in this thesis refers to the task of determining the identity of NE mentions in
text, where the identity is represented by an object in a knowledge base. One can
implement this as a continuation of the NERC task; after recognizing an NE in a text,
we identify the real world object to which it refers. This task is different from NERC
in that it requires connecting each NE mentions to a known object in the knowledge
base. For example, in NERC, there might be two mentions of ‘John”, both tagged
as a person, but with NEL, one might be linked to a knowledge base item of ‘John
Lennon” and another to ‘John Doe”, two different individuals.

One of typical knowledge bases used by NEL systems is Wikipedia (Bunescu, 2006;
Cucerzan, 2007; Ferragina and Scaiella, 2010; Kulkarni et al., 2009; Milne and
Witten, 2008; Naderi et al., 2014a,b; Ratinov et al., 2011). Some other include
Stanford TAP entity catalog (Guha and McCool, 2003), DBpedia Lexicalization
Dataset (Bizer et al., 2009), and YAGO2 knowledge base (Hoffart et al., 2011a),
which were used by NEL systems such as Dill et al. (2003), Mendes et al. (2011) and
Hoffart et al. (2011b), respectively.

Template Filling and Related Tasks

Another task we explore in this thesis is the task of template filling. In this section, we

will describe some of the tasks that are related to extraction of template slot-fillers.

We observed two types of slot-filler tasks, one related to event/template completion
—-which is the type of slot-filler task we examine in this thesis— and another related to
knowledge base population.

2.3.1 Event Template Completion

In this thesis, we consider the slot filling task of event template completion. Event

templates are structured schemas that describe a specific event at a specific context.

The example of events include a “terorrism event” described in a news article, or
a “flight booking” event described in a dialog between a customer and an airline
representative.

2.3 Template Filling and Related Tasks

15

For example, Riloff (1996), Patwardhan and Riloff (2007), Huang and Riloff (2012)
and Boros et al. (2014) addressed slot filling in the Fourth Message Understanding
Conference (MUC-4) (Sundheim, 1992) data. The MUC-4 data contains events
related to terrorism activities with slots such as perpetrator, weapon and victim.

Other studies, such as Ahn (2006); Ji et al. (2008); Li et al. (2013); Liao and Grish-
man (2010); Nguyen et al. (2016) performed event extraction on ACE (Automatic
Content Extraction) (Doddington et al., 2004) dataset, which contains newswire
articles describing events such as Life/Die, Transaction/Transfer, Conflict/Attack,
Movement/Transport, etc.

More recently, Liu and Lane (2016) and Vu (2016) addressed a Spoken Language
Understanding (SLU) problem of understanding speaker’s intent on ATIS (Airline
Travel Information Systems) dataset (Hemphill et al., 1990). The data set contains
audio recordings of conversations related to flight reservations. The task is to extract
information such as location of departure and arrival referred in the conversation.

A related task to event template completion is Automatic Event Schema Induction
(AESI), which aims to automatically induce event templates from raw text. For
example, works such as Chambers and Jurafsky (2011), Chambers (2013), Cheung
et al. (2013) and Sha et al. (2016) learned to induce event templates from MUC-4
dataset.

The setting of the task in this thesis is similar to that of Boros et al. (2014). We
frame the task as a classification problem, where given a candidate slot-filler, the
system should recognize whether it is a slot-filler, and —if it is— classify it as one of
the predefined slot types. The task we consider do not include the identification
of the event type itself, and thus differs with the settings of most studies of event
extraction on ACE and ATIS datasets.

2.3.2 Knowledge Base Population

In knowledge base population, slot filling plays a role of completing details or
attributes of entities listed in the Knowledge Base (KB). One of the most known
initiatives dedicated for KB population is the Text Analysis Conference Knowledge
Base Population (TAC KBP) (Surdeanu, 2013), which defines the task as collecting
information on certain attributes (or slots) of entities, which may be either persons
or organizations. For instance, for an entity “Apple” that refers to the American
multinational technology company?, one of the slot that needs to be filled is the
names of the founders. The KBP task is organized into two sub-tasks: (i) NEL and (ii)
slot filling. NEL is important to identify mentions of KB items in text, as explained in
Section 2.2.3. Information regarding the identified KB items can then be extracted
from the text to fill their slots in the KB. Moreover, some slots can be filled by another

*https://www.apple.com

2.3 Template Filling and Related Tasks

16

https://www.apple.com

2.4

item in the KB, for which an NEL is required. The task of slot filling is then concerns
with collecting information of the identified KB items. The task can also be framed
as finding relations between entities, i.e. relation extraction task (Adel et al., 2016;
Angeli et al., 2014; Roth et al., 2013). For example, the relation “org:founded by”
between “Steve Jobs” and “Apple”.

This task is similar to NEE in the sense that both typically use a pooled information
from different sources of evidence to make decisions. For example, recent studies
such as Das et al. (2017) tried to infer attributes from combining indirect evidences
in the KB itself. For instance, one may infer “Seattle” as a slot-filler for the attribute of
the city where “Melinda Gates” lives by observing that the knowledge base contains
the path “Melinda”-spouse—“Bill”—chairman—“Microsoft’-HQ-in—"“Seattle”.

The difference with event template completion is that an event template completion
system can only use local contexts of the slot-filler to make decisions about the
particular mention of the slot-filler, meanwhile KBP can use information from any
text resources or even from the KB itself. Moreover, while many KBP slot filling tasks
are framed as relation extraction problem, event template completion are typically
framed as a sequence labelling problem.

Supervision in Machine Learning for NLP

In this thesis, we focus on using machine learning techniques. One way to differ-
entiate such systems is by the type of supervision they use for learning a model.
Supervision in machine learning generally consists labeled examples. Different tasks
of machine learning can be discriminated based on whether or not such labeled
examples are used, meaning a learning method can be (i) unsupervised (using
unlabeled data), (ii) supervised (using labeled data) or (iii) semi-supervised (using
labeled and unlabeled data).

Supervised learning method Our approach employs a supervised learning method.
The main challenge in training a supervised system is it typically requires the
availability of an extensive collection of annotated data. Practically, such requirement
is not always easy to meet. An effort of preparing a big set of annotated data can be
costly, especially when dealing with a high number of named entities or slot types.

Minimal supervision Considering such challenge, we seek to minimize the supervi-
sion by requiring only a handful of examples for each entity/slot-filler type. We refer
to such supervision as minimal supervision. We define a minimal supervision as a
supervision that requires a small amount of annotation to produce a larger set of
labeled training data that might contain noise or incorrect labelings.

In this section, we discuss the different types of supervision in NLP, focusing on tasks
related to named entity and template slot-fillers.

2.4 Supervision in Machine Learning for NLP

17

2.4.1 Unsupervised Learning

The first one is unsupervised learning, for which only unlabeled text corpora are
available for training. Given data items = € X, the goal of unsupervised learning is
to find interesting structure in the data X (Chapelle et al., 2010). For example, one
might observe clustering of data items or estimate the underlying distribution which
is likely to have generated the data.

Unsupervised learning tasks typically do not involve predefined classes or labels.
For instance, some of the most popular unsupervised NLP tasks include document
clustering (Steinbach et al., 2000), statistical language modelling (Bengio et al.,
2003; Gotoh and Renals, 2003) and topic modelling (Blei, 2012).

In IE specifically, clustering and generative modelling have been used for named
entity mentions disambiguation/coreference resolution (Elsner et al., 2009; Haghighi
and Klein, 2007; Mann and Yarowsky, 2003) and event templates induction (Cham-
bers and Jurafsky, 2011; Nguyen et al., 2015). An unsupervised NER task has also
been attempted, for example by observing the time series distribution of a certain
word in two newspapers (Shinyama and Sekine, 2004).

2.4.2 Supervised Learning

The second setting is supervised learning, whose goal is to map input items x € X
to predefined output labels/targets y € Y, given a training set made of pairs (x;, y;)
(Chapelle et al., 2010). The supervised learning task is to model the distribution of
pairs (z;,y;) in the training set. Typically, such task is evaluated by the ability of the
model to correctly map new data items x in the test set to their corresponding label

Y.

Many NLP tasks fall into this category, such as chunking (Tjong Kim Sang and
Buchholz, 2000), clause identification (Tjong Kim Sang and Déjean, 2001), semantic
role labelling (Carreras and Marquez, 2005). The IE tasks we consider in this thesis—
NERC (Nadeau and Sekine, 2007) and template filling (Sundheim, 1992)-are also
both a supervised learning task.

For both NERC and template filling, we can consider the task as (i) a pipeline
of recognition task followed by classification task or (ii) a joint recognition and
classification task. In both cases, we are mapping words/tokens or phrases to
a predefined set of output labels, based on models learnt using the training set
examples. In the first case, the recognition tasks’ labels will refer to whether the
word/phrase is a NE/slot-filler and the classification tasks’ labels refer to the actual
predefined labels of our interest. In the second case, the labels will refer to both
information at the same time.

2.4 Supervision in Machine Learning for NLP

18

2.4.2.1. NERC

To recognize (and classify, in some cases) NE in a sentence, one needs to map each
token in the sentence to a label that signifies if the token is part of an NE. Early
studies on NERC (Borthwick et al., 1998; Chieu and Ng, 2002) learns classifiers of
individual words/tokens of a text, and combine them with dynamic programming
algorithm such as Viterbi to find the most likely sequence of labels. Other studies
resort to a more structured prediction to find the sequence label, such as using
Hidden Markov Model (HMM) (Bikel et al., 1997), Conditional Random Fields
(CRF) (McCallum and Li, 2003a) and neural network (Lample et al., 2016; Ratinov
and Roth, 2009). A hybrid model that combines different techniques has also been
proposed, such as done by Florian et al. (2003), in which they combined robust linear
classifier, Maximum Entropy (MaxEnt) classifier, transformation-based learning, and
HMM.

In this thesis, we consider only the task of NE classification, given candidate NEs.
We assume that the task of recognizing NEs in a sentence has already been done by
previous system. Therefore, the task does not involve a sequence labelling problem
and only concerns with mapping phrases to a set of labels. Such task is often a part
of a pipeline NERC system, such as ?, where the first module performs a sequence
labelling task to identify the NEs and the second module classifies the identified NEs
into their corresponding types. In our case, we assume the result of the first module
to be noisy, i.e. it might contain non-entities, and thus we also need to recognize
such noise and do not classify them as one of the predefined entity types. Having
such classifier will lead to a more robust NERC system as it prevents more errors
from the first module to propagate to the final result.

2.4.2.2. Template filling

In some studies, template filling has been approached as a relation classification
task (Adel et al., 2016; Roth et al., 2013, 2015). In some other, it is considered a
phrase classification or sequence labelling task (Boros et al., 2014; Liu and Lane,
2016; Patwardhan and Riloff, 2007; Surdeanu et al., 2010; Xu and Sarikaya, 2013),
similar to the task of NERC.

In this thesis, we consider the second type of approach to template filling; a task
of classifying candidate slot-fillers. Similar to our NE classification task setting, we
also assume the set of candidate slot-fillers to be noisy. Instead of assuming such
candidates to be available from previous system, we use a simple rule-based module
to obtain the candidate slot-fillers, such as done in (Boros et al., 2014; Huang and
Riloff, 2011, 2012).

2.4 Supervision in Machine Learning for NLP

19

2.4.3 Semi-Supervised Learning

Halfway between unsupervised and supervised learning is semi-supervised learning
(SSL), which uses both labeled and unlabeled data. The training set, in this case,
can be divided into two parts: the points X; := (z1,...,x;), for which labels
Y; :== (y1,...,y;) are provided, and the points X, := (211, ..., Z;+4), the labels of
which are not known (Chapelle et al., 2010). The goal of the model is similar to
the supervised learning task; to map data items x to output labels/target y. The
difference is that, unlike supervised learning, SSL takes into account the distribution
of unlabeled items in X, to learn the models.

A common way of performing SSL in NLP, is to train classifiers by estimating
parameters of a generative model through iterative expectation-maximization (EM)
techniques (Dempster et al., 1977), such as for text classification (Chapelle et al.,
2010). Another way is by performing an iterative co-training (Blum and Mitchell,
1998) or bootstrap/self-training (Yarowsky, 1995) technique to expand the set of
labeled training data by automatically label data items in the unlabeled set (Collins
and Singer, 1999; Cucerzan and Yarowsky, 2002; Ji and Grishman, 2006; Kim et al.,
2002; Niu et al., 2003). One can also use the unlabeled data to learn a good feature
map of items x by creating auxiliary problems using unlabeled data and performing
a joint empirical risk minimization on the auxiliary problems (Ando and Zhang,
2005). A more recent approach of semi-supervised learning is by incorporating word
representations obtained from unlabeled data as a part of a supervised learning
system, such as done by Collobert et al. (2011).

2.4.4 Labeled Examples from Minimal Supervision

The term minimal supervision in this thesis does not refer to a specific machine
learning task in the way the previous learning supervision categories do. Rather,
it refers to the way of building a labeled training set for either a supervised or a
semi-supervised learning task. Traditionally, building labeled pairs (x;, y;) involves
manually labelling each x; € X in the training set with its corresponding (y;). The
idea of minimal supervision is to either reduce or completely eliminate such effort.

For example, in knowledge base population, it is common to use occurrences of
existing knowledge base instances (slot entity or relations) in unlabeled texts as
training examples for a supervised learning task,(Mintz et al., 2009; Surdeanu et al.,
2010). Such task is commonly known as distance learning. Another example is by
manually creating “seed” examples of NE spellings to perform NEE (Li et al., 2010;
Neelakantan and Collins, 2014a). In this case, all occurrences of such spellings in
the corpus are considered as positive labeled training examples. Similarly, Collins
and Singer (1999), Etzioni et al. (2005) and Patwardhan and Riloff (2007) uses
only a handful of “seed” rules/extraction patterns to build the initial training set and

2.4 Supervision in Machine Learning for NLP

20

use it on SSL task with bootstrapping technique for NEE, NERC and template filling,
respectively.

The tasks we consider in this thesis are supervised learning tasks with labeled
training sets built using minimal supervision. Specifically, we follow the idea of
creating “seed” examples of NEs or slot-fillers and use occurrences of such examples
in unlabeled text to build our training set. Such a way of building the training set
might lead to a noisy training set, but it presents a cheaper alternative to manually
labelling a large size of examples.

Minimal Supervision vs Unsupervised Learning Due to the nature of creating the
labeled training examples that does not require manual labelings of example pairs,
systems using minimal supervision are sometimes referred as unsupervised in liter-
atures. To avoid confusion with the term unsupervised learning used in this thesis,
recall that we use the term unsupervised, supervised and semi-supervised learning to
distinguish whether the distribution of labeled examples (z;, y;) € X; and unlabeled
examples z,, € X, affect the resulting models rather than to distinguish the effort
involved in creating the labeled examples Xj.

2.4 Supervision in Machine Learning for NLP

21

3.1

Low Rank Regularization for
Sparse Conjunctive Feature
Space

The content of this chapter is mainly published in Primadhanty et al. (2015).

We consider a problem of classifying items z € X into one of the prespecified
classes y €). In Natural Language Processing (NLP), items X" can represent various
things such as documents, paragraphs, sentences, phrases, words or even characters.
Meanwhile, the classes) can represent any set of labels such as topics, sentiments,
entity types or semantic types.

In this thesis, we frame the classification problem as finding a discriminative model
that models the probability of an item z belonging to a certain class y. Specifically,
we adopt a linear feature-based model and represent = as combinations of several
feature sets. For instance, one might represent a phrase in a sentence with features of
its surrounding context and features of the phrase itself, as well as the combination
between features of the two sets. We refer to such combination of features as

conjunctive features.

To learn the model, we use a convex optimization method and impose a low-rank
constraint as a mean of regularizing. The main goal of such method is to address
the sparsity problem in high-dimensional conjunctive feature spaces.

This chapter is organized as follows. First, we present some notations that will be
used in the remaining of the thesis in Section 3.1. In Section 3.2, we describe the
model as well as introduce the notion of conjunctive feature space. We then present
the framework for training such models using low-rank regularization and a convex
learning method in Section 3.3.

Notations

In general, we use bold symbols to represent arrays. Specifically, bold lower-
case alphabets (x) represent vectors and bold upper-case alphabets (X) represent
matrices and higher order tensors. Scalar components/elements of arrays are
denoted with their indices in square brackets. For example, X[, j| refers to the
element in row ¢ and column j of matrix X € R™*", with ¢ € {1,...,m} and

jed{l,...,n}.

22

3.2

We use x -y € R to denote the dot product and x ® y € R"™" to denote the
Kronecker product between x € R” and y € R". The Kronecker product between
two vectors—x and y-results in a block vector [(x[1] *y),..., (x[n] * y)], that is

(x@y)[(i —1)*m+ j] =x[i] *y[j] ,

wherei € {1...m}and j € {1...n}.

Linear Feature-based Model

This section provides a general description of linear feature-based models and
discusses the related parameter spaces in the domain of NLP.

Let us have an item x and a set of possible classes y €). Our goal is to model the
conditional probability of y being the class of x:

Pr(y\x,@) o €xXp {SQ(.’B,y)} ’ (31)

X exp{sp(z,y)}

y'ey

where sy : X x) — R is a real-valued scoring function parameterized by 6.

In the literature, it is common to employ a linear feature-based model. That is,
one define the scoring function sy(x,y) of the model as a dot product between a
representation ¢(z,y) and parameters 6:

We discuss below the details of the representation ¢(z,y) and the parameters 6.

3.2.1 Conjunctive Feature Spaces

In practice, there are variations of feature spaces of ¢(x,y), which —as we will show
below— are generally a conjunctive feature space. Typically, features that represent
a candidate = and a class y can be grouped into separate elementary features that
express different information of the pair (x,y). In a conjunctive feature space,
representations ¢(x,y) are made up of the independent elementary feature sets and
the conjunctions of the features between the sets. We discuss below several instances
of such feature spaces.

Multiclass feature spaces In the typical setting of multiclass classification, the

compatibility of an item 2 with a class y is measured based on two key elements:
(i) features ¢, (z) € R? that represent the item and (ii) the class’ parameter vector

3.2 Linear Feature-based Model

23

w, € R that indicates the weight/importance of each feature for the class y. In this
case, the scoring function is a dot product between the two:

¢(z,y) -0 = p(z) - Wy or (3.3)
= [6,0) @ pul@)] - w (3.4)
where w = [wy, ..., wy|] and ¢,(y) € {0, 1} is an indicator vector representing
the current y:
, 1 ifi=y
by (y)li] = (3.5)

0 otherwise.

Indicator feature spaces In NLP, some of the popular feature vectors to represent
text spans are indicator feature vectors ¢, : X — {0, 1} that indicate the occurrence
of different words in the text or whether certain characteristics of a word are
observed (e.g. all-capitalized, is-capitalized, all-digits, alphanumeric, etc.). In many
cases, we might want to define features that combine two or more of such features
to capture a more fine-grained information. For example, it might be that knowing
that a word is capitalized or if its alphanumeric by itself is not discriminative for the
task at hand but knowing that the word is both capitalized AND alphanumeric is
highly discriminative. In practice, such feature conjunctions are often engineered;
one should decide what conjunctions are relevant for the problem. We can express
all conjunctions of such feature sets as a product of ¢,(z) ® ¢,(z). In this case,
the parameter vector of a class w, € R%*¢ will contain the weights of each feature
conjunction, and the scoring function can be written as

$(.) -0 = [by(y) © by(2) ® b ()] - w . (3.6)

Input tuple feature spaces Another common setting is to consider an input z as
a tuple of different information about z, such as x = (z,, z;) where z, and z; are
different views about x. For example, if = is a phrase, then z, can be information
about the phrase itself and x; can be information about the context where x occurs
(e.g. the document, the surrounding words, etc.). We can then define two feature
functions ¢, (z,) € R and ¢, (z3) € R to represent z, and x; respectively.
Similar to the previous case, conjunctive features for this case are also often en-
gineered. The full conjunctive feature space of such features can be expressed as
¢y, (Ta) ® Py, (75), and the parameter vector of a class wy, € Ré=a*dz, will contain
the weights of each feature conjunction, and thus the scoring function can be written
as

d(z,y) 0 = d((xa, 1), y) - 0, (3.7)
= |:¢y(y) ® Py, (Ta) @ By, (xb)} ‘WL (3.8)

3.2 Linear Feature-based Model

24

Note that in all of the instances mentioned above, the definition of the model
(equation 3.1) remains the same, but with various definitions of the feature and
parameter space.

In practice, we might have a more elaborate feature space, such as considering x
as an input tuple with more than two elements. Nevertheless, we can see that the
parameter space is always a conjunctive space, even in the simplest form (Equation
3.3). In our case, we would like to capitalize on such feature conjunctions without
having to manually engineer the choices of conjunctions that are relevant for our
problem. Our method takes the full conjunctive feature space and automatically
decides on the relevant conjunctions by learning from the evidence in the training
set. For feature conjunctions that are not observed during training, the method
will consider their relevance based on their similarities to those that are observed.
In the following sections, we will discuss the method’s strategy of realizing such
capabilities.

3.2.2 Parameter Tensor

Instead of regarding the parameters of the model as a vector, we regard them as a
parameter tensor, where each dimension of the tensor corresponds to an elementary
feature vector. For instance, in the case of having an input tuple (as in Equation 3.8),

xdsqXdzy in place of the parameter

our model will have a parameter tensor W € RV
vector w € RIYI*®za*dz, But instead of having the feature vector ¢(z, y) defined as a
tensor as well, we use an unfolding of the parameter tensor and employ a bilinear

form of the scoring function.

Matricization/unfolding A common framework for tensor computations is by turn-
ing the tensor (of order more than two) into a matrix and then perform matrix
computations on the resulting matrix instead of the original tensor form. It is com-
monly known as the process of matricization or tensor unfolding. Given an n-th
order tensor T € R%**dn e “unfold” it into a matrix M € RP1*DP2 where
D1 % Dy = dy * - - - x d,. To put it simply, we rearrange the components of the tensor
into a matrix form. This is done by partitioning the tensor axes into two sets, one for
matrix rows and another for columns.

In the case of our parameter tensor, unfolding the tensor is equal to grouping
the elementary feature vectors into two groups, and associate one group with the
columns of the resulting matrix, and the other group with the rows. For example,
to create an unfolding W’ from the parameter tensor W € RY/*dza Xdz, wwe can set
the rows of W’ to represent the classes and the columns to represent the features of
the input, i.e. W’ e RIVIX(dea*da)

For the remainder of this chapter, unless specified otherwise, we will denote as W
the matricized version of the parameters 6 of our models.

3.2 Linear Feature-based Model

25

3.3

Bilinear scoring function With a matricized W, we can rewrite the scoring function
as

59(%3/) = ¢1($,y)TW¢2("L‘7y) ’ (39)

where W € R%1 %92 is the weight matrix and ¢, : X xY — R% and ¢y : X x) — R®
are feature functions that combine elementary feature functions according to the
way we unfold W. For example, if we use the matricization W e RIYIx(da*ds)

for the case of equation 3.8 above, we will have ¢, (z,y) = ¢,(y) and ¢y(z,y) =

¢xa (xa) ® ¢Xb (xb)

Note that regardless of the way we represent the parameters 6 (as vector, matrix or
tensor), the model remains a linear feature-based model; the scoring function sy (x, y)
is as a dot product between a representation ¢(z,y) and the parameters 6. In the
case of our bilinear scoring function (Equation 3.9) above, the model corresponds to
a linear feature-based model operating in the feature space of ¢; ® ¢, i.e. the score
has one term for each feature conjunction:

%)

where Wi, j] refers to the component of W that corresponds to the weight of
the conjunctive feature (¢, [i], ¢,[j]). Notice that it is trivial to include elementary
features of ¢; and ¢,, in addition to their conjunctions, by having a constant
component in each of the two representations set to 1.

In our method, the way of representing the parameters is important because the
method benefits from exploiting the rank of a parameter matrix. In the following
sections, we will see how the rank of the matrix plays an important role when
learning the parameters and how the decision of the way we unfold the parameter
tensor might affect the notion of the rank.

Low-Rank Learning

This section will discuss the framework for learning the linear feature-based model
as explained in the previous section.

We learn the parameters of the model in a supervised manner; i.e. we use information
from examples of labeled items to estimate the values of the parameters. Let
P = {(z1,y1), -, (xm,ym)} be a training set containing m examples of labeled
items in the form of item-label pairs (z;,y;). Our learning goal is to estimate the
values of the parameters that allow our model to correctly classify the pairs in P.

3.3 Low-Rank Learning

26

We define such learning objective as finding parameters W that minimizes the “cost”
of classification errors L(W):

argmin L(W) . (3.11)
w

Recall that we define our model as in Equation 3.1; it models conditional probabilities
of y given x. Therefore, we define a negative log-likelihood loss function for our
objective as follows:

LW)= > —logPr(ylz; W) . (3.12)
(z,y)EP

With such loss function, the learning objective will favor a model parameter W
that sets a high conditional probability for the correct class y for each item z in the
training set P.

The ultimate goal of the model is not only to correctly predict classes of items that
are in the training set P, but also to be able to classify new items that are not in
the training set (i.e. unseen data). A common challenge in learning a model in
sparse high-dimensional feature spaces is avoiding the model from overfitting the
training data (thus cannot generalize to unseen data). One way to avoid overfitting
is by controlling the capacity of the model. which can be done by imposing a
regularization term to the objective function:

argmin L(W) + 7R(W) (3.13)
W

where R(W) is a regularizer and 7 is a constant that trades off error and capacity.

Typically, a regularizer R(W) is a penalty on the complexity of W, such as ¢; and /2
penalty. An ¢, regularizer favours a sparse W by limiting the size of the parameters,
while an /5 regularizer favours W with no extreme values by putting more penalty
to larger parameter values. In our case, the regularization favors solutions where
the rank of W is smaller.

In our case, the regularization will also allow the method to determine the values
of parameters that are not observed in the training data, and thus generalizes the
model to unseen data even more.

In the following sections we will discuss such regularization technique and the
optimization scheme we employ to learn the parameters.

3.3.1 Low-Rank and Nuclear Norm Regularization

Different factors can affect the problem of overfitting. Among them are the number
of parameters, the size of training data and the regularizer used. In our model, the

3.3 Low-Rank Learning

27

number of parameters is determined by the size of the conjunctive feature space.
In NLP, such feature spaces are commonly large. Moreover, we are interested in
training with minimal supervision, and thus the size of the training data will be
small. With such settings, controlling the capacity of the model is crucial to avoid
overfitting the training data.

A standard approach to control the capacity of a linear classifier is to use ¢; or ¢,
regularizer. However, the main limitation of ¢; and ¢ regularization is that they
cannot let the model give weights to conjunctions that were unobserved during
training. With our loss function, the learning method will only optimize values of
the parameters that are observed during training, so the values of the unobserved
ones will remain zero. In principle, ¢/; and ¢ work by thresholding and normalizing
the values of the parameters. Therefore, during learning, the ¢; or ¢, penalty will
only affect parameters with non-zero values, and thus will not affect the unobserved
conjunctions. Without the ability to give weight to unseen conjunctions, it is unlikely
that the model will generalize to novel examples where most of the conjunctions
will be unseen in the training set.

One possible solution to unseen conjunctions is to impose a strong prior on the
weight vector so that it assigns weight to unseen conjunctions. But such approach is
non-trivial, we need to formulate how to build such a prior; deciding what kind of
reasonable constraints we can put on unseen conjunctions.

Another common approach to handle high-dimensional conjunctive feature space
is to reduce the size of the space by manually selecting features that are “relevant”.
But this can be time-consuming, and we might need to have different sets of features
for different classification tasks. Ideally, we expect to have a learning algorithm
that eliminates the need for such feature engineering and that it can automatically
leverage rich conjunctive feature spaces.

Based on such observation, we propose the use of a low-rank regularizer, with
which we can encourage the model to induce a low-dimensional projection of the
elementary feature vectors. The projection allows us to map similar conjunctions
closer, and thus give similar weights to similar conjunctions, including to those that
are unseen. Such ability will help prediction by generalizing to novel examples
where most of the conjunctions will be unseen in the training set.

3.3.1.1. Low-rank regularization

Regarding our parameters as matrices (as in Equation 3.9) allows us to control the
capacity of the model via regularizers that favor parameter matrices with low rank.

3.3 Low-Rank Learning

28

Using negative log-likelihood loss function and low-rank regularizer, we rewrite our
objective as
argmin Z —log Pr(y|z; W) + 7rank(W) . (3.14)
W @yep

While a matrix has a clear definition of rank, it is not the case for general tensors,
and there exist various definitions in the literature. This is the main reason behind
our choice of matricization; once the tensor has been turned into a matrix, we can
use the standard definition of matrix rank. A main advantage of this approach is
that we can make use of standard routines like singular value decomposition (SVD)
to decompose the matricized tensor.

Intrinsic dimensionality To see the effect of low-rank regularizers, consider a singu-
lar value decomposition (SVD) W = UXV ' of the parameter matrix W. U € R%1*k
and V,, € R%** are orthonormal projections and ¥ € R¥*¥ is a diagonal matrix of
singular values. We can then rewrite the scoring function as

so(@,y) = (61(x,y) ' U) B (VIgy(z,y)) (3.15)

We can see that the rank k is the intrinsic dimensionality of the inner product behind
the score function; a low k implies that the score is defined as the inner product
of few projected features. This means a low-rank regularizer will favor parameter
matrices that have low intrinsic dimensionality.

The rank % of the matrix W is the number of non-zero singular values in 3. Therefore,
an SVD decomposition is not a dimensionality reduction, but rather a change of
basis for moving from a d; and d, dimensions to k dimensions, and thus no loss of
information is suffered. A dimensionality reduction is done by removing the less
significant (non-zero) singular values in 3, which entails a loss of information.

Weighting unseen conjuctions Projecting our feature vectors to a lower-dimensional
vector means projecting similar elementary features to the same dimension and thus
similar feature conjunctions will have similar weights. This ability is an important
aspect of our method that will allow us to utilize unseen feature conjunctions for
prediction.

Choice of unfolding Recall that our parameter matrix W is a matricized higher
order tensor. In this case, we can view the way we unfold W as a way of implying
the kind of latent projections that will be induced by the low-rank regularization.
Depending on the task, some configurations might be more beneficial than others.

3.3 Low-Rank Learning

29

3.3.1.2. Nuclear norm regularization

Optimizing with a low-rank regularizer leads us to a non-convex problem. There-
fore, we make use of a convex relaxation based on the nuclear norm (Srebro and
Shraibman, 2005). The nuclear norm of a matrix W, denoted ||W||,, is the sum of
its singular values:

W => Zii
i

where W = UX V' is the singular value decomposition of W. This norm has been
used in a number of applications in machine learning as a convex surrogate for
imposing low rank, e.g. in Srebro et al. (2005). With this relaxation, our final
objective function is

argmin Z —log Pr(y|z; W) + 7[|W||. . (3.16)
W (@yer

3.3.2 Optimization

A convex objective function (Equation 3.16) allows the use of different convex
optimization methods. In this thesis, we use a simple optimization scheme known as
forward-backward splitting (FOBOS) (Duchi and Singer, 2009), mainly for its ease
of implementation and its flexibility to be adapted for different tasks.

In a series of iterations, this algorithm performs a gradient update followed by a
proximal projection of the parameters, as shown in Algorithm 1. The proximal
projection (line 6 of Algorithm 1) projects the parameters W to take into account
the regularization penalty R that is defined by our objective function (see Equation
3.13). For example, for /; it thresholds the parameters, for /5 it scales them, and for
nuclear norm regularization it thresholds the singular values — as shown in Algorithm
2.

Hyperparameters The algorithm have three hyperparameters input: learning rate
7, regularization factor 7 and maximum number of iterations 7. Setting the value
of maximum number of iterations is trivial, it will not affect the result of the
optimization in each iteration. Depending on the task, some models might need
more iterations than others before converging. Practically, in our case, we implement
such that we can continue the optimization process from the last result of previous
optimization process. This allows us to begin the experiment with few iterations and
then continue with more afterwards, in case we observe that it has not converged.
The learning rate controls how big is the step size in each iteration. Notice here
that the algorithm uses a decaying step size, so the step size will become smaller
each iteration. So specifying a too small learning rate might cause the step size to
be very close to zero in the final iterations. In general, using a too low learning

3.3 Low-Rank Learning

30

N O 1 A WD =

Algorithm 1: FOBOS

Data: 7 (learning rate), 7 (regularization factor), 7' (max iterations)
Result: W

initialize W as zero matrix ;
fort =0...7-1do
compute step size 7, = \/2T1 ;

compute gradient g(W,) of loss L at W ;

update Wy o5 = Wy — :.8(Wy);

W1 = update Wy, 5 to take into account the regularization penalty R;
end

Algorithm 2: Nuclear Norm Proximal Projection for FOBOS

Data: n;, 7, Wii05

Result: W,

compute SVD W g5 = UEVT ;

define a new matrix ¥ with diagonal elements 6; = max(o; — n;7,0) ;
set Wy = uxv’ ;

rate the improvement will be slow, while using a too high learning rate will decay
the loss faster, but can cause the parameters to move erratically and thus unable
to settle in the optimal point. In some of our experiments, instead of setting the
learning rate, we uses a line search to find the best step size to use at each iteration.
The effect of regularization factor can be seen in difference between training and
validation performances. When the validation performance is far below training,
it indicates overfitting and thus a higher regularization factor might be needed.
However, this might also indicate insufficient training data, which in many of our
experiments—-where we use only a small portion of the training data—is a possibility.
One way of choosing a good regularization factor is a greedy approach; start with a
low value and increase it until we don’t see an increase in validation performance.

3.3.2.1. Sparse implementation of FOBOS

With nuclear norm regularization, the FOBOS algorithm requires the calculation of
SVD decomposition of the W matrix in each iteration. Depending on the choice of
technology used for implementing the algorithm, full SVD routines can be memory-
intensive. Moreover, when the size W is large-which will be the case with high-
dimensional feature spaces—it might be impossible to fit the full W matrix in memory.
Therefore, we apply minor modifications to the algorithm for a sparse implementa-
tion version that does not require full SVD computation and does not require fitting
the full W in memory.

3.3 Low-Rank Learning

31

g Hh W N =

O 0 NN O

11
12

Algorithm 3: Sparse Plus Low Rank (SPLR) SVD

Data: L € R4*k R ¢ RF*92 § ¢ R4*% k maxiter // A =S+ LR
Result: U, X, V

initialize U, ¥ and V as zero matrices ;

fori=1...kdo

xo = random R% ;

for j = 1... maxiter do

compute x;: // x; = AT Ax;_4

x; =S (Sx;) + ST (L(Rx;)) — ST(UZ)(Vx;))+
RT(L'(Sx;)) + RT(LT(L(Rx;))) - RT(LT(UD)(V'x,)))—
(UZ))(8xy)) - V((UZ) ")(L(Rx;)))+

v((Uun)'
V((UD)) ((UD)(Vx:)));

end

vi =X;/[1%;]| 5

A;v;, =Sv; + L(RVZ) — (UE)(VTVZ> ;

o = [|[Avil ;

u; = AVZ‘/O'Z' 5

Ul:,i] = u,[;,0]; V[;,1] = v4[;,0]; X[i,i] = o5 ;
end

In principle, the implementation is based on decomposing the W matrix and per-
forming an SVD designed especially for matrices that can be decomposed as a sum
of a sparse matrix and a low-rank matrix.

Decomposing W We define a decomposition of W € R%*% with rank & into
vectors with lower dimensions based on its SVD decomposition:

W= (Ux)V' | (3.17)
=LR |, (3.18)

with L € R®** and R € R¥*?, For a sparse space, one can assume that the actual
rank of W is much less than either d; or do. With some modifications to the original
algorithm, we can avoid the need of creating the full W, such that we only need to
fit L and R into memory. For instance, we can calculate the score by first computing
the projection of each side, i.e. (¢;(x,y) L) and (R ¢, (z,y)).

Sparse plus low rank SVD To perform an SVD, we employ the power method (Golub
and Van der Vorst, 2000) where we compute one singular vector and value at a time.
The algorithm is designed to perform SVD on matrices that can be represented as
a sum of a sparse matrix and a low rank matrix. We refer to such SVD as a Sparse

3.3 Low-Rank Learning

32

O 0 N U A WwN =

Algorithm 4: Modified FOBOS for sparse implementation

Data: n (learning rate), 7 (regularization factor), 7' (max iteration), k& (rank)
Result: L, Rt

initialize Ly and Ry as zero matrix ;

fort =0...7-1do
compute gradient g(L;, R;) of loss L at L, Ry ;
compute step size 1; = \/% ;
compute sparse gradient matrix S; = —ng(L;, Ry) ;
compute SVD U, ¥,V = svdsplr(L¢, Ry, S¢, k) ;
threshold : &; = max(o; — (min(oy € X)),0) ;
update Ly, = UX;
update Ry, =V ;

end

Plus Low Rank (SPLR) SVD (Algorithm 3). In this case, it considers the input matrix
W05 as a sum of two matrices:

Witos = Wy —nig(Wy)
= (UZ) V' —ng(Wy)
—LR+S ,

where S is the sparse gradient g(W,) matrix. The gradient matrix is sparse due to
the fact that it is calculated based on our loss function (Equation 3.12) that only
takes into account conjunctions that are seen in the training set. In practice, even
though S is of size d; x ds, we can store it as a sparse matrix, for which almost every
commonly used programming languages allows a memory-efficient storage.

With the above modifications, we can rewrite the algorithm as shown in Algorithm
4. Note that we design this modification only with memory limitation in mind,
disregarding its possible effect to speed. Duchi and Singer (2009) proposed a
method for efficient implementation in high dimensions that relies on a lazy update
for W elements whose gradient are zero. However, it is inapplicable for low-rank
regularization since, after the projection, even elements with gradient zero might
change in value and become non-zero.

3.3.2.2. Evaluating Sparse Implementation of FOBOS

In this section, we would like to know the effect of using the sparse implementation to
the performance of the model. The goal is to compare the standard implementation
and the sparse implementation. Knowing the limitations and benefits of both
implementations can help in: (i) choosing the implementation to use according to
the experimental constraints and (ii) further improve the implementation of our
method.

3.3 Low-Rank Learning

33

2.,896.42
—%— Standard)
~ 2500 | ©- Sparse
/A
= i
=
g 1500
z 34
> i E
3
g 422 :
500 |- ; o) 8
= i 190.37 19459 20796 205 2T g OR.02
18§54 1801 19069 19667 21314 28971 | i
50 100 200 400 800 1600 3200 6400
d (parameter matrix size = d X d)
a: Maximum memory usage
27
—»— Standard f
150 @+ Sparse
3
= ®
S 100 | 14.61
&
k=i
o 50|
E
F
052 0,63 0,66 0,78 ,
0%4 0.75 0.81 0.97 151 | |
50 100 200 400 800 1600 3200 6400
d (parameter matrix size = d X d)
b: Average time per iteration
Fig. 3.1.: Maximum memory used and average time per iteration using standard implemen-

tation and sparse implementation for data with varying matrix size. Parameter
matrix rank = 5, number of iterations = 5, maxIter for SPLR SVD = 1, number of
training data = 100.

3.3 Low-Rank Learning

34

T T T T T T
I 2,299.4 2,311.91 2,319.21 2,323.9 2,323.37 2,323.62 2,324.15

o 2500
S 2,098.05
= 1,95M
a2 Y |
°
. -9 1,167.18 H=7L-nd L o RTTIEE [0)
E 0., oozs1 103852 LOSIA 10972 gl ©
= 920.52 TrgTh O -eereet
3 (O —»— Standard
E 00 | | | | | | O Sparse
5
5 10 20 40 80 160 320 640 1280
Rank
a: Maximum memory usage
2.712.23
2500 —— Standard R
@ - Sparse :
£ 2000 [S
=
o
8 1500 |- 1
£
- 1000 - 75029]
= .0
= 500 S - 357.35" .
708 10296 13572 14968 17843 2504490 5
11258 11?64 125.33 12852 130.54 131.03 130.97 131.03 13].21
5 10 20 40 80 160 320 640 1280

Rank
b: Average time per iteration

Fig. 3.2.: Maximum memory used and average time per iteration using standard implemen-
tation and sparse implementation for data with varying matrix gradient rank.
Parameter matrix size = 5000 x 5000, number of iterations = 5, maxIter for SPLR
SVD = 1, number of training data = 100.

3.3 Low-Rank Learning

We have implemented both variants of the FOBOS algorithm (standard and sparse)
in python! and train models in the form described in Chapter 4 from randomly
generated training data. First, we compare the maximum memories used and time
per iteration needed to train models with parameter matrix of varying sizes. In Figure
3.1, we can see that as the size of the parameter matrix expands, the difference
of required memories between the two implementations becomes more significant.
The time required to run one iteration, on the other hand, do not show a significant
difference.

Nevertheless, it is important to note that in Figure 3.1, we fix the underlying rank
of the parameter matrix to be quite small, i.e. 5. As we can see from Algorithm 3,
the factorization for the sparse implementation performs one iteration for each rank,
thus we can expect that it will take longer time to factorize matrices with higher
rank. Such observation is shown in Figure 3.2, where this time we fix the parameter
matrix size and vary the underlying rank instead. Figure 3.2b shows that the time
required for the standard implementation is consistent throughout varying ranks,
but it is almost exponential for the sparse implementation.

In terms of memory usage, we observe a consistent trend in which the sparse
implementation requires less memory than the standard implementation. The
standard implementation stores a dense parameter matrix and thus requires more or
less the same memory regardless of the rank. Meanwhile the sparse implementation
kept the factorized parameter matrices whose size depends on the rank, and thus
we can see that the memory requirement increases as the rank increases, as shown
in Figure 3.2a.

As for the performance differences, there is almost no difference for the data we use
in the above experiments, as shown in Figure 3.3. We show the final score of the
objective function after five iterations, and we can see that the difference between
the two implementations is very small.

From these results, it is clear that there is a significant tradeoff between memory
and time required to train models with different implementations. When memory is
not an issue, the standard implementation is preferred. But when memory is limited,
the sparse implementation can be used to cut down the memory usage up to more
than half of the standard implementation. Note also that in the case of the sparse
implementation, we need to specify the rank & as an input to the algorithm, which-as
we can see in Figure 3.2-will affect the memory usage and time. In our experiment
in the following section (see Figure 4.6), only few intrinsic dimensions, hence small
rank, is required to obtain a good performance, and thus we can experiment using
small values of k for a more efficient memory usage and a faster computation.

Thttps://www.python.org

3.3 Low-Rank Learning

36

| 10.97710 |
1280 7 G 7 G 722222222 0.97670

640

7 7

NN

TIII I I I I I I I I I I I IS 7177711 I 7177777777 77777777

7:::::::::::::::::::::::::::::::3::::::::::3:::::::::::::ZZ:::::::::::::::‘ 090370 |
160 720072 0.90330

77
12T I I I 7777 7777777777777 .

Rank
®
S

|
T

[0.01100 i
105 0.01090

] 0.44780
222222.2.2 0.44770

| | | | | |
0 01 02 03 04 05 06 07 08 09 1 1.1
Objective

Standard Sparse

Fig. 3.3.: Final objective after 5 iterations using standard implementation and sparse im-
plementation for data with varying parameter matrix gradient rank. Parameter
matrix size = 5000 x 5000, maxIter for SPLR SVD = 1, number of training data =
100.

3.3 Low-Rank Learning

3.4

Of course, one thing to remember is that these implementations might not be the
most efficient implementations, and with better implementation strategies, it is
possible to improve the performances further.

Conclusion

In summary, this chapter describes the method of low-rank regularization for sparse
conjunctive feature spaces. Our method combines available techniques to compose
an effective way of utilizing sparse conjunctive feature spaces. The strategy is based
on representing our parameter space as tensor and imposing a low-rank penalty to
learn the parameter tensor. In this case, the notion of rank is defined as the rank of
the matricized tensor.

The low-rank penalty serves as a way of controlling the capacity of the model while
at the same time allowing the model to give weights to unseen feature conjunctions.
With such capability, our model has an advantage in generalizing to new examples—
where most of the conjunctions will be unseen in the training set—-compared to
standard regularizations such as ¢; or /5.

Moreover, our method employs a convex learning objective, making it possible to
train the model using different convex optimization methods. In this chapter, we
present a simple optimization method and discuss its implementation details.

We detailed two implementation strategies that adopted either a dense or a sparse
approach in storing and processing the parameter matrices. We showed empirical
performance comparisons between the two implementations and observed that the
sparse implementation is a plausible alternative for training models with larger
parameter matrices when memory is limited.

3.4 Conclusion

38

4.1

Low Rank Regularization for
Named Entity Classification

The content of this chapter is mainly published in Primadhanty et al. (2015).

In this chapter, we apply low-rank regularization on Named Entity (NE) classification
task. We propose the use of “seed” set as a form of minimal supervision and introduce
a new evaluation framework for such task that focuses only on unseen named entities.
Empirical experiments show that low-rank regularization performs better than ¢;
and /5 regularizer on sparse conjunctive feature spaces.

The organization of this chapter is as follows. In Section 4.1, we will introduce
the task of NE classification. We then continue by describing the specific low-rank
models with minimal supervision for NE classification in Section 4.2 and report
experimental results in Section 4.3. Finally we summarize our findings and conclude
our analysis in Section 4.4.

Introduction

Sentence 1 [Barack Hussein Obama II] is the 44th and current President of
the United States, ...

Sentence 2 Born in Honolulu, Hawaii, [Obama] is a graduate of Columbia
University and Harvard Law School, ...

Fig. 4.1.: Sentences annotated with named entity of type PERSON.

Entities are instances of predefined categories that represent real life objects, such
as names of organizations, persons, locations, etc. Information about entities and
their relations can help in different Natural Language Processing (NLP) related tasks,
such as question answering, ontology learning, biomedical information extraction or
machine translation. Being able to identify such entities in text documents is key
to understanding the content of the document. During the Message Understanding
Conference-6 (MUC-6) (Grishman and Sundheim, 1996), such task was introduced
as a sub-task of Information Extraction (IE), and hencefort gained popularity.

An entity mention is a phrase in a sentence that refers to an entity. For example,
both sentences! 1 and 2 in Figure 4.1 contain a mention of entity “Barack Obama”,
even though the phrases that refer to the entity are not identical.

!Obtained from http://en.wikipedia.org/wiki/Barack_Obama

39

The categories in which entities belong are called entity types, which can be any
possible grouping of the entities. For example we can define that the entity “Barack
Obama” has an entity type PERSON together with other entities referring to a person
name, or we can define that it has an entity type PRESIDENT together with other
entities referring to a president of a country.

The goal of Named Entity Recognition and Classification task (NERC) is to identify
mentions of entities in a text and label them with one of several predefined entity
types. One can use an annotated training set and train a model that learns the
characteristics, distributions, or a set of statistical rules and patterns that distinguish
a named entity and use it to annotate other unlabeled data.

Named Entity classification task As the name suggests, it is possible to view NERC
as two separate sub-tasks: (i) NE recognition and (ii) NE classification. One might
devise a method that tries to do both at the same time, or develop two different
strategies to tackle them. In this thesis, we focus only on the task of classification,
that is, we assume that the candidate entities are given to the system, similar to
Elsner et al. (2009); Fleischman (2001); Fleischman and Hovy (2002). Nevertheless,
the classification task we consider introduces an extra challenge; we consider that
the candidate entities also include “noise”. That is, the system responsible in
performing the NE recognition might also extract non-entities. Therefore, the goals
of our classifier are twofold: determine whether a candidate is an entity and—if it
is—determine to which entity type it belongs.

Evaluation of unseen entities There are two aspects of the problem of NERC, one
is the ambiguity of entities with respect to their semantic class and another is
recognition of unseen named entities. In corpora with unambiguous entities, the
more crucial problem is on recognizing words that we have never seen during
training as named entities. For example, in the case of recognizing treatments and
conditions in a medical domain corpus, we can assume that in general there is not
much ambiguity, i.e. a proper noun is either a condition (e.g. hemophilia, hepatitis,
anemia), a treatment (e.g. aspirin, wellbutrin, adderall) or none of those. With little
ambiguity amongst the entities, classifying seen entities is as trivial as memorizing
the labels of said entities in the training data. Therefore, in such cases, the real
challenge is in recognizing unseen entities. Moreover, when only a small number of
annotated data is available, most of the named entities that we will want to predict
in the unlabeled corpus will be unseen entities, and thus we would like to focus
more on tackling this challenge. Accordingly, we propose an evaluation setting that
focuses on measuring the performance of the model in classifying unseen entities.

4.1.1 Contributions

Finally, the specific contributions of this chapter are:

4.1 Introduction

40

* We describe a specific instance of our low-rank model for the task of NE
classification. We describe the conjunctive feature spaces we consider for this
task, as well as the scoring function that we apply on such feature spaces.

* We present a minimal supervision strategy to build the training data for
NE classification task. The minimal supervision strategy is based on the
assumption that the corpus presents little ambiguity. We show how such
ambiguity assumption holds in the dataset we use.

* We evaluate the performance of state-of-the-art NERC systems on unseen
entities only. Such evaluation drops performances of the systems significantly,
implying that classifying unseen entities is an important challenge.

* We conduct experiments to show that the proposed regularization frame-
work is better for sparse conjunctive feature spaces than standard ¢; and /5
regularization.

4.2 Low-Rank Named Entity Classification Models with

Minimal Supervision

In this section, we describe a specific implementation of our low-rank regularization
model for the task of named entity classification. First, in Section 4.2.1 we describe
the setting of minimal supervision to build the training set used for learning the
model. Then in Section 4.2.1, we describe the model.

4.2.1 Minimal Supervision for Named Entity Classification

To reduce annotation efforts, we propose the use of minimal supervision to gather
training data. Our minimal supervision setting is based on the assumption that the
data presents little ambiguity. With such assumption, we also propose to focus the
evaluation of NE classifiers in its ability to classify unseen entities.

To do supervised learning of our model, a training set containing annotated data
is required. Instead of annotating documents to build the training set, we propose
the use of seed set. A seed set contains examples of named entities for each of our
predefined entity types.

Generating training data This minimal supervision setting is based on the assump-
tion that entities are unambiguous. In such case, we can expect every occurrence
of the seed entities in the unlabeled text to be example mentions of the seeds. For
example, having a seed ‘John Doe” for type person, we expect all occurrences of
‘John Doe” in the text to refer to a person. Therefore, we can can extract them as a
positive training data add it to the training set. Meanwhile, for as training data for
non-entities, we use single nouns that are not part of any examples in the seed set.

4.2 Low-Rank Named Entity Classification Models with Minimal Supervision

41

Assuming that each seed entity will have numerous occurrences in the unlabeled
corpus, we can gather a considerable amount of training data by using only a handful
examples. Such requirement is more practical compared to manually annotating the
unlabeled documents.

In the literatures, this approach is also commonly used for a semi-supervised learning
such as bootstrapping (self-training/co-training) (Blum and Mitchell, 1998; Mitchell,
1999; Yarowsky, 1995), in which the training set is iteratively expanded by adding
extraction results of the classifiers in the previous iteration.

4.2.2 Low-rank Named Entity Classification Models

In this section, we describe a specific family of low-rank models for classifying entity.
We define as input a candidate entity tuple x = (, e, r) with its respective entity
mention e and context information, which consists of its left [and right context r.
The goal is to classify x into one entity class y in the set)). We will use log-linear
models as described in Section 3.2 of the form shown in Equation 3.1, where ¢
are the parameters of this function that depends on the conjunctive feature space
defined for the model. We will describe below the space that uses information from
the left [and right contexts of the input tuple and then proceed to extend it into
utilizing the mention information e as well.

4.2.2.1. A Low-rank Model of Left-Right Contexts

We start from the observation that when representing tuple objects such as z =
(1, e,r) with features, we often depart from a feature representation of each element
of the tuple, i.e. elementary features. Hence, let ¢, and ¢, be two feature functions
representing left and right contexts, with binary dimensions d; and d, respectively.
For now, we will define a model that ignores the entity mention ¢ and makes
predictions using context features.

It is natural to define conjunctions of left and right features. Hence, in its most
general form, one can define a matrix W, € R%*% for each class, such that
6 = {W,},cy. Borrowing notations from Equation 3.9, we define ¢; and ¢, as
combinations of the elementary feature vectors ¢, and ¢, with the class indicator
feature vector ¢, (Equation 3.5). We can then define the score function as

89($7y) = ¢1($,y)TW¢2(I‘,y)) (41)
so((le,m),y) = ()T Wig.(r) @ ¢, (v)] (4.2)

with W being the matricized parameter tensor W’ € R%*dxI¥l in the conjunctive
feature space. To put it simply, W is a block matrix containing W, of every y.

4.2 Low-Rank Named Entity Classification Models with Minimal Supervision

42

4.3

4.2.2.2. Adding Entity Features

The model above classifies entities based only on the context. Here we extend it to
make use of features of the entity mention itself. Let 7 be a set of possible entity
feature tags, i.e. tags that describe an entity, such as ISCAPITALIZED, CONTAINSDIGITS,
SINGLETOKEN, ... Let ¢, be a feature function representing entities. For this case,
to simplify our expression, we will use a set notation and denote by ¢.(e) C T the
set of feature tags that describe e. Our model will be defined with one parameter
matrix per feature tag, i.e. 6 = {W;},c7. The model form is:

so(ler)y) = D d) Wil (r) @ dy(y)] (4.3)

t€d.(e,y)

where in this case W consists of W; of every .

4.2.2.3. Learning with Low-rank Constraints

Both scoring functions in Equation 4.2 and Equation 4.3 are specialized instances of
Equation 3.9, and thus learning the parameters (as described in Section 3.3) requires
the matricization of the parameter tensor. In the case of Equation 4.2, we will have
the parameter W as a matricized matrix corresponding to a tensor in the space of
¢, ¢, and ¢,. In this case, we have several options of unfolding the parameter
tensor; we can either group the context together, or separate them (combining one
with the class parameter). Meanwhile, Equation 4.3 introduces an additional tensor
dimension (i.e. ¢,) to the parameter tensor, thus increasing the options of possible
unfoldings. We now have a tensor with up to four axes, namely left and right context
representations, entity features, and entity classes.

Although the equations above show specific ways of unfolding the tensor, we can
choose a different unfoldings for the same feature space. In general, different ways
of partitioning the tensor axes will lead to different notions of intrinsic dimensions.
In our case we choose the left context axes as the row dimension, and the rest of
axes as the column dimension, i.e. ¢; = ¢, and ¢y = ¢, ® ¢, @ ¢,. In preliminary
experiments we tried variations, such as having right prefixes in the columns, and left
prefixes, entity tags and classes in the rows. We only observed minor, non-significant
variations in the results.

Experiments

In this section we evaluate our regularization framework for training models in
high-dimensional sparse conjunctive feature spaces. We run experiments on learning
entity classifiers with minimal supervision. We focus on classification of unseen
entities to highlight the ability of the regularizer to generalize over conjunctions that

4.3 Experiments

43

Nb Mentions

Class 10-30 Seed
10-30 40-120 640-1920 All

PER clinton, dole, arafat, yeltsin, wasim akram, 334 747 3,133 6,516
lebed, dutroux, waqgar younis, mushtaq
ahmed, croft

LOC u.s., england, germany, britain, australia, 1,384 2,885 5,812 6,159
france, spain, pakistan, italy, china

ORG reuters, u.n., oakland, puk, osce, cincin- 295 699 3,435 5,271
nati, eu, nato, ajax, honda

MISC russian, german, british, french, dutch, en- 611 1326 3,085 3,205
glish, israeli, european, iraqi, australian

0] year, percent, thursday, government, po- 5,326 11,595 31,071 36,673

lice, results, tuesday, soccer, president,
monday, friday, people, minister, sunday,
division, week, time, state, market, years,
officials, group, company, saturday, match,
at, world, home, august, standings

Tab. 4.1.: For each entity class, the seed of entities for the 10-30 set, together with the
number of mentions in the training data that involve entities in the seed for
various sizes of the seeds.

are not observed at training. We perform our experiments using CoNLL-2003 Shared
Task data (Tjong Kim Sang and De Meulder, 2003), and compare the performance
to /1 and /5 regularizers, as well as with state-of-the-art systems.

4.3.1 Task Definition and Evaluation Metric

We define a named entity classification task with minimal supervision. In this task,
we are given a list of named entities (i.e. seed) for each entity class and a corpus
of unlabeled documents as input. The goal is to learn from it and train a model
to classify possible mentions of named entities in a text. During test time, we are
given candidates of named entity mention and the context in which they appear.
These candidates may also include non-entity mentions. Therefore, the goals of the
classifier can be described as two steps classification; first classifying if a candidate
is entity or non-entity, and then, for those that are classified as entity, classifying it
as one of the predefined entity types.

We evaluate the performance of models by measuring their performance on unseen
entities. We use of precision, recall and F1 score as the evaluation metric. Precision
measures the proportion of predictions that are correct. Recall measures the propor-
tion of the true annotations that are retrieved. F1 score is the harmonic mean of
recall and precision.

4.3 Experiments

44

training dev. test
PER 6,516 (3,489) | 1,040 (762) | 1,342 (925)
LOC 6,159 (987) 176 (128) 246 (160)
ORG | 5,271 (2,149) 400 (273) 638 (358)
MISC | 3,205 (760) 177 (142) 213 (152)
0 36,673 (5,821) 951 (671) 995 (675)

Tab. 4.2.: The number of mentions (and number of unique candidates in parenthesis) for
each entity type of CONLL-2003 data used in our experiments.

4.3.2 Data and Setting

We use the CoNLL-2003 English data, which is annotated with four types: person
(PER), location (LOC), organization (ORG), and miscellaneous (MISC). In addition,
the data is tagged with parts-of-speech (PoS), and we compute word clusters running
the Brown clustering algorithm (Brown et al., 1992) on the words in the training
set.

Candidate entities Similar to Elsner et al. (2009), we extract all strings in NE
tags as our entity mentions. We add single nouns that are not part of an entity as
non-entities mentions. Accordingly, we add a new label “O” to denote non-entity
type. Both entity and non-entities mentions will be referred to as candidates in the
remaining of this section.

Minimal supervision setting To create the seed set for the minimal supervision
setting, we select the most frequent non-ambiguous mentions in our training set.
We lowercase all candidates and remove the ambiguous ones (i.e., those with more
than one label in different mentions). Then we create supervision seeds by picking
the N most frequent training candidates for entity types, and the M most frequent
candidate non-entities. We create seeds of various sizes N-M, namely 10-30, 40-
120, 640-1920, as well as all of the candidates. For each seed set, the training set
will contain all training candidates that involve entities in the seed. Table 4.1 shows
the smaller seed, as well as the number of mentions for each seed size.

Evaluation For evaluation we use the development and test sections of the data.
To evaluate on unseen entities, we exclude all candidates that match the training
seed (i.e., that are in the all seed) from the development and test data. We do not
remove ambiguous instances from the tests. As evaluation metric we use the average
F1 score computed over all entity types, excluding the non-entity type. Note that
this implies a baseline that always predicts non-entity (i.e. the most frequent class)
will obtain an F1 score of zero.

After removing the ambiguous candidates from the training data, and removing
candidates seen in the training from the development and test sets, the number of

4.3 Experiments

45

mentions (and number of unique candidates in parenthesis) in the data used in our
experiments is shown in Table 4.2

. Bag-of-words N-grams

Features Window Lexical Cluster || Lexical Cluster

1 13.63 14.59 13.63 14.59

iﬁ‘gfgﬁ:}i‘ges of left 2 1549 13.86 | 13.08 13.54
3 12.18 14.45 12.14 13.28

Only full conjunctions of 1 12.90 13.75 12.90 13.75
left and right contexts 2 8.59 8.85 12.31 12.43
3 8.57 10.59 10.15 10.49

Elementary features and all 1 15.30 16.98 15.30 16.98
conjunctions of left and 2 13.26 12.89 14.28 15.33
right contexts 3 11.87 11.54 13.94 13.15

Tab. 4.3.: Average-F1 of classification of unseen entity candidates on development data,
using the 10-30 training seed and /> regularization, for different conjunctive
spaces (elementary only, full conjunctions, all). Bag-of-words elementary fea-
tures contain all clusters/PoS in separate windows to the left and to the right of
the candidate. N-grams elementary features contain all n-grams of clusters/PoS
in separate left and right windows (e.g. for size 3 it includes unigrams, bigrams
and trigrams on each side).

Elementary features We refer to context as the sequence of tokens before (left
context) and after (right context) a candidate mention in a sentence. Different
classifiers can be built using different representations of the contexts. For example
we can change the window size of the context sequence (i.e., for a window size of 1
we only use the last token before the mention and the first token after the mention).
We can treat the left and right contexts independently of each other, we can treat
them as a unique combination, or we can use both. We can also choose to use the
word form of a token, its PoS tag, a word cluster, or a combination of these.

Table 4.3 compares different context representations and their performance in
classifying unseen candidates using maximum-entropy classifiers trained with Mallet
McCallum (2002) with /5 regularization, using the 10-30 seed. We use the lexical
representation (the word itself) and a word cluster representation of the context
tokens and use a window size of one to three. We use two types of features: bag-
of-words features (1-grams of tokens in the specified window) and n-gram features
(with n smaller or equal to the window size).

The performance of using word clusters is comparable, and sometimes better, to
using lexical representations. Moreover, using a longer window, in this case, does
not necessarily result in better performance. In the rest of the experiments we will
use the elementary features that are more predictive and compact for our context:
clusters and PoS tags in windows of size at most 2.

To represent an entity candidate we use standard traits of the spelling of the mention,
such as capitalization, the existence of symbols, as well as the number of tokens

4.3 Experiments

46

cap=1, cap=2 :

whether the first letter of the entity candidate is uppercase, or not
all-low=1, all-low=0 :

whether all letters of the candidate are lowercase letters, or not
all-cap1=1, all-cap1=0 :

whether all letters of the candidate are uppercase letters, or not
all-cap2=1, all-cap2=0 :

whether all letters of the candidate are uppercase letters and periods, or not

num-tokens=1, num-tokens=2, num-tok>2 :
whether the candidate consists of one token, two or more

dummy :
a tag that holds for any entity candidate, used to capture context features
alone

Fig. 4.2.: The 12 entity tags used to represent entity candidates. The tags all-capl and
all-cap2 are from Neelakantan and Collins (2014a).

CoNLL 2003 Eng CoNLL 2003 Deu CAp 2017 Fr

190 118 107
10, 449 10,464 3,550
[l All entities [[] Ambiguous entities

Fig. 4.3.: Proportion of ambiguous entity mentions in various NER datasets, in different
languages; English (CoNLL 2003 Eng), German (CoNLL 2003 Deu) and French
(CAp 2017 Fr). The numbers correspond to unique mentions (case-insensitive)
tagged as named entities in the datasets.

in the candidate. See Figure 4.2 for the definition of the features describing entity

candidates.

4.3.3 Ambiguity Assumptions on CoNLL-2003 Data

Our minimal supervision setting relies on the assumption that the data have little
ambiguity. We are also evaluating on unseen entities assuming that seen entities will
always have the same label, hence not an interesting problem to evaluate. In this
section, we examine closer such assumptions on the data we use in our experiments;
CoNLL-2003 data.

4.3.3.1. Unambiguous seed set for building training data

The ambiguity assumption in the seed set is that the same mentions of a named
entity will always have the same label. Therefore, we extract all mentions—strings

4.3 Experiments

47

train testa testb train
1,391
8,082 o 2,809 2,637 931 8,082

ambiguous ambiguous
108 (7.76%) 119 (12.78%)

Fig. 4.4.: Proportion of ambiguous entity mentions in seen entities in the development
and test set of CoONLL-2003 data. The numbers corresponds to unique mentions
(case-sensitive) of entities tagged as PER, LOC, ORG or MISC in the dataset.

in NE tags—in the data and compare the labels of mentions of the same entity. We
group the mentions in a case-insensitive manner, because our seed set is also used in
the same way. We consider entities that have more than one label as an ambiguous
entity. Here we only consider entities labeled as 'PER’, 'LOC’, ’'ORG’ and 'MISC’, as in
the original dataset.

Figure 4.3 shows the proportion of ambiguous entities in the CoNLL 2003 English
corpus that we use in our experiments. We can see that there is less than 3%
ambiguity, which implies that using a seed set in this corpus will result in a reliable
training data; there is little chance that the seed will include a false example from
the corpus. In addition, we also computed entity mention ambiguities in two other
NERC datasets with different languages (CoNLL 2003 German Corpus and CAp 2017
French Corpus (Lopez et al., 2017)), as shown in Figure 4.3. The CoNLL 2003
German dataset is similar to the English dataset; it contains entities tagged with
the same labels as the CoNLL 2003 English dataset. The CAp 2017 French dataset
is comprised of tweets written in French, tagged with 13 labels including Person,
Location, Organization, Product, Event, etc. For these two other datasets, we also
observed that the amount of ambiguous entities is less than 4% of all unique entities
in the corpus. This shows that the strategy of using seed set might also work in other
datasets in different languages and domains.

4.3.3.2. Unambiguous evaluation for seen entities

The notion of unambiguity also motivates the evaluation on unseen entities. We
assume that for seen entities, it is sufficient to memorize their labels from the training
set to be able to correctly classify them in test time. In this case we compare labels
of mentions between the training and development/test set. This time, we compare

4.3 Experiments

48

the mentions in a case-sensitive manner. We simulate the real scenario of model
prediction where the capitalization of a mention might change the prediction?.

Figure 4.4 shows the proportion of seen entities, which is around 50% of the
development set, and around 35% of the test set. Among those that are seen only
8-13% are ambiguous. This means, by just memorizing the labels in the train set,
we can correctly classify around 90% of the seen entities, showing that ambiguity is
not the main challenge in this dataset. Therefore, it is more informative to evaluate
the system on its ability to classify unseen entities. Moreover, seeing how 50% or
more of the development and test set are unseen in this corpus, having a model that
performs well on those entities is crucial.

2The baseline of CoNLL 2003 NERC task was obtained by memorizing the most frequent label of
mentions in the train set, and was also done in a case-sensitive manner, i.e. the capitalization of a
mention can change its prediction result.

4.3 Experiments 49

F1

Fl unseen
Ma and Hovy (2016) 91.21 -
Luo et al. (2015) 91.20 -
Lample et al. (2016) 90.94 -
(reproduction) (90.62) (83.28)
Collobert et al. (2011) 89.59 -
(reproduction) (87.77) (78.15)
Florian et al. (2003) 88.76 79.66
Chieu and Ng (2002) 88.31 78.36
Klein et al. (2003) 86.31 75.34
Zhang and Johnson (2003) 85.50 73.64
Carreras et al. (2003a) 85.00 72.96
Curran and Clark (2003) 84.89 72.22
Mayfield et al. (2003) 84.67 72.07
Carreras et al. (2003b) 84.30 69.43
McCallum and Li (2003b) 84.04 71.27
Bender et al. (2003) 83.92 70.37
Munro et al. (2003) 82.50 68.00
Wu et al. (2003) 81.70 66.10
Whitelaw and Patrick (2003) 79.78 62.01
Hendrickx and van den Bosch (2003) 78.20 59.43
De Meulder and Daelemans (2003) 76.97 56.39
Hammerton (2003) 60.15 14.39

Our model

L, 61.06 52.63
L, + gazetteers 78.51 60.26

Tab. 4.4.: Evaluation of NERC systems on CoNLL-2003 dataset.

4.3 Experiments 50

sjuswedxy €

IS

lex | pos | aff | pre | ort | gaz | chu | pat | cas | tri | bag | quo | doc | unl | cem | clu | kb
Ma and Hovy (2016) + ¥
Luo et al. (2015) + + + ¥ ¥ T T T
Lample et al. (2016) + ¥
Collobert et al. (2011) + ¥
Florian et al. (2003) + + + + + + + +
Chieu and Ng (2002) + + + |+ + + + + +
Klein et al. (2003) + + + +
Zhang and Johnson (2003) + + + | + + + +
Carreras et al. (2003a) + + + + + + + + + | +
Curran and Clark (2003) + + + | + + + + + +
Mayfield et al. (2003) + + + | + + + +
Carreras et al. (2003b) + + + + + +
McCallum and Li (2003b) + + + + +
Bender et al. (2003) + + + + + + +
Munro et al. (2003) + |+ + + + + + | +
Wu et al. (2003) + + + + + +
Whitelaw and Patrick (2003) + + +
Hendrickx and van den Bosch (2003) | + + + | + + + + +
De Meulder and Daelemans (2003) + + + + + + + +
Hammerton (2003) + + + +
L, + + +
(. +gaz + + | + +

Tab. 4.5.: Features used by NERC systems on CoNLL-2003 dataset. Aff: affix information (n-grams); bag: bag of words; cas: global case information; cem:
character embeddings; chu: chunk tags; clu: word clusters; doc: global document information; gaz: gazetteers; kb: knowledge base; lex: lexical
features; ort: orthographic information; pat: orthographic patterns (like Aa0); pos: part-of-speech tags; pre:previously predicted NE tags; quo: flag
signing that the word is between quotes; tri: trigger words; unl: unlabeled dataset .

4.3.4 Evaluation of Unseen Entities on State-of-The-Art
Systems

To see the performance of state-of-the-art systems in unseen entities, we re-evaluate
their results as seen in Table 4.4. For Lample et al. (2016) and Collobert et al.
(2011), we tried to reproduce the results using the tool? provided by the authors
and obtained the F1 score as shown in brackets (i.e. 90.62 for Lample et al. (2016)).
We were not able to reproduce results by the newest systems Luo et al. (2015) and
Ma and Hovy (2016). We can see than evaluating on unseen entities causes the
performances to drop at by least 10 percent points in F1 score, with the exception
of the system by Lample et al. (2016) (their performance drops by 7 percent only).
This suggests that part of the success of state-of-the-art models is in storing known
entities together with their type (in the form of gazetteers or directly in lexicalized
parameters of the model), and that named entity classification for unseen entities is
still a challenging problem.

We list the different features that each system used in Table 4.5. Some approaches
that has been used to help identify unseen entities include using gazetteers, exploit-
ing similar structures of entity mentions and using labeled or unlabeled external
textual resources, as described below.

4.3.4.1. Strategies for unseen entities in SOTA

Gazetteers One of the most popular way of handling unseen entities is to use
gazetteers, as done by most systems participated in CoNLL 2003 Shared Task.
The list of known entities in a gazetteer can be helpful when its covers unseen
entities. In Florian et al. (2003), gazetteers reduces the F-measure error by a
factor of 15 to 21%. Unfortunately, in practice, gazetteers are not always available.
Moreover, creating ones that are meaningful for the task is not always trivial. For
example, De Meulder and Daelemans (2003) observed that their general-purpose
gazetteers, taken partially from the internet and partially hand-crafted, are ineffective
in increasing performance. They needed to create new gazetteers that are specific
to the dataset to increase the performance. Hendrickx and van den Bosch (2003)
also have a similar observation, incorporating gazetteers in their model help only
in some of the different test sets that they have. In addition, for entity types in a
very dynamic domain—e.g. electronic consumer goods, movies, etc— where there
can be new names of entities every month, a system that heavily relies on gazetteer
will not be able to recognize such new names unless the gazetteers are maintained
continuously.

SLample et al. (2016): https://github.com/clab/stack-Istm-ner, Collobert et al. (2011):
https://ronan.collobert.com/senna/

4.3 Experiments

52

601 o4 1 60 [5365
S e by 4281 2 42,727
S : & £ 38195
B R I 33,67~ H TG e
B o5 825..-"971g 2854 B 249 _._.-° -
b 251l T4 P B TR 8 -
g X, 12T] o il 20.72.- 0
< 42 = . b
-,
0 ‘ ‘ 0 \ |
10-30 40-120 640-1920 All 10-30 40-120 640-1920 All
Seed set Seed set

a: Only full conjunctions of left-right con- b: Only full conjunctions of entity tags and

texts (cluster), left-right contexts (cluster), window size
window size = 1 =1
66,94 56146
B 5616) B 74 9
60 004_10 _____ -+ 60 51§+7 -+
= 1 ot e 142 = 44109
> 36_(§7 ------ :li‘l'. _%(,)k%f'{ """""""" S OA58 - _37+4;B ‘ J‘()x’J‘ E
288 95917 B 2T
g X gl g o él
< [)(62 < x€2 [
—+-/, —+-/,
O | | O | |
10-30 40-120 640-1920 All 10-30 40-120 640-1920 All
Seed set Seed set

c: Elementary features and all conjunctions d: Elementary features and all conjunctions

of entity tags and left-right contexts (clus- of entity tags and left-right contexts (clus-
ter), window size = 1 ter), window size = 2
614,13 584
60 ST -+ 60 | 5456, .- PR3
= 45[16 = - 441
S 311 _._.- ALIA-T 3984 o 3 S 38|22 371077 3934 T
R T 2 0
g S 0 g I 11
z 201 e g < i e L2
-+- 4, -+- 4,
0 | | O | | ——
10-30 40-120 640-1920 All 10-30 40-120 640-1920 All
Seed set Seed set

e: Elementary features and all conjunctions f: Elementary features and all conjunctions
of entity tags and left-right contexts (clus- of entity tags and left-right contexts (clus-
ter & PoS), window size = 1 ter & PoS), window size = 2

Fig. 4.5.: Average F1 of classification of unseen entity candidates on development data,
with respect to the size of the seed. /1, ¢» and ¢, refers to models with different
regularizations. Each plot corresponds to a different conjunctive feature space
with respect to window size (1 or 2), context representation (cluster with/out
PoS), using entity features or not, and combining or not full conjunctions with
lower-order conjunctions and elementary features.

4.3 Experiments

Entity mention structure similarities Another popular approach to generalize to
unseen entities is by exploiting similar structure of entity names in certain domains.
For example, Munro et al. (2003) observed that bi-gram ‘ae’ and ‘gg’-in CoNLL
2003 training set and more generaly within English-almost always indicates a
named entity, due to etymological history of entity names in the language. Such
characteristics can be utilized to extract unseen entities with similar character n-
grams, prefix or suffix with seen ones. Most systems listed in Table 4.4—except
McCallum and Li (2003b) and Hammerton (2003)—incorporates such features in
their systems. Such features relies on the assumption that structure similarities exist
between entities in the domain. One cannot always assume names in each entity
type to share etymological history or other constraints that lead to such structure
regularities.

External labeled textual resources Some systems, such as Florian et al. (2003) and
Luo et al. (2015) also uses external textual resources that are labeled with the
same or similar named entities. Such resources can be used, for example, to train
other systems whose output can help the final classification, to expand the training
set, or to calculate important statistics as features of the model. An example of
commonly used labeled textual resources are Wikipedia articles, in which named
entity mentions are tagged by hyperlinks to their respective entities.

External unlabeled textual resources More recent systems are using external un-
labeled textual resources to create representation of words, such as Ma and Hovy
(2016) and Lample et al. (2016). A large corpus is typically required to obtain
an reliable independent representation of words. Therefore, it is common to use
pre-trained representations or embeddings of words, which were trained using an
external corpus that are available in large quantity and do not necessarily related to
the corpus that we will train and test our models.

4.3.5 Comparing Regularizers

In this section, we present a comparison of models using the nuclear norm regularizer
with baselines models. To examine the efficacy of such regularizer, we use standard
regularizers of ¢; and /5 for our baseline models. In all of the models (proposed
and baselines), we use the same feature sets and simply change the regularization

penalty.
To train each model, we validate the regularization parameter and the number of

iterations on development data, trying a wide range of values. The best performing
configuration is then used for the comparison.

4.3 Experiments

54

T T T T T 61173 T T 61'13
< 60| 5424 ekt
S 50,19 _.4+--+-"F5g14
= A '
2 LAt
S 401 #4393)
>, o
< }_’
20 28'22 | | | | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70

rank

Fig. 4.6.: Avg. F1 on development set for increasing dimensions, using the low-rank model
in Figure 4.5e trained with all seeds.

4.3.5.1. Results

Figure 4.5 shows results on the development set for different feature sets, including
contexts in the form bag of of word cluster and Part of Speech (tags) of the words
surrounding the named entity mentions, and orthological information of the men-
tions. We started representing context using cluster labels, as it is the most compact
representation obtaining good results in preliminary experiments. We tried several
conjunctions: a conjunction of the left and right context, as well as conjunctions of
left and right contexts and features of the candidate entity. We also tried all different
conjunction combinations of the contexts and the candidate entity features, as well
as adding PoS tags to represent contexts.

We observe that for most conjunction settings our regularizer performs better than
the ¢, and ¢, regularizers. Moreover, in many cases, our model is able to achieve
a comparable result with ¢; and /> using only 10% of the seed set. This is very
encouraging for a minimal supervision setting; we can train competitive models with
much less annotation effort.

Using the best model from each regularizer, we evaluated on the test set. As can be
seen in Figure 4.5, the best model we obtained uses all training data, with features
of context in the form of word cluster and PoS tags (window size of 1 to the left and
to the right), as well as ortographic information (see Figure 4.2) of the named entity
mentions. The model was trained with learning rate value n = 100 and regularization
factor 7 = 20, which was chosen by trying different value combinations (ranging
from 0.0001 to 1000) and evaluating them on the development set. Table 4.6 shows
the test results of the model. For all seed sets, the nuclear norm regularizer obtains
the best average F1 performance. This shows that encouraging the max-entropy
model to operate on a low-dimensional space is effective.

Moreover, Figure 4.6 shows model performance as a function of the rank. The model
obtains a good performance even if only a few intrinsic dimensions are used.

4.3 Experiments

55

PER LOC ORG MISC AVG

P R FI|P R F1|P R F1|pP R F1| Fl

o |t 66 65 66|15 24 19|59 19 2923 30 26| 35
S| |66 65 65|15 23 18|61 19 28|23 31 26| 35
Tlel72 75 74|15 22 18|49 21 18|31 38 34| 39
ol & |72 44 55|13 40 20|49 31 38|22 36 27| 35
g £, |72 45 55|14 42 21|49 32 38|22 31 25| 35
Yle. |75 61 68|13 21 16|49 36 41|30 47 37| 40
Q|6 |8 62 70|24 44 31|56 48 51|20 30 24| 44
E £, |79 66 71|27 44 33|60 49 54|22 32 26| 46
E|e |8 8 81|52 44 48|54 54 54|29 51 37| 55
£, |76 72 74|33 36 34|57 46 51|28 29 29| 47
Z 6|77 71 74|34 37 36|58 50 54|29 33 31| 48
£, |74 91 81|65 36 46|72 45 55|37 44 40| 56

Tab. 4.6.: Results (Precision/Recall/F1) on the test set for models trained with different
sizes of the seed, using the parameters and features that obtain the best evaluation
results on the development set. {1, ¢> and ¢, refers to different regularizations.
Only test entities unseen at training are considered. Avg. F1 is over PER, LOC,
ORG and MISC, excluding O.

4.3.5.2. Analysis of weight of unseen conjunctions

To see the effect of low-rank regularization in giving weights to unseen conjunctions,
we examined the parameter matrix of the low-rank model in Figure 4.5f with
the 10-30 seed. We show in Figure 4.7 the proportions of zero and non-zero
valued parameters in the parameter matrix of the resulting model. Based on the
conjunctions seen in the training data, only around 1% of parameter matrix will have
non-zero values, but in the final model, 27% of the matrix have non-zero values.
This illustrates the ability of the low-rank regularization to give weights to unseen
conjunctions. We emphasize that using ¢; or /s regularization can not set non-zero
weights to these parameters associated with unseen conjunctions.

4.3.6 Comparison with State-of-The-Art Systems

In the previous section we compare the use of low-rank regularization with the
standard ¢; and /¢, regularizer. In this section, we want to compare our low-rank
regularization model with state-of-the-art NERC models.

Since our model is a classification model, we assume the availability of pre-identified
boundaries of entity candidates. Nevertheless, we also add some noise in addition

4.3 Experiments

56

26%

1%
73%

[0 Zero-valued [] Non-zero-valued (seen)

[0 Non-zero-valued (unseen)

Fig. 4.7.: Weights of conjunctive features in the parameter matrix of Figure 4.5f trained
with the 10-30 seed.

to the correct boundaries. The noise is added by also selecting single word nouns
that are not a part of the correct boundaries. Note that this is the same candidate
selection strategy we use for our training data. We compare both the standard
evaluation as well as the unseen evaluation in Table 4.4. Our model uses only simple
features of the left and right context (cluster & PoS) with window size of 1 and the
simple entity mention features as described in Section 4.3.2 and Table 4.5. In this
experiment we use all training data to be comparable with state-of-the-art settings.

We also experimented with using gazetteers as a post-processing step to our model
results. We change labels of candidates to match those found in gazetteers. We
compare the candidates and the gazetteer items by case-sensitive exact match. We
use only the official gazetteer provided for the CoNLL 2003 Shared Task and no
other external resources. We can see that the use of gazetteer improves our results
significantly (up to 18% F1 score in standard evaluation and up to almost 10% F1
score in unseen evaluation).

We can see that the results of our model is quite far from the best state-of-the-art
results. It is important to note, nevertheless, that our model uses a very simple set
of elementary features compared to most state-of-the-art systems, as seen in Table
4.5. Tt is evident that there are many ways of improving the performance, including
enriching the feature set, using better gazetteer and exploiting structure similarities
of the entity mentions. The gazeetteer we used is a very limited set of named entity
list that were found to be unhelpful in some state-of-the-art systems. We can improve
the gazeetteer by expanding it with lists from other labeled external resources. As
noted before, entity mentions in this corpus possess some structure similarities and
thus the use of character ngrams, as used by state-of-the-art systems, can be helpful
to improve the performance.

4.3 Experiments

57

4.4

Another aspect to note is that our model does not do a joint NERC, instead, we
assume the entities are recognized in advance. Most systems in Table 4.4 do a
joint NERC, which may also help in classifying the named entities. Similar to ours,
Carreras et al. (2003b) did a separate NER and NEC. Assuming a perfect recognition
of named entities, they reported an accuracy of 95.14% in the development set. To
compare, we also did an experiment where we train an NEC classifier without the
“other” class, and obtained an accuracy of 70.96%. Adding gazetteer post-processing,
we obtained 82.33% accuracy. Although this result is far from state-of-the-art
performance, it is again important to note that Carreras et al. (2003b) uses much
richer elementary features as well as gazetteers to train the system.

The use of dense representations such as word and character embeddings have been
recently proven to be effective for this task, such as shown by Ma and Hovy (2016)
and Lample et al. (2016). Ma and Hovy (2016) also analyze the performance on
their system on several sets of unseen entities: those not in training but in word
embeddings, those in training but not in word embeddings, and those that are in
neither, and showed that their approach is useful in all of those cases. Therefore,
utilizing such dense features, especially combining them with discrete sparse features
where unseen conjunctions are present, would be an interesting future work. Such
setting would lead to more challenges such as the increase size of the feature
space, and thus a more efficient implementation strategy is required to run the
experiments.

Even with the simple features and gazetteers, we are able to get better performances
compared to some systems that use better features and resources. An interesting
future work is to build a complete NERC system and try to use the same feature sets
and external resources as state-of-the-art methods to do a fair comparison. With our
method, it should be possible to use all possible elementary features (as much as the
memory limitation allows) and have the learning method do the feature selection
automatically, thus do not require an extensive feature engineering.

Conclusion

In this chapter, we apply our low-rank regularization model for the task of Named
Entity classification.

We specify different aspects of the model that apply to this task. We presented
the conjunctive feature spaces and their corresponding scoring function. We have
also described the strategy of minimal supervision that can be employed for NE
classification.

Our experiments were performed on CoNLL-2003 data and some analysis regarding
the ambiguity of the data was presented in the chapter. It was shown that for this
dataset, the more crucial problem is on classifying unseen entities.

4.4 Conclusion

58

We showed how the performance of state-of-the-art NERC systems drops significantly
when evaluated on unseen entities. This suggests that classifying unseen entities
remains a challenge.

Finally, we showed that our low-rank regularization method works better for sparse
conjunctive feature spaces. The model showed encouraging results to train competi-
tive models using less supervision. Our models were also shown to be able to obtain
a good performance using only a few intrinsic dimension (i.e. rank). Moreover, we
also visualized how our method is able to give weights to unseen conjunctions in the
parameter matrix.

With simple elementary feature sets we use in our experiments, we obtain signif-
icantly inferior results compared to current state-of-the-art results on the same
dataset. We identified some differences of feature sets and external resources of our
current models with state-of-the-art models. An interesting future work is to use a
more comparable feature sets and external resources to have a more fair comparison
with state-of-the-art results. Some notable aspects we explore in this thesis is the use
of convex method for low-rank constraint and the focus on small datasets, which we
have not seen very much explored in state-of-the-art systems.

4.4 Conclusion

59

5.1

Low Rank Regularization for
Template-Filling

In this chapter, we apply our low-rank model on another task of Information Extrac-
tion (IE), namely template filling, using similar settings to our NE classification task.
The particular instance of template filling task we consider adds extra challenges
compared to our NE classification task. First, classifications of mentions in this task
introduce a new notion of ambiguity; mentions of the same entity are not always a
slot-filler. Second, the type of data annotation we examine presents an additional
challenge in compiling the training set. The annotations provided for this data are
at the document level, while the supervision our method expects is at the mention
level. Finally, in contrast to the NE classification setting, we do not assume that
candidate slot-fillers are given.

Similar to our approach in NE classification, we employ a “seed” set for minimal
supervision and focus on classifying unseen slot-fillers. We again empirically compare
the performance of our model with standard ¢, regularizers.

The organization of this chapter is as follows. We define the task of template filling
in Section 5.1 and describe the strategy to train the slotfiller classifiers in Section
5.2. Section 5.3 reports the experimental results, and we conclude in Section 5.4.

Introduction

In this thesis, the term template filling refers to extracting text spans from a document
that helps describe an event. We consider an event to have a pre-specified template
of slots that represent different types of information that are relevant for the event.
Template filling is useful for language understanding by representing the information
of an article in a structured manner.

For example, one can devise a system to understand news of terrorism-related events,
where we define templates that represent events such as bombing and murder. We
can define the template bombing as having slots that describe the perpetrator, the
number of victims and the location of the bombing. Meanwhile for the event of
murder, the template might have a slot to describe the weapon being used. Another
example is an automated airline customer service system where we can have events
of booking a flight with slots such as origin, destination and date of departure.

An extension of template filling task is to also induce the templates from a textual
corpus, such as done in Chambers and Jurafsky (2011). In this thesis, the templates

60

are predefined; we know the type of slots we are interested in, and the task is to
identify entities relevant to the slots. Note that the term entity in this chapter does
not always refer to a named entity, but rather a more general notion of an object.
For example, mentions such as “bomb” or “gun” can be extracted for the slot weapon.
In contrast with the NE classification task, this time we do not assume that the
candidate slot-filler mentions are given or pre-identified by other systems.

This task of template filling is similar to slot filling task of Knowledge Base Population
(KBP), as mentioned in Section 2.3.2. In both tasks, the goal is to extract slot-fillers
for predefined slots of information from unlabeled text, which implies identifying
candidate slot-fillers and determine their relationship (slot-type) with either a KB
item or an event. The difference is that in the task of template filling, we can only
use local contexts of the slot-filler to make decisions about the particular mention of
the slot-filler, meanwhile KBP can use information from any text resources or even
from the KB itself. While many KBP slot filling tasks are framed as relation extraction
problem, event template completion are typically framed as a sequence labelling
problem. Moreover, slot filling in KBP implies a sub-task of NEL as well, which is not
the case for the template filling task we consider.

Similar to the NE classification task, the notion of classification in this task is more
than classifying an identified slot-filler into its correct class, rather, the model needs
to decide on two types of classification: (i) whether a mention is a slot-filler, and
if so, (ii) of which slot type. Compared to the NE classification task, the particular
instance of template filling task we consider introduces two additional challenges:
contextual extraction and document-level supervision.

Contextual extraction In our NE classification, we simulate “noisy” NE recognizer
-whose extraction might include non-entities— by adding non-entity mentions. In the
task of template filling, such task is inherent. Even in the case of non-ambiguous
slot types, mentions of the same entity are not always a slot-filler. For example, one
individual might be mentioned in two news article, but only mentioned as a victim
of an event in one of them. Such extraction thus relies heavily on the context of the
mention. Therefore, unlike in NE classification, memorizing non-ambiguous seen
entities is insufficient to classify the candidate mentions.

Document-level supervision We assume the corpus to have a document-level su-
pervision rather than mention-level supervision. That is, we are given the text and
the summary of events described in the text—in the form of complete event templates.
This is to contrast with a mention-level supervision where slot-filler mentions are
marked in the text, such as the type of supervision in the NE classification task.
A document-level of supervision presents a challenge on building the training set
because our model requires the training set to be in the form of mention-class pairs,
which are not available when the mentions are not identified.

5.1 Introduction

61

Entity-level evaluation Another difference with the NE classification task is on the
evaluation setting. For this task, we consider an entity-level evaluation. That is,
we evaluate the ability of the model to identify the correct entities for each slot,
regardless of which mention of the entities was used for extracting them. So rather
than evaluating the classification result of each mentions of the same entity, we only
evaluate whether the model is able to classify at least one of them as a filler for the
correct slot.

5.1.1 Contributions

The specific contributions of this chapter are as follow:

* We describe a specific instance of our low-rank model for the task of template
filling.

* We present a strategy to reduce the noise of training sets that are built using
document-level supervision. The strategy is based on a simple heuristics that
takes into account distances between possible mentions of slot-fillers.

* We explore the MUC-4 dataset and the respective experimental settings in
an attempt to provide reproducible results for the task of template filling on
MUC-4 dataset. We also present details of the evaluation procedure to allow
for an objective comparison for future studies.

* We conduct experiments to use our regularization framework and compare it
to standard ¢, regularizations for template-filling task.

5.2 Low-Rank Template Filling Model with

Document-Level Supervision

In this section, we describe a specific implementation of the low-rank regularization
model for template-filling task. Specifically, we present a strategy to build training
data from document-level supervision to train the model.

The supervision we consider for this task is a document-level supervision such as
used in the template filling task of the Message Understanding Conference (MUC-4)
(Sundheim, 1992) dataset. In contrast with the mention-level supervision of the NE
classification task, we do not have the documents labeled with occurrences of slot-
fillers. Instead, for every document, we are given set of templates that correspond to
events described in the document. The slots of the templates, in this case, are filled
with their respective slot-fillers from the text.

We are interested to work with such type of supervision because we consider it
to be more practical —thus more realistic to expect— in real-life scenarios. While
this difference in supervision might not make a difference when the text is short or

5.2 Low-Rank Template Filling Model with Document-Level Supervision

62

when the slot-fillers are only mentioned once in the text, in long texts with multiple
mentions of the slot-filler, annotating the mentions in the text will require more
effort. One can imagine that it is much more straightforward to require annotators
to answer questions such as “who are the victims?” rather than asking them to mark
the exact occurrences of the mention in the text that describes the individuals as the
victim. In some texts, the individuals might be mentioned multiple times, for which
case the annotators should carefully select and agree on which of the mentions are
indicative of them being victims.

In our model, we consider as input a list of (mention, label) pairs, in which a mention
implies its location in the text is known and thus we have information about its
context. With such supervision setting we assume for this task, the mentions need
to be first identified within the text. In this case, one can consider a simple string
matching and extract all matches in the text to be positive examples. Such simple
rule, however, might lead to noisy training data. For example, consider a mention of
a person’s name, e.g. ‘John Doe”, and a template containing slots for weapon and
victim. Although as a slot-filler the word ‘John Doe” might be unambiguous (i.e. it
will always be a victim and never a weapon), in a document containing multiple
events, it can be mentioned as a victim of one event but only as a witness in the
other events. Extracting all the mentions as positive examples will then lead to the
model learning the wrong contexts. Note that such problem does not occur for our
task of NE classifier with minimal supervision-we can safely assume ‘John Doe” will
always refer to a named entity of type person regardless of the role it plays in an
event.

We propose to reduce the noise by employing a simple heuristic that considers other
slot-fillers in proximity. When there are several mentions of a slot-filler in a text,
we choose ones that are closer to other possible slot-filler mentions of the same
event. We assume that descriptions of an event are usually in the same part of the
document. When there is more than one event, each event —hence slot-fillers— is
usually described in different parts of the text.

For example, for an event containing two slot-fillers A and B, each having several
possible mentions in the document; {ai,...,a,} and {b,...,bp} respectively.
Instead of adding all mentions a; and b; to the training set, we add only one mention
of A and one mention of B. Let us number all words in a document in order of
their position from the start of the document, i.e. first word in the document is
numbered 1, second word 2, etc. A location of a phrase or mention is then defined
as the position number of the first word of the phrase. We define 6(a;, b;) to be the
distance between locations of mention a; and b;. Choosing the mentions for training
is then finding a; and b; that minimizes §:

argmin 6(a;, bj) (5.1

a;,b;

5.2 Low-Rank Template Filling Model with Document-Level Supervision

63

5.3

where 1 < i < |a| and 1 < j < |b|. For events with more than two slot-fillers, we
consider the sum of distances J between all pairs of slot-fillers of the event.

Experiments

In this section, we describe our experiments of using low-rank models on the
task of template filling with high-dimensional conjunctive feature space. We run
experiments on learning classifiers with minimal supervision and focus the evaluation
on unseen slot-fillers. We perform our experiment using MUC-4 data (Sundheim,
1992) and compare the performance with standard /5 regularizers.

5.3.1 Task Definition and Evaluation Metric

We consider the task of extracting slot-fillers from a document given few examples
of known slot-fillers in other documents. Given a document, the goal is to propose
appropriate strings that refer to entities that play certain roles in the events described
in the document. In other words, the goal is to know the participants of an event and
their roles in the event. Therefore, in contrast to the task of NE classification, the
expected result is not an annotated test document, but rather a list of participants
and their roles in the event. In fact, in this task, it does not matter if we are
able to identify either one mention or several mentions of a participant in the
document; extractions of multiple mentions of the same participant for the same
role is considered as one extraction.

Supervision The training supervision is a document-level annotation, i.e. the

location of the slot-filler is not marked in the text, as described in Section 5.2.

During test time, we are given unlabeled documents with no pre-identified candidate
slot-fillers.

5.3.1.1. Evaluation

Following state-of-the-art systems, the evaluation metric used is precision/recall/F1
score on all target slots in the test set. In addition, we also evaluate the model on

unseen slot-fillers, which are new slot-fillers that have not been observed in train.

As mentioned before, the evaluation setting assumed for this task is an entity-level
evaluation. We consider each slot-filler to be an entity, which can be mentioned
multiple times in a document. When one or multiple mentions of the entity is
classified as a slot-filler for certain slot type y, we consider it as one extraction of the
entity for slot y. We then evaluate on the ability of the model to extract the correct
entities for each of the pre-specified slots by using the standard precision, recall and
F1 of the extraction result.

5.3 Experiments

64

In general, we follow the evaluation setting of Huang and Riloff (2012); if the role
filler has the correct label and appears in any event template for the document, then
it is correct. We describe some details of the evaluation procedure below.

Head noun matching rule In line with state-of-the-art systems, we use the head
noun rule to judge if a candidate slot-filler matches the correct slot-filler as specified
in the template’s key-list of actual slot-fillers we need to extract. Instead of requiring
the model to extract the exact match of a slot-filler, we consider the predicted and
the actual slot-filler as a match when their head nouns match. The head noun is
defined as the right-most word in the phrase or, in the case of the phrase containing
the word “of”, the right-most word before the word “of”, e.g. “captain” for “the
captain of the team”.

Rules on multiple slot fillers A slot can be described as having several slot-fillers,
and each slot-filler can have several options of mention phrases that refer to the
same entity. The model is required to extract all slot-fillers, but not necessarily all
mention phrases. One extraction that matches one of the mention phrase options—
based on the head noun-is sufficient to be considered a successful extraction of the
slot-filler.

Evaluating optional slot-fillers A document might have optional events or optional
slot-fillers. We consider all slot-fillers in an optional event to be optional. We evaluate
optional slot-filler by including the correctly predicted ones, but not penalizing those
that are not extracted. That is, when a model correctly extract an optional slot-filler,
both precision and recall will improve, but when the model is unable to extract an
optional slot-filler, the recall will not be affected.

5.3.2 Data and Setting

We use MUC-4 data(Sundheim, 1992) that contains newswire articles about ter-
rorism events in Latin America. An example of the data is shown in Figure 5.11.
The dataset contains a set of event templates, set of labeled templates, as well as
their mappings to the respective text. We do some data preprocessing to the text,
such as sentence splitting, tokenization, parsing (using Stanford CoreNLP (Manning
et al., 2014) and SENNA (Collobert, 2011; Collobert et al., 2011)) and word sense
disambiguation (using It Makes Sense (IMS) (Zhong and Ng, 2010)).

One document might be labeled with zero templates (i.e. do not describe an event),
one template or more than one template, not necessarily of equal types. The training
corpus (DEV) contains 1300 documents, but only 733 documents are labeled with
at least one event. Documents with no event are articles such as speeches or news
related to political events that do not involve a terrorist attack. The development
(TST1+TST2) and test (TST3+TST4) sets each contain 200 documents.

Visualization of the annotation is taken from https://github.com/brendano/mic4_proc

5.3 Experiments

65

https://github.com/brendano/muc4_proc

DEV-MUC3-0047

ACCORDING TO MILITARY SOURCES

AND PEOPLE WHO ARRIVED TODAY IN AYACUCHO FROM THE LA MAR AREA, 44
PEASANTS HAVE BEEN KILLED IN TWO TOWNSHIPS OF LA MAR PROVINCE,
AYACUCHO DEPARTMENT.

YESTERDAY A [[COLUMN OF [[SHINING PATH]]2 TERRORISTS]]2 ARRIVED IN THE
VILLAGE OF CHINCHIPE, IN THE JUNGLE PROVINCE OF LA MAR, AND SHOT 16
PEASANTS WHO WERE MEMBERS OF THE PEASANT PATROLS THAT OPPOSE THE
TERRORISTS.

THE [[[[SHINING PATH]1]2 GUERRILLAS |1]2, WHO BURNED MURDERED PEASANTS [HOUSES |2,
CHARGED THEM WITH COLLABORATING WITH THE ARMY. THE TOWN OF CHINCHIPE
IS 220 KM NORTH OF AYACUCHO.

TRAVELLERS ARRIVING FROM LA MAR PROVINCE SAID THAT ON 23 SEFTEMBER
28 BODIES OF ALLEGED PEASANTS WERE FOUND NEAR THE TOWN OF CHULLAS.

THE BODIES SHOWED SIGNS OF [TORTL'R.E]; AND BULLET WOUNDS BUT THE
IDENTITY OF THE [MURDERERS]; APPARENTLY COULD NOT BE DETERMINED.

a: Document DEV-MUC3-0047 from MUC-4 dataset, annotated with phrases that matches a
slot-filler in the respective event templates.

message id "DEV-MUC3-0047"
message template "
incident type "ATTACK"

incident instrument_id "-"
perp individual_id ["COLUMN OF SHINING PATH TERRORISTS", "SHINING PATH GUERRILLAS"]
perp organization_id ["SHINING PATH"]

phys_tgt id "-
| hum_tgt name "
message id "DEV-MUC3-0047"
message template "2
incident type "ARSON"

incident instrument_id "*"
perp individual_id ["COLUMN OF SHINING PATH TERRORISTS", "SHINING PATH GUERRILLAS"]
perp organization_id ["SHINING PATH"]

phys_tgt id ["HOUSES"]
hum_tgt name "

message id "DEV-MUC3-0047"
message template "3

incident type "ATTACK"

incident instrument_id ["TORTURE"]
perp individual id ["MURDERERS"]
perp organization_id "-"

phys_tgt id "

hum_tgt name "

b: The event templates of document DEV-MUC3-0047 from MUC-4 dataset.

Fig. 5.1.: Document DEV-MUC3-0047 and its corresponding event templates from MUC-4
dataset.

5.3 Experiments

66

Perpind PERP: INDIVIDUAL ID
PerpOrg PERP: ORGANIZATION ID

Victim HUM TGT: DESCRIPTION (without colon clauses)
HUM TGT: NAME

Target PHYS TGT: ID
Weapon INCIDENT: INSTRUMENT ID

Fig. 5.2.: List of slot types used in this thesis and their respective slot names in MUC-4 keys.

5.3.2.1. Details of MUC-4 Data

Due to the complexity of the dataset, state-of-the-art systems that were evaluated
with the same dataset have used various configurations of the same data for their
experiments. Many time, details in configuration choices are not well described in
the literature, making it difficult to do an objective comparison. To allow for easier
comparison in the future, we try to present as much details of the settings we assume
in our experiments.

Template and slot types The dataset defines six template types: Attack, Kidnapping,
Bombing, Arson, Robbery and Forced Work Stoppage. Each template consists of 25
slot types. In this thesis, we will only consider events of Attack, Kidnapping, Arson
and Bombing. For each event, we only consider the string-valued slots of: PerpInd
(individual perpetrator), PerpOrg (organizational perpetrator), Victim, Target and
Weapon. The respective template slot names for each type is shown in Figure 5.2.

Entities and mentions in key file In MUC-4 dataset, we consider a slot as having
multiple entities separated by line break and an entity can have alternate mention
strings separated by a forward slash “/” as one entity each line in the slot. For
example, consider the following slot:

19. HUM TGT: DESCRIPTION "JESUIT PRIESTS" / "JESUITS"
"WOMEN"

In this case, we have two entities to fill the slot Victim: (i) ‘JESUIT PRIESTS” /
‘JESUITS” and (ii) “WOMEN?”. The first entity have two alternate mention strings:
‘JESUIT PRIESTS” and ‘JESUITS”.

Optional templates and entities We assume as optional template those that are
marked as “OPTIONAL” in the “MESSAGE: TEMPLATE” slot, such as:

1. MESSAGE: TEMPLATE 2 (OPTIONAL)

We assume as optional entities those that are marked with a question mark prefix,
such as:

5.3 Experiments

67

9. PERP: INDIVIDUAL ID 7 "MANUEL RODRIGUEZ PATRIOTIC FRONT" / "FPMR"

Handling of colon clauses Some slots in MUC-4 keys can contain colon separated
clauses, such as:

18. HUM TGT: NAME "BERNARDETTE PARDO"
"CARLOS CORRALES"
"JORGE SAENZ"
19. HUM TGT: DESCRIPTION "U.S. JOURNALIST": "BERNARDETTE PARDQ"
"CAMERAMAN": "CARLOS CORRALES"
"MOVIE ACTOR": "JORGE SAENZ"

In our setting, we assume that such colon clauses in the “HUM TGT: DESCRIPTION”
slot to be a description of the “HUM TGT: NAME” slot, and thus do not include them
in either training nor evaluation.

5.3.2.2. Training Settings

We extract examples of slot-fillers using heuristics as mentioned in Section 5.2. For
examples of non slot-fillers, we use Noun Phrases (NP) in the text that do not overlap
with possible slot-filler mentions in the text. We extract NP based on the parse tree
we obtain during preprocessing. We consider all overlapping NP as one example,
thus resulting in a large set of non-slot-filler examples. In our experiments, we
undersample the set of non-slot-filler examples to include only the most frequent
ones in the training set.

5.3.2.3. Candidate slot-fillers

In this task, we do not have access to pre-identified candidate slot-fillers during test
time. Therefore, a template filling system needs to also identify such candidates
from the unlabeled test corpus. For our system, we simply extract all Noun Phrases
(NP) from the text. We use SENNA to parse the text and obtain all NPs as candidate
entities. This simple rule gives us a recall of around 96% in the test set.

5.3.3 MUC-4 Data Characteristics

In this section, we explore the characteristics of the slot-fillers in the MUC-4 dataset.
Specifically we examine the ambiguity of the slot types and the mentions.

5.3 Experiments

68

MUC-4
62

2930

] All slot-fillers [] Ambiguous slot-fillers

Fig. 5.3.: Proportion of ambiguous slot-filler mentions in MUC-4 dataset. The numbers
corresponds to unique mentions of slot-fillers tagged as PerpInd, PerpOrg, Victim,
Target or Weapon in the event template of Attack, Kidnapping and Bombing.

train dev test train
2,145 <99 57 2,145
seen seen
199 187
(33%) (32%)

Fig. 5.4.: Proportion of seen/unseen slot-fillers in in the development and test set of MUC-4
data. The numbers corresponds to unique mentions of slot-fillers tagged as PerpInd,
PerpOrg, Victim, Target or Weapon in the event template of Attack, Kidnapping and
Bombing.

5.3.3.1. Slot types ambiguity

Figure 5.3 shows the ambiguity of slot-fillers in the train, development and test set
of MUC-4 dataset. We consider slot-fillers from the key files—i.e. the annotated event
templates—of the dataset and only consider slot types and templates as described
in Section 5.3.2.1. We do not include optional slot-fillers. For the purpose of this
comparison, we extract every alternative string of each slot filler as one instance
of slot-filler. The idea is to see if a string mention is always classified as the same
slot-type in different event templates. As we can see in Figure 5.3, only around 2%
of slot-fillers are ambiguous in this dataset. Thus if the task is simply to classify
pre-identified slot-fillers, the model can simply memorize the labels in training set.
But in our case, we do not have access to pre-identified slot-fillers at test time, rather,
we are trying to classify all Noun Phrases in the test set.

5.3 Experiments

69

5.3.3.2. Proportion of unseen slot-fillers

Figure 5.4 shows the proportion of seen and unseen slot-fillers in the development
and test set of MUC-4 dataset. Similar to the Figure 5.3, we also consider each
alternative string of slot-fillers in the key files as one instance of slot-filler and do not
include optional slot-fillers. Matching between the instances are measured by exact
matches between the two strings. We can see that even without minimal supervision,
more than 60% of slot-fillers in test set are unseen. Therefore, the ability of the
model to generalize to such unseen slot-fillers is important.

5.3.4 Most Frequent Class Baseline

To see if memorizing labels of seen slot-filler is sufficient for the template filling task
on MUC-4 data, we perform a simple baseline experiment that memorizes labels of
seen slot-fillers.

For this experiment, we simply memorize all the mentions of slot-fillers in training?
and their most frequent class. The Noun Phrases (NP) in the test set are then
classified based on this dictionary. Those that have not been seen in training are
not extracted as a slot-filler. The comparison of the mentions in train and test set
is based on exact match of the full phrase. We experimented with the full corpus
(without minimal supervision) and obtained an F1 score of 61% with a low precision
of 59%. This suggests that many of the predictions based on memorizing seen labels
are incorrect despite the low ambiguity of mentions as seen in section 5.3.3.1. This
shows that mentions that have been seen as a slot-filler in train do not necessarily
occur as a slot-filler in other documents, implying the importance of context for
the classification, using features or representations of the mention itself will be
insufficient. Moreover, the proportion of unseen slot-fillers shown in Section 5.3.3.2
suggests that it is important for the model to generalize to new slot-fillers in order
to improve performance.

5.3.5 Comparing Regularizers

We compare the performance of our low-rank regularized models with those of using
{5 regularizers to see if low-rank regularization applies to another task other than
named entity classification (Chapter 4).

We ran a small experiment with two training data: (i) 4-40: using only 4 most
frequent mentions of slot-fillers for each slot types and most frequent 40 non slot-
filler mentions, which leads to a total of 11,691 training samples (the full training set
we compiled contains 54,857 samples) and (ii) All: using all mentions of slot-fillers
and randomly sampled 20,000 non-entity mentions. For these experiments, we use
word embeddings as the elementary features. Specifically, we use GloVe (Pennington

2Including the optional slot-fillers.

5.3 Experiments

70

F1 (%)

Fig. 5.5.: F1 score of unseen slot-fillers in in test set of MUC-4 data, using ¢, and nuclear-
norm (¢,) regularization. 4-40: models trained with only the top 4 mention
examples of slot-fillers for each slot types and top 40 non slot-fillers mention
examples. All: models trained with all mention examples of slot-fillers and
uniformly sampled 20,000 non slot-filler examples.

et al., 2014) embeddings to represent the mention and contexts. The contexts we
consider are words surrounding the mention with a window size of 3 (i.e. 3 words
before and 3 words after the mention). Similar to (Boros et al., 2014), we combine
word embeddings of multiple word phrases by performing an addition of each word’s
embedding.

Although in this case the feature spaces are no longer sparse, the comparison of /,
regularization with standard ¢, regularization is still interesting in this case, such as
observed by Madhyastha et al. (2014). Moreover, the use of tensors of elementary
features still creates a conjunctive feature space, for which it is interesting to see
whether low-rank constraint is useful in such case.

The hyperparameters are tuned on the development set, and the maximum number
of iterations are set to 100 for all models. The learning rate () was automatically
tuned by doing a linesearch on each iteration. We experimented varying values of
regularization factor, ranging from 0.0000001 to 2. The best ¢, model is achieved
using regularization factor (7) of 0.1, and the best ¢, model is used a regularization
factor of 1.

The results shown in Figure 5.5 are the result of classifying slot fillers in the test set
using the two models. We can see from this results that the model is also helpful in
this classification task.

5.3.6 Comparison with State-of-The-Art Systems

While it would be interesting to compare the performance of our model to state-
of-the-art methods, we leave it for future work. In order to have a competitive
results in slot-filling, we need to build a slot-filling system, which requires more than
classifying noun phrases. Most slot-filling systems are either sequence models (such

5.3 Experiments

71

5.4

PerpInd PerpOrg Target Victim Weapon

Huang and Riloff (2012) 129 74 126 201 58
Ours (total) 174 126 152 242 69
Ours (non-optional) 122 87 111 186 63
Ours (optional) 52 39 41 56 6

Tab. 5.1.: Number of slot fillers in the MUC-4 Test Set.

as Liu and Lane (2016)) or modular systems with multiple classification steps (such
as Huang and Riloff (2012)).

Moreover, unfortunately we have not been able to replicate the evaluation conditions
on the MUC-4 dataset of systems in the the literature. This is essentially due to
the nature of MUC-4 dataset being annotated in document-level and the lack of
documentation in the evaluation for slot-filler extraction evaluation in this dataset,
thus it is difficult to know for sure if the evaluations metric used by each state-of-
the-art methods are the same. For example, Huang and Riloff (2012) reported the
number of slot-fillers in MUC-4 test set, but do not provide descriptions in details
what they consider as one slot-filler. In our case, we obtain the number of slot-fillers
as in shown in Table 5.1. Such discrepancies can stem from ambiguity in assuming
what constitutes as one slot-filler, for example, the following questions can be raised
from the data (as described in Section 5.3.2.1):

* do we consider each alternate mention of an entity as one slot-filler?
* do we include optional slot-fillers?

* do we include slot-fillers in an optional template?

* how do we consider colon clauses?

Evaluation discrepancies for this dataset have also been uncovered before by O’Connor
(2013). In our case, we describe our evaluation details in Section 5.3.1.1.

With such considerations, for this experiment, we do not build a system and leave
comparison with state-of-the-art systems for future work. Instead we have focused
in analyzing how nuclear-norm regularization compares to ¢, regularization for
unseen slot-fillers. For future work, we would like to utilize such regularization in
a complete end-to-end system and experiment with a more well defined task and
dataset to compare it with state-of-the-art systems.

Conclusion

In summary, in this chapter we applied our low-rank regularization model for the
task of template filling. We explored a dense conjunctive feature space by using
dense elementary feature sets than in NE.

5.4 Conclusion

72

We have also presented a heuristic rule to build a less noisy training set from the
provided document-level supervision and unlabeled documents.

Finally, we compared our regularization model with /¢, regularizer to explore the
efficacy of low-rank regularization in dense conjunctive spaces. Our experiments
are meant to obtain preliminary results to show how our methods is applicable to a
different classification tasks. We use very limited training data, as well as features.
We showed that the use of low-rank constraint is useful in comparison with /5 in this
case as well.

Comparison with state-of-the-art methods is challenging for this dataset, as de-
scribed in Section 5.3.2, due to evaluation discrepancies between state-of-the-art
methods.

5.4 Conclusion

73

6.1

Conclusion and Future Work

In summary, this thesis investigates a low-rank regularization framework for linear
feature-based models in high-dimensional sparse conjunctive feature spaces.
We applied such method for two tasks of Information Extraction (IE): Named Entity
Classification (NEC) and template filling. The focus is to examine the efficacy of
such regularization to extract unseen entities/slot-fillers on settings where minimal

supervision is used.

This chapter summarizes our contributions in that regard and presents possible areas
of future work.

Contributions

In summary, our contributions are: (i) we construct a regularization scheme for train-
ing linear feature-based classifiers in high-dimensional sparse conjunctive feature
spaces and (ii) we conduct experiments on learning entity classifiers and extracting
slot-fillers, both with minimal supervision.

6.1.1 Development of Low-Rank Regularization Method for
Sparse Conjunctive Feature Spaces

We have developed a low-rank regularization framework for linear feature-based
models in sparse conjunctive feature spaces. Our formulation is based on using
tensors to parameterize the classifiers, and then control the capacity of the model
using low-rank regularization. We show that by imposing a low-rank penalty, we
implicitly induce a low-dimensional embedding of the elementary feature vectors.
Such formulation enables the method to give weights to unseen conjunctive features
and allows the model to utilize them at test time. Overall, our formulation results
in a convex procedure for training the model parameters. Even though the thesis
focuses on specific IE tasks, the scheme can be easily adapted for other tasks.

6.1.2 Experiments on Named Entity Classification and
Template Filling

We empirically examined the method for named entity classification and template
filling tasks. We framed the tasks as a task of classifying text spans. For both cases,
we assumed the setting of minimal supervision by using only a handful of examples
for each entity/slot types. The training data was then compiled based on mentions

74

6.2

of the examples in the text. To evaluate the models, we introduced the use of
an evaluation perspective that focuses on measuring the performance extracting
entities/slot-filler candidates that are not provided during training.

Our experiments gave preliminary results to give light on the use of low-rank
regularization in limited settings, which can be extended to a full NERC or template
filling systems using richer feature spaces in future works. Our results showed that
the proposed regularization is better for sparse conjunctive feature spaces than
standard /; or /5 regularization. It facilitates the extraction of unseen candidates by
giving weights to unseen feature conjunctions, an ability not possessed by neither
/1 nor /5. In some cases, this allows the low-rank regularized models to use fewer
examples to achieve comparable results with ¢; or {5 regularized models. For
example, in the case of named entity classification, we can use less than 10% of seed
examples to achieve comparable results using low-rank regularization.

These results make us conclude that encouraging the model to operate in a low-
dimensional space is an effective way of controlling its capacity and ensure good
generalization for high-dimensional sparse conjunctive feature spaces.

Unfortunately, we were not able to do more comprehensive experiments in large
scale, such as using more elementary feature sets, nor were we able to build a
complete end-to-end system to compare with state-of-the-art. More engineering
effort is required, which was not feasible in the timeline of this thesis.

Future work

Throughout the research, we took note of several ideas that might improve our
approach. We present some prominent ones below.

6.2.1 Incorporation of Unlabeled Data in Semi-Supervised
learning

Our current model is trained in a supervised manner, i.e. values of parameters are
learned solely based on annotated examples (features/label pairs) given during
training. To improve the model, we would like to exploit information from unlabeled
data by doing semi-supervised learning. Semi-supervised learning is useful whenever
there are far more unlabeled data than labeled, which is likely to occur if obtaining
data points is cheap, but obtaining the labels costs a lot of time, effort, or money
(Chapelle et al., 2010). With a minimal supervision setting, such conditions are true,
and thus it is worthwhile to investigate the use of semi-supervised learning for our
case.

6.2 Future work

75

Semi-supervised learning vs supervised learning Technically, our models utilize
unseen conjunctions that are not a part of the labeled training data. But it is im-
portant to note that this is not a semi-supervised learning. The values of these
conjunctions depend only on the distribution of seen conjunctions from labeled data,
thus makes it a supervised learning. Meanwhile, using semi-supervised learning,
these values will also depend on the distributions of such conjunctions in the unla-
beled data. We present below two examples of possible semi-supervised extensions to
our learning method. In practice, we should also take a look at other semi-supervised
approaches as well before deciding which is most suitable.

Self-training A simple and direct extension of our method is to use a semi-supervised
approach called self-training. First, we train a classifier with a small amount of
labeled data. We then use the classifier to classify unlabeled data, which are then
added to the training set. One might also use some criteria to choose which newly
labeled data should be included. The classifier is then retrained using the new
training set, and then we repeat the steps. Self-training has been applied to different
natural language processing tasks, such as Yarowsky (1995), Riloff et al. (2003),
Maeireizo et al. (2004) and Ji and Grishman (2006).

Co-training Another possible approach is to use co-training (Blum and Mitchell,
1998; Mitchell, 1999). Other studies (Collins and Singer, 1999; Cucerzan and
Yarowsky, 2002; Jones, 2005; Kim et al., 2002; Neelakantan and Collins, 2014b)
have used co-training for the task of information extraction from text. The idea of
co-training is to have two (or more) classifiers that “learn” from each other. Each
classifier labels unlabeled data and adds the newly labeled data into the training set
of the other classifier. The classifiers are then re-trained, and the process is repeated.
One way of having different classifiers is to use different families of models, for
example, Kim et al. (2002) combines Memory-based Learning, Sparse Network of
Winnows and Maximum Entropy Model. Another option is to split the features
into two (or more) sets. An important assumption with such method is that the
feature sets are individually sufficient to train a good classifier and are conditionally
independent given the class. Although in our setting we have separate elementary
feature vectors that can be easily grouped into sub-sets, our method assumes that
there are interactions between all of these elementary feature vectors. Splitting
them into sub-groups will remove some of the interactions on the model. Therefore,
the strategy of dividing these features into subsets that adhere to the co-training
assumptions could, by itself, become an interesting research question.

6.2.2 Enforcing Low-Rank Tensor Regularization

In this thesis, we chose one tensor unfolding for each model and imposed a low-rank
constraint on the matrix. An alternative direction would be to impose the constraint
to the tensor form directly. In our current approach, the latent embeddings contain

6.2 Future work

76

a combined projection of several elementary feature vectors. Tensor decomposition
would allow the projection of each elementary feature vectors into their latent
representations. Therefore, it is compelling to investigate how such difference would
affect the model. The use of tensor decomposition has been used in other IE related
works such as Chang et al. (2014) and Nickel et al. (2012). Meanwhile, the use of
low-rank tensor regularization has been employed in other fields of machine learning,
such as Dong et al. (2014), which generalizes a low-rank matrix regularized method
into a low-rank tensor regularized method for a computer vision application.

6.2.3 Combining sparse regularization and low-rank
regularization

As shown in Hutchinson et al. (2012), the combination of a sparse regularization
and a low-rank regularization could be beneficial. The idea is to keep two versions of
the parameter matrix; the sparse version and the low-rank version. Using a low-rank
regularization is useful in capturing regularities in training data, and thus good for
generalizing the model. Imposing such constraint, however, removes the sparsity of
the matrix. In some cases, it could be a good idea to keep the sparsity of the matrix
to learn exceptions. For instance, we might want to memorize features with very
strong discriminative quality. A very simple example is a feature that represents the
full phrase of a mention. Since in our case mentions are unambiguous, we might
want the model to simply memorize the classification of mentions it saw in the
training set, regardless of the context. But at the same time, we would also like
to learn the regularities of the context so we can classify mentions that are unseen
during training. In this case, using a combination of the two matrix regularization
could be beneficial to improve the model.

6.2 Future work

77

Low-Rank Regularization for A
Sparse Conjunctive Feature

Spaces: An Application to Named

Entity Classification

The following pages contain the paper Primadhanty et al. (2015) as published in
ACL 2015. This paper is related to the main contents of Chapter 3 and 4.

ATTENTION ;

For reasons of copyright, pages 79 to 88 of the thesis, containing the texts

mentioned above, should be consulted on the web pages of the editor
https://www.aclweb.org/portal/search/profileplus/978-1-941643-72-3

78

https://www.aclweb.org/portal/search/profileplus/978-1-941643-72-3

InToEventS: An Interactive Toolkit B
for Discovering and Building
Event Schemas

The following pages contain the paper Ferrero et al. (2017) as published in EACL
2017. This paper is related to —-but not part of- the task of Chapter 5.

ATTENTION ;
For reasons of copyright, pages 90 to 93 of the thesis, containing the texts
mentioned above, should be consulted on the web pages of the editor

https://www.aclweb.org/portal/search/profileplus/InToEventS%3A%20An%?20Interac
tive%20Toolkit%20for%?20Discovering%20and%20Building%20Event%Z20Schemas

89

Bibliography

Heike Adel, Benjamin Roth, and Hinrich Schiitze. Comparing convolutional neural networks
to traditional models for slot filling. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 828-838, San Diego, California, June 2016. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/N16-1097.

David Ahn. The stages of event extraction. In Proceedings of the Workshop on Annotating and
Reasoning about Time and Events, pages 1-8. Association for Computational Linguistics,
2006.

Enrique Alfonseca and Suresh Manandhar. Extending a lexical ontology by a combination of
distributional semantics signatures. In Proceedings of the 13th International Conference
on Knowledge Engineering and Knowledge Management. Ontologies and the Semantic Web,
EKAW ’02, pages 1-7, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-44268-5. URL
http://dl.acm.org/citation.cfm?id=645362.650887.

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from
multiple tasks and unlabeled data. Journal of Machine Learning Research, 6(Nov):1817—
1853, 2005.

Gabor Angeli, Sonal Gupta, Melvin Jose, Christopher D Manning, Christopher Ré, Julie
Tibshirani, Jean Y Wu, Sen Wu, and Ce Zhang. Stanford’s 2014 slot filling systems. TAC
KBP, 695, 2014.

Raphaél Bailly, Xavier Carreras, and Ariadna Quattoni. Unsupervised spectral learning of
finite state transducers. In Advances in Neural Information Processing Systems, pages
800-808, 2013a.

Raphaél Bailly, Xavier Carreras Pérez, Franco M Luque, and Ariadna Julieta Quattoni.
Unsupervised spectral learning of wcfg as low-rank matrix completion. In Proceedings of
the 2013 Conference on Empirical Methods in Natural Language Processing, pages 624-635.
Association for Computational Linguistics, 2013b.

Borja Balle and Mehryar Mohri. Spectral learning of general weighted automata via con-
strained matrix completion. In NIPS, pages 2168-2176, 2012.

Oliver Bender, Franz Josef Och, and Hermann Ney. Maximum entropy models for named
entity recognition. In Walter Daelemans and Miles Osborne, editors, Proceedings of
CoNLL-2003, pages 148-151. Edmonton, Canada, 2003.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137-1155, 2003.

94

http://www.aclweb.org/anthology/N16-1097
http://dl.acm.org/citation.cfm?id=645362.650887

Daniel M. Bikel, Scott Miller, Richard Schwartz, and Ralph Weischedel. Nymble: A high-
performance learning name-finder. In Proceedings of the Fifth Conference on Applied
Natural Language Processing, ANLC '97, pages 194-201, Stroudsburg, PA, USA, 1997.
Association for Computational Linguistics. doi: 10.3115/974557.974586. URL http:
//dx.doi.org/10.3115/974557.974586.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Soren Auer, Christian Becker, Richard
Cyganiak, and Sebastian Hellmann. Dbpedia-a crystallization point for the web of data.
Web Semantics: science, services and agents on the world wide web, 7(3):154-165, 2009.

David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77-84, 2012.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan):993-1022, 2003.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In
Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT’
98, pages 92-100, New York, NY, USA, 1998. ACM. ISBN 1-58113-057-0. doi: 10.1145/
279943.279962. URL http://doi.acm.org/10.1145/279943.279962.

Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning structured
embeddings of knowledge bases. In Conference on artificial intelligence, number EPFL-
CONF-192344, 2011.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances
in neural information processing systems, pages 2787-2795, 2013.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A semantic matching
energy function for learning with multi-relational data. Machine Learning, 94(2):233-259,
2014.

Emanuela Boros, Romaric Besancon, Olivier Ferret, and Brigitte Grau. Event role extraction
using domain-relevant word representations. In EMNLP, pages 1852-1857, 2014.

Andrew Borthwick, John Sterling, Eugene Agichtein, and Ralph Grishman. Exploiting
diverse knowledge sources via maximum entropy in named entity recognition. In IN
PROCEEDINGS OF THE SIXTH WORKSHOP ON VERY LARGE CORPORA, pages 152-160,
1998.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai.
Class-based n-gram models of natural language. Computational Linguistics, 18:467-479,
1992.

Razvan Bunescu. Using encyclopedic knowledge for named entity disambiguation. In In
EACL, pages 9-16, 2006.

Xavier Carreras and Lluis Marquez. Introduction to the conll-2005 shared task: Semantic
role labeling. In Proceedings of the Ninth Conference on Computational Natural Language
Learning, pages 152-164. Association for Computational Linguistics, 2005.

Xavier Carreras, Lluis Marquez, and Lluis Padré6. Learning a perceptron-based named entity
chunker via online recognition feedback. In Walter Daelemans and Miles Osborne, editors,
Proceedings of CONLL-2003, pages 156-159. Edmonton, Canada, 2003a.

Xavier Carreras, Lluis Marquez, and Lluis Padré. A simple named entity extractor using
adaboost. In Walter Daelemans and Miles Osborne, editors, Proceedings of CONLL-2003,
pages 152-155. Edmonton, Canada, 2003b.

Bibliography

95

http://dx.doi.org/10.3115/974557.974586
http://dx.doi.org/10.3115/974557.974586
http://doi.acm.org/10.1145/279943.279962

Nathanael Chambers. Event schema induction with a probabilistic entity-driven model. In
EMNLP, volume 13, pages 1797-1807, 2013.

Nathanael Chambers and Dan Jurafsky. Template-based information extraction without the
templates. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, pages 976-986. Association for
Computational Linguistics, 2011.

Kai-Wei Chang, Wen-tau Yih, and Christopher Meek. Multi-relational latent semantic analysis.
In EMINLP, pages 1602-1612, 2013.

Kai-Wei Chang, Scott Wen-tau Yih, Bishan Yang, and Chris Meek. Typed tensor decomposition
of knowledge bases for relation extraction. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational Linguistics,
October 2014.

Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-Supervised Learning. The
MIT Press, 1st edition, 2010. ISBN 0262514125, 9780262514125.

Jackie Chi Kit Cheung, Hoifung Poon, and Lucy Vanderwende. Probabilistic frame induction.
In Proceedings of NAACL-HLT, pages 837-846, 2013.

Hai Leong Chieu and Hwee Tou Ng. Named entity recognition: A maximum entropy
approach using global information. In Proceedings of the 19th International Conference
on Computational Linguistics - Volume 1, COLING 02, pages 1-7, Stroudsburg, PA, USA,
2002. Association for Computational Linguistics. doi: 10.3115/1072228.1072253. URL
http://dx.doi.org/10.3115/1072228.1072253.

Michael Collins and Yoram Singer. Unsupervised models for named entity classification.
In Proceedings of the joint SIGDAT conference on empirical methods in natural language
processing and very large corpora, pages 100-110. Citeseer, 1999.

Ronan Collobert. Deep learning for efficient discriminative parsing. In AISTATS, volume 15,
pages 224-232, 2011.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning
Research, 12(Aug):2493-2537, 2011.

Silviu Cucerzan. Large-scale named entity disambiguation based on wikipedia data. EMNLP-
CoNLL 2007, page 708, 2007.

Silviu Cucerzan and David Yarowsky. Language independent ner using a unified model
of internal and contextual evidence. In Proceedings of the 6th Conference on Natural
Language Learning - Volume 20, COLING-02, pages 1-4, Stroudsburg, PA, USA, 2002.
Association for Computational Linguistics. doi: 10.3115/1118853.1118860. URL http:
//dx.doi.org/10.3115/1118853.1118860.

James R. Curran and Stephen Clark. Language independent ner using a maximum entropy
tagger. In Walter Daelemans and Miles Osborne, editors, Proceedings of CoNLL-2003,
pages 164-167. Edmonton, Canada, 2003.

Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum. Chains of
reasoning over entities, relations, and text using recurrent neural networks. In In EACL,
2017.

Bibliography

96

http://dx.doi.org/10.3115/1072228.1072253
http://dx.doi.org/10.3115/1118853.1118860
http://dx.doi.org/10.3115/1118853.1118860

Fien De Meulder and Walter Daelemans. Memory-based named entity recognition using
unannotated data. In Walter Daelemans and Miles Osborne, editors, Proceedings of
CoNLL-2003, pages 208-211. Edmonton, Canada, 2003.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society. Series B (methodological),
pages 1-38, 1977.

Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R Guha, Anant Jhingran, Tapas
Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A Tomlin, et al. Semtag and seeker:
Bootstrapping the semantic web via automated semantic annotation. In Proceedings of the
12th international conference on World Wide Web, pages 178-186. ACM, 2003.

George R Doddington, Alexis Mitchell, Mark A Przybocki, Lance A Ramshaw, Stephanie
Strassel, and Ralph M Weischedel. The automatic content extraction (ace) program-tasks,
data, and evaluation. In LREC, volume 2, page 1, 2004.

Weisheng Dong, Guangming Shi, Xin Li, Yi Ma, and Feng Huang. Compressive sensing via
nonlocal low-rank regularization. IEEE Transactions on Image Processing, 23(8):3618-3632,
2014.

John Duchi and Yoram Singer. Efficient online and batch learning using forward backward
splitting. Journal of Machine Learning Research, 10:2899-2934, 2009.

Micha Elsner, Eugene Charniak, and Mark Johnson. Structured generative models for
unsupervised named-entity clustering. In Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the Association for Computational
Linguistics, pages 164—-172. Association for Computational Linguistics, 2009.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked, Stephen
Soderland, Daniel S Weld, and Alexander Yates. Unsupervised named-entity extraction
from the web: An experimental study. Artificial intelligence, 165(1):91-134, 2005.

Miao Fan, Deli Zhao, Qiang Zhou, Zhiyuan Liu, Thomas Fang Zheng, and Edward Y Chang.
Distant supervision for relation extraction with matrix completion. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 839-849. Association for Computational Linguistics, June 2014.

Ronen Feldman and James Sanger. The text mining handbook: advanced approaches in
analyzing unstructured data. Cambridge university press, 2007.

Paolo Ferragina and Ugo Scaiella. Tagme: on-the-fly annotation of short text fragments (by
wikipedia entities). In Proceedings of the 19th ACM international conference on Information
and knowledge management, pages 1625-1628. ACM, 2010.

German Ferrero, Audi Primadhanty, and Ariadna Quattoni. Intoevents: An interactive toolkit
for discovering and building event schemas. In Proceedings of the Software Demonstrations
of the 15th Conference of the European Chapter of the Association for Computational
Linguistics, pages 104-107, Valencia, Spain, April 2017. Association for Computational
Linguistics. URL http://aclweb.org/anthology/E17-3026.

Michael Fleischman. Automated subcategorization of named entities. In ACL (Companion
Volume), pages 25-30, 2001.

Michael Fleischman and Eduard Hovy. Fine grained classification of named entities. In In
Proc. of the 19th International Conference on Computational Linguistics, pages 1-7, 2002.

Bibliography

97

http://aclweb.org/anthology/E17-3026

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang. Named entity recogni-
tion through classifier combination. In Walter Daelemans and Miles Osborne, editors,
Proceedings of CONLL-2003, pages 168-171. Edmonton, Canada, 2003.

Gene H Golub and Henk A Van der Vorst. Eigenvalue computation in the 20th century.
Journal of Computational and Applied Mathematics, 123(1):35-65, 2000.

Matthew R. Gormley, Mo Yu, and Mark Dredze. Improved relation extraction with feature-
rich compositional embedding model. In Proceedings of EMNLP, 2015.

Yoshihiko Gotoh and Steve Renals. Statistical language modelling. In Text-and Speech-
Triggered Information Access, pages 78-105. Springer, 2003.

Ralph Grishman and Beth Sundheim. Message understanding conference-6: A brief history.
In Coling, volume 96, pages 466-471, 1996.

R Guha and Rob McCool. Tap: A semantic web test-bed. Web Semantics: Science, Services
and Agents on the World Wide Web, 1(1):81-87, 2003.

Aria Haghighi and Dan Klein. Unsupervised coreference resolution in a nonparametric
bayesian model. In Annual meeting-Association for Computational Linguistics, volume 45,
page 848, 2007.

James Hammerton. Named entity recognition with long short-term memory. In Walter
Daelemans and Miles Osborne, editors, Proceedings of CoNLL-2003, pages 172-175.
Edmonton, Canada, 2003.

Charles T Hemphill, John J Godfrey, George R Doddington, et al. The atis spoken language
systems pilot corpus. In Proceedings of the DARPA speech and natural language workshop,
pages 96-101, 1990.

Iris Hendrickx and Antal van den Bosch. Memory-based one-step named-entity recognition:
Effects of seed list features, classifier stacking, and unannotated data. In Walter Daelemans
and Miles Osborne, editors, Proceedings of CoNLL-2003, pages 176-179. Edmonton,
Canada, 2003.

Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, Edwin Lewis-Kelham, Gerard
De Melo, and Gerhard Weikum. Yago2: exploring and querying world knowledge in
time, space, context, and many languages. In Proceedings of the 20th international
conference companion on World wide web, pages 229-232. ACM, 2011a.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fiirstenau, Manfred Pinkal,
Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum. Robust disambiguation
of named entities in text. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 782-792. Association for Computational Linguistics, 2011b.

Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual
international ACM SIGIR conference on Research and development in information retrieval,
pages 50-57. ACM, 1999.

Ruihong Huang and Ellen Riloff. Peeling back the layers: Detecting event role fillers in
secondary contexts. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies-Volume 1, pages 1137-1147.
Association for Computational Linguistics, 2011.

Ruihong Huang and Ellen Riloff. Modeling textual cohesion for event extraction. In AAAI,
2012.

Bibliography

98

Brian Hutchinson, Mari Ostendorf, and Maryam Fazel. A sparse plus low rank maximum
entropy language model. In INTERSPEECH, pages 1676-1679. Citeseer, 2012.

Heng Ji and Ralph Grishman. Data selection in semi-supervised learning for name tagging. In
Proceedings of the Workshop on Information Extraction Beyond The Document, IEBeyondDoc
’06, pages 48-55, Stroudsburg, PA, USA, 2006. Association for Computational Linguistics.
ISBN 1-932432-74-4. URL http://dl.acm.org/citation.cfm?id=1641408.1641414.

Heng Ji, Ralph Grishman, et al. Refining event extraction through cross-document inference.
In ACL, pages 254-262, 2008.

Rosie Jones. Learning to extract entities from labeled and unlabeled text. PhD thesis, University
of Utah, 2005.

Jae-Ho Kim, In-Ho Kang, and Key-Sun Choi. Unsupervised named entity classification
models and their ensembles. In Proceedings of the 19th International Conference on
Computational Linguistics - Volume 1, COLING ’02, pages 1-7, Stroudsburg, PA, USA,
2002. Association for Computational Linguistics. doi: 10.3115/1072228.1072316. URL
http://dx.doi.org/10.3115/1072228.1072316.

Dan Klein, Joseph Smarr, Huy Nguyen, and Christopher D. Manning. Named entity recog-
nition with character-level models. In Walter Daelemans and Miles Osborne, editors,
Proceedings of CONLL-2003, pages 180-183. Edmonton, Canada, 2003.

Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, and Soumen Chakrabarti. Collective
annotation of wikipedia entities in web text. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 457-466. ACM,
2009.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris
Dyer. Neural architectures for named entity recognition. In Proceedings of NAACL-HLT,
pages 260-270, 2016.

Thomas K Landauer and Susan T Dumais. A solution to plato’s problem: The latent semantic
analysis theory of acquisition, induction, and representation of knowledge. Psychological
review, 104(2):211, 1997.

Rémi Lebret and Ronan Collobert. Word embeddings through hellinger pca. In Proceedings
of the 14th Conference of the European Chapter of the Association for Computational Lin-
guistics, pages 482-490, Gothenburg, Sweden, April 2014. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/E14-1051.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. Low-rank tensors
for scoring dependency structures. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1381-1391,
Baltimore, Maryland, June 2014. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P14-1130.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In
Advances in neural information processing systems, pages 2177-2185, 2014.

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with lessons
learned from word embeddings. Transactions of the Association for Computational Linguis-
tics, 3:211-225, 2015.

Qi Li, Heng Ji, and Liang Huang. Joint event extraction via structured prediction with global
features. In ACL (1), pages 73-82, 2013.

Bibliography

99

http://dl.acm.org/citation.cfm?id=1641408.1641414
http://dx.doi.org/10.3115/1072228.1072316
http://www.aclweb.org/anthology/E14-1051
http://www.aclweb.org/anthology/P14-1130
http://www.aclweb.org/anthology/P14-1130

Xiao-Li Li, Lei Zhang, Bing Liu, and See-Kiong Ng. Distributional similarity vs. pu learning for
entity set expansion. In Proceedings of the ACL 2010 Conference Short Papers, ACLShort "10,
pages 359-364, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.
URL http://dl.acm.org/citation.cfm?id=1858842.1858908.

Shasha Liao and Ralph Grishman. Using document level cross-event inference to improve
event extraction. In Proceedings of the 48th Annual Meeting of the Association for Computa-
tional Linguistics, pages 789-797. Association for Computational Linguistics, 2010.

Bing Liu and Ian Lane. Attention-based recurrent neural network models for joint intent
detection and slot filling. In Interspeech 2016, 2016.

Cédric Lopez, Ioannis Partalas, Georgios Balikas, Nadia Derbas, Amélie Martin, Coralie
Reutenauer, Frédérique Segond, and Massih-Reza Amini. Cap 2017 challenge: Twitter
named entity recognition. arXiv preprint arXiv:1707.07568, 2017.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Zaiqing Nie. Joint named entity recognition
and disambiguation. In Proc. EMNLP, pages 879-880, 2015.

Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional Istm-cnns-crf.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1064-1074, Berlin, Germany, August 2016. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/P16-1101.

Pranava Swaroop Madhyastha, Xavier Carreras, and Ariadna Quattoni. Learning Task-
specific Bilexical Embeddings. In Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers, pages 161-171. Dublin City
University and Association for Computational Linguistics, August 2014. URL http:
//www.aclweb.org/anthology/C14-1017.

Pranava Swaroop Madhyastha, Xavier Carreras, and Ariadna Quattoni. Tailoring word
embeddings for bilexical predictions: An experimental comparison. In International
Conference on Learning Representations 2015, Workshop Track, 2015.

Beatriz Maeireizo, Diane Litman, and Rebecca Hwa. Co-training for predicting emotions
with spoken dialogue data. In Proceedings of the ACL 2004 on Interactive poster and
demonstration sessions, page 28. Association for Computational Linguistics, 2004.

Gideon S Mann and David Yarowsky. Unsupervised personal name disambiguation. In
Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003-
Volume 4, pages 33-40. Association for Computational Linguistics, 2003.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and
David McClosky. The Stanford CoreNLP natural language processing toolkit. In Association
for Computational Linguistics (ACL) System Demonstrations, pages 55-60, 2014. URL
http://www.aclweb.org/anthology/P/P14/P14-5010.

James Mayfield, Paul McNamee, and Christine Piatko. Named entity recognition using
hundreds of thousands of features. In Walter Daelemans and Miles Osborne, editors,
Proceedings of CONLL-2003, pages 184-187. Edmonton, Canada, 2003.

Andrew McCallum and Wei Li. Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In Proceedings of the Seventh
Conference on Natural Language Learning at HLT-NAACL 2003 - Volume 4, CONLL ’03,
pages 188-191, Stroudsburg, PA, USA, 2003a. Association for Computational Linguistics.
doi: 10.3115/1119176.1119206. URL http://dx.doi.org/10.3115/1119176.1119206.

Bibliography

100

http://dl.acm.org/citation.cfm?id=1858842.1858908
http://www.aclweb.org/anthology/P16-1101
http://www.aclweb.org/anthology/C14-1017
http://www.aclweb.org/anthology/C14-1017
http://www.aclweb.org/anthology/P/P14/P14-5010
http://dx.doi.org/10.3115/1119176.1119206

Andrew McCallum and Wei Li. Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In Walter Daelemans and
Miles Osborne, editors, Proceedings of CoONLL-2003, pages 188-191. Edmonton, Canada,
2003b.

Andrew Kachites McCallum. Mallet: A machine learning for language toolkit. 2002.

Pablo N Mendes, Max Jakob, Andrés Garcia-Silva, and Christian Bizer. Dbpedia spotlight:
shedding light on the web of documents. In Proceedings of the 7th international conference
on semantic systems, pages 1-8. ACM, 2011.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. ICLR Workshop, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111-3119, 2013b.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Hlt-naacl, volume 13, pages 746751, 2013c.

David Milne and Ian H Witten. Learning to link with wikipedia. In Proceedings of the 17th
ACM conference on Information and knowledge management, pages 509-518. ACM, 2008.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation extraction
without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP: Volume 2-Volume 2, pages 1003-1011. Association for Computational Linguistics,
2009.

Tom Mitchell. The role of unlabeled data in supervised learning. In Proceedings of the sixth
international colloquium on cognitive science, pages 2—-11. Citeseer, 1999.

Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-
contrastive estimation. In Advances in neural information processing systems, pages 2265—
2273, 2013.

Robert Munro, Daren Ler, and Jon Patrick. Meta-learning orthographic and contextual
models for language independent named entity recognition. In Walter Daelemans and
Miles Osborne, editors, Proceedings of CoONLL-2003, pages 192-195. Edmonton, Canada,
2003.

David Nadeau and Satoshi Sekine. A survey of named entity recognition and classi-
fication. Linguisticae Investigationes, 30(1):3-26, January 2007. URL http://www.
ingentaconnect.com/content/jbp/1i/2007/00000030/00000001/art00002. Pub-
lisher: John Benjamins Publishing Company.

Ali Naderi, Horacio Rodriguez, and Jordi Turmo. Binary vector approach to entity linking:
Talp in tac-kbp 2014. In In the Seventh Text Analysis Conference, Gaithersburg, MD USA,
2014a.

Ali M Naderi, Horacio Rodriguez, and Jordi Turmo. The talp participation at erd 2014.
In Proceedings of the first international workshop on Entity recognition & disambiguation,
pages 89-94. ACM, 2014b.

Bibliography

101

http://www.ingentaconnect.com/content/jbp/li/2007/00000030/00000001/art00002
http://www.ingentaconnect.com/content/jbp/li/2007/00000030/00000001/art00002

Arvind Neelakantan and Michael Collins. Learning dictionaries for named entity recognition
using minimal supervision. In Proceedings of the 14th Conference of the European Chapter
of the Association for Computational Linguistics, pages 452-461, Gothenburg, Sweden,
April 2014a. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/E14-1048.

Arvind Neelakantan and Michael Collins. Learning dictionaries for named entity recognition
using minimal supervision. In Proceedings of the 14th Conference of the European Chapter
of the Association for Computational Linguistics, pages 452-461, Gothenburg, Sweden,
April 2014b. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/E14-1048.

Axel-Cyrille Ngonga Ngomo and Soren Auer. Limes: a time-efficient approach for large-scale
link discovery on the web of data. In Proceedings of the Twenty-Second international joint
conference on Artificial Intelligence-Volume Volume Three, pages 2312-2317. AAAI Press,
2011.

Kiem-Hieu Nguyen, Xavier Tannier, Olivier Ferret, and Romaric Besancon. Generative event
schema induction with entity disambiguation. In ACL (1), pages 188-197, 2015.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grishman. Joint event extraction via
recurrent neural networks. In Proceedings of NAACL-HLT, pages 300-309, 2016.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing YAGO: scalable machine
learning for linked data. In Proceedings of the 21st World Wide Web Conference 2012,
WWW, pages 271-280, Lyon, France, April 2012. doi: 10.1145/2187836.2187874. URL
http://doi.acm.org/10.1145/2187836.2187874.

Cheng Niu, Wei Li, Jihong Ding, and Rohini K. Srihari. A bootstrapping approach to named
entity classification using successive learners. In In Proceedings of the 41st Annual Meeting
of the ACL, pages 335-342, 2003.

Brendan O’Connor. Learning frames from text with an unsupervised latent variable model.
arXiv preprint arXiv:1307.7382, 2013.

Siddharth Patwardhan and Ellen Riloff. Effective information extraction with semantic
affinity patterns and relevant regions. In EMNLP-CoNLL, volume 7, pages 717-727, 2007.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMINLP), pages
1532-1543, 2014. URL http://www.aclweb.org/anthology/D14-1162.

Audi Primadhanty, Xavier Carreras, and Ariadna Quattoni. Low-rank regularization for sparse
conjunctive feature spaces: An application to named entity classification. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 126-135, Beijing, China, July 2015. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P15-1013.

Ariadna Quattoni, Borja Balle, Xavier Carreras, and Amir Globerson. Spectral regularization
for max-margin sequence tagging. In Tony Jebara and Eric P. Xing, editors, Proceedings of
the 31st International Conference on Machine Learning (ICML-14), pages 1710-1718. JMLR
Workshop and Conference Proceedings, 2014. URL http://jmlr.org/proceedings/
papers/v32/quattonilé.pdf.

Bibliography

102

http://www.aclweb.org/anthology/E14-1048
http://www.aclweb.org/anthology/E14-1048
http://www.aclweb.org/anthology/E14-1048
http://www.aclweb.org/anthology/E14-1048
http://doi.acm.org/10.1145/2187836.2187874
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/P15-1013
http://jmlr.org/proceedings/papers/v32/quattoni14.pdf
http://jmlr.org/proceedings/papers/v32/quattoni14.pdf

Lev Ratinov and Dan Roth. Design challenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Conference on Computational Natural Language
Learning (CoNLL-2009), pages 147-155, Boulder, Colorado, June 2009. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/W09-1119.

Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and global algorithms for
disambiguation to wikipedia. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies-Volume 1, pages 1375-1384.
Association for Computational Linguistics, 2011.

L. F. Rau. Extracting company names from text. In [1991] Proceedings. The Seventh IEEE
Conference on Artificial Intelligence Application, volume i, pages 29-32, Feb 1991. doi:
10.1109/CAIA.1991.120841.

Steffen Rendle. Factorization machines with libfm. ACM Transactions on Intelligent Systems
and Technology (TIST), 3(3):57, 2012.

Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. Relation ex-
traction with matrix factorization and universal schemas. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 74-84, Atlanta, Georgia, June 2013. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/N13-1008.

Ellen Riloff. Automatically generating extraction patterns from untagged text. In Proceedings
of the national conference on artificial intelligence, pages 1044-1049, 1996.

Ellen Riloff. Information extraction as a stepping stone toward story understanding. Un-
derstanding language understanding: Computational models of reading, pages 435-460,
1999.

Ellen Riloff, Janyce Wiebe, and Theresa Wilson. Learning subjective nouns using extraction
pattern bootstrapping. In Proceedings of the seventh conference on Natural language learning
at HLT-NAACL 2003-Volume 4, pages 25-32. Association for Computational Linguistics,
2003.

Benjamin Roth, Tassilo Barth, Michael Wiegand, Mittul Singh, and Dietrich Klakow. Effective
slot filling based on shallow distant supervision methods. In Proceedings of NIST KBP
workshop, volume 1, 2013.

Benjamin Roth, Nicholas Monath, David Belanger, Emma Strubell, Patrick Verga, and Andrew
McCallum. Building knowledge bases with universal schema: Cold start and slot-filling
approaches. In Proceedings of the Eighth Text Analysis Conference (TAC2015), 2015.

Alexandre Salle, Marco Idiart, and Aline Villavicencio. Matrix factorization using window
sampling and negative sampling for improved word representations. In The 54th Annual
Meeting of the Association for Computational Linguistics, page 419, 2016.

Lei Sha, Sujian Li, Baobao Chang, and Zhifang Sui. Joint learning templates and slots for
event schema induction. In Proceedings of NAACL-HLT, pages 428-434, 2016.

Yusuke Shinyama and Satoshi Sekine. Named entity discovery using comparable news
articles. In Proceedings of the 20th international conference on Computational Linguistics,
page 848. Association for Computational Linguistics, 2004.

Sameer Singh, Tim Rocktaschel, and Sebastian Riedel. Towards combined matrix and tensor
factorization for universal schema relation extraction. In NAACL Workshop on Vector Space
Modeling for NLP (VSM), June 2015.

Bibliography

103

http://www.aclweb.org/anthology/W09-1119
http://www.aclweb.org/anthology/N13-1008

Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. Semantic com-
positionality through recursive matrix-vector spaces. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 1201-1211. Association for Computational Linguistics, 2012.

Richard Socher, Dangi Chen, Christopher D Manning, and Andrew Ng. Reasoning with
neural tensor networks for knowledge base completion. In Advances in neural information
processing systems, pages 926-934, 2013.

Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In Learning Theory,
pages 545-560. Springer Berlin Heidelberg, 2005.

Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin matrix factorization.
In Advances in neural information processing systems, pages 1329-1336, 2005.

Michael Steinbach, George Karypis, Vipin Kumar, et al. A comparison of document clustering
techniques. In KDD workshop on text mining, volume 400, pages 525-526. Boston, 2000.

Beth M Sundheim. Overview of the fourth message understanding evaluation and conference.
In Proceedings of the 4th conference on Message understanding, pages 3-21. Association for
Computational Linguistics, 1992.

Mihai Surdeanu. Overview of the tac2013 knowledge base population evaluation: English
slot filling and temporal slot filling. In TAC, 2013.

Mihai Surdeanu, David McClosky, Julie Tibshirani, John Bauer, Angel X Chang, Valentin I
Spitkovsky, and Christopher D Manning. A simple distant supervision approach for the
tac-kbp slot filling task. In TAC, 2010.

Erik F Tjong Kim Sang and Sabine Buchholz. Introduction to the conll-2000 shared task:
Chunking. In Proceedings of the 2nd workshop on Learning language in logic and the
4th conference on Computational natural language learning-Volume 7, pages 127-132.
Association for Computational Linguistics, 2000.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In Walter Daelemans and Miles Osborne,
editors, Proceedings of CoNLL-2003, pages 142-147. Edmonton, Canada, 2003.

Erik F. Tjong Kim Sang and Hervé Déjean. Introduction to the conll-2001 shared task: Clause
identification. In Walter Daelemans and Rémi Zajac, editors, Proceedings of CoONLL-2001,
pages 53-57. Toulouse, France, 2001.

Ngoc Thang Vu. Sequential convolutional neural networks for slot filling in spoken language
understanding. In Interspeech 2016, 2016.

Jason Weston, Antoine Bordes, Oksana Yakhnenko, and Nicolas Usunier. Connecting lan-
guage and knowledge bases with embedding models for relation extraction. In Conference
on Empirical Methods in Natural Language Processing, pages 1366-1371, 2013.

Casey Whitelaw and Jon Patrick. Named entity recognition using a character-based prob-
abilistic approach. In Walter Daelemans and Miles Osborne, editors, Proceedings of
CoNLL-2003, pages 196-199. Edmonton, Canada, 2003.

Dekai Wu, Grace Ngai, and Marine Carpuat. A stacked, voted, stacked model for named entity
recognition. In Walter Daelemans and Miles Osborne, editors, Proceedings of CoNLL-2003,
pages 200-203. Edmonton, Canada, 2003.

Bibliography

104

Puyang Xu and Ruhi Sarikaya. Convolutional neural network based triangular crf for joint
intent detection and slot filling. In Automatic Speech Recognition and Understanding
(ASRU), 2013 IEEE Workshop on, pages 78-83. IEEE, 2013.

Limin Yao, Sebastian Riedel, and Andrew McCallum. Probabilistic databases of universal
schema. In Proceedings of the AKBC-WEKEX Workshop at NAACL 2012, June 2012.

Limin Yao, Sebastian Riedel, and Andrew McCallum. Universal schema for entity type
prediction. In Proceedings of the 2013 Workshop on Automated Knowledge Base Construction,
AKBC 13, pages 79-84, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2411-3. doi:
10.1145/2509558.2509572. URL http://doi.acm.org/10.1145/2509558.2509572.

David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In
Proceedings of the 33rd annual meeting on Association for Computational Linguistics, pages
189-196. Association for Computational Linguistics, 1995.

Mo Yu, Matthew R. Gormley, and Mark Dredze. Combining word embeddings and feature
embeddings for fine-grained relation extraction. In Proceedings of NAACL, 2015.

Mo Yu, Mark Dredze, Raman Arora, and Matthew R Gormley. Embedding lexical features
via low-rank tensors. In Proceedings of NAACL-HLT, pages 1019-1029, 2016.

Tong Zhang and David Johnson. A robust risk minimization based named entity recognition
system. In Walter Daelemans and Miles Osborne, editors, Proceedings of CoNLL-2003,
pages 204-207. Edmonton, Canada, 2003.

Zhi Zhong and Hwee Tou Ng. It makes sense: A wide-coverage word sense disambiguation
system for free text. In Proceedings of the ACL 2010 System Demonstrations, pages 78-83.
Association for Computational Linguistics, 2010.

Bibliography

105

http://doi.acm.org/10.1145/2509558.2509572

	Titlepage
	Abstract
	1 Introduction
	1.1 Motivation and Goal
	1.1.1 Information Extraction
	1.1.2 Challenges in Information Extraction Systems
	1.1.3 Goal

	1.2 Contributions
	1.2.1 Development of Low-Rank Regularization Method for Sparse Conjunctive Feature Spaces
	1.2.2 Experiments on Named Entity Classification and Template Filling

	1.3 Publications
	1.4 Navigating The Thesis

	2 Related Work
	2.1 Low-Rank Learning in NLP
	2.1.1 Low Rank Constraint for Generating Low-Dimensional Embedding
	2.1.2 Low Rank Decomposition for Matrix/Tensor Completion
	2.1.3 Low Rank Regularization for Controlling Model Capacity

	2.2 Named Entity Classification and Related Tasks
	2.2.1 Named Entity Recognition and Classification (NERC)
	2.2.2 Named Entity Extraction (NEE)
	2.2.3 Named Entity Linking (NEL)

	2.3 Template Filling and Related Tasks
	2.3.1 Event Template Completion
	2.3.2 Knowledge Base Population

	2.4 Supervision in Machine Learning for NLP
	2.4.1 Unsupervised Learning
	2.4.2 Supervised Learning
	2.4.3 Semi-Supervised Learning
	2.4.4 Labeled Examples from Minimal Supervision

	3 Low Rank Regularization for Sparse Conjunctive Feature Space
	3.1 Notations
	3.2 Linear Feature-based Model
	3.2.1 Conjunctive Feature Spaces
	3.2.2 Parameter Tensor

	3.3 Low-Rank Learning
	3.3.1 Low-Rank and Nuclear Norm Regularization
	3.3.2 Optimization

	3.4 Conclusion

	4 Low Rank Regularization for Named Entity Classification
	4.1 Introduction
	4.1.1 Contributions

	4.2 Low-Rank Named Entity Classification Models with Minimal Supervision
	4.2.1 Minimal Supervision for Named Entity Classification
	4.2.2 Low-rank Named Entity Classification Models

	4.3 Experiments
	4.3.1 Task Definition and Evaluation Metric
	4.3.2 Data and Setting
	4.3.3 Ambiguity Assumptions on CoNLL-2003 Data
	4.3.4 Evaluation of Unseen Entities on State-of-The-Art Systems
	4.3.5 Comparing Regularizers
	4.3.6 Comparison with State-of-The-Art Systems

	4.4 Conclusion

	5 Low Rank Regularization for Template-Filling
	5.1 Introduction
	5.1.1 Contributions

	5.2 Low-Rank Template Filling Model with Document-Level Supervision
	5.3 Experiments
	5.3.1 Task Definition and Evaluation Metric
	5.3.2 Data and Setting
	5.3.3 MUC-4 Data Characteristics
	5.3.4 Most Frequent Class Baseline
	5.3.5 Comparing Regularizers
	5.3.6 Comparison with State-of-The-Art Systems

	5.4 Conclusion

	6 Conclusion and Future Work
	6.1 Contributions
	6.1.1 Development of Low-Rank Regularization Method for Sparse Conjunctive Feature Spaces
	6.1.2 Experiments on Named Entity Classification and Template Filling

	6.2 Future work
	6.2.1 Incorporation of Unlabeled Data in Semi-Supervised learning
	6.2.2 Enforcing Low-Rank Tensor Regularization
	6.2.3 Combining sparse regularization and low-rank regularization

	A Low-Rank Regularization for Sparse Conjunctive Feature Spaces: An Application to Named Entity Classification
	B InToEventS: An Interactive Toolkit for Discovering and Building Event Schemas
	Bibliography

