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Preface

Besides setting quite a significant personal milestone, this PhD Thesis concludes
a long period of research on Complex Dynamics at the Universitat de Barcelona.
Back in the autumn of 2003, when I was at the very beginning of my PhD, I spent a
few months at the Institut Henri Poincaré (Paris) in the framework of a Trimestre
en Systèmes Dynamiques organised by the great, inspirational, father-of-so-much
Adrien Douady, among others. The topic of this Thesis came out there as a
result of conversations between Xavier Buff, Mitsuhiro Shishikura and my
advisors, after a lecture on connectivity of Julia sets of rational functions given by
Shishikura. At that time, the mere words “quasiconformal surgery” sounded like
magic to me — today, it is only its powerfulness that remains but unbelievable.

During these years, many people have helped me with this project in one way
or another, mathematically or not, and I am grateful to all of them because this
Thesis is also the ultimate result of their contributions. Still, I would like to
express further gratitude to some of them.

First of all — and above all —, to my advisors Núria Fagella and Xavier
Jarque for their immense support, for the uncountable discussions on the subject
and for all the time dedicated. You have been like parents to me at times, and
you know this Thesis also belongs to you.

In 2004 and 2006, I spent two periods of six months at the Mathematics Institute
of the University of Warwick under a Marie Curie programme. I want to thank
Sebastian van Strien, Adam Epstein and Lasse Rempe for giving me this
opportunity and for all the useful conversations.

Likewise, I want to thank Walter Bergweiler, Xavier Buff and Arnaud
Chéritat for their hospitality during my visits at the Christian-Albrechts-Univer-
sität (Kiel) and at the Université Paul Sabatier (Toulouse), and for all the discus-
sions held during those visits — and in many other occasions.

Out of the many wonderful people I have got to know while working on this pro-
ject, I would like to express special gratitude to Christian Henriksen, Philip
Rippon, Gwyneth Stallard and Toni Garijo, from whom I have learnt many
valuable things.
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To all the complex dynamicists with whom I have shared good times at conferences,
workshops and other events of the such, and to els joves del Departament , with
whom I have shared courses, coffees, meals and times of all kinds on the rest of
the days.

To my beloved Choir and to my theatre fellows for the amazing, crazy life outside
the academia, and for having helped me develop also an artistic side. I do thank
you for this, guys. Without that, this Thesis would surely not have been possible
in this form.

To the Institute of Geomatics for their support during the final stage of my PhD.

Finalment, vull donar les gràcies molt especialment als meus, pel seu suport in-
condicional en la decisió de començar (i d’acabar) un projecte personal de la mida
d’una tesi doctoral, i, també, pel seu suport incondicional en moltes d’altres deci-
sions. Perquè faci el que faci sé que us tinc allà. Perquè us estimo.

Jordi Taixés
July 2011
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Resum

Es defineix el mètode de Newton associat a una funció en una variable complexa
f com el sistema dinàmic

Nf (z) = z −
f(z)

f ′(z)
.

Com a algoritme per trobar arrels de funcions, una qüestió fonamental és entendre
la dinàmica de Nf al voltant dels seus punts fixos, ja que corresponen a les arrels
de la funció f . En altres paraules, volem entendre les conques d’atracció de Nf , és
a dir, aquells conjunts de punts que convergeixen a les arrels de f sota la iteració
de Nf .

Per altra banda, les conques d’atracció només són un tipus de component
estable o component del conjunt de Fatou F(f), que es defineix com el conjunt

de punts z ∈ Ĉ per als quals la famı́lia {fn}n≥1 està definida i és normal en
un entorn de z. El conjunt de Julia o conjunt de caos és el seu complementari,
J (f) = Ĉ \ F(f). (En aquestes definicions i a partir d’ara, Ĉ es refereix a l’esfera
de Riemann, és a dir, la superf́ıcie de Riemann compacta Ĉ := C ∪ {∞}.)

L’estudi de la topologia d’aquests dos conjunts és un dels temes centrals de la
Dinàmica Holomorfa. Per al cas particular del mètode de Newton, Feliks Przy-
tycki [35] va demostrar que, donada qualsevol arrel d’un polinomi P , la seva
conca d’atracció com a punt fix de NP és simplement connexa. Hans-Günter
Meier [33] va demostrar que el conjunt de Julia del mètode de Newton d’un poli-
nomi de grau 3 és connex, i més tard Tan Lei [43] va generalitzar aquest resultat
a polinomis de grau superior. L’any 1990, Mitsuhiro Shishikura [40] va de-
mostrar el resultat que és de fet la base d’aquest treball: Si P és un polinomi no
constant, llavors J (NP ) és connex (o, equivalentment, totes les components de
F(NP ) són simplement connexes). De fet, Shishikura va demostrar aquest resul-
tat com a conseqüència d’un teorema molt més general sobre funcions racionals,
que enunciem tot seguit.

Teorema A (Shishikura [40]). Si el conjunt de Julia d’una funció racional R
és no connex, llavors R té almenys dos punts fixos feblement repulsors.

Denotem per punt fix feblement repulsor un punt fix que és o bé repulsor o
bé parabòlic de multiplicador 1. És un resultat de Pierre Fatou [25] que tota
funció racional té almenys un punt d’aquest tipus.
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RESUM

Vegem ara com d’aquest resultat més general es dedueix l’anterior sobre el
mètode de Newton. Si P és un polinomi, llavors NP és una funció racional que
té per punts fixos exactament les arrels de P , més el punt ∞. D’aquests, tots
els punts fixos finits resulten ser atractors (o bé fins i tot superatractors en cas
que com a arrel de P siguin simples), i ∞ és l’únic punt fix repulsor. Per tant, si
les funcions racionals que provenen d’aplicar el mètode de Newton a un polinomi
només tenen un punt fix feblement repulsor, forçosament pel Teorema A el seu
conjunt de Julia ha de ser no connex.

El nostre objectiu és donar les versions transcendents naturals dels resultats de
Shishikura sobre funcions racionals i polinomis, és a dir, demostrar la conjectura
següent.

Conjectura A. Si el conjunt de Julia d’una funció meromorfa transcendent f és
no connex, llavors f té almenys un punt fix feblement repulsor.

Per entendre bé aquesta afirmació, és important observar que una singularitat
essencial d’una funció meromorfa transcendent f es troba sempre en el seu conjunt
de Julia, de manera que ∞ pot connectar components connexes de J (f) ∩ C que
d’altra manera serien no connexes.

Per altra banda, cal observar també que el resultat de Fatou sobre punts fixos
feblement repulsors és espećıfic de les funcions racionals, i que en les funcions
transcendents la singularitat essencial juga d’alguna manera el seu paper. Amb
un raonament sobre els punts fixos del mètode de Newton anàleg al d’abans es
dedueix que el mètode de Newton d’una funció entera transcendent no té cap punt
fix feblement repulsor, de manera que utilitzant la Conjectura A s’obté aquest
corol·lari.

Conjectura B (Corol·lari). El conjunt de Julia del mètode de Newton d’una
funció entera transcendent és connex.

L’estratègia per demostrar la Conjectura A és la següent: Com que el conjunt
de Julia és el complementari del conjunt de Fatou, la connexitat de J(f) està
directament relacionada amb la connexitat simple de F(f). Més concretament,
el conjunt de Julia de f és no connex si, i només si, alguna component connexa
del seu conjunt de Fatou és no simplement connexa. Com veurem tot seguit, el
nombre de possibles components de Fatou no simplement connexes és prou petit
com perquè separar la demostració del resultat global en diferents casos particulars
segons les components de Fatou sigui una estratègia viable.

S’entén que quan parlem de component de Fatou ens referim a una component
del conjunt de Fatou, és a dir, a un domini de normalitat dels iterats de f ma-
ximal. La vora de cadascuna de les components de Fatou pertany al conjunt
de Julia, mentre que, en el seu interior, les òrbites dels punts es comporten de
manera similar. La rigidesa de l’estructura complexa en les funcions holomorfes i
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RESUM

meromorfes fa que el nombre de possibles comportaments asimptòtics dels punts
en un domini maximal sigui petit, i això permet fer una classificació completa dels
tipus de components de Fatou.

Definició A. Sigui f una funció en una variable complexa i U una component
de Fatou de f . Diem que U és preperiòdica si existeixen enters n > m ≥ 0 tals
que fn(U) = fm(U). Diem que U és periòdica si m = 0, i que és fixa si n = 1.
S’anomena domini errant a una component de Fatou que no sigui preperiòdica.

Notació. Direm que una component de Fatou és n-periòdica si és periòdica de
peŕıode mı́nim n.

A la seva vegada, les components de Fatou periòdiques es classifiquen com
segueix. Aquesta classificació va ser donada essencialment per Fatou i Hubert
Cremer, i es troba per primera vegada en aquesta forma a [6].

Teorema B. Sigui U una component de Fatou p-periòdica d’una funció en una
variable complexa f . Llavors, U és un dels casos següents.

Conca d’atracció immediata. U conté un punt atractor p-periòdic z0 tal
que limn→∞ fnp(z) = z0 per a qualsevol z ∈ U .

Conca parabòlica o domini de Leau. ∂U conté un punt q-periòdic z0,
amb q|p, tal que limn→∞ fnq(z) = z0 per a qualsevol z ∈ U . A més, es té
que (fp)′(z0) = 1.

Disc de Siegel. Existeix un homeomorfisme holomorf φ : U → D tal que
(φ ◦ fp ◦ φ−1)(z) = e2πiθz, per a algun θ ∈ R \Q.

Anell de Herman. Existeix un real r > 1 i existeix un homeomorfisme
holomorf φ : U → {1 < |z| < r} tal que (φ ◦ fp ◦ φ−1)(z) = e2πiθz, per a
algun θ ∈ R \Q.

Domini de Baker. ∂U conté un punt z0 tal que limn→∞ fnp(z) = z0 per a
qualsevol z ∈ U , però la imatge fp(z0) no està definida.

En el nostre cas ens interessen només les components de Fatou no simplement
connexes, que d’entrada exclouen el cas del disc de Siegel. Per altra banda, si una
component de Fatou preperiòdica caigués en un cicle de components periòdiques
també no simplement connexes, llavors el cas quedaria automàticament redüıt a al-
gun dels casos de la classificació de les components de Fatou periòdiques. D’aquesta
manera, n’hi ha prou amb considerar només el cas d’aquelles components de Fatou
(preperiòdiques) que tinguin per imatge una component simplement connexa.

Tenint en compte aquestes observacions, podem reescriure la Conjectura A com
segueix, tot utilitzant la classificació de les components de Fatou que acabem de
descriure.
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Conjectura C. Sigui f una funció meromorfa transcendent. Llavors,

1. si f té una conca d’atracció immediata no simplement connexa; o bé

2. si f té una conca parabòlica no simplement connexa; o bé

3. si f té un anell de Herman; o bé

4. si f té un domini de Baker no simplement connex; o bé

5. si f té un domini errant no simplement connex; o bé

6. si f té una component de Fatou no simplement connexa U tal que f(U) és
simplement connexa,

llavors, f té almenys un punt fix feblement repulsor.

Cal dir que el cas 5 dels dominis errants va ser demostrat per Walter Berg-
weiler i Norbert Terglane [9] com a eina per trobar solucions de certes equa-
cions diferencials sense dominis errants. La seva demostració es basa en la tècnica
que utilitza Shishikura per demostrar el cas racional.

Dels cinc restants, en aquesta Tesi demostrem els casos 1, 2 i 6 (vegeu també
[23, 24]), i donem una idea per a la demostració del cas 3. La demostració completa
del cas dels anells de Herman i el cas dels dominis de Baker queden, doncs, com
a treball en curs i per a un futur projecte. La demostració dels casos 1, 2, i 6 és,
per tant, el resultat central d’aquesta Tesi.

Teorema Principal. Sigui f una funció meromorfa transcendent amb o bé una
conca d’atracció immediata no simplement connexa, o bé una conca parabòlica no
simplement connexa, o bé una component de Fatou no simplement connexa amb
imatge simplement connexa. Llavors, f té almenys un punt fix feblement repulsor.

Passem ara a donar una idea de la demostració d’aquest Teorema Principal, que
es basa fonamentalment en dues tècniques: la cirurgia quasiconforme i l’estudi de
l’existència de punts fixos virtualment repulsors mitjançant un teorema de Xavier
Buff, entre d’altres resultats. De la definició d’aquests punts i d’aquests resultats
en parlarem després d’una breu introducció a la cirurgia quasiconforme.

El que avui dia es coneix en la literatura de Dinàmica Holomorfa amb el nom
de ‘cirurgia quasiconforme’ és una tècnica per construir funcions holomorfes que
tinguin una certa dinàmica prefixada. El terme ‘cirurgia’ suggereix que una part
important del procés consistirà en retallar i cosir certs espais i certes funcions per
tal d’aconseguir aquest comportament desitjat. Aquest primer pas es coneix amb
el nom de cirurgia topològica. Per altra banda, l’adjectiu ‘quasiconforme’ indica
que la funció que constrüırem en aquest primer pas és òbviament no holomorfa,
ja que en el procés de retallar i cosir funcions n’obtindrem una de regularitat
inferior. El segon pas del procés consisteix, doncs, en trobar una funció conjugada
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RESUM

a aquesta funció de regularitat inferior (és a dir, que tingui la mateixa dinàmica que
ella), i això s’aconsegueix fent servir el cèlebre Teorema de l’Aplicació de Riemann
Mesurable. Aquest segon pas es coneix amb el nom de suavització holomorfa.

Les aplicacions quasiconformes van ser introdüıdes en la Dinàmica Complexa
el 1981 per Dennis Sullivan [42] en un seminari a l’Institut des Hautes Études
Scientifiques de Paŕıs, i molt aviat va ser reconeguda pels dinamicistes com una
eina remarcable. Com a exemple, Adrien Douady i John Hubbard van des-
envolupar tota la teoria d’aplicacions quasi-polinòmiques (vegeu [19]) fent servir
aplicacions quasiconformes, i més tard Shishikura va donar un gran impuls a
la cirurgia quasiconforme tot trobant-ne noves aplicacions a les funcions racionals
(vegeu [39]). Aix́ı és com es defineixen.

Definició B. Siguin U i V conjunts oberts de C. Diem que un homeomorfisme
φ : U → V és K-quasiconforme si té derivades febles de quadrat integrable local-
ment, i la funció

µφ(z) :=
∂φ/∂z

∂φ/∂z
(z)

satisfà que

|µφ(z)| ≤
K − 1

K + 1
< 1

gairebé a tot arreu.

La funció mesurable µφ representa, de fet, un camp d’el·lipses mesurable, i la
condició |µφ(z)| ≤ (K−1)/(K+1) < 1 vol dir que l’el·lipticitat del camp és fitada.
La pròpia definició d’aplicació quasiconforme ens mostra que tot homeomorfisme
quasiconforme indueix un camp d’el·lipses mesurable amb el·lipticitat fitada, però
aquest és un concepte que també es pot definir independentment de cap aplicació
“auxiliar” φ.

Definició C. Sigui U un conjunt obert de C. Diem que una funció mesurable
µ : U → C definida gairebé a tot arreu és un k-coeficient de Beltrami d’U si

||µ||∞ = k :=
K − 1

K + 1
< 1.

Havent vist que tota aplicació quasiconforme φ defineix un coeficient de Bel-
trami µφ, és natural demanar-se si el rećıproc és també cert. És a dir: Donat un
coeficient de Beltrami µ i l’anomenada equació de Beltrami

∂φ

∂z
= µ(z)

∂φ

∂z
,

podem trobar una aplicació quasiconforme φ tal que µφ ≡ µ? El teorema següent,
demostrat per Charles Morrey, Bogdan Bojarski, Lars Ahlfors i Lipman
Bers respon aquesta pregunta afirmativament.
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Teorema C. Sigui µ un k-coeficient de Beltrami de C (resp. de Ĉ o de U ∼= D).
Llavors, existeix una aplicació K-quasiconforme φ : C → C (resp. φ : Ĉ → Ĉ o
φ : U → D) tal que µφ = µ, on K = (1 + k)/(1 − k). A més, φ és única llevat de

postcomposició amb aplicacions conformes de C (resp. de Ĉ o de D).

Tota la tècnica de la cirurgia quasiconforme es basa en aquest potent resultat.
Vegem doncs com s’aplica a la Dinàmica Complexa.

De la mateixa manera que una funció holomorfa és una funció que és local-
ment conforme excepte en un nombre discret de punts, diem que una aplicació és
quasiregular si és localment quasiconforme excepte en un nombre discret de punts.
Sigui f : Ĉ → Ĉ una aplicació quasiregular la dinàmica de la qual voldŕıem veure
realitzada per una funció holomorfa de Ĉ. El lema següent ens mostra que n’hi ha
prou amb saber construir el coeficient de Beltrami adequat.

Lema A. Sigui µ un coeficient de Beltrami de C i f : Ĉ → Ĉ una aplicació
quasiregular tal que f∗µ = µ. Llavors, existeix una funció holomorfa g : Ĉ → Ĉ
que és quasiconformement conjugada a f . És a dir, existeix un homeomorfisme
quasiconforme φ : Ĉ→ Ĉ tal que la funció g := φ ◦ f ◦ φ−1 és holomorfa.

Aqúı, f∗ representa el functor contravariant f∗ : L∞(Ĉ) → L∞(Ĉ) indüıt per

f : Ĉ→ Ĉ i definit per

f∗µ :=
∂f/∂z̄ + (µ ◦ f)(∂f/∂z)

∂f/∂z + (µ ◦ f)(∂f/∂z̄)
,

que essencialment trasllada (per l’acció de f) el camp d’el·lipses definit per µ (en
l’espai tangent de l’espai d’arribada de f) a l’espai tangent de l’espai de sortida
de f .

La manera en què nosaltres aplicarem aquests resultats al nostre problema es
resumeix d’aquesta manera: Tenim una funció meromorfa transcendent f amb una
component de Fatou no simplement connexa U . Si fóssim capaços de convertir f
en una funció racional ja hauŕıem acabat, ja que llavors el resultat de Fatou ens
donaria automàticament el punt fix feblement repulsor que volem. Malgrat tot,
en les funcions transcendents la singularitat essencial (i, per tant, la dinàmica ex-
tremadament caòtica de f al voltant d’aquest punt) fa que la nostra funció estigui
lluny de ser racional. Ara bé, fent servir que U és no simplement connexa i que,
per tant, existeixen almenys dues components connexes del seu complementari,
substitüırem el comportament caòtic de f en la component connexa del comple-
mentari de U que contingui la singularitat essencial pel d’alguna funció que sigui
senzilla però que coincideixi amb f allà on es produeixi el canvi de funció. A més,
constrüırem un camp d’el·lipses com el que demana el Lema A per tal que aquest
ens doni una funció racional que s’assembla molt a f dinàmicament. Sabem que
aquesta funció racional tindrà un punt fix feblement repulsor, i no és dif́ıcil veure
que aquest punt n’indueix un d’anàleg en f gràcies a la semblança dinàmica.
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Pel que fa a l’existència de punts fixos virtualment repulsors, en primer lloc
veurem una extensió força intüıtiva del resultat de Fatou per a funcions racionals:
Si una funció qualsevol es comporta localment com una funció racional, llavors
també aquesta té almenys un punt fix feblement repulsor. Per a això, definim
primer aquest concepte de “comportar-se localment com una funció racional” i tot
seguit enunciem el resultat, que és del mateix Buff.

Definició D. Una aplicació quasi-racional és una funció holomorfa pròpia f : U →
V de grau d ≥ 2, on U i V són subconjunts oberts i connexos de Ĉ amb carac-
teŕıstica d’Euler finita que satisfan U ⊂ V .

Teorema D (Buff [12]). Tota aplicació quasi-racional té almenys un punt fix
feblement repulsor.

Recordem que una aplicació f : X → Y és pròpia si, per a qualsevol compacte
K ⊂ Y , l’antiimatge f−1(K) ⊂ X és també compacta. Malgrat que les nos-
tres funcions meromorfes transcendents són de grau infinit i per tant no són pas
pròpies globalment, śı que poden ser pròpies (i fins i tot quasi-racionals) quan es
restringeixen a dominis adequats.

Lema B. Siguin f una funció meromorfa transcendent, Y ⊂ C un conjunt obert
i connex, i X una component connexa fitada de f−1(Y ). Llavors, la restricció
f |X : X → Y és pròpia. Si, a més, el complementari de Y té un nombre finit de
components connexes i X ⊂ Y , llavors f |X : X → Y és quasi-racional.

Ara bé, la definició d’aplicació quasi-racional conté una hipòtesi molt forta, i és
que U ha d’estar compactament contingut en V . Com veurem, el teorema clau de
Buff ens allibera d’aquesta hipòtesi, a canvi que V sigui simplement connex, que
és una situació que en molts casos ens serà més fàcil de detectar que la d’aplicació
quasi-racional. El resultat del teorema és en realitat l’existència d’un punt fix
virtualment repulsor, que és una propietat lleugerament més forta que la de ser
feblement repulsor i, per tant, és perfectament aplicable al nostre cas.

El concepte de punt fix virtualment repulsor té el seu origen en els treballs
d’Adam Epstein. La seva definició es basa en la de l’́ındex holomorf d’un punt
fix, que recordem a continuació.

Definició E. L’́ındex holomorf d’un punt fix z d’una funció complexa f és el
residu

ι(f, z) :=
1

2πi

∮

z

dw

w − f(w)
.

En el cas que el punt fix sigui simple (és a dir, que el seu multiplicador sigui
λ(z) -= 1), l’́ındex ve donat per

ι(f, z) =
1

1− λ(z)
.
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El punt fix z s’anomena virtualment repulsor si es té que

Re (ι(f, z)) <
m

2
,

on m ≥ 1 denota la multiplicitat del punt fix z.

Com hem dit, el punt clau d’aquesta discussió sobre punts fixos virtualment
repulsors és que, en particular, són feblement repulsors. En efecte, si el punt fix
és simple (de multiplicitat m = 1), llavors

Re

(
1

1− λ(z)

)
<

1

2
⇐⇒ |λ(z)| > 1,

mentre que si és múltiple (m > 1), llavors el seu multiplicador és exactament
λ(z) = 1. En qualsevol dels dos casos, el punt fix és també feblement repulsor.

Per altra banda, la propietat de ser virtualment repulsor no és preservada sota
conjugació topològica, ja que l’́ındex holomorf d’un punt només es manté sota
conjugació anaĺıtica (vegeu [34]). Vegeu també [40] per a una demostració sobre el
fet que la propietat de ser feblement repulsor śı que és preservada sota conjugació
topològica.

Estem ja en condicions d’enunciar el teorema principal de Buff, sobre punts
fixos virtualment repulsors.

Teorema E (Buff [12]). Siguin U ⊂ D un conjunt obert i f : U → D una
aplicació holomorfa pròpia de grau d ≥ 2. Si |f(z)− z| es manté allunyat de zero
quan z ∈ U tendeix a ∂U , llavors f té almenys un punt fix virtualment repulsor.

Ja hem dit que si demanem que U estigui compactament contingut en D, llavors
f és una aplicació quasi-racional. Si, a més, U és simplement connex, llavors
f és una aplicació quasi-polinòmica (vegeu [19]). En aquest cas, pel Teorema
de Rectificació, f és h́ıbridament equivalent (i, en particular, quasiconformement
conjugada) a un polinomi P en U . Se segueix directament del resultat de Fatou
que f té almenys un punt fix feblement repulsor en U .

Finalment, recordem que les nostres funcions no són pas racionals, de manera
que ens cal adaptar aquest resultat a la nostra situació. El corol·lari següent serà
el resultat que habitualment farem servir en les nostres demostracions.

Corol·lari A. Siguin U ⊂ V ⊂ C conjunts oberts i sigui f : U → V una funció
holomorfa pròpia. Suposem que V és simplement connex i que la vora ∂V és
localment connexa en Ĉ. Si |f(z) − z| es manté allunyat de zero (en la mètrica
esfèrica) quan z ∈ U tendeix a ∂U , llavors f té almenys un punt fix feblement
repulsor en U .

Recordem que es diu que un espai topològic és localment connex si cada punt
admet una base d’entorns oberts i connexos. En el nostre cas, és necessari que
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controlem bé la topologia d’alguns dels conjunts que constrüırem, ja que no és
trivial, en la presència d’una singularitat essencial, que els conjunts conservin la
seva regularitat en ser iterats per una funció transcendent. En particular, voldrem
utilitzar el Teorema de Carathéodory per veure que unes certes aplicacions de
Riemann extenen a la vora de forma cont́ınua, i precisament això passa quan la
vora del seu domini de definició és localment connexa.

La manera com utilitzarem aquests resultats sobre punts fixos feblement re-
pulsors i punts fixos virtualment repulsors és clara, ja que en alguns casos serà
possible trobar un conjunt V ⊂ Ĉ que contingui una antiimatge U d’ell mateix a
dins seu, i veient que aquests conjunts es troben en les hipòtesis dels resultats que
acabem de veure, obtindrem el punt fix feblement repulsor que volem.

Les tècniques de cirurgia quasiconforme i punts fixos virtualment repulsors
es van alternant indistintament arreu dels casos de components de Fatou que
demostrem, segons les hipòtesis que anem afegint en cada subcas, mentre que la
demostració de Bergweiler i Terglane del cas dels dominis errants i la idea de
la demostració del cas dels anells de Herman utilitzen només la cirurgia proposada
per Shishikura en el cas racional.

Segurament aquestes tècniques també eliminaran una bona part de subcasos
del cas dels dominis de Baker, però també pot molt ben ser que només amb elles
no n’hi hagi prou per completar la demostració i s’hagi de fer servir encara algun
procediment diferent. El seu estudi queda obert per a un projecte futur.
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1
Introduction

In the year 1669, a young fellow of the Trinity College of the University of Cam-
bridge presented a treatise on quadrature of simple curves and on resolution of
equations. Concerning the latter, he wrote: “Because the whole difficulty lies in
the resolution, I shall first illustrate the method I use in a numeral equation,” and
the procedure he described next became the germ of possibly the most powerful
root-finding algorithm used today. The young fellow was Isaac Newton and the
treatise was De analysi per æquationes numero terminorum infinitas, one of his
most celebrated works.

Using the “numeral equation” y3 − 2y − 5 = 0, Newton then illustrates his
resolution method as follows: He proposes the number 2 as an initial guess of the
solution which differs from it by less than a tenth part of itself. Calling p this small
difference between 2 and the solution y, he writes 2 + p = y and substitutes this
value in the equation, which gives a new equation to be solved: p3+6p2+10p−1 =
0. Since p is small, the higher order terms p3 + 6p2 are quite smaller relatively,
therefore they can be neglected to give 10p − 1 = 0, from where p = 0.1 may be
taken as an initial guess for the solution of the second equation. Now, it is clear
how the algorithm continues, since, writing 0.1+ q = p and substituting this value
in the second equation, a third equation q3+6.3q2+11.23q+0.061 = 0 is obtained,
and so on.

Using this method, Newton constructs a sequence of polynomials, plus a
sequence of root approximations that converge to 0 and add up to the solution of
the original equation.

1



CHAPTER 1. INTRODUCTION

A couple of decades later, Joseph Raphson discussed Newton’s recurrence
and improved the method by using the concept of derivative of a polynomial.
It was in 1740 that Thomas Simpson described the algorithm as an iterative
method for solving general nonlinear equations using fluxional calculus, essentially
obtaining the well-known formula xn+1 = xn − f(xn)/f ′(xn) for finding the roots
of a function f . In the same publication, Simpson also gave the generalisation
to systems of two equations and noted that the method can be used for solving
optimisation problems. Today, the so-called Newton’s method (or Newton-Raphson
method) is probably the most common — and usually efficient — root-finding
algorithm.

As in the previous example, Newton’s method is frequently used to solve prob-
lems of real variable — either in dimension one or greater —, although the plane
of complex numbers is often the natural environment provided that the functions
to be dealt with do have a certain regularity. Already in 1879, Arthur Cayley
applied Newton’s method to complex polynomials and tried to identify the basins
of attraction of its roots. Cayley did provide a neat solution for this problem
in the case of quadratic polynomials, but the cubic case appeared to be far more
difficult — and a few years later he finally gave only partial results. Today, it is
enough to see the pictures of a few cubic polynomials’ dynamical planes to under-
stand why Cayley was never able to work out such a complex structure with the
mathematical tools of 125 years ago.

Newton’s method associated to a complex holomorphic function f is then de-
fined by the dynamical system

Nf (z) = z −
f(z)

f ′(z)
.

A natural question is what kind of properties we might be interested in or, put more
generally, what kind of study we want to make of it. From the dynamical point of
view, and given the purpose of any root-finding algorithm, a fundamental question
is to understand the dynamics of Nf about its fixed points, as they correspond
to the roots of the function f ; in other words, we would like to understand the
basins of attraction of Nf , the sets of points that converge to a root of f under
the iteration of Nf .

Basins of attraction are actually just one type of stable component or compo-
nent of the Fatou set F(f), the set of points z ∈ Ĉ for which {fn}n≥1 is defined

and normal in a neighbourhood of z (recall Ĉ stands for the Riemann sphere,
the compact Riemann surface Ĉ := C ∪ {∞}). The Julia set or set of chaos is
its complement, J(f) := Ĉ \ F(f). These two sets are named after the French
mathematicians Pierre Fatou and Gaston Julia, whose work began the study
of modern Complex Dynamics at the beginning of the 20th century.

At first, one could think that if the fixed points of Nf are exactly the roots
of f , then Newton’s method is a neat algorithm in the sense that it will always

2



CHAPTER 1. INTRODUCTION

Figure 1.1: The two images above are the dynamical plane of fa(z) for a = 0.913+0.424 i,
and the images below are the parameter space of this family. The black regions on
the right-hand pictures (magnifications of the other two) indicate the values of non-
convergence. The parameter a has been chosen so that there exists an attracting periodic
orbit of period 6.

converge to one of the roots. But notice that not every stable component is a basin
of attraction; even not every attracting behaviour is suitable for our purposes:
Basic examples like Newton’s method applied to cubic polynomials of the form
fa(z) = z(z−1)(z−a), for certain values of a ∈ C, lead to open sets of initial values
converging to attracting periodic cycles. Actually, also the set of such parameters
a ∈ C, for this family of functions, is an open set of the corresponding parameter
space (see [15, 19]). Figure 1.1 shows both phenomena in coloured complex planes.
Different colours represent different rates of convergence towards the roots of fa,
while black means either convergence somewhere else or non-convergence.

3



CHAPTER 1. INTRODUCTION

Figure 1.2: The Mandelbrot set.

These facts suggest a division between two directions of dynamical study: On
the one hand, given a certain function f , we can try to understand the general
behaviour of points under iterates of f , that is to say, the study of its stable and
chaos sets — the dynamical plane. On the other hand, if we have a family of
functions depending on one or several parameters, we might then be interested
in knowing for which values of the parameter(s) a certain property occurs — the
parameter space. A well-known example of this division is given by the family of
quadratic polynomials fc(z) = z2 + c, c ∈ C, for which the dichotomy between
connected and totally disconnected Julia sets has been proved. In this case, the
parameter space shows the Mandelbrot set , the locus of polynomials fc(z) with
connected Julia set (see Figure 1.2).

The fixed points of Nf are the roots of the function f and the poles of f ′, since

Nf(z) = z ⇐⇒ z −
f(z)

f ′(z)
= z ⇐⇒

f(z)

f ′(z)
= 0 .

When the method is applied to a polynomial, infinity becomes a fixed point as
well, whereas if Nf is transcendental, this point is an essential singularity. In
Lemma 1.1 we will see when this case occurs.

4
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As for their behaviour, if we compute Newton’s method’s derivative we have

N ′
f = 1−

(f ′)2 − f · f ′′

(f ′)2
=

f · f ′′

(f ′)2
,

which means that simple roots of f are superattracting fixed points of Nf . This
is an extraordinary property from the point of view of root-finding algorithms, as
it is equivalent to say that, in a neighbourhood of such points, Nf is conjugate to
z 0→ zk, for some k > 1, for which local convergence is very fast.

Multiple roots of f are attracting fixed points of Nf , but no longer superat-
tracting. In fact, their multiplier is (m− 1)/m, where m is the multiplicity of the
root, so in this case the rate of attraction is linear.

When Newton’s method is applied to a polynomial P of degree d, the point
at infinity has multiplier N ′

P (∞) = d/(d − 1), so it is repelling — in particular,
weakly repelling.

Notice that the critical points of Nf are the simple roots of f , as well as

its inflection points {z ∈ Ĉ : f ′′(z) = 0}. Of course, every simple root of f is
both a critical point and a fixed point of Nf , but inflection points of f become
free critical points of Nf , which can lead to undesirable Fatou components (as
mentioned earlier). From the root-finding point of view, some tools have been
developed to cope with this kind of situations: Given a polynomial P , one can
find explicitly a finite set of points such that, for every root of P , at least one of
the points will converge to this root under NP (see [29]).

Now let us focus our attention on the case in which f is transcendental. We
have the following result (see [8]).

Lemma 1.1. If a complex function f is transcendental, then so is Nf , except
when f is of the form f = ReP , with R rational and P a polynomial. In this case,
Nf is a rational function.

The dynamical system Nf for functions of the form f = ReP has also been
investigated, especially when f is entire, i.e., of the form f = PeQ, where P and
Q are polynomials. Mako Haruta [28] proved that, if degQ ≥ 3, the area of
the basins of attraction of the roots of f is finite. Figen Çilingir and Xavier
Jarque [14] studied the area of the basins of attraction of the roots of f in the
case degQ = 1, and Antonio Garijo and Jarque [26] extended the previous
results in the cases degQ = 1 and degQ = 2. For yet another reference on the
subject, see also [30].

It is worth saying that there exist a number of variations of Newton’s method,
which can improve its efficiency in some cases. One of the most usual versions is
the relaxed Newton’s method , which consists in the iteration of the map Nf,h =
id− h · f/f ′, where h is a fixed complex parameter. In general, for certain choices
of rational functions R and parametres h, the method has additional attractors,
which causes the algorithm not to work reliably. Nevertheless, it has been proved
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in [44] that, for almost all rational functions R, the additional attractors vanish if
h is chosen sufficiently small.

A lot of literature concerning Newton’s method’s Julia and Fatou sets has been
written, above all when applied to algebraic functions. Feliks Przytycki [35]
showed that every root of a polynomial P has a simply connected immediate basin
of attraction for NP . Hans-Günter Meier [33] proved the connectedness of the
Julia set of NP when degP = 3, and later Tan Lei [43] generalised this result
to higher degrees of P . In 1990, Mitsuhiro Shishikura [40] proved the result
that actually sets the basis of the present work: For any non-constant polynomial
P , the Julia set of NP is connected (or, equivalently, all its Fatou components are
simply connected). In fact, he obtained this result as a corollary of a much more
general theorem for rational functions. We denote by a weakly repelling fixed point
a fixed point which is either repelling or parabolic of multiplier 1 (see Subsection
2.1.1). It was proven by Fatou that every rational function has at least one weakly
repelling fixed point (see Theorem 2.6).

Theorem 1.2 (Shishikura [40]). If the Julia set of a rational function R is
disconnected, then R has at least two weakly repelling fixed points.

Let us see how this applies to Newton’s method. If P is a polynomial, then
NP is a rational function whose fixed points are exactly the roots of the polyno-
mial P , plus the point at infinity. The finite fixed points are all attracting, even
superattracting if, as roots of P , they are simple. The point at infinity, instead,
is always repelling. Hence, rational functions arising from Newton’s methods of
polynomials have exactly one weakly repelling fixed point and, in view of Theorem
1.2, their Julia set must be connected.

This Thesis, however, deals with Newton’s method applied to transcendental
maps. In the same direction, in 2002 Sebastian Mayer and Dierk Schleicher
[32] extended Przytycki’s theorem by showing that every root of a transcenden-
tal entire function f has a simply connected immediate basin of attraction for Nf .
This work has been recently continued by Johannes Rückert and Schleicher
in [38], where they study Newton maps in the complement of such Fatou com-
ponents. Our long-term goal is to prove the natural transcendental versions of
Shishikura’s results — although this Thesis covers just part of it —, which can be
conjectured as follows.

Conjecture 1.3. If the Julia set of a transcendental meromorphic function f is
disconnected, there exists at least one weakly repelling fixed point of f .

It is important to notice that essential singularities are always in the Julia set
of a transcendental meromorphic function f and therefore infinity can connect two
unbounded connected components of J (f) ∩ C otherwise disconnected.

Observe that Fatou’s theorem on weakly repelling fixed points only applies
to rational maps. For transcendental maps, the essential singularity at infinity

6
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plays the role of the weakly repelling fixed point, and therefore no such point
must necessarily be present for an arbitrary map. From this fact, and from the
discussion above about Newton’s method, it follows that transcendental meromor-
phic functions that come from applying Newton’s method to transcendental entire
functions happen to have no weakly repelling fixed points at all, so the next result
is obtained forthwith.

Conjecture 1.4 (Corollary). The Julia set of the Newton’s method of a tran-
scendental entire function is connected.

Recall that the Julia set (closed) is the complement of the Fatou set (open).
Hence, as it was already mentioned, the connectivity of the Julia set is equivalent
to the simple connectivity of the Fatou set. Because of this fact, a possible proof
of Conjecture 1.3 splits into several cases, according to different Fatou components
(see Section 3.2). In this Thesis we will see three of such cases (see [23, 24]), which,
together, give raise to the following result.

Main Theorem 1.5. Let f be a transcendental meromorphic function with either
a multiply-connected attractive basin, or a multiply-connected parabolic basin, or
a multiply-connected Fatou component with simply-connected image. Then, there
exists at least one weakly repelling fixed point of f .

Notice how this theorem actually connects with the result of Mayer and
Schleicher mentioned above.

In order to prove this theorem, we use mainly two tools: the method of qua-
siconformal surgery and a theorem of Xavier Buff on virtually repelling fixed
points . On the one hand, quasiconformal surgery (see Section 2.4) is a powerful
tool that allows to create holomorphic maps with some prescribed dynamics. One
usually starts glueing together — or cutting and sewing, this is why this procedure
is called ‘surgery’— several functions having the required dynamics; in general, the
map f obtained is not holomorphic. However, if certain conditions are satisfied,
the Measurable Riemann Mapping Theorem, due to Charles Morrey, Bogdan
Bojarski, Lars Ahlfors and Lipman Bers, can be applied to find a holomor-
phic map g, conjugate to the original function g. On the other hand, Buff’s
theorem states that, under certain local conditions, a map possesses a virtually
repelling fixed point. These conditions are a generalization of the polynomial-like
setup and the property of being a virtually repelling fixed point is only slightly
stronger than that of weakly repelling. Hence in those cases where we can apply
Buff’s theorem, the result follows in a very direct way.

Structure of the Thesis. This Introduction puts the subject of the Thesis into
historical context and gives a little state of the art about the study of the topology
of the Fatou and Julia sets of the dynamical system generated by applying New-
ton’s method to polynomials and transcendental entire functions. In particular,
it gives Shishikura’s main result and our ‘transcendental’ conjectures and Main

7
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Theorem. Chapter 2 provides us with some background tools from various top-
ics in Holomorphic Dynamics, to be used in the following chapters. These topics
range from pure Dynamical Systems stuff, such as basics on iteration theory or the
classification of Fatou components, to concepts coming from other fields, like qua-
siconformal surgery from Analysis or local connectivity from Topology. In these
‘borrowed stuff’ cases we will see how such concepts are adapted to Holomorphic
Dynamics and become actual tools in our context. Sections 3, 4 and 5 contain
our proof for our Main Theorem, separated by type of Fatou component. Thus,
Section 3 is dedicated to the proof for the case of immediate attractive basins,
Section 4 to parabolic basins and Section 5 to preperiodic Fatou components.
Also, what actually opens Section 3 is a preamble with Shishikura’s proof for
the attractive rational case plus an introduction to the general transcendental case
that tells how our main conjecture splits into the different Fatou-component cases.
Finally, Section 6 rounds up our global case-by-case discussion with a collection
of results and ideas about wandering domains, Herman rings and Baker domains,
for completeness. The section concludes with some remarks about future projects
and further work on the subject.

8



2
Preliminaries and tools

In this chapter we provide some general background in various topics in holo-
morphic dynamics, to be used in the following chapters of the Thesis. The first
section contains some of the basics on iteration theory and holomorphic dynamics;
the second section gives a general summary to the technique of quasiconformal
surgery, a powerful tool in the field of Complex Dynamics that allows to construct
holomorphic maps having some prescribed dynamics; in the third section we find a
few words on the topological concept of local connectivity; finally, the last section
is devoted to state some theorems that guarantee, for a holomorphic function, to
have a repelling or weakly repelling fixed point.

2.1 Background on holomorphic dynamics

In this section we give the basic concepts in holomorphic dynamics that we will
be using all the time later on, such as iteration, multiplier of a periodic point or
Fatou and Julia sets, to give only a few examples. Also, we will give the formal
definitions for many of the concepts that already appeared in Chapter 1. For
detailed introductions to holomorphic dynamics we refer to the books [34, 13, 7],
to mention only a few.

This section is in turn divided into three subsections, where the topics are
basics on iteration theory, the Fatou and Julia sets, and the relationship between
Fatou components and singular values.

9
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2.1.1 Basics on iteration theory

We shall work with three types of maps or functions: rational, i.e., holomorphic
on the Riemann sphere Ĉ = C ∪ {∞}, transcendental entire and transcendental
meromorphic.

Definition 2.1 (Transcendental function). A complex function f is transcen-
dental if it has at least one essential singularity. By an entire (transcendental) map
we mean functions which are holomorphic in C and have an essential singularity
at infinity. We denote by meromorphic (transcendental) maps with an essential
singularity at infinity, having at least one pole which is not an ommitted value.

We refer to [8] for a general discussion on transcendental maps. In order to
avoid repetition, we will use the term complex function or complex map to refer
to a map in any of the classes above.

We write fn for the nth iterate of f , that is, f0(z) = z and fn(z) = f(fn−1(z))
when n ≥ 1. Our maps are in general non-invertible. Hence when we write f−n,
we mean it in the sense of sets, that is, f−n(A) denotes the set of points whose nth
image belongs to the set A. Sometimes, however, we might use (fn)−1 to denote
some particular local inverse branch of fn.

For a given point z, the sequence

O+(z) := {z, f(z), f2(z), f3(z), . . .}

is called the (forward) orbit of the point z. The backward orbit of z, O−(z), is
given by the set

O−(z) =
⋃

n≥0

f−n(z).

We say that z ∈ Ĉ is exceptional if O−(z) is finite. It is not difficult to see
that a complex function f has at most two exceptional points. If f is rational, its
exceptional points must belong to the Fatou set. If f is transcendental entire, then
infinity is always one of them, so f has at most one more exceptional point, finite,
and it can belong to either Fatou or Julia sets (an example of this is z = 0 for the
exponential map). Finally, if f is transcendental meromorphic, then infinity does
have preimages at the poles of f , therefore f has at most two finite exceptional
points.

Among all points z in the domain of definition of the complex function f , the
periodic points play an important role in the study of f as a dynamical system.

Definition 2.2 (Periodic point). Let f be a complex function. For p ≥ 1,
we say that z is a p-periodic point (or a periodic point of minimal period p) if
fp(z) = z and fk(z) -= z for k < p. We say that z is periodic if it is p-periodic for
some p. If p = 1, we call z a fixed point . We say that z is (strictly) preperiodic if
fk(z) is a periodic point, for some k > 1, but z itself is not.

10
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Definition 2.3 (Multiplier). The multiplier of a p-periodic point z of a complex
function f is the value

λ =

{
(fp)′(z) if z -=∞
(h ◦ fp ◦ h−1)′(0) if z =∞, where h(z) = 1/z .

Of course the case z =∞ applies just in the case where f(∞) is defined, i.e., the
rational case.

According to the multiplier, the behaviour of a p-periodic point is classified as
follows:

• if |λ| < 1, z is called attracting (superattracting if λ = 0) and for all w ∈ U ,
a sufficiently small neighborhood of z, we have fpk(w)→ z, when k →∞;

• if |λ| = 1, z is called indifferent (parabolic if λ = e2πiθ, with θ ∈ Q);

• if |λ| > 1, z is called repelling and for all w ∈ U , a sufficiently small neighbor-
hood of z, we have f−pk(w) → z, where f−p denotes an appropiate branch
of the inverse fixing z.

Note that if z is p-periodic, all other points in the forward orbit of p are
also p-periodic, with the same multiplier as z (by the chain rule). We call λ the
multiplier of the periodic cycle, and all the statements above apply to each point
in the periodic cycle.

Invariant sets are very important in dynamical systems in general and in holo-
morphic ones in particular.

Definition 2.4 (Invariant set). A subset S ∈ C (or Ĉ) is called forward invariant
if f(S) ⊂ S, backward invariant if f−1(S) ⊂ S, and (completely) invariant if it is
both forward and backward invariant.

For instance, the orbit of a point is forward invariant but not backward invari-
ant since, in general, a point has more than one preimage.

As we have already mentioned, in this Thesis, weakly repelling fixed points will
play a crucial role.

Definition 2.5 (Weakly repelling fixed point). A fixed point is said to be
weakly repelling if it is either repelling or parabolic with multiplier 1.

The following result guarantees the existence of at least one weakly repelling
fixed point for rational maps of degree at least two.

Theorem 2.6 (Fatou [25]). Any rational map of degree greater than one has, at
least, one weakly repelling fixed point.

11



CHAPTER 2. PRELIMINARIES AND TOOLS

The rest of this subsection is dedicated to prove this theorem. The proof
is based in the Holomorphic Fixed Point Formula and the Rational Fixed Point
Theorem. The proof we present is extracted from [34].

The multiplicity of a finite fixed point w of a rational map f (f(w) = w) of
degree d ≥ 0 is defined to be the unique integer m ≥ 1 for which the power series
expansion of the function f(z)− z about w has the form

f(z)− z = am(z − w)m + am+1(z − w)2 + . . . am -= 0

We claim that m ≥ 2 if and only if f ′(w) -= 1. To see the claim we just take
g(z) = f(z)− z and consider its power series expansion about w, that is,

g(z) = g′(w)(z − w) +
1

2
g′′(w)(z − w)2 + . . . .

If the fixed point is at infinity we can define the multiplicity similarly by introduc-
ing the new coordinates η = 1/z.

Lemma 2.7 (Fixed point count). If f is a rational function of degree d ≥ 0
and f -= Id then f has exactly d+ 1 fixed points, counting multiplicity.

Proof. Conjugating, if necessary, by a fractional linear automorphism we may
assume that z =∞ is not a fixed point. Then f(z) = p(z)/q(z) where p and q are
two polynomials which have no common factors and satisfy deg(p) ≤ deg(q) = d.
Of course the equation f(z) = z has d+ 1 solutions, counting multiplicity.

Let f : U → C be a holomorphic function defined in a connected open set
U ∈ C. Assume there is an isolated w ∈ U such that f(w) = w. The residue fixed
point index of f at w is defined as

ι(f, w) =
1

2πi

∮

w

dz

z − f(z)
,

where we integrate along a small loop around the fixed point w (in the positive
direction).

Lemma 2.8. Let f : U → C be a holomorphic function. If w is a fixed point of f
with multiplier λ := f ′(w) -= 1, then

ι(f, w) =
1

1− λ
-= 0 .

Proof. Take w = 0 and expand f as a power series around 0:

f(z) = λz + a2z
2 + a3z

3 + . . .

12
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Since λ -= 1, it follows that z − f(z) = (1− λ)z · (1 +O(z)). Hence

1

z − f(z)
=

1 +O(z)

(1− λ)z
=

1

(1− λ)z
+O(1) .

Integrating around the small circle |w| = ε and using the Residue’s Theorem we
have ∮

w

dz

z − f(z)
=

∮

w

dz

(1 − λ)z
=

2πi

1− λ
,

as desired.

Since the residue fixed point index ι(f, w) is a local concept (around the fixed
point w), if we have a (global) rational map f : Ĉ→ Ĉ we can compute the index
for the associated local map z → f(z). It can be proven that ι(f, w) does not
depend on any particular choice of local coordinates.

Theorem 2.9 (Rational Fixed Point Theorem). For any rational map

f : Ĉ→ Ĉ, f -= id, we have the relation

∑

{w=f(w)}

ι(f, w) = 1,

where the sum runs over all fixed points of f .

Proof. Conjugating, if necessary, by a fractional linear automorphism, we may
assume that f(∞) -= {0,∞}. Then,

1

z − f(z)
−

1

z
=

f(z)

z (z − f(z))
∼

z→∞

f(∞)

z2

Integrating along the loop |w| = r, it is clear from the previous computations that

∮

w

(
1

z − f(z)
−

1

z

)
dz = 0

if r is sufficiently large. Consequently, it follows from the Residue’s Theorem that

1

2πi

∮

w

dz

z − f(z)
=

1

2πi

∮

w

dz

z
= 1 .

Since, for r sufficiently large, the first term is equal to the sum of the residues
ι(f, wk) over all fixed points, the result follows.

Once we know that the sum of the residues over all fixed points in Ĉ of a
rational map is 1, in order to prove Theorem 2.6 it will be enough to know the
role of the non- weakly repelling fixed points in the sum.

13
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Lemma 2.10. Let w be a fixed point of f with multiplier λ -= 1, and let ι(f, w)
be its residue fixed point index. Then,

1. w is attracting if and only if Re (ι(f, w)) > 1
2 ;

2. w is indifferent if and only if Re (ι(f, w)) = 1
2 ;

Proof. For 1, using Lemma 2.8 it suffices to show that w is attracting if and only

if Re
(

1
1−λ

)
> 1

2 . We have

Re

(
1

1− λ

)
>

1

2
⇐⇒

1

1− λ
+

1

1− λ
> 1 ⇐⇒ λλ < 1 ⇐⇒ |λ| < 1,

where the second equivalence follows from multiplying both sides of the expression
by (1− λ)(1 − λ) > 0.

For 2, it suffices to change strict inequalities by equalities in the computation
above.

We are now in a position to prove Fatou’s theorem.

Proof of Theorem 2.6. If there were no fixed points of multiplier λ = 1, then
there must exist d + 1 distinct fixed points {wk}k. If these were all attracting or
indifferent, then each of their indexes would satisfy Re (ι(f, wk)) ≥ 1

2 and hence
their sum would have real part no smaller than d+1

2 > 1, a contradiction.

2.1.2 The Fatou and Julia sets

As explained in Chapter 1, the main goal of Complex Dynamics (and, more gen-
erally, of discrete Dynamical Systems) is to have a deep understanding of the
asymptotic behaviour of all possible orbits generated by the iterates of a map.
As it turns out, the phase portrait of a complex function splits into two totally
invariant sets, very different dinamically: the set of initial conditions whose orbit
is tame (the Fatou set), and its complement, formed by chaotic orbits (the Julia
set).

The right notion to deal with this dichotomy is that of normality of the sequence
of iterates, which is deeply related to equicontinuity.

Definition 2.11 (Normal family). Let F = {fi}i∈I be a family of complex

functions. We say that F is normal at a point z ∈ Ĉ if there exists a neighbourhood
U of z such that {fi|U}i∈I is equicontinuous , that is to say, for all ε > 0, there
exists a δ > 0 such that |fi(z)− fi(w)| < ε if |z − w| < δ, for all z, w ∈ U and for
all i ∈ I.

14
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Definition 2.12 (Fatou set and Julia set). The Fatou set (or stable set) of a
complex function f is defined by

F(f) = {z ∈ Ĉ : {fn}n≥1 is defined and normal in a neighbourhood of z},

and the Julia set (or chaotic set) is its complement, J (f) = Ĉ \ F(f).

In order to avoid checking whether the sequence of iterates {fn}n is equicon-
tinuous at each point, the next theorem due to Paul Montel is a useful criterion
to see when a certain set of points belongs to the Fatou set.

Theorem 2.13 (Montel’s Theorem). Let U be an open set of Ĉ and let F =

{fn : U → Ĉ}n≥1 be a family of holomorphic functions with at least three points
which never occur as values. In other words, fn(z) /∈ {a, b, c} for any z ∈ U , any
n ≥ 1 and any three different points a, b, c ∈ Ĉ. Then, F is normal on U .

In such a situation, we have U ⊂ F(f). For instance, if we take g(z) = z2

we have that F(g) = Ĉ \ S1 and J (g) = Ĉ \ F(g) = S1. This is a straight-
forward consequence of Montel’s Theorem 2.13, since the sets D, S1 and Ĉ \D are
(completely) invariant, and 0 and ∞ have no preimages other than themselves.

The Fatou and Julia sets possess many interesting dynamical properties, which
we summarise in the following lemma.

Lemma 2.14 (Properties of F(f) and J (f)). Let f be a complex function of
degree d ≥ 2. Then, the following statements hold.

1. F(f) is open and J (f) is closed.

2. F(f) and J (f) are both completely invariant.

3. J (f) is non-empty and perfect (that is, it does not contain isolated points).
Furthermore, if f is transcendental, then infinity belongs to J (f), since it is
an essential singularity. In particular, if f is transcendental meromorphic,
then

J (f) =
⋃

k≥0

f−k(∞) .

4. J (f) =
⋃

k≥0 f
−k(z) for any non-exceptional z ∈ J (f) (and there are at

most two exceptional points).

5. J (f) is the closure of the set of repelling periodic points of f .

6. Either J (f) is Ĉ or it has empty interior.

15
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Sketch of the proof. Statements 1 and 2 follow from the definitions. For 3, the fact
that the Julia set of a rational map is non-empty (it is actually infinite) follows
from assuming the opposite and then taking φ := limk→∞ fnk . On one hand, φ
must be a rational map (defined in Ĉ), and, on the other hand, φ must be of
infinite degree — a contradiction. If f is entire the proof is more elaborated. It
is not difficult to see that every transcendental entire function has infinitely many
periodic points of all periods greater than 1; therefore, replacing f by f2 we have
that f2 has infinitely many fixed points. Now it is well known that J (f) = J (f2),
so if infinitely many of the fixed points of f2 are in J (f2), we are done. Otherwise,
we may assume there exist two fixed points of f2, p and q, in F(f). One can see
that they cannot belong to the same component of F(f), so any path connecting
p and q should cross J (f) and therefore J (f) is an infinite set. Alternatively,
Alexandre Erëmenko [20] proved that the Julia set of an entire map is non-
empty by showing that its escaping set (the set of points whose orbit tends to
infinity) is non-empty and has a non-empty intersection with the Julia set. If f is
meromorphic it is easy to see that f−3(∞) is infinite by using Picard’s Theorem.
Statement 4 follows from Theorem 2.13. Statement 5 for rational functions was
first proved by Fatou and Julia independently (and using different approaches).
For transcendental functions the proof uses the Five Island Ahlfors’s Theorem (see
[5]). For 6, it is clear from Theorem 2.13 that if the Julia set contains an open set
in C, then J (f) = Ĉ.

Finally, we observe that the case J (f) = Ĉ is actually possible: It is easy to
prove that any rational map having all its critical points pre-periodic has an empty
Fatou set (see, for instance, [7]). The function

f(z) =
(z − 2)2

z2

is an example of such a rational map. As for transcendental functions, examples
of J (f) = Ĉ are provided by the entire family fλ(z) = λez (first proven by
Micha!l Misiurewicz for λ = 1) (see Figure 2.1) and the meromorphic family
fλ(z) = λ tan z, for suitable values of the parameter λ.

2.1.3 Fatou components and singular values

As mentioned, points in the Fatou set correspond to tame orbits. This means that
points which are close to each other have the same asymptotic behaviour when
iterated. Therefore, it is not surprising that the Fatou set (when non-empty) is
formed by the union of domains or components called Fatou components , which
correspond to orbits with a similar behaviour. In fact, Fatou components are
maximal domains of normality of the iterates of f . Because of the rigidity of
complex functions, there are only a few possible asymptotic behaviours of points

16
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Figure 2.1: Dynamics of the function f(z) = 0.5 ez on the Riemann sphere, a case where

J (f) = Ĉ. Different colours denote different rates of escape towards infinity.

in a domain of normality, and this makes it possible to give a complete classification
of all possible asymptotic behaviours of a Fatou component.

The classification of the Fatou components (together with its close relation-
ship with the singularities of the inverse function) is one of the cornerstones of
Holomorphic Dynamics, and it is the subject of this section.

Definition 2.15 (Types of Fatou components). Let f be a complex function
and U a (connected) component of F(f); U is called preperiodic if there exist
integers n > m ≥ 0 such that fn(U) = fm(U). We say that U is periodic if
m = 0, and fixed if n = 1. A Fatou component is said to be a wandering domain
if it fails to be preperiodic.

The next classification of periodic Fatou components is essentially due to Fa-
tou and Hubert Cremer, and was first stated in this form in [6].
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Theorem 2.16 (Classification of periodic Fatou components). Let U be
a p-periodic Fatou component of a complex function f . Then, U is one of the
following.

• (Immediate) attractive basin: U contains an attracting p-periodic point z0
and fnp(z)→ z0, as n→∞, for all z ∈ U .

• Parabolic basin or Leau domain: ∂U contains a unique p-periodic point z0
and fnp(z)→ z0, as n→∞, for all z ∈ U . Moreover, (fp)′(z0) = 1.

• Siegel disc: There exists a holomorphic homeomorphism φ : U → D such that
(φ ◦ fp ◦ φ−1)(z) = e2πiθz, for some θ ∈ R \Q.

• Herman ring: There exist r > 1 and a holomorphic homeomorphism φ : U →
{1 < |z| < r} such that (φ ◦ fp ◦ φ−1)(z) = e2πiθz, for some θ ∈ R \Q.

• Baker domain: ∂U contains a point z0 such that fnp(z) → z0, as n → ∞,
for all z ∈ U , but fp(z0) is not defined.

Remark 2.17 (Connectedness of the Julia set). Observe that J (f) is con-
nected if, and only if, either F(f) is empty or each one of its connected components
is simply connected.

A natural question that arises from this classification is how many Fatou com-
ponents there are for a given complex function f , and how they are distributed.
A key tool to investigate the number and distribution of Fatou components is the
study of the singularities of the inverse function f−1.

Definition 2.18 (Critical point and critical value). Let f be a complex
function. The point c is a critical point if f ′(c) = 0. Its image v = f(c) is then a
critical value. We denote the set of critical values by CR(f).

If f is rational, the critical values are the only possible singularities of the
inverse function, since f is a local homeomorphism around every non-critical point
of Ĉ. That is not the case of transcendental functions, where certain branches of
the inverse function might not be defined at points where f−1 is unbounded, as
the following definition shows.

Definition 2.19 (Asymptotic value). Let f be a complex function. A point
z ∈ C is a (finite) asymptotic value if there exists a curve α such that

lim
|α|→∞

f(α) =∞ .

We denote the set of asymptotic values of f by A(f).
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Definition 2.20 (Singular value). A singular value (or singularity of the inverse
function f−1) is a point that belongs to the set

sing (f−1) := CR(f) ∪ A(f) .

The set sing (f−1) plays a crucial role in Holomorphic Dynamics since, roughly
speaking, every cycle of Fatou components has an “associated” singular value, as
the following theorem claims. This result was proved by Fatou for rational maps,
and his proof extends naturally to the transcendental case.

Theorem 2.21 (Fatou components and singular values). Let f be a complex
function and let U = {U1, . . . , Up} be a periodic cycle of Fatou components of f .

• If U is a cycle of immediate attractive basins or parabolic basins, then

Uk ∩ sing (f−1) -= ∅

for some 1 ≤ k ≤ p.

• If U is a cycle of Siegel discs or Herman rings, then

∂Uk ⊂ O+(sing (f−1))

for all 1 ≤ k ≤ p.

Remark 2.22 (Finite type maps). Rational functions and transcendental entire
functions of finite type (that is, with a finite number of singularities of the inverse
function) do not have wandering domains nor Baker domains. The absence of
wandering domains was proved byDennis Sullivan [41, 42] for rational functions,
and by Erëmenko and Mikhail Lyubich [21, 22] and Lisa Goldberg and
Linda Keen [27] for entire maps.

2.2 Quasiconformal surgery

What is known today in Holomorphic Dynamics as quasiconformal surgery is a
technique to construct holomorphic maps with some prescribed dynamics. The
term ‘surgery’ suggests that certain spaces and maps will be cut and sewed in
order to construct the desired behaviour. This is usually the first step of the
process and is known as topological surgery. On the other hand, the adjective
‘quasiconformal’ indicates that the map one constructs in this first step is not
holomorphic, but of lesser regularity. The second step is then to find a conjugate
map (that means a map with the same dynamics) which is holomorphic, and this
is done using the celebrated Measurable Riemann Mapping Theorem, the powerful
tool which makes this technique possible. This second step is called holomorphic
smoothing.
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Quasiconformal mappings were first introduced in Complex Dynamics in 1981
by Sullivan [42] in a seminar at the Institut des Hautes Études Scientifiques
(Paris), and very soon adopted by mathematicians in the field as a remarkable
tool. As an example, Adrien Douady and John Hubbard developed the well-
known theory of polynomial-like mappings (see [19]) using quasiconformal map-
pings, and Shishikura gave a great impulse to quasiconformal surgery by finding
new applications to rational functions (see [39]).

Excellent references on quasiconformal mappings include [1, 31, 3] among oth-
ers, while quasiconformal surgery as a technique is treated in [11]. From these
sources we now extract a brief introduction to the basic concepts and the main
results.

It is well known that conformal maps are C-differentiable homeomorphisms
which have the property of preserving angles between curves. This can also be
seen as their differential (from the real point of view) being C-linear, and therefore
mapping infinitesimal circles (in the tangent space at the point z) to infinitesimal
circles (in the tangent space at the image of z). Very roughly speaking, quasi-
conformal mappings are homeomorphisms which will happen to be differentiable
almost everywhere, with non-zero differential almost everywhere, with the prop-
erty of distorting angles in a bounded fashion. As before, this can be seen as
their differential (whenever defined) mapping infinitesimal circles to infinitesimal
ellipses in the corresponding tangent spaces, so that all ellipses in this field (de-
fined almost everywhere) have ellipticity bounded by a certain constant. We shall
see that some extra conditions will be necessary, but the geometrical idea is as
described above.

To make this definitions precise we need to introduce some concepts and ter-
minology. Since the differentials are always R-linear maps, we start by discussing
those first.

Let CR denote the complex plane viewed as the 2-dimensional oriented eu-
clidean R-vector space with the orthonormal positively oriented standard basis
{1, i}. In CR we shall use coordinates either (x, y) or (z, z̄). Any R-linear map
L : CR → CR which is invertible and orientation preserving can be written as

L(z) = az + bz̄,

with a, b, z ∈ C and |a| > |b|. Let us define the Beltrami coefficient of L as

µ ≡ µL :=

∣∣∣∣
b

a

∣∣∣∣ e
2θi,

for some θ ∈ [0, π). Then one can check that L−1(S1) consists of an ellipse E(L)
whose minor axis has argument θ and whose ellipticity — i.e., the ratio between
its axes — equals KL = (1 − |µL|)/(1 + |µL|). Observe that if L is C-linear (i.e.,
conformal), then b = 0 and E(L) is a circle.
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Now let U, V ⊂ C be open sets and suppose φ : U → V is a map in the
class D+(U, V ) of orientation-preserving maps which are R-differentiable almost
everywhere, with non-zero differential almost everywhere on their domain, and
with the differential Duf : TuU → Tf(u)V depending measurably on u. Using the
infinitesimal coordinates dz and dz̄, the differential can be written as

Duf = ∂zf(u)dz + ∂z̄f(u)dz̄ ,

where

∂zf =
1

2

(
∂f

∂x
− i

∂f

∂y

)
and ∂z̄f =

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

Based on the discussion above, notice that Duf defines an infinitesimal ellipse in
Tu(U) with Beltrami coefficient equal to

µf (u) =
∂z̄f(u)

∂zf(u)
.

The dilatation of this ellipse can be written as

Kf(u) ≡ KDuf :=
1 + |µf (u)|
1− |µf (u)|

.

Observe that if f is conformal at u then ∂z̄f(u) = 0 and hence the ellipse is a
circle. In view of this discussion, bounded angle distortion will correspond to the
field of ellipses induced by Duf having bounded ellipticity. In the definition of
quasiconformal mappings, the existence of the differential in the usual sense is not
assumed (it will be in fact a consequence), although the condition of distortion
takes the form described above.

Definition 2.23 (K-quasiconformal map). Let U and V be open sets in C; a
homeomorphism φ : U → V is said to be K-quasiconformal if it has locally square
integrable weak derivatives and the function

µφ(z) :=
∂φ/∂z̄

∂φ/∂z
(z)

satisfies that

|µφ(z)| ≤
K − 1

K + 1
< 1

in L2
loc, i.e., almost everywhere. The notation k := K−1

K+1 is standard.

We now list here some standard properties of quasiconformal maps which will
be useful for our purposes.
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Proposition 2.24 (Properties of quasiconformal maps). Let φ : U → V be
a K-quasiconformal homeomorphism. Then,

1. φ is differentiable almost everywhere in the regular sense;

2. φ−1 is K-quasiconformal;

3. ϕ ◦φ is K ·K ′-quasiconformal for every K ′-quasiconformal homeomorphism
ϕ : V →W .

We have seen that a quasiconformal homeomorphism φ induces a measurable
field of infinitesimal ellipses (defined up to multiplication by a real number) with
bounded ellipticity, which in turn can be coded by a measurable function µφ(z)
with modulus bounded by a constant k < 1. All these concepts can be defined on
their own, detached from the original map φ.

Definition 2.25 (k-Beltrami coefficient). Let U ⊂ C be an open set; a mea-
surable function µ : U → C defined almost everywhere is called a k-Beltrami coef-
ficient of U if ||µ||∞ = k < 1.

By the infinity norm ||µ||∞ we actually mean the essential supremum

ess sup
z∈U

|µ(z)| ,

that is to say, the supremum taken over the set where the function µ is defined. If
the function is defined everywhere, the essential supremum does equal the infinity
norm.

To every k-Beltrami coefficient µ of U , we can associate an almost complex
structure σ, that is, a measurable field of (infinitesimal) ellipses in the tangent bun-
dle TU , defined up to multiplication by a positive real constant. More precisely: for
almost every point u ∈ U , we can define an ellipse in TuU whose minor axis has ar-
gument arg(µ(u))/2, and whose ellipticity equals K(u) := (1+ |µ(u)|)/(1−|µ(u)|).
Notice that this value is bounded between 1 and K := (1+k)/(1−k) <∞ almost
everywhere. The standard almost complex structure is the one defined by circles
almost everywhere, or, equivalently, the one induced by the Beltrami coefficient
µ0 ≡ 0.

Now with this terminology, every K-quasiconformal mapping φ induces a k-
Beltrami coefficient (where k = (K − 1)/(K + 1)) or, equivalently, it induces an
almost complex structure σφ with dilatation bounded by K.

In the same way that a holomorphic map is a map which is locally confor-
mal at all but a discrete number of points, we define a quasiregular map as one
which is locally quasiconformal at all but a discrete number of points. Therefore
a quasiregular map is not required to be a homeomorphism. One can check that
a quasiregular map is the composition of a holomorphic function and a quasicon-
formal homeomorphism.
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Another important notion is the concept of pull-back . To fix ideas, let us
first note that a quasiconformal (or quasiregular) homeomorphism pulls back the
Beltrami coefficient µ0 = 0 to µf , or equivalently, the field of infinitesimal circles
in TV , to the field of infinitesimal ellipses in TU induced by φ by means of its
differential. The precise and general definition is as follows.

Definition 2.26 (Pull-back). Let U and V be open sets in C. A quasiregular
map φ : U → V induces a contravariant functor φ∗ : L∞(V )→ L∞(U) defined by

φ∗µ :=
∂φ/∂z̄ + (µ ◦ φ)(∂φ/∂z)

∂φ/∂z + (µ ◦ φ)(∂φ/∂z̄)
.

Notice that if µ : V → C is a Beltrami coefficient, then so is its pull-back φ∗µ : U →
C. Moreover, if φ is a holomorphic map, then ||φ∗µ||∞ = ||µ||∞.

In geometrical terms, the field of ellipses σ in TV is pulled back to a field of
ellipses φ∗σ on TU by means of the differential maps wherever defined.

When the Beltrami coefficient µ is defined in terms of a quasiregular map ψ as
above (µ ≡ µψ), one can check that φ∗µψ = µψ◦φ.

An important result in quasiconformal surgery is Weyl’s Lemma, since it gives
the key to show that maps are holomorphic using only the functor they induce.

Theorem 2.27 (Weyl’s Lemma). If φ : U → V is quasiconformal (resp. quasi-
regular) and preserves the standard almost complex structure, that is, φ∗µ0 = µ0.
Then, φ is conformal (resp. holomorphic).

Up to this point we have defined all concepts in open subsets of the complex
plane. Using charts, all definitions and results extend to Riemann surfaces and,
in particular, to the Riemann sphere Ĉ, the natural domain of rational maps.

We have seen how a quasiconformal map φ defines a Beltrami coefficient µφ,
and we now turn to the study of the converse problem. More precisely: given a
Beltrami coefficient µ and the so-called Beltrami equation

∂φ

∂z̄
= µ(z)

∂φ

∂z
,

can we find an actual quasiconformal map φ such that µφ ≡ µ? The cele-
brated Measurable Riemann Mapping Theorem, proven by Morrey, Bojarski,
Ahlfors and Bers answers this question positively (see [2] or [17]).

Theorem 2.28 (Measurable Riemann Mapping Theorem). Let µ be a k-
Beltrami coefficient of C (resp. of Ĉ or of U ∼= D). Then, there exists a K-

quasiconformal map φ : C→ C (resp. φ : Ĉ→ Ĉ or φ : U → D) such that µφ = µ,
where K = (1 + k)/(1 − k). Moreover, φ is unique up to post-composition with
conformal maps of C (resp. of Ĉ or of D).
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As a consequence, in the case of C it is enough to fix the image of two points
to ensure the unicity of φ. In the case of Ĉ we need to use three points.

The whole technique of quasiconformal surgery is based on this powerful result.
Let us see then how it applies to Complex Dynamics.

Suppose that f : Ĉ → Ĉ is a quasiregular map whose dynamics we would like
to see realised by a holomorphic map of Ĉ. We say that a Beltrami coefficient µ
is f -invariant if f∗µ = µ. Likewise, we say that an almost complex structure σ is
f -invariant if f∗σ = σ, i.e., if the infinitesimal field of ellipses remains invariant
after it is pulled back by the map f .

Lemma 2.29 (Key Lemma of quasiconformal surgery). Let µ be a Beltrami
coefficient of C and f : Ĉ → Ĉ a quasiregular map such that f∗µ = µ. Then, f
is quasiconformally conjugate to a holomorphic map g : Ĉ → Ĉ. That is, there
exists a quasiconformal homeomorphism φ : Ĉ → Ĉ such that g := φ ◦ f ◦ φ−1 is
holomorphic.

Proof. Applying the Measurable Riemann Mapping Theorem to µ, there exists a
quasiconformal map φ with µ = φ∗µ0. Now, let us define g := φ ◦ f ◦ φ−1; we just
need to see that g is indeed holomorphic. To that end, observe that the standard
almost standard structure is g-invariant. Indeed,

g∗µ0 = (φfφ−1)∗µ0 = (φ−1)∗f∗φ∗µ0 = (φ−1)∗f∗µ = (φ−1)∗µ = µ0.

On the other hand, g is quasiconformal since it is the composition of quasiconfor-
mal maps with a holomorphic one. It then follows from Weyl’s Lemma that g is
holomorphic.

2.3 Local connectivity

In this section we give just a few words on the topological concept of local con-
nectivity, to be used at some point in our proofs in order to show that some sets
have “nice” boundaries. More precisely, we need to show that the Riemann maps
we use extend continuously to the boundary.

For a couple of comprehensive references on local connectivity particularly
focused on Holomorphic Dynamics, see [34, 36].

Definition 2.30 (Locally connected set). We say that a topological space
X is locally connected at x if for every open neighbourhood U of x there exists
a connected, open set V with x ∈ V ⊂ U . The space X is said to be locally
connected if it is locally connected at x, for all x ∈ X .

Equivalently — using topology terminology —, a topological space is locally
connected if every point admits a neighbourhood basis of open connected sets.
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If we do not require the neighbourhood V of x to be open, then we speak of
weak local connectivity. Of course a space which is locally connected at x is weakly
locally connected at x, but the converse does not hold. However, it is equally clear
that a locally connected space is weakly locally connected, and here it turns out
that the converse is true.

Now the following well-known result gives the desired relationship between
continuity of maps and local connectivity.

Theorem 2.31 (Carathéodory’s Theorem). Let ϕ : D → U ⊂ Ĉ be a confor-
mal isomorphism. Then, ϕ extends to a continuous map from the closed disc D
onto U if and only if the boundary ∂U is locally connected, or if and only if the
complement Ĉ \ U is locally connected.

Finally, a useful lemma to understand the topology of those points where a
given space is not locally connected. This result will be key for our discussion,
and the idea for its proof is due to Christian Henriksen.

Lemma 2.32. Let K be a continuum in Ĉ. Then, the set of points where K is
not locally connected contains no isolated points.

Proof. SupposeK is not locally connected at z0. Let U = B(z0, 2ε) be given, where
ε is chosen sufficiently small so that U ∩K contains no connected neighbourhood
of z0. Let Cα, α ∈ A, denote the components of K ∩ U , indexed so that C0 is the
component that contains z0. Notice that each Cα is closed relative to U , so for
α -= 0 the distance d(z0, Cα) is positive. Now, inf d(z0, Cα) has to be zero, because
otherwise C0 would be a connected neighbourhood of z0. Since K is connected,
the closure of each Cα must meet ∂U . It follows that there exist infinitely many
components C′

α which meet the circle ∂B(z0, ε). Since the circle is compact, there
must exist a point z1 such that each neighbourhood of z1 meets infinitely many of
the components.

It follows that K cannot be locally connected at z1. Indeed, a connected
neighbourhood of z1 of K ∩ U would have to be a subset of the Cα that contains
z1, but points from others components accumulate on z1.

2.4 On rational-like maps and virtually repelling

fixed points

We know that Fatou’s Theorem 2.6 provides the existence of a weakly repelling
fixed point for every rational map of degree d ≥ 2. To prove the main theorems in
Chapters 3, 4 and 5, which involve transcendental meromorphic maps, we need to
ensure the existence of a weakly repelling fixed point under more general situations.
We will do this in two steps following Buff [12].
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The first step corresponds to the case of rational-like maps, and we show how
this can be adapted to the transcendental setting as long as the meromorphic map
restricted to a certain subset of C is proper.

Definition 2.33 (Rational-like map). A rational-like map is a proper holomor-
phic map f : U → V of degree d ≥ 2, where U and V are connected open subsets
of Ĉ with finite Euler characteristic and U ⊂ V .

V

U

f

Figure 2.2: A rational-like map in the special case of V simply connected.

Theorem 2.34 (Buff [12] on rational-like maps). If f : U → V is a rational-
like map, then it has at least one weakly repelling fixed point.

Recall that a map f : X → Y is proper if the preimage set f−1(K) ⊂ X is
compact for any compact set K ⊂ Y . Although our transcendental meromorphic
maps are of infinite degree and therefore they fail to be proper globally, they still
may be proper — and even rational-like — when restricted to appropriately chosen
domains.

Lemma 2.35 (Proper maps). Let f be a transcendental meromorphic function,
Y ⊂ C a connected open set and X a bounded connected component of f−1(Y ).
Then, the restriction f |X : X → Y is a proper map. If moreover Y is finitely
connected and X ⊂ Y , then f |X : X → Y is rational-like.

Proof. Let K be a compact set of Y , so ∞ /∈ K. Also, f−1(K) ⊂ X is bounded,
so f is locally (f |f−1(K) : f

−1(K)→ K) holomorphic and, therefore, the preimage
set f−1(K) of the compact set K ⊂ Y is also compact. Therefore, f |X is proper
and hence of finite degree.
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If moreover Y is finitely connected, then the Euler characteristic of X must
be finite, since the boundary of Y has a finite number of preimages. Since X is
relatively compact in Y , then f |X : X → Y is rational-like, as claimed.

We shall need a generalisation of the rational-like setting in the sense that we
allow U not to be compactly contained in V but, in return, we restrict to the
case where V is simply connected (notice that in Theorem 2.34 it is required that
U ⊂ V ). In this case, the next result of Buff’s will guarantee the existence of a
virtually repelling fixed point — and, as we shall see, this will be enough for our
purposes.

The concept of virtually repelling fixed point goes back to Adam Epstein. It
is slightly stronger than that of weakly repelling fixed point and its definition is
based on the residue fixed point index (see Section 2.1 or [12, 34]), which, in this
context, is referred to as the holomorphic index . We recall here its definition.

Definition 2.36 (Holomorphic index and virtually repelling fixed point).
The holomorphic index of a complex function f at a fixed point z is the residue

ι(f, z) :=
1

2πi

∮

z

dw

w − f(w)
.

In the case of a simple fixed point (multiplier ρ(z) -= 1), the index is given by

ι(f, z) =
1

1− ρ(z)
.

The fixed point z is called virtually repelling if we have that

Re (ι(f, z)) <
m

2
,

where m ≥ 1 denotes the multiplicity of the fixed point z.

Remark 2.37 (Virtual repellency vs Weak repellency).

• Virtually repelling fixed points are in particular weakly repelling. Indeed if
m > 1 then the multiplier satisfies ρ(z) = 1, while in the simple case we have
that

Re

(
1

1− ρ(z)

)
<

1

2
⇐⇒ |ρ(z)| > 1 .

• Virtual repellency, unlike weak repellency, is not preserved under topological
conjugacy, since the residue index is only kept under analytic conjugacy (see
[34]). See also [40] for a proof of this property for weakly repelling fixed
points.
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Theorem 2.38 (Buff [12] on virtually repelling fixed points). Let U ⊂ D be
an open set and f : U → D a proper holomorphic map of degree d ≥ 2. If |f(z)−z|
is bounded away from zero as z ∈ U tends to ∂U , then f has at least one virtually
repelling fixed point.

Remark 2.39. Observe that if we require U to be compactly contained in D,
then f is a rational-like mapping. If, moreover, U is simply connected then f is
polynomial-like (see [19]). By the Straightening Theorem, f is hybrid equivalent
— in particular, quasiconformally conjugate — to a polynomial P in U . It follows
from Theorem 2.6 applied to P that f must have a weakly repelling fixed point in
U .

Since we are not dealing with rational maps, we shall adapt Theorem 2.38 to
our situation with the following version.

Corollary 2.40 (Virtually repelling fixed points in transcendental maps).
Let U ⊂ V ⊂ C be open sets and suppose that f : U → V is a proper holomorphic
function. Assume that V is simply connected and that ∂V is locally connected in
Ĉ. If |f(z)−z| is bounded away from zero (in the spherical metric) as z ∈ U tends
to ∂U , then there exists at least one virtually repelling fixed point of f in U .

f

f̃

ϕϕ

U

Ũ

VV

DD

Figure 2.3: Sketch of the proof of Corollary 2.40. Observe that V or U could be
unbounded.
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Proof. By a change of coordinates we may assume that U and V are bounded
and use the Euclidean metric. Since the set V is open, simply connected and
∂V is locally connected, we have that any Riemann mapping ϕ : D → V extends
continuously to ∂D. Let Ũ = ϕ−1(U), which is a subset of D since U is contained
in V . (See Figure 2.3.)

Let us now define the map f̃ := ϕ−1 ◦ f ◦ ϕ, which is a proper map conjugate
to f by the conformal map ϕ. We now should check that |f̃(z̃) − z̃| is bounded
away from zero as z̃ ∈ Ũ tends to ∂Ũ . So let us assume that {z̃n}n ⊂ Ũ is a

sequence of points tending to ∂Ũ such that |f̃(z̃n) − z̃n| → 0 as n → ∞. We
may assume that this is a convergent sequence, just taking an accumulation point
and some appropiate subsequence. Let z̃∗ be the limit point. Since ϕ extends to
the boundary of D, the sequence zn =: ϕ(z̃n) tends to z∗ := ϕ(z̃∗). Because of

the assumption, we have that f̃(z̃n) must also converge to z̃∗. Since ϕ conjugates

f with f̃ and extends to the boundary, we have that ϕ(f̃ (z̃n)) = f(zn) and this
sequence also converges to z∗. Because both sequences have the same limit, it
follows that |f(zn)− zn| → 0 as n→∞, which is a contradiction.

Having proven this property, it follows that f̃ has at least one virtually repelling
fixed point z̃0 due to Theorem 2.38. Since conformal conjugacies preserve this
property of fixed points, we have that there exists a virtually repelling fixed point
ϕ(z̃0) of f (in U).

Remark 2.41. In particular, Corollary 2.40 gives the existence of a weakly re-
pelling fixed point of f , which is the property we shall use in our arguments.

29





3
Attractive basins

3.1 Shishikura’s rational case

Our work on connectivity of Julia sets of transcendental meromorphic functions is
based on that of Shishikura’s for rational maps. In this chapter we would like to
show the main results in his paper, as well as part of their proofs, since they also
cover some very specific situations of our transcendental result. The case chosen
is that concerning immediate attractive basins and it has been rearranged so that
the general structure matches the discourse on transcendental functions in Section
3.2.

The following theorem and corollary, along with all the other results and proofs
in this section, are due to Shishikura and extracted from [40].

Theorem 3.1. If the Julia set of a rational map f is disconnected, there exist two
weakly repelling fixed points of f .

Corollary 3.2. The Julia set of a rational map with only one weakly repelling fixed
point is connected; in other words, all its Fatou components are simply connected.
In particular, the Julia set of the Newton’s method of a non-constant polynomial
is connected.

Corollary 3.2 is an immediate consequence of the previous theorem, for the
Newton’s method of a non-constant polynomial has all its fixed points attracting
except for the one fixed point at infinity, which is (weakly) repelling.
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In order to prove Theorem 3.1, Shishikura uses a case-by-case approach, ac-
cording to different types of Fatou component — recall that for a general complex
function, these are wandering domains, preperiodic components and periodic com-
ponents, the latter ones described in Theorem 2.16. For the Julia set of a rational
map to be disconnected, there must exist at least one multiply-connected Fatou
component; namely, an immediate attractive basin, Leau domain, Herman ring or
preperiodic component, since Siegel discs cannot be multiply connected and ratio-
nal maps have neither wandering domains nor Baker domains. Furthermore, the
preperiodic case may be treated in a slightly special way, since preperiodic compo-
nents eventually landing on multiply-connected periodic components can clearly
be omitted, so the image of a preperiodic Fatou component may be assumed simply
connected.

The strategy that we have only just outlined can be shaped into the following
theorem.

Theorem 3.3. Let f be a rational map of degree greater than one. Then,

• if f has a multiply-connected immediate attractive or parabolic basin, there
exist two weakly repelling fixed points;

• if f has a Herman ring, there exist two weakly repelling fixed points;

• if f has a multiply-connected Fatou component U such that f(U) is simply
connected, every component of Ĉ \U contains a weakly repelling fixed point.

The next two sections contain a two-step version of part of Shishikura’s proof
for this result — namely, the case of the attractive basin. Thus, Section 3.1.1
deals but with fixed immediate attractive basins, while strictly periodic immediate
attractive basins are left to Section 3.1.2. We refer to [40] for a complete proof of
Theorem 3.3.

3.1.1 Fixed attractive basins

Let us first sketch the process that forces the existence of at least two weakly
repelling fixed points, provided that the rational map f has a multiply-connected
fixed immediate attractive basin. Since the basin is multiply connected, there exist
at least two components of its complement — we want to show that two of them
contain a weakly repelling fixed point each. Using quasiconformal surgery, we can
construct a rational map g, conjugate to f where needed, with a weakly repelling
fixed point in some suitable subset of the sphere so as for f to have such a point
in one of the components of the complement of the basin.

Although this description applies to both fixed and periodic cases, in this sec-
tion we just show the proof for the first one, that is to say: A rational map of degree
greater than one with a multiply-connected fixed immediate attractive basin has,
at least, two weakly repelling fixed points.
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Let us call α the attracting fixed point of f contained in the multiply-connected
fixed immediate attractive basin, A∗. Take a small disc neighbourhood U0 of α
such that f(U0) ⊂ U0. For each n ≥ 0, let Un be the connected component of
f−n(U0) that contains α.

From the choice of U0, we have that

A∗ =
⋃

n≥0

Un .

Therefore, there exists n > 0 such that Un is multiply connected — otherwise, the
union of the increasing simply-connected open sets Un would be simply connected.
More precisely, there exists n0 > 0 such that Un0 is multiply connected but Un0−1

is simply connected (see Figure 3.1). Rename U := Un0 for simplicity of the text.

α U0 U1 Un0−1

Un0

Figure 3.1: The increasing sequence of open neighbourhoods of α, where Un0−1 is simply
connected and Un0 is multiply connected.

Since U is multiply connected, there exist at least two connected components
of Ĉ \ U ; choose one of them and call it E. From the construction of U , notice
that f(U) = f(Un0) = Un0−1 ⊂ Un0 = U and, therefore, f(U) ⊂ U ⊂ A∗.

Now that we have suitable sets to work with, the next step of this surgery
process is the construction of some quasiregular map — with certain desired dy-
namics —, to which the Measurable Riemann Mapping Theorem (see Section 2.2)
can be applied. The following lemma produces exactly such a function.
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V0

V1

DD

a

b

K

00

f

f

F

z 0→ zm

Ψ0 Ψ1

A0 A1

γ0 γ1

γ′

0
γ′

1

m : 1

Figure 3.2: We first construct two annuli A0 ⊂ V0∩N and A1 ⊂ V1, with ∂Ai = ∂Vi∪γi
and K ∩ A0 = ∅, a /∈ A0, b /∈ A1, in such a way that the restriction f|A0 : A0 → A1 be
a covering map of degree m and A0 contain no critical points of f . Then we consider
(conformal) Riemann mappings Ψi : Vi\Ai → D such that Ψ0(a) = Ψ1(b) = 0, and define

f̃ on V0 \ A0 as f̃ := Ψ−1
1 ◦ (z (→ zm) ◦Ψ0. Thus both f and f̃ are covering maps from

γ0 to γ1 of the same degree without critical points, hence homotopic. Take γ′1 ⊂ A1 and
γ′0 := f−1(γ′1) ∩ A0 as in the figure, and let F be the natural linear interpolation map

defined between f on γ′0 and f̃ on γ0. Now the map f1 : V0 → V1, defined as f between
∂V0 and γ′0, F between γ′0 and γ0, and f̃ on V0 \A0, has the properties as required. The
shaded regions indicate the dynamics of F .
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Lemma 3.4 (Interpolation Lemma). Let V0 and V1 be simply-connected open

sets in Ĉ, with #(Ĉ \ V0) ≥ 1, and f a holomorphic map from a neighbourhood N
of ∂V0 to Ĉ such that f(∂V0) = ∂V1 and f(V0 ∩N) ⊂ V1; choose a compact set K
in V0 and two points a ∈ V0 and b ∈ V1. Then, there exists a quasiregular mapping
f1 : V0 → V1 such that

• f1 = f in V0 ∩N1, where N1 is a neighbourhood of ∂V0 with N1 ⊂ N ;

• f1 is holomorphic in a neighbourhood of K;

• f1(a) = b.

Shishikura’s proof for the Interpolation Lemma is somewhat technical and
can be found in [40], although Figure 3.2 offers a sketch of it.

In our situation (see Figure 3.3), we write V0 := Ĉ \ E and V1 := f(U), call
K := f(U) and choose a = b ∈ f(U) arbitrarily. This way, a quasiregular mapping

f1 : Ĉ \ E → f(U) is obtained from Lemma 3.4.
Roughly speaking, the map f1 simplifies f outside E, where its behaviour

cannot be controlled, although it still agrees with f on the boundary of this set.

Ĉ
U

E

f1

α
f(U)

Figure 3.3: The sets U , f(U) and E on the Riemann sphere. The shaded sets are

connected components of Ĉ \ U .
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Ĉ

E

f2

f(U)

Figure 3.4: Construction of the almost complex structure σ. Recall that U = Ĉ \ E.
The grey area denotes the region where f2 is holomorphic.

We define yet another function f2 : Ĉ→ Ĉ by cutting and glueing f and f1 where
needed:

f2 :=

{
f on E

f1 on Ĉ \ E .

This function is quasiregular, since f is rational and so holomorphic, f1 is quasireg-
ular, and they coincide on an open annulus surrounding ∂E. Furthermore, we have
— just from its definition — that f2 is holomorphic in E and in a neighbourhood
of f(U), and it has a fixed point at a, for f2(a) = f1(a) = b = a. Notice that
f2(Ĉ \ E) = f(U) and f(U) ! Ĉ \ E; hence f(U) is invariant and the fixed point

a ∈ f(U) is a global attractor of f2 in Ĉ \ E. This concludes the topological step
of the construction.

In order to apply the Measurable Riemann Mapping Theorem, it only remains
to construct an appropriate f2-invariant almost complex structure, so define

σ :=






σ0 on f(U)

(fn
2 )

∗σ0 on f−n
2 (f(U)), for n ∈ N

σ0 elsewhere.

(See Figure 3.4.)
By construction, f∗

2σ = σ almost everywhere, since σ is defined based on the
dynamics of f2. Moreover, σ has bounded ellipticity: indeed, f2 is holomorphic

36



CHAPTER 3. ATTRACTIVE BASINS

everywhere except in X := Ĉ \ (E ∪ f(U)), where it is quasiregular. But orbits
pass through X at most once, since f2(X) ⊂ f(U) and points never leave f(U)
under iteration of f2.

These are precisely the hypothesis of Lemma 2.29, so there exists a map g : Ĉ→
Ĉ, holomorphic on the whole sphere — and hence rational —, which is conjugate
to f2 by some quasiconformal homeomorphism φ. Only for simplicity, let ψ be the
inverse function of such homeomorphism, ψ := φ−1.

Now Fatou’s Theorem 2.6 ensures the existence of a weakly repelling fixed
point z0 of g, except when deg g = 1 and g is an elliptic transformation. However,
notice that

g(ψ(Ĉ \ E)) = ψ(f2(Ĉ \ E)) = ψ(f(U)) ! ψ(U) ! ψ(Ĉ \ E),

so g is a contraction and ψ(a) is an attracting fixed point of g; in other words, g
can never be an elliptic transformation. Also, observe that ψ(Ĉ \ E) is contained
in the basin of ψ(a).

Besides, the family of iterates

G := {gn|ψ(Ĉ\E)}n≥1

omits the open set ψ(X), therefore G is normal in ψ(Ĉ \E) by Montel’s Theorem,

that is, ψ(Ĉ \ E) ⊂ F(g). But weakly repelling fixed points belong to the Julia
set, so z0 ∈ ψ(E). Because such points are preserved under conjugacy, also f2
has a weakly repelling fixed point φ(z0), in E; and so does f , since both functions
coincide precisely on this set (see Figure 3.5).

ĈĈ

φ

ψ

g f2

V0ψ(V0)

Eψ(E)

z0 φ(z0)

Figure 3.5: The properties of g (including the existence of a weakly repelling fixed point)

are transferred to f2 due to the conjugacy φ. Recall that V0 = Ĉ \E.

The set E was arbitrarily chosen from at least two components of Ĉ\U , which
means that f has at least two weakly repelling fixed points. This concludes the
proof of Theorem 3.3 for fixed immediate attractive basins.
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3.1.2 Periodic attractive basins

In this section, we focus our attention on the case of periodic immediate attractive
basins of period greater than one. The surgery process involved here is quite
similar to that for fixed immediate attractive basins (see Subection 3.1.1), so we
will give the differences in detail and try to abridge the arguments when identical.

Analogously to the fixed case, let 〈α〉 be the attracting cycle of f contained in
the multiply-connected p-periodic immediate attractive basin, A∗, and let A∗(α)
be the connected component of A∗ containing α. Take a small disc neighbourhood
U0 of α such that fp(U0) ⊂ U0, and, for each n ≥ 0, define Un as the connected
component of f−n(U0) such that Un ∩ 〈α〉 -= ∅.

As before, we can put A∗(α) as

A∗(α) =
⋃

n≥0

Unp ,

so, in the sequence {Uk}k, there is a multiply-connected set U with simply-
connected image. Shishikura formalises this statement with the following lemma.

Lemma 3.5. Let f be a rational map of degree greater than one with a multiply-
connected p-periodic immediate attractive basin. Then, there exists a connected
open set U , contained in the basin, such that

• U is multiply connected and f(U) is simply connected;

• U is a connected component of f−1(f(U));

• fp(U) ⊂ U .

Case k = 1 Case 1 < k < p Case k = p

U U U

E

EE

αα α

f
f

f

f

f

fp(U)fp(U)fp(U)

fk(U)

Figure 3.6: Three possible distributions — according to k — of the most relevant sets
of this construction. U is shaded in grey.
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replacemen

Case k = 1 Case 1 < k < p Case k = p

Ĉ ĈĈ
U UU

E E
E

f

f
f1f1

f1

ααα a

a a bb

fp(U)fp(U)fp(U)

f(U)
fk(U)

Figure 3.7: The topological surgery construction for the three possible cases, drawn on
Ĉ.

Next, let E be one of the connected components of the complement of U . Since
U ⊂ A∗ and p > 1, its image f(U) must lie in either E or some other component

of Ĉ \U . Then, let us assume that k − 1 iterations of U under f belong to E and
precisely the kth iteration lands outside it, with k ∈ N; that is to say, f i(U) ⊂ E,
for all 0 < i < k, and fk(U) ⊂ Ĉ \ E. (Notice that this assumption is not
restrictive: Since fp(U) ⊂ U , necessarily k must range 0 < k ≤ p.) See Figure 3.6
for an overview of all possible cases.

In analogy to the fixed case, we will define a quasiregular map f2 : Ĉ→ Ĉ that
will map Ĉ\E strictly inside itself, this time after k iterations. More precisely, set

V0 := Ĉ \ E and V1 := f(U), which lies in either E (when k > 1) or Ĉ \ E (when
k = 1). Set also K := fk(U) and choose b ∈ f(U) and a = fk−1(b) ∈ K. By
the Interpolation Lemma 3.4, there exists a quasiregular map f1 : Ĉ \ E → f(U)
which agrees with f on ∂E, is holomorphic in a neighbourhood of K and satisfies
f1(a) = b.

Observe that if k = 1, then the situation is completely equal to the fixed case
(see Figure 3.7).

From here on we proceed as in Section 3.1.1, setting f2 = f on E and f2 = f1
on Ĉ \ E. This makes f2 a quasiregular map of Ĉ, holomorphic in both E and a
neighbourhood of fk(U), with a k-periodic point fk

2 (a) = fk−1(f1(a)) = fk−1(b) =
a. Observe also that fk

2 (Ĉ \ E) = fk(U) and fk(U) ! Ĉ \ E; it follows that fk
2 is

a contraction and a a global attractor in Ĉ \ E.
As before, we may define an almost complex structure σ by

σ :=






σ0 on f(U)

(fn
2 )

∗σ on f−n
2 (f(U)), for n ∈ N

σ0 elsewhere.
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Observe that σ = σ0 on
⋃k

i=1 f
i(U) (see Figure 3.8).

Ĉ

E

f2
f2

f(U)

fk(U)

Figure 3.8: Construction of the almost complex structure σ. In grey we find the region
where f2 is holomorphic.

Furthermore, σ is f2-invariant by construction and has bounded distortion,
since orbits pass through Ĉ \ (E ∪ fk(U)) (the set where f2 is not holomorphic) at
most once.

With this setting — and following the fixed case —, Lemma 2.29 and Theorem
2.6 guarantee the existence of a weakly repelling fixed point of f in E, which is
exactly what we wanted to prove.

3.2 The transcendental case

Shishikura’s Theorem 3.1 inspires the analogous result for trascendental maps,
that is to say, our Conjecture 1.3 on connectivity of Julia sets of transcendental
meromorphic functions and its relationship to the existence of weakly repelling
fixed points.

Following Shishikura, we can use the classification in Theorem 2.16 to indi-
vidualise the main statement according to Fatou components. Notice for a start
that Siegel discs can never be multiply connected, whereas the case of preperiodic
Fatou components that will eventually fall on a multiply-connected periodic com-
ponent is automatically proven by the other cases. Taking these into account, the
statement is as follows.
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Conjecture 3.6. Let f be a transcendental meromorphic function. Then,

• if f has a multiply-connected immediate attractive or parabolic basin, Baker
domain or wandering domain, or

• if f has a Herman ring, or

• if f has a multiply-connected Fatou component U such that f(U) is simply
connected,

there exists at least one weakly repelling fixed point of f .

Remark 3.7. The case of the multiply-connected wandering domain was already
proven by Walter Bergweiler and Norbert Terglane [9] in a different
context, namely, in the search of solutions of certain differential equations with no
wandering domains.

Our Main Theorem 1.5 deals with the cases of immediate attractive basins,
parabolic basins and preperiodic Fatou components. Now this section contains
the proof for the first case, rewritten as the following theorem, while the proofs
for the other two cases can be found in Chapters 4 and 5.

Theorem 3.8 (Attractive basins case). Let f be a transcendental meromorphic
function with a multiply-connected p-periodic immediate attractive basin A∗. Then,
there exists at least one weakly repelling fixed point of f .

We use two quite different strategies in order to prove this theorem. The first
one is based on Shishikura’s surgery construction and applies when either A∗

is bounded, or preimages of a sufficiently small neighbourhood of the attractive
point in A∗ do not behave too wildly. The second technique, used in the rest of the
cases, involves Buff’s results on rational-like maps and virtually repelling fixed
points (see Section 2.4).

Let us first assume that A∗ is bounded. In this very particular case we can also
assume the existence of a connected open set U ⊂ A∗ such as Lemma 3.5 gives
— that is to say, multiply connected and such that f(U) is simply connected, U
is a connected component of f−1(f(U)) and fp(U) ⊂ U —, since the basin has no
accesses to infinity and therefore preimages of compact sets (in the construction
of U) keep compact.

We have U ⊂ A∗ ⊂ F(f), so the essential singularity must be contained in the
complement Ĉ \ U . Moreover, since U is multiply connected, there exists at least

one connected component E of Ĉ\U which does not contain the singularity. As in
the rational (periodic) case (see Subsection 3.1.2), we assume that the iterations
of U under f do not jump outside E until the kth one, and proceed analogously to
find a function f2 that preserves f on E but has attracting dynamics (interpolation
function f1) on Ĉ \ E.
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Notice that f2 is indeed quasiregular: On Ĉ \ E, the map f1 is quasiregular
and infinity is no longer an essential singularity; on E, now f sends the poles to
the (non-special) point at infinity — as f is meromorphic, f2 is holomorphic on E
as a map defined on the Riemann sphere —; by definition of f1, the functions f
and f1 agree on the neighbourhood V0 ∩N1, so the glueing is continuous.

At this point, the topological step of the surgery process is done. The further
holomorphic smoothing and end of the proof goes on exactly as in Section 3.1.2,
therefore f has a weakly repelling fixed point in E.

As for the unbounded case, we cannot apply the previous surgery construction
in general, since the existence of asymptotic values and Fatou components with
the essential singularity on their boundary can lead to unbounded preimages of
bounded sets, while trying to construct U . Instead, we will use this very property
to force the situation described in Buff’s Theorem 2.34 or in Corollary 2.40.

So let us assume from now on that A∗ is unbounded. The cases of the fixed
basin (p = 1) and the (strictly) periodic basin (p > 1) are next treated separately.

3.2.1 Fixed attractive basins

In this case, the immediate attractive basin A∗ consists of a single (fixed) Fatou
component. Let α ∈ A∗ be its one attracting fixed point. We first construct a
nested sequence of open sets containing α as follows: Let U0 be a neighbourhood
of α such that f(U0) ⊂ U0, that is, put U0 := ϕ−1(∆), where ϕ is the linearisation
map of the fixed point α and ∆ is a disc in its linearisation coordinates; and define
Un as the connected component of f−n(U0) that contains α, for all n ∈ N. Notice
that U0 ⊂ U1 ⊂ . . . because of the choice of the initial neighbourhood U0.

Since A∗ is multiply connected, there exists n0 ∈ N such that U0, . . . , Un0−1 are
simply connected and Un0 is multiply connected. This implies that the complement
of Un0 have at least one bounded connected component, since its fundamental
group is π1(Un0) -= {0}. In view of this, let E be one of the bounded connected
components of Ĉ \ Un0 (see Figure 3.9).

As Figure 3.9 suggests, at some point the sets {Uk}k might become unbounded,
so further preimages of such sets could have poles and prepoles on their bound-
aries. The actual condition for this fact to happen can be written in terms of the
intersection set ∂E ∩ J (f) and is specified in the following lemma.

Lemma 3.9. Let f be a transcendental meromorphic function with an unbounded
multiply-connected fixed immediate attractive basin A∗, and let {Uk}

n0
k=0 and E be

as above. Then, the following are equivalent:

(1). U0, . . . , Un0−1 are all bounded;

(2). ∂E ∩ J (f) = ∅;

(3). ∂E contains no poles.
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E
α

U0

U1

Un0−1

Un0

Figure 3.9: The sequence {Uk}k and the bounded set E. In grey, the multiply-connected
set Un0 .

Proof. Let us first see how (1) implies (2). The boundaries of U0, . . . , Un0−1 belong
to the Fatou set and are bounded. Since ∂E is mapped onto ∂Un0−1, it follows
that ∂E∩J (f) = ∅. Statement (2) trivially gives (3). For (3) implies (1), suppose
there exists k ∈ N, with 0 < k < n0, such that Uk is unbounded. Since this is
an increasing sequence, Uk, Uk+1, . . . are all unbounded and in particular so is
Un0−1. But ∂Un0−1 ⊂ f(∂E), because Un0−1 is simply connected, and the set E
is bounded. Then ∂E must contain at least one pole, which contradicts (3).

Therefore, in the case where ∂E never meets J (f), the set Un0 can be renamed
U and we have the following situation: U is multiply connected and f(U) =
f(Un0) = Un0−1 is simply connected; U is a connected component of f−1(f(U)) =
f−1(Un0−1), by definition; f(U) ⊂ Un0−1 ⊂ Un0 = U , since Un0−1 is bounded and
U open. Now this situation is but the setting we had in the case of A∗ bounded,
with p = 1 (see Figure 3.10). Surgery can thus be applied in the same fashion (see
Subsection 3.1.1) to obtain a quasiregular map that send Ĉ\E to Un0−1 and equal
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Ĉ

E

f

f1

α

∞

U0

Un0−1

U = Un0

Figure 3.10: Sketch of the case where ∂E never meets the Julia set, on the Riemann
sphere. The shaded set represents U . Surgery can be applied as in the case where A∗ is
bounded and p = 1; compare with Figure 3.3.

Ĉ

E

E

∞

α

α

P

P U0

U0

Un0−2

Un0−2

Un0−1

Un0−1

Un0

Un0

Un0

Un0

Un0

Un0

Figure 3.11: The increasing sequence of open sets {Uk}k and the decreasing one {Vk}k.
In this example, Un0−1 is the first unbounded set in the sequence and, consequently,
Vn = Ĉ \ Un for all n < n0 − 1. The shaded set corresponds to Vn0−1, while Vn0 = E.
The same situation has been drawn on the plane and on the Riemann sphere.
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f on E. Observe that the essential singularity is no longer there and, therefore,
the holomorphic map that we obtain from the surgery procedure is a rational map.
This gives the desired weakly repelling fixed point in E.

A completely different situation arises when ∂E does intersect J (f). In this
case Lemma 3.9 asserts the existence of at least one pole P in ∂E. From now on,
this is the situation we deal with.

As mentioned, in this case we no longer use quasiconformal surgery, but The-
orem 2.34 and Corollary 2.40 — in other words, we want to find an open subset
of Ĉ that contains a preimage of itself and whose boundary does not share fixed
points with the boundary of such preimage. (We shall see it suffices that infinity
not be on the preimage’s boundary.)

Let us first construct a (shrinking) nested sequence of sets, in the complement

of the open sets {Uk}k, by defining Vn to be the connected component of Ĉ \ Un

that contains E, for all 0 ≤ n ≤ n0. Notice that the closed sets V0, . . . , Vn0−1

are all unbounded, for Un0 is the first multiply-connected set of its sequence, and
Vn0 = E is bounded by definition. Notice also that this component containing
E is simply connected (since Un is connected) and indeed unique, and that V0 ⊃
V1 ⊃ . . . ⊃ Vn0 = E, since U0 ⊂ U1 ⊂ . . . and all the {Vk}k must contain E (see
Figure 3.11).

From Lemma 3.9 and from the fact that U0 is bounded, there exists n1 ∈ N,
with 0 < n1 < n0, such that U0, . . . , Un1−1 are bounded and Un1 , Un1+1, . . . are
unbounded. Moreover, since the preimage of an unbounded set may contain poles
on its boundary, we can assume there exists n2 ∈ N, with 0 < n1 < n2 ≤ n0, such
that P /∈ ∂V0, . . . , ∂Vn2−1 and P ∈ ∂Vn2 . The following lemma shows that, in this
case, P ∈ ∂Vn for all n2 ≤ n ≤ n0.

Lemma 3.10. Suppose there exists k < n0 such that P ∈ ∂Vk. Then, P ∈ ∂Vj,
for all k ≤ j ≤ n0.

Proof. It is clear that P ∈ ∂Vn0 , given that E = Vn0 . Now, suppose there exists
k < j < n0 such that P /∈ ∂Vj .

By definition, E ⊂ Vj and therefore P ∈ V̊j . However, on the other hand, since

Vj ⊂ Ĉ \ Uj , we have that Uk ⊂ Uj ⊂ Ĉ \ Vj . It follows that Uk ⊂ Uj ⊂ Ĉ \ Vj

and hence P ∈ Ĉ \ Vj , given that P ∈ ∂Uk. But we assumed that P /∈ ∂Vj , so we

deduce that P ∈ int(Ĉ \ Vj). This contradicts the fact that P ∈ V̊j .

If n2 = n0, the first set Vk which contains P on its boundary is E itself (see
Figure 3.12). As Vn0−1 is unbounded, there exists some connected componentX of
f−1(Vn0−1) such that P ∈ ∂X . Furthermore, the preimage X must be contained
in E, since points immediately outside E belong to Un0 (whose image under f is
Un0−1), and hence cannot be preimage of points in Vn0−1 ⊂ Ĉ\Un0−1. Call Ṽ the
connected component of V̊n0−1 that contains E, and X̃ a connected component of
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E

X

Vn0−1

∞

P

Figure 3.12: The situation where n2 = n0, i.e., the first set Vk that contains the pole P
on its boundary is Vn0 = E itself. Then, a preimage X of Vn0−1 must exist in E.

f−1(Ṽ ) in E. The boundaries ∂Ṽ and ∂X̃ do not have any common fixed point
because |f(z)− z| is bounded away from zero as z ∈ X̃ tends to ∂X̃, so the map
f : X̃ → Ṽ satisfies the hypotheses of Corollary 2.40 and therefore f has a weakly
repelling fixed point.

The most general case is that where 0 < n1 < n2 < n0. One example of this
situation is given by Figure 3.13, namely when n2 = n1 + 1 and n0 = n2 + 2.

Observe that, in this case, the interior of the sets {Vk}k with k ≥ n2 might have
more than one connected component (as shown in the example of Figure 3.13). In
order to avoid this, in our setting we define yet another sequence {Wk}k, where
each Wn is the unbounded connected component of V̊n, for all n2 ≤ n < n0. Such
an unbounded component must be indeed unique and simply connected, since the
sets {Vk}k are all simply connected (because the sets {Uk}k are all connected) and
they have “nice” boundaries, as the following lemma shows (see Figure 3.14).

Lemma 3.11. In the situation described hitherto, ∂Wn, ∂Vn and ∂Un are all
locally connected in Ĉ.

Proof. First notice that, by construction of the sets Wn and Vn (and their relative
positions), we have the inclusions ∂Wn ⊂ ∂Vn ⊂ ∂Un and it suffices to prove that
∂Un is locally connected for any n ≥ 0.

Let z ∈ ∂Un. If z /∈
⋃

0<k<n f
−k(∞), then fn is a local homeomorphism

between a sufficiently small neighbourhood Θ of z and a neighbourhood Θ′ of
fn(z) ∈ ∂U0. But U0 was chosen to be a small disc neighbourhood of the point
α, so ∂U0 ∩ Θ′ is an arc through fn(z) and ∂U0 is locally connected at fn(z).
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Ĉ

E

Un1−1

Un1
∞

P

∂Un0

∂Un1 = ∂Vn1

∂Un2

Figure 3.13: A possible distribution of the sets U1, . . . , Un0 , with 0 < n1 < n2 < n0,
and more precisely n2 = n1 + 1 and n0 = n2 + 2. To simplify, the sets {Uk}k have been
drawn only with one access to infinity. Observe that V̊n2 and V̊n2+1 have two and three
connected components, respectively. The shaded area represents Vn2+1.
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∞

P

Vn2−1

Wn2

Figure 3.14: The open set Wn2 is the unbounded component of the interior of the
(shaded) set Vn2 .

Since fn is a local homeomorphism between Θ and Θ′, ∂Un ∩Θ is a collection of
d arcs through z, where d is the local degree of fn around z, and ∂Un is locally
connected at z. Now it just remains to check if ∂Un is locally connected also at
the points of the set

⋃
0<k<n f−k(∞). However, notice that this set is either finite

or countable and, in any case, its points are isolated, so Lemma 2.32 provides the
local connectivity we wanted.

With these tools, our proof will continue as follows: For every n2 ≤ n < n0,
we will first consider the preimage sets of Wn attached to P . If any connected
component of f−1(Wn) happens to be bounded, then Corollary 2.40 can be applied
and the proof will finish, as we will show in Lemma 3.12. But if all of them were
unbounded, then it is clear both Wn and each of its preimages would have infinity
as a fixed point (of the restricted map) on their boundaries, contradicting the
hypotheses of Corollary 2.40. In this case we will jump to the next step and
repeat the procedure with Wn+1. We will now make this argument precise.

As boundedness of preimages plays quite an important role, for clarity’s sake
we define for n2 ≤ n < n0 the families of sets

Xn := {X ⊂ Ĉ bounded connected component of f−1(Wn) : P ∈ ∂X}.

In other words, Xn is the set of bounded connected components of f−1(Wn) with P
on their boundary. Now the following lemma proves the key point of our iterative
process.
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Lemma 3.12. Fix n∗ ∈ N such that n2 ≤ n∗ < n0 and suppose Xn = ∅, for all
n2 ≤ n < n∗, but Xn∗ -= ∅. Then, there exists at least one weakly repelling fixed
point of f .

Proof. Let X ∈ Xn∗ . It is clear that X ⊂ Vn∗+1 ⊂ Vn∗ ⊂ Vn∗−1, where the first
inclusion follows from the fact that Vn∗ \ Vn∗+1 ⊂ Un∗+1 and its points never
fall in Wn∗ under iteration of f (see Figure 3.15). If X ⊂ Wn∗ , then the map
f : X →Wn∗ satisfies the hypotheses of Corollary 2.40 (by construction and using
Lemma 3.11), which provides a weakly repelling fixed point of f . Otherwise, X is
contained in one of the bounded components B of V̊n∗ (see Figure 3.16). Consider
preimages of Wn∗−1, that is to say, connected components of f−1(Wn∗−1); since
Wn∗ ⊂ Wn∗−1, there exists a preimage Y of Wn∗−1 such that X ⊂ Y . But
also Y ⊂ Vn∗ (for the same reason that X ⊂ Vn∗+1), which means that Y ⊂ B
by continuity. This makes Y bounded, since so is B, therefore Y ∈ Xn∗−1 and
Xn∗−1 -= ∅, contradicting our initial assumption.

Using this result, the end of the proof becomes straightforward: For every
n ∈ N such that n2 ≤ n < n0, check whether Xn -= ∅. As it turns out, the last
family of sets of the sequence {Xk}k always has this property, Xn0−1 -= ∅, since
preimages of Wn0−1 with P on their boundary lie in Vn0 = E, which is bounded
by definition. Therefore, take the smallest n for which Xn -= ∅ holds, and Lemma
3.12 gives a weakly repelling fixed point of f .

∞

P

Wn∗−1

Wn∗

Figure 3.15: A bounded preimage X of Wn∗−1 containing P on its boundary must be
always in Wn∗ and hence in Wn∗−1. Corollary 2.40 gives then a weakly repelling fixed
point. Here the dashed lines represent Vn∗−1, while the continuous ones correspond to
Vn∗ .
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∞

P

X

Y

B

Wn∗−1

Vn∗−1

Vn∗

Figure 3.16: In the situation where X lies in one of the bounded components B of V̊n∗ ,
there exists a preimage Y of Wn∗−1 such that X ⊂ Y ⊂ B.
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3.2.2 Periodic attractive basins

This case begins with the same setting as the fixed basin, although it soon becomes
much simpler. Let A∗ be the multiply-connected p-periodic immediate attractive
basin of f and 〈α〉 ⊂ A∗ be its attracting p-periodic cycle. As before, we define U0

to be a suitable neighbourhood of α, so that fp(U0) ⊂ U0, and Un as the connected
component of f−n(U0) that intersects 〈α〉, for all n ∈ N. Analogously to the fixed
case, we have that Ul ⊂ Up+l ⊂ U2p+l ⊂ . . ., for all 0 ≤ l < p.

Again, there exists n0 ∈ N such that U0, . . . , Un0−1 are simply connected and
Un0 is multiply connected, for so is A∗. Call U = Un0 and let E be one of the
bounded connected components of Ĉ \ U (see Figure 3.17).

Ĉ

E

U = Un0

∞

〈α〉

Figure 3.17: U is a multiply-connected subset of A∗ such that f(U) is simply connected.

If U were unbounded, the point at infinity would be in ∂(Ĉ \ (U ∪E)) (see Figure 3.18).

Remark 3.13. Notice the impossibility to use Lemma 3.9 to separate the different
cases, as we did in the previous section. Indeed, in this periodic case the sequence
{Uk}k is no longer nested so our proof cannot be extended beyond fixed basins.

When ∂E has no poles — analogously to the previous case — we will apply
the periodic-case surgery described in Section 3.1.2 to find a weakly repelling
fixed point of f . First notice the curve f(∂E) is bounded, since ∂E is bounded
by definition and has no poles by hypothesis. It follows that f(∂E) = ∂Un0−1,
because f(∂E) is at least one of its connected components and Un0−1 is simply
connected. We conclude that Un0−1 must be bounded, since so is f(∂E).

Now this means we can use the Interpolation Lemma 3.4 to obtain a quasireg-
ular map f1 : Ĉ \ E → Un0−1 = f(U), as in the previous cases, and the surgery
process goes on and finishes as it did in the rational periodic case.
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When ∂E does contain a pole P , the image f(U) must be unbounded and,

therefore, contained in one of the unbounded connected components of Ĉ \ U .
Consider a simply-connected, unbounded, closed set V ⊂ Ĉ, containing U but
not its image f(U) (see Figure 3.18) — this is always possible because we are in
the case p > 1. Notice that also E ⊂ V by construction of V (which is simply

Ĉ

U

D

∞

P

f(U)

∂V

f

E

Figure 3.18: If there exists a pole P on ∂E, then there exists a set D ⊂ E such that
f(D) = V , where V is an unbounded simply-connected set that contains U but not f(U).
The thick lines correspond to ∂U , while the sets D and V appear dark- and light-shaded,
respectively.

connected) and boundedness of E. Now there exists a preimage D of V , with
P ∈ ∂D, and D ⊂ E since points immediately outside E are in U and thus
mapped to f(U) ⊂ Ĉ \ V . Moreover, we have D ⊂ E ! V , so ∂D ∩ ∂V = ∅ and
Theorem 2.34 gives a weakly repelling fixed point of f .

This step concludes the periodic immediate attractive case and, with it, the
proof of Theorem 3.8.

52



4
Parabolic basins

In this chapter we prove our Main Theorem 1.5 for the case of multiply-connected
parabolic basins. Let us recall here this result, rewritten as a separate theorem,
while we introduce some notation.

Theorem 4.1 (Parabolic basins case). Let f be a transcendental meromorphic
function with a multiply-connected p-periodic parabolic basin B. Then, there exists
at least one weakly repelling fixed point of f .

Its proof involves two quite different techniques. The first one is based upon
Shishikura’s proof and applies when preimages of certain sets do not behave
too wildly in the presence of the essential singularity. For the second one, the
assumption of a pole of f allows us to construct some sets where the hypotheses
of Corollary 2.40 are met.

Recall that by p-periodic parabolic basin B we mean a connected component
of the Fatou set such that there exists a q-periodic point α ∈ ∂B, q|p, with
limn→∞ fnq(z) = α for all z ∈ B and, in particular, (fp)′(α) = 1 (i.e., the
immediate basin associated to a one petal attached to a q-periodic parabolic point).
Notice that p is the period of B, not of α, so B, f(B), . . . , fp−1(B) are pairwise
disjoint. Also, p/q gives the number of petals sharing α as a boundary point.

First notice that if p = 1 (and so q = 1) then there exists a fixed point α ∈ ∂B
such that f ′(α) = 1, i.e., there exists a weakly repelling fixed point of f and we
are done. So let us assume from now on that p > 1.

Let 〈α〉 be the cycle of points generated by the iteration of the q-periodic
parabolic point α. We want to construct a sequence of open sets {Uk}, starting
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with a simply connected one, such that 〈α〉 ∩ ∂Uk -= ∅ and f(Uk+1) = Uk for all
k ≥ 0.

In the following we use the so-called Fatou coordinates , see e.g. [34]. Without
loss of generality we can assume that α = 0 by a coordinate change, and fp to be
in normal form fp(z) = z(1 + azν + O(zν+1)), for some a ∈ C and ν = p/q. Let
U0 ⊂ B be the pull-back U0 := H−1({w : Rew > L}), where H(z) := −1/νazν

and L > 0 is large and to be precised later. It is easy to check that H is an actual
conjugacy between fp and

T (w) := (H ◦ fp ◦H−1)(w) = w + 1 +O(w−1/ν ) ,

hence we can choose L large enough so that fp is injective on U0 (see Figure 4.1).
Also, notice that fp(U0) ⊂ U0 ∪ {α} because of the action of T .

α = 0

U0

B

H

L

Figure 4.1: Construction of U0 as an H-pull-back of the half-plane {w : Rew > L}
(example with ν = 3, so p = 3q). Notice that U0 contains no critical points, since fp|U0

is injective. Furthermore, we can choose L in such a way that ∂U0 \ {α} does not meet
the postcritical set (forward orbits of the critical points).

Now define {Uk}k∈N
by pulling back U0 under f , namely, Uk is the connected

component of f−k(U0) such that ∂Uk∩〈α〉 -= ∅. Notice that Uj ⊂ Up+j ⊂ U2p+j ⊂
. . . and f j(B) =

⋃
k≥1 Ukp−j , for all 0 ≤ j < p. Because B is multiply connected,

there exists a (minimal) n0 ∈ N such that U := Un0 is also multiply connected.
Call E one of the bounded connected components of Ĉ \ U . Notice that E is
compact and full, and E̊ need not be connected.

Now preimages of compact sets under transcendental meromorphic maps might
become unbounded and eventually contain poles and prepoles. This fact will be an
obstacle to follow Shishikura’s proof of the rational case, as we will show later;
so, at this point, we split the proof according to the nature of ∂E.
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Case 1: ∂E contains at least one pole

If ∂E contains at least one pole P , then, since ∂E ⊂ ∂U , f(U) is unbounded.
Because p > 1, U ∩ f(U) = ∅ and so f(U) is contained in some unbounded

connected component of Ĉ \ U . Let V ⊂ Ĉ be a connected simply-connected
unbounded open set such that U ⊂ V but f(U) ⊂ Ĉ\V . For example, V could be
the connected component of Ĉ \ f(U) containing E. In this case we have E ⊂ V
because V is simply connected and E is bounded. Now since E is unbounded,
there exists a connected component Ũ of f−1(V ) such that P ∈ ∂Ũ . Moreover,
by definition we must have Ũ ⊂ E because points immediately outside E are in
U , and f(U) ⊂ Ĉ \ V (see Figure 4.2). Now, by construction of the two sets,
V is connected and simply connected, and Ũ is bounded and relatively compact
in V , since Ũ ⊂ E ⊂ V . Using Lemma 2.35 and Corollary 2.40, it follows that
f |Ũ : Ũ → V is indeed a rational-like map and f has a weakly repelling fixed point.

ĈĈ

UU

ŨŨ

∞∞

PP

f(U)
f(U)

∂V

∂V

ff

EE

Figure 4.2: If there exists a pole P on ∂E, then there exists a set Ũ ⊂ E such that
f(Ũ) = V , where V is an unbounded simply-connected set that contains U but not f(U).
The thick lines correspond to ∂U , while the sets Ũ and V appear dark- and light-shaded,
respectively. The non-labelled points represent the different places where α can lie. On
the right, a case where ∂U ∩ ∂f(U) *= ∅.

Case 2: ∂E contains no poles

Now if ∂E contains no poles, f(U) is bounded (and simply connected by con-
struction) therefore no other component of Ĉ \ U can have poles on its boundary.
(Still, further images of U might be unbounded, for example, if ∂E contains pre-
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poles.) Let us assume, without loss of generality, that f(U), . . . , fk−1(U) ⊂ E and

fk(U) ⊂ Ĉ \ E, for some 1 ≤ k ≤ p. In that case we will use the quasiconformal
surgery technique, but must be careful with the set of preimages of α, that might
intersect ∂U and make the whole process somewhat laborious.

In fact, a key point during the surgery process is the construction of an in-
terpolating map between two different functions on two disjoint closed curves. If
such curves are to touch at preimages of α or at α itself, this interpolation cannot
be performed and an extra step previous to surgery will be done. Since we are
focusing our attention on boundary intersections here, we shall still subdivide this
case into two finer subcases as follows.

Case 2.1: k < p, or k = p but ∂fp(U) ∩ ∂E = ∅

First notice that if k < p then ∂fk(U) ∩ ∂E = ∅: Because, by construction,
fp(U) is the first iterate to come back inside U , fk(U) is in some complementary
component of U . The iterates f j(U), j < k, all lie inside E, but fk(U) is not in E
so it is in a different component of Ĉ \U . Since two different components of Ĉ \U
cannot form a connected set we conclude that ∂fk(U) ∩ ∂E = ∅.

Now we apply quasiconformal surgery as follows: Define a quasiregular map
f2 : Ĉ→ Ĉ that, after k iterations, maps Ĉ\E strictly inside itself. More precisely,

set V0 := Ĉ \E and V1 := f(U). Then, when k > 1, V1 lies in E, and when k = 1,
it lies in Ĉ \ E. Set also K := fk(U) and choose b ∈ f(U) and a = fk−1(b) ∈ K
(see Figure 4.3).

ĈĈ
E

E

f2
f2

f2

f2

f(U) f(U)

fk(U)U
U fp(U)

∞

∞

Figure 4.3: In this case, intersection between ∂fk(U) and ∂E never occurs, which is
crucial for Lemma 3.4 to be applied in our case. We have drawn the cases 1 < k < p
(left) and k = p (right). In both of them, the cycle Ĉ \ E, f(U), . . . , fk(U) ⊂ Ĉ \ E
appears in grey.
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Ĉ

E

f

f2 f2f2

f(U)

fk(U)

Figure 4.4: Construction of the almost complex structure σ. In grey we find the region
where f2 is holomorphic. Orbits pass through Ĉ \ (E ∪ fk(U)) at most once.

Now we will use the Interpolation Lemma 3.4. Applied to our case, it provides
us with a quasiregular map f1 : Ĉ \ E → f(U) which agrees with f on ∂E, is
holomorphic in a neighbourhood of fk(U) and satisfies f1(a) = b.

Now we construct a map f2 by setting f2 = f on E and f2 = f1 on Ĉ \ E,
which makes it a quasiregular map of Ĉ, holomorphic in both a neighbourhood
of E and a neighbourhood of fk(U), with a k-periodic point, given that fk

2 (a) =
fk−1(f1(a)) = fk−1(b) = a. Observe also that fk

2 (Ĉ \ E) = fk(U) and fk(U) ⊂
Ĉ \E; it follows that fk

2 is a contraction and a a global attractor for fk
2 in Ĉ \E.

We may define an almost complex structure σ by

σ :=






σ0 on f(U)

(fn
2 )

∗σ0 on f−n
2 (f(U)), for n ∈ N

σ0 elsewhere.

Observe that σ = σ0 on
⋃k

i=1 f
i(U) (see Figure 4.4).

Furthermore, σ is f2-invariant by construction and has bounded distortion,
since orbits pass through Ĉ \ (E ∪ fk(U)) (the set where f2 is not holomorphic) at
most once.
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Remark 4.2. At this point, notice the importance of the fact that f2 be defined
to be holomorphic on a neighbourhood of fk(U), which was only possible because
fk(U) is a relatively compact subset of Ĉ \ E.

These are precisely the hypotheses of Lemma 2.29, so there exists a map g : Ĉ→
Ĉ, holomorphic on the whole sphere — and hence rational —, which is conjugate
to f2 by some quasiconformal homeomorphism φ.

Now a theorem of Fatou ensures the existence of a weakly repelling fixed point
z0 of g, except when deg g = 1 and g is an elliptic transformation. But φ(a) is an
attracting k-periodic point of g, so this can never be the case.

Besides, the family G = {gn|φ(Ĉ\E)}n≥1 omits the open set φ(Ĉ \ (E ∪ fk(U))),

therefore G is normal in φ(Ĉ \E) by Montel’s Theorem, that is, φ(Ĉ \E) ⊂ F(g).
But weakly repelling fixed points belong to the Julia set, so z0 ∈ φ(E). Because
such points are preserved under conjugacy, also f2 has a weakly repelling fixed
point φ−1(z0), in E; and so does f , since both functions coincide precisely on this
set.

Case 2.2: k = p and ∂fp(U) ∩ ∂E -= ∅

For this case, let us first rename the elements of the periodic orbit and shift the
sequence {Uk} so that α ∈ ∂U ≡ ∂Un0 , i.e., so that p|n0. More precisely, it is
clear that there exists 0 ≤ l < p such that U ⊂ f l(B); then, rename B ≡ f l(B),
α ≡ f l(α), U0 ≡ f l(U0) and define the sets U1, . . . , Ul−1 accordingly. Notice
that U0, . . . , Ul are all simply connected by construction, but Un0 ≡ U is multiply
connected. Since p divides n0, we can define c := n0/p ∈ N, that is, the number
of fp-cycles from U0 to Un0 (see Figure 4.5).

Also, the sets Ukp+1, . . . , U(k+1)p−1 ⊂ E are necessarily bounded, so only those
in the subsequence U0, Up, U2p, . . .might become unbounded from a certain one on.
In particular, only the sets of the form Ukp+1 can have poles on their boundaries,
and only the maps of the form f |Ukp : Ukp → Ukp−1 can be of infinite degree.

Furthermore, notice that if some intersection ∂Uk1∩∂Uk2 contains a preimage of
some pole, then the sets Uk1 and Uk2 necessarily belong to the same subsequence
Uj ⊂ Up+j ⊂ U2p+j ⊂ . . ., that is, k1 ≡ k2 (mod p) and either Uk1 ⊂ Uk2

or Uk2 ⊂ Uk1 . In particular, only if this is the case can ∂Uk1 and ∂Uk2 share
infinitely many preimages of α. This will be a key point in later arguments.

We have seen that the fact that ∂fp(U) and ∂E did not share any contact point
was crucial for the quasiconformal surgery construction of Case 2.1 (see Remark
4.2). Now, the condition ∂fp(U)∩∂E -= ∅ is exactly given by hypotheses, so some
extra work must be done, in the sense of modifying slightly some sets, in order to
start the surgical process proper.

On the other hand, notice that the sets {Uk} are in some sense arbitrary, since
they were constructed by repeatedly pulling-back U0, chosen arbitrarily. Also,
notice that once these sets (and E) have been defined and during the process
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E

U

f(U)

fp(U)

fp−1(U)

α

U0

Figure 4.5: The shifted sequence {Uk}. From now on, this is the primary situation we
should always bear in mind. The sets U, f(U), . . . , fp(U) are the only ones in {Uk} that
will later play a role during the quasiconformal surgery process. Their cyclic dynamics
under the action of f is also shown here.

of quasiconformal surgery (that is to say, from the construction of the auxiliar
quasiregular maps on), the only sets in this sequence with a role to play are
U, f(U), . . . , fk(U) (or rather U, f(U), . . . , fp(U) for the current case).

Thus, it seems that we can modify these sets U, f(U), . . . , fp(U) slightly and
only close to the odd contact points, so that their boundaries share as little points
as possible — the following result provides us with such modification. Its proof is
rather technical and will be given separately, in Section 4.1.

Proposition 4.3. In the situation described hitherto, there exists a connected
multiply-connected set U ⊂ U such that fp(U) is simply connected, fp(U) ⊂ U∪{α}
and ∂fp(U) ∩ J (f) = {α}.

Now call E the bounded component of Ĉ \ U that contains E. The point α
need not be on ∂E , so it could happen that ∂fp(U) ∩ ∂E = ∅. Were that the case,
notice that fp(U) ⊂ Ĉ \ E and therefore we could just repeat the surgery process
of Case 2.1 — replacing U and E by their respective modifications — to find a
weakly repelling fixed point of f .

Otherwise, we have ∂fp(U)∩ ∂E = {α} and, as there seems to be no neat way
to separate E from α, we will just work with a small extension of E whose interior
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contains α. More precisely, we first define V0 := Ĉ \ E and V1 := f(U) ⊂ E ⊂ E ,
and use the Interpolation Lemma 3.4 to find a quasiregular map f1 : Ĉ\E → f(U),
as usual — however, notice that we marked no compact set K nor points a and
b, since now f1 need not be holomorphic in any subset of Ĉ \ E . Also, recall that
f1 actually agrees with f in a neighbourhood N1 of ∂E — call N := E ∪ N1, a
neighbourhood of E .

Lemma 4.4. There exist a sufficiently small neighbourhood of α in fp(U), W∗, an

open neighbourhood E∗ of E ∪ fp(W∗) in N , and a quasiconformal map h : Ĉ→ Ĉ
such that

• W∗ ⊂ N ;

• fp(W∗) ⊂ E∗ and E∗ ∩W∗ \ ∂fp(U) ⊂ W∗;

• h = id in E∗ and h(fp(U)) ⊂ W∗.

Roughly speaking, the map h pushes the points in fp(U) towards E , but will
leave points there untouched so that the action of any post-composed map be
preserved entirely (see Figure 4.6).

α

U

N

E

E∗
f(U)

fp(U)

fp−1(U)

Figure 4.6: The case where ∂fp(U) ∩ ∂E = {α}, with the sets N , W∗ (light-shaded),
fp(W∗) (dark-shaded) and E∗. Notice that points in fp(W∗) will never leave E∗ under
the action of f .

60



CHAPTER 4. PARABOLIC BASINS

Proof. We define the set W∗ as the connected component of f−(c−1)p(WR) in
fp(U) that has α on the boundary, with R so large as for W∗ ⊂ N (see the
construction of W in Section 4.1). By construction, it is a neighbourhood of α in
fp(U), i.e., α /∈ fp(U) \W∗, and fp(W∗) ⊂ W∗∪{α}. In particular, the existence
of one such E∗ follows from the latter.

Now let S be the simply-connected open set fp(U)\E∗ with a marked boundary
segment at l := ∂S∩∂E∗. There exists a (conformal) Riemann map ϕ : S → Q that
sends l to one of the sides of the open unit square Q. Consider a (quasiconformal)
homothetic transformation h̃0 : Q → h̃0(Q) such that h̃0|ϕ(l) = id and h̃0(Q) ∩
ϕ(S ∩ ∂W∗) = ∅.

Finally, define the conjugate map h0 := ϕ−1 ◦ h̃0 ◦ ϕ : S → h0(S), which is
quasiconformal (see Figure 4.7). Notice that h0|l = id, so we can define

h :=

{
h0 on S = fp(U) \ E∗

id on E∗

and extend it quasiconformally to a map h : Ĉ→ Ĉ.

Now consider the quasiregular map f2 : Ĉ→ Ĉ defined as

f2 :=

{
f ◦ h on E∗

f1 ◦ h on Ĉ \ E∗
=

{
f on E∗

f1 ◦ h on Ĉ \ E∗.

Also, consider the (shrinking) f2-cycle C := f(W∗) ∪ . . . ∪ fp(W∗) ⊂ E∗. Indeed,
it is cyclic because f2(C) = f(C) ⊂ C (see Figure 4.8).

Setting X := Ĉ \ E∗, orbits of f2 pass through X at most twice, since

· · ·
f2−→ f−1

2 (X)
f2−→ X

h
−→ X ⊂ Ĉ \ E

f1−→ f(U)
fp−1
2−→ fp(U)

h
−→W∗ f

−→ f(W∗) ⊂ C
f2−→ C

f2−→ · · · ⊂ Ĉ \X.

Define the almost complex structure

σ :=






σ0 on C

(fn
2 )

∗σ on f−n
2 (f(W∗)), n ∈ N

σ0 elsewhere,

which clearly is f2-invariant by definition, and has bounded dilatation since f2 fails
to be holomorphic only at most twice. Therefore we can use Lemma 2.29 to find
a rational map g : Ĉ→ Ĉ conjugate to f2 by a quasiconformal homeomorphism φ.
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l

ϕ(l)S
∩
∂W

∗

S
Q

ϕ

ϕ

h0 h̃0

h0(S)

h̃0(Q)

Figure 4.7: For the construction of the map h : Ĉ → Ĉ, we first define an auxiliary map
h0 : S → h0(S) as a conjugation of a quasiconformal map on Q, where it is easy to define
the desired local dynamics. In grey we find S ∩W∗ (and its ϕ-image), the subset where
we want h0(S) to end up.
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Ĉ

E∗

U

f2

f2

Figure 4.8: The action of f2 on the cycle C, shaded. Notice that fp(W∗) ⊂ W∗, so its
f2-image falls again in f(W∗).

Thus,

gp+1(φ(X)) = φ(f2(f
p
2 (X))) ⊂ φ(f2(fp(U))) ⊂ φ(C) ⊂ φ(C) ∪ 〈φ(α)〉 ,

so φ(X) is contained in the basin of an attracting or parabolic point. By Fatou’s

theorem, g has a weakly repelling fixed point in φ(Ĉ \X) = φ(E∗), hence f has a
weakly repelling fixed point in E∗.

4.1 Proof of Proposition 4.3

When removing points of ∂fp(U)∩∂E, there is a particular point we cannot ignore
— that is α itself: Because its attracting dynamics in a whole petal contained in
the parabolic basin (Fatou coordinates about a parabolic point), if we redefined
U as some Ũ in such a way that α were not on its boundary, then points close to
α would become even closer under the action of fp, and the condition fp(Ũ) ⊂ Ũ
would be lost (see Figure 4.9).

Rather, for an appropriate construction of one such U we need to modify the
sets U, f(U), . . . , fp(U) close to the contact points between their boundaries except
those in the cycle 〈α〉 (see Figure 4.10).

When doing so, it is clear that if the point α does not lie on the intersection
∂fp(U)∩ ∂E (Figure 4.10, left), the situation is then identical to that of Case 2.1,
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α

fp

B Ũ

Figure 4.9: If the new set Ũ left out some neighbourhood of α, there would be points in
it stepping outside it under fp. The shaded set represents the attracting petal attached
to α given by the Fatou coordinates.

α

α

fp(U)
fp(U)

f(α)f(α)

f(U)f(U)
fp−1(α)fp−1(α)

UU

fp−1(U)fp−1(U)

or

Figure 4.10: The situation we want, with the points in 〈α〉 marked. Notice that a priori
we do not know whether α is on ∂E or not, since the set E was chosen arbitrarily as one
of the bounded connected components of the complement of U ; in particular, α could
even happen to be on the boundary of the unbounded component of the complement of
U . It is clear that surgery cannot be used just as in Case 2.1 when ∂fp(U)∩ ∂E remains
nonempty (right-hand side figure).
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and therefore we can conclude the case following an analogous surgical procedure.
In case α does belong to ∂fp(U)∩∂E (Figure 4.10, right), we must define another
auxiliary map before we can proceed. The end of the proof then follows with a
different quasiconformal surgery argument.

Let us now construct the modification of U, f(U), . . . , fp(U). The idea is the
following: Since the ultimate aim of such modification is to eliminate contact
points between ∂fp(U) and ∂E, it suffices to modify only the set Un0−p ≡ fp(U)
and redefine the sets Un0−p+1 ≡ fp−1(U), . . . , Un0 ≡ U by repeatedly pulling-back
this first modification, appropriately. Of course if the changes on these sets are
arbitrarily small, and, therefore, the new sets are arbitrarily close to the original
ones, their respective connectivities are also to be preserved (see Figure 4.11).

fp(U) f(U) U

Figure 4.11: The set U is multiply connected and so is its modification (shaded here)
if this one differs little from U . Similarly, the sets f(U), . . . , fp(U) are simply connected
and so are their modifications.

Following such reasoning, one could think that the modification of fp(U), which
we can call V , could simply be obtained by removing from fp(U) a disc of arbi-
trarily small radius centered at every contact point between ∂fp(U) and ∂E (see
Figure 4.12).

But of course we want to keep the property fp(U) ⊂ U for the subsequent
surgical work, and, if we just removed those discs taking no control whatsoever
over their preimages, such inclusion could be lost: Consider a point a ∈ A :=
∂fp(U)∩∂E \{α} ⊂ J (f) — for instance some a ∈ O−(α) — with some preimage
b ∈ f−p(a) on the same set A. Suppose we were to remove discs Bε(a) and Bε(b)
of small radius ε centered at the points a, b ∈ A in defining V . If the preimage of
Bε(a) under fp were to become big enough to contain points in the complement
of Bε(b), then there would be points z0 ∈ (f−p(Bε(a)) ∩ fp(U)) \ Bε(b) such
that fp(z0) ∈ Bε(a) ⊂ Ĉ \ V , that is to say, z0 /∈ f−p(V). Then we would have
z0 ∈ V \ f−p(V) -= ∅, which is precisely what we want to avoid. (See Figure 4.13.)

This very description of the problem with the preimages of points we remove
from fp(U) for the construction of V also provides us with a hint about how
to solve it, since, in the previous example, it would have been enough to take
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E

fp(U)

Figure 4.12: A first attempt towards the construction of V, shaded.

a

Bε(a)

b

Bε(b)

z0

U

fp(U)

V fp

fp

∈ f−p(Bε(a) ∩ fp(U))

Figure 4.13: We want to keep fp(U) ⊂ U after the modification, i.e., we want a set V
such that V ⊂ f−p(V). However, if we defined it as the shaded set in this figure, there
would exist points z0 ∈ V \f−p(V) — so we need to take some control over the preimages
of the discs we remove from fp(U).
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f−p(Bε(a)) ∩ fp(U) instead of Bε(b) so as to avoid points like z0.
In other words, we must also exclude from V all the points in fp(U) whose fp-

image falls on points we “already” removed from fp(U). In fact, this generates, in
turn, more points whose preimage need be controlled; and so on. Regardless
of what may be expected, this is not an endless recurrent process. We have
fp(U) ≡ Un0−p ⊂ f−n0+p(U0) and, therefore, after n0− p iterations all the points
in fp(U) happen to be close to α — precisely in U0. We will see that we can
make U0 ⊂ V provided that ε is chosen small enough (see Figure 4.14). At the
same time, we need to be careful when taking all these preimages, since they could
become so big as to impede the construction of V .

α

U0

a1 a2

al

fp

fp

fp

Bε(a1)

fn0−p

fp(U)

∈ f−p(Bε(a1))

∈ f−(l−1)p(Bε(a1))

Figure 4.14: Because fp(U) ≡ Un0−p = U(c−1)p and fp(U0) ⊂ U0 ∪ {α}, ∂fp(U) cannot
contain preimages of higher order. Thus, given a sequence of points al (→ · · · (→ a2 (→ a1

of A, with 1 ≤ l < c, the points z0 ∈ f−(l−1)p(Bε(a1)) will eventually fall inside U0 ⊂ V
and we need not worry about their preimages any more.

For all ε > 0, let

Vε := fp(U) \
⋃

a∈A

c−2⋃

k=0

f−kp(B2kε(a)).

The remaining part of the proof consists on showing that, for ε small enough, the
set V ≡ Vε is exactly the one we want.

First of all notice that fp(Vε) ⊂ Vε by definition. Now we will show that
the preimages f−kp(B2kε(a)) can be controlled in such a way that none of them
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reaches the point α, otherwise excluded from Vε. The following lemma gives
sufficient conditions for this not to happen.

Lemma 4.5. In the situation described hitherto, there exists ε0 > 0 such that
α ∈ ∂Vε for all ε < ε0.

Before its proof, we define two sets which, because of their importance, will be
used also beyond this result. These sets are both neighbourhoods (in fp(U)) of α
and provide useful information about the dynamics of fp close to this point.

The first set to be constructed, C, is a neighbourhood of α whose boundary
contains no points of A. For this, notice that A consists only of points of O−(α)
and O−(∞), since A ⊂ ∂fp(U)∩J (f) and, by construction of the sequence {Uk},
we have f (c−1)p(∂fp(U)) = ∂U0 ⊂ F(f) ∪ {α}. More precisely,

A ⊂
⋃

1≤k<c

(f−kp(α) ∪ f−(k−1)p(∞))

or, simply,

A ⊂ f−(c−1)p(α) ∪
c−2⋃

k=0

f−kp(∞)

if we take into account that α is q-periodic and so p-periodic. In particular,
the set A finds its accumulation points only in

⋃c−2
k=0 f

−kp(∞), and the points

in f−(c−1)p(α) ∩ A are all isolated in A (since f−(c−1)p(α) ∩
⋃c−2

k=0 f
−kp(∞) = ∅

because α is a periodic point). In the same way, since α is not an accumulation
point of A, there exists a simply-connected open sector C ⊂ fp(U) such that
α ∈ ∂C, α /∈ fp(U) \ C and C∩A = ∅ (see Figure 4.15). Actually, we can still shrink
it slightly so that A does not meet a whole (sufficiently small) neighbourhood of
C — we will use this later, in order to see some technical detail.

On the other hand, we want to construct another neighbourhood of α in fp(U),
to be called W , with dynamics similar to that of U0 in the sense that fp(W) ⊂
W∪{α}; in other words, the set W will control those points in fp(U) that happen
to be already close to the point α. Notice that we cannot take U0 itself as W
because U0 need not be a neighbourhood of α in fp(U), that is, α ∈ fp(U) \ U0

in general; but the construction of U0 does inspire the use of Fatou coordinates
in order to provide W with its same dynamics. More precisely, we will construct
a subset of U0 in a very similar fashion and then define W as an appropriate
preimage of it in fp(U).

In fact, for all R > L, let

WR := H−1({w ∈ C : Rew > L, Rew + |Imw| > R}) ⊂ U0,

where recall that H(z) = −1/νazν conjugates the maps fp and T (w) = w + 1 +
O(w−1/ν ), and L > 0 is large enough for fp to be injective on U0 (see Figure 4.16).
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α

C

fp(U)

Br/2(α)

Br(α)

Figure 4.15: The non-labelled points represent the set A. Since they never accumulate
on α, there certainly exists such an open set C, as shown. Furthermore, because α is a
parabolic point, in a sufficiently small neighbourhood of it fp(U) is essentially a wedge
like that of an attracting petal, so we can even take C as Br(α) ∩ fp(U) with r so small
as for C to be connected and C ∩ A = ∅. Even more, taking C = Br/2(α) ∩ fp(U) we
ensure not only its closure but also a whole neighbourhood of C free from points of A.

α = 0
H

WR U0 L R

H−1(L)

H−1(R)

H−1(L − (R − L) i)

H−1(L + (R − L) i)

L + (R − L) i

L − (R − L) i

Rew + Imw = R

Rew − Imw = R

Figure 4.16: Using the same Fatou coordinates setting as in the construction of U0, we
can define WR as a subset of it in such a way that fp keeps its injectivity also in the
subset. By taking R sufficiently large, WR can be embedded in any (arbitrarily small)
neighbourhood of α.
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It is clear that since we took L so large as for T (w) ≈ w + 1 and fp(U0) ⊂
U0 ∪ {α}, then, for any R > L, also fp(WR) ⊂ WR ∪ {α} holds. Moreover,
WR is a neighbourhood of α in U0 (i.e., α /∈ U0 \WR), since H(α) = ∞ and
H(U0 \WR) = {w ∈ C : Rew ≥ L, Rew + |Imw| ≤ R}, which is a compact set.

Consider now the connected component of the preimage f−(c−1)p(WR) in fp(U)
that has α on the boundary (or, equivalently, contains WR). If R were close to L,
then WR would be close to U0 and its preimage close to fp(U), so the character
of neighbourhood of α would be lost. Let us show, then, that we can choose a
sufficiently large R in such a way that this preimage lies even inside the just-
constructed neighbourhood C: Consider the image set f (c−1)p(C) ⊂ U0; notice

that α /∈ U0 \ f (c−1)p(C) since, by construction of C, there are no preimages of α
on C. Therefore, there exists R0 > L such that WR ⊂ f (c−1)p(C) ⊂ U0 for any
R > R0 (see Figure 4.17). Define W as the connected component of f−(c−1)p(WR)
in fp(U) that has α on the boundary, for R > R0, and thus W ⊂ C. It follows
that fp(W) ⊂ W ∪ {α} and α /∈ fp(U) \W , since, once again, C ∩ A = ∅.

This concludes the construction of the sets C andW , so we are now in a position
to prove Lemma 4.5.

α

fp(U)

WR

C

f(c−1)p(C)

U0

Figure 4.17: Since α /∈ U0 \ f (c−1)p(C), the set WR can be shrunk arbitrarily until
WR ⊂ f (c−1)p(C). Notice that f (c−1)p(C), shaded here, need not be contained in C, so C
itself or even an image of it cannot serve as WR.
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Proof of Lemma 4.5. Consider one of the preimages f−kp(B2kε(a)) and suppose
that α ∈ f−kp(B2kε(a)). If this were the case, and because α ∈ ∂W , we would
have that f−kp(B2kε(a)) ∩W -= ∅; so let z0 ∈ f−kp(B2kε(a)) ∩W . Then,

C ⊃ W ⊃ fp(W) ⊃ · · · ⊃ fkp(W)

∈ ∈ ∈

z0 fp(z0) fkp(z0)

that is, fkp(z0) ∈ C. On the other hand, from the fact that z0 ∈ f−kp(B2kε(a))∩W
it also follows that fkp(z0) ∈ B2kε(a); therefore, the point fkp(z0) would belong
to both sets: fkp(z0) ∈ C ∩B2kε(a).

However, since A does not meet some neighbourhood of C, it is clear that there
exists ε0 > 0 such that C ∩ B2kε(a) = ∅ for any ε < ε0 and a ∈ A. Therefore, it
suffices to take ε < ε0 to obtain fkp(z0) /∈ C ∩B2kε(a) = ∅ and α /∈ f−kp(B2kε(a)).
But α does belong to ∂fp(U) so, right from the definition of Vε, we have α ∈ ∂Vε
for all ε < ε0.

Remark 4.6. Notice that the key point of this proof lies in the fact that the
preimages f−kp(B2kε(a)) are considered only up to order k = c− 2. Of course, if
we were to take preimages of B2kε(a) indefinitely, we would surely end up meeting
C because B2kε(a) is a neighbourhood of a point a ∈ A ⊂ J (f); but, then, also
preimages of α would accumulate on α itself so the construction of one such C
would never be possible.

The next step towards the construction of V is to insure that U will keep
multiple connectivity. This is precisely what the following lemma does.

Lemma 4.7. In the situation described hitherto, there exists ε1 > 0 such that
f−p(Vε) has a multiply-connected component in U that separates E and the un-

bounded connected component of Ĉ \ U , for all ε < ε1.

Proof. Since U is multiply connected, let γ ⊂ U be a generator path of its funda-
mental group (as a topological space) such that E and the unbounded connected

component of Ĉ \ U sit in different connected components of Ĉ \ γ (see Figure
4.18).

Consider now the images {fkp(γ)}1≤k<c in fp(U). Because γ does not accu-

mulate on points of J (f), neither do the curves fkp(γ) accumulate on points of
A, and, therefore, there exist {ε1,k > 0}1≤k<c such that, for each 1 ≤ k < c,

fkp(γ) ∩B2kε(a) = ∅ for any ε < ε1,k and a ∈ A (see Figure 4.19).
In this way, if ε < ε1, where

ε1 := min
1≤k<c

ε1,k ,

then fkp(γ) ∩ B2kε(a) = ∅ for any 1 ≤ k < c and a ∈ A. Let us show that
it follows from here that γ ⊂ f−p(Vε) for all ε < ε1: If it were otherwise, γ "

71



CHAPTER 4. PARABOLIC BASINS

Ĉ

U

∞

γ

Figure 4.18: One such generator path γ, as seen on the Riemann sphere. Notice that
it need not separate all the connected components of Ĉ \ U pairwise, although it might
separate components other than E and the unbounded one.

α

fp(U)

fkp(γ)

ε1,k

ε1,k

ε1,k

Figure 4.19: For each 1 ≤ k < c, the radius ε1,k can be chosen in such a way that
fkp(γ) ∩ B2kε(a) = ∅ for any ε < ε1,k and a ∈ A. Here, the set A is again represented
by the non-labelled points, and we show just one step 1 ≤ k < c for the sake of clarity.
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f−p(Vε), then we would have fp(γ) " Vε and, since fp(γ) ⊂ fp(U) and Vε =

fp(U) \
⋃

a∈A

⋃c−2
k=0 f

−kp(B2kε(a)), there would exist 0 ≤ k ≤ c − 2 and a ∈ A
for which fp(γ) ∩ f−kp(B2kε(a)) -= ∅. So let z0 ∈ fp(γ) ∩ f−kp(B2kε(a)); taking
fkp-images we would have fkp(z0) ∈ f (k+1)p(γ) ∩B2kε(a) for some 0 ≤ k ≤ c− 2,
that is, fkp(γ) ∩ B2kε(a) -= ∅ for some 1 ≤ k < c, which is in contradiction with
the construction of ε1.

Finally, from the fact that γ ⊂ f−p(Vε) for all ε < ε1 and from the choice of
γ ⊂ U , the lemma follows straightforwardly.

Last, and in a similar spirit to that of the previous lemma, we also want to
control the topology of Vε itself, since it might happen to consist of more than
one connected component due to the removal of the preimages f−kp(B2kε(a)) (see
Figure 4.20).

α

fp(U)

Figure 4.20: When removing the preimages f−kp(B2kε(a)) (shaded) from fp(U), the
resulting set might be disconnected.

This will pose no problem if we focus only on the connected component of Vε
that has α on its boundary, V ∗

ε ; but we do have to make sure that the fp-preimage
of such component will generate a multiply-connected set, as expected.

Lemma 4.8. In the situation described hitherto, there exists ε2 > 0 such that
f−p(V ∗

ε ) has a component like that of the previous lemma, for all ε < ε2.

Proof. The construction here is very similar to the proof of Lemma 4.7. In fact,
consider fp(γ) ⊂ fp(U), where γ ⊂ U is that path which separates E and the

unbounded connected component of Ĉ \ U . Since fp(U) is simply connected and,
in particular, path-connected, there exists a (continuous) path

ξ : [0, 1]→ fp(U) ∪ {α}

such that ξ(0) = α and ξ(1) ∈ fp(γ) (see Figure 4.21).
Consider now the images {fkp(ξ)}0≤k≤c−2 in fp(U). Because ξ does not ac-

cumulate on points of J (f) \ {α}, neither do the curves fkp(ξ) accumulate on
points of A, and, therefore, there exist {ε2,k > 0}0≤k≤c−2 such that, for each
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α = ξ(0)

fp(U)

ξ

ξ(1)

fp(γ)

Figure 4.21: We can connect α and fp(γ) by a path ξ in fp(U) ∪ {α}.

0 ≤ k ≤ c− 2, fkp(ξ) ∩ B2kε(a) = ∅ for any ε < ε2,k and a ∈ A. In this way, it is
clear that if ε < ε2, where

ε2 := min
0≤k≤c−2

ε2,k ,

then ξ ∩ f−kp(B2kε(a)) = ∅ for any 0 ≤ k ≤ c− 2 and a ∈ A, that is to say, ξ ⊂ Vε
and therefore fp(γ) ⊂ V ∗

ε .
Using an identical argument to that of the proof of Lemma 4.7 the result

follows.

This completes the construction of the modification of fp(U), since now it just
remains to define V ⊂ fp(U) as V ∗

ε for some ε < ε0, ε1, ε2, and U ⊂ U as the
multiply-connected component of f−p(V) that separates E and the unbounded
connected component of Ĉ \ U given by Lemma 4.8.
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5
Preperiodic Fatou components

We have so far closed the cases of the attractive basin and the parabolic basin.
Notice that our proof became specially laborious in those situations where we were
unable to apply quasiconformal surgery techniques, in other words, when we could
not find a multiply-connected open set with simply-connected image.

However, the case we will deal with in this section starts exactly with and is
actually defined by this very hypothesis, so it is no surprise that the preperiodic
case shall be proven using only surgery — in fact, using surgery in a fashion very
similar to that of Shishikura’s for the rational (preperiodic) case. We want to
prove the following.

Theorem 5.1 (Preperiodic Fatou components case). Let f be a trans-
cendental meromorphic function with a multiply-connected (strictly preperiodic)
Fatou component U such that f(U) is simply connected. Then, there exists at
least one weakly repelling fixed point of f .

It is clear that U is a connected component of f−1(f(U)), since U is a Fatou

component itself. Let E be one of the bounded components of Ĉ \ U (one such
component always exists because U is multiply connected).

In analogy to the rational case, let us focus our attention on the sequence of
iterations {fk(U)}k∈N

. Notice that, in the preperiodic case, such iterations will
not necessarily eventually abandon E because they will never come back to U .
This fact gives raise to two quite different situations, depicted in Figure 5.1.

Notice that Case (b) is exactly the situation we already treated in the attrac-
tive case, so an analogous procedure gives a global quasiregular map f2, with its
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Case (a). Case (b).

ĈĈ

UU

E
E

f

f f

fk(U)

Figure 5.1: The two possible situations. In (a), the iterations of U always stay in E,
fk(U) ⊂ E for all k ∈ N; whereas in (b), there exists k ∈ N such that f i(U) ⊂ E for all

0 < i < k and fk(U) ⊂ Ĉ \ E.

Ĉ

E

f

f2

f(U)

Figure 5.2: The new almost complex structure σ.
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conjugate rational function g, plus the subsequent weakly repelling fixed point of
f in E.

For Case (a) we define a quasiregular map f2 : Ĉ→ Ĉ in exactly the same way,

i.e., via f1 : Ĉ\E → f(U). However, in this case we define our f2-invariant almost
complex structure as

σ :=






σ0 on fn(U), for n ∈ N

f∗
2σ0 on Ĉ \ E

(fn
2 )

∗σ0 on f−n
2 (Ĉ \ E), for n ∈ N

σ0 elsewhere.

(See Figure 5.2.)
Therefore, we have that f∗

2σ = σ almost everywhere, by construction, and that
σ has bounded ellipticity, since f2 is holomorphic everywhere except in Ĉ \ E,
where it is quasiregular but orbits clearly pass at most once through.

As usual, a rational map g : Ĉ→ Ĉ conjugate to f2 is obtained from Corollary
2.29 and f inherits from it a weakly repelling fixed point in E.
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6
Other Fatou components and further

results

For completeness, in this chapter we give some further results and state-of-the-art
ideas about those Fatou-component cases of Conjecture 3.6 not covered by our
Main Theorem 1.5. Section 6.1 gives an idea of Bergweiler and Terglane’s
proof [9] for the case of multiply-connected wandering domains, and we refer to
their paper for the details. Section 6.2 gives a partial proof for the case of Herman
rings, namely it proves the case of fixed Herman rings. Finally, Section 6.3 provides
a few definitions and results on Baker domains for their better understanding,
which may be helpful for a proof of the case of multiply-connected Baker domains.

With these tools, notice that the case of wandering domains is thus closed. The
case of Herman rings is only partially closed, but we believe Shishikura’s surgery
construction holds for transcendental meromorphic functions — although this is a
subject for a future project. And the case of Baker domains remains open — and
another subject for a future project —, since we need a deeper understanding of
this Fatou component to close the case and, with it, Conjectures 1.3 and 1.4.

6.1 On wandering domains

Bergweiler and Terglane’s proof [9] for the multiply-connected wandering
domain case uses the surgery results of Shishikura’s that we have been using in
the previous chapters. This outline of their proof is thus similar in spirit to what
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we have been doing in this Thesis so far, and the general strategy is a case-by-case
surgery approach, according to the configuration of the wandering domains. The
result is the following.

Theorem 6.1 (Bergweiler-Terglane [9]). Let f be a transcendental meromor-
phic function and suppose that f has a multiply-connected wandering domain.
Then f has at least one weakly repelling fixed point.

Idea of the proof. Suppose that f has a multiply-connected wandering domain U .
Since J (f) = O−(∞) (see Lemma 2.14 or [5]), we can choose a simple closed
curve γ ⊂ U such that J (f)∩ int(γ) -= ∅— recall that the Jordan Curve Theorem
states that the complement of a simple closed curve γ ⊂ C consists of exactly two
connected components: a bounded one, the interior int(γ), and an unbounded one,
the exterior ext(γ). Moreover, there exists a minimal n ≥ 1 such that fn(int(γ))
contains a pole of f , so fn(γ) contains a simple closed curve σ such that f has a
pole in int(σ), and we may replace γ by σ if necessary.

If f(γ) ⊂ ext(γ) and either ∞ and γ are in the same component of Ĉ \ f(γ) or
∞ and γ are in different components of Ĉ \ f(γ) but f(γ) contains a simple closed
curve τ such that γ ⊂ int(τ) and f(τ) ⊂ ext(τ), then with some work and using
Shishikura’s surgery technique one can show that f has a weakly repelling fixed
point (in int(γ) or in int(τ), respectively).

Otherwise, we have f(γ) ⊂ int(γ) or there exists a simple closed curve τ ⊂
f(γ) such that f(τ) ⊂ int(τ), so without loss of generality we may assume that
f(γ) ⊂ int(γ).

We now suppose that int(γ) does not contain a weakly repelling fixed point
and seek a contradiction.

Using surgery again, one can build a sequence of simply-connected domains

{V (k)
0 }k≥0 such that

1. ∞ ∈ V (0)
0 and V (k)

0 ⊂ V (k+1)
0 ;

2. for all k ≥ 0, f has a pole in Ĉ \ V (k)
0 ;

3. for all ε > 0, sph diam(∂V (k)
0 ) < ε for sufficiently large k; and

4. f(∂V (k)
0 ) ⊂ Ĉ \ V (k)

0 .

Using 2 and 3 we can achieve f(∂V (k)
0 ) to be contained in an arbitrarily small

neighbourhood of ∞ (contained in V (k)
0 , by 1) by choosing k large and ε small,

which is a contradiction with 4.
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6.2 On Herman rings

Recall that a p-periodic Fatou component U of a complex function f is called a
Herman ring if there exist r > 1 and a holomorphic homeomorphism φ : U → {1 <
|z| < r} such that (φ ◦ fp ◦ φ−1)(z) = e2πiθz, for some θ ∈ R \Q.

One of the characteristics of Herman rings — as well as of Siegel discs — is that
the whole Fatou component is foliated by p-invariant curves that spin following an
irrational rotation.

In his proof for the rational case, Shishikura uses a cycle of p-invariant curves
(in the p-periodic Herman ring) to construct the sets to which surgery will be
applied. These curves are present also in the transcendental case, and we believe
the same surgery construction holds for transcendental meromorphic functions.

In this section we give a proof for the case when the Herman ring is fixed
(p = 1). More precisely, we show the following.

Theorem 6.2 (Fixed Herman rings case). Let f be a transcendental mero-
morphic function with a fixed Herman ring. Then, there exists at least one weakly
repelling fixed point of f .

Proof. Let us suppose f has an invariant Herman ring and let γ be an invariant
curve in it. By definition, there exists a holomorphic homeomorphism h : γ → S1

such that (h ◦ f ◦ h−1)(z) = e2πiθz, for some θ ∈ R \Q and all z ∈ γ.
Now call E the bounded connected component of the complement of γ. We

can extend h to a quasi-conformal map H : Ĉ\E → D in such a way that H |γ ≡ h
(see [10, 18]) (see Figure 6.1).

f

z 0→ e2πiθz

γ

E
H

h

D

Figure 6.1: Construction of the quasi-conformal map H .
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Now define

f1 :=

{
f on E

H−1 ◦ (z 0→ e2πiθz) ◦H on Ĉ \E.

Notice that f1 is well-defined, continuous at ∂E = γ, and holomorphic in E.
In order to obtain a rational map realising such dynamics we need to construct
an appropriate almost complex structure, so consider σ := H∗σ0 on Ĉ \ E and
spread it by the dynamics of f1. Thus, σ is f1-invariant by construction, and it
has bounded ellipticity since the map H−1 ◦ (z 0→ e2πiθz) ◦ H does not distort
ellipses.

Lemma 2.29 gives a rational map g : Ĉ→ Ĉ conjugate to f1 by a quasiconformal
homeomorphism φ. Let ψ be the inverse ψ := φ−1. The rational map g has
a weakly repelling fixed point z0 (Fatou’s Theorem 2.6) and a Siegel disc that

contains ψ(Ĉ \ E), so z0 ∈ J (g) ⊂ ψ(E) and therefore f1 (and hence f) has a
weakly repelling fixed point in E.

6.3 On Baker domains

Recall that a p-periodic Fatou component U of a transcendental function f is
called a Baker domain (or a domain at infinity) if ∂U contains a point z0 such
that fnp(z) → z0, as n → ∞, for all z ∈ U , but fp(z0) is not defined, that is, z0
is a prepole of order k, with 1 ≤ k ≤ p.

The following result is a collection of direct consequences from the definition,
and is stated in this form in [8].

Proposition 6.3. Let f be a meromorphic function, and let {U0, U1, . . . Up−1} be
a periodic cycle of Baker domains of f . Denote by zj the limit corresponding to

Uj, and define zp ≡ z0. Then, zj ∈
⋃p−1

n=0 f
−n(∞) for all j ∈ {0, 1, . . . , p− 1}, and

zj =∞ for at least one j ∈ {0, 1, . . . , p−1}. If zj =∞, then zj+1 is an asymptotic
value of f .

For a deep discussion about the existence and distribution of Baker domains
of a transcendental function (either entire or meromorphic), we again refer to [8].

The first example of a transcendental entire function with a Baker domain is
due to Fatou [25], who considered

f(z) = z + 1 + e−z.

He observed that limn→∞ fn(z) = ∞ when Re (z) > 0, so the right half plane is
contained in an invariant Baker domain. (That is the case p = 1 and z0 = ∞ in
our previous definition of Baker domain.)
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Now the first example of a Baker domain of period greater than 1 was given
in [6] with the transcendental meromorphic function

f(z) =
1

z
− ez.

It has a 2-periodic cycle of Baker domains {U0, U1} such that limn→∞ f2n(z) =∞
when both z ∈ U0 and z ∈ U1.

It is worth mentioning two important theorems for Baker domains of transcen-
dental entire maps. For the first one, we say that a transcendental entire map f
is in class B if sing (f−1) is a bounded set (see Subsection 2.1.3 for a few words
about the set sing (f−1)).

Theorem 6.4 (Eremenko-Lyubich [22]). Let f ∈ B. Then, f has no Baker
domains.

Theorem 6.5 (Baker [4]). Let f a transcendental entire map. If U is a Baker
domain of f , then U is simply connected.

As for transcendental meromorphic maps, the general situation is a bit more
involved, although there are some particular cases where the results for entire maps
above can be extended.

It is clear that Theorem 6.4 is not true for meromorphic maps since the afore-
mentioned function f(z) = 1

z − ez provides a counterexample. However, we can
define other classes of functions for which the results will hold.

We say that a transcendental meromorphic function f is in class S if sing (f−1)
is finite. Just as for entire maps, we say that f is in class B if sing (f−1) is bounded.
Furthermore, we say that f is in class Bn if the set of points Sn(f) is bounded,
where

Sn(f) =
n−1⋃

k=0

fk(sing (f−1) \Ak(f))

and Ak(f) = {z ∈ Ĉ : fk is not analytic at z}.

Theorem 6.6. Let f ∈ S. Then, f has no Baker domains.

Theorem 6.7 (Rippon-Stallard [37]). If f is in class Bn, then f has no Baker
domains of period n.

As for multiply-connected Baker domains, an example was given in [16] with
the (meromorphic) function

f(z) = z + 2 + e−z +
1 + πi

z − 10−2
,

which has an unbounded multiply-connected fixed Baker domain. In particular,
this example shows that Theorem 6.5 does not hold for meromorphic functions.
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Nonetheless, Mayer and Schleicher showed in [32] — the paper mentioned
in the Introduction — that there are some interesting classes of functions for
which Baker domains are always simply connected. As we shall see, this is the
case of the Newton’s method of transcendental entire functions, one of the classes
of meromorphic functions this Thesis deals with (see Chapter 1).

Definition 6.8. Let U be an Nf -invariant domain in C. An open subset A ⊂ U
is called an absorbing set (of U) if the following hold.

1. A is simply connected.

2. Nf (A \ {∞}) ⊂ A.

3. For every z ∈ U , there is a k ≥ 0 such that Nk
f (z) ∈ A.

Definition 6.9. A domain U ∈ C is called a virtual immediate basin if it is
maximal with respect to the following properties.

1. lim
n→∞

Nn
f (z) =∞, for all z ∈ U .

2. U contains an absorbing set.

Theorem 6.10 (Mayer-Schleicher [32]). Virtual immediate basins are simply
connected.

Notice that this theorem does not imply that every virtual immediate basin is
an actual Fatou component. But if this were the case, then the Fatou component
would be a Baker domain.

In view of this, a reasonable approach to our problem in the case of multiply-
connected Baker domains would be to investigate first whether (general) tran-
scendental meromorphic functions with a multiply-connected Baker domain that
contains an absorbing set have a weakly repelling fixed point.
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[11] Bodil Branner and Núria Fagella, Quasiconformal surgery in holomorphic
dynamics, book in preparation.

[12] Xavier Buff, Virtually repelling fixed points, Publ. Mat. 47 (2003), no. 1,
195–209.

85



BIBLIOGRAPHY

[13] Lennart Carleson and Theodore Gamelin, Complex dynamics, Universi-
text: Tracts in Mathematics, Springer-Verlag, New York, 1993.

[14] Figen Çilingir and Xavier Jarque, On Newton’s method applied to real
polynomials, J. Differ. Equ. Appl. (to appear).

[15] James Curry, Lucy Garnett, and Dennis Sullivan, On the iteration of a
rational function: computer experiments with Newton’s method, Comm. Math.
Phys. 91 (1983), no. 2, 267–277.
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Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 1–29.

[40] , The connectivity of the Julia set and fixed points, Complex dynamics,
A K Peters, Wellesley, MA, 2009, pp. 257–276.

[41] Dennis Sullivan, Itération des fonctions analytiques complexes, C. R. Acad.
Sci. Paris Sér. I Math. 294 (1982), no. 9, 301–303.

87



BIBLIOGRAPHY

[42] , Quasiconformal homeomorphisms and dynamics. I. Solution of the
Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985),
no. 3, 401–418.

[43] Tan Lei, Branched coverings and cubic Newton maps, Fund. Math. 154
(1997), no. 3, 207–260.

[44] Fritz von Haeseler and Hartje Kriete, The relaxed Newton’s method for
rational functions, Random Comput. Dynam. 3 (1995), no. 1-2, 71–92.

88



Index

almost complex structure, 22
standard, 22

asymptotic value, 18

backward orbit, 10
Beltrami coefficient, 20, 22
Beltrami equation, 23

Carathéodory’s Theorem, 25
complex function, 10
complex map, see complex function
critical point, 18
critical value, 18

dynamical plane, 4

ellipticity, 20
equicontinuity, see normal family
essential singularity, 6, 10
exceptional point, 10, 15

Fatou component, 16
attractive basin, 18, 32
Baker domain, 18, 82
fixed, 17
Herman ring, 18, 81
Leau domain, see parabolic basin
parabolic basin, 18, 53
periodic, 17
preperiodic, 17
Siegel disc, 18
wandering domain, 17, 80

Fatou coordinates, 54
Fatou set, 2, 15
fixed point, 10

attracting, 11

indifferent, 11
parabolic, 11
repelling, 11
superattracting, 11
virtually repelling, 7, 27
weakly repelling, 6, 11

forward orbit, 10

holomorphic index, 27

Interpolation Lemma, 33
invariant set, 11

Julia set, 2, 15

locally connected set, 24

Measurable Riemann Mapping Th., 23
Montel’s Theorem, 15

Newton’s method, 2
relaxed, 5

normal family, 14

parameter space, 4
perfect set, 15
periodic point, 10

multiplier, 11
polynomial-like map, 28
postcritical set, 54
proper map, 26
pull-back, 23

quasiconformal map, 21
quasiconformal surgery, 7, 19
quasiregular map, 22
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Rational Fixed Point Theorem, 13
rational function, 10
residue fixed point index, 12
retional-like map, 26
Riemann sphere, 2, 10

singular value, 19
singularity of the inverse function, see

singular value

transcendental function, 10
entire, 10
meromorphic, 10
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