Síntesi i aplicació de ψ-dipèptids amb estructura de 3 aminopiperidona. Síntesi de ψ-melanotans

Jordi Mas Pons

ADVERTIMENT. La consulta d'aquesta tesi queda condicionada a l'acceptació de les següents condicions d'ús: La difusió d'aquesta tesi per mitjà del servei TDX (www.tdx.cat) ha estat autoritzada pels titulars dels drets de propietat intel•lectual únicament per a usos privats emmarcats en activitats d'investigació i docència. No s'autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d'un lloc aliè al servei TDX. No s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions: Spreading this thesis by the TDX (www.tdx.cat) service has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized neither its spreading and availability from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the TDX service is not authorized (framing). This rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate the name of the author.

UNIVERSITAT DE BARCELONA
FACULTAT DE FARMÀCIA

DEPARTAMENT DE FARMACOLOGIA I QUÍMICA TERAPĖUTICA

SÍNTESI I APLICACIÓ DE ψ-DIPÈPTIDS AMB

ESTRUCTURA DE 3-AMINOPIPERIDONA.

 SÍNTESI DE ψ-MELANOTANS
CHAPTER 7. EXPERIMENTAL SECTION

7.1. Main solvents and reagents

Solvents: - DCM, THF, Hexane, EtOAc - $\mathrm{MeOH}, \mathrm{Et}_{2} \mathrm{O}$ - Toluene, CHCl_{3} - Benzene - N,N-dimetilformamide - Piperidine	SDS (analytical grade) SDS (synthetical grade) Panreac Merck (puris.) SDS (Peptide Synthesis grade) SDS (Peptide Synthesis grade)
HPLC solvents: - Acetonitril - $\mathrm{H}_{2} \mathrm{O}$ - Methanol - TFA	J. T. Baker, Ultra Gradient HPLC grade Mili-Q (Millipore filtration system) Chromanorm for HPLC Isocratic Grade Fluorochem
Silica	SDS (Silice 60, 35-70 $\mu \mathrm{m}$)
TLC	Merck (aluminium sheets, silica gel $60 \mathrm{~F}_{254}$
Celite®	Fluka
Amino acids	Novabiochem, IRIS Biotech
Coupling agents: - DIPCDI - PyBOP - HOBt - HOAt - DIEA - CDI	Fluka Novabiochem Novabiochem Novabiochem Sigma Sigma-Aldrich
Resins: - Rink Amide - Sieber Amide	IRIS Biotech Novabiochem

Table I. Main reagents and solvents used in experimental procedures.Reagents used in this

PhD Thesis has been purchased to the main providers as Sigma-Aldrich, Acros...Purification of solvents and reagents has been done if necessary using general protocols described in literature. ${ }^{195}$

7.2. Materials and Instrumentation

RMN	Varian Mercury-400 MHz Bruker Avance 300 MHz Bruker Avance 400 MHz
IR	Thermo Nicolet FT-R Nexus
Mass spectroscopy	- MALDI Voyager DE RP time-of-flight (TOF) spectrometer (Applied Biosystems, Foster City, USA) using ACH matrix. - ESI , Cl or El recorded on HP 5989 A (Agilent Technologies)
Analitical HPLC	Waters Alliance 2695 (Waters, MA, USA) with PDA 995 detector. Column: Symmetry $\mathrm{C}_{18}(4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m})$. Solvents: $\mathrm{H}_{2} \mathrm{O}$ with 0.045% TFA and ACN with 0.036% TFA; flow: $1 \mathrm{~mL} / \mathrm{min}$
Semipreparative HPLC	Waters chromatography system with dual absorbance detector (Waters 2487), using automatic injection (Waters 2700). Column: Symmetry C_{18} ($19 \times 100 \mathrm{~mm}, 5 \mu \mathrm{~m}$). Solvents: $\mathrm{H}_{2} \mathrm{O}$ with 0.1% TFA and ACN with 0.05% TFA. Flow: $15 \mathrm{~mL} / \mathrm{min}$
HPLC-MS	Waters Alliance 2796 with a dual absorbance detector (Waters 2487) and ESI-MS Micromass ZQ (Waters) chromatography system. Column: Symmetry $300 \mathrm{C}_{18}(3.9 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m})$. Solvents: $\mathrm{H}_{2} \mathrm{O}$ and ACN with 0.1% formic acid. Flow: $0.3 \mathrm{~mL} / \mathrm{min}$
Polarimeter	Perkin Elmer 241 Polarimeter, Na lamp (D).
Lyophilizer	Virtis Freezamobile 12 EL

Table II. Main instruments used in experimental procedures.

[^0]
Nuclear Magnetic Ressonance

1 H NMR spectra were recorded in CDCl_{3} unless otherwise stated and were referenced either to TMS or to the residual solvent peak, and peaks are reported in ppm downfield of TMS. Multiplicities are reported as singlet (s), doublet (d), triplet (t), quartet (q), double doublet (dd), triple doublet (td), doble doublet doublet (ddd), multiplet (m), broad signal (bs). Coupling constants ($ل$) were reported in hertz.
13C NMR spectra were referenced to the solvent peak and are reported in ppm downfield of TMS.

Infrared spectra

Only characteristic absorptions are reported in $\mathrm{cm}-1$.

7.3. Experimental procedures of chapter 3

Àcid trans- i cis-3-[9-Fluorenilmetoxicarbonilamino)-4-(3-indolil)-2-oxopiperidin acètic (13)

trans-13

A solution of compound trans-27 (155 mg, $0.27 \mathrm{mmol}, 1 \mathrm{eq}$.) in 10 mL of a ${ }^{\prime} \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}(1: 1: 2)$ mixture was warmed to $100{ }^{\circ} \mathrm{C}$ and stirred for 24 h . Then, solvent was evaporated obtaining trans-13 (121 mg, 87\%).

IR (KBr): v 3400, 1712, 1640, $1246 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.15-2.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 3.33-3.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6)$, 3.623.77 (m, 2H, H-4 i H-6), 4.02 and 4.31 ($2 \mathrm{~d}, J_{A B}=17.0 \mathrm{~Hz}, 1 \mathrm{H}$ each one, $\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{H}$), 4.06-4.25 (m, 3H, Fmoc-9, $\mathrm{CH}_{2}-$ Fmoc), 4.43-4.46 (m, 1H, H-3), 5.85 (bs, 1H, NH), 7.04-7.12 (m, 1H, H-5’), $7.16(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6$ ' and H-2'), $7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, H-7' and Fmoc-2 and -7), $7.40(d, J=7.2 \mathrm{~Hz}, 2 H$, Fmoc-3 and -6), 7.43 (d, J = 7.0 Hz, $2 H$, Fmoc-1 and -8), 7.59 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$) , $7.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-4 and $-5), 8,22(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13}$ C-RMN (100 MHz, CDCI ${ }_{3}$): $\delta 29.9$ (C-5), 35.8 (C-4), 47.1 (Fmoc-9), 48.6 (C-6), 50.0 $\left(\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{H}\right), 57.3(\mathrm{C}-3), 67.2\left(\mathrm{CH}_{2}-\mathrm{Fmoc}\right), 111.8\left(\mathrm{CH}-7^{\prime}\right), 116.3\left(\mathrm{C}-3^{\prime}\right), 118.7\left(\mathrm{CH}-4^{\prime}\right)$, 119.5 (CH 5 '), 120.0 (Fmoc-4 and -5), 121.6 ($\mathrm{CH}-\mathbf{2}^{\prime}$), 122.1 ($\mathrm{CH}-6^{\prime}$), 125.5 (C-3'a), 127.2 (Fmoc-1 and -8), 127.7 (Fmoc-3 and -6), 136.4 (C-7'a), 141.3 (Fmoc-4a and -4b) and 144.0 (Fmoc-8a and -9a), 157.2 (CO-carbamate), 171.1 and 172.0 (CO-acid and lactam).

MALDI-TOF (ACH): 548,17 [M+K] ${ }^{+}$; 532,19 [M+Na] ${ }^{+}$; 510,20 [M+H] ${ }^{+}$.
(3S, 6S, 9S)-3-(9-fluorenylmethoxycarbonylamino)-2-oxo-7,1-oxazabicyclo[4.3.0]-nonan-9-carboxylic acid (15)

15

Methyl esther 44 (550 mg ; 1,26 mmol) was taken up with isopropanol $(20 \mathrm{~mL})$ and THF $(7 \mathrm{~mL})$ and CaCl_{2} was added. Separately $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($212 \mathrm{mg} ; 5,04 \mathrm{mmol}$) was dissolved in water (8 mL). The aqueous solution was then added to the reaction mixture and stirred as a cloudy white solution for 2 h . The organic solvents were removed under vacuum and the resulting residue was taken up with $\mathrm{HCl} 1 \mathrm{~N}(15 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($5 \times 15 \mathrm{~mL}$). The combined organic layers were then washed with Brine, dried over MgSO_{4} and concentrated to white solid 15 (492 mg, 92\%).

IR (NaCl): v 3330, 3063, 1722, $1665 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.68$ (bs, $1 \mathrm{H}, \mathrm{H}-8$), 1.89 (bs, $1 \mathrm{H}, \mathrm{H}-7$), 2.38 (bs, $2 \mathrm{H}, \mathrm{H}-7$ and H-8), 4.11 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-6$), $4.22(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Fmoc}-9)$, 4.42 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2$ and Fmoc- CH_{2}), 4.65 (bs, 1H, H-3), 4.86 (bs, 1H, H-9), 5.65 (bs, 1H, NH), 7.31 (td, $J=$ 7.4 and $0.9 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-3 and -6), $7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-2 and -7), $7.59(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-4 and -5), 7.75 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-1 and -8).
${ }^{13}$ C-RMN (100 MHz, CDCl ${ }_{3}$): $\delta 24.9$ (C-7), 26.9 (C-8), 47.3 (Fmoc-9), 52.1 (C-6), 56.9
 and -5), 127.3 (Fmoc-3 and -6), 128.0 (Fmoc-2 and -7), 141.5 (Fmoc-4a and -4b), 143.9 (Fmoc-8a and -9a), 156.6 (N-CO), 163.2 (C-5), $170.7\left(\mathrm{CO}_{2} \mathrm{H}\right)$.

ESI-MS: m/z $445.3(\mathrm{M}+\mathrm{Na})^{+}, 423.1(\mathrm{M}+\mathrm{H})^{+}, 201.2(\mathrm{M}-\mathrm{Fmoc})^{+}$.

1-(tert-butoxyicarbonyl)piperidin-2-one (17)

17

To a solution of δ-valerolactam ($20 \mathrm{~g}, 201.7 \mathrm{mmol}$) in anydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}$ ($56.2 \mathrm{~mL}, 403.5 \mathrm{mmol}$), $\mathrm{Boc}_{2} \mathrm{O}$ ($88 \mathrm{~g}, 403.5 \mathrm{mmol}$) and 4-DMAP ($24.6 \mathrm{~g}, 201.7 \mathrm{mmol}$) were added and the mixture was stirred under argon atmosphere for 20 h at rt . Product 17 (32.2 g, 81\%) was obtained after column chromatography (hexane/ethyl acetate 1:1) and lyophilization.
${ }^{1} \mathrm{H}$ RMN (400 MHz, CDCl_{3}): $\delta 1.47$ (s, 9H, $\mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{B}} \mathrm{Bu}$); 1.83 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5$); 2.52 (td, J $=4.8$ and $1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$); 3.67 (td, $J=5.6$ and $1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6$).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.7$ (C-5), 22.9 (C-4), $28.2\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 35.0(\mathrm{C}-3), 46.5$ (C-6), $82.9\left(\mathrm{C}-{ }^{\text {t }} \mathrm{Bu}\right.$), 152.9 (CO-lactam) and $171.5\left(\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right)$.

ESI-MS (+) m/z: 144, $200[\mathrm{M}+\mathrm{H}]^{+}, 222[\mathrm{M}+\mathrm{Na}]^{+}$.

3-(Benziloxicarbonil)-1-(tert-butoxicarbonil)-3-(fenilselenil)piperidin-2-ona (18)

18

To a solution of N -(tert-butoxycarbonyl)-2-piperidone 17 ($8.8 \mathrm{~g}, 44.1 \mathrm{mmol}, 1 \mathrm{eq}$) in freshly distilled THF (200 mL) under argon atmosphere at $-78{ }^{\circ} \mathrm{C}$, a solution of 1 M LHMDS in THF ($48.6 \mathrm{~mL}, 48.6 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added and the mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$. Benzyl chloroformate ($8.2 \mathrm{~mL}, 61.8 \mathrm{mmol}, 1.4 \mathrm{eq}$) was then added dropwise and stirring was continued for 30 min . Next, a solution of 1 L LHMDS in THF was added ($48.6 \mathrm{~mL}, 48.6 \mathrm{mmol}, 1.1 \mathrm{eq}$) and the mixture was allowed to stir 30 min at $-78{ }^{\circ} \mathrm{C}$. Then, a solution of phenylselanyl chloride ($11.8 \mathrm{~g}, 61.8 \mathrm{mmol}, 1.4 \mathrm{eq}$) in dry THF (80 mL) was added and the mixture was allowed to rt for 2 h . The reaction was quenched with 1 N solution of $\mathrm{HCl}(200 \mathrm{~mL})$, extracted with ethyl acetate and washed with saturated solution of NaHCO_{3} and Brine. Organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. Crude product was purified by column chromatography (hexane/ethyl acetate 8:2) obtaining piperidone 18 ($19.64 \mathrm{~g}, 91 \%$) as yellow oil.

IR (NaCl): $v 1719 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{-1} \mathrm{Bu}\right.$), 1.58 (m, 1H, H-5 ax), 1.72 (dq, $\mathrm{J}=$ 14.3 and $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{eq}$), 1.92 (ddd, $J=13.9,10.1$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}$), 2.19 (dt, $J=13.6 \mathrm{~Hz}$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}$), 3.30 (dt, $J=13.5$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{eq}$), 3.53 (ddd, $J=13.2,8.0$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{ax}), 5.20$ and $5.09(2 \mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$ each one, $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right)$, 7.16-7.49 (m, 10H, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}-\mathrm{RMN}$ (100 MHz, CDCl_{3}): $\delta 21.1(\mathrm{C}-5), 28.2\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 32.0(\mathrm{C}-4), 45.5(\mathrm{C}-6), 57.1$ (C-3), $67.9\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 83.7$ (C-t-butyl), 126.7 and $135.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso-Bn i $\left.\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}-\mathrm{Ph}\right)$, 128.3, 128.5, 128.7, 129.0, 129.9 and $138.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 153.0$ (CO-lactam), 168.0 and 169.6 (CO-esters).

El-MS m/z (\%): 489 (8) [M+H] ${ }^{+}, 389$ (6), 157 (10), 91 (100), 57 (84).

3-(Benziloxicarbonil)-1-(tert-butioxicarbonil)-5,6-dihidropiridin-2-(1H)-ona (19)

19

2,6-lutidine ($9.2 \mathrm{~mL}, 79.2 \mathrm{mmol}, 2 \mathrm{eq}$.) was added to a solution of 18 ($19.32 \mathrm{~g}, 39.6$ mmol, 1 eq.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. To this mixture TMSOTf ($10.75 \mathrm{~mL}, 59.4$ mmol, 1.5 eq.) was added slowly and the mixture was stirred 1 h at rt . The reaction was quenched with saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. Organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and Brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated to dryness. Product 19 ($11.97 \mathrm{~g}, 80 \%$) was obtained by precipitation in $\mathrm{Et}_{2} \mathrm{O}$ as a white solid.

IR (NaCl): v 1736, $1669 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.56$ (m, 1H, H-5 ax), 1.79 (m, 1H, H-5 eq), 1.94 (ddd, J $=13.7,11.9$ and $3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}$), 2.16 (ddd, $J=13.7,4.8$ and $3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}$), 3.24 (m, 2H, H-6), 5.80 (bs, 1H, NH), 7.22- 7.56 (m, 10H, C6 H_{5})

[^1]El-MS m/z (\%): 389 (16), [M+H] ${ }^{+}, 157$ (16), 91 (100), 77 (16), 65 (19).

3-(Benziloxicarbonil)-1-[(tert-butoxicarbonil)metil]-3-(fenilselanil)piperidin-2-ona

 (20)

20

To a solution of 19 ($10 \mathrm{~g}, 25.7 \mathrm{mmol}$, 1 eq.) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$ under inert atmosphere, TBAB ($33.2 \mathrm{~g}, 103.0 \mathrm{mmol}, 4 \mathrm{eq}$.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($35.6 \mathrm{~g}, 257 \mathrm{mmol}, 10 \mathrm{eq}$.) were added. Tert-butyl bromoacetate ($5.7 \mathrm{~mL}, 38.6 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was then added and the mixture was allowed to stir vigorously for 36 h at rt . After that time the reaction was filtered and solvent was evaporated under reduced pressure. The resulting crude was purified by column chromatography (hexane/ethyl acetate 6:4) to obtain product 20 ($12.19 \mathrm{~g}, 91 \%$).

IR (NaCl): v 1739, $1649 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.47$ (s, 9H, $\mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{B}} \mathrm{Bu}$), 1.63 (m, 1H, H-5 ax), 1.85 (d, J= $14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{eq}$), 1.99 (ddd, $J=13.4,11.9$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}$), $2.15(\mathrm{dt}, J=$ 13.8 Hz and $4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}$), 3.27 (ddd, $J=11.6$; 6.2 and $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{eq}$), 3.33 (ddd; $J=11.7 ; 9.9$ and $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{ax}), 3.87$ and $4.13(2 \mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}$ each one, $\left.\mathrm{CH}_{2}-\mathrm{CO}_{2} t \mathrm{Bu}\right), 5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 7.21-7.53\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.1(\mathrm{C}-5), 28.3\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 32.5(\mathrm{C}-4), 49.2(\mathrm{C}-6), 49.2$ $\left(\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right), 53.9(\mathrm{C}-3), 67.7\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 82.2\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$, 127.3 and $135.8\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}-\mathrm{Bn}\right.$ and $\mathrm{C}_{6} \mathrm{H}_{5}$-ipso-Ph), 128.2, 128.3, 128.6, 128.8 and $138.6\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, 167.0, 167.8 i 170.6 (CO-esters and lactam).

CI-MS m/z: $520\left[\mathrm{M}^{2} \mathrm{NH}_{4}\right]^{+}, 503[\mathrm{M}+\mathrm{H}]^{+}, 502[\mathrm{M}]^{+}$.

3-(benziloxicarbonil)-1-[(tert-butoxicarbonil)metil]-5,6-dihidropiridin-2(1H)-ona (21)

21

A solution of mCPBA ($6.3 \mathrm{~g}, 36.5 \mathrm{mmol}, 1.5$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was slowly added to a solution of piperidone $20(12.19 \mathrm{~g}, 24.3 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min at this temperature and 1 h at rt . Then saturated solution of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ was added and the reaction is allowed to stir 10 min . Aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the collected organic phases were washed with saturated solution of NaCl , dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. Product $21(8.6 \mathrm{~g})$ was obtained as a colorless oil and was used without further purification.

IR (NaCI): v 1739, $1661 \mathrm{~cm}^{-1}$.

1H-RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.47$ (s, 9H, CH_{3}), 2.56 (td, $J=6.8$ and $4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5$), 3.50 (t, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6$), 4.13 (s, 2H, CH $\mathrm{CO}_{2}-\mathrm{CO}_{2}^{\mathrm{t}} \mathrm{Bu}$), 5.26 (s, 2H, CH2-Ph), 7.25-7.45 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{H}-4$).

13C-RMN ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 24.6(\mathrm{C}-5), 28.3\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 46.1(\mathrm{C}-6), 49.1\left(\mathrm{CH}_{2}{ }^{-}\right.$ $\left.\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right) .67,0\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 82.2\left(\mathrm{C}-{ }^{-} \mathrm{Bu}\right), 128.3,128.4$ and $128.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 129.2$ and 136.1 $\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right.$ ipso and $\left.\mathrm{C}-3\right), 147.5$ (C-4), 161.2, 164.2 and 168.4 (CO-esters and lactam).

CI-MS m/z: $345[\mathrm{M}+\mathrm{H}]+, 244,91$.

trans/cis-(3-benziloxicarbonil)-1-[(tert-butoxicarbonil)metil]-4-(3-indolil)piperidin-

2-ona (22)

22

Dihydropiperidone 21 ($6 \mathrm{~g}, 17.4 \mathrm{mmol}, 1$ eq.) was placed in a 100 mL round bottom flask and was solved in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under Ar atmosphere. Montmorillonite $\mathrm{KSF} ®$ (Aldrich, 3.5 g) and indole ($2.05 \mathrm{~g}, 17.4 \mathrm{mmol}, 1 \mathrm{eq}$.) were then added and the mixture was stirred for 24 h at rt . Then, the mixture is filtered over Celite and solvent was evaporated. The resulting crude was purified by column chromatography (hexane/ethyl acetate 6:4) and product 22 ($4.77 \mathrm{~g}, 76 \%$) was obtained as a mixture of diastereomers with a 9:1 (trans:cis) ratio.

IR (NaCI): v 1739, 1733, 1650, 1640, $1634 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.46$ (s, $9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}$), 2.12 (m, 1H, H-5 ax), 2.30 (dq, $\mathrm{J}=$ 4.0 and $13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{eq}$), 3.38 (ddd, $J=4.0,5.5$ and $11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{eq}$), 3.57 (td, $J=4.5$ i $11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{ax}), 3.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-4), 4.02$ (m, 2H, H-3 and H-4), 3.86 and $4.26\left(2 \mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$ each one, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right), 5.02$ and $5.08(2 \mathrm{~d}, J=12.4$ $\mathrm{Hz}, 2 \mathrm{H}$ each one, $\mathrm{CH}_{2} \mathrm{Ph}$), 6.97 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 6.98 (d, $\left.J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, 7.09 (t, J= $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5^{\prime}\right), 7.18\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.35\left(\mathrm{~d}, J=8.0 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{H}-7^{\prime}\right)$, 7.57 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 8.12 (bs, 1H, NH).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.3\left(\mathrm{CH}_{3}{ }^{-1} \mathrm{Bu}\right)$, 29.4 (C-5), 34.5 (C-4), 48.3 (C-6), 49.7 $\left(\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right), 55.9(\mathrm{C}-3), 67.0\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 82.3\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}\right), 111.7\left(\mathrm{CH}-7^{\prime}\right), 116.4\left(\mathrm{C}-3^{\prime}\right)$, 118.9 (CH-4'), 119.8 (CH-5'), 121.5 (CH-2'), 122.5 (C-6'), 126.2 (C-3'a), 127.8, 127.9, 128.0, 128.3 and $128.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 135.8\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right)$, 136.6 (C-7'a), 166.8, 168.0 and 170.4 (CO-esters and lactam).

MALDI-TOF (ACH) m/z: $501[\mathrm{M}+\mathrm{K}]^{+}, 485[\mathrm{M}+\mathrm{Na}]^{+}$.

Acids trans- and cis-1-[(tert-butoxicarbonil)metil]-4-(3-indolil)-2oxopiperidina 3 - carboxílics (23)

23

23a

To a solution of piperidone trans/cis-22 (1.5 g, $3.24 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, $10 \% \mathrm{Pd} / \mathrm{C}(0.6 \mathrm{~g})$ was added and the mixture was hydrogenated for 3 h at atmospheric pressure. The reaction was filtered over Celite and solvent was evaporated under reduced pressure to give product trans/cis-23 (1.18 g, 98\%) as colorless oil. Piperidone 23a was obtained as byproduct when the evaporation of the solvent was done while heating the water bath of the rotaevaporator.

Compound trans/cis-23:

IR (NaCI): $\mathrm{v} 3357,1737,1636,1631 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.47\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 2.10-2.38(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-5), 3.22-3.43$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-6$), 3.67 ($\mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $3.77(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.85 and 4.28 (2d, $J_{A B}=16.8 \mathrm{~Hz}, 1 \mathrm{H}$ each one, $\left.\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right), 3.91$ and $4.10\left(2 \mathrm{~d}, J_{A B}=17.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$ each one, $\left.\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right), 4.12-4.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.40-4.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 7.04-7.15(\mathrm{~m}$, 4H, H-2' i H-5'), 7.16-7.22 (m, 2H, H-6'), 7.32-7.39 (m, 2H, H-7'), 7.57-7.64 (m, 2H, H4'), 8.19 (bs, 1H, NH), 8.28 (bs, 1H, NH).
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 27.7$ and $27.8(\mathrm{C}-5), 28.3\left(\mathrm{CH}_{3}{ }^{-1} \mathrm{Bu}\right)$, 31.3 and $31.7(\mathrm{C}-$ 4), 47.3 i $47.6(\mathrm{C}-6), 48.1$ and $53.0(\mathrm{C}-3), 50.3$ i $50.6\left(\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right)$, 82.8 i $82.9\left(\mathrm{C}-{ }^{t} \mathrm{Bu}\right)$, 111.5 and 111.7 (CH-7'), 116.3 (C-3'), 118.8 i 118.9 (CH-4'), 119.7 i 119.8, 121.3 and 121.9 (C-5' i C-6'), 122.5 i 122.6 (C-2'), 126.1 and 126.8 (C-3'a), 136.5 i 136.6 (C-7'a), 167.0, 167.3, 168.9, 169.0, 169.5 and 172.1 (CO-ester, lactam and acid).

EI-MS m/z: 182 (11), 165 (1), 137 (34), 109 (21), 57 (100)

Compound 23a:

${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.48$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{B}} \mathrm{Bu}$), 2.02-2.11 (m, 1H, H-5), 2.26-2.35 (m, 1H, H-5), 2.65 (dd, $J=17.4$ and $9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}$), 2.92 (ddd, $J=17.4,5.4$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}), 3.35$ (dt, $J=11.6$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), $3.46-3.55$ (m, 2H, H-6); 4.03 and $4.11\left(2 \mathrm{~d}, J_{A B}=17.0 \mathrm{~Hz}\right.$; 1 H each one, $\left.\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right), 7.02(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-2^{\prime}\right), 7.11$ (td, $J=7.6$ and $\left.0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.20\left(\mathrm{td}, J=7.2\right.$ and $\left.0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right)$, 7.38 (d, J = $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 7.59\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 8,34$ (bs, 1H, NH-indole).
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.3\left(\mathrm{CH}_{3}{ }^{-1} \mathrm{Bu}\right)$, 29.8 (C-5), 30.4 (C-4), 38.7 (C-3), 48.4 (C-6), $49.6\left(\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right), 82.3\left(\mathrm{C}^{t} \mathrm{Bu}\right), 111.9\left(\mathrm{CH}-7^{\prime}\right), 118.0\left(\mathrm{C}-3^{\prime}\right), 118.8\left(\mathrm{CH}-4^{\prime}\right)$, 119.3 (CH-5'), 120.9 (CH-2'), 122.4 (CH-6'), 126.4 (C-3'a), 136.9 (C-7'a), 168.6 and 170.9 (CO-ester and lactam).

ESI-MS (+) m/z: $329.3(\mathrm{M}+\mathrm{H})^{+}, 351.2(\mathrm{M}+\mathrm{Na})^{+}, 657.5(2 \mathrm{M}+\mathrm{H})^{+}$.

trans- i cis-(3-Benziloxicarbonilamino)-1-[(tert-butoxicarbonil)metil]-4-(3-indolil)piperidin-2-ona (25)

trans-25

To a solution of piperidone 23 ($1.71 \mathrm{~g}, 4.6 \mathrm{mmol}, 1 \mathrm{eq}$.) in anhydrous benzene (30 mL), DPPA ($2.47 \mathrm{~mL}, 11.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and $\mathrm{Et}_{3} \mathrm{~N}(1.6 \mathrm{~mL}, 11.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.) were added and the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 2 h . After that time, benzyl alcohol (1.2 $\mathrm{mL}, 11.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.$) and dibutyltin dilaurate (0.28 \mathrm{~mL}, 0.46 \mathrm{mmol}, 0.1 \mathrm{eq}$.) were added and the mixture was allowed to stir at $80{ }^{\circ} \mathrm{C}$ for 4 h . After cooling to $\mathrm{rt}, \mathrm{Et}_{2} \mathrm{O}$ was added and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and Brine, dried with anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Product trans-25 (1.25 g, 56\%) was obtained after column chromatography of the crude (hexanes/ethyl acetate 6:4).

IR (NaCI): v 3401, 1735, 1725, $1648 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.48$ (s, $9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}$), 2.13-2.33 (m, 2H, H-5), 3.30-3.40 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$), $3.45-3.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-6), 4.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right), 4.40(\mathrm{t}, \mathrm{J}=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.90 and 4.97 (2d, $\mathrm{J}_{A B}=12.4 \mathrm{~Hz}, 1 \mathrm{H}$ each one, $\mathrm{CH}_{2} \mathrm{Ph}$), 5.25 (bs, 1H, NH-carbamate), 6.99-7.09 (m, 2H, H-2' i H-5'), 7.10-7.16 (m, 2H, C $\mathrm{C}_{6} \mathrm{H}_{5}$), 7.17 (t, J= $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.22-7.27\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.35(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ '), 7.52 (d, J= $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 8.44 (bs, 1H, NH-indole).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.4\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right), 30.6$ (C-5), 38.6 (C-4), 48.2 (C-6), 49.8 $\left(\mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{\text {t }} \mathrm{Bu}\right), 57.3(\mathrm{C}-3), 66.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 82.3\left(\mathrm{C}^{t} \mathrm{Bu}\right), 111.6\left(\mathrm{CH}-7^{\prime}\right)$, $117.0\left(\mathrm{C}-3^{\prime}\right), 119.0$ ($\mathrm{CH}-4^{\prime}$), 119.8 ($\mathrm{CH}-5^{\prime}$), 120.7 ($\left.\mathrm{CH}-2^{\prime}\right), 122.4$ ($\mathrm{CH}-6^{\prime}$), 126.2 ($\mathrm{C}-3^{\prime} \mathrm{a}$), 128.0 and 128.6 $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 136.7$ (C-7'a), 156.2 (CO-carbamate), 168.3 and 169.8 (CO-ester and lactam).

CI-MS m/z : $478[\mathrm{M}+\mathrm{H}]^{+}, 495\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

trans- i cis-3-Amino-1-[(tert-butoxicarbonil)metil]-4-(3-indolil)piperidin-2-ona (11)

26

Lactam 25 ($491 \mathrm{mg}, 1.02 \mathrm{mmol}$, 1eq.) was dissolved in $\mathrm{CH} 3 \mathrm{OH}(30 \mathrm{~mL})$ and hydrogenated at atmospheric pressure for 3 h using $10 \% \mathrm{Pd} / \mathrm{C}(160 \mathrm{mg})$ as catalyst. Then, the mixture was filtered and solvent was evaporated to dryness obtaining the aminopiperidone 26 ($330 \mathrm{mg}, 95 \%$) as colorless oil.

IR (NaCI): v 3303, 1739, $1650 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{Br}}\right.$), 2.14-2.21(m,1H, $\left.\mathrm{H}-5\right), 2.28-2.38$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-5$ and NH_{2}), $3.28-3.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-6), 3.58$ (dd, $J=11.4$ and 4.0 Hz , $1 \mathrm{H}, \mathrm{H}-6 \mathrm{ax}), 3.77(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.94$ and $4.17\left(2 \mathrm{~d}, J_{A B}=17.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$ each one, $\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}$), $7.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 7.19\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.39(\mathrm{~d}, \mathrm{~J}$ $\left.=8.0 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 7.66\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 8.56$ (bs, $1 \mathrm{H}, \mathrm{NH}$-indole).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.3\left(\mathrm{CH}_{3}{ }^{-}{ }^{-} \mathrm{Bu}\right)$, 29.0 (C-5), 38.6 (C-4), 48.5 (C-6), 49.6 $\left(\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right), 56.8(\mathrm{C}-3), 82.3\left(\mathrm{C}^{\mathrm{t}}{ }^{\mathrm{B}}{ }^{2}\right), 111.8\left(\mathrm{CH}-7^{\prime}\right), 116.2\left(\mathrm{C}-3^{\prime}\right), 119.3\left(\mathrm{CH}-4^{\prime}\right)$, 119.7 (CH-5'), 122.3 (CH-2'), 122.4 (CH-6'), 126.4 (C-3'a), 136.8 (C-7’a), 168.3 (COlactam), 174.2 (CO-ester).

EM-ESI m/z (\%): $344[\mathrm{M}+\mathrm{H}]^{+}, 288\left[\left(\mathrm{M}-{ }^{t} \mathrm{Bu}\right)+\mathrm{H}\right]^{+}$.

Trans- i cis-3-[9-Fluorenilmetoxicarbonilamino-1-[(tert-butoxicarbonil)metil]-4-(3-indolil)piperidin-2-ona (12)

trans-27

To a 100 mL round bottom flask, aminopiperidone $26(330 \mathrm{mg}, 0.96 \mathrm{mmol}$, 1eq.) is dissolved in acetone (15 mL). $\mathrm{NaHCO}_{3}(120 \mathrm{mg}, 1.44 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and Fmoc-OSu ($482 \mathrm{mg}, 1.44 \mathrm{mmol}, 1.5 \mathrm{eq}$.) were then added and the mixture is stirred overnight at rt . Solvent was evaporated and resulting residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 0.1 N HCl and $\mathrm{H}_{2} \mathrm{O}$. Organic phase was dried with anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. Product trans-27 is obtained (390 mg, 72\%) after silica gel column chromatography (hexane/ethyl acetate 7:3) as white foam.

IR (NaCl): v 3415, 1747, 1725, $1618 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.49$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{-}{ }^{-} \mathrm{Bu}$), 2.15-2.23 (m, $1 \mathrm{H}, \mathrm{H}-5$), 2.24-2.35 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), 3.29-3.41 (m, 1H, H-6), 3.55-3.71 (m, $2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-6$), 4.02 and 4.19 (2d, $J_{A B}=17.0 \mathrm{~Hz}, 1 \mathrm{H}$ each one, $\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}$), 4.06-4.20 (m, 3H, Fmoc- CH_{2} and Fmoc-9), 4.45 (t, J=8.8 Hz, 1H, H-3), 5.38 (bs, 1H, NH-carbamate), 7.03-7.11 (m, 2H, H-2' and H-5'), 7.12-7.23 (m, 3H, H-6', Fmoc-3 and -6), 7.29-7.35 (m, 3H, H-7', Fmoc-2 and -7), 7.37 i $7.40(2 d, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$ each one, Fmoc-4 and -5), 7.57 ($\mathrm{d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4$ '), 7.69 (d, J = 7.5, 2H, Fmoc-1 and -8), 8.40 (bs, 1H, NH-indole).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.4\left(\mathrm{CH}_{3}{ }^{-t} \mathrm{Bu}\right), 30.2(\mathrm{C}-5), 36.5(\mathrm{C}-4), 47.2$ ($\mathrm{Fmoc}-9$), $48.3(\mathrm{C}-6), 49.9\left(\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right), 57.4(\mathrm{C}-3), 67.2\left(\mathrm{CH}_{2}-\mathrm{Fmoc}\right), 82.4\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}\right), 111.7(\mathrm{CH}-$ 7'), 116.7 (C-3'), 118.7 ($\mathrm{CH}-4^{\prime}$), 119.7 ($\mathrm{CH}-5^{\prime}$), 120.0 ($\mathrm{Fmoc}-4$ and -5), $121.4\left(\mathrm{CH}-2^{\prime}\right)$, 122.3 (CH-6'), 125.5 (Fmoc-1 and -8), 127.2 (Fmoc-2 and -7), 127.7 (Fmoc-3 and -6), 136.5 (C-7'a), 141.3, 141.4, 144.1 and $144.2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), 157.0 (CO-carbamate), 168.4 and 169.9 (CO-ester and lactam).

MALDI-TOF (ACH): $604[\mathrm{M}+\mathrm{K}]^{+}, 588[\mathrm{M}+\mathrm{Na}]^{+}$.

Trans- icis-(3-Benziloxicarbonil)-1-[(tert-butoxicarbonil)metil]-4-cianopiperidin-2ona (28)

trans/cis-28

To a solution of 21 ($3.0 \mathrm{~g}, 8.7 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (20 mL), $\mathrm{NH}_{4} \mathrm{Cl}(699 \mathrm{mg}, 13.08$ mmol, 1.5 eq.) and a solution of $\mathrm{KCN}\left(1.13 \mathrm{~g}, 17.4 \mathrm{mmol}, 2\right.$ eq.) in $\mathrm{H}_{2} \mathrm{O}(7.5 \mathrm{~mL})$ were added and the mixture was warmed to $90{ }^{\circ} \mathrm{C}$ for 20 min . Then, the solution was diluted with $\mathrm{H}_{2} \mathrm{O}$ and was extratcted with ethyl acetate. The organic phase was washed with sat. solution of NaCl , dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated at reduced pressure. The resulting crude was purified by silica flash chromatography (hexane/ethyl acetate 2:1) to obtain a mixture of diastereomers trans/cis-28 (2.8 g, 87\%) in a $20: 1$ ratio.

IR (NaCl): $\mathrm{v} 2245,1744,1666,1650,1644 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{t}} \mathrm{Bu}\right)$, 2.12-2.22 (m, $\left.1 \mathrm{H}, \mathrm{H}-5\right)$, 2.33-2.41 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), 3.31-3.36 (m, 3H, H-4 and H-6)*, 3.44-3.55 (m, 3H, H-4 and H-6), 3.63 and $4.40\left(2 \mathrm{~d}, J_{A B}=17.2 \mathrm{~Hz}, 1 \mathrm{H} \text { each one, } \mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right)^{*}$, $3.72(\mathrm{~d}, J=8.5 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{H}-3)$, $3.78(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)^{*}, 3.97$ and $4.05\left(\mathrm{~d}, J_{A B}=17.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$ each one, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right), 5.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.30-7.41\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.9(\mathrm{C}-5), 28.0(\mathrm{C}-4), 28.3\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 46.7(\mathrm{C}-6), 49.7$ $\left(\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right)$, $51.3(\mathrm{C}-3), 68.3\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 82.8\left(\mathrm{C}^{t} \mathrm{Bu}\right), 118.7(\mathrm{CN}), 128.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right)$, $128.7\left(\mathrm{C}_{6} \mathrm{H}_{5}-0\right), 128.8\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right), 135.1\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), 162.8, 167.3 and 167.6 (CO-esters i lactam).

El-MS m/z (\%): 316 (4), [M-tBu] ${ }^{+}$, 299(7), 271 (12), 225 (16), 181 (17), 104(27), 91(100), 57(92).

[^2]
trans-(3-Benziloxicarbonil)-1-[(tert-butoxicarbonil)metil]-4-nitrometilpiperidin-2ona (trans-29)

trans-29

To a solution of dihydropiridone 21 ($1.0 \mathrm{~g}, 2.9 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ ($9.4 \mathrm{~mL}, 173.9$ $\mathrm{mmol}, 60 \mathrm{eq}$.), DBU ($0.045 \mathrm{~mL}, 0.29 \mathrm{mmol}, 0.1$ eq.) was added and the mixture was stirred for 1 h . Solvent was then evaporated and the resulting crude was purified by column chromatography. Product trans-29 (884 mg, 75\%) was obtained as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right) ;$ 1.74-1.85 (m, 1H, H-5); 2.09-2.16 (m, 1H, H-5); 2.97-3.16 (m, 1H, H-4); 3.36 (d, J = $9.1 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{H}-3$); 3.38-3.51 (m, 2H, $\mathrm{H}-6)$; 3.76 i $4.26\left(2 \mathrm{~d}, \mathrm{~J}_{A B}=17.2 \mathrm{~Hz}\right.$; 1 H each one, $\left.\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right)$; 4.36-4.39 (m, $2 \mathrm{H}, \mathrm{CH}_{2}{ }^{-}$ NO_{2}); $5.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right) 7.30-7.39\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.4$ (C-5), $28.3\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 35.3$ (C-4), 46.8 (C-6), 49.6 $\left(\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right), 51.9(\mathrm{C}-3), 67.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 77.5\left(\mathrm{CH}_{2}-\mathrm{NO}_{2}\right), 82.6\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}\right), 128.5,128.6$, 128.7, 128.8 and $128.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 135.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), 164.5, 167.6 and 168.8 (CO esters and lactam).

CI-MS m/z: $424\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} ; 407[\mathrm{M}+\mathrm{H}]^{+}$.

trans-[(3-Benziloxicarbonil)-1-[(tert-butoxicarbonil)metil]-4-(tert-butoxicarbonilamino)metil-piperidin-2-ona

trans-31

trans-32

33

Procedure A

To a solution of nitromethyl piperidone trans-29 ($113 \mathrm{mg}, 0.37 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{CH}_{3} \mathrm{OH}$ (10 mL), NiCl_{2} ($9.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.1$ eq.) and $\mathrm{Boc}_{2} \mathrm{O}$ ($161.5 \mathrm{mg}, 0.74 \mathrm{mmol}, 2$ eq.) were added and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. NaBH_{4} ($41.6 \mathrm{mg}, 1.1 \mathrm{mmol}, 3 \mathrm{eq}$.) was then addedand the reaction was allowed to stir for 3 h at rt . Diethylenetriamine was added ($0.040 \mathrm{~mL}, 0.37 \mathrm{mmol}, 1 \mathrm{eq}$.) and stirred 30 minuts. After that time solvent was evaporated to dryness, residue was redissolved in ethyl acetate and washed with saturated solution of NaHCO_{3}. Organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and rotaevaporated to give the protectec amine trans-31 ($85 \mathrm{mg}, 61 \%$).

Procedure B

When conditions described above were applied over compound trans-28 (147 mg; $0.54 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{3} \mathrm{OH}$ (10 mL) using NiCl_{2} ($12.8 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.1$ eq.), $\mathrm{Boc}_{2} \mathrm{O}$ ($235 \mathrm{mg}, 1.08 \mathrm{mmol}, 2$ eq.) and NaBH_{4} ($143 \mathrm{mg}, 3.78 \mathrm{mmol}, 7$ eq.) and stirring 24 h at rt , compounds trans-31 ($64 \mathrm{mg}, 32 \%$), trans $-32(5 \mathrm{mg}, 3 \%)$ and decarboxylation product $33(5 \mathrm{mg}, 4 \%)$ were obtained.

Compound trans-31:

${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.39$ and $1.41\left(2 \mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 1.52-1.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, 1.92-2.02 (m, 1H, H-5), 2.37-2.50 (m, 1H, H-4), 3.03-3.17 (m, 2H, CH $\left.{ }_{2}-\mathrm{NHBoc}\right), 3,23(\mathrm{~d}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.28-3.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 3.77$ and $4.15\left(2 \mathrm{~d}, J_{A B}=17.2 \mathrm{~Hz}, \mathrm{CH}_{2}{ }^{-}\right.$ $\left.\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right), 4.73(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 5.15$ and $5.20\left(2 \mathrm{~d}, \mathrm{~J}_{A B}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$ each one, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$, 7.26-7.37 (m, 5H, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathbf{C}-$ RMN ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.2(\mathrm{C}-5)$; 28.2 and $28.6\left(\mathrm{CH}_{3}{ }^{-1} \mathrm{Bu}\right) ; 37.5(\mathrm{C}-4) ; 43.9$ $\left(\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{Boc}\right) ; 47.6(\mathrm{C}-6) ; 49.6\left(\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{t} \mathrm{Bu}\right) ; 53.3(\mathrm{C}-3), 67.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, $82.2\left(\mathrm{C}^{t} \mathrm{Bu}\right)$, 128.3, 128.4, 128.5, 128.7 and $128.8\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 135.8\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right)$, 156.2, 166.0, 167.9 and 170.4 (CO-esters, lactam and carbamate).

MALDI-TOF (ACH): $499.3(\mathrm{M}+\mathrm{Na})^{+}, 515.2(\mathrm{M}+\mathrm{K})^{+}$;

Compound trans-32:

${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.43$ and $1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 1.62-1.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, 1.97-2.05 (m, 1H, H-5), 2.43-2.53 (m, 1H, H-4), 3.10-3.25 (m, 2H, CH2-NHBoc), 3.21 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.36 (ddd, $J=11.8,5.0$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{eq}$), 3.45 (td, $J=$ 11.0 and $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{ax}), 3.79$ and $4.20\left(2 \mathrm{~d}, \mathrm{~J}_{A B}=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$ each one, $\mathrm{CH}_{2}{ }^{-}$ $\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}$), 4,66 (bs, 1H, NH).

MS-El m/z (\%): 344 (2), 288 (8), 271 (13), 214 (45), 167 (27), 110 (13), 57 (100).

Compound 33:

IR (NaCl): v 2241, 1738, $1652 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.47$ (s, 9H, CH3-tBu); 2.11-2.30 (m, 2H, H-5); 2.69 (dd, $J=17.6$ and $8.0 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}) ; 2.80$ (dd, $J=17.6$ and $5.4 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}) ; 3.05-3.16$ (m, 1H, H-4); 3.42-3.56 (m, 2H, H-6); 3.83 and 4.21 (2d; JAB = 17.2 Hz; 1H each one, CH2CO2tBu).
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.3(\mathrm{C}-4), 25.9(\mathrm{C}-5), 28.0\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 34.1(\mathrm{C}-3), 46.2$ (C-6), $48.9\left(\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $82.1\left(\mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right), 119.7(\mathrm{CN}), 165.7$ and 167.4 (CO-ester and lactam).

EM-EI m/z (\%): 182 (11), 165 (1), 137 (34), 109 (21), 57 (100).

(S)-N-benzyloxicarbonyl-4-(carboxyethyl)-1,3-oxazolidin-5-one (37)

37
(S)-benziloxicarbonilglutamic acid ($25 \mathrm{~g}, 186.6 \mathrm{mmol}, 1$ eq.), paraformaldehyde (5.60, $186.6 \mathrm{mmol}, 1 \mathrm{eq}$.) and p-toluenesulfonic acid $\cdot \mathrm{H}_{2} \mathrm{O}(1.01,5.33 \mathrm{mmol}, 0.06 \mathrm{eq})$ were solve ethyl acetate and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 300 \mathrm{~mL})$. Organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated at reduced pressure to obtain product 37 ($26 \mathrm{~g}, 100 \%$) as a yellow oil used without purification for the next reaction.

IR (NaCI): v 3332, 1803, $1713 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 2.16-2.21$ (m, 1H, H-1'a), 2.29-2.37 (m, 1H, H-1'b), 2.50 (bs, 2H, H-2'), 4.40 (t, J = $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 5.18 ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 5.22$ (d, J = 4.4 Hz , $1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 5.53 (bs, 1H, H-2b), 7.34-7.37 (m, 5H, C C_{6}), 9.55 (bs, 1H, $\mathrm{CO}_{2} \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 26.0\left(\mathrm{C}-1{ }^{\prime}\right)$, $29.4\left(\mathrm{C}-2^{\prime}\right)$, $54.1(\mathrm{C}-4), 68.5\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 78.1$ $(\mathrm{C}-2), 128.6\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right), 128.9\left(\mathrm{C}_{6} \mathrm{H}_{5}-o\right), 129.0\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right), 135.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), $153.3(\mathrm{~N}-$ $\mathrm{CO}), 171.9(\mathrm{C}-5), 178.0\left(\mathrm{CO}_{2} \mathrm{H}\right)$.

ESI-MS m/z: $294(\mathrm{M}+\mathrm{H})^{+}$.

(S)-N-benziloxycarbonyl-4-(ethylthiocarbonilethyl)-1,3-oxazolidin-5-one (38)

38

To a solution of the acid 37 ($18.34 \mathrm{~g}, 62.5 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$, DPPA (33.7 $\mathrm{mL}, 156.4 \mathrm{mmol}, 2.5 \mathrm{eq}$), EtSH ($13.9 \mathrm{~mL}, 187.6 \mathrm{mmol}, 3 \mathrm{eq}$.) and $\mathrm{Et}_{3} \mathrm{~N}$ ($17.4 \mathrm{~mL}, 125.1$ $\mathrm{mmol}, 2$ eq.) were added and the mixture was stirred for 24 h at rt . The product was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$ and organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated to dryness. Product 38 ($19.29 \mathrm{~g}, 96 \%$) was obtained as a dark yellow oil after column chromatography (hexane/ethyl acetate 9:1).

IR (NaCI): v 2967, 1715, $1412 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.23$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.23-2.26 (m, 1H, H-1'a), 2.33-2.43 (m, 1H, H-1'b), 2.67 (bs, 2H, H-2'), 2.86 (q, J = $7.5 \mathrm{~Hz}, \mathrm{~S}-\mathrm{CH}_{2}$), 4.36 (t, J = $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 5.19 (s, 2H, CH2-Ph), 5.23 (d, J=4.7 Hz, 1H, H-2a), 5.53 (bs, 1H, H2b), 7.37 (bs, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$).
 (C-4), $68.4\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 77.6(\mathrm{C}-2), 128.6\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right)$, $128.9\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{o}\right), 129.0\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right)$, 135.6 ($\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}$), 153.1 ($\mathrm{N}-\mathrm{CO}$), 171.8 (C-5), 198.0 (COS).

ESI-MS m/z: $338(\mathrm{M}+\mathrm{H})^{+}$.

(S)-N-benzyloxicarbonyl-4-(formiethyl)-1,3-oxazolidin-5-one (39)

39

To a solution of tioester $38(16.61 \mathrm{~g}, 49.24 \mathrm{mmol}, 1 \mathrm{eq})$ in freshly distilled acetone (90 mL) in a round bottom flask containing 4A molecular sieves, $10 \% \mathrm{Pd} / \mathrm{C}(1.45 \mathrm{~g})$ was added and stirred 5 min at $\mathrm{rt} . \mathrm{Et}_{3} \mathrm{SiH}(23.47 \mathrm{~mL}, 147.72 \mathrm{mmol}, 3 \mathrm{eq})$ was then added slowly and the mixture was allowed to stir for 2 h at rt . Pd / C was removed by filtration and solvent was evaporated at reduced pressure. Compound 39 ($10.32 \mathrm{~g}, 76 \%$) was obtained as a dark yellow oil without further purification.

IR (NaCl): v 2955, $1711 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 2.17-2.25$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}$), 2.26-2.37 (bs, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{l}$ b), 2.60 (bs, 2H, H-2'), 4.37 (t, J=6.0 Hz, 1H, H-4), 5.18 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 5.20 (d, $J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 5.52$ (bs, 1H, H-2b), 7.38-7.39 (m, 5H, C C_{6}), 9.69 (bs, 1H, CHO).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.6$ (C-1'), 39.0 (C-2'), 54.1 (C-4), $68.4\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 78.0$ (C-2), $128.6\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right), 128.8\left(\mathrm{C}_{6} \mathrm{H}_{5}-o\right), 129.0\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right), 135.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), $153.2(\mathrm{~N}-$ CO), 171.9 (C-5), 200.1 (CHO).

ESI-MS: m/z $301(\mathrm{M}+\mathrm{Na})^{+}, 279(\mathrm{M}+\mathrm{H})^{+}$.

methyl
 (3S,
 6S,
 9S)-3-benzyloxicarbonylamino-2-oxo-7,1-oxazabicyclo[4.3.0]nonan-9- carboxylate (40)

40

A solution of aldehyde 39 ($11.27 \mathrm{~g}, 40.65 \mathrm{mmol}, 1$ eq.) and serine methyl ester hydrochloride ($6.96 \mathrm{~g}, 44.7 \mathrm{mmol}, 1.1 \mathrm{eq}$.) in anhydrous pyridine (400 mL) was stirred for 6 days at r.t. in presence of $4 \AA$ molecular sieves. Then the mixture was filtered and solvent was evaporated at reduced pressure. The redidue was redissolved in anhydrous $\mathrm{CH}_{3} \mathrm{OH}(335 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(3.93 \mathrm{~g}, 28.45 \mathrm{mmol}, 0.7 \mathrm{eq})$ was added and the mixture was allowed to stir at rt until product disappeared (5 h). Finally, the reaction crude was filtered and solvent was evaporated. Bicyclic product 40 ($6.35 \mathrm{~g}, 45 \%$) was obtained after column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 99: 1\right)$ as only isomer.

IR (NaCI): v 3339, 1722, $1666 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.63-1.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$ and $\mathrm{H}-8 \mathrm{a})$; 2.32-2.37 (m, $1 \mathrm{H}, \mathrm{H}-$ 8b), 2.51 (bs, $1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}$), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.84 (dd, $J=9.2$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 4.12-4.22 (m, 1H, H-6), $4.44(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 4.68(\mathrm{dd}, \mathrm{J}=8.4$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$), 4.91 (dd, $J=9.6 \mathrm{~Hz}$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 5.12 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 5.47 (bs, 1 H , NH), 7.34-7.36 (m, 5H, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.2$ (C-7), 26.9 (C-8), $52.2(\mathrm{C}-6), 52.9\left(\mathrm{CH}_{3}\right), 56.1(\mathrm{C}-3)$, $67.1\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 68.7(\mathrm{C}-2), 88.3(\mathrm{C}-9), 128.3\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right.$ and $\left.-p\right), 128.7\left(\mathrm{C}_{6} \mathrm{H}_{5}-0\right), 136.6$ ($\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}$), 156.7 (NH-CO), 167.1 (C-5), $170.4\left(\mathrm{CO}_{2} \mathrm{Me}\right)$.

ESI-MS: m/z $371(\mathrm{M}+\mathrm{Na})^{+}, 349(\mathrm{M}+\mathrm{H})^{+}$.
(3S, 6S, 9S)-3-amino-2-oxo-7,1-oxazabicyclo[4.3.0]nonan-9-methyl carboxylate (43)

43

To a solution of the bicyclic compound 40 ($6.48 \mathrm{~g}, 18.61 \mathrm{mmol}$, 1 eq.) in CH 3 OH (185 $\mathrm{mL}), \mathrm{Pd} / \mathrm{C} 10 \%(0,65 \mathrm{~g})$ was added and the mixture was hydrogenated during 6 h at atmospheric pressure. The mixture was filtered and evaporated at reduced pressure to give directly the amine 43 ($3.68 \mathrm{~g}, 92 \%$) as a brown solid.

IR (NaCI): v 3411, 1739, $1658 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1,55-1,73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$ and $\mathrm{H}-8 \mathrm{a}) ; 2,21$ (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 2,25-2,48 (m, 2H, H-7b and H-8b); 3.33 (dd, J= 10.8 and $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$); 3.78 (s, 3H, $\mathrm{CO}_{2} \mathrm{CH}_{3}$); $3.85(\mathrm{dd}, \mathrm{J}=8.8$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}) ; 4.44(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 4.70(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.92$ (dd, $J=8.8$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9)$.
${ }^{13} \mathrm{C}-\mathrm{RMN}$ (100 MHz, CDCl_{3}): $\delta 26.6$ (C-7), 27.4 (C-8), $52.3(\mathrm{C}-6), 52.9\left(\mathrm{CH}_{3}\right), 56.0(\mathrm{C}-3)$, 68.7 (C-2), 88.6 (C-9), 170.6 (C-8), $171.1\left(\mathrm{CO}_{2} \mathrm{Me}\right)$.

ESI-MS: m/z $215(\mathrm{M}+\mathrm{H})^{+}$.
(3S, 6S, 9S)-3-(9-fluorenylmethoxycarbonylamino)-2-oxo-7,1-oxazabicyclo[4.3.0] nonan-9-methylcarboxylate (44)

44

Compound 43 ($3.4 \mathrm{~g}, 15.9 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in a mixture of $\mathrm{H}_{2} \mathrm{O} /$ dioxane (1:1) $(30 \mathrm{~mL})$ and the mixture was acidified to $\mathrm{pH}=8-9$ with a 5% solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Then, Fmoc-OSu ($5.89,1.47 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added and the mixture was stirred for 2 days at rt. During the extraction with MTBE a white precipitate was observed in the aqueous phase which was filtered giving the desired product 44 ($6.10 \mathrm{~g}, 88 \%$).

IR (NaCI): v 3336, 1723, $1665 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.58-1.74$ (m, 2H, H-7a and $\mathrm{H}-8 \mathrm{a}$); 2.36 (bs, $1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$), 2.57 (bs, 1H, H-7b), 3.79 (s, 3H, CO2CH3), 3.85 (t, $J=8.2,1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 4.18 (bs, 1H, Fmoc-9) 4.23 (t, J = 7.0 Hz, 1H, H-6), $4.40\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{Fmoc}-\mathrm{CH}_{2}\right), 4.46(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2 \mathrm{~b}$), 4.70 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.92 (bs, 1H, H-9), 5.50 (bs, 1H, NH), 7.31 (td, $J=$ 7.2 and $1.2 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-3 and Fmoc-6), 7.40 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-2 and Fmoc-7), $7.60(\mathrm{dd}, J=7.2$ and $4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-4 and Fmoc-5), 7.76 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-1 and Fmoc-8).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.3$ (C-7), 26.8 (C-8), 47.4 (Fmoc-9), 52.4 (C-6), 53.0 $\left(\mathrm{CH}_{3}\right), 56.1$ (C-3), 67.3 ($\mathrm{Fmoc}-\mathrm{CH}_{2}$), 68.7(C-2), $88.3(\mathrm{C}-9), 120.0$ (Fmoc-4 and -5) 125.4 (Fmoc-1 and -8), 127.3 (Fmoc-2 and -7) 127.9 (Fmoc-3 and -6), 141.5 (Fmoc-4a and -4b), 144.0 (Fmoc-8a and 9a), 156.8 (N-CO), 166.9 (C-5), 170.4 ($\mathrm{CO}_{2} \mathrm{Me}$).

ESI-MS: m/z $437(\mathrm{M}+\mathrm{H})^{+}, 215(\mathrm{M}-\mathrm{Fmoc})^{+}$.

7.4. Experimental procedures of chapter 4

Tert-butyl 3-[(S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)-2,3-diaza-bicyclo[2.2.1]hept-5-ene-2-carboxylate (60)

60

A solution of 64 ($0.10 \mathrm{~g}, 0.30 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and cyclopentadiene was then added. Lead (IV) acetate ($133 \mathrm{mg}, 0.30 \mathrm{mmol}, 1$ eq.) was added carefully and the mixture was allowed to stir for 2 h at rt . Lead was removed by filtration and solvent was evaporated to dryness. Bicyclic hydrazine 60 ($88 \mathrm{mg}, 73 \%$) was obtained after column chromatography ($2 \% \mathrm{MeOH}$ in DCM) as white solid.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.44\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right.$), $1.52-1.67(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-7), 3.05-3.11$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.67 and $3.68\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}\right), 4.69-4.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} \alpha), 4.95$ and 4.98 (2s, 1H each one, H-1 and H-4), 5.22 (s, 2H, H-1 and H-4), 6.21 (d, J=7.7 Hz, 1H, NH urea), 6.28 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ urea), 6.45-6.50 (m, 4H, H-5 and H-6), 7.08-7.16 (m, $\left.4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}-0\right)$, 7.21-7.28 (m, $\mathrm{C}_{6} \mathrm{H}_{5}-m$ and $\left.-p\right)$.
${ }^{13} \mathbf{C}$-RMN ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 28.0\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 38,3$ and $38.6\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 47.6$ and 47.8 (C-7), $52.1\left(\mathrm{CH}_{3}-\mathrm{O}\right), 54.2$ and $54.4(\mathrm{C} \alpha), 64.7,65.0$ and $65.2(\mathrm{C}-1$ and $\mathrm{C}-4), 82.6$ and $82.7\left(\mathrm{C}^{t} \mathrm{Bu}\right), 126.9\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right) 128.5\left(\mathrm{C}_{6} \mathrm{H}_{5}-0\right)$, 129.3 and $129.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right), 135.9$ and 136.2 ($\mathrm{C}_{6} \mathrm{H}_{5}$-ipso), 159.0 (CO carbamate), 161.6 (CO urea), 172.0 and 172.1 (CO ester).

ESI-MS: m/z $302(\mathrm{M}-\mathrm{Boc})^{+}, 402(\mathrm{M}+\mathrm{H})^{+}, 424(\mathrm{M}+\mathrm{Na})^{+}$.

Tert-butyl carbazate (63)

63

Hydrazine monohydrate ($5.05 \mathrm{~mL}, 100 \mathrm{mmol}, 1$ eq.) was stirred in 20 mL of isopropanol at $0{ }^{\circ} \mathrm{C}$ for 15 min ., and treated dropwise with a solution of $\mathrm{Boc}_{2} \mathrm{O}(10.0 \mathrm{~g}$, $45.8 \mathrm{mmol}, 0.46$ eq.) in 10 mL of isopropanol. The reaction turned cloudy upon addition and stirring was continued at rt for 20 min . The solvent was removed by rotary evaporation and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over MgSO_{4}. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed by evaporation at reduced pressure to obtain t-butyl carbazate 63 ($5.61 \mathrm{~g}, 92 \%$) as white solid.

IR (NaCI): v 3330, 2978, 2933, 1704, 1632, $1494 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.47$ (s, $9 \mathrm{H}, \mathrm{CH}_{3}{ }^{-t} \mathrm{Bu}$), 3.69 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 5.83 (bs, 1 H , NHCO).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.2\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right)$, 81.7 (CtBu), 158.1 (CO carbamate).

Tert-butyl-2-([(S)-1-methoxy-1-oxo-3-phenylpropan-2-yl]carbamoyl)-1-carboxylate

 (64)

64

Methyl (S)-(-)-2-isocyanato-3-phenylpropanoate ($0.69 \mathrm{~mL}, 3.78 \mathrm{mmol}, 1 \mathrm{eq}$.$) was$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ under argon atmosphere. Boc-hydrazine 63 ($0.5 \mathrm{~g}, 0.76$ mmol, 1 eq.) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was then added and the mixture was stirred for 2 h at rt . The solvent was removed by rotary evaporation and compound $64(1.17 \mathrm{~g}$, 92%) was obtained without further purification.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{-}{ }^{t} \mathrm{Bu}\right), 3.09$ (dd, $J=5.8$ and $1.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{Ph}$), $3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), $4.75(\mathrm{dt}, J=8.0$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} \alpha$), $5.99(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}$ urea), 6.60 (bs, 1H, NH), 6.82 (bs, 1H, NH), 7.11-7.15 (m, 2H, $\mathrm{C}_{6} \mathrm{H}_{5}$), 7.21$7.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.2\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right)$, $38.3\left(\mathrm{CH}_{2}-\mathrm{Ph}\right)$, $52.2\left(\mathrm{CH}_{3}-\mathrm{O}\right), 53.9(\mathrm{C} \alpha)$, $81.7\left(\mathrm{C}^{t} \mathrm{Bu}\right)$, $126.9\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right)$, $128.5\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right.$ o $), 129.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right), 136.2\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right), 156.2$ (CO carbamate), 158.1 (CO urea), 172.8 (CO ester).

Tert-butyl 2-(benzylcarbamoyl)-1-carboxylate (79)

79

To a solution of benzyl isocyanate ($0.47 \mathrm{~mL}, 3.78 \mathrm{mmol}$, 1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, tertbutyl carbazate 63 ($0.5 \mathrm{~g}, 3.78 \mathrm{mmol}$, 1 eq.) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added and the mixture was stirred for 2 h at rt . After solvent evaporation compound 79 (964 mg , 93%) was obtained without further purification.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.43$ (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{tBu}\right), 4.36$ (dd, $J=5.8$ and $1.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{Ph}$), 5.99 (bs, 1H, NH urea), 6.75-7.00 (m, 2H, NH-NH), 6.82 (bs, 1H, NH), 7.20$7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.2\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right)$, $43.7\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 82.0\left(\mathrm{C}^{t} \mathrm{Bu}\right)$, $127.1\left(\mathrm{C}_{6} \mathrm{H}_{5^{-}}\right.$ p), $127.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right.$ o $), 128.5\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{m}\right), 139.0\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), 156.5 (CO carbamate), 159.2 (CO urea).

Tert-butyl 3-(benzylcarbamoyl)-2,3-diaza-bicyclo[2.2.1]hept-5-ene-2-carboxylate

 (80)

80

A solution of 79 ($964 \mathrm{mg}, 3.63 \mathrm{mmol}$, 1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ and cyclopentadiene ($0.9 \mathrm{~mL}, 10.91 \mathrm{mmol}, 3.5 \mathrm{eq}$.) was then added. Lead (IV) acetate (1.6 $\mathrm{g}, 3.63 \mathrm{mmol}, 1$ eq.) was added carefully and the mixture was allowed to stir for 2 h at rt. Lead was removed by filtration and solvent was evaporated to dryness. Bicyclic hydrazine 80 ($1.12 \mathrm{~g}, 94 \%$) was obtained after column chromatography $(2 \% \mathrm{MeOH}$ in DCM).
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{tBu}\right), 1.62-1.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 4.39(\mathrm{~d}, \mathrm{~J}=$ $5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 4.96 (bs, 1H, H-1 or H-4), 5.26 (bs, $1 \mathrm{H}, \mathrm{H}-1$ or $\mathrm{H}-4$), 6.15 (bs, 1 H , NH urea), 6.46 (d, 1H, H-5 or H-6), 6.53 (d, 1H, H-5 or H-6), 7.17-7.31 (m, 5H, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.0\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right), 47.3\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 47.7(\mathrm{C}-7), 64.8$ and 65.2 (C-1 and C-4), $82.6\left(\mathrm{C}^{t} \mathrm{Bu}\right)$, 127.2, 127.3 and $128.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 138.9\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right), 159.1$ (CO carbamate), 162.0 (CO urea).

ESI-MS: m/z $230(\mathrm{M}-\mathrm{Boc})^{+}, 252[\mathrm{M}-(\mathrm{Boc})+\mathrm{H}]^{+}, 330(\mathrm{M}+\mathrm{H})^{+}, 452(\mathrm{M}+\mathrm{Na})^{+}$.

Tert-butyl 3-(benzylcarbamoyl)-5-hydroxy-2,3-diaza-bicyclo[2.2.1]heptane-2carboxylate (81)

81

A mixture of $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(2.9 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.01 \mathrm{eq}),.(S, S)$-bdpp ($5.3 \mathrm{mg}, 0.012$ mmol, 0.02 eq.) and hydrazine 80 ($190 \mathrm{mg}, 0.58 \mathrm{mmol}, 1$ eq.) was dried under vacuum for 1 h and placed under argon. Freshly distilled DME (2.5 mL) was then added at -50 ${ }^{\circ} \mathrm{C}$ and the mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 1 h . Catecholborane ($0.123 \mathrm{~mL}, 1.16 \mathrm{mmol}, 2$ eq.) was then added and the temperature is maintained at $0{ }^{\circ} \mathrm{C}$ for 7 h . $\mathrm{EtOH}(0.58 \mathrm{~mL})$ was then added to quench the reaction and the cooling bath was removed. When the reaction became orange, $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.58 \mathrm{~mL})$ and $\mathrm{NaOH}\left(3 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 0.98 \mathrm{~mL}\right)$ were added turning the solution to black. After stirring 15 h at $\mathrm{rt}, \mathrm{NaOH}$ (1 M in $\mathrm{H}_{2} \mathrm{O}, 5 \mathrm{~mL}$) was added and the mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the organic phase was washed with $1 \mathrm{M} \mathrm{NaOH} \mathrm{(} 2 \times 10 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and saturated solution of $\mathrm{NaCl}(10 \mathrm{~mL})$. After solvent evaporation at reduced pressure, product the crude was purified by column chromatography (hexane / ethyl acetate 1:1) to give alcohol 81 ($86 \mathrm{mg}, 41 \%$) as a mixture of regioisomers.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.43$ ($\mathrm{s}, 18 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}$), 1.52-1.64 (m, 4H, H-6), 2.04 (d, J $=10.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-7$), $4.26(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 4.42(\mathrm{dd}, J=5.8$ and $2.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{Ph}$), 4.51 (bs, $4 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-4$), $5.98(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}), 7.26-7.33(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ (100 MHz, CDCl_{3}): $\delta 28.0\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right)$, $33.7(\mathrm{C}-7), 38.3(\mathrm{C}-6), 44.3\left(\mathrm{CH}_{2}-\mathrm{Ph}\right)$, 47.7 (C-5), 59.5 (C-1), 64.2 (C-1 or C-4), 82.9 (C'Bu), 127.3 and $128.6\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 138.6$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right)$.

ESI-MS: m/z $270[\mathrm{M}-(\mathrm{Boc})+\mathrm{H}]^{+}, 370(\mathrm{M}+\mathrm{Na})^{+}$.

(2S)-2-(2-(tert-butoxycarbonyl)-5-hydroxy-2,3-diaza-bicyclo[2.2.1]heptane-3-carboxamido)-3-phenylpropanoic acid (83)

83

A mixture of $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(2.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.01 \mathrm{eq}),.(S, S)$-bdpp ($4.4 \mathrm{mg}, 0.010$ mmol, 0.02 eq.) and hydrazine 60 ($190 \mathrm{mg}, 0.47 \mathrm{mmol}, 1$ eq.) was dried under vacuum for 1 h and placed under argon. Freshly distilled DME (2 mL) was then added at $-50{ }^{\circ} \mathrm{C}$ and the mixture was warmed to $-20{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 1 h . Catecholborane ($0.101 \mathrm{~mL}, 0.95 \mathrm{mmol}, 2$ eq.) was then added and the mixture was stirred for 12 h at $0{ }^{\circ} \mathrm{C}$. $\mathrm{EtOH}(0.47 \mathrm{~mL})$ was then added to quench the reaction and the cooling bath was removed. When the reaction became orange, $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.47 \mathrm{~mL})$ and $\mathrm{NaOH}\left(3 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 0.79 \mathrm{~mL}\right)$ were added turning the solution to black. After stirring 1 h 30 min at $\mathrm{rt}, \mathrm{NaOH}\left(1 \mathrm{M}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 5 \mathrm{~mL}$) was added and the mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the organic phase was washed with $1 \mathrm{M} \mathrm{NaOH}(2 \times 10 \mathrm{~mL})$, $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and saturated solution of $\mathrm{NaCl}(10 \mathrm{~mL})$. Aqueous phase was then acidified and reextracted with EtOAc ($3 \times 10 \mathrm{~mL}$). After solvent evaporation at reduced pressure, product the crude was purified by column chromatography ($3 \% \mathrm{MeOH}$ in DCM) to give alcohol 83 ($114 \mathrm{mg}, 60 \%$) as a mixture of regioisomers.

1H-RMN ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 1.45$ and 1.46 ($2 \mathrm{~s}, 22 \mathrm{H}, \mathrm{CH}_{3}{ }^{t} \mathrm{Bu}$ and $\mathrm{H}-6$), 1.88-2.11 (m, 4H, H-7), 3.02-3.23 (m, 4H, CH 2 -Ph), 4.07 (bs, 2H, H-1 or H-4), 4.17-4.25 (m, 2H, H-5), 4.48 (bs, 1H, H-1 or H-4), 4.57-4.69 (m, 2H, H α), 7.17-7.32 (m, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$): $\delta 27.0\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right)$, 32.8 and $33.1(\mathrm{C}-7), 37.2$ and $37.5(\mathrm{C}-$ 6), 38.3 and $38.6\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 54.2(\mathrm{C} \alpha), 59.2$ and $59.3(\mathrm{C}-1$ or $\mathrm{C}-4), 64.2$ and $64.3(\mathrm{C}-1$ or $\mathrm{C}-4)$, $82.5\left(\mathrm{C}^{\dagger} \mathrm{Bu}\right), 126.5\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right), 128.0\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{o}\right)$, $129.1\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right)$, $136.7\left(\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}\right.$ ipso), 161.5 (CO urea), 173.2 (CO acid).

ESI-MS: m/z $306[\mathrm{M}-(\mathrm{Boc})+\mathrm{H}]^{+}, 328[\mathrm{M}-(\mathrm{Boc})+\mathrm{Na}]^{+}, 406(\mathrm{M}+\mathrm{H})^{+}, 428(\mathrm{M}+\mathrm{Na})^{+}$.

Dibenzyl-2,3-diazabicyclo[2.2.1]hept-5-ene 2,3-dicarboxylate

84

Dibenzyl azodicarboxylate ($25.7 \mathrm{~g}, 86.15 \mathrm{mmol}, 1$ eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) and was cooled to $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. Cyclopentadiene ($17.7 \mathrm{~mL}, 215.4$ $\mathrm{mmol}, 2.5 \mathrm{eq}$.) was then added and the temperature was allowed to warm at rt . After 3 h solvent was removed under reduced pressure and the resulting residue was stirred overnight in cyclohexane (100 mL). Product 84 ($27.94 \mathrm{~g}, 89 \%$) was obtained as a white solid which was filtered and dried in vacuum.

IR (KBr): v 3342, 3044, 1747 (NCO), 1730 (NCO), 1510, $1455 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 5.18\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-4\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right), 6.46$ (bs, $2 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-6$), $7.34\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 48.4 (C-7), 65.7 (C-1 and C-4), $68.3\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 128.1$ (CH-Ar-p), $128.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-o\right), 128.7\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{m}\right), 136.8\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right)$, 159.0 (COcarbamate).

EM-ESI m/z: $365(\mathrm{M}+\mathrm{H})^{+}, 387(\mathrm{M}+\mathrm{Na})^{+}, 403(\mathrm{M}+\mathrm{K})^{+}, 751(2 \mathrm{M}+\mathrm{Na})^{+}$.
tert-butyl 3-([(S)-1-methoxy-1-oxo-3-phenylpropan-2-yl]carbamoyl)-5-hydroxy-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxylate(85a) and tert-butyl 3-([(S)-1-methoxy-1-oxo-3-phenylpropan-2-yl]carbamoyl)-6-hydroxy-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxylate (85b)

Boc-AzaSer 85a

Boc-AzaSer 85b

Methyl (S)-(-)-2-isocyanato-3-phenylpropionate ($0.076 \mathrm{~mL}, 0.42 \mathrm{mmol}, 1$ eq.) was added to a solution of 100a ($90 \mathrm{mg}, 0.42 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the mixture was stirred for 2 h at rt . Solvent was removed under vacuum and the crude reaction was then purified by silica gel flash chromatography (Hexane / ethyl acetate 4:6) to give AzaSer 85a as a white solid ($170 \mathrm{mg}, 96 \%$).

AzaSer 85b ($298 \mathrm{mg}, 94 \%$) is obtained following the same procedure starting from compound 100b ($161 \mathrm{mg}, 0.75 \mathrm{mmol}, 1 \mathrm{eq}$.$) and methyl (S)-(-)-2-isocyanato-$ 3.phenylpropionate ($0.136 \mathrm{~mL}, 0.75 \mathrm{mmol}$, 1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$.

AzaSer 85a:

IR (KBr): v 3415, 2978, 2953, 1741, 1655, 1521, 1456, 1438, 1369, 1203, $1162 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.44$ (bs, $10 \mathrm{H},{ }^{t} \mathrm{Bu}$ and $\mathrm{H}-6$), $1.62(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 7), 1.93 ($\mathrm{d}, \mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 2.07 (m, 1H, H-6), 3.09 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.68 (s, 3H, OCH_{3}), 4.07 (bs, 1H, H-5), $4.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 4.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 4.75$ (dd, $\mathrm{J}=13.4$ and $6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\alpha), 6.22(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.10-7.29\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}-\mathrm{RMN}$ (100 MHz, CDCI_{3}): $\delta 28.3\left(\mathrm{CH}_{3}-\mathrm{tBu}\right), 33.8(\mathrm{C}-7), 38.5(\mathrm{C}-6), 38.6\left(\mathrm{CH}_{2}-\mathrm{Ph}\right)$, $52.4\left(\mathrm{OCH}_{3}\right), 54.6(\mathrm{C}-\alpha), 59.2(\mathrm{C}-4), 64.7(\mathrm{C}-1), 83.0(\mathrm{C}-\mathrm{tBu}), 127.2\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right), 128.8$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right.$ o), $129.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right), 136.2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), 157.6 (NH-CO-NH), 161.1 (OCO-NH), $172.6\left(\mathrm{CO}_{2} \mathrm{Me}\right)$.

ESI-HRMS (+): m/z $320.17[(\mathrm{M}-\mathrm{Boc})+\mathrm{H}]^{+}, 420.17(\mathrm{M}+\mathrm{H})^{+}, 442.20(\mathrm{M}+\mathrm{Na})^{+}, 861.42$ $(2 \mathrm{M}+\mathrm{Na})^{+}$.

AzaSer 85b:

IR (KBr): v 3413, 2978, 2952, 1743, 1659, 1518, 1455, 1437, 1369, 1158, $1119 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.37(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 1.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7), 1.93$ (m, $2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7$), 3.01 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), $3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.08(\mathrm{~d}, \mathrm{~J}=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 4.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 4.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\alpha), 5.97(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.06\left(\mathrm{dd}, J=6.5 \mathrm{~Hz}\right.$ and $\left.1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.17$ (m, 3H, H-Ar).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$: $\delta 28.2\left(\mathrm{CH}_{3}-\mathrm{tBu}\right)$, $33.9(\mathrm{C}-7), 38.2(\mathrm{C}-6), 38.3\left(\mathrm{CH}_{2}-\mathrm{Ph}\right)$, $52.4\left(\mathrm{OCH}_{3}\right), 54.4(\mathrm{C}-\alpha), 59.7(\mathrm{C}-4), 64.4(\mathrm{C}-1), 69.4(\mathrm{C}-5), 82.9(\mathrm{CtBu}), 127.2\left(\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}\right.$ p), $128.8\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{o}\right), 129.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{m}\right), 136.2\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right), 158.4$ (NH-CO-NH), 160.2 (OCO-NH), $172.4\left(\mathrm{CO}_{2} \mathrm{Me}\right)$.

ESI-HRMS (+): m/z $320.17[(\mathrm{M}-\mathrm{Boc})+\mathrm{H}]^{+}, 420.22(\mathrm{M}+\mathrm{H})^{+}, 442.20(\mathrm{M}+\mathrm{Na})^{+}, 839.44$ $(2 \mathrm{M}+\mathrm{H})^{+}$.
(9H-fluoren-9-yl)methyl 3-([(S)-1-methoxy-1-oxo-3-phenylpropan-2-yl]carbamoyl]-6-hydroxy-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxylate (86b)

Fmoc-azaSer-Phe 86b

Fmoc-azaSer-Phe 86c

To a solution of 101b ($130 \mathrm{mg}, 0.39 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, methyl $(R)-(-)-2-$ isocyanato-3-phenylpropionate ($0.070 \mathrm{~mL}, 0.39 \mathrm{mmol}, 1 \mathrm{eq}$.) was added and the mixture was stirred for 2 h . After solvent evaporation, the crude was purified in column chromatography ($2 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) giving Fmoc-AzaSer-Phe 86b ($174 \mathrm{mg}, 82 \%$).

Azadipeptide Fmoc-AzaSer-D-Phe 86c (343 mg, 93\%) was synthesized following the same procedure, starting from 101b ($230 \mathrm{mg}, 0.68 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and using the enantiomer methyl (S)-(-)-2-isocyanato-3-phenylpropionate ($0.125 \mathrm{~mL}, 0.68$ mmol, 1 eq.) as acylating agent.

Compound 86b:

IR (KBr): v 3412, 3028, 2950, 1739, 1658, 1521 1478, 1450, 1322, 1282, 1201, 1137 cm^{-1}.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 1.38-1.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7$), 1.76 (bs, $1 \mathrm{H}, \mathrm{OH}$), 1.922.02 (m, 2H, H-6 and H-7), 3.03 (t, $\left.J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.10$ (t, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Fmoc}-9$), 4.16 (d, $J=6.4 \mathrm{~Hz}, \mathrm{H}-5$), 4.32-4.52 (m, 4H, H-1, H-4 and CH2-Fmoc), 4.68 (dd, $J=14.0$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} \alpha$), 5.98 (bs, 1H, NH urea), 7.01-7.05 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{o}$), 7.08-7.22 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{m}$ and $-p$), 7.28-7.35 (m, 2H, Fmoc-2 and -7), 7.41 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-3 and -6), 7.54 (dd, $J=7.1$ and $5.1 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-1 and 8), 7.77 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-4 and -5).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 34.0$ (C-7), 38.1 (C-6), 38.6 ($\mathrm{CH}_{2}-\mathrm{Ph}$), 47.1 ($\mathrm{Fmoc}-9$), $52.5\left(\mathrm{OCH}_{3}\right), 54.2(\mathrm{C} \alpha), 59.9(\mathrm{C}-1), 64.5(\mathrm{C}-4), 68.5\left(\mathrm{CH}_{2}-\mathrm{Fmoc}\right), 69.5(\mathrm{C}-5), 120.3$
(Fmoc-4 and -5), 125.3 (Fmoc-1 and -8), 127.3 and 127.4 (Fmoc-2 and -7), 128.1 (Fmoc-3 and -6), 128.7, $129.3\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 136.0\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right)$, 141.6 (Fmoc-4a and -4b), 143.5 (Fmoc-8a and 9a), 159.1 (CO carbamate), 160.0 (CO urea), 172.4 (CO ester).

ESI-MS (+): m/z $542.1(\mathrm{M}+\mathrm{H})^{+}, 564.2(\mathrm{M}+\mathrm{Na})^{+}, 1105.5(2 \mathrm{M}+\mathrm{Na})^{+}$.

Compound 86c:

${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.40-1.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7), 1.81$ (bs, $\left.1 \mathrm{H}, \mathrm{H}-6\right), 1.91-$ 1.98 (m, 1H, H-7), 2.99 (dd, $J=13.9$ and $6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.11 (dd, $J=13.8$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), $3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.97$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.15 (bs, 1 H , Fmoc-9), 4.38-4.50 (m, 4H, H-1, H-4 and $\mathrm{CH}_{2}-\mathrm{Fmoc}$), 4.72 (dd, $J=13.4$ and 6.9 Hz , $1 \mathrm{H}, \mathrm{H} \alpha$), 6.05 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ urea), 7.05-7.29 (m, 5H, C C_{6}), 7.27-7.35 (m, 2H, Fmoc-2 and -7), 7.39 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-3 and -6), 7.53 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc1 and -8), 7.75 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-4 and -5).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 33.9$ (C-7), 38.4 (C-6), 38.6 ($\mathrm{CH}_{2}-\mathrm{Ph}$), 47.1 ($\mathrm{Fmoc}-9$), $52.5\left(\mathrm{OCH}_{3}\right), 54.3(\mathrm{Ca}), 59.8(\mathrm{C}-1), 64.6(\mathrm{C}-4), 68.6\left(\mathrm{CH}_{2}-\mathrm{Fmoc}\right), 69.3(\mathrm{C}-5), 120.3$ (Fmoc-4 and -5), 125.2 and 125.3 (Fmoc-1 and -8), 127.3 and 127.4 (Fmoc-2 and -7), 128.1 (Fmoc-3 and -6), 128.7, 128.9, 129.4 and $129.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 136.1\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right), 141.5$ and 141.6 (Fmoc-4a and -4b), 143.5 and 143.7 (Fmoc-8a and 9a), 159.1 (CO carbamate), 160.9 (CO urea), 172.1 (CO ester).

ESI-MS (+): m/z $542.1(\mathrm{M}+\mathrm{H})^{+}, 564.2(\mathrm{M}+\mathrm{Na})^{+}, 1105.5(2 \mathrm{M}+\mathrm{Na})^{+}$.
$\begin{array}{lllll}\text { (2S)-methyl } & \text { 2-(5-hydroxy-2,3-diaza-bicyclo[2.2.1]heptane-3-carboxamido)-3- } \\ \text { phenylpropanoate } & \text { (87a) } \quad \text { and } & \text { (2S)-methyl } & \text { 2-(5-hydroxy-2,3-diaza- }\end{array}$ bicyclo[2.2.1]heptane-2-carboxamido)-3-phenylpropanoate (87b)

87a

87b

85a ($196 \mathrm{mg}, 0.47 \mathrm{mmol}, 1$ eq.) was dissolved in a mixture of $50 \% \mathrm{TFA}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and the mixture was stirred 1 h at rt. Solvent and excess of TFA was removed under vacuum and crude reaction mixture was washed with ammonia and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried with MgSO_{4}, filtered and concentrated and the crude was then purified by silica gel chromatography. Compound was obtained $\mathbf{8 7 a}$ ($111 \mathrm{mg}, 74 \%$). Compound $\mathbf{8 7 b}$ ($81 \mathrm{mg}, 69 \%$) is obtained with the same procedure starting from compound $\mathbf{8 5 b}$ ($154 \mathrm{mg}, 0.37 \mathrm{mmol}, 1$ eq.) and 50% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL).

Compound 87a:

${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.30-1.48$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$), 1.57 (bs, 1H, H-7), 1.83-2.00 (m, $2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7$), 3.02 (dd, $J=13.9$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.14 (dd, $\mathrm{J}=13.9$ and $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.45 (s, 1H, H-1), 3.70 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}$), 3.79 (bs, 1H, H-5), 4.43 (bs, 1H, H-4), 4.47 (dd, $J=12.8$ and $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} \alpha$), 6.64 (bs, 1H, NH urea), 7.10$7.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{o}\right), 7.20-7.31\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{m}\right.$ and $\left.-p\right)$.
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 38.2$ (C-7), 38.5 (C-6), $40.4\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 52.5$ ($\mathrm{CH} 3-\mathrm{O}$), $54.0(\mathrm{C} \alpha), 56.9(\mathrm{C}-4), 62.5(\mathrm{C}-1), 127.1,128.7$ and $129.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 136.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), 172.9 (CO ester).

MS-ESI (+): $320(\mathrm{M}+\mathrm{H})^{+}, 260\left[\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right)+\mathrm{H}\right]^{+}, 639(2 \mathrm{M}+\mathrm{H})^{+}$.

Compound 87b:

${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$): $\delta 1.36-1.42$ (m, 1H, H-6), 1,67 (bs, 1H, H-7), 1.87 (bs, 1H, $\mathrm{H}-6$), 2.04 (bs, 1H, H-7), 3.06 (dd, $J=13.8$ and $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.15 (dd, $J=13.8$ and $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.63 (d, J=3.3 Hz, 1H, H-1), 3.72 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}$), 3.93 (d, J $=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.11$ (bs, $1 \mathrm{H}, \mathrm{H}-4$), 4.56 (dd, $J=7.7$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} \alpha$), 7.17-7.31 (m, 5H, C C_{6}).

MS-ESI (+): $320(\mathrm{M}+\mathrm{H})^{+}, 260\left[\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right)+\mathrm{H}\right]^{+}, 639(2 \mathrm{M}+\mathrm{H})^{+}$.
tert-butyl 3-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)-5-((tert-butyldimethylsilyloxy)methyl)-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxylate (88a) and tert-butyl 3-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)-6-((tert-butyldimethylsilyloxy)methyl)-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxylate (88b)

88a

88b

To a solution of 103a ($165 \mathrm{mg}, 0.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, methyl $(S)-(-)-2-$ isocyanato-3-phenylpropionate ($0.088 \mathrm{~mL}, 0.48 \mathrm{mmol}$) was added and the mixture was stirred for 2 h at RT. After evaporation of the solvent the crude was purified by silica flash chromatography (Hexane / ethylacetate 6:4) to obtain 88a (166 mg, 62%).

Compound 88b (200 mg, 74\%) was obtained following the same procedure, starting from 103b ($170 \mathrm{mg}, 0.49 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and adding methyl $(S)-(-)-2-$ isocyanato-3-phenylpropionate ($0.091 \mathrm{~mL}, 0.49 \mathrm{mmol}, 1 \mathrm{eq}$.$) .$

Compoun 88a:

Yellow oil

IR (NaCl): 3429, 3029, 2953, 2930, 2856, 1743, 1720, 1676, 1512, 1368, $1256 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.01$ ($2 \mathrm{~s}, 3 \mathrm{H}$ each one, $\mathrm{CH}_{3}-\mathrm{Si}$), 0.86 (s, $\left.9 \mathrm{H},{ }^{t} \mathrm{Bu}-\mathrm{Si}\right)$, 1.23-1.33 (m, 1H, H-6), 1.41-1.43 (m, 1H, H-7), 1.44 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\text {B Bu}}$), 1.64 (d, J=9.2 $\mathrm{Hz} ; \mathrm{H}-7$), 1.85-1.99 (m, 1H, H-6), 2.05-2., 15 (m, 1H, H-5), 3.02 (dd, $J=13.8$ and 6.6 $\mathrm{Hz} ; 1 \mathrm{H} \mathrm{CH}_{2}-\mathrm{Ph}$), 3.10 (dd, $J=13.9$ and $5.8 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.40 (dd, $J=10.4$ and 6.6 $\mathrm{Hz} ; 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 3.54 (dd, $J=10.4$ and $5.0 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 3.67 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}$), 4.29 (s, 1H, H-1), 4.54 (s, 1H, H-4), 4.73 (dd, $J=13.9$ and $6.6 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{H}-\alpha$), 6.10-6.25 (m, $1 \mathrm{H}, \mathrm{NH}), 7.07-7.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}-0\right)$, 7.17-7.27 (m, 3H, $\mathrm{C}_{6} \mathrm{H}_{5}-m$ and $\left.-p\right)$.
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.3\left(\mathrm{CH}_{3}-\mathrm{Si}\right),-5.2\left(\mathrm{CH}_{3}-\mathrm{Si}\right), 18.5\left(\mathrm{C}-{ }^{-1} \mathrm{Bu}-\mathrm{Si}\right), 26.1\left(\mathrm{CH}_{3}-\right.$ $\left.{ }^{t} \mathrm{Bu}-\mathrm{Si}\right), 28.3\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 31.3(\mathrm{C}-6), 35.4(\mathrm{C}-7), 38.8\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 41.5(\mathrm{C}-5), 52.3\left(\mathrm{CH}_{3}-\mathrm{O}\right)$,
$54.5(\mathrm{C} \alpha), 60.7(\mathrm{C}-1), 62.2(\mathrm{C}-4), 64.6\left(\mathrm{CH}_{2}-\mathrm{O}\right), 82.5\left(\mathrm{C}-\mathrm{C}^{t} \mathrm{Bu}\right), 127.1\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right)$, 128.6($\mathrm{C}_{6} \mathrm{H}_{5}-$ o), 129.5($\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{m}$), $136.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), 157.8 (CO carbamate), 160.9 (CO urea), 172.3 (CO ester).

ESI-MS (+): m/z $448[(\mathrm{M}-\mathrm{Boc})+\mathrm{H}]^{+}, 492\left[\left(\mathrm{M}-{ }^{\text {t }} \mathrm{Bu}\right)+\mathrm{H}\right]^{+}, 548(\mathrm{M}+\mathrm{H})^{+}$.

Compound 88b:

Yellow oil

IR (NaCl): 3427, 2954, 2930, 2857, 1746, 1713, 1681,1510, $1367 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$-RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.00\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.85\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{Si}\right), 1.07(\mathrm{~m}, 1 \mathrm{H}$, H_{6}), 1.41 ($\mathrm{s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$), 1.46 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$), 1.64 ($\mathrm{d}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{H}-7$), 1.94 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-7$), 2.07 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$), 3.06 (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.25 (t, $J=9.2 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), $3.50\left(\mathrm{dd}, \mathrm{J}=10.4\right.$ and $\left.4.9 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 4.50$ (s, 1H, H-1), 4.72 (dt, $J=8.0$ and $6.2 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{H} \alpha), 6.10(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 7.16(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.3\left(\mathrm{CH}_{3}-\mathrm{Si}\right),-5.2\left(\mathrm{CH}_{3}-\mathrm{Si}\right), 18.5\left(\mathrm{C}-{ }^{-} \mathrm{Bu}-\mathrm{Si}\right), 26.1\left(\mathrm{CH}_{3}-\right.$ $\left.{ }^{t} \mathrm{Bu}-\mathrm{Si}\right), 28.3\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 30.7(\mathrm{C}-6), 35.0(\mathrm{C}-7), 38.5\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 42.1(\mathrm{C}-5), 52.3\left(\mathrm{CH}_{3}-\mathrm{O}\right)$, $54.4(\mathrm{C} \alpha), 60.1(\mathrm{C}-1 \circ \mathrm{C}-4), 62.6(\mathrm{C}-1$ o $\mathrm{C}-4), 64.7\left(\mathrm{CH}_{2}-\mathrm{O}\right), 82.5\left(\mathrm{C}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $127.1\left(\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}\right.$ p), 128.7($\mathrm{C}_{6} \mathrm{H}_{5}-o$), $129.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right)$, $136.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), 158.1 (CO carbamate), 160.7 (CO urea), 172.5 (CO ester).

ESI-MS (+): m/z $448[(\mathrm{M}-\mathrm{Boc})+\mathrm{H}]^{+}, 548(\mathrm{M}+\mathrm{H})^{+}$.

Abstract

tert-butyl 3-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)-5-(hydroxymethyl)-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxylate (89a) and tertbutyl 3-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)-6-(hydroxymethyl)-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxylate (89b)

89a

89b

To a solution of 88a (123 mg, $0.22 \mathrm{mmol}, 1$ eq.) in anhidrous THF (3 mL), tetrabutylammonium fluoride (TBAF) ($118 \mathrm{mg}, 0.44 \mathrm{mmol}, 2$ eq.), was added and the mixture was stirred for 2 h at RT. The mixture was purified by silica flash chromatography (Ethylacetate 100\%) to obtain 89a ($78 \mathrm{mg}, 80 \%$) as yellow oil.

Compound 89b ($51 \mathrm{mg}, 65 \%$) was obtained as yellow oil following the procedure described above starting from $\mathbf{8 8 b}$ ($100 \mathrm{mg}, 0.18 \mathrm{mmol}$, 1eq.) in THF (3 mL) with TBAF ($95 \mathrm{mg}, 0.36 \mathrm{mmol}, 2 \mathrm{eq}$.) at rt for 2 h .

Compound 89a:

IR (NaCI): 3428, 2973, 2931, 2868, 1736, 1668, 1512, 1368, $1159 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.19-1.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 1.46\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{CH}_{3}{ }^{-}{ }^{-} \mathrm{Bu}\right.$ and $\left.\mathrm{H}-7\right)$, 1.58-1.67 (m, 1H, H-7), 1.90-2.14 (2H, H-6 and OH), 2.16-2.26 (m, 1H, H-5), 3.05 (dd, $J=13.9$ and $\left.6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.12$ (dd, $J=13.8$ and $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.40 (dd, $J=10.9$ and $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 3.49 (dd, $J=11.1$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 3.69 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.35-4.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 4.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 4.71-4.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} \alpha), 6.15-$ $6.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHurea}), 7.10-7.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}-0\right.$), 7.19-7.30 (m, $3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{m}$ and $\left.-p\right)$.
${ }^{13} \mathrm{C}-\mathrm{RMN}$ (100 MHz, CDCl_{3}): $\delta 28.3\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right)$, $31.5(\mathrm{C}-6), 35.0(\mathrm{C}-7), 38.7\left(\mathrm{CH}_{2}-\mathrm{Ph}\right)$, $42.1(\mathrm{C}-5), 52.4\left(\mathrm{CH}_{3}-\mathrm{O}\right), 54.5(\mathrm{C} \alpha), 60.5(\mathrm{C}-1), 61.5(\mathrm{C}-4), 64.7\left(\mathrm{CH}_{2}-\mathrm{O}\right), 82.7\left(\mathrm{C}^{t} \mathrm{Bu}\right)$, $127.2\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right), 128.7\left(\mathrm{C}_{6} \mathrm{H}_{5}-0\right), 129.5\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right), 136.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), $158.0(\mathrm{CO}$ carbamate), 160,8 (CO urea), 172,4 (CO ester).

ESI-MS (+): m/z $334[(\mathrm{M}-\mathrm{Boc})+\mathrm{H}]^{+}, 434(\mathrm{M}+\mathrm{H})^{+}$.

Compound 89b:

IR (NaCI): 3419, 2978, 2934, 2874, 1740, 1664, 1514, 1368, $1161 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.00-1.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 1.56-1.66$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7$), 1.77-1.95 ($2 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-6$), 3.03 (dd, $J=13.9$ and $7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.18 (dd, $J=13.9$ and $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.35 (dd, $J=10.8$ and $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 3.49 (dd, $J=10.9$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 4.51$ (s, 1H, H-1), 4.74-4.85 (m, 1H, H α), $6.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$-urea), 7.13-7.17 (m, $2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}-o$), 7.20-7.29 (m, 3H, $\mathrm{C}_{6} \mathrm{H}_{5}-m$ and $-p$).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.2\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right)$, $31.1(\mathrm{C}-6), 35.2(\mathrm{C}-7), 38.9\left(\mathrm{CH}_{2}-\mathrm{Ph}\right)$, $42.4(\mathrm{C}-5), 52.4\left(\mathrm{OCH}_{3}\right), 54.2(\mathrm{C} \alpha), 60.2(\mathrm{C}-1), 61.8(\mathrm{C}-4), 64.6\left(\mathrm{CH}_{2}-\mathrm{O}\right), 82.9\left(\mathrm{C}^{t} \mathrm{Bu}\right)$, $127.1\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right), 128.7\left(\mathrm{C}_{6} \mathrm{H}_{5}-o\right), 129.5\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right), 136.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right), 158.2(\mathrm{CO}-$ carbamate), 172.4 (CO-ester).

ESI-MS (+): m/z $334[(\mathrm{M}-\mathrm{Boc})+\mathrm{H}]^{+}, 434(\mathrm{M}+\mathrm{H})^{+}, 888(2 \mathrm{M}+\mathrm{H})^{+}$.
(2S)-methyl
2-(5-((tert-butyldimethylsilyloxy)methyl)-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxamido)-3-phenylpropanoate (90a) and (2S)-methyl 2-(5-((tert-butyldimethylsilyloxy)methyl)-2,3-diaza-bicyclo[2.2.1]heptane-3-carboxamido)-3-phenylpropanoate (90b)

Compound 102 ($330 \mathrm{mg}, 0.64 \mathrm{mmol}, 1$ eq.) was placed in a 50 mL round bottom flask and was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. Methyl $(S)-(-)-2$-isocyanato-3-phenylpropionate ($129 \mu \mathrm{~L}, 0.71 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added and the mixture was hydrogenated for 2 h using $\mathrm{Pd}(\mathrm{OH})_{2}(60 \mathrm{mg})$ as catalyst. The mixture was then filtered and solvent was evaporated under reduced pressure. 90b ($100 \mathrm{mg}, 35 \%$) and a mixture of 90a and 90c were obtained after silica gel flash chromatography (DCM/Ethyl acetate 9:1). A second purification by column chromatography (Hexane/diethyl ether 4:1) afforded 90a (96 mg, 34%) and 90c ($60 \mathrm{mg}, 14 \%$).

Compound 90a:

IR (NaCl): 3301, 2952, 2856, 1744, 1664, 1497, $1256 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.02$ and $0.03\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{t} \mathrm{Bu}-\mathrm{Si}\right)$, 1.36 (ddd, $J=13.0,5.0$ and $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $1.44(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 1.57-1.65 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$), 1.78 (d, J = $10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 2.12-2.10 (m, 1H, H-5), 2.59 (bs, $1 \mathrm{H}, \mathrm{NH}$), 3.05 (dd, $J=13.8$ and $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.13 (dd, $J=13.8$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), $3.40\left(\mathrm{dd}, J=10.3\right.$ and $\left.6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 3.48\left(\mathrm{dd}, J=10.4\right.$ and $\left.5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right)$, 3.63 (bs, 1H, H-1), 3.69 (s, 3H, OCH_{3}), 4.38 (s, 1H, H-4), 4.71-4.77 (m, 1H, Ha), 6.66 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ urea), 7.11-7.15 (m, 2H, $\mathrm{C}_{6} \mathrm{H}_{5}-0$), 7.19-7.30 (m, 3H, $\mathrm{C}_{6} \mathrm{H}_{5}-m$ and $-p)$.
${ }^{13} \mathrm{C}$-RMN ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.3$ and -5.2 $\left(\mathrm{CH}_{3}-\mathrm{Si}\right)$, $18.5\left(\mathrm{C}^{t} \mathrm{Bu}-\mathrm{Si}\right), 26.1\left(\mathrm{CH}_{3}{ }^{-1} \mathrm{Bu}-\mathrm{Si}\right)$, $33.4(\mathrm{C}-6), 36.3(\mathrm{C}-7), 38.6\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 42.8(\mathrm{C}-5), 52.3\left(\mathrm{OCH}_{3}\right), 54.1(\mathrm{C} \alpha), 57.8(\mathrm{C}-1$ o $\mathrm{C}-4), 60.3(\mathrm{C}-1 \circ \mathrm{C}-4), 64.8\left(\mathrm{CH}_{2}-\mathrm{O}\right), 127.0\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right)$, $128.6\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{o}\right), 129.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{m}\right)$, 136.7 ($\mathrm{C}_{6} \mathrm{H}_{5}$-ipso), 161.0 (CO urea), 172.9 (CO ester).

ESI-MS (+): m/z $448(\mathrm{M}+\mathrm{H})^{+}, 895(2 \mathrm{M}+\mathrm{H})^{+}$.

Compound 90b:

IR (NaCl): 3374, 2926, 2854, 1741, 1664, $1512 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.00$ and $0.09\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.85\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{CH}_{3}{ }^{t} \mathrm{Bu}-\mathrm{Si}\right.$ and $\mathrm{H}-6$), 1.57 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6$ and $\mathrm{H}-7$), 2,96 (dd, $J=13.8$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.11 (m, 1H, CH2-Ph), 3.18 (dd, $J=10.2$ and $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 3.39 (dd, $J=10.3$ and $4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), $3.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1 \circ \mathrm{H}-4), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}\right), 3.90(\mathrm{bs}, 1 \mathrm{H}$, NH), $4.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1 \circ \mathrm{H}-4), 4.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\alpha), 6.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$ urea), 7.09-7.24 (m, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.2$ and -5.1 $\left(\mathrm{CH}_{3}-\mathrm{Si}\right)$, $18.5\left(\mathrm{C}^{t} \mathrm{Bu}-\mathrm{Si}\right)$, $26.1\left(\mathrm{CH}_{3}{ }^{-t} \mathrm{Bu}-\mathrm{Si}\right)$, 31.8 ($\mathrm{C}-6$), 38.0 ($\mathrm{C}-7$), $38,9\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 42.7(\mathrm{C}-5), 52.4\left(\mathrm{CH}_{3}-\mathrm{O}\right), 53.9(\mathrm{C}-\alpha), 57.6(\mathrm{C}-1 \circ$ C-4), 59.7 (C-1 o C-4), 65.1 ($\mathrm{CH}_{2}-\mathrm{O}$), 127.0 (CH-Ar-p), 128.6 (CH-Ar-o), 129.5 (CH-Arm), 136.7 (C-Ar-ipso), 160.6 (CO urea), 173.0 (CO ester).

MS-ESI (+): $448(\mathrm{M}+\mathrm{H})^{+}, 470(\mathrm{M}+\mathrm{Na})^{+}, 895(2 \mathrm{M}+\mathrm{H})^{+}$.

Compound 90c:

IR (KBr): 3285, 2926, 1746, 1661, 1532, 1360, 1255, $1213 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$-RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.00$ and $0.01\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{t} \mathrm{Bu}-\mathrm{Si}\right)$, 0.99 (dd, $J=12.8$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 1.11$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 1.49-1.66 (m, $3 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6$ and $\mathrm{H}-7$), 2.87-3.01 (m, 2H, CH -Ph), 3.18-3.28 (m, $3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$ and $\mathrm{CH}_{2}-$ O), 3.44 (dd, $J=10.2$ and 4.5 Hz ; $1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 3.68 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 4.24 (s, 1H, H-1), 4.49 (s, 1H, H-4), 4.65 (td, $J=8.9$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} \alpha$), 4.74 (td, J $=9.5$ and $5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} \alpha), 6.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ urea), $6.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, NH urea), 7.13-7.29 (m, 10H, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.3$ and -5.2 $\left(\mathrm{CH}_{3}-\mathrm{Si}\right)$, $18.5\left(\mathrm{C}^{t} \mathrm{Bu}-\mathrm{Si}\right), 26.1\left(\mathrm{CH}_{3}{ }^{-t} \mathrm{Bu}-\mathrm{Si}\right)$, $31.1(\mathrm{C}-6), 35.3(\mathrm{C}-7), 37.7$ and $37.8\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 41.2(\mathrm{C}-5), 52.5$ and $52.6\left(\mathrm{OCH}_{3}\right), 54.5$ and $55.0(\mathrm{C} \alpha), 60.5(\mathrm{C}-1), 62.5(\mathrm{C}-4), 64.3\left(\mathrm{CH}_{2}-\mathrm{O}\right)$, $127.1\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right), 128.7\left(\mathrm{C}_{6} \mathrm{H}_{5}-0\right)$;
$129.3\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right), 136.6$ and $136.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), 159.9 and 161,1 (CO urea), 172.3 and 172.5 (CO ester).

MS-ESI (+): $448\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{3}\right)^{+}, 653(\mathrm{M}+\mathrm{H}), 1306(2 \mathrm{M}+\mathrm{H})^{+}$.

tert-butyl 3-((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)-5-((2,3-bis(benzyloxycarbonyl)guanidino)methyl)-2,3-diaza-bicyclo[2.2.1]heptane-2carboxylate (91a)

To a solution of 89 ($30 \mathrm{mg}, 0.07 \mathrm{mmol}$) in anhidrous THF (4 mL), N,N'-Di-Cbzguanidine 104 ($69 \mathrm{mg}, 0.21 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(183 \mathrm{mg}, 0.7 \mathrm{mmol})$ were added under inert atmosphere. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and DEAD ($0.320 \mathrm{~mL}, 0.7 \mathrm{mmol}$) was added dropwise. After the addition was complete the reaction mixture was allowed warm to rt and stir overnight. The reaction was quenched with water and the solvent was evaporated under reduced pressure. 91a ($42 \mathrm{mg}, 82 \%$) was isolated by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ / diethylether 8:2).

Compound 91b ($96 \mathrm{mg}, 75 \%$) is obtained following the same procedure starting from 89b ($75 \mathrm{mg}, 0.17 \mathrm{mmol}, 1 \mathrm{eq}$.), N,N’-Di-Cbz-guanidine ($0.17 \mathrm{~g}, 0.52 \mathrm{mmol}, 3 \mathrm{eq}$.), PPh3 ($68 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and 40% DEAD in toluene ($0.120 \mathrm{~mL}, 0.26 \mathrm{mmol}$, 1.5 eq.) in THF (6 mL). Purification was achieved by column chromatography of the crude $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ / diethylether 8:2).

Compound 91a:

Colorless oil

IR (NaCl): v 3392, 3030, 2976, 1720, 1677, 1612, 1510, $1370 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.10-1.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.50(\mathrm{~d}, \mathrm{~J}=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 1.69 ($\mathrm{d}, \mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 1.82-1.99 (m, 1H, H-6), 2.40-2.51 (m, $1 \mathrm{H}, \mathrm{H}-5), 3.00-3.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}\right), 3.76-3.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right)$, 3.92-4.01 (m, 1H, CH2-N), 4.29 (s, 1H, H-4), 4.48 (s, 1H, H-1), 4.72 (m, 1H, H- α), 5.11 (s, 2H, CH 2 -Ph), 5.22 and $5.26\left(2 \mathrm{~d}, ~ J=12.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$ each one, $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right), 6.17(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ urea), 7.11 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 7.18-7.37 (m, 13H, H-Ar), 9.25 (s, 1H, NH-Cbz), 9.44 (s, 1H, NH-Cbz).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.3\left(\mathrm{CH}_{3}{ }^{-t \mathrm{Bu}}\right)$, $32.8(\mathrm{C}-6), 34.9(\mathrm{C}-7), 38.6\left(\mathrm{CH}_{2}-\mathrm{Ph}\right)$, $39.2(\mathrm{C}-5), 46.8\left(\mathrm{CH}_{2}-\mathrm{N}\right), 52.3\left(\mathrm{CH}_{3}-\mathrm{O}\right), 54.6(\mathrm{C}-\alpha), 60.4(\mathrm{C}-1), 61.8(\mathrm{C}-4), 67.0\left(\mathrm{CH}_{2}-\right.$ $\mathrm{Ph}), 69.5\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 82.6\left(\mathrm{C}^{\dagger} \mathrm{Bu}\right), 127.2,127.9,128.0,128.6,128.7,128.8,129.0$, 129.1, 129.5 (C-Ar), 134.6, 136.2, 137.1 (C-Ar-ipso), 155.9, 157.9 and 160.8 (CO carbamate), 160. 9 (C=N), 163.9 (CO urea), 172.4 (CO ester).

MS-ESI (+): $743(\mathrm{M}+\mathrm{H})^{+}$.

Compound 91b:

Colorless oil

IR (NaCl): v 3390, 3286, 3031, 2979, 1721, 1678, 1612, 1513, 1369, 1236, $1215 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.16$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$), $1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right), 1.50(\mathrm{~d}, \mathrm{~J}=11.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 1.69 (d, J= $10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 1.88 (m, 1H, H-6), 2.44 (m, 1H, H-5), 3.07 (t, $\left.J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}\right), 3.81$ (dd, $J=13.4$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{N}$), 3.97 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}$), 4.29 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1$), 4.48 (s, $1 \mathrm{H}, \mathrm{H}-4$), 4.67-4.75 (m, $1 \mathrm{H}, \mathrm{H}-$ $\alpha), 5.10\left(\mathrm{~d}, ~ J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 5.21$ and $5.26(2 \mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$ each one; $\mathrm{CH}_{2}-\mathrm{Ph}$), 6.17 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ urea), 7.11 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$), 7.18-7.40 (m, 13H, C $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.3\left(\mathrm{CH}_{3}{ }^{-}{ }^{t} \mathrm{Bu}\right)$, $32.8(\mathrm{C}-6)$, $34.9(\mathrm{C}-7), 38.6\left(\mathrm{CH}_{2}-\mathrm{Ph}\right)$, 39.2 (C-5), $46.8\left(\mathrm{CH}_{2}-\mathrm{O}\right), 52.3\left(\mathrm{CH}_{3}-\mathrm{O}\right), 54.6(\mathrm{C}-\alpha), 60.4(\mathrm{C}-1), 61.8(\mathrm{C}-4), 67.0\left(\mathrm{CH}_{2}-\right.$ $\mathrm{Ph}), 69.5\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 82.6\left(\mathrm{C}^{t} \mathrm{Bu}\right), 127.1,128.0,128.6,128.7,128.8,129.0,129.1,129.4$ (C-Ar), 134.6, 136.2, 137.1 (C-Ar-ipso), 155.9, 157.9 and 160.8 (CO carbamate), 163.9 (CO urea), 172.4 (CO ester).

MS-ESI (+): $743(\mathrm{M}+\mathrm{H})^{+}, 643(\mathrm{M}-\mathrm{Boc})^{+}$.
(9H-fluoren-9-yl)methyl 3-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)-5-((1,2,3-tris(tert-butoxycarbonyl)guanidino)methyl)-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxylate (92)

92

To a solution of 105 ($679 \mathrm{mg}, 0.98 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, methyl $(S)-(-)-2-$ isocyanato-3-phenylpropionate ($0.178 \mathrm{~mL}, 0.98 \mathrm{mmol}, 1 \mathrm{eq}$.) and the mixture was allowed to stir for 2 h at rt . Solvent was then removed under reduced pressure and the residue was purified by silica gel column chromatography (hexane / ethyl acetate 2:1) to yield compound 92 (597 mg ; 68%) as yellow oil.

IR (KBr): v 3421, 2978, 1743, 1685, 1655, 1609, 1508, 1405, $1369 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.20-1.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 1.46-1.49\left(\mathrm{~m}, 28 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right.$ and $\mathrm{H}-7$), 1.74 ($\mathrm{d}, \mathrm{J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 2.33-2.42 (m, 1H, H-5), 2.93-3.10 (m, 2H, CH-Ph), 3.54-3.78 (m, 5H, OCH ${ }_{3}$ and $\mathrm{CH}_{2}-\mathrm{N}$), 4.10-4.14 (m, 1H, Fmoc-9), $4.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1)$, 4.36-4.42 (m, 2H, CH 2 Fmoc), 4.61 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$), 4.64-4.76 (m, 1H, H- α), 6.20 (bs, 1 H , NH urea), $7.05\left(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.11-7.22\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.29-7.35(\mathrm{~m}, 2 \mathrm{H}$, Fmoc-2 and -7), $7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-3 and -6$), 7.57(\mathrm{dd}, J=11.8$ and 7.4 Hz , 2 H, Fmoc-1 and -8), 7.76 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Fmoc}-4$ and -5), 10.68 (s, 1H, NH carbamate).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.1$ and $28.3\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $32.9(\mathrm{C}-6), 34.9(\mathrm{C}-7), 38.5$ $\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 39.2(\mathrm{C}-5), 47.1(\mathrm{Fmoc}-9), 49.8\left(\mathrm{CH}_{2}-\mathrm{N}\right), 52.3\left(\mathrm{OCH}_{3}\right), 54.4(\mathrm{C}-\alpha), 60.7(\mathrm{C}-1)$, 62.0 (C-4), 68.5 ($\mathrm{CH}_{2} \mathrm{Fmoc}$), 83.8 ($\mathrm{C}^{\mathrm{t} B u}$), 120.2 (Fmoc-4 and -5), 125.3 (Fmoc-1 and 8), 127.1 (Fmoc-2 and -7), $127.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right), 128.0$ (Fmoc-3 and -6), $128.6\left(\mathrm{C}_{6} \mathrm{H}_{5}-0\right)$, $129.5\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{m}\right), 136.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right.$), 141.6 (Fmoc-4a and -4b), 143.6 (Fmoc-8a and -9a), 153.5 and 158.4 (CO carbamates), 160.4 (CO urea), 172.3 (CO ester).

ESI-MS (+): m/z $597\left[\mathrm{M}-(\mathrm{Boc})_{3}+\mathrm{H}\right]^{+}, 697\left[\mathrm{M}-(\mathrm{Boc})_{2}+\mathrm{H}\right]^{+}, 797[\mathrm{M}-(\mathrm{Boc})+\mathrm{H}]^{+}, 897(\mathrm{M}+\mathrm{H})^{+}$.
(2S)-methyl
2-(5-((2,3-bis(benzyloxycarbonyl)guanidino)methyl)-2,3-diaza-bicyclo[2.2.1]heptane-3-carboxamido)-3-phenylpropanoate (93a)

93a

93b

A solution of 91a ($87 \mathrm{mg}, 0.12 \mathrm{mmol}$, 1eq.) in ethyl acetate (3 mL) was cooled at $0{ }^{\circ} \mathrm{C}$ Then, HCl was bubbled for 5 min . and the mixture was stirred for 40 min at $0{ }^{\circ} \mathrm{C}$. Solvent and excess of reagent was removed by rotary evaporation and 93a ($54 \mathrm{mg}, 72$ \%) was obtained.

Compound 93b ($63 \mathrm{mg}, 94 \%$) was obtained following the procedure described above starting from compound 91b ($78 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ eq.) solved in saturated solution of HCl in ethyl acetate (3 mL).

Compound 93a:

IR (NaCl): v 3252, 2987, 1787, 1693, 1519, 1245, 1202, $1183 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.18$ (ddd, $J=12.5,4.5$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 1.40-1.55 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7$), 1.56-1.65 (m, 2H, H-6), 1.65-1.76 (m, 1H, NH-2), 2.32-2.51 (m, 1H, H-5), 3.04-3.15 (m, 2H, CH2-Ph), $3.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77$ (dd, $J=14.2$ and $\left.4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right), 3.85-3,93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right), 4.26(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-4), 4.66-4.74(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H} \alpha$), $5.06-5,16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 5.19-5.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 6.57(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}$ urea), 7.05-7.39 (m, 15H, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 30.9$ (C-6), 33.4 (C-7), 38.5 ($\mathrm{CH}_{2}-\mathrm{Ph}$), 40.3 (C-5), 47.0 $\left(\mathrm{CH}_{2}-\mathrm{N}\right)$, $52.4\left(\mathrm{CH}_{3}-\mathrm{O}\right), 54.0(\mathrm{C}-\alpha), 59.7(\mathrm{C}-1 \circ \mathrm{C}-4), 62.5(\mathrm{C}-1 \circ \mathrm{C}-4), 67.0\left(\mathrm{CH}_{2}-\mathrm{Ph}\right)$, $69.4\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 127.1,127.9,128.0,128.6,128.7,128.8,129.0,129.1$ and 129.4 $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 134.7,136.6$ and $137.2\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right)$, 155.9 and 160.9 (CO carbamates), 163.9 (CO urea), 172.8 (CO ester).

MS-ESI (+): $643(\mathrm{M}+\mathrm{H})^{+}, 509\left[\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Bn}\right)+\mathrm{H}\right]^{+}$.

Compound 93b:

IR (NaCI): v 3378, 3063, 2945, 1698, 1450, 1342, 1285, 1202, $1089 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.98-1.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 1.43-1.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 1.55-$ $1.80(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-7$ and NH-2), $2.10(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-5), 2.96(\mathrm{dd}, J=14.4$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{Ph}$), 3.08 (dd, $J=13.6$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), $3.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1$), $3.68(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 3.71-3.77 (m, $1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}$), $3.92\left(\mathrm{dd}, J=13.8\right.$ and $\left.10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right), 4.31$ (bs, $1 \mathrm{H}, \mathrm{H}-4$), 4.69-4.76 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} \alpha$), 5.06-5,25 (m, 4H, CH ${ }_{2}-\mathrm{Ph}$), $6.53(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}$ urea), 7.07-7.40 (m, 15H, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13}$ C-RMN ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.9$ (C-6), 33.5 (C-7), 38.1 ($\mathrm{CH}_{2}-\mathrm{Ph}$), 39.0 (C-5), 47.3 $\left(\mathrm{CH}_{2}-\mathrm{N}\right), 52.3\left(\mathrm{OCH}_{3}\right), 54.0(\mathrm{C}-\alpha), 57.6(\mathrm{C}-4), 59.8(\mathrm{C}-1), 67.2\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 69.5\left(\mathrm{CH}_{2}-\right.$ $\mathrm{Ph})$, 127.1; 128.0, 128.1, 128.6, 128.9, 129.1and $129.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 134.5,136.6$ and 137.0 ($\mathrm{C}_{6} \mathrm{H}_{5}$-ipso), 156.0 and 160.8 (CO carbamates), 164.0 (CO urea), 172.8 (CO ester).

MS-ESI (+): $643(\mathrm{M}+\mathrm{H})^{+}, 1285(2 \mathrm{M}+\mathrm{H})^{+}$.

5-Hydroxy-2,3-diazabicyclo[2.2.1]heptane-2,3-dicarboxylic Acid Dibenzyl Ester

95

A mixture of $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(39 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.01 \mathrm{eq}$.), (S,S)-bdpp ($70 \mathrm{mg}, 0.16 \mathrm{mmol}$, 0.02 eq.) and bicyclic hydrazine 84 ($3.0 \mathrm{~g}, 8.24 \mathrm{mmol}, 1$ eq.) was dried under vacuum for 1 h and placed under argon. Freshly distilled DME (33 mL) was then added at -50 ${ }^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 30 min . Catecholborane (1.75 mL , $16.48 \mathrm{mmol}, 2$ eq.) was then added and the reaction became orange but remained heterogeneous. Temperature was maintained at $-50{ }^{\circ} \mathrm{C}$ for 30 min and was quenched with $\mathrm{EtOH}(9 \mathrm{~mL})$. The cooling bath was then removed and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(9 \mathrm{~mL})$ and $\mathrm{NaOH}\left(3 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 15.3 \mathrm{~mL}\right)$ were added turning the solution to black. After stirring 15 h at $\mathrm{rt}, \mathrm{NaOH}(1 \mathrm{M}$ in $\mathrm{H} 2 \mathrm{O}, 80 \mathrm{~mL}$) was added and the mixture was extracted with EtOAc ($3 \times 150 \mathrm{~mL}$). The organic phase was washed with $1 \mathrm{M} \mathrm{NaOH} \mathrm{(} 2 \times 150 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}$ (150 mL) and saturated solution of $\mathrm{NaCl}(150 \mathrm{~mL})$. After solvent evaporation at reduced pressure, product the crude was purified by column chromatography (hexane / ethyl acetate 1:1) to give alcohol 95 ($2.41 \mathrm{~g}, 76 \%$) as colorless oil.

IR(NaCl): v 3480, 3063, 3033, 2944, 1737, 1713, 1498, 1455, 1391, $1325 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}\right.$, DMSO-d $_{6}, 7{ }^{\circ}{ }^{\circ} \mathrm{C}$): 1.46 (dt, $J=13.7$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 1.54 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $1.98(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 1.98-2.04(\mathrm{~m}, \mathrm{H}-6), 4.28(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4,52(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-4), 4,68(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-1), 5.16$ (m, 4H, CH $2-\mathrm{Ph}), 7.35(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 34.0 (C-7), 38.0 (C-6), 59.6 (C-1), 64.3 (C-4); 68.1 and $68.2\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 70.4(\mathrm{C}-5) ; 128.0,128.3,135.8$ and $135.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $155.0(\mathrm{CO}$ carbamate).

HRMS-ESI(+): $383.17(\mathrm{M}+\mathrm{H})^{+}, 405.15(\mathrm{M}+\mathrm{Na})^{+}, 787.31(2 \mathrm{M}+\mathrm{Na})^{+}$.

dibenzyl 5-(hydroxy(trimethylsilyl)methyl)-2,3-diaza-bicyclo[2.2.1]heptane-2,3dicarboxylate (93)

96
$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(40 \mathrm{mg}, 0.082 \mathrm{mmol}),(\mathrm{R}, \mathrm{R})-$ BDPP ($70 \mathrm{mg}, 0.16 \mathrm{mmol}$) and $84(3 \mathrm{~g}, 8,24$ mmol) were placed in a round bottom flask, dried under vacuum (0.1 mmHg) for 1 h , and then placed under argon. DME (33 mL) was degassed at $-50^{\circ} \mathrm{C}$ an added to the mixture at this temperature. The yellow-green slurry was stirred at $-50^{\circ} \mathrm{C}$ for 30 min . Catecholborane ($1.76 \mathrm{~mL}, 16,5 \mathrm{mmol}$) was then added dropwise and the mixture became orange but remained heterogeneous. The reaction was kept at $-50^{\circ} \mathrm{C}$ for an additional 30 min . Solvent and excess reagent were then carefully removed under vacuum ($0.1 \mathrm{mmHg}, 3 \mathrm{~h}$) to give the intermediate borane as a dark yellow foam. A solution of the intermediate borane in THF (49 mL) under argon was then added over 2 M solution of trimethylsilyldiazomethane in $\mathrm{Et}_{2} \mathrm{O}$ ($20.5 \mathrm{~mL}, 41.2 \mathrm{mmol}$). After refluxing overnight, 80 mL of freshly prepared 1:1 mixture of 2 N aqueous sodium hydroxide and 30% hydrogen peroxide were then added dropwise at 0 으, turning the solution to black, and the mixture was stirred for an additional 4 h at RT. After extraction with EtOAc $(3 \times 100 \mathrm{~mL})$, the combined organic layers were washed with $1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated. The crude reaction mixture was then purified by silica gel flash chromatography (cyclohexane / ethylacetate 2:1) to give $96(2.6 \mathrm{~g}$, 68\%).

IR (NaCI): v 3491, 3033, 2954, 1713, 1391, 1325, 1267, $1120 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 0.02\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 1.58(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 1.77$ (bs, 2H, H-7), 1.95 (d, J=9.7 Hz, 1H, H-6), 2.23 (bs, 2H, H-5 and OH), 2.86 (d, $J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{OH}$), 4.46 (bs, 1H, H-1 or H-4), 4.84 (bs, 1H, H-1 or H-4), 5.11-5.26 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right)$, 7.28-7.37 (m, 10H, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.7\left(\mathrm{CH}_{3}-\mathrm{Si}\right), 35.1$ (C-7), 37.0 (C-6), 44.0 (C-5), 61.2 (C1), $62.2(\mathrm{C}-4), 67.0(\mathrm{CH}-\mathrm{OH}), 68.2\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 128.3,128.4$ and $128.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 136.3$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), 157.8 (CO carbamate).

ESI-MS: 397 [(M-TMS)+H] ${ }^{+}, 469(\mathrm{M}+\mathrm{H})^{+}, 937(2 \mathrm{M}+\mathrm{H})^{+}$.

Dibenzyl 5-(hydroxymethyl)-2,3-diazabicyclo[2.2.1]heptane-2,3-dicarboxylate (101)

97

A solution of $96(1 \mathrm{~g}, 2,13 \mathrm{mmol})$ in THF (10 mL) was added with tetrabutylammonium fluoride ($1.12 \mathrm{~g}, 4,26 \mathrm{mmol}$) and stirred at rt for 24 h . More reagent was then added ($1.12 \mathrm{~g}, 4,26 \mathrm{mmol}$) and the mixture was kept at rt until complete consumption of the starting material. After concentration under vacuum, the crude reaction mixture was purified by silica gel flash chromatography (cyclohexane / ethylacetate 6:4) to give 97 ($716 \mathrm{mg}, 85 \%$).

White solid

IR (NaCl): v 3471, 1710, 1391, 1399, 1329, $1294 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 1.06-1.25 (m, 1H, H-6), 1.56-1.71 (m, 2H, H-7), 1.77-1.95 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$), 2.15 (bs, $1 \mathrm{H}, \mathrm{H}-5$), $2.64(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.28\left(\mathrm{t}, \mathrm{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OH}\right)$, 3.43 (bs, $1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OH}$), 4.36-4.72 (m, 2H, H-1 and H-4), 5.16 (s, $4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 7.30 (m , $10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}-$ RMN ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 31.9 (C-6), 35.5 (C-7), 42.7 (C-5), 60.6 and 62.3 (C-1 and $\mathrm{C}-4)$, $64.2\left(\mathrm{CH}_{2}-\mathrm{O}\right), 68.2\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 128.2\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right), 128.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-0\right), 128.7\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{m}\right)$, $136.2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), 157.7 (CO carbamate).

ESI-MS (+): m/z 397 (M+H) ${ }^{+}$.

$N, N, N^{\prime}-$ Tri-Boc-guanidine (98)

A mixture of $\mathrm{KOH}(2,81 \mathrm{~g} ; 50 \mathrm{mmol}, 1 \mathrm{eq})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(5,30 \mathrm{~g} ; 50 \mathrm{mmol}, 1$ eq.) was finely ground in a mortar and transfered to a round bottom flask. DMSO (50 mL) was then added and the resulting suspension was allowed to stir for 5 min at room temperature. Guanidine hydrochloride ($4.78 \mathrm{~g}, 50 \mathrm{mmol}, 1 \mathrm{eq}$.) was added and the mixture was stirred for 5 min . After the addition of $\mathrm{Boc}_{2} \mathrm{O}$ ($51,7 \mathrm{~g} ; 225 \mathrm{mmol}, 4.5 \mathrm{eq}$.) the mixture was stirred for 60 h at $40^{\circ} \mathrm{C}$. Cold water was added and the white precipitate obtained was filtered, dried under vaccum and recristalized from acetonitrile to obtain 98 as colorless needles ($14.06 \mathrm{~g}, 78 \%$).

IR (KBr): v 3292, 2983, 2953, 1728, 1717, 1642, 1541, 1430, 1370, 1312, 1236, 1124.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.51$ (s, 27H, $\left.\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right)$.

MS-ESI m/z (\%): $360(\mathrm{M}+\mathrm{H})^{+}, 304\left(\mathrm{M}^{-}{ }^{\mathrm{t}} \mathrm{Bu}\right)^{+}, 260(\mathrm{M}-\mathrm{Boc})^{+}$.

99

A solution of the alcohol 97 ($2 \mathrm{~g} ; 5 \mathrm{mmol}$), $\mathrm{PPh}_{3}(2,6 \mathrm{~g} ; 10 \mathrm{mmol})$; and previously prepared triprotected guanidine 98 ($3,6 \mathrm{~g} ; 10 \mathrm{mmol}$) in anhydrous THF (80 mL) was cooled to $-5{ }^{\circ}$ C under Ar atmosphere. DEAD 40% in toluene ($4,6 \mathrm{~mL} ; 10 \mathrm{mmol}$) was added dropwise and the reaction mixture was heated at $40^{\circ} \mathrm{C}$ for 4 h . The solution was then cooled to rt and the precipitate of excess 98 that formed was collected by filtration and was washed with a mixture of THF/hexanes 1:1. The filtrate was concentrated in vacuum and the 99 ($3,0 \mathrm{~g} ; 81 \%$) was isolated by flash column chromatography on silica gel (hexane/ethyl acetate 7:3).

IR (KBr): v 2979, 1758, 1735, 1654, 1609, 1394, 1369, 1243, $1140 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.22-1.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 1.42-1.53\left(\mathrm{~m}, 27 \mathrm{H}, \mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right)$, 1.57-1.61 (m, 1H, H-6), 1.67 (d, J = $10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 1.77-1.85 (m, 1H, H-7), 1.872.02 (m, 1H, H-5), 2.44 (bs, 1H, OH), 3.62-3.75 (m, 2H, CH $2-\mathrm{N}$), 4.41-4.77 (m, 2H, H-1 and H-4), 5.02-5.28 (m, 4H, CH2-Ph), 7.27-7.35 (m, 10H, C $\mathrm{C}_{6} \mathrm{H}_{5}$), $10.71(\mathrm{NH})$.
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 28.1$ and $28.3\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right), 31.1$ (C-6), 35.3 (C-7), 42.7 (C-5), $49.8\left(\mathrm{CH}_{2}-\mathrm{N}\right), 60.5$ and $62.6(\mathrm{C}-1$ and $\mathrm{C}-4)$, $68.2\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 81.0,82.8$ and $83.8\left(\mathrm{C}^{t} \mathrm{Bu}\right)$, $127.9\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right)$, $128.1\left(\mathrm{C}_{6} \mathrm{H}_{5}-o\right)$, $128.7\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right), 136.3\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right)$, 149.5 and 153.4 (CO carbamates).

ESI-MS (+): $738(\mathrm{M}+\mathrm{H})^{+}, 760(\mathrm{M}+\mathrm{Na})^{+}, 1475(2 \mathrm{M}+\mathrm{H})^{+}$.
tert-butyl 5-hydroxy-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxylate (100a) and tert-butyl 6-hydroxy-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxylate (100b)

100a

100b

To a solution of alcohol 95 ($600 \mathrm{mg}, 1.56 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{3} \mathrm{OH}(6 \mathrm{~mL}), \mathrm{Boc}_{2} \mathrm{O}(342$ $\mathrm{mg}, 1.56 \mathrm{mmol}$, 1 eq.) in methanol (6 mL) and $\mathrm{Pd}(\mathrm{OH})_{2}(100 \mathrm{mg})$ were added and the mixture was hydrogenated for 2 h . After that time reaction mixture was filtered and evaporated to dryness. The resulting yellow oil was precipited with diethyl ether, obtaining a white solid as the minor regioisomer 100a ($128 \mathrm{mg}, 38 \%$). The major regioisomer 100b ($151 \mathrm{mg}, 45 \%$) was obtained by purification by column chromatography ($5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Compound 100a:

IR (KBr): v 3421, 2978, 1718, 1701 1697, 1676, 1396, $1367 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.48\left(\mathrm{bs}, 10 \mathrm{H}, \mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{B}} \mathrm{Bu}\right.$ and $\left.\mathrm{H}-6\right), 1.69(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-7$), 2.04 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 2.11 (ddd, $J=13.7,6.9$ and $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.76 (bs, 1H, H1), 4.14 (d, J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$), 4.20 (bs, 1H, H4).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.7\left(\mathrm{CH}_{3}{ }^{-1} \mathrm{Bu}\right), 35.5(\mathrm{C}-7), 40.8$ (C-6), 57.0 (C-4), 61.6 (C-1), $71.0(\mathrm{C}-5), 80.9\left(\mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right), 155.2(\mathrm{OCO}-\mathrm{NH})$.

HRMS-ESI (-): 212.08, 227.17, 250.08.

Compound 100b:

IR (KBr): v 3398, 2978, 2933, 1701, 1560, 1393, 1367, $1252 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.43-1.47\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{H}} \mathrm{Bu}\right.$ and $\left.\mathrm{H}-6\right)$, 1.70 (dt, $J=10.0$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $1.97(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 2.19$ (ddd, $J=13.5,6.8$ and 2.3 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.60 (bs, $1 \mathrm{H}, \mathrm{H}-1$), 4.13 (d, J=5.7 Hz, 1H, H-5), 4.37 (bs, 1H, H-4).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $28.6\left(\mathrm{CH}_{3}{ }^{-1} \mathrm{Bu}\right), 35.1$ (C-7), 41.3 (C-6), 56.3 (C-4), 62.8 (C-1), 72.7 (C-5), $80.8\left(\mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right), 155.9$ (OCO-NH).

HRMS-ESI (-): 212.08, 227.08.
(9H-fluoren-9-yl)methyl 6-hydroxy-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxylate (100)

101b

To a solution of alcohol 95 ($1.00 \mathrm{~g}, 2.6 \mathrm{mmol}$, 1eq.) in a mixture of THF/water in a $4: 1$ ratio (10 mL), Fmoc-Osu ($1.05 \mathrm{~g}, 3.12 \mathrm{mmol}, 1.2 \mathrm{eq}$), $\mathrm{NaHCO}_{3}(0.524 \mathrm{~g}, 6.24 \mathrm{mmol}$, 2.4 eq.) and $\mathrm{Pd}(\mathrm{OH})_{2}(50 \mathrm{mg})$ were added and the mixture was hydrogenated for 2 h . The mixture was filtered and solvent was removed under reduced pressure. The crude was redissolved in ethyl acetate and was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$), washed with Brine (15 mL) and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude was purified in column chromatography ($5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and $\mathbf{1 0 1 b}$ is obtained ($580 \mathrm{mg} ; 66 \%$) as white foam.

IR (KBr): v 3422, 3066, 2941, 1718, 1704, 1655, 1457, $1420 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 1.40 ($\mathrm{d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 1.66 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 7), 1.98 (d, J = $10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 2.05 (bs, 1H, H-6); 3.57 (s, 1H, H-1), 4.05 (d, J=6.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4,23(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, Fmoc-9), 4.32 (bs, 1H, H-4), 4.42 (dq, $J=10.5$ and $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Fmoc}$), $7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-2 and -7), $7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2 H, Fmoc-3 and -6), 7.59 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-1 and -8), 7.75 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-4 and -5).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 35.4 (C-7), 41.2 (C-6), 47.4 (Fmoc-9), 56.5 (C-4), 62.8 (C1), 67.6 ($\mathrm{CH}_{2}-\mathrm{Fmoc}$), 72.4 (C-5), 120.2 (Fmoc-4 and -5), 125.3 (Fmoc-1 and -8), 127.3 (Fmoc-2 and -7), 128.0 (Fmoc-3 and -6), 141.5 (Fmoc-4a and -4b), 144.1 (Fmoc-8a and 9a), 156. 3 (CO carbamate).

ESI-MS (+): $159\left[\mathrm{M}-\left(\mathrm{C}_{14} \mathrm{H}_{10}\right)\right]^{+}, 179\left[\left(\mathrm{C}_{14} \mathrm{H}_{10}\right)+\mathrm{H}\right]^{+}, 337(\mathrm{M}+\mathrm{H})^{+}, 378(\mathrm{M}+\mathrm{ACN})^{+}, 673$ $(2 \mathrm{M}+\mathrm{H})^{+}$.

Dibenzyl 5-[(tert-butyldimethylsilyloxy)methyl]-2,3-diazabicyclo[2.2.1]heptane-2,3-dicarboxylate (102)

102

To an ice-cooled stirred solution of 97 ($1.10 \mathrm{~g}, 2.77 \mathrm{mmol}, 1 \mathrm{eq}$.) and $\mathrm{EtN}_{3}(0.54 \mathrm{~mL}$, $3.88 \mathrm{mmol}, 1.4$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL), TBDMSOTf ($0.76 \mathrm{~mL}, 3.32 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise. The solution was stirred for 2 h at $0^{\circ} \mathrm{C}$ under Ar atmosphere. After evaporation of the solvent the crude mixture was purified by silica gel flash chromatography (cyclohexane / ethylacetate 8:2) to give 102 ($1.36 \mathrm{~g}, 96 \%$) as yellow oil.

Yellow oil

IR (KBr): v 3033, 2951, 2885, 2856, 1741, 1705, 1498, 1455, 1389, 1322, 1258, 1112 cm^{-1}.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.03\left(2 \mathrm{~s}, 3 \mathrm{H}\right.$ each one, $\left.\mathrm{CH}_{3}-\mathrm{Si}\right), 0.85\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{Si}\right), 1.22$ (s, 1H, H-6), 1.59 (d, J=10.4 Hz, H-7), 1.71 (d, J= $9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 1.84 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-6$), $2.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 3.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 3.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH} 2-\mathrm{O}), 4.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-$ 4), $5.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 7.29\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13}$ C-RMN (100 MHz, CDCl ${ }_{3}$): $\delta-5.1\left(\mathrm{CH}_{3}-\mathrm{Si}\right)$, $18.4\left(\mathrm{C}-{ }^{t} \mathrm{Bu}-\mathrm{Si}\right), 26.1\left(\mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{B}} \mathrm{Bu}-\mathrm{Si}\right), 31.5$ (C-6), 35.5 (C-7), 42.2 (C-5), 60.7 and $62.8(\mathrm{C}-1$ and $\mathrm{C}-4), 64.4\left(\mathrm{CH}_{2}-\mathrm{O}\right), 68.2\left(\mathrm{CH}_{2}-\right.$ Ph), $128.1\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right), 128.3\left(\mathrm{C}_{6} \mathrm{H}_{5}-o\right)$, $128.7\left(\mathrm{C}_{6} \mathrm{H}_{5}-m\right), 136.2\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{ipso}\right)$, $157.5(\mathrm{CO}$ carbamate).

ESI-MS (+): m/z $511(\mathrm{M}+\mathrm{H})^{+}, 1043(2 \mathrm{M}+\mathrm{Na})^{+}$.
tert-butyl 5-((tert-butyldimethylsilyloxy)methyl)-2,3-diaza-bicyclo[2.2.1]heptane-2carboxylate (103a) and tert-butyl 6-((tert-butyldimethylsilyloxy)methyl)-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxylate (103b)

103a

103b

A solution of 102 ($350 \mathrm{mg}, 0.68 \mathrm{mmol}, 1 \mathrm{eq}$.), $\mathrm{Boc}_{2} \mathrm{O}$ ($149 \mathrm{mg}, 0.68 \mathrm{mmol}, 1 \mathrm{eq}$.) and $\mathrm{Pd}(\mathrm{OH})_{2}(45 \mathrm{mg})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$ was hydrogenated at $\mathrm{P}_{\text {atm }}$ for 45 min at RT. The reaction mixture was filtered through Celite and the resulting oil was purified by silica flash chromatography (Hexane / ethylacetate 7:3) to give 103a (90 mg, 38%) and 103b ($106 \mathrm{mg}, 45 \%$).

Compound 103a

Yellow oil

IR (NaCI): v 3349, 2956, 2930, 2857, 1712, 1693, 1519, 1391, 1366, $1254 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.01$ (s, 6H, $\left.\mathrm{CH}_{3}-\mathrm{Si}\right), 0.85$ (s, 9H, $\left.{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{Si}\right), 1.13$ (ddd, $J=$ 12.7, 5.4 and $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 1.45 (s, $9 \mathrm{H},{ }^{t} \mathrm{Bu}$), 1.61 (d, J = $9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 1.72 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 1.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 2.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.27(\mathrm{dd}, J=10.4$ and 8.4 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 3.47 (dd, $J=10.4$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.63 (s, 1H, H-4), 4.26 (s, $1 \mathrm{H}, \mathrm{H}-1$).
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.3\left(\mathrm{CH}_{3}-\mathrm{Si}\right),-5.2\left(\mathrm{CH}_{3}-\mathrm{Si}\right), 18.4\left(\mathrm{C}-{ }^{-} \mathrm{Bu}-\mathrm{Si}\right), 26.1\left(\mathrm{CH}_{3}-\right.$ $\left.{ }^{t} \mathrm{Bu}-\mathrm{Si}\right), 28.7\left(\mathrm{CH}_{3}{ }^{-1} \mathrm{Bu}\right), 32.7$ (C-6), 36.6 (C-7), 44.3 (C-5), 57.3 (C-1), 59.9 (C-4), 65.1 $\left(\mathrm{CH}_{2}-\mathrm{O}\right), 80.3(\mathrm{C}-\mathrm{Bu}), 155.7$ (CO carbamate).

ESI-MS (+): m/z $243[(\mathrm{M}-\mathrm{Boc})+\mathrm{H}]^{+}, 343(\mathrm{M}+\mathrm{H})^{+}, 686(2 \mathrm{M}+\mathrm{H})^{+}$.

Compound 103b

Yellow oil

IR (NaCl): \vee 3348, 2955, 2929, 2857, 1764, 1721, 1525, 1390, $1365 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.01\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.85\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}}{ }^{\mathrm{Bu}}\right.$) Si$), 1.19(\mathrm{~m}, 1 \mathrm{H}$, H_{6}), $1.43\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 1.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7), 2.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, $3.25\left(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right), 3.42$ (dd, $J=10.5$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 3.66 (s, 1H, $\mathrm{H}-1$), 4.27 (s, 1H, H-4).
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.2\left(\mathrm{CH}_{3}-\mathrm{Si}\right),-5.1\left(\mathrm{CH}_{3}-\mathrm{Si}\right), 18.5\left(\mathrm{C}-{ }^{-} \mathrm{Bu}-\mathrm{Si}\right), 26.1\left(\mathrm{CH}_{3}-\right.$ $\left.{ }^{t} \mathrm{Bu}-\mathrm{Si}\right), 28.7\left(\mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 32.9$ (C-6), 36.0 (C-7), 44.1 (C-5), 57.7 (C-1), 59.3 (C-4), 65.0 $\left(\mathrm{CH}_{2}-\mathrm{O}\right), 80.3$ (C-'Bu), 155.4 (CO carbamate).

ESI-MS (+): m/z $243[(\mathrm{M}-\mathrm{Boc})+\mathrm{H}]^{+}, 343(\mathrm{M}+\mathrm{H})^{+}, 685(2 \mathrm{M}+\mathrm{H})^{+}$.

N, N-Di-Cbz-guanidine (104)

104
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(64 \mathrm{~mL})$ was added to a solution of guanidine hydrochloride ($3 \mathrm{~g}, 31.4 \mathrm{mmol}$) and sodium hydroxide ($6.3 \mathrm{~g}, 157 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(32 \mathrm{~mL})$, and the resulting mixture was cooled to $0{ }^{\circ}$ C. Benzyloxycarbonyl chloride ($13.4 \mathrm{~mL}, 94.2 \mathrm{mmol}$) was added dropwise with vigorous stirring over a period of 30 min . After the addition was complete, stirring was continued for 20 h at $0{ }^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$, the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$. The extracts were combined, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried with MgSO_{4}. After filtration and removal of the solvent under reduced pressure, the crude product was recrystallized from methanol to obtain $\mathbf{1 0 4}$ ($8.6 \mathrm{~g}, 83 \%$).

IR (KBr): v 3400, 3238, 1732, 1681, 1652, 1621, 1567, 1557, 1311, 1295, $1226 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}\right.$, DMSO- \boldsymbol{d}_{6}): 5.12 (s, $4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 7.31-7.39 (m, 10H, $\mathrm{C}_{6} \mathrm{H}_{5}$), 8.68 (bs, 2H, NHCO), 10.88 (bs, 1H, NH).
(9H-fluoren-9-yl)methyl 5-((1,2,3-tris(tert-butoxycarbonyl)guanidino)methyl)-2,3-diaza-bicyclo[2.2.1]heptane-2-carboxylate (105)

105

To a solution of 99 ($2.4 \mathrm{~g}, 3.25 \mathrm{mmol}, 1 \mathrm{eq}$.) in ethyl acetate (70 mL), Fmoc-Osu (1.10 g, 3.25 mmol , 1 eq.), 2,2-bipyridyl ($254 \mathrm{mg}, 1.62 \mathrm{mmol}$) and $10 \% \mathrm{Pd}-\mathrm{C}(93 \mathrm{mg})$ were added and the mixture was hydrogenated until complete consumption of starting material. After filtration, solvent was eliminated under reduced pressure and the crude was purified by silica gel column chromatography (hexane / ethyl acetate 8:2) giving 105 (863 mg ; 33\%) as yellow foam.

IR (KBr): v 3374, 2978, 2931, 1758, 1718, 1610, 1517, 1452, 1369, 1245, $1139 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.15$ (dd, $J=12.8$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$); 1,48 and 1,50 (2s, 27H, CH ${ }^{t}{ }^{t} \mathrm{Bu}$); 1.74 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$); 1.83-1.90 (m, 2H, H-6 and H-7), 2.24-2.35 (m, 1H, H-5), 3.64 (dd, $J=14.0$ and $10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}$), 3.74 (dd, $J=14.2$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}$), $3.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 4.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, Fmoc-9), $4.34(\mathrm{~s}, 1 \mathrm{H}$, H-4), 4.43 ($\mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Fmoc}$), $7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-2 and -7), 7.39 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-3 and -6), 7.61 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-1 and -8), 7.76 (d, $J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-4 and -5).

[^3]MS-ESI (+): $392\left[\mathrm{M}-(\mathrm{Boc})_{3}+\mathrm{H}\right]^{+}, 492\left[\mathrm{M}-(\mathrm{Boc})_{2}+\mathrm{H}\right]^{+}, 592[\mathrm{M}-(\mathrm{Boc})+\mathrm{H}]^{+}, 692(\mathrm{M}+\mathrm{H})^{+}$, $1383(2 \mathrm{M}+\mathrm{H})^{+}$.
(2S)-2-(5-((1,2,3-tris(tert-butoxycarbonyl)guanidino)methyl)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)-2,3-diaza-bicyclo[2.2.1]heptane-3-carboxamido)-3phenylpropanoic acid (108)

108

92 ($800 \mathrm{mg} ; 0,89 \mathrm{mmol}$) was taken up in $\mathrm{PrOH}(20 \mathrm{~mL})$ and $\mathrm{CaCl}_{2}(1,58 \mathrm{~g} ; 14,26 \mathrm{mmol})$ was added. Separately, $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($149 \mathrm{mg} ; 3,56 \mathrm{mmol}$) was dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and was added to the reaction mixture which was stirred as a cloudy white solution for 2 h . Organic solvent was removed by evaporation and the resulting residue was then acidified to pH 2 with HCl 1 N and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 30 \mathrm{~mL}$). The combined organic layers were then washed with $\mathrm{HCl} 1 \mathrm{~N}(1 \times 50 \mathrm{~mL})$ and Brine (1×50 mL), dried over MgSO_{4} and concentrated to dryness. Compound 108 (584 mg, 74\%) was used without further purification.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.01-1.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 1.45-1.52\left(\mathrm{~m}, 28 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{B}} \mathrm{Bu}\right.$ and $\mathrm{H}-7$), 1.61-1.68 (m, 2H, H-6 and H-7), 2.17-2.30 (m, 1H, H-5), 3.02 (dd, $J=13.8$ and $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.11-3.20 (m, 1H, CH2-Ph), 3.43-3.55 (m, 2H, CH2-N), 4.08-4.25 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1$ and Fmoc-9), 4.30-4.51 (m, 3H, CH2-Fmoc and H-4), 4.57 (dd, $J=7.9$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} \alpha$), 7.08-7.17 (m, 5H, C C_{6}), 7.27-7.33 (m, 2H, Fmoc-2 and -7), 7.38 (t, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-3 and -6), 7.58 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-1 and -8), 7.79 (d, $J=7.7$ Hz, 2H, Fmoc-4 and -5).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.2$ and $28.4\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $32.9(\mathrm{C}-6), 35.0(\mathrm{C}-7), 38.4$ ($\mathrm{CH}_{2}-\mathrm{Ph}$), 39.0 (C-5), 47.1 (Fmoc-9), $49.8\left(\mathrm{CH}_{2}-\mathrm{N}\right), 54.5$ (C- α), 60.6 (C-1), 62.1 (C-4), $68.4\left(\mathrm{CH}_{2} \mathrm{Fmoc}\right)$, $83.9\left(\mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right), 120.1$ ($\mathrm{Fmoc}-4$ and -5), 125.4 ($\mathrm{Fmoc}-1$ and -8), 127.1 (Fmoc-2 and -7), $127.4\left(\mathrm{C}_{6} \mathrm{H}_{5}-p\right)$, 128.0 (Fmoc-3 and -6), $128.5\left(\mathrm{C}_{6} \mathrm{H}_{5}-0\right)$, $129.5\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right.$ m), $136.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), 141.5 (Fmoc-4a and -4b), 143.7 (Fmoc-8a and -9a), 153.5 (CO carbamate), 160.4 (CO urea), 174.5 (CO acid).

MALDI-TOF (ACH): m/z $883.4(\mathrm{M}+\mathrm{H})^{+}, 905.4(\mathrm{M}+\mathrm{Na})^{+}, 921.4(\mathrm{M}+\mathrm{K})^{+}$.

tert-butyl 3-(3-(3-((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)-5-(hydroxymethyl)-2,3-diaza-bicyclo[2.2.1]heptan-2-yl)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)-3-oxopropyl)-1H-indole-1-carboxylate (110)

110

111 ($250 \mathrm{mg} ; 0,26 \mathrm{mmol}$) was dissolved in a mixture of $\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}:$ THF in a ratio 3:1:1 $(10 \mathrm{~mL})$ and the solution was stirred overnight at rt.Then organic solvent was evaporated and the residue was extracted with ethyl acetate and washed with 5% aquous solution of NaHCO_{3}. After purification by silica gel flash chromatography (hexane / ethyl acetate 1:1) alcohol 110 (126 mg ; 58%) was obtained as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 0.94$ (dd, $J=12.6$ and $6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 1.32-1.43 (m, $2 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-7$), 1.60-1.68 (m, 11H, $\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{H}-6$ and $\mathrm{H}-7$), 2.78-2.92 (m, 2H, CH_{2}-ind and $\mathrm{CH}_{2}-\mathrm{Ph}$), 3.11 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}$ and $\mathrm{CH}_{2}-$ ind), $3.24-3.41\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right.$ and $\mathrm{CH}_{2}-\mathrm{Ph}$), 4.17 (t, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, Fmoc-9), 4.22-4.34 (m, 2H, CH2-Fmoc), 4.37 (s, 1H, H-1), 4.744.82 (m, 1H, H- α Phe), 4.92 (s, 1H, H-4), 5.00-5.06 (m, 1H, H- α Trp), 5.25 (bs, 1H, NH Trp), 7.13-7.17 (m, 1H, H-Ar), 7.20-7.29 (m, 7H, H-Ar, Fmoc-2 and -7), 7.33 (d, $J=7,8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 7.38 (t, $J=7,5 \mathrm{~Hz}, 2 \mathrm{H}, ~ F m o c-3$ and -6), 7.52 (dd, $J=10.9$ and 7.75 Hz , 3H, H-Ar, Fmoc-1 and -8), 7.59 (bs, 2H, H-Ar and NH urea), 7.74 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-4 and -5), 8,11 (d, $J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}$).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.8\left(\mathrm{CH}_{2}\right.$-ind), $28.4\left(\mathrm{CH}_{3}{ }^{\mathrm{B}} \mathrm{Bu}\right)$, $31.5(\mathrm{C}-6), 36.4(\mathrm{C}-7)$, $37.0\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 40.4(\mathrm{C}-5), 47.2$ ($\mathrm{Fmoc}-9$), 51.8 ($\mathrm{C}-\alpha \operatorname{Trp}$), $51.9\left(\mathrm{CH}_{3}-\mathrm{O}\right), 54.4$ ($\mathrm{C}-\alpha$ Phe), 59.9 (C-4), $61.8(\mathrm{C}-1), 64.0\left(\mathrm{CH}_{2}-\mathrm{O}\right), 67.8\left(\mathrm{CH}_{2}-\mathrm{Fmoc}\right), 84.2\left(\mathrm{C}^{t} \mathrm{Bu}\right)$, 114.8, 115.4, 119.6, 120.2, 123.3, 125.3, 127.3, 128.0, 128.6, 129.4, 135.7, 137.8, 141.4, 143.8, $143.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, 149.9 and 157.2 (CO carbamates), 160.2 (CO urea), 172.2 (CO ester), 179.3 (CO amide).

MALDI-TOF (ACH): m/z $842.4(\mathrm{M}+\mathrm{H})^{+}, 864(\mathrm{M}+\mathrm{Na})^{+}, 880(\mathrm{M}+\mathrm{K})^{+}$.

tert-butyl 3-(3-(3-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)-5-((tert-butyldimethylsilyloxy)methyl)-2,3-diaza-bicyclo[2.2.1]heptan-2-yl)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)-3-oxopropyl)-1H-indole-1-carboxylate (111)

111

To a mixture of PyBOP ($468 \mathrm{mg} ; 0,9 \mathrm{mmol}$), HOAt ($122 \mathrm{mg} ; 0,9 \mathrm{mmol}$) and Fmoc-$\mathrm{Trp}(\mathrm{Boc})-\mathrm{OH}(710 \mathrm{mg} ; 1,35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, DIPEA ($313 \mu \mathrm{~L} ; 1,8 \mathrm{mmol}$) was added and the mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$. Then, 110 was added and the mixture was allowed to stir at rt for 4 h . After that time more PyBOP ($468 \mathrm{mg} ; 0,9 \mathrm{mmol}$), HOAt ($122 \mathrm{mg} ; 0,9 \mathrm{mmol}$), Fmoc-Trp(Boc)-OH ($710 \mathrm{mg} ; 1,35 \mathrm{mmol}$) and DIPEA (313 $\mu \mathrm{L} ; 1,8 \mathrm{mmol})$ were added and reaction was stirred overnight. The crude was washed with a 5% aq solution of $\mathrm{NaHCO}_{3}(3 \times 10 \mathrm{~mL})$ and saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 10$ mL). The organic phase was dried over MgSO_{4}, filtered and solvent was removed under vacuum. 111 (310 mg ; 72%) was obtained after purification by column chromatography as a colorless oil.

IR (NaCI): v 3335, 3062, 2953, 2929, 1731, 1704, 1673, 1530, 1452, 1369, $1256 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.04$ (s, $\left.6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{-}{ }^{\text {Bui }}\right.$ - Si), 1.10 (dd, $J=12.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 1.34(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 1.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 1.68$ ($\mathrm{m}, 11 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{H}-6$ and $\mathrm{H}-7$), 2.80 (dd, $J=13.9$ and $11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{ind}$), $2.89(\mathrm{t}, J$ $\left.=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{ind}\right), 3.24(\mathrm{dd}, J=9.9$ and 6.1 Hz , $1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 3.30 (dd, $J=14.2$ and $3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$), 3.49 (dd, $J=9.3$ and 2.8 Hz , $1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}$), 4.18 (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Fmoc}-9$), $4.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Fmoc}\right), 4.32$ (dd, $J=$ 10.1 and $\left.7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Fmoc}\right), 4.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 4.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\alpha$ Phe), 4.85 (s, 1H, $\mathrm{H}-4), 5.05$ (m, 1H, H- $\alpha \operatorname{Trp}$), 5.21 (s, 1H, NH Trp), 7.15 (dd, $J=5.2$ and $3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ Ar), $7.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$), 7.27 (m, 3H, Fmoc-2; Fmoc-7 and $\mathrm{C}_{6} \mathrm{H}_{5}$), 7.33 (d, $J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$), $7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Fmoc}-3$ and -6$), 7.52\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and NH urea), $7.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, Fmoc-1 and -8), 7.74 (d, $J=7.6 \mathrm{~Hz}, F m o c-4$ and -5), 8.11 (d, $J=$ $7.8 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.3$ and $-5.2\left(\mathrm{CH}_{3}-\mathrm{Si}\right), 18.5\left(\mathrm{C}^{t} \mathrm{Bu}-\mathrm{Si}\right), 26.1\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}-\mathrm{Si}\right)$, $28.4\left(\mathrm{CH}_{3}{ }^{-}{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $31.3(\mathrm{C}-6), 36.9(\mathrm{C}-7), 37.0\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 39.8(\mathrm{C}-5), 47.2$ ($\mathrm{Fmoc}-9$), 51.7 ($\mathrm{C}-\alpha \operatorname{Trp}$), $52.0\left(\mathrm{CH}_{3}-\mathrm{O}\right)$, 54.6 ($\mathrm{C}-\alpha$ Phe), 60.9 ($\mathrm{C}-4$), $61.9(\mathrm{C}-1), 64.1\left(\mathrm{CH}_{2}-\mathrm{O}\right), 67.8$ ($\mathrm{CH}_{2}-\mathrm{Fmoc}$), 84.1 (C'Bu), 114.8, 115.4, 119.6, 120.2, 124.6, 125.1, 125.3, 126.8, 127.3, 127.4, 128.0, 128.6, 129.3, 135.8, 137.7, 141.4, $143.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 149.8$ and 157.0 (CO carbamates), 160.2 (CO urea), 172.4 (CO ester), 179.1 (CO amide).

ESI-MS (+): m/z $857[(\mathrm{M}-\mathrm{Boc})+\mathrm{H}]^{+}, 957(\mathrm{M}+\mathrm{H})^{+}$.

114

To a solution of 116 ($0.70 \mathrm{~g}, 1.54 \mathrm{mmol}, 1$ eq.) in ethyl acetate $(8 \mathrm{~mL}), \mathrm{Pd}(\mathrm{OH})_{2}(65 \mathrm{mg})$ was added and the mixture was allowed to stirr overnight. The catalyst was then filtered through celite and the filtrate was concentrated. The crude product was purified by column chromatography (Hexane/ethyl acetate $7: 3$) to yield 114 ($362 \mathrm{mg}, 73 \%$) as colorless oil.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.24-1.77$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-6$), 2.01 ($\mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-7$), 3.64 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1$), $4,25(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, ~ F m o c-9), 4.35$ (bs, 1H, H-4), 4.45 (t, J= $6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Fmoc}$), $7.26-7.33$ (m, 2H, Fmoc-2 and -7), $7.40(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-3 and -6), 7.61 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-1 and -8), 7.76 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-4 and -5).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 29.9 (C-5), 35.3 (C-6), 41.2 (C-7), 47.5 (Fmoc-9), 56.2 (C4), 60.6 ($\mathrm{C}-1$), $67.6\left(\mathrm{CH}_{2}-\mathrm{Fmoc}\right), 120.2$ (Fmoc-4 and -5), 125.3 (Fmoc-1 and -8), 127.3 (Fmoc-2 and -7), 128.0 (Fmoc-3 and -6), 141.7 (Fmoc-4a and -4b), 144.2 (Fmoc-8a and 9a), 156.4 (CO carbamate).

MS-ESI (+): m/z $321(\mathrm{M}+\mathrm{H})^{+}, 362(\mathrm{M}+\mathrm{MeCN})^{+}, 641(2 \mathrm{M}+\mathrm{H})^{+}$.

115

To a solution of 117 ($2.00 \mathrm{~g}, 4.78 \mathrm{mmol}$, 1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$, TFA (7 mL) was then added and the mixture was stirred for 2 h at rt . Excess of the reagent and solvent were evaporated under N_{2} stream and then under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was washed with saturated solution of NaHCO_{3}. Organic phase was then evaporated to dryness and the crude product was purified by column chromatography (hexane/ethyl acetate $7: 3$) to yield compoun 115 ($1.24 \mathrm{~g}, 81 \%$) as yellow solid.

IR (KBr): v 3414, 3255, 3066, 2953, 1719, 1541, 1248, 1202, $1168 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.26-2.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 4.22(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}$, Fmoc-9), 4.324.71 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Fmoc}$), 5.92-6.31 (m, 2H, H-5 and H-6), 7.25-7.34 (m, 2H, Fmoc-2 and -7), 7.41 ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-3 and -6), $7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Fmoc}-1$ and 8), 7.77 ($\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-4 and -5).

MS-ESI (+): m/z $140\left(\mathrm{M}-\mathrm{C}_{14} \mathrm{H}_{11}\right)^{+}, 179\left(\mathrm{C}_{14} \mathrm{H}_{11}\right)^{+}, 319(\mathrm{M}+\mathrm{H})^{+}, 637(2 \mathrm{M}+\mathrm{H})^{+}$.

116

Cyclopentadiene ($4.5 \mathrm{~mL}, 54.04 \mathrm{mmol}, 3.5$ eq.) was added to a solution of $118(6.00 \mathrm{~g}$, $15.44 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Lead tetraacetate (IV) $(6.84 \mathrm{~g}, 15.44$ $\mathrm{mmol}, 1$ eq.) was then added slowly and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. The mixture was filtered and concentrated under reduced pressure. Compound 116 (6.23 g , 89%) was obtained after purification by column chromatography hexane/ethyl acetate 7:3).
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.60-1.72$ (m, 2H, H-7), 4.22 (bs, 1H, Fmoc-9), 4.404.66 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Fmoc}$), 4.91-5.28 (m, 4H, CH $2-\mathrm{Ph}, \mathrm{H}-1$ and $\mathrm{H}-4$), 6.44 (bs, $2 \mathrm{H}, \mathrm{H}-5$ and H-6), 7.29-7.39 (m, 7H, Fmoc-2 and -7 and $\mathrm{C}_{6} \mathrm{H}_{5}$), $7.42(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, Fmoc-3 and -6), 7.63 (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-1 and -8), 7.79 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-4 and -5).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 47.1$ ($\mathrm{Fmoc}-9$), 48.1 (C-7), 65.3 and 65.4 (C-1 and C-4), 68.1 ($\mathrm{CH}_{2} \mathrm{Fmoc}$), 120.0 (Fmoc-4 and -5), 125.1(Fmoc-1 and -8), 127.1 ($\mathrm{Fmoc}-2$ and -7), 127.8 (Fmoc-3 and -6), 128.0, 128.2 and $128.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 135.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso), 141.4 (Fmoc-4a and -4b), 143.7 (Fmoc-8a and -9a), 158.8 (CO carbamate).

117

Cyclopentadiene ($3.3 \mathrm{~mL}, 39.5 \mathrm{mmol}, 3.5 \mathrm{eq}$.) was added to a solution of $119(4.00 \mathrm{~g}$, $11.28 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) at $0{ }^{\circ} \mathrm{C}$. Lead tetraacetate (IV) ($5.00 \mathrm{~g}, 11.28$ mmol, 1 eq.) was then added slowly and the mixture was stirred for 3 h at $0{ }^{\circ} \mathrm{C}$. The mixture was filtered to removed the lead and filtrate was concentrated under reduced pressure. Compound 117 ($4.12 \mathrm{~g}, 87 \%$) was obtained after purification by column chromatography hexane/ethyl acetate 7:3).
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{-t} \mathrm{Bu}\right), 1.66-1.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 4.24(\mathrm{t}, \mathrm{J}$ $=6.2 \mathrm{~Hz}, 1 \mathrm{H}$, Fmoc-9), 4.40-4.62 (m, 2H, CH2-Fmoc), 5.07 (bs, 2H, H-1 and H-4), 6.46 (bs, 2H, H-5 and H-6), 7.31 (t, J = 7.2 Hz, 2H, Fmoc-2 and -7), 7.40 (t, J = 7.4 Hz, Fmoc-3 and -6), 7.66 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-1 and -8), 7.76 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-4 and -5).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.3\left(\mathrm{CH}_{3}{ }^{t} \mathrm{Bu}\right), 47.1$ ($\mathrm{Fmoc}-9$), 48.1 (C-7), 65.3 and 65.4 (C-1 and C-4), 68.1 ($\mathrm{CH}_{2} \mathrm{Fmoc}$), 120.0 (Fmoc-4 and -5), 125.1(Fmoc-1 and -8), 127.1 (Fmoc-2 and -7), 127.8 (Fmoc-3 and -6), 141.4 (Fmoc-4a and -4b), 143.7 (Fmoc-8a and -9a), 158.8 (CO carbamate).

ESI-MS (+): m/z $179\left(\mathrm{C}_{14} \mathrm{H}_{11}\right)^{+}, 140\left[(\mathrm{M}-\mathrm{Boc})-\left(\mathrm{C}_{14} \mathrm{H}_{11}\right)\right]^{+}, 319[(\mathrm{M}-\mathrm{Boc})]^{+}, 419(\mathrm{M}+\mathrm{H})^{+}$.

118

A solution of $10 \% \mathrm{NaHCO}_{3}$ in $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL}, 95.2 \mathrm{mmol}, 5.3$ eq.) and $\mathrm{Fmoc}-\mathrm{Cl}(5.10 \mathrm{~g}$, $19.2 \mathrm{mmol}, 1.1 \mathrm{eq}$.) were added to a solution of benzyl carbazate ($3 \mathrm{~g}, 18 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF (70 mL) and the mixture was stirred overnight. The crude product was purified by chromatography (hexane/ethyl acetate $7: 3$) to yield compound 118 ($6.54 \mathrm{~g}, 93 \%$) as white foam.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 4.22$ (bs, $1 \mathrm{H}, \mathrm{Fmoc}-9$), 4.44 (d, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-$ Fmoc), 5.16 (s, 2H, CH 2 Ph), 6.66 (bs, 2H, NH), 7.25-7.35 (m, 7H, Fmoc-2 and -7 and $\mathrm{C}_{6} \mathrm{H}_{5}$), $7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-3 and -6$), 7.56(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-1 and -8$)$, 7.75 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-4 and -5).

119

To a solution of tert-butyl carbazate ($2.10 \mathrm{~g}, 15.9 \mathrm{mmol}, 1 \mathrm{eq}$.) in dioxane (30 mL), a solution of $10 \% \mathrm{NaHCO}_{3}$ in $\mathrm{H}_{2} \mathrm{O}$ ($80 \mathrm{~mL}, 95.4 \mathrm{mmol}, 6 \mathrm{eq}$.) was added and stirred for 5 min . Fmoc chloride ($4.93 \mathrm{~g}, 19.1 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was then added and the mixture was stirred overnight at rt. After solvent evaporation, the crude product was purified by column chromatography (hexane/ethyl acetate 8:2) to yield 119 ($4.21 \mathrm{~g}, 74 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right), 4.23(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Fmoc}-9)$, 4.30-4.39 (m, 2H, CH ${ }_{2}-\mathrm{Fmoc}$), 7.30 (td, $J=7.4$ and $0.8 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-2 and -7), 7.38 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Fmoc}-3$ and -6), 7.66 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Fmoc}-1$ and -8), 7.79 (d, $J=$ 7.5 Hz, 2H, Fmoc-4 and -5).
${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 27.4\left(\mathrm{CH}_{3}{ }^{\mathrm{t}} \mathrm{Bu}\right)$, 47.1 ($\mathrm{Fmoc}-9$), $67.4\left(\mathrm{CH}_{2} \mathrm{Fmoc}\right)$,
 127.6 (Fmoc-3 and -6), 141.4 (Fmoc-4a and -4b), 143.9 (Fmoc-8a and -9a).

MS-ESI (+): m/z $179\left(\mathrm{C}_{14} \mathrm{H}_{11}\right)^{+}, 255(\mathrm{M}-\mathrm{Boc})^{+}$, $299\left(\mathrm{M}-{ }^{\mathrm{t}} \mathrm{Bu}\right)^{+}, 355(\mathrm{M}+\mathrm{H})^{+}, 609([2 \mathrm{M}-$ $\mathrm{Boc}]+\mathrm{H})^{+}, 709(2 \mathrm{M}+\mathrm{H})^{+}$.

7.5. Experimental procedures of chapter 5

7.5.1. General procedures for solid phase peptide synthesis

Manual solid-phase peptide synthesis was performed in polypropylene syringes, each fitted with a polyethylene porous disk, using the Fmoc/Bu strategy. Solvents and soluble reagents were removed by suction. Washings between deprotection, coupling ans subsequent deprotection steps were carried out with DMF and DCM using 10 mL of solvent/g of resin each time. The Fmoc group was removed by treatment with 20% piperidine in DMF and acetylation steps were performed with $\mathrm{Ac}_{2} \mathrm{O}$-DIEA-DMF (1:2:7). Couplings and washes were performed at $25^{\circ} \mathrm{C}$. Couplings were monitored by Kaiser method. Manual parallel solid-phase synthesis was carried out in a VacMan® vacuum manifold for fast removal of excess of reagents an solvents. Resins were swollen in DCM for 30 min and DMF ($5 \times 0.5 \mathrm{~min}$).

7.5.1.1. Protocol for the incorporatation of the first amino acid

The first amino acid is incorporated to Rink Amide MBHA resin by forming an amide bond. This resin allows the obtention of peptidil carboxamide.

Step	Reagents	Operation	Treatments	Time
1	DMF	Wash	5	0.5 min
2	20\% piperidine/DMF	Deprotection	2	10 min
3	DMF	Wash	5	0.5 min
4	DCM	Wash	5	0.5 min
5	DMF	Wash	5	0.5 min
	Fmoc-aa-OH (3 eq.)			
6	DIPCDI (3eq.)	Coupling	1	2 h
	HOBt (3 eq.)			
7	DMF	Wash	5	0.5 min
8	DCM	Wash	5	0.5 min

Table III. General protocol for the incorporation of first amino acid.

Previosly swollen Rink Amide MBHA resin was treated with 20\% piperidine in DMF (2 x 10 min) to remove the Fmoc group and washed with DMF ($5 \times 0.5 \mathrm{~min}$) and DCM ($5 \times$ 0.5 min) and DMF ($5 \times 0.5 \mathrm{~min}$). For pre-activation of the first amino acid, 3 eq. of

DIPCDI and 3 eq. of HOBt were added to a solution of 3 eq. of protected amino acid (0.1 M) in DMF. After 3 min of pre-activation, the mixture was added to the resin and it was allowed to react for 2 h with occasional manual stirring. The resin was then washed with DMF ($5 \times 0.5 \mathrm{~min}$) and DCM ($5 \times 0.5 \mathrm{~min}$) and coupling was controlled by Kaiser test.

With a reduction of the loading of the resin was required only 0.4 eq . of DIPCDI, 0.4 eq . of HOBt and 0.4 eq. of Fmoc protected amino acid were used. Once firts amino acid was coupled, the loading of the resin was calculated by measuring the Fmoc groups remaining on the resin. For this, a small amount of resin (1 mg) was treated with 20% piperidine in DMF (10 mL) for 30 min . $\mathrm{N} \alpha-$ Fmoc deprotection with piperidine gives the fulvene-piperidine adduct, which can be quantitatively determined by spectrophotometric measurements at 290 nm using the following equation:

$$
\begin{aligned}
& \text { Loading }(\mathrm{mmol} / \mathrm{g})=\mathrm{Abs}_{\text {sample }} \times 0.4^{\mathrm{a}} \\
& \text { a based on } \varepsilon_{290 \mathrm{~nm}}=5800 \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}
\end{aligned}
$$

(ε depends also on the specifications of the spectrometer)

Step	Reagents	Operation	Treatments	Time
1	DMF	Wash	5	0.5 min
2	20\% piperidine/DMF	deprotection	2	10 min
3	DMF	Wash	5	0.5 min
4	DCM	Wash	5	0.5 min
	Fmoc-aa-OH (0.4 eq.)			
5	DIPCDI (0.4 eq.)	Coupling	1	2 h
	HOBt (0.4 eq.)			
6	DMF	Wash	5	0.5 min
7	Ac $2 \mathrm{O}^{2}(10$ eq. $)$			
	DIEA (20 eq.)	Capping	2	20 min
8	DMF	Wash	5	0.5 min
9	DCM	Wash	5	0.5 min

Table IV. Incorporation of the first amino acid to reduce the loading of the resin to $0.2 \mathrm{mmol} / \mathrm{g}$

7.5.1.2. Iterative peptide assembly

Deprotection

The resin was treated with 20% piperidine in DMF ($2 \times 10 \mathrm{~min}$) and subsequently washed with DMF ($5 \times 0.5 \mathrm{~min}$), DCM ($5 \times 0.5 \mathrm{~min}$) and DMF ($5 \times 0.5 \mathrm{~min}$).

Step	Reagents	Operation	Treatments	Time
1	DMF	Solvatation	5	0.5 min
2	20%	piperidine/DMF	Deprotection	2
10 min				
3	DMF	Wash	5	0.5 min
4	DCM	Wash	5	0.5 min
5	DMF	Wash	5	0.5 min

Table V. Protocol for Fmoc removal.

Amino acid coupling

Two methods have been used for the elongation of the peptide.

DIPCDI/HOBt

This method is based on the formation of benzotriazole ester of the N-Fmoc protected amino acid. We used the following reagents: DIPCDI (3 eq), HOBt (3 eq.) and N-Fmoc-aa-OH (3 eq.). This method is used for the comercial available amino acids.

Step	Reagents	Operation	Treatments	Time
1	DMF	Solvatation	5	0.5 min
2	20\% piperidine/DMF	Deprotection	2	10 min
3	DMF	Wash	5	0.5 min
4	DCM	Wash	5	0.5 min
5	DMF	Wash	5	0.5 min
6	Fmoc-aa-OH	Coupling	1	1 h
7	Coupling reagents	Wash	5	0.5 min
7	DMF	Wash	5	0.5 min
8	DCM	Wash	5	0.5 min
9	DMF			

Table VI. General protocol for peptide elongation.

A preactivated solution of 3 eq. of $\mathrm{N}-\mathrm{Fmoc}$ protected amino acid in DMF (3 mL) using 3 eq. of DIPCDI and 3 eq. of HOBt was added to the resin. After 1 h , the resin was washed with DMF ($5 \times 0.5 \mathrm{~min}$) and DCM ($5 \times 0.5 \mathrm{~min}$).

PyBOP/HOBt/DIEA

This method is based on the formation of the benzotriazole ester of N-Fmoc protected amino acid and it has been used fort he coupling of pseudodipeptide 13, and amino acids following diazanorbornane pseudodipeptides 108, 101b, 114 and 115.
In this method, a preactivated solution of 3 eq. of $\mathrm{N}-\mathrm{Fmoc}$ protected amino acid in DMF (3 mL) using 3 eq. of PyBOP, 3 eq. of HOBt or HOAt and 6 eq. of DIEA was added and was allowed to stand for 1 h . After this time the resin was washed with DMF (5×0.5 min) and DCM ($5 \times 0.5 \mathrm{~min}$).

Capping or N-terminal acetylation

With the aim of avoiding the formation of byproducts of difficult separation, capping of uncoupled amines in the polymeric support is required. For this, a solution of acetic anhydride and DIEA in DMF (1:2:7) is added to the resin ($2 \times 20 \mathrm{~min}$). The resin is, then washed with DMF ($5 \times 0.5 \mathrm{~min}$) and DMF ($5 \times 0.5 \mathrm{~min}$).

Step	Reagents	Operation	Treatment	Time
1	DMF	Solvatation	5	0.5 min
2	Ac2O (10 eq.)	Acetylation	2	20 min
	DIEA (20 eq.)			
3	DMF	Wash	5	0.5 min
4	DCM	Wash	5	0.5 min
5	DMF	Wash	5	0.5 min

Table VII. General method for amine acetylation.

7.5.1.3. Macrocyclic lactam ring formation

Typical procedure for Alloc/Allyl removal and macrocyclization

To the pre-swollen resin, under Ar atmosphere, dried DCM (1 mL) and phenylsilane (24 eq.) were added. After 5 min , a solution of $\mathrm{Pd}\left[\mathrm{PPh}_{3}\right]_{4}$ (0.1 eq.) in dried $\mathrm{DCM}(1 \mathrm{~mL})$ was added and the mixture was allowed to stand for 20 min . After this time the resin was drained off, washed with DCM ($5 \times 1 \mathrm{~min}$) and the deprotection procedure was
repeated twice more, allowing the mixture to stand for 20 min . Finally, the resin was successively washed with DCM ($5 \times 1 \mathrm{~min}$), DMF ($5 \times 1 \mathrm{~min}$) and DCM ($5 \times 1 \mathrm{~min}$).

Step	Reagents	Operation	Treatments	Time
1	DCM	Solvatation	5	0.5 min
2	PhSiH_{3} (24 eq.)		Deprotection	3
20 min				
3	${\mathrm{Pd}\left[\mathrm{PPh}_{3}\right]_{4}(0.1 \text { eq.) }}$	Wash	5	0.5 min
4	DCM	Wash	5	0.5 min
5	DCM	Wash	5	0.5 min

Table VIII. General method fort he Alloc/allyl removal.

Solid phase side chain cyclization (Rink Amide MBHA)

The macrocyclic lactam ring formation was then mediated by addition of PyBOP (3 eq.), HOAt (3 eq.) and DIEA (6 eq.) for 2 h . The process was repeated if necessary (Kaiser test was used to monitor completion).

Step	Reagents	Operation	Treatment	Time
1	DMF	Solvatation	5	0.5 min
	PyBOP (3 eq.)			
2	HOAt (3 eq.)	Cyclization	1	2 h
	DIEA (6 eq.)			
3	DMF	Wash	5	0.5 min
4	DCM	Wash	5	0.5 min
5	DMF	Wsh	5	0.5 min

Table IX. General procedure for lactam ring formation.

Cleavage of Rink Amide peptidil resin

A mixture of TFA/TIS $/ \mathrm{H}_{2} \mathrm{O}$ (95:2.5:2.5 $\mathrm{v}: \mathrm{v}: \mathrm{v}$) was added. After 2 h , the resin was removed from solution by filtration. Then, the resin was washed with TFA ($4 \times 5 \mathrm{~mL}$) and the crude peptide was recovered by precipitation with cold MTBE giving a white powder. Precipitate was then resuspended in $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}$ and liophylized.

Step	Reagents	Operation	Treatment	Time
1	DMF	Wash	5	0.5 min
2	DCM	Wash	5	0.5 min
3	TFA $/ \mathrm{TIS} / \mathrm{H}_{2} \mathrm{O}$		Cleavage	2
1.5 h				
4	$(95: 2.5: 2.5)$		4	2 min

Table X. General method for peptide cleavage from Rink Amide resin and side chain deprotection.

Crude peptides were analyzed by analytical HPLC and MALDI-TOF and purified by semi-preparative HPLC if necessary.

Cleavage of Sieber Amide peptidil resin

Cleavage of peptide-resin bond without side chain deprotection could be achieved using 1% TFA in DCM, following the protocol described in table XI.

Step	Reagents	Operation	Treatment	Time
1	DCM	Solvatation	5	0.5 min
2	1% TFA/DCM	Cleavage	3	15 h
3	DCM	Wash	5	0.5 min

Table XI. General protocol for peptide cleavage from the Sieber Amide resin.

Filtrates are collected in a round bottom flask containing a solution of 10% pyridine in MeOH . Solvents and excess of reagents were evaporated at reduced pressure and the resulting crude was precipitated in $\mathrm{H}_{2} \mathrm{O}$.

Solution phase cyclization (Sieber Amide)

When Sieber Amide resin was used, cyclization was carried out in solution. For this, PyBOP (1.5 eq.), HOBt (1.5 eq.) and DIEA (3 eq.) were added to a solution of protected linear peptide $\left(10^{-4} \mathrm{M}\right)$ in a mixture of DMF/DCM ($97: 3 \mathrm{v}: \mathrm{v}$).

Solution side chain deprotection (Sieber Amide)

Side chains of cyclic peptide were deprotected using a mixture of TFA/TIS/ $\mathrm{H}_{2} \mathrm{O}$ (95:2.5:2.5 v:v:v) for 2 h . Excess of reagents were evaporated under Ar stream and peptide was precipitated with cold MTBE.

Crude peptide was analyzed by analytical HPLC and MALDI-TOF and was purified by semipreparative HPLC.

7.5.2. Analytical methods

7.5.2.1 Kaiser Test ${ }^{196}$

The Kaiser test is a colorimetric test to detect the presence of free terminal amino groups in solid phase peptide synthesis. We used it to make sure that each coupling step in peptide synthesis goes to completion. It is based on the reaction of ninhydrin with amino groups to form a blue adduct. Therefore, an incomplete coupling cycle will lead to a positive Kaiser test, demonstrated by the development of a blue color, while coupling to completion will yield a negative (yellow) test.

To perform this test it is necessary to prepare two different solutions:

Kaiser A solution: 40 g of phenol were dissolved in 10 mL of absolute EtOH . In a separate flask a soltion of 65 mg of KCN in 100 mL of $\mathrm{H}_{2} \mathrm{O}$ was prepared, and 2 ml of this solution were diluted in 100 mL of pyridine which was distilled over ninhydrin. These two solutions were stirred separately for 45 min with 4 g of Amberlite MB-3 resin, filtered and combined. This is the Kaiser A solution.

Kaiser B solution: 2.5 g of ninhydrin were dissolved in 50 mL of absolute EtOH and solutions were stored in amber dripper bottles.

The recommended standard procedure consist in the addition of 3 drops of Kaiser A solution and 1 drop of Kaiser B solution over a few resin beads, and heat the mixture to $110{ }^{\circ} \mathrm{C}$ for 3 min . If the test is positive the resin and solution turned to blue. However, when resin and solution are colourless to light yellow the test is negative.

[^4]
7.5.2.2. High-performance liquid chromatography

Peptides were analized by analytical HPLC with a PDA detector, using a reverse-phase Symmetry C_{18} column ($4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$) and linear gradients of MeCN with 0.036% TFA into $\mathrm{H}_{2} \mathrm{O}$ with 0.045% TFA. The system was run at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ over 15 min.

7.5.2.3. Mass spectrometry (MALDI-TOF)

Molecular mass of all peptides were determined by MALDI-TOF mas spectrometry. For the preparation of the samples, $1 \mu \mathrm{~L}$ of a peptide solution ($1 \mathrm{mg} / \mathrm{ml}$) and $1 \mu \mathrm{~L}$ of the matrix were mixed over the MALDI plate and it was allowed to evaporate.

To record our mass spectra, CHCA matrix (α-cyano-4-hydroxycinnamic acid) ${ }^{197}$ was used. A concentration of $10 \mathrm{mg} / \mathrm{mL}$ of this matrix was prepared using a mixture of $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (1:1) with $0,1 \%$ TFA as solvent.

7.6. Synthesis of peptides

7.6.1. Synthesis of MT2

Rink amide MBHA resin ($300 \mathrm{mg}, 0.56 \mathrm{mmol} / \mathrm{g}$) was placed in a 10 mL polypropylene syringe fitted with a polyethylene filter disc. The resin was swollen with DCM for 30 min and firsts amino acid N^{α}-Fmoc-Lys(Alloc)-OH ($228 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.), was coupled after Fmoc removal as described in section 7.5.1.1. The following amino acids were then added to the growing peptide chain by stepwise addition of N^{α} - $\operatorname{Fmoc}-\operatorname{Trp}(\mathrm{Boc})-\mathrm{OH}$ ($265 \mathrm{mg}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}$.), N^{α}-Fmoc-Arg(Pbf)-OH ($327 \mathrm{mg}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}$.), N^{α} -Fmoc-D-Phe-OH (195 mg, $0.50 \mathrm{mmol}, 3 \mathrm{eq}$.), N^{α}-Fmoc-His(Trt)-OH ($312 \mathrm{mg}, 0.50$ mmol, 3 eq.), N^{α}-Fmoc-Asp(Allyl)-OH ($199 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.), N^{α}-Fmoc-Nle-OH ($178 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.) as describe in table VI, using DIPCDI ($78 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 3$ eq.) and HOBt ($68 \mathrm{mg}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}$.) in DMF (1 mL). In all cases, after 60 min of coupling, the ninhydrin test was negative. The N^{α}-Fmoc protecting groups were removed as described in table V. The peptide resin was then washed with DMF and DCM as described above and next coupling step was then initiated in a stepwise

[^5]manner. The terminal N^{α}-Fmoc group was removed in the usual manner and the amino group was acetylated following the procedure described in table VII. Peptide resin was then washed with DMF ($5 \times 0.5 \mathrm{~min}$) and DCM ($5 \times 0.5 \mathrm{~min}$) and was incubated with $\mathrm{Pd}\left[\mathrm{PPh}_{3}\right]_{4}$ an PhSiH_{3} as described in section 7.5.1.3. The resin was washed with DCM ($5 \times 0.5 \mathrm{~min}$), DMF ($5 \times 0.5 \mathrm{mi}$) and again with DCM ($5 \times 0.5 \mathrm{~min}$) and then was cyclized with PyBOP ($175 \mathrm{mg}, 0.33 \mathrm{mmol}, 2$ eq.), HOAt ($46 \mathrm{mg}, 0.33 \mathrm{mmol}, 2$ eq.) and DIEA ($115 \mu \mathrm{~L}, 0.67 \mathrm{mmol}, 4$ eq.) for 2 h . Cleavage from the resin and side chain deprotection was achieved following the general procedure for Rink Amide resin described above. TFA was then removed by evaporation under nitrogen, and the peptide was precipitated with cold anhydrous MTBE, dissolved in $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeCN}$ (1:1) and then lyophilized. The cyclic crude peptide was purified by semi-preparative HPLC (see conditions below) giving MT2 with a purity of 95%.

Melanotan 2:

Resin: Rink Amide MBHA
Loading: $0.56 \mathrm{mmol} / \mathrm{g}$
Scale: 0.168 mmol
Yield: 66 mg (38\%)
Purification: 0 to 23% MeCN for 1 min and 23 to 25% MeCN over 20 min.
Purity: 95\%

Characterization:

- HPLC (from 24 to $26 \% \mathrm{MeCN}$ over $15 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=8.0 \mathrm{~min}, 95 \%$; column: Symmetry $\mathrm{C}_{18}, 5 \mathrm{~mm}, 7.8 \times 100 \mathrm{~mm}$, detection at 220 nm).
- MALDI-TOF (m/z calcd. for $\mathrm{C}_{50} \mathrm{H}_{69} \mathrm{~N}_{15} \mathrm{O}_{9}$ 1023.54; found $1024.4[\mathrm{M}+\mathrm{H}]^{+}, 1046.4$ $[\mathrm{M}+\mathrm{Na}]^{+}, 1062.4[\mathrm{M}+\mathrm{K}]^{+}$.
- ${ }^{1} \mathrm{H}-\mathrm{RMN}, 600 \mathrm{MHz}$, solvent $\mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O}, 25{ }^{\circ} \mathrm{C}(\mathrm{ppm})$.

Residue	NH	$\mathrm{H}-\alpha$	$\mathrm{H}-\beta$	$\mathrm{H}-\gamma$	$\mathrm{H}-\delta$	$\mathrm{H}-\varepsilon$	HZ
Nle	8.08	3.93	1.36	0.96			
Asp	8.38	4.34	$2.63 / 2.42$				
His	8.33	4.00	$2.93 / 2.78$				
D-phe	8.26	4.30	$2.90 / 2.61$				
Arg	7.68	4.03	$1.36 / 1.29$	1.04	2.82	6.87	
Trp	8.31	4.37	3.39				
Lys	7.87	3.94	$1.46 / 1.42$	$1.047 / 0.96$	$1.25 / 1.13$	$2.95 / 2.89$	7.77

Aromatic H										
Residue	HD1	HD2	HE1	HE3	HZ1	HZ2	HH2	HZ3	QD	QE
His	6.81	6.81	8.21							
D-Phe					7.03				6.96	7.08
Trp	7.01		9.95	7.42		7.23	6.91	6.99		

7.6.2 Synthesis of \{Trp\} melanotans 121a and 121b

General procedures describe above were followed for the synthesis of peptides 121a and 121b. Rink amide resin ($300 \mathrm{mg}, 0.56 \mathrm{mmol} / \mathrm{g}$) was placed in a 10 mL polypropylene syringe fitted with a polyethylene filter disc. Coupling of the first residue was carried out as describe above. After Fmoc deprotection, lactam 13 ($128 \mathrm{mg}, 0.25$ mmol, 1.5 eq.), PyBOP ($131 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.5 \mathrm{eq}$.), HOAt ($34 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and DIEA ($86.3 \mathrm{~mL}, 0.50 \mathrm{mmol}, 3$ eq.) were added and the mixture was allowed to stand for 1 h . After coupling of pseudodipeptide 13, N^{α}-Fmoc-Arg(Pbf)-OH (327 mg , $0.50 \mathrm{mmol}, 3 \mathrm{eq}$.), N^{α}-Fmoc-D-Phe-OH ($\left.195 \mathrm{mg}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}.\right)$, N^{α}-Fmoc-His(Trt)OH ($312 \mathrm{mg}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}$.), N^{α}-Fmoc-Asp(Allyl)-OH ($199 \mathrm{mg}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}$.), N^{α}-Fmoc-Nle-OH ($178 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.) were added sequentially to the resin as described for the synthesis of MT2. Acetylation of terminal amino group, removal of Alloc/allyl, cyclization and cleavage was performed as described above to obtain peptides 121a and 121b which were separated by semi-preparative HPLC.

Peptide 121a:

Resin: Rink Amide MBHA

Loading: $0.56 \mathrm{mmol} / \mathrm{g}$
Scale: 0.168 mmol
Yield: 33 mg (19\%)
Purification: 0 to 23% MeCN for 1 min and 23 to 26% MeCN over 20 min.
Purity: 99\%

Characterization:

- HPLC (from 10 to $35 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ over $8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=7.5 \mathrm{~min}$, 99%; column: SunFire $3.5 \mu \mathrm{~m}, 4.6 \times 100 \mathrm{~mm}$, detection at 220 nm).
- MALDI-TOF (m / z calcd. for $\mathrm{C}_{54} \mathrm{H}_{74} \mathrm{~N}_{16} \mathrm{O}_{10}$ 1106.58; found $1107.6[\mathrm{M}+\mathrm{H}]^{+}$, $1129.6\left[\mathrm{M}+\mathrm{Na}^{+}, 1145.6[\mathrm{M}+\mathrm{K}]^{+}\right.$.
- ${ }^{1} \mathrm{H}-\mathrm{RMN}, 600 \mathrm{MHz}$, solvent $\mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O}(9: 1), 25{ }^{\circ} \mathrm{C}(\mathrm{ppm})$.

Residue	NH	$\mathrm{H}-\alpha$	$\mathrm{H}-\beta$	$\mathrm{H}-\gamma$	$\mathrm{H}-\delta$	$\mathrm{H}-\varepsilon$	HZ
Nle	8.09	3.90	1.37				
Asp	8.26	4.31	$2.52 / 2.33$				
His	8.12	4.21	$2.60 / 2.50$				
D-Phe	8.28	4.22	$2.86 / 2.76$				
Arg	7.73	3.85	$0.91 / 0.81$	$0.39 / 0.32$	$2.35 / 2.23$	6.56	
\{Trp\}-Gly	8.04	$4.51 / 3.69$ (Gly)	3.49				
Lys	8.26	4.09	$1.19 / 1.11$	$1.63 / 1.49$	$1.39 / 1.26$	$2.98 / 2.88$	7.87

Aromatic H										
Residue	HD1	HD2	HE1	HE3	HZ1	HZ2	HH2	HZ3	QD	QE
His	6.83									
D-Phe $\{$ Trp\}-Gly	6.93		9.98	7.41		7.20	6.87	6.94		

Peptide 121b:

Resin: Rink Amide MBHA
Loading: $0.56 \mathrm{mmol} / \mathrm{g}$
Scale: 0.168 mmol
Yield: 37 mg (20\%)
Purification: 0 to 25% MeCN for 1 min and 25 to 27% MeCN over 20 min.
Purity: 88\%

Characterization:

- HPLC (from 10 to $35 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ over $8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=7.7 \mathrm{~min}, 88 \%$; column: SunFire $3.5 \mu \mathrm{~m}, 4.6 \times 100 \mathrm{~mm}$, detection at 220 nm).
- MALDI-TOF (m/z calcd. for $\mathrm{C}_{54} \mathrm{H}_{74} \mathrm{~N}_{16} \mathrm{O}_{10} 1106.58$; found $1107.5[\mathrm{M}+\mathrm{H}]^{+}$, $1129.5[\mathrm{M}+\mathrm{Na}]^{+}, 1145.6[\mathrm{M}+\mathrm{K}]^{+}$.

7.6.3. Synthesis of $\{\mathrm{Arg}\}$ melanotan 120

For the synthesis of ψ-melanotan 120, Rink Amide MBHA resin ($300 \mathrm{mg}, 0.56 \mathrm{mmol} / \mathrm{g}$) was used. Coupling of first amino acid was performed as described above. Then, N^{α} -Fmoc-Trp(Boc)-OH ($265 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.) and diazanorbornane 108 (296 mg , $0.33 \mathrm{mmol}, 2 \mathrm{eq}$) were added as described in table VI using DIPCDI ($78 \mu \mathrm{~L}$, for 0.50
mmol and 3 eq.; $52 \mu \mathrm{~L}$ for 0.33 mmol and 2 eq .) and HOBt (68 mg for 0.50 mmol and 3 eq.; 45 mg for 0.33 mmol and 2 eq.) as coupling agents. Next, N^{α}-Fmoc-D-Phe-OH ($651 \mathrm{mg}, 1.68 \mathrm{mmol}, 10 \mathrm{eq}$.) was coupled using PyBOP ($874 \mathrm{mg}, 1.68 \mathrm{mmol}, 10 \mathrm{eq}$.), HOAt ($229 \mathrm{mg}, 1.68 \mathrm{mmol}, 10 \mathrm{eq}$.) and DIEA ($575 \mathrm{~mL}, 3.36 \mathrm{mmol}, 20$ eq.). The process was repeated once more as coupling was still not complete as monitored by analytical HPLC. Subsequent peptide elongations were carried out as described in table VI using DIPCDI ($78 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}$.) and HOBt ($68 \mathrm{mg}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}$.). Capping and removal of Alloc/allyl was performed as described for the synthesis of MT2 and peptide was cyclized on-resin using PyBOP ($349 \mathrm{mg}, 0.67 \mathrm{mmol}, 4 \mathrm{eq}$.), HOAt ($91 \mathrm{mg}, 0.67 \mathrm{mmol}, 4$ eq.) and DIEA ($230 \mathrm{~mL}, 1.34 \mathrm{mmol}, 8$ eq.) in DMF (3 mL) for 24 h . Cleavage, side chains deprotection, and work-up were carried out as described above.

Peptide 120:

Resin: Rink Amide MBHA
Loading: $0.56 \mathrm{mmol} / \mathrm{g}$
Scale: 0.168 mmol
Yield: 34 mg (19\%)
Purification: 0 to 23% MeCN for 1 min and 22 to 25% MeCN over 20 min.
Purity: 94\%

Characterization:

- HPLC (from 15 to $40 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ over $8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=4.4 \mathrm{~min}, 94 \%$; column: SunFire $3.5 \mu \mathrm{~m}, 4.6 \times 100 \mathrm{~mm}$, detection at 220 nm).
- MALDI-TOF (m/z calcd. for $\mathrm{C}_{50} \mathrm{H}_{69} \mathrm{~N}_{15} \mathrm{O}_{9}$ 1023.54; found $1024.4[\mathrm{M}+\mathrm{H}]^{+}, 1046.4$ $[\mathrm{M}+\mathrm{Na}]^{+}, 1062.4[\mathrm{M}+\mathrm{K}]^{+}$.

7.6.4. Synthesis of ψ-melanotan 122

Peptide 122 was synthesized following the procedure described for the sinthesis of MT2. Starting from Rink amide resin ($300 \mathrm{mg}, 0.56 \mathrm{mmol} / \mathrm{g}$), first amino acid, N^{α}-Fmoc-Lys(Alloc)-OH ($228 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.), was coupled after Fmoc removal as described in section 7.5.1.1. N^{α}-Fmoc-Trp(Boc)-OH (265 mg, $0.50 \mathrm{mmol}, 3 \mathrm{eq}$.), N^{α} -Fmoc-Arg(Pbf)-OH ($327 \mathrm{mg}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}$.), oxazolopiperidone 15 ($142 \mathrm{mg}, 0.33$
mmol, 2 eq.), N^{α}-Fmoc-Asp(Allyl)-OH ($199 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.) and N^{α}-Fmoc-Nle-OH ($178 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.) were added sequentially to the H-Lys(Alloc)-rink amide resin as described for the synthesis of MT2, using DIPCDI ($78 \mu \mathrm{~L}$ for 0.50 mmol and 3 eq; $52 \mu \mathrm{~L}$ for 0.33 mmol and 2 eq .) and HOBt ($68 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.; 45 mg for 0.33 mmol and 2 eq.). Capping, Alloc/allyl removal, cyclization and cleavage were carried out as described for the synthesis of MT2.

Peptide 122:

Resin: Rink Amide MBHA
Loading: $0.56 \mathrm{mmol} / \mathrm{g}$
Scale: 0.168 mmol
Yield: 68 mg (44\%)
Purification: 0 to 22% MeCN for 1 min and 22 to 24% MeCN over 20 min.
Purity: 99\%

Characterization:

- HPLC (from 10 to $40 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ over $8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=6.5 \mathrm{~min}$, 99%; column: SunFire $3.5 \mu \mathrm{~m}, 4.6 \times 100 \mathrm{~mm}$, detection at 220 nm).
- MALDI-TOF (m/z calcd. for $\mathrm{C}_{43} \mathrm{H}_{63} \mathrm{~N}_{13} \mathrm{O}_{10} 921.48$; found $922.5[\mathrm{M}+\mathrm{H}]^{+}, 944.5$ $[\mathrm{M}+\mathrm{Na}]^{+}, 960.5[\mathrm{M}+\mathrm{K}]^{+}$.
- ${ }^{1} \mathrm{H}-\mathrm{RMN}, 600 \mathrm{MHz}$, solvent $\mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O}(9: 1), 25{ }^{\circ} \mathrm{C}(\mathrm{ppm})$.

Residue	NH	Ha	Hb	Hg	Hd	He	Hz	
Nle		8.10	4.06	1.43	1.30	$0.81 / 0.48$	1.81	
Asp		8.28	4.55	$2.60 / 2.44$				
Lactam 15	Aa 3	8.54	3.66	$2.15 / 1.97$	$1.76 / 1.39$	4.73		
	Aa 4		4.33	3.66				
Arg		7.79	4.23	$1.68 / 1.60$	$1.42 / 1.32$	$2.96 / 3.05$	7.12	
Trp		8.43	4.37	$3.06 / 3.00$				
Lys		8.02	3.87	$1.45 / 1.32$	$1.07 / 0.96$	1.19	$3.03 / 2.87$	7.86

Aromatic H							
Residue	HD1	HE1	HE3	HZ2	HH2	HZ3	
Trp	7.03	9.94	7.43	7.26	7.00	6.91	

7.6.5. Synthesis of ψ-melanotan 123

N^{α}-Fmoc-Asp(Allyl)-OH (199 mg, $0.50 \mathrm{mmol}, 3$ eq.) was coupled to Rink Amide MBHA resin ($300 \mathrm{mg}, 0.56 \mathrm{mmol} / \mathrm{g}$) as described in table III. Oxazolopiperidone 15 (142 mg , $0.33 \mathrm{mmol}, 2$ eq.), N^{α}-Fmoc-Trp(Boc)-OH (265 mg, $0.50 \mathrm{mmol}, 3 \mathrm{eq}$.), $\mathrm{N}^{\alpha}-$ Fmoc-Arg(Pbf)-OH ($327 \mathrm{mg}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}$.), N^{α}-Fmoc-D-Phe-OH ($195 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.) and Fmoc-His(Trt)-OH ($312 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.) were added successively to H -Asp(Allyl)-rink amide resin using DIPCDI ($78 \mu \mathrm{~L}$ for 0.50 mmol and 3 eq ; $52 \mu \mathrm{~L}$ for 0.33 mmol and 2 eq.) and HOBt ($68 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.; 45 mg for 0.33 mmol and 2 eq.) in DMF (2 mL). Alloc removal was performed following the protocol described in section 7.5.1.3. Then, the terminal N^{α}-Fmoc group was removed in the usual manner (see table V) and peptide was cyclized as described above using PyBOP ($175 \mathrm{mg}, 0.33$ mmol, 2 eq.), HOAt ($46 \mathrm{mg}, 0.33 \mathrm{mmol}, 2$ eq.) and DIEA ($115 \mathrm{~mL}, 0.67 \mathrm{mmol}, 4 \mathrm{eq}$.) for 2 h . Cleavage, deprotection and precipitation were carried out as described above.

Peptide 123:

Resin: Rink Amide MBHA
Loading: $0.56 \mathrm{mmol} / \mathrm{g}$
Scale: 0.168 mmol
Yield: 72 mg (46\%)
Purification: 0 to 22% MeCN for 1 min and 22 to 23% MeCN over 20 min.
Purity: 98\%

Characterization:

- HPLC (from 10 to $40 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ over $8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=5.7 \mathrm{~min}, 98 \%$; column: SunFire $3.5 \mu \mathrm{~m}, 4.6 \times 100 \mathrm{~mm}$, detection at 220 nm).
- MALDI-TOF (m/z calcd. for $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{~N}_{14} \mathrm{O}_{9} 922.42$; found $923.4[\mathrm{M}+\mathrm{H}]^{+}, 945.5$ $[\mathrm{M}+\mathrm{Na}]^{+}, 961.5[\mathrm{M}+\mathrm{K}]^{+}$.
- ${ }^{1} \mathrm{H}-\mathrm{RMN}, 600 \mathrm{MHz}$, solvent $\mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O}(9: 1), 25{ }^{\circ} \mathrm{C}(\mathrm{ppm})$.

Residue	NH	Ha	Hb	Hg	Hd	He
Asp	8.32	4.35	$2.69 / 2.51$			
His	8.09	4.35	$2.83 / 2.75$			
D-Phe	8.54	4.31	$2.81 / 2.72$			
Arg	7.88	3.95	$1.21 / 1.04$	$0.82 / 0.67$	2.65	6.78
Trp		7.80	4.37	$3.11 / 3.02$		
Lactam 15	Aa 6	7.94	3.64	$2.05 / 1.58$	$1.51 / 1.30$	4.71
	Aa 7		4.40	$4.20 / 3.80$		

Aromatic H										
Residue	HD1	HD2	HE1	HE3	HZ2	HH2	HZ3	QD	QE	
His		6.79								
D-Phe								6.96	7.10	
Trp	7.04		9.92	7.40	7.24	6.99	6.92			

7.6.6. Synthesis of ψ-melanotans 124 and 125

Synthesis of ψ-melanotan 124 started with the coupling of N^{α}-Fmoc-Asp(Allyl)-OH (199 $\mathrm{mg}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}$.) to Rink Amide MBHA resin ($300 \mathrm{mg}, 0.56 \mathrm{mmol} / \mathrm{g}$) as described above. Then, the H-Asp(Allyl)-O-rink amide resin is incubated with CDI (272 mg, 1.68 mmol, 10 eq.) for 20 min and the process was repeated twice. After washing the resin with DMF ($5 \times 0.5 \mathrm{~min}$), DCM ($5 \times 0.5 \mathrm{~min}$) and again DMF ($5 \times 0.5 \mathrm{~min}$) diazanorbornane 101a ($169 \mathrm{mg}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}$.) in a mixture of DCM/DMF (1:1) was added and the mixture was allowed to stand for 2 h . Capping of the resin with $\mathrm{Ac}_{2} \mathrm{O}$ ($159 \mu \mathrm{~L}, 1.68 \mathrm{mmol}, 10 \mathrm{eq}$.) and DIEA ($575 \mu \mathrm{~L}, 3.36 \mathrm{mmol}, 20 \mathrm{eq}$) in DMF (3 mL) was carried out in order to minimize purification difficulties. Resin was then washed with DMF ($5 \times 0.5 \mathrm{~min}$) and DCM ($5 \times 0.5 \mathrm{~min}$) and $\mathrm{N}^{\alpha}-\mathrm{Fmoc}-\operatorname{Trp}(\mathrm{Boc})-\mathrm{OH}(885 \mathrm{mg}, 1.68$ mmol, 10 eq.) was coupled using PyBOP ($874 \mathrm{mg}, 1.68,10$ eq.), HOAt ($229 \mathrm{mg}, 1.68$ $\mathrm{mmol}, 10$ eq.) and DIEA ($575 \mathrm{~mL}, 3.36 \mathrm{mmol}, 20$ eq.). The process had to be repeated as coupling was not complete (monitored by HPLC). Amino acids N^{α}-Fmoc-Arg(Pbf)OH ($327 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.), N^{α}-Fmoc-D-Phe-OH ($195 \mathrm{mg}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}$.) and Fmoc-His(Trt)-OH ($312 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.) were added using DIPCDI ($78 \mu \mathrm{~L}, 0.50$ mmol, 3 eq.) and HOBt ($68 \mathrm{mg}, 0.50 \mathrm{mmol}, 3$ eq.) but in the case of N^{α}-Fmoc-Arg(Pbf)OH and N^{α}-Fmoc-D-Phe-OH it was necessary another coupling reaction. Removal of Alloc group in the usual manner followed by terminal N^{α}-Fmoc removal gives the
protected linear peptide which was cyclized as described above, allowing the mixture to stand for 24 h .

Peptide 125 was obtained following the same protocol, starting from Rink amide resin ($300 \mathrm{mg}, 0.56 \mathrm{mmol} / \mathrm{g}$) and adding diazanorbornane 114 ($162 \mathrm{mg}, 0.50 \mathrm{mmol}, 3 \mathrm{eq}$.). N^{α}-Fmoc-Trp(Boc)-OH ($885 \mathrm{mg}, 1.68 \mathrm{mmol}, 10$ eq.) was coupled using PyBOP (874 $\mathrm{mg}, 1.68,10 \mathrm{eq}$.$) , HOAt (229 \mathrm{mg}, 1.68 \mathrm{mmol}, 10 \mathrm{eq}$.) and DIEA ($575 \mathrm{~mL}, 3.36 \mathrm{mmol}$, 20 eq.) and a second coupling with N^{α}-Fmoc-Trp(Boc)-OH ($885 \mathrm{mg}, 1.68 \mathrm{mmol}, 10 \mathrm{eq}$.) was coupled using PyBOP ($874 \mathrm{mg}, 1.68,10 \mathrm{eq}$.), oxyma pure ($239 \mathrm{mg}, 1.68 \mathrm{mmol}, 10$ eq.) and DIEA ($575 \mathrm{~mL}, 3.36 \mathrm{mmol}, 20 \mathrm{eq}$.).

Peptide 124:

Resin: Rink Amide MBHA
Loading: $0.56 \mathrm{mmol} / \mathrm{g}$
Scale: 0.168 mmol
Yield: 6 mg (3\%)
Purification: 0 to 21% MeCN for 1 min and 21 to 23% MeCN over 20 min.
Purity: 92\%

Characterization:

- HPLC (from 10 to $40 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ over $8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=5.6 \mathrm{~min}, 92 \%$; column: SunFire $3.5 \mu \mathrm{~m}, 4.6 \times 100 \mathrm{~mm}$, detection at 220 nm).
- MALDI-TOF (m/z calcd. for $\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{~N}_{14} \mathrm{O}_{8} 880.41$; found $881.4[\mathrm{M}+\mathrm{H}]^{+}, 903.5$, $[\mathrm{M}+\mathrm{Na}]^{+}, 919.4[\mathrm{M}+\mathrm{K}]^{+}$.

Peptide 125:

Resin: Rink Amide MBHA
Loading: $0.56 \mathrm{mmol} / \mathrm{g}$
Scale: 0.168 mmol
Yield: 2 mg (1\%)
Purification: 0 to 21% MeCN for 1 min and 21 to 23% MeCN over 20 min.
Purity: 95\%
Characterization:

- HPLC (from 10 to $40 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$ over $8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=5.9 \mathrm{~min}, 95 \%$; column: SunFire $3.5 \mu \mathrm{~m}, 4.6 \times 100 \mathrm{~mm}$, detection at 220 nm).
- MALDI-TOF (m/z calcd. for $\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{~N}_{14} \mathrm{O}_{7} 864.41$; found $865.4[\mathrm{M}+\mathrm{H}]^{+}, 887.4$ $[\mathrm{M}+\mathrm{Na}]^{+}, 903.4[\mathrm{M}+\mathrm{K}]^{+}$.
- ${ }^{1} \mathrm{H}-\mathrm{RMN}, 600 \mathrm{MHz}$, solvent $\mathrm{H}_{2} \mathrm{O}: \mathrm{D}_{2} \mathrm{O}(9: 1), 25^{\circ} \mathrm{C}(\mathrm{ppm})$.

Residue	NH	$\mathrm{H}-\alpha$	$\mathrm{H}-\beta$	$\mathrm{H}-\gamma$	$\mathrm{H}-\delta$	$\mathrm{H}-\varepsilon$
Asp	8.105	4.93	3.09	2.98		
His		4.03	2.54			
D-Phe	8.35	4.36	$2.79 / 2.70$			
Arg	8.05	4.31	0.51	0.36	2.55	6.75
Trp		4.32	$2.75 / 2.60$			
Aza-114			n.d	n.d	n.d	

[^0]: ${ }^{195}$ Armarego, W. L. F.; Perrin, D. D., Purification of Laboratory Chemicals, Butterworth Heinemann.

[^1]: ${ }^{13} \mathrm{C}-\mathrm{RMN}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.6$ (C-5), 32.4 (C-4), 42.4 (C-6), $53.7(\mathrm{C}-3), 67.8\left(\mathrm{CH}_{2}-\right.$ $\mathrm{Ph})$, 126.9 and $135.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$-ipso-Bn i $\mathrm{C}_{6} \mathrm{H}_{5}$-ipso- Ph), 128.3, 128.4, 128.7, 128.9 and $138.6\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, 168.7 i 170.7 (CO-ester and lactam).

[^2]: * Signals corresponding to racemate cis.

[^3]: ${ }^{13} \mathrm{C}-\mathrm{RMN}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.1$ and $28.3\left(\mathrm{CH}_{3}{ }^{\mathrm{B}} \mathrm{Bu}\right)$, $34.5(\mathrm{C}-6), 36.7(\mathrm{C}-7), 41.3(\mathrm{C}-$ 5), 47.5 ($\mathrm{Fmoc}-9$), $50.2\left(\mathrm{CH}_{2}-\mathrm{N}\right), 57.5(\mathrm{C}-4), 59.9(\mathrm{C}-1), 67.4\left(\mathrm{CH}_{2}-\mathrm{Fmoc}\right), 83.7\left(\mathrm{C}^{t} \mathrm{Bu}\right)$, 120.2 (Fmoc-4 and -5), 125.4 (Fmoc-1 and -8), 127.3 (Fmoc-2 and -7), 127.9 (Fmoc-3 and -6), 141.5 (Fmoc-4a and -4b), 144.2 (Fmoc-8a and -9a), 153.6, 153.8 and 156.0 (CO carbamate).

[^4]: ${ }^{196}$ Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I., Anal. Biochem., 1970, 34, 595-598.

[^5]: ${ }^{197}$ Beavis, R. C.; Chaudhary, T.; Chait, B. T., Org. Mass Spectrom., 1992, 27, 156-158.

