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QCM Quartz-crystal microbalance 

RNA Ribonucleic acid 

RoTat X Rode Trypanozoon antigen type X 

RP Reverse phase 

SAM Self-assembled monolayer 

SD Standard deviation 

SDnoise Standard deviation of the noise 

SDS Sodium dodecyl sulfate 

SEM Scanning electron microscope 

SPR Surface plasmon resonance 

ST Salmonella enterica serovar  Typhi 

SWCNT Single-walled carbon nanotube 

T  Thymine 

TEM Transmission electron microscope 

TOF Time-of-flight mass spectrometer 

TSA Tryptic soy agar 

TSB Tryptic soy broth 

U Uracil 

UV-Vis Ultraviolet-Visible spectrophotometer 

VAT Variant antigen type 

VSG Variable surface glycoprotein 

XLD Xylose-lysine-deoxycholate agar 
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1.1. State of the art in analytical methods for pathogen and 

disease-related proteins detection 

The purpose of section 1.1 is to give a chronological overview of the current 

analytical methods for protein (subsection 1.1.1) and pathogen detection (subsection 

1.1.2). A special remark is made on those biosensing platforms based on 

nanostructured components, which display outstanding characteristics in limits of 

detection or time of analysis. Additionally, a comparison between past and current 

techniques is discussed in order to give an appropriate perspective of the methods 

available. A constantly increasing number of articles are published in peer-reviewed 

journals related to the field of analytical methods for pathogen and protein detection. 

Therefore, the bibliographic revision in this section was mainly limited to the most 

relevant analytical techniques aimed for the direct detection of bacteria, disease-

related proteins and molecular biomarkers for other pathogens such as viruses or 

parasites. The term ‘direct’ stands for those methods that use sensors –therefore 

establishing a direct contact between the target in the sample and the recognition 

layer of the sensor– and do not need significant pre-processing steps. However, some 

analytical methods that do not make use of sensors but represent an important 

breakthrough in pathogen or protein detection at very low concentrations are also 

included in this section. As an example, state of the art analytical techniques related to 

the detection of clinically relevant proteins involved in infectious and non-infectious 

diseases at extremely low concentrations, as in prion-related diseases or cancer, are 

discussed. In the relevant cases, a brief description of the advantages and limitations 

of the techniques is also included.  

1.1.1. Methods for the detection of disease-related proteins 

Protein detection methods can be classified into four major groups: a) 

electrophoretic separations; b) techniques based on the measurement of variations in 

surface properties due to molecular recognition events between a molecular receptor 

and its target (e.g. surface plasmon resonance, surface-enhanced raman spectroscopy 

and others); c) mass spectrometry-based techniques; and d) immunoassay-based 
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methods, in which an antigen-antibody interaction is detected by electrochemically 

active labels, luminescence, fluorescence or radioactivity.[1] Among this latter type of 

techniques, the methods most commonly used in diagnostics rely on western-blot 

assays, immunoblotting techniques, immunoprecipitation, immunofluorescence and 

immunosorbent assays.[1
,2

–3] These methods are widely used in research as well. All of 

them are characterized by different advantages: in general they are highly sensitive 

and specific. On the other hand they are labor-intensive, time-consuming and require 

highly trained technical staff. In many cases expensive equipment is needed, which 

makes them unsuitable for high-throughput protein detection or point-of-care 

diagnostics applications. In 1971, one of the immuno-assay based techniques, the 

enzyme-linked immunosorbent assay (ELISA), was developed by Engvall and 

Perlmann.[4] The technique represents one of the most important revolutions in 

protein detection in the past decades and has been adapted for the detection of a 

large number of target proteins. The technique represents the preferred tool in both, 

clinical diagnostics and protein research protocols.[5] ELISA assays have the advantage 

of being completely customizable towards different targets, they are affordable and 

can achieve very low detection limits. However, the assay also requires highly qualified 

personnel and special equipment and the reproducibility of antibodies is not always 

guaranteed. Furthermore, an accurate quantification of the analyte is not possible and 

false negative results can be obtained if the target protein is not extracted from the 

matrix effectively.[6] 

Nanostructured materials, assigned mainly to group (b) in the classification made 

above, are ideal for biosensor applications in protein detection.[7] Nanomaterials 

possess extraordinary optical, electronic and catalytic properties, which allow the 

design of simplified detection platforms at lower detection limits within shorter assay 

times than traditional detection techniques.[8] Very interesting approaches on the 

development of detection platforms based on quantum-dots (QD), nanoparticles (NP), 

nanotubes, nanorods, nanowires and nanosheets that make use of their optical, 

electrical, magnetic or catalytic properties have recently been explored in protein 

detection at very low concentrations either for diagnosis of infectious diseases or in 

proteomic research.[9,10] In this context, electrochemical immunoassays coupled with 
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the recent advances in nanobiotechnology and nanoparticles offer new alternatives for 

clinical diagnostic procedures. Nanoparticles are being used for the electrochemical 

detection of proteins at fM to pM concentration levels taking advantage of their 

versatility and electrochemistry inherent advantages.[10] Nanotubes, and particularly, 

carbon nanotubes are also incorporated in electrochemical- and catalytic-based 

sensors in protein detection.[11] Their physical characteristics and electronic properties 

converted them into an ideal material to improve sensitivity in small molecule and 

protein detection. In this way, the detection of proteins such as streptavidin, bovine 

serum albumin, prostate-specific antigen, HIV-1 protease and others at detection 

ranges between fM to pM concentration levels have demonstrated that nanotubes are 

a promising material in the electrochemical detection of proteins.[7,8,11
,12

–
13,

14] Therefore, 

in this subsection, a special emphasis is made on those protein detection methods 

based on nanostructured materials such as nanotubes, nanoparticles or other 

nanostructures regardless on the type of detection employed (e.g. mass, optical or 

electrochemical detection). However, as mentioned before, some outstanding protein 

detection methods that are not based on nanostructured materials but represent an 

important breakthrough in terms of limit of detection, time of analysis or assay 

simplicity are also discussed. 

Wong and collaborators[15] demonstrated in 1998 that nanotube tips with the 

capability of biological discrimination could be created by coupling biomolecular 

probes to the carboxyl groups that are present at the open tip ends. They used these 

modified nanotubes as Atomic Force Microscopy (AFM) tips to detect single protein-

ligand interactions. This breakthrough opened up the possibility to both detect a 

specific protein at the single-molecule level as well as to measure for the first time the 

strength of the interaction between a protein and its ligand. Unfortunately, the 

elevated cost of the AFM technique seriously represents a limitation for its widespread 

use in research or clinical diagnostic. In the same year, Chan and Nie[16] developed 

highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium 

selenide) covalently coupled to biomolecules for their use in ultrasensitive biological 

detection. QDs labeled with the protein transferrin underwent receptor-mediated 

endocytosis in cultured cervical cancer cells (HeLa cells). Moreover, QD labeled with 
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Immunoglobulin G (IgG) were able to recognize some proteins such as the bovine 

serum albumin (BSA). The use of luminescent QD in biosensing opened up the 

possibility to customizable portable protein detection kits. Moreover, the versatility of 

QD to be adapted into different sensing platforms (e.g. electrochemical detection 

platforms) allowed innumerable applications in both protein and pathogen detection 

at fM levels.[10] 

In 1999, Rowe et al.[17] developed an array biosensor for the simultaneous 

detection of bacteria, viruses and proteins. The sensor was based on the recognition of 

the analytes by antigen-specific antibodies previously immobilized in a patterned array 

on the surface of a planar waveguide. Bound analyte was subsequently detected using 

fluorescent tracer antibodies. The sensor was capable of detecting viral, bacterial, and 

protein analytes in a 14 minutes assay with limits of detection for Bacillus globigii, MS2 

bacteriophage, and staphylococcal enterotoxin B (SEB) of about 105 colony-forming 

units (CFU)/mL, 107 plaque-forming units (PFU)/mL, and 10 ng/mL, respectively. 

Despite the advantages presented by the multiplexed detection of several targets in 

terms of time of analysis, such a biosensing platform was limited by the use of 

fluorescent labels which resulted in affected limits of detection.  

In 2001, Wu and collaborators[18] demonstrated that microcantilevers of different 

geometries in combination with polyclonal antibodies could be used in the label-free 

detection of prostate-specific antigen (PSA) over a wide range of concentrations (0.2 

ng/mL to 60 µg/mL) in a background of human serum albumin (HSA) and human 

plasminogen (HP) at 1 mg/ml, making this a clinically relevant diagnostic technique for 

detecting prostate cancer. In this case, intermolecular nanomechanics involved in the 

target-recognition event bent the cantilever, which can be optically detected. Lieber’s 

group[19] published in the same year the development of boron-doped silicon 

nanowires able to detect streptavidin at a pM concentration range using biotin as a 

biorecognition molecule and field-effect transistors (FET) as detection technique. The 

combination of these technologies opened up the possibility for large-scale studies of 

protein interactions with other biomolecules.[20] Unfortunately, the complexity and 

high cost involved in the construction of silicon nanowires and microcantilevers 
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represents a limitation for their ample use in either point-of-care or research sensing 

applications. 

Star and co-workers[21] used in 2003, nanoscale field-effect transistor devices with 

carbon nanotubes as the conducting channel to detect protein binding. Biotin 

molecules were used as the biorecognition element in the detection of streptavidin. 

FETs are transistors that rely on an external field to control the conductivity of a 

channel of one type of carrier in a semiconductor material.[22] In the case of analytical 

sensors, these external fields have an electrochemical origin. Consequently, the origin 

of the current change is a variation in the potential, which in turn is affected by the 

analyte concentration in the test sample.[23] In the same year, Chen et al.[24] developed 

FETs for the specific detection of monoclonal antibodies (mAbs) to the human 

autoantigen U1A, a prototype target of the autoimmune response in patients with 

systemic lupus erythematosus and mixed connective tissue disease. FET-based sensors 

experienced a constant growth within further years as a versatile platform for the 

detection of different protein targets.[11-13] Unfortunately, the need of expensive 

devices and the complicated processes involved in sensor construction is a serious 

limitation for FET applications in ‘real life’ biosensing. Nam and collaborators[25] also 

developed in the same year a method for detecting PSA using magnetic microparticle 

probes with antibodies that specifically bind to PSA and nanoparticle probes that are 

encoded with DNA that is unique to the protein target of interest and antibodies that 

can sandwich the target captured by the NP probes. Magnetic separation of the 

complex target-probe followed by dehybridization of the oligonucleotides on the NP 

probe surface allowed the determination of the presence of the target protein by 

identifying the oligonucleotide sequence released from the NP probe. Magnetic 

separation of biological targets represented an interesting option for biosensing 

applications in complex matrices. Nowadays magnetic nanoparticle probes represent a 

platform which is applied in many other different fields such as catalysis.[26]  

Savran and others[27] reported in 2004 the label-free detection of Taq DNA 

polymerase proteins at pM concentration levels using a microfabricated cantilever-

based sensor that was functionalized with DNA aptamers to act as receptor molecules. 

The sensor used two adjacent cantilevers that constituted a sensor/reference pair and 
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allowed direct detection of the differential bending between the two cantilevers. One 

cantilever was functionalized with the aptamers while the other was blocked with 

single-stranded DNA. However, as in the previous examples of cantilever-based 

sensors, the complexity and cost involved in sensor construction is again an important 

limitation for its ample use. That year, Dierksen and co-workers[28] developed a 

cytosensor based on living chromatophores from Betta splendens (Siamese fighting 

fish) for the detection of bacterial toxins. The agents tested were Streptococcus 

pyogenes toxins streptolysin S and streptolysin O, Clostridium tetani tetanolysin, 

Staphylococcus aureus alpha-toxin and Vibrio parahemolyticus hemolysin. Such an 

interesting biosensing technique exhibited minimum detectable concentration values 

in the order of nM to μM level in a 5 minutes assay. However, the special cautions 

needed to maintain the chromatophores alive, restricted this biosensing format only to 

limited applications under highly controlled conditions.  

In 2005, Hianik and collaborators[29] showed that methylene blue (MB) could be 

used as an electrochemical indicator in the detection of thrombin with high sensitivity 

and selectivity using aptamers. In the same work, the binding of thrombin to aptamers 

was detected also by the quartz-crystal microbalance (QCM) method in a continuous-

flow system. The use of electrochemical indicators is a versatile approach that has 

been exploited for years in different electrochemical biosensing formats.[22] 

Unfortunately, the detection of proteins by quartz-crystal microbalance-based 

methods require of a precise control of the laboratory conditions during 

measurements. In that same year, Rodríguez, Kawde and Wang[30] reported the label-

free recognition of proteins by aptamer-modified electrodes using impedance 

spectroscopy. So and co-workers[31] also reported in 2005 the first successful 

demonstration of a single-walled carbon nanotube field effect transistor (SWNT-FET) 

biosensor using aptamers as an alternative to protein-based sensing elements. In that 

report, the authors detected thrombin at nM concentrations using thrombin-specific 

aptamers. Label-free electrochemical biosensing methods based on nanostructured 

materials offer several advantages in protein detection. The reduced time of analysis 

and improved limits of detection originated by the outstanding transducing properties 
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exhibited by nanostructured materials represent an interesting option for biosensor 

design. 

Gu et al.[32] demonstrated in 2006 a general strategy to generate biofunctional 

magnetic nanoparticles useful in protein separation and pathogen detection, with a 

high sensitivity and high selectivity using antibodies and other biorecognition 

molecules. The authors were able to sense down to the nM concentration level of 

proteins in a 5 minutes assay. Such an interesting technique demonstrated that 

biosensors based on magnetic nanoparticles are useful for target extraction from 

complex matrices. Byon and Choi[33] also reported the creation of highly sensitive FETs 

based on antibodies as recognition elements able to detect 1 pM of the Protein A from 

Staphylococcus aureus. Moreover, Saá, Castilla and Soto[34] developed a method for 

the rapid detection of the PrPSc (misfolded prion protein), the main component of the 

prions responsible for transmissible spongiform encephalopathies (e.g. Creutzfeldt-

Jakob disease in humans, bovine spongiform encephalopathy, scrapie in sheep and 

chronic wasting disease in other animals).[35] The authors used the protein misfolding 

cyclic amplification (PMCA),[36] a technique that produces accelerated prion replication 

in order to amplify the quantity of PrPSc present in sample. In this way, they reported 

the detection of as low as 20 to 50 molecules of monomeric hamster PrP in blood, 

which corresponded to a single unit of infectious oligomeric PrPSc.  

In 2007, Maehashi and co-workers[37] reported the detection of Immunoglobulin E 

proteins (IgE) using a label-free protein biosensor based on aptamer-modified carbon 

nanotube FETs. The authors were able to detect as low as 250 pM of IgE in one hour. In 

the same year, Mehta et al.[38] detected proteins and bacteria using an array of 

feedback capacitance sensors. An integrated array of micron-dimension capacitors, 

originally developed for biometric applications (fingerprint identification), was 

engineered for biodetection of proteins and bacteria. Upon functionalization with 

antibodies and in conjunction with signal amplification schemes that result in 

perturbation of the dielectric constant around the captured antigens, this system was 

used as a detector of biological agents. You and collaborators[39] reported in that same 

year nanoparticle-fluorescent polymer ‘chemical nose’ sensors for the detection, 

identification and quantification of proteins. The authors created a sensor array 
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containing six non-covalent gold nanoparticle-fluorescent polymer conjugates. The 

biosensing platform was based on the polymer fluorescence quenching by gold 

nanoparticles. The presence of proteins disrupted the nanoparticle-polymer 

interaction, producing distinct fluorescence response patterns. The method represents 

an important advance in multiple protein detection and given the simplicity of the 

technique its incorporation into commercial protein detection kits seems to be 

possible in a future. 

Numnuam et al.[40] reported in 2008, the first example of an aptamer-based 

potentiometric sandwich assay of proteins at nM concentration levels using thrombin 

as a prototype example. The measurements were based on CdS quantum dot labels of 

a secondary aptamer, which were determined with a novel solid-contact Cd2+-selective 

polymer membrane electrode after dissolution with hydrogen peroxide. The electrode 

exhibited cadmium ion detection limits of 100 pM in 100 mL samples and of 1 nM in 

200 μL microwells, using a calcium-selective electrode as a pseudoreference electrode. 

Unfortunately, the latter sandwich-type detection method may offer serious 

limitations in protein detection as well as possible false positive results when samples 

containing oxidative species are analyzed. Evtugyn and others[41] also reported in 2008 

the potentiometric detection of DNA-protein interactions at nM concentration levels 

using polymeric phenothiazine dyes, methylene blue (MB) and methylene green (MG) 

electrochemically deposited onto a glassy carbon electrode and covered with a DNA 

aptamer specific to human α-thrombin. Despite of the simplicity in both the biosensing 

platform and the potentiometric detection approach used, the dependence on several 

consecutive steps in order to perform the electromotive force measurements (initial 

preconditioning, first EMF measurement, sample incubation, second EMF 

measurement, assessment of the ΔEMF) have limited the technique from high-

throughput and real-time protein detection applications. Lee and co-workers[42] 

demonstrated in that same year the rapid and accurate measurement of biomarkers in 

tissue and fluid samples using a chip-NMR biosensor based on a miniaturized 

diagnostic magnetic resonance (DMR) system for multiplexed, quantitative and rapid 

analysis. By using magnetic particles as a proximity sensor to amplify molecular 

interactions, the handheld DMR system could perform measurements on unprocessed 
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biological samples. They showed the capability of the DMR system by using it to detect 

bacteria in real time, as well as to measure a series of protein biomarkers. This latter 

technique is a promising tool in point-of-care biosensing applications. 

In 2009, a great amount of high-quality scientific papers on the field of protein 

biosensing platforms were reported. Fukasawa and collaborators[43] reported in that 

year an aptamer bound/free separation system for thrombin and IgE detection. The 

complementary strand was immobilized onto beads and the aptamer was labeled with 

pyrroquinoline quinone glucose dehydrogenase (PQQGDH). In the absence of a target, 

the aptamer was trapped by beads, whereas in the presence of a target, the aptamer 

bound to the target was not trapped. The aptamer-target complexes were then 

recovered easily and detected by PQQGDH activity. The system allowed the detection 

of 270 pM thrombin and 1 nM IgE. Zhang and co-workers[44] also reported in that year 

the detection of platelet-derived growth factor protein (PDGF) at pg/mL 

concentrations. The authors used a voltammetric aptasensor based on proximity-

dependent surface hybridization assay consisting of a pair of aptamer probes with a 

short complementary sequence that recognizes different sites of target PDGF. 

Simultaneous recognition of a single PDGF molecule by the aptamer pair enabled the 

hybridization between the complementary sequences of both aptamer probes, which 

kept two tail sequences of both aptamer probes in close proximity and promoted 

cooperative annealing of the aptamer-protein-aptamer sandwiched complex on 

capture probes immobilized on the electrode. Ferrocene tags, previously introduced at 

the terminus of one aptamer probe, were drawn in close contact with the electrode 

providing a strong redox signal in voltammetric detection. Voltammetric sensing-based 

methods are relatively simple and allow to reach very low detection limits. However, 

the dependence of the above reported biosensing platform on a pair of aptamer 

probes complicates the possibility of the technique to be tailored against a wide range 

of protein targets. Such a limitation comes from the fact that each aptamer must bind 

to different epitopes on the target molecule, which is in contrast, a more complicated 

task in aptamer synthesis (see for example, Shamah et al. 2008[45] and subsection 1.2.3 

in this chapter). Cash, Ricci and Plaxco[46] demonstrated in the same year the use of a 

voltammetric sensor for the detection of protein-small molecule interactions directly 
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in serum with limits of detection at the nM concentration level. The small molecule 

recognition elements biotin and digoxigenin were used in the detection of streptavidin 

and anti-digoxigenin antibodies. Chen and others[47] also reported in 2009 a 

nanoplasmonic label-free biosensing platform for the label-free detection of the 

extracellular adherence protein (EAP) found on the outer surface of the bacterium 

Staphylococcus aureus and of the PSA cancer biomarker with detection limits at the fM 

concentration level. De and co-workers[48] developed conjugate proteins of 

nanoparticles and green fluorescent proteins for protein differentiation using linear 

discriminant analysis (LDA). The sensor was based on a hybrid synthetic-biomolecule 

that used arrays of green fluorescent protein (GFP) and nanoparticles to detect 

proteins at nM concentrations in both buffer and human serum. Distinct and 

reproducible fluorescence-response patterns were obtained from five serum proteins 

(human serum albumin, IgG, transferrin, fibrinogen and α-antitrypsin), both in buffer 

and spiked into human serum. The distinct response patterns resulted from the 

differences on the molecular interactions between the five target proteins and the 

GFP-NP conjugates. Fan et al.[49] also published the development of nanofluidic 

proteomic immunoassays for the serial analysis of oncoprotein activation in clinical 

specimens. The technique allowed the quantification of picograms of total and low-

abundance oncoprotein isoforms in nanoliter volumes. Gaster and collaborators[50] 

also developed in 2009 a magnetic nanosensor technology that was matrix insensitive 

and capable of rapid, multiplex protein detection with resolution down to attomolar 

concentrations. Park et al.[51] developed combined viral nanoparticles, which were 

engineered to have dual affinity for troponin antibodies and nickel, with three-

dimensional nanostructures including nickel nanohairs. The authors were able to 

detect troponin levels (a protein biomarker for myocardial infarction[52]) in human 

serum samples at attomolar concentrations.  

In 2010, Estrela and others[53] developed a metal-oxide-semiconductor field-effect 

transistors (MOSFETs) to achieve label-free target protein detection at fM level of 

concentrations, using peptide aptamers that recognize highly related protein partners 

of the cyclin-dependent kinase family. Unfortunately, the requirement of clean room 

facilities as well as the complicated procedures required for FET construction limits the 
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wide use of this type of sensors. Kara, Merkoçi and co-workers[54] reported in the same 

year the label-free bioelectronic detection of aptamer-thrombin interaction based on 

electrochemical impedance spectroscopy (EIS) technique at the pM concentration 

level. The authors used multiwalled carbon nanotubes (MWCNT) as modifiers of 

screen-printed carbon electrotransducers. However, the relative high cost and 

complexity of the EIS instruments limit this type of aptamer-based electrochemical 

biosensors to only research applications. An et al.[55] also published in that year the 

real-time electrical detection of protein molecules using dielectrophoretically aligned 

SWCNT-film FET aptasensors. This device allowed the detection of thrombin down to 

the pM concentration levels. In that same year, Düzgün and collaborators[56] 

performed an exploratory attempt to study the potentiometric response of a SWCNT-

based aptasensor in terms of the conformational changes of the aptamer molecules 

during the target recognition event in the detection of a free protein such as thrombin 

at nM concentrations in diluted buffer solutions. Unfortunately, despite the simplicity 

of this latter mentioned technique, its applications in more complex matrices at lower 

concentration values remained an open question.  

In 2011, Atarashi and others[57] reported a new PrPSc amplification assay, called 

real-time quaking-induced conversion, which allowed the detection of ≥1 fg of PrPSc in 

diluted Creutzfeldt-Jakob disease brain homogenate. Such a technique exhibits a great 

sensitivity in PrPSc detection. Nevertheless the method can only be used in prion-

related protein detection, variations to the technology may contribute to the creation 

of a similar method in the detection of other types of protein. Ogi et al.[58] reported in 

that same year the nM detection of human IgG with Staphylococcus aureus protein A 

nonspecifically immobilized on the film surfaces thin-film oscillator biosensors using a 

picosecond ultrasound method. In this method, ultrashort light pulses are focused on 

the surfaces of the films to excite the through-thickness resonance vibrations, which 

were detected by the delayed probe-light pulses using an optoelastic effect. 

Unfortunately, the use of the technique with different biorecognition elements in 

order to expand its biosensing capabilities have not been explored in that work.  
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1.1.2. Methods for bacterial detection 

Effective prevention of infectious diseases caused by bacteria is possible when an 

adequate monitoring is implemented at the critical points for potential hazards. In 

critical situations as in an outbreak, the opportune achievement of information is 

crucial and thus, the use of rapid methods for the identification of pathogens are a 

necessity in order to trace their source and characteristics.[59] Unfortunately, the 

detection of bacteria has remained for years based on standard microbiological 

methods.[60] These methods have been a typical practice in clinical diagnostics as well 

as in ensuring the safety of food and water to be consumed all around the world for 

almost one century. These techniques make use of specific media for selective 

enrichment and culturing of bacteria, followed by further isolation steps, and finally 

confirmatory biochemical tests are also needed (Scheme 1.1). The process duration 

depends on the target pathogen, but in most of the cases a confirmatory result can 

take from a few days to even weeks.[61]  

 

Scheme 1.1. Standard protocols for pathogen detection usually include several steps. 

Numerous biosensing platforms have incorporated nanostructured materials as a 

strategy for reducing the limits of detection or the assay times in the detection of 

bacteria.[14] As a result, different approaches have been proposed, that include flow 

cytometry,[62] miniaturized biochemical tests, physicochemical methods for 

bacteriological metabolite measurements,[63] capillary electrophoresis,[64,65] ELISA[66] 

and fluorescence resonance energy transfer assays[67]. Methods based on 

electrochemical assays have been also developed. As an example, several 

electrochemical-based platforms have been reported, such as chip-based devices with 

UNIVERSITAT ROVIRA I VIRGILI 
ULTRASENSITIVE DETECTION OF PATHOGENS IN REAL-TIME. POTENTIOMETRIC BIOSENSORS BASED ON SINGLE-WALLED CARBON NANOTUBES AND APTAMERS 
Gustavo Adolfo Zelada Guillen 
DL:T. 1713-2011 



Chapter 1 

15 

electrochemical impedance spectroscopy detection,[68] amperometric[69] and 

potentiometric[70] measurements by means of diverse types of both functionalized and 

simple electrodes. In any case, an ideal useful assay is supposed to detect, at least, the 

minimum number of living microorganism cells that are able to cause an infection in 

the body in a reasonable time of analysis. Nowadays, several biosensors have been 

developed for microorganism detection, improving substantially the analysis time and 

detection limit, showing promising results as 100 CFU/mL of bacteria in a 1 hour assay 

for ideal conditions.[71] Currently available ultrafast PCR detection methods are able to 

detect 5 CFU in only 7 minutes. [72] An important advance was achieved in this field, 

using a B cell-based sensor for the rapid identification of pathogens, reaching 

detection limits of 500 CFU/g in less than 5 minutes.[73] Unfortunately, the applications 

of those reported methods in high-throughput pathogen detection is challenged by the 

need of trained staff and the use of expensive devices.[74] Therefore, this subsection 

deals with the state of the art in analytical techniques for bacteria detection with a 

special focus on those methods with  outstanding performance characteristics in terms 

of limit of detection, time of analysis or assay simplicity.  

In 1999, Belgrader et al.[72] published an ultrafast PCR detection method for 

pathogen sensing at very low concentration levels (5 CFU) in 7 minutes, within a total 

reaction volume of 25 mL. This technique allowed the rapid detection of pathogenic 

DNA sequences using real time PCR analysis monitored by a spectrofluorometric 

thermal cycler.[75] The total assay required at least 20 minutes to be completed. The 

technique represented a breakthrough in bacteria detection at zero-tolerance levels. 

However, the method requires preprocessing steps for prior bacteria lysis and 

subsequent DNA extraction. This makes the overall procedure both expensive and 

complicated.  

In 2000, Tu and others[76] reported the use of streptavidin coated magnetic beads 

for detecting 103-104 CFU of pathogenic bacteria by light addressable potentiometric 

sensors (LAPS). Streptavidin coated magnetic beads, partially labeled with biotinylated 

anti Escherichia coli O157 antibodies, were used to capture Escherichia coli O157:H7.  

Captured bacteria were further labeled with fluorescein-conjugated anti-E. coli 

O157:H7 antibodies and urease-labeled anti-fluorescein antibody. Magnetically 
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concentrated bacteria-containing complexes were then immobilized through 

streptavidin-biotin interactions on biotinylated nitro-cellulose membranes assembled 

as sample sticks for the instrument.  The rate of pH change associated with the 

production of NH3, by the urease in urea-containing solution was measured by a LAPS. 

Such an interesting technique demonstrated that magnetic beads can be successfully 

used in the extraction of bacteria from complex samples. However, the dependence of 

the technique on the detection of NH3 as the reaction by-product challenged its 

deployment into more complex samples. As an example, samples with a strong pH 

buffering effect or samples that might be containing urea as an interfering agent would 

either lead to false-negatives or false-positives, respectively.  

In 2001, Ilic and co-workers[77] demonstrated the single-cell detection with 

micromechanical oscillators. E. coli-cell-antibody binding events were detected using a 

resonant frequency-based mass sensor, comprised of low-stress silicon nitride 

cantilever beams. The binding events involved in the interaction between anti-E. coli 

O157:H7 antibodies immobilized on the cantilever beam and the O157 antigen present 

on the surface of pathogenic E. coli O157:H7 were measured in that manner. Such a 

platform facilitated the studies of bacteria-antibody interactions in mechanical terms 

for the first time. However, the incorporation of this biosensing platform as a 

quotidian tool for bacteria detection was limited by the device construction 

complexity. 

Ruan, Yang and Li developed in 2003 electrochemical sensors for the detection of 

bacteria. Using the electrochemical impedance spectroscopy technique for measuring 

bacteria recognition events, the authors developed immunosensor chips for the 

detection of 103 CFU/mL E. coli O157:H7.[78] The authors also developed an 

electrochemical sensor for the detection of viable Salmonella typhimurium in a 

selective medium by monitoring oxygen consumption with cyclic voltammetry.[79] 

Using this method, the authors were able to detect changes on the voltammetric 

curves originated by the presence of 1-2 CFU/mL in a total assay time of 10 h. Despite 

the limit of detection achieved by this latter example, the assay still depended on the 

correct sample enrichment with bacteria. Baeumner and collaborators[80] also 

developed in the same year a highly sensitive and specific RNA biosensor for the rapid 
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detection of 40 CFU/mL of Escherichia coli in water in 15-20 minutes. Viable E. coli 

were identified and quantified via a 200 nucleotide long target sequence from mRNA. 

The limits of detection and time of analysis achieved by this method simplified 

enormously the detection of E. coli in aqueous samples. That same year, Rider and 

others[73] reported the use of genetically engineered cells in a pathogen identification 

sensor. This sensor used B lymphocytes that have been engineered to emit light within 

seconds of exposure to specific bacteria.  The biosensor was able to sense 500 CFU/g 

bacteria in less than 5 minutes. This breakthrough in bacteria detection represented 

one of the first examples of bacteria detection methods in close to real time 

conditions.  

In 2004, Zhao et al.[81] developed a rapid bioassay for single bacterial cell 

quantitation in 20 minutes using bioconjugated nanoparticles. The bioconjugated 

nanoparticles provided an extremely high fluorescent signal for bioanalysis when 

conjugated with antibodies. The antibody-conjugated nanoparticles were used to 

identify a variety of bacterium, such as Escherichia coli O157:H7, through antibody-

antigen interaction and recognition. The previous example facilitated the design of 

portable biosensing platforms based on light-emitting nanoparticles which may 

represent in a future, a universal bacteria detection method. Moreover, Baeumner et 

al.[82] also reported in that same year the detection of 10 viable spores of Bacillus 

anthracis in 4 h targeting RNA sequences of the pathogen. The biosensor was based on 

an oligonucleotide sandwich-hybridization assay format. It used a membrane flow-

through system with an immobilized DNA probe that hybridized with the target 

sequence. Signal amplification was provided when the target sequence hybridized to a 

second DNA probe that was coupled to liposomes encapsulating a dye. The amount of 

liposomes captured in the detection zone could be read visually and quantified with a 

hand-held reflectometer. The extremely low detection limit achieved demonstrated 

that the previously described biosensing platform is a promising tool with interesting 

applications not only in biowarfare agent detection but also for the development of 

diagnostic tools of a wide range of human and animal diseases. 

In 2005, Zaytseva and others[83] developed a microfluidic biosensor module for 

pathogen detection. The biosensor recognition principle was based on DNA/RNA 
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hybridization and liposome signal amplification. Superparamagnetic beads were 

incorporated into the system as a mobile solid support. However, the dependence on 

expensive equipment for the construction of the microfluidic systems may represent a 

limitation in the deployment of this sensor in high throughput applications. Ochoa et 

al.[84] also reported the immunomagnetic isolation of enterohemorrhagic Escherichia 

coli O157:H7 from ground beef and its identification by matrix-assisted laser 

desorption-ionization time-of-flight mass spectrometry (MALDI-TOF) and database 

searches. Using this method, the authors were able to detect 106 CFU/mL in 25 

minutes. Unfortunately, the dependence of the technique on accurately developed 

databases, as well as the high cost of the spectrometry-based techniques represented 

a serious limitation for its ample use. Kulagina and co-workers[85] used the 

antimicrobial peptide magainin I as a recognition element for Escherichia coli O157:H7 

and Salmonella typhimurium detection on an array-based biosensor. They immobilized 

magainin I on silanized glass slides using biotin-avidin chemistry, as well as through 

direct covalent attachment. Immobilized magainin I was able to bind Salmonella and E. 

coli at detection limits ranging between 104 to 105 CFU/mL. Despite the limit of 

detection achieved, such an interesting platform represented the first example of 

antimicrobial peptides as recognition elements in a biosensing platform aimed for 

pathogen detection, which opened up the possibilities for this class of molecules to be 

used in different biosensing device formats. 

Gao and collaborators[86] reported in 2006 the development of biofunctional 

magnetic nanoparticles combined with fluorescent probes for the detection of bacteria 

in blood.  The authors were able to detect E. coli and Staphlococcus aureus at 100 

CFU/mL concentrations in blood samples. The use of fluorescent probes demonstrated 

that easy-to-use magnetic nanoparticles could be used in optical biosensing platforms 

at very low concentration levels. Yu et al[87] have also reported in the same year a mid-

IR biosensor for the detection and fingerprinting of pathogens on gold island 

functionalized chalchogenide films. Anti-E. coli O157:H7 and anti-Salmonella 

antibodies were immobilized on gold islands previously deposited on the surface of IR-

transparent Ge-containing chalcogenide glass films. The films functionalized with anti-

E. coli O157:H7 and anti-Salmonella antibodies were used to detect as low as 103 
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CFU/mL E. coli O157:H7 and Salmonella enteriditis through label-free IR fingerprinting 

in a 90 minute assay. Regardless of the rapidness and simplicity of the assay, the 

requirement for an IR device represents a limitation for this technique. Tok and co-

workers[88] demonstrated that metallic striped nanowires could be used in multiplexed 

fluorescence-based immunoassay platforms for pathogen detection. The authors 

detected Bacillus globigii spores to simulate Bacillus anthracis and other bacterial 

species with a limit of detection of 105 CFU/mL in a 3-4 h assay. The method developed 

represented an important advance in rapid pathogen detection methods. The 

technique allowed discriminating between different targets in a biosensing format 

similar to an electronic barcode readout. In that year, Ko and Grant[89] developed a 

novel fluorescence resonance energy transfer-based optical fiber biosensor for the 

rapid detection of Salmonella typhimurium in ground pork samples. Labeled antibody–

protein G complexes were formed via the incubation of anti-Salmonella antibodies 

labeled with FRET donor fluorophores and protein G labeled with FRET acceptor 

fluorophores. The signal detected by the fiber optic portable biosensor allowed the 

detection of 103 CFU/g of the pathogen. Such a portable biosensing platform 

represented an interesting example of FRET-based biosensor. Unfortunately, the 

detection system depended on a correct selection of the suitable recognition element, 

otherwise, unspecific responses may be achieved. Subramanian et al.[90] investigated 

as well the capability of alkane monothiol and dithiol dendritic tether based SAMs in 

conjunction with surface plasmon resonance (SPR) for the detection of 105 CFU/mL of 

Staphylococcus aureus using antibodies as recognition elements.  

In 2007, Maalouf et al.[91] compared an EIS-based biosensing platform with a SPR-

based biosensor in the detection of E. coli using polyclonal antibodies for the 

biorecognition of the pathogen. In this way, the detection limit of E. coli found by SPR 

spectroscopy was 107 CFU/mL while the EIS technique allowed the detection of 103 

CFU/mL. In this way, the authors demonstrated that electrochemical biosensors are a 

powerful tool in the development of highly sensitive detection platforms. In that same 

year, Balasubramanian and others[92] demonstrated that lytic phage could be used as a 

specific and selective probe for the detection of Staphylococcus aureus by SPR 

spectroscopy. The biosensor developed was able to sense as low as 104 CFU/mL. This 
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latter example demonstrated that virus can be used as biorecognition elements in 

pathogen detection while the possible applications of such a platform are enormous. 

Escamilla-Gómez and collaborators[93] developed an amperometric immunosensor for 

the quantification of Staphylococcus aureus using SAM-modified electrodes as 

immobilization platforms. In this technique, the limit of detection was 1.6x105 CFU/mL. 

Self-assembled monolayers are a useful tool in biosensor construction and allow the 

construction of reduced biosensors. Morales et al.[94] also reported an amperometric 

biosensor for simultaneous detection and identification of Escherichia coli, 

Staphylococcus aureus and Salmonella choleraesuis using a glucose oxidase-peroxidase 

composite biosensor. The biosensor was able to detect 6.5x102 CFU/mL after an 

incubation period of 3 h, however, the limit of detection was lowered down to 6.5 

CFU/mL when the samples were incubated for 7 h. In both latter examples, the 

simplicity of amperometric immunosensors are exploited to open up the possibility to 

construct smaller biosensors for pathogen detection. 

In 2008, Laczka and collaborators[95] developed capacitive immunosensors based 

on interdigitated microelectrodes for the detection of 104-105 CFU/mL of E. coli and 

Salmonella typhimurium. Shabani et al.[96] also demonstrated in the same year, the use 

of bacteriophage-modified microarrays for the direct impedimetric detection of 104 

CFU/mL of Salmonella typhimurium in 20 minutes. Villamizar and co-workers[71] 

reported the detection of 100 CFU/mL Salmonella infantis in 1 h using carbon 

nanotube FETs and antibodies. So and others[97] also published in the same year the 

detection and quantification of Escherichia coli using aptamer-functionalized single-

walled carbon-nanotube FETs. The minimum amount of bacteria detected by this 

method was 2x103 CFU/mL (0.93 CFU in 5 μL) in 20 minutes. These latter FET-based 

biosensors demonstrated that electrochemical biosensing platforms based on 

nanostructured materials may help on reducing both the limit of detection and time of 

analysis. 

In 2009, Lee et al.[98] demonstrated that core–shell nanoparticles in combination 

with a NMR-filter system could be used as an efficient tool for pathogen detection. 

Using the bacillus Calmette-Guérin (BCG) as a surrogate for Mycobacterium 

tuberculosis, the authors demonstrated an unprecedented detection speed and 
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sensitivity of as few as 20 colony-forming units (CFU) in sputum (1 mL) in a 30 min 

assay. In the same year, Abu-Rabeah and others[99] reported a highly sensitive 

amperometric immunosensor for the detection of Escherichia coli (10 CFU/mL). 

Liébana et al.[100] detected Salmonella in milk by electrochemical magneto-

immunosensing. In this approach, the bacteria was captured and preconcentrated 

from milk samples with magnetic beads through an immunological reaction. A second 

antibody labeled with peroxidase was used as serological confirmation with 

electrochemical detection based on a magneto-electrode. In this way, the biosensing 

platform detected 103 CFU/mL in 50 minutes. However, when the technique was 

combined with a preenrichment step of 6 h, the limit of detection reported was 1.4 

CFU/mL. In all the previously described examples, nanostructures played the central 

role for a dramatic reduction of extremely low limits of detection and reduced times of 

analysis, thus suggesting that lower limits of detection may be achieved if the 

biosensing platforms are optimized. 

Dharmasiri and co-workers[101] reported in 2010 an antibody modified microfluidic 

chip for the enrichment and detection of Escherichia coli O157:H7 from water samples 

with a lowest detected concentration of 6 CFU/mL. In that year, Grossi et al.[102] also 

developed an embedded portable biosensor system for bacterial concentration 

detection. The sensor was based on the measurement of changes in the impedance 

when bacteria were present. In this manner, the platform was able to detect 106 

CFU/mL in 3 h. Both examples of target concentration demonstrated that lower limits 

of detection may be reached when a pre-processing step is incorporated in the 

detection process. 

In 2011, Miranda and collaborators[103] reported a supramolecular enzyme 

nanoparticle biosensor for the colorimetric detection of bacteria. Using this strategy, 

the authors were able to quantify bacteria at concentrations of 102 CFU/mL. Cationic 

gold NPs featuring quaternary amine headgroups were electrostatically bound to an 

enzyme [β-galactosidase (β-Gal)], inhibiting enzyme activity. When analyte bacteria 

bound to the NP, β-Gal was released and its activity was consequently restored, 

providing an enzyme-amplified colorimetric readout of the binding event. García-Aljaro 

et al.[104] reported in the same year the development of carbon nanotube-based 
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chemiresistive biosensors for detection of 103 CFU/mL of E. coli O157:H7 in 60 

minutes. Wan and others[105] developed in the same year an impedimetric 

immunosensor doped with reduced graphene sheets fabricated by controllable 

electrodeposition for the non-labelled detection of pathogenic sulphate-reducing 

bacteria at a limit of detection of 1.8x101 CFU/mL. 
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1.2. Fundamentals 

This section aims to set the fundamental basis and theoretical background of 

materials and techniques so that the reader can perfectly follow the performance of 

the biosensors developed in this Thesis. Subsection 1.2.1, includes a description of the 

physical properties of carbon nanotubes that are of a particular interest for a full 

comprehension of the sensors herein developed. In subsection 1.2.2, the theoretical 

background of the potentiometric sensors based on carbon nanotubes as ion-to-

electron transducers is discussed. Finally, in subsection 1.2.3, a description of the 

aptamers as biorecognition elements is mentioned.  

1.2.1. Carbon nanotubes 

Since the rediscovery of carbon nanotubes (CNT) by S. Iijima in 1991,[106] this new 

allotropic form of carbon has been of interest in many fields of science, from basic 

science research to advanced materials. There are basically two types of CNTs, single 

walled and multi-walled. Single walled carbon nanotubes (SWCNT) can be seen as a 

seamless graphene rolled sheet and can be of metallic or semiconducting behavior, 

depending on the rolling orientation of the graphene sheet. Multi-walled carbon 

nanotubes (MWCNT) are coaxial SWCNTs rolled-up all together in a single tube, and in 

all cases, they show metallic behavior. Both CNT types are of interest on the fields of 

nanoelectromechanical systems, composite materials, chemical sensing, molecular 

electronics and energy storage, due to their outstanding properties. The properties of 

CNTs are originated by their chemical structure and their extremely high surface-to-

volume ratio. This is precisely what suits CNTs as perfect molecules for sensing and 

transducing, since they have a huge capability to support electron transfer between 

heterogeneous phases.[107] As a result of such properties, CNTs have been used as 

elements in FETs,[108,109] capacitors,[110] nanoelectrodes in voltammetric analysis[111] 

and recently, our research group has demonstrated that they also can be used as 

transducers[112] in potentiometric analysis. CNTs can be produced in various ways, such 

as arc discharge, chemical vapor deposition, and others. Regarding to their 

purification, it could be done by many ways for example sonication, filtering and 

annealing, among others.[113] 
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Carbon nanotubes (Figure 1.1a) are an allotropic form of carbon, formed by end 

tips with the molecular structure of fullerene (Figure 1.1b), and a large folded 

graphene-like wall at the length of the molecule. Their length is usually up to several 

dozens of microns and their diameter ranges between less than one nanometer to a 

few nanometers. They can be seen as a nearly one-dimensional form of fullerenes 

(Figure 1.1c).[114] 

 

Figure 1.1. a) Basic structure of a single-walled carbon nanotube. b) Fullerene molecule (C60). 

c) Basic structure of a graphene sheet. 

Single walled carbon nanotubes can be formed by folding the graphene sheet 

along lattice vectors (a1, a2). The (a1, a2) indices determine the diameter and chirality, 

which are key parameters of a nanotube. As an example, in (Figure 1.2), the two basis 

vectors a1 and a2 are shown. Folding of the (8,8), (8,0), and (10,-2) vectors lead to 

armchair (Figure 1.2b), zigzag (Figure 1.2c), and chiral (Figure 1.2d) nanotubes, 

respectively. Depending on this, they have dissimilar properties such as optical activity, 

mechanical strength and electrical conductivity. Multi-walled carbon nanotubes 

(Figure 1.3) can be considered as a collection of concentric single walled carbon 

nanotubes with different diameters. The distance between layers of the MWCNT is 

about 0.34 nm. The length and diameter of these structures differ a lot from those of 

single walled and their properties are also very different.[107]  
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Figure 1.2. a. Schematic honeycomb structure of a graphene sheet. b. Armchair structure. c. 

Zigzag. d. Chiral. 

CNTs display an improved chemical reactivity, compared with a graphene sheet, as 

a consequence of the curvature of the carbon nanotube surface. Carbon nanotube 

reactivity is directly related to the π-orbital divergence caused by an increased 

curvature. Consequently, there is a difference between the sidewall and the end caps 

of a nanotube. Therefore, the smaller the nanotube diameter is, the greater the 

observed reactivity. This reactivity allows chemical modification of either sidewalls or 

end caps.[115]   

 

Figure 1.3. Representation of a multi-walled carbon nanotube. 

Electrical properties are different depending on the type of carbon nanotube. 

Multi-walled carbon nanotubes are always metallic. However, single-walled carbon 

nanotubes can exhibit different electrical properties depending on their lattice vector. 
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The differences in conducting properties are caused by the molecular structure that 

results in a different band structure and thus a different band gap. Single walled 

carbon nanotubes can be either metallic or semiconductors, with band gaps that are 

relatively large (approximately 0.5 eV for typical diameter of 1.5 nm) or small (approx. 

10 meV), even if they have nearly identical diameters. It has been shown that a 

nanotube is metallic when vector parameters (a1, a2) fulfill the equation: a1 = a2 or (a1 

– a2) = 3i, where i is an integer. When this does not account, nanotubes are 

semiconducting.[116] Thus, armchair nanotubes are always metallic while both chiral 

and zigzag molecules are either metallic or semiconducting. For the same-chirality 

semiconducting nanotubes, the band gap is inversely proportional to the diameter. 

The differences in conductivity can easily be derived from the graphene sheet 

properties.[117] The resistance to conduction is determined by quantum mechanical 

aspects and was proved to be independent of the nanotube length.[118] Thus, there are 

infinite possibilities in the type of carbon nanotube molecules, and each nanotube 

could exhibit distinct physical properties. 

According to some theoretical studies with chiral nanotubes,[119] optical activity 

disappears if the nanotubes become larger. In this sense, it is expected that other 

physical parameters are also biased by these properties. Carbon nanotubes have large 

values of Young modulus in their axial direction. The nanotube molecule is very flexible 

due to the length.[115] For that reason, these molecules are appropriate for applications 

in composite materials that need anisotropic properties. 

1.2.2. Potentiometric sensors based on carbon nanotubes as ion-to-

electron transducers 

Electrochemical detection techniques are generally preferred over others due to 

the offered advantages such as rapid response, low-cost and ease of use.[120] 

Depending on which aspects of the electrochemical cell are controlled and which are 

measured, electrochemical methods can be classified in three major categories: 1) 

potentiometric methods, in which the difference in potential (voltage) between two 

electrodes is measured; 2) coulometric methods, which are based on the 

measurement of the amount of electricity consumed or produced in the cell; and 3) 
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voltammetric methods, where the current is measured while maintaining controlled 

the potential in the cell in a fixed or variable mode.[121]  

Among the potentiometric techniques, electromotive force measurements based 

on solid state electrodes represent an attractive tool for chemical analysis in liquid 

samples. The technique is based on the passive measurement of the electric potential 

of a solution between two electrodes, a reference electrode and an indicator (working) 

electrode, while the solution composition is barely affected. The reference electrode 

consists on an electrode with a well-known and stable electrode potential. The stability 

in the reference electrode is reached by using a redox system with constant 

concentrations of two redox component (eg. Ag0/AgCl in saturated KCl). The indicator 

electrode is an electrode whose potential varies according to the composition of the 

solution. If a recognition element is incorporated at the transducer/solution interface, 

the indicator electrode can be selective for a particular target (e.g. ions or other 

charged species). When the recognition element consists of an ionophore able to 

recognize a particular ion, and such ionophore is embedded in a permeable membrane 

between the transducer and the solution (as in the ion-selective membranes), the 

potentiometric electrode is therefore termed as an ion-selective electrode (ISE). 

However, other recognition elements such as biorecognition molecules can be 

included in the construction of an electrode instead of using selective membranes. In 

such a case, the indicator electrode can be tailored to detect different targets as long 

as the transducer part is able to detect the electrochemical variations occurred during 

the recognition process. In potentiometric analysis, the electric potential 

(electromotive force) is related to the analyte concentration when a thermodynamic 

equilibrium is reached between the free analyte at the solution and the analyte 

present at the recognition element (e.g. the ion concentration within the ion-selective 

membrane or the analyte molecules tethered by a biorecognition element). In the 

steady state, the decrease on free energy produced when the analyte diffused from 

the solution to the recognition layer is compensated by an increase on free energy at 

the recognition layer/transducer interface by the repulsion of charges of the same 

charge at the transducer. This change on free energy is therefore measured as a 

change in voltage by a high impedance voltmeter. In a rapid-kinetic stabilization 
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process, this equilibrium can be reached almost in real-time, and thus, the 

measurement of voltage between the reference electrode and the indicator electrode 

gives a parameter of reference for analyte concentration.[22,121
,

–
122,

123]  

As mentioned earlier, carbon nanotubes can be used as transducers in 

potentiometric analysis.[112] Both, multi-walled and single-walled carbon nanotubes 

can be perfectly used in the construction of solid-state potentiometric sensors. As an 

example, a SWCNT-based solid-state ion-selective electrode has been developed by 

Hernández, Riu and Rius for the direct detection of Ca2+ in sap, while a MWCNT-based 

solid-state ISE able to detect ClO4
- has been reported by Parra, Rius and collaborators. 

[124,125] Solid-state potentiometric sensors present more advantages than their 

counterparts with an internal solution, especially in terms of versatility during 

measurements and their ability to be miniaturized. Moreover, in the case of ion-

selective electrodes with internal solutions, leakage of the ions from the internal 

solution may occur in long-term measurements, which evidently cannot occur in a 

solid state ISE. In the same way, many authors have reported the use of different 

materials such as electroactive polymers,[126
127128

–
129

130] macroporous carbon,[131] 

fullerenes[132] or platinized porous silica[133] as transducers in solid-state ion-selective 

electrodes. Among the transducers previously mentioned, electroactive polymers have 

represented the mainstay for years in the construction of solid-state ISE. 

Unfortunately, this latter type of material presents some important disadvantages. As 

an example, the major drawback of many conducting polymers is their sensitivity to 

light. However, such a problem can be overcome by the use of light-insensitive 

transducers, such as carbon nanotubes.[23,112] 

The chemical structure of carbon nanotubes, their high surface-to-volume ratio, 

their extraordinary capacity to promote electron and charge transfer between 

heterogeneous phases and the presence of mobile electrons on the surface of the 

nanotubes makes them particularly suited for electrochemical field sensing at the 

nanoscale.[107] Charge transfer processes in carbon nanotubes are driven by the high 

double layer capacitance resulting from the large interface between the nanomaterial 

and the solution (Figure 1.4).[134]  
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Figure 1.4. Schematic description of the ion-to-electron transduction process of the 

SWCNT/electrolyte system. N+ = cation, A- = anion, e- = electron.  

 

1.2.3. Aptamers as biorecognition elements 

A relatively novel approach for selective and high proficiency detection of a wide 

range of small molecules, proteins, virus and bacteria are special nucleotide-type 

sequences also called aptamers. These molecules are nucleic acid segments or similar 

structures (such as peptide nucleic acids) that have been engineered through 

repetitive cycles of in vitro selection (Figure 1.5), well known as systematic evolution of 

ligands by exponential enrichment (SELEX) to bind selectively to over 150 targets 

including small molecules, proteins, cell adhesion molecules, virus and bacteria.[45,135] 

The SELEX process starts with a chemically synthesized DNA library containing about 

1014 to 1015 different individual molecules. The library is designed to contain a 

contiguous region of random sequences between two fixed sequence regions. The 

fixed sequences are primer binding sites used during the PCR amplification process. 

Aptamers can be synthesized from both DNA and RNA libraries. When RNA aptamers 
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are to be obtained, DNA libraries are previously converted to RNA libraries. In such a 

case, one of the fixed sequences flanking the random section of the DNA molecules 

within the library are engineered to contain a promoter for a RNA polymerase.[136] The 

random sequence oligonucleotide library is then exposed to the target under 

controlled buffer conditions. The sequences that do not bind to the target are then 

discarded from the solution by an appropriate partitioning method. The bound 

sequences are recovered from the target. Such a population contains a mixture of both 

high- and low-affinity binding molecules to the target. Further screening is needed in 

order to eliminate the sequences with low-affinity binding. Therefore, this mixture of 

aptamer candidates is amplified directly by PCR (in the DNA aptamer synthesis) for the 

next round of selection. RNA aptamer sequences are amplified by PCR after reverse 

transcription in order to convert such a sequence into its DNA complementary 

sequence.  Afterwards, a single stranded DNA population is obtained by strand 

separation of PCR products. The previous mixture is then incubated with a new 

solution containing the target in order to start a new round of selection. The RNA 

population is obtained by in vitro transcription. Several iterations of the selection 

process are carried out while the medium conditions are increasingly stringed so that 

the high-affinity sequences may be enriched at the expense of the low-affinity binders. 

The progress of the enrichment of high-affinity binders can be determined by carrying 

out binding analysis of enriching populations against the target. The cycle is stopped 

once an enriched library reaches the affinity saturation. Finally, the PCR products are 

accordingly cloned and sequenced.[135,137]  
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Figure 1.5. The SELEX process: (red arrows) DNA aptamer selection; (blue arrows) RNA 

aptamer selection. 

This class of molecules is a promising tool that rivals both, antibodies in 

diagnostics and drugs in treatment for diseases. Aptamers are more advantageous and 

display fewer drawbacks, compared to antibodies. Because of these properties, 

aptamers are completely suitable as molecular recognition elements in the field of 

biosensors, making it possible to perform detection of complex targets.[138
139

–
140,

141] In 

recent times, novel applications of the aptamer technology are rapidly arising in the 

field of electrochemical methods for detection of biochemical elements at very low 

concentration levels.[142] It has been recently demonstrated that potentiometric 

sensors based on solid state microelectrodes allow the quantification of proteins in the 
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subnanomolar concentration range, by means of sandwich aptamer-protein assays.[40] 

Additionally, some research groups have been able to develop novel carbon-based 

materials with similar aims and more promising results in electroanalytical chemistry, 

using carbon nanotube modified electrodes and aptamers.[143] Nevertheless, despite of 

the recent advances in the development of electrochemical aptasensors and sensors 

based on carbon nanotubes for rapid monitoring of proteins and bacteria, there is not 

yet any application of a reagentless, real-time, reusable and highly-selective 

potentiometric biosensor for the direct detection of whole-bacteria at zero-tolerance 

levels or proteins at attomolar concentrations.[142,144
145

–
146

147] 
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Objectives 

The main objective of this Thesis is to demonstrate for the first time that 

potentiometric biosensors based on carbon nanotubes, as ion-to-electron transducers, 

and aptamers, as biorecognition elements, can be used as powerful tools in the real-

time detection of pathogens and related biomolecules.  

This general objective is achieved through the implementation of a series of 

specific objectives: the design of the biosensors for different targets and their 

development, validation and application in real samples. Additionally, this Thesis aims 

to show that the applications portfolio of this new generation of aptamer-based 

biosensors (also called aptasensors) can be customized for the detection of 

microorganisms with very different characteristics. In this way, biosensors for the 

determination of Salmonella enterica serovar Typhi and Escherichia coli, targeted as 

gram-negative bacteria models, are described in Chapter 4 and Chapter 6 respectively. 

The aptasensor for Staphylococcus aureus, used as a gram-positive bacteria example, is 

described in Chapter 5 while a biosensor for the trypanosomal Variable Surface 

Glycoprotein is described in Chapter 7. This protein is employed as a model for the 

detection of pathogenic exoantigen proteins, opening in this way the applicability of 

the biosensing platform for further targets such as parasites or protein biomarkers.  

The proof of concept for the real-time detection of bacteria in phosphate buffer 

solutions, in which the biosensor is addressed towards a specific protein anchored to 

the surface of the microorganism, is the specific objective of Chapter 4. 

The comparison of two different methodologies for the immobilization of the 

aptamers onto the surface of the carbon nanotubes, using covalent and non-covalent 

linkages, is the specific objective in Chapter 5. In this chapter, the pathogen is targeted 
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in phosphate buffer solutions and the biosensors-target interactions analyzed 

according to the resulting performance parameters. Additionally, the behavior of the 

biosensor is also evaluated in real contaminated skin samples.  

The detection of pathogens in foodstuff samples is addressed in Chapter 6. To 

demonstrate the possibility to use the biosensors for the detection of microorganisms 

in complex food matrices such as beverages, a rapid and simple sample pre-treatment 

protocol is developed, validated and tested with real fruit juice and milk samples.  

Finally, two major specific objectives are addressed in Chapter 7: The 

demonstration that the identification of a particular protein in highly complex matrix 

conditions, such as blood, is possible in real-time without the need of complicated 

sample pre-treatment procedures; and the proof that the biosensing platform can be 

used for the ultrasensitive and specific detection of exoantigens such as trypanosomal 

Variable Surface Glycoproteins in clinical samples.  
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3.1. Materials, chemicals, culturing media and microorganisms 

In this section, all the chemicals, microorganisms, materials and instruments used 

in the experimental part of the Thesis are described in detail. This section also includes 

a brief description of the purpose of some substances and culturing media as well as 

useful references for further information. However, the particular applications of the 

materials and the solutions prepared with each substance or culturing media are 

indicated in Chapters 4 to 7.  

3.1.1. List of materials and instruments 

The following materials and instruments have been used: 

 Bacteriological transfer and inoculating loop, model S-33, JP Selecta, 

Barcelona, Spain. 

 Balance, model GR-120-EC, A&D Instruments, Abingdon, UK. 

 Biosafety level II cabinet, model BIO II A, Telstar Industrials, Terrassa, 

Spain. 

 Centrifuge, model EBA 20, Hettich Zentrifugen, Tuttlingen, Germany. 

 Double junction reference electrode (Ag/AgCl/KCl 3 M) containing a 1 M 

LiAcO electrolyte bridge, type 6.0729.100, Metrohm AG, Herisau, 

Switzerland.  

 Environmental scanning electron microscope (ESEM) with Everhart-

Thornley Detector (ETD), model 600, FEI Quanta, Hillsboro, USA. 

 Glass filtration system with a capacity for 250 mL, model 5810, Fisher 

Scientific, Madrid, Spain.  

 Glassy carbon cylindrical rods, length 50 mm and diameter 3 mm, HTW 

Hochtemperatur-Werkstoffe GmbH, Thierhaupten, Germany.  
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 High speed micro centrifuge, model 5417 R, Eppendorf AG, Hamburg, 

Germany. 

 High-input impedance voltmeter (1015 Ω), model EMF-16, Lawson 

Laboratories Inc, Malvern, PA, USA.  

 High-input impedance voltmeter (1015 Ω), model M6514, Keithley, London, 

UK. 

 Infrared sterilizer, model Sterilbio, JP Selecta, Barcelona, Spain. 

 Integral Water Purification System, model Milli-Q plus, Millipore, 

Molsheim, France.  

 Magnetic stirring system, model Agimatic-N, JP Selecta, Barcelona, Spain. 

 Magnetic stirring system, model ANM-10006, SBS SL, Sabadell-Barcelona, 

Spain. 

 MALDI-TOF spectrometer, Voyager-DE STR, Applied Biosystems, Carlsbad 

CA, USA. 

 Microbiological incubator with natural convection system, model 100-800, 

Memmert GmbH Co KG, Schwabach, Germany. 

 Nylon and Polycarbonate filtration membranes, 47 mm diameter, pore size 

0.45 μm, Albet Lab science, Dassel, Germany. 

 pH selective electrode, Model GLP21, Crison Instruments SA, Barcelona, 

Spain. 

 Polishing alumina, 25 and 1 micron grain size, Buehler, Lake Bluff, USA. 

 Silica furnace chamber, HST 12/600, Carbolite, Hope Valley, UK. 

 Steam sterilizer (autoclave), model Med 12, JP Selecta, Barcelona, Spain. 
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 Sterile cellulose acetate filters, 13 mm diameter and 0.45 μm pore size, 

General Electric, Brussels, Belgium. 

 Teflon rods, 7 mm diameter and 1000-2000 mm length, Amidata SA, 

Madrid, Spain. 

 Thermostatic circulator, model 9112, Polyscience, Niles, USA. 

 Tip-sonicator, Ultraschallprocessor UP200S, Dr. Hielscher, Teltow, 

Germany. 

 Transmission Electron Microscope, model JEM-1011, JEOL Ltd, Tokio, 

Japan. 

 Triple vent polystirene Petri dishes, 90x16 mm, model P101VR20, Sterilin 

Ltd, Newport, UK. 

 Variable volume Micropipettes, models 3111 000.157, 3111 000.165 and 

3111 000.181 (capacities 20-200 μL, 100-1000 μL and 0.1-10.0 μL, 

respectively), Eppendorf AG, Hamburg, Germany. 

 Water-jacketed glass cell, 14 mL, model Zelada 1.0, designed by the author 

(Reference number V64863) and fabricated by the Fisher Scientific 

Glassblowing services, Madrid, Spain. 

 Common laboratory glassware and plasticware such as volumetric pipettes, 

volumetric flasks, boiling flasks, Erlenmeyer flasks, filtering flasks, 

volumetric burettes, graduated cylinders, glass funnels, centrifuge tubes, 

watch glasses, beakers, non-sterile and sterile test tubes, weighing bottles, 

vials, condensers, microcentrifuge tubes, Teflon stirring rods, as well as 

other materials such as support stands, clamp holders, sterile plastic 

syringes of several sizes, stainless steel needles of different lengths and 

gauges, micropipette tips, sterilization indicator labels and tapes, latex and 

silicon rubber tubing of different gauges were purchased from Fisher 

Scientific, Madrid, Spain. 
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3.1.2. Carbon nanotubes 

The single walled carbon nanotubes used in the development of all the sensors 

and biosensors were purchased in bulk form from HeJi (Zengcheng, China) with >90% 

purity, 150 μm average length and 1.4-1.5 nm diameter. Unless other conditions are 

indicated in further chapters, the carbon nanotubes were oxidized in a silica furnace 

chamber at 365 °C, with synthetic air flow-rate of 100 cm3 min-1 during 90 min, in 

order to selectively remove the amorphous carbon. Subsequently, SWCNTs were 

refluxed in 2.6 M nitric acid for 4 h to oxidize the metallic impurities remaining from 

the synthesis.[1] The carbon nanotubes became carboxylated after this latter oxidation 

step. The SWCNTs in nitric acid solution were filtered and thoroughly rinsed with water 

to remove the acid completely. The filtered SWCNTs were dried overnight at 80°C, and 

stored under dry conditions until needed. 

In the specific case of those biosensors prepared by non covalent linkage of 

pyrenil-modified aptamers on the sidewalls of SWCNT described in Chapter 5 

(subsections 5.2.3 and 5.2.6), the acidic carboxylation step was omitted in order to use 

non-carboxylated nanotubes as the transducing material. 

3.1.3. Aptamers 

Unless otherwise mentioned, the aptamers used in the development of the 

different biosensors were purchased from Eurogentec (London, UK) and their 

sequences and modifications are described in this subsection.  

 The Salmonella Typhi type IVB Pili binding RNA aptamer of 71-mer was 

supplied with the sequence[2] 5’-GGG AAC AGU CCG AGC CUC ACU GUU 

AUC CGA UAG CAG CGC GGG AUG AGG GUC AAU GCG UCA UAG GAU CCC 

GC-3’, and modified with a -(CH2)5NH2 at the 3’-terminal. Once received, 

the aptamer was resuspended in MilliQ water and stored at -80 °C until 

needed. This aptamer was used in the experimental part of Chapter 4. 

 Two S. aureus-binding DNA aptamers of 88-mer with similar ligand-target 

affinity values[3] were supplied with the sequences 5'-GCA ATG GTA CGG 
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TAC TTC CTC CCA CGA TCT CAT TAG TCT GTG GAT AAG CGT GGG ACG TCT 

ATG ACA AAA GTG CAC GCT ACT TTG CTA A-3'-(CH2)6NH2 (NH2-Aptamer) 

and 5’-GCA ATG GTA CGG TAC TTC CGC GCC CTC TCA CGT GGC ACT CAG 

AGT GCC GGA AGT TCT GCG TTA TCA AAA GTG CAC GCT ACT TTG CTA A-3’-

C3-Pyr (Pyr-C3-Aptamer, Pyr-C3- = pyrenil moiety with a phosphoramidite 

spacer). Once received, the aptamers were resuspended in MilliQ water 

and stored at -80 °C until needed. The aptamers were used in the 

experimental part of Chapter 5. 

 The E. coli CECT 675 binding DNA aptamer of 81-mer with the sequence[4] 

was supplied with the sequence 5’-GGG AGA GCG GAA GCG UGC UGG GUC 

GCA GUU UGC GCG CGU UCC AAG UUC UCU CAU CAC GGA AUA CAU AAC 

CCA GAG GUC GAU-3’, and modified with a -(CH2)5NH2 moiety at the 3’ 

terminal. The aptamer was resuspended in MilliQ water and stored at -

80°C until needed. This aptamer was used in the experimental part of 

Chapter 6. 

 The VSG-specific RNA aptamer (cl57) of 78-mer with the sequence 5’-GGG 

AGA CGA UAU UCG UCC AUC AGC GCG CAC CUA CUG UGA UGU AGA AGU 

CAC AGC AAG GCC CCG CUG UCC GAC UGA AUU-3’ was synthesized by run 

off in vitro transcription in the presence of 2’-F-uridine-5’-triphosphate and 

2’-F-cytidine-5’-triphosphate (2 mM each) as previously described by 

Lorger et al.[5] This aptamer was synthesized by the research group of Prof. 

H. Ulrich Göringer at the Department of Genetics, Darmstadt University of 

Technology, Germany. The aptamer was modified by oxidation of its 3’-

terminal ribose moiety and further converted into a hydrazide derivative 

using adipic acid dihydrazide (ADH).[6] Chemical modification steps are 

further described in detail in Chapter 7. Once received, the aptamer was 

resuspended in MilliQ water and stored at -80°C until needed. 
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3.1.4. Culturing media and microorganisms 

The following culturing media were purchased from Becton, Dickinson and 

Company (Sparks, USA), prepared according to indications and used in the 

experimental parts of Chapters 4 to 6: 

 Lactobacilli MRS (deMan, Rogosa and Sharpe) agar. This medium was used 

in the isolation, enumeration and cultivation of Lactobacillus species. [7,8] 

 Lactobacilli MRS (deMan, Rogosa and Sharpe) broth. This medium was 

used in the isolation, enrichment and cultivation of Lactobacillus 

species.[7,8] 

 Mannitol salt agar (MSA). This medium was used for the selective isolation 

and enumeration of Staphylococci from clinical and nonclinical materials.[7]  

 Tryptic soy agar (TSA). This non-selective medium was used in the 

enumeration and cultivation of pure strains of Salmonella Typhi, 

Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. [7] 

 Tryptic soy broth (TSB). This non-selective medium was used in the 

enrichment and cultivation of pure strains of Salmonella Typhi, 

Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. [7] 

 XLD (xylose-lysine-deoxycholate) agar. This medium was used for isolation, 

differentiation and confirmatory growth of the Salmonella group. [7,9
,10, 

–
11,

12] 

 MacConkey agar. This medium was used for isolation, differentiation and 

confirmatory growth of Escherichia coli. [7] 

 Lysogeny broth and agar (Luria-Bertani medium, LB). This medium was 

used for maintainance, enumeration and growth of Escherichia coli 

strains.[7]  

The following microorganisms were used in the experimental part of the Thesis 

and cultured according to the procedures mentioned in subsection 3.2.2. The bacteria 
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were used in the experimental parts of Chapters 4 to 6, while the parasites were used 

in Chapter 7:  

 Lyophilized strains of Salmonella Typhi (CECT 409), Lactobacillus casei 

subsp. casei (CECT 4180), Escherichia coli (CECT 675), Staphylococcus 

aureus (CECT 4630) and Staphylococcus epidermidis (CECT 231) were 

purchased from Colección Española de Cultivos Tipo (Valencia, Spain). 

 Agar-supported colonies of Escherichia coli (CECT 4558) were kindly 

donated by the Biotechnology Department of the URV (Tarragona, Spain). 

 T. brucei Lister 427 – MiTat serodeme,[i,13,14] variant clones 1.4 and 1.2 are 

part of the strain bank of Prof. H. U. Göringer and were used in the VSG 

protein extraction experiments by his team.[ii] 

 T. b. gambiense LiTat 1.1, LiTat 1.3, LiTat 1.5, LiTat 1.6, T. b. rhodesiense 

ETat 1.2 and T. evansi RoTat 1.2 were kindly provided by Philipp Bücher, 

Antwerp for further VSG protein extraction by the research group of Prof. 

H. U. Göringer.[ii] 

3.1.5. Other reagents 

Unless otherwise indicated, the following molecular biology grade reagents 

(>99.5% purity) were purchased from Sigma-Aldrich (Tres Cantos, Spain) and were 

used as received: 

 Sodium dodecyl sulphate (SDS). This surfactant is used for dispersing the 

carbon nanotubes in water before the deposition step during the 

construction of the sensors. 

 N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC). This 

substance is used in the activation of the carboxylic groups at the sidewalls 

of the carbon nanotubes via the formation of an O-acylisourea 

                                                 
i A serodeme is a population of trypanosomes, each of which can express the same range of variant 
antigen types.  
ii Meaning for each serodeme classification can be found in the Abbreviations section. 
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intermediate[15] during the covalent functionalization of carboxylated 

nanotubes with NH2-modified aptamers. [16,17]  

 N-hydroxysuccinimide (NHS). This substance is used in the activation of the 

carboxylic groups at the sidewalls of the carbon nanotubes via the 

displacement of the O-acylisourea intermediates in order to form a stable 

NHS-ester. Such an intermediate can be further displaced by the NH2-

moieties of the modified aptamers in the formation of amide bonds 

between the aptamers and the carboxylated nanotubes.[16,17] 

 2-(N-morpholino) ethanesulfonic acid (MES). This substance is used as a pH 

buffering agent in the preparation of solutions involved in the 

carbodiimide-mediated covalent functionalization of carboxylated 

nanotubes with NH2-modified aptamers.[6] 

 Cetyltrimethylammonium bromide (CTAB). This positively charged 

surfactant is used to reduce the electrostatic repulsion between the 

remaining non-activated carboxylic groups at the sidewalls of the carbon 

nanotubes and the negatively charged phosphate groups of the aptamer 

backbone at pH 7.4 during the carbodiimide-mediated functionalization 

process.[18]  

 Potassium dihydrogen phosphate (KH2PO4). This salt is used in the 

preparation of the phosphate buffer solutions with pH 7.4. 

 Disodium hydrogen phosphate (Na2HPO4). This salt is used in the 

preparation of the phosphate buffer solutions with pH 7.4. 

 Bovine serum albumin (BSA). This protein is used in Chapter 7 for 

selectivity assays. 

 Human serum Immunoglobulin G (IgG). This protein is used in Chapter 7 

for selectivity assays. 
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 Potassium ferricyanide (K3Fe(CN)6). This substance is used as a stable 

redox-agent[19
,

–
20

21] in the preparation of the tailored buffer for protein 

detection in blood samples in Chapter 7. 

 Potassium ferrocyanide (K4Fe(CN)6). This substance is used as a stable 

redox-agent[19
,

–
20

21] in the preparation of the tailored buffer for protein 

detection in blood samples in Chapter 7. 

 Sodium chloride (NaCl). Used for the preparation of several NaCl-based 

solutions (e.g. 2 M NaCl aptasensors‘ regeneration solution, 0.85 % isotonic 

NaCl solutions). 

 Ethylenediaminetetraacetic acid (EDTA). This complexing agent[19,20] is used 

in the preparation of the tailored buffer for protein detection in blood 

samples in Chapter 7.  

 Trans-1,2-Cyclohexanediamine-N,N,N',N'-tetraacetic acid (CDTA). This 

substance is a complexing agent[19,20] used in the preparation of the 

tailored buffer for protein detection in blood samples in Chapter 7. 

 Human α-thrombin was supplied by Haematologic Technologies, Vermont, 

USA. This protein is used in Chapter 7 for selectivity assays. 

 Dry air 99.999% purity, Carburos Metálicos, Barcelona, Spain. Used in 

carbon nanotube purification experiments. 

 Ethanol 70%. This substance is used in the surface sterilization process for 

microbiological experiments. 

UNIVERSITAT ROVIRA I VIRGILI 
ULTRASENSITIVE DETECTION OF PATHOGENS IN REAL-TIME. POTENTIOMETRIC BIOSENSORS BASED ON SINGLE-WALLED CARBON NANOTUBES AND APTAMERS 
Gustavo Adolfo Zelada Guillen 
DL:T. 1713-2011 



Experimental Part 

56 
 

3.2. General procedures 

This section includes all the basic procedures followed in the experimental part of 

the Thesis. Variations to the steps mentioned here, if any, are adequately mentioned 

in further chapters. This section also includes a brief description of the aim of each 

procedure as well as useful references for further information of the technique used.  

3.2.1. Preparation of the biosensors 

The solid contact electrode was made of a 3 mm diameter glassy carbon cylindrical 

rod covered by a Teflon jacket of 7 mm diameter. The surface of the glassy carbon was 

successively polished using 25 and 1 μm grain size polishing alumina before the SWCNT 

layer was deposited on the same surface. For the spraying process (Figure 3.1), we 

used sonication for 30 minutes at 0.5 s-1 to prepare a solution of 25 mg of purified 

SWCNT dispersed in 10 mL of MilliQ water containing 100 mg of SDS. The 

SWCNT/SDS/H2O solution was sprayed under a high temperature (200°C) air blow, and 

washed with MilliQ water to progressively remove the SDS.  

 

Figure 3.1. Carbon nanotube deposition on the surface of a glassy carbon electrode. 

In most of the biosensors built in this Thesis, the carboxylic groups that are on the 

sidewalls of the deposited SWCNTs are activated using a solution of 100 nmol of EDC 

and 25 nmol of NHS in a 50 mM MES buffer pH 5 for 30 minutes (only in Chapter 5 a 

different strategy of functionalization was tested).[15–17] Subsequently, the electrodes 

were soaked overnight into 500 μL of a 1 μM aptamer solution, which also consisted of 
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PBS pH 7.4 (1 mM) and CTAB (0.2 mM). Finally, the sensors were washed in MilliQ 

water and stored in PBS 1.7 mM pH 7.4 until needed. 

 

Figure 3.2. Functionalization of carboxylated carbon nanotubes with amine-modified aptamers 

via carbodiimide-mediated chemistry.[15-17,22,23] 

3.2.2. Microorganism culturing 

All the bacteria strains were cultured following standard microbiological 

techniques, using adequately sterilized materials, solutions and culturing media. 

Variations to the procedures mentioned in this section are indicated in further 

chapters, depending on the particular experiment carried out. 
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 Lyophilized pure strains of Salmonella Typhi (CECT 409), Lactobacillus casei 

subsp. casei (CECT 4180), Escherichia coli (CECT 675), Staphylococcus 

aureus (CECT 4630) and Staphylococcus epidermidis (CECT 231) were 

reactivated with NaCl 0.85 % and further incubated in broth for 24-48 h at 

37 °C. The pellet was then transferred to selective agar medium and sub-

cultured for 24-48 h at 37 °C in order to confirm the purity of the strains. 

The selective medium used in this latter step depended on the cultured 

bacteria, according to section 3.1.4. Characteristic colonies were 

transferred to non-selective broth and agar media and cultured for 24-48 h 

at 37 °C. Colonies obtained in agar cultures were then transferred to 

Glycerol/TSB 20:80 and stored at -20 °C until needed and reactivated by 

inoculating the bacteria in 10 mL of sterile broth medium at 37 °C for 24 h. 

Bacteria grown in non-selective broth was used for different purposes (e.g. 

testing of biosensors, inoculation of samples). 

 Agar-supported colonies of Escherichia coli (CECT 4558) were transferred 

to MacConkey agar medium and incubated for 24-48 h at 37 °C in order to 

confirm the purity of the strains. Characteristic colonies were transferred 

to non-selective (LB) broth  and agar media and cultured for 24-48 h at 37 

°C. Colonies obtained in agar cultures were then transferred to Glycerol/LB 

20:80 and stored at -20 °C until needed and reactivated by inoculating the 

bacteria in 10 mL of sterile broth medium at 37 °C for 24 h. Bacteria grown 

in non-selective broth was used for different purposes (e.g. testing of 

biosensors, inoculation of samples). 

 The bloodstream life cycle stage of Trypanosoma brucei brucei Lister 427 – 

MiTat serodeme, variant clones 1.4 and 1.2 were cultivated at 37 °C in 

HMI-9 medium[24] supplemented with 10% (v/v) heat inactivated bovine 

fetal calf serum. This part was performed by the research group of Prof. H. 

U. Göringer in Darmstadt University of Technology. 
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 T. b. gambiense LiTat 1.1, LiTat 1.3, LiTat 1.5, LiTat 1.6, T. b. rhodesiense 

ETat 1.2 and T. evansi RoTat 1.2 were also cultivated by the research group 

of Prof. Göringer following similar procedures. 

For the bacteria enumeration assays, testing of biosensors and preparation of 

standard solutions, the selected bacteria were inoculated in 10 mL of sterile broth 

medium at 37 °C for 24 h. Then, the bacteria samples were centrifuged at 6000 rpm for 

15 minutes and the supernatant was discarded. The precipitate was resuspended in 10 

mL of sterile buffer (e.g. PBS 1.7 mM in Chapters 4 to 6), and the resulting solution was 

1:10 diluted eightfold to provide a series of 10-1 to 10-8 stock solutions of bacteria. 

Each stock solution was quantified with the standard plate count method by 

triplicate,[7] in appropriate culturing agar medium (e.g. TSA for S. Typhi/S. 

aureus/S.epidermidis, LB for E. coli and MRS for L. casei). 

3.2.3. Potentiometric analysis 

Potentiometric analysis was performed by real-time measurements of the 

electromotive force (EMF)[25
,

–
26

27] between the terminals of a two-electrode system 

(Figure 3.2) consisting of a carbon nanotube-based sensor as the working electrode, 

and a double-junction Ag/AgCl/KCl electrode as the reference electrode at isothermal 

conditions (22 ± 0.5 °C) in a water-jacketed glass cell under constant stirring conditions 

(300 rpm). A high-input impedance voltmeter was used in all the cases to measure the 

difference in electromotive force.  

The electrolyte used in the cell depended on the experiment. As an example, the 

electrolyte used in Chapters 4 to 6 was PBS 1.7 mM pH 7.4, whereas in Chapter 7, the 

electrolyte was a more complex buffer. The EMF value was recorded automatically 

with the software provided by the company. Modifications to this previous part are 

adequately mentioned in further chapters. This analytical technique helps us to 

monitor the potentiometric response of the sensors prepared towards the target and 

interfering agents. 
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Figure 3.3. Two-electrode system for the measurements of electromotive force (voltage) 

including the double-junction Ag/AgCl/KCl (3 M) reference electrode, the SWCNT-based 

biosensor (working electrode) and the high-input impedance voltmeter. 

3.2.4. Other procedures 

Calibration of micropipettes (Eppendorf AG, Hamburg, Germany) and laboratory 

glassware was validated every 6 months according to standard calibration 

protocols.[28,29] Materials, culturing media and solutions were sterilized by autoclaving 

at 121°C for 15 minutes in a J.P. Selecta autoclave model Med 12 (Barcelona, Spain). All 

the microbiological cultures were incubated in an incubator model 100-800, Memmert 

GmbH Co KG (Schwabach, Germany). 

Microscopic characterization of carbon nanotubes was performed by Transmission 

electron microscopy (TEM) analysis[30,31] by prior dispersion in tetrahydrofuran or 

SDS/H2O and further deposition on the TEM grid. This step was done in order to verify 

the structure of the nanotubes after the chemical modification steps.  

Microscopic characterization of carbon nanotube-based sensors and biosensors 

was performed by ESEM analysis[31
,32

–
,

33] by directly supporting the specimen on the 

ESEM holder. This step was done to verify the physical structure of the deposited 

nanotubes as well as in the analysis of bacteria adsorbed onto the sensor surface. 
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4.1. Introduction 

In this chapter, biosensors based on carbon nanotubes as ion-to-electron 

potentiometric transducers and aptamers as biorecognition elements are 

demonstrated as a completely novel biosensing platform with great capabilities in real-

time pathogen detection at zero-tolerance levels in phosphate buffer solutions, solving 

most of the drawbacks inherent to the current methods of detection of pathogens 

reviewed in Chapter 1. Aptamers specifically tailored for the molecular recognition of 

type IVB pili of Salmonella enterica serovar Typhi (also known as Salmonella Typhi, or 

ST) are used as biorecognition elements chemically linked to the transducing layer of 

nanotubes. The hybrid material nanotube/aptamer is able to both recognize the target 

and to translate the binding event into a measurable electrical signal in real-time. The 

main relevance of this part of the work is the demonstration for the first time that a 

particular bacteria can be detected with an open circuit potentiometric biosensor and 

thus pathogen detection is therefore converted into a very simple and rapid task. The 

implications of this part of the work lie on the very low limits of detection achieved, 

the rapid response time observed and the customizability that aptamers offer as 

tailorable biorecognition elements, thus opening the door to infinite applications in 

real-time biosensing. The content of this chapter has been published in the journal 

Angewandte Chemie International Edition, year 2009, volume 48, pages 7334-7337, 

and co-authored by Jordi Riu, Ali Düzgün, and F. Xavier Rius. 
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4.2. Immediate detection of living bacteria at ultralow 

concentrations using a carbon nanotube based potentiometric 

aptasensor 

The control of diseases has been one of the most important public health concerns 

of our society for decades. Typical standard methods that are used to assess the 

presence of microbiological threats consist of specific enrichment media to separate, 

identify and count bacterial cells. This process takes at least two days after the test 

sample has been obtained. In recent years, several research groups have tried to attain 

zero tolerance detection systems within much shorter overall response times.[1] 

Currently available ultrafast polymerase chain reaction (PCR) detection methods are 

able to sense 5 CFU (colony-forming units) in an assay time of 20 minutes,[2] which is a 

major achievement, as is the detection of biowarfare pathogen genes with a DNA-

based nanobarcode using a one-minute test.[3] However, these methods require pre-

treatment steps to condition the test samples and to perform cell lysis in order to 

extract the suitable target DNA, a process that significantly complicates these assays. 

To overcome these drawbacks, there has been a continuing search for methods that 

allow the direct detection of whole microorganisms. The detection of one cell perched 

on the tip of a micromechanical oscillator[4] was an important approach for detecting 

single cells, although the assay was performed at high concentrations of heat-killed 

bacteria (105 CFU/mL) and without a sample matrix. Moreover, the instrumental 

complexity of this method is high enough to prevent its widespread use. Further 

progress was made when scanning electron and fluorescence microscopy techniques 

were used to detect biofunctional magnetic nanoparticles during the extraction and 

counting of 4 to 10 CFU.[5] Nevertheless, the special care needed when examining the 

samples by microscopy and the time invested in each observation barely permit a 

reasonable sample throughput. A fast and versatile method was reported by Rider et 

al. in 2003 when they detected 500 CFU/g in only 5 minutes using a B cell-based sensor 

modified to act as a photo-emitter.[6] However, the main shortcomings in this case are 

the expensive and time-consuming processes involved in fabricating the device. 
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Therefore, there is still a demand for a fast, sensitive, selective, inexpensive and easy-

to-use method for detecting and quantifying pathogenic bacterial cells. 

Electrochemical detection techniques have a series of advantages such as rapid 

response, ease of use, low-cost and small sized commercial detectors. Among the 

electrochemical techniques, the simplest, most widespread and field-portable 

methodologies are based on potentiometry. The new wave of potentiometric solid 

state electrodes represents an attractive tool for real-time bioanalysis in liquid 

samples.[7] However, to date, it has been difficult to carry out the specific and direct 

electrochemical detection at ultra low levels of whole living bacterial cells without 

chemical labeling because the interaction receptor-bacteria does not provide a 

measurable electrochemical signal.  

Recently, Crespo et al.[8] showed that single walled carbon nanotubes (SWCNT) 

can act as efficient ion-to-electron transducers in potentiometric analysis. The notable 

charge-transfer capability between heterogeneous phases of SWCNT[9] together with 

their remarkable double layer capacitance[10] explain their transducing behavior. 

Moreover, they are easily deposited over many surfaces making them ideal for solid 

contact electrode design.[11] However, in order to selectively detect a particular target, 

SWCNT must be coupled to the suitable receptor. Aptamers are highly suitable 

receptors for the selective and high proficiency detection of a wide range of molecular 

targets, including bacteria.[12
,a

–
13,

14] Moreover, aptamers can self-assemble to carbon 

nanotubes via π-π stacking interaction between the nucleic acid bases and the carbon 

nanotubes walls,[15] thus constituting a hybrid material that has been applied to 

nanobiosensors.[16,17] Also, Pan et al. recently obtained a high-affinity RNA aptamer 

that specifically binds to type IVB pili of Salmonella Typhi (ST).[18] 

With these developments in mind, we report a potentiometric biosensor for 

selectively detecting one single CFU of ST close to real time. This aptamer was 

modified with a five carbon spacer and an amine group (–(CH2)5NH2) at the 3’ end and 

was covalently immobilized into a layer of previously carboxylated SWCNT.[19] This step 

used a well-known carbodiimide mediated wet-chemistry to form amide bonds 

between the amine spacer and the carboxylic moieties on the sidewalls of the 
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nanotubes.[20,21] Before linking the aptamers to the carboxylated SWCNT, a 30 μm thick 

layer of nanotubes were sprayed onto the polished surface of a glassy carbon (GC) rod 

that was electrically contacted to a potentiometer.[10] We used an Ag/AgCl/KCl double 

junction electrode as reference for the electromotive force (EMF) measurements. 

Further information about materials and methods is also included in subsection 4.2.1. 

The hybrid material aptamer-SWCNT acts as both the sensing and the transducing 

layer of the biosensor. In the absence of the target analyte (Figure 4.1a), the aptamers 

are self-assembled to carbon nanotubes via π-π stacking interaction between the puric 

and pyrimidic bases and the carbon nanotubes walls.[22] The presence of the target 

bacteria promotes a conformational change in the aptamer that separates the 

phosphate groups, largely ionized at pH 7.4, from the SWCNT sidewalls, inducing a 

charge change to the SWCNT and the subsequent change of the recorded potential 

(Figure 4.1b). The bacteria linked to the aptamer could also lean towards the carbon 

nanotubes establishing a charge transfer between the highly concentrated H+ ions that 

surround the cell wall[23] and the carbon nanotubes. Both mechanisms occur 

simultaneously and are currently being investigated. 

 

 

Figure 4.1. a) Possible conformations of the aptamers that are self-assembled to carbon 

nanotubes. b) Schematic representation of the interaction between the target bacteria and the 

hybrid system aptamer-SWCNT. 

     a)                                                        b) 
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To explore the response of the biosensor to stepwise additions of living ST in 

phosphate buffer solution (PBS, 1.7 mM, pH = 7.4), we performed consecutive 

inoculations. All the electromotive force measurements were performed at low ionic 

strength (1.7 mM PBS) and at neutral pH with a high-input impedance voltmeter 

M6514 (London, U.K.) in an isothermal vessel at (22 ± 0.5)°C, using 5 mL of sterile and 

pure PBS before any inoculation of bacteria. The amount of bacteria that was 

contained in each aliquot was simultaneously standardized in quintuplicate using the 

agar plate count technique. Stock solutions of bacteria consisted of consecutive 1:10 

dilutions in sterile PBS (the same matrix that is used for EMF measurements) of a 

suspension of bacteria cultured for 12-24 hours, that had been previously washed, 

precipitated and reconstituted in PBS. The initial EMF values (E0) for each of the 

biosensors were in the interval of 80-130 mV; however this value does not exert any 

influence on the final response for either ST or any other type of bacteria. Figure 4.2 

shows an environmental scanning electron microscopy (ESEM) image of a single ST cell 

placed on the SWCNT-aptamer layer.  

 

Figure 4.2. Environmental scanning microscope image obtained from an aptamer-

functionalized SWCNT electrode after exposure to ST. 

The potentiometric response of our biosensor was found to be immediate after 

each inoculation, ranging from 0.2 CFU mL-1 (1 CFU in 5 mL PBS) to 106 CFU mL-1. Figure 

4.3 shows that the response time is shorter than 60 s indicating a fast affinity 
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equilibrium between the aptamers and ST. The recorded potential does not decrease 

after the solution is diluted, indicating that the equilibrium is not easily reversed.  

 

Figure 4.3. Aptamer-functionalized SWCNT electrode exposed to stepwise concentrations of ST 

and the corresponding potentiometric response; arrows represent the inoculations with ST; 

values are the final concentration of bacteria. Inset is amplification for the inoculation step at 

0.2 CFU mL-1 to show the fast response; time is in seconds. The signal provided by the first 

aliquot containing 1 bacteria (0.2 CFU mL-1) is high enough to be resolved from the 

instrumental limit of detection,24 delimited by 3 x SDnoise [standard deviation of noise = 

± 0.08 mV]. 

In all the tested sets of inoculations for all the tested sensors (5 sensors), a linear 

relationship existed between the EMF response and the logarithm of the bacteria 

concentration up to 103 CFU mL-1 (Figure 4.4). A sensitivity of 1.87 mV/decade 

(Standard Deviation=0.29 mV, N=5) has been obtained for this concentration range. 

However, the slope decreases considerably at higher levels, reaching a plateau at 

concentrations above 106 CFU mL-1. This behavior can be explained by the progressive 

saturation of the available binding sites (Figures 4.3 and 4.4). After each set of 

inoculations, the sensors were easily regenerated by dissociating the aptamers from 

the bacteria in NaCl 2 M for 30 minutes, and then reconstituted by conditioning in PBS, 
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thus leaving the biosensor ready to take new measurements. Even though the 

saturation level of the electrodes decreased after 10 regeneration cycles, all the 

electrodes were able to detect the minimum bacteria concentration for at least 3 

months.  

 

Figure 4.4. EMF response versus decade of concentration of ST. The solid line is the linear 

regression fit and the equation below was obtained for that range (E0 is the corresponding 

sensor potential before any inoculation, and it is particular for each sensor). Error bars are SD 

of the response obtained at same concentrations for 5 different sensors. Error values in 

parenthesis are SD for the different regression equations obtained for 5 different sensors.  

Our biosensor also shows a high degree of selectivity. No response was shown for 

parallel experiments using either Escherichia coli as a Gram-negative foodborne agent 

or Lactobacillus casei as a non-toxic Gram-positive microorganism. Moreover, control 

experiments confirmed that the responses are caused exclusively by the binding event 

between ST and the aptamer, and the subsequent transduction of the SWCNT layer. 

Several modified solid-contact sensors were tested in order to discard the possibility 

that the electric potential was originated by unspecific adsorptions. We tested carbon 

nanotube based electrodes functionalized with the 1-pentylamine molecule 

(CH3(CH2)4NH2) that represents the five-carbon spacer between the carbon nanotube 

and the aptamer, and carbon nanotube based electrodes without any other chemical 
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modification. We also examined the potentiometric response using only the original 

glassy carbon support as the sensor, which had been either aptamer-functionalized or 

1-pentylamine-modified. There was no potentiometric response under any of these 

conditions, showing that the EMF change is only generated when aptamers attached 

to SWCNTs interact with ST (Figure 4.5).    

 

Figure 4.5. Controls and selectivity assays. EMF response versus recorded time, for stepwise 

concentrations of bacteria. Solid vertical lines represent inoculation with increasing amounts 

of bacteria. From top to down: 1, carbon nanotube sensor functionalized with CH3(CH2)4NH2 

using same procedure for amide bonding, exposed to ST; 2 and 3 SWCNT-Aptamer biosensors 

exposed to E. coli and to L. casei, respectively; 4, glassy carbon electrode functionalized with 

CH3(CH2)4NH2, exposed to ST; 5, carboxylated SWCNT sensor without any functionalization, 

exposed to ST; 6, glassy carbon electrode after functionalization with the aptamer and exposed 

to ST. 

In this chapter, we demonstrate that easy-to-build aptamer-based SWCNT 

potentiometric biosensors are highly selective and can be successfully used to detect 

living microorganisms in an assay close to real time, thus making the detection of 

pathogens as easy as measuring the pH value. As demonstrated herein, a highly 

accurate linear response can be obtained with good reproducibility and without any 

kind of pretreatment, starting at ultra-low concentrations of bacteria and a dynamic 
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range of 4 logarithmic units (0.2-103 CFU mL-1), and progressing in just a few seconds 

to concentrations far below those reported previously. Higher concentrations of 

bacteria can also be detected but in a semiquantitative way. However, the most 

important strength of this biosensor is that simple positive/negative tests can be 

carried out in real zero-tolerance conditions and without cross reaction with other 

types of bacteria. The ease with which measurements are taken in potentiometric 

analysis opens the door to greater simplicity in microbiological analysis. 

 

UNIVERSITAT ROVIRA I VIRGILI 
ULTRASENSITIVE DETECTION OF PATHOGENS IN REAL-TIME. POTENTIOMETRIC BIOSENSORS BASED ON SINGLE-WALLED CARBON NANOTUBES AND APTAMERS 
Gustavo Adolfo Zelada Guillen 
DL:T. 1713-2011 



Real-time detection of bacteria in buffer solutions 

74 
 

4.2.1. Supporting Information 

The single walled carbon nanotubes (SWCNTs) were purchased in bulk form from 

HeJi (Zengcheng, China) with >90% purity, 150 μm average length and 1.4-1.5 nm 

diameter. The SWCNTs were oxidized in a HST 12/600 silica furnace chamber 

(Carbolite, Hope Valley, UK) at 365°C, with synthetic air flow-rate of 100 cm3 min-1 and 

90 min, in order to selectively remove the amorphous carbon. Subsequently, SWCNTs 

were refluxed in 2.6 M nitric acid for 4 h to oxidize the metallic impurities remaining 

from the synthesis[19]. The carbon nanotubes became carboxylated after this latter 

oxidation step. The SWCNTs in nitric acid solution were filtered and thoroughly rinsed 

with water to remove the acid completely. The filtered SWCNTs were dried overnight 

at 80°C. 

The reagents sodium dodecyl sulphate (SDS), N-(3-dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), 2-(N-morpholino) 

ethanesulfonic acid (MES) and cetyltrimethylammonium bromide (CTAB) were 

purchased from Sigma-Aldrich (Tres Cantos, Spain). Potentiometric measurements 

were carried out in all cases in a 1.7 mM pH 7.4 phosphate buffer solution (PBS), which 

was prepared by a 1:100 dilution of a 0.17 M stock solution of corresponding amounts 

of KH2PO4 and Na2HPO4 (Sigma-Aldrich, Tres Cantos, Spain). All the substances were 

used as received. Water used to prepare the solutions was purified through a Milli-Q 

system (Millipore, Barcelona, Spain) and in all cases the resistivity level of purified 

water was 18.2 MΩ cm. 

Eurogentec (London, UK) synthesized the Salmonella Typhi type IVB Pili binding 

aptamer of 71-mer with the sequence 5’-GGG AAC AGU CCG AGC CUC ACU GUU AUC 

CGA UAG CAG CGC GGG AUG AGG GUC AAU GCG UCA UAG GAU CCC GC-3’, and 

(CH2)5NH2-modified in the 3’ end. The aptamer was resuspended in MilliQ water and 

stored at -80 °C.  

Lyophilized strains of Salmonella Typhi (CECT 409) and Lactobacillus casei subsp. 

casei (CECT 4180) were purchased from Colección Española de Cultivos Tipo (Valencia, 

Spain) and reactivated by resuspension in saline solution 0.85% and later selective 
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enrichment in XLD agar (Salmonella Typhi) and MRS broth (Lactobacillus casei). 

Escherichia coli (CECT 4558) was kindly donated by the Biotechnology Department of 

the URV (Tarragona, Spain). Tryptic soy agar and Tryptic soy broth, Lactobacilli MRS 

(deMan, Rogosa and Sharpe) agar / broth and XLD (xylose-lysine-deoxycholate) agar 

were purchased from Becton, Dickinson and Company (Sparks, U.S.A.) and prepared 

according to indications. All bacteria strains were cultivated under the same 

experimental conditions, including incubation time and temperature, except for the 

growth medium of Lactobacillus casei (Lactobacilli MRS broth and agar). The original 

bacteria samples were stored at -20 °C in glycerol / broth medium (10% v/v) and 

reactivated by inoculating the bacteria in 10 mL of sterile broth medium at 37 °C for 24 

h. The bacteria samples were then centrifuged at 6000 rpm for 15 minutes and the 

supernatant was discarded. The precipitate was resuspended in 10 mL of sterile PBS 

1.7 mM pH 7.4, and the resulting solution was 1:10 diluted eight times to give a series 

of 10-1 to 10-8 stock solutions of bacteria. The stock solutions were quantified in 

quintuplicate using the standard plate count method, in an appropriate culturing agar 

medium (tryptic soy for Salmonella Typhi / Escherichia coli and MRS for Lactobacillus 

casei), and the same procedure was also applied to the standardization of the variable 

aliquots of stock solutions that were used to inoculate the solutions analyzed.[25] 

The solid contact electrode was made of a 3 mm diameter glassy carbon cylindrical 

rod (HTW Hochtemperatur-Werkstoffe GmbH, Thierhaupten, Germany) covered by a 

Teflon jacket of 7 mm diameter. The surface of the glassy carbon was successively 

polished using 25 and 1 micron grain size polishing alumina (Buehler, Lake Bluff, USA) 

before the SWCNT layer was deposited on the same surface. For the spraying process, 

we used sonication for 30 minutes at 0.5 s-1 to prepare a solution of 25 mg of purified 

SWCNT dispersed in 10 mL of MilliQ water containing 100 mg of SDS. The 

SWCNT/SDS/H2O solution was sprayed under a high temperature (200°C) air blow, and 

washed with MilliQ water to progressively remove the SDS.  

The carboxylic groups that are on the sidewalls of the deposited SWCNTs are 

activated using a solution of 100 nmol of EDC and 25 nmol of NHS in a 50 mM MES 

buffer pH 5 for 30 minutes[21]. Subsequently, the electrodes were soaked overnight 
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into 500 μL of a 1 μM aptamer solution, which also consisted of PBS pH 7.4 (1 mM) and 

CTAB (0.2 mM). 

Microscopic analysis of electrodes was carried out using a FEI Quanta model 600 

environmental scanning electron microscope (ESEM) with ETD detector (Hillsboro, 

USA). The microscopic observations were performed in high vacuum mode (10-5 mbar) 

and with an accelerating voltage of 30 kV. The working distance was 10.2 mm. The 

attached cells of bacteria were directly observed without biological-specimen 

preparation. The electrode was immersed directly in 5 mL of PBS working solution 

containing a concentration of 105 CFU mL-1 of bacteria. Subsequently, the electrode 

was withdrawn from the solution and directly inserted to the ESEM sample holder. 

Sample drying was achieved using the ESEM vacuum system. The specimens were 

examined at a magnification of 20000x. 
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5.1. Introduction 

In the previous chapter, the proof-of-principle for the potentiometric biosensors 

based on carbon nanotubes as potentiometric transducers and RNA aptamers as 

biorecognition elements was demonstrated with the detection of the gram-negative 

bacteria Salmonella Typhi in buffer solutions. In that chapter, the aptamer molecules 

were covalently attached to the carbon nanotubes by amide bonds formed between 

amine moieties previously introduced at the 3’ end of the aptamers and carboxylic 

groups at the nanotubes’ sidewalls. However, the possibility to detect gram-positive 

bacteria using this new generation of potentiometric biosensors was not 

demonstrated so far. Therefore, it is very interesting to investigate the possibilities to 

generalize the methodology for all types of bacteria. Moreover, the compatibility of 

simpler biosensor functionalization procedures with the potentiometric biorecognition 

phenomenon as well as their eventual effect on the biosensor performance 

parameters remained an open question.  

Therefore, in this chapter we analyze the biosensor performance parameters in 

terms of the functionalization procedure followed and type of bacteria detected. A 

network of carbon nanotubes was used as the ion-to-electron potentiometric 

transducing layer whereas DNA aptamers are the recognition element used to target 

the gram-positive microorganism Staphylococcus aureus. The carbon nanotube layer 

was functionalized with the aptamer molecules by two different approaches (Scheme 

5.1): 1) covalent bond formation between a primary amine-group introduced to one of 

the terminals of the aptamer molecules and the carboxylic groups at the sidewalls of 

the nanotubes following standard carbodiimide-mediated chemistry; and 2) non-

covalent adsorption of drop-casted pyrenil-modified aptamer molecules onto the 

external walls of the nanotubes.  
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Scheme 5.1. a) Covalent functionalization of carboxylated carbon nanotubes with amine-

modified aptamers. b) Non-covalent functionalization of carbon nanotubes with pyrenil-

modified aptamers. 

By comparing the performances of the biosensors prepared using these two 

strategies, we aimed to determine the best approach in terms of analytical 

performance and biosensor construction simplicity. The biosensors were finally 

assessed as potential tools for the detection of Staphylococcus aureus in human skin 

using, as a surrogate for human skin, freshly excised pig skin. The content of this 

chapter has been submitted for publication, and it has been co-authored by José Luis 

Sebastián-Ávila, Pascal Blondeau, Jordi Riu and F. Xavier Rius. 
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5.2. Label-free detection of Staphylococcus aureus in skin using 

real-time potentiometric biosensors based on carbon nanotubes 

and aptamers 

5.2.1. Abstract 

In this chapter we report the first biosensor that is able to detect Staphylococcus 

aureus (S. aureus) in real-time. A network of single-walled carbon nanotubes (SWCNTs) 

acts as an ion-to-electron potentiometric transducer and anti-S. aureus aptamers are 

the recognition element. Carbon nanotubes were functionalized with aptamers using 

two different approaches: 1) non-covalent adsorption of drop-casted pyrenil-modified 

aptamers onto the external walls of the SWCNTs; and 2) covalent bond formation 

between amine-modified aptamers and carboxylic groups previously introduced by 

oxidation at the ends of the SWCNTs. Both of these approaches yielded functional 

biosensors but there were large differences in the minimum detectable bacteria 

concentration and sensitivity values. With covalent functionalization, the minimum 

concentration detected was 8 x 102 Colony-Forming Units (CFU)/mL and the sensitivity 

was 0.36 mV/Decade. With the non-covalent approach, the sensitivity was higher (1.52 

mV/Decade) but the minimum concentration detected was greatly affected (107 

CFU/mL). In both cases, potential as a function of Decade of bacteria concentration 

was linear. Functional biosensors were used to test real samples from freshly excised 

pig skin, contaminated with the target microorganism, as a surrogate for human skin. 

5.2.2. Introduction 

Staphylococcus aureus (S. aureus) is a common Gram-positive pathogen that can 

be present on skin and mucous membranes of healthy humans or in inadequately 

treated food. In uncontrolled conditions, S. aureus can cause a wide range of diseases 

including several types of dermatitis and gastrointestinal tract infections and is widely 

involved in many cases of enterotoxin-related food poisoning worldwide. It is also an 

important cause of life-threatening infections such as pneumonia, septicemia, 

osteomyelitis, toxic shock syndrome and about a third of the total cases of 
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endocarditis worldwide. Moreover, is an important burden in critical sectors such as 

hospitals because of the high volume of acquired nosocomial-infections it causes, 

especially in immunodepressed patients or with post-operatory treatments. An 

increasing prevalence of Methicilin- and Vancomycin-resistant strains of S. aureus is 

now seriously challenging global monitoring platforms. Consequently, there is 

currently a huge demand for rapid methods of S. aureus detection.[1
,2

–
,3,

4] S. aureus is 

traditionally detected using the gold standard technique known as the plate count 

method after selective enrichment in broth.[5] Despite the simplicity of this technique, 

however, the time needed to produce a confirmatory result ranges from 2 to 4 days. 

Also, further biochemical tests are usually needed for corroboration, which makes the 

existing detection protocols complicated and requires skilled staff and expensive 

laboratory facilities. 

Several successful fast biosensing approaches have been developed for indirectly 

detecting S. aureus either by detecting pathogenic-nucleic acid sequences,[6
,7

–
8,

9] or the 

presence of toxins and other biomolecules produced by the pathogen at very low 

concentrations.[10
,

–
11

12] However, the techniques based on nucleic acid sequences 

detection usually require preprocessing steps for prior bacteria lysis and subsequent 

DNA extraction, amplification and detection. This makes the overall procedure both 

expensive and complicated. Moreover, indirect detection techniques are limited by the 

ability of S. aureus to produce target molecules and shed them into the sample matrix. 

Both are also influenced by intrinsic and extrinsic factors, so negative results are not 

necessarily related to the absence of the pathogen. Biosensing methods based on the 

direct detection of target pathogens are preferred over indirect detection methods 

because their results are directly related to the presence of the microorganism. Recent 

advances in biosensing platform development have led to novel biosensors for directly 

and rapidly detecting S. aureus. State-of-the-art techniques such as surface plasmon 

resonance biosensors based on antibodies[13] and phages[14] –able to detect 105 

Colony-forming units (CFU)/mL in 2 h or 104 CFU/mL in about 20 minutes, 

respectively– or fluorescence-based immunoassays[15] –able to detect 104 CFU/mL in 

15 minutes– represent a huge advance in the fast detection of this pathogen. 

However, biosensors based on electroanalytical methods are generally preferred 
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because electrochemical devices are cheap, portable, easy to use and easy to 

miniaturize, and afford lower detection limits than other techniques.[16] However, the 

thick polysaccharide layer of poly-N-acetylglucosamine on the surface of S. aureus and 

the low abundance of antigens that are externally exposed and available to 

biorecognition elements such as antibodies,[17,18] seriously limit in the development of 

biosensors for direct electrochemical detection. Consequently, only a few 

electrochemical biosensors for S. aureus detection have been developed to date, with 

detection limits ranging between 104 and 105 CFU/mL in the best case scenario.[19,20] 

Recent advances using amperometric detection techniques have enabled much lower 

detection limits of about 103 CFU/mL in a total analysis time of 50 minutes,[21] or 

6.5x102 CFU/mL in 3 hours[22] when selective enrichment steps are introduced. As in all 

the previous examples, in both of these cases enzymatic-labeling is essential and, 

unfortunately, the detection of S. aureus without the need for labels or complicated 

procedures such as ELISA-based methods remains a challenge. Several promising 

approaches have recently tried to solve this problem by targeting S. aureus using 

lectins as biorecognition elements in label-free biosensors based on electrochemical 

quartz crystal microbalance for the detection of 107 CFU/mL in one hour.[23] 

Very recently, a new generation of DNA aptamers able to recognize conserved 

epitopes on the surface of S. aureus[24] has provided promising solutions for this 

important issue but platforms for the direct and label-free detection of S. aureus are 

still not completely resolved. The deployment of the above-reported S. aureus-

biosensing platforms into clinical settings for the rapid detection of this life threatening 

pathogen in clinical samples such as infected wounds or skin biopsy specimens has 

remained unsolved for years. To address this challenge, in this chapter we report the 

first biosensor for the real-time and label-free potentiometric detection of S. aureus. 

We used a hybrid transducing/biosensing material[25] consisting of single-walled 

carbon nanotubes (SWCNT) as ion-to-electron potentiometric transducers and 

aptamers –tailored DNA or RNA segments acting as artificial recognition elements[26]– 

as biorecognition molecules. The transducing properties of this SWCNT/aptamer 

hybrid material derive from the remarkable SWCNT double-layer capacitance, the 

great ability to support charge transfer between the SWCNT/solution interface and the 
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ions that surround the cell wall of the target bacteria, and the extremely high surface-

to-volume ratio of the nanotubes that are also able to sense conformational changes 

in the linked aptamers during the target-recognition event that switches the surface 

charge on the SWCNT layer.[27
28

–
,

29] To explore alternative methods for the 

functionalization of nanotubes with aptamers and thus open the door to easier 

functionalization procedures, we attached the aptamers to a homogeneous layer of 

SWCNT using two functionalization strategies –a covalent approach and a non-

covalent approach– and analyzed the effects on the biosensors’ performance 

parameters. The covalent approach consisted of linking the aptamers to the nanotubes 

chemically by amide bonds formed between the –COOH groups of previously 

carboxylated SWCNT and an amine moiety introduced at the 3’ end of the aptamer by 

well-known carbodiimide mediated chemistry.[30,31] The non-covalent approach was 

performed by direct physisorption onto the SWCNT sidewalls of pyrenil moieties 

previously introduced to the 3’ end of the aptamer. Pyrenil groups strongly interact 

with the sidewalls of the nanotubes by π-stacking, and this property is commonly used 

to fix pyrenil-modified biomolecules to carbon nanotubes by drop casting.[32] By 

comparing the performances of the biosensors prepared using these two strategies, 

we aimed to determine the best approach in terms of analytical performance and 

biosensor construction simplicity. Finally, we assessed the functional biosensors as 

potential tools for detecting S. aureus in human skin using, as a surrogate for human 

skin (based on the morphological similarity of the two skin types), freshly excised 

dorsal skin of the domestic pig.[33] 

5.2.3. Materials and methods 

5.2.3.1. Chemicals and aptamers 

Solutions were prepared using deionized water purified through a Milli-Q system 

(Millipore, Madrid, Spain) with a resistivity level of 18.2 MΩ cm. The reagents sodium 

dodecyl sulphate (SDS), N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide 

hydrochloride (EDC), N-hydroxysuccinimide (NHS), 2-(N-morpholino) ethanesulfonic 

acid (MES) and cetyltrimethylammonium bromide (CTAB), KH2PO4 and Na2HPO4 were 

purchased from Sigma-Aldrich (Tres Cantos, Spain). All substances were used as 
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received. Phosphate buffer solution (PBS) 1.7 mM pH 7.4 was prepared sterilely using a 

1:100 dilution of a 0.17 M stock solution of corresponding amounts of KH2PO4 and 

Na2HPO4, and the pH was adjusted as required. The 88-mer S. aureus-binding DNA 

aptamers with similar affinities[24] and the sequences 5'-GCAAT-GGTAC-GGTAC-TTCCT-

CCCAC-GATCT-CATTA-GTCTG-TGGATAAGCG-TGGGA-CGTCT-ATGAC-AAAAG-TGCAC-

GCTAC-TTTGC-TAA-3'-(CH2)6NH2 (NH2-Aptamer) and 5’-GCAAT-GGTAC-GGTAC-TTCCG-

CGCCC-TCTCACGTGG-CACTC-AGAGT-GCCGG-AAGTT-CTGCGTTATC-AAAAG-TGCAC-

GCTAC-TTTGC-TAA-3’-C3-Pyr (Pyr-Aptamer, C3-Pyr = pyrenil moiety with a 

phosphoramidite spacer) were purchased from Eurogentec (London, UK). The 

aptamers were resuspended in deionized water and stored at -80 °C. All the materials 

and solutions were adequately sterilized and manipulated under sterile conditions. 

5.2.3.2. Microorganism culturing 

The manipulation of microorganisms was carried out in a biosafety level II cabinet, 

model BIO II A (Telstar Industrials, Terrassa, Spain). Information about culturing media, 

bacteria strains and culturing procedures can be found in subsection 5.2.6. 

5.2.3.3. Instrumentation and materials 

Electromotive force (EMF) measurements were automatically recorded with a 

high-input impedance voltmeter model EMF-16 (Lawson Laboratories, Inc., Malvern, 

PA, U.S.A.) using an Ag/AgCl/KCl (3 M) double junction reference electrode containing 

a 1 M LiAcO electrolyte bridge (type 6.0729.100, Metrohm AG, Herisau, Switzerland) 

and the biosensor or SWCNT-based electrode as the working electrode. 

5.2.3.4. Development of the biosensors 

The development of the biosensors prepared by both procedures, the covalent 

functionalization approach and the non-covalent functionalization method, as well as 

the preliminary viability tests performed with the biosensors are described in 

subsection 5.2.6. 
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5.2.3.5. Analytical procedure 

Constant stirring (300 rpm) was applied during all the potentiometric 

measurements in an isothermal vessel at 22±0.5 °C containing 5 mL of sterile PBS 

working solution (1.7 mM and pH 7.4) before addition of the sample. The 

electrochemical cells were inoculated in a stepwise mode with the stock solutions of 

serially diluted bacteria (10-8 to 10-1 solutions prepared as mentioned in subsection 

5.2.6) in order to progressively increase the bacteria concentration within the 

electrochemical cell and simultaneously monitor the EMF changes with the biosensors 

at periods of 10 s. The dilution was corrected for all the stepwise concentration 

experiments in order to calculate the concentration of bacteria within the 

electrochemical cell by considering the volume increase of buffer solution after each 

sample addition. The potentiometric response of the biosensors was evaluated 

following the EMF changes after stepwise inoculation with increasing concentrations 

of S. aureus. Selectivity assays were carried out by testing the biosensors against 

stepwise increasing concentrations of Escherichia coli (E. coli) and Staphylococcus 

epidermidis (S. epidermidis). Parallel control assays were performed by monitoring the 

potentiometric response of SWCNT sensors without aptamers against increasing 

concentrations of S. aureus. Biosensors were regenerated in a 2 M NaCl aqueous 

solution for 1 hour after each potentiometric measurement experiment in order to 

dissociate the bacteria from the aptamers. The regenerated biosensors were then 

washed for 15 minutes in sterile deionized water and stored in PBS working solution to 

prepare them for new measurements.  

For the detection of S. aureus in a surrogate for human skin, 2 cm x 2 cm segments 

of freshly excised dorsal pig skin (purchased from a local butcher’s) were successively 

washed with water and soap, rinsed with water, dried, further sterilized at the surface 

with 70% v/v ethanol/water, and finally dried for 10 minutes, always with sterile 

solutions and under sterile conditions. The surface was then inoculated with 50 μL of a 

108 CFU mL-1 S. aureus stock solution in PBS, distributed over the surface with a sterile 

microbiological loop, and dried for 30 minutes. Control pig skin without S. aureus 

inoculated was prepared following the same steps but substituting the bacteria-

containing solution with sterile PBS. Finally, the inoculated pig skin was rubbed with 
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two sterile cotton swabs moistened with sterile PBS working solution. One of the 

swabs was used for growth control by smearing the adsorbed bacteria onto the 

solidified surface of Mannitol Salt Agar (MSA) contained in a Petri dish that was then 

incubated for 48 h at 37 °C. MSA is a selective solid medium for confirming the growth 

of S. aureus and the presence of the microorganism is evidenced when pale-yellow 

colonies surrounded by a yellow halo are found.[5] The other swab was introduced in a 

tube containing 2 mL of sterile PBS working solution in order to transfer the recovered 

microorganisms to the PBS by intense shaking and later detect the S. aureus present in 

an aliquot of this solution using the developed biosensors. The tube was shaken 

intensely and 500 μL of the solution was then transferred into an electrochemical cell 

containing the tested biosensor (Figure 5.1). Three functional biosensors for each type 

of functionalization were used in this experiment. Parallel quantification assays were 

carried out in order to estimate the amount of S. aureus recovered from pig skin by 

this procedure following the standard plate count method in TSA in triplicate applied 

to an aliquot of the solution within the tubes containing the recovered bacteria. 

Control pig skin without S. aureus, prepared as described previously, was used as a 

blank in both control quantification assays and control potentiometric assays of the 

tested biosensors following the latter swab-smearing based procedure. Finally, 

selectivity assays were performed by substituting S. aureus for E. coli and S. 

epidermidis in this same protocol. The biosensors were then tested in the same way to 

evaluate them with different microorganisms that could be present in real skin 

samples. 
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Figure 5.1. Experimental setup for the sample recovery steps required to analyze human skin 

surrogates using the potentiometric biosensor. 1) sampling from skin segments using a sterile 

swab moistened with PBS; 2) recovery by resuspension of the collected microorganisms in a 

tube containing PBS; 3) potentiometric detection of bacteria in aliquots of the recovery 

solution. Biosensors functionalized by both methods and the interaction with S. aureus are 

schematized on the right. 

 

5.2.4. Results and discussion 

Recognition of S. aureus by the biosensors following the covalent functionalization 

approach was evidenced when the biosensors were incubated for 30 minutes in a 108 

CFU/mL solution of S. aureus, which was then thoroughly washed and smeared onto 

the solid surface of agar to yield positive growth after 48 h at 37 °C. Control tests with 

SWCNT sensors without aptamer did not produce colonies under these conditions. 

Non-covalently functionalized biosensors prepared by drop casting the Pyr-Aptamer 

solution also yielded positive growth on agar. This was confirmed by triplicate 

experiments of the previous assays. The instrumental limit of detection (3 x standard 

deviation of the noise) determined from electromotive force (EMF) measurements 

recorded using both biosensor types was 96 μV and 42 μV for the covalently prepared 

biosensors and non-covalently prepared biosensors, respectively. EMF variations 

above these values should be easily detected by the corresponding biosensor type.  
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In the case of non-covalently functionalized biosensors prepared by drop casting 

Pyr-Aptamer solution, the EMF response to S. aureus began at the relatively high 

concentration of 107 CFU/mL and lower concentrations did not change the EMF values 

(Figure 5.3a). The EMF response was linearly dependent on the bacterial concentration 

in Decade units with a slope of 1.52 mV/Decade in the very limited range of 1 order of 

magnitude between 107 CFU/mL and 108 CFU/mL (Figure 5.2b). The biosensor 

response time was about 120-200 seconds, but an immediate change was observed 

after the addition of S. aureus at concentrations above 107 CFU/mL. The EMF response 

was quite stable for at least 10 minutes after bacteria inoculation during the range 

explored. However, when exposed to concentrations above 108 CFU/mL, signal drift 

was observed and a progressively more pronounced decay on signal stability appeared 

as the concentration of bacteria increased. This effect may be attributed to colloidal 

agglomeration of the highly concentrated non-bound bacteria onto the surface of the 

biosensor. This behavior would limit the applicability of biosensors at higher 

concentrations. Sample dilution would not be an option for reducing such an effect in 

samples with a high bacterial load, since, as explained earlier, the working range of this 

non-covalently prepared biosensor is very limited. Biosensors prepared by this method 

and exposed to increasing concentrations of E. coli and S. epidermidis at the 

concentration range of 0 – 108 CFU/mL did lead to a clear change in EMF. Simultaneous 

control assays with non-functionalized SWCNT sensors also resulted in the same 

behavior.   

Covalently prepared biosensors afforded much lower detectable concentrations 

when exposed to S. aureus since the first clear potentiometric change was observed at 

a concentration of 8 x 102 CFU/mL (Figure 5.2a). At concentrations above this value, 

EMF as a function of the concentration of bacteria in Decade units was linear and the 

sensitivity was 0.36 mV/Decade (Figure 5.2b). The signal was also stable in the 

concentration range analyzed. A response time of 6 to 11 minutes (90% of the total 

response, see amplification in Fig. 5.3a) was observed for the concentration range 

8x102 CFU/mL to 108 CFU/mL and the signal was stable for at least one hour after the 

addition of the sample, which is enough time to perform any sample analysis with this 

type of biosensor. However, after inoculation with bacteria at concentrations above 
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108 CFU/mL stability dramatically decreased and EMF response remained stable for 

about 20 minutes before negative drift appeared. As mentioned previously, this effect 

was probably caused by stochastic charge transfer processes between the surface of 

the biosensor and the highly concentrated S. aureus not tethered to the biosensor by 

the aptamers. Control experiments conducted in parallel with non-functionalized 

SWCNT sensors did not lead to a clear change in EMF, which confirms that the 

potentiometric response is driven by the recognition of the target microorganism by 

the biosensors. When selectivity assays were carried out with functionalized 

biosensors exposed to stepwise increasing concentrations of E. coli and S. epidermidis 

between 0 and 108 CFU/mL, no change was observed in EMF (Fig. 5.2c). However, at 

concentrations above 107 CFU/mL, progressive drift was observed on the baseline after 

addition of the sample. 
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Figure 5.2. Performance of biosensors prepared by covalent functionalization with NH2-

Aptamer and non-covalent functionalization with Pyr-Aptamer. a) Change in EMF recorded as a 

function of time for different biosensors when exposed to S. aureus (right, amplification of the 

curve after inoculation with 8x102 CFU/mL). b) Potentiometric response as a function of 

concentration of bacteria in Decade units (the circles represent the average responses of three 

different biosensors; error bars are standard deviation). c) Change in EMF recorded as a 

function of time, when biosensors were exposed to stepwise increasing concentrations of 

different microorganisms (values are in CFU/mL), S. aureus, E. coli, S. epidermidis and a SWCNT 

sensor without aptamer to S. aureus. 
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The different performances between of the two types of biosensor in terms of the 

minimum concentration detected and sensitivity are explained by the differences in 

the bacterial-adsorption profiles due to the functionalization procedure followed. This 

was demonstrated when the S. aureus linked to the biosensor surfaces of each 

biosensor type at a concentration of 108 CFU/mL was grown in TSA according to the 

standard plate count method. Using this procedure, differences in bacterial adsorption 

were observed for each biosensor type. While the biosensors prepared by the covalent 

method yielded a surface bacterial concentration of 9.1x106 CFU (standard deviation, 

SD=5x106, with three biosensors tested), the biosensors prepared by the non-covalent 

approach only yielded a surface bacterial concentration of 2.4x103 CFU (SD=8x103, 

three biosensors tested). The observed difference suggests that the bacteria remain 

more easily tethered to covalently functionalized biosensors by a difference of almost 

4 orders of magnitude if compared with non-covalently functionalized biosensors. 

Several reasons may be behind this lower affinity of the biosensors prepared by non-

covalent functionalization. An excess of Pyr-Aptamer molecules closely adsorbed 

during the drop casting procedure probably resulted in random molecular overlapping 

and so the recognition of the target bacteria by the biosensor was compromised by 

self-entanglement of Pyr-Aptamer molecules (which could clearly reduce the 

availability of aptamers that are able to recognize their target). Another possibility is 

the progressive leaching of the aptamer+bacteria complex, which was probably caused 

by an excessive accumulation of aptamer, which may have reduced the fixation 

strength of outer aptamer layers to the nanotube sidewalls by inner layers of more 

strongly adsorbed aptamers. Both possibilities are performance limiting factors for 

biosensor prepared by this procedure, and further theoretical/experimental research 

is needed in order to unravel this trend. 

To assess the potential use of biosensors prepared by both of these methods in 

the detection of S. aureus in human skin, we used segments of freshly excised dorsal 

pig skin as a surrogate. These segments were inoculated with 50 μL of a 108 CFU/mL 

solution (corresponding to 5x106 CFU). Aliquots of PBS containing the S. aureus 

recovered from pig skin segments using sterile cotton swabs were analyzed using 

functional biosensors prepared by both functionalization methods (Figure 5.3). The 
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biosensors prepared covalently showed a clear change in EMF of 390±16 μV (N=3) 

when 500 μL of this solution was inoculated into the electrochemical cell (Figure 5.3) 

but no evident change was observed when 500 μL of the same solution was added to 

the cell containing the sensors functionalized using the non-covalent approach. Control 

SWCNT sensors did not show any potentiometric response at these conditions either. 

The standard plate count method was used in triplicate to quantify the bacteria 

recovered in PBS solution by this swab-based technique. The amount of bacteria 

recovered using the swab-based protocol was 7.3x105 CFU with a standard deviation of 

5.1x105 CFU (5 skin samples), which represents an average recovery rate of 15% with a 

very high standard deviation, because the amount of recovered S. aureus ranged from 

1.6% to 29.6% the original load. Therefore, to correlate the EMF response with the 

concentration of target microorganism in the PBS solution recovered from skin and 

introduced into the electrochemical cell, we simultaneously quantified the bacteria 

within that solution by plate counting. Results obtained after culturing the PBS solution 

with the swab-recovered bacteria demonstrated that both covalently and non-

covalently prepared biosensors were exposed to S. aureus concentrations ranging from 

2.4x103 CFU/mL to 2.0x104 CFU/mL in the electrochemical cell. This range is in 

accordance with the working range of the biosensors prepared by the covalent 

approach and the positive change in EMF confirmed the compatibility of the sample 

recovery protocol with the potentiometric analysis using this type of covalently 

functionalized biosensors. Also, these values were far below the limit of detection of 

the biosensors prepared by the non-covalent method, which explains why no 

potentiometric response was observed in this type of biosensor. We also carried out 

selectivity assays by inoculating pig skin with either E. coli as a gram-negative pathogen 

or S. epidermidis as a non-pathogenic gram-positive microorganism that may also be 

present in real skin samples. The load of bacteria inoculated into the pig skin segments 

and swab-based sample recovery procedure remained constant for samples with S. 

aureus, E. coli and S. epidermidis. Neither the E. coli nor the S. epidermidis showed a 

change in EMF when the samples were analyzed with both biosensor types. The 

concentration of bacteria within the electrochemical cells after inoculation with 500 μL 

of the solution containing the recovered microorganisms ranged between 5.6x102 

CFU/mL and 9.1x104 CFU/mL for E. coli and between 3.8x103 CFU/mL and 3.1x104 
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CFU/mL for S. epidermidis. The absence of a response in the biosensor covalently 

functionalized to these two microorganisms in pig skin suggests that biosensors 

functionalized by the covalent approach perform well in the identification of S. aureus 

in either skin or aqueous samples. The whole procedure, including sample recovery 

with swabs, resuspension in buffer and inoculation into the cell takes about 2 minutes 

while the EMF response value achieved after inoculating with the aliquot takes less 

than 6 minutes. However, an increase in EMF was immediately observed after the 

sample was added to the electrochemical cell, so a response was achieved in real-time.  

 

Figure 5.3. Average potentiometric response observed when biosensors were exposed to 

samples containing different microorganisms recovered from pig skin segments. All the skin 

samples were initially inoculated with 5x106 CFU of the microorganism tested. Error bars are 

standard deviation for three different experiments. The average concentration (CFU/mL) in the 

electrochemical cell is given below the chart in logarithmic units (the values in parenthesis are 

SD, N=3). 

5.2.5. Conclusions 

In this chapter we have demonstrated that potentiometric biosensors based on 

single-walled carbon nanotubes as ion-to-electron transducers and aptamers as 

recognition elements are excellent biosensors for real-time detection of S. aureus as 

they improve on all the current detection methods for this pathogen. The biosensor 

performance parameters of two functionalization approaches were compared. 
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Important differences were observed between the biosensors prepared by covalently 

linking the aptamers to the SWCNTs by amide bonds and those prepared by the non-

covalent adsorption of pyrenil-functionalized aptamers onto the nanotube sidewalls. 

The performance parameters depended on the functionalization approach used. Non-

covalently functionalized biosensors detected the target microorganism at 

concentrations above 107 CFU/mL with a very limited working range. On the other 

hand, biosensors functionalized covalently detected S. aureus concentrations above 

8x102 CFU/mL, which represents a minimum detectable concentration five orders of 

magnitude below that of the biosensors prepared by the non-covalent approach. 

Biosensors prepared by the covalent method also showed a higher stability. Both 

biosensor types demonstrated great versatility in selectivity assays, which suggests the 

applicability of SWCNT/aptamer-based potentiometric biosensors in the highly 

selective identification of S. aureus. However, since the performance parameters of 

non-covalently functionalized biosensors are more limited, covalently functionalized 

biosensors are the best option in S. aureus detection in real samples. Finally, 

biosensors prepared covalently also showed many more advantages in terms of 

simplicity, analysis time and detection limit compared with both the standard 

detection methods and current state-of-the-art biosensing platforms for S. aureus 

detection. This was additionally demonstrated with the highly selective detection of S. 

aureus in human skin surrogates by a simple real-time assay that did not need require 

highly trained staff. 

5.2.6. Supporting Information 

Microorganism culturing: 

Tryptic soy agar (TSA), Tryptic soy broth (TSB) and Mannitol Salt Agar (MSA) were 

purchased from Becton, Dickinson and Company (Sparks, U.S.A.). Lyophilized strains of 

Staphylococcus aureus (CECT 4630) and Staphylococcus epidermidis (CECT 231), were 

purchased from Colección Española de Cultivos Tipo (Valencia, Spain). Escherichia coli 

(CECT 4558) was kindly donated from the Biotechnology Department at URV 

(Tarragona, Spain). All bacteria strains were cultivated under the same experimental 

conditions, including incubation time and temperature. The bacteria lyophiles were 
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stored at -20 °C in glycerol/TSB medium (10% v/v) and reactivated by incubating the 

bacteria in 10 mL of sterile TSB at 37 °C for 24 h. The bacteria samples were then 

centrifuged at 6000 rpm for 15 minutes and the supernatant was discarded. The 

precipitate was successively washed with PBS 1.7 mM pH 7.4 following the same 

centrifugation conditions previously mentioned. The pellet was finally resuspended in 

sterile PBS 1.7 mM pH 7.4. The resulting solution (namely 100 solution) was eight-fold 

1:10 diluted serially to give a series of 10-1 to 10-8 stock solutions of bacteria. The stock 

solutions were quantified in quintuplicate using the standard plate count method[5] in 

TSA and the same procedure was also applied to the standardization of the variable 

aliquots of stock solutions that were used to inoculate the samples to be analyzed. The 

bacteria concentration was measured in colony-forming units (CFU)/mL. 

Development of the biosensors: 

SWCNTs were purchased in bulk form from HeJi (Zengcheng, China) with > 90 % 

purity, 150 μm average length and 1.4-1.5 nm average diameter. SWCNTs were first 

oxidized in a quartz furnace chamber tube in order to selectively remove the 

amorphous carbon, under the following conditions: T = 365 °C; synthetic air flow-rate = 

100 cm3 min-1; and t = 90 min. The electric contact and physical support for the SWCNT 

sensors consisted of a glassy carbon cylindrical rod 3 mm in diameter and 50 mm in 

length (HTW Hochtemperatur-Werkstoffe GmbH, Thierhaupten, Germany) covered by 

a Teflon jacket 6.2 mm in diameter and 40 mm in length. The surface of the glassy 

carbon was successively polished using 25, 1 and 0.3 μm grain size polishing alumina 

(Buehler, Lake Bluff, USA) before the SWCNT layer was deposited by spraying the 

nanotubes on the same surface. For the covalently functionalized biosensors, SWCNTs 

were refluxed, prior to aqueous dispersion and deposition onto the glassy carbon, in 

2.6 M nitric acid for 4 h in order to carboxylate the carbon nanotubes.[34] The SWCNTs 

in nitric acid solution were filtered and thoroughly rinsed with water to completely 

remove the acid. The filtered SWCNTs were dried overnight at 80 °C. In the case of 

non-covalently functionalized biosensors, this acidic carboxylation step was omitted in 

order to use non-carboxylated nanotubes as the transducing material. Afterwards, 

either carboxylated or non-carboxylated SWCNTs were deposited onto one of the ends 

of the glassy carbon electrode depending on the biosensor functionalization procedure 
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to be followed. For the spraying process, we previously homogenized 25 mg of purified 

SWCNT in 100 mL of deionized water containing 100 mg SDS, using a tip-sonicator 

(amplitude 60%, 0.5 s-1, Ultraschallprocessor UP200S, Dr. Hielscher, Teltow, Germany) 

for 30 min. Ten milliliters of the SWCNT aqueous solution were sprayed onto the 

exposed glassy carbon surface under a high temperature (200 °C) air blow and 

subsequently washed with deionized water to progressively remove the SDS. A 30 μm 

homogeneous layer of SWCNTs (measured with ESEM) was deposited after the 

spraying process. Residual SDS was finally removed selectively by heating[35]at 280 °C 

with an air flow rate of 100 cm3 min-1 for 1 h (the Teflon jacket was temporarily 

removed during this step) and the SWCNT sensors were further washed with deionized 

water and dried overnight at 80° C.  

For the covalent functionalization method, the carboxylic groups on the sidewalls 

of the deposited SWCNTs were activated using a solution containing 100 nmol of EDC 

and 25 nmol of NHS in a 50 mM MES buffer pH 5 for 30 min.[30,31] Subsequently, the 

electrodes were soaked overnight in 500 μL of a 1 μM NH2-Aptamer solution that also 

consisted of PBS pH 7.4 (1 mM) and CTAB (0.2 mM). This well-known carbodiimide-

mediated chemistry was followed to form stable amide bonds between the carboxylic 

moieties on the sidewalls of the SWCNTs and the primary amine spacer on the 3’ end 

of the aptamers.  

For the non-covalent functionalization approach, 25 μL of a 5 nM Pyr-Aptamer 

solution was deposited by drop casting on a SWCNT sensor prepared according to the 

procedure described in the first paragraph of this subsection. The drop casting 

procedure was carried out at a controlled room temperature (24 °C) in a closed system 

with constant humidity for 24 h to avoid total drop evaporation.  

Preliminary viability tests were performed in triplicate to confirm that biosensors 

prepared by either method lead to workable biosensors capable of recognizing the 

target S. aureus (Figure 5.4). Both types of biosensors, non-covalently functionalized 

and covalently functionalized, were immersed in a vessel with 5 mL of PBS working 

solution with S. aureus at a concentration of 108 CFU/mL for 30 minutes under 

constant stirring (300 rpm) in order to allow free bacteria to be attached by the 
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aptamers on the biosensor surface. The biosensors were then washed with sterile 

deionized water for 15 minutes in a different cell to remove unbound bacteria. Finally, 

the tips of the biosensors were placed in contact with a TSA-containing Petri dish and 

incubated for 48 h at 37 °C. Parallel control assays were carried out using sensors 

containing a layer of SWCNTs without aptamers, following this same procedure in 

order to compare bacterial adherence between covalently/non-covalently 

functionalized biosensors and sensors without aptamer as blanks. 

 

Figure 5.4. Example for the preliminary viability tests when biosensors were exposed to PBS 

solutions with S. aureus at a concentration of 108 CFU/mL. 1) Control PBS, without bacteria 

inoculated (no bacteria growth is observed). 2) S. aureus recovered from a covalently 

functionalized biosensor (growth of bacteria is observed). 3) S. aureus is not recovered from a 

SWCNT sensor without aptamer (no bacteria growth is observed). 4) S. aureus recovered from 

a non-covalently functionalized biosensor (growth of bacteria is observed). 

 

Microscopic analysis: 

Microscopic analysis of the bacteria attached to the biosensors (e.g. Figure 5.5) 

was carried out using a FEI Quanta model 600 (FEI Co., Inc., Hillsboro, U.S.) 

environmental scanning electron microscope (ESEM).  
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Figure 5.5. Example for a biosensor after the exposition to a 108 CFU/mL solution of S. aureus. 

The bacteria cells adsorbed to the biosensor’s surface are indicated by the arrow. In this case, 

the example is for a covalently functionalized biosensor. 
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6.1. Introduction 

In Chapter 4, the usefulness of the potentiometric biosensors based on carbon 

nanotubes and RNA aptamers was demonstrated in laboratory conditions with the 

detection of the gram-negative bacteria Salmonella Typhi. Moreover, in Chapter 5 it 

was demonstrated that this biosensing platform can also be used for the detection of 

gram-positive microorganisms such as Staphylococcus aureus. In that chapter, it was 

observed that an optimum analytical performance can be achieved in this new 

generation of biosensors when DNA aptamers are linked to the carbon nanotubes at 

the transducing layer by a covalent bond. However, the eventual detection of a gram-

negative pathogen with a DNA aptamer-based carbon nanotube biosensor would 

additionally support the universality and robustness of the technique indicating that 

this generation of potentiometric biosensors can be customized for the detection of 

virtually any pathogen. 

In this chapter, we planned to expand the field of application for this new class of 

biosensors to real food samples. A potentiometric biosensor based on carbon 

nanotubes as ion-to-electron transducers and DNA aptamers as biorecognition 

elements is addressed against a non-pathogenic strain of Escherichia coli as a 

surrogate for pathogenic Escherichia coli O157:H7 in complex food matrices. In view of 

the benefits that covalent functionalization strategies offer in the construction of this 

type of sensors, the biosensor herein reported is prepared by covalently linking a DNA 

aptamer modified with an amine moiety at the 3’ terminal to the carboxylic groups on 

the SWCNT sidewalls following standard carbodiimide-mediated chemistry. The 

pathogen is first detected using the developed biosensors in phosphate buffer 

solutions and the performance parameters are adequately evaluated. In order to 

assess the applicability of this biosensor into real samples with complex matrices, a 

new sample pre-treatment protocol is designed, developed, validated and deployed 

into real fruit juice and milk samples looking for the elimination of undesired 

electroactive species within the original matrix, which otherwise may lead to incorrect 

or inaccurate results in biosensing experiments. The pre-treatment procedure includes 

three steps for the consecutive filtration, washing and elution of the target 
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microorganism while the compatibility with the developed biosensor is evaluated by 

the analysis of real samples with known loads of the target bacteria. The principal 

importance of this part of the Thesis is the simplicity and rapidness with which the 

overall analytical procedure is carried out. Moreover, the simplicity afforded by this 

analytical method opens the possibility for high throughput real-time microbiological 

analysis of complex matrices, with a special focus on food and beverages, with 

acceptable performance parameters. Finally, with the detection of the gram-negative 

microorganism Escherichia coli using a DNA aptamer as the biorecognition element, 

the biosensing platform is demonstrated as a universal and robust customizable 

technique in pathogen detection. The content of this chapter has been published in 

the journal Analytical Chemistry, year 2010, volume 82, pages 9254-9260, and co-

authored by Suryakant V. Bhosale, Jordi Riu, and F. Xavier Rius. 
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6.2. Real-time potentiometric detection of bacteria in complex 

samples 

6.2.1. Abstract 

Detecting and identifying pathogen bacteria is essential to ensure quality at all 

stages of the food chain and to diagnose and control microbial infections. Traditional 

detection methods, including those based on cell culturing, are tedious and time-

consuming and their further application in real-samples generally implies more 

complex pre-treatment steps. Even though state-of-the-art techniques for detecting 

microorganisms enable the quantification of very low concentrations of bacteria, to 

date it has been difficult to obtain successful results in real-samples in a simple, 

reliable and rapid manner. In this report, we demonstrate that the label free detection 

and identification of living bacteria in real samples can be carried out in a couple of 

minutes and in a direct, simple and selective way at concentration levels as low as 6 

colony forming units/mL (CFU) in complex matrices such as milk or 26 CFU/mL in apple 

juice where the pre-treatment step of samples is extremely easy. We chose Escherichia 

coli (E. coli) CECT 675 cells as a model organism as a nonpathogenic surrogate for 

pathogenic E. coli O157:H7 to test the effectiveness of a potentiometric aptamer-

based biosensor. This biosensor uses single-walled carbon nanotubes (SWCNT) as 

excellent ion-to-electron transducers and covalently immobilized aptamers as 

biorecognition elements. The selective aptamer-target interaction significantly changes 

the electrical potential, thus allowing for both inter-species and inter-strain selectivity 

and enabling the direct detection of the target. This technique is therefore a powerful 

tool for the immediate identification and detection of microorganisms. We 

demonstrate the highly selective detection of living bacteria with an immediate linear 

response of up to 104 CFU/mL. The biosensor can be easily built and used, is 

regenerated without difficulty, and can be used at least 5 times with no loss in the 

minimum amount of detected bacteria. 
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6.2.2. Introduction 

Microbial diseases represent the main cause of death in many countries. For 

example, each year, foodborne diseases cause at least 76 million illnesses in the United 

States alone.[1]  In sanitary terms, time of analysis and reliability in the identification of 

pathogens are both critical, especially during outbreaks. The detection method 

followed to detect bacteria is essential for an early successful diagnosis. Detection 

methods must be able not only to detect extremely low concentrations of pathogens 

but also to succeed in both deploying the techniques in real-samples and identifying 

the particular strain of the pathogen in order to provide precise information that could 

be vital for an accurate diagnosis, successful prevention and correct therapeutic 

treatment. The whole process, however, generally requires the use of cell culturing-

based methods that can take up to several days to provide specific results. The same 

drawback arises in microbiological control of foods/beverages and other sample types. 

Rapid and sensitive detection and identification of a particular bacteria strain are 

therefore particularly important in medical diagnosis, biotechnology and food 

safety.[2,3]  

The classic plate count technique has been the mainstay of pathogen detection in 

recent decades and it is a very cheap tool; however, it takes one to three days to 

provide results. Available state-of-the-art bacteria-detection techniques use a wide 

range of approaches. Successful detection methods include the use of polymerase 

chain reaction (PCR),[4,5] micromechanical oscillators6, biofunctional magnetic 

nanoparticles,[7,8] electrochemical-based methods (field-effect transistors,[9] 

amperometry,[10] square wave voltammetry[11]) and B-cell-based sensors,[12] among 

others. Nevertheless, most of these techniques are expensive to implement, do not 

have adequate limits of detection or the analyzed samples always need to be pre-

treated, what makes the overall procedure in some cases extremely long and complex 

to deploy in “real-life”. Even though there have been some recent interesting attempts 

to reduce the complexity of the pre-processing steps[2], most of these lead to analysis 

times in the order of hours and none of the reported cases is able to attain a close-to-

real-time detection of pathogens in complex matrices. 
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Nanomaterials are excellent for developing label-free, high-sensitivity sensors. 

Very recently, our group has demonstrated that it is possible to use single-walled 

carbon nanotubes (SWCNT) in ion selective electrodes (ISEs) as ion-to-electron 

transducers in potentiometric analysis.[13,14] Moreover, this approach can be used not 

only to detect ions but also to elicit a potentiometric response in the presence of 

proteins and bacteria by using label-free SWCNT/aptamer-hybrid material based 

biosensors.[15,16] The transducing properties of this SWCNT/aptamer-hybrid material 

originate from the extremely high surface-to-volume ratio of the nanotubes, the 

material’s ability to support charge transfer between the ions that surround the cell 

wall of the target bacteria, the SWCNT/aptamer-functionalized layer, the remarkable 

SWCNT double-layer capacitance and the conformational changes in the linked 

aptamers during the target-recognition step.[14
,17

–
 ,

18] These reasons combined with the 

simplicity and portability that potentiometry offers to chemical/biological analysis in 

general[19] are precisely what makes SWCNT/aptamer a perfect material for detecting 

microorganisms;[20] that is, SWCNT/aptamer makes the detection procedure a simple 

task that does not require high technical skills. Nonetheless, until now, two main 

drawbacks remain unsolved. First, discriminating between different strains of a same 

pathogen has been an elusive task up to date and second, it has not been possible to 

successfully apply this material to identifying and detecting microorganisms in real 

samples because the electroactive species present in environmental and 

food/beverage sample solutions tend to produce either false positives or hinder the 

potentiometric response generated by the ionic screening of the target. In this study, it 

is demonstrated for the first time that a particular strain of a microorganism can be 

detected and identified in real samples with the minimum number of pretreatment 

steps, in close to-real-time and almost zero-tolerance conditions. This was achieved by 

developing a biosensor based on aptamers (also called aptasensor)  chemically linked 

into a layer of previously carboxylated SWCNTs which was able to selectively detect 

Escherichia coli (E. coli) CECT 675 as a nonpathogenic surrogate for pathogenic E. coli 

O157:H7 in complex liquid samples such as milk and fruit juice.  

Escherichia coli is one of the most common bacteria types and is a normal 

inhabitant of the large intestine of warm-blooded animals. Some of the strains of E. 
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coli are particularly virulent and, as is the case with E. coli O157:H7, cause a wide 

spectrum of human diseases, ranging from some types of hemorrhagic and non-

hemorrhagic diarrhea, to occasional kidney failure or hemolytic uremic syndrome and 

death due to ingestion of contaminated food.[21,22] To demonstrate the plausibility of 

identifying targets using our biosensor, we assessed its selectivity against different 

microorganisms such as Salmonella enterica, Lactobacillus casei and a different strain 

of Escherichia coli (CECT 4558), and found that none of them gave a detectable 

potentiometric signal. Furthermore, in all the samples contaminated with the target 

microorganism and subsequently analyzed with our aptasensor, the minimum amount 

of bacteria detected was far below the lower limits allowed by the European 

Regulations 2073/2005 and 1441/2007, which demonstrates that the biosensor can be 

successfully used to analyze real samples with minimum pre-treatment steps, and that 

the change in the potentiometric response can be achieved in almost real-time. 

6.2.3. Experimental section 

6.2.3.1. Chemicals, aptamer and culturing media 

Water used to prepare the solutions was purified through a Milli-Q system 

(Millipore, Madrid, Spain) and in all cases the resistivity level of purified water was 

18.2 MΩ cm. The reagents sodium dodecyl sulphate (SDS), N-(3-dimethylaminopropyl)-

N’-ethylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), 2-(N-

morpholino) ethanesulfonic acid (MES) and cetyltrimethylammonium bromide (CTAB), 

KH2PO4 and Na2HPO4 were purchased from Sigma-Aldrich (Tres Cantos, Spain). All the 

substances were used as received. Phosphate buffer solution (PBS) 1.7 mM pH 7.4 was 

prepared using a 1:100 dilution of a 0.17 M stock solution of corresponding amounts of 

KH2PO4 and Na2HPO4, and the pH was adjusted as required. 

Tryptic soy agar (TSA) / broth (TSB), Lactobacilli MRS (deMan, Rogosa and Sharpe) 

agar/broth, XLD (xylose-lysine-deoxycholate) agar, MacConkey agar/broth and Luria-

Bertani (LB) agar/broth were purchased from Becton, Dickinson and Company (Sparks, 

U.S.A.) and prepared according to indications. The E. coli CECT 675 binding aptamer of 

81-mer with the sequence[9] 5’-GGG-AGA-GCG-GAA-GCG-UGC-UGG-GUC-GCA-GUU-

UNIVERSITAT ROVIRA I VIRGILI 
ULTRASENSITIVE DETECTION OF PATHOGENS IN REAL-TIME. POTENTIOMETRIC BIOSENSORS BASED ON SINGLE-WALLED CARBON NANOTUBES AND APTAMERS 
Gustavo Adolfo Zelada Guillen 
DL:T. 1713-2011 



Chapter 6 

113 

UGC-GCG-CGU-UCC-AAG-UUC-UCU-CAU-CAC-GGA-AUA-CAU-AAC-CCA-GAG-GUC-GAU-

3’, and -(CH2)5NH2 modified in the 3’ end was purchased from Eurogentec (London, 

UK). The aptamer was resuspended in MilliQ water and stored at -80°C. Quality control 

of the aptamer was carried out by MALDI-TOF analysis (Voyager-DE STR, Applied 

Biosystems, Carlsbad CA, USA) to ensure that the aptamer had not degraded before 

the biosensors were prepared. 

The SWCNTs were purchased in bulk form from HeJi (Zengcheng, China) and had > 

90 % purity, an average length of 150 μm and an average diameter of 1.4-1.5 nm. The 

SWCNTs were oxidized in a silica furnace chamber (365°C, synthetic air flow-rate of 

100 cm3 min-1 and 90 minutes) in order to selectively remove the amorphous carbon. 

Subsequently, SWCNTs were refluxed in 2.6 M nitric acid for 4 h to oxidize the metallic 

impurities remaining from the synthesis.[23] The carbon nanotubes became 

carboxylated after this latter oxidation step. The SWCNTs in nitric acid solution were 

filtered and thoroughly rinsed with water to remove the acid completely. The filtered 

SWCNTs were dried overnight at 80°C. 

6.2.3.2. Instrumentation and materials 

A FEI Quanta model 600 environmental scanning electron microscope (ESEM) (FEI 

Company, Inc., Hillsboro, USA) was used for the microscopic analysis. Potentiometric 

measurements were taken in all cases with a Keithley high-input impedance voltmeter 

M6514 (London, U.K.) using an Ag/AgCl/KCl (3 M)  double junction reference electrode 

containing a 1 M LiAcO electrolyte bridge (type 6.0729.100, Metrohm AG, Herisau, 

Switzerland) and the SWCNT-based biosensor as the working electrode. EMF was 

automatically recorded to a Microsoft Excel sheet by means of an input/output add-in 

tool provided also by Keithley. Sterile cellulose acetate filters (13 mm diameter and 

0.45 μm pore size) were purchased from GE (Brussels, Belgium).  

6.2.3.3. Preparation of the aptasensor 

The solid contact biosensor was made of a 50 mm-long 3 mm diameter glassy 

carbon cylindrical rod (HTW Hochtemperatur-Werkstoffe GmbH, Thierhaupten, 

Germany) covered by a Teflon jacket of 7 mm diameter. The surface of the glassy 
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carbon was successively polished using 25 and 1 μm grain size polishing alumina 

(Buehler, Lake Bluff, USA) before the SWCNT layer was deposited by spraying the 

SWCNT on the same surface. For the spraying process, we previously homogenized the 

SWCNT dispersion with a tip-sonicator (amplitude 60 %, 0.5 s-1, Ultraschallprocessor 

UP200S, Dr. Hielscher, Teltow, Germany) for 30 minutes to prepare a solution of 25 mg 

of purified SWCNT dispersed in 10 mL of MilliQ water containing 100 mg of SDS. 10 mL 

of the SWCNT/SDS/H2O solution was sprayed onto the exposed glassy carbon surface 

under a high temperature (200°C) air blow, and washed with MilliQ water to 

progressively remove the SDS. A 30 μm homogeneous layer of SWCNT (measured with 

ESEM) was deposited after the spraying process. The carboxylic groups on the 

sidewalls of the deposited SWCNTs were activated using a solution containing 100 

nmol of EDC and 25 nmol of NHS in a 50 mM MES buffer pH 5 for 30 minutes24. 

Subsequently, the electrodes were soaked overnight in 500 μL of a 1 μM aptamer 

solution, which also consisted of PBS pH 7.4 (1 mM) and CTAB (0.2 mM). This well-

known carbodiimide mediated chemistry was followed in order to form stable amide 

bonds between the carboxylic moieties on the sidewalls of the SWCNTs and the 

primary amine spacer on the 3’ end of the aptamers. 

6.2.3.4. Microorganism and culturing conditions 

All the microbiological manipulations were performed using sterile material and in 

a microbiological safety cabinet, model BIO II A (Telstar Industrials, Terrassa, Spain). 

Lyophilized strains of Escherichia coli (CECT 675), Salmonella enterica (CECT 409) and 

Lactobacillus casei (CECT 4180) were purchased from Colección Española de Cultivos 

Tipo (Valencia, Spain), reactivated by resuspension in saline solution 0.85% and later 

selective enrichment in MacConkey broth (E. coli), XLD (S. enterica) and Lactobacilli 

MRS (L. casei) . Escherichia coli (CECT 4558) was kindly donated by the Biotechnology 

Department of the Universitat Rovira i Virgili (Tarragona, Spain). All bacteria strains 

were cultivated under the same incubation time and temperature conditions, but in 

different growth media: E. coli was cultivated in LB broth, L. casei in Lactobacilli MRS 

broth, and S. enterica in TSB. The bacteria samples were stored at -20 °C in glycerol / 

broth medium (10% v/v) and reactivated by incubating the bacteria in 10 mL of sterile 

broth medium at 37°C for 24 h. The bacteria samples were then centrifuged at 6000 
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rpm for 15 minutes and the supernatant was discarded. The precipitate was washed 

with PBS 1.7 mM, centrifuged again and the supernatant discarded. The pellet was 

then resuspended in 10 mL of sterile PBS 1.7 mM, and the resulting solution was 

eightfold 1:10 diluted to give a series of 10-1 to 10-8 stock solutions of bacteria. The 

stock solutions were quantified in quintuplicate using the standard plate count 

method[25] and in an appropriate culturing agar medium (TSA for S. enterica, LB for E. 

coli and MRS for L. casei), and the same procedure was also followed to standardize 

the variable aliquots of stock solutions that were used to inoculate the samples to be 

analyzed. 

6.2.3.5. Analytical procedure 

All the electromotive force (EMF) measurements were taken in low ionic strength 

buffer (1.7 mM PBS) at pH = 7.4, stirred at 300 rpm and contained in an isothermal 

vessel at 22±0.5 °C using 5 mL of sterile PBS before any bacteria were inoculated. The 

changes on the electromotive force were automatically measured at periods of 10 

seconds by adding concentrations of bacteria in a stepwise mode and following 

changes on the recorded values. We used real samples contaminated with E. coli (CECT 

675), control samples that did not contain any microorganism, and selectivity control 

samples which were contaminated with E. coli (CECT 4558), L. casei and S. enterica in 

either PBS or real-samples. The contaminated and control samples were stored at 4°C 

before use, and were previously inoculated with the appropriate microorganism as 

needed. The real samples used were semi-skimmed milk and apple juice purchased in 

a standard supermarket. Each analyzed sample (either stock solutions or real samples) 

was simultaneously evaluated following the standard plate count method in 

quintuplicate using the appropriate culturing agar in order to validate the method 

reported herein. For E. coli-containing samples, further confirmatory tests were carried 

out using the conventional method based on the MacConkey agar test.[11,25] The 

dilution was corrected for all the stepwise concentration experiments. Consecutive 

filtering of the matrix (the volume depended on the sample analyzed, but typically 

ranged from 1 mL to 2 mL) and washing with PBS (minimum 10 mL) was done with an 

on-line filtration system in order to remove the charged species that are usually 

present in real samples and which may interact with the carbon nanotubes, whilst also 
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keeping the total amount of microorganism cells on one side of the filter. Further 

elution of the retained cells was easily done by passing 6-8 mL of PBS in the opposite 

direction of the initial filtering, and the outcoming solution of eluted bacteria in PBS 

was injected directly into the measuring vessel in order to monitor the EMF response 

provided by the potentiometric system biosensor-reference electrode (see Figure 6.1). 

The total time of the filtration-washing-elution process remained in the order of less 

than one minute for PBS and juice samples to two minutes in the case of milk. After 

each set of inoculations and measurements, the biosensors were regenerated by 

dissociating the aptamers from the bacteria in 2 M NaCl for 30 min and then 

reconstituted by conditioning in PBS, thus leaving the aptasensor ready to record new 

measurements. 

 

 

Figure 6.1. Experimental setup for the pre-treatment steps required to remove the matrix in 

real samples and to detect microorganisms contained therein using the potentiometric 

biosensor. Starting from left to right: first step, filtration of sample and matrix removal; second 

step, washing with PBS; third step, elution with PBS and potentiometric detection of bacteria 

recovered in eluate. 
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6.2.4. Results and discussion 

Biosensors were exposed to stepwise increasing concentrations of E. coli CECT 675 

in PBS and the EMF response was recorded as a function of time in order to assess the 

performance of each biosensor (sensitivity, precision, limit of detection, response time 

and stability) before the final deployment in real-samples (Figures 6.2 to 6.5). Under 

the experimental conditions, instrumental detection response (also known as critical 

value), measured as the average plus 3 standard deviations of the instrumental 

noise,[26] was 63.4 μV for all the sensors tested, so higher changes in the EMF response 

should be easily resolved. There was an immediate and evident change in the signal at 

all concentrations of the target bacteria when this was added. A quick increase in EMF 

was observed within the whole dynamic range as 50% of the potentiometric response 

was attained in the order of seconds when any concentration of E. coli CECT 675 was 

added, starting from as low as 4 CFU/mL (Figure 6.2a). Stabilization in EMF response 

strongly depended on the concentration. This is demonstrated by the fact that the 

EMF response could only be stabilized for the lowest concentration of bacteria 

detected (4 CFU/mL) after 120 seconds of the sample addition, whereas for higher 

values (e.g. 104 CFU/mL), the stabilization of the EMF response was rather slower and 

remained in the order of 10-20 minutes. Once the EMF response was reached, it was 

stable for at least one and a half hours at concentrations below 104 CFU/mL, which is 

enough time to perform any further analysis of bacteria in either PBS or real samples. 

Nonetheless, stability at concentrations above 104 CFU/mL dramatically decreased 

after inoculation because the response drifted once the maximum signal had been 

reached. This was possibly caused by stochastic charge transfer processes between the 

surface of the biosensor and the excessive amount of bacteria that is not tethered to 

the biosensor by means of the aptamers. This occurs when the available binding sites 

on the biosensor surface become over-saturated in high concentrations of the target 

microorganism. In any case, analysis of samples with concentrations of bacteria higher 

than 104 CFU/mL can be made but the exact amount of bacteria cannot be found. 

Figure 5.2 shows the calibration curve for the range of 4 to 104 CFU/mL. Electromotive 

force as a function of decade for the bacteria concentration can be approximated to a 

straight line model over the same calibration range and shows a dynamic range of 5 
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orders of magnitude. The average slope was 2.0 mV/Decade (Standard deviation = 0.8 

mV/Decade) (the average value was obtained by testing three different biosensors), 

and the R2 value was 0.96.  

 

Figure 6.2. a) Performance of SWCNT biosensors functionalized with anti-E. coli CECT 675 RNA 

aptamer: EMF response exposed to stepwise increasing concentrations of E. coli CECT 675 as a 

function of time; insets show the time required to achieve 50% and 100% of the EMF response 

after inoculation with 4 CFU/mL (right-down) and 2.4x104 CFU/mL (left-up). b) ESEM image of 

an E. coli CECT 675 cell captured on the SWCNT/aptamer. 

a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
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It is interesting to note that at lower bacteria levels (see Figure 6.3 at the 

concentration range below 2.2x102 CFU/mL) the biosensor offers a higher sensitivity 

and a slightly better coefficient of determination than at the whole concentration 

range indicated in the graph. This could be attributed to the fact that at low 

concentrations of bacteria there are evidently more available binding sites on the 

biosensor surface than at higher concentrations and thus, a higher efficiency on the 

binding event may be expected. However, both the linearity observed for the range 4 – 

2.4x104 CFU/mL and the standard deviation of the slope are still acceptable for the 

analytical purposes of the biosensor when the main concern is deciding whether the 

pathogen is present or absent in the sample analyzed, since the minimum amount of 

bacteria able to be detected remains unaffected.  

 

Figure 6.3. EMF response as a function of the logarithm of the E. coli CECT 675 concentration. 

The solid circles are the average potentiometric response of three different biosensors 

exposed to the same concentration values, the solid line is the linear regression fit, and the 

triangle inside represents the sensitivity of the method. Error bars indicate the minimum and 

maximum response values obtained with three different biosensors.  
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The sensor was regenerated after the assays by using an aqueous solution of 2 M 

NaCl to release the bacteria bound to the aptamers and by further washing with MilliQ 

water for 10 minutes. After the last step, the sensor was stored in PBS solution. 

Regenerated sensors remained practically unchanged in terms of sensitivity and limit 

of detection and we observed that they may be exposed to at least 5 regeneration 

cycles before the limit of detection and sensitivity are affected. The EMF noise of the 

regenerated sensors in all the cases remains, however, unaltered and does not depend 

on how many regeneration cycles the sensor has been exposed to. 

Selectivity was tested by exposing the aptasensor to stepwise concentrations of E. 

coli CECT 4558, L. casei and S. enterica, in the same range of concentrations than the 

ones used for E. coli CECT 675 in PBS (Figure 6.4 curves 1-3). The results demonstrated 

that there is no cross-reactivity in either inter-species or inter-strain tests, which 

means that the biosensor is highly selective. Therefore, strain-specific tests for 

identifying bacteria could be created if the system is used to analyze real-samples. 

Control tests were also carried out to determine whether the potentiometric signal 

was due exclusively to the biosensor’s bacterial recognition event and not to either 

unspecific interactions between the SWCNTs and the target bacteria or the leakage of 

adsorbed aptamers remaining from the functionalization step when the biosensors 

were prepared. To evaluate whether unspecific interactions led to a potentiometric 

response, a SWCNT electrode that had not been functionalized with the aptamer was 

exposed to stepwise increasing concentrations of target bacteria (E. coli CECT 675), 

starting from 0 CFU/mL up to 105 CFU/mL, but no response was observed (Figure 6.4 

curve 4). In the same way, another control experiment assessed the possibility that the 

potentiometric response was generated by the release of those aptamer molecules 

that may be physically adsorbed onto the SWCNT walls. This test was carried out by 

preparing an SWCNT electrode that had previously been incubated directly in 500 μL 

of a 1 μM aptamer solution for 24 hours to allow the aptamer molecules to adsorb 

onto the SWCNT layer,[27] although the process did not include the chemical step of 

covalent bond formation between the carboxylic moieties of the SWCNT and the 

aptamer. This electrode was also exposed to increasing amounts of target bacteria and 

the potentiometric response was recorded in real time, but no EMF response was 
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obtained (Figure 6.4 curve 5). The comparison of the EMF response of the biosensor 

when the aptamers are covalently immobilized over the SWCNTs (Figure 6.2a) with the 

lack of EMF response when the aptamers are incubated overnight without linking to 

the SWCNTs (Figure 6.4 curve 5) clearly shows that the covalent immobilization of the 

aptamers on the SWCNTs assures the generation of the proper signal in our biosensor. 

Regeneration results presented previously in the manuscript also support this fact. 

According to Figure 6.4 (curves 4 and 5), both control experiments confirmed that the 

responses observed are caused exclusively by the binding event between the target 

bacteria and the aptasensor, because the EMF did not change when any of the control 

electrodes were exposed to target bacteria.  

 

Figure 6.4. Selectivity assays and blanks: EMF response of the biosensor functionalized with 

aptamer exposed to S. enterica (1), L. casei (2), E. coli CECT 4558 (3); EMF response of the 

SWCNT electrodes exposed to E. coli CECT 675 (4) and SWCNT electrodes incubated with 

aptamer overnight (without functionalization) exposed to E. coli CECT 675 (5).  

As in all potentiometric measurements, using the SWCNT/aptamer based 

biosensor to detect microorganisms in liquid samples requires control of the ionic 

strength of the sample, otherwise the different charged species contained in the 

samples may lead to a potentiometric response and false-positive results would be 
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produced. For example, the potentiometric response for milk and apple juice samples 

leads to a high jump in the potentiometric measurement if no pre-processing steps are 

carried out in a sample without target bacteria, as is demonstrated in Figure 6.5a and b 

(insets). For this purpose, we filtered the complex matrices that constitute the real 

samples containing microorganisms in order to separate the microorganisms from the 

real sample matrix. The microorganisms are further eluted in a controlled PBS medium 

prior to potentiometric measurement with the biosensor. The whole process of 

filtration, washing and elution each sample was completed within just a few minutes, 

as is explained in subsection 6.2.3.5. Control tests demonstrated that the pre-

processing steps eliminate the possibilities of false-positives if applied to real samples 

(Figure 6.5a and 6.5b, see insets and curve 2 in both figures).  
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Figure 6.5. Potentiometric detection of microorganisms using aptasensors exposed to real 

samples (pre-treatment steps previously carried out to remove original matrix). a) Sample of 

milk: original matrix containing inoculated E. coli CECT 675 12 CFU in 2 mL of sample (1) and 

without inoculated bacteria (2). b) Sample of apple juice: original matrix containing inoculated 

E. coli CECT 675 26 CFU in 1 mL of sample (1) and without inoculated bacteria (2). Insets in a) 

and b) respectively show the potentiometric response for milk and apple juice samples if no 

pre-processing steps are carried out in a sample without target bacteria.  

a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
b) 
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This procedure is also compatible with the selectivity of our biosensor. When this 

procedure is applied to real samples containing microorganisms, it is possible to 

differentiate between samples contaminated with E. coli CECT 675 and samples 

contaminated with other types of pathogen and, moreover, between different strains 

of the same pathogen type (see curve 1 in both Figures 6.5a and b, and compare with 

Figure 6.6). The lowest amount of bacteria detected in complex matrices was 12 CFU in 

2 mL of milk (6 CFU/mL) and 26 CFU in 1 mL of apple juice, which means that the 

presence of target bacteria detected in real-samples can be assessed in almost zero-

tolerance conditions and with close to real-time responses. According to the European 

Regulations 2073/2005 and 1441/2007, the concentration of E. coli allowed to be 

present in beverages must be below 1000 CFU/mL in the case of apple juice samples, 

and below 5 CFU/mL for milk samples.   

 

Figure 6.6. Selectivity assays in real samples (milk in left hand chart, and apple juice in right 

hand chart): original matrix containing 103 CFU/mL of the following bacteria: L. casei (up), S. 

enterica (center), E. coli CECT 4558 (down).  

The previously estimated detection limit values show that our system could be 

successfully used to detect bacteria in complex samples at concentrations around the 

limit stated in the regulations. Even though the lowest amount of bacteria detected in 
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the case of milk is slightly above the limits established in the regulations, this limit 

could be lowered either by using aptamers with higher affinity towards the target 

bacteria or by improving the pre-processing protocols. In Chapter 4 we demonstrated 

that Salmonella could be potentiometrically detected in buffer solutions with an 

SWCNT/aptamer biosensor[16] based on anti-Salmonella Typhi Pili IVB aptamers[28]  and 

that the corresponding limit of detection was 1 CFU/mL because of the high availability 

of pili on the bacteria’s surface. Therefore, another approach that could increase 

performance at lower limits of detection would be to use aptamers synthesized against 

bacterial surface structures that are present in high numbers throughout the entire cell 

wall, for example, fimbriae, flagella or pili. It is interesting that the aptamer used in the 

development of our biosensor was initially isolated with the aim of detecting whole 

cells of E. coli, rather than a particular target situated on the external part of the cell 

wall (as in the case of anti-Salmonella Typhi pili aptamers, mentioned above); hence, 

the corresponding epitope in E. coli might be any surface structure that is present in 

low numbers or less exposed to tethering by aptamers (e.g. S-layer proteins),[29] which 

in turn might reduce the possibility of reaching ultra-low detection limits and be the 

reason why such a long stabilization time is required to achieve a 100% EMF signal 

(Figure 6.2a) for high concentrations of bacteria. 

In order to evaluate whether the real sample-filtering/elution-of-microorganisms 

steps are appropriate to our purposes, we also assessed the recovery of the target 

microorganism. We used the standard plate count method to count the number of 

CFUs in equivalent filtered volumes of the same samples that we used in the 

potentiometric detection experiments. We observed that under these experimental 

conditions, the pre-processing procedure allows a recovery of 80-90% (Figure 6.7). We 

also observed that an eluent volume of 6 mL PBS enables a maximum recovery at low 

concentrations of bacteria (22 CFU/mL). Even though higher recovery rates can be 

obtained when the elution step is carried out with a higher volume of eluent PBS (8 

mL) in samples containing higher concentrations of bacteria (240 CFU/mL), the 

procedure works better in real-samples when the elution volume is kept as low as 

possible so as not to dilute the possible low bacteria content of many unknown 
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samples. The same pre-treatment conditions were applied during both control and real 

samples. 

 

Figure 6.7. Recovery of E. coli CECT 675 loaded in PBS after pre-treatment steps with different 

elution conditions and in two different concentrations of bacteria (22 and 240 CFU/mL): 

Controls correspond to the bacteria detected after following the pre-treatment procedure 

when the filter membrane is removed from the system so as to assess the loss in recovery due 

to the irreversible attachment of bacteria onto the inner channels of the system. The different 

volumes (2, 4, 6 and 8 mL) indicated on the x axis represent the quantity of PBS used the in 

elution step of the pre-treatment process. The y axis represents the average % recovery 

performed in triplicate, compared to the initial amount of bacteria loaded. The error bars are 

the standard deviation (N=3). The bacteria were counted using the standard plate count 

method in triplicate. 

The results obtained in the course of this chapter overcome many difficulties 

shown by other reported methods for the detection of pathogens. Available PCR-based 

detection methods have achieved detection limits as low as 5 CFU in a 20 minutes 

assay[4] and 6 CFU in 5 hours.[5] Other methods that are based on physical separation 

of pathogen cells using biofunctional magnetic nanoparticles and further optical 

counting[7] or traditional culturing[8] allow also similar limits of detection (1 to 10 CFU) 

in times of analysis of many hours. Electrochemical-based methods consisting of field-
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effect transistors,[9] amperometric[10] and square wave voltammetric biosensors[11] 

have also reached low detection limits (10 to 103 CFU/mL) within analysis times in the 

order of half an hour to many hours. Even though the method reported in the present 

work allows limits of detection comparable to those mentioned above, our results 

have overcome some operational and performance parameters such as simplicity, time 

of analysis and selectivity. Thus, the main advantages of the method reported herein 

are: (i) A close to real-time analysis of real samples allowed by the fast electrochemical 

response observed when the bio-recognition event takes place and the very simple 

pre-processing steps involved in the sample pre-treatment; (ii) the ease of use and low 

cost of the potentiometric devices implicated in the electrochemical detection as well 

as the simplicity involved in the construction of the biosensor (iii) the inter-species and 

inter-strain selectivity observed so far are very important because they demonstrate 

that the identification of a particular pathogen strain could be carried out in a direct 

way and thus, the need of serological confirmatory tests that often require several 

hours or days to be accomplished might be eliminated or, in the worst case scenario, 

reduced. 

6.2.5. Conclusions 

In this chapter we have developed and deployed for the first time a 

potentiometric biosensor that uses carbon nanotubes chemically linked to aptamers as 

probes to selectively detect and identify a particular strain of Escherichia coli in real 

complex samples in a few minutes. A simple potentiometer, an on-line filtration 

system and a customizable aptasensor, which does not show both inter-species or 

inter-strain cross-reactivity, can be used in close to real-time conditions for the simple 

and rapid elimination of the matrix in real samples, to recover the microorganisms and 

to perform the on-site highly selective detection/quantitation of the target bacteria. 

The system displays a moderate sensitivity but the responses are clearly 

distinguishable from the noise. Our research demonstrates the feasibility of using 

potentiometry to identify microorganisms in complex matrices, because the whole 

system may be customized according to the pathogen to be detected, both the 

aptamer and the pre-treatment procedure can be selected depending on the type of 
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bacteria and the complexity of the matrix. This opens the door to using simple 

potentiometry for the immediate detection of bacteria in real samples thus simplifying 

the traditionally complex procedures for detecting and identifying pathogens and 

providing a detection technique that is easily available to almost every bio/chemical 

laboratory.  It is necessary, however, to have the appropriate aptamer. It would be 

very interesting from the point of view of applying the technique to different samples 

to have aptamers with different selectivities in order to distinguish not only among 

serovars but also among different species or even families. 
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7.1. Introduction 

In the previous chapters, it has been demonstrated that the potentiometric 

biosensors based on carbon nanotubes as transducers and aptamers as biorecognition 

elements can be used in the detection of bacterial pathogens. Different species of 

bacteria, either gram-negative or gram-positive, have been targeted using RNA- and 

DNA-based aptamers. In the previous chapter, the biosensing platform was applied to 

the detection of Escherichia coli in complex foodstuff matrices such as fruit juice and 

milk. In this latter case, an online filtration system was designed. Such a system was 

applied for removing the sample matrix before bacteria detection in order to eliminate 

undesired electroactive species that may lead to inaccurate results. In this way, the 

target microorganisms were recovered in diluted buffer and consequently detected 

with the biosensor. However, sample pre-treatment steps such as matrix elimination, 

may not always represent a real solution. As an example, the detection of pathogen 

biomarkers at low concentrations may not be solved with filtration-based matrix 

elimination procedures because the matrix extraction may result on losses in target 

molecules. As a result, the direct use of the biosensing platform in the detection of 

smaller pathogen-related targets such as protein exoantigens in clinical samples has 

not been possible so far. In this chapter, we demonstrate that carbon nanotube based 

potentiometric aptasensors can be used in the real-time direct detection of small-sized 

targets, such as protein exoantigens. To address this issue, we show the application of 

the biosensing platform for the ultrasensitive detection of the Variable Surface 

Glycoprotein (VSG) from African trypanosomes as a model system for a pathogenic 

exoantigen protein in a clinical sample. The aptamer used in the development of the 

biosensor is a nuclease-resistant RNA aptamer able to recognize conserved epitopes 

between different VSG antigenic types. In general, we demonstrate that protein 

detection can be carried out in highly complex clinical samples such as in blood, 

without the need of a minimum sample pre-treatment. The aptasensors’ insensitivity 

to undesired electroactive interferences is facilitated by the use of an appropriately 

tailored total ionic strength and potential buffer. Given the multidisciplinary nature of 

this part of the Thesis, as well as the biohazardous nature of the African trypanosomes, 
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interdisciplinary partners have been involved at different stages. The aptamer was 

synthesized at the research group of Prof. H. Ulrich Göringer from the Department of 

Genetics at Darmstadt University of Technology (Germany), based on a previous work 

published by his team. Prof. Göringer’s team also performed the culturing of 

Trypanosomes as well as the extraction and purification of the VSG protein. The 

phlebotomy assays required for designing the ionic strength and potential buffer were 

performed in collaboration with Ms. Ailis Tweed-Kent from Harvard Medical School at 

Harvard University (USA). The content of this chapter has been submitted for 

publication in a peer-reviewed journal before the date of printing this Thesis, and it has 

been co-authored by Ailis Tweed-Kent, Moritz Niemann, H. Ulrich Göringer, Jordi Riu 

and F. Xavier Rius. 
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7.2. One-step, ultrasensitive and real-time detection of 

proteins in blood using potentiometric carbon-nanotube 

aptasensors 

Detection of proteins is crucial in many areas such as clinical diagnostic, proteomic 

research and consumer diagnostic products as in home pregnancy tests.[1,2] The most 

commonly used methods rely on highly sensitive and specific label-based 

immunoassays.[1] However, these methods are unsuitable for high-throughput 

applications because they are labor-intensive, time-consuming and require highly 

trained staff and expensive equipment. Furthermore, an accurate quantification of the 

analyte is not possible and false negative results can be obtained if the target protein is 

not extracted from the matrix effectively. 

Nanomaterials possess outstanding properties, which allow the design of 

simplified protein detection platforms at lower detection limits within shorter assay 

times than traditional techniques.[3] Biosensors that include nanostructured 

components as photoluminescent viral nanoparticles,[4] magnetic nanoparticle-based 

bio-barcodes[5] or optical resonators,[6] have demonstrated important advances in 

attomolar protein detection. However, electrochemical sensing techniques are 

preferred over others because they are fast, easy to use, cheap, small-sized and easily 

miniaturized. Recent work has shown that electrochemical techniques in combination 

with (bio)nanostructured materials as the transducer part, allow biomolecular sensing 

down to fM concentrations[7
,8,9

–
10,

11] and in the case of DNA detection, even down to the 

aM concentrations.[12] Potentiometry is one of the most common, cheapest, simplest 

and portable electrochemical techniques and it is widely used in the detection of ions 

for many decades. However, its use in label-free protein detection at concentration 

levels similar to those reached so far in DNA biosensing still remains a challenge. 

Recently, our group demonstrated the detection of bacteria at zero-tolerance 

levels using single-walled carbon nanotubes (SWCNT) as ion-to-electron 

potentiometric transducers, and aptamers as biorecognition elements.[13] The 

excellent potentiometric transduction properties of SWCNT due to the extremely high 
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surface-to-volume ratio, the material’s ability to support charge transfer between 

heterogeneous phases and its extraordinary double layer capacitance[14,15] combined 

with the quasi unlimited capability of aptamers (RNA and DNA molecules) to be 

tailored in vitro against ions, proteins, viruses and bacteria[16] convert such a platform 

into a tool with infinite possibilities in real-time biosensing. However, the use of 

aptamer-based biosensors (so-called aptasensors) has in the past been limited to non-

clinical samples since the degradation of aptamers by nucleases in biofluids such as 

blood, severely affect their performance. Furthermore, SWCNT are highly sensitive to 

changes in the ionic environment at their interface as well as to redox conditions in the 

solution.[13,14] Therefore, it has remained unclear whether this technique could be 

directly used to detect traces of small-sized targets such as disease-related proteins, at 

clinically relevant conditions, without the need of preliminary matrix removal.[17] To 

address this crucial issue, here we demonstrate the real-time and ultrasensitive 

identification of a specific, medically relevant protein in a highly complex matrix, such 

as blood, using a new generation of nuclease-resistant potentiometric aptasensors 

without the need of any sample pretreatment facilitated by an appropriately tailored 

buffer. We elected the Variable Surface Glycoprotein (VSG) from African trypanosomes 

as a model system for a pathogenic exoantigen protein in a clinical sample. [†] 

The aptasensors were prepared by covalently linking a VSG-specific nuclease-

resistant aptamer to a uniform layer of carboxylated SWCNT via amide bonds formed 

between –NH2 moieties previously introduced to the 3’-terminal of the aptamers and 

the –COOH groups at the SWCNT sidewalls, following standard carbodiimide-mediated 

chemistry. Once prepared, the aptasensors were exposed to increasing stepwise 

concentrations of a single antigenic VSG type in sterile buffer, while the electromotive 

force (EMF) between the aptasensors and a Ag/AgCl double junction reference 

electrode was recorded in real-time at 22±0.5 °C in stirring mode. This stage was 

performed to explore the aptasensor response towards the target analyte. After that, 

the sensor was exposed to blood samples (diluted 1:100 in buffer) containing VSG at 

                                                 
†Further information about the VSG protein can be found in subsection 7.2.1. 
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different concentrations to analyze the aptasensor response at clinically relevant 

conditions.[‡] 

 

 

Figure 7.1. Performance of the aptasensor when exposed to increasing concentrations of VSG 

in buffer (ΔEMF indicates the difference between the measured EMF value and the average 

baseline recorded before VSG addition). Protein concentration values are in M units.  

Potentiometric response in buffer was found to be distinguishable from the 

instrumental noise at a concentration of 300 aM (Figure 7.1). The biosensor response 

observed at higher concentrations showed two clearly differentiated regions termed 

region I and II. At VSG concentrations lower than 10 fM steep slope was measured 

(region I) likely the result of the high affinity interaction between the target protein 

and the aptamer. Above this value, the response was less pronounced (region II) 

                                                 
‡ Further information about the experimental procedures can be found in subsection 7.2.1. 
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presumably representing the saturation of available binding sites on the surface of the 

VSG protein (Figure 7.2).  

 

Figure 7. 2. Potentiometric response obtained for 6 different aptasensors. Solid circles are the 

average absolute value of ΔEMF; error bars are SD; the slope m and R2 values for the linear 

approximation of regions I and II are indicated by arrows.  

For simplicity, both regions can be fitted to a linear model. Importantly, both 

regions and their related linear approximations can be useful in either quantitative or 

semi quantitative assays. In any case, immediate changes in EMF were observed at all 

concentrations. Moreover, the aptasensors were able to distinguish between blood 

samples without target protein and those containing VSG at concentrations as low as 

10 pM in blood (4 fM in the cell, Figure 7.3).[§]  

                                                 
§ Further information about supporting results, controls, selectivity assays and assays with blood 
samples can be found in subsection 7.2.1. 

UNIVERSITAT ROVIRA I VIRGILI 
ULTRASENSITIVE DETECTION OF PATHOGENS IN REAL-TIME. POTENTIOMETRIC BIOSENSORS BASED ON SINGLE-WALLED CARBON NANOTUBES AND APTAMERS 
Gustavo Adolfo Zelada Guillen 
DL:T. 1713-2011 



Chapter 7 

139 

 

Figure 7. 3. Change in EMF for an aptasensor after addition of either 1:100 diluted blank blood 

or blood containing VSG. 

Controls and selectivity assays demonstrated that the response is driven by the 

interaction between the aptasensor and the VSG.[§] Recent studies have demonstrated 

that the aptamers at similar conditions are ionically charged and self-assembled to 

SWCNT by π-π stacking interactions.[18,19] In the presence of a charged target analyte, 

aptamers adopt the conformational state needed to recognize the epitopes[20] and the 

target is consequently tethered to the nanotubes, thus, switching of the SWCNT 

surface charge takes place and this process results in a change of the EMF 

recorded.[13,14]  In the case of the recognition of the negatively charged VSG protein[21] 

by the aptasensor, a similar behavior is therefore expected. However, further research 

is currently being carried out in order to unravel this trend in this type of sensors. 

For many decades now, potentiometric ion-selective electrode sensing represents 

the preferred technique in many routine measurements of pH and ions not only in 

academic settings but in many production sectors. Unfortunately, the simplicity of the 

technique has not been exploited so far in high throughput biomolecular sensing. The 

technology described in this work represents a new step in protein detection due to 

the specific recognition capacity of the aptasensor at attomolar concentrations in real-

time. The immediate identification of exoantigens in blood would open the door to 

real-time diagnostic assays for a wide range of diseases related to viruses, bacteria or 

parasite infections, but also to the rapid molecular detection of several other proteins 

and protein biomarkers in truly customizable protein biosensing platforms. 
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7.2.1. Supporting Information 

7.2.1.1. The Variable Surface Glycoprotein of African Trypanosomes 

American and African Trypanosomiasis are vector-borne lethal parasitic diseases 

that currently threaten more than 25 million people in 21 countries at the American 

continent and about 70 million people in 36 sub-Saharan African countries.[22] The 

American form, or Chagas disease, is caused by the parasite Trypanosoma cruzi, which 

is transmitted by a blood-sucking bug of the family Reduviidae. Human African 

Trypanosomiasis (HAT), also known as Sleeping sickness, is caused by the species 

Trypanosoma brucei (T.b.) and is transmitted by tsetse flies. HAT exists in two clinical 

manifestations depending on the infecting sub-species: one is chronic and latent while 

the other is acute and fatal. In both forms, the parasite infects blood first and at a later 

stage crosses the blood-brain-barrier to develop in the central nervous system.[23,24] 

Currently, HAT is diagnosed by microscopically examining blood, lymph node aspirate 

or cerebrospinal fluid either directly or after concentrating the parasites by capillary 

tube centrifugation, or mini-anion exchange chromatography techniques. 

Unfortunately, the amount of parasites in the blood can vary significantly from easily 

detectable 10,000 trypanosomes/mL to less than 100 trypanosomes/mL. As a result, 

the applied detection methods are inconvenient because they are labor-intensive, 

exhibit low sensitivities and depend on the individual skills of the examiner. PCR-based 

techniques have also been reported with promising results. However, they rely on 

expensive devices limiting their ample deployment, especially in low-resource settings. 

Other commonly used techniques are based on the detection of anti-Trypanosoma 

antibodies by ELISA, card or latex agglutination serological tests.[25,26] However, 

antibody-detection methods must be used with caution because antibodies persist for 

years after cure and as a consequence seropositive results are not necessarily related 

to a current infection. On the other hand, seronegativity can be due to the 

phenomenon of antigenic variation: T. brucei evades the host immune response by 

constantly changing its external surface composed of about 107 copies/parasite of a 

single Variable Surface Glycoprotein (VSG) type and by clearance of surface-bound 

antibodies through endocytosis.[27,28] VSG is a 60 kDa protein, it forms stable 
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homodimers that are linked to the cell membrane via a glycosylphosphatidylininositol 

(GPI) anchor at the C-terminal domain. VSG is slowly released into the bloodstream as 

an exoantigen.[29] In vitro it is released by shaking[30] or by detergent treatment.[31] In 

comparison to other cellular proteins, VSG represents a very stable protein.[32] In blood 

serum it has a half-life of about 189 h and thus can be used as a model polypeptide to 

perform biosensing experiments for the detection of exogenous proteins in blood 

matrices. Possibly, it may also be used as a biomarker for the diagnosis of HAT. 

Unfortunately, none of the above possibilities has been exploited to date because the 

highly polymorphic N-terminal domain at the external part of anchored VSG proteins 

displayed during antigenic variation, seriously limits the production of antibodies 

capable of recognizing different antigenic types.[33] Despite the previously mentioned 

structural variations between different VSG antigenic types, conserved structures 

remain largely inaccessible at the internal region due to the dense packing of VSGs on 

the parasite cell surface (Figure 7.4).  

 

Figure 7.4. Schematic representation of the VSG protein (blue – N-terminal domain; red –C-

terminal domain) attached to the Trypanosoma brucei membrane by means of a 

glycosylphosphatidylininositol (GPI) anchor. 

Hence these conserved epitopes can not be reached by antibodies, but they can 

be reached by smaller molecules such as aptamers. We recently selected a family of 

RNA aptamers that bind to the structurally conserved domain of both, cell-anchored 
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and free (soluble) VSG with high affinity and specificity. In addition, the RNAs are 

highly nuclease-resistant due to the presence of 2’ F-substituted C and U-

nucleotides.[34] Here we demonstrate the creation of a new generation of nuclease-

resistant aptasensors using the potentiometric transduction capabilities of SWCNTs in 

combination with the recognition capabilities of a protein-specific RNA aptamer 

(Figure 7.5). 

 

Figure 7.5. Schematic representation of the interaction between the SWCNT-aptamer hybrid 

material (one SWCNT included for graphic simplicity purposes), acting as recognition layer of 

the aptasensor, and the target VSG –the VSG variant used in the assessment of the biosensor 

was VSG117 from T. b. brucei MiTat 1.4–. 

7.2.1.2. Additional results and discussion 

To minimize the impact of the blood matrix, the working buffer was tailored by 

adjusting the osmotic pressure and the ionic strength (I) to near isotonic and 

physiological values with NaCl at 127 mM. The phosphate buffer (1.67 mM) was pH 

adjusted to the normal value of healthy human blood (pH 7.4). EDTA 

(ethylenediaminetetraacetic acid) was added as an anticoagulant and together with 

CDTA (trans-1,2-Cyclohexanediamine-N,N,N',N'-tetraacetic acid) as efficient chelating 

agents. In all solutions, both chelators were added to a final concentration of 2.6 mM 

in order to chelate normal amounts of free Ca2+ and other chelatable cations. Direct 

additions of non-diluted blood samples were performed to analyze the solutions’ 

buffering capacity by recording EMF response profiles of different non-functionalized 

SWCNTs sensors when exposed to blood without VSG protein. The EMF signal 
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stabilized with a slow kinetic mainly driven by the redox reactive species present in 

blood, stochastic charge transfer between charged red blood cells and the biosensor 

surface as well as unspecific adsorption phenomena of charged free proteins.[35,36] 

Fe(CN)6
4-/3- was added at a low concentration of 2 mM (Total I=185 mM) to serve as an 

electron-transfer agent and as a redox-buffering agent. In this manner, the buffer in 

the electrochemical cell easily reaches the electrochemical equilibrium with the blood 

sample, and consequently, signal drift phenomena is substantially minimized (Figure 

7.6a-b). Isotonic buffer conditions ensured that the destruction of red blood cells was 

minimized. Otherwise, when hypotonic buffers with low ionic strength are used, large 

quantities of redox-active hemoglobin can be released and undesired collateral redox 

reactions with Fe(CN)6
4-/3- could take place thereby changing the EMF and hindering 

any EMF response produced during the target recognition event. Higher ionic 

strengths (I>185 mM) were also tested, but despite the observed higher buffering 

capacity, the aptamer-VSG recognition was ionically screened and no response was 

observed when aptasensors were exposed to the VSG protein. Finally, unspecific 

changes in the EMF response were eliminated by diluting blank blood samples (1:100) 

in working buffer before the addition into the electrochemical cell (Figure 7.6a). From 

Figure 7.6a and 7.6b, it is evident that a low dilution of blood (1:10 to 1:1000) in buffer 

without Fe(CN)6
4-/3-, prior to the addition to the electrochemical cell did not represent 

any real solution for the otherwise observed low stabilization time and undesired drift. 

Consequently, all the potentiometric measurements performed with the aim to assess 

the aptasensor performance in either real samples or only aqueous buffer solution 

where therefore carried out with Fe(CN)6
4-/3- at 2 mM. 
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Figure 7.6. In a and b we observed the change in EMF originated in SWCNT-based sensors after 

the addition of blood (without VSG) at different buffer conditions (I=185 mM): (a 1) blood 

1:100 diluted in buffer with Fe(CN)6
4-/3- 2 mM; (a 2) blood diluted 1:1000 in buffer solution 

without Fe(CN)6
4-/3-; (b 1) blood diluted 1:10 in buffer solution without Fe(CN)6

4-/3-; (b 2) non-

diluted blood, added to buffer solution without Fe(CN)6
4-/3-. 
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An instrumental noise (3 x standard deviation of the average noise[37]) equivalent 

to ±24.6 μV was observed during all experiments. This indicates that EMF changes 

larger than the previous value could be easily detected. At high VSG concentrations 

(VSG117 from T. b. brucei MiTat 1.4), a stable EMF response was reached after 2-5 

minutes. At low VSG concentrations the response took about 10 minutes likely due to 

the low concentration of target molecules within the solution. Control assays were 

performed with non-functionalized SWCNT sensors by measuring EMF responses for 

increasing VSG concentrations in pure buffer. No response was observed in the 

concentration range 10-16 to 10-8 M (100 aM to 10 nM). Selectivity assays were carried 

out with different serum proteins such as thrombin, immunoglobulin G and albumin 

(Figure 7.7). No significant responses were measured in any case from 10-15 M to 10-9 

M (fM to nM). In addition, we measured the aptasensor potentiometric response and 

sensitivity for several other VSG variants: T. b. brucei MiTat 1.2 and T. b. brucei AnTat 

1.1 as well as T. b. gambiense LiTat 1.3, LiTat 1.1 and LiTat 1.6. The results were similar 

to those observed for the T. b. brucei MiTat 1.4 VSG (VSG117). The response profiles 

showed the characteristic separation into regions I and II, with slopes ranging between 

150 to 243 μV/Log10[VSG] (region I) and 18 to 54 μV/Log10[VSG] in region II. Three VSG 

variant preparations did not produce any response: T. b. rhodesiense ETat 1.2, T. b. 

gambiense LiTat 1.5 and T. evansi RoTat 1.2. This indicates that the aptasensor is 

capable of recognizing isotypic VSG types and conserved epitopes between different 

VSG families, which is important considering the antigenic switching during the course 

of an infection. Variation in the EMF response slopes might be influenced by 

differences in the number of negative surface charges between the different VSG 

antigenic types or by small isomorphic differences between epitopes of different 

VSGs.[21,38] The inability of the aptasensor to recognize every VSG variant can be due to 

a variety of reasons. This includes protein denaturation phenomena during the 

extraction/purification of the protein as well as glycosylation differences of the 

different VSGs, which might mask the aptamer/protein interaction. Additional 

experiments are needed to unravel the origin of such a behavior at the molecular level. 
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Figure 7.7. Performance of the aptasensors when exposed to stepwise increasing 

concentrations of different proteins in working buffer solutions: from above to below, EMF 

recorded when the aptasensors were exposed to increasing concentrations of bovine serum 

albumin (BSA), Immunoglobulin G (IgG), Thrombin, and to VSG antigenic types AnTat 1.1 and 

LiTat 1.3. Each small arrow in gray indicates the point of protein addition in M units. 

Finally, the aptasensors were exposed to stepwise increasing concentrations of 

VSG in whole blood at concentrations between 1 pM to 1 nM. This corresponded to a 

range of VSG concentration between 10-16 and 10-12 M (aM to pM) in the 

electrochemical cell after addition of the previously diluted (1:100) blood samples. The 

sensors responded to the presence of VSG at concentration as low as 10 pM in blood 

(4 fM in the cell, Figure 7.8).  
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Figure 7.8. a) Change in EMF recorded for: (1) a SWCNT sensor without aptamer and (2) an 

aptasensor after consecutive additions of blank blood 1:100 diluted in buffer (first addition is 

only buffer); (3) a SWCNT sensor without aptamer and (4) an aptasensor after stepwise 

increasing concentrations of either 1:100 diluted blank blood or blood containing VSG at the 

concentrations indicated. b) Enlargement of certain segments of curve 4. Gray arrows indicate 

the point of addition, the concentrations are in M units and represent the concentration of 

VSG in blood before diluted 1:100, blood additions are addition of blank blood 1:100 diluted.  
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In order to determine whether the aptasensors are capable of distinguishing 

between blood samples without target protein and those containing VSG, we 

performed consecutive additions of blood samples (diluted 1:100) either containing 

VSG or without target protein, into an electrochemical cell with the same aptasensor. 

The change in EMF observed after the addition of VSG-containing blood samples, the 

absence of response when samples without VSG were added (Figure 7.8a, curve 4 and 

Figure 7.8b) and the lack of signal in the controls (Figure 7.8a, curves 1 to 3), confirmed 

that the signal was produced by the recognition of the target protein by the 

aptasensor. Moreover, during the same experiment, each aptasensor was able to 

undergo at least 10 consecutive blood sample inoculations into the electrochemical 

cell without loosing its capability to differentiate between those samples containing 

VSG from samples of blank blood (Figure 7.8). No difference was observed when 

different Rh blood groups were analyzed. Parallel control assays were carried out with 

aptasensors and SWCNT sensors exposed to successive additions of blank blood 

(diluted 1:100) in buffer, as well as SWCNT sensors exposed to VSG-containing blood 

1:100 diluted in buffer at concentrations ranging from 1 pM to 1 nM (which 

corresponded to a concentration range between the aM and fM order in the 

electrochemical cell), but no response was recorded. The absence of EMF changes in 

the previous control experiments confirmed that the observed potentiometric 

response is driven by the interaction between the aptasensors and the target protein. 

The aptasensors were easily regenerated by a 1 h incubation in a 2M NaCl solution, 

followed by a washing step in deionized water (90 minutes). Preconditioning for the 

next round of usage was performed overnight in working buffer. No performance loss 

was observed during 5 months of use in buffer solutions. However, after the exposure 

with diluted blood samples, aptasensors needed to be washed thoroughly overnight 

after the 2M NaCl regeneration step and kept in phosphate buffer before the next 

round of usage in order to keep the aptasensors functional. 

7.2.1.3. Experimental Section 

All the solutions were prepared under sterile conditions using distilled and 

deionized water previously purified through a Mili-Q system (Millipore, Madrid, Spain) 

with a resistivity level of 18.2 MΩ cm and pH adjusted accordingly. Molecular biology 
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grade reagents (>99.5% purity) sodium sodium dodecyl sulfate (SDS), N-(3-

dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC), N-

hydroxysuccinimide (NHS), 2-(N-morpholino) ethanesulfonic acid (MES), and 

cetyltrimethylammonium bromide (CTAB), Bovine serum albumin (BSA), human serum 

Immunoglobulin G (IgG), KH2PO4, Na2HPO4, K3Fe(CN)6, K4Fe(CN)6, NaCl, 

ethylenediaminetetraacetic acid (EDTA) and trans-1,2-Cyclohexanediamine-N,N,N',N'-

tetraacetic acid (CDTA) were purchased from Sigma-Aldrich (Tres Cantos, Spain) and 

used as received. Human α-thrombin was supplied by Haematologic Technologies 

(Vermont, U.S.A.). The working buffer solution used in the potentiometric sensing 

experiments (NaCl 127 mM, phosphates 1.67 mM, EDTA 2.6 mM, CDTA 2.6 mM,  

K3Fe(CN)6 2mM and K4Fe(CN)6 2mM, pH 7.4) was prepared starting from a 1:100 

dilution of a 0.167 M sterile stock solution of corresponding amounts of KH2PO4 and 

Na2HPO4, while the appropriate amounts of NaCl, EDTA, CDTA, K3Fe(CN)6 and 

K4Fe(CN)6 were added under sterile conditions. Buffer solutions with different 

concentrations of the components previously mentioned were prepared in the same 

way.  

The VSG-specific nuclease-resistant RNA aptamer (cl57) with the sequence 5’-

GGGAGACGAUAUUCGUCCAUCAGCGCGCACCUACUGUGAUGUAGAAGUCACAGCAAGGC

CCCGCUGUCCGACUGAAUU-3’ was synthesized by run off in vitro transcription in the 

presence of 2’-F-uridine-5’-triphosphate and 2’-F-cytidine-5’-triphosphate (2 mM each) 

as previously described by Lorger et al.[34] Full length transcripts were purified in 8 M 

urea-containing polyacrylamide gels and subsequentially oxidized at the 3’ end with 

NaIO4 (38 mM) in  50 mM NaOAc pH 4.8, 100 mM NaCl, 10 mM MgCl2. Oxidized RNA 

was purified by size exclusion chromatography (Sephadex G50), EtOH precipitated and 

resuspended in 100 mM NaxHyPO4 pH 7.2, 150 mM NaCl. Reaction yields were ≥90% as 

determined by 3’end labeling using 5’-(32P)-pCp and T4 RNA ligase. Oxidized aptamer 

preparations (approximately 10 μM) were further converted into a hydrazide 

derivative by overnight incubation at 4 °C in the dark with 22 mM freshly prepared 

adipic acid dihydrazide (ADH) in the presence of 110 mM NaBH3CN in 100 mM 

NaxHyPO4 pH 7.2, 150 mM NaCl.[39] Hydrazide-derivatized RNA was purified by gel 
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filtration (Sephadex G50), EtOH precipitated and redissolved in 100 mM NaxHyPO4 pH 

7.4, 120 mM NaCl, 2.7 mM KCl before storage at -20 °C. Reaction yields were 73%.  

The bloodstream life cycle stage of Trypanosoma brucei brucei was cultivated at 

37 °C in HMI-9 medium[40] supplemented with 10% (v/v) heat inactivated bovine fetal 

calf serum. The following trypanosome strains were used: T. brucei Lister 427 – MiTat 

serodeme, variant clones 1.4 and 1.2.[41] Long slender bloodstream forms of T. brucei 

AnTat 1.1 were harvested from infected rats.[42] Soluble VSG protein was isolated 

essentially as described by Cross et al.[43] T. b. gambiense LiTat 1.1, LiTat 1.3, LiTat 1.5, 

LiTat 1.6, T. b. rhodesiense ETat 1.2 and T. evansi RoTat 1.2 were kindley provided by 

Philipp Bücher, Antwerp. All VSG isolates were purified by anion exchange 

chromatography and analyzed in discontinuous SDS-containing polyacrylamide gels. 

VSG homodimer formation was analyzed by circular dichroism (CD) spectroscopy. VSG 

stock solutions were stored at -80 °C before use and thawed adequately when needed. 

Aptamer cl57/VSG binding was tested by surface plasmon resonance[44] or alternatively 

by nitrocellulose (NC) filter binding using 5’-(32P)-labelled cl57 preparations. 

Single walled carbon nanotubes (SWCNTs) were purchased from HeJi (Zengcheng, 

China) with >90% purity, 150 μm average length and 1.4-1.5 nm diameter. The 

SWCNTs were oxidized in a silica furnace chamber (365 °C, synthetic air flow-rate of 

100 cm3 min-1, and 90 min) to selectively remove the amorphous carbon. Afterwards, 

SWCNTs were refluxed in 2.6 M nitric acid for 4 h to both carboxylate them and oxidize 

the metallic impurities remaining from the synthesis.[45] The SWCNTs were then 

filtered and thoroughly rinsed with water to completely remove the acid and 

impurities. SWCNTs were finally were dried overnight at 80 °C. 

The physical support and electric contact for the SWCNT electrodes consisted of a 

50 mm long and 3 mm diameter glassy carbon cylindrical rod (HTW Hochtemperatur-

Werkstoffe GmbH, Thierhaupten, Germany) covered by a Teflon jacket of 7 mm 

diameter. One of the exposed ends was successively polished with 25, 10 and 1 μm 

grain size polishing alumina (Buehler, Lake Bluff, U.S.A.) before the SWCNT layer was 

deposited on the same surface, while the other end served as a connector to the 

voltmeter. A 30 μm SWCNT layer (measured with a FEI Quanta 600 ESEM, from FEI Co., 
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Hillsboro, U.S.A.) was deposited by spraying a dispersion of 25 mg of the purified 

SWCNTs with 25 mg SDS and 100 mL of Milli-Q water homogenized with a tip-sonicator 

for 30 minutes (amplitude 60%, 0.5 s-1, Ultraschallprocessor UP200S, Dr. Hielscher, 

Teltow, Germany). Ten milliliters of the SWCNT prepared solution was sprayed onto 

the glassy carbon surface at high temperature (200 °C) and washed with sterile Milli-Q 

water intermittently. The residual SDS was removed by heating at 280 °C with air flow 

rate 100 cm3 min-1 for 1 h (Teflon jacket was temporarily removed during this step).[46] 

Finally, the SWCNT electrodes were profusely washed with sterile Milli-Q water, dried 

overnight at 80 °C, sterilized with UV irradiation and stored at sterile conditions before 

use. The carboxylic groups on the sidewalls of the deposited SWCNTs were activated 

with a solution of 100 nmol of EDC and 25 nmol of NHS in 50 mM MES buffer pH 5 for 

30 minutes.[47,48] The SWCNT electrodes were then incubated overnight at room 

temperature in 500 μL of a 1 μM RNA aptamer solution, which also included 

phosphate buffer solution (PBS) 1mM (pH 7.4) and CTAB 0.2 mM. This well-known 

carbodiimide mediated chemistry was performed in order to form stable amide bonds 

between the carboxylic groups on the SWCNT sidewalls and the free –NH2 moieties on 

the 3’ end of the aptamers. Aptasensors where then washed with sterile deionized 

water and stored at sterile conditions in PBS 1.67mM pH 7.4 until needed.  

Electromotive force (EMF) measurements were automatically taken at periods of 

10 s in all cases with a high-input impedance voltmeter model EMF-16 (Lawson 

Laboratories, Inc., Malvern, PA, U.S.A.) using a Ag/AgCl/KCl (3 M) double junction 

reference electrode containing a 1 M LiAcO electrolyte bridge (type 6.0729.100, 

Metrohm AG, Herisau, Switzerland) and the SWCNT-based electrode or aptasensor as 

the working electrode. Constant stirring at 300 rpm was applied during all the 

potentiometric measurements in an isothermal vessel at 22 ±0.5 °C containing 5 mL of 

sterile working buffer solution before sample addition. Analyzed protein solutions 

were prepared from standardized 8.33 μM stock solutions and serially diluted 1:10 in 

working buffer before testing the aptasensor potentiometric response towards each 

protein tested. Stepwise increasing concentrations of the proteins were introduced 

into the electrochemical cell by addition of the previously prepared serial dilution and 

dilution factor correction was applied accordingly. Aptasensors and SWCNT electrodes 
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were always preconditioned in working buffer before every electrochemical 

measurement. After each round of use with protein-containing aqueous solutions, 

aptasensors were regenerated in 2 M NaCl for 1 hour, further washed in deionized 

water for 90 minutes and kept in working buffer until the next use. Aptasensors 

exposed to blood-containing samples were regenerated in 2 M NaCl overnight under 

stirring mode, washed generously in deionized water and kept in PBS 1.67 mM pH 7.4 

until needed again, and then, aptasensors were again preconditioned in working buffer 

solution before use. 

Venous blood was drawn from healthy donors in blood collection tubes (Beckton, 

Dickinson and Company, Sparks, U.S.A.) following standard phlebotomy techniques. 

Blood was used as soon as collected, within the following two hours after extraction. 

Blood samples containing different VSG concentrations were prepared by inoculating 

the protein accordingly in a sterile manner and used within the same time frame 

previously mentioned. Ethical review board approval and donor’s informed, signed 

consent was obtained for this study. Blank blood and blood containing VSG were 

diluted (1:100) in working buffer before inoculating the electrochemical cell during 

experiments for aptasensor performance measurements.  
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8.1. Conclusions 

The aim of this Thesis was to demonstrate for the first time that potentiometric 

biosensors based on carbon nanotubes as ion-to-electron transducers and aptamers as 

biorecognition elements could be used in the real-time detection of pathogens and 

related biomolecules. In order to demonstrate that this new generation of aptamer 

based biosensors could be customized for the detection of different pathogens and 

related biomolecules, four different biosensors were prepared using different 

aptamers, addressed against their corresponding specific pathogenic targets: 

Salmonella Typhi and Escherichia coli as gram-negative bacteria models, 

Staphylococcus aureus as a gram-positive bacteria example  and trypanosomal variable 

surface glycoprotein as a model for the detection of pathogenic exoantigen proteins. 

Detection of the corresponding targets was successful in all the cases studied and their 

performance parameters were estimated.  

The proof of concept of the sensing capabilities of the hybrid material carbon 

nanotubes-aptamers was demonstrated by the real-time detection of Salmonella 

Typhi in phosphate buffer solutions. It was also demonstrated that this hybrid 

material is a powerful tool with outstanding capabilities in the direct and selective 

detection of microorganisms in real-time at very low concentrations. In this case, the 

biosensor was addressed towards the type IV B pili, a protein externally anchored to 

the surface of the microorganism. The biosensors prepared with the selected aptamer 

provided excellent analytical performance parameters. In Chapter 4, the door to 

simpler microbiological analysis methods without the need of highly skilled staff was 

also opened.  

Different functionalization methods were compared in terms of biosensor 

performance parameters with the selective detection of Staphylococcus aureus in 

phosphate buffer solutions (Chapter 5). Carbon nanotubes were functionalized with 

aptamers following two different approaches: 1) non-covalent linkage of drop-casted 

pyrenil-modified aptamers onto the external walls of the nanotubes and 2) covalent 

bond formation between amine-modified aptamers and carboxylic groups previously 
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introduced by oxidation at the ends of the nanotubes. Very important differences were 

observed in the performance of the biosensors depending on the functionalization 

approach followed. Biosensors prepared using the covalent linkage method exhibited 

lower detectable bacteria concentrations, lower sensitivities and higher mid-term 

stabilities than those values achieved when biosensors were prepared by the non-

covalent approach. Therefore, aptamer/carbon nanotube based potentiometric 

biosensors display more advantages in terms of performance parameters when are 

prepared by the covalent method, while those prepared following the non-covalent 

approach lead to biosensors with important performance limitations. Finally, the 

analysis of freshly excised pig skin contaminated with the pathogen opened the 

possibility for aptamer/carbon nanotube based potentiometric biosensors to be used 

as a tool for the real-time detection of Staphylococcus aureus in human skin.  

A rapid and simple protocol for the recovery of pathogens from foodstuff 

samples was developed in Chapter 6. The protocol was validated and tested with real 

complex food matrices such as fruit juice and milk. Additionally, its compatibility with 

aptamer/carbon nanotube based potentiometric biosensors was demonstrated by 

the detection of a nonpathogenic strain of Escherichia coli as a surrogate for 

pathogenic Escherichia coli O157:H7. The detection was achieved with excellent intra 

and inter strain selectivity. The whole analytical procedure could be carried out in 

close to real-time conditions due to the simple and rapid elimination of the matrix in 

real samples and the subsequent on-site highly selective detection/quantitation of the 

target bacteria. This chapter opened the possibility for high throughput real-time 

microbiological analysis of complex matrices with a special focus on foodstuff. 

The real-time identification of ultra low concentrations of a particular protein in 

highly complex matrix conditions such as blood was demonstrated in a one-step 

process without observing cross-reactivity with other proteins (Chapter 7). A carbon 

nanotube potentiometric biosensor based on aptamers targeted against trypanosomal 

Variable Surface Glycoprotein (VSG) was designed, developed and validated with the 

detection of VSG as a model for pathogenic exoantigens in clinical samples. A total 

ionic strength and potential adjustment buffer (TISPAB) was adequately designed, 

tailored and used to eliminate undesired blood matrix effects with the purpose of 
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demonstrating that the aptamer/carbon nanotube biosensing platform can also be 

used in protein identification within highly complex matrices in a straightforward way 

and without the need of complicated sample pre-treatment procedures. Moreover, in 

this chapter, the possibility to use VSG as a potential biomarker in Human African 

Trypanosomiasis and the potential use of this aptamer/carbon nanotube based 

biosensing platform as a powerful tool in proteomic research and disease diagnostics 

was shown.  

This new generation of solid-state potentiometric aptasensors based on the hybrid 

material aptamer/carbon nanotubes exhibits many advantages. The possibility to 

customize the biosensing platform for the detection of different targets by an 

adequate incorporation of the suitable aptamer sequence is a clear advantage over 

currently available protein and pathogen biosensing platforms. Moreover, the high 

sensitivity of the biosensors originated by the extraordinary transducing properties of 

carbon nanotubes as well as the real-time detection of the aptamer-target binding 

event are in combination, the most important added value that this platform can 

provide to the current repertoire of available biosensing techniques. Furthermore, the 

requirement of a minimum sample pretreatment simplifies both the bacteria and 

protein detection processes. However, the most important strength of this biosensing 

platform is that simple positive/negative tests can be carried out at very low 

concentrations of either protein or bacteria and without cross reaction with other 

targets. The ease with which measurements are taken in potentiometric analysis 

opens the door to the detection of bacteria and protein in real time as easy as 

measuring the pH value. 

However, this potentiometric biosensing platform exhibited some limitations and 

drawbacks. The sensing capability for each individual biosensor depended on the 

success of several critical steps. As an example, an appropriate deposition of the 

carbon nanotube transducing layer on the surface of the supporting electrode was a 

challenging step that depended on individual skills. In the case that the nanotube layer 

was not adequately deposited, leaching of carbon nanotubes present on the more 

external layers would represent a serious limitation for aptamer-functionalized sensors 

since the recognition layer may be lost after the functionalization step. Additionally, 
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the functionalization procedure depended on technical skills, such as the adequate 

preparation of the solutions involved during the functionalization steps or the 

adequate management of materials. Therefore, the rate of functional biosensors has 

remained variable so far and depended on the technical skills exhibited during the 

preparation of the sensors.  

The instrumental response of the biosensors is high enough to be differentiated 

from the noise level; however, the sensitivity of the devices is very low when 

compared to the Nernstian response of the ‘classical’ potentiometric ion-selective 

electrodes. This is due to the completely different sensing mechanism that applies to 

each type of sensor. While an equilibrium system is established between the two 

immiscible layers (polymeric membrane/water sample) in ISEs, a change of the 

electrical charges at the surface of the carbon nanotubes during the target recognition 

event is the origin of the EMF in our sensors. The fact that the EMF signal is driven by 

the charges at the target’s surface forces to maintain the ionic strength of the test 

solution under strict control, otherwise, false positive results may occur. 

The sensors are basically designed to be of a single use. They are regenerable but 

they are not reversible (i.e. they cannot be used successively to test different samples 

containing decreasing target concentrations). As a consequence, the individual sensors 

cannot be calibrated. The calibration should be achieved at the batch level as long as 

the reproducibility in the performance characteristics of the sensors developed is high 

enough. 

The aptamers have been demonstrated to be very selective recognition elements. 

Depending of the purpose of the analysis, this can be an enormous benefit or a 

disadvantage. For instance, it is a benefit when testing a single serovar of a bacterial 

species but can be a drawback when we are interested in detecting the presence of 

microorganisms at the species or even genus level. In this latter case, the simultaneous 

use of several aptamers, isolated considering the different species –and serovars- 

should be considered. 

The cost of the aptamer synthesis was additionally, a serious limitation. As an 

example, 1 μmol of a RNA oligomer of about 50-100 bases may cost between 500-1600 
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euro according to the year 2011 market prices. This factor is critical, especially when 

the functionalization of nanotubes with aptamers yields to a low rate of functional 

biosensors. However, the exponential increase on the number of patents and 

published scientific articles related to aptamers observed since the year 2002 (Scheme 

8.1) may be translated into a decrease on market prices in a future. This same 

phenomenon was observed in recent years with carbon nanotubes, which can be 

nowadays acquired at reasonable prices. 

 

 

 

Scheme 8.1. Patents and scientific articles published on the topics aptamer and carbon 

nanotubes between the years 1990 and 2011.[1] 

 

Biosensor miniaturization would represent an opportunity area for improving this 

new generation of aptamer-based potentiometric biosensors in a near future. The 

advantages of miniaturization are evident in terms of cost, since a less amount of 

                                                 
1 Search performed with Scifinder Scholar (R) on the research topics indicated in Scheme 8.1 as of 
August 2011. 
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aptamers and nanotubes would be therefore needed. As an example, our group is 

currently developing the first examples of single-use potentiometric sensors in a 

miniaturized planar format. The combination between the aptasensor technology and 

the reduced planar format of potentiometric sensors may be translated into single-use 

potentiometric aptasensors in a future, thus eliminating the need of aptamer 

regeneration steps in pathogen and protein detection. However, the possible 

repercussions on biosensor performance when the sensor surface is dramatically 

reduced have not been explored so far. 

Finally, the possibility to expand the biosensing platform for the detection of other 

targets than bacteria or proteins is a very interesting research area for the future. As 

an example, the real-time detection of whole infectious agents such as viruses or 

parasites would represent a very important advance in pathogen biosensing.  
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8.2. Conclusions 

L'objectiu d'aquesta Tesi ha estat demostrar per la primera vegada que els 

biosensors potenciomètrics basats en nanotubs de carboni com a transductors ió-

electró i aptàmers com a elements de reconeixement biomolecular poden ser utilitzats 

per a la detecció immediata de patògens i biomolècules relacionades. Per tal de 

demostrar la versatilitat d’aquesta nova generació de biosensors, es van preparar 

quatre biosensors diferents utilitzant distints aptàmers capaços de reconèixer de 

forma específica diferents objectius patogènics: Com a models de bacteris 

gramnegatius es van detectar la Salmonella Typhi i l’Escherichia coli, mentre que el 

Staphylococcus aureus va ser utilitzat com a exemple de bacteri grampositiu i les 

glicoproteïnes variables de superfície provinents de tripanosomes africans van ser 

usats com a model en la detecció de exoantígens patogènics. La detecció de aquests 

quatre objectius va ser duta a terme exitosament mitjançant els biosensors 

desenvolupats i els corresponents paràmetres de qualitat van ser estimats.  

La prova del concepte de les capacitats sensores del material híbrid 

aptàmer/nanotubs de carboni va ser duta a terme amb la detecció en temps real del 

bacteri Salmonella Typhi en solucions tamponades. També es va demostrar que el 

material híbrid és una eina prometedora en la detecció selectiva de microorganismes 

en temps real a concentracions molt baixes. En aquest cas el biosensor es va emprar 

pel reconeixement del pili tipus IV B, una proteïna ancorada a la part externa de la 

superfície del microorganisme. En el Capítol 4, es va obrir la porta a mètodes d’anàlisi 

microbiològic més simples, reduint la necessitat de personal altament qualificat.  

Diferents mètodes de funcionalització de la capa transductora de nanotubs de 

carboni van ser explorats mitjançant la detecció selectiva de Staphylococcus aureus 

en solucions tamponades (Capítol 5). Els nanotubs de carboni van ser funcionalitzats 

amb aptàmers seguint dos mètodes diferents: 1) Mitjançant enllaç no covalent dels 

aptàmers prèviament modificats amb un grup pirenil sobre la capa de nanotubs i 2) 

Mitjançant enllaç covalent dels aptamers als nanotubs de carboni mitjançant els grups 

carboxílics dels nanotubs i grups amina introduïts prèviament als aptàmers. Es va 

observar diferències molt importants en els paràmetres de qualitat analítica dels 
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biosensors segons el tipus de funcionalització emprada. Els biosensors funcionalitzats 

de manera covalent van detectat concentracions mesurables de bacteri més baixes, 

sensibilitats més baixes i estabilitats més altes que els corresponents valors observats 

a l’emprar biosensors funcionalitzats de manera no covalent. Per tant, els biosensors 

basats en nanotubs de carboni i aptàmers presenten molt més avantatges respecte 

als paràmetres de qualitat si el mètode de funcionalització elegit és el covalent. Per 

l’altra banda, els biosensors funcionalitzats de manera no covalent presenten 

serioses limitacions analítiques. Finalment, els biosensors van ser provats amb 

mostres contaminades de pell de porc amb la qual cosa es va poder obrir la possibilitat 

de fer l’ús d’aquest biosensor com a una eina de detecció en temps real de el 

Staphylococcus aureus en pell humana. 

Al Capítol 6 es va desenvolupar un protocol molt simple i ràpid per a la 

recuperació i detecció de patògens en mostres alimentàries. Aquest protocol va ser 

validat i provat amb mostres d’aliment complexes com a suc de fruita i llet. 

Addicionalment, la compatibilitat del mètode amb els biosensors potenciomètrics 

basats en aptamers i nanotubs de carboni va ser demostrada mitjançant la detecció 

de una variant no patògena de l’Escherichia coli usada com a substitut del bacteri 

altament tòxic Escherichia coli O157:H7. La detecció del bacteri objectiu va ser duta a 

terme amb un excel·lent grau de selectivitat intra i inter espècie. Aquest procediment 

analític pot ser dut a terme quasi en temps real a causa de la ràpida eliminació de la 

matriu de les mostres reals i la conseqüent detecció selectiva del bacteri. Aquest 

capítol va obrir la possibilitat d’analitzar mostres alimentàries complexes amb un alt 

rendiment i de manera immediata. 

La identificació en temps real de una proteïna que es troba en molt baixes 

concentracions en mostres que tenen una matriu altament complexa com la sang va 

ser demostrada amb un procés de detecció d’un sol pas i sense reactivitat creuada 

amb altres proteïnes (Capítol 7). Es va dissenyar i desenvolupar un biosensor 

potenciomètric basat en nanotubs de carboni i aptàmers seleccionats per al 

reconeixement de la glicoproteïna variable de superfície de tripanosomes africans. El 

biosensor es va validar amb la detecció de la proteïna com a model d’exoantígen en 

mostres clíniques. Es va dissenyar i ajustar una solució tampó de força iònica i 

UNIVERSITAT ROVIRA I VIRGILI 
ULTRASENSITIVE DETECTION OF PATHOGENS IN REAL-TIME. POTENTIOMETRIC BIOSENSORS BASED ON SINGLE-WALLED CARBON NANOTUBES AND APTAMERS 
Gustavo Adolfo Zelada Guillen 
DL:T. 1713-2011 



Chapter 8 

167 
 

potencial determinats amb el propòsit de demostrar que la plataforma de detecció 

basada en nanotubs de carboni i aptàmers pot ser utilitzada per a la detecció de 

proteïnes contingudes dins de matrius molt complexes de una manera molt simple i 

sense la necessitat de processos complicats per al tractament previ de la mostra. Així 

mateix, en aquest capítol, es va obrir la possibilitat per a l’ús de la glicoproteïna 

variable de superfície com a un marcador biològic de la tripanosomiasis humana 

africana i a més, es va obrir també l’ús potencial d’aquesta plataforma de detecció 

basada en nanotubs de carboni i aptàmers dins de la recerca proteòmica i el diagnòstic 

de malalties. 

Aquesta nova generació de sensors potenciomètrics en estat sòlid basats en el 

material híbrid aptàmer/nanotubs de carboni presenta molts avantatges. Un clar 

avantatge sobre altres plataformes de detecció de patògens i proteïnes actualment 

disponibles és la possibilitat d'adaptar aquesta plataforma a la detecció de diferents 

analits mitjançant la incorporació de aptàmers amb la seqüència adequada. A més, 

l'alta sensibilitat dels biosensors originada per les extraordinàries propietats dels 

nanotubs de carboni com a transductors en combinació amb la detecció dels 

esdeveniments de reconeixement aptàmer/analit en temps real són el màxim valor 

afegit que aquesta plataforma ha contribuït al repertori actual de tècniques de 

biodetecció. Addicionalment, els mínims requeriments de pretractament de mostra 

simplifica enormement tant la detecció de bacteris com la detecció de proteïnes. No 

obstant això, la major fortalesa d'aquesta plataforma de biodetecció radica en que es 

poden dur a terme assajos simples de presència/absència de l'analit a concentracions 

molt baixes per a la detecció de bacteris i proteïnes sense que s'observi cap reacció 

creuada amb interferents. La facilitat amb la qual es fan les mesures en l'anàlisi 

potenciomètric obre la porta a la detecció de bacteris i proteïnes en temps real i d'una 

forma tan fàcil com mesurar el pH. 

No obstant això, aquesta plataforma de biodetecció ha presentat limitacions i 

desavantatges. La capacitat sensora individual de cada biosensor va dependre de l’èxit 

de diverses etapes. Com a exemple, una apropiada  deposició de la capa transductora 

de nanotubs de carboni sobre l’elèctrode suport va ser un pas crític que va dependre 

de habilitats individuals. En el cas que la capa de nanotubs no estigués dipositada 
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adequadament, els nanotubs presents en la part exterior de la capa transductora 

podrien passar a la solució problema després de l’etapa de funcionalització, creant així 

forats dins de la capa de transducció, i per tant representar una seriosa limitació 

d’aquest tipus de biosensors. Addicionalment, el procés de funcionalització va 

dependre de las habilitats tècniques, com la preparació de solucions involucrades en la 

funcionalització ó un maneig adequat dels materials. Per tant, la taxa de biosensors 

funcionals va romandre fins ara variable i dependent de las habilitats tècniques 

mostrades durant la preparació dels sensors. 

La resposta instrumental dels biosensors és considerable com per a ser 

diferenciada del soroll intrínsec; no obstant això, la sensibilitat dels mateixos és molt 

baixa si es compara amb la resposta potenciomètrica Nernstiana dels elèctrodes 

selectius d’ions 'clàssics'. Aquest fenomen és originat pels diferents mecanismes de 

detecció que governen cada tipus de sensor. En el cas dels elèctrodes selectius d’ions, 

s'estableix un sistema d'equilibri entre dues capes no miscibles (membrana 

polimèrica/mostra aquosa), mentre que en els nostres sensors es dóna un canvi en les 

càrregues elèctriques sobre la superfície dels nanotubs de carboni durant el procés de 

reconeixement molecular amb la qual cosa s'origina un canvi de força electromotriu. El 

fet que la senyal potenciomètrica sigui deguda a les càrregues superficials de l'analit 

obliga a mantenir sota un estricte control la força iònica de la solució analitzada, o en 

cas contrari es podrien originar falsos positius en els resultats.  

Els sensors estan bàsicament dissenyats per a un sol ús. Són regenerables però no 

són reversibles (per exemple, no poden ser usats successivament per analitzar 

diferents mostres que continguin concentracions decreixents de l'analit). Com a 

conseqüència, els sensors no poden ser calibrats individualment. El calibratge haurà de 

dur-se a terme en tot cas, a nivell de lot, sempre que la reproductibilitat dels 

paràmetres de qualitat analítics sigui prou alta.  

S'ha demostrat que els aptàmers són altament selectius com a elements de 

reconeixement molecular. Depenent del propòsit de l'anàlisi, això pot ser un enorme 

benefici o un desavantatge. Per exemple, és un benefici quan es detecta una sola 

varietat d'una espècie de bacteri, però pot ser un desavantatge quan estem interessats 
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a detectar la presència de microorganismes al nivell d'espècie o fins i tot de gènere. En 

aquest últim cas, es podria considerar l'ús simultani de diversos aptàmers, aïllats 

cadascun d'ells per a les diferents espècies -i varietats-.  

El cost de la síntesis de l’aptàmer va ser una altre limitació. Com a exemple, 1 

μmol d’un oligòmer de RNA de 50-100 bases pot costar entre 500 i 1600 euros, d’acord 

als preus del any 2011. Aquest factor és crític, especialment en el cas d’un baix 

rendiment de funcionalització de biosensors. No obstant això, el creixement 

exponencial en el nombre de patents i articles científics publicats relacionats amb els 

aptàmers (Esquema 8.2) pot veure’s traduït en un decreixement dels preus de mercat 

en un futur. Això mateix va ser observat amb els nanotubs de carboni, els quals poden 

ser adquirits actualment a preus raonables.   

 

Esquema 8.2. Patents i articles científics publicats sobre els tòpics d’aptàmer i nanotubs de 

carboni entre els anys 1990 i 2011.[2] 

La miniaturització del biosensor podria representar en el futur una àrea 

d’oportunitat per a millorar aquesta nova generació de biosensors basats en nanotubs 

de carboni i aptàmers. Els avantatges de miniaturitzar els biosensors són evidents en 

                                                 
2 Cerca realitzada amb el Scifinder Scholar (R) sobre els tòpics de recerca indicats en l’Esquema 8.2 fins a 
l’Agost de 2011. 
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termes de cost, per que es redueix la quantitat d’aptàmer i nanotubs necessaris. Com a 

exemple, el nostre grup està actualment desenvolupant els primers exemples de 

sensors potenciomètrics plans en format miniaturitzat d'un únic ús. La combinació de 

la tecnologia de biosensors basats en aptàmers i el format pla de mida reduït dels 

sensors potenciomètrics pot veure's traduït en un futur en biosensors potenciomètrics 

d'un únic ús, i per tant, s'eliminaria la necessitat de les etapes de regeneració dels 

aptàmers en la detecció de patògens i proteïnes. No obstant això, las possibles 

repercussions de reduir la superfície del sensor sobre el rendiment analític no han 

estat explorades fins al moment.  

Finalment, la possibilitat de expandir las aplicacions de aquesta plataforma 

biosensora per a la detecció d’altres objectius diferents dels bacteris o de les 

proteïnes, és un area molt interessant per a la recerca en el futur. Com a exemple, la 

detecció en temps real d’agents infecciosos com els virus o els paràsits podria 

representar un avanç molt important en la biodetecció de patògens.  
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Summary 

The control of diseases has been one of the most important public health concerns 

of our society for decades. Typical standard methods that are used to assess the 

presence of microbiological threats consist of specific enrichment media to multiply, 

separate, identify and count bacterial cells. The process duration depends on the 

target pathogen, but in most of the cases a confirmatory result can take from a few 

days to even weeks after the test sample has been obtained.  

Additionally, disease control and more specifically, clinical diagnostic, is also 

carried out by means of the detection of pathogen-related proteins, protein 

biomarkers and exoantigens. The most commonly used methods rely on highly 

sensitive and specific label-based immunoassays. However, these methods are 

unsuitable for high-throughput applications because they are labor-intensive, time-

consuming and require highly trained staff and expensive equipment. Furthermore, an 

accurate quantification of the analyte is not always possible and false negative results 

can be obtained if the target protein is not extracted from the matrix effectively. 

Numerous biosensing platforms have incorporated nanostructured materials as a 

strategy for improving several performance and operational parameters such as 

reducing the limits of detection or the assay times in both pathogen and protein 

detection. Electrochemical sensing techniques are preferred over other detection 

methods because they present a series of advantages such as rapid response, ease of 

use, low-cost and small sized commercial detectors. Among the electrochemical 

techniques, the simplest, most widespread and field-portable methodologies are 

based on potentiometry. The new wave of potentiometric solid-state electrodes 

represents an attractive tool for real-time bioanalysis in liquid samples. However, to 

date, it has been difficult to carry out the specific and direct electrochemical detection 
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of whole living bacterial cells or disease-related proteins without chemical labelling 

because the interaction receptor-bacteria/receptor-protein does not provide a 

measurable electrochemical signal. 

In this Thesis, the real-time potentiometric detection of bacteria and disease-

related proteins is demonstrated for the first time. To accomplish such a challenging 

task, a novel and universal biosensing platform is designed using single-walled carbon 

nanotubes as potentiometric transducers, and aptamers as biorecognition elements. 

The excellent potentiometric transduction properties of carbon nanotubes combined 

with the quasi-unlimited capability of aptamers (RNA and DNA synthetic 

oligonucleotide segments) to be tailored in vitro against ions, proteins, viruses and 

bacteria converts such a platform into a tool with unrestricted possibilities in real-time 

biosensing.  

This PhD Thesis is divided in eight chapters: 

Chapter 1 includes a chronological overview of the current state of the art in 

biosensing platforms for pathogen and disease-related protein detection. 

In Chapter 2, the objectives of the Thesis are presented.  

Chapter 3 includes a description of all the chemicals, microorganisms, materials 

and instruments used. This chapter also describes the basic procedures followed in the 

experimental part of the Thesis.  

In Chapter 4, the proof of concept is demonstrated by the real-time detection of 

Salmonella enterica serovar Typhi (Salmonella Typhi) in phosphate buffer solutions, in 

which the biosensor is addressed towards a specific protein anchored to the surface of 

the microorganism.  

Chapter 5 focuses on the functionalization of carbon nanotubes with aptamers 

following two different approaches. The biosensor performance parameters are 

compared in terms of the functionalization approach with the detection of 

Staphylococcus aureus in phosphate buffer solutions. The biosensors are also used in 
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the detection of the target bacteria in freshly excised pig skin as a human skin 

surrogate.  

In Chapter 6, a nonpathogenic strain of Escherichia coli (E. coli) is used as a 

surrogate for pathogenic E. coli O157:H7 in foodstuff samples such as fruit juice and 

milk. The bacteria detection process is facilitated by the rapid elimination of the matrix 

and further recovery of the target bacteria using a new on-line sample pre-processing 

protocol.  

Chapter 7 describes the detection of pathogenic exoantigen proteins in highly 

complex clinical samples, such as blood, with biosensors developed against 

trypanosomal variable surface glycoprotein (VSG). A total ionic strength and potential 

adjustment buffer (TISPAB) is adequately designed, tailored and used to eliminate 

undesired blood matrix effects. Such a buffer was developed and used with the 

purpose of demonstrating that the biosensing platform can be also used in protein 

identification within highly complex matrices in a straightforward way and without the 

need of complicated sample pre-treatment procedures.  

Finally, Chapter 8 includes the conclusions of the Thesis. This chapter also includes 

the description of some limitations of the biosensing platform developed as well as the 

opportunity areas for improvement of this new generation of potentiometric 

biosensors. 
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Resum 

El control de malalties ha estat durant dècades una de las preocupacions més 

importants de la nostra societat. Els mètodes tradicionals més comuns utilitzats per a 

la detecció de microbis depenen principalment de medis d’enriquiment específic amb 

la qual cosa, las cèl·lules del patogen objectiu poden ser multiplicades, separades, 

identificades i quantificades. La duració del procés depèn del tipus de patogen, però en 

la majoria dels casos, es pot requerir d'uns dies fins a diverses setmanes per 

aconseguir un resultat final.  

Addicionalment, el control de malalties i més específicament, el diagnòstic clínic, 

també es porta a terme mitjançant la detecció de proteïnes relacionades amb 

patògens, marcadors biològics i exoantígens. Els mètodes més comuns consisteixen en 

l'ús d’assaigs immunològics específics que empren molècules traçadores. No obstant 

això, aquests mètodes no són adequats per a les aplicacions que requereixen d'un alt 

rendiment, ja que són mètodes bastant laboriosos, lents i necessiten personal 

qualificat per al seu maneig. Més encara, aquests mètodes no permeten una 

quantificació precisa de l’analit i en alguns casos, és fins i tot possible obtenir falsos 

negatius en els resultats finals si la proteïna objectiu no és apropiadament extreta de la 

matriu.  

Un gran nombre de plataformes de detecció biològica han incorporat materials 

nanoestructurats com una estratègia per a millorar diversos paràmetres operacionals i 

de qualitat tals com reduir els temps d'anàlisis i els límits de detecció. Les tècniques 

electroquímiques de detecció es prefereixen sobre altres tècniques ja que presenten 

una sèrie d'avantatges com a rapidesa, facilitat de maneig, cost reduït i la reduïda mida 

dels detectors comercials. Entre les tècniques electroquímiques, les metodologies més 

simples, comunes i més fàcils de transportar són aquelles basades en la 

potenciometria. La nova tendència seguida amb els elèctrodes potenciomètrics d'estat 
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sòlid representa una eina atractiva en l'anàlisi de mostres líquides en temps real. No 

obstant això, fins avui ha estat difícil dur a terme la detecció electroquímica directa de 

bacteris i proteïnes, sense utilitzar marcadors químics, donat que les interaccions 

receptor-bacteri i receptor-proteïna no produeixen un senyal elèctric mesurable. 

En aquesta tesi, es demostra per primera vegada la detecció potenciomètrica en 

temps real de bacteris i proteïnes relacionades amb diverses malalties. Aquesta tasca 

va ser duta a terme mitjançant el disseny d'una plataforma universal de detecció 

utilitzant nanotubs de carboni com a transductors potenciomètrics i aptàmers com a 

elements de reconeixement molecular. Les excel·lents propietats de transducció 

ofertes pels nanotubs de carboni combinades amb la gairebé il·limitada possibilitat 

dels aptàmers de ser dissenyats in vitro per reconèixer ions, proteïnes, virus i bacteris 

converteix aquesta plataforma en una eina amb possibilitats inesgotables de detecció 

biològica en temps real. 

Aquesta Tesi doctoral és divideixi en vuit capítols: 

El Capítol 1 inclou una revisió cronològica de la bibliografia més recent en 

plataformes de detecció de patogens i proteïnes relacionades amb malalties.  

En el Capítol 2 s'esmenten els objectius de la Tesi. 

El Capítol 3 inclou una descripció de totes les substàncies químiques, 

microorganismes, materials i instruments utilitzats. Aquest capítol també descriu els 

procediments bàsics que van seguir-se en el desenvolupament experimental de la Tesi. 

En el Capítol 4, es demostra la prova del concepte mitjançant la detecció en temps 

real de la Salmonella enterica serovar Typhi (Salmonella Typhi) continguda en 

solucions tamponades del pH i força iònica. En aquest cas, el biosensor és dirigit cap a 

la identificació d'una proteïna en particular que es troba incorporada a la superfície del 

microorganisme. 

El Capítol 5 s'enfoca en la funcionalització dels nanotubs de carboni amb aptàmers 

seguint dues vies diferents. El rendiment analític dels biosensors preparats per 

diferents vies es compara en funció del tipus de funcionalització mitjançant la detecció 
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del bacteri Staphylococcus aureus en solucions tamponades. Els biosensors s’empren 

així mateix en la detecció del bacteri en mostres fresques de pell de porc utilitzades 

com a substitut de la pell humana. 

En el Capítol 6, es detecta una variant no patògena de l’Escherichia coli (E. coli) 

com a substitut de la variant tòxica E. coli O157:H7. El bacteri es detecta en mostres 

alimentàries com a suc de fruita i llet. El procés de detecció del microorganisme es 

facilita gràcies a la ràpida eliminació de la matriu i la subseqüent recuperació dels 

microorganismes utilitzant un nou protocol de pretractament de mostres dissenyat 

exclusivament per a aquesta fi. 

El Capítol 7 descriu la detecció de proteïnes exoantigèniques en mostres clíniques 

d'alta complexitat tals com la sang, mitjançant la detecció de glicoproteïnes variables 

de superfície de tripanosomes africans. Per a aquesta finalitat es va dissenyar, 

desenvolupar, adaptar i utilitzar una solució tampó de força iònica i potencial per tal 

d’eliminar l'efecte matriu de la sang. Aquest tampó va ser desenvolupat i usat per tal 

de demostrar que la plataforma de detecció pot ser utilitzada també en la identificació 

de proteïnes dins de matrius altament complexes d'una forma fàcil i directa, i sense la 

necessitat de complicats procediments de pretractament de mostra. 

Finalment, el Capítol 8 inclou les conclusions de la Tesi. Aquest capítol inclou 

també la descripció d'algunes limitacions que presenta la plataforma de detecció 

desenvolupada així com també s’identifiquen les àrees d'oportunitat de millora 

d'aquesta nova generació de biosensors potenciomètrics. 
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