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ABSTRACT 

Since the appearance of high throughput sequencing technologies,        

biological data sets have become increasingly large and complex,         

which renders them practically impossible to interpret directly by a          

human. The machine learning paradigm allows a systematic        

analysis of relationships and patterns within data sets, making         

possible to extract information by leveraging the sheer amount of          

data available. 

However, violations of basic machine learning principles may lead         

to overly optimistic estimates, a prevalent problem known as         

overfitting. In the field of protein folding, we found examples of this            

in published models that claimed high predictive power, but that          

performed poorly on new data. 

A different problem arises in epigenetics. Issues such as lack of           

reproducibility, heterogeneous quality and conflicts between      

replicates become evident when comparing ChIP-seq data sets. To         

overcome this limitations we developed Zerone, a machine        

learning-based ChIP-seq discretizer capable of merging information       

from several experimental replicates and automatically identifying       

low quality or irreproducible data. 

 

 

 

3 



 

 

 

 

 

 

 

 

 

 

 

 

 

4 



 

RESUM 

Des de l’aparició de les tecnologies de seqüenciació d’alt         

rendiment, els conjunts de dades biològiques han esdevingut cada         

cop més grans i complexes, la qual cosa els fa pràcticament           

impossibles d’interpretar manualment. El paradigma de      

l’aprenentatge automàtic permet fer una anàlisi sistemàtica de les         

relacions i patrons existents en els conjuts de dades, tot aprofitant           

l’enorme volum de dades disponibles. 

No obstant això, una aplicació poc curosa dels principis bàsics de           

l’aprenentatge automàtic pot conduir a estimacions massa       

optimistes, un problema prevalent conegut com a sobreajust. En el          

camp del plegament de proteïnes, en vam trobar exemples en          

models publicats que afirmaven tenir un alt poder predictiu, però          

que es comportaven de forma mediocre devant de dades noves. 

En el camp de l’epigenètica, problemes com la falta de          

reproducibilitat, qualitat heterogènia i conflictes entre replicats       

esdevenen evidents quan es comparen diferents conjunts de        

dades de ChIP-seq. Per superar aquestes limitacions vam        

desenvolupar Zerone, un discretitzador de ChIP-seq basat en        

aprenentatge automàtic que és capaç de combinar informació de         

diferents replicats experimentals i d’identificar automàticament      

dades de baixa qualitat o irreproduïbles. 
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About machine learning 

In the last years, the amount of biomedical data available to the            

scientific community has grown enormously, partly due to the         

appearance of high-throughput sequencing technologies. Analysis      

of these complex sets of information is challenging but well suited           

for a family of computational methods collectively known as         

machine learning. 

 

In machine learning, a computer program learns to perform a task           

without being explicitly programmed how to solve the task at hand.           

It can be said that a machine learns when its performance on a             

task increases with experience, that is with increased exposure to          

representative data. Both the definitions of performance and task         

depend on the particular problem being treated. There are many          

types of problems that can be approached with machine learning,          

and many different strategies have been devised. In general, they          

can be divided into three groups: supervised learning,        

unsupervised learning, and reinforcement learning strategies. In all        

cases, each input datum is defined by an arbitrary number of           

features that quantify different aspects of it. For instance, two          

features that could define a genomic sequence would be its length           

in nucleotides and its GC-content. 

 

In supervised learning, after being exposed to enough training         

examples, the algorithm models the relationship between the input         

features and a known output variable. This model is used to predict            

the unknown output variable of new, previously unseen examples.         

In unsupervised learning the output variables of the training         
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examples are not available (or not used), and the goal is to assign             

them to the data set, thus labeling each datum. This usually implies            

clustering the training examples into groups of similar objects, while          

maintaining the different objects in separate groups. The number of          

groups is not an intrinsic property of the data, but more a decision             

made by the analyst, who usually must find a balance between           

intra-group homogeneity and model complexity ​(Akaike 1974;       

Schwarz 1978)​. The class labels that are learned with an          

unsupervised strategy can be used downstream in a supervised         

setting. The last strategy, reinforcement learning, involves       

maximizing the reward that an agent receives after performing         

some actions on an environment in response to stimuli, however its           

review is outside the scope of this dissertation. 

 

There are two main types of tasks in machine learning: regression           

and classification. In regression problems the aim is to approximate          

the output of a real-valued function as accurately as possible. For           

instance, one may want to predict the folding rate of a given protein             

after having trained a model with examples of other proteins whose           

folding rates are known, in a supervised fashion (see Chapter 2).           

This is usually accomplished by fitting a parameter vector , that           

constitutes the model to be learned, and minimizing a cost function           

 on the training set. 

 

, 
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where is the number of training examples, is the feature            

vector of the ith training example and is the output scalar            

variable that corresponds to the same training example. This         

means that the algorithm will learn a model to approximate            

based on . The parameter vector can be randomly initialized           

and updated iteratively using an optimization method such as         

gradient descent. Ideally, with noise-free data there will be no          

difference between and at the end of the training, and the             

model can be then used to predict the unknown output value of a             

new, unseen example. The result is equivalent to performing linear          

regression, therefore it is assumed that the output variable is a           

linear combination of the feature vector. Because derivative-based        

optimization methods (such as the early mentioned gradient        

descent) require a convex cost function to converge to a unique           

global minimum, the error of the predicted to actual output values is            

squared. It is precisely this error as measured by the cost function            

what is minimized. The constant simplifies the derivative          

expression. 

 

Support vector machines 

The other type of problem is classification, in which the algorithm           

assigns discrete labels to objects and determines to what class          

they belong. Classification problems can be solved using a         

supervised strategy. Different methods exist, but the focus of this          

dissertation is on a type of binary classifier called support vector           

machine (see Chapter 3). This approach consists in finding the          

hyperplane that separates the two classes of training examples          
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while at the same time maximizing the margin between such           

hyperplane and the closest points in the data set (Fig. 1). 

 

 

 

 
Figure 1. Support vector machine classification. The two classes of          
data, depicted as black and white circles and defined by the arbitrary            
features and in the example, are completely separated by the            
hyperplane that maximizes the margin. Other approaches that do not          
attempt to maximize the classification margin may separate the two          
populations completely in the training data set, but will tend to generalize            
poorly when presented with new data. Maximizing the margin increases          
the chances that new data points from each class will not be found on the               
wrong side of the decision boundary. The circled points, the ones closest            
to the hyperplane ​, are called support vectors and determine the           
position of such boundary. 
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The problem then is to maximize 

 

 

 

subject to the constraint 

 

 

 

Where is the label of the ith training example and            

is an intercept term. This type of classification is called hard margin            

support vector machine and it is only possible if the two classes are             

linearly separable. If there is any degree of overlap between the           

two classes that would require to fit a nonlinear classifier, two           

solutions are available: using a soft margin classifier, in which the           

constraint is relaxed to allow some points to be misclassified at a            

specified cost; and/or mapping the features to a higher-dimensional         

space in which they are linearly separable. The latter can be           

accomplished by using the so called kernel trick, that is using a            

kernel function to compute the similarity between all pairs of           

points in the original feature space (Fig. 2). 
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Figure 2. Kernel trick. A kernel function maps the data points from the             
original, low-dimensional feature space to a new, higher-dimensional        
kernel space. Generating a new set of coordinates by computing the           
similarities of all pairs of points ensures that every point is linearly            
separable from any other. For convenience, a mock 3-dimensional space          
is depicted on the right, when in reality the kernel space could have as              
many dimensions as data points, representing the proximity of each point           
to every other. 
 

The most widely used kernel is the Gaussian radial basis function           

kernel, that computes the proximity between two points as: 

 

 

 

Where and are the two points in the data set which proximity              

is measured, and is a parameter that controls the decay of the             

exponential function. Nonetheless, the kernel function is usually        

parameterized by , which gives the simpler form        
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. The kernelized features can be      

then fed to the support vector machine to learn a classification. 

The generalization problem 

All machine learning techniques learn a model or representation of          

the data that is used for training. In the case of supervised learning,             

the quality of this model can be evaluated by measuring the cost             

at the end of the training, but this does not guarantee that, once             

confronted to new data, the model will be able to make accurate            

predictions. If this happens, it means that the model has learned to            

characterize particular training examples that were not       

representative of the underlying structure of the data but outliers          

caused by random noise or biased sampling. This situation is called           

overfitting and can be diagnosed if the cost on the unobserved data            

set is significantly greater than the cost on the training set (Fig. 3).             

Complex models are more prone to overfitting (usually the         

complexity of the model is determined by the number of parameters           

to fit, that is the dimension of ). Simpler models on the other hand              

may be underfit: they are not able to represent certain structures           

present in the data. An example of the latter would be to fit a linear               

function to the data set in Fig. 3. 
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Figure 3. Generalization and overfitting. The upper panel shows a data           
set composed of two classes, shown as red and blue dots in an arbitrary              
feature space. The generalizable model (black line) fails to classify a few            
points, but captures the underlying structure of the data set. On the other             
hand, the overfit model (green line), even when classifying correctly all of            
the training points, has learned a nonrepresentative structure of the data           
and will likely perform poorly on new, unseen examples. The lower panel            
shows the classification error of models with different complexity on          
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training (blue) and new (red) data. As the aim is to minimize the             
generalization error, the best model would be the one that lies on the             
black dotted line (this would correspond to the black model on the upper             
panel). More complex models fit better the training data but do not            
generalize well, they are overfit (green model on the upper panel). 
 

Poor generalization can also arise when the training set contains          

insufficient examples, which results in undersampling of the feature         

space. Also, complex models require to learn from bigger data sets.           

This is related to the fact that, as the dimensionality of the model             

increases, the amount of data available becomes more sparse in          

higher dimensional feature spaces, which leads again to        

undersampling ​(Hughes 1968)​. For these reasons, the fit of a          

model can also be evaluated as a function of the data set size,             

which may help diagnose if the current model is properly fit, if it is              

too simple, of if the amount of available data is insufficient for the             

complexity of the model. This questions are treated in more detail           

in Chapter 2. 

 

A common approach to evaluate the quality of the models is to            

perform a cross validation. This process consists in partitioning all          

available data into two groups, then one of them is used to train the              

model and the other one is used to make predictions and compare            

them with the known values of the output variable. Since the quality            

of the model depends on the amount of data used in the training,             

one wants to use as many examples as possible to train. The            

extreme case of this approach is called leave-one-out cross         

validation, where all examples but one are used in training, and            

the model is evaluated in the remaining one. The process is           

repeated times, each time testing on a different example, and           
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the error or cost is averaged over all examples. Because this is            

usually very time-consuming to the point of being impractical,         

analysts use scaled-down version of this strategy called k-fold         

cross validation. Specifically, the data set can be partitioned into          

two groups of uneven size, one of size for training,           

and one of size for testing. The process is repeated times,             

and the results are averaged. The generalization error in this case           

is not estimated as accurately as in leave-one-out cross validation,          

but is usually good enough. A typical value for is around 10, but              

the choice is up to the analyst and to the need for accuracy versus              

speed. 

 

Hidden Markov models 

In the unsupervised learning category the goal is to learn new           

representations of the input data that are based on some structure           

present in them. Specifically, the most common task is to segregate           

the data into homogeneous groups. In the case of genomic data,           

information is encoded along the length of the genome, so it makes            

sense to assume that there exists some kind of dependency          

between neighboring regions. Hidden Markov models assume that        

the system being modeled is a Markov process, that is a sequence            

of steps where at each step the system is in a particular state, and              

where the current state stochastically depends only on the state at           

the previous step (Fig. 4). For instance, every genomic window can           

be considered either enriched in a certain chromatin mark or not,           

and this enrichment state depends only on the state of the previous            

window (see Chapter 3). In a hidden Markov model, the states are            

not directly observable, they are hidden, and the only way to           
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estimate them is indirectly through a series of observations. At          

each step, the system makes an emission, which is the observable           

value, and this emission depends again stochastically only on the          

current state. Following the previous example, each window has an          

associated read count that depends on the hidden state of the           

window (Fig. 4). In a hidden Markov model with discrete emissions,           

the emission probabilities of each state determine which of a finite           

number of emissions will be observed, in a model with continuous           

emissions, the emission parameters define the probability       

distribution from which the emissions are sampled in each state. A           

model is thus defined by the state transition probabilities and by the            

emission probabilities. 

 

 

 
Figure 4. Example of hidden Markov model on the genome. The           
diagram on the left shows a sequence of genomic windows (white circles)            
each in a state of enrichment (E) or not (N). Each window has an              
associated observable read count (R in grey circles). The state of the            
current window depends stochastically on the state of the previous one.           
The diagram on the right represents the probabilities (p, q and their            
complementaries) of transitioning from one state to the next. 
 

Three different problems can be solved by hidden Markov models          

(Rabiner 1989) (see Appendix 2), depending on what data are          

available at the moment. The first is the evaluation problem, in           

which the aim is to compute the probability of a sequence of            

23 

https://paperpile.com/c/bdrmeN/v4FD


 

observations given a known model. The forward-backward       

algorithm, that recursively computes the probability of the sequence         

from the first up to the current step, and from the next to the last, is                

used to solve this problem. The second is the decoding problem,           

that is to determine the most likely sequence of states given the            

sequence of observations and a known model. The Viterbi         

algorithm ​(Viterbi 1967) recursively computes the probability of a         

step being in a particular state, and selects the state with the            

highest probability at the current step, based on the state selected           

in the step before. Finally, there is the learning problem, in which a             

model is estimated given only the sequence of observations. The          

probabilities computed with the forward-backward algorithm are       

used by the Baum-Welch algorithm ​(Baum and Petrie 1966) to          

reestimate the model, that is the state transition and emission          

probabilities, starting from a random model and iteratively        

approximating another one with a greater likelihood. A detailed         

explanation of the different algorithms can be found in Appendix 2. 

 

Starting with a sequence of observations, one can randomly         

initialize a model, then use the Baum-Welch (which internally uses          

the forward-backward) algorithm to find the maximum likelihood        

model, and then use the Viterbi algorithm with this learned model           

and the observations to determine the most likely state sequence.          

An unsupervised clustering of all steps (genomic windows in the          

example) can be done in this way. This approach takes into           

account not only the similarities between observations, but also         

their relative position along the sequence, when performing the         

clustering. The labels learned during the process can be later used           

to learn supervised predictive models with other data, for instance          
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to predict the level of gene expression of a particular genomic           

window given its enriched or unenriched state in a certain          

chromatin mark. 
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About chromatin 

During the late XIX century, early observations of eukaryotic cells          

revealed that their nuclei were composed of a substance that          

Walther Flemming, in 1879, named chromatin, after its property of          

being stained by basophilic dyes. The composition of chromatin         

was partially determined a few years later, in 1881, when the           

botanist Eduard Zacharias showed that nuclein, the strange        

substance that Friedrich Miescher had discovered a decade before         

in the nuclei of leukocytes, was a major component of the           

chromosomes ​(reviewed in Dahm 2005)​. Later, in 1928, another         

important contribution was made when Emil Heitz observed the         

longitudinal differentiation of mitotic chromosomes and coined the        

terms euchromatin and heterochromatin ​(reviewed in Zacharias       

1995)​. 

 

Now we know that chromatin consists mostly of DNA and proteins,           

the most abundant of these proteins being the histones. Histones          

H2A, H2B, H3 and H4, the so called core histones, form an            

octamer made of two monomers of each, around which a stretch of            

about 147 base pairs of DNA wraps to form the nucleosome core            

(Fig. 5). The DNA strand is coiled 1.67 times around these histones            

before “leaving” the nucleosome core, then it extends freely as          

linker DNA for several dozen base pairs, and coils itself again           

around the next nucleosome. This pattern repeats itself throughout         

the genome, forming the “beads-on-a-string” structure (Fig. 6). 
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Figure 5. Nucleosome structure. An octamer of two units of each of the             
four core histones is wrapped in DNA to form the nucleosome core. The             
linker histone H1 stabilizes the complex and allows for higher order           
structure to form. Image from (Stryer 1995). 
 

The linker histone H1 attaches to the nucleosome dyad, the place           

where the entering and exiting ends of the nucleosomal DNA meet,           

and stabilizes the nucleosome. Moreover, histone H1 facilitates the         

binding of consecutive nucleosomes which creates higher level,        

more compact structures ​(Medrano-Fernández and Barco 2016)​,       

like the classical 30 nm chromatin fiber found ​in vitro ​(Finch and            

Klug 1976)​, or the heterogeneous clutches of nucleosomes found         

in actual cell nuclei ​(Ricci et al. 2015)​. 
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Other scaffolding proteins compact the chromatin in successively        

higher order structures. In this way, the almost 2 m of DNA            

molecules contained in each human cell can be packaged inside a           

micrometer-order nucleus. The compacting function of chromatin       

proteins is especially evident during mitosis and meiosis, when         

chromosome condensation takes place and the archetypical       

X-shaped metaphasic chromosomes can be observed (Fig. 6). 

 

 

 

 
Figure 6. The different levels of chromatin compaction. From the          
naked DNA to the metaphasic chromosome, many layers of compaction          
are stacked, prominently the nucleosome, the “beads-on-a-string”       
structure and the 30 nm fiber. 
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Apart from its structural functions, chromatin plays an important         

role in gene regulation. The classical view states that chromatin          

comes in two forms, euchromatin and heterochromatin.       

Euchromatin comprises most of the human genome ​(International        

Human Genome Sequencing Consortium 2004)​, is relatively       

uncompacted and is associated with active transcription. In        

contrast, heterochromatin shows a higher degree of compaction        

and the genes it contains tend to be silenced through a variety of             

mechanisms. Originally, these two variants of chromatin were        

distinguished cytologically by staining, the latter acquiring a more         

intense color than the former. More recently, different authors have          

proposed alternative classifications based on genome-wide      

chromatin composition data that show different levels of expression         

and are enriched in different types of genes or other genomic           

features ​(Ernst and Kellis 2010; Filion et al. 2010)​. These chromatin           

states further subdivide the traditional binary nature of chromatin         

and explain better the compositional and functional variation        

observed inside each of the euchromatic and heterochromatic        

compartments. 

 

Knowledge about the composition of this protein and DNA complex,          

and how it changes during the different phases of the cell cycle,            

during cellular differentiation, and in response to diverse stimuli, is          

thus critical to understand cell function as well as disease. In this            

regard, the scientific community has invested great effort in         

elucidating the nature of chromatin in multiple cell lines and          

conditions. Large consortia such as ENCODE have produced and         

released huge amounts of data that can be analyzed by          

independent researchers. Most of the data sets have been         
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obtained by means of specific immunoprecipitation ​(Brdlik et al.         

2014)​, though alternate techniques such as DamID ​(van Steensel         

and Henikoff 2000)​, that does not make use of antibodies, have           

also been employed. 

 

Chromatin immunoprecipitation techniques 

Chromatin immunoprecipitation (ChIP) is an experimental      

technique developed to interrogate whether a certain DNA region is          

bound by a certain protein of interest ​(Solomon and Varshavsky          

1985)​. It is the basis from which the other techniques discussed           

below stem, as they all use the same principle. The procedure           

starts by treating a cell culture or tissue with a reversible           

cross-linking agent like formaldehyde ​(Jackson and Vaughn 1978)        

or UV light ​(Gilmour and Lis 1985) in order to stabilize the bonds             

between the DNA and the proteins in the nucleus. After this, the            

cells are lysed and the chromatin is first isolated and then           

fragmented by means of sonication or enzymatic digestion. This         

fragments are subsequently immunoprecipitated with an antibody       

against the protein of interest and the DNA is then purified. The            

result is a DNA sample enriched for the sequences that were           

originally bound by the protein of interest. A particular DNA region           

may be further amplified by PCR and sequenced using a variety of            

methods to assess its relationship to the protein of interest. This           

procedure has a limited throughput as only one DNA region can be            

interrogated at once. 

 

Genome-wide epigenomic analyses became common as scaled-up       

versions of the experiment were developed. The first to come to           
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light was a combination of ChIP and microarray technologies. The          

so called ChIP-on-chip uses a microarray with DNA probes that          

sample a large portion of the genome ​(Ren et al. 2000)​. The            

experiment is conducted as a ChIP but, at the end of the            

immunoprecipitation, the DNA is denatured and labeled with a         

fluorescent tag, and subsequently hybridized to the oligonucleotide        

probes in the microarray. Afterwards, as in other microarray-based         

techniques, data normalization, noise reduction and statistical       

analysis are required to call the significant regions of enrichment,          

which raises a challenge at the computational level. 

 

Overall, ChIP-on-chip proved to be relatively expensive and        

labor-intensive, its coverage is limited by the number of probes          

present on the microarray, and the lack of standardization between          

different microarray platforms leads to further complications. Also, it         

is susceptible to several artifacts that cause a high background          

signal that may lead to false positive results ​(Waldminghaus and          

Kirsten 2010)​. For these reasons, with the advent of         

high-throughput sequencing technologies, ChIP-on-chip was mostly      

abandoned in favor of chromatin immunoprecipitation followed by        

high-throughput sequencing (ChIP-seq) ​(Brdlik et al. 2014)​. This        

approach allows for a truly genome-wide interrogation of the         

binding sites of chromatin proteins, with the only exception of          

repeated or other low complexity regions, whose state remains         

elusive due to their low mapping confidence. 

 

The name of the technique is self-explanatory. After the         

immunoprecipitation part of the ChIP procedure, the DNA sample is          

sequenced in a high-throughput manner, the resulting reads are         
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aligned to a reference genome and their abundance is taken as a            

proxy for protein binding at every mappable location of the genome           

(Fig. 7).  
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Figure 7. ChIP-seq procedure. Protein-DNA interactions are stabilized        
by means of cross-linking, chromatin is fragmented, the protein of interest           
(p53 in the example) is immunoprecipitated together with the DNA region           
it was binding, DNA is purified and sequenced, and finally the sequencing            
reads are aligned to a reference genome. Image from (BNL Newsroom)​. 
 

It is good practice to generate a negative control sample for           

ChIP-seq experiments. To do so, the same procedure is used          

throughout but the immunoprecipitation step, that is the addition of          

the antibody specific against the protein of interest, is either omitted           

or performed with a non-specific antibody. Ideally this allows to          

identify locations that show a systematically biased read count.         

Also, experimental replicates help to elucidate what local        

enrichments represent a true protein binding location in contrast to          

a random increase in read count caused by any source of noise. 

 

Working with ChIP-seq data 

ChIP-seq data sets (as other high-throughput sequencing data        

sets) may come in various forms. First, they can appear as a            

collection of the raw sequencing reads as they come from the           

sequencing platform, which consists in a list of millions of short           

DNA sequences, usually from 36 to 50 bp long. For this purpose,            

the FASTQ format ​(Cock et al. 2010)​, that attaches the read quality            

to the sequences, is used almost exclusively. Second, the reads          

can be presented already aligned to a reference genome.         

Essentially, an aligner (also called mapper) software associates        

each of the reads with a genomic coordinate based on sequence           

similarity. The SAM and BAM formats ​(Li and Durbin 2009) are           

dominant, but individual pieces of software may make use of their           

own format, as is the case of the GEM mapper ​(Marco-Sola et al.             
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2012) used in Chapter 3. Third, mapping data can be aggregated           

into bins, as in a histogram, thus reporting the number of reads            

present in each arbitrary genomic window. The advantage of this          

type of data is that it can be visualized with a genome browser             

(Kent et al. 2002) using BED or WIG formats. This histogram-like           

profiles show a higher frequency at or near protein binding sites,           

consistent with the ChIP principle. 

 

Different proteins generate ChIP-seq signals that are characteristic        

of how they bind on the genome, but overall there are two main             

signal types. The archetypical transcription factor profile shows        

high amplitude peaks in relatively narrow regions of enrichment         

over the genome. Other proteins that are not transcription factors          

but also exhibit this binding behavior include CTCF and, to a           

somewhat lesser extent, H3K4me3. On the other hand, histone         

modifications tend to bind across broad domains that cover         

relatively large portions of the genome, forming regions of         

enrichment of normally lower amplitude than that of peaky signals.          

It is not unusual for these domains to be on the megabase scale             

and cover up to 40% of the genome, as is the case of lamin B1,               

one of the proteins that constitutes the nuclear lamina that also           

produces this type of profile ​(Guelen et al. 2008)​. The differences of            

binding patterns can be best compared in Fig. 8. 
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Figure 8. Types of ChIP-seq profiles. The number of reads in each            
genomic coordinate at the beginning of the human chromosome 1 is           
shown for two ChIP-seq experiments. The red bars indicate the          
significantly enriched loci while the black bars represent the remaining,          
background signal. a) The CTCF profile is a good example of a typical             
peaky signal. It presents high and narrow peaks and overall a high            
signal-to-noise ratio. b) The H3K27me3 represents a broad signal         
common for histone modifications. It also has an overall lower          
signal-to-noise ratio (note the difference in scale between the two panels). 
 

The read count in each window is a random variable. It is not only              

affected by whether the protein of interest was bound to the window            

at the moment of the cross-linking, but also by every other step in             

the ChIP-seq process. Noise will appear mixed with the signal as a            

result of many factors (some of which may be unknown) such as            

nonspecific immunoprecipitation or during DNA amplification or       

sequencing. Moreover, there are several sources of systematic        

bias (again, some of them may be unknown), such as the           

hyper-ChIPable regions that originate from highly expressed loci        

(Teytelman et al. 2013)​, as well as amplification-, sequencing- or          

mapping-related biases. In fact, read counts in ChIP and negative          
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control samples are usually correlated ​(Zhang et al. 2008)​. In order           

to identify the true signal and recover the protein locations, many           

software solutions exist and these programs usually receive the         

generic name of peak callers, peak finders, or signal discretizers.          

Each implementation uses a different method to find the enriched          

loci, but they all share a similar objective, to tell the regions that are              

significantly enriched from the ones that are not, with this          

significance depending on the assumptions that each model        

makes. 

 

For instance, MACS ​(Zhang et al. 2008)​, one of the most widely            

used peak callers, uses a predetermined fold enrichment threshold         

to select a population of candidate regions from which to take a            

sample and model the genomic distance between the two positions          

with most reads of each region. This represents the shift in           

genomic coordinates of reads originated from the two DNA strands,          

caused by the fact that high-throughput sequencing reads only         

contain the ends of the DNA fragments obtained in the ChIP-seq           

experiment. This shift parameter is used to offset the reads on the            

two strands and then to define a sliding window that scans the            

genome in search of a significant read count based on a Poisson            

distribution estimated from the local read distribution in a negative          

control experiment, or in the same ChIP experiment if negative          

control is not available ​(Zhang et al. 2008)​. This approach          

represents the state of the art in terms of prediction accuracy,           

which suggests that the assumptions made by MACS reflect or          

generate results consistent with a biological truth. It presents,         

however, a number of limitations. For instance, earlier versions of          

the software could not reliably detect peaks in broad profiles, the           
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assumption of the Poisson distribution may not be ideal, and it           

cannot integrate information from experimental replicates as other        

software does ​(Ibrahim et al. 2015)​. Also, it assumes that the state            

of enrichment of a genomic window is independent of the state of            

its neighbors, which may not be necessarily the case, as some           

peak callers successfully model the chromatin fiber as a Markov          

process ​(Spyrou et al. 2009; Qin et al. 2010)​. 

 

Regardless of the method used for calling the peaks, the predictive           

accuracy of the calls ultimately depends on the quality of the input            

data. If the signal-to-noise ratio in the experiment is too low, it will             

be more difficult to tell the true positives, the peaks will be similar to              

the background. This could lead to erroneous conclusions as either          

only a subpopulation of very high confidence peaks will be          

selected, or a number of spurious, false positive peaks will be           

included in the call. Also, if the method accounts for evidence found            

in experimental replicates, and such replicates do not correlate         

well, it may happen that a fraction of the peaks appear to be             

reproducible, when in reality they may have been found out of pure            

coincidence, which would again bias further conclusions. It is thus          

clear that performing a quality control of some sort constitutes good           

practice. 

 

In this aspect, the literature is quite sparse, with only one method,            

the so called Irreproducible Discovery Rate (IDR) ​(Li et al. 2011)​,           

with a widespread use. Briefly, the IDR attempts to assess the           

degree of reproducibility between experimental replicates, and its        

results can either be used as a global quality control to accept or             

discard the experimental data, or as a refinement method to select           
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the most reproducible peaks. However, it is not exempt of          

drawbacks: the comparisons between replicates are done in a         

pairwise manner, which quadratically increases the complexity of        

the procedure as more replicates become available, it is         

computationally costly and time consuming and, most importantly, it         

is not designed nor validated to work on profiles with broad type            

signal. This last point is especially important, since in the last years            

a big number of histone modifications with broad domains have          

been profiled. 
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CHAPTER 2 

Machine learning: how much does it tell about 

protein folding rates? 

41 
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CHAPTER 3 

Zerone: a ChIP-seq discretizer for multiple 

replicates with built-in quality control 
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DISCUSSION 

Machine learning can be a powerful tool for interpreting and making           

use of the huge quantities of data currently available. These          

methodologies have gained popularity precisely because now,       

more than ever, access to the data allows making findings that           

were not possible years ago even when using the same algorithms.           

This increase in popularity has fueled an overconfidence in         

machine learning that can be seen in studies that claim          

extraordinary predictive powers resulting from a misuse of such         

techniques. 

By using learning curves and a complex linear model based on           

amino acid composition we have shown that, in the field of protein            

folding rates, there is currently not enough data to make predictions           

as accurate as those reported in the cited studies. This is a            

straightforward method to diagnose the fit of a learning problem          

and to know whether the amount of data available is enough for the             

complexity of the model at hand. As shown in the introduction,           

learning curves can also be used to determine what is the optimal            

level of complexity of a model. 

The concept of learning curves is not new, but we have found            

reasons to think that it is not widely used by researchers. It is not              

only useful to ensure the quality of the study but also to            

demonstrate the validity of the models in front of the community.           

We therefore encourage researchers to use and report the results          
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of using learning curves in fitting supervised machine learning         

models. 

On the other hand, there is a huge amount of ChIP-seq data that             

can be used in a machine learning setup for the purpose of signal             

discretization. Many programs have been developed for the task,         

some of them using techniques that can be considered as machine           

learning, but these approaches consistently had a number of         

limitations: it was impossible to integrate information from        

experimental replicates without using external tools such as IDR. In          

the case of IDR, it was not developed nor validated to work with             

broad type signals, which rendered the approach useless for use          

on the accumulating profiles of histone modifications. Most        

importantly, IDR was also the only method to validate or reject           

whole experiments based on replicate reproducibility. Lastly, the        

computational cost of performing an IDR analysis, especially when         

more than two replicates are involved, is impractical for high          

throughput settings. 

 

To address these issues we developed Zerone, a tool that          

integrates information from experimental replicates and makes a        

decision by maximum likelihood, weighting the evidence for or         

against the protein being enriched in every particular genomic         

window. The most novel feature is its quality control, in which the            

result of the discretization is evaluated with respect to a curated           

data set and a decision is made regarding the overall quality of the             

experiment and the discretization process itself. It is a fast method,           

well suited for high throughput pipelines in which the researchers          

must analyze possibly hundreds of experiments. When compared        

to state-of-the-art discretizers, Zerone shows a competitive       
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performance. This is partly due to assuming the Markov property in           

genomic data and, importantly, to the use of the zero-inflated          

negative multinomial distribution to model read count observations.        

This allows Zerone to perform well in different types of ChIP-seq           

profiles and adapt the model to the data set at hand. 

 

Nonetheless, Zerone was developed with a very specific goal in          

mind, to tell enriched from background genomic windows. This is in           

contrast to all other discretizers, which focus on finding the exact           

start and end (and sometimes center) coordinates of each of the           

peaks. This latter approach poses a challenge when using the          

discretized data in downstream analyses, like for instance when         

segmenting the genome into chromatin states based on ChIP-seq         

signal: it is difficult to properly weigh the number of peaks and their             

intensity at each genomic location without making risky        

assumptions about how to adjust the discretizer for different types          

of signal. With Zerone, even unlikely calls are the most likely based            

on the data (and if there are too many of these windows the whole              

discretization may be rejected), which ensures that all profiles are          

processed in the same way regardless of their signal type or other            

factors. This was a design decision and it is up to the analyst to              

decide whether this window-based approach fits her needs. 
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CONCLUSIONS 

The main contributions of this thesis can be summarized as follows: 

 

- We found that exaggeration of model predictive power        

caused by the misuse of machine learning techniques is an          

issue in the field of protein folding rates, and demonstrate          

that model predictive power is currently limited by the         

availability of data. 

 

- We proposed the use of learning curves to effectively avoid          

overfitting issues in predicting protein folding rates. 

 

- We developed a machine learning-based ChIP-seq      

discretizer that integrates replicate information, performs      

quality control, and overall produces better discretizations       

than state-of-the-art discretizers. 
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