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PCR   Polymerase chain reaction 

https://en.wikipedia.org/wiki/Janus_kinase_2
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PDX1  Pancreatic and duodenal homeobox 1 transcription factor 

PECAM1  Platelet/endothelial cell adhesion molecule-1  

PFA    Paraformaldehyde 

PGC-1 α Peroxisome proliferator-activated receptor gamma 
coactivator 1 α 

PI3K  Phosphatidylinositol-4,5-bisphosphate 3-kinase 

PKB/AKT Protein kinase B pathway 

PKM2  Pyruvate kinase M2  

PLD  Phospholipase D 

POMC  Pro-opiomelanocortin 

PP1  Protein phosphatase 1  

PPARγ2 Peroxisome Proliferator Activated Receptor Gamma 2 

PTP-1B   Protein tyrosine phosphatase 1B 

PTPs  Protein tyrosine phosphatases 

Raf-1  RAF proto-oncogene serine/threonine-protein kinase  

Rkip  Raf kinase inhibitory protein 

RNA  Ribonucleic acid 

SDS   Sodium dodecyl sulfate 

shRNA LV Short hairpin RNA lentiviral particles  

SNAP-25 Synaptosomal-associated protein 25 

SOS1  Son of sevenless homolog 1 

ß-cell   Pancreatic beta cell 

STAT3  Signal transducer and activator of transcription 3  

STZ   Streptozotocin 

T1DM   Type 1 diabetes Mellitus 

T2DM   Type 2 diabetes Mellitus 
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TBS  Tris buffered saline  

TBST   Tris buffered saline – tween20 

TSC2  Tuberous Sclerosis Complex 2 

UCP-2  Mitochondrial uncoupling protein 2 

VEGFA Vascular endothelial growth factor A 

VEGFR1 Vascular endothelial growth factor A 

VEGFR2   see Kdr 

ZDF  Zucker diabetic fatty rats  

α-cell    Pancreatic alfa cell 

δ-cell   Pancreatic delta cell 
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Diabetes Mellitus 

Diabetes mellitus is by definition, “(…) a chronic disease caused by 

inherited and acquired deficiency in the production of insulin by the 

pancreas, or by the ineffectiveness of the insulin produced. Such a 

deficiency results in increased concentrations of glucose in the blood, which 

in turn damage many of the body's systems”1 (World Health Organization – 

WHO). It affects over 400 million people, with age between 20 and 79 

years, around the world, and the prediction is that this number will 

dangerously rise over the next decades2. In Spain Diabetes affects 

approximately 10% of its population and the tendency is the exponential 

growth of diagnosed and undiagnosed cases of this burden disease2. 

Table 1: Spain Country report 2017 in Diabetes
2
. 

Spain  2017 2045 

Diabetes estimates (20-79 years) 

Country prevalence (%) 10 (8-15) 13 (10-18) 

Number of people with diabetes, million 3.584 4.2  

Undiagnosed cases (%) 28.4 28.4 

Number of deaths due to diabetes 15,600  

The proportion of death due to diabetes, < 60years 
(%) 

36.3  

Healthcare expenditure due to diabetes (20-79 years) 

Total expenditure millions eur 9,310 9,200 

Health expenditures per person with diabetes, 
EUR 

2,580 2,190 

Type 1 diabetes (0-19 years) 

Number of children and adolescents with type 1 
diabetes 

15,770  

Number of newly diagnosed children and 
adolescents each year, per 100 000 children 

18  
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Of all types of classified Diabetes there are three major groups that account 

for worldwide prevalence: Type 1 Diabetes Mellitus (T1DM), formally known 

as Insulin Dependent Diabetes Mellitus, Type 2 Diabetes Mellitus (T2DM) 

or formally known as non-Insulin Dependent Diabetes Mellitus and 

gestational diabetes, which was first, recognized during pregnancy and is 

temporary in the majority of cases. At is all forms, diabetes is characterized 

by hyperglycemia, due to defects in insulin secretion, insulin action on 

peripheral target tissues, or both, but their etiology and therefore treatment 

are quite distinct. 

 T2DM is by far the most common form of diabetes (approximately 80 

percent of cases), which is usually associated with obesity and therefore an 

inability of the insulin-producing β-cells to match the demand for insulin. 

Ultimately, obesity can cause insulin resistance in peripheral tissues, such 

as the liver, muscle, and adipose tissue3, which eventually leads to β-cell 

failure. T1DM accounts for approximately ten percent of cases worldwide 

and has a complex etiology. T1DM is a chronic autoimmune disease in 

which destruction or damaging of the beta-cells in the pancreatic islets 

results in insulin deficiency and hyperglycemia. Until now it is only known 

that autoimmunity is the principal effector mechanism of T1DM, but may not 

be its primary cause, as T1DM can be caused in genetically susceptible 

individuals, very likely as a result of an environmental trigger. The incidence 

of T1DM is rising3, alarmingly, the most significant increase in T1DM is that 

seen in children under 54, with no known way of preventing this pandemic5. 

The other characterized forms of diabetes are the Autoimmune Diabetes of 

Adulthood (LADA) when the body slowly stops producing insulin, generally, 

at adulthood, it may be misdiagnosed with T2DM. Therefore a proper 

diagnose requires the use of antibodies. The Maturity Onset Diabetes of the 

Young (Mody), a rare form of diabetes caused by a mutation or change in a 

single gene; nowadays there are up to 11 type of MODYs and diagnosis will 
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determine different treatment. Neonatal Diabetes Mellitus (NDM), is a 

monogenic form of diabetes, it is diagnosed in the first six months of life 

after birth, and it can be temporary or permanent; 20 different genes can 

induce NDM6–8. 

 

Etiology of type 1 diabetes 

Type 1 diabetes (T1D) is an autoimmune disease resulting from T cell-

mediated β cell destruction in the pancreas of genetically susceptible 

individuals; Briefly, T1DM is characterized by an invasion of macrophages 

and T-cells in pancreatic islets as an inflammatory reaction also known as 

insulitis. Where CD4+ T-cells enhance the ability of CD8+ T-cells to kill the 

islet β-cells9–11. Furthermore cognate interactions between T cells and 

B cells occur that can lead to islet-targeting autoantibody formation (Figure 

1). However, the triggering event is unknown, but the appearance of the 

first islet-targeting autoantibody reflects autoantigen presentation by 

dendritic cells and the subsequent responses of autoantigen-specific CD4+ 

and CD8+ T cells.  

Disease progression and development of overt diabetes often take some 

months to years; clinical symptoms do not arise until 70-80 percent of the β-

cells have been destroyed12,13, resulting in an insufficient secretion of insulin 

and the need for exogenous insulin therapy to maintain glucose 

homeostasis3,5,12. Preclinical autoimmunity in T1DM occurs naturally and 

spontaneously just as soon as the immune system, by about 12 months 

after birth, is sufficiently mature to mount an autopathogenic response, with 

exogenous (environmental) factors serving as a trigger, but not being 

necessary. A child could carry well above the average number of the 

susceptibility alleles for T1D but be living in a very protective environment 

and, therefore, not develop the disease3,14. Characteristic autoantibodies 
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associated with T1DM are those that target insulin, 65 kDa glutamic acid 

decarboxylase (GAD65; also known as glutamate decarboxylase 2), 

insulinoma-associated protein 2 (IA2) or zinc transporter 8 (ZNT8); and the 

most described predisposing genetic variants of T1DM genes include the 

human leukocyte antigen (HLA) genes10,15,16, and the variants of the insulin 

(INS) gene15,17. HLAs are a family of homologous proteins that encode 

major histocompatibility complex protein (MHC), which present antigenic 

peptides to both effectors- and regulatory- T-cells15,18 The HLA variants 

HLADR and HLADQ have an increased risk of developing two or more 

autoantibodies. 

 

Figure 1: A Model for the Pathogenesis of Type 1 Diabetes Based on Genetic 

Etiological Studies in Humans. Adapt from
5,18

. 
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Numerous environmental influences such as infections, diet, and toxins that 

affect children in utero, perinatally, or during early childhood, viral 

infections, the timing of the first introduction of food and gestational events 

like gestational infections have been proposed as candidate aetiological 

factors19–27. The epidemiology of T1DM may also provide information 

regarding the etiology of diabetes, with differences in both genetic and 

environmental components likely to contribute to the higher incidence of 

diabetes in northern European countries compared to those on the 

Mediterranean5,17,18. At present, exogenous insulin therapy is the primary 

treatment for patients with T1DM, although continued research efforts into 

improving allo and xenogeneic and islet transplantation may potentially 

enable the more widespread application of this as a treatment for the 

disease. 

 

Islets of Langerhans 

The pancreas is divided into two major components, endocrine, and 

exocrine tissue. The exocrine tissue constitutes around 98% of all 

pancreas, serving as the primary source of digestive enzymes in the body 

and ensures the breakdown of lipids, proteins, and polysaccharides28. On 

another hand the endocrine tissue is characterized by clusters of cells 

called islets of Langerhans (first described by Paul Langerhans in 1869), 

closely heterogeneity distributed along vessels and microvessels in the 

pancreas29,30. Islets are high vascularized “micro-organs” constituted. 

Pancreatic islets are highly vascularized and contain about five times more 

capillaries than exocrine pancreatic tissue31,32, receiving 5–15% of the 

entire pancreatic blood supply, even though they represent only 1–2% of 

the pancreatic mass33. Each islet consists of 1,000-3,000 endocrine cells 

(Feldman, 1979). Approximately 65–80 percent of the endocrine cells in 

rodent islets are insulin secreting β-cells, 15-20 percent glucagon secreting 
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α-cells, 3-10 percent somatostatin secreting δ-cells and 3-5 percent 

pancreatic polypeptide-secreting PP cells31,32. Islet architecture differs from 

species31,32: in rodents ß-cells, are surrounded by α-, δ- and PP cells 

favoring the physical contact between ß-cells and therefore promoting 

insulin gene expression, insulin content and glucose-stimulated insulin 

secretion; in human islets the distribution of endocrine cells is more 

heterogeneous 34; β-cells, α-cells, and somatostatin-containing δ cells were 

found scattered throughout the human islet. Moreover, human β cells were 

not clustered, showing associations with other endocrine cells, suggesting 

unique paracrine interactions in human islets34,35 (Figure 2). Contrary to 

rodent islets, human islets contained fewer β cells and more α and most β, 

α, and δ cells were localized along blood vessels with no particular 

arrangement34–36 (Figure 2). For both rodent and human islets, β-cells there 

is a complex interaction between the endocrine cells within the islets which 

involves several secreted hormones that guarantee the blood glucose 

homeostasis. The architecture of islets suggests a coupling between 

morphology and function and the existence of two mechanisms that 

contribute to cell communication. The first is via paracrine interactions, in 

which a secretory product from one cell moves a short distance through the 

interstitial fluid to reach a target cell, and the second mechanism is via the 

islet vascular system, for sensing and maintenance of an optimal blood 

glucose homeostasis37. 
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Figure 2: Cytoarchitecture of the human pancreatic islet. Mouse (A) and Human (B) 

pancreatic islet. Human islets contain less ß- cells and a higher number of α-cells 

compared to mouse islets. C, Human alpha, beta, and delta cells are distributed in 

the islet with no particular order of distribution along islet blood vessels (outlined). 

Adapt from
38

. 

 

Islet microvasculature 

The pancreatic β-cells are closely associated with the islet 

microvasculature, where the pancreatic development ensures that each ß-

cell is no more than one cell away from a capillary37,39,40. The close 

association between β-cells and intra-islet endothelial cells (iECs), ensures 

that β-cells can sense fluctuations in blood glucose levels and secrete 

insulin for maintaining glucose homeostasis. Although highly controversial, 

the pattern of blood flow that perfuses the islets is “inner-outer,” meaning 

that ß-cells are perfused before α- and δ-cells, in mouse31,41,42.  

The islets contain fenestrated capillaries, which constitute 8%–10% of the 

islet volume, and are organized into a glomerular-like network33,41,43. The 

number of fenestrae is approximately ten times higher than in exocrine 

pancreatic capillaries and is induced by the high local production of 

vascular endothelial growth factor-A (VEGF-A) from the islet β-cells44. 

Fenestrations facilitate hormonal passage into the circulation as well as 

participate in draining extracellular fluid analogous to functions usually 

performed by lymphatic capillaries45. Besides being fenestrated, islet 

capillaries are wider than those in the exocrine pancreas, having a 20%–

30% larger diameter, and their vascular density is much higher 43,46,47 

(Figure 3).  
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Figure 3: Islet vascular network (A) Merge image of the mouse hypervascular 

microcapillary network of the islet with glucagon, insulin, and CD31 (vascular 

marker). Image of the pancreatic islet vascular network with CD31 staining. (D) 

three-dimensional reconstruction of (A); adapt from
38

. 

 

This high vascular density (Figure4) is essential for the adequate provision 

of oxygen and nutrients, as well as continuous glucose sensing and 

dispersion of hormones to target tissues. The dense vascularization of the 

islets is also crucial for β-cell replication, which is particularly crucial at 

times of increased demand for insulin, such as during pregnancy or 

obesity33,39,40,48. 

 

Figure 4: Mouse pancreatic islet microvasculature. Copied from
38

. 
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The role of VEGFA in pancreatic ß-cells  

 

In the pancreas, VEGF-A is cytokine highly produced in islets compared 

with exocrine cells. The formation pancreas vascular system requires the 

participation of VEGF-A that is a crucial regulator of vasculogenesis, 

angiogenesis, vascular permeability, and endothelial fenestration 

formation49–51. The importance of VEGF-A has been shown by the studies 

where RIP-Cre:Vegffl/fl mice show reduced vascularization with a reduced 

fenestration in islets49,52. Moreover, in the model of pancreatic-specific 

deletion of VEGF-A (PDX1-Cre:Vegffl/fl) islets present reduced 

vascularization and fenestration 53. These results indicate that in the family 

of the vascular endothelial growth factors, expressed in ß-cells VEGF-A 

plays an essential role in the formation of the tortuous and dense 

fenestrated capillaries in the islets52. VEGF-A is known to bind to VEGF 

receptor 1 (VEGFR1) and VEGFR2 or Kdr (kinase insert domain protein 

receptor, which expression is restricted to endothelial cells.  The RIP-

Cre:Vegffl/fl mouse is a useful model to investigate the role of vascular 

structure on beta-cell function. These mice are characterized by a modest 

glucose intolerance with impaired glucose-stimulated insulin secretion as 

judged by glucose tolerance test in vivo54. However, in vitro insulin 

secretion, where the secretagogues can directly infiltrate beta cells, showed 

high levels of secretion when compared to controls. These data reflect that 

a normal islet vascular system is indispensable for normal hormone release 

from islets into the bloodstream. However, the abnormality of vascular 

structure does not result in substantial failure of beta-cell function by itself54. 

Endocrine pancreatic organogenesis, the early postnatal development, and 

transplantation require islet angiogenesis and innervation to establish a 

viable micro-organ. The two major processes involved in embryonic and 

extra-embryonic blood vessel formation are angiogenesis (growth of blood 

vessels from the existing vasculature) and vasculogenesis (the process of 



  

 

12 Introduction |  

 

blood vessel formation occurring by a de novo production of endothelial 

cells)40,53,55. Pancreatic vascularization occurs mainly by angiogenesis. 

Where VEGFA plays a unique role in islet vascularization and is expressed 

by developing endocrine cells as early as e13.5, and is required for the 

formation of the normal vasculature within the islet, moreover 

aftertransplantation49. One model of the relationship between vascular 

endothelial cells and islet development postulates that endothelial cells first 

stimulate islet development from the pancreatic epithelium. After then, islet 

cells stimulate endothelial cells to form a branching network of capillaries in 

the growing islet, and vascular endothelial cells secrete mitogens, such as 

hepatocyte growth factor, which seems to stimulate beta-cell replication. 

After the developmental stage of islets, an increase in islet mass is viewed 

as an essential adaptive reaction to insulin resistance55. On the other hand, 

considering the islet tumor, a mouse model of islet tumor reported that 

VEGF-A expression in beta cells correlated with tumor mass52. Moreover, 

previous studies indicated that the mass of normal adipose tissue depends 

on the rate of angiogenesis55. These data suggest a tight relation between 

the number of islet endothelial cells and beta-cell mass.  

 

VEGFA expression  

 

Reciprocal endothelial-endocrine signaling and formation of functional blood 

vessels appear to guide pancreatic differentiation and morphogenesis. 

Adult rodent islet endocrine cells produce VEGF-A. Up-regulation of 

VEGFA under physiological situations allows for adaptation to hypoxic 

stress, to ischemia, to nutrient deprivation, to transient inflammatory 

processes, and to wounding. VEGFA is a model of gene regulation as its 

expression is controlled at many levels including transcription. One of the 

best-characterized inducers of VEGFA secretion is hypoxia. Hypoxia-
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induced VEGF production serves as a “driving force” for the development of 

neo-vessels during embryonic development and the vascularization of solid 

tumors, by activation of the hypoxia-inducible factor signaling 

cascade49,51,56,57. All conditions known to activate HIF-1 will have an impact 

on the expression of VEGFA. Hypoxia activates HIF-1 by stabilizing the 

limiting subunit, HIF-1α This action is triggered by inhibiting HIF prolyl-4 

hydrolysate 2 or PHD2, the key enzyme involved in the instability of HIF-

1α58. A 47-bp sequence located 985 to 939 bp 5' to the VEGF transcription 

initiation site-mediated hypoxia-inducible reporter gene expression59–

62. Besides this significant stimulus, a variety of growth factors and 

cytokines including EGF, heregulin, FGF2, insulin, IGF1 and 2, and IL-1 

increase HIF-1α protein levels and induce HIF-1 dependent genes under 

non-hypoxic conditions59,63. 

Another VEGFA inducer is nutrient deprivation or ischemia, driven by the 

upregulation of the estrogen-related receptor alpha (ERRα) and peroxisome 

proliferator-activated receptor gamma, coactivator 1 alpha (PGC1α)64–66. 

The induction of VEGFA by PGC1α does not involve the canonical hypoxia 

response pathway and hypoxia-inducible factor (HIF)66. In its place, PGC1α 

coactivates the orphan nuclear receptor ERRα (estrogen-related receptor-

α)66,67,68. Estrogen-related receptor alpha (ERRα) is an orphan member of 

the nuclear receptor family of transcription factors, using the coactivator 

PGC-1α as a protein ligand to regulate ERRα activity. The induction of 

VEGF results from the interaction of ERRα with specific ERR-responsive 

elements within the VEGF promoter64,65. ERRα is known to interact 

physically and functionally with PGC1α and is involved in the activation of 

programs of fatty acid oxidation and oxidative phosphorylation66,68–70. It was 

also found that the first intron of the Vegfa gene contains a putative 

enhancer region in which several conserved Erra-binding sites are 

recognized by Erra and coactivated by PGC1α to elicit the robust induction 

of Vegfa transcription. Studies revealed the existence of 11 such sites; of 
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these 11 sites, 6 are perfectly conserved between human, mice, and rat. 

Strikingly, 5 of them are clustered within regions of high homology in the 

first intron of the Vegfa gene66 

 

Intra-islet endothelial cells 

 

ECs line all blood vessels forming a continuous monolayer layer between 

the blood and interstitial fluid. They are adapted to meet the individual 

needs of each organ and are therefore both phenotypically and functionally 

heterogeneous55. All ECs function as an immunological and physical barrier 

between the blood and tissues and play an essential role in 

angiogenesis71,72. Increasing evidence suggests that IECs do not function 

solely as a transport system, but they are exposed to their own derived 

molecules including laminins, Hepatocyte Growth Factor thrombospondin-1 

and endothelin-1 have been shown to be essential for β-cell function72,73; 

insulin is also a major signal for endothelial cell function, for example, it is 

required for phosphorylation (activation) of endothelial nitric oxide synthase 

(NOS3), which catalyses production of the vasodilator nitric oxide (NO) 

(Figure5). 

VEGF-A secreted by ß-cells mainly acts on VEGFR-2 on endothelial cells74. 

VEGFR2 is highly expressed in intra-islet capillaries, while in the 

microvasculature of exocrine tissue, and even in islet arterioles and 

venules, it is downregulated49. When VEGF-A binds to VEGFR-2, the 

activating mechanism of signal transductions are multiple. It results in 

autophosphorylation of tyrosine residues, activate protein kinase C (PKC)-

Ras pathway, which induces mitogen-activated protein kinase (MAPK) 

/extracellular regulated kinase (ERK) pathway activating transcription 

factors, causing cells proliferation75; It activates phosphatidylinositol (PI) 3-

kinase (PI3K)/protein kinase B (Akt/PKB) pathway, through increasing lipid 
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phosphatidylinositol (3,4,5) P3, activates downstream protein kinase B 

(PKB /Akt) pathway and endothelial nitric oxide synthase, promotes cells 

survival and increase of vascular permeability and cellular migration75;  It 

activates p38MAPK and focal adhesion kinase, inducing cytoskeletal 

reorganization ad cell migration75; and it can activate signal transducer and 

activator of transcription 3 (STAT3) signaling, developing pancreatic 

microvasculature76.  

 

Figure 5: The main factors regulating the islet beta cell-endothelial cell axis. 

Adapted from72. 

 

Thus, signals produced by the beta cell impinge on the islet endothelial cell, 

contributing to overall islet health. EC-derived products have been shown to 

improve β-cell function enhancing glucose-stimulated insulin secretion, 

insulin content and glucose oxidation rate72,73. Furthermore, it is thought 

that β-cells rely on adjacent ECs to form a basement membrane77, 

consisting mostly of laminins, collagen IV, and fibronectin, which promote β-
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cell function and survival 72. β-cell secreted VEGF-A generates a permeable 

endothelium allowing insulin to be secreted rapidly into the bloodstream and 

is also responsible for the large number of ECs within the islets53. There is 

also evidence to suggest that vascular supporting cells, such as pericytes 

play an important role in β-cell homeostasis39.  

 

Current treatments for type 1 diabetes 

For most patients with T1DM, the therapy of choice is that of daily 

subcutaneous insulin injections. The discovery of insulin in the 1920’s 

(Banting and Best) has meant that patients with T1DM are able to lead a 

near normal lifestyle, with reasonable blood glucose control. However 

subcutaneous insulin injections cannot provide the fine-tuning of blood 

glucose control that occurs under normal physiological conditions and thus 

fluctuations in blood glucose concentration mean that insulin therapy does 

not eliminate the risk of chronic secondary complications that can occur 

with T1DM, despite reasonable glycaemic control in some patients78–80. In 

particular, these complications include neuropathy, nephropathy, 

retinopathy, limb amputations and cardiovascular disease, which account 

for most of the morbidity and mortality in T1DM81 .Alternative strategies to 

insulin have been studied to optimize blood glucose control. The 

development of insulin pumps, which provides a continuous infusion of 

insulin into the subcutaneous tissue and has now become the primary 

therapy for basal insulin replacement. Moreover, insulin pumps offer 

potential future benefits of a closed-loop system in which the insulin pump 

would be linked to a glucose sensor, thereby acting as an artificial 

pancreas81. 

Although it is clear that intensive insulin therapy has improved the treatment 

of T1DM in terms of patient quality of life, metabolic control, and risk of 
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long-term complications, it can be associated with an increased risk of 

hypoglycemia, which is potentially dangerous or life-threatening. 

Transplantations appeared as the most efficient way to replace pancreatic 

ß-cell mass in order to restore glucose homeostasis and metabolic control. 

The first whole organ pancreas transplantation was performed more than 

fifty years ago81, with the majority of pancreas transplants today being 

performed as simultaneous pancreas-kidney transplants. Until more 

recently, pancreas transplantation was associated with a higher success 

rate (in terms of maintained insulin independence) than allogeneic islet 

transplantation, but there is no evidence to suggest that the two strategies 

can result in comparable glycaemic control in patients82,83, emphasizing the 

vast improvements that have already occurred within the islet 

transplantation field.  

Islet cell transplantation has been shown to normalize blood sugar levels 

but issues with intrahepatic islet cell transplantation such as immediate 

blood-mediated inflammatory reactions, deleterious effects of chronic 

immunosuppressive drugs, lack of sustained insulin independence in some 

islet cell recipients, and lack of sufficient number of islet cell donors are all 

barriers to this as a viable treatment for the majority of people with type 1 

diabetes84. Islet transplantation can eliminate severe hypoglycemia in 

patients with type 1 diabetes85. Islet transplantation is associated with lower 

morbidity, a reduced likelihood of surgical complications85. Direct 

comparison of these β-cell replacement strategies is however difficult, and 

the choice of islet or pancreas transplantation is complex, requiring an 

important consideration of the patient's metabolic complications, pre-

existence of diabetic complications and psychological situation of the 

patient and family85. 
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Islet transplantation 

 

Successful islet transplantations were initially performed in humans in 1990. 

However, the overall success rate in terms of insulin independence was 

low. With the establishment of the Edmonton protocol, islet transplantation 

became a viable treatment for T1DM86,87. The Edmonton protocol (Ep) 

became a landmark on islet transplantation; it is based on multiple infusions 

of large quantities of fresh islets equivalents (ieq) – over 9000 ieq/Kg of 

patient body weight) and a specific glucocorticoid-free immunosuppressive 

regimen86. Despite the improvement brought by the Ep, in terms of the early 

stage rate of insulin independence, the long-term outcomes were still very 

poor. The graft failure and the return to exogenous insulin therapy were the 

final results for the majority of patients, only 10 percent of patients were 

insulin independent after 5 years88,89. Even though the decline in islet graft 

function, partial graft function means that only small doses of exogenous 

insulin are required, islet transplantation has been shown to confer 

stabilization of diabetic complications, including diabetic retinopathy and 

nephropathy90. Nowadays some centers reported insulin independence with 

only one donor transplantation, if reproducible  the routine achievement of 

single-donor islet transplantation success is essential for increasing the 

number of patients who can be given allogeneic islet transplants, but also 

for increasing the acceptability of allogeneic islet transplantation within the 

transplant community, given that whole organ pancreas transplantation 

requires only a single donor91–93.  

Challenges in islet transplantation 

Substantial improvements have already been made within the islet 

transplantation field. However, significant challenges to the islet 

transplantation which contributes to the decline in graft function and loss of 

insulin independence, 



“Improving islet-graft revascularization”  

 

| Introduction 19 

 

1. A large number of islet needed in a single infusion when compared 

with the low availability of islet, the necessity of multiple infusions of 

islets to guaranty insulin independence, 

2. Autoimmunity: T1D is an autoimmune disease characterized by T 

cell-mediated destruction of β-cells, in which CD4+ T helper cells 

play a pivotal role. It can thus be anticipated that success of β-cell 

replacement requires not only suppression of allograft rejection, but 

also prevention of a recurrent T-cell mediated autoimmune process 

3. Alloimmunity: Most islet allograft recipients develop anti-donor 

antibodies; the presence of specific anti-donor alloantibodies should 

exclude patients from receiving islets from donors expressing the 

recognized HLA allodeterminants because they predict graft 

failure94,95   

4. Poor revascularization: see section “revascularization of the islet-

graft.” 

5. Blood-mediated inflammatory reaction (IBMIR): Islets express tissue 

factor (TF)—a 47 kDa transmembrane glycoprotein that initiates the 

extrinsic coagulation system and is pivotal for activation of the 

intrinsic pathway. Vascular injury exposes TF to soluble coagulation 

proteins and triggers clotting96; TF binds to factor VIIa and thereby 

activates a number of intracellular signals that culminate in cell a 

nonspecific inflammatory and coagulation pathway, that is 

detrimental to islet survival97–101. 

6. Lifetime immunosuppressive therapy, which is associated with 

adverse side effects that deteriorate the quality of life for the patient, 

which in many cases means that the costs of this outweigh the 

benefits of the islet transplant. In particular, side effects include 

painful mouth ulcers, peripheral edema, and poor wound 

healing78,81,102.  
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Recent strategies to improve recipient immunosuppression are focused on 

T-cell depletion therapies using an anti-CD52 antibody103 and T-cell 

depletion with co-stimulation blockade, using belatacept to block co-

stimulation signaling through the CD80-CD86 pathway92. Other strategies to 

prevent allogeneic graft rejection include immunoisolation of islets through 

various encapsulation technologies, such as nanoencapsulation104–106. 

Additional novel approaches to protect the transplanted islets from immune 

attack included cellular-based strategies, including a coating of islets with 

regulatory T-cells107 or Mesenchymal Stem Cells (MSCs)108–111.  

Successful transplantation outcome depends not only on replacing the lost 

β-cells, with islets but also with insulin-producing cells112–114, the first-in-

human stem cell and extrahepatic transplant site trials into clinical 

investigation has positioned b-cell replacement to become the mainstay 

treatment for all T1DM patients in the near future115. Moreover, it is 

recognized preventing re-current autoimmunity112–114,116, is critical for T1DM 

treatment. For example, antigen-specific strategies to restore self tolerance, 

relying on tolerogenic potential of endothelial cells117,118; or systemic 

delivery of coated nanoparticles, to promote the differentiation of disease-

primed autoreactive T cells into TR1-like cells, which in turn suppress 

autoantigen-loaded antigen-presenting cells and drive the differentiation of 

cognate B cells into disease-suppressing regulatory B cells119,120; or even 

targeting Liver receptor homologue-1 (LRH-1to suppress the immune-

dependent inflammation of pancreas in T1DM121. An extensive review of the 

current strategies to improve recipient immunosuppression or impairment of 

damaging autoimmunity is beyond the scope of this thesis, which is focused 

primarily on improving transplantation outcome through enhanced vascular 

engraftment. 
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Engraftment of islet-grafts 

 

Islet-graft engraftment is critical for achieving and maintenance of insulin 

independence. Engraftment is the adaption of the transplanted islets to their 

implantation site with regards to revascularisation, reinnervation, and 

reorganization of other stromal components122  and is essential for the long-

term survival and function of transplanted islets.  

Despite the implantation site, islet-grafts are subjected to challenges, which 

induces apoptotic or necrotic cell death 123–125 to nearly 60% of islets. Islet-

grafts also undergo severe changes in gene expression, meaning that a 

significant proportion of the remaining islets do not function optimally126. 

Severe functional impairments include reduced glucose oxidation, and 

glucose-stimulated insulin secretion and (pro) insulin biosynthesis, as well 

as reduced mRNA expression of genes essential for β-cell function127,128. 

Therefore, islet graft survival and function are dependent on the 

reestablishment of new vessels within the grafts to derive blood flow from 

the host vascular system51,122,129–131. 

 

Revascularization of the islet-grafts 

 

Angiogenesis is the predominant mechanism in avascular regions of any 

tissue 71 and is the predominant mechanism of blood vessel formation in the 

adult132. The revascularisation process is highly complex, involving the 

digestion of the vascular wall by proteases and the migration, proliferation, 

and differentiation of ECs 115. Following isolation, islets are severed from 

their native vascular network123 by  collagenase digestion. This means that 

they are avascular during the immediate posttransplantation period 125,133. 

One of the leading clinical problems in pancreatic islet transplantation is 
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deficient graft revascularization, which is responsible for scarce oxygen and 

nutrient delivery and impairing hormone and secretagogue modulation134–136
 

. Altogether, these contribute toward the primary failure of transplanted 

islets122,137. Thus, the rate at which islets revascularize is essential to 

prevent excessive hypoxia-related cell death123–125, several studies show 

that  islet graft revascularisation is suboptimal irrespective of the 

transplantation site used 135,138–140. The transplantation site also has an 

essential influence on islet revascularization as it dictates the distribution of 

ECs. Islets transplanted beneath the renal capsule, or in the anterior 

chamber of the eye typically fuse to form an aggregated mass of endocrine 

tissue, which therefore increases the distance over which host ECs must 

migrate to the center of the endocrine tissue. It is noteworthy that there are 

differences regarding the reorganization of stromal components, between 

islets transplanted intrapancreatically to their native microenvironment and 

that transplanted heterotypically (to the liver, spleen or beneath the renal 

capsule); with a higher percentage of richly vascularised connective tissue 

present in the grafts of islets transplanted to heterotypic sites135,138,141,142.  

 

Barriers to improving islet-graft revascularization 

Strategies to ameliorate the survival and function of islet-grafts by 

modulating the “angiogenic switch” and improving revascularization. These 

strategies aim to increase the number of patients who can be treated with 

the limited human islet material available for clinical islet transplantation 

encompass. 

 

The ‘angiogenic switch’ for improving revascularization  

One of the most studies approaches to improve revascularization is the 

modulation of the  ‘angiogenic switch’ by administering angiogenic factors, 
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or inhibiting angiostatic factors in the graft recipient, or directly in the islet-

grafts, thereby driving the balance towards a proangiogenic 

microenvironment and enhancing the proliferation, migration, and 

maturation of ECs into functional vessels143 .  

The most studied angiogenic factor is VEGFA. Several studies reported the 

delivery or overexpression of VEGFA in islet-graft144–149, in order to induce 

angiogenesis. This approach has shown some success at early stages of 

revascularization through the manipulation of gene expression55,147–152 , 

although at long-term, islets resulted hypervascularized, compromising islet 

architecture and inducing the loss of ß-cell mass and the consequent loss 

of islet function144–146 (Figure 6).  Whilst many of the transgenic studies 

have been valuable for emphasizing the positive correlation between islet 

graft vascular density and function, it is unlikely that this will be translated in 

a clinical setting due to safety concerns. Other solutions to modulate the 

angiogenic switch are required! 
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Figure 6: AAV-mediated VEGF overexpression in β-cells increased islet 

vascularization. Two-month-old wild-type (WT) mice were injected with VEGF-

expressing (AAV9-VEGF) or nonexpressing (null) AAV9 vectors: Ten days after 

AAV injection vasculature structure was revealed by immunostaining for collagen 

IV (red) and insulin (green). Insulin (green) and glucagon (red) expression showed 

islet disorganization (bottom).  
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SodiumTungstate 

Sodium tungstate historical perspective  

 

Tungstate is the periodic table element 74, it has the highest melting point 

of all metals and has been found to be the most substantial element to be 

used by living organisms; its carbide also displays a hardness approaching 

that of the diamond. It cannot be formed by nuclear fusion processes in 

stars, as is the case for those elements with a lower atomic number, but 

originates only by neutron or proton absorption of already existing more 

prominent nuclei. 

 The name Wolfram is closely related to today’s important tungsten 

mineral wolframite.  In the Middle Ages (16th century) tin miners in the 

Saxony-Bohemian Erzgebirge in Germany reported about a mineral which 

often accompanied tin ore (tinstone).  "It tears away the tin and devours it 

like a wolf devours a sheep", a contemporary wrote in the symbolic 

language of those times.  The miners gave this annoying ore German 

nicknames like "wolffram", "wolform", "wolfrumb" and "wolffshar". The 

name Tungsten came from the other important tungsten ore, which is now 

called scheelite.  In 1750, The first person who mentioned the mineral was 

Axel Frederik Cronstedt in 1757, who called it Tungsten {composed of the 

two Swedish words tung(heavy) and sten (stone)}, the outstanding Swedish 

chemist Carl Wilhelm Scheele published the results of his experiments on 

the mineral tungsten in Kongl.  Vetenskaps- Academiens Nya Handlingar, 

with the title: “The Constituents of Tungsten”153–155. In 1781/1782, the 

Spanish nobleman, Juan José de D´Elhuyar analyzed a wolfram species, 

and showed it to be an iron and manganese salt of a new acid.  He also 

concluded that wolfram contained the same acid as Scheele had gained 

from tungsten.  His discovery, jointly with his brother Fausto Jermin, was 

published in 1783 by the Royal Society of Friends of the Country in the City 
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of Victoria (“Analysis quimico del volfram, y examen de un Nuevo metal, 

que entra en su composition por D Juan Joséf y Don Fausto de Luyart de la 

Real Sociedad Bascongada”).  The new metal was named VOLFRAM after 

the mineral used for analysis154.. 

 

 

Figure 7: Wolframium (A) and Scheelite (B and C). A. Wolfram mineral, 

(Fe2+)WO4 to (Mn2+)WO4, color: sub-metallic, greyish-black; B and C. Scheelite 

mineral. Formula: Ca(WO4); Color: golden-yellow, tan; Fluorescence in UV light: 

bright blue-white 

In 1847, a patent was granted to the engineer Robert Oxland.  This 

included the preparation of sodium tungstate, formation of tungstic acid, 

and the reduction to the metallic form by oil, tar or charcoal.  The work 

constituted an important step in modern tungsten chemistry, and opened 

the way to industrialisation. Although the use of tungsten for high strength 

steels was well known at the beginning of the 20th century, it was 

considered early as a strategic material (majority of tungsten belonged to 

Germany and Austria), and large amounts of tungsten were used for the 

B C 

A 
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ordnance industry. It was used for tool steels, armour plates, cannons, 

shells and - in large amounts - for gun barrels in the World War I154,155. 

 

Sodium tungstate as an anti-diabetic drug 

 

The sodium tungstate (formula Na2WO4·2H2O) is an inorganic compound 

and the salt of tungstate. Tungstate presents a tetrahedral structure, and as 

a transition metal, it can be found in different oxidation states (from +2 to 

+6), a property that confers its ability to replace other endogenous metals. 

Tungstate’s chemical and physical properties are very similar to other 

metals, such as vanadate and molybdenum156. These metal have biological 

relevance, as they integrate the catalytic pores of enzymes or compete 

directly with phosphate157,158. Tungsten can replace molybdenum in 

Mo.containing enzymes such as xanthine oxidase, and sulfite oxidase in 

kidneys and intestine.  

For all metals that can mimics phosphate and compete with it for the 

catalytic domain in proteins, sodium tungstate appears to have the lowest 

toxicity157,159; the acute oral toxicity varies depending on the tungsten 

compound: The LD50 values are 240 mg sodium tungstate/kg body weight  

(mouse), > 2000 mg tungsten carbide/kg body weight (rat) and >20000mg 

tungsten metal/kg body weight (rabbit and dog). Sodium tungstate 

concentrations that are active in vitro are similar to the plasma levels 

determined in treated animals160, and no apparent toxicity has been 

reported in several studies161–165. Regarding bioavailability studies with 

sodium, tungstate was carried in rodents (rat and mice) and beagle 

dog160,166,167, where sodium tungstate bioavailability was almost 92%in rats 

and 62%, in dogs. When analyzed the tissue distribution, sodium tungstate, 

present increasing tungsten levels in all organs with an increased dose of 

exposure, with the highest concentration found in the bones and the lowest 
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concentration found in brain tissue. Gender differences were noticed only in 

the spleen (higher concentration of tungsten in female animals). Moreover, 

the primary route of elimination of tungstate is through urine 168. Based on 

these studies Leggett (1997) developed a kinetic model for the calculation 

of the distribution and retention of sodium tungstate in humans169.Leggett 

suggests that 85% of all consumed sodium tungstate should be eliminated 

by 24h, and 97% by 1 month. In this model, it was predicted that the 

majority of the tungstate would be retained in bone, primarily by 

mechanisms of replacement of phosphate in bone169. 

 

Table 2: Acute toxicity data of tungsten and its compounds. Adapted from
168
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Sodium Tungstate is widely known as a non-toxic anti-diabetic agent that 

inhibits several phosphatases158,170.Studies in animal models of diabetes 

have shown that tungstate, being administrated orally, can reverse 

hyperglycemia163,164,171,172 and to restore the number and function of 

immune cells as well as the immunoglobulin level in STZ diabetic models173. 

Tungstate treatment has been shown to normalize liver glucose metabolism 

in streptozotocin (STZ) and Zucker Diabetic Fatty rats163,164,171, and 

triglycerides levels174,175. Tungstate also stimulates weight loss175 and 

promote pancreatic beta cell function by restoring glucose-induced insulin 

secretion, enhancing insulin production, and increasing beta-cell survival 

and proliferation172,176–178.  Despite the evidence described above strongly 

suggest that sodium tungstate exerts beneficial effects at the physiological 

level, the mechanism of action is more elusive 

 

Sodium Tungstate is an inhibitor of phosphatases 

 

Phosphorylation of tyrosine residues of intracellular or membrane proteins 

is critical as the balance of activation of PTP-1B regulates critical 

phosphotyrosine levels in the signal transduction pathways necessary for 

intracellular signaling, cell growth, differentiation, metabolism or gene 

transcription179. Inorganic phosphate (IP) is the hydrolytic product of the 

PTP reaction. IP is a competitive inhibitor of PTP-1B with a Ki value of 

17 mM. Other oxyanions with structural similarities to the phosphate group 

inhibit PTPs with different affinities: molybdate, arsenate, tungstate, and 

vanadate: Ki (IC50) values of 1.5 μM (vanadate), 210 μM (tungstate), 

200 μM (arsenate), and 54 mM (nitrate) were measured180. Vanadate has a 

propensity to form a covalent intermediate analogous to the phospho-

intermediate in contrast to the other anions, which form Michaelis-like 

https://www.sciencedirect.com/topics/chemistry/molybdate
https://www.sciencedirect.com/topics/chemistry/tungstate
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complexes, and geometric factors, such as in the case of nitrate, which has 

a planar geometry158,180,181. 

 

Figure 8: PTP-1B inhibition by sodium tungstate (W) 0.1 and 0.01mM, suramin 

1mM and Vanadate 0.01mM. Data are kindly given by Dr. Belen Nadal . 
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Effects of sodium tungstate in tissue 

 

The following sections will describe some of the general effects of the 

sodium tungstate treatment in liver, pancreas, muscle, adipose tissue and 

brain, from rodent models. A compilation of the most critical effect can be 

found in Figure 9. 

 

 

Figure 9: Multiple organ effects of the sodium tungstate treatment in rodent models 

 

Effects of sodium tungstate in Liver 

 

Oral administration of sodium tungstate to streptozotocin (STZ) –diabetic 

rats and Zucker diabetic fatty rats (ZDF) stimulates hepatic glucose 

metabolism  and increase glycogen levels161,163,164,171,182. 
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Sodium tungstate does not directly activate IR, or other tyrosine kinase 

receptors, such as EGF or IGF receptors in hepatocytes183. Instead, it 

activates Gαi2 and Gβγ subunits of GPCR, to stimulate the activity of the 

small GTPase183, initiating the signaling transduction through sequential 

phosphorylation of Raf-1, MEK1/2, and ERK1/2, which in turn 

phosphorylates GSK3β and p90rsk164,165. Phosphorylated GSK3β is inactive 

and alleviates the inhibitory phosphorylation over GS, favoring activation of 

glycogen synthesis184. Although it has not been demonstrated for sodium 

tungstate action, p90rsk is known to be involved in GSK3β inactivation, PP1 

activation and negative feedback upstream in the pathway through 

inactivation of SOS185. PP1 is the main phosphatase activity participating in 

GS dephosphorylation and stimulation of glycogen synthesis, but the actual 

participation of sodium tungstate in PP1 activation remains to be 

established186. In parallel, sodium tungstate -mediated ERK1/2 activation 

stimulates c-fos and c-jun and inhibits PGC-1 transcriptional expression 

through yet unknown mechanisms187,188. Since PGC-1 is a positive 

modulator, whereas c-fos and c-jun are negative regulators of the 

transactivation of gluconeogenic genes, sodium tungstate action finally 

induces down-regulation of gluconeogenic enzymes and, hence, the 

gluconeogenic pathway188–192. In IRS2 KO mice, sodium tungstate was 

unable to exert consistent effects on glycogen synthesis and 

gluconeogenesis, highlighting the importance of IRS2 in sodium tungstate 

signaling pathway in hepatocytes170.  

 

Effects of sodium tungstate in muscle 

 

Muscle is the primary site of insulin-dependent glucose uptake, and its 

ability to remove blood glucose is significantly impaired in the diabetic 

condition186. Sodium tungstate induced-ERK1/2 activation led to 
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phosphorylation and inhibition of TSC2, relieving inhibition on MTOR200–

205.Activated mTOR phosphorylates and activates S6K1, which inhibits 

eIF4E-BP1, alleviating eIF4E inhibition, and promoting protein translation. 

Moreover, ERK1/2 phosphorylates FOXO3 and Mef2 transcription 

factors178,187–194. Phosphorylated FOXO3 is inactive and cannot translocate 

into the nucleus to transactivate MurF1 and ATROGIN1 genes, down-

regulating the expression of these critical ubiquitin ligases and reducing the 

activity of the ubiquitin-proteasome pathway of protein degradation. 

Besides, sodium tungstate induces a decline in auto-phagosome formation 

through the down-regulation of Bnip3187–192,194,195.On the other hand, 

phosphorylated Mef 2 is active and can enter the nucleus to promote Glut4 

gene expression, which together with above-mentioned eIF4E stimulation 

led to enhanced protein synthesis of the GLUT4 transporter. Finally, sodium 

tungstate-induced ERK1/2 activation stimulates fusion of GLUT4-containing 

vesicles with the plasma membrane, maybe through direct activation of 

PLD, enhancing GLUT4 activity and glucose uptake178,187–194. 

 

Effects of sodium tungstate in the pancreas 

 

In the pancreas, ß-cell produces and secrete insulin and other hormones in 

order to maintain glucose homeostasis. Treating a diabetic STZ model of 

rats with sodium tungstate one week before diabetes induction, prevented 

STZ-induced mass, preserving islet volume and density, increased 

pancreas antioxidant power and decreased lipid peroxidation196,197, and 

induces a dose-dependent stimulation of insulin secretion by a mechanism 

dependent on ß-cell glucose metabolism and stimulation of exocytosis, as 

the insulinotropic effect of Sodium tungstate is abolished by diazoxide, 

somatostatin, and amylin177. A transcriptomic analysis of pancreas from 

STZ-diabetic rats has revealed that the majority of genes whose expression 
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is altered during diabetes are restored to different degrees by sodium 

tungstate treatment198. 

In neonatally STZ (nSTZ)-induced diabetic rats, a model of T2D, treatment 

with sodium tungstate partial recovery of insulin content and pre-proinsulin 

mRNA levels was detected, together with the restoration of β-cell response 

to an increase in glucose concentration199. In isolated islets from treated 

rats, it was observed p38 and PDX-1 phosphorylation. P38 together with 

PI3K, mediates high glucose-induced phosphorylation, nuclear 

translocation and activation of the pancreatic and duodenal homeobox 1 

(PDX-1) transcription factor. Phosphorylation of PDX-1is involved in 

pancreas development, insulin expression and β-cell functionality, in fact, 

sodium tungstate treatment augments the number of insulin and PDX-1 

positive cells in pancreas from sodium tungstate treated STZ-diabetic 

rats 172,200. 

In IRS-2 knockout diabetic mice, sodium tungstate treatment has a 

significant effect. It decreased β-cell apoptosis and inflammatory response, 

and also increased β-cell replication, explaining total increase in β-cell 

mass, in a model that starts losing β-cell mass due to apoptosis at 8 weeks 

of age178,198, sodium tungstate primarily targets β-cell death mechanisms 

through activation of endogenous kinases. When incubating INS1E cells 

with incubated with serum from sodium tungstate-treated diabetic rats, the 

rate of proliferation was significantly enhanced, suggesting that the 

proliferative effect on the pancreatic β-cell is through indirect 

mechanisms198. Furthermore, Raf kinase inhibitory protein (Rkip) gene 

expression was found upregulated in the diabetic pancreas and normalized 

by sodium tungstate treatment, according with an anti-proliferative function 

of Rkip in ß-cell, as ERK1/2 has been shown to be upregulated in 

proliferation of INS-1E cells induced by the treatment; in the IRS-2 knockout 

mice, treatment restore phosphorylation. Given that Rkip inhibits Raf-1 

kinase, which phosphorylates MEK, which in turn phosphorylates ERK1/2, 
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sodium tungstate-induced normalization of Rkip expression leads to an 

increase in the MAPK pathway activity, favoring proliferation. And finally, 

sodium tungstate treatment was found to suppress upregulated 

proapoptotic and inflammatory genes in IRS-2 knockout mice, through the  

activation of the MAPK pathway172,178. 

 

Effect of sodium tungstate in adipose tissue and brain 

 

Sodium tungstate is a potent anti-obesity agent, reducing weight gain and 

food intake, and increasing oxygen consumption and thermogenesis in 

obese animal models in a leptin-dependent fashion. ERK1/2, but not 

PKB/Akt activation, is necessary at least to explain treatment-mediated 

inhibition of triglyceride accumulation and decreased adipogenesis.  

Sodium tungstate treatment  acts on adipocyte metabolism in an IR-

independent manner198, it induces up-regulation of GLUT4 mRNA 

expression, and increased glucose transport and consumption198. The 

treatment with sodium tungstate decrease triglyceride accumulation, as it 

reduces the expression of lipoprotein lipase (LPL), adipocyte protein 2 

(aP2), acetyl-CoA carboxylase (ACC1) and fatty acid synthase (FAS), as 

well the transcriptor factors involved in adipocyte differentiation, with a 

decreased expression of CCAAT/ enhancer-binding protein (C/EBP)-α and 

PPARγ2 and increased expression of C/EBP-β in a dependent on ERK1/2 

manner201,202. Treating high-fat-diet-induced obese rats with sodium 

tungstate decreased body weight gain and adiposity, by  decreasing white 

adipose tissue mass through apoptosis and reduction of adipocytes size 

without modifying caloric intake, intestinal fat absorption, or growth rate175. 

Moreover, it is observed the upregulation of  UCP-2 in white adipose tissue 

and  UCP-1 in brown adipose tissue via the upregulation of PGC1α, LPL, 

aP2, and mCPT-1175,203,204. Finally, like in other tissues, sodium tungstate 
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induced the up-regulation of proteins involved in signal transduction, 

especially Raf-1 kinase, which in turn activates the ERK pathway205. 

Sodium tungstate can act as a leptin-mimetic compound in vivo, correcting 

feeding behavior. Moreover, it crosses the blood-brain barrier and induces 

neuronal plasticity and remodeling of hypothalamic nuclei. The anti-obesity 

effects of sodium tungstate are dependent on leptin signaling pathway since 

treatment of obese leptin receptor-deficient (fa/fa) Zucker rats or obese 

leptin-deficient (ob/ob) mice did not result in reduced body weight gain and 

food intake, or increased energy expenditure204.In the arcuate nucleus of 

the hypothalamus, leptin binds to its receptor, inhibiting neurons that 

express orexigenic neuropeptide Y (NPY) and agouti-related peptide 

(AgRP) and activating neurons that express anorexigenic 

proopiomelanocortin (POMC) and cocaine- and amphetamine-related 

transcript (CART)206; sodium tungstate treatment  downregulates 

NPY/AGRP, and increased CART gene expression204, and 24 hours after 

injection of sodium tungstate directly in the third cerebroventricular cavity, it 

is observed the same effect produced by leptin injection207. Moreover, in the 

arcuate nucleus, treatment with sodium tungstate activates MAPK pathway, 

and increases c-fos positive cells and of GFAP-positive astroglia174,207. 

Furthermore, it reduces f β tubulin and syntaxin 1 (HPC-1) and increases 

neurogenic differentiation (NeuroD)-1 transcription factor and 

synaptosomal-associated protein (SNAP)-25 expression174. 
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Protein tyrosine phosphatase 1B 

Protein tyrosine phosphorylation is a dynamic regulatory system of many 

many cellular processes through the fine-tuning of critical phosphotyrosine 

levels in the signal transduction pathways necessary for intracellular 

signaling. Dysregulation of this process can have broad implications for 

cancer, metabolism, inflammation and cardiac function. The process of 

tyrosine phosphorylation is orchestrated by two seemingly opposing 

enzymes. Initially thought of as strictly being the counterbalance to the 

action of tyrosine kinases, recent evidence has established the roles of 

protein tyrosine phosphatases (PTPs) as both initiators and terminators of 

cellular signals208,209  

The human genome contains 107 PTPs divided into several subgroups210. 

The cysteine-based PTPs constitute the most significant group which 

includes the classical non-transmembrane PTPs is PTP-1B (PTPN1 gene), 

only have an affinity for phosphotyrosine residues, possesses a catalytic N-

terminal domain, a regulatory region, and a membrane-localization domain 

that tethers the enzyme to the cytosolic side of the endoplasmic reticulum 

(ER)211. PTP-1B dephosphorylates several substrates including the insulin, 

leptin receptors enf EGF receptors. As a result, it as an essential role in 

metabolism and angiogenesis.  

 

PTP-1B catalytic domain and inhibition by tungstate 

 

The catalytic domain of PTP-1B is characterized by 280 residues, and it is 

where the phospho-tyrosine substrates engage in the enzymatic 

mechanism of dephosphorylation of phosphorylated substrates. Once 

engaged, a conformational change of the conserved sequence, WPD loop, 

https://www.sciencedirect.com/topics/chemistry/insulin
https://www.sciencedirect.com/topics/chemistry/leptin
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occurs, moving the loop closer to the phospho-tyrosine allows the side 

chain of Asp181 to act as a general acid/base. The side chain of 

Arg221 changes orientation and assists the closure of the WPD loop. 

Interactions between the re-positioned Arg221, which stabilizes the 

phosphate group, and the Trp179 and Pro180 residues stabilize the WDP 

loop in the closed conformation. The sulfhydryl group of Cys215 is the 

catalytic residue; it performs a nucleophilic attack on the phosphate group 

of the phospho-tyrosine substrate while Asp181 transfers a proton to the 

tyrosine oxygen group of the substrate. The phospho-cysteine intermediate 

is hydrolyzed; the Gln262 aligns a water molecule for the nucleophilic attack 

on the phospho-cysteine intermediate while Asp181 now functions as a 

general base accepting a proton. The removal of the phosphate from the 

catalytic cysteine leads to the re-opening of the WPD loop, terminating the 

catalytic cycle208,209,212–214.  

Tungstate behaves like other phosphate mimetics, namely closing the WPD 

loop215. In contrast to vanadate, tungstate does not form a covalent 

intermediate. Briefly, the mechanism by which tungstate inhibits PTP-1B 

comprises the formation of hydrogen bonds between two oxygens of 

tungstate with the amine groups of Ser216, Ile219 and Gly220. Tungstate 

binding to the catalytic site of PTP-1B causes conformational changes in 

the enzymes, changing the WPD loop to a closed conformation, inhibiting 

this way the access of other phospho-substrates to the catalytic 

domain209,212 
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PTP-1B in insulin signaling 

 

Insulin secreted by pancreatic ß-cell acts as the significant regulator of 

glucose homeostasis by acting through the insulin receptor. PTP-1B is an 

established regulator of insulin signaling (Figure10) as evidenced by 

biochemical, genetic and inhibitor studies216. As insulin binds to IR, it 

induces its autophosphorylation on tyrosines (Tyr1158, 1162, 1163), 

leading to the recruitment of insulin receptor substrates208,216, which in turn 

are phosphorylated by the IR activating several downstream pathways 

including phosphatidylinositol 3-kinase (PI3K)-Akt and MAPK 

pathways217,218. PTP-1B as a regulator of insulin signaling in vivo, the 

mouse model of Whole-body PTP-1B knockout (PTP-1B KO) is 

characterized by increased systemic insulin sensitivity and glucose 

tolerance219. Moreover, PTP-1B KO mice show enhanced insulin-induced 

IR phosphorylation in liver and muscle establishing. When fed high-fat diet, 

PTP-1B KO mice exhibit resistance to weight gain and develop insulin 

resistance219.  
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Figure 10: PTP-1B-substrate interaction and metabolic regulation. Adapt from
216

. 

 

Furthermore, muscle-specific PTP-1B deficiency has equivalent body 

weight to control mice but exhibit improved systemic insulin sensitivity 

similarly, to mice with liver-specific PTP-1B220–222. Mice with myeloid cell-

specific PTP-1B deficiency exhibit improved glucose tolerance and 

protection against lipopolysaccharide-induced hyperinsulinemia223. 

Furthermore, and in contrast, overexpression or re-expression of PTP-1B in 

liver attenuates hepatic IR phosphorylation at Tyr1162/1163 by PTP-1B, 

where PTP-1B over-expression in muscle impairs insulin-stimulated IR 

activation and decreases muscle glucose uptake224,225. 
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Endoplasmic reticulum stress response 

 

The ER plays an essential role in protein folding and accumulation of 

unfolded proteins within the ER lumen causes ER stress. As a response to 

ER stress, cell utilizes ER transmembrane sensor to attenuate stress and 

maintain homeostasis, one of this sensor is PERK, which is regulated by 

tyrosine phosphorylation at Tyr615226–228. PTP1B and PERK was 

established and PERK Tyr615 identified as a mediator of the association: 

mice with liver-specific PTP-1B deficiency are protected against high fat 

diet-induced ER stress and exhibit attenuation of PERK and eIF2α 

phosphorylation; similarly PTP-1B deficiency in adipose tissue and 

adipocytes leads to upregulation of PERK-eIF2α phosphorylation and 

sensitizes adipocytes to chemical-induced ER stress; and PTP-1B 

deficiency in pancreatic β-cell lines leads to increased chemical-induced 

PERK/eIF2α signaling229–232. 

  

Cell-cell communication 

 

PTP1B likely regulates cell-cell communication by engaging numerous 

substrates at regions of cell-cell contact, being crucial for metabolic 

regulation and maintaining homeostasis. Eph RTKs and their PM-bound 

ephrin ligands exhibit a unique feature of bidirectional signaling and are 

essential for regulating cell-cell communication. Eph RTK pharmacological 

inhibition enhances glucose-stimulated insulin secretion (GSIS) from mouse 

and human pancreatic islets233. PTP-1B engages PM substrates at regions 

of cell-cell contact and can regulate cell-cell communication. PTP-1B 

regulates EphA3 function and trafficking and EphA2 tyrosine 

phosphorylation specifically at regions of cell-cell contact233,234. 
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Leptin signaling and energy balance 

 

Leptin is an adipocyte-derived hormone that regulates feeding and energy 

homeostasis235,236. Leptin acts by binding to LepRb, JAK2 is activated, 

autophosphorylates and subsequently phosphorylates tyrosine residues 

along the intracellular tail of LepRb enabling the recruitment of downstream 

effectors such as signal transducer and activator of transcription 3 

(STAT3)237. Mice with combined leptin and PTP-1B deficiency display 

decreased weight gain, reduced adiposity and increased resting metabolic 

rates238–240.  

Energy balance is an essential component in metabolic homeostasis, where 

AMP-activated protein kinase (AMPK) is a fuel-sensing enzyme complex 

and a regulator of adipose function [121]. PTP1B-deficient brown adipose 

tissue [122] and brown adipocytes [81] exhibit increased AMPK activity. In 

addition recent evidence for PTP-1B negatively regulate pyruvate kinase 

M2 (PKM2)241, which is a rate-limiting glycolytic enzyme that catalyzes the 

generation of pyruvate and ATP from phosphoenolpyruvate (PEP) and 

ADP; further, decreased PKM2 Tyr105 phosphorylation in adipose tissue 

correlates with glucose intolerance and insulin resistance in rodents, non-

human primates and humans241,242. 

 

PTP-1B in pancreatic islet 

 

Pancreatic β-cells are equipped to sense ambient glycemia rapidly. In order 

for the cells to respond appropriately with insulin secretion, glucose must be 

metabolized within the β-cells 243. Vanadate and tungstate inhibit most 

PTPs and has been shown to exert direct glucose-dependent insulinotropic 

effects in isolated rodent islets by mechanisms involving phosphoinositide 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339617/#R121
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339617/#R122
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339617/#R81
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hydrolysis and Ca2+ handling243. In isolated islets from sodium tungstate 

treated rats, it was observed augments the number of insulin and PDX-1 

positive cells in pancreas from sodium tungstate treated STZ-diabetic 

rats 172,200. The whole-body PTP-1B KO mice present increased β-cell 

proliferation in vivo. Morphometric analysis of pancreatic islets showed a 

higher β-cell area, concomitantly with higher β-cell proliferation and a lower 

β-cell apoptosis when compared to islets from their respective wild-type 

cognates244. Moreover, at a functional level, isolated islets from PTP-1B 

KO mice exhibited enhanced glucose-stimulated insulin secretion244. These 

mice are also able to partially reverse streptozotocin-induced β-cell loss, all 

indicating that inhibition of PTP-1B activity in islet cells may be a 

therapeutic avenue to promote islet function244.  

To investigate the metabolic role of pancreatic PTP-1B, a  mouse model 

with specific pancreatic deletion of PTP-1B (panc-PTP-1B KO) was 

generated245. Results showed that aged panc-PTP-1B KO exhibited mild 

glucose intolerance245; high-fat feeding promoted earlier impairment of 

glucose tolerance and attenuated glucose-stimulated insulin secretion in 

panc-PTP-1B KO mice245. At the molecular level, PTP-1B deficiency in vivo 

enhanced basal and glucose-stimulated tyrosyl phosphorylation of EphA5 in 

islets245. The intra-islets inhibition of PTP-1B in rat fed with a high-fat diet, 

achieved by infection with recombinant adenoviruses containing siPTP1B in 

isolated islets from high-fat diet rats, results in an improved glucose-stimulated 

insulin secretion
245. In contrast, other studies revealed that overexpression 

of protein tyrosine phosphatase 1B impairs glucose-stimulated insulin 

secretion, down-regulated the expression of glucokinase (42%) and glucose 

transporter-2 (48%), in INS-1 cells245. 

 

PTP-1B and angiogenesis 
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In endothelial cells (ECs), tyrosine phosphorylation of the VEGF type 2 

receptor (VEGFR2) and the adhesion molecule VE-cadherin constitute 

important initial signaling events by which VEGF stimulates angiogenesis, 

which leads to activation of different critical angiogenic enzymes involved in 

ECs proliferation, migration246 and loss of cell-cell contacts247 (Figure 

11). Thus, tyrosine phosphorylation of VEGFR2 and VE-cadherin are 

essential initial signaling events by which VEGF stimulates angiogenesis in 

ECs. VEGFR2 is a Receptor Tyrosine Kinase (RTK) predominantly 

expressed in endothelial cells (ECs) and their embryonic precursors248–250, 

although its expression can be detected in neuronal cells and hematopoietic 

stem cells ; Deletion of VEGFR2 or its principal ligand VEGFA leads to 

early embryonic lethality in mice (E8.5/9.5 and E9.5/10.5) due to severe 

impairment of vascular development and hematopoietic cell maturation248–

250.  

Binding of VEGFA to VEGFR2 induces receptor dimerization and 

autophosphorylation at multiple tyrosine sites including Y1054/1059, Y1175, 

Y951, and Y1214 and others less characterized251. Each site is thought to 

promote different downstream signaling pathways, which are linked to 

different cellular responses such as proliferation, migration, survival and 

permeability252,253. Both receptor and non-receptor protein phosphatases 

can regulate VEGFR2 signaling and will be discussed in turn. 
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Figure 11: PTP-1B substrates interaction in ECs and angiogenesis regulation. Adapt from
243

 

 

PTP1B substrates include the insulin receptor VEGFR2 and β-

catenin243.PTP1B dephosphorylates immunoprecipitated VEGFR2 and 

silencing of PTP1B in HUVEC leads to increased VEGFA-induced VEGFR2 

phosphorylation (tested Y1175 only) and proliferation243 [81]. Similar 

findings show that primary mouse EC isolated from PTP1B null mice 

display increased VEGFA-induced VEGFR2 phosphorylation and 

augmented proliferation and migration in response to VEGFA243. General 

PTP inhibitors have been shown to promote VEGFR2 activation and 

accelerate neovascularization in rat ischemia hindlimb models254, 

suggesting PTPs as potential therapeutic targets to promote 

neovascularization. However, little is known about the role of endogenous 

PTPs in VEGF signaling in ECs. Tonks et al. identified protein tyrosine 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5205541/#R81
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phosphatase 1B (PTP1B) as among the significant PTPs whose expression 

is dramatically induced during angiogenesis in a mouse ischemic hindlimb 

model255.Nakamura et al. provided evidence that PTP1B negatively 

regulates VEGF-induced phosphorylation of VEGFR2 in ECs via binding to 

the receptor, as well as stabilizes cell-cell adhesions through reducing 

tyrosine phosphorylation of VE-cadherin256. These results are consistent 

with previous reports that PTP1B inhibition of platelet-derived growth factor 

(PEGF) induced proliferation of cultured vascular smooth muscle, whereas 

PTP1B expression is increased in vascular injury model257,258. These 

studies suggest that ischemia-induced upregulation of PTP1B may 

represent an essential compensatory mechanism that blunts overactivation 

of angiogenic signaling in vivo, at least in part, by inhibiting tyrosine 

phosphorylation of VEGFR2 and VE-cadherin.  
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It is hypothesized that oral administration of tungstate could improve islet-

graft revascularization and transplantation outcome, by a mechanism 

dependent on PTP-1B. Therefore targeting PTP-1B on islets improves 

islet-graft’s revascularization and survival, constituting a proof-of-concept 

for future therapy in islet transplantation.   

Objective 1: To investigate the effect of tungstate on graft 

revascularization and survival: 

1.1. To investigate the effect of tungstate on graft 

revascularization and survival; 

1.2. To investigate if the action of tungstate in the 

revascularization of islet-grafts is mediated by PTP-1B; 

Objective 2: To investigate if PTPB1 is a critical target for improving 

the function, survival, and revascularization of engrafted islets.   

2.1. To evaluate the effect of tungstate treatment in vitro on islets 

isolated from PTP-1B-/- mice; 

2.2. To evaluate the effect of tungstate treatment in vivo on diabetic 

mice transplanted with islets isolated from PTP-1B-/- mice; 

2.4. To investigate whether iECs are critical players in PTP-1B-/- 

graft revascularization. 

Objective 3: To investigate the molecular pathways 

activated/potentiated by the inhibition of PTP-1B on pancreatic islets 

that modulate islet survival as well as the capacity of vessels 

formation; 

3.1 To investigate the expression of VEGFA on PTP-1B-/- islet-

graft and isolated islets; 
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3.2 To investigate if the expression of VEGFA in the absence of 

PTP-1B, is dependent on HIF activation, or PGC1-α/ERR-α 

pathway activation 

Objective 4: to investigate if the PTP-1B-dependent islet-graft 

revascularization is conserved in human islets 

4.1 To Silencing PTPN1 gene in human islets; 

4.2 To investigate if the signaling events previously studied are 

conserved in human islet; 

 

4.3 To investigate human islet-graft revascularization after 

silencing PTP-1B. 
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Animal models 

Animals were housed on standard light/dark cycle; food and water were 

provided ad libitum. All animal handling and care procedures fulfilled the 

requisites of the Animal Science Associations (FELASA)-trained scientists, 

the local ethical commit, the Spanish royal decree 214/1997 and the 

European Directive 2010/63/EU. Six weeks old male BALB/c mice, and 6 

weeks old male Wistar rats were acquired to former Harlan Laboratories, 

now Envigo Laboratories (Huntingdon, United Kingdom), and the 

experiments were performed at the age of eight weeks. The experiments 

were performed in 7 week old mice and 7 weeks old Wistar rats. 

PTP-1B transgenic mice (wild-type, PTP-1B+/+; and deficient, PTP-1B-/-) 

were obtained from Abbot Laboratories (Abbott Park, IL)259. The 

experiments were performed with 8 and 9 weeks old male mice littermates, 

maintaining the genetic background of 129/SvJxC57Bl6/J. Genotyping for 

all mice was performed by polymerase chain reaction (PCR) on tail 

deoxyribonucleic acid (DNA) using the following primers (5’-3’): 

GCGAGCTGTGGAAAAAAAAGG (PTP-1B telomere repeat binding 

factors, Trf2), CGATCTCCTGCAATCCCTTC (PTP-1B endogenous right 

#3, Erp3), CAGTCTTGGTCTACAGAGTG (PTP-1B endogenous Left) and 

CCGCCTTTTCGCTAGCTGAC (PTP-1B neo). The PCR was carried out 

using HotStarTaq DNA Polymerase (Qiagen, Hilden, Germany). The 

reaction was performed by denaturation at 95 °C for 15 min and 35 cycles 

of amplification (94 °C for 45 s, 53°C for 60 s, and 72 °C for 60 s), finishing 

with 5 min at 72 °C. Male BALB/c mice were acquired to Charles River 

Laboratories (London, England) at the age of 6 weeks and experiments 

were performed at the age of 8 weeks. For each DNA sample the following 

reaction mix used: 
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Table 3: Reaction mix for PTP-1B genotyping 

Reactive 
Volume 

(µL) 

H2O 13.6 

PCR Buffer 10x  2.5 

Q buffer 5x 5 

MgCl2 50mM 0.75 

Primer 5’ 

100µM* 
0.2* 

Primer 3’ 

100µM* 
0.2* 

dNTP mix 10 

mM 
0.5 

TAQ 5U/µL 0.25 

DNA sample  2 

*For each primer 

 

STZ-diabetes induction  

Diabetes was induced in BALB/c mice, by a single-intraperitoneal injection 

of streptozotocin (STZ, Sigma-Aldrich, STL, USA) 160mg/Kg, at the age of 

7 weeks260,261. STZ is a glucose analog (D-glucopyranose), and a 

diabetogenic agent which causes pancreatic ß-cell destruction262,263. It is an 

alkylating agent, that directly methylates DNA264, producing profound 

modification and aberrations leading to cell death265,266. In mice, STZ is 

known to entre ß-cell through the low-affinity glucose transporter GLUT2, 

located at the plasma membrane267,268.In this sense, previously to STZ 

injection, mice were fasted at least 4 hours, to reduce the competition 

between glucose and STZ for the transporter. Fasting conditions were 

maintained 30 minutes after STZ administration. 
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 STZ was reconstituted in a hood, under a sterile condition, due to its 

volatility.  As STZ only maintain a biological half-life, in cell culture, of 

approximately 19 minutes, and its stability for 30 minutes in solution, we 

reconstitute STZ immediately before the injection. STZ was reconstituted in 

cold 0.1M citrate buffer pH 4-5, to a concentration of 30mg/mL. Body 

weight and blood glucose levels (collecting a drop of blood through the tail 

vein) were monitored daily, for seven days, and mice were considered 

diabetic when presented a sustained blood glucose level above 250 mg/dL 

for three consecutive days.   

.   

Pancreatic islets Isolation from mouse 

Islets were isolated by intraductal injection of the common bile duct (Figure 

12) with ice-cold collagenase P (Roche Diagnostics GmbH, MHG, 

Germany). Collagenase P was reconstituted 0.7mg/mL (1.7U/mg of 

specific activity) in cold Hank’s balanced salt solution (Hbss; from Sigma-

Aldrich). All steps of this procedure were performed with the help of a 

stereoscopic microscope. 

 

 

Figure 12: Schematic and 

photographic images of 

mouse anatomic localization 

of the common bile duct and 

major duodenal papilla. 
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The procedure consists in collapse the distal outlet (or major duodenal 

papilla) of the mice’s common bile duct (Figure 13), with the help of two 

dissecting forceps (one curved, one straight) and a Hartman curve 

hemostat (F.S.T., Heidelberg, Germany).  

 

 

Two milliliters of the reconstituted collagenase was injected in the proximity 

of the duct’s cystic and hepatic ducts with a 30Gauge needle attached to a 

2mL syringe loaded with the cold collagenase solution (Figure 14). The 

pancreas was distended, and a pancreatectomy was performed with the 

help of a dissecting forceps and a fine dissection scissors. The pancreas 

was transferred into 37°C bath and digested with continuous and gentle 

Figure 13: Schematic and 

photographic images of 

the chirurgical collapsing 

of the major duodenal 

papilla with a Hartman 

curve hemostat 

Figure 14: Photographic 

representation of a 30gauge 

needle introduced in the 

proximity of the mouse 

cystic. and hepatic  ducts 
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agitation (80rpm). The pancreata were transferred into a sterile 

environment using horizontal laminar flow hood, where the digestion was 

stopped by adding sterile ice-cold Hbss complemented with 0.1% bovine 

serum albumin (BSA). Islets fraction was purified by a gradient 

centrifugation at 800Gs with Histopaque 1119g/mL, 1:1 mix of Histopaque 

1119g/mL and 1077g/mL (Sigma-Aldrich), and Hbss+0.1%. All solutions 

must be added carefully, to avoid mixing the phases. The Islets were 

handpicked, at room temperature, from the interface between Histopaque 

and Hbss, washed and cultured for posterior experimentation. 

 

    

Figure 15: Representation of the gradient-purification of islets. A. Gradient setup 

with pancreata located at the bottom, followed by the Histopaque 1119g/mL, the 

1:1 mix of Histopaque 1119g/mL and 1077g/mL and finally Hbss+BSA 0.1%. B. 

Interface where purified islets will be located, after centrifugation of 800g. 

 

Pancreatic islets Isolation from rat  

Islets were isolated by intraductal injection of the common bile duct with 

ice-cold collagenase P. Collagenase P was reconstituted 1mg/mL 

(1.7U/mg of specific activity) in cold Hank’s balanced salt solution (Hbss; 

from Sigma-Aldrich). This procedure was performed at naked eye. After 

A B 

0.1% 
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being fully anesthetized in a chamber saturated with isoflurane, the rats 

were decapitated; the abdominal cavity was open allowing the exposure of 

the pancreas and common bile duct. The common bile duct was then 

collapsed at the distal outlet (or major duodenal papilla) with a Hartman 

curve hemostat. The pancreas was then perfused with 15mL of 1mg/mL 

cold collagenase P solution (Sigma-Aldrich) by through the proximity of the 

duct’s cystic and hepatic ducts; the distended pancreas was isolated and 

incubated at 37ºC for 18 minutes with gentle shaking. After digestion, islets 

were separated from exocrine tissue by mechanical disgregation (using a 

plastic Pasteur pipette first and second by a 14G needle) and by density 

gradient with Histopaque (Sigma-Aldrich, St. Louis, MO, USA)):  bottom 

layer, 1.119g/mL with pancreata resuspended; second layer: 1.077g/mL, 

top layer Hbss. The density separation was performed by a 20minute 

centrifugation of 1000G at 11ºC. The purified fraction of the islets was 

picked from the interf¡phase between the second and the top layer of the 

gradient. Then, islets were rinsed into a Petri dish and isolated from any 

contaminating exocrine material by handpicking. 

 

Pancreatic islet culture 

Standard culture 

Following isolation the mouse or rat islets were cultured in RPMI 1640 

medium (Sigma-Aldrich) containing 11mM of glucose, 0.3g/L L-glutamine, 

2g/L NaHCO3, 10% heat-inactivated fetal bovine serum (Hyclone, Logan, 

UT), HyClone™ Penicillin-Streptomycin (100 units/ml penicillin, 100 pg/ml 

streptomycin) (GE Healthcare Life Sciences, PGH, USA). The islets were 

cultured at 37°C under a 5% CO2 and 95% air-humidified atmosphere.  

Standard culture for islet transplantation involves a 48h culture before 

transplantation, where the first 24h were for islet recovery from isolation 

(consult “islets labeling and transplantation section).  
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Elimination of mouse intraislet endothelial cells 

It is known that iECs are lost, in culture, over time269. To eliminate iECs, 

PTP-1B-/- and PTP-1B+/+ isolated islets were cultured for 7 days from 

isolation, under 37°C, 5% CO2 and 95% air-humidified atmosphere, for 

48h, in RPMI 1640 with 11mM of glucose, 3g/L L-glutamine, 2g/L NaHCO3, 

10% heat-inactivated fetal bovine serum 100 units/ml penicillin, 100 pg/ml 

streptomycin. The culture medium was renewed every two days. By the 

end of the seven days of culture, islets either were transplanted or 

collected for in vitro characterization.  

 

Nutrient deprivation protocol 

To investigate the effect of PTP-1B on the VEGF-A expression we culture 

PTP-1B-/- and PTP-1B+/+ islets under nutrient deprivation. Nutrient 

deprivation conditions66 involved culturing islets, under 37°C, 5% CO2 and 

95% air-humidified atmosphere, for 48h, since their isolation, in Hbss with 

2g/L of glucose, 100 units/ml penicillin, and 100 pg/ml streptomycin. After 

48h, islets were collected and processed for analysis. 

 

Islets labeling and transplantation 

Diabetic BALB/c mice (8 weeks of age) were used for allo and syngeneic 

transplantation. These mice were transplanted with 200 islets (suboptimal 

transplantation), in the anterior chamber of the eye (ACE). These mice 

were followed for 25 or 28 days. The anterior chamber of the eye is a 

privileged transplantation site. It enables non-invasive in vivo imaging258,270, 

fast islet engraftment by blood vessels of the host iris (a highly vascular 

site)271–273, and reduced graft early rejection sustained by an ocular 

immune privilege that suppresses immune cell proliferation and purge of 
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the immune cells that enters the eye274. In xenotransplantations, 9-15 week 

old male and female Nod Scid gamma (NSG, The Jackson Laboratory, 

ME, USA) mice were used as recipients for human islets. The NSG mice 

combine an immune deficiency mutation (scid) and an IL2 receptor gamma 

chain deficiency which disables cytokine signaling, resulting in the lack 

mature T cells, B cells, functional NK cells, and in a deficient cytokine 

signaling. This severe immunodeficiency allows the mice to be humanized 

by the engraftment of human islets.150 human islets, with PTP-1B 

knocked-out by a shPTPN1 Lentivirus, were transplanted into the anterior 

chamber of the eye, and transplanted mice were maintained for 8 days. 

 

Islets labeling 

The day previous to transplantation islets were labeled with 

carboxyfluorescein diacetate, succinimidyl ester (CFDA SE; Invitrogen, 

OR, USA)  that, allows not only the evaluation of the viability of islet-graft 

cells but also the localization of islet-grafts during in vivo microscopy275,276. 

CFDA SE passively diffuses through the membrane of viable cells. CFDA 

emits fluorescence after intracellular esterases cleaved its acetate groups. 

The resulting carboxyfluorescein-succinimidyl ester groups react with 

intracellular amines, forming fluorescent conjugates that are well-

retained277. For the labeling with CFDA SE, cultured islets were washed 

with Dulbecco’s phosphate buffer saline (PBS; Sigma-Aldrich) with 0.1% 

BSA. Next, they were incubated at 37°C, in a 5% CO2 and 95% air-

humidified atmosphere for 15 min in a 10µM CFDA SE- PBS/BSA dilution 

to load cells with the probe. Loaded islets were then incubated in standard 

culture medium for 30 min at 37°C, to allow CFDA SE acetate hydrolysis 

by intracellular esterases. Labeled islets were finally placed in culture with 

fresh medium, for 24h, before being transplanted. 
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Human islets were not labeled with CFDA; these islets possessed GFP, 

transduced after the infection with the Lentivirus, that will be used to trace 

the grafts (please consult the “short hairpin Lentivirus infection” section, for 

more information) 

  

Islet transplantation 

Previously to transplant handcrafted blunted cannulas were prepared 

according to the following protocol: 

1. Detach a 30gauge injection needle shaft (Becton, Dickinson and 

Company, Franklin Lakes, NJ, USA) from its hub, with the help of 

heat; 

2. Blunt the needle bevel with the help of sandpaper and a 

stereoscopic microscope,  

3. Prepare a fine bore polythene tubing: 0.40 mm i.d., 0.80 mm o.d. 

(Smiths Medical, Kent, UK; ref. 800/100/140) with 400mm of length; 

4. Heat one extremity of the tube and seal it against the blunted shaft.  

5. Clean the cannula with ethanol 70%, and place the cannula under 

ultraviolet light for at least 15 minutes, for sterilization.  
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Figure 16: Representation of a cannula for transplantation, prepared from a 

27gauge injection needle.  

 

Immediately previous to transplantation, handcrafted blunted cannulas 

were loaded with 200 islets and maintained at 37°C. Transplantation 

protocol was followed accordingly to the recommendations of a well-

recognized protocol270,278.  

Anesthesia and analgesia: mice were anesthetized intraperitoneally with a 

mix of ketamine-xylazine (100mg/Kg and 7.5mg/Kg) and received a 

subcutaneous injection of the analgesic, buprenorphine (0.05mg/Kg) to 

alleviate postoperative pain. Intraperitoneal injection was given in the lower 

right quadrant of the mice abdomen to prevent puncturing the sleep, 

located on the left side. The mouse head should be tipped downward while 

the mouse is held upside down to prevent puncturing the intestines. The 

injection was performed using a 30-25 gauge needle at a 45º angle. 

 

5mm 

Bore polythene tube 

Shaft 

Blunted bevel 

27gauge needle 

Sharp  
Bevel 

Shaft Hub 

Cannula 
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Transplantation: Mice were placed over a heat blanket and under a 

stereoscopic microscope, in a sterile environment. The skin around the eye 

was retracted to facilitate access. An incision was made in the cornea near 

the corneoscleral junction with a 25 or 27gaude needle. After cleaning the l 

aqueous humor that leaked out of the ACE, the loaded cannula, connected 

to a 500µL syringe, was introduced into the incision, without damaging the 

iris, and the islets were gently injected. Finally, after the withdrawal of the 

cannula, a drop of carboxymethylcellulose sodium (Allergan, Ireland) was 

administrated to the operated eye, and the animals were placed under 

supervision in a warm environment until full recovery. BALB/c mice were 

followed for 25 days (for the study of sodium tungstate treatment), or 28 

days for the study of the PTP-1B effect on isle-graft revascularization; NSG 

mice were maintained for 8 days. All mice were housed in standard 

light/dark cycle; food and water were provided ad libitum. 

 

Physiological study: weight, glycemia and glucose tolerance 

test 

During the experiment, weigh, and non-fasting blood glucose levels were 

measured within the same schedule at the indicated days. Blood glucose 

levels were measured by collecting blood from the tail vein directly to the 

glucometer strap. Glucose tolerance test was performed after a 6h fast. 

Mice were injected intraperitoneally with 1.5g/Kg D-glucose. Blood glucose 

levels were measured at 0, 15, 30, 60, 90 and 120 minutes after the 

glucose-bolus; in parallel blood was collected from the tail vein into a 

capillary blood collection system (Microvette, Sarstedt, Nümbrecht, 

Germany) to analyze serum insulin level. Insulin levels were measured by 

a highly specific ELISA kit (Mercodia, Uppsala, Sweden). 
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In vivo revascularization and cell death Imaging 

Functional graft revascularization and cell death were assessed in vivo, by 

two-photon laser scanning microscopy (TPLSM; Leica SP5 TPLSM, Leica 

Microsystems, Wetzlar, Germany)279. The TPLSM presents as a principal 

advantage the use of a pulsed infrared laser for fluorescent dye excitation. 

This feature allows deeper tissue imaging of biological tissues in living 

animals with a micrometric spatial resolution and a lower phototoxicity280,281 

than the conventional microscopy techniques. Briefly, the electron of the 

fluorescent dyes will absorb energy from an excitatory infrared laser 

(composed of two photons), until reach excitation state. The return to their 

ground state is based on the emission of radiation that is detected and 

multiplied by photodetectors. The photodetector produces an electronic 

signal that is translated by the computer into numerical values and 

subsequently in colors. 

The dextran is a naturally synthesized polysaccharide with excellent water 

solubility and low toxicity. Dextran is biologically inert due to the α-1,6-poly-

glucose linkages that offer resistance to cleavage making it a useful water-

soluble carrier for dyes, like rhodamines, to study the tracing of circulating 

cells or compounds or hydrodynamic properties of microcirculation282–285. 

Moreover, dextran can be produced with different molecular weights that 

will facilitate or reduce its permeability through vessels, this way we choose 

rhodamine B isothiocyanate-dextran of 70kDa. Dextran molecules larger 

than 70 kDa are retained in the blood for hours under homeostatic 

conditions, indicating the existence of a permeability resistance in 

vessels for molecules around 70-kDa, Matching with the permeability of 

physiological molecules like albumin (66kDa), or transferring (80kDa)286. 

Propidium iodide (PI, Invitrogen) is a small fluorescent molecule that can 

only enter cells that have compromised membranes where it binds 
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stoichiometrically to nucleic acids. Therefore fluorescence is proportional to 

the DNA and RNA content of a cell287. 

 

Protocol: Briefly, BALB/c mice were anesthetized intraperitoneally with a 

mix of ketamine-xylazine (100mg/Kg and 7.5mg/Kg). Following this, the 

mice received an intravenous injection with a mix of rhodamine B 

isothiocyanate-dextran 100mg/Kg (RITC-dextran, λem595nm; MW: 70kDa; 

Sigma-Aldrich), propidium iodide 250µg/Kg  (PI; Invitrogen) and  Hoechst 

12mg/Kg (Invitrogen). NSG mice were BALB/c mice were anesthetized 

intraperitoneally with a mix of ketamine-xylazine (75mg/Kg and 5mg/Kg). 

Following this, the mice received an intravenous injection with rhodamine B 

isothiocyanate-dextran 100mg/Kg,  

Anesthetized animals were transferred to the microscope stage with the 

operated eye positioned in a cover glass with a drop of 

carboxymethylcellulose sodium, in the direction of the objective (40x water 

immersion objective, Leica). A microscope incubator chamber maintained 

the adequate temperature. Islet-graft were traced using CFDA (mouse 

islets) or GFP (human islet). Fluorescence Images of the grafts were 

acquired at with 0.23µm between each in a length of 50µm, using a two-

photon laser at 780nm, an external detector, and a 25x water-objective; an 

automatic motion artifact correction was used to minimize breathing and 

heart rate involuntary movements. Images were collected for later analysis 

with ImageJ software v1.50d (Wayne Rasband, NIH, USA). By the end of 

the experiment, animals were placed under supervision in a warm 

environment until full recovery or euthanized to perform enucleation the 

eye for posterior immunohistochemistry analysis.  
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Immunohistochemistry-immunofluorescence in paraffinized eye 

sections  

The eyes were obtained by enucleation, after euthanizing mice by cervical 

dislocation. E enucleation is the most reliable technique to obtain the eye 

globe without damaging its tissues288. 

Enucleation protocol: 

1. Use a curved serrated tip forceps (0.5 x 0.4 mm), gently press on 

the top of the canthus with the forceps until the eyeball dislocates 

from the eye-socket out; 

2. Press and hold the optic nerve, located behind the eye with the 

forceps, to lift the globe from the eye-socket and clamp the optic 

nerve; 

3. Performing circular movements holding the forceps in the direction 

with the least resistance; 

4. Constrict the optic nerve and detach de eyeball by gradually 

increasing the speed of the circular movements; 

5. Quickly wash the detached eyeball in cold PBS, and perform two 

equidistant punctures in the sclera with a 27gauge needle to 

improve access of fixative agents to the anterior chamber of the 

eye; 

 

Tissue dehydration, paraffin embedding, and assemblage of the eyes 

sections 

Following enucleation, the eyeball was embedded in paraffin. For this 

protocol the eye was, previously, kept O/N, at 4ºC, in paraformaldehyde 
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2%; then incubate for at least 48h in a sucrose solution of 2.1M; and finally 

dehydrated in a sequential process in which the eyes are incubated in 50% 

ethanol (EtOH) for 30minutes, twice in 70% EtOH for 30minutes, twice in 

96% EtOH for 30minutes, twice in absolute EtOH for 30minutes, followed 

by an incubation in xylol, 45minutes twice and in paraffin for 60minutes 

also twice. For paraffin embedding, the dehydrated eyes were transferred 

onto a metal holder, and then covered with liquid paraffin, and finally 

placed over a cold surface, until paraffin solidify. 

Paraffin sections:  Transplanted islet will be engrafted within the anterior 

chamber of the eye or on the surface of iris258,278,279. The Ace has 

approximately 300µm of depth and the iris a 200µm of thickness289–291. In 

this sense, the eye paraffin blocks were cut with a microtome. Consecutive 

sections were cut with a 3µm thickness, (on a total of 350µm), and were 

placed over a polylysine-treated slide and kept at room temperature until 

proceeding the standard immunohistochemistry-immunofluorescence (IHC-

IF) protocol. 

 

IHC-IF protocol 

To perform IHC-IF, first, the slides with the paraffin-embedded eyes 

sections were rehydrated. 

1. Rehydration:  

1. Incubate slides in xylol for 5minutes; 

2. Transfer slides to absolute EtOH for 3minutes; 

3. Transfer slides to 96% EtOH for 3minutes; 

4. Transfer slides to 70% EtOH for 3minutes; 

5. Transfer slides to 50% EtOH for 3minutes; 

6. Transfer slides to d deionized water for 3minutes; 
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2. Antigen retrieval: 

Place slides in citrate buffer pre-heated to 100ºC, for 10 

minutes, in a pressure cooker, and cold-down for 30 

minutes; 

3. Wash slides twice in phosphate buffer solution (PBS), for 5minutes; 

4. Permeabilization: 

Place slides in Triton-x100 1%( Sigma-Aldrich, diluted in 

PBS), for 20minutes; 

5. Wash slides in PBS twice for 5minutes; 

6. Blocking nonspecific biding:  

Slides were blocked with serum against the species in which 

the secondary antibody was grown for 60minutes, or 

blocked with 5% BSA in PBS for 60minutes; 

7. Wash slides in PBS three times, for 5minutes; 

8. Primary antibody incubation: 

Incubate slides O/N, at 4ºC in with the primary antibody 

diluted in antibody diluent (Dako, Glostrup, Denmark); 

9. Wash slides in PBS twice for 5minutes; 

10. Secondary antibody incubation: 

Incubate slides 2h, at room temperature, with the secondary 

antibody diluent in antibody diluents (Dako); 

11. Wash slides in PBS twice for 5minutes; 

12. Nuclei staining: Incubate slides with Hoechst 1:500 in PBS; 

13. Wash slides in PBS once for 5minutes; 

14. Mount slides with mounting media. 

Images were acquired in a Leica DMR HC epifluorescence microscope 

(Leica Microsystems) and analyzed using ImageJ software v1.50d (Wayne 

Rasband, NIH, USA). 
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Immunohistochemistry-immunofluorescence in paraffinized 

pancreas sections  

The pancreas was obtained by a pancreatectomy from mice, after drying, it 

was weighted and transfer into histological cassettes, for further 

processing. Pancreases were fixed with formalin 10%, O/N at 4ºC, and 

further processing steps, dehydration, paraffin embedding, cut, and IHC-IF 

staining were performed as described in the previous section. 

Immunohistochemistry-immunofluorescence in whole islets 

IHC-IF studies in whole cultured islet offer several advantages over 

traditional methods such as constructing a three-dimensional mapping of 

iECs networks by optically sectioning islets with a confocal microscope292. 

The method used for IHC-IF in the whole islet is described below. 

Solutions:  

 Wash solution 1: PBS; 

 Wash solution 2: Triton-x100 0.05%( Sigma-Aldrich) in PBS; 

 Fixative solution: paraformaldehyde (PFA; Sigma-Aldrich) 4% in 

water; 

 Permeabilization solution: Triton-x100 0.3% in PBS (4ºC); 

 Blocking solution: Bovine serum albumin 1% (Sigma-Aldrich), 

Triton-x100 0.1% in PBS; 

 Antibody dilution solution: Triton-x100 0.1% in PBS; 

 Mounting medium: ProLongGold Dapi anti-fade reagent with Dapi 

(Thermo Fisher Scientific, MA, USA); 

Protocol: 

1. Transfer islets to a plate with wash solution 1; 

2. Repeat step 1 two times; 
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3. Incubate cells with the Fixative solution at room temperature (RT) 

for 20 minutes; 

4. Wash three times with washing solution 2; 

5. Incubate cells with the Permeabilization solution at RT for 15 

minutes; 

6. Wash three times with washing solution 2; 

7. Incubate cells with the Blocking solution at RT for 1h; 

8. Prepare primary antibody in the desired dilution with cold Antibody 

dilution solution; 

9. Incubate cells with primary antibody at 4ºC, overnight (O/N); 

10. Wash three times with washing solution 2; 

11. Incubate with the secondary antibody at RT, 1h (protected from 

light); 

12. Wash three times with washing solution 2; 

13. Transfer islets into a µ-slide flat bottom chamber for use in 

microscopy  (IDIBI, Martinsried, Germany) with 250µL of mounting 

medium in each well 

14. Incubate islet for 18-24h at RT (protected from light) 

15. Acquire images by confocal microscopy. 

 IF in whole islets fluorescence was assessed in a confocal microscope 

(LEICA TCS SPE, Leica Microsystems) for each islet, optical section 

images were acquired since the peripheral cell layers with 5µm (in the case 

of PECAM-1 labelling) or 10µm apart, in a total of 60µm/islet, using a 40x 

oil immersion objective. The 405, 488 and 532 lasers were used, and 

settings (laser intensity, pinhole, gain, offset, phase and zoom), were 

maintained unaltered between islets and conditions during the entire 

experiment.  
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Antibodies used for IHC-IF detection 

For IHC-IF in paraffinized sections and whole islet, the primary and 

secondary antibodies are listed in Table 4 and Table 5. 

Table 4: List of the primary antibodies used for IHC-IF 

Antibody 
Dilution 

Paraffinized 
section 

Dilution 
Whole 
islet 

Company 

Guinea-pig anti-INSULIN IgG 1:1000 1:250 
Dako,  

Glostrup, Denmark 
Mouse anti-GLUCAGON IgG 1:500 1:100 

Rabbit anti- PECAM-1 IgG 1:20 1:20 
Abcam 

Cambridge, UK 
Rabbit anti-VEGF-A IgG 1:100 1:100 

Rabbit anti- Cleaved 
CASPASE3 IgG 

1:400 1:100 
Cell Signaling  

MA, USA 

Mouse anti-Ki-67 IgG 1:20 n.a. 
BD Biosciences 

 NJ, USA 

Goat anti-PTP-1B IgG n.a. 1:50 

Santa Cruz 
Biotechnologies  

Tx, USA 

n.a. – not applicable 
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Table 5: List of secondary antibodies used for IHC-IF 

Antibody 

Dilution 

Paraffinized 
section 

Dilution 

Whole islet 
Company 

Alexa Fluor 555 anti-guinea pig 1:500 1:250 

Thermo Fisher 
Scientific, MA, USA 

Alexa Fluor 488 anti-guinea pig 1:500 1:250 

Alexa Fluor 555 anti-rabbit 
(1:500) 

1:500 1:250 

Alexa Fluor 488 anti-rabbit 
(1:250) 

1:250 1:250 

Alexa Fluor 488 anti-mouse 1:100 1:100 

Alexa Fluor 555 anti-goat 
(1:500) 

1:500 1:250 

 

 

RNA extraction and analysis  

RNA extraction, quantification, and retrotranscription 

Total RNA was prepared from isolated islets using the RNeasy Mini Kit 

(Qiagen, Hilden, Germany). The concentration of RNA in the different 

samples was determined by absorbance spectroscopy, measured at  260 

nm using a Nanodrop 1000 spectrophotometer (Thermo Scientific 

Wilmington, MA).  

RNA was retrotranscribed using the High Capacity cDNA Reverse 

Transcription Kit (AB Applied Biosystems, USA). For each 10µL of RNA a 

total of 10µL of reverse transcription master mix (Table 6). 
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Table 6: Retrotranscription master mix 

Component Volume (µL 

10x Reverse transcriptase buffer 2.0 

25x dNTP mix (100mM) 0.8 

10x Reverse transcriptase Radom Primers 2.0 

MultiScribe
TM

 Reverse Transcriptase 1.0 

RNase inhibitor 0.5 

Nuclease-free water 3.7 

 

Retrotranscription was performed according to the thermal cycling 

conditions in Table 7. 

 

Table 7: Retrotranscription thermal cycling program 

 Step1 Step 2 Step 3 Step 4 

Temperature 

(ºC) 
25 37 85 4 

Time (min) 10 120 5 ∞ 

 

Quantitative reverse transcription real-time PCR 

Quantitative real-time PCR (qRT-PCR) was performed in a LightCycler 480 

System (Roche) using Mesa Green qPCR Master Mix (Mesa Green, 

Eurogentec, Belgium). All reactions were performed in a 96-well optical 

plate. For each 2,5µL of cDNA, a total of 7.5 µL of amplification mixes were 

added (Table 8). 

Table 8: qRT-PCR amplification mix 
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Component Volume (µL 

Mesa Green qPCR Master Mix 5.0 

Nuclease-free water 2.0 

Primer 5’ 0.25 

Primer 3’ 0.25 

cDNA 2.5 

 

The expression of mouse genes in isolated pancreatic islets was 

measured, using the gene TATA box binding protein (Tbp) gene as the 

endogenous control (housekeeping gene) for quantification, for human 

islets the beta-actin (ACTB) gene was used.  

The qRT-PCR technique is based on the detection of a fluorescent signal 

from a fluorescent dye (Mesa Green dye) that is being broken down during 

the amplification of the target sequence in a PCR cycle. The cycle number 

where the fluorescent signal overcomes the threshold signal of the 

background noise is called the CT. The data from the qRT-PCR is 

expressed in CT values. For analysis, each CT value was referred to the 

housekeeping CT value. Results were expressed as the relative fold 

change respect to control levels: 2−ΔΔCT. The ΔΔCT value is calculated as 

the variation between ΔCT of each sample (variation between the CT of 

each gene for a sample and housekeeping CT for the same sample) minus 

the ΔCT of the control condition. 
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Primers  

The mouse and human primers used in this study are listed in Table 9 and 

Table 10 

Table 9: Mouse primers used in the study 

Gene Foward Reverse 

Caspase3 ATGGGAGCAGTCAG GTCCACATCCGTACCA; 

Caspase9 ATGCAGGGTGCGCCT GGTCTCAAGGTCTGTG 

Pecam1 GCCTCACCAAGAGAACGGAAG GCTTTCGGTGGGGACAGGCTC 

Kdr CACTCTCCACCTTCAAACTCTC CTATTCCCCTTCCTCACTCTTC 

Cdh5 TTGCCCTGAAGAACG ACTGCCCATACTTGAC 

Vegfa CACTTCCAGAAACACGACAAAC TGGAACCGGCATCTTTATCTC 

Hif1a CCCATTCCTCATCCGTCAATTA GGCTCATAACCCATCAACTCA 

Ppargc1a GCCGGAGCAATCTGAGTTAT GATCACCAAACAGCCGTAGA 

Esrra AAGTCCTGGCCCATTTCTATG CATCATGGCCTCAAGCATTTC 

 

 

Table 10: Human primers used in the study 

Gene Foward Reverse 

PTPN1 GCTATGGTGAGGTGTGGATAAG AGCTCGCTACTTCTCTAACA 

HIF1A CCAGTTAGCTTCCTTCGATCAG GTAGTGGTGGCATTAGCAGTAG 

VEGFA CAGGACATTGCTGTGCTTTG CTCAGAAGCAGGTGAGAGTAAG 

PPARGC1A CCTTAAGTGTGGAACTCTCTGG CAGCTTTGGAGAAGCCTAA 

ESRRA TGCTGCTTAATCCTACC GCCCAATGCAAATGAGAG 

GAPDH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA 
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Protein analysis 

Nuclear protein extraction 

Nuclear protein extracts of1000 isolated islets cultured in complete medium 

and in Hbss were obtained, by bursting the islets cells with a hypotonic 

buffer (HEPES 10mM, KCl 10mM, EDTA 0.1mM, EGTA 0.1mM, pH8), with 

NP40 0.05%, and 2µL of sodium orthovanadate 200mM, and 20µL of 

dithiothreitol (DTT) 50mM for each 1mL of solution. After centrifuge the 

obtained nuclear pellet was incubated with a hypertonic buffer (HEPES 

20mM, NaCl 400mM, EDTA 10mM, EGTA 10mM, Glycelro 20%) with 20µL 

of dithiothreitol (DTT) 50mM for each 1mL of the solution,  to obtain nuclear 

protein extract. Extracts were kept  at -80°C until quantification. 

Protocol:  

1. Wash islets twice with PBS; 

2. Centrifuge 1200g, 2 minutes, 4ºC; 

3. Resuspend pellet in 40µL of hypotonic buffer complemented with 

sodium orthovanadate DTT, and 1% of a protease and 

phosphatase inhibitors; 

4. Incubate suspension in ice, for 15minutes; 

5. Add 2µL NP40 1%; 

6. Vortex suspension 10seconds; 

7. Centrifuge at 11000g, for 30seconds; 

8. Recover supernatant (cytosolic fraction); 

9. Resuspend pellet with 40µL of cold hypertonic buffer supplemented 

with DTT, 1% of a protease and phosphatase inhibitors; 

10. Incubate suspension in ice, for 15minutes, while vortexing each 

2minutes. 

11. Centrifuge at 11000g, 5minutes; 

12. Recover supernatant (nuclear fraction). 
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Protein extraction 

Protein extraction of isolated islets was obtained using RIPA lysis buffer 

(Tris 50 mmol/l, pH 7.5, EDTA 5 mmol/l, NaCl, 150 mmol/l, Triton X-100 

1%, SDS 0.1%, sodium fluoride10 mmol/l, sodium deoxycholate1 %, or 

TDLB buffer (triple detergent lysis buffer: Tris 50mM pH 8, NaCl 150mM, 

SDS 0.1%, NP40-Igepal 1%, sodium deoxycholate 1 %). Each buffer 

supplemented with 10% phosphatase inhibitor cocktail (Roche) and 4% 

protease inhibitor cocktail (Roche). For the extraction, islet lysates were 

frozen and thawed twice in 3 consecutive cycles of 2 minutes: 

temperatures, -20ºC and 37ºC, followed by a pulse-mode ultrasonication 

with 3 short burst cycles of the 30s at 20kHz (20 000 cycles/s). Finally, 

samples were centrifugated at 4500g, for 15 min at 4°C. The supernatants 

were collected and transferred to a new microfuge tube. 

 

Protein quantification 

Protein quantification was determined with the Lowry protein assay kit (Bio-

rad, Hercules, CA, USA), using following manufacturer’s instructions. 

Proteins were diluted to a proper concentration, in order to load a total of 

20µg of extract. All extracts were stored at -80°C until required. 

 

Western blotting 

 The protein extracts were separated by molecular weight using sodium 

dodecyl polyacrylamide gel  electrophoresis using a precast gradient gel 

4%-15% (Bio-rad). After loading the gel-containing tray with the 

electrophoresis running buffer 1x, the extracts (20µg), the Laemmli loading 

buffer 2x (), and molecular markers (GE, healthcare) were loaded.  

Electrophoresis running buffer 10x: 

 Tris(hydroxymethyl) aminomethane 25mM; 
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 Glycine 192mM; 

 SDS 1%; 

 miliQWater up to1L 

 pH8.3 

Laemmli loading buffer 2x: 

 Tris(hydroxymethyl) aminomethane-HCl 0.5M; 

 Glycerol 40%; 

 SDS 10%; 

 2ß-mercaptoethanol 10% 

 miliQWater 2mL 

 2 drops of bromophenol blue 

The electrophoresis was performed at a constant voltage 120V for 1-2 

hours. Then, the proteins were electrotransferred onto a PVDF membrane 

(Perkin Elmer, USA):. Before being mounted, the PVDF membrane was 

activated in methanol, 1minute, and wash in transfer buffer 1x.  All 

components were placed in the tray together with an ice block. The transfer 

was performed at 200mA, for approximately 1h45minutes to 2hours. 

Transfer buffer 1X: 

 Electrophoresis running buffer 10x, 100mL; 

 Methanol 200mL 

 miliQWater, up to 1L 

TBS 1x (tris buffered saline): 

 Tris(hydroxymethyl) aminomethanel 20mM 

 NaCl 150mM 

 miliQWater 

 pH7.4 

TBST 0.05% (tris buffered saline – tween20): 



“Improving islet-graft revascularization”  

 

 | Material and Methods 79 

 

 Tris(hydroxymethyl) aminomethanel 20mM 

 NaCl 150mM 

 Tween-20 0.05% 

 miliQWater 

 pH7.4 

 

The membranes were blocked for 1 h with blocking solution: 0.05% Tween-

20 and 5% NFDM or 5% BSA (dependent on the manufacturer's 

recommendation), to avoid non-specific biddings of the membrane with the 

antibody. 

Protein immunoblotting and immunodetection 

1. Wash the membrane with TBST twice, for 5minutes; 

2. Incubate the membrane,  O/N, at 4ºC with the primary antibody 

diluted in blocking solution; 

3. Wash the membrane with TBST twice, for 10minutes; 

4. Incubate the membrane, 2h, at room temperature with the 

secondary antibody diluted in the blocking solution; 

5. Wash the membrane with TBST twice, for 10minutes; 

6. Incubate the membrane with ECL (Thermo Fisher Scientific) to 

the membrane , for 1 minute at room temperature; 

7. Acquire the blot- image, exposing the membrane in the 

ImageQuant LAS4000 (Leica), adjusting the time of exposure 

for an optical signal. 

8. Revealed membranes were analyzed using Image J software 

v1.50a. 

 

9. For multiple antibody analysis, proceed to antibody removal: 

1. Wash the membrane with TBST twice, for 10minutes; 

2. Incubate membrane with stripping buffer at room 

temperature; 
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3. Wash the membrane with TBST twice, for 5minutes; 

4. Repeat the blocking and the immunoblotting /detection 

protocols. 

Antibodies used for immunoblotting detection 

 The membranes were incubated overnight at 4 °C with the primary 

antibodies listed in Table 11 

Table 11: List of the primary antibodies used for IHC-IF 

Antibody 
Dilution 

used 
Detected 

band (kDa) 
Company 

Rabbit anti - HIF-1-
ALPHA IgG 

1:1000 120 

Abcam 

Cambridge, UK 

Rabbit anti - PGC-1-
ALPHA IgG 

1:1000 92(105) 

Rabbit anti – ERR-
ALPHA IgG 

1:1000 55 

Rabbit anti-VEGF-A IgG 1:1000 43 

rabbit anti- Cleaved 
CASPASE3 IgG 

1:1000 17;19 
Cell Signaling 

MA, USA 

Rabbit anti-PTP-1B IgG 1:500 50 
Upstate 

biotechnologies 
NY, USA 

Rabbit  anti- LAMIN-B1 1:1000 68 
Cell Signaling 

MA, USA 

Mouse Anti ALPHA-
TUBULIN 

1:1000 50 
Sigma-Aldrich, 

STL, USA 

 

VEGFA secretion quantification 

In vitro VEGF-A secretion was studied by culturing islets for 48h in 

complete medium without FBS supplementation or directly in nutrient 

deprivation conditions (Hbss). Islets and culture medium were collected. 
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The protein contents from culture mediums were concentrated by 

centrifugal ultrafiltration (3kDa, Merc-Millipore, MA, USA). VEGF-A 

secretion and islet’s content were quantified by ELISA (Abcam) following 

the manufacturer's indications. 

 

In vitro insulin secretion and pancreas content quantification 

In vitro Insulin secretion was performed using separated batches of 8  

isolated islets from 4-5 different mice from each group were first pre-

incubated at 37°C in a 5.6 mM glucose Krebs-Ringer bicarbonate buffer 

solution (KRBH) for 30 min. The supernatant was discarded, and islets 

were incubated for 60 min at 37°C in KRBH containing 2.8 mM or 16.7 mM 

glucose, respectively. After incubation, supernatants were collected. To 

pancreatic insulin content, the pancreas was isolated, homogenized in acid 

alcohol, and extracted overnight at 4˚C. The solution was centrifuged to 

remove tissue in suspension and neutralized. Insulin secreted, and islet-

insulin content was measured by using a highly specific mouse- insulin 

ELISA kit (Mercodia, Uppsala, Sweden). 

 

Human islets isolation and culture 

Human islets were obtained from 5 deceased donors after circulatory death 

(Table 12). Human islets were isolated at the Laboratory for Diabetes Cell 

Therapy (Montpellier, France) according to a modified version of the 

automated method293,294. Briefly, the pancreas was perfused with cold 

Collagenase NB1 solution, using controlled pump perfusion. The pancreas 

was digested at 37ºC in the digestion camera, and the islets were purified 

from the pancreata in a differential gradient using a COBE 2991 cell 

processor. After isolation, the islets were culture for recovery during 1-5 
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days in CMRL-1066 medium (Invitrogen) containing 1g/L glucose, 10% 

FBS, antibiotics, and glutamine. For the experiments on silencing PTP-1B, 

the islets were cultured on RPMI 1640 medium (Sigma-Aldrich) containing 

11mM of glucose, 0.3g/L L-glutamine, 2g/L NaHCO3, 10% heat-inactivated 

fetal bovine serum (Hyclone), 100 units/ml penicillin, 100 pg/ml 

streptomycin (GE Healthcare Life Sciences). The islets were cultured at 

37°C under a 5% CO2 and 95% air-humidified atmosphere. 

 

Table 12: Clinical characteristics of the donors 

Gender 
Male (%) 60 

Female (%) 40 

 Age (years) 60.8+-12.4 

 BMI (Kg/m
2
) 28.8+-2.48 

Cause 

of deceased 

Trauma (%) 40% 

Vascular injury (%) 60% 

 

Human islets purity  

In order to check batch purity, a random sample was stained with dithizone 

(DTZ). DTZ is a zinc chelating-dye, in pancreatic preparations; zinc is 

mainly present in the ß-cell secretory granules couple to insulin, forming a 

hexamer295. When chelated with zinc DTZ produced bright red/pink islets 

when viewed by white-light microscopy in a stereoscopic microscope. The 

average purity calculated for the 4 batches. 

DTZ staining protocol: 

1. Prepare Dithizone stock solution 5mg/mL, store at 4ºC, protected 

from light, up to 1month; 
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2. Prepare work solution by diluting stock solution 1:5 with HBSS-

BSA; 

3. Filter work solution with a 0.45µm pore-sized membrane filter; 

4. Transfer 2mL of working solution into a 35mm Petri dish; 

5. Transfer a random sample of your islet suspension into the 

previous Petri dish; 

6. Incubate islets for 15 minutes at 37°C under a 5% CO2 and 95% air-

humidified atmosphere; 

7. Observed and count islets using a stereoscopic microscope. 

 

Human islet viability assessment 

Islet viability assay is based on the evaluation of the islet cell membrane 

integrity using the fluorescent dyes carboxyfluorescein diacetate/propidium 

iodide (CFDA 1µL/mL. PI 2.5µg/mL).  

Viability protocol: 

1. Prepare CFDA work-solution, 1mL of CFDA 10mM per 1mL of 

Hbss-BSA 0.1%; 

2. Wash islets with Hbss-BSA 0.1%; 

3. Incubate islets with CFDA work-solution, at 37°C under a 5% CO2 

and 95% air-humidified atmospher; 

4. Transfer islets into Hbss-BSA 0.1%, and incubate for 30minutes, at 

37°C under a 5% CO2 and 95% air-humidified atmosphere; 

5. Prepare a PI 2.5µg/mL and Hoechs 50µg/mL work-solution from 

stocks solution of 1mg/mL and 10mg/mL, respectively. 

6. Incubate islets in PI–Hoechst work-solution , for 20 minutes, at 

37°C under a 5% CO2 and 95% air-humidified atmosphere; 

16. Transfer islets into a µ-slide flat bottom chamber for use in 

microscopy (IDIBI, Martinsried, Germany) with 250µL of PI–
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Hoechst work-solution and Acquire images by confocal microscopy. 

CFDA (λexcitation:492nm; λemission:517); PI (λexcitation:535nm; 

λemission:617)   

CFDA/PI-Hoechst fluorescence in islets was assessed in a confocal 

microscope. For each individual islet, optical section images were acquired 

from the peripheral cell layers with 10µm apart, in a total of 60µm/islet, 

using a 40x oil immersion objective. The 405, 488 and 532 lasers were 

used, and settings (laser intensity, pinhole, gain, offset, phase and zoom), 

were maintained unaltered between islets and conditions during the entire 

experiment. Dead cells (PI staining) were stained red and viable cells 

(CFDA) were stained green, and both were quantified using the using 

Image J software v1.50a.  

 

Viability analysis: The islets were matched into categories: 0: few or no 

viable cells and the majority stained for PI (average viability=non-viable), 1: 

approximately 75% of the cells presented PI staining (average 

viability=25%); 2: approximately 50% of the cells with PI staining (average 

viability=50%); 3: approximately 25% of the cells were positive for PI 

(average viability=75%); 4: all cell viable (average viability=100%). To 

determine the total viability of the batch the following equation was used: 

Total viable=(0.25 (Σ of cat 1)+0.5 (Σ of cat 2)+0.75 (Σ of cat 3)+( Σ of cat 

1)) 100 / total number of islets. 

 

siRNA transfection assay  

Islets are compact cellular structures; in order to increase the diffusion of 

siRNA through the islet, we pre-incubated islets in a dilute solution of 

trypsin (50mg/mL or 2.1µM; dilution optimized previously optimized) for 1.5 

minutes at 37°C. Incubation with diluted trypsin is intended to increase the 
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distance between islet cells, without compromise islet structure, allowing 

siRNA to diffuse into the core of the islet. In order to evaluate the diffusion 

of siRNA throughout the islets, we incubate islets, for 72h, at 37°C, in a 5% 

CO2 and 95% air-humidified atmosphere, with a non-targeting Accell siRNA 

with eGFP, and visualize siRNA diffusion (Dharmacon, CO, USA), without 

fixing the islet and using confocal microscopy (laser 488nm) and bright 

field. The autofluorescence of islets without being incubated with the non-

targeting siRNA with eGFP was also visualized and set as a negative 

control, using the same excitation and emission settings for eGFP (517 

nm). Optical sections were acquired with 10µm apart in a total of 80µm and 

analyzed using Image J software v1.50a. To silence PTP-1B in islets a 

PTPN1 SMART pool Accell siRNA technology was used (Dharmacon), 

following the manufacturer’s instructions. This pool is composed of four 

oligonucleotides design to target specific sequences of the PTPN1 gene.  

Following a 72h culture with siRNA, the islets were collected, and RNA was 

extracted as described previously. Gene expression was assessed by 

quantitative real-time PCR.    

 

Short Hairpin Lentivirus infection 

Short hairpin RNA lentiviral particles (shRNA LV) represents a more 

effective strategy for sustaining the downregulation of a gene in islets296–

298, without affecting islet function296–298 when compared with siRNAs. 

Therefore, using this technology allows evaluating the effect of PTP-1B 

knock-out in the revascularization of human islet-grafts. A shRNA LV for 

human PTPN1 (shPTPN1 LV) with a pGFP vector (to monitor the 

transfection efficiency) was acquired by OriGene Technologies (MD, USA). 

The shPTPN1 LV (Figure 17) possesses three major functional elements 

within the 5`-LTR and 3`-LTR regions: 
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1. shPTPN1 expression cassette driven by a U6 promoter  

2. Puromycin resistance marker is driven by an SV40 promoter  

3. GFP is driven by a CMV promoter. 

 

Figure 17: The pGFP-C-shRNA Lentivirus Vector. Start-End composition 835-1015 

5`LTR; 2618-2624 EcoR1; 2693-2949 U6 promoter; 3033-3224 SV40 promoter; 

3291-3890 Puromycin-N-acetyl transferase; 4265-4271 Xba1; 4282-4987 CMV 

promoter; 5030-5734 tGFP; 7066-7246 3`sinLTR; 7213-7832 pBR322 origin 

replication; 7892 8551 CAM
r
 for Chloramphenicol resistance. 

Four independent shPTPN1 expression vectors were used (Table 13), and 

a pGFP-C-shLenti vector containing a non-effective (scrambled) shRNA 

cassette was used as a specific negative control for gene down-regulation. 

To achieve a high efficient intra-islet transduction, the following, adapted 

protocol296 was used: 

1. Collect medium and islets from the plate in a 15ml falcon tube; 

2. Centrifuge islets at 50 x g for 2 minutes and remove supernatant; 

3. Incubate islets with 1000 μl of warm (37ºC) 0.5 X trypsin EDTA (250 

(250mg/l trypsin; 0.48 mM EDTA) for 3 minutes in a cell culture incubator 
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(37ºC, 5% CO2). For trypsin- EDTA preparation: Aliquots of 0.5% Trypsin-

EDTA 10 X (5000 mg/l; 9.6 mM EDTA) are diluted in Hanks Balanced Salt 

Solution (HBSS) 1 X to obtain a final concentration of 0.5 X trypsin- EDTA 

(250mg/l; 0,48 mM EDTA); 

4. Pipette up and down 3 times slowly and carefully with a 1000 ul tip using 

a micropipette and subsequently add 1000 μl of complete RPMI (1g/L 

glucose, 10% FBS, pen-strep); 

5. Centrifuge islets at 100 X g for 1 minute and remove supernatant; 

6. Resuspend 150 islets in serum free RPMI. Place islets in a polystyrene 

Round-bottom tube (final volume does not exceed 100 μl); 

7. Add lentiviruses at 20 Plaque Forming Units per cell (PFU/cell), 

assuming that a single islet has 1000 cells. Note that final volume must not 

exceed 300 μl and virus concentration must be in the range of 1.7x 104 

PFU/ μl. 5 μg/ml of polybrene was added; 

8. Incubate islets over-night in cell culture incubator (37ºC, 5% CO2) for 

optimal lentiviral transduction; 

9. Remove medium and add 500 μl of complete RPMI; 

10. Transplant islets or incubate them in 12 well suspension plates (37ºC, 

5% CO2) to assess the downregulation efficiency and VEGFA secretion. 

Table 13: PTPN1 sequences for shPTPN1 LV 

ACGAGGACCATGCACTGAGTTACTGGAAG 

GCTTACCTCTGCTACAGGTTCCTGTTCAA 

CCTTCTGTCTGGCTGATACCTGCCTCTTG 

TGCGCTTCTCCTACCTGGCTGTGATCGAA 
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The transfection efficiency was monitored by fluorescent microscopy, by 

exciting and detecting the tranduced GFP. PTP-1B downregulation was 

assessed by Western blot, and VEGFA secretion was analyzed by ELISA. 

Islets were transplanted into the anterior chamber of the eye of NGS mice, 

and in vivo revascularization was assessed after 8 days. 

 

Statistics 

All data were plotted and analyzed using the software, GraphPad Prism 

(Prism version 6.00 for Windows, GraphPad Software, La Jolla California 

USA, www.graphpad.com). Data are depicted as Means ± SEM. unless 

otherwise specified. An unpaired Student’s t-test was performed to analyze 

variances between two populations. Two-way ANOVA (Bonferroni’s post 

hoc test) was used to compare multiple variables between multiple 

populations. Meanwhile, a one-way ANOVA was used to test one 

independent variable between multiple populations. A value of p<0.05 was 

considered significant, and data points were considered outliers if they 

presented a value equal or superior two standard deviations away from the 

mean.  
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Chapter 1| Oral administration of sodium 
tungstate improves islet-graft 
revascularization and survival  

 

Sodium tungstate treatment decreases glycemia of 

isotransplanted stz-induced diabetic mice. 

To study the effect of sodium tungstate treatment on the engraftment of 

islets, we performed a suboptimal isotransplantation of islets isolated from 

BALB/c mice into the anterior chamber of the eye of STZ-induced diabetic 

BALB/c mice (Figure18A and B).  

 

Figure 18:  Schematic representation (A) and a representative image (B) of 

transplanted islets into the anterior chamber of the eye. Image scale bar 2mm 

 

Mice were considered diabetic when presented with non-fasting blood 

glucose levels above 250mg/dL (diabetic threshold) for three consecutive 

days. Transplanted diabetic mice were randomly separated into two 

groups. One group was treated with sodium tungstate (Tx+Na2WO4), and 

another group non-treated served as control (Tx). Apart from these, other 

two groups of diabetic non-transplanted animals were constituted; one 

group was equally treated with sodium tungstate (non-
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transplanted+Na2WO4) and the other not (non-transplanted). The four 

groups were monitored for 25 days. 

 

 

Figure 19: A. Blood glucose levels of the diabetic BALB/c mice during 25 days 

following transplantation: non-transplanted (n=9), non-transplanted and treated 

with sodium tungstate (non-transplanted+Na2WO4; n=12), isotransplanted (Tx, 

n=12) and isotransplanted and treated with tungstate (Tx+Na2WO4, n=9). Mice 

were considered diabetic after three consecutive blood glucose measures above 

threshold (250mg/dL). B. Body weight measurement of non-transplanted (n=9), 

non-transplanted+WO4 (n=12), Tx (n=12) and Tx+WO4 (n=9) mice for 25 days. 

Data presented as Mean ± SEM, *p<0.05, for Tx vs. Tx+Na2WO4; $p<0.05 for Tx 

A 

B 

B 
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vs. non-transplanted and £p<0.05, for Tx vs. non-transplanted+Na2WO4, by two-

way ANOVA. 

 

During this period the Tx group display no improvement in their non-fasting 

blood glucose level (Figure 19A). The Tx+Na2WO4 mice exhibit a 35% 

reduction in the blood glucose levels, with regards to their initial values 

(Figure 19A). The non-transplanted and the non-transplanted+ Na2WO4 did 

not exhibit any decrease in their blood glucose. Regarding body weight, 

every STZ-induced diabetic mice presented a reduction as a counter-effect 

of STZ (Figure 19B). Following transplantation, Tx group registered a 

recovery in their body weight. However, Tx+Na2WO4 not only recovered 

their weight but continued improving until the end of the experiment (Figure  

19B). The non-transplanted, and non-transplanted+Na2WO4 group 

registered a continuous decrease in their weight being this loss more 

pronounced in the later (Figure  19B).  

 

Sodium tungstate treatment improves graft revascularization 

and survival. 

As Tx+Na2WO4 demonstrate signs of improved engraftment, we assessed 

in vivo graft functional revascularization and survival by two-photon 

microscopy (Figure  20A) after the injection of RITC-dextran and propidium 

iodide. Regarding graft’s functional revascularization we analyzed both 

vascularization area (as the graft’s vessel area by total graft area) and 

vascular density (as the total number of vessels and newly formed 

branches by total graft area). We found that Tx+Na2WO4 grafts possessed 

37% more vessel area (Figure  20B) and 83% more vessel density than Tx 

grafts (Figure 20C), demonstrating improved graft revascularization. Along 

with revascularization, graft’s cell death was analyzed. Results revealed a 
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significant 86% decrease in positive propidium iodide nuclei staining in 

Tx+Na2WO4 grafts when compared with Tx grafts (Figure 20D). 

 

Figure 20: Sodium tungstate treatment improves graft revascularization and 

survival. A. Representative in vivo images of the functional vasculature (RITC-

dextran labeling), and cell death (propidium iodide) in Tx and Tx+Na2WO4 (n=8 

islets* 6 animals) acquired 25 days after transplantation using two-photon 

microscopy. B.  Quantification of relative vascularization area by islet area, C, 

relative vascular density, and D, relative cell death (propidium iodide positively 



“Improving islet-graft revascularization”  

 

 | Results  95 

 

stained nuclei) at day 25 (n=8 islets* 6 animals). Images scale bar 50µm. Data 

presented as Mean ± SEM; *p<0.05, ***p<0.001, by student’s t-test. 

 

Sodium tungstate treatment improves islet graft mass. 

As sodium tungstate treatment improves graft revascularization, we study 

how graft’s mass was affected by this increment of vessels. We analyzed 

the paraffinized sections of the engrafted eyes by staining INSULIN and 

GLUCAGON (Figure 21A). Results show that Tx+Na2WO4 grafts presented 

and graft area 4 fold higher than Tx grafts (Figure 21B). Moreover, the ß-

cell area was 5 fold higher in Tx+Na2WO4 than in Tx (Figure 21C).  

 

 

 

A 
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Figure 21: Sodium tungstate treatment improves islet graft mass. A. 

Representative immunofluorescence images of engrafted eyes from Tx and 

Tx+Na2WO4 (n=8 islets*6 animals), 25 days after transplantation: co-staining 

INSULIN with GLUCAGON analyzed the islet-graft area. Top panels represent Tx 

group and bottom panels Tx+Na2WO4 group. B. Relative islet graft Mean area 

(n=6 islets*6 animals). C. Graft relative insulin-positive area by total islet area (n=6 

islets*6 animals). Images scale bars 50µm. Data presented as Mean ± SEM; 

*p<0.05, **p<0.01 by Student’s t-test. 

 

To elucidate if whether the increment in islet-graft areas was due to an 

effect of sodium tungstate in cells replication, we analyzed ß-cell co-

localization with Ki67, a cell replication marker (Figure 22A). Results show 

no differences between groups (Figure 22B).  

 

 

 

A 

B 
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Figure 22: A. Representative immunofluorescence images of engrafted eyes from 

Tx and Tx+Na2WO4 (n=8 islets*6 animals), 25 days after transplantation: Cell 

replication, Ki67, co-stained with INSULIN. Top panels represent Tx group and 

bottom panels Tx+Na2WO4 group. B. Graft cell-replication by quantifying the co-

localization of positive INSULIN-Ki67 cells (n=7 islets*6 animals). Images scale 

bars 50µm. Data presented as Mean ± SEM; *p<0.05, **p<0.01 by Student’s t-test. 

 

Furthermore, no effect in pancreas islets cell replication was observed 

among all four groups (Figure 23A, B, and C).  This data indicates that 

sodium tungstate treatment improves relative graft’s area by decreasing 

the graft’s ß-cell apoptosis. 

 

Figure 23: Sodium tungstate treatment does not induce ß-cell area recovery from 

STZ-induced diabetic mice. A. Representative immunofluorescence images of 

Pancreas slices from non-transplanted, non-transplanted+Na2WO4, Tx, and 

Tx+Na2WO4, 35 days following transplant. ß-cell area analyzed by co-staining of 
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INSULIN and GLUCAGON. B. The relative ß-cell area to pancreas area. C. 

Pancreatic islet number concerning by section slice. Images scale bar: 100µm. 

 

PTP-1B mediates the improvement of revascularization of the 

post-transplantation treatment with sodium tungstate. 

As tungstate strongly inhibits PTP-1B. Therefore we study if the observed 

increase in revascularization, after the treatment with sodium tungstate, 

was mediated by PTP-1B. In this sense, we performed a suboptimal 

allotransplantation PTP-1B+/+ and PTP-1B-/- islets into the anterior chamber 

of the eye of diabetic mice. Four main groups of STZ-induced diabetic mice 

were constituted: the PTP-1B+/+Tx group, transplanted with PTP-1B+/+ 

islets; the PTP-1B+/+ Tx+Na2WO4, transplanted with PTP-1B+/+ islets and 

treated with sodium tungstate; the PTP-1B-/-Tx group, transplanted with 

PTP-1B-/- islets and the PTP-1B-/- Tx+Na2WO4, transplanted with PTP-1B-/- 

islets and treated with sodium tungstate. Simultaneously other two groups 

of diabetic non-transplanted animals were used, with one being equally 

treated with sodium tungstate and the other not. All groups were monitored 

for 25 days. 

Regarding non-fasting blood glucose, both non-transplanted groups did not 

exhibit any improvement while PTP-1B+/+Tx showed a minor 10%decrease 

by the end of 25 days, regarding its initial value (Figure 24A). However, in 

contrast, the groups PTP-1B+/+Tx+Na2WO4, PTP-1B-/-Tx and PTP-1B-/-

Tx+Na2WO4 exhibit a similar improvement by showing a decrease in their 

blood glucose levels between 30% and 45% (Figure 24A). Following the 

same pattern, the groups PTP-1B+/+Tx+Na2WO4, PTP-1B-/-Tx and PTP-1B-/-

Tx+Na2WO4 showed not only a total recovery in their body weight but 

continued to improve it (Figure 24B), until the end of the experiment. The 
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PTP-1B+/+Tx group did not present any change, and both non-transplanted 

groups presented a continuous decline in their body weight (Figure 24B).  

 

 

 

 

 

Figure 24: PTP-1B mediates the outcome of the post-islet transplantation 

treatment with sodium tungstate. A. Blood glucose levels and B.body weight of the 

diabetic BALB/c mice during 25 days following allotransplantation. Groups: non-

A 

B 



  

 

100 Chapter 1|  

 

transplanted (n=12), non-transplanted and treated with tungstate (n=12), 

transplanted with PTP-1B
+/+ 

islets (PTP-1B
+/+

Tx; n=9), transplanted with PTP-1B
+/+  

islets and treated with tungstate (PTP-1B
+/+

Tx+Na2WO44; n=9); transplanted with 

PTP-1B
-/-+ 

islets (PTP-1B
-/-

Tx; n=6), transplanted with PTP-1B
/-/-  

islets and treated 

with tungstate (PTP-1B
-/-

Tx+Na2WO4; n=6). Images scale bar 50µm. Data 

presented as Mean ± SEM, *p<0.05, for PTP-1B
-/-

Tx+Na2WO4 vs. PTP-1B
+/+

Tx; 

$p<0.05 for PTP-1B
+/+

Tx vs. non-transplanted; ££p<0.01, £p<0.05 , for PTP-

1B
+/+

Tx vs. non-transplanted+Na2WO4, &p<0.05 for PTP-1B
-/-

Tx vs PTP-1B
-/-

Tx+Na2WO4, by two-way ANOVA. 

As the phenotype of the transplanted groups indicates, PTP-1B might 

mediate the effects of the sodium tungstate treatment. In this sense, we 

assessed grafts in vivo revascularization and survival (Figure 25).  
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As observed in Figure 25 the PTP-1B+/+Tx+Na2WO4, PTP-1B-/-Tx and PTP-

1B-/-Tx+Na2WO4 groups presented improved revascularization in relation to 

the PTP-1B+/+Tx group. By quantifying vascular density and the 

vascularization area, it is observed a similar increment the PTP-

Figure 25: 

 Representative in vivo 

images of the functional 

vasculature, and cell 

death from PTP-1B
+/+

Tx, 

PTP-1B
+/+

Tx+Na2WO4, 

PTP-1B
-/-

Tx, and PTP-

1B
-/-

Tx+Na2WO4 (n=6 

islets* 6 animals) 

acquired 25 days after 

transplantation, using 

two-photon microscopy; 

nuclei were stained with 

Hoechst (blue); scale 

bars, 50µm. 
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1B+/+Tx+Na2WO4, PTP-1B-/-Tx, and PTP-1B-/-Tx+Na2WO4 groups 

concerning the PTP-1B+/+Tx (Figure 26A and B).  

 

 

 

 

 

Figure 26: A. Quantification of relative vascular density; B, relative vascularization 

area by islet area; C. Quantification of relative cell death (propidium iodide 

positively stained nuclei)  at day 25 (n=6 islets* 6 animals). Data presented as 

Mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, by one-way ANOVA. 

 

A B 

C 
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In respect to graft cell death, the analysis of positive-staining for propidium 

iodide showed an equal decrease in cell death for the PTP-

1B+/+Tx+Na2WO4, PTP-1B-/-Tx and PTP-1B-/-Tx+Na2WO4 groups in relation 

to the PTP-1B+/+Tx group (Figure 26C). This data demonstrates that 

transplanting islets lacking PTP-1B can mimic the outcome as the sodium 

tungstate treatment, in terms of islet-graft revascularization and survival. 
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Chapter 2| Improving islet-graft 
revascularization by targeting islet’s PTP-1B  

 

The absence of PTP-1B in pancreatic islets does not affect 

apoptosis and decreases the rate of endothelial cell loss in 

vitro.   

 To delineate the effect of the absence of PTP-1B in mouse islets, we 

performed an in vitro insulin secretion assay in response to glucose 2.8mM 

(low glucose) and 16.7mM (high glucose), using islets isolated from PTP-

1B-/- and PTP-1B+/+ mice, after 2 days of culture. Islets from both genotypes 

presented similar insulin secretion response (Figure 27A) and insulin 

content (Figure 27B). Normalization of insulin secretion by islet content did 

not diverge between genotypes (Figure C).  

 

 

 

Figure 27: In vitro insulin secretion, in response to glucose 3mM and 17mM, of 

PTP-1B
+/+

 (n=6) and PTP-1B
-/-

 (n=6) islets. A. secreted insulin. B. insulin content 

per islet. C. Insulin secretion normalized by insulin content. data in mean ± s.d; 

n.s. not significant by Student’s t-test. 

B A C 
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PTP-1B has been described as a modulator of ER stress and apoptosis 

signaling in beta-cell lines and freshly isolated mouse islets244,299. However, 

we did not find any differences in gene expression of the apoptotic markers 

Caspase3 and Caspase9 between PTP-1B-/- and PTP-1B+/+ islets (Figure 

28).  

 

Figure 28: Expression of apoptotic markers Casp3, Casp9, analyzed by 

quantitative real-time PCR and compared between PTP-1B
+/+

 (n=9 ) and PTP-1B
-/-

 

(n=12) islets. Data presented as Mean ± SEM. n.s. (not significant) by Student’s t-

test. 

 

In addition, immunohistochemistry - immunofluorescence (IHC-IF) analysis 

of cleaved-CASPASE3 staining in whole islets cultured for 2 days (Figure 

29A) revealed no discrepancy between PTP-1B-/- and PTP-1B+/+ (Figure 

29B).  
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Figure 29: A. Representative images from the immunofluorescence staining of the 

apoptotic marker, cleaved CASPASE 3 in whole isolated islets. INSULIN was 

performed to study the existence of apoptotic ß-cells (merge, co-localization); 

nuclei stained using Hoescht:  top panels are relative to PTP-1B
+/+

 islets, bottom 

panels are relative to PTP-1B
-/-

 islets; scale bars, 25µm. B. Percentage of  

immunofluorescence’s positive cleaved CASPASE-3 cells in relation to total islet 

cells, in PTP-1B
+/+

 ( n=15) and PTP-1B
-/-

 (n=15) islets; Mean ± SEM. n.s. (not 

significant) by Student’s t-test. 

 

We analyzed the differences in the expression of the endothelial markers: 

Pecam1, the cell adhesion protein characteristic of endothelial cells; Kdr, 

the receptor of VEGF-A, known to interact with PTP-1B directly and 

A 

B 
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modulate EC proliferation300; and Cdh5, the endothelial adhesion protein 

known to modulate endothelial cell migration256. Gene expression 

quantification revealed that PTP-1B-/- islets presented increased levels of 

the expression of these markers: 4.8-fold for Pecam1, 2.6-fold for Kdr and 

1.7-fold for Cdh5 (Figure 30). Increased expression of Pecam1 in PTP-1B-

/- suggests a higher prevalence of intra-islet EC (iEC). IECs have been 

shown to contribute toward early-stage graft revascularization rate and 

graft survival301,302. Along these lines, we studied the iEC population in 

fresh islets (0 days in culture) and islets cultured for 2 days, by performing 

IHC-IF analysis of PECAM-1 staining in whole islets (Figure 31A and B).  

Figure 30: Expression of the vascular markers Pecam1, Kdr (or Vegfr2) and Cdh5 

(or Ve-cadherin), analyzed by quantitative real-time PCR and compared between 

PTP-1B
+/+ 

(n=9 ) and PTP-1B
-/- 

(n=12) islets. Data presented as Mean ± SEM. 

*<p0.05, by Student’s t-test. 

Although fresh islets maintained similar levels of the endothelial cell area, 

after two days of culture PTP-1B-/- islets presented an endothelial cell 

population, per islet area, that was 3 times higher than that on PTP-1B+/+ 

islets, indicating a reduced endothelial cell loss in cultured PTP-1B-/- islets. 
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Figure 31: A. Representative maximum projections of image stacks from the 

immunofluorescence of PECAM-1 in whole islets (nuclei stained using Hoescht). 

Fresh islets (0 days of culture) were used as a comparison; top panels are relative 

to PTP-1B
+/+ 

islets, bottom panels relative to PTP-1B
-/-

 islets; scale bars, 25µm. B. 

Percentage of the immunofluorescent positive PECAM-1 area in relation to total 

islet area, of fresh (0 days of culture) or cultured (2 days of culture) islets, from 

PTP-1B
+/+

 (n=15) and PTP-1B-/- (n=16) mice. Data presented as Mean ± SEM. By 

one-way ANOVA for (g): n.s. not significant, **p<0.01. 

 

B 

A 



  

 

110 Chapter 2|  

 

Diabetic animals transplanted with PTP-1B-/- islets restore 

normoglycemia and insulin levels. 

To study the effect of PTP-1B on the engraftment of islets, we performed a 

suboptimal allotransplantation of islets isolated from PTP-1B-/- or PTP-1B+/+ 

into the anterior chamber of the eye in diabetic BALB/c mice. Single 

intraperitoneal injection of streptozotocin (STZ) induced diabetes in 70% of 

BALB/c mice (blood glucose levels above 250mg/dL in three consecutive 

days). 1 week after STZ administration, 85% of the mice presented an 

average blood glucose level of 340 mg/dL; no mice recovered 

spontaneously from STZ-induced diabetes. The STZ-treated mice were 

then randomly organized into 3 groups:  the first group transplanted with 

PTP-1B-/- islets (PTP-1B-/-txbalb-stz group), the second with PTP-1B+/+ islets 

(PTP-1B+/+txbalb-stz group), and the third and last without any transplant 

(non-transplanted group). The fourth group of not diabetic BALB/c mice 

was also monitored. Each transplanted mouse received 200 islets, 

previously isolated from PTP-1B-/- and PTP-1B+/+ mice and cultured for two 

days (Figure 32).  

 

 

 

Figure 32: Representative image of transplanted islets in the anterior chamber of 

the eye of mice of STZ-induced diabetic BALB/c mice, image scale bar, 2mm. 
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All groups were monitored for 28 days. During this period, the PTP-

1B+/+txbalb-stz group exhibited no recovery in non-fasting glycemic levels 

(Figure 33A). Mice from PTP-1B-/-txbalb-stz group improved their blood 

glucose levels and achieved normoglycemia by day 21, representing an 

improvement of 58.2% with regards to their initial blood glucose levels 

(Figure 33A). Normoglycemia threshold was obtained by following a group 

of non-diabetics mice (Figure 34A). Non-fasting glycemia of a diabetic non-

transplanted group of mice was recorded for 28 days (Figure 34A). Data 

showed that non-transplanted mice did not exhibit any decrease in their 

blood glucose levels. In relation to body weight, all STZ-induced diabetic 

mice presented an initial decrease in body weight, due to the effects of 

STZ (Figure 33B).  

 

 

A 
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Figure 33: STZ-induced diabetic mice transplanted with PTP-1B
-/-

 islets restore 

normoglycemia and insulin levels. A.  Blood glucose levels of diabetic mice 

transplanted with PTP-1B
+/+

 (PTP-1B
+/+

tx
balb-stz

, n=10) or PTP-1B
-/-

 (PTP-1B
-/-

tx
balb-

stz
, n=12) for 28 days;  the median concentration of blood glucose at time 0 

(moment of transplantation) is 340.0 mg/dL (n=24) and is represented with a black 

dashed line; the average concentration of blood glucose level of non-diabetic mice 

for 28 days is 119.7mg/dL (n=8) and is represented with a gray dashed line. Mice 

were considered diabetic after 3 consecutive blood glucose measures above 

threshold (250mg/dL). B. Body weigh measurement of PTP-1B
+/+

tx
balb-stz

 (n=10), 

PTP-1B
-/-

tx
balb-stz

 mice (n=12), and diabetic but non-transplanted mice (n=10) for 28 

days. Data is presented as Mean ± SEM, *p<0.05, **p<0.01 for PTP-1B
+/+

tx
balb-stz

 

vs PTP-1B
-/-

tx
balb-stz

; #p<0.05 for PTP-1B
+/+

tx
balb-stz

 vs not transplanted and n.s for 

PTP-1B
-/-

tx
balb-stz

 vs not diabetic mice, by two-way ANOVA. 

 

Following transplantation, in the PTP-1B
-/-

tx
balb-stz 

group body weight not only 

recovered between day 7 and 14 but also continued improving until the end of the 

B 
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experiment. Animals from the PTP-1B
+/+

tx
balb-stz

 and non-transplanted groups did 

not recover their initial body weight (Figure 33B).  

 

Figure 34: Blood glucose and body weight of non-diabetic and non-transplanted 

mice. a Blood glucose levels of non-diabetic (n=8) and diabetic non-transplanted 

mice (n=10) for 28 days. The average concentration of blood glucose level of non-

diabetic mice for 28 days is 119.7mg/dL and is represented by a gray dashed line. 

Non-transplanted mice were considered diabetic after 3 consecutive blood glucose 
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measures above threshold (250mg/dL; gray line). b Body weighs measurement of 

non-diabetic mice (n=8) for 28 days. ***p<0.001, by two-way ANOVA 

 

To assess graft function, we performed an ipGTT on day 28. Results 

showed that both PTP-1B-/-txbalb-stz and non-diabetic groups presented a 

similar response to the glucose bolus, recovering basal levels of glycemia 

at the same time. On the other side, PTP-1B+/+txbalb-stz and non-

transplanted groups displayed increased basal blood glucose and severe 

glucose intolerance, being incapable of restoring blood glucose levels 

within 120 minutes (Figure 35A).  

 

 

 

Figure 35 A. Intraperitoneal glucose tolerance test (IpGTT) PTP-1B
+/+

tx
balb-stz

 

(n=10), PTP-1B
-/-

txbalb
-stz

 (n=12), diabetic but non transplanted (n=10) and non-

diabetic and non-transplanted mice (n=8), performed 28 days after transplantation. 

B. IpGTT quantification of the area under curve for the different groups. Data is 

presented as Mean ± SEM, *p<0.05, **p<0.01 for PTP-1B
+/+

tx
balb-stz

 vs PTP-1B
-/-

tx
balb-stz

, by two-way ANOVA. 
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These differences were also evident after calculating the area under the 

tolerance curve of each group, as PTP-1B-/-txbalb-stz and non-diabetic groups 

presented similar areas and therefore similar glucose tolerance, whereas 

PTP-1B+/+txbalb-stz and non-transplanted groups presented at least a 2-fold 

increase in the areas (Figure 35B). Following this, we determined the 

concentration of insulin in the plasma during the ipGTT. Results showed a 

similar fluctuation on plasma insulin between PTP-1B-/-txbalb-stz, and non-

diabetic groups, contrasting with, the PTP-1B+/+txbalb-stz and non-

transplanted groups that presented continuously low levels of plasma 

insulin, which correlates with their high glucose intolerance (Figure 36).  

 

Figure 36: Plasma Insulin levels measured at each time point of the IpGTT. Data is 

presented as Mean ± SEM, *p<0.05, for PTP-1B
+/+

tx
balb-stz

 vs PTP-1B
-/-

tx
balb-stz

,  by 

two-way ANOVA. 

 

Finally, following these experiments, we collected the pancreas from all 

animals and analyzed insulin content. Results revealed that PTP-1B-/-txbalb-

stz, PTP-1B+/+txbalb-stz, and non-transplanted groups presented, as 

expected, an average a 10-15% remaining insulin content in relation to 
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mice from the non-diabetic group (Figure 37), that higher plasma insulin 

observed in PTP-1B-/-txbalb-stz mice during ipGTT originate from 

transplanted islets insulin secretion. 

 

Figure 37: Pancreatic insulin content. Total pancreas insulin content was 

measured in not diabetic mice (gray, n=8), diabetic not transplanted (white, n=8), 

PTP-1B
-/-

tx
balb-stz 

(blue, n=12) and in PTP-1B
+/+

tx
balb-stz

 (magenta, n=10). The assay 

was performed at the end of 28 days following transplantation. ***p<0.001, by one-

way ANOVA. 

 

The absence of PTP-1B in transplanted islets improves graft 

revascularization and survival. 

Since PTP-1B
-/-

tx
balb-stz

 presented improved glucose homeostasis, we investigated 

the differences in graft revascularization and survival in relation to PTP-1B
+/+

tx
balb-

stz
, that might explain the previous observations. We assessed in vivo graft 

functional revascularization, 7, 15 and 28 days after transplantation, by two-photon 

microscopy after injection of RITC-dextran (Figure 38A and B). We analyzed and 

compared vascular density and the vascular area between both groups. We found 

that, at day 7, PTP-1B
-/-

tx
balb-stz

 graft, showed a 1.5-fold increase in vascular 

density than PTP-1B
+/+

tx
balb-stz

. At day 15, we observed that both groups presented 

an increase in graft vascular density with respect to day 7, although PTP-1B
-/-

tx
balb-
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stz
 maintained a 1.5-fold increase over PTP-1B

+/+
tx

balb-stz
.  At day 28, neither group 

displayed any difference in relation to day 15, whereas PTP-1B
-/-

tx
balb-stz

 

maintained a 1.4-fold increase in relation to PTP-1B
+/+

tx
balb-stz

 (Figure 39A ).  

 

 

A 

B 
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Figure 38: Absence of PTP-1B in transplanted islets improves graft 

revascularization and survival without the loss of ß-cell area. a Representative in 

vivo images of functional vessels (in red, RITC-dextran labeling), and cell death  

(white nuclei, propidium Iodide labeling) in A. PTP-1B
+/+

tx
balb-stz 

and B. PTP-1B
-/-

tx
balb-stz 

(right panels) grafts, acquired 7, 15 and 28 days   after transplantation 

(Tx7, Tx15, and Tx28), using two-photon microscopy; nuclei were stained with 

Hoechst (blue); CFDA (green) stain islet cells; scale bars, 25µm. 

 

These observations led us to infer that both groups presented maximum 

revascularization on day 15, as described in other studies133,135. Likewise, 

the analysis of vascular area demonstrated that the PTP-1B-/-txbalb-stz graft 

at day 7, 15 and 28, had a 2-fold higher vascular area than PTP-1B+/+txbalb-

stz (Figure 39B).  

 

 

 

Figure 39: A. Quantification of relative vascular density; B. vascularization area by 

islet area and C. graft’s cell death (this last at day 28) in . PTP-1B
+/+

tx
balb-stz 

and -

1B
-/-

tx
balb-stz 

grafts 7 (n=8 islets/animal, 7 animals), 15 (n=9 islets/animal, 7 animals) 

and 28 (n=8 islets/animal, 10 animals) days after transplantation. Data presented 

as Mean ± SEM; *p<0.05, **p<0.01, by two-way ANOVA in A and B; and 

***p<0.001 by Student’s t-test in C. 
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In parallel to graft revascularization, we assessed in vivo cell death after 

propidium iodide injection. Results revealed a significant decrease in the 

PTP-1B-/-txbalb-stz graft when compared with PTP-1B+/+txbalb-stz (Figure 38 and 

39C). IHC-IF analysis of the paraffinized sections of the engrafted eyes 

supported in vivo cell death analysis findings, where a significant decrease 

in the cleaved-CASPASE3 staining was found in the PTP-1B-/-txbalb-stz graft 

when compared with PTP-1B+/+txbalb-stz (Figure 40 and 41A). 

 

The absence of PTP-1B in transplanted islets induces graft 

expression of VEGF-A without compromising the graft ß-cell 

population. 

In order to understand the increase in revascularization in the PTP-1B
-/-

tx
balb-stz

 

graft, we investigated the expression of VEGF-A, a cytokine, produced by islet 

cells, that is known to be the principal inducer of angiogentesis
50,51

. IHC-IF 

analysis of the paraffinized section of the engrafted eyes demonstrated that 89% 

of total PTP-1B
-/-

tx
balb-stz

 graft cells expressed VEGF-A, against 18% in the PTP-

1B
+/+

tx
balb-stz

 graft. Outstandingly, in both grafts, 90% of the cells expressing VEGF-

A were ß-cells (Figure 40 and 41B). The direct overexpression of VEGF-A in islets 

is known to increase islet revascularization massively. However, this is followed by 

a destruction of ß-cell area
144–146

. In this sense, we assessed graft ß-cell 

population. Interestingly, insulin and glucagon staining of engrafted eye 

paraffinized sections revealed that, on average, 76% of PTP-1B
-/-

tx
balb-stz

 graft cells 

were ß-cells (Figure 40 and 41C), a value that did not correspond with the ß-cell 

loss. In parallel, a lower ß-cell area was found in the analysis of the PTP-1B
+/+

tx
balb-

stz
 graft. 
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Figure 40 Representative immunofluorescence images from PTP-1B
+/+

tx
balb-stz

 and 

PTP-1B
-/-

tx
balb-stz

 graft’s slices, 28 days after transplantation. Apoptotic marker, 

cleaved CASPASE-3, or pro-angiogenic cytokine VEGF-A were stained and 

analyzed against INSULIN; islet ß-cell area was analyzed by co-staining INSULIN 

and GLUCAGON. For each analysis, top panels represent PTP-1B
+/+

tx
balb-stz

 grafts 

and bottom panels, PTP-1B
-/-

tx
balb-stz

 grafts; scale bars, 25µm. 
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Figure 41: A. Quantification of relative immunofluorescent-positive cleaved 

CASPASE-3 cells by total islet in PTP-1B
+/+

tx
balb-stz

 (n=10 islets/animal, 7 animals) 

and PTP-1B
-/-

tx
balb-stz

 (n=10 islets/animal, 6 animals) grafts. B. Quantification of 

immunofluorescent co-locatization of positive VEGF-A/ß-cells in PTP-1B+/+txbalb-

stz (n= 8 islets/animal, 9 animals) and PTP-1B-/-txbalb-stz (n=10 islets/animal, 7 

animals) grafts; **p<0.01, by Student’s t-test. C. Quantification of positive INSULIN 

area, by total islet area (INSULIN+GLUCAGON area); in PTP-1B
+/+

tx
balb-stz

 (n=5 

islets/ animals, 6 animals) and PTP-1B
-/-

tx
balb-stz

 (n=5 islets/animals x 6 animals) 

grafts. Data presented as Mean ± SEM; *p<0.05, **p<0.01 by Student’s t-test. 

 

In vitro elimination of intra-islet endothelial cells does not 

compromise insulin secretion or islet survival. 

 

The PTP-1B-/-txbalb-stz graft showed an increased early and long-term graft 

revascularization, revealing a potential role of iECs in this process269,301. To 

assess the contribution of donor iECs toward graft revascularization, we 

eliminated iECs from islets before transplantation. Since the endothelial 

cell population within the islets is  lost during culture time302,  we cultured 

PTP-1B-/- and PTP-1B+/+ islets for 7 days and monitored endothelial cell 

B A C 
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population using confocal microscopy and IHC-IF by performing PECAM-1 

staining (Figure 42A). Results showed a continuous loss of positive 

PECAM-1 labelling in both cultures, although, as previously observed, 

PTP-1B-/- islets maintained a lower rate of endothelial cell loss than PTP-

1B+/+ islets: after 1 day of culture, PTP-1B-/- islets presented a 1.7-fold 

increase in iECs and, after 2 days of culture, a 2.8-fold increase in PTP-

1B+/+ islets. Nevertheless, after 7 days of culture, there was no PECAM-1 

positive staining detected (Figure 42B). These results were validated by 

qRT-PCR analysis of Pecam1 expression of islets cultured for 0, 2 and 7 

days (Figure 42C); here we observed, as expected, a decrease in the 

expression of Pecam1 over time in both genotypes. Islets cultured for 7 

days were considered to be free of endothelial cells. 

 

A 

B C 
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Figure 42: A Representative maximum projections of image stacks from the 

immunofluorescence staining of PECAM-1 (yellow) in PTP-1B+/+ a PTP-1B-/- 

islets after 0, 2 and 7 days of culture; a white line defines islet area; on the top left 

corner of each panel is represented the merger between PECAM-1 and nuclei 

(blue, Hoechst); scale bars 25µm. B,C Relative PECAM-1 area in relation to total 

islet area (B) and expression of Pecam1 (B) in PTP-1B+/+ (n=9) and PTP-1B-/- 

(n=12) islets, cultured over 7 days. Data presented as Mean ± SEM;  n.s. not 

significant, *p<0.05,**p<0.01, by  one-way ANOVA 

 

To delineate the effect of the absence of iECs on islets, we performed an in 

vitro insulin secretion assay in response to glucose, from PTP-1B-/- and 

PTP-1B+/+ islets, and cultured for 7 days. Islets from both genotypes 

presented similar insulin secretion (Figure 43A). Moreover, neither PTP-1B-

/- nor PTP-1B+/+ islets displayed any changes in the expression of apoptotic 

cell markers Caspase3 and Caspase 9 (Figure 43B). Finally, confirming the 

lack of endothelial cells, vestigial expression of the endothelial markers, 

Pecam1, Kdr, and Cdh5, was detected, but no differences were observed 

between genotypes (Figure 43C). 

 

Figure 43: A In vitro insulin secretion, in response to glucose 3mM and 17mM; B,C 

Expression Casp3, Casp9 Pecam1, Kdr and Cdh5 in PTP-1B+/+ (n=5 and 7) and 

PTP-1B-/- (n=5 and 7) islets cultured 7 days. Data presented as Mean ± SEM;  

n.s. not significant, by Student’s t-test. 

B A C 
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The improved revascularization of PTP-1B-/- grafts is 

independent of intra-islet endothelial cells. 

We assessed if iECs from PTP-1B-/- islets were responsible for the 

improvement in graft revascularization. In vivo studies were performed by 

transplanting a suboptimal amount of islets into the anterior chamber of the 

eye of STZ-induced diabetic BALB/c mice. Two groups of diabetic mice 

were constituted:  PTP-1B+/+ECtxbalb-stz transplanted with PTP-1B+/+ islets 

cultured for 7 days, and:  PTP-1B-/-ECtxbalb-stz, transplanted with PTP-1B-/-

 islets cultured for 7 days. These groups were monitored for 28 days. 

 

 

A 
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Figure 44: A. Blood glucose levels and body weight of diabetic mice transplanted 

with islets without ECs: PTP-1B
+/+

ECtx
balb-stz

 (n=7) and PTP-1B
-/- 

ECtx
balb-stz 

(n=7) 

over 28 days; median concentration of blood glucose levels at day 0: 346.8mg/dL 

(n=14, black dashed line); average concentration of blood glucose levels of non-

diabetic mice over 28 days: 119.7mg/dL (n=8, gray dashed line); diabetes 

threshold: 250mg/dL. B. Body weight of diabetic animals transplanted with PTP-

1B
-/-

 and PTP-1B
+/+

 without intraislet endothelial cells. Body weigh measurement of 

PTP-1B
+/+

ECtx
balb-stz

 (grey squares and line; n=7), PTP-1B
-/- 

ECtx
balb-stz 

mice 

(green triangles and line; n=7), and diabetic but non-ransplanted mice (black circle 

and line, n=7) for 28 days. Data are in mean ± s.d, *p<0.05, **p<0.01 for PTP-

1B
+/+

ECtx
balb-stz

 vs PTP-1B
-/- 

ECtx
balb-stz

, by two-way ANOVA. 

As for blood glucose levels (Figure 44A), the PTP-1B+/+ECtxbalb-stz group 

did not exhibit any improvement when comparing day 0 to day 28. PTP-1B-

/-ECtxbalb-stz presented an improvement of 60%, achieving normoglycemia 

levels by day 7. Regarding body weight evolution, the PTP-1B-/-ECtxbalb-stz 

group recovered and continued gaining weight until day 28. The PTP-

B 

A 
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1B+/+ECtxbalb-stz group did not present any significant variation in body 

weight (Figure 44B). 

 

 

 

 

Figure 45: A. Representative immunofluorescence images from PTP-

1B+/+ECtxbalb-stz and PTP-1B
-/-

ECtx
balb-stz

 graft paraffinized sections, 28 days 

B C 

A 
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after transplantation. PECAM-1 (1st,2nd row: green), cleaved CASPASE-3 

(3rd,4th rows: green) were co-stained with INSULIN (magenta); rows 1,3 

represents PTP-1B
+/+

ECtx
balb-stz 

grafts and rows 2,4 PTP-1B
-/-

ECtx
balb-stz

 grafts; 

scale bars, 25µm. B,C. Relative immunofluorescence quantification of positive 

PECAM-1 (B) cleaved CASPASE-3 stained cells (C) in PTP-1B
+/+

ECtx
balb-stz 

(n=7-

8 islets/animals, 5 animals) and in PTP-1B
-/-

ECtx
balb-stz

 (n=7-9 islets/animals, 5 

animals) mice. Data presented as Mean ± SEM;  **p<0.01 by Student’s t-test. 

 

 IHC-IF analysis of paraffinized sections from the graft-containing eyes was 

performed by measuring PECAM-1 positive labeling to assess graft 

revascularization. We found a 4.2-fold increase in the percentage of 

endothelial cells within the PTP-1B-/-ECtxbalb-stz graft when compared with 

the PTP-1B+/+ECtxbalb-stz graft (Figure 45A and B). Furthermore, we 

investigated graft cell death by analyzing the apoptotic marker cleaved-

CASPASE3. PTP-1B-/-ECtxbalb-stz grafts showed a 61% decrease in 

apoptotic cells when compared with PTP-1B+/+ECtxbalb-stz (Figure 45A and 

C). Thus, we demonstrate that iECs are not responsible for improved graft 

revascularization in the absence of PTP-1B.  
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Expression of VEGF-A, in the absence of PTP-1B, is 

independent of HIF activation. 

To attain a deeper understanding of the increased expression of VEGF-A 

by ß-cells lacking PTP-1B we performed an in vitro ELISA to quantify the 

secretion and content of VEGF-A in PTP-1B-/- and PTP-1B+/+ islets after 

48h in culture. To do so, an in vitro, 48h secretome was collected and 

analyzed together with the islets lysates. Results showed that PTP-1B-/- 

islets presented a relative VEGF-A secretion per VEGF-A content that was 

1.92-fold higher than in PTP-1B+/+ islets (Figure 46A).  

 

Figure 46: A. Relative VEGF-A in vitro secretion of PTP-1B
+/+

 (n=6) and PTP-1B
-/-

 

(n=6) islets determine by ELISA; VEGF-A secretion was normalized by VEGF-A 

content. B. Expression of Vegfa in PTP-1B
+/+ 

(n=9) and PTP-1B
-/-

 (n=9) islets; Data 

presented as Mean ± SEM. n.s., not significant,*p<0.05,**p<0.01,***p<0.001 by 

Student’s t-test. 
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Gene expression analysis also revealed a 3.9-fold increase in Vegfa 

expression by PTP-1B-/- islets (Figure 46B). Furthermore, IHC-IF analysis 

of isolated islets revealed that 92% of all ß-cells from PTP-1B-/- islets were 

positive for VEGF-A (Figure 47A and B).  

 

 

 

Figure 47 A. Representative images from the immunofluorescence staining of 

VEGFA (green) and INSULIN (magenta) in whole isolated islets cultures 2 days; 

colocalization of VEGF-A and ß-cells is showed on the right panels (merge; nuclei 

stained using Hoescht):  top panels are relative to PTP-1B
+/+

 islets, bottom panels 

A 

B 
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are relative to PTP-1B
-/-

 islets; scale bars, 25µm. B. Quantification of 

immunofluorescent colocalization of positive VEGF-A/INSULIN in PTP-1B
+/+

 (n= 

14) and PTP-1B
-/-

 (n=14) islets. Data presented as Mean ± SEM. n.s., not 

significant,**p<0.01, by Student’s t-test. 

 

In order to evaluate if PTP-1B-/- islets presented higher levels of hypoxia 

than the controls, islets from PTP-1B+/+ and PTP-1B-/- mice were isolated, 

and Hif1a expression was assessed following 2 days of culture. Gene 

expression assay revealed no differences between genotypes (Figure 48), 

demonstrating that HIF-alpha plays no role in PTP-1B mediated-Vegfa 

expression. Furthermore, the expression of PGC1α and ERRα was 

analyzed. Data showed an upregulation of Ppargc1a and Esrra (Figure 48), 

revealing the modulation of the PGC1α/ERRα pathway by PTP-1B. 

 

Figure 48 Gene expression of HIF1a, Ppargc1a and Esrra in PTP-1B
+/+

 (n=9) and 

PTP-1B
-/-

 (n=9) islets. Data presented as Mean ± SEM. n.s., not 

significant,*p<0.05, by Student’s t-test. 
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The absence of PTP-1B triggers VEGF-A expression and 

secretion under nutrient deprivation via the PGC1α/ERRα axis. 

As cells express Vegfa in response to nutrient deprivation, by activating 

PGC1α and ERRα66, we cultured islets isolated from PTP-1B+/+and PTP-

1B-/- mice in standard complete medium and under nutrient deprivation 

(Hank’s balanced salt solution, Hbss), for two days and then assessed the 

gene expression of Hif1a, Vegfa, Ppargc1a and Esrra. When cultured in 

Hbss, no differences were observed between PTP-1B+/+ and PTP-1B-/- 

islets regarding Hif1a expression, proving that nutrient deprivation does not 

activate this transcription factor (Figure 49A). However, Vegfa, Ppargc1a, 

and Esrra gene expression were found significantly increased in PTP-1B-/- 

islets (Figure 49A), suggesting the modulation of this pathway by PTP-1B 

under nutrient deprivation. Outstandingly, when comparing PTP-1B-/- gene 

expression between standard complete medium and nutrient deprivation 

conditions, we found that under nutrient deprivation, islets dramatically 

increased the expression of Vegfa, Ppargc1a, and Esrra (Figure 49B).  

 

 

A B 
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Figure 49 A. Expression of Hif1a, Vegfa, Ppargc1a and Esrra in PTP-1B
+/+

 (n=10) 

and PTP-1B
-/-

 (n=10) islets cultured 2 days in Hank’s balanced salt solution 

(Hbss). B.  Expression of Vegfa, Ppargc1a and Esrra in PTP-1B
-/-

 cultured in 

complete medium (n=10) and Hbss (n=10) for 2 days. C. Relative VEGF-A in vitro 

secretion of PTP-1B
+/+

 and PTP-1B
-/-

 islets cultured in complete medium 

(n=6/genotype) and in Hbss (n=6/genotype). D. Immunoblot for the proteins, HIF-

1-ALPHA (120kDa), PGC-1-ALPHA (105kDa) and ERR-ALPHA (52 kDa), in 

nuclear extracts of PTP-1B
+/+

 and PTP-1B
-/-

 islets cultured either in complete 

medium or Hbss (n=2); housekeeping protein: LAMIN-B1. Data presented as 

Mean ± SEM. n.s., not significant,*p<0.05,**p<0.01,***p<0.001 by Student’s t-test 

in (A, B and C) ;*p<0.05, **p<0.01 by two-way ANOVA in (C). 

 

Using the same culture conditions, we measured VEGF-A secretion by 

ELISA, and found that was consistent with the previous observations; 

under both conditions, PTP-1B-/- islets secreted significantly more VEGF-A 

then PTP-1B+/+ islets (Figure 49C). No differences were found, in relation 

to VEGF-A secretion, between PTP-1B+/+ islets cultured under complete 

medium and nutrient deprivation (Figure 49C). Taking these results into 

account, it is clear that, regarding gene expression, the lack of PTP-1B 

C D 
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triggers Vegfa expression and secretion, independently of Hif1a, but 

positively correlates with the increased expression of Ppargc1a and Esrra, 

a mechanism potentiated by the low nutritional environment surrounding 

islets. In order to validate the effect of the absence of PTP-1B in VEGF-A 

secretion, we cultured PTP-1B-/- and PTP-1B+/+ in complete medium and in 

Hbss for 48h, and we analyzed protein levels of islets nuclear protein 

extracts by western blotting (with LaminB1 used as the housekeeping 

protein). In Figure 49D, we observed no changes in HIF1α protein levels 

between controls and PTP-1B-/-islets in any of the conditions studied. By 

contrast, PTP-1B-/- islets exhibited increased levels of expression PGC1α 

and ERRα in complete medium and Hbss when compared to PTP-1B+/+ 

islets. 
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Silencing PTP-1B in INS1E cells and rat islets upregulate VEGF-

A expression and PGC-1-ΑLPHA/ERR-ALPHA signaling 

Since it was possible to correlate expression and secretion of VEGFA with 

the increase in gene and protein levels of PGC1α and ERRα, in mice, we 

aim to confirm if this pathway is conserved in other species like rat and 

human. The first approach was to silence PTP-1B in a rat cell line: INS1E 

cells, using Dharmacon’s Accell siRNA technology. This siRNA technology 

allows cell transfection, without the need to use toxic transfection reagents. 

INS1E cells were incubated 72h with PTPN1 targeting siRNA (PTPN1-

siRNA), according to manufacturer recommendations and protocols. In 

parallel, a GAPDH targeting siRNA was used as a positive transfection 

control. After 72h, transfected and control (not transfected) cells were 

cultured, for 48h, in complete medium or in Hbss. Gene expression was 

performed using quantitative real-time PCR. In relation to the efficiency and 

extension of the transfection, it was possible to achieve an 80% reduction 

in both, Ptpn1 gene expression and Gapdh positive control (Figure 41).  

 

 

 

Complete medium 

Hbss Hbss+PTPN1-siRNA 

 

Complete médium+PTPN1-siRNA 

GAPDH-siRNA 

Control 

Ptpn1 Ppargc1a 
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Figure 50: Silencing PTP-1B in INS1En cells: gene expression of cells, under 

nutrient deprivation. PTP-1B was silenced in INS1E cells using a siRNA; a positive 

control targeting GAPDH was used. mRNA levels of Ptpn1 Hif1a, Vegfa, Ppargc1a 

and Erra were evaluated by quantitative real-time PCR, using as housekeeping 

gene actb (Beta-actin). Statistics: n=8; variance analysis: one-way 

ANOVA:*p<0.05; **p<0.01; ***p<0.001. 

 

The downregulation in Ptpn1 expression in INS1E cells cultured in 

complete medium was followed by a 3 fold increase in Vegfa gene 

expression, a 2.1 fold increase in Pgc1a and a 2.2 fold increase in Erra 

gene expressions when compared with controls (Figure 50). Outstandingly, 

this transfected cells, cultured in HBSS, lead to a more dramatic increase 

in Vegfa, Ppargc1a and Erra gene expression (4.2 fold, 3.6 fold and 4.5 

fold respectively) in relation to their control condition (Figure 50). These 

results confirm the conservation of this pathway in rat cells. 

 

Vegfa expression mechanism in rat islets with Ptp-1b silenced. 

 

PTP-1B was silenced in Wistar rat islets, accordingly with the previous 

protocol used in INS1E cells. Since islets are compact cellular structures, 

they were pre-incubated in a dilute solution of trypsin (50mg/mL or 2.1µM; 

dilution optimized in previous experiments). Incubation with diluted trypsin 

will increase the distance between islet cells, without compromise islet 

structure, allowing siRNA to diffuse into the core of the islet. In order to 

evaluate the diffusion of siRNA throughout the islets, we incubate islets, for 

72h with a non-targeting siRNA with GFP, fixed them and visualize siRNA 

diffusion using confocal microscopy.  
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In Figure 51 it’s possible to visualize four representative images from 

different cell layers acquired from different islet. SiRNA diffusion was not 

equal for all islets; neither reaches 100% of islet’s cells, but all used islets 

presented positive GFP labeling. In general, siRNA-GFP reached the islet’s 

core and infected 60 to 85% of total islet cells, and only in a small 

percentage of islets, positive-eGPF labeling was detected in few cells, (7-

15% of total islet cells).  

 

 

Figure 51: Diffusion of siRNA within rat islets.  A non-targeted siRNA with GFP 

was used to evaluate the diffusion of the siRNA under the conditions used for 

silencing Ptp-1b. Islets were incubated 72h with non-targeting eGFP-siRNA, 

according to the manufacturer recommendations. Confocal microscopy was used 

to assess siRNA’s GFP fluorescence (green), within different cell layers of the 

islets. After 72h of incubation, islets were fixed in Paraformaldehyde 4% and 

mounted with mounting medium with DAPI (in order to stain nuclei, blue). In order 

to represent de diversity in siRNA diffusion, four images of the different cell layer, 
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from four different islets were chosen. Zoomed sections of the images (white and 

red pointers, zoom 3x) are present in each image. 

 

Following this transfection protocol, we silenced PTP-1B in rat islets, 

incubating these, for 72h, with the Dharmacon’s Accell siRNA technology 

specific for rat PTPN1 gene. In parallel, a Gapdh targeting siRNA was 

used, as a positive transfection control. After 72h, transfected and control 

(transfected with scramble-siRNA) islets were culture, for 48h, in complete 

medium or in Hbss. Gene expression was assessed, through quantitative 

real-time PCR Figure 52) 

 

 

Figure 52 Silencing PTP-1B in rat islets: gene expression of islets, under nutrient 

deprivation. A positive control is targeting Gapdh used. mRNA levels of Ptpn1, 

Hif1a, Vegfa, Ppargc1a, and Erra were evaluated by quantitative real-time PCR; 

housekeeping gene: ßactin. Statistics: n=8; variance analysis: one-way 

ANOVA:*p<0.05; **p<0.01. 

 

 

Hbss Hbss+PTPN1-siRNA 

 

GAPDH-siRNA 

Complete medium Complete médium+PTPN1-siRNA Control 

Ptpn1 Ppargc1a 
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In relation to the efficiency and extension of the transfection, it was 

possible to achieve a 64% reduction in Ptpn1 gene expression and a 74% 

reduction in the expression of Gapdh positive control (Figure 52). 

Moreover, succeeding Ptpn1 silencing in islets cultured in complete 

medium, it was observed a 2 fold increase in Vegfa gene expression, 

followed by a 1.9 fold increase in Ppargc1a and a 2 fold increase in Erra 

gene expressions, when compared to controls (Figure 52). Furthermore 

and as expected, by the results obtained in INS1E cells,  transfected islets, 

cultured in Hbss, lead to a more dramatic increase in Vegfa, Pgc1a and 

Erra gene expression (3.3 fold, 2.5 fold, and 3.2 fold respectively) in 

relation to their control condition (Figure 52). These results support the 

conservation of this pathway in rat islets. 
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Silencing PTP-1B in human islets induces VEGF-A expression 

through PGC-1-ΑLPHA/ERR-ALPHA signaling 

Lastly, we aimed at investigating whether the modulation of VEGF-A by 

PTP-1B was conserved in human islets. Therefore, we obtained human 

islet from cadaveric donors in a total of 4 batches. In order to check batch 

purity, we stained a random sample with dithizone (DTZ). The average 

purity calculated for the 4 batches was 95.5% (± 1.3%). Islet viability was 

also assessed by a CFDA/PI am staining. Figure 53 represents the 

maximum projection image of fluorescent CFDA/PI in islets from two 

different batches. The average total viability calculated was 85.0% (±7.5%). 

 

Figure 53: Human islets batches purity and viability. A, B.  Representative images 

of the relative purity of the human islets batches (left column, batch A, top; batch 

B, bottom). A sample of each batch was stained with dithizone (pink), which stains 

zinc, accumulated mainly in the secretory vesicles of islet ß-cells. Scale bars: 

1mm. C, D. Representative maximum projection of in vivo immunofluorescence 

staining of CFDA (viable cell marker, green) and PI (dead cells, nuclei staining, 
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red), on human islets from batch A (top) and batch B (bottom). Images obtained 

using confocal microscopy, scale bars:15 µm. 

 

Silencing PTP-1B in human islets using siRNA technology 

 

Our first approach was to silence PTP-1B in human islets using 

Dharmacon’s Accell siRNA technology, according to the protocol 

established with rat islet. A non-targeting siRNA with eGFP was used to 

evaluate the diffusion of the siRNA throughout the islets. Figure 54 features 

four representative images: the two islets on the left represent negative 

control, while the two islets on the right represent islets incubated with 

siRNA. Negative control islets presented a weak fluorescent signal, which 

was attributed to auto-fluorescence. On the other hand, islets incubated 

with siRNA displayed strong eGFP fluorescence in the core of the islet, 

indicating a successful protocol for increasing siRNA diffusion. siRNA 

diffusion was not equal for all islets; neither group reached 100% of islet 

cells, but all used islets presented positive GFP labeling. Overall, it was 

observed that siRNA-GFP reached between 52 and 87% of total islet cells.  
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Figure 54: Representative immunofluorescence images of non-targeting, positive 

control, siRNA coupled with eGFP (siRNA-eGFP) in human islets (72h of 

exposure). Top panels: a merger between bright field and immunofluorescence, 

using as settings the excitation (488nm) and emission (517nm) wavebands of the 

eGFP molecule. A bottom panels: immunofluorescence images using eGFP 

previous settings. From left to right: column 1,2: control, human islets; column 3,4: 

human islets exposed to siRNA-eGFP; scale bars 50 µm. 

 

To evaluate the extension of the downregulation of PTP-1B we assessed 

PTP-1B protein levels by IHC-IF and western blot, 48h after the 

transfection protocol. The IHC-IF analysis (Figure 55A and B) revealed an 

average decrease of 57% in PTP-1B positive staining in ß-cells within 

human islets transfected with PTPN1-siRNA comparing with islets PTP-1B 

transfected with a scramble-siRNA (control). Moreover, analyzing control 

and PTPN1-siRNA protein extracts by western blot revealed a decrease in 

PTP-1B protein level in PTPN1-siRNA, confirming a successful 

downregulation of PTP-1B (Figure 55C) 

 

 

A 
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Figure 55: PTP-1B downregulation in human islets. A. Representative images from 

the immunofluorescence staining of PTP-1B (magenta) and INSULIN (green) in 

human islets following siRNA-PTPN1 silencing protocol. Top panels are relative to 

control human islet incubated with scramble-siRNA , bottom panels are relative to 

PTPN1-siRNA islets; B. Relative immunofluorescence quantification of PTP-

1B/INSULIN staining in PTPN1-siRNA (n=8)  and control islets n=8). C. Immunoblot 

for the proteins, PTP-1B (50kDa), AlPHA-TUBULIN (50kDa) in cell extracts of 

control and PTPN1-siRNA; Data presented as Mean ± SEM.,**p<0.01, by 

Student’s t-test; scale bars, 25µm.  

 

The obtained results indicate that we successfully downregulate PTP-1B in 

human islets. In addition to these results, gene expression was analyzed 

by quantitative real-time PCR. As a positive control for the transfection, we 

used GAPDH-siRNA. Gene expression analysis revealed a reduction in 

PTPN1 expression between 30 and 50% and a reduction between 25 to 

78% in GAPDH expression (Figure 56A and B). Along with the silencing of 

PTPN1, throughout the different batches, a significant increase of 1.4- to 3-

fold in VEGFA expression was observed, followed by a 1.2- to 1.6-fold 

increase in PPARGC1A expression and a 1.3- to 2.8-fold increase in 

ESRRA expression. HIF1A expression did not present any modifications 

(Figure 56A and B). For these reasons, it was possible to confirm that the 

lack of PTP-1B triggers VEGFA expression through modulation of the 

PGC1α/ERRα pathway in human islets.  

B C 
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Figure 56: Expression of PTPN1, HIF1A, VEGFA, PPARGC1A and ESRRA in 

control human islets (n=6) and PTPN1-SiRNA islets (72h of exposure; n=6), 

results from two batches are represented. Expression of GAPDH (positive control) 

was compared against control islets (n=6); Data presented as Mean ± SEM. 

*p<0.05,**p<0.01 by Student’s t-test. Gene expression assays were performed in 

four different batches 

To assess if the downregulation  of PTP-1B in human islets results in an 

increase in VEGF-A secretion, we performed an in vitro 48h secretion 

Batch A 

Batch B 
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assay analyzed by ELISA to quantify the secretion of VEGF-A in control 

and PTPN1-siRNA islets after 48h in culture. To do so, 48h secretome was 

collected and analyzed together with the islets lysates. Results showed 

that PTP-1B-/- islets presented a relative VEGF-A secretion per VEGF-A 

content that was 6-fold higher than in PTPN1-siRNA islets (Figure 57). 

 

Figure 57: Relative in vitro secretion of VEGFA from control and PTPN1-siRNA 

islets (n=4) quantified by ELISA; VEGF-A secretion was normalized by total 

protein content. Data presented as Mean ± SEM (x10
5
), *p<0.05 by Student’s t-

test.
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Silencing PTP-1B in human islets using shRNA Lentivirus particles 

 

Our previous results demonstrate that the signaling events by which the 

downregulation of PTP-1B induces VEGFA upregulation and secretion are 

conserved in human islets. Therefore we aimed to investigate whether it is 

possible to increase human islet-graft revascularization, after silencing 

PTP-1B. To achieve this, we use Short hairpin RNA lentiviral particles 

(shRNA LV) to silence PTPN1 gene. shRNA LV represents a more 

effective strategy for sustaining the downregulation of a gene in islets296–

298, when compared with siRNAs, moreover it is demonstrated that it does 

not affect islet function296–298. Therefore, using this technology allows 

evaluating the effect of PTP-1B silencing in the revascularization of human 

islet-grafts, after 8 days of transplant, where revascularization reaches its 

maximum. 

This way, human islets were infected with a shRNA LV for human PTPN1 

(shPTPN1 LV) with a pGFP vector, to monitor the transfection efficiency. 

After infection, the islets were maintained for 8 days, where the transfection 

was monitored. Transduced eGPF was monitored after 2 and 8 days 

following infection. ShPTPN1 LV islets presented high levels of 

transduction GFP 2 days following infection, on the contrary, at day 8 the 

number of cells presenting GFP fluorescence decreased (Figure 58), 

meaning the reduction of the transduction and therefore the possible 

downregulation of PTP-1B. 
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Figure 58: Representative fluorescence images of transduced eGFP in islets 

infected with shPTPN1 LV and control non-infected islets. Top panels: a merge 

between Hoechst/eGFP fluorescence, using as settings the excitation (488nm) 

and emission (517nm) wavebands for the eGFP molecule. A bottom panels: 

immunofluorescence images using eGFP previous settings. From left to right: 

column 1,2: control, human islets; column 3,4: human islets infected with shPTPN1 

LV; scale bars 50 µm. 

 

In order to understand the extension and duration of the downregulation of 

PTP-1B following the infection the infection, we analyzed protein levels of 

PTP-1B by western blot in protein extracts from shPTPN1 LV and scramble 

(infected by scramble shRNA LV) 2 and 8 days after the infection. 

Immunoblot reveals that 2 days following infection shPTPN1 LV islets 

presented a strong downregulation of PTP-1B when compared to control 

islets. However, eight days following infection, the protein levels of PTP-1B 

are almost normalized (Figure 59). 
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Figure 59: Immunoblot for the proteins, PTP-1B (50kDa), AlPHA-TUBULIN 

(50kDa) in cell extracts of control and shPTPN1 LV and scramble (scramble 

shRNA LV), 2 and 8 days after infection. 

To assess if the downregulation of PTP-1B in human islets results in an 

increase in VEGF-A secretion we performed an in vitro secretion assay 

analyzed by ELISA to quantify the secretion of VEGF-A in control and in 

shPTPN1 LV islets cultured for 2 and 8 days. To do so, 48h secretome was 

collected and analyzed together with the islets lysates. Results showed 

that PTP-1B-/- islets presented a relative VEGF-A secretion per VEGF-A 

content that was 7-fold higher than in shPTPN1 LV after 2 days of culture. 

VEGF-A secretion levels decreased after 8 days of culture but sustained a 

60% higher level of VEGF-A secretion than scramble islets (Figure 60). 

 

Figure 60: Relative in vitro secretion of VEGFA from control (scramble shRNA LV) 

and shPTPN1 LV islets (n=4) quantified by ELISA; VEGF-A secretion was 
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normalized by total protein content. Data presented as Mean ± SEM (x10
5
), 

*p<0.05 by two way ANOVA. 

The results obtained in this study support that targeting human islet PTP-

1B improves VEGFA secretion, through a PGC1α/ERRα axis. In this 

sense, we design a small pilot study to investigate if this improvement was 

translated into an enhanced human islet-graft revascularization after 

silencing PTP-1B. We transplant 150 human islets infected with shPTPN1 

LV (n=3 mice, 4 islets*animal) or scramble (n=2mice, 4 islet*mice) into the 

ACE of a small number of NSG mice, and assessed in vivo islet-graft 

functional revascularization by the end of 8 days, by two-photon 

microscopy. We found that 8 days following transplantation, shPTPN1 LV 

islet-graft present improved revascularization than scramble islet-graft 

(Figure 61). Curiously, and in contrast with previous in vitro results, 

infected islets display high levels of GFP fluorescence 8 days after 

infection, meaning that transduction is sustained over more time than in 

vitro conditions. 
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Figure 61: Absence of PTP-1B in human islet-graft improves graft 

revascularization. Representative in vivo images of functional vessels (in red, 

RITC-dextran labeling), and graft’s transduced eGFP in scramble and shPTPN1 

LV islets 8 days following transplantation, using two-photon microscopy; scale 

bars, 25µm. 

 

Based on all these data, we propose a model whereby VEGF-A expression 

is enhanced via the PGC1α/ERRα axis in transplanted PTP-1B-/- islets (fig. 

6). Briefly, in the presence of an external stimulus such as nutrient 

deprivation, the absence or downregulation of PTP-1B promotes an 

increase in PGC-1-α gene and protein levels through still unknown 

mechanisms.  In turn, PGC1α increases the expression of orphan nuclear 

receptor ERRα, and PGC1α/ERRα dimers recognize and bind several 

conserved sites at the VEGF-A promoter, inducing the expression of the 

VEGFA gene.  Increased Vegfa gene expression results in an increase in 

both protein and secretion levels of VEGF-A by islets. Lastly, VEGFA 

interacts with its receptor, VEGFR2, in endothelial cells, activating the 

signaling pathway of angiogenesis towards the islets.  
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Figure 62: Proposed scheme: PTP-1B enhances VEGF-A expression via PGC-

1α/ERRα signaling in islet transplantation. During an external stimulus like nutrient 

deprivation, the absence or downregulation of PTP-1B (1) promotes the increase 

of PGC-1-ALPHA gene and protein level. (2) and the expression of ERR-ALPHA. 

(3) PGC-1-ALPHA/ERR-ALPHA complex is known to recognize several conserved 

sites at the VEGFA promoter (4), inducing its expression (5) and increasing its 

secretion (6). In ECs VEGF-A is known to interact with its receptor, VEGFR2, 

inducing angiogenesis. 
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Islet transplantation as a potential treatment for type 1 diabetes fails mainly 

due to a deficient survival of the islet graft. Poor revascularization is mainly 

responsible for early graft loss and represents one of the major issues 

affecting long-term graft survival123,303,304. Searching for new targets to 

facilitate islet revascularization may lead to improved future results in cell 

transplantation305. 

Despite its potential, the clinical use of islet transplantation for treatment of 

T1D remains limited by post-transplantation challenges123,303, being one of 

the main issues, graft’s poor revascularization. Islets native architecture is 

characterized by a dense vessel network that, delivers oxygen, hormones, 

glucose, and nutrients to islet’s cells allowing them to function correctly33. 

This vascular network is severed when islets are isolated for 

transplantation123, and even though islets freely revascularize122,129,130, they 

do not reach the levels of vascularization present in endogenous 

pancreatic islets136,306,  which results in the impairment of grafts function 

and survival. Altogether, the lack of a proper vascular network account as 

the primary responsible for early graft loss124,136,307. Therefore we focused 

on the searching of new ways to improve islet-grafts vascular network 

representing a step forward to improve the outcome of transplantation.  

Sodium tungstate appears as a potent treatment, due to its low toxicity, 

high biodisponibility and to its high affinity to inhibit protein tyrosine 

phosphatases.Sodium tungstate has the potential to inhibit endothelial cell 

PTPs and potentiate VEGF-A-induced angiogenesis. In EC, tyrosine 

phosphorylation of the VEGFR2 and the adhesion molecule VE-cadherin 

constitute a crucial initial signaling event by which VEGF-A stimulates 

angiogenesis. Thus inhibiting VEGFR2 dephosphorylation, by inhibiting 

regulatory PTPs activity, will potentiate VEGFA-dependent receptor 
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dimerization and autophosphorylation. The result is the upregulation of 

unique downstream signaling pathways, which are linked to different 

angiogenic-liked cellular signals such as proliferation, migration, survival, 

and permeability252,253 

Apart from this sodium tungstate is known to have a significant effect on 

several pathways that can improve transplantation outcome, islet-graft 

revascularization, survival, and even function, converting this inorganic salt 

in an excellent candidate to be tested. For instance, treatment with sodium 

tungstate can reduce the adaptive immune responses, which are a major 

barrier to successful transplantation. Rejection is caused by immune 

responses to alloantigens on the graft, which are proteins that vary from 

individual to individual within a species, and are thus perceived as foreign 

by the recipient. Sodium tungstate is an inhibitor of the molybdenum-

containing enzymes such as (XO)308,309, a ubiquitous enzyme that is part of 

the purine biosynthetic pathway that catalyzes the conversion of 

hypoxanthine to xanthine and finally uric acid. XO is also a well-known 

producer of reactive oxygen species (ROS) that  contribute to host 

defenses in microbial infection models 310–312; In addition,  Maemura et al. 

describer that  XO-dependent ROS have a central role in antigen 

presentation and cell maturation of Kupffer cells and other professional 

antigen-presenting cells (APC) 313, this suggests that sodium tungstate 

inhibition of XO in mice could delay, or partially impair the adaptive immune 

response and thus the blood-mediated inflammatory response313, that 

destroys islet-grafts.  

Sodium tungstate is also known to improve pancreatic beta cell function by 

restoring glucose-induced insulin secretion, as the treatment shown to 

improve dose-dependently insulin secretion, which may favor islet graft 

function. Moreover, sodium tungstate treatment was shown to decrease 

the expression of several genes involved in the mitochondrial apoptotic 
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pathway and inflammatory response in islets lacking IRS-2, indicating that 

sodium tungstate primarily targets β-cell death mechanisms through 

activation of endogenous kinases195
. And finally, sodium tungstate 

treatment  increases proliferation172,176–178. A transcriptomic analysis of 

pancreas from STZ-diabetic rats has revealed that ERK1/2 has been 

shown to participate in Sodium tungstate-induced proliferation of INS-1E 

cells. Since Rkip inhibits Raf-1 kinase, which phosphorylates MEK, which 

in turn phosphorylates ERK1/2, Sodium tungstate-induced normalization of 

Rkip expression leads to an increase in the MAPK pathway activity, 

favoring proliferation, and thus promoting islet-graft replication and graftß-

cell mass expantion176. In addition, sodium tungstate is involved in the 

phosphorylation of PDX-1, which is involved in pancreas development, 

insulin expression, and β-cell functionality. In fact, sodium tungstate 

treatment augments the number of insulin and PDX-1 positive cells172,200. 

For all these reasons sodium tungstate treatment is a potential treatment to 

improve islet transplantation. However, and due to the risk of sodium 

tungstate treatment improve, also, insulin sensitivity, or induce pancreas 

regeneration as shown in STZ-induced diabetes models, the effects of this 

treatment on islets graft could be masked. Therefore we supplied 

0.5mg/mL of sodium tungstate in the drinking water, ¼ of the standard 

concentration used in those studies163,164,171,172,175.  

Despite the potential to ameliorate islet transplantation at several levels. 

The principal effect observed was the improvement in islet-graft 

revascularization and the decrease in graft’s cell death. The mechanism by 

which tungstate promotes revascularization in islet-grafts is unknown. It is 

possible that this effect may be the product of the inhibition of several 

phosphatases170,314 from graft’s cells or the overall effect on the recipient315. 

Une promising phosphatase inhibited by tungstate is PTP-1B180,316,317, that 

was demonstrated to be the negative regulator of angiogenesis signiling256. 

In this sense, by transplanting islet from PTP-1B-/- we were able to study 
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whether tungstate was acting through the inhibition of PTP-1B in donor 

endothelial cells that play an essential role in the early stages of graft 

revascularization and survival301,302,318. We demonstrate that the PTP-1B 

knock-out grafts together with tungstate treatment achieve similar levels of 

revascularization and reduced graft’s cell death as PTP-1B knock-out 

grafts without treatment and as PTP-1B wild-type grafts after with tungstate 

treatment. We propose that this improved revascularization is the main 

contributor to enhanced survival and function of PTP-1B-/- islet grafts. 

Although we cannot completely rule out improved ß-cell function due to 

loss of PTP-1B in our transplants, the experiments conducted with PTP-1B-

/- islets in vitro demonstrate that they exhibit similar apoptosis rates and 

glucose-induced insulin secretion to controls. 

PTP-1B emerges as a potential target with the ability to negatively 

modulate critical signaling pathways, such as cell proliferation and 

angiogenesis256,300; it was demonstrated to be the negative regulator of the 

phosphorylation of VEGFR2 upon the coupling of VEGFA and VE-

CADHERIN256. The activation of signaling pathways leading to the 

upregulation of various critical angiogenic enzymes involved in ECs 

proliferation, migration246 and loss of cell-cell contacts247 are decisive for 

the success of new approaches aiming the improvement of islet-graft 

revascularization. In this study, we demonstrate that the absence of islet 

PTP-1B increases functional graft vascularization by increasing the number 

of newly formed vessel branches and total graft vessel area. Furthermore, 

we propose that this improved revascularization is the main contributor to 

enhanced survival and function of PTP-1B-/- islet grafts. Although we 

cannot completely rule out improved ß-cell function due to loss of PTP-1B 

in our transplants, the experiments conducted with PTP-1B-/- islets in vitro 

demonstrate that they exhibit similar apoptosis rates and glucose-induced 

insulin secretion to controls.   
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A number of mechanisms could explain improved revascularization in PTP-

1B-/- islet grafts51,269,302 and in sodium tungstate treatment. As graft 

revascularization begins 2-4 days after islet transplantation130,133, donor-

intraislet endothelial cells engage a central role in the early stages of 

angiogenesis and vasculogenesis301,302,318. It is possible that in the absence 

or inhibition of PTP-1B, IECs might impulse early stages of 

revascularization, promoting a quicker re-establishment of blood vessels 

and improving islet-graft function and survival. Furthermore, since isolated 

PTP-1B-/- islets present an upregulation of several EC markers as well as 

reduced EC loss in culture, we considered the possibility that donor PTP-

1B-/- iECs contributed to the increased functional vasculature in 

grafts269,302,319. Our study revealed that iECs disappeared by the end of 7 

days. Although it is known that in culture, islets may alter the expression of 

several markers, or even insulin content and secretion320,321,we did not find 

any differences between PTP-1B+/+ and PTP-1B-/- in insulin secretion or 

apoptosis. Even though, we cannot exclude the possibility that other 

fundamental markers that could influence islet function could be modified 

during culture, our hypothesis, where iEC play a determining role on PTP-

1B-/- final, improved revascularization was ruled out after we observed that 

mice transplanted with PTP-1B-/- without ECs still exhibited improved 

levels of revascularization. 

The mechanisms underlying islet revascularization in the absence of PTP-

1B are unknown, although a number of factors may be implicated51. One 

possibility was that islets lacking PTP-1B released more pro-angiogenic 

signals than control islets. Our study revealed that PTP-1B-/- islet grafts 

expressed and secreted more VEGF-A, an angiogenic cytokine that 

stimulates extraembryonic blood vessel formation49,50,322 than control grafts 

favors this notion. One may suggest that a similar effect on 

revascularization could be obtained by using previous strategies based on 

the overexpression or direct administration of VEGFA to islets144–146. These 
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therapies, however, have demonstrated induced hyper-revascularization of 

the grafts associated with a loss of ß-cell mass and, consequently, 

impaired graft function. In this sense, our approach differs from previous 

ones and offers a significant advantage, as we demonstrate that improved 

revascularization, by modulating VEGFA expression, was not associated 

with deleterious effects on ß-cell number or function in grafts. Of note, the 

increment in VEGF-A expression observed in the grafts from our study was 

not translated into a decrease in relative ß-cell population, as the improved 

observed was accredited to a decrease in graft cell death. With this 

observation, we may hypothesize that, instead of directly activating VEGF-

A expression, like in other studied therapies, PTP-1B may act indirectly 

through a signaling pathway. 

The mechanism by which PTP-1B enhances VEGF-A expression is still 

unknown and constitutes a potential breakthrough. Cells express and 

secret VEGF-A in response to numerous stimuli, such as hypoxia60,62,319,323 

or nutrient deprivation66. The Vegfa promoter is known to have several 

binding sites to multiple transcription factors60,62,319 here the best known 

and the described factor is the hypoxia-inducible factor 1 (HIF1) and the 

primary hypoxia sensor, HIF1α324. However, our data show that HIF1α 

(primary hypoxia sensor) is not responsible for the upregulation of VEGF-A 

in islets lacking PTP-1B.  

A study conducted by Arany et al. described a HIF1-independent regulation 

of VEGF-A66. Here, they demonstrated that cells express VEGF-A in 

response to ischemia and nutrient deprivation independently of HIF but by 

increasing PGC1α expression and coactivation of ERRα expression. This 

pathway can be activated in transplanted islets, since that, by restoring a 

proper vascular network, the graft suffered from hypoxia, ischemia or 

nutrient deprivation, depending on the milieu of each transplantation 

site140,323,325. Here we showed that PTP-1B-/- islets presented higher levels 
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of Ppargc1a and Esrra mRNAs and higher amounts of their respective 

proteins, suggesting that this axis may be responsible for increased Vegfa 

expression. Importantly, downregulation of PTP-1B had similar effects in 

human islets, which is in agreement with the predicted conservation of 6 

out of 11 binding sites recognized by ERRα between the mouse, rat and 

human VEGFA genes66. We also showed that the upregulation of 

PGC1α/ERRα in islets was enhanced in response to nutrient deprivation. 

As our work is focused on the study of islet graft revascularization, the 

used transplantation site is the anterior chamber of the eye. This is an ideal 

site, as it allows for non-invasive in vivo imaging of the graft326, offers a 

reduced immune reaction273 and constitutes a highly vascularized site327. 

As the major component of the anterior chamber of the eye, the aqueous 

humor (AH) serves as the graft milieu. This humor is a dynamic fluid 

composed not only by organic and inorganic salts but also by 

carbohydrates, glutathione, urea, amino acids, proteins, oxygen, carbon 

dioxide and water327,328.  The AH is capable of sensing blood plasma 

changes, such as in glucose and oxygen327,329. When compared with 

plasma content, AQ content differs; the most significant difference is in the 

concentration of protein (around 200 times less, in the case of humans) 

and the quality of those proteins: most AH proteins are intrinsic 

glycoproteins327,328. In conclusion, it is possible to predict the occurrence of 

nutrient deprivation or even ischemia in islets transplanted into the anterior 

chamber of the eye, and therefore it is highly possible that during the early 

stages of the PTP-1B-/-islet-grafts revascularization the signaling events 

leading to the upregulation of PGC1α/ERRα and VEGFA secretion were 

potentiated as demonstrated by this work.  

PGC-1α has been identified as a tissue-specific coactivator of nuclear 

receptors330,331 . The expression of PGC-1α is most well-known in tissues 

with high energy demands, similar to the expression pattern of ERRα330,332. 

PGC-1α mRNA levels are induced in response to signals that relay 
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metabolic needs, such as exposure to cold, fasting, and physical 

exercise330,333. In addition, an increase in PGC-1α levels seems sufficient to 

induce cellular pathways necessary for energy metabolism, including 

adaptive thermogenesis, mitochondrial biogenesis, and fatty acid 

oxidation331,334,335 . This is accomplished by the interaction of PGC-1α with 

transcription factors, which recruit PGC-1α to target DNA regulatory 

sequences and enable the induction of relevant genes. Transcription 

factors that guide PGC-1α action to specific genes include nuclear 

receptors336. PGC-1α regulates ERRα function332  and expression. PGC-1α 

interacts physically with ERRα, enabling it to activate transcription332,336,337 

of programs of fatty acid oxidation and oxidative phosphorylation66,68–70. It 

was also found that the first intron of the Vegfa gene contains a putative 

enhancer region in which several conserved Erra-binding sites are 

recognized by Erra and coactivated by PGC1α to elicit the robust induction 

of Vegfa transcription. 

Curiously, PGC-1α induces the expression of VEGFA in numerous retinal 

cells, and PGC-1α expression is strongly induced during postnatal retinal 

development, coincident with VEGFA expression and angiogenesis338.  

PGC-1α−/− mice have a significant reduction of early retinal vascular 

outgrowth and reduced density of capillaries and number of main arteries 

and veins as adults. Moreover, PGC-1α−/− mice subjected to oxygen-

induced retinopathy had decreased expression of VEGFA and were 

protected against pathological neovascularization. These results 

demonstrate that PGC-1α regulates VEGFA in the retina and is required for 

normal vessel development338. Islets transplanted into the anterior chamber 

of the eye are revascularized through angiogenesis from vessels majority 

from the iris, but also from the retina339. If PTP-1B inhibition can activate 

this signaling, this could be a partial explanation, for sodium tungstate 

effect on islet-graft revascularization. The relation between the VEGFA-

induced PGC1α/ERRα signaling and PTP-1B in ß-cell, or any type of cell, 
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has never been described.  Whether PTP-1B interact with one or both 

transcription factors directly, or via phosphotyrosine-mediated inhibition of 

an intermediary, is not known, and it is worth more profound research. 

In order to establish PTP-1B as a groundbreaking and suitable target for 

cell transplantation, it was essential to study the conservation of these 

signaling events first in rats and then in human islets. Because islets are 

compact cellular structures that make difficult the access of molecules to its 

core, silencing PTP-1B was optimized using to methods, siRNA and 

shRNA Lentivirus infection. Both were suitable to silence PTP-1B in human 

or rat islets. However, shRNA LV  particle represents a more effective 

strategy for sustaining the downregulation of a gene in islets296–298, without 

affecting islet function296–298 when compared with siRNAs. Therefore the 

siRNA was preferred to assessed gene and protein levels the shRNA LV 

was used in a physiological model, were human islets silenced for PTP-1B 

were transplanted in NSG mice. Our study demonstrated for the first time 

that targeting the downregulation of PTP-1B in human islets improves 

VEGF-A expression and secretion by modulating the PGC1α/ERRα axis, 

resulting in an improved islet-graft revascularization.  

Based on all these data, we propose a model whereby VEGF-A expression 

is enhanced via the PGC1α/ERRα axis in transplanted PTP-1B-/- islets 

(Figure 6). Briefly, in the presence of an external stimulus such as nutrient 

deprivation, the absence or downregulation of PTP-1B promotes an 

increase in PGC-1-α gene and protein levels through still unknown 

mechanisms.  In turn, PGC1α increases the expression of orphan nuclear 

receptor ERRα, and PGC1α/ERRα dimers recognize and bind several 

conserved sites at the VEGF-A promoter, inducing the expression of the 

VEGFA gene.  Increased Vegfa gene expression results in an increase in 

both protein and secretion levels of VEGF-A by islets. Lastly, VEGFA 

interacts with its receptor, VEGFR2, in endothelial cells, activating the 

signaling pathway of angiogenesis towards the islets.  
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These results support PTP-1B as a new potential key target in the 

improvement of islet graft revascularization by establishing a proof-of-

concept that can lead to improving future results, thereby eliminating a 

critical stumbling block to islet transplantation and for cell replacement 

therapy. In fact, nowadays more islets have been transplanted to reverse 

hyperglycemia because a considerably high number of donor islets are lost 

due to the injuries from enzymatic/mechanical-mediated damage during 

isolation and lack of oxygen and nutrient supply during the slow 

reestablishment of blood supply to the transplanted islets. If this significant 

loss of donor islets can be avoided, then more diabetic recipients can be 

transplanted, and better insulin-independence rates will be achieved with 

the same number of currently available donors. Interventional strategies to 

improve islet engraftment by gene therapy could have a dramatic impact 

on the number of patients that might benefit from this therapy and could 

affect long-term graft survival340. Nevertheless, it is important to emphasize 

that to effectively reversing and cure type 1 diabetes, the studies and data 

from different therapeutical fields must come together and converge into a 

multidisciplinary approach. 
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 Sodium tungstate is a potential drug to be used to improve islet-graft 

revascularization in type 1 diabetes; 

 

 Sodium tungstate treatment improves islet-graft revascularization 

without compromising graft-ß cell compartment, by a mechanism 

mediated by PTP-1B; 

 

 Targeting PTP-1B is a potential therapy to improve islet-graft 

revascularization, without compromising graft’s ß-cell compartment; 

 

 Improved revascularization by targeting islet PTP-1B is independent of 

intra-islet endothelial cells; 

 

 The mechanism by which PTP-1B improves islet-graft 

revascularization is based on the fine modulation of, graft ß-cell’s, 

VEGFA expression and secretion by upregulating HIF1A-independent 

PGC1α/ERRα signaling; 

 

 The conservation of these signal event in human islets unlocks a new 

paradigm for the improvement of islet transplantation; 
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Conclusions 
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Inhibiting Protein tyrosine phosphorylation, we found a new model to 

develop strategies for improving islet transplantation, like the treatment 

with sodium tungstate. Even though we can not discard multiples effects of 

sodium tungstate treatment in the recipient, we conclude that sodium 

tungstate improves grafts revascularization, and survival without 

compromising graft’s ß-cell population, through a mechanism mediated by 

the inhibition of PTP-1B. 

Additionally here we conclude that targeting PTP-1B in islets potentiates 

the upregulation of the ß-cell VEGF-A-induced PGC1α/ERRα signaling. 

This constitutes a new paradigm in the strategies to improve islet-graft 

revascularization as it allows islets to enhance revascularization without 

compromising ß-cell compartment and graft failure due to poor 

revascularization. These results support PTP-1B as a new potential key 

target in the improvement of islet graft revascularization by establishing a 

proof-of-concept that can lead to improving future results, thereby 

eliminating a critical stumbling block to islet transplantation. Nevertheless, 

in order to reverse type 1 diabetes, effort from all fields of expertise must 

come together in a multidisciplinary effort to overcome and cure this 

burden disease. 
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