
UNIVERSITAT POLITECNICA DE CATALUNYA

ESCOLA TÈCNICA SUPERIOR D'ENGINYERS
INDUSTRIALS DE BARCELONA

Doctoral Thesis

MUSS: A CONTRIBUTION TO THE STRUCTURAL

ANALYSIS OF CONTINUOUS SYSTEM

SIMULATION LANGUAGES

December 1987

Antoni Guasch i Petit
Institut de Cibernètica

A la meva esposa Maria, pel seu ajut i encoratjament
Als meus pares, per tot el que he rebut d'ells

Ill

Acknowledgments

This work has been possible thanks to support got from a research grant from the
'Ministerio de Educación y Ciencia' and from the 'Institut de Cibernètica' (1C).

l also wish to express my appreciation to the 'Universitat Politècnica de Catalunya'
and to the 'Fulbright-La Caixa' institution for its support to the scientific exchanges
with the University of Solfora (UK) and the California State University at Chico.

I am particularly indebted to Professor Rafael M. Huber, my thesis supervisor, who
made valuable criticism and suggestions while carrying out this research and throughout
the entire preparation and proofreading of this thesis. Moreover, during the nine years
period I have been with the 1C, he has provided continuous challenge and inspiration
for the furthering of my research and work.

I am grateful to Professor Roy E. Crosbie for his accurate suggestions at the very
outset of this work. In addition, I wish to thank the claiming ¡CDSL users and specially
Professor Jordi Riera, the unquestionable leader of that group, for always asking me
for new, knotty and more powerful features.

Thanks to my friends Joan Ilari, Lluis Perez and Jordi Valls for the exciting midday
tennis games and to Xavier Ros for all the fantastic down-hill skiing days we have spent
together. All of them have helped me to get rid of my stress.

I appreciate the encouragement from my colleagues at the 1C and from my former
colleague Joan Juan.

Finally, I express my gratitude to my wife Maria for her relaxing happiness and
comprehension. There is a little doubt that without her constant encouragement this
work would not have been possible.

Abstract

MUSS: A CONTRIBUTION TO THE STRUCTURAL ANALYSIS
OF CONTINUOUS SYSTEM SIMULATION LANGUAGES

by
Antoni Guasch

In contrast with classical simulation languages, the present trends are evolving
towards fully integrated interactive modelling and simulation environments. These
environments have to combine interdisciplinary techniques such as AI, object oriented
programming, data base management and system modelling.

To achieve the above objectives, the architecture of the simulation programming
language and that of the run-time simulation environment (in this thesis, simulation
environment) which exercises the models should be designed allowing modularity and
flexibility. Furthermore, the robustness of the environment should be reinforced.

The thesis proposes the MUSS simulation system, emphasizing the innovative con-
cepts put forward: the hierarchical architecture of the Aft/55 simulation language, the
preprocessor analysis and segmentation phases and the structure of the run-time simu-
lation environment and related management mechanisms.

A MUSS environment may enclose studies, experiments and sumbodels; continuous
submodels may have initial, dynamic and static regions.

Submodels are translated to object code in isolation thanks to the proposed seg-
mentation procedure which in turn is based on the defined submodel digraph concept
The segmentation methodology increases the modularity and flexibility of the system
avoiding to restrict the general structure of the submodels. The submodel digraph is
also used to test the consistency of the code.

Keywords : combined models, continuous system simulation languages, data
structures, declarative language, digraphs, LALR grammars,
ODE computation methods, root finder algorithms, simulation
languages, simulation environments, sorting.

Thesis supervisor : Rafael M. Huber, Professor.

Contents

Acknowledgments

Abstract

1 Introduction l

LI Background and current trends l

1.2 Motivations and objectives of the research 3

1.3 MUSS, towards an integrated simulation system 4

1.4 Organization 6

2 MUSS architecture 7

2.1 Introduction 7

2.2 Architecture 8

22.1 Simulation program 8

2.2.2 Submodels 10

22.3 Experiment 18

22.4 Study 20

2.2.5 Example 22

2.3 Scope of variables, parameters and constants 25

vii

VIU CONTENTS

2.4 MUSS preprocessor 29

2.5 Summary 32

3 Continuous submodel analysis 33

3.1 Introduction 33

3.1.1 Continuous submodel 34

3.1.2 Introductivo example 38

3.2 Submodel digraph 48

3.2.1 Elementary graph concepts . 48

1>22 Submodel digraph definition 50

3.2.3 Construction of the submodel digraph . , 51

3.3 Submodel digraph analysis 66

3.3.1 Code consistency checking 69

3.3.2 Submodel dynamic initialization analysis 74

3.3.3 Discontinuous function computations analysis 81

3.3.4 Dynamic computations 85

3.4 Submodel sorting 87

3.4.1 Statement of the problem 88

3.42 Definitions 89

3.4.3 An algorithmic solution 90

3.5 Case study 97

3.5.1 Initial segment 100

3.52 Discontinuous segment 101

3.5.3 ODE segment 103

3.6 Summary and conclusions 106

CONTENTS ix

4 The Simulation environment 109

4.1 Introduction 109

4.2 Model structure Ill

42.1 Submodel data structure 113

4.2.2 Definition digraph 117

42.3 Initialization sequence 124

42.4 Dynamic sequence 127

4.3 Experiment and study structures 129

4.4 MUSS command language (MCL) 131

4.5 Summary 136

5 Conclusions and future research 139

5.1 Conclusions 139

5.1.1 Abstract contributions 139

5.12 Present implementation state of the MUSS system 140

5.1.3 Results 141

5.2 Future research 144

A Metalanguage used to define MUSS and MCL grammars 147

B MUSS command language (MCL) 149

B.I Grammar 149

B.I.I MCL 150

B.1.2 Command_set 150

B.1.3 Auxiliary grammar rules 164

CONTENTS

C Case study: switched-mode power regulator 171

C.l Circuit Elements, Top-Down Modelling 172

C.I.I SMPR circuit 172

C.1.2 Power circuit 172

C.1.3 Control circuit 174

C.2 Bottom-up coding and testing 175

C.2.1 Integrator . . . 176

C.2.2 Filter 181

C.2.3 Proportional plus integral controller 184

C.2.4 Limiter 187

C.2.5 Pulse-width modulator 191

C.2.6 Control circuit 197

C.2.7 Power circuit 202

C.2.8 SMPR circuit 206

C.3 Summary 211

D Acronyms 213

Bibliography 215

Index 223

List of Figures

1.1 Evolution of CSSL 2

1.2 General architecture of the MUSS system 5

2.1 Model data base 9

2.2 User defined simulation environments 10

2.3 Updated user defined simulation environment 11

2.4 Submodel 15

2.5 Dynamic continuous region 15

2.6 Dynamic sampled region 16

2.7 Experiment block 19

2.8 Study block 20

2.9 Communication through global data 27

2.10 Preprocessor structure 29

3.1 Non linear system 39

3.2 Digraph associated to the nonJinear^ystem submodel 40

3.3 New digraph associated to the nonJitiear-system submodel 41

3.4 Planar and biplanar representations of second_order submodel digraph . 43

3.5 Second_order segment-link digraph 44

xi

XU LIST OF FIGURES

3.6 Biplanar representations of non_linear_system digraph 46

3.7 Planar representation of non_linear_system digraph 47

3.8 Non_linear_system segment-link digraph 47

3.9 Balanced tree used to store the symbols table 52

3.10 The inclusion of executable vertices and its associated edges is straight-
forward 53

3.11 Transformation rules: Hidden edges are retrieved from the model data
base 54

3.12 Transformation rules: Edges from discontinuous functions to their as-
sociated effect are included in the submodel digraph 57

3.13 Initial region rules: The initial region is represented with a single exe-
cutable vertex 59

3.14 Declarative assignment statements rules: The representation of the re-
lations between variables and statements is straightforward. 60

3.15 When rules: A when statement is represented in the submodel digraph
with a single executable vertex 61

3.16 When rules: Some edges might be inserted in the submodel digraph to
force the execution order of when statements 63

3.17 If rules: Code within if statements is declarative 65

3.18 A variable should not have a double definition in the same declarative
block 70

3.19 A variable can not be defined in an if clause and simultaneously in a
declarative statement placed outside the if clause 71

3.20 Variables ought to be defined for each logical state of a if discontin-
uous statement 72

3.21 Variables may be used only within a declarative block embedded in a
if statement 73

3.22 If a global vertex is initialized, the other vertices contributing to the
global vertex are ignored. 75

LIST OF FIGURES xiii

3.23 Pulse-width modulator submodel digraph 77

3.24 Dummy submodel digraph 80

3.25 Special care should be take in the segmentation of the ODE segment
when i f statements are involved 92

3.26 The first fusion step consists on fusing vertices with equal output weight. 95

3.27 Segment-link digraph construction 96

3.28 Spring and mass system 97

3.29 Sprint_and_mass_system submodel digraph 100

3.30 Sprintjnd_mass_system ODE segment digraph and reduced digraph.. . 104

3.31 The continuous submodel analysis: processes, digraphs and codes.. . . 107

4.1 Hierarchical levels of a simulation environment 110

4.2 Simulation environment with SMPR and non linear system models . . 112

4.3 Real-pole submodel data structure 118

4.4 ReaLpole definition routine 120

4.5 Definition digraph of nonJinear_system and SMPR models 121

4.6 ReaLpole definition routine 122

4.7 Hierarchical models 125

4.8 Management of the dynamic memory. 126

4.9 Experiment block 129

4.10 A simulation environment 133

4.11 MCL command: show experiment :* 134

5.1 Experiments and models used for testing the simulation environment. . 143

B.I SMPR experiments and model structure 167

xiv LIST OF FIGURES

C.I Switched-mode power regulator circuit (SMPR) 172

C.2 Power circuit 173

C.3 Control circuit 174

C.4 SMPR hierarchical structure 175

C.5 SMPR associated experiments 177

C.6 Integrator submodel digraph and segmentation process 178

C.I Integrator segment-link digraph 180

C.8 Integrator test results 180

C.9 Filter submodel digraph and segmentation process 182

C.10 Filter segment-link digraph 184

C.ll Filter test results 184

C.12 Pi-controller submodel digraph and segmentation process 186

C.13 Pi-controller segment-link digraph 187

C.14 Limiter submodel digraph and segmentation process 189

C.15 Limiter segment-link digraph 191

C.16 PWM submodel digraph and segmentation process 193

C.17 PWM segment-link digraph 196

C.18 Pulse-width modulator test results 197

C.19 Control-circuit submodel digraph and segmentation process 199

C.20 Control-circuit segment-link digraph 201

C.21 Control-circuit test results '.202

C.22 Power_circuit submodel digraph and segmentation process 204

C.23 Power-circuit segment-link digraph 206

C.24 SMPR submodel digraph and segmentation process 208

LIST OF FIGURES xv

C.25 SMPR segment-link digraph 210

C.26 SMPR test results 210

Chapter 1

Introduction

"/ expect simulation languages to disappear in favour of interpretive
interactive simulation environments with graphic capability. These systems
will have expert capability and will often anticipate user directives and
suggest alternatives. I also expect data bases to integrate many simulation
models as images of reality."

[Vaucher84a]

1.1 Background and current trends

The early stages of the digital simulation languages date back [SelfridgeSSa] to the
mid-fifties and were supported by the apparition at the beginning of the decade of the
first génération of digital computers [BaerSOa] and by the numerical calculus emerging
field (figure 1.1).

Meanwhile, analog computers were widely used in the scientific community. Since
the analog computers voltage is limited, usually to 10 or 100 volts, the scaling of
the problem is a necessity [Jackson60a]. In the early sixties, simulation languages
which emulate the behaviour of the analog computers were introduced to solve this
arduous problem [Rigas76a]. This oriented application and the new features added to
the simulation languages favoured the spread and development of the digital simulation
techniques.

At that time, the FORTRAN and ALGOL scientific programming languages become
popular, leading to more powerful simulation languages [ClancyoSa] and therefore, in
the late sixties, several languages were in the market However, there was not an

CHAPTER 1. INTRODUCTION

Analog Computation

1950

1960

1970

1980

1990

Numerical Calculus

Figure 1.1: Evolution of CSSL.

agreement about the prevailing basic simulation features and the SCi Committee on
Simulation Software was aware that some direction was needed to promote an orderly
development in the field. In consequence, the conclusions of numerous meetings were
agglutinated in the "SCi Continuous System Simulation Language" (referred herein as
CSSL67) proposal [Strauss67a].

As a result, the family of CSSL67-like languages appeared. Without doubt, the
SCi effort was worthy since nowadays the majority of the digital continuous system
simulation languages available in the market still belong to this group.

Structured programming and automatic compiler generation techniques have been
used in the decade of the seventies to increase the reliability and robustness of the simu-
lation software [Cellier79b]. At the same age, the first combined — continuous/discrete —
system simulation packages were released to the market [Hurst73a] [Ce!lier76a].

At the beginning of the present decade the necessity of introducing discrete features
in the continuous system simulation domain comes forth in the scientific community.
However, this aspect is still controversial, see [Crosbie82b] and the TC3-IMACS Sim-
ulation Software Committee Newsletter N°12, August 1984.

Furthermore, new simulation languages have given up the monolithic CSSL67 struc-
ture and modular structures have been adopted. Those languages support higher modu-
larity in, at least, three aspects: the programming of the simulation study itself; allowing
program blocks consistent with the division of the physical system into subsystems;

1.2. MOTIVATIONS AND OBJECTIVES OF THE RESEARCH

and automatic building of the model by means of submodels.

At present, fields such as Expert Systems, Data Base Management Systems, Con-
current Programming and Object Oriented Programming are contributing to the devel-
opment of simulation environments which, in contrast with the simulation languages,
integrate the software support.

1.2 Motivations and objectives of the research

The research lines of the Institut de Cibernètica (1C) are strongly influenced by the
demands of the industrial and scientific communities in Catalunya. Among them, those
areas mainly related with simulation are Automatic Control (Electrical Engineering)
and Bioengineering.

In the seventies, simulation in the 1C was based on hybrid techniques [Huber82b].
Thereafter, the simulation group started to work in pure digital simulation languages.
As a result, the ICDSL CSSL-like simulation language was designed [Guasch84a].

About 1983, the lack of modularity of the ICDSL language was noticed as a sig-
nificant constraint in the simulation of large systems. Therefore, the design and imple-
mentation of the Modular Simulation System MUSS got under way.

A hierarchical architecture sustaining a modelling, coding and testing bottom-up
approach has been chosen and the research guide line has been to provide the theoretical
and practical background needed to support a modular structure without restricting the
following general objectives:

The language should be declarative and should manage a modularity coherent
with the division of the physical system into subsystems through a minimal but
sufficient number of different blocks.

The separation between the model description and the experiment should be
done in such a way that the model remains unchanged along the experiments and
ready to be used from another model (submodel) at the end of the validation and
verification experiences.

It should be possible to build a system model in a bottom-up way relating two
or more submodels from a model or submodel of higher hierarchical level.

Isolated preprocessing of submodels as well as run time symbolic access to all
the variables should be able.

CHAPTER 1. INTRODUCTION

* The language should be designed in order to be easily extendióle to real time
applications.

• The usual design engineering steps concerning a prototype which has to work
on-line with an existing hardware system should be liable to be performed in the
following sequence:

- Hardware system modelling and model validation.

- Prototype modelling.

- Whole system model evaluation.

- Prototype building.

- Evaluation of the physical prototype on line with the model of the hardware
system.

- Evaluation of the physical prototype on line with the hardware system.

The MUSS architecture proposed joins the object oriented language concept and
has been conceived having in mind to support in a future concurrent programming and
AI reasoning.

1.3 MUSS, towards an integrated simulation system

The MUSS simulation system includes the following modules (figure 1.2).

• Model definition languages:

Simulation models may by specified using different techniques such as CSSL-like
languages and bond graphs.

MUSS will allow several model definition languages besides the native one.

• Translator:

It embraces two modules: the preprocessor which translates MUSS source code
into C language code and the C compiler which translates the C code to object
code. The MUSS preprocessor stores and gets information from the model data
base.

• Model data base:

Stores information about preprocessed and compiled submodel, experiment and
study blocks. Compiled blocks are stored in system or user defined object li-
braries.

1.3. MUSS, TOWARDS AN INTEGRATED SIMULATION SYSTEM

Environment generator:

Using this module, the user may chose the set of experiments and studies to be
included in the user defined interactive simulation environment

Simulation environment:

An interactive monitor controls the execution of selected studies and experiments.

Simulation results are stored in a simulation data base.

Simulation data base:

Stores simulation results and experimental results.

Alternative model
definition languages

Translators

Postprocessors

Rgure 1.2: General architecture of the MUSS system.

Postprocessors:

Postprocessors are used to analyze simulation results stored in the data base or
to store experimental results in the data base.

CHAPTER 1. INTRODUCTION

1.4 Organization

The general structure of this thesis is as follows :

This chapter is a review of the historical evolution as well as the present state
of continuous system simulation languages. Furthermore, it describes the MUSS sim-
ulation system proposed. The research outcome is mainly centered in two system
modules : the MUSS preprocessor and the MUSS simulation environment plus the
MUSS model definition language.

Chapter 2 describes the architecture of a MUSS program. Only three type of blocks
have been defined in contrast with other simulation languages which use a large set of
blocks, being some of them defined because of programming requirements instead of
methodological ones.

In Chapter 3, the submodel digraph concept on which the proposed continuous
submodel analysis and segmentation algorithms rely is defined and its characteristics
are outlined.

In Chapter 4, the structure of the simulation environment is presented. The user
selects the set of models, study and experiment blocks to be included in the environ-
ment Although MUSS program blocks can be preprocessed and compiled in isolation,
variables from any block can be accessed symbolically as well as block information
stored in the model data base.

Chapter 5 contains the conclusions derived from the theoretical developments and
the obtained experimental results. Possible improvements are discussed and open future
research lines are pointed out

In Appendix A, the metalanguage used to specify in Appendix B the MUSS
language and in Appendix C the MCL language is presented. MUSS and MCL are
lookahead-left-to-right languages.

In Appendix B the Afí/55 Command Language —MCL— is introduced and its
grammar rules are listed. This language has been designed to allow users to interact
with the simulation environment

Appendix C contains a simulation example to illustrate the top-down modelling
and bottom-up coding and testing approach which is strongly supported by the MUSS
simulation environment The analysis and segmentation performed to each submodel
is outlined.

Finally, Appendix D contains a short list of used acronyms.

Chapter 2

MUSS architecture

"Conventional simulation techniques have three shortcomings-when ap-
plied to large-scale modelling: They provide an inadequate man-machine
interface, they provide a poor conceptual framework, and they lack needed
tools for managing data and model. These shortcomings may be ame-
liorated by developing a new simulation languages that differentiate the
functional elements of a simulation program and by recognizing the goals
of these functional elements."

[Oren79a]

2.1 Introduction

The architecture of the MUSS language and related language constructs converge
with the trends on piecewise-continuous system simulation languages [Crosbie82a]
[HaySSa] and with the state of the art on combined simulation languages [CelUer79c]
[Smart84a] [Oren84a] [Kettenis86b].

Although the MUSS language has been designed to initially support the continuous
time modelling formalism, the simulation environment has been conceived to easily
expand the language to combined models. As an example, the class concept which
allows the generic instantiation of processes is supported although at present, only
continuous processes are handled.

The formal design is carried out using syntax analysis tools [Lesk75a] [Johnson75a].

CHAPTER 2. MUSS ARCHITECTURE

2.2 Architecture

2.2.1 Simulation program

The definition of a MUSS simulation program is as follows1:

MUSS_program
: set of MOSS blocks

set_of_MOSS_blocks
: MOSS_block
I set of MOSS blocks MOSS block

MOSSJblock
: study_block
I experiment_block
I submodel block

A MUSS program is composed of a set of blocks whose structure guarantees the
proposed objective. Three types of blocks may be present in a program:

• submodels: provide the user with mechanisms to describe a physical subsystem.
A submodel block may call and may be called by none, one or more submodel
blocks. A MUSS simulation model is composed by a set of submodels. A model
is a relative concept which depends on the experiment block being executed.

• experiments: control the execution of a single evolution. None, one or more
models can be called from the dynamic region of an experiment. In the experi-
ment block, mechanisms for performing a set of evolutions —multi-run study—
are not provided. Experiments can not call one each other.

• studies: A study block controls the execution of a set of evolutions —experi-
ments—. One or more experiments can be invoked from the dynamic region of
the study.

A program alone does not have necessarily to define a complete environment,
neither a study or experiment ready to be executed, neither a model. The set of

'The metalanguage used to define the MUSS language is specified in appendix A

2.2. ARCHITECTURE

preprocessed and compiled blocks belonging to a program are put together in a chosen
library. Later on, a given environment will be set up by the environment generator
which selects study or/and experiment blocks from object libraries.

Figure 2.1: The model data base keeps information about preprocessed
and compiled submodel, experiment and study blocks. Com-
piled blocks are stored in system or user defined object li-
braries.

The MUSS system is flexible enough to allow users to create and share oriented
libraries. For example, the Institut de Cibernètica uses simulation in two main fields:
Electrical Engineering and Bioengineering. Therefore, besides the standard simulation
library, it is possible to define two libraries, the first one oriented to the simulation
of Electrical Engineering models and the second one oriented to the simulation of
Bioengineering models. Moreover, every user may define his own library (figure 2.1).

Using the environment generator module the user may select the set of experiments
and studies2 to be included in the user defined simulation environment Selected blocks
may be stored in different libraries. Furthermore, a block from a given library may call
blocks stored in other libraries.

An example follows, lets suppose that program A from figure 2.2 is preprocessed,
compiled and included into the standard simulation library (figure 2.1). An environ-
ment can be defined by selecting experiment^ and experiment^ experiments from the

2Whcn an experiment or a study is flagged for its inclusion in a simulation environment, all the
called lower level blocks are implicitly selected.

10 CHAPTER 2. MUSS ARCHITECTURE

standard library. Other environments would have been defined selecting experiment J
or selecting experiment^.

limiter

expen"ment_1

experiment_2

•xp«rim«it II [«pwtnwnt 21 l»xp»rfm»nt_

Program A Two environments

Figure 2.2: User defined simulation environments selected from the blocks
in program A.

Notice that the limiter submodel block has to be preprocessed before higher level
blocks calling it This is extensible to all program blocks.

To continue die example, in figure 2.3 it is shown how new blocks from program
B might be added to the environment after being preprocessed, compiled and stored in
the user J library.

2.2.2 Submodels

Most of the commercial currently available continuous system simulation languages are
based on the SCi CSSL report [Strauss67a]. In its implementation the most impor-
tant part is concerned with numerical algorithms while the programming structures are
relatively poor [Brennan68a] [Chu69a]. In these languages, the only way to achieve
modularity consists on the use of MACRO pseudoblocks or preprocessor target lan-
guage subroutines (most often, FORTRAN subroutines). Although the use of MACRO
blocks as a basic element to achieve model modularity still have adepts [NilsenSla]
[Breiteneck83a], the general feeling is that MACROS are still needed because inde-
pendent translation of submodel code is not always possible [Cellier79a] [Baker83a]
[Mitchell84a] [Freeman84a] [Korn87a].

In contrast, new simulation languages offer a higher level of modularity in, at least,
two aspects :

2.2. ARCHITECTURE 11

real_pole

study_1

nonjinear-
system

experiment_3

Program B Environment

Figure 2.3: Blocks from new programs can be added to a previous user
defined simulation environment. A user defined simulation
environment may include a large set of study, experiment and
model blocks.

They allow program blocks consistent with the division of the physical system
into subsystems.

They allow the automatic building of the model by the use of submodels.

Oren [Ören79b] defined the concept of modular coupled model. A modular
coupled model consist of several submodels where coupling specifications define the
input/output relationships between submodels. Depending on the disposition of each
submodel relative to other submodels, two types of modular coupled models can be
defined:

* Hierarchical model: several coupled submodels where at least one of the sub-
models is itself a coupled model.

* Flat model? several coupled submodels. The submodels are not themselves
coupled models.

'The flat model concept proposed here is different from the flat model concept presented by Symons
[Symons86a], [Symons87a].

12 CHAPTER 2. MUSS ARCHITECTURE

Comparative study

Different blocks have been proposed to code submodels and a first remark is that the
bracket structure statements are misleading because some of them may have differ-
ent meaning according to the different languages. For example, the MODULE con-
cept in COSY [Cellier79c] is quite different from the MODULE concept in SYSMOD
[Smart84a]:

• In COSY, a MODULE block must be stored in source form. In its definition,
formal parameters need no longer be separated into input and outputs; upon
usage the mapping of the actual to formal parameters is specified by explicit
assignments; besides replacement of parameters, it uses formulae manipulation
to reorganize the statements. This concept was formulated in [Runge77a] and
in [Elmqvist78aJ.

• SYSMOD uses the MODULE concept for SUBMODEL invocation when infor-
mation loops are found. When a submodel is called as a MODULE it is handled
as a MACRO. The MODULE invocation ensures that compatibility with SUB-
MODELS is maintained at run-time.

Up to now, there is not a general agreement about the basic blocks that a simulation
language should have in order to achieve modularity in the model description. What
follows is a description of the blocks of some modem simulation languages. Only the
blocks that support the piecewise continuous modelling formalism are described:

COSMOS [Kettenis83a] [Kettenis86a] :

• CONTINUOUS PROCESS : describe processes of entities whose behaviour
is governed by differential equations. Each continuous process may have
an initial, a continuous and a terminal segment. Statements written in the
continuous segment are sorted by the compiler.

• SYSTEM : The SYSTEM-segment is used to specify the model. The pa-
rameter passing between processes is derived from GEST and will be given
in a COUPLING-segment in the SYSTEM-segment of a simulation pro-
gram. In the literature read there is not information about how information
loops in the COUPLING-segment are handled.

COSY [Cellier79c] :

• MODEL : The concept of MODEL is similar to the PROCED pseudoblock
proposed in the CSSL definition. Contrary to the PROCED construct, the

2.2. ARCHITECTURE 13

statements of the model are parallel code. MODELs can be preprocessed
and used as full-MODELs.

• MACRO : This facility is often needed to obtain a sorted executable se-
quence of statements. MACROS should be stored in source form.

• MODULE : It is more general than the MACRO definition in two senses :

1. Besides replacement of parameters, it uses formulae manipulation to
reorganize the statements.

2. A MODULE definition may contain an initial block, a terminal block
and a discrete block in addition to the continuous block.

DISCO [HelsgaunSOa] :

• CONTINUOUS PROCESS : In a continuous process the order in which
the equations have to be solved is left to the user because DISCO does not
change the execution order of the equations. The user has to determine
the order of evaluation within each continuous process, and the continuous
process themselves have to be ranked by giving each a priority.

ESL [Crosbie83a] [HaySSa] :

• SUBMODEL : In ESL, a SUBMODEL may call lower level submodels
and may be called from higher level submodels or from a MODEL. Sorting
algorithms have been implemented lately in the language but up to now we
do not know their characteristics and restrictions.

• MODEL : The model provides the user with the ability to describe the
physical system. SUBMODEL sorting notes are applicable to the MODEL
dynamic code.

GEST [Ören84a] :

• COMPONENT MODEL : In GEST, a model may be composed by a number
of component models. A component model may be continuous, memoryless
or discrete. Each component model is composed by a number of other
component models; the coupling may be hierarchical.

SYSMOD [Baker83a] [Smart84a] :

• MODEL : In SYSMOD a model is a relative concept and it has a hierar-
chical structure. The SUBMODEL name is used for calling lower level
MODEL blocks. The statements of a MODEL are parallel code and can
be preprocessed, compiled and stored in libraries.
When sorting parallel code within a MODEL, the sorter, which has no
knowledge of the internal structure of lower level MODELs, may report

14 CHAPTER 2. MUSS ARCHITECTURE

information loops. In such a case, lower level MODELs in the loop must
be called using the MODULE clause instead of the SUBMODEL one.
The MODULE invocation forces the preprocessor two handle the called
MODEL as a MACRO.

Several aspects can be stressed about the above simulation languages:

• COSY, ESL, GEST and SYSMOD use the hierarchical modelling approach where
as COSMOS and DISCO use the flat modelling approach.

• COSY and SYSMOD use MACRO-like facilities to obtain a sorted executable
sequence of the code when information loops have to be avoided. DISCO does
not son the sentences, leaving this job to the users.

GEST uses a much more formal approach, based on the axiomatic theory of
Wymore [Wymore76a]. In GEST a component model may be continuous, dis-
crete or memoryless. The dynamic structure of a continuous component model
is divided in two segments, the derivative segment and the output segment. This
formal separation between the derivative and the output segments allows the sort-
ing of coupled continuous submodels. In contrast, GEST does not take in account
that logical states associated to discontinuous functions are in fact state variables
[Horst86a].

MUSS submodel blocks

MUSS uses the hierarchical modelling approach. The structure of MUSS submodel
blocks is represented in figure 2.4. Submodel blocks may be translated in isolation
which helps to make the modelling turnaround time shorter than languages that need
to translate all the submodel and experiment blocks each time a change is made on a
submodel or experiment block.

The submodel block consists of the classical two regions, an initial region and a
dynamic region plus a static region which is equivalent to the static structure of GEST
[OrenS4a]. The static region is described basically in terms of model descriptive
variables such as state, input and output variables and constants and parameters.

Although the inclusion of the classical terminal region has been rejected because the
calculation to be performed when a finish condition is meet can always be included in
the experiment, its incorporation in the submodel block can be done without restricting
the proposed objectives (page 3).

2.2. ARCHITECTURE 15

Figure 2.4: Submodel.

The type of the equations coded in the dynamic region characterizes the nature of
the submodel as continuous (lumped or distributed parameters) or sampled.

The invocation of the contributory submodels is done from the dynamic region.

(distributed
parameters submodel)

(lumped parameters
submodel)

Figure 2.5: Dynamic continuous region.

Dynamic continuous region

If the syntax of some representation statement corresponds to a partial differen-
tial equation, the whole model block will be considered as representing a distributed
parameter submodel.

The whole dynamic continuous region is declarative (non procedural). The prepro-
cessor clusters code which need not be executed in every integration step but only at
each communication interval because it is able to detect the variables not contributing
to the computation of derivatives, discontinuous functions or variables in the output
string. Hence, it makes unnecessary to define derivative segments.

16 CHAPTER 2. MUSS ARCHITECTURE

Dynamic
sampled
region

/
Interface with

a physical
system

Procedural
algorithm

Figure 2.6: Dynamic sampled region.

Dynamic sampled region

It is characterized by the fact that it communicates with the other dynamic regions
only at fixed intervals.

Its dynamic section can be of two kinds:

A procedural algorithm representing submodels of computer based controllers
sampling some continuous system variables and sending back control commands
at fixed time intervals.

An interface with a hardware subsystem. This kind of dynamic section differs
from all the others in two main aspects: it depends on the hardware configuration
of the host computer and it requires real time computation [Cellier84a].

Conclusions

Four types of submodels have been described, depending on the nature of the dynamic
region:

Lumped parameters submodel.

Distributed parameters submodel.

Sampled submodels representing controllers.

Sampled submodels that interface with a hardware subsystem.

2.2. ARCHITECTURE 17

In this thesis, we will focus in the analysis of lumped parameters submodels with
discontinuities. As a remark, sampled submodels representing controllers can easily
be implemented in the system but to include in the environment sampled submodels
that interface with a hardware system and distributed parameters submodels requires a
depth analysis [Crosbie82d].

The structure of the lumped parameters submodel block is not innovative, it follows
the classical pattern of Continuous System Simulation Language models. The main
important contributions are derived from the analysis done at preprocessing time, they
are:

i Code robustness:

The formalization in the next chapter of the submodel digraph concept constitutes
a powerful base for improving the robustness of the model code in a way still
not achieved in present simulation languages.

Declarative code:

MACRO-like facilities or a strict separation between derivative computation and
output computations are not needed to solve the problem of information loops
in the model code. Through a formal analysis of the submodel digraph, the
submodel code is automatically sorted and partitioned into a set of segments.
This segmentation avoids information loops and opens the door to work without
restriction with libraries of precompiled submodels.

C Target code with a neat structure:

The following text reproduced from [CIancy65a] is taken as an introduction to
this point

The field of digital simulation languages, although barely ten years

old, has shown a remarkable growth and vigor. The very number and

diversity of languages suggests that the field suffers from a lack of per-

spective and direction...

In Locke's words, "everyone must not hope to be .„ the incom-

parable Mr. Newton,.., it is ambition enough to be employed as an

under-labored in clearing the ground a little, an removing some of the

rubbish that lies in the way to knowledge [Locke56a]".

Nowadays, more than thirty years later from the beginning of the digital simula-
tion languages field, the situation is similar. Moreover, the number of directions
is much greater than before. Fields such as Artificial Intelligence, Data Base
Management Systems, Compiler Design and Abstract Data Types are increasing

18 CHAPTERS. MUSS ARCHITECTURE

their influence in the development of simulation languages. Related with it, in
our opinion, simulation languages designers must use existing algorithms and
packages designed by experts from the different fields they need, and integrate
them in a structured manner to develop powerful simulation environments.

Following this strategy and focusing our attention in integration and discontinuity
handling packages. Reputed packages, as for example LSODAR (ODEPACK)
[Hindmarsh82a], distinguish code needed to compute derivatives from code
needed to computed discontinuous functions; in fact, the code must be stored in
different routines. A fruitful work done by the submodel digraph segmentation
algorithm consists on separating code for derivative computations from code for
discontinuity function computations.

2.2.3 Experiment

A simulation experiment is defined as a simulation run over a period of time from a
known initial frame [Symons86a]. Unlike currently developed simulation languages,
the MUSS experiment block monitors the execution of a single simulation run in contrast
with the other languages whose experiment descriptions may monitor the execution of
a set of runs.

We rather distinguish between a simulation experiment and a simulation study. A
simulation study is defined as a set of related experiments [Symons86a]. The study
block described in the next section provides the mechanisms to perform a set of related
experiments.

A model without an experiment can not be executed. Even though an experiment
may be called by a study. The experiment can always be optionally executed in
independence with respect to the study.

In the most general case an experiment block may have three segments: a dynamic
segment, a control segment and an output segment

Dynamic segment

The dynamic segment has the classic three regions : initial, dynamic and terminal
regions plus a static region.

As in COSMOS [Kettenis83a], its aim is to allow the inclusion in the experiment
of the dynamics external to the system model —but in most cases necessary for its

2.2. ARCHITECTURE 19

Experiment j**^•x

Dynamic
segment
of the

experiment

Control
segment

Output
segment

^

Static regi on

Initial region

Dynamic region

Terminal region

Figure 2.7: Experiment block.

evolution— or continuous cost function computations. Without this segment it would
be necessary to handle the model code for that purposes.

In some simple studies this segment could represent the system model but this is not
at all its purpose. The only difference from the dynamic segment of submodel blocks
is that a terminal region is provided to specify the calculations to be performed when
a finish condition is met For example, in the pilot ejector study, a warning message
can be written from the terminal region if the pilot will strike the vertical stabilizer.
The terminal region is not intended for controlling the execution of a set of evolutions.
This task corresponds to the study block.

The static region of the experiment block is equivalent to the static region of the
submodel block.

In most frequent situations, one or more models will be called from the dynamic
region, the latter option opening the possibility of simultaneously performing the same
experiment on different independent models.

Control segment

The control segment is intended for simulation run parameters (in short, simulation pa-
rameters) specification such as initial time, and finish time, and termination conditions.
From this segment it is also possible to set model parameters.

20 CHAPTER 2. MUSS ARCHITECTURE

Output segment

The output segment clusters the output control statements. Its objective is to make
explicit the variables whose evolution has to be recorded.

The control segment, as well as the output segment, are stored in the model data
base at preprocessing time and it is allowed to edit both segments from a user defined
simulation environment When creating an experiment instance, the control segment
and the output segment are executed. The simulation user has the option to modify
control and output specifications before invoking a simulation experiment (single run).

2.2.4 Study

The study block monitors the execution of a set of experiments —simulation study—.
Usually, the study block will be called from the MUSS simulation environment. The
study block may be optionally called from sophisticated main programs coded by the
users. Moreover, the study itself may be supplied by the user in C target code, which
in turn, calls the experiment blocks through a clear set of interfacing routines.

Study -
V̂,

Dynamic
segment
of the
study

Control
segment

Output
segment

^f

Sutic region

Initial region

Dynamic region

Terminal region

Figure 2.8: Study block.

Like the experiment block, in the most general case a study block may have three
segments: a dynamic segment, a control segment and an output segment

2.2. ARCHITECTURE 21

Dynamic segment

The dynamic segment has four regions : initial, dynamic, terminal and static.

Unlike the dynamic region of experiment or submodel blocks, the dynamic region
of the study block is procedural. Therefore, it will not be sorted by the preprocessor.

Static region

Like the static region of the submodel block or the experiment block, it is used for
declaring constants and variables.

The main differences with respect to the submodel and experiment static blocks
are :

• In the study block state variables are not allowed.

• The names of experiment instances may be declared in the static region although
they can also be symbolically passed through the input list in a call sequence to
the study.

Initial region

The initial region describes the procedural computations to be performed for ini-
tializing the study. The statements written in this region will be executed only once.

Dynamic region

It describes the computations to be performed between experiments by means of
procedural statements. The execution of experiments is sequential and not parallel.
Therefore, when an experiment is called for execution, the execution of the study is
frozen until the simulation run finish.

Any experiment block present in the simulation environment which has been de-
clared in the static region or symbolically passed through the input list when invoking
the study can be called for execution from this region.

The possibility of passing symbolically the experiment name to the study, opens the
door to coding general studies such as parameter sweeping, parameter optimization or
boundary condition problems whose code is independent with respect to the dynamics
and outputs.

MUSS simulation, model and experiment parameters may be updated from the
initial, dynamic and terminal regions of the study.

22 CHAPTER 2. MUSS ARCHITECTURE

Terminal region

It describes the actions to be done after the execution of the study. It can be used
for documentation purposes.

Control segment

The control segment specifies simulator parameters such as initial time, finish time and
termination condition specification. Remember that simulation parameters can also be
set in the dynamic segment of the study. It is also possible from this segment to set
model, experiment and study parameters.

The control segment, as well as the output segment, are stored in the model data
-base at preprocessing time and it is allowed to edit both segments from a user defined
simulation environment The updated segments may be stored for later executions.

Output segment

The output segment clustering the output control statements. Its objective is to make
explicit the variables whose evolutions has to be recorded.

When creating a study instance, the control segment and the output segment are
executed. The simulation user has the option to modify control and output specifications
before invoking a simulation study.

2.2.5 Example

Van der Pol's equation

can be investigated in a straightforward manner. Let

— -yi

Then

2.2. ARCHITECTURE 23

—

and the Van^lerJ'ol submodel may be written

-y -

Continuous submodel Van_der_Pol is
Static region

outputs {real y;}
state (real y,yl;}
parameters { real mu - 0.0, yû - 1.0,

ylO - 1.0;}
End static region;
Initial region

y - yO;
yl - y 10;

End initial region;
Dynamic region

y' - yl;
yl' - -y - mu*(y**2.0-1.0)*yl;

End dynamic region;
End submodel Van_der_Pol;

Code 2.1 Vanjd.er.Pol submodel.

In order to perform the power spectral density analysis of Van der Pol's equation, the
coincident and the quadrature spectral density functions P and Q have to be computed:

r w ncycf/tc
y(Í)cot(wt)

[1 » ncyci/"'[L T ncyef/u;
Q" I y(i)tin(wi)

Jo

In the experiment block the computation of one point (for a w) of the co-spectrum
and quad-spectrum can be set:

Experiment armonic_contents is
Static region

inputs {real w;}
outputs {real P,Q;}

24 CHAPTER 2. MUSS ARCHITECTURE

state {real P,Q;}
auxiliary variable (real y;}
submodels called

{Van_der_Pol;}
functions called

(real sin,cos;}
End static region;
Initial region

P = 0.0;
Q - 0.0;

End initial region;
Dynamic region

y - Van_der_PolO ;
P' » y*cos(w*sy_time);
Q' — y*sin(w*sy_time);

End dynamic region;
Control segment

control si_finti=48.0;
parameter Van_der_Pol.mu - 5.0;

End control segment;
Output segment

prepare/output-«filei.dat)/delt-<0.02) y,
Van_der_Pol.yl,P,Q;

End output segment;
End experiment armonic_contents;

Code 2.2 Armonic-contenis experiment.

The power spectral density analysis is controlled from the study block. The finish
time (ai.finti) is not constant and depends on w:

ti-finti - 2 ir ncycl/w

The above equation as well as the sweeping of w will be included in the dynamic
region of the study to control the experiments.

Study power_spectral_density_analysis is
Static region

experiments called {armonic_contents;}
auxiliary variables {real DSP, P, Q, Pm, Qm, w;}
parameters { real wO - 0.75, wf - 2.0,

wincr - 0.01; int ncycl - 20;}
End static region;
Dynamic region

Pm - 0.0;

2.3. SCOPE OF VARIABLES, PARAMETERS AND CONSTANTS 25

Qm - 0.0;
for (w - wO to wf by wincr) {

si_finti - 2.0*si_Pi*ncycl/w;
P,Q - armonic_contents(w);
DEP - w/(ncycl*2.0*si_Pi)*

sqrt((P-Pm)**2.0+(Q-Qm)**2.0);
Pm - P;
Qra - Q;

}
End dynamic region;
Control segment

parameter armonic_contents.Van_der_Pol.ylO - 1.0;
End control segment;
Output segment

prepare/cross/output-(file2.dat) DEP
End output segment;

End study power_spectral_density_analysis;

Code 23 Pawer^pectraljdensityjanalysis study

An interactive monitor language (MCL) has been defined to control the execution
of experiments and studies present in the simulation environment Thus, the user may
optionally invoke for execution the armorúc-contents experiment or power.spectra.1-
jlensity.analysis study.

2.3 Scope of variables, parameters and constants

In high-level procedural languages there are two ways of passing data between subpro-
grams: calling sequence and global data.

• Calling sequence: Although there are exceptions, the use of the calling sequence
mechanism for parameter passing is the preferred method to pass information into
a subprogram, and out of a subprogram. This tends to improve modularity of the
code, and the possibility of undesirable side effects are reduced [Kettenis86b].

• Global data: Unrestricted communication between program modules through
global data blocks leads to increased complexity and confusion within the system
[GoldenSSa] ("back-door" programming [Cellier79c]).

Besides the above opinions, we are faced with the following requirements and
restrictions:

26 CHAPTER 2. MUSS ARCHITECTURE

• Symbolic access to the all submodel constants, parameters and variables must be
allowed for recording.

• If isolate preprocessing of submodels is to be maintained, the calling sequence
mechanism must be forced for submodel variables communication.

• Using the calling sequence mechanism for constants and parameters communi-
cation unnecessarily increases the time overhead.

• From the study block, is should be able to access any parameter from the exper-
iments and models called. This option is important, for example, in sensitivity
analysis or in optimization studies.

Data communication between program blocks is carefully controlled to meet the
above requirements. From the simulation users perspective, the use of global data has
been restricted to parameters and constants and the calling sequence mechanism is
mandatory for the communication of variables. From the internal perspective, global
data facilities provided by the C language are not used to implement global data mech-
anisms between program blocks; the mechanisms used are explained in chapter 4.

The rules imposed to global data communications are emphasized in figure 2.9
and can be cleared up looking to the sequence of steps done when performing an
experiment or a study:

Experiment:

- First, when creating an experiment instance4, parameters are initialized in a
bottom up approach (static initialization). Parameters in a given block can
be initialized within the static region of the block or from the static region
of higher level blocks. The highest level initialization of a given parameter
overrides lower level initializations of the same parameter.

- Second, after the static initialization, the control segment of the experiment
is executed. The control segment of an experiment may update the value
of the parameters in the static region of the experiment or the value of the
parameters of the models called.

- Third, the output segment of the experiment is executed to specify the set
of variables to be recorded, printed or represented graphically at periodic
intervals. All the variables from the experiment and from the called models
are visible from this segment

4The creation of an instance of an experiment implicitly implies the creation of an instance for each
model called. If a model is called twice, two instances of this model will be created.

2.3. SCOPE OF VARIABLES, PARAMETERS AND CONSTANTS 27

Study

Sub. 3

Sub. 2

Figure 2.9: Communication through global data. S, I, D and T represent
the static, initial, dynamic and terminal regions respectively and
O and C represent the output segment and the control segment
respectively. From the white colored region or segment of a
given block constants and parameters of the block can be set
and initializations of parameters in lower level blocks can be
overrided. In the gray regions or segments of a given block any
parameter or constant of the block or any parameter or constant
of lower level blocks can be used but not modified. In the dark
regions of the study any parameter of the study or any parameter
of lower level blocks can be used or updated.

28 CHAPTER 2. MUSS ARCHITECTURE

- Fourth, the user may optionally change, using the MCL monitor language,
any parameter of the models involved in the experiment or any parameter of
the experiment itself (this option is not represented in figure 2.9). Moreover,
control and output specifications may be updated.

- Fifth, the next step consists on executing the experiment First, the initial
region of the experiment and the initial regions of the called submodels
are executed5 (dynamic initialization). The initial conditions of the state
variables must be set in the initial region. After the dynamic initialization
has concluded, a simulation run is conducted.
In the initial region or in the dynamic region of a block we can use but not
update parameters and constants from the block or from lower level blocks.

- Last, after the simulation run is finished, the terminal region of the experi-
ment is executed. In the terminal region we can use any parameter, constant
or variable from the experiment or from the called models.

Study: From the study block we can invoke for execution one or more experiment
blocks. The steps involved in the execution of a single experiment have been
already explained. Now we will focus our attention in the additional steps which
involve study segments or regions.

- First, when creating a study instance, copies of the experiments and models
which are involved in the study are implicitly created. From the static region
of the study block we can optionally set the value of any parameter of the
study or the value of any parameter of the experiments and models involved.

- Second, after the static initialization, the control segments of the exper-
iments and, afterwards, the control segment of the study are executed.
Thus, from the control segment of the study we can override parameter
initializations done in the control segments of the experiments.

- Third, the output segment of the study is executed (the output segments
of the experiments are not executed). All the variables, parameters and
constants of the study and experiments and modals involved in the study
are visible from this segment

- Fourth, the user may optionally change any parameter of the experiments
and models involved in the study or any parameter of the study itself.
Moreover, control and output specifications may be updated.

5In fact, the initial segment associated to the experiment and the initial segments of the called lower
level submodels blocks are executed to initialize the experiment and the called models (chapter 3). The
initial segment of a given block is a routine that includes, besides the code of the initial region needed
to initialize the block, code from the dynamic region needed to initialize lower lower blocks. Moreover,
it includes code needed for computing the initial value of the discontinuous functions of the block and
of the discontinuous functions of lower level blocks.

2.4. MUSS PREPROCESSOR 29

- Last, the next step consists on executing the study. First of all, the initial
region of the study is executed. Afterwards, control is passed to the dynamic
region o the study which monitors the execution of a set of experiments.
At the end, the terminal region of the experiment is executed.
In the initial region, dynamic region and terminal region of a study we can
use and update parameters and use constants and variables from the study
block or from lower level blocks.

2.4 MUSS preprocessor

The MUSS preprocessor has been designed using automatic compiler production tech-
niques. Automatic compiler production is the task of automatically constructing practi-
cal compilers from minimal specifications of the source and target languages [Reiss87a].
Its aim is to ease the construction and update of compilers for new or existing lan-
guages, and to assist on the grammar definition.

Besides automatic compiler construction techniques, MUSS relies on modular pro-
gramming methodologies to improve the robustness of the software.

MUSS source program

i.

C target program

Figure 2.10: Preprocessor structure.

The modular structure of the MUSS preprocessor is represented in figure 2.10. The

30 CHAPTER 2. MUSS ARCHITECTURE

main modules of the MUSS preprocessor are:

• Lexical analyzer: produces a sequence of input symbols (tokens) for the syntax
analyzer. The input to the lexical analyzer is a stream of characters.

• Syntax analyzer: maps the token representation of the source program into an
attributed abstract syntax tree.

• Submodel digraph analyzer: besides constructing the submodel digraph (sub-
section 3.2.3), it checks using the submodel digraph, the code consistency and
extracts from the submodel digraph the initial, discontinuous and ODE segment
digraphs (section 3.3).

• Sorter: to solve the hierarchical sorting problem, the ODE segment digraph is
splitted into the state, algebraic and derivative segment digraphs. Thereafter, the
code in each segment is sorted using classical techniques (section 3.4).

• Code generator: creates the initial, discontinuous, state, algebraic and derivative
segments as well as the associated data structures (chapter 4). The chosen target
language is C. Since statements in the MUSS language are similar to statements
in the C language, the translation of the statements is simple.

• Table manager: stores and retrieves program symbols from a table. A balanced
tree technique has been chosen to implement the symbols table.

• Error handler: this module is intended for precisely inform the user about the
errors in the source program code.

The final goal of the MUSS preprocessor is to produce a well-conditioned target
code from a correct MUSS source program.

MUSS source program

In the design of the language it has been tried to extract the best from GEST
[Ören84a], COSMOS [Kettenis86b] ,ESL [HaySSa], C [Kernighan78a] and ADA
[LedgardSla]

A draft of the MUSS language specification is presented in [Guasch86b]. The
language has been defined with a LALR(l) grammar [Cellier79b]. By its use, it is
possible to ensure that no syntactic errors will propagate to the C target code.

2.4. • MUSS PREPROCESSOR 31

C target program

In chapter 3 the structural transformations to be performed to the MUSS continuous
submodel blocks are presented. Thereafter, in chapter 4, the C object code structure
of this block is shown.

This point is exclusively centered around the following question: Why the C lan-
guage has been chosen as the basic MUSS system software support?

This question may be answered weighting the following aspects: availability, suit-
ability, reliability, transportability and availability of supporting tools.

When the development of the MUSS system started, five general purpose program-
ming languages were analyzed: Ada, C, Fortran, Modula-2, and Pascal.

In spite of the large amount of software in numerical analysis written in Fortran,
this language was rejected because it is not suitable fon

• Coding a preprocessor.

• Code the algorithms and the data structures involved in the management of the
sünulatíon environment.

Ada was rejected mainly because at the time the coding of the MUSS system started,
Ada compilers were not available for VAX computers. Other objections concerning
reliability and transportability [Hoare8 la] supported the decision.

Although Modula-2 [McCormack83a] seems a very suitable language and it sup-
ports object-oriented programming methodologies. It has not been chosen because of
the lack of software support Moreover, Modula-2 is not a native language processor
in VAX systems.

Even though Pascal is a reliable language, its standard set is not suitable for coding
the MUSS system [KernighanSlaj. Some relevant disadvantages of Pascal are its lack
of standard facilities for separate compilation and the fact that records can not hold
references to executable functions or procedures.

One primary reason why the C language has been selected is that the LEX (lexical
analyzer generator) and YACC (compiler-compiler) software tools use and generate C
code. Moreover it is a suitable and transportable language.

However, the clarity of the code and associated data structures should be enforced
using good programming methodologies because C allows users to write 'cryptic'
programs.

32 CHAPTER 2. MUSS ARCHITECTURE

2.5 Summary

In this chapter the architecture of the MUSS language which agrees with the proposed
objectives (page 1.2) has been introduced.

The grammar selected for MUSS is of the lookahead-left-to-right (LALR(l)) type.
LALR techniques of parser construction are chosen because the tables obtained are
considerably smaller than the canonical LR tables [Aho77a]. The formal design of the
MUSS language is carried out using syntax analysis tools.

The formalization, in the next chapter, of the submodel digraph concept constitutes
the base for improving the robustness of the submodel code. The next chapter will be
mainly concerned about the formal analysis of lumped parameters submodels.

Chapter 3

Continuous submodel analysis

"Most compilers for computer languages available today do some
(marginal) program vérification besides the translation from source-code
to run-time object-code. Most of the checking, however, is limited to ver-
ification of adherence of the program to the semantic and syntactic rules
laid dawn in the language definition, and restrictions added to them by
the compiler limitations. One could call this type of error detection text
verification because it provides no information at all on the integrity of the
program."

[Elzas79a]

3.1 Introduction

Monolithic simulation languages are not flexible enough to easy the task of studying
models of high complexity, even for expert users. New structures —macro, sample,
submodel, module, model— have been added to simulation languages to increase its
modularity, but this effort to increase the modularity has not been extended to increment
the "intelligence" of preprocessors and compilers for simulation languages.

This chapter is concerned with the analysis of continuous time lumped parameters
submodels which can be performed by the MUSS preprocessor. It has three main parts:

• The first one is devoted to present the submodel digraph concept (section 3.2).

The submodel digraph shows the relationships between submodel variables, dec-
larative sentences and declarative sentences and variables.

33

34 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

Two types of representation are used. The first one, named planar representation
, emphasizes the program flow —i.e. the relationships between sentences accord-
ing to its input/output variables—. The second one, named biplanar representa-
tion , emphasizes the relationships between variables, parameters and constants,
which are represented in a plane (symbols plane), and the relationships between
sentences, represented in another plane (statements plane)', the relationships be-
tween sentences and variables are represented by edges going from one plane to
the other.

The second main part (section 3.3), is principally concerned with the robust-
ness study of the submodel code. Through a formal analysis, a high degree of
robustness can be assured.

In the third part (section 3.4), a global solution to the sorting problem of the
submodel code relatively to other submodels, is proposed.

So far, the absence of a general sorting method to arrange the statements, defined
in a submodel, relatively to other submodels, constraints the degree of modu-
larity of the simulation languages1. Using classical methods, information loops
[Baker83a], those that disappear if the called lower level submodels are handled
like MACROS, appear in the calling submodel.

The proposed solution, based on a segmentation of the submodels supported by a
graph analysis, breaks the submodel code into a set of related blocks (segments).

Each submodel call is splitted into a set of segment calls, one call for each
segment, when called from higher level submodels.

3.1.1 Continuous submodel

Grammar

A summary of the grammar of MUSS continuous submodels is included below. The
metalanguage used to specify the grammar is described in appendix A.

MUSS_continuous submodel
: continuous_submodel__heading

continuous_3ubmodel_regions
continuous submodel end

'If either the input variables or the output variables are all states, there is no problem in sorting
submodels as an entity. To avoid sorting conflicts, restrictions are necessary on the form the model code
can take.

3.1. INTRODUCTION 35

continuous_submodel_heading
: CONTINUOUS SUBMODEL IDENTIFIER IS

continuous_submodel_regions
: static_region other_regions

other_regions
: initial_region dynamic_region
I dynamic_region

initial_region
: INITIAL REGION procedural_block END INITIAL REGION ';'

procedural_block
: set_of_procedural_statements

set_of_procedural_statements
: procedural_statement
I set_of_procedural_statements procedural_statement

procedural_statement
: if_statement
I procedural_assignment_statement

dynamic_region
~: DYNAMIC REGION declarative bloclc END DYNAMIC REGION ';'

declarative_block
: set_of_declarative_statements

set_of_declarat ive_statements
: declarative_stateraent
I set of declarative statements declarative statement

declarative_stateiaent
: lf_discontinuous_statement
I when_discontinuous_statement
I declarative_assignment_statement

36 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

continuous_submodel_heading
: END SUBMODEL IDENTIFIER

Several aspects of the grammar can be stressed:

• The declarative_assigrment_stateinent grammar rule includes sub-
model calls (i.e. y =« limiter (11, ui, x) ;) .

• Two declarative statements to describe discontinuities have been initially con-
ceived within the dynamic region:

1. if statement : It is used to handle decisions which affect the choice of a
specific set of declarative statements. The formal definition is,

if_discontinuous_statement
: IF 'C logical_expression ')'

'{' limited~declarative_block '}'
else ';'

else
: /* empty */
I ELSE ' {' limited_declarative_bloclc
I ELSE IF ' (' logical_expression ')'

'{' limited_declarative_blocic '
else

As a first remark, see that statements within the if statement (declara-
tive -block) are declarative in contrast with other languages if state-
ments where the code inside them is procedural. In fact, the if statement
chooses the set of statements ('equations') which are valid over each span
of time, where each span of time is delimited by two events.
If statements are not allowed within an if statement That is, the limi-
ted_declarative_block is equal to the declarative-block with
the exception that it does not include if statements2

A sequence of else if's in the construction

if(logical_expression) {

2The formal definition of the if declarative statement can be extended to allow if statements in it.

3.1. INTRODUCTION 37

} else if(logical_expression) {

} else if(logical_expression) {

} else {

is a general way of writing a multi-way decision. For analysis purposes we
work with the following equivalent construct,

if(logical_expression) {

} else {
if(logical_expression) {

} else
if(logical_expression) {

) else {

};

2. When statement : It describes actions having to take place at event occur-
rences. Code within the when statement is assumed to be procedural. It
is equivalent to the AS SOON AS statement of COSMOS or to the WHEN
statement of ESL.

Analysis aspects

Along the analysts of continuous submodels, the following points have to be taken into
account:

• An analysis of the robustness of the submodel code is wanted.

• All the submodel variables may be able to be accessed symbolically.

38 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

Many software packages —i.e. LSODE [Hindmarsh82a] DISCO [BirtaSSa],
[ThompsonSSa]— for solving ODE's models with discontinuities require two
different subprograms.

- A subprogram defining the ODE system (ODE subprogram).

- A subprogram defining de discontinuity functions —wanted implicit solu-
tions of the ODE system— (discontinuous subprogram).

If such a structure is to be preserved3 the discontinuity functions should be
computed within the discontinuous subprogram and the derivative computations
within the ODE subprogram. Thus, for each continuous submodel, it will be
necessary to split the code in the dynamic region into two subprograms, which
will be called segments: the discontinuous segment and the ODE segment.

The initialization of a continuous submodel needs special care. Besides checking
that all state variables are initialized, the analysis algorithm must check that all the
discontinuous functions can be computed at initial time, this is needed to set the
logical states associated to each discontinuous function before calling the ODE
segment Furthermore, the analysis algorithm clusters in a subprogram (initial
segment) code from the initial region, code needed to compute the discontinuous
functions at initial time, dynamic code needed to initialize lower level continuous
submodels.

Code in the dynamic region is declarative. Besides sorting the code, the sorting
algorithm must restructure the dynamic code to allow higher level submodels to
be sorted.

3.1.2 Introductive example

System

Figure 3.1 shows a non linear system presented in block-diagram form.

'Preserving this structure improves the readability and robustness of the preprocessor C target code.
Furthermore, the computation time overhead is reduced mainly because when precisely locating discon-
tinuities the root finder algorithm only calls the discontinuous subprogram instead of the whole dynamic
code.

3.1. INTRODUCTION 39

p\ e
 l·

r ~~

-H^

<

U
1
L

j

t
5(5+1)

_

"~~ ~~ ~\

. f
1

1
1

J

Figure 3.1: Non linear system.

Model code

The MUSS code for simulating the system has been subdivided in two submodels. The
non Jinear-system submodel (code 3.1) represents the behavior of the whole system and
calls second-order submodel (code 3.2) which simulates the blocks included within the
dash box.

Continuous submodel non_linear_system is
Static region

inputs (real x.;}
outputs{real y;}
auxiliary variables {real e,t,z;}
submodels called {

second_order;
}

End static region;
Dynamic region

e » x+t;
if (e>-2.0) {

z - 2.0;
} else if (e<-2.0) {

z - -2.0;
} else {

z - e;
};
y - second order(z);
t - -y;

End dynamic region;
End submodel non_linear_system;

Code 3.1 Nonjinear^ystem submodel.

40 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

Using conventional sorting algorithms [Zeigler76a] a loop will be found in nonji-
near^ystem because y = /i(/2Í/3(z, /t(îO)) since the sorter has no knowledge of the
second-order internal structure, this is reflected in the digraph of figure 3.2.

Continuous submodel seeond_order is
Static region

inputs (real z;}
outputs{real y;}
state {real r, s;}

End static region;
Initial region

r - 0.0;
s -0 .0 ;

End initial region;
Dynamic region

r' - z;
s' - r-s;
y - 200.0*s;

End dynamic region;
End submodel second_order;

Code 32 Secondjorder submodel.

Figure 3.2: Digraph associated to the non Jinear^system submodel. An
implicit loop appears due to the lack of knowledge about
secondjorder submodel.

Secondjorder submodel code can be divided in two subprograms:

• One clustering the sentences which compute the output variables of the submodel
depending on state variables and constants.

3.1. INTRODUCTION 41

• The other grouping the sentences involved in the derivative computations.

Therefore, the secondjorder call can be replaced by two calls:

y « state_second_order{);
derivative second order(z);

and the loop will disappear (figure 3.3).

Figure 3.3: New digraph associated to the nonJinearsystem submodel
after splitting lower level submodel calls.

Surprisingly, digraphs which represent the relations between the declarative sen-
tences that describe the model have just been used to sort the declarative code or to
make simple tests on it. A formal representation of the relationships between sentences
by means of a digraph is needed in declarative statements for sorting purposes and it
can be very useful for analyzing in more detail the model code. In general, simulation
languages designers have limited the complexity of the structure and grammar rather
than improving the analysis and sorting methods.

In contrast, in the MUSS system the digraph representation of the relations involved
in the submodel code are mainly used for code analysis and marginally for sorting
purposes. The digraph which will be called submodel digraph, represents in great
detail the relations involved in the submodel declarative code.

42 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

Submodel digraph: analysis and sorting

During the preprocessing stage of a continuous submodel, the preprocessor builds the
submodel digraph, which is an internal representation of the continuous submodel. The
submodel digraph is built after performing two transformations in the code:

• Trigger conditions associated to discontinuous statements are translated into ex-
pressions.

• Calls to lower level submodels are expanded into a call for each submodel seg-
ment

Afterwards, the preprocessor will create the submodel digraph where each declar-
ative statement has a vertex (executable vertex)4.

-1- Initial region
r - 0.0;
s - 0.0;

End initial region;
Dynamic region

-2- r' - z;
-3- s' - r-s;
-4- y - 200.0*3;

End dynamic region;

Code 33 Labeled executable vertices of secondjjrder sub-
model.

Continuing with the previous example, code 3.3 shows the number of the executable
vertices and Figure 3.4 represents the two isomorphic representations —planar and
biplanar— of the secondjorder submodel digraph:

Planar representation: It is used to emphasize the general program flow and to
show the different segments which are the output results of the analysis algo-
rithms. The ODE segment (see page 38) will be splitted by the sorting algorithm
into state, algebraic and derivative segments in order to solve the problem of
information loops.

In the example the segments are:
4The initial region and when statements are viewed as a single executable vertices

3.1. INTRODUCTION 43

init¡al_second_order

•-. r
''•• ••' stal«_secood_order

derivativ» second order

Planar submodel digraph

statements plane

symbols plane

Biplanar submodel digraph

Figure 3.4: Planar and biplanar representations of secondjorder sub-
model digraph.

- initial-seconcLorder. It is the initial segment associated to secondjorder. It
must be called before any other secondjorder segment

- state-second-order: The state segment computes the output variables which
do not depend on input variables through algebraic chains.

- derivative-secondjorden The derivative segment includes the code needed
to compute derivatives which is not included in the state segment or in the
algebraic segments.

Biplanar representation: It emphasizes the relationships between variables in
the symbols plane and the relationships between executable statements in the
statements plane. As a first remark, note that the relation between the state
variables * and r and their initial conditions is explicitly represented in the
symbols plane. The meaning of the symbol j, r in the initial region (code 3.3) is
conceptually different from that in the dynamic region. Each state variable in the
dynamic region must be explicitly initialized, in the initial region. The absence
of an edge between the state variable and its initial condition is erroneous. This
can be easily detected by the analysis algorithm.

A segment-link digraph is denned to show the relationships between submodel
segments (figure 3.5 represents the segment-link digraph associated to secondjorder).
Any call to a submodel from a higher level submodel will be splitted into several calls,
one for each submodel segment

44 CHAPTER 3. CONTINUOUS SUBMODEL ANALYSIS

initial second order

state_second_order derivative_second_order

y

Figure 3.5: Second-order segment-link digraph.

The edges of the segment-link digraph are called hidden edges because they can
not be inferred from the higher level submodel through the input-output variables in
the segment calls.

To build the higher level submodel digraph, the segment-link digraphs of the called
lower level submodels are needed in order to properly relate the expanded calls. This
knowledge about submodels interfacing is stored in the model data base.

Once secoruLarder has been preprocessed without errors, it is allowed to preprocess
nonJinear^ystem or any other higher level submodel calling it When preprocessing
nonJinearjystem submodel, the call to second-order submodel is divided into a call
for each submodel segment (see code 3.4).

Dynamic region
-1- e - x+t;
-2- grootl - e-2.0;
-3- groot2 - -2.0-e
-4- if(lrootl) {
-5- z - 2.0;

} else {
-6- if(lroot2) {
-7- z - -2.0;

} else {
-8- z - a;

9- initial_second_order () ;
10- y - state_second_order () ;
11- derivative_second_order (z) ;
12- t - -y;

End dynamic region;

Code 3.4 Labeled executable vertices of nonJinear-system
submodel.

3.1. INTRODUCTION 45

Rirthermore, to build the nonJinearsystem submodel digraph, it is necessary to add
the hidden edges of secondjorder segment digraph to those associated to the explicit
knowledge about nonJinear system submodel code.

Notice that the piece of code from MUSS submodel code 3.1:

if(e>=2.0) {

} else {

has been decomposed by the preprocessor in

grootl - e-2.0;
ifUrootl) {

} else {

};

as shown in code 3.4.

Grootl stores the value of the discontinuous function and Irootl is the logical
state associated to the discontinuous function.

The cause of an event is independent from its effect due to the fact that logical states
associated to discontinuous functions are state variables [Horst86a]. In spite of this,
edges from discontinuous function vertices (3 and 2) to their associated discontinuous
effect ((2,4) and (3,6_)) are present in the submodel digraph. These edges are only
considered in the submodel initialization analysis.

Figure 3.6 and figure 3.7 represent the biplanar and planar representation respec-
tively of nonJinear^system submodel digraph:

• Biplanar representation: The edges (z+,z) and (z_,z) represent that the variable
z is formed by the union of variables which are defined, each one, over different
spans of time. Moreover, the edges (z_+,z_) and (z ,z_) represent that the

46 CHAPTER 3. CONTINUOUS SUBMODEL ANALYSIS

Figure 3.6: Biplanar representations of non Jinear-system digraph. Edges
(2,4) and (3,6_) are only used for initialization analysis.

variable z_ is composed by the union of z_+ and z being these continuous
variables defined over different spans of urne.

In the statements plane, the edges (9,10) and (9,11) are the hidden edges associ-
ated to secondjarder segment-link digraph. Moreover, edges (4,5+) and (4,6_)
represent the relationships between the if statement and the statements included
within it The same for the edges (6_,7_+) and (6_,8).

Planar representation: In this case the segments are:

- initial jion Jinear-system: includes code to initialize state variables and log-
ical states associated to discontinuous functions. Note that vertex 10 which
is a call to the lower level secondjorder state segment must be included
in this segment in order to compute the initial values of the discontinuous
functions.

- state_nonJinear_system: the code in this segment does not depend on input
variables. Therefore, output variables can be handled like state variables.

- derivativejionJinear-system: the statements in this segment does not con-
tribute to output computations. Thus, input variables can be handled like
derivative variables.

- discontinuousjionJinear_system: includes code needed to compute

?-/(»•*)

3.7. INTRODUCTION 47

iniiial_non_linear_system

.
j.. ...>'• ••' state nan linear system

>:-; U",. -.<• -: -'

3í; :«. L
\ z. ; discontinuous _non_liaear_sy 'stem

cy\
' derivaiive_non_Knear_system

Figure 3.7: Planar representation of nonJinear.system digraph,

being y the state vector, t the simulation urne and J the discontinuous
vector.

To get the right execution sequence (procedural code), each submodel segment is
sorted with independence from the other segments. Afterwards, the segments are sorted
according to the segment-link digraph.

lnlt!al_nonjinear_system

state_non_linear_system
——-" I
^ f ^^

derìvativ0_nonjlnear_system

^ >discontinuous_non_llnear_system

Figure 3.8: NonJinear system segment-link digraph.

The nonJinear-system segment-link digraph is represented in figure 3.8. Higher
level models might be coded calling the nonJinearsystem submodel. These calls
would be splitted into a call for each segment at preprocessing time.

48 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

3.2 Submodel digraph

Graph theory has been successfully applied to study and analyze computer programs
since the early years of computer programming. The aim of such analysis might be
to subdivide a large program into a number of subprograms or segments, to detect
structural errors in the program, to document a program or to optimize the code.

Simulation packages designers started using graph theory to analyze code associated
with the dynamics of the model. Stein [SteinoOa] provided the theoretical and practical
background needed to write a sorting algorithm implicitly based on graph theory.

Later on, Elmqvist [ElmqvistSOa] employed graph theory to son the model equa-
tions and transform them into assignment statements by automatic formula manipu-
lation. Furthermore, the role of dataflow methods in Continuous System Simulation
Languages have been introduced in [Karplus82a], in data flow methods all the infor-
mation needed to execute the program must be contained in its data flow graph.

More recently, a computer aided modelling, analysis and simulation environment
(CAMAS) [BroeninkSSa] which accepts as input a bond graph modelling language
(SIDOPS) [BroeninkSSb] have been developed.

In this thesis, graph theory is used to analyze submodel code consistency as well as
to solve the problem of submodel sorting when the hierarchical modelling and coding
approach is utilized.

3.2.1 Elementary graph concepts

A digraph (directed graph) is a collection of vertices V - vi.tç,..., a collection of
edges S = ei, ea,... and a mapping 5? that maps every edge onto some ordered pair of
vertices (v¡, v j). Vertices are simple objects and an edge is a connection between v¡
and Vj with an arrow directed from «,• to «¿.

A path from vertex v,- to v¡ in a graph is a list of vertices in which successive
vertices are connected by edges in the graph. A path is directed —directed path— if
the edges have the same orientation, otherwise, it is a semipath. A graph is connected
if there is a path from every vertex to every other vertex in the graph. A graph which
is not connected is made up of connected components. A connected graph is strongly
connected if there is at least one directed path from every vertex to other vertex,
otherwise, it is weakly connected. A simple directed path is a directed path in which
no vertex is repeated and a directed cycle is a directed path which is simple except
that the first and last vertex are the same.

3.2. SUBMODEL DIGRAPH 49

A vertex v j is reachable from a vertex v¡ if there is a directed path from v¡ to v¡.

A graph without cycles is called a free. A group of disconnected trees is called a
/ora«.

Graphs with all edges present are called complete graphs; graphs with relatively
few edges are called sparse; graphs with relatively few of the possible edges missing
are called dense.

In order to be segmented and sorted, graphs have to be directed and acyclic. These
graphs are called directed acyclic graphs (dags).

Some formal definitions

Definition 3.1 Given a vertex »,• belonging to V, R(yì) is the set of vertices reachable
from the vertex v¡.

Definition 3.2 Given a vertex v¡ belonging to V, the reaching set Q(v¡) is the set of
vertices which can reach vertex v¡.

Definition 33 Given a vertex v¡ belonging to V, P(vi) is the set of successors from
Vi

Definition 3.4 Given a vertex v¡ belonging to V, r~l(in) is the set of predecessors
Of Vi.

50 CHAPTER 3. CONTINUOUS SUBMODEL ANALYSIS

3.2.2 Submodel digraph definition

Definition 3.5 Given a MUSS lumped-parameter continuous submodel, its associ-
ated submodel digraph is G = (V, E), where:

V " (Vg, Ve') is the set of vertices,

being:

• Vt: set of symbol vertices associated to variables, parameters
or constants.

• Ve: set of executable vertices. Each executable vertex is
associated to one declarative statement. The initial region is
viewed as a single executable vertex.

Different subsets of Vt and Ve can be defined:

1. Subsets of Va

: global vertices. All the variables, constants and parameters declared in
the submodel static region have an associated global vertex.

Vtp : parameter vertices, each parameter has a vertex associated to it (Vtp €
Vtal).

Vts : constant vertices, each constant has a vertex associated to it (Va, ç Vt3¡).

Vii • input vertices, each formal parameter in the submodel input list (input
variable) becomes an input vertex (Vt¡ 6 Vts¡).

Vt0 : output vertices, each formal parameter in the submodel output list (output
variable) becomes an output vertex (Va0 6 Va,¡).

Vtj : derivative vertices, each state variable has an associated derivative vertex
(V*d € V,,,).

V$, : state vertices, each state variable has an associated state vertex (Vt, €
Vt3i).

Vtio : local vertices, Vt¡0 - Vt„ U Vtwk U Vu/. Are those created by the
preprocessor as a consequence of the analysis of the submodel initial and
dynamic regions.

Vtn : initial vertices, each variable initialized within the initial region has one
associated initial vertex (Vtn € Vti0).

3.2. SUBMODEL DIGRAPH 51

V*«,* : when vertices, each variable denned in a procedural statement included
in a when statement has one associated when vertex (Viv;h e Vgto).

Vsif : if vertices, set of symbol vertices defined to represent the relations
involved in if declarative statements (Vaif e Vtit>).

2. Subsets of Ve

Ve¿ : derivative vertices, each call to a lower level derivative segment has an
associated derivative vertex.

Veg : discontinuous vertices, each call to a lower level discontinuous segment
or each discontinuous function has an associated discontinuous vertex.
Ve3 can be subdivided in two sets: vertices associated to calls to lower
level discontinuous segments (Vegs) and vertices associated to discontinu-
ous functions (Ve3j).

Ve, : state vertices, each call to a lower level state segment has an associated
state vertex.

Ven : initial vertices, each call to a lower level initial segment or the initial
region has an associated initial vertex.

Vcif : if vertices. Set of vertices associated to if statements.

Vewh : when vertices. Set of vertices associated to when statements.

Submodel digraphs are sparse. Thus, with relatively few edges (< \V\ x log(\V\)).
Therefore, the submodel digraph is implemented using adjacency lists.

3.23 Construction of the submodel digraph

Instead of generating cross tables along with the syntactic analysis and afterwards,
test and sort the code scanning repetitively the internal tables, the MUSS preprocessor
speeds up the analysts and sorting phases through the construction of a submodel
digraph.

The submodel digraph can be built in a single pass, along the syntactic analysis,
supported by the global vertices defined through the static region analysis.

52 CHAPTER 3. CONTINUOUS SUBMODEL ANALYSIS

The following code is included to illustrate the above ideas,

-l-
-2-
-3-

Static region;
inputs (real RO, ... ;}
outputs (real VO;}
state {real Vc,Il;}
auxiliar variables (real 10,Ic; .,
parameters {real Re - 0.1, ... ;}

End static region-
Dynamic region

10 - (Vc+Il*Rc)/(RO+Rc);
VO - IO*RO;
Ic - 11-10;

End dynamic region;

During the syntactic analysis of the static region, for each declared variable3 a
global symbol vertex is defined. The symbols with their associated vertices are stored
in the symbols ¡able6 (figure 3.9).

Figure 3.9: Balanced tree used to store the symbols table.

Afterwards, for each statement being preprocessed an executable vertex in the
statements plane is defined. For each variable in the statement a search into the symbols
table is made to find the global vertex in the symbols plane associated to it In this way,
the edges from the global vertices to the executable vertices or form the executable
vertices to the global vertices are defined.

Two adjacency lists have been defined for implementing the submodel digraph
(figure 3.10): the symbols adjacency list and the statements adjacency list.

5The terra variable embraces constants, parameters and variables.
'The symbols table is stored in a balanced tree which has been implemented using the top-down

2-3-4 tree technique [Scdgewlck83a].

3.2. SUBMODEL DIGRAPH 53

io

Figure 3.10: Since global symbol vertices (V»3i - {PQ,Rc, Vc, 11,10
, VQ}) have been defined when performing the syntactic anal-
ysis of the static region, the inclusion of executable vertices
and its associated edges from or to global symbol vertices is
straightforward.

(SYMBOLS ADJ. LIST)

Directed edges from
the symbols plane to
the symbols or sta-
tements plane.

-1:
-2:
-3:
-4:
-5:
-6:
-7:
-8:
-9:

1

1

1

2

1

2

3

3

(STATEMENTS ADJ. LIST)

Directed edges from
the statements plane
to the statements or
symbols plane.

1: -7
2: -2
3: -8

To get the submodel digraph, two sets of rules are used: the transformation rules
and the. Both sets are used along the syntactic analysis of the code in a single pass.

Transformation rules

Rule T.1 : Submodel calls are splitted into a call for each submodel segment. The

54 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

segment-link digraphs of the called lower level submodels are inserted in the
submodel digraph.

Let be, the submodel call,

y = second_order(z);

included in the nonjinearjsystem submodel coded in page 39 (submodel code 3.1).
The preprocessor will split it into three segment calls (code 3.4 in page 44).

-9- initial_second_order();
-10- y - state_second_order();
-11- derivative second order(z) ;

The edges of the secoruLorder segment-link digraph are afterwards inserted in
the submodel digraph of the calling program (figure 3.11).

The segment calls as well as the sorting relationships between them, already
shown in figure 3.5, are retrieved from the model data base by the preprocessor
at nonJinear.system preprocessing time.

9 z

/\ X
10 11

\
y

Figure 3.11: Edges (9,10) and (9,11) are called hidden edges because they
can not be gathered through the input-output variables in the
segment calls. These edges represent the implicit sorting re-
lationships between the segments of the called lower level sec-
ond-order submodel.

Rule T3, : Sequences of else if fields of an if statement are replaced by a se-
quence of embedded if statements (see page 36). This replacement affecting
the submodel digraph is useful for analysis purposes and will not appear in the
preprocessor C object target code.

Let be, the following piece of code to illustrate the rule7.
7TMs example is fully explained in section 3.5.

3.2. SUBMODEL DIGRAPH 55

Dynamic region

ifix<A) {
fx = Kl* (A-x) ;

} else if (x>=B & (v>-0.0 | ac<0.0)) {
fx - K2*(B-x)-C*v;

} else {
fx - 0.0;

Code 3.5 The symbols '&' and '(' are the and and or log-
ical operators respectively.

For analysis purposes, the if statement is transformed into a sequence of em-
bedded if statements,

Dynamic region

if(x<A) {
fx = KlMA-x);

} else {
if(x>-B S (v>=0.0 I ac<0.0))

fx - K2* <B-x)-C*v;
} else {

fx - 0.0;

Code 3.6 The replacement of else if fields for if state-
ments is made to ease the submodel digraph rep-
resentation and analysis.

Rule TJ : The transformed if statements (rule 12) and when statements are decom-
posed into a statement for each associated discontinuous function and a statement
for the event effect.

An edge from each discontinuous function vertex to its associated event effect is
inserted in the submodel digraph (figure 3.12). Although the cause of an event is
independent from its effect (see page 45) from the sorting perspective, these edges
should be considered in the submodel initialization analysis (subsection 3.3.2).

Continuing with the example introduced in rule T.2, for every 'relational ex-
pression' embedded in the if declarative statement, its associated discontin-
uous function (grootl, groot2, groot3 or groot4) is inserted in the

56 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

model code and the 'relational expression' is replaced by its related logical state
(Irootl, Iroot2, IrootS or Iroot4).

Dynamic region

-5- grootl - A-x; \
-6- groot2 - x-B; I discontinuous functions
-7- groot3 - v; I (event causes)
-8- groot4 - -ac; /
-9- if(Irootl) { \
-10- fx - Kl*(A-x); |

} else { I (event
-11- if (Iroot2 & (Iroot3 I Iroot4)) { | effects)
-12- fx =• K2*(B-x)-C*v; I

} else { 1
-13- fx - 0.0; |

}; I

End dynamic region;

Code 3.7 The substitution of relational expressions by their as-
sociated discontinuous functions and logical states lets
the analysis algorithms to put on one side code needed
for discontinuous function computation and on the
other side code needed for derivative computations.

Construction rules

Static region rule:

Rule S.I : A global symbol vertex is created in the submodel digraph for each variable
declared in the static region. These symbol vertices are defined to be at level
zero and they embrace different subsets as stated in subsection 3.2.2.

Initial region rules:

Rule 1.1 : A single executable vertex is nagged as initial if it is associated to the
initial region.

3.2. SUBMODEL DIGRAPH 57

Figure 3.12: Edges (5,9), (6,11_), (7,11_) and (8,11_) are only used in
the initialization analysis.

Rule L2 : A local symbol vertex is inserted in the submodel digraph for each variable
initialized in the initial region. This symbol vertex is nagged as initial.
The initial local symbol vertices will be labelled using the variable symbol plus
the extension (0). Hence, if the state variable x is initialized in the initial region,
the associated symbol vertex will be labelled z(0).

Rule L3 : In the submodel digraph the following directed edges are created.

• From the initial executable vertex to the local symbol vertices.
• ftom each initial local symbol vertex to its associated global symbol vertex.

Rule 1.4 : Edges from input, parameter and constant global symbol vertices related to
the initial region to the initial executable vertices are included in the submodel
digraph.
Code 3.8 is part of the static and the initial regions of the pilotjejector submodel.

58 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

Continuous submodel pilot_ejector is
Static region

inputs {real vel_of_aircraft,altitude;}
outputs(real horiz_disp,vert_disp;}
parameters {

real
pilot_mass - 7.0, drag_coefficient - 1.0,
pilot_drag_area » 10.0, eject_velocity = 40.0,
eject_deg_angle » 15.0, rail_height = 40.0;

}
constants {

real g - 32.2,
deg per_radian - 57.2958;

}
tabular 2d functions {

real air density = (0.0,2.377E-3)...
i60000.0,0.2238E-3);

}
functions called { real sin,cos,polar;}
state (real vel,flight_angle, horiz_disp, vert_disp;}
auxiliar variables {real eject_angle,horiz_velocity,

vert_velocity,
drag_at_altitude, ...;}

End static region;
Initial region

horiz_disp - 0.0; vert_disp - 0.0;
flight_angle - 0.0; vel - 0.0;
eject_angle - eject_deg_angle/deg_per_radian;
horiz_velocity - vel_of_aircraft-eject_velocity*

sin(eject_angle);
vert_velocity - eject_velocity*cos(eject_angle);
vel, flight_angle - polar(horiz_velocity,

vert_velocity);
drag_at_altitude - 0.5*drag_coefficient*

pilot_drag_area*air_density(altitude);
End initial region;

End submodel pilot_ejector;

Code 3.8 Procedural blocks are represented with single ex-
ecutable vertices. This restricts the possibility of
checking the procedural code through the sub-
model digraph analysis. For this reason, other
techniques should be applied to analyze the pro-
cedural code.

Figure 3.13 represents the vertices and edges of the pilotjejector submodel di-
graph related with the initial region.

3.2. SUBMODEL DIGRAPH 59

Declarative assignment statements rule:

Rule D.1 : Ear every assignment declarative statement, an executable vertex is inserted
in the submodel digraph. Declarative assignment statements are those declarative
statements which are not discontinuous (if and when statements).

eject_deg_angl« vet_of_aircraft drag_coeffia'ent altitude

dea__per_rad¡an \ eject_ve<aaty / pilot_drag_area

vert_velocity(0)

horiz_vetocity

vert_v6locity eject_angla

v«rt_disp

horíz_disp tllght_angle

Figure 3.13: The initial region is represented with the single exe-
cutable vertex 1. For each variable initialized in the ini-
tial region, an initial symbol vertex is defined (V»n =
{vert.velocUy(Q),..., flightjingle(Q)}).

Let be the declarative statement,

ac - fm/M;

Previously to the analysis of this statement, the variables ac and fm and the
parameter M already have global symbol vertices associated to them. To include
in the submodel digraph the relations involved in the statement the executable
vertex associated to the statement is created first; afterwards the directed edges
connecting the symbol vertices with the executable vertex are added (figure 3.14).

60 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

M fm

\ X
2

I
ac

Figure 3.14: Since global symbol vertices are present in the submodel di-
graph before the syntactic analysis of the initial and dynamic
regions, edges from executable vertices to global symbol ver-
tices can be directly inserted in the submodel digraph.

' When rules:

The code into a when statement has to be executed once at implicit solution points
of the ODE.

Several strategies are possible:

• To define a specific segment for the when clauses. This cede would be called
only at event occurrences governed by the discontinuous segment

• To cluster the when clauses in the discontinuous segment.

• To cluster the when clauses in the ODE segment (state or algebraic or derivative).

The selection of any of the above strategies influences the design of the sequence of
calls to the discontinuous and ODE segments from the ODE solver at implicit solution
points.

Rule W.I : A when executable vertex is assigned to each when clause.

This is shown in the following code:

-1- Initial region
start - 0,0;
y - FALSE;

End initial region;
Dynamic region

-11- groot2 - ramp-1.0;

3.2. SUBMODEL DIGRAPH 61

-12- when(lroot2) {
start - start+period;
y - TRUE;

Code 3.9 A when executable vertex is assigned for each
when clause.

whose relations are represented in figure 3.15.

1

period

start

Figure 3.15: Vertex number 12 belongs to the set of when executable ver-
tices (12 6 Ve^ and T(12) e VawH).

Rule W.2 : For each variable defined in a when statement a new when local symbol
vertex is inserted in the submodel digraph. The when symbol vertices will be
labelled using the symbol plus the extension wh.

Rule VVJ : For each input variable to the when clause an edge from its associated
global symbol vertex (v¡ € Vs3i) to the when executable vertex (v¡ e Vewh) is
created in the submodel digraph if t>¡ i

Rule W.4 : If:

and
Vi € V», Vj € Ve, vk € V«tt.A

then the edge (t>3-, r~
l(«jfc)) must be inserted in the submodel digraph in order to

ensure the proper sequencing of the declarative code.
To emphasize the above rule, submodel codes 3.10 and 3.11 modelling a pulse
generator can be considered. In order both to behave properly it is mandatory
that vertex 4 is executed before vertex 3, see code 3.12. To achieve it, according

62 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

to the above mie an edge from vertex 4 to vertex 3 has to be added in the
submodel digraph in figure 3.16.

Dynamic region
y = FALSE;
ramp = {si_time-start)/per;
when(ramp>=1.0) {

start - start+per;
y » TRUE;

};
End dynamic region;

Code 3.10 Impul submodel code.

Dynamic region
ramp - (si_time-start)/per;
when í ramp>~l.0) {

start - start+per;
y - TRUE;

>;
y - FALSE;

End dynamic region;

Code 3.11 Impul submodel code.

Dynamic region
-1- ramp - (si_time-start)/per;
-2- grootl - ramp-1.0;
-3- when(lroot2) {

start - start+per;
y - TRUE;

};
-4- y - FALSE;

End dynamic region;

Code 3.12 The relations between procedural statements in-
cluded in the when clause are not represented in
the submodel digraph. Other techniques should
be applied to analyze in more detail this proce-
dural code.

In contrast with other languages restrictive definition of the if declarative state-
ment [Crosbie86a], the if declarative statement defined in the MUSS language allows
declarative blocks (see page 36). In a fast reading through the below construction rules
it can be observed that it is more difficult to properly represent the relations involved
into the MUSS if statement than in other languages restrictive if statements.

3.2. SUBMODEL DIGRAPH 63

Figure 3.16: If 'vertex number 4 is executed after the when executable vertex
number 3, the effect of the when vertex over the local symbol
vertex ywft will not be reflected in the global symbol vertex y.

Rule F.1 : An if executable vertex is assigned to each if statement

Rule FJl : The executable vertices within an if block are labelled with the vertex
number followed by an extension coding the TRUE-FALSE sequence leading to
it Notice that in general some executable vertices can be if or when executable
vertices.

An if statement selects, in general, one of the two declarative blocks embedded
in the statement The first one is chosen if the logical expression related to
the statement is true. Otherwise, the second declarative block is selected. To
distinguish the executable vertices included in the first declarative block from
those in the second one, the executable vertices related to the true state are
flagged with a "+" extension. Executable vertices related to the false state are
flagged with a "-" extension. This can be recursively extended to embedded
sequences of if statements (see code 3.13 and figure 3.17).

Rule ¥3 : Edges are created from each if executable vertex to the executable vertices
associated to the if blocks.

Therefore, the set of successors of an if executable vertex (F(vi), v¡ € Ve,-/)
corresponds with the set of executable vertices included within the if statement

As an example, the submodel digraph associated to the following code is repre-
sented in figure 3.17.

64 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

Dynamic region

-3- if(lrootl) {
-4- fx = Kl*d;
-5- d - (A-x);

} else {
-6- if Uroot2)) {
-7- d = (B-x);
-8- fx - K2*d-C*v;

} else {
-9- fx - 0.0;

-10- fm - fe+fx;

End dynamic region;

Code 3.13 Blocks included in an if statement are declara-
tive.

In this figure, it can be seen that the set of successors of the if executable vertex
number 3 are:

which correspond to the vertices associated to the statements included in the if
statement

Moreover, vertex number 6_ is an if vertex. Thus,

Rule F.4 : A local symbol vertex is created in the submodel digraph for each variable
defined into the if declarative blocks. This if symbol vertices as well as the
edges from the executable vertices defining them are labelled with the name
of the symbol followed by an extension like the one defined in rule F2 (see
code 3.13 and figure 3.17).

Rule F.5 : If a if symbol vertex such as z+ ___ + is created in the submodel digraph, the
if symbol vertices x+ ___ , z+ __ , z+_ and z+ have to be created too as well as the
corresponding edges: (z+ — *,z+ —), (z+ --- ,z+_), (z+__,z<._), (z+_,s+)
and (z+, z) — see page 71 — .

In figure 3.17, the edges (/z+, /z) and (fx., fx) represent that

fx = /

3.2. SUBMODEL DIGRAPH 65

K1

Figure 3.17: The submodel digraph vertices can be classified in:

• Global symbol vertices

V,gl - {*, », fx, fm, d, fe, K\,K2, C, A, B}

• Local symbol vertices

If executable vertices: Vs¡f - {3,6_}.

Declarative executable vertices "included" in the if
executable vertex 3: P(3) » {4+,5+,6_} and 6_:

Note that the executable vertex 4+ has as input the local sym-
bol vertex d+ instead of d. This is because d+ is defined in
the same declarative block.

66 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

and given that
/z_ = fx-+ + fx—

it results
f x = /z+ + /z_+ + /z__

Rale F.6 : In case an input variable to a statement in an i f block has a if symbol
vertex in the same block associated to it, an edge is included from the if symbol
vertex to the executable vertex.

Otherwise, an edge from the global symbol vertex to the executable vertex is
included.

3.3 Submodel digraph analysis

Different aspects regarding the robustness of simulation software have been described
in [EIzas79a] an expanded later in [Cellier84a]. These aspects can be grouped and
summarized as follows:

• Simulation languages: the simulation language should follow a structured ap-
proach compatible with structure elements of the real system under investigation.
Furthermore, the simulation language definition must contain sufficient redun-
dancy so that the software is able to detect as many programming errors as pos-
sible. Moreover, the use of formal grammars to define the simulation language
is strongly requested.

• Simulation compilers: the simulation compiler should perform extensive error
testing while parsing the application program. Furthermore, the simulation com-
piler should ensure that syntactic errors will not propagate to the next compiler
stage. Moreover, the use of formal grammars increases the robustness of simu-
lation compilers with respect to their maintainability.

• Simulation run-time systems : the user should not be forced to bother about
details related to the run-time system implementation. Furthermore, the numerical
algorithms should detect numerical instabilities, properly report numerical errors
and work for a large set of applications.

• Simulation data: perhaps the most important concept for enhancing the robust-
ness related to the simulation data is the use of relational simulation data bases
to store and retrieve simulation and experimental results.

3.3. SUBMODEL DIGRAPH ANALYSIS 67

• Simulation systems: The term simulation system denotes the union of simulation
language, simulation compiler, simulation run-time system, simulation data and
the documentation. System documentation must be updated in parallel with
program code improvement

• Model robustness: Consists in ensuring that a particular application program per-
forms properly. It is a consequence of the mathematical abstraction methodology
used and the robustness of the simulation software.

In the design of the MUSS system and special care has been given to its robustness:

• The hierarchical structure of the MUSS simulation language is suitable for the
division of the real system into subsystems.

• Redundancy is introduced in the submodel code. For example, the user is forced
to declare all the submodel variables.

• The use of LALR(l) grammars to specify the MUSS language increases the
robustness of the Aft/55 preprocessor with respect to its maintainability.

• The MUSS preprocessor ensures that syntactical errors will not propagate from
the preprocessor to the C compiler stage.

• The MUSS preprocessor performs extensive error checking looking for model
consistency and completeness.

• MUSS relies on reputed numerical algorithms increasing the robustness of the
run-time system (MUSS simulation environment).

• Model and simulation data bases fall into the robustness of the data handling
mechanisms.

This section is devoted to the submodel digraph analysis techniques employed in
the MUSS preprocessor to check the model consistency and completeness.

In the analysis of the submodel digraph four functional main phases can be distin-
guished:

1. Code consistency checking: This stage, which can partially be carried on in
parallel with the submodel digraph construction, looks at the code consistency.

68 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

2. Submodel dynamic initialization analysis: In this phase, besides checking that the
submodel can be properly initialized, the executable code needed for initializing
the current submodel (this includes the discontinuous functions initializations)
and the called lower level submodels is grouped into the initial segment.

3. Discontinuous function computations analysis: During this phase, the code needed
to evaluate the discontinuous functions of the current submodel and those in the
called lower level submodels is grouped into the discontinuous segment. More-
over, discontinuous functions are classified in order to generate run code reducing
the time overhead at event occurrences.

4. Dynamic computations: During this phase, the code needed to calculate deriva-
tives is grouped into the ODE segment (Ordinary Differential Equations segment).

Before continuing, some more definitions are needed:

Definition 3.6 A segment digraph Sg - (Sv, Sé) is defined as a subdigraph of the
submodel digraph.

Definition 3.7 Following run-time structural requirements, tree types of segment
digraphs can be defined. According to the definition 3.6 this segment
digraphs can overlap and this will be often the case.

• Initial segment digraph (Ig *> (Iv,Ie)): Includes all the executable vertices
needed to initialize the current submodel and the lower level submodels.

• Discontinuous segment digraph (Eg ** (Ev,Ee)): Includes the executable
vertices needed for evaluating the discontinuous functions of the current submodel
and those of the lower level submodels.

• ODE segment digraph (Og » (Ov,Oe)): Clusters the executable vertices
involved in the computation of the derivative and output variables of the current
submodel as well as the derivative vertices associated to the called lower level
submodels*.

'Auxiliary vertices that do not contribute to discontinuous, derivative or submodel output computa-
tions are included in this segment The related code may only be executed at communication intervals.
When executable verdees are also added to this segment but the associated code has to be executed at
event occurrences.

3.3. SUBMODEL DIGRAPH ANALYSIS 69

33.1 Code consistency checking

What follows, is a preliminary list of error conditions which may be used in MUSS for
testing the source code consistency.

(1) A parameter or a constant can not be updated in the initial or dynamic region.
Thus, an error occurs if

or

(2) A parameter or constant declared in the static region should be used as input in
some statement. Hence, a warning error should be issued if

r(v¡) - 0 and Vi e Vap

or
r(vi) => 0 and «,• Ç Vge

In addition, each variable in the submodel input list should be used as an input
to a statement Consequently, the warning error condition is,

F(vi) =• 0 and vi 6 F*,-

(3) All the declared submodel variables — excluding state variables and those in the
input list — should be used as output in some statement A warning error occurs
if

r-l(v¡) = 0 and Vi 6 V» - (Va U Vi, U V»f U V*c)

(4) A symbol vertex can not be defined by two or more executable vertices. Therefore,
there is some error if

\r-l(v¡) n Ve | > 2 and »,- 6 Vt

This error condition is emphasized in the following example.

Dynamic region
-1 - y - x*A;

-5 - if(lrootl) {
-6 - fx - Kl*(A-x);

70 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

} else {
-1 - fx = 0.0;

-10- fx = K2*(x-B);

-11- y - cos (z) ;

End dynamic region;

The submodel digraph related to the piece of code written above is represented
in figure 3.18.

Kl

Figure 3.18: Code associated to the submodel digraph is inferred to be
incorrect because the variable y has a double definition. Fur-
thermore, the variable fx- defined for the FALSE state of the
if statement has a double definition, too.

The submodel code is erroneous because:

and

\r~l(fx.) n Ve\ = |{7_, 10_>| - 2 and fx. 6 Vs

(5) A submodel variable can not be simultaneously denned in an If clause and in a
declarative assignment statement outside the if clause.

Given a symbol vertex »,-, an error is inferred when,

3.3. SUBMODEL DIGRAPH ANALYSIS 71

and

The following code, whose submodel digraph is represented in figure 3.19 is
wrong because the variable y is defined twice over time spans.

Dynamic region
-1- iff...) {
-2- y - ...;

} else {
-3- y -

);
-4- y - ...;

End dynamic region;

Figure 3.19: A variable can not be defined in an it clause and simul-
taneously in a declarative statement placed outside the if
clause.

In this case

(r-'(y) - {y+, y_,4}) n V*if - {y+, y_} y 0

and
(r~l(y) - {y.,y-,4}) n Ve - {4} y 0

(6) Variables defined in an if clause, and used outside it should be defined for every
execution path through the if clause.

Hence, given

v¡ 6 Vs3l and (v¡ 6 Vta U Vid or FM nV

72 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

and vj belonging to the set of if local symbol vertices weakly connected to w;
then,

a warning error occurs if

or

The error condition is illustrated in the following example:

A way to code a zero-order hold with a logical input control signal could be,

Continuous submodel zero_order_hold is
Static region

inputs (logical logical_variable; real x,IC;}
outputs {real y; }

End static region;
-1- Initial region

Y - 1C;
End initial region;
Dynamic region

-2- if Uogical_variable) {
-3- y - x;

};
End dynamic region;

End submodel zero_order_hold;

Code 3.14 ZerojorderJiold submodel.

Where the associated submodel digraph is represented in figure 3.20.

1C

\
1 logical variati*

x''
x

Figure 3.20: The analysis algorithm checks that variables are defined for
each logical state of a if discontinuous statement. In this
case, variable y is only defined for the TRUE state.

3.3. SUBMODEL DIGRAPH ANALYSIS 73

It can be seen that the variable y is only defined for the TRUE state of the If
statement. In this case the code is right but in other cases it might be wrong.
Therefore, a warning message error may help the users to detect programming
errors.

In this case a warning error will be given because

y € V,0 and KP-'fo) - {ï/(0), ¡k}) n V*t/\ - |{y.}| - 1

However, notice that variables not denned in an if clause for all its execution
paths but not used outside the if clause are not suspect of an error condition.
This is shown in the next example,

Dynamic region
-I- grootl « x-A;
-2- if(lrootl) {
-3- fx = Kl*xl;
-4- xl - (A-x);

} else {
-5- fx =• 0.0;

};
End dynamic region;

The related submodel digraph is represented in figure 321.

A x

x1* fx » fx - fa

Figure 3.21: Variable xl is only used in a declarative block embedded
in the If statement. Therefore, its use is always correct
although it is not defined for all the logical states of the if
declarative discontinuous statement.

In this case xl is only defined and used9 in the same declarative block which is
connected to the TRUE state. So, a warning error will not be issued to the user.

'In this example, z l is not an output, neither a derivative variable

74 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

(7) If the error condition (6) fulfills for a global symbol vertex v¡, then a fatal error is
issued if

r-l(v¡) n Vsn m 0

As the reader may have observed in code 3.14 and its associated submodel
digraph represented in figure 3.20, variables not defined in an if clause for all
its execution paths and used outside it must be initialized in the initial region.

3.3.2 Submodel dynamic initialization analysis

The model (submodel) initialization can be divided in two parts:

• Static initialization: Consists on setting up constants when instances of contin-
uous models are created.

At preprocessing time as well as at run-time, a test is undertaken to check if all
the submodel parameters and constants have been initialized. At run-time, the
simulation system forces the user to initialize all the submodel parameters and
constants not set beforehand. See section 2.3 at page 25 for details concerning
data passing mechanisms between subprograms.

• Dynamic initialization: Consists on executing the initial segment of each contin-
uous submodel and setting up the logical states associated to each discontinuous
function.

The value of the variables of the initial segment in the submodel input list must be
initialized from a higher level initial segment Since the dynamic segment of the
experiment is also partitioned into the inital, discontinuous and ODE segments,
the initial segment of the experiment may initialize input variables of the called
initial segments.

This subsection deals with the submodel consistency checking (state vector and
value of the discontinuous functions) at initial time. The submodel digraph simpli-
fications rules are stated first, thereafter, the steps of the initialization analysis are
exposed.

Simplification rules:

» If there is an edge from a local initial symbol vertex Vsn to a global symbol
vertex, all other edges concurrent to this symbol vertex are removed:

Vvfc € Vtn, the edges (»¿./"(DÌ)) where »¿ y v* are not considered (see fig-
ure 3.22).

3.3. SUBMODEL DIGRAPH ANALYSIS 75

I* * fx .
fx(0)

Figure 3.22: The global symbol vertex /z is defined in the initial region.
Consequently, the edges (fx+,fx) and (fx+,fx) are mean-
ingless for the submodel initialization analysis.

When occurrences at initialization time can not afford. Therefore, actions asso-
ciated to when statements do not contribute to the submodel initialization:

Edges (v,-, v¡) such as v,- 6 VettA or v¡ € Vewh are removed.

Notice that edges from discontinuous executable vertices to if executable vertices are
preserved. These edges are needed for the analysis because the initialization depends
on the discontinuous function values.

Steps of the analysis:

In the analysis steps, two different sets can be distinguished: the first concerning the
completeness of the submodel initialization which is achieved through the submodel
digraph (steps 1 to 5); the second regarding the initial region (whose code will be
included into the initial segment) initialization (steps 6 and 7) using specific techniques
for procedural code.

(1) Check that all the state variables have been initialized in the initial region:

For every state symbol vertex t>¿ e Vs„ IF'H»;) n Vsn\ must be equal to one.

(2) A variable defined in a when clause and used (input of a statement) outside the
when clause must be initialized in the initial region if it is not defined in a
declarative assignment statement. Thus, if v j G P(o,-) such as r~l(vj)n Ve » 0,
•o¡ € Vtvh and vj € (V f 0 u Vad) or r(t>3-) 6 Ve, a vertex vk € r~l(vj) should
exists such as v* e Vsn, otherwise there is an initialization error.

Let be the submodel code10 which models a square wave train:
10This submodel is presented in more deuil in appendix C in page 193.

76 CHAPTER 3. CONTINUOUS SUBMODEL ANALYSIS

Continuous submodel pulse_width_modulator is
Static region

inputs (real time_delay, ratio, period; }
outputs {logical y; }
auxiliary variable {real start, ramp;}

End static region;
Initial region

if (time_delay > 0.0) {
y - FALSE;
start - time_delay-period;

} else if (time_delay < 0.0) {
y - TRUE;
start = -time_delay-period*ratio;

} else {
y - TRUE;
start - 0.0;

};
End initial region
Dynamic region

ramp • (Time-start) /period;
when (ramp>=ratio) { y = FALSE;
} when (ramp>=l .0) {

start - start+period;
y - TRUE;

};
End dynamic region;

End submodel pulse_width_modulator;

Code 3.15 Pulse \yoidihjnodulator submodel.

The transformed code will be:

-l-Initial region
if (time_delay > 0.0) {

y - FALSE;
start - time_delay-period;

} else {
if (time_delay < 0.0) {

y - TRUE;
start = -time_delay-period* ratio;

} else {
y - TRUE;
start - 0.0;

End initial region
Dynamic region

-2- ramp - (Time-start) /period;
-3- grootl » ramp-ratio;

3.3. SUBMODEL DIGRAPH ANALYSIS 77

-4- groot2 - ramp-1.0;
-5- when (Irootl) {

y = FALSE;
} when?lroot2S {

start = start+period;
y = TRUE;

};
End dynamic region;

The initialization of y and start variables is necessary because (figure 3.23):

time_delay ratio period

start(O)

Figure 3.23: Pulse-width modulator submodel digraph. Note that variables
start and y must be initialized at initial time, otherwise they
will be undefined until an event activates the when statement.

* y € P(ywft) and P-'íy) n Ve - 0, ytt.A € VswH and y € V»a.

• start 6 r(stariu;ft) and f^yJOVc = 0, siartuh € Vs^h and F(stari) Ç.
Ve.

(3) Check that the logical states associated to the discontinuous functions of the sub-
model can be set at initial time:

The logical states can be set at initial time if the discontinuous vertices Vegf and
their predecessors (Q(Ve9¡)) do not belong to directed cycles.

78 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

A good example is presented in the case study of section 3 J (see code 3.20
and figure 3.29 in pages 99 and 100). In the example, if the variable /z would
not be initialized, the discontinuous vertex 8 would belong to the directed cycles
formed by vertices

{8,11., 12_+, /z_+, /*_, f x , 14, /m, 2, ac, 8}

or vertices

and therefore the discontinuous functions would not be able to be evaluated at
initial time.

- (4) Check that the called lower level initial segments can be executed at initial time:

This case is similar to the previous one: the lower level initial segments can be
executed at initial time if its initial executable vertices and their predecessors
(Q(Ven)) do not belong to directed cycles.

In figure 3.24 in page 80, it can be seen that initial vertex 4 can be executed
at initial time because there is an initial condition for zO and therefore the edge
(10, zO) has been removed.

(5) If the above conditions fulfill, the next step consists in building the initial segment
digraph which has to include the following vertices:

- Executable vertices: Ive = Q(Ven U Veg¡) n Ve

- Input symbol vértices: Ivt¡ = F~l(Ive) D Vt¡

- Output symbol vertices: Ivs0 = 0

and the initial segment will be composed by:

- Statements associated to Ive executable vertices.

- Input variables associated to Ivs¡ input symbol vertices.

(6) Check that for every execution path through the initial region, all the variables
which are inputs to statements of the dynamic region will be initialized.

This objective as well as the next one can not be achieved through the sub-
model digraph analysis, they can be attained using techniques more suitable for
procedural code [RichardsTSa].

(7) Being the code in the initial region, procedural, a test can be made to be sure that
no variable is used before its initialization.

3.3. SUBMODEL DIGRAPH ANALYSIS 79

Aspects of the initial segment structure:

Let be the MUSS submodel code 3.16, where the if statement is used to select
one of two submodels:

Continuous submodel dummy is
Static region

inputs (real y;} outputs{real x;}
parameters {real ul=0.0, 11=-4.0, tau=1.0;}
auxiliary variables (real xO;}
submodels called (real_pole; limiter;}

End static region;
Initial region

xO - 3.0;
End initial region;
Dynamic region

i f (y>=0 .0> {
x = real_pole(xO,tau,y) ;

) else {
x - limiter (11,ul,y) ;

);
xO = x;

End dynamic region;
End submodel dummy;

Code 3.16 Dummy submodel. In many models the set of active
equations changes at certain event occurrences. This
is the case of events that bear a change in the physical
system (pilotjejector model) or the case of events that
convey a change in the set of equations in order to
improve the numerical behaviour (orbit and nuclear
engineering models).

The MUSS transformed code is shown in code 3.17.

-1- Initial region
xO - 3.0;

End initial region;
Dynamic region

-2- grootl - y;
-3- if(lrootl) {
-4- initial_real_pole(xO);
-5- derivative_real_pole(tau,y);
-6- x - state_real_pole<);

} else (

80 CHAPTER 3. CONTINUOUS SUBMODEL ANALYSIS

-7-
-8-
-9-

-10-

initial_limiter(ll,ul,y) ;
discontinuous_limiter (11, ul, y) ;
x - algebraic_limit:er{ll»ul,y) ;

xO = x;
End dynamic region;

Code 3.17 At each event occurrence, the initial segment of
the selected if block must be executed to prop-
erly initialize the associated submodel.

The dummy submodel digraph is represented in figure 3.24.

ul

Figure 3.24: Dummy submodel digraph. Edge (10, zO) ir ignored in the
initialization analysis. Though vertices 4+ and 7_ belong to
Ven (Ven = {1,4+17_}J, only one of these vertices will be
executed at initial time.

The initial segment of the submodel dummy has to include thè code associated
with the submodel digraph executable vertices {2,3,4+)7_}. This code will allow the
computation of the executable vertices 4+ or 7_ at initial urne.

3.3. SUBMODEL DIGRAPH ANALYSIS 81

xO = 3.0;
Irootl - (grootl - y) >=• 0.0;
if(lrootl) {

initial_real_pole (xO) ;
} else {

initial_limiter<ll,ul,y) ;

At initial time, both submodels (if blocks) may be able to be initialized although
only the call to the lower level initial segment of the lower level submodel selected
(realzóle or ¡imiter) will be executed. Afterwards, at event occurrences, the initial
segment of the lower level submodels called in the if declarative blocks have to be
executed depending on the discontinuous functions states.

Before performing a simulation experiment, a check must be undertaken to establish
if the initial set of the defined logical states for all discontinuous functions is consistent
If it is not, an iterative method can be used to search for a consistent set of states.

The responsibility of defining the proper set of initial conditions is left to the analyst

3.3.3 Discontinuous function computations analysis

In the dynamic initialization analysis, in fact the completeness of the computations
related with the logical states associated to the discontinuous functions has been checked
and the initial segment elements have been pointed out as well.

The stress in this subsection is in how to build up the discontinuous segment (g-root
computations). Concerning the necessary transformation rules to build the logic around
the root-finder and the discontinuous segment tightly related with the ODE solver, only
the guidelines are commented.

The discontinuous segment:

The purpose of the discontinuous segment is to cluster the code needed to compute
the discontinuous functions of the submodel and called lower level submodels.

To achieve this objective, the submodel digraph has first to be simplified according
to the following rules:

• Edges (t>¿, «.,-) such as v¿ € (VswH U Vewh) or v j e (VtwH U Fett.A) are rejected.

• Edges (vi, vj) such as v,- e (Vsn u Ven u Vea) are rejected. These edges are
only used in the submodel initialization analysis.

82 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

The discontinuous segment digraph has to include the following vertices:

- Executable vertices: Eve = Q(Ve9) n Ve

- Input symbol vertices: Evs¡ = F~1(Eve) n Vs¡

- Output symbol vertices: Evs0 = 0

and the discontinuous segment will be composed by:

- Statements associated to Eve executable vertices.

- Input variables associated to Ev*¡ input symbol vertices.

The discontinuous functions analysis:

The end objective of the analysis is to generate a well-conditioned code to properly
handle the discontinuities.

To achieve it, two main aspects can be distinguishe±

- The recognition of the discontinuous function type according to some taxonomy.

- Which is the right action to drive the integration properly after the event occur-
rence.

Steps 1,2 and 3 are mainly concerned with the first one whereas step 4 emphasizes
the second one.

(1) According to the discontinuous MUSS statement type, a distinction of the discon-
tinuous functions can be done in two classes:

1. Discontinuous functions attached to if statements.
Notice that the MUSS statement

1 - y >- 0.0;

involves a discontinuous function belonging to this class. It is equivalent
to

if Cy>-0.0) {1-TREJE;}else {1-FALSE;} ;

3.3. SUBMODEL DIGRAPH ANALYSIS 83

and it will be decomposed at preprocessing time into:

grootl - y;
1 - Irootl;

2. Discontinuous functions attached to when statements.

The main difference between both discontinuous statement types is in the event
occurrence handling.

When a root of an if attached discontinuous function is found and the new
logical state is set, only a single call to the ODE segment is needed to propagate
the event effect across the ODE segment

In contrast, since variables which are output of when statements are handled like
state variables (i.e. memory variables), two calls to the ODE segment are needed
to propagate the effect of a when associated event

(2) Depending on the event effect the discontinuous functions can be grouped in:

1. Those involving state variables or derivative variables.

2. Those involving only discontinuous functions.

3. Those which do not modify state variables, neither derivatives, neither dis-
continuous functions.

Although an integration restart may always be done to resume the integration
after an event occurrence, a best choice, which is supported by modem ODE
solvers, seems to be:

- If the event belongs to the first class, a restart is necessary to proceed with
the integration.

- If the event belongs to the second class, only a call to the discontinuous
segment is necessary to resume the integration.

- If the event belongs to the third class, integration continues —if it is
possible— from the internal mesh point.

However, to embody a discontinuous function in one of the above mentioned
groups may require additional information. This is the case when the effect of
an event propagates through an output variable to a higher level submodel or
to a called lower level submodel through an input variable of the lower level
submodel.

A deeper knowledge about submodels interfaces allows to achieve the right clas-
sification of the discontinuous functions.

84 CHAPTER 3. CONTINUOUS SUBMODEL ANALYSIS

(3) Another analysis objective consists on finding the discontinuous functions which
only depend on the simulation time because their associated events can be han-
dled like time events [EllisonSla].

If input variables contribute to the discontinuous function evaluations, the iden-
tification of the discontinuous functions as time-dependent-only should be hold
until the calling higher level submodel(s) is(are) preprocessed.

(4) To improve the code a useful analysis objective consists in detecting, in cascaded
if (else if) constructions, the meaningless ¡/branches (g-roots) associated
to the logic values (l-roots) of the higher level if constructs.

Notice that this analysis is achieved at MUSS source processing time.

This can be illustrated with the next example which is based on the case study
presented in section 3.5.

Given the piece of dynamic code:

if(X<A) {
fx - Kl* (A-x) ;

} else if (x>=B & (v>-0.0 I ac<0.0)) {
fx - K2* (B-x)-C*v;

} else {
fx - 0.0;

};
fm = fe+fx;
ac = fm/M;
v* = ac;

it is transformed at preprocessing time into the intermediate code:

-1- grootl - A-x;
-2- groot2 = x-B;
-3- groot3 - v;
-4- groot4 - -ac;
-5- if(lrootl) (
-6- fx - KIMA-x) ;

} else {
-7- if (Iroot2 & (Iroot3 I Iroot4)) {
-8- ' fx - K2*(B-x)-C*v;

} else {
-9- fx - 0.0;

-10- fm - fe+fx;
-11- ac - fm/M;
-12- V - ac;

3.3. SUBMODEL DIGRAPH ANALYSIS 85

It can be seen that:

• If the value of Irootl is TRUE, it is not needed to restart integration
when a root in groot2, grootS or groot4 is found.

• If the value of Irootl is FALSE and the value of 1 root2 is FALSE, it
is not needed to worry about roots in grootS or groot4 discontinuous
functions.

As a consequence of the above analysis, the source code will be transformed
into:

-1- grootl - A-x;
-2- groot2 - x-B;
-3- groot3 - v;
-4- groot4 - -ac;
-5- if (frootl - Irootl) {
-6- fx - KlMA-x) ;

} else {
-7- if (f root 2 - Uroot2 & (Iroot3 I I roo t4))) {
-8- fx - K2*{B-x)-C*v;

} else {
-9- fx - 0.0;

-10- fm - fe+fx;
-11- ac - fm/M;
-12- V - ac;

instead of the previous code.

Now, the condition to restart the integration is attached to a change on the
state of frootl or froot2. To update frootl and froot2, a call to
the ODE segment has to be made after a root is detected and the logical state
(Irootl, . .., Iroot4) related to the root has been updated.

In this particular example, the number of integration restarts will be reduced in
a 50%.

3.3.4 Dynamic computations

The continuous submodel dynamic code has to be splitted into the ODE and the discon-
tinuous subprograms (segments) in order to interface it with the ODE solver packages
(subsection 3.1.1, page 38).

86 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

In subsection 3.3.3 it has been shown how to build the discontinuous segment but
the ODE segment construction has not been discussed yet.

Subsection 3.3.1 has mainly dealt with the dynamic code analysis, therefore the
only remaining question is the clustering of the necessary code into the ODE segment.

In order to perform the above objective the submodel digraph has to be simplified
and thereafter the ODE segment digraph has to be set

Simplification rules:

• Directed edges issuing from initial executable vertices are removed. Therefore,
given »,• € Vea, the edges (»,-, r(t>_,-)) are suppressed.

• Directed edges issuing from initial local symbol vertices to their associated global
symbol vertices are discarded. Thus, if v¡ 6 Vsn then edges (»,-, A?,)) are
suppressed.

• Directed edges issuing from the discontinuous function vertices to their associated
executable vertices are removed. Thus, if »,• 6 Ve3, the edges (v¿, T(v¡)) are
suppressed.

• Directed edges issuing from when executable vertices to when local symbol
vertices are removed. Thus, if v¡ e Vewh, the edges (t;,-, r(v,-)) are suppressed.

The ODE segment:

The ODE segment has to assemble the code to compute the submodel output vari-
ables (those in the output list) as well as those needed at communication intervals (for
recording purposes).

To achieve the above requirement, the following computations have to be per-
formed: derivatives (state), when clauses, if block initialization clauses (see example
in page 79) and output bounded clauses.

The set of executable vertices of the ODE segment will be:

• Q(V'<i) n Ve: Vertices to compute the derivative symbol vertices (derivatives of
the submodel).

• Q(Ve¡¿) n Ve: Vertices to compute the derivative vertices associated to calls to
lower level derivative segments.

3.4. SUBMODEL SORTING 87

h) n Ve: Vertices to compute the when executable vertices at event oc-
currences.

(r(Ve,-/) n Ve„): Vertices to compute the initial vertices which will have to be
executed at event occurrences.

Q(Va0) n Ve: Vertices to compute the output symbol vertices.

- (Ve - (Eve U Ve„)) - Q(Ve¿ U V»d U Vs0 U Ve^n) : Vertices which only wUl
be executed at communication points.

The ODE segment digraph includes the following vertices:

- Executable vertices:

Ove - (Q(Ved U Vsd U V», U Vewh) n Fe) U (r(Veif) n Ve„)

U (Ve - (Eve U Ven))

- Input symbol vertices: Ova¡ = J1"1 (Owe) O Vs¡

- Output symbol vertices: Ova, = Vs0

The ODE segment will be composed by11:

- Statements associated to Ove executable vertices.

- Input variables associated to Ova,- input symbol vertices.

- Output variables associated to Ova, output symbol vertices.

3.4 Submodel sorting

As Clancy [CIancy65a] states, the development of a sorting method by Stein [SteinoOa]
was an important step towards the design of more powerful and flexible Continuous
System Simulation Languages (CSSL). Since then, this feature has been provided by
many widely used CSSL languages, such as: MIDAS (1964), DSL/90 (1964) and
successors [Shah76a] [SynSSa] .CSSL-IV [NHsen83a] and ACSL [MitchelI82a].

The automatic sorting of the sentences makes free the user from the responsibility
of ensuring a proper execution order of the simulation model code. This important
feature should be supported, in our opinion, by modem simulation languages.

"In fact, the ODE segment (subprogram) is not created by the preprocessor. The ODE segment
digraph is directly splitted into the state, algebraic and derivative segment digraphs.

88 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

3.4.1 Statement of the problem

The MUSS language has been conceived as declarative and its architecture hierarchical.

The sorting algorithm which has to convert the source code into a procedural one
faces a problem not found in classical monolithic architectures, that of the information
loops.

A sentence in the dynamic code in which a submodel is invoked is formally equiva-
lent to an assignment statement: it has a set of input and output variables (the submodel
interface). The difference arises from the fact that the coupling of the variables in the
interface through the called submodel code is hidden to the preprocessor sorting pro-
cedure. If that procedure detects algebraic loops involving interface variables, the loop

" may be really algebraic —which would be the case if the above mentioned coupling is
algebraic— or merely an information loop.

Known approaches to avoid information loops are:

Handle the submodels as MACRO'S. The statements of the called submodels
will be spread over the statements of the calling submodel. In this case, all the
submodels must be able to be retrieved in source form. Moreover, MACRO-like
facilities should be provided. Rirthermore, the time spent at preprocessing time
increases because of the necessity of translating all the lower level submodels
which have to be handled like MACRO'S.

Force either the submodel input variables or the submodel output variables to
be all state type. This approach, in our opinion, is restrictive because the corre-
spondence between the physical subsystem and the submodels in the hierarchical
model can be lost

Porce the user to separate the computation of the derivatives from the output
computations which are assembled in a specific block in which the outputs only
depend on state variables. The main objection to this approach is that the user is
forced to bother about requirement imposed by restrictions in sorting capabilities.
Moreover, a different type of submodel has to be defined for coding subsystems
when the submodel output variables are algebraically related to the submodel
input variables.

The method proposed next, based on the segmentation of the ODE segment, does
not impose restrictions on the submodel architecture neither in the hierarchy

3.4. SUBMODEL SORTING 89

3.4.2 Definitions

The algorithm which will be shown in the next subsection is based on a segmentation
of the ODE segment into subsegments (state, algebraic and derivative segments) which
have an associated subdigraph which has to be built from the ODE segment digraph.

Based on subsection 3.2.2, the following definition can be stated:

Definition 3.8 Three types of ODE subdigraphs are distinguished according to the
nature of its executable vertices:

• State segment digraph (Sg = (Sv, Sé)): The executable vertices do not depend
on input symbol vertices.

• Algebraic segment digraph (Ag » (At;, Ae)): The executable vertices belong
to input/output symbol vertices directed paths.

• Derivative segment digraph (Dg = (Dv, De)): The executable vertices do not
contribute to output computations.

Straightly, from the preceding definition, the segments (subsegments) associated to
the digraphs will be characterized by the following structural properties:

• State segment: output variables in it will depend only on parameters, constants
or state variables. Therefore, they may not exist pure algebraic chains between
input and output variables.

• Algebraic segment: it clusters the input-output algebraic computations.

• Derivative segment: computations involving output variables are not allowed.
Derivative computations, when clauses and computations to be performed at
communication intervals will be assembled in this segment

Before coming into the algorithm exposition, some new definitions (founded on
those in subsection 3.2.1) are needed:

Definition 3.9 The of a vertex v¡ in a digraph is the number of output vertices
reachable from vertex v¡. weight, output

90 CHAPTER 3. CONTINUOUS SUBMODEL ANALYSIS

Definition 3.10 The of a vertex v¡ in a digraph is the number of input vertices which
can reach v¡. weight, input

3.4.3 An algorithmic solution

To get the aforesaid subdigraphs it is proposed an algorithmic method which comprises
two major procedures:

Thsfitsion process conducing to the construction of the reduced digraph (Org **
(Orv, Ore)).

Definition 3.11 A pair of vertices v¡ and Vj are said to be fused, if both are
replaced by a single new vertex such that every vertex that is
incident (into or out of) on v¡ or v j or both is now incident on
the new vertex [Deo 1974a].

Definition 3.12
The reduced digraph is the result of applying the fusion rules to
an ODE segment digraph. The most extended one, besides input
an output symbol vertices, has n vertices: a fused-state vertex,
a fused-derivative vertex and n — 2 fused-algebraic vertices.

The backwards reconstruction process which expands the reduced digraph into
the segment digraphs.

Fusion

The method proposed to get the reduced digraph is an enhanced extension of that
shown in [Guasch86a] whose main restrictions were:

The analysis dealt with the dynamic code as a whole. The initialization and the
discontinuous function computations analysis were not envisaged.

If clauses were handled as single vertices. Code inside it was supposed to be
procedural.

3.4. SUBMODEL SORTING 91

It has been previously seen that the if ciause general representation in the digraph
is no more a single vertex but comprises discontinuous vertices, if executable vertices
and executable vertices (rules T.2, T.3 pp. 53 , 54). This will increase the complexity
of the method to get the reduced digraph although it must be reminded that there has
also been an enhancement in the if blocks which are now declarative.

The present scope of the if clause does not permit to apply the method in
[Guasch86a] because the if executable vertices can not be directly handled as exe-
cutable vertices which have to be executed before any successor executable vertex.

This is illustrated in the next example. Figure 3.25 represents the ODE segment
digraph related to code 3.18.

Continuous submodel dummy_2 is
Static region

inputs (real in;}
outputs(real z; }
parameters (real p; logical log;}
state (real r;};

End static region;
Dynamic region

-l- v - f 1 <pj ;
-2- if(log) {
-3- x - f2(v);
-A- y - f3(v);

} else {
-5- x - 4.0;
-6- y - f 4 (in) j

};
-7- z - f 5 (x);
-8- r' - f 6 (y);

End dynamic region;
End submodel dummy_2;

Code 3.18 Dummy! submodel.

Using the method presented in [Guasch86a], the derivative segment digraph does
not include the if executable vertex 2. This is incorrect because, even though vertex
2 is forced to be executed before vertices 4* and 6_, the execution of these vertices
in the derivative segment can not be separated from the logical decision associated to
the if executable vertex which is taken in the state segment. Clearly, both segment
digraphs might include the if executable vertex.

92 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

,-•'' p"--. stale segment

/ / '~5 derivative segment
/"'in''-.

I i'í'i i !*+ *- í y+ /• ;

x / y :

W -Y /
, / / \\ /

derivative segment

ODE segment digraph segment link digraph

Figure 3.25: The represented subdigraphs got from the ODE segment are
incorrect because the derivative segment must include vertex
2.

The Fusion steps

The following fusion steps are stated to get the the reduced digraph from the ODE
segment digraph, they have to be applied in sequence to the vertices in the ODE
digraph — the output state symbol vertices comprised — except to the input/output
symbol vertices (remaining) which may not be found.

Step 1 : Fuse the weakly connected vertices that have the same output weight.

Step 2 : Once performed the previous step, fuse the weakly connected vertices
that have the same input weight and whose output weight is different than
zero.

Step 3 : Fuse the vertices having zero output weight.

Step 4 : Fuse the vertices having zero input weight.

Behind the conclusion of the fusion steps, the vertices in the reduced digraph
which are not input or output symbol vertices (the fused vertices) are classified into
the following types:

Fused-state vertex: The vertex »/, which has input weight equal zero.

Fused-derivative vertex: The vertex v¡¿ which has output weight equal zero.

3.4. SUBMODEL SORTING 93

Fused-algebraic vertices: Those vertices w/a which belong to a directed path
from an input symbol vertex to an output symbol vertex.

Backwards reconstruction

In the backwards reconstruction procedure, the state segment digraph ((Sg » (Sv, Se)),
the derivative segment digraph ((Dg = (Dv, De)) and the algebraic segment digraphs
((Ag = (Av,Ae)) are built around the corresponding fused vertices of the reduced
digraph.

The vertices composing each segment digraph will be:

- Input symbol vertices:

Vs¡ - F'1 (Vi) n V s¡ V«< € {*/., vfd, «,.}

For the state segment digraph:

ti,- = v/, and Va' = 0

- Output symbol vertices:

Va' . r(v¡) n Va0 Vv; E {v/., Vfd, vf,}

For the derivative segment digraph:

v¡ =* Vfd and Va*a = 0

- Symbol and executable vertices.
The set of vertices which have been agglutinated in the corresponding fused
vertex of the reduced digraph, as well as the if executable vertices which are
predecessors in the ODE segment digraph but have been aggregated in other
fused vertices.
Notice that the state segment digraph can include output state symbol vertices
which have to be added to the output symbol vertices defined. Therefore, the
output symbol vertices of the state segment digraph will be in general:

from the reduced digraph and

(Va, n Va,)

from the ODE segment digraph.

94 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

The ODE subsegments assembled from the associated sorted digraph will be:

• State segment: Composed by

- Statements associated to Sve executable vertices.

- Output variables associated to Svs, output symbol vertices.

• Algebraic segments: Composed by

- Statements associated to Ave executable vertices.

- Input variables associated to Ava¡ input symbol vertices.

- Output variables associated to Ava, output symbol vertices.

• Derivative segment: Composed by

- Statements associated to Dve executable vertices.

- Input variables associated to Dvt¡ input symbol vertices.

Figure 3.26 represents the submodel digraph associated to dummy_2 submodel (see
code 3.18 in page 91). The vertices embraced by the dashed curved have output weight
equal to one (notice that vertex z is an output symbol vertex) and the vertices embraced
by the dot curve have the output weight equal to zero. Thus, after the first fusion step
the reduced digraph is obtained (figure 3.26) because the successive fusion steps do
not affect, in this case, the shape of the reduced digraph.

Through the backwards reconstruction, the segment digraphs are extracted:

• Labelling of the fused vertices:

Iw(fi) " 0 and Ow(fi) J 0 => /i is the fused-state vertex.

Ow(f2) = O =>• fi is the fused-derivative vertex.

• State segment digraph:

Built around the fuscd-state vertex.

Its vertices are:

- Input symbol vertices: 5t;«,- = F~l(f\) n Vs¡ = 0

3.4. SUBMODEL SORTING 95

,•"" P"'\ Output Wlighl-I

/V \

: 1 log j Output wtigHt-0
l / / ¡ n - .

2 // I \

3. í />'4. 6. •

ü. í/1 í

i X / iX
/ / \ V /\ 2 y •-. r _-•

ODE segment digraph reduced digraph

Figure 3.26: The first fusion step consists on fusing vertices with equal
output weight.

- Output symbol vertices:

(A/On V»J- {z}

and

then
Sv», = {z}

- Executable vertices: those agglutinated in f\.

S«e-{l,2,3*,5_,7}

• Derivative segment digraph:

Built around the fused-derivative vertex.

Its vertices are:

- Input symbol vertices: Dvs¡ » F~l(fì) n Vs¡ = {in}

- Output symbol vertices: Dvi0 - (F(f2) n Vía) = 0

- Executable vertices: those agglutinated in /2 => {4+,6_,8} plus if exe-
cutable vertices which are predecessors in the ODE segment digraph => {2}
Therefore,

96 CHAPTER 3. CONTINUOUS SUBMODEL ANALYSIS

Segment-link digraph construction

Once the segment digraphs have been assembled (the fusion and backwards recon-
struction processes have been performed) an aspect still remains pending: that of the
proper sequence between the ODE subsegments (derivative, state and algebraic), the
initial segment and the discontinuous segment

The segment-link digraph construction objective is to establish the proper exe-
cutable sequence minimizing the calls from a higher level submodel (Rule T.I in
page 53).

Definition 3.13 A segment-link digraph represents the proper sequence between sub-
model segments (initial, discontinuous, state, algebraic and derivative
segments). Its intrinsic vertices are: initial-segment, discontinuous-
segment, algebraic-segment and derivative-segment.

Two rules apply:

As stated, the initial segment has to be executed first, at the beginning of a
simulation run. Thus, an edge from the initial-segment vertex to all the remaining
vertices has to be created in the segment digraph (figure 3.27).

¡nitial-seg

discontinuous-seg

' state-seg

algebraic-seg

derivative-seg

Figure 3.27: Segment-link digraph construction. The first rule consists on
creating edges from the initial-segment vertex to all the other
vertices.

Concerning the state, algebraic and derivative segments, the proper sequence is
explicit in the directed-paths between the fused vertices in the reduced digraph.

3.5. CASE STUDY 97

3.5 Case study

Figure 3.28 shows a spring-and-mass system, viscously damped by the dashpot shown,
and containing the dead space represented by the gaps a and b [James67a]. When
í = 0, the mass has zero displacement and an initial velocity of Q.2m/tec, as shown.
Considering the mass m as a free body in dynamic equilibrium, the differential equation
of motion is

mx" + ex' + /(z) - 0 (3.1)

kl

, Jfr • . .

a

^

- -,' V'

m
b WÂ

—a
__• — ,

V
c

Figure 3.28: Spring and mass system.

where /(z) represents the spring forces which acting on the mass. Examining the
system, it can be seen that /(z) is given by

/(z) = k2(x -b) x>b
/(z) = 0 a < x < b
f (x) = ki(x — a) z < o

A MUSS submodel for simulating the spring-and-mass system follows:

Continuous submodel spring_and_mass_system is
Static region

inputs {real fe;}
outputs{real x;}
parameters (real K l , K 2 , A , B , M , V O , C ; }
state (real x;}
auxiliary variables (real ac , fx , fm,v;}
submodels called { integrator;}

End static region;

98 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

Initial region
fx = 0.0;
x = 0.0;

End initial region;
Dynamic region

ac = fm/M;
v = integrator(VO,ac);
x' = v;
lf(x<A) {

fx - KIMA-x) ;
} else if (x>-B & (v>=0.0 I ac<0.0)) {

fx - K2*(B-x)-C*v;
} else {

fx - 0.0;
};
fm - fe+fx;

End dynamic region;
End submodel spring_and_mass_system;

Code 3.19 SpringMndjnassjystem submodel. The integra-
tor submodel is shown in appendix C in page 177.

The syntactic analyzer checks program correctness and translates MUSS source
code into an intermediate code (code 3.20).

-1- Initial region
fx - 0 .0;
x - 0.0;

End initial region;
Dynamic region

-2- ac - fm/M;
-3- initial_integrator(VO) ;
-4- v - state_integratorO ;
-5- derivative_integratorîac);
-6- x' - v;
-7- grootl - A-x;
-8- groot2 - x-B;
-9- groot3 - v;
-10- groot4 » -ac;
-11- if(lrootl) {
-12- fx - Kl* (A-x) ;

} else {
-13- if (Iroot2 í (Iroot3 I Iroot4)) {
-14- fx - K2*(B-x)-C*v;

} else {
-15- fx » 0.0;

3.5. CASE STUDY 99

-16- fm = fe+fx;
End dynamic region;

Code 3.20 Springjindjnass.system code expansion.

The integrator submodel call is splitted into a call for exh submodel segment
(transformation rule T.I in page 53). The sequence of else if fields is replaced by
a sequence of embedded if statements (transformation rule T.2 in page 54). Discon-
tinuous functions associated to if statements are pulled out into separate statements
(transformation rule T.3 in page 55).

The springjandjnasssystem submodel digraph is represented in figure 3.29. The
symbol vertices and the executable vertices can be grouped into the following subsets:

1. Subsets of Va

• global vertices: Vagl = {/e, z, z', K\, K2, A, B, M, VO, C, v, ac, fx,fm}

• parameter vertices: Vtp = {KÌ, K2, A, B, M, VO, C}

• constant vertices: Va.. = 0

• input vertices: Vs¡ = {fe}

• output vertices: Vs9 = {z}

• derivative vertices: Vs^ = {z'}

• state vertices: Vs, = {z}

• local vertices: V*h = {/z(0),z(0),/zt,/z_,/z_+,/z__}
• initial vertices: Vsn = {/z(0), z(0)}

• when vertices: Vs^h = 0

• if vertices: Vsi} « {fz+,fx.,f*-+,fx_-}

2. Subsets of Ve

• derivative vertices: Ve¿ = {5}

• discontinuous vertices: Veg » Veg¡ = {7,8,9,10}

• state vertices: Ve, = {4}

• initiai vertices: Ve„ = {l,3}

• if vertices: Veif •* {11,13_}

• when vertices: Fe«,/, = 0

The preprocessor analysis algorithms cluster the submodel code into the initial
segment, the discontinuous segment and the ODE segment.

100 CHAPTER 3. CONTINUOUS SUBMODEL ANALYSIS

3.5.1 Initial segment

To get the initial segment digraph, the submodel digraph has to be simplified according
the rule presented in page 74. Therefore, the edges (/z+, /a) and (/z_, fx) are not
considered.

Figure 3.29: SpringMndjnass-system submodel digraph.

The most representative vertices of the submodel digraph are:

- Executable vertices:

Ive - Q(Ven U Ve,/) n Ve = $({1,3,7,8,9,10}) n Ve =

{1,3,7,8,4,9,16,2,10}

In this case, the submodel can be initialized because the value of f x is known
at initial time. Otherwise, an algebraic loop would appear in the initial segment
digraph.

- Input symbol vertices:

i = r-\Ive) n Vti = {fe}

3.5. CASE STUDY 101

- Output symbol vertices:
Iva0 = 0

The initial segment C target code includes the statements of code 3.21. Notice that
the initial segment includes, besides statements associated to the initial regions, other
statements included in the dynamic region of the submodel source code.

initial_spring_and_mass_system (fe)

fx - 0.0;
x = 0.0;
initial_integrator (VO) ;
grootl = A-x;
groot2 - x-B;
v - state_integrator 0 ;
groot3 - v;
fm - fe+fx;
ac - fm/M;
groot4 - -ac;

Code 3.21 The springjandjnass^ystem initial segment as
well as the other segments are part of the pre-
processor C object code. Because of symbolic
access and uniqueness of variable names, the pre-
processor C target code does not look like these
segments but it is equivalent.

The initial segment of each submodel instance is executed before each simulation
run. After, the front-end integration and discontinuity finding algorithm sets the logical
states (Irootl, ..., Iroot4) associated to each discontinuous function.

3.5.2 Discontinuous segment

Once again, the submodel digraph has to be simplified according the rules presented
in the discontinuous function computation analysis (subsection 3.3.3 in page 81). In
this case, the edges that should not be considered are:

• Edges (vi,vj) such as v< € (Vsn): (/z(0),/z) and (z(0),z).

102 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

. Edges (»,,»,-) such as «,• 6 (VeB): (1,/»(0)), (l,a(0)), (3,4) and (3,5).

. Edges («,.,«,-) such as «,• 6 (Ve,): (7,11), (8,13_), (9,13_) and (10,13.).

The most representative vertices are:

- Executable vertices:

Eve = Q(Vey) n Ve = Q({7,8,9,10}) n Ve =

{7,8,4,9,11,12., 13_, 14_+> 15__, 16,2,10}

- Input symbol vertices:

Eva » r~l(Eve) n Ví¡ - {/e}

- Output symbol vertices:
Evs, - 0

The discontinuous segment C target code includes the statements of code 3.22.
The discontinuous segment is called by the discontinuity finding algorithm to precisely
locate discontinuities.

discontinuous_spring_and_mass_system{fe)

grootl - A-x;
groot2 - x-B;
v - state_integrator () ;
groot3 - v;
if(lrootl) {

fx - Kl* (A-x);
} else if Uroot2 S.& (Iroot3 I I Iroot4)) {

fx - K2* <B-x) -C*v;
} else {

fx - 0.0;

fra - fe+fx;
ac - fm/M;
groot4 - -ac;

)

Code 3.22 Spring-andjnass^ystem discontinuous segment.

3.5. CASE STUDY 103

3.53 ODE segment

To get the ODE segment digraph, the submodel digraph has to be simplified according
the rules presented in the derivative computations analysis (subsection 3.3.4 in page 85).
In this case, the edges that should not be considered are:

. Edges (vi,Vi) such as v« € (Ven and v¡ <¿ A^e,-,)): (l,/z(0))f (l,z(0)), (3,4)
and (3, 5).

- Edges (vi,vj) such as v¡ e (V*n): (/z(0),/z) and (z(0),z).

- Edges (v,-, v,-) such as »,- 6 (Ves): (7, 11), (8, 13_), (9, 13_) and (10, 13_).

The most representative vertices of the ODE segment are:

- Executable vertices:

Ove - (Q(Ved U Vsd u Vs„ U VettA) n Ve) U (r(Ve,7) n Ven)

U (Ve - (Eve U Ve„)) - (Q(5, x', x) n Ve) U 0 U {5, 6} -

{4,6,11,12+113_,14_+,15__,16,2,5}U0U{5,6} =

{4,6, 11, 12+, 13_, 14_+1 15__, 16,2,5}

- Input symbol vertices:

Ovsi = T"1 (Ove) n Ví¡ = {fe}

- Output symbol vertices:
Ovf, - Va, - {z}

The ODE segment digraph is represented if figure 3.30.

ODE_spring_and_mass_system (x, fe)

v - state_integrator () ;
if(l root l) {

fx - Kl* (A-x);
} else if (Iroot2 S.S. <lroot3 I I Iroot4)) {

fx - K2* (B-x)-C*v;
} else {

104 CHAPTER 3. CONTINUOUS SUBMODEL ANALYSIS

_„.-'

ODE segment digraph

n-W

K.(K1A« 5)

reduced digraph

Figure 3.30: Springjandjnass-system ODE segment digraph and associ-
ated reduced digraph.

tx - 0.0;
}
fm =• f e + f x ;
ac = fm/M;
dx = v; /* x' = v */
derivative_integrator(ac) ;

Code 3^3 SpringMndjnass^system ODE segment.

The ODE segment includes the statements of code 3.23. Nevertheless, it is not
created by the preprocessor because the ODE segment digraph is splitted into a set
of subdigraphs (state, algebraic and derivative segment digraphs) in order to solve
the hierarchical sorting problem. For each subdigraph, a segment is created by the
preprocessor.

The reduced digraph is obtained through the fusion steps explained in page 92. In
the analysis of the reduced digraph, two segment digraphs are got, the state segment
digraph and the derivative segment digraph (see figure 3.30).

3.5. CASE STUDY 105

State segment digraph

Built around the fused-state vertex /I.

Its vertices are:

- Input symbol vertices: Sva¡ = F~l(fi) n Va¡ ** 0

- Output symbol vertices:

and
(Vi0 n Va,) - 0

then
Sva0 = {*}

. - Executable vertices: those agglutinated in /j.

The state segment created by the preprocessor is shown in code 3.24.

state_spring_and_mass_system (x)

O

Code 3.24 Springjindjnass ^system state segment.

In this case, the state segment only pass the state variable z to the calling submodel.

Derivative segment digraph:

Built around the fused-derivative vertex /2.

Its vertices are:

- Input symbol vertices: Dva¡ = F'1 (f 2) n Vs¡ = fe

- Output symbol vertices: Dva, » (/"(»,•) n F«9) = 0

106 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

- Executable vertices: those agglutinated in fz

The derivative segment created by the preprocessor is shown in code 3.25.

derivative_spring_and_raass_system (f e)

v - state_integrator O ;
ifUrootl) {

fx = Kl* (A-x) ;
} else if Uroot2 && (Iroot3 I I Iroot4)) {

fx - K2* (B-xi-C*v;
} else {

fx - 0 .0;
>
f m - fe+fx;
'ac = fm/M;
dx = v; /* x' - v */
derivative_integrator (ac) ;

Code 3.25 Spring juidjnass system derivative segment.

3.6 Summary and conclusions

Summary

The whole procedure of the continuous submodel analysis is summarized in fig-
ure 3.31:

Applying the transformation rules to the submodel source code the submodel
digraph is set up (subsection 3.2.3).

The analysis of the submodel digraph contributes to the robustness of the simula-
tion code through a deep checking looking for inconsistencies (subsections 3.3.1
and 3.3.2).

Furthermore, the initial, discontinuous and ODE segment digraphs are identified
in order to get the suited interface with the ODE solvers (subsections 3.3.2, 3.3.3
and 3.3.4).

3.6. SUMMARY AND CONCLUSIONS 107

The fusion and backwards reconstruction procedures achieve the state segment,
derivative segment and algebraic segment digraphs construction.

The stated procedures ensure that information loops will not appear and establish
the proper execution sequence between the segments associated to the above
mentioned digraphs (section 3.4).

submodel coda

0 digraph
construction
r*U,

r

segment-link digraph

initial-sag '•

d<contfnuou*-*»g

'»tstate-seg

algebraic-sag
derivative-sag

,•' I stata I I derivativa I I algeoraic I
„** I sag, digraph! I sag, dipraohl l»»g.3iqraph» I

¿i**«*«*, i .¿ad. i i asrsa 1 1 ¿arsa l

Figure 3.31: The continuous submodel analysis: processes, digraphs and
codes.

The intermediate code associated to each segment is sorted applying well known
algorithms as the depth-first search [Tarjan72a] to the corresponding digraphs
(initial, discontinuous, state, derivative, algebraic).

The proper calling sequence to the segments in a lower level submodel is ensured
by the segment-link digraph (subsection 3.4.3 in page 96).

108 CHAPTERS. CONTINUOUS SUBMODEL ANALYSIS

Conclusions

The submodel digraph shows to be a powerful concept which can be used to increase
the robustness of the submodel. Based on it:

• Consistency errors can be detected.

• It is possible to check if there are enough initial conditions to set the state vector
and to evaluate the discontinuous functions at initial time.

• The submodel code is splitted into the initial, discontinuous and ODE segments.
This segmentation is consistent with the functional tasks involved in a simulation
run:

1. Initialize the model.

2. Compute the model derivatives.

3. Locate discontinuities.

The subdivision of the ODE segment into the state, algebraic and derivative seg-
ments solves the hierarchical sorting problem. This approach is more general that those
available in the literature.

The proposed method does not impose restrictions to the definition of new state-
ments (do, case, ...) in the declarative grammar block.

In the next chapter, the MUSS simulation environment is presented. Special em-
phasis is made on the model hierarchical structure and some of the problems that will
be solved are:

• Instantiation of submodels and models.

• Symbolic access to all the model variables.

• Management of the simulation environment

Chapter 4

The simulation environment

"Software engineering has proven useful in reducing the cost of de-
veloping large and complex software systems and improving the quality of
the resulting product. Since many simulation models are both large and
complex, simulation-oriented programming languages should be designed
to support software engineering techniques."

[GoldenSSa]

4.1 Introduction

In chapter 2 we have presented the MUSS architecture which has in the highest level
three types of blocks: studies, experiments and submodels. A model is a set of
hierarchical submodel blocks.

Following the generally accepted software engineering principles proposed by Oren
and Zeigler [Oren79a], the experimentation with models has to be completely separated
from models themselves. The architecture of MUSS goes one step forward separating
experiments from studies increasing the modularity of the simulation environment. The
concept of modularity is one of the most important concepts of structured programming
[GoldenSSa]. Nevertheless, modularity alone is not enough to produce well designed
programs but it helps to increase the reliability of simulation software.

In this chapter, we will analyze the structure of the MUSS simulation environment.

• First, we present the structure of models, which are made of hierarchical sub-
model blocks. The main problems to be solved are: symbolic access to the values

109

no CHAPTER 4. THE SIMULATION ENVIRONMENT

of the submodel variables, memory management of the submodel instances and
model dynamic initialization.

Second, we present the structure of the experiment and study blocks. The struc-
ture of an experiment block is similar to that of a submodel block: static, initial
and dynamic regions.

dialog level

study level

experiment level

model level

Figure 4.1: User defined interactive simulation environments may have
four hierarchical levels : dialog, study, experiment and model
levels. From the dialog level experiment or study instances
of any experiment or study present in the environment can be
created and activated for execution.

Last, the MCL (MUSS Command Language) is described. An user defined sim-
ulation environment may include a large number of models, experiments, studies
and data files. Thus, a good management of the environment is very important.
To achieve that goal, the MCL —see Appendix C— has been designed in order
to provide the users with a friendly interface with the MUSS environment. MCL
can be seen as the monitor of the simulation environment.

4.2. MODEL STRUCTURE 111

Figure 4.1 represents models, experiments and studies in an user defined interactive
simulation environment

The models appear at the lowest level of the hierarchy. They are composed by a
hierarchical set of submodel blocks. Brom the user perspective a model is a tree of sub-
models (i.e. submodel sll called from submodel s3 does not model the same physical
subsystem as submodel sll called from from submodel s9). From the implementation
point of view, the submodel hierarchy can better be handled as a digraph.

In the next bottom-up level of the hierarchy, experiment blocks appear. Experiment
blocks may call zero, one or more models. Its goal is to control a run.

The next-up level may include study blocks. Its objective is the control of model
experimentation (i.e. optimization, identification, sensitivity analysis).

The dialog level is on top. In the dialog level the MCL language is used to
communicate with the simulation environment Through it information about any
lower level block can be got.

4.2 Model structure

Figure 4.2 represents a user defined simulation environment embracing SMPR (ap-
pendix C) and nonlinear system models. The continuous model SMPR (non linear
system) is the combination of the SMPR (non linear system) submodel and connected
lower level submodel blocks through directed paths. The model name is taken from
that of the higher level submodel. In fact model is a relative concept which depends
on the users perspective. The strict use of the word model appears in an experiment
context

The above mentioned figure emphasizes that in this example each model has one
model instance (copy of the model) in the environment When a model instance is
created, they have to be generated as many instances as existing directed paths from
the higher level submodel to them. For example, realzóle submodel has two instances.

A continuous model can be seen as a continuous process. A continuous process
instance may be created, executed and destroyed explicitly by the user1

'Although MUSS language is a piece wise continuous system simulation language, it has been designed
keeping in mind, as has been explained in subsection 5.2 , a future extension to combined simulation
languages. Thus, process instances will be created, destroyed, executed and suspended implicitly during
each simulation run.

112 CHAPTER 4. THE SIMULATION ENVIRONMENT

limiter realoola \PWM PI controllar

powar_circuit

integrator

Figure 4.2: User defined simulation environment embracing SMPR and
non linear system models. S, I and D represent the static,
initial and dynamic regions of each submodel. Here, the
CSSL-like integrator submodel to update state and deriva-
tive variables has been used, but, in MUSS practice, state
variables would be defined in any submodel.

The structure of MUSS models has been designed to solve the main problems related
to the hierarchical modelling approach and the separate compilation of submodels of
the MUSS simulation system. These problems are:

Reentrance: a private data storage area must be allocated and handled for each
submodel instance. See in figure 4.2 that the integrator submodel has five inde-
pendent storage areas, one for each submodel instance:

1. non-linear-syatem. real_pole.integrator

2. SMPR.control-circuit.real_pole.integrator

3. SMPR.control_circuit.Pi-controller.integrator

4. SMPR.power_circuit.integrator

5. SMPR.power-circuit.integrator

Each submodel instance is identified by a unique directed path.

Symbolic access: The present MUSS prototype allows symbolic access to all
submodel variables and access to the submodel information stored in the model
data base.

4.2. MODEL STRUCTURE 113

• Dynamic memory management: each piecewise continuous model can also be
seen as a generic model but does not actually occupy data storage. An instance
may be created, called and destroyed implicitly. To create and destroy a model
instance implies allocation and deallocation of data storage private to each sub-
model instance.

• Model initialization : the static initialization is performed when instances of con-
tinuous processes are created and the dynamic initialization is performed before
each each simulation run (experiment) when the initial segments are executed.

The approach in MUSS to solve the above problems is based on:

• A submodel data structure: A submodel data structure is denned from the
submodel block at preprocessing time, which is stored for further use by the
definition routines. This submodel data structure keeps the information needed
for the symbolic access of the submodel variables. Furthermore, it stores the
amount of memory needed for each submodel instance.

• A definition digraph: To create a model instance or to access information con-
cerning submodels or its instances it is needed to access all the submodel data
structures associated to the submodels included in the hierarchical model. The
definition digraph keeps the links between the submodel data structures.

Each node of the definition digraph is a submodel data structure and the structure
of the definition digraph is equivalent to the structure of the model hierarchy.

The definition digraph is used by the MCL executive to perform the dynamic
allocation of the models.

• An initialization sequence: the initial segment of each submodel is preprocessed
in such a way that it holds the calls to lower level submodel segments in the
proper sequence for the dynamic initialization.

• A dynamic sequence: the state, derivative, algebraic and discontinuous segments
of each submodel access lower level segments in the appropriate order.

4.2.1 Submodel data structure

The submodel data structure holds information about the submodel static block char-
acteristics, i.e. its contents does not depend on the relative situation of the submodel
in the model hierarchy and it is also independent on its state (activated or not).

114 CHAPTER 4. THE SIMULATION ENVIRONMENT

struct submodel {
char *name;
char *date;
char »library;
int N_symbols;
int reentrance
int memory[N_TXPES] ;
char **symbols;
int *«attributes;
float **ranges;
float *«dimensions;
int (*init_address)();
int (*init_parameters)();
struct lower submodels «head;

Code 4.1 Submodel data structure defined in C language.

The submodel data structure, see code 4.1, has the following members which are
filled by the preprocessor

• name : Pointer to the submodel symbolic name.

• date : Pointer to the preprocessing date.

• library : Pointer to the library name in the model data base where the information
(that one recorded in the source code and some other) about the submodel is
stored.

• N^ymbols : Total number of symbols in the submodel.

• memory[NJYPES] : Stores the amount of memory area which is needed for
each data type that must be allocated for each submodel instance. Six different
data-type areas have been defined:

state variables.

derivative variables.

discontinuous functions that handle the discontinuities.

real variables.

integer variables.

logical variables.

4.2. MODEL STRUCTURE 115

• symbols : Pointer to the table of pointers to submodel symbols.

• attributes : Pointer to the table of attributes. The table of attributes has an
'element' for each variable. The fields in the 'element' are filled by integers and
can be coded in a more compact way than the standard for integers.

• ranges : Points to the table where maximums and minimums of the screened
variables will be stored. The range of the values of the submodel variables can
be specified as part of a submodel in order to impose some run-time consistency
checking.

• dimensions : Points to the table of dimensions. This table stores the number of
dimensions of all the indexed variables and its range.

A second group of fields in the submodel data structure are set by the definition
routine and will be explained in more detail in subsection 4.2.2:

• init-parameters : Pointer to the function that initializes the submodel parameters
and constants (static initialization).

• initjaddress : Pointer to the function that assigns memory positions to submodel
variables.

• head : Pointer to a linked list whose elements point to a lower level submodel
data structure.

The last field is:

• reentrance : At run time, the number of active instances will be stored in this
member of the submodel data structure.

In the following example the submodel data structure associated to realzóle sub-
model block (see figure 4.2) is shown.

Submodel code is:

Continuous submodel real_pole is
Static region

inputs (real ic,tau.x;}
outputs {real y;}

116 CHAPTER 4. THE SIMULATION ENVIRONMENT

End static region;
Dynamic region

y - integrator(ic,(x-yl/tau!;
End dynamic region;

End submodel real_pole;

Code 4.2 Real-pole submodel.

The preprocessor object (C target) code related to the submodel data structure is:

* real_pole */
»define N_SYMBOLS 5
static readonly char *symbols[N_SYMBOLS] - {

"x","y","xO","tau","dy"
>;
static readonly int attributes[N_SYMBOLS*5] = (

3,1,3,0,0, 3,2,4,0,0, 373,3,0,0, 3,4,3,0,0,
3,5,0,0,0

};
static struct submodel real_pole - {

"real_pole", /* name */
"OCT27861205", /* date */
"musssil", /* library */
N_SYMBOLS, /* N_symbols */
-1, /* reentrance */
0,0,0,5,0,0, /* m e m o r y C . .] */
symbols, /* symbols */
attributes /* attributes */

Code 4.3 Realzóte data structure (C code) and associated
declarative statements.

Ranges and dimensions are not denned in this data structure because in this case
all the variables are dimensionless and without limitations in the range of their values.

The relationship between the submodel data structure and the auxiliary data tables
is emphasized in figure 4.3. For each submodel instance, the amount of private memory
that must be allocated is denned in the memory member of the submodel data structure.
Later in this section, it will be seen that each submodel instance has an associated set
of base pointers to the beginning of its private storage areas.

4.2. MODEL STRUCTURE 117

4.2.2 Definition digraph

Simulation language users, in contrast to general purpose programming language users,
use to work with more powerful environments, Features such as symbolic access to
variables, interactive operation and model sorting have been provided by the simulation
languages since the early days of digital computer simulation [ClancyoSaJ. In our
opinion, new simulation languages should preserve and improve these features, even
though it may increase the memory requirements and the time overhead.

One of the initial objectives to be attained with the MUSS structure is that isolated
preprocessing of submodels as well as run time symbolic access must be supported
[HuberSoa]. Isolated preprocessing and run time symbolic access capabilities seem in
conflict one to each other; indeed, some Fortran-based CSSL-like continuous system
simulation languages solve symbolic access by means of a global common (ACSL
[MitchellSla], CSMP [James77a]), which is straightforward in monolithic models
but not in hierarchical models. Other solutions based in Fortran are costly and quite
cumbersome for hierarchical models.

Structured programming languages offer more powerful structures, which allow the
design of neat structure to achieve the above objectives.

Several strategies have been analyzed to access all the submodel data structures.
Finally, a structure has been chosen which is akin to the model structure. It will be
called definition digraph.

Definition 4.1 The definition digraph is a digraph whose topology Is alike to the
hierarchical structure of the model. Each node has the submodel
data structure of its associated submodel and the edges correspond
with the calls in the model structure.

To create the definition digraph we need to define the edges between nodes. To
create the edges:

At preprocessing time a definition routine is generated for each submodel.

In the environment initialization, the definition routines are executed in the model
hierarchical order. When called, a definition routine creates a linked list Upon
return, each definition routine gives back the address of its data structure to the
higher level calling one which in turn fills the lower members of the linked list
with the address.

118 CHAPTER 4. THE SIMULATION ENVIRONMENT

name

doit

library

Njymbols

memory (]

symbols

attribuiti

ranges

dimensioni

11024
11034

11046
5

0.0.0,5,0.0

11230
11250

NIL
NIL

Njymbols

- $ H 3 | 1 | 3 | Q | 0 | 3 | 2 | 4 | 0 | 0 | / / | 3 | 5 | 0 | Q | 0 |

----=>

' pointer into the table of ränget
(NIL)

'• pointer into the table of dimensions
(NIL)

- simulation ailribuut
auxiliar var,-0,conslani-l,parameter~2,
input vor.-3. output vor. -4

- relative position of the value of
each symbol in its associated dynamic
table.

f
- type of each symbol, each type

has a dynamic table associated to it.

Figure 4.3: Represents the relationship between reaLpole submodel data
structure and auxiliary static tables. In this figure, reen-
trance, mil-parameters, ir.it-address and head members of the
data structure do not appear because they are not interesting
within the subject of this subsection.

4.2. MODEL STRUCTURE 119

Each element of the linked list is a variable whose structure—LS data structure
standing for lower submodels data structure— has been defined in C language
as:

struct lower_submodels {
double *m_state;
int m_derivative; /* relative position from a base address

given by LSODAR */
int m_groot; /* relative position from a base address

given by LSODAR */
double *m_real;
int *m_integer;
int *m_logical;
struct submodel *lower;
struct lower submodels *next;

Code 4.4 LS data structure.

The lower member of the LS data structure will keep the address of a lower level
submodel data structure and the next member, the address of the next element (LS
structure) in the linked list. The other members of each LS data structure store the
base addresses of the storage areas reserved for the corresponding submodel instances.
These members will be explained in more detail later.

The définition routine code of the realzóle submodel (figure 4.2) is as follows:

static struct lower_submodels *low_l;
struct submodel *aO_definition()
{

struct submodel *al_definition();
struct lower_submodels *alloc_lowsub();
int address (), initparO ;

real_pole.init_address - address;
real_pole.init_parameters - initpar;
low_l - alloc_lowsub();
realp_pole.head - low_l;
low_l->next • NIL_LOW;
low_l->lower - al_definition0 ;
return(Sreal_pole);

Code 4.5 Real-pole definition routine.

120 CHAPTER 4. THE SIMULATION ENVIRONMENT

Figure 4.4 represents part of the job done by the real-pole definition routine. The
number of elements in the linked list is equal to the number of lower level submodels.
Remember that the real-pole submodel data structure has been defined in page 116.

The names of the definition routines—aOdefinition and al definition—are chosen
by the MUSS preprocessor which solves the problem of names uniqueness. The names
given are cryptic because in C language only the first eight characters of variable names
are significant in contrast to the MUSS language where the length is unlimited.

// returns the address ofrealjpole
submodel data structure

Related code

lowj
lower_submodels
data structure

real _pole submodel
data stricture

.«0_d«flnitlon(){

Gets the address of
integrator lower level
submodel '*"'" structure

Related code;

- il_d*tlnielon(>

return(llflt«QCAtar)}

Figure 4.4: Actions around the realzóle LS data structure achieved by
the realzóle definition routine.

Figure 4.5 shows the definition digraph of the models in figure 42. There is a
remarkably simple recursive algorithm for visiting all the nodes of a definition digraph,
in order to perform some predefined function once the target node/s has been reached.

4.2. MODEL STRUCTURE 121

\ \

'
, ,

ir-' i,-"'w w

limiter redjole

nou linear system SMPR

,

i i conii

P ni iow
t
i
i

1 V
1 1 •-•[••- s "ajo*

oí- power- • ,
* \ § CÏfCUít CífCUtt

• PWM PI controller

Y fr V <r_

üü
ïníeyaíor

o»

Figure 4.5: Definition digraph of nonjinear_system and SMPR models.

Elements with one member represent the head member of sub-

model data structures and elements with two members repre-

sent next and lower members ofLS data structures.

/*•
Visits the definition digraph and executes
an external defined function at each node.

visit

extern char **stack;
extern struct iower_submodels *NIL_LOW;

visit(low,function,rlevel)
int (*function)();
int rlevel;
struct lower_submodels *low;
{

rlevel-t- + ;
/*... stores into the stack the submodel name */
*(stack+rlevel-1) - low->lower->name;
/*... call the external function */
if((*function)(low,rlevel)) {

low - low->lower->head;
while(low !- NIL_LOW) {

visit(low,function,rlevel);
low =» low->next;

122 CHAPTER 4. THE SIMULATION ENVIRONMENT

)
rlevel™ ;

Code 4.6 Depth-first search modified algorithm to visit the
nodes of the definition digraph.

Simple additions to the skeleton in code 4.6 can be used to solve a variety of
problems, like handling private memory areas of each submodel instance.

real_pole submodel
data structure

aQ

Figure 4.6: Actions around the realzóle submodel data structure per-
formed by the realzóle definition routine.

Three members of the submodel data structure introduced in page 116 will now be
explained in more detail: initjaddress, init^arameters and reentrance,

Figure 4.6 emphasizes the objective of init_address and init_parameters members,
which are initialized by the submodel definition routine (see code 45 in page 119).
The init-address member is a pointer to a submodel-specific function that initializes the
address of the submodel variables. Init_parameters member is a pointer to a submodel-
specific function that performs the static initialization of the submodel.

The execution of initparQ and addressQ functions is activated through an algorithm
similar to that reported in code 4.6.

4.2. MODEL STRUCTURE 123

Given a LS data structure (see code 4.4 in page 119) which holds the base addresses
of the private storage areas for a given submodel instance, the addressO function
initializes the address of each submodel variable.

The following code is the addressO function —generated at preprocessing time—
associated to the control .circuit submodel (page 197) which is represented in figure 4.2.

static double *Vlic,*Tf,*V2ic, *Ti,*G,*lower_limit,*upper_limit,
*Td,»period,*W,»error,*V1,*transistor_on,*Vip;

static int address(low)
struct lower_submodels *low;
{

static double *real;
real - low->m_real;

Vlic - real++; Tf = real++; V2ic - real++;
Ti - real++; G - real++; lower_limit - real++;
upper_limit » real-n-; td « real++;
period » real++; W = real++; error » real++;
VI - real++; transistor_on - real++;
Vip - real++;

Code 4.7 Controljcircuit addressO routine.

The initparO functíon —also generated by the preprocessor— associated to the
controljcircuit submodel is written below,

static int initpar(low)
struct lower_submodels *low;

{
*Vlic - 0.0125; *Tf - 2.0e-5; *V2ic - 0.50;
*Ti - 4.5e-4; *G - 1.0; *lower_limit - 0.05;
*upper_limit - 0.95; *Td - 0.0;
«period » 1.25e-5;

Code 4^ Controljcircuit initparf) object routine.

It initializes the submodel parameters and constants.

124 CHAPTER 4. THE SIMULATION ENVIRONMENT

Similarly to the static initialization, with a recursive algorithm, the initparQ function
associated to each submodel can be accessed to perform a change in the parameters
from the experiments, the studies or from the dialog level. A "reset parameters"
command is provided to restore the original values of the parameters.

Concerning reentrance, each time a model is activated, the required number of
submodel instances is created. This number is stored in the reentrance member by the
MCL executive using a visiting algorithm.

4.23 Initialization sequence

At preprocessing time the initial segment digraph is created and thereafter used to
generate the initial segment

The objective of the initial segment is to perform the initialization of the model
before the experiment run start (dynamic initialization).

To achieve the above goal the initial segment of a given submodel in the hierarchical
structure:

• Has to call the lower level initial segments pertaining to the submodels explicitly
invoked in the dynamic region.

• Has also to call the necessary code to initialize the input variables of the called
lower level initial segments. This code in most cases is an assembly of: sentences
of the dynamic region and calls to lower level state and algebraic segments.

The controljcircuit submodel initial segment is written below. Each statement of
the initial segment is a vertex in the initial segment digraph in the submodel digraph
of figure C.19 in page 199.

c3_initial(low, re) /* initial segment */
int re;
struct lower submodels *low;
{

if {reentrance) {
lev_memory (low) ;
address (low) ;

aO_initial (_
aO_f_s(low_l,Vl);
a6 initial (low 4,V2ic);

4.2. MODEL STRUCTURE 125

a6_f_a(low_4,G,Vl,Vip) ;
a4_initial(low_3,lower_limit,upper_limit,Vip);
a4_f_a(low_3,lower_limit,upper_limlt,Vip,W);
a7_initial<low_5,Td,W,period);

Code 4.9 Controljcircuit initial segment.

Notice that besides the necessary code for the initialization of the submodels in the
hierarchy, the preprocessor also generates a standard if statement

Its purpose is to handle the working areas associated to the instances created at
experiment activation time.

nonjinearjsystem control_circuit

^ ^real_pole

integrator

Figure 4.7: Realzóle context if an experiment on non Jinear^system and
SMPR submodels has been defined.

Figure 4.7 focuses the reaLpole submodel context in the SMPR and nonJinear^ystem
hierarchical models; figure 4.8 is the definition digraph around real_pole.

Some comments of figure 4.8 are:

• Data structures included within a dot box belong to the same compiled unit

Notice that the number of LS data structures in it corresponds to the number of
lower level submodel calls.

• ALSdata structure at a given level holds the base addresses of the working areas
of one of the called lower level submodels.

This addresses are computed from the base addresses of the present submodel
(instance) which in turn was sent by the calling higher level submodel (instance).

126 CHAPTER 4. THE SIMULATION ENVIRONMENT

The propagation of this mechanism guarantees that all the submodel instances
will work with the proper private area.

•m ««1
•next
•tower

•iteti

ixugrcaor

stnct
lower

dynamic
memay

Figure 4.8: Since the realzóle submodel is called from more than one
submodel (nonJinearjsystem and control-circuit submodels),
each realzóle segment must set the base addresses of the
lower level segments before calling them.

At run time the above mechanism has to be used to compute the base addresses
of the memory areas of the present instance in case of multiplicity of instances
of the same submodel.

This is accomplished by the following code:

if(reentranee) {
lev_memory(low);

Notice that in this example there are two instances of reaLpole, hence the base
addresses of the working areas of the integrator has to be computed each time
real-pole submodel is called, before calling the integrator.

The member reentrance is set, every time a model instance is activated, to the
number of active submodel instances minus one. Thus, the reentrance member
of the integrator submodel data structure has to have the value one because the
integrator submodel has two active instances.

4.2. MODEL STRUCTURE 127

• When a submodel segment calls to a lower level submodel segment, besides the
submodel input/output variables the LS data structure associated to the called
submodel is passed.

• After the model activation, the addresses of all the model variables are set

When a submodel segment is executed the addresses of its variables must be
preset if the number of active submodel instances is greater than one.

The base addresses stored in the LS data structures are used to preset the addresses
of the submodel variables.

This is accomplished with the following code (the addressQ function has been
explained before in page 123),

if(reentrance) {
address (low);

}

This is the case of realzóle and integrator submodel segments (see figure 4.8).

4.2.4 Dynamic sequence

When a submodel is preprocessed, besides the initial segment, the discontinuous, state,
algebraic and derivative segments are created.

The calls to this segments from a higher level (submodel or experiment segment)
are properly ordered by the preprocessor in basis of the segment-link digraph, in order
to achieve the proper dynamic execution sequence.

State, derivative, and discontinuous segments of controteubmodel are written be-
low. Each statement is represented as a vertex in the corresponding submodel digraph
of figure C.19 in page 199.

c3_f_s(low,re,traonout) /* state segment */
double *traonout;
int re;
struct lower_submodels *low;
{

static double die;
if(reentrance) {

lev_memory(low) ;
address (low);

128 CHAPTER 4. THE SIMULATION ENVIRONMENT

a7_f_s(low_5,transistor_on);
*traonout = *transistor on;

Code 4.10 Control-circuit state segment.

c3_f_d(low,re,ein) /* derivative segment
double *ein;
int re;
Struct lower submodels *low;
{

if(reentrance) {
lev_memory(low);
address(low);

>
*e = »ein;
aO_f_s(low_l,Vl);
aO_f_d(low_l,Tf,error) ;
a6_f_d(low_4,Ti,Vl) ;
a7_f_d(low_5,period)

Code 4.11 Coniroljcircuit derivative segment.

c3_g(low,re) /* discontinuous segment */
int re;
struct lower_submodels *low;

if(reentrance) {
lev_memory(low);
address(low);

aO_f_s(low_l,Vl);
a6_f3a(low_4,G,Vl,Vip);
a4_g(low_3,lower_limit,upper_limit,Vip);
a4_f_a(low_3,lower_limit,upper_limit, Vip, W),
a7_g(low_5,W,period);

Code 4.12 Controljtircuit discontinuous segment.

4.3. EXPERIMENT AND STUDY STRUCTURES 129

4.3 Experiment and study structures

In Figure 4.9 the structure of the experiment block stated in section 2.2.3 in page 18
is reminded.

Experiment

Dynamic
segment
of the

experiment

Control
segment

Output
segment

Static region

Initial region

Dynamic region

Terminal region

Figure 4.9: Experiment block.

The regions in the dynamic segment of the experiment are like those in the submodel
dynamic segment block, only a terminal region is added. Therefore, the submodel
digraph concept applies to analyze the experiment code.

The preprocessing of the dynamic segment of the experiment can be summarized
as follows:

• Code included in the initial region of the experiment is assembled into the initial
segment

• Code included in the dynamic region is grouped in two segments: the ODE
segment and the discontinuous segment. But, this time, the ODE segment has not
to be splitted into the state, algebraic and derivative segments because "dynamic"
code of the experiments are not called from a higher level block.

• Code included in the terminal region is grouped into the terminal segment

• The initparQ function is created by the preprocessor (see page 123). This function
will handle the static initialization of the experiment.

130 CHAPTER 4. THE SIMULATION ENVIRONMENT

The control segment and the output segment of the experiment are not transformed
by the preprocessor which stores it in the model data base.

The environment generator creates an interfacing function (see code 4.13) to handle
the entry points to the selected experiments within the simulation environment This
function initializes an one dimensional table where each element is an expjable data
structure storing the information concerning the experiment

»define N_EXPERIMENTS 3
struct experiment *exp_table[N_EXPERIMENTS];

/* Binds the muss environment with user defined experiments */
exp_interface 0
{

struct submodels
el_definitionO, / bouncing_faall */
e2_definition(), / non_linear_experiment */
e3_definition(); / real_pole_experiment */

int el_initial(),el_ode(),el_g(),
e2_initial(),e2_odeO ,e2_g(>,
e3_initialO,e3~ode O,e3^g O ;

struct experiment *alloc_exp(); int i;

/*... allocates memory for each experiment data structure */
for(i»0;i<N_EXPERIMENTS;i++) (exp_table[i] - alloc_exp();}

exp_table[0]->definition_function - eO_definition;
exp_table[0]->initial_segment - eO_initial;
exp__table[0]->ode_segment - eO_ode;
exp_table[0]->disc_segment - eO_g;

exp_table[l]->definition_function - el_definition;
exp_table[l]->initial_segment - el_initial;
exp_table[l]->ode_segment - el_ode;
exp_table[l]->disc_segment - el_g;

exp_table[2]->definition_function - e2_definition;
exp_table[2]->initial_segment - e2_initial;
exp_table[2]->ode_segment - e2_ode;
exp_table[2]->disc_segment •» e2_g;

Code 4.13 The interfacef) routine is created by the environment gen-
erator (see figure 1.2 in page 5). It binds the MUSS
experiments with the simulation environment.

4.4. MUSS COMMAND LANGUAGE (MCL) 131

The expjable data structures store enough information to manage and execute
selected experiments.

To handle the experiment instances (see page 26), the expjnstance data structure
has been defined. Moreover, an expjnstance linked list allocates dynamically the
experiment instances present in the simulation environment.

Experiments are not allowed to be executed in parallel. In fact, this is not a
structural limitation because there is not a real necessity of executing two or more
continuous experiments in parallel.

Nevertheless, notice that the MUSS system design ables the expansion to support
combined simulation methodologies and the execution of processes (continuous or
discrete) in parallel.

From the structural point of view, an experiment can be seen as the root of a
submodel 'tree'. In fact, the integration and the root finder algorithms call the ODE
segment and the discontinuous segment of the experiment to evaluate the- derivative
and discontinuous function values; this segments, in turn, call its homologous in the
involved submodels to get the appropriate values.

Study blocks are placed in a higher level in the hierarchy of the simulation envi-
ronment.

Being the code in the initial, dynamic and terminal regions of the study, proce-
dural, the submodel digraph concept can not be applied to test the code robustness.
Rirthermore, code is not segmented

The data structures involved in the management of studies are equivalent to those
involved in the management of experiments.

Study blocks directly call experiment blocks. However, from the structural point of
view, the study object code is not directly linked to the experiment object code. The
study object code only informs the integration front-end routine about which experiment
instance is to be executed.

4.4 MUSS command language (MCL)

The Muss Command Language (MCL) is the language through which simulation users
communicate with the MUSS simulation environment MCL contains an extensive
friendly set of commands that allows users to do tasks such us:

132 CHAPTER 4. THE SIMULATION ENVIRONMENT

• Get information about models, experiments and studies present in the simulation
environment

• Execute selected studies and/or experiments.

• Edit and execute MCL command files.

• Get run time statistics from instrumental variables in the system.

Appendix B describes the complete set of commands accepted by the MCL language
and the MCL grammar specification as it is implemented.

«
In this section, some of the most representative commands are explained giving

special emphasis to the data structures used when executing the command:

show: displays information about the user defined simulation environment.

create: creates active versions (instances) of studies and experiments present in
the environment.

set block: sets the default block (study, experiment or submodel block). The
default block can be directly accessed.

type variable: displays the values of study, experiment or submodel variables,
parameters or constants.

do: invokes for execution an active version of a study or an experiment

remove: delete an active version of a study or an experiment

Lets suppose that the defined simulation environment is composed by the set of
experiments and submodels shown in figure 4.10.

When entering into the simulation environment, the prompt

muss in >

indicates to the user that the system is ready for answering user's commands.

Now, he has the possibility to display the experiments present in the environment
with the command,

4.4. MUSS COMMAND LANGUAGE (MCL) 133

Figure 4.10: A simulation environment.

muss in > show experiment :*

Once the command has been issued, the MCL executive accesses the expjable to und
the symbolic names of the experiment to elaborate the answer

:exp_lntegrator
:exp_filter
:exp_pulse
:exp_control
:exp_SMPR
:bouncing_ball
ttorus
:sintple_switch
: pendulum
:ellison_l
:ellison_2
:ellison_3
:carver_3
:birta 1
:birta~2
:birta 3

134 CHAPTER 4. THE SIMULATION ENVIRONMENT

Each element of the exp.table is associated to an experiment For a given experi-
ment, for example the one associated to the third element of the table, its name can be
found in the address pointed by (see figure 4.11),

exp.table[3]->low->lower->name

exp_tabla [3]

low -.
*xpm*unt
taaruauri

__,

lower

lawtr_nbmodtli
data jtructurt

aikumU

-associai td to ait aptrimtia-

Figure 4.11: MCL command: show experiment :*

Alternatively, the command

muss in > show model/submodel [*]

shows the models included in the simulation environment and the submodels associated
to each model.

The answer to the command is:

[SMPR]
[.control_circuit]

[.control_circuit.filter]
[.control_circuit.fliter.integrator]
[.control_cirouit.limiter]
[.control_cirouit.PI_controllerJ
[.control_circuit.PI_controller.integrator]
[.control_circuit.pulse_width_modulator]
[.power_circuit]
[.power_circuit.integrator]
[.power_circuit.integrator]

4.4. MUSS COMMAND LANGUAGE (MCL) 135

Since a model is relative concept which depends on the experiment being performed,
a submodel and its lower level submodels will be considered a model if there is an
experiment over the submodel.

The qualifier \experiment is used to get the experiments which call to each
submodel.

By means of the definition digraph it is straightforward to find the models and
associated submodels present in the environment as well as the experiments linked to
each submodel.

The following command is used to create an instance of the exp^MPR experiment,

muss in > create :exp_SMPR(instancel)

The environment must allocate data space for the experiment block and for the
submodel blocks involved in the experiment The total amount of data needed can
easily be known traversing the definition digraph because each node stores the memory
needed for its associated block.

The allocated memory area is thereafter distributed to the involved block ('in-
stances').

It is also possible to set a default block with the command,

muss in > set block :expJSMPR(instancel)[SMPR.control.circuit]

In this case, the command,

muss in > type variable/parameter *

displays the value of the parameters of the default block. Clearly, the block might have
been completely specified or defined in relation with the default block.

:exp_SMPR(instance!)[SMPR.control_circuit]

real upper_limit - 9.500000e-01
real lower limit - 5.000000e-02
real Vlic ~ = 1.25QOOOe-02
real V2ic - S.OOOOOOe-01

136 CHAPTER 4. THE SIMULATION ENVIRONMENT

real Tf = 2.000000e-05
real Ti = 4.500000e-04
real Td = O.OOOOOOe+00
real G - l.OOOOOOe+00
real period = 1.250000e-05

The next command activates the experiment instance :expSMPR(instancel) for
execution,

muss in > do :exp_SMPR(instancel)

The mechanisms involved are:

• Search in the expjnstance linked list the data structure associated to the present
experiment instance.

• Get the base addresses of the memory areas allocated for the instance.

• Pass these addresses as well as the pointers to the initial segment, ODE segment
and discontinuous segment to the front-end ODE solver routine.

• Execute the experiment

The command,

muss in > remove :exp_SMPR(instancel)

deallocates the memory areas related to the experiment instance and removes the as-
sociated expjnstance data structure from the linked list.

4.5 Summary

The simulation environment has been presented in this chapter. The description of it
has been restricted to those aspects related to the MUSS language architecture: the
model, experiment and study blocks plus the MUSS Command Language.

The simulation environment has been designed using Software Engineering tech-
niques. The followed methodological approach can be subdivided in three parts which
relay on the separation between data and code:

4.5. SUMMARY 137

• Consider the simulation environment and record the understanding of it by defin-
ing structures for the data to be processed.

• Specify a program structure based on the data structures.

• Define the tasks to be performed in terms of the elementary operations available.

One important contribution has been the design of a digraph (definition digraph)
whose structure is similar to the hierarchical structure of the models. Rirthermore,
each node is a data structure that stores the knowledge about the associated submodel.

	TAGP00001.pdf
	TAGP00002.pdf
	TAGP00003.pdf
	TAGP00004.pdf
	TAGP00005.pdf
	TAGP00006.pdf
	TAGP00007.pdf
	TAGP00008.pdf
	TAGP00009.pdf
	TAGP00010.pdf
	TAGP00011.pdf
	TAGP00012.pdf
	TAGP00013.pdf
	TAGP00014.pdf
	TAGP00015.pdf
	TAGP00016.pdf
	TAGP00017.pdf
	TAGP00018.pdf
	TAGP00019.pdf
	TAGP00020.pdf
	TAGP00021.pdf
	TAGP00022.pdf
	TAGP00023.pdf
	TAGP00024.pdf
	TAGP00025.pdf
	TAGP00026.pdf
	TAGP00027.pdf
	TAGP00028.pdf
	TAGP00029.pdf
	TAGP00030.pdf
	TAGP00031.pdf
	TAGP00032.pdf
	TAGP00033.pdf
	TAGP00034.pdf
	TAGP00035.pdf
	TAGP00036.pdf
	TAGP00037.pdf
	TAGP00038.pdf
	TAGP00039.pdf
	TAGP00040.pdf
	TAGP00041.pdf
	TAGP00042.pdf
	TAGP00043.pdf
	TAGP00044.pdf
	TAGP00045.pdf
	TAGP00046.pdf
	TAGP00047.pdf
	TAGP00048.pdf
	TAGP00049.pdf
	TAGP00050.pdf
	TAGP00051.pdf
	TAGP00052.pdf
	TAGP00053.pdf
	TAGP00054.pdf
	TAGP00055.pdf
	TAGP00056.pdf
	TAGP00057.pdf
	TAGP00058.pdf
	TAGP00059.pdf
	TAGP00060.pdf
	TAGP00061.pdf
	TAGP00062.pdf
	TAGP00063.pdf
	TAGP00064.pdf
	TAGP00065.pdf
	TAGP00066.pdf
	TAGP00067.pdf
	TAGP00068.pdf
	TAGP00069.pdf
	TAGP00070.pdf
	TAGP00071.pdf
	TAGP00072.pdf
	TAGP00073.pdf
	TAGP00074.pdf
	TAGP00075.pdf
	TAGP00076.pdf
	TAGP00077.pdf
	TAGP00078.pdf
	TAGP00079.pdf
	TAGP00080.pdf
	TAGP00081.pdf
	TAGP00082.pdf
	TAGP00083.pdf
	TAGP00084.pdf
	TAGP00085.pdf
	TAGP00086.pdf
	TAGP00087.pdf
	TAGP00088.pdf
	TAGP00089.pdf
	TAGP00090.pdf
	TAGP00091.pdf
	TAGP00092.pdf
	TAGP00093.pdf
	TAGP00094.pdf
	TAGP00095.pdf
	TAGP00096.pdf
	TAGP00097.pdf
	TAGP00098.pdf
	TAGP00099.pdf
	TAGP00100.pdf
	TAGP00101.pdf
	TAGP00102.pdf
	TAGP00103.pdf
	TAGP00104.pdf
	TAGP00105.pdf
	TAGP00106.pdf
	TAGP00107.pdf
	TAGP00108.pdf
	TAGP00109.pdf
	TAGP00110.pdf
	TAGP00111.pdf
	TAGP00112.pdf
	TAGP00113.pdf
	TAGP00114.pdf
	TAGP00115.pdf
	TAGP00116.pdf
	TAGP00117.pdf
	TAGP00118.pdf
	TAGP00119.pdf
	TAGP00120.pdf
	TAGP00121.pdf
	TAGP00122.pdf
	TAGP00123.pdf
	TAGP00124.pdf
	TAGP00125.pdf
	TAGP00126.pdf
	TAGP00127.pdf
	TAGP00128.pdf
	TAGP00129.pdf
	TAGP00130.pdf
	TAGP00131.pdf
	TAGP00132.pdf
	TAGP00133.pdf
	TAGP00134.pdf
	TAGP00135.pdf
	TAGP00136.pdf
	TAGP00137.pdf
	TAGP00138.pdf
	TAGP00139.pdf
	TAGP00140.pdf
	TAGP00141.pdf
	TAGP00142.pdf
	TAGP00143.pdf
	TAGP00144.pdf
	TAGP00145.pdf
	TAGP00146.pdf
	TAGP00147.pdf
	TAGP00148.pdf
	TAGP00149.pdf
	TAGP00150.pdf
	TAGP00151.pdf
	TAGP00152.pdf
	TAGP00153.pdf
	TAGP00154.pdf
	TAGP00155.pdf

