
UNIVERSITAT POLITECNICA DE CATALUNYA

ESCOLA TÈCNICA SUPERIOR D'ENGINYERS
INDUSTRIALS DE BARCELONA

Doctoral Thesis

MUSS: A CONTRIBUTION TO THE STRUCTURAL

ANALYSIS OF CONTINUOUS SYSTEM

SIMULATION LANGUAGES

December 1987

Antoni Guasch i Petit
Institut de Cibernètica

Chapter 5

Conclusions and future research

"Expert systems are programs that emulate human expertise in a specific
domain by applying techniques of logical inferences to a knowledge base.
The knowledge base stores information about haw to carry a task includ-
ing facts, uncertain and heuristic knowledge, as well as non-algorithmic
inference procedures. When applying the high potential of these features,
expert systems can be used more efficient than conventional software to
enhance the acceptance and effectiveness of modelling and of simulation."

[Lehmann87a]

5.1 Conclusions

The outcomes of this research work can be separated in three groups: in the first, the
main abstract contributions are outlined, in the second, the present implementation
state of the MUSS system is described, whereas in the third some results are outlined.

5.1.1 Abstract contributions

The main end results towards the enhancement of the state of the art in general purpose
continuous time simulation systems are:

139

140 CHAPTERS. CONCLUSIONS AND FUTURE RESEARCH

Architectural aspects:

- The proposed architecture of the MUSS language is coherent with the natural
division of the physical system into subsystems trough the minimal but
sufficient number of blocks which have been defined.

- The design of the MUSS strengths a modularity converging to the object
oriented language concept.

Algorithmic proposals:

- The proposed submodel digraph concept is the base supporting the increase
in the robustness of the submodel code in a way so far not achieved in
CSSL-like languages.

- The segmentation concept contributes to the reliability of the simulator
software.
Splitting up the submodel code into the initial, ODE and discontinuous
segments is consistent with the functional tasks involved in a simulation
run.

- Isolated preprocessing of the submodel, experiment and study blocks is
allowed. It has been achieved, avoiding restrictions, by the division of the
ODE segment into the state, algebraic and derivative subsegments.
An additional advantage of the proposed subsegmentation method is that
the algebraic chains are detached from the rest of the code into the algebraic
segments. Therefore, the subsegmentation also opens the door to implement
algorithms for the solution of implicit equations in an elegant manner though
the algebraic loops will be spread on a set of submodels hierarchically
related [HolianderSla] [Troch86a].

Structural aspects:

- The definition digraph links the submodel data structures of the submodel
and experiment blocks. It is the bed structure used by the MCL executive
for handling the simulation environment.

- The proposed MUSS Command Language allows the user to communicate
with the simulation environment.

5.1.2 Present implementation state of the MUSS system

To achieve a production code has never been considered an objective into the thesis
goals. Nevertheless some insight on the behaviour of the solutions proposed was
necessary. As a result, some pieces of code exist:

5.1. CONCLUSIONS 141

• Preprocessor

The architectural design has been completed and the following modules coded:

- Lexical analyzer.

- Syntax analyzer.

- Table manager.

- Sorting and segmentation procedures of submodel digraphs associated to
continuous time submodels without time or state events [GuaschSSd].

• Simulation environment

A prototype of the simulation environment has been completed and successfully
tested. Its core embraces the following main modules:

- The MCL interpreter whose grammar is fully described in appendix B, has
the responsibility for understanding users' commands. It has been coded
using automatic compiler production techniques.

- The MCL executive which embodies the set of algorithms achieving the
users' commands. It includes those processes involved in study, experiment
and model instantiation, activation, execution and deletion. It also allocates
the dynamic memory necessary for the integration package. Most of its
procedures extract the information they need to perform from the definition
digraph.

- The LSODAR integration and root finder package [Hindmarsh82a]. It is
written in Fortran. Some minor changes have been introduced to properly
interface it with the MUSS environment

- The LSODAR front-end routine. Its main tasks are:

o To set the base addresses of the working memory areas. These ad-
dresses depend on the experiment instance being executed.

o To set set the discontinuous states associated to the discontinuous func-
tions at initial time and at each event occurrence.

o To invoke I/O tasks at each communication point
o To call the LSODAR package with the proper input arguments.

5.1.3 Results

The proposed analysis, segmentation and sorting algorithms described in chapter 3 have
been successfully implemented in the preprocessor and applied to:

142 CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

• A complex electrical network model [RieraSSa] which has seventeen submodels
and whose hierarchical structure has four levels.

• The switched-mode power regulator (see appendix C).

Figure 5.1: Subset of experiments which have been used for testing
the simulation environment.

To get an insight about the overall system performance some study cases have been
selected and lead to execution according with the following procedure:

The C target codes have been generated from the MUSS source code using the
existing modules of the preprocessor and emulating the outputs of those not yet
implemented.

The experiment interface routines (see code 4.13 in page 130) have been emulated
although its implementation is straightforward.

The C object codes along with the associated experiment interface routines have
been linked with the MCL interpreter and executive to generate a simulation
environment.

5.2. FUTURE RESEARCH 143

The cases chosen have been put together in the environment represented in figure 5.1
and they can be assembled in two groups:

• First:

- bouncingjyall, torus, simple switch and pendulum [ThompsonSSa].

- ellisonJ, ellisonJZ and ellisonJ [EllisonSla].

- carver3 [CarverTSa].

- bina J, bina J and bina J [BirtaSSa].

They have been successfully used for testing the discontinuity handling mecha-
nisms.

• Second:

- expJntegrator, exp^ilter, expjiulse, expjcontrol and expJSMPR.

They have been successfully used for testing the management and execution of
hierarchical models (MCL interpreter and MCL executive).

5.2 Future research

Part of the planned immediate research is concerned with a further development of
the submodel digraph concept and that of the declarative block definition to allow
the inclusion and analysis of new sentences (case, do while) in the continuous
submodel. This involves the definition of new vertices such case or do while executable
vertices.

In addition, a first prototype of the MUSS system will be coded and tested although
the aspects related to distributed and real-time simulation will be left aside.

The research on simulation environments is an interdisciplinary task involving a
large number of computer science branches. The future research concentrates on the
topics reported right after and some of them will be hopefully developed in conjunction
with other research teams:

• Artificial intelligence (AI):
The role of Artificial Intelligence (in particular Expert Systems) in the simula-
tion domain is becoming important This can be observed looking at the ratio of

144 CHAPTERS. CONCLUSIONS AND FUTURE RESEARCH

AI related papere presented Simulation Congresses, Symposiums or Multicon-
ferences. Some figures in recent events are:

- "2nd European Simulation Congress", September 1986. Antwerp, Belgium.
(10 AI related papers).

- "AI, Expert Systems and Language in Modelling and Simulation", IMACS
International Symposium, June 1987. Barcelona. (38 AI related papers).

- "1988 SCS Multiconference", February 1988. San Diego, California. (63
AI related papers).

Three different categories of applications combining expert systems and simula-
tion can be distinguished [Lehmann87a]:

- Simulation models embedded in expert systems.

- Expert systems as integral part of a simulation model.

- Expert system as supporting framework for a goal-directed application of
modelling tools.

The specific objectives will be selected towards the goal of assistance to the users
in the modelling, simulation, verification, validation and documentation phases
involved in a simulation study.

In addition, an expert system shell should be chosen and some aspects which
have to be analyzed beforehand are: the interface between the expert system
and the simulation model, the ability of the expert system for working with the
different results produced by a set of simulation runs and the degree of flexibility
and adaptability of the expert system.

• Real-time features:

The stress in this thesis is on the software robustness and reliability rather than in
the time requirements because of the availability of fast and low-cost computers.

The MUSS language, as well as the majority of the general purpose simulation
languages, can not support hardware in the loop real-time simulation were time is
a critical constraint for the scenario (aerospace, flight simulators) [Crosbie82d].
However, the type of real-time problems we are concentrated in is less time
critical because the physical subsystem only exchanges data with the modelled
subsystem at time events. This may be the case of a controller wich governs a
simulated subsystem.

In the MUSS architecture, the sampled submodel that interfaces with a hardware
subsystem has already been defined. Nevertheless, a further research study has
to be made to know if the proposed software concept is able to synchronize in
real-time. This depends on two main aspects,

5.2. FUTURE RESEARCH 145

- Fitness of the simulation system software which embraces:

o The selection of the appropriate integration and root finder algorithms.
o The time overhead inherent to the ODE segmentation. New C code

optimizers may remove this question performing in-line expansions.
When the optimizer expands a function in-line, it eliminates the func-
tion call and therefore the overhead [Wolverton86a].

o The memory management mechanisms which should be analyzed in
more detail. In fact, to allot memory dynamically to all the submodel
variables is time expensive. A better strategy could be to select the
variables with which really need to be allocated dynamically.

- Complexity of the model:

o Given a fixed real-time simulation environment, it corresponds to the
user to modify or simplify his simulated subsystem and the communica-
tion with the hardware subsystem to satisfy the real-time requirements
without loosing the validity of the model.

' Simulation of combined models:

The term combined system (model) is defined by Prof. Cellier as follows:

"Combined systems are described, either during the whole period
under investigation or during a part of it, by a fixed or variable set
of differential equations where at least one state variable or one state
derivative is not continuous over a simulation run" [Cellier79a],

Using this definition, the MUSS system can be classified as a combined sim-
ulation system. However, even though the discrete features are restricted to
discontinuities in the state variables (implicit solutions of the ODE), the archi-
tecture and the structure of the MUSS system allow the expansion to a truly
combined simulation system.

Future research on combined simulation might include the architecture and gram-
mar definition of the MUSS discrete subprocesses, the inclusion of discrete fea-
tures in the simulation environment and the interface between discrete and con-
tinuous subprocesses (present hierarchical models).

Object oriented languages:

The object-oriented programming methodology allows easy and conceptually
clean development of special purpose application packages [Kreutzer86a] as
well as software reusability.

Objects are programming structures which contain data structures and access rou-
tines which perform the allowed operations on those data structures [ZenorSTa].
In the context of simulation programming objects are often referred as entities.

146 CHAPTERS. CONCLUSIONS AND FUTURE RESEARCH

In C, the object-oriented programming style can be emulated even though it is not
straightforward. Therefore, the object-oriented programming methodologies will
be investigated and if needed, parts of the MUSS system could be coded in a lan-
guage which supports object-oriented programming styles —MODULA (module)
[Wirth83a], ADA (package) [LedgardSla], SIMULA (class) [DahI66a]—.

• Distributed parameters submodels:

In the MUSS architecture definition, the distributed parameters submodel has
already been defined. However, a flexible syntax is difficult to achieve. This
may constitute an additional research topic.

Distributed parameter systems are characterized by partial differential equations.
These equations have their own solution methods [Karplus82b]. In, the MUSS
system, the implementation of the method of lines is straightforward, specific
algorithms as Galerkin's procedure for parabolic equations can be attached and
packages like FORSIM W [Carver79a] can be appended to LSODAR.

Appendix A

Metalanguage used to define MUSS
and MCL grammars

The metalanguage used to specify MUSS and MCL grammars follows the guidelines
presented by Johnson [Johnson75a] and implemented in the YACC compiler-compiler.
YACC allows the users to specify an unambiguous grammara or an ambiguous one
along with precedence and associative information about operators.

Although the most widely used notation to specify formal languages seems to be
the Extended Backus-Naur Formalism (EBNF) [Wirth83a], we rather use the Johnson
syntax because grammar rules specified with it can be directly input to the YACC
compiler-compiler.

The rules of the metalanguage are:

• Terminal names —tokens— are enclosed within quotation marks or are written
in UPPER CASE LETTERS.

• Non terminal names —grammar rules— are written in lower case letters

» Names are of arbitrary length, and alphanumeric characters and underscore "_"
can be used in the string. The first character has to be alphabetic.

• A space or a set of spaces is the delimiter between two syntactic units.

• A semicolon indicates the end of a rule.

• A colon separates the left and right side of any rule.

• The exclusive or is represented by the symbol " I ".

147

148 APPENDIX A. METALANGUAGE USED TO DEFINE...

One or more occurrences of a syntactic unit are defined by left recursion, which
is encouraged by YACC, as shown in the following example,

list
: item
I list item

Zero, one or more occurrences of a syntactic unit are represented as follows,

optional_list
: /* empty */
I list

list
: item
I list item

where /*empty*/ is just a comment, not a syntactic unit.

MUSS and MCL grammar once defined according the above rules can be directly
used as input to YACC in order to generate the corresponding syntactic analyzers. The
syntactic analyzers call a lower level input routine —lexical analyzer— to get the basic
tokens.

The necessary lexical analyzers for both grammars have been generated by LEX
[Lesk75a]. LEX accepts a set of regular expressions and produces code in C language
which recognizes them.

Appendix B

MUSS command language (MCL)

The Muss Command Language (MCL) is the language designed to communicate the
simulation users with the MUSS user defined interactive simulation environment

B.I Grammar

The design of the MCL commands has been influenced by the friendly syntax of
the VAX/VMS DCL commands [Dec84a]. As a result, the specification of the MCL
grammar has the flavour of the general syntax of the DCL,

command
: command_name option qualifiers parameters

option
: IDENTIFIER

qualifiers
: /* empty */
I qualifier_list

qualifier_list
: qualifier
I qualifier_list qualifier

149

150 APPENDIXE. MUSS COMMAND LANGUAGE(MCL)

qualifier
: '/' IDENTIFIER qualifier_extension

The MCL grammar presented in this chapter is a subset of the actual grammar used
in the implementation. The simplifications introduced are concerned with:

• Error recovery procedures.

• Error report generation.

Both aspects are very important and must be taken into account when designing a
grammar [Aho77a] but, they are not introduced here because the aim is to focus the
MCL commands.

B.1.1 MCL

MCL can be viewed as a set of commands. There are not syntactic precedence re-
strictions in the order of execution of the commands but, inconsistency errors will be
reported if the whole semantic is incorrect For example, to command the execution
of a non activated experiment is a cause of error because only active experiments or
studies can be executed.

mcl
: command set

B.1.2 Command-set

At present, a minimal set of commands has been implemented for communicating users
with the MUSS environment To Include new commands is a rather easy task because
of the great modularity and flexibility of the YACC. Three types of commands can be
emphasized among the set of commands still not implemented:

• Commands to control an alphanumeric and graphic postprocessor.

• Commands to call a menu driven module which would help inexperienced users.

B.1. GRAMMAR 151

Commands to control the execution flow into the MCL command files (i.e.
GOTO, F...ENDIF).

command_set
: cotratiand_newline
I coirunand_set command_newline

command_newline
: command '\n'
I /* empty */ '\n'

command
calculator
comment_line
control
create
do
edit
exit
external_file
help
parameter
prepare
print
remove
scope
set
show
type

Calculator

OPER command is used to ask for performing basic mathematical operations.

Grammar rules written below are the specification of a small desk-top calculator.
YACC [Johnson75a] precedence rules are used to solve ambiguities.

calculator
: OPER expression

expression
: ' (' expression ') '

152 APPENDIX B. MUSS COMMAND LANGUAGE (MCL)

expression '+' expression
expression '-' expression
expression '*' expression
expression '/' expression
'-' expression
number
SIN '(' expression ')'
COS '(' expression ')'
TAN '(' expression ')'
SQRT '(' expression ')'
LOG '{' expression ')'
LN '(' expression ')'
ACOS '{' expression ')'
ASÍN '(' expression ')'
ATAS '(' expression ')'
ABS '(' expression ')'
EXP '(' expression ')'
expression POT expression

number
: DECIMAL_NOMBER
I INTEGER NUMBER

Comment-line

Comment lines are suited for documenting MCL files.

comment_line
: '!' STRING

Control

Command used to assign values to system parameters.

control
: CONTROL control list

control_list
: control_element
I control list ',' control element

B.1. GRAMMAR 153

control_element
: wild_card_identifier '«•' expression

Create

Creates experiment or study instances, Thus, allocates data storage for studies, experi-
ments and models and performs the static initialization.

An experiment or a study may have more than one instance at a time, this facility
may look superfluous when working in continuous simulation but, this option has been
introduced thinking about a future expansion of the language to the simulation of
combined models.

create
: CREATE process_specification

Do

Indicates to the system which study or experiment (created) instance has to be executed.

do
: DO qualifiers process_speciflcation
t

• Do qualifiers, by now, are:

/STATISTICS : Used to get statistics about the simulation runs. CPU
time, number of calls to F and number of calls to G are some of
the parameters whose values will be displayed after each simulation
run.

Edit

MCL editor is an easy to use, line-oriented and MCL command-oriented editing module.

The most important features of this editor are:

154 APPENDIX B. MUSS COMMAND LANGUAGE (MCL)

• It performs on-line syntactic analysis of the MCL commands written by the user.
A simple way to specify this has been achieved with the grammar rules enhanced
by the dashed box,

When in editing mode and after given an insert edit-command, semantic actions
associated to grammar rules are disabled —except insert semantic actions— to
inhibit interactive execution of edited commands. The insert mode of the editor
is cancelled by means of an empty command.

• It is called within the MUSS simulation environment Thus, activated studies and
experiments remain unchanged (frozen) in the system while editing.

Up to now, five basic editing commands have been implemented: exit, quit, insert,
delete, type. To make the editor more powerful, the set of editing commands should
be expanded to: search, copy, move, substitute and write.

The internal data structure used to implement the editing buffer is a linked list. This
internal representation has been chosen because editing operations are straightforward
and easy to implement with it

edit : edit_begin edit_command_set edit end

editjbegin
: EDIT mcl_file_specification ' \n'
I EDIT '\n' mcl_file_specification ' \n'

mcl_file_name
: file specification

edit_end
: EXIT
I QUIT

edit_command_set
: /* empty */
I edit_command newline
I edit command set edit command newline

edit_command_newline
: edit_command ' \n'
I /* empty */ ' \n'

a i. GRAMMAR 155

edit_command
: insert
I delete
I type
I renumerate

insert
I '\n' line_list
I number '\n' line list

line_list
: /*empty*/
I line_newline
I line list line newline

line_newline
: command '\n'

delete

type

: D
I D number
I D number ':' number

: T W
I T number
I T number ':' number

renumerate
: R number ' \n'

Exit

When this command is issued at the level of the "muss in:" prompt it causes the orderly
termination of the session. The screen is restored to its original state and control is

156 APPENDIXE. MUSS COMMAND LANGUAGE (MCL)

passed to the operating system.

When EXIT is declared into a MCL command file then it just forces the exit of the
file and control is passed to MCL or to a calling MCL command file.

exit
: EXIT

External-file

Intended to drive the MCL command interpreter to execute a specified command file.

MCL command files can be created using the MCL editor by users in the MUSS
environment or utilizing the general purpose editors of the computing system by users
in the operating system environment

Inside MCL command files other MCL command files can be invoked using the
"@" command. Default file type is mcl.

external_file
: '8' qualifiers file_specification

> Externaljue qualifiers are:

¡LOG : Writes the succesive commands being executed from the specified
file.

Help

An MCL help library has been created using the VAX/VMS help utilities [Dec84a].
The library is organized as a tree.

Library access is controlled by VAX procedures. The main problem related with
VAX/VMS library utilities is that they are not portable to non DEC computers but we
think that this is an acceptable restriction for the MUSS prototype.

help
: HELP

B.1. GRAMMAR 157

Parameter

Command used to assign values to the parameters of the study, experiment or submodel
blocks.

One semantic action associated to the command consists on checking that a wild-
_card_identifier is the specification of a single parameter. That is, this com-
mand is illegal if wilcLcard-identifier matches more than one parameter (see
page 169).

parameter
: PARAMETER parameter_list

parameter_list
: parameter_element
I parameter_list ',' parameter_element

parameter_element
: block_specification wild_card_identifier '-' expression

Prepare

Specifies those variables to be recorded at each communication interval.

prepare
: PREPARE qualifiers optional_prepare_list

optional_prepare_llst
: /* empty */
I prepare_list

prepare_list
: prepare_element
I prepare_list ',' prepare_element

prepare_element
: block_specification wild_card_identifier

158 APPENDIX B. MUSS COMMAND LANGUAGE (MCL)

• Prepare qualifiers are:

iDELTA-(expression) : Sets prepara step size.

/RESET : Resets prepare.list buffer.

I OUTPUT-[(file juune)] : Directs the information in prepare.liat
towards the specified file instead of the standard SIM.PRE file.
Hie type is always PRE; users should not specify the file type.

Print

This command should be used for specifying the variables whose values are to be
printed at specified time intervals.

print
: PRINT qualifiers optional_print_list

optional_print_list
: /* empty */
I print list

print_list
: print_element
I print_list ',' print_element

print_element
: block_specification wild_card_identifier

Print qualifiers are:

/DELTA-(expresston) : Sets print step size.

IRESET : Resets print-list buffer.

IOUTPUT(-(Jilejiame)] : ïbrces the information in print_list to be
output to the specified file instead of the current standard output
device. If the file name field is empty, print assumes the default
(SIMDAT).

a í. GRAMMAR 159

Remove

Removes experiments or study instances. The main involved procedure is to deallocate
memory to the removed items in the defined environment

remove
: REMOVE process_specification

Scope

This command is used for specifying the variables whose values are to be plotted versus
and independent variable at defined time intervals.

scope
: SCOPE qualifiers optional_scope_list

optional_scope_list
: /* empty */
I scope_list

scope_list
: scope_element
I scope_list ' , ' scope_element

scope_element
: block_specification wild_card_identifier

Scope qualifiers are:

/DELTA-(expression) : Sets scope step size.

/RESET : Resets s copa-list buffer.

/OVTPUTf-ffilejuune)] : Defines the specified file as output of the vari-
ables in scope.list instead of the current standard output de-
vice. If the file name field is empty, scope assumes by default
(SIM.SCO).

160 APPENDIXE. MUSS COMMAND LANGUAGE(MCL)

/ORIGIN-(expression,expression) : Sets the origin of the X and Y axes
in the chart.

iSCALE-(expression.expression) : Sets the scale factors associated to the
X and Y axes.

/INDEPENDENT-(variable) : Sets the plotting independent variable.
The independent variable of the model is assumed by default.

/ERASE : Erases the drawings in the screen before starting a new one.

Set

Defines or redefines, for the current session, characteristics associated with the blocks,
the files or the devices owned by the MUSS environment

set
: SET set_options

set_options
: set_soreen
I set_block
I set trace

set_screen
: SCREEN qualifiers

set_block
: BLOCK block_specification

set_trace
: TRACE qualifiers

• Set_screen is used to erase the screen and to switch the screen mode between
graphics and alphanumeric mode. Set-screen qualifiers are:

/ERASE : Erases the screen.

/GRAPHICS : Sets screen into graphic mode.

/LISTING : Sets screen into alphanumeric mode.

a í. GRAMMAR 161

set Jblock sets the default block which can be directly accessed from MCL to get
information of it A block can be an experiment, a study or a submodel.

• set-trace actives established tracepoints. Set-trace qualifiers are :

IF.G.CALLS : Trace F and G calls.

/STATEMENTS : Trace state events.

ITIME-EVENTS : Trace time events.

/DISCONTINUOUS : Trace discontinuous function values. Discontinuous
vector is written after each call to G.

/STATEyECTOR : Trace state vector.

/DERIVATIVE : Trace derivative vector.

l All. ; Includes all above qualifiers.

/RESET : Resets trace qualifiers included in the same set-trace com-
mand.

Show

Displays information about the present status of the blocks in the MUSS environment

show
: SHOW show_options

show_options
: show_model
I show_experiment
I show_study
I show block.

show_model
: MODEL qualifiers submodel_level

show_experiraent
: EXPERIMENT qualifiers experiment

show_study
: STUDY qualifiers study

162 APPENDIXE. MUSS COMMAND LANGUAGE (MCI)

show_block
: BLOCK qualifiers blocJt_specification

• Showjnodel displays information about models present in the user defined simula-
tion environment A model is a set of hierarchical related submodels. Show-model
qualifiers are:

/SUBMODEL : The names of the submodels arc listed.

(EXPERIMENT : Lists the names of the experiments defined over models
or submodels (qualifier /SUBMODEL).

• Show_experiment displays information about experiments present in the system.
Show_experiment qualifiers are:

/ACTIVE : To display only active experiments names.

/FULL : The main characteristics of experiments selected in the com-
mand and present in the user defined simulation environment are
described.

• Show-study displays information about studies present in the system.
Show_study qualifiers are:

/ACTIVE : Display only active studies.

• Show_block displays information about selected blocks. Show_block qualifiers
are:

/SYMBOL : Display all block symbols.

/STATE : Display all state variables.

/AUXILIARY : Display all auxiliary variables.

/INTEGER : Display all integer variables.

/LOGICAL : Display all logical variables.

/CONSTANT : Display all constants.

/PARAMETER : Display all parameters.

B.1. GRAMMAR 163

/EXPERIMENT : If the selected block is a submodel, then display asso-
ciated experiments.

IFULL : Display the main characteristics of the submodel.

/SUBMODEL : If the selected block is an experiment or a submodel,
display the selected information for all lower level submodels.

Type

Displays the contents of files or the value of a request set of variables

type
: TYPE type_options

type_options
: type_variable
I type_file
I type_system

type_variable
: VARIABLE qualifiers type_variable_list

type_va ri able_l i st
: type_variable_element
I type_variable_list ',' type_variable_element

type_variable_element
: block_specification wild_card_identifier

type_file
: FILE file_specification_list

type_system
: SYSTEM type_system_list

type_system_list
: type_system_element
I type_system_list ',' type_system_element

164 APPENDIXE. MUSS COMMAND LANGUAGE (MCL)

type_system_element
: wild card identifier

• Type_f ile displays the contents of a group of files.

• type_system displays selected system variables.

• type-variable displays the value of a set of variables. Type-variable qual-
ifiers are:

/ALL ; Type the value of all the variables maching a variable specification.

/STATE : Type the value of all the state variables.

/DERIVATIVE : Type the value of all the derivative variables.

/DISCONTINUOUS : Type the value of all the discontinuous functions.

/AUXILIARY : Type the value of the auxiliary variables.

/INTEGER : Type the value of all the integer variables.

/LOGICAL : Type the value of all the logical variables.

/CONSTANT : Type the value of all the constants.

/PARAMETER : Type the value of all the parameters.

/SUBMODEL : If the selected block is an experiment or a submodel,
display the selected information for all lower level submodels.

B.13 Auxiliary grammar rules

FilejspecificationJist

A file-specification has two fields, file-name and file-type, separated
by a period.

file_specification_list
: file_specification
I file~specification_list ',' file_specification

B.1. GRAMMAR 165

file_specification
: file name file extension

file_name
: IDENTIFIER

file_extension
: /* empty */
I '.' IDENTIFIER

Process jsp ecification

The process-specification identifies an experiment or study instance.

process_specification
: study_level
I experlment_level

study_level
: study process_copy

study
: ':' ':' wild card identifier

expe riment_leve1
: experiment process_copy

experiment
: ':' wild_card_identifier

process_copy
: /* empty */
I ' (' wild card identifier ')'

166 APPENDIX B. MUSS COMMAND LANGUAGE (MCL)

Block specification

The following grammar rules specify a block. Three types of blocks are defined,
studies, experiments and submodels. Submodel specification may be absolute or
relative to other submodels in the same model.

An example would illustrate both alternatives. Figure B.I represents the model
and the experiments structure of the case study presented in chapter C. Some absolute
specification are:

• :exp_smpr(testl)

Specifies experiment block exp^mpr of instance "testi" of experiment exp_smpr.

• :exp_smpr(test2)[SMPR.control] Specifies submodel block control called from
submodel SMPR in the instance "test2" of experiment exp-smpr.

and, if the default block is:

:expjiontrol[control.limiter]

some relative specifications are:

Specifies submodel block control.

[.-Pi-controller]

Specifies submodel block Pljcontroller.

block_specification
: relative_bloc)c_speeification
I absolute_bloc!c_specification

relative_block_specification
: '[' '.' level_list
I /* empty */

B.1. GRAMMAR 167

level_list
: level_element
I level list '.' level element

Figure B.I: SMPR experiments and model structure. To specify a block, let say, filter
submodel block, is not as easy as to state "Look at filter submodel block"
because several instances may be present at a given time. It must be
precisely specified which filter instance is wanted to look at, otherwise,
only static information would be available (see subsection 42.2).

level_element
. t _f

I submodel name

submodel_name
: wild card identifier

168 APPENDIXE. MUSS COMMAND LANGUAGE (MCL)

absolute_block_specification
: study_level optional_experiment_and_submodel_level
I experiment_and_submodel_level

optional_experiment_and_submodel_level
: /* empty */
I experiment_and_submodel_level

experiment_and_submodel_level
: experiment_level optional_submodel_level

optional_submodel_level
: /* empty */
I submodel level

submodel_level
I ' [' level_list ']'

Qualifiers

Only identifiers that match allowed qualifiers are accepted. Selected qualifiers depend
on the command and option given.

qualifiers
: /* empty */
I qualifier_list

qualifier_list
: qualifier
I qualifier_list qualifier

qualifier
: '/' IDENTIFIER qualifier_extansion

S.! GRAMMAR 169

Qualifier_extension

qualifier_extension
: /* empty */
I '-' ' (• extension ')

extension
: constant_list_extension
I variafalelistextension

variable_list_extension
: variable_element_extension
I variable_list_extension ' , ' variable_element_extension
!

variable_element_extension
: block_specif ication wild_card_identifier
r

const ant_list_ext ens ion
: constant_element_extension
I constant_list extension ' , ' constant_element_extension

conatant_element_extension
: expression

Wildcard Jdentifier

The wild card character "*" is a symbol that users can utilize with many MCL com-
mands. It is suited to address variables or blocks in a shorten form or to match sets.

For example, let suppose that a block has been set, the command to type the value
of all its variables is,

muss in > type variables *

and the command to type all variables starting with the latter 6 is,

muss in > type variables b*

170 APPENDIXE. MUSS COMMAND LANGUAGE (MCL)

In the following example the wild card character is used to specify a model. Instead
of the command,

muss in > show model [spednJranceMiterconnectedjietworkl

we can write,

muss In > show model [spatnjran*]

note that,

muss In > show model [*]

specifies all models present in the user defined interactive simulation environment

wild_card_identifier
: IDENTIFIER
I IDENTIFIER '*'

I '*'

Appendix C

Case study: switched-mode power
regulator

This case study is taken from the ESL Software User Manual [Hay85a]. The main
objective on analyzing it is to emphasize the top-down modelling and the bottom-up
coding and testing approach which is strongly supported by the MUSS system.

A switched-mode power regulator (SMPR) takes as input an un-regulated power
supply voltage (Vt) and produces a stabilized output voltage (V0) with minimal power
loss. The level of the output is determined by a reference voltage (Vre¡). A high yield
is achieved using a high frequency switch with a controlled mark-space ratio, to 'chop*
the input voltage which is then presented to a filter circuit Accurate control of the
output voltage is achieved by a control system which generates a switching waveform
with a variable mark-space ratio.

The various components which form the model of the switched-mode power reg-
ulator circuit are discussed and then the MUSS submodels code which represent the
components, the posterior analysis performed by the preprocessor and the experiments
to test their behavior are presented.

171

172 APPENDIX C. CASE STUDY

C.I Circuit Elements, Top-Down Modelling

C.1.1 SMPR circuit

The SMPR circuit is composed by the two modules showed in figure C.I , the power
circuit and the control circuit

voltage
supply Power

circuit
l

Transiste

t

r on

Io

Control
circuit

e x-

yj

Vref

•̂

V

Load
\

Vo

reference
voltage

Figure C.1: Switched-mode power regulator circuit (SMPR).

C.1.2 Power circuit

The power circuit (figure C.2) consists of a switch (transistor plus diode), an induc-
tor/capacitor (1C) filter stage and the load resistance ÄQ. The logical output of the
control circuit, drives the switch which connects the supply voltage (V,) to the LC
filter.

The SMPR has two modes of operation depending on the current flow (//) into the
LC filter, and are known as the discontinuous and continuous mode. In the discontinu-
ous mode /» returns to zero during each period of the pulse-width modulator whereas,
in the continuous mode it does not.

There may be three states during each period of the pulse-width modulator.

1. When the transistor is ON it effectively connects the supply voltage to the power
circuit, i.e:

C.1. CIRCUIT ELEMENTS, TOP-DOWN MODELLING 173

II RI 10

Vin

_L
Transistoron

RO

Figure C.2: Power circuit.

V- - V'in — 's

2. While the transistor is ON, the inductance stores energy. When the transistor
switches OFF, this stored energy will be transferred by I¡ continuing to flow
through the 'free-wheeling* diode which is forward biased. Hence, V¡n being the
voltage drop in the diode when conducting and assuming a perfect diode:

3. The energy stored, and also I¡, will decay to zero and the diode will stop conduct-
ing. Then V¡n is in parallel with, and equal to the sum of the voltage drop across
the inductor (i.e. HI x /¡) and the output voltage (Vo). In this case, however, I¡
will be zero and so:

Vu,

The above three states describe the discontinuous mode of operation.

The equations associated to the power circuit are:

174 APPENDIX C. CASE STUDY

(Vin - Rj x I, - Vb)

C.13 Control circuit

The control circuit (figure C.3) provides the timing pulses to control the state of the
transistor.

1
iron—i
Hi— \

ioTJon
' \

1
l_

Pulse
width
modul.

W

Limiter

^

PI controller

VÌP C(\ i ' 1«-M.1 + íTJ

Vi

Filter

i
l+»7>

e

Figure C.3: Control circuit.

This circuit can bs decomposed into four modules:

Filter: Its purpose is to reduce the ripple introduced by the sampling frequency (/<>)
of the pulse-width modulator.

Proportional-integral controller The gain G of the PI controller has been chosen to
be 1.0. The real pole time constant (3}) is such that the oscillatory response of
the LC filter stage in the power circuit is dumped.

Limiter: The mark-space ratio control signal input to the pulse-width modulator must
not be outside the range of the ramp waveform. The limiter is used to keep the
signal within this range.

Pulse-width modulator: The function of the pulse-width modulator is to provide the
timing pulses to the base of the transistor which in turn controls the state of the
transistor. The modulator is based on a ramp timing waveform and has two input
signals:

C.2. BOTTOM-UP CODING AND TESTING 175

• The sampling frequency (/o).

• The mark-space ratio control signal (W).

The action of the pulse-width modulator is described as follows:

Initially the logical output (transîstor.on) is set to 1 (or 0). The raising ramp
successively crosses two pints: First, when the value of the ramp becomes equal
to the input W (the output becomes 0); second, when the ramp becomes equal
1.0 at the end of each period (the output returns to 1 state and the ramp is reset
to 0.0). The process is then repeated.

C.2 Bottom-up coding and testing

Figure C.4 represents the hierarchical relationships between SMPR submodels.
Methodologically, the way to code the model is to start coding and testing submodels
at level 0, then continue at level 1 and so on.

Figure C.4: SMPR hierarchical structure.

MUSS allows simulation users to hold in the simulation environment a set of user
defined experiments and studies. This facility helps the users to verify the submodels,

176 APPENDIX C. CASE STUDY

when the model does not behaves properly or when a malfunction is supposed in one
or several submodels. Figure C J shows the defined experiments associated to SMPR
submodels; in general, a submodel may have zero, one or more experiments associated
to it and an experiment may call zero, one or more submodels.

In the following subsections the submodels of the SMPR in figure C.4 will be
presented stressing the following aspects:

• Code: the submodel source code is written in the MUSS language. The design of
the submodel structure has been influenced by GEST [Ören84a] (staue region),
ESL [Hay84a] (initial and dynamic region).

• Analysis: the submodel analysis includes the submodel digraph, the classification
of its vertices, the segmentation process and the segment-link digraphs. Parameter
and constant symbol vertices are not represented in the digraphs.

• Test: for the submodels with an experiment associated to them, a description of
the experiment goal is given as well as some graphic results.

C.2.1 Integrator

Its calling syntax and use is equal to CSSL-like standard integrator. We keep the
full name (integrator) instead of shortened names (INTEG [MitcheilSla], INTGRL
[SynSSa]). In our opinion shortened names are meaningless for novice users.

Code

State variable declaration (state{...}) should include their type. Usually, simulation
languages do not include the type of the state variables because they are implicitly
supposed to be real, but we support that the state variables declaration grammar has to
be similar to that of other variable declarations.

The submodel MUSS code will be:

Continuous submodel integrator is
Static region

inputs {real ic,dx;}
outputs (real x;}
state (real x;}

C.2. BOTTOM-UP CODING AND TESTING 177

End static region;
Initial region

x = ic;
End initial region;
Dynamic region

x' = dx;
End dynamic region;

End submodel integrator;

Code C.I Integrator submodel.

********.
^~X ¡Í «P- "M
power \ '.̂ filler ,?
Circuit Aw *»*««**'

/~P_^
»» -S

»»v̂
i

r \ s
Integrator K*

Figure C.5: Experiments associated to the SMPR submodels. The experi-
ments are represented with dashed circles.

Analysis

The integrator intermediate code is written below,

178 APPENDIX C. CASE STUDY

-I- Initial region
x - io;

End initial region;
Dynamic region

-2- x' - dx;
End dynamic region;

and the integrator submodel digraph is represented if figure C.6.

initiai -•'\¿\

/ '"'••
1

-̂.;/.?./
x

ODE

f"dx"\

\ 2 \ ^
\ } fusion

' «. * * vtífnvX ; steps

dx
/

«-{X} |f

f2={2,x'}

submodel digraph reduced digraph

Figure C.6: Integrator submodel digraph and segmentation process. The
submodel digraph is first decomposed into the initial and the
ODE segments and afterwards, the reduced digraph is get
applying the fusion steps to the ODE segment digraph.

Edge (z(0),z) indicates that the state variable x will be initialized before each
simulation run to the value z(0). Otherwise, the analysis algorithm would detect and
report an initialization error (subsection 3.3.2 in page 75).

The symbol vertices and the executable vertices can be grouped into the following
subsets:

1. Subsets of V»

• global vertices: Vnsi = {ic,¿z,z,z'}

• input vertices; Vt¡ = {»'c, dz}

• output vertices: Vt, = {z}

• derivative vertices: Vs¿ = {z'}

• state vertices: Vs, = {z}

C.2. BOTTOM-UP CODING AND TESTING 179

• local vertices: Vs¡a = {as(0)}

• initial vertices: Vsn = {z(0)}

2. Subsets of Ve

• initial vertices: Ven = {1}

Initial segment digraph

- Executable vertices: Ive = Q(Ven U Veg}) C\ Ve = £?({!}) n Ve » {1}

- Input symbol vertices: It)«,- = F~l(Ive) D Vs¡ = {t'c}

- Output symbol vertices: Iva, = 0

ODE segment digraph

- Executable vertices:

Ove - (Q(Ved U Vs¿ U F«, U Ve«,.A) n Ve) U (.T(Ve,7) n Ve„)

U (Fe - (£ve U Fe„)) = (<?({*', z}) n Fe) U 0 U {2} - {2}

- Input symbol vertices: Ov3¡ ** r~l(Ove) n Va¡ =* {dx}

- Output symbol vertices: Ovs, = Va9 = {z}

The ODE segment digraph and its associated reduced digraph are represented in
figure C.6.

The ODE subdigraphs are:

- State segment: The aim of this state segment is to make visible the state variable
z to the calling higher level submodels.

- Sve ** 0

- Sv»i " 0

- Sv*0 - {z}

180 APPENDIX C. CASE STUDY

• Derivative segment

- Dve = {2}

- Dva¡ = {dz}

- Dvs0 = 0

The integrator segment-link digraph is represented in figure C.7 and the higher level
calls to integrator segments will look like,

initial_integrator(ic);
x = state_integrator();
derivative integrator(dx);

H*

"\

IniteMntegrator

dx statajntegrator

derivativejntegrator
\
\

Test

Figure C.7: Integrator segment-link digraph.

Figure C.8 shows the behaviour of the integrator (output z). Its input (dx) switches
from 0.0 to 0.2 at time equal to 1.0 sec and from 0.2 to -0.1 at time equal to 4.0 sec.

X

0.4

0.2

0.0

/

/

1

/

/

/

/

fa-

\

U

4

\

\

\

7

ir-

\

Q.I

\

10 tin

Figure C.8: Integrator test results.

C.2. BOTTOM-UP CODING AND TESTING 181

C.2.2 Filter

The filter submodel is equivalent to the CSSL REALP simulation operator. Like CSSL
languages, MUSS has a standard library of submodels (system library). Simulation
users may use system or user defined library of submodels or a combination of both.

Code

Continuous submodel filter is
Static region

inputs (real ic,tau,x;}
outputs {real y; }
submodels called {

integrator;
}

End static region;
Dynamic region

y = integrator(ic,(x-y)/tau),
End dynamic region;

End submodel filter;

Code C.2 Filter submodel.

Analysis

Filter submodel intermediate code:

Dynamic region
/*... y - integrator(ic,(x-y)/tau);*/

-1- initialJLntegrator(ic);
-2- y " state_integrator();
-3- derivative_integrator((x-y)/tau);

End dynamic region;

The MUSS preprocessor splits the call to the integrator submodel into a call for each
submodel segment (initial, state and derivative). Afterwards, it builds the submodel
digraph being each segment call a vertex of the submodel digraph (transformation rule
T.I in page 53).

The submodel digraph is represented in figure C.9.

182 APPENDIX C. CASE STUDY

\ ODE

\ fusion
x ; steps

f1={2}

tau

.
f2={3}

submodel digraph reduced digraph

Figure C.9: Filter submodel digraph and segmentation process,

The symbol vertices and the executable vertices can be grouped into the following
subsets:

1. Subsets of Va

• global vertices: Vsg¡ =» {ic, tau, x, y}

• input vertices: Vt¡ = {te, tau, z}

• output vertices: Vt„ = {y}

2. Subsets of Ve

• derivative vertices: Vej * {3}

• state vertices: Ve, = {2}

• initial vertices: Ven - {1}

Initial segment digraph

- Executable vertices: Ive = Q(Ven U Vegí) n Ve - <?({!}) n Ve - {1}

- Input symbol vertices: Ivs¡ - r~l(Ive) n Vs¡ = {te}

- Output symbol vertices: Ivt0 » 0

C.2. BOTTOM-UP CODING AND TESTING 183

ODE segment digraph

- Executable vertices:

Ove = (Q(Ved U Vsd U Va, U Ve^ì n Ve) U (r(Vei}) n Ven)

U (Ve - (Eve U Ve„)) - (<?({3, y}) n Fe) U 0 U {2,3} = {2,3}

- Input symbol vertices: Ova¡ = r~l(Ove) n V«,- = {io«, z}

- Output symbol vertices: Ovs„ » Fi, = {y}

The ODE segment digraph and its associated reduced digraph are represented in
figure C.9.

The ODE subdigraphs are:

- State segment:

- Sve - {2}
si = 0

- {y}

- Derivative segment:

- Dve = {3}
- Dv8i = {íaií, x}

- Dvs0 = 0

The filter segment-link digraph is represented in figure C.10 and the higher level
calls to filter segments will look like,

initial_fliter(ic);
y - state_filter();
derivative_fliter(tau,x);

Although the statement associated to vertex number 1 of the submodel digraph is
in the dynamic region, it will be included into the initial segment because it is an initial
vertex.

The derivativejilter segment must be called (in a higher level submodel) after the
statejilter segment because it needs the state variable y for its own computations (edge
(statejilter, derivative .filter))

184 APPENDIX C. CASE STUDY

1C

initial filter

state filter
tau

derivative filter
\

Figure C. 10: Filter segment-link digraph.

Test

The results of figure C.ll have been obtained in a multirun study. The responses of
the filter (y) to an input step are given for iau = 0.1,1.0,2.0,10.0.

y
1.0 tau

0.0

zz
s.o o.o time (sec.)

Figure C.11: Filter test results obtained in a mullir un study.

C.2.3 Proportional plus integral controller

The PLcontroller submodel represents a proportional plus integral controller.

C.2. BOTTOM-UP CODING AND TESTING 185

Code

Continuous submodel PI_controller is
Static region

inputs (real IC,Tc,K,x;Ì
outputs {real y;}
auxiliary variable (real z;}
submodels called {

integrator;
}

End static region;
Dynamic region

z = integrator(1C,x/Tc);
y - K* (x+z);

End dynamic region;
End submodel PI controller;

Code C3 Pljconiroller submodel.

Analysis

The PLcontroller intermediate code is:

Dynamic region
/*... z - integrator(1C,x/Tc);*/

-1- initial_integrator(1C);
-2- z - state_integrator();
-3- derivative_integrator(x/Tc);
-4- y - K M x + z) ;

End dynamic region;

and its associated submodel digraph is represented in figure C.12.

The symbol vertices and the executable vertices can be grouped into the following
subsets:

1. Subsets of Va

• global vertices: Vagt - {1C, Tc, K, z, y, z}

• input vertices: Va¡ = {1C, Te, K, x}

• output vertices: Va, = {y}

186 APPENDIX C. CASE STUDY

i 1C

fusion
steps

K X Te

\/\l
f 1 ={2,2,4} f2={3}

\y

submodel digraph

ODE

reduced digraph

Figure C.12: PI controller submodel digraph and segmentation process.

2. Subsets of Ve

• derivative vertices: Ve¿ » {3}

• state vertices: Ve, = {2}

• initial vertices: Ven = {1}

Initial segment digraph

- Executable vertices: I ve => Q(Ve„ U Vey/) n Ve « Q({1}) n Ve =• {1}

- Input symbol vertices: Iv$¡ ** r~l(Ivé) n Vs¡ = {1C}

- Output symbol vertices: Iva, = 0

ODE segment digraph

- Executable vertices:

Ove - (Q(Ved U Vg<t U Vs, U FettA) n Ve) U (r(Ve¡}) n Fe„)

U (Ve - (Eve U Ve„)) - (Q({3, y}) n Ve) U O U {2,3,4} - {2,3,4}

- Input symbol vertices: Ova¡ - /^'(Owe) n Va, = {Te, K, x}

- Output symbol vertices: Ovs0 = Vs, = {y}

C.2. BOTTOM-UP CODING AND TESTING 187

The ODE segment digraph and its associated reduced digraph are represented in
figure C.12.

The ODE subdigraphs are:

• Algebraic segment:

- Ave = {2,4}

-{K,»}

Derivative segment:

- Dve = {3}

- Dvs0 = 0

The PLcontroller segment-link digraph is represented in figure C.13 and the higher
level calls to its segments will look like,

initial_PI_eontroller (1C) ;
y - algebraic_PI_cont roller (K,x) ;
derivative PI, controller (Tc,x) ;

InHM_PI_co(*ol«f

Figure C.13: PI controller segment-link digraph.

C.2.4 Limiter

A limiter sets lower and upper limits to the amplitude of an input variable.

188 APPENDIX C. CASE STUDY

Code

Continuous submodel limiter is
Static region

inputs {real ll,ul,x;}
outputs (real y; }

End static region;
Dynamic region

y - ul;
} else if{x<ll) {

y - 11;
} else {

y - x;
};

End dynamic region;
End submodel limiter;

Code C.4 Limiter submodel.

Analysis

Limiter intermediate code is:

Dynamic region
-1- grootl = x-ul;
-2- groot2 - 11-x;
-3- ifUrootl) {
-4- y - ul;

} else {
-5- if(lroot2)
-6- y - 11;

} else {
-7- y » x;

End dynamic region;

The limiter submodel digraph is represented in figure C.14.

In this submodel, a declarative if statement appears. The causes of the disconti-
nuities associated with this statement are the zero crossing functions x-vl and 12 — x.
Lrooil and Iroail are the logical states associated to the discontinuous function and
are recalculated each time a discontinuity is found.

C.2. BOTTOM-UP CODING AND TESTING 189

See, looking to the if statement and to its representation in the submodel digraph
that,

being y defined over continuous urne and y+, y_+ and y defined over continuous
spans of time.

\ initial''discontinuous

fusion
steps

Ul X II

v/
tt*{3A+.5-,G-+.

\
y

submodel digraph reduced digraph

Figure C.14: Limiter submodel digraph and segmentation process.

The symbol vertices and the executable vertices can be grouped into the following
subsets:

1. Subsets of Vs

• global vertices: Vsg\ - {II, ul, x, y}

• input vertices: Vs¡ = {II, ul, z}

• output vertices: Vt0 = {y}

• local vertices: V»t, = {y^.y-.y.+.y—}

• if vertices: Vii{ = {y,,y_,y_.,.,y__}

2. Subsets of Ve

• discontinuous vertices: Veg =- Ve3¡ = {1,2}

190 APPENDIX C. CASE STUDY

• if vertices: Fe,7 = {3,5_}

Initial segment digraph

- Executable vertices: Ive = Q(Ven U Ve9/) n Ve = Q({1,2}) n Ve = {1,2}

- Input symbol ventees: Ivti - r~l(Ive) n Va¡ = {II, ui, z}

- Output symbol vertices: Ivt0 = 0

Discontinuous segment digraph

- Executable vertices: Eve - Q(Veg) n Ve = Q({1,2}) n Ve - {1,2}

- Input symbol vertices: Evs¡ = r~l(Eve) n Vs¡ «• {W, ui, z}

- Output symbol vertices: Evs0 = 0

ODE segment digraph

- Executable vertices:

Ove - (Q(V·edUV*iUVí5UVeü.A)nFe)U(r(yeI·/)nVen)U (Ve-(EveUVen)) »

«K{»})nVe)U0U{3,4t,5.,6.+f7__}-

{3,4.,5_,6_.,7__}

- Input symbol vertices: Ovs¡ - F~l(Ove) n Vs¡ =• {//, u/, z}

- Output symbol vertices: Ovt0 - F*„ = {2}

The ODE segment digraph and its associated reduced digraph are represented in
figure C.14.

The ODE subdigraphs are:

- Algebraic segment:

C.2. BOTTOM-UP CODING AND TESTING 191

8{ = {n, «í, z}
- Avs, = {y}

The limiter segment-link digraph is represented in figure C.15 and the higher level
calls to its segments will look like,

initial_limiter(ul,ll,x) ;
y = algebraic_limiter (ul, 11, x) ;
discontinuous limiter (ul, 11, x) ;

Ul

Figure C.15: Limiter segment-link digraph.

The initial segment holds the code needed to initialize the logical states associated
to the discontinuous function of the submodel at initial time but does not include code
for computing lower level discontinuous segments (see control submodel in subsec-
tion C.2.6 in page 197).

C.2.5 Pulse-width modulator

Two-level pulse-width modulator (PWM) which generates a square wave train with
specified period and mark-space ratio.

Code

The calling sequence is:

192 APPENDIX C. CASE STUDY

y - pulse_width_modulator (time_delay, ratio,period) ;

where,

• timejielay is the time at which the pulse train starts.

• ratio is the modulation control signal in the range [0,1].

• period is the period of the pulse train in units of time.

Continuous submodel pulse_width_modulator is
Static region

inputs {real time_delay,ratio,period;}
outputs (logical y ;)
auxiliary variable {real start,ramp;}

End static region;
Initial region

if(time_delay > 0 .0) (
y - FALSE;
start - time_delay-period;

} else if (time_delay < 0 .0) {
y - TRUE;
start — -time_delay-period*ratio;

} else {
y - TRUE;
start •- 0.0;

};
End initial region
Dynamic region

ramp - (Time-start)/period;
when (ramp>=ratio) {

y - FALSE;
} when(ramp>-1.0) {

start = start^period;
y - TRUE;

};
End dynamic region;

End submodel pulse_width_modulator;

Code C.5 Pulse .width jnodulator submodel.

C.2. BOTTOM-UP CODING AND TESTING 193

Analysis

Pulse-width modulator intermediate code is:

.-••irriiejdolay ratio peí

initial

ODE

fusionaept

period

11-15}

submodel digraph reduced digraph

Figure C. 16: PWM submodel digraph and segmentation process. The edges
(5, siartvh) and (5, y^h) are suppressed when building the
ODE segment digraph (subsection 3.3.4, page 85). Therefore,
there is not a directed path between the input variable period
and the output variable y in the reduced digraph.

-1-Initial region
if (time_delay > 0.0) {

y - FALSE;
start « time_delay-period;

} else {
if (time_delay < 0.0) {

y - TRUE;
start » -time delay-period*ratio;

} else {
y - TRUE;
start - 0.0;

End initial region
Dynamic region

2- ramp - (Time-start) /period;
3- grootl - ramp-ratio;

194 APPENDIX C. CASE STUDY

-4- groot2 - ramp-1.0;
-5- when(lrootl) {

y - FALSE;
} when(lroot2) {

start = start+period;
y = TRUE;

};
End dynamic region;

The associated submodel digraph is represented in figure C.I6.

Code in the initial region as well as code in the when discontinuous statements
have been defined being procedural and its segmentation is not allowed, i.e. sorting
and segmentation algorithms manage the initial region and when statements as single
executable vertices.

Since variables y (logical output variable) and start (auxiliary variable needed to
compute the discontinuous functions) must be initialized at initial time, it concerns
to the analysis algorithm to check if both variables are initialized (subsection 3.3.2,
analysis step (2) in page 75).

Actions associated to a when statement are placed into the derivative segment and
should be executed just once each time its associated discontinuity function has a root
After a discontinuity has been localized, two extra calls to ODE subsegments have to
be made to compute the actions associated to the when clause. Then, the discontinuous
segment is called at event time to update the discontinuous function values.

The symbol vertices and the executable vertices can be grouped into the following
subsets:

1. Subsets of Vs

• global vertices: Vsgi - {timeJLelay, ratio, period, y, start, ramp}

• input vertices: Vs¡ - {time.de/ay, ratio, period}

• output vertices: Vs0 «» {y}

• local vertices: Vsta = {»tart(Q),y(Q)tstartwhtyuJl}

• initial vertices: Vsn = {start(Q), y(0)}

• when vertices: Vs^h - {'<<«•< „A jj^,.*}

2. Subsets of Ve

• discontinuous vertices: Veg = Veg¡ - {3,4}

C.2. BOTTOM-UP CODING AND TESTING 195

• initial vertices: Ven = {1}

• when vertices: Vewh = {5}

Initial segment digraph

- Executable vertices: Ive = Q(VenUVegf)r\Ve = <?({!, 3,4})nFe = {1,2,3,4}

- Input symbol vertices: Ivs¡ = P~l(Ive) n Fi,- = {íime.def ay, raíio,period}

- Output symbol vertices: Ivs0 - 0

Discontinuous segment digraph

- Executable vertices: Eve = <3(Fe9) n Ve - <3({3,4}) n Ve - {2,3,4}

- //ipitf symbol vertices: Evs¡ = P'^Soc) n Vs¡ = {roíio,period}

- Output symbol vertices: Evs, «= 0

ODE segment digraph

- Executable vertices:

Ove » (Q(Ved U Vsd U V«, U1^) n Ve) U (AVe,-/) n Ven)

U (Ve - (Eve U Fen)) - «?({y, 5}) n Fe) U 0 U {5} - {5}

- Input symbol vertices: Ovt¡ - F~l(Ove) n FÍ,- - {period}

- Output symbol vertices: Ovsg =» Vaa = {y}

The ODE segment digraph and its associated reduced digraph are represented in
figure C.16.

The ODE subdigraphs are:

- State segment:

- Sve = 0
- So«,- = 0

196 APPENDIX C. CASE STUDY

- Svs, = {y}

• Derivative segment:

- Dve = {5}

- Dvsi = {period}

- Dvs0 = 0

The pulse_width_modulator segment-link digraph is represented in figure C.17 and
the higher level calls to its segments will look like,

initial_pulse_width_modulator<time_delay,ratio,period);
y = state_pulse_width_modulator() ;
derivative_pulse_width_modulator(period);
discontinuous_pulse_width_modulator(ratio,period);

ratio time_delay period

4
vidi!

I

initia)_pulse width_modulator
>i.

' derivalive_pulse_width_modulator
s

discon(lnuous__pu!se_width_modu]ator
stat8_pulso_width_modula!or

\
y

Figure C.17: PWM segment-link digraph.

Test

Figure C.18 shows the behavior of the pulse-width modulator submodel. See the effect
of the modulator control signal ratio in the width of each pulse, width increases when
ratio increases. Let see in more detail how it works. When the output y is set to 1,
the ramp is reset to 0. When the ramp raises, two separate triggering points are passed.
The first crossing point arises when ramp becomes equal to ratio, then the output
is reset to 0. The second point is passed when ramp becomes equal to 1.0, now the
action consists on setting again the output y to 1. The process is then repeated for
ever.

C.2. BOTTOM-UP CODING AND TESTING 197

1

0

É
;

• *
•

*

'"tt

i

:

—
";

!

;

.'

;.. ...

•

5

•:

—
-;

;

r

;

;

•-

en

•

oc

'•

- j AC.

^

«•«"*

•

;

;

9 A íe (sec.)

Figure C.I 8: Pulse-width modulator test results.

C.2.6 Control circuit

Code

Continuous submodel control_circuit is
Static region

inputs (real error;}
outputs (logical transistor_on;}
auxiliary variables { real W,Vip,VI;}
parameters {

real upper_limit • 0.05,
lower_limit - 0.95,
Vlic - 0.0125, V2ic - 0.50,
Tf - 2.0E-4, Ti - 4.5E-4,
Td - 0.0, G - 1.0, period - 1.25E-5;

}
submodels called {

filter;
PI_controller;
limiter;
pulse_width_modulator;

)
End static region;
Dynamic region

VI - filter(Vile,Tf,error);
Vip - PI_controller(V2ic,Ti,G,Vl);
W - limiter(lower_limit,upper_lirait,Vip);

198 APPENDIX C. CASE STUDY

transistor_on = pulse_width_modulatorÍTd,W, period)
End dynamic region;

End submodel control circuit;

Code C.6 Controljcircuit submodel.

Analysis

The control-Circuit intermediate code is:

Dynamic region
/*... VI - fil ter(Vlic.Tf,error);*/

-1- initial_fliter(Vlic);
-2- VI = state_fliter<);
-3- derivative_filter(Tf,error);

/*... Vip - PI_controller(V2ic,Ti,G,Vl);*/
-4- initial_PI_controller(V2ic);
-5- Vip = algebraic_PI_controller(G,V1);
-6- derivative_PI_controller(Ti,VI);

/*... W - limiter(lower_limit,upper_limit,Vip);*/
-7- initial_limiter(lower_limit,upper_limit,Vip);
-8- W - algebraic_limiter(lower_limit,upper_limit,Vip);
-9- discontinuous_limiter(lower_limit,upper_limit,Vip);

/*... transistor_on =
pulse_width_modulator(Td,W,period);*/

-10- initial_pulse_width_modulator(Td,W,period);
-11- transistor_on - state_pulse_width_modulator();
-12- derivative_pulse_width_modulator(period) ;
-13- discontinuous_pulse_width_modulator(W,period);

End dynamic region;

The control-circuit submodel digraph is represented in figure C.I9.

An important overlap exists between submodel segments, but looking in more detail
to the submodel digraph it can be seen that the overhead is small because the in mal
region is only executed once before each simulation run. Thus, its overall cost can be
neglected.

The symbol vertices and the executable vertices can be grouped into the following
subsets:

C.2. BOTTOM-UP CODING AND TESTING 199

/•' . ~\ initial
; ' \

Í«T ljÄ\ \
t ^'S '• VI : • \ Ì

\T/'f ~''\f\y
\ ' • \/'tf\ itr^\ frw*i

ODE

Ï \ fusion
', steps

error V
/ ^
/ transistor_on

'• ¿ i 3 •' discontinuous
*' '••

submodel digraph

f1-{12,3.2,V1,6}

reduced digraph

Figure C. 19: Controljcircuit submodel digraph and segmentation process.
Notice that executable vertices associated to calls to the state
an algebraic segments are included in the initial segment di-
graph.

1. Subsets of Va

• global vertices:

Vsgi » {error, irantiaior^on, W, Vip, VI, upper JLimit,

lower Jimii, Vlic, V2ic, Tf, Ti, Td, G,period}

• parameter vertices:

Vsp = {upper Jimii, lowerJimit, Vlic, V2ic,

Tf,Ti,Td,G,period}

• input vertices: Vs¡ = {error}

• output vertices: V»0 = {iraniiiior^on}

2. Subsets of Ve

• derivative vertices: Ve j = {3,6,12}

• discontinuous vertices: Ve3 - Ve3, « {9,13}

• state vertices: Ve, = {2,11}

• initial vertices: Ven = {1,4,7,10}

200 APPENDIX C. CASE STUDY

Initial segment digraph

- Executable vertices:

Ive = Q(Ven U Ve,j) n Ve = Q({1,4,7, 10}) n Fe = {1,2,4,5,7,8, 10}

- Input symbol vertices: Ivs¡ ** P-1(Ive) n Vu = 0

- Output symbol vertices: Ivs0 = 0

Discontinuous segment digraph

- Executable vertices: Eve = Q(Veg) n Ve - <?({9, 13}) n Fe = {2,5,9,8, 13}

- 7/ipiií symbol vertices: Evsi » /""'(.Eve) n V«; = 0

- Output symbol vertices: Ev$0 = 0

ODE segment digraph

- Executable vertices:

Ove = (<?(Ve¿uF^UF«9UVett.A)nFe)U(r(Fei7)nVen)U (Ve-(EveUVen)) -

(Q({3,6, 12,íraní»*íor^n}) n Ve) U 0 U {11,3, 12,6} = {3,6, 12,2, 11}

- Input symbol vertices: Ove¡ = F~l(Ove) n Va,- = {error}

- Output symbol vertices: Ovs0 - Va, = {transistor-on}

The ODE segment digraph and its associated reduced digraph are represented in
figure C.19.

The ODE subdigraphs are:

- State segment

ti *> 0

- Svs0 = {íran«ííor_on}

C.2. BOTTOM-UP CODING AND TESTING 201

Derivative segment:

- Dvs¡ = {error}

0

The controljcircuit segment-link digraph is represented in figure C.20 and the higher
level calls to its segments will look like,

initial_control_oircuit();
transistor_on = state_control_circuit();
derivative_state_control_circuit(error);
discontinuous control circuit();

¡nitial_control circuitr ~ r
j discontinuous_conlro)_circuit

stale_control_circuit

translstor_on

error

derivativ8_control_circuit

Figure C.20: Controljcircuit segment-link digraph.

Test

The control circuit (figure C.3) provides the timing pulses (transistor¿on) to control
the state of the transistor. Input error (figure C.21) is filtered (VI), then is input to
a PI controller (Vip) and limited (W). W is the pulse-width modulator mark-space
control signal.

In this case, input error is a three level signal chosen for testing the control-circuit
submodel.

202 APPENDIX C. CASE STUDY

1.0

0.5

o

Vip

transistor on

\
V7

O 0.0002 -urne (sec.)-

Figure C.21: ControLcircuit test results,

C.2.7 Power circuit

Code

Continuous submodel power_circuit is
Static region

inputs (real Vs,R0,transistor_on;}
outputs (real VO;}
auxiliary variables (real 10,Ic,Il,Vc,dIl,dVc;

logical idiode;}
parameters {

real L = 2.1E-5, Rl = 0.0,
Re - 0.1, C = 3.5E-4;

}
submodels called {

integrator;
)

End static region;
Dynamic region

dll - (Vin-Rl*Il-VO)/L;
II - integrator^.0,dll) ;
10 - (Vc-Hl*Rc)/ (RO + Rc);
VO - IO*RO;
Ic - 11-10;
dVc - Ic/C;
Vc - integrator(50.0,dVc);
idiode - II >- 0.0;

C.2. BOTTOM-UP CODING AND TESTING 203

if<transistor_on) {
Vin - Vs;

} else if (idiode) {
Vin - 0.0;

} else {
Vin - VO;

};
End dynamic region;

End submodel power circuit;

Code C.7 Power circuit submodel.

Analysis

The powerjcircuit intermediate code is:

Dynamic region
-1- dll = (Vin-Rl*Il-VO)/L;

/*... II - integrator (0.0, dll) ;*/
-2- initial_integrator (0 . 0) ;
-3- II - state_integrator () ;
-4- derivative_integrator (dll) ;

-5- 10 = (Vc-f-Il*Rc)/(RO-t-Rc);
-6- VO - IO*RO;
-7- Ic - 11-10;
-8- dVc - Ic/C;

/*... Vc - integrator (50. 0, dVc) ;*/
-9- initial_integrator(50.0) ;
-10- Vc - state_integrator () ;
-11- derivative_integrator (dVc) ;

-12- grootl - 11-0.0;
-13- idiode - Iroot;
-14- if (transistor_on) {
-15- Vin - Vs;

} else {
-16- if (idiode) {
-17- Vin - 0.0;

) else {
-18- Vin - VO;

End dynamic region;

204 APPENDIX C, CASE STUDY

Its associated submodel digraph is represented in figure C.22.

/' 2 \ initial

RO

transistor on

Vs (1 =¡3.1 O.VC.H. 5.10.6}

vo

/ODE

submodel digraph reduced digraph

Figure C.22: Powerjcircuit submodel digraph and segmentation process.

The symbol vertices and the executable vertices can be grouped into the following
subsets:

1. Subsets of Vs

• global vertices:

Vi3, = {Va, PO, tranaiator-on, VO, IO, le, II, Ve, dll,

dVc, idiode, L, Rl, Re, C}

• parameter vertices: Vap = {L, Rl, Re, C}

• input vertices: Va¡ = {Va,RQ,iranaiator.on}

• output vertices: Va, = {VQ}

• local vertices: Vai, = {Vin+, Vin,, Vin-+, Vin—}

• if vertices: Va¡¡ - {Vin+,Fm_, Vin_+, Vin }

2. Subsets of Ve

• derivative vertices: Ve¿ = {4,11}

C.2. BOTTOM-UP CODING AND TESTING 205

• discontinuous vertices: Vea = Veg¡ » {12}

• initial vertices: Ven = {2,9}

• if vertices: Ve,-/= {13,14,16_}

Initial segment digraph

- Executable vertices:

lie = Q(Ven U Ve,j) nVe = Q({2,9,12}) n Ve = {2,3,12,9}

- Input symbol vertices: Ivt¡ = F~l(Ive) n F*,- = 0

- Output symbol vertices: Ivs0 = 0

Discontinuous segment digraph

- Executable vertices: Eve = Q(Ve3) n Ve- Q({12}) n Ve = {12,3,2}

- Input symbol vertices: Evt¡ ~ r~l(Eve) n V»¡ - 0

- Output symbol vertices: Evs0 ** 0

ODE segment digraph

- Executable vertices:

Ove = (Q(VedUV3dUV3a\jVeuh)nVe)\J(r(Veif)r\Ven)(J (Ve-(Eve\JVen)) =

(Q(4,11, VO) n Fe) U 0 U {10,5,6,7,8,13,14,15*, 16_, 17_+, 18__, 1,4,11} =

{10,5,6,7,8,13,14,15+, 16., 17_+118__, 1,4,11}

- Input symbol vertices: Ovs¡ » P~l(Ove) n Vg¡ = {transiaiorjon, V«, RO}

- Output symbol vertices: Ova0 « Va, => {VO}

The ODE segment digraph and its associated reduced digraph are represented in
figure C.22.

The ODE subdigraphs are:

206 APPENDIX C. CASE STUDY

• Algebraic segment:

- Av»i = {.RO}

- Avsa = {VO}

Derivative segment:

- Dve = {7,8, 11, 13, 14, 15., 16_, 17_+, 18__, 1,4}

- Dvs0 = 0

The powerxircuit segment-link digraph is represented in figure C.23 and the higher
level calls to its segments will look like,

initial_power_circuit <) ;
VO - algebraic_power_circuit(RO);
derivative_power_circuit(V3,transistor_on);
discontinuous__power_circuit () ;

¡nitialjxwar circuit
RO

/ J algebraic_poy»er_a'rcuit Vs

/ ¿J,—"" l S*" transistor on
vo \ T S^<~^

\ derivaBve_power_circuit

discontinuous_pow8f_circuit

Figure C.23: Power-circuit segment-link digraph.

C.2.8 SMPR circuit

Code

Continuous submodel SMPR is
Static region

inputs (real Vs,RO,Vref;J

C.2. BOTTOM-UP CODING AND TESTING 207

outputs (real VO;}
auxiliary variables {

real e;
logical transistor_on; }

submodels called {
power_circuit;
control_circuit;)

End static region;
Dynamic region

VO = power_circuit(Vs,RO,transistor_on),
e - Vref - VO;
transistor_on =• control_circuit(e);

End dynamic region;
End submodel SMPR;

Code C.8 SMPR submodel.

Analysis

Although SMPR submodel is placed on top of the submodel hierarchy, its analysis is
as simple as the lower level submodels analysis.

The executable vertices of the submodel digraph (figure C.24) are:

Dynamic region
/*... VO - power_circuit(Vs,RO, transistor_on);*/

-1- initial_power_circuit();
-2- VO - algebraic_power_circuit(RO);
-3- derivative_power_circuit(Vs,transistor_on);
-4- discontinuous_power_circuit 0 ;

-5- e - Vref - VO;

/*... transistor_on - control_circuit(e);*/
-6- initial_control_circuit{);
-7- transistor_on - state_control_circuit();
-8- derivative_state_control_circuit(e);
-9- discontinuous_control_circuit ();

End dynamic region;

1. Subsets of V»

• global vertices: V»a¡ = {Vt, SO, Vref, VO, e, irantitiarjan}

208 APPENDIX C. CASE STUDY

: RO /

•] *v transistor on

• . ODE

; 4 9 } discontinuous

submodel digraph reduced digraph

Figure C.24: SMPR submodel digraph and segmentation process.

• input vertices: Vt¡ = {Va, ÄO, We/}

• output vertices: Va0 = {VX)}

2. Subsets of Ve

• derivative vertices: Ve¿ = {3,8}

• discontinuous vertices: Veg = Ve,/ = {4,9}

• state vertices: Ve, = {7}

• initial vertices: Ven = {1,6}

, 6}) n Ve = {l, 6}

Initial segment digraph

- Executable vertices: Ive = Q(Ven U Vegl) n Ve =

- Input symbol vertices: Iva¡ => F~l(Ivé) n Vii = 0

- Output symbol vertices: Ivsa = 0

Discontinuous segment digraph

- Executable vertices: Eve = Q(Veg) n Ve =• <?({9,4}) n Ve - {9,4}

- 7/rput symbol vertices: Eva¡ = /""'(-Sve) n Vs¡ = 0

C.2. BOTTOM-UP CODING AND TESTING 209

- Output symbol vertices: Evs9 - 0

ODE segment digraph

- Executable vertices:

Ove = (Q(VedUVsdVVa0\JVewh)nVe)U(r(Vei})nVen)U (Ve-(£w«UV«B)) =

(Q(3,8,V-0)nFe)U0U{7,3,2,5,8} = {7,3,2,5,8}

- Input symbol vertices: Ovg¡ = r~l(Ove) PI Va¿ = {V s, PO, We/}

- Output symbol vertices: Ovs0 = Va, = {VO}

The ODE segment digraph and its associated reduced digraph are represented in
figure C.24.

The ODE subdigraphs are:

- Algebraic segment:

- Ave = {2}

- Ava - {50}

- Av»„ = {VO}

- Derivative segment:

fi " {Va, Vref}

- Dvt0 - 0

The SMPR segment-link digraph is represented in figure C.25 and the higher level
calls to its segments will look like,

irvitial_SMPR()
VO - algebraic_SMPR(RO)
derivative_SMPR(Vs, Vref)
discontinuous SMPRO

210 APPENDIX C. CASE STUDY

Test

lnitial_SMPR

t
d¡scontinuous_S MP R

Vref

derivative SMPR

Figure C.25: SMPR segment-link digraph.

Figure C.26 shows the response of the SMPR circuit corresponding to a rise in the
supply voltage Va from 70 volt, to 90 volt, at time equal zero. Initial conditions were
given for the steady state.

50.0

6 (*E-i) time (sec.)

Figure C.26: SMPR test results.

C.3. SUMMARY 211

C.3 Summary

The switched-mode power regulator circuit has been selected as a case study because
in spite of its academical flavour, it is complex enough to increase the understanding
on the proposed analysis and segmentation methods.

Besides testing the code of the segments, this case study has also been used to
successfully test the management and execution of hierarchical models in the defined
MUSS environment.

Appendix D

Acronyms

ACSL : Advanced Continuous Simulation Language.

CAMAS : Computer Aided Modelling, Analysis and Simulation environment

COSMOS : Combined System Modelling and Simulation.

COSY : Combined Continuous and Discrete Systems.

CSMP : Continuous System Modelling Program.

CSSL : Continuos System Simulation Languages.

DEC : Digital Equipment Corporation.

DISCO : Discrete and Continuous system simulation.

ESL : European Simulation Language.

GEST : General System Theory implementator.

IMACS : International Association for Mathematics and Computers in Simulation.

LEX : Lexical analyzer.

MCL : MUSS Command Language.

MUSS : Modular Simulation System.

ODE : Ordinary Differential Equations.

SCS : Society for Computer Simulation.

213

214 APPENDIX D. ACRONYMS

SIDOPS : Structured Interdisciplinary Description of Physical Systems.

SMPR : Switched-Mode Power Regulator.

TC3 : Technical Committee on Simulation Software (IMACS).

YACC : Yet another Compiler Compiler.

Bibliography

[Aho77a] Aho A. V. and Ullman J. D. in Principles of compiler design,
Addison-Wesley (1977).

[BaerSOa] Baer J. L. in Computer systems architecture, ed. Friedman A. D.,
Computer Science Press (1980).

[Baker83a] Baker NJ. and Smart PJ. "The SYSMOD simulation language" in
The European Simulation Congress ESC 83 pp. 281-286, Aachen.
(Sept 1983).

[BirtaSSa] Bina L. G.,Ören T. I. and Kettenis D. L. "A Robust Procedure for
Discontinuity Handling in Continuous System Simulation" in Trans-
actions of the Society for Computer Simulation Vol. 2 (3), pp. 189-
206 (September 1985).

[Breiteneck83a] Breitenecker F. "The Concept of Supermacros in Today's and Future
Simulation Languages" in Math, and Comp. in Sim. pp. 279-289
(June 1983).

[Brennan68a] Brennan R. D. "Continuous Systems Modelling Programs : State-of-
the Art and Prospects for Development" in Proc. of the IFIP Working
Conference on Simulation Programming Languages (1968).

[BroeninkSSa] Broenink J. F. and Twilhaar D. N. G. "Camas, a computer aided
modelling, analysis and simulation environment" in Fourth Interna-
tional Conference and Exhibition (June 1985).

[BroeninkSSb] Broenink J. F. "Sidops, a bond graph based modelling language" in
llth MACS World Congress, Oslo. (August 1985).

[Carver75a] Carver M. B. "Efficient Integration Over Discontinuities in Ordi-
nary Differential Equations" in ¡MACS International Symposium on
Simulation Software for Differential Equtions (March 1975).

215

216 BIBLIOGRAPHY

[Carver79a] Carver M. B. "The FÖRSIMIV Distributed System Simulation Pack-
age" in Methodology in Systems Modelling and Simulation pp. 249-
267, ed. Zeigler et al. North Holland (1979).

[Cellier76a] Cellier F. E. and Blitz A. E. "GASP-V : a universal simulation
package" pp. 391-342 in Simulation of systems : proceedings of the
8th AICA congress, ed. North Holland pub. co. (August 1976).

[CelHer79a] Cellier F. E. "Combined continuous/discrete system simulation
languages... usefulness, experiences and future development" in
Methodology in systems modelling and simulation pp. 201-220, ed.
Zeigler et al. North Holland (1979).

[Cellier79b] Cellier F. E. and Bongulielmi A. P. "On the Usefulness of Deter-
ministic Grammars for Simulation" in Association for Computing
Machinery Special Interest Group on Simulation (1979).

[Cellier79c] Cellier F. E. and Bongulielmi L. P. "The COSY simulation language"
pp. 271-281 in Simulation of systems : proc. of the 9th IMACS Conf.
on Simulation of Systems, ed. North Holland pub. co., Sorrento, Italy.
(1979).

[Cellier84a] Cellier F. E. "How to Enhance the Robustness of Simulation Soft-
ware" pp. 519-536 in Simulation and Model-Based Methodologies:
An Integrative View, ed. Ören T. I. (1984).

[Chu69a] Chu in Digital Simulation of Continuous-Systems, McGraw-Hill
Book C. (1969).

[ClancyoSa] Clancy J. J. and Fineberg M. F. "Digital Simulation Languages, a
critique and a guide" Vol. 27 in AFIPS Conference Proceedings
(1965).

[Crosbie82a] Crosbie R. E. and Hay J. L. "Towards new standards for continuous-
system simulation languages" in Proceedings of the 1982 summer
Computer Simulation Conference pp. 186-190, Denver. (July 1982).

[Crosbie82b] Crosbie R. E. and Cellier F. E. "Progress in simulation language
standards = An activity report for Technical Committee TC3 on Sim-
ulation Software 1979-82" Vol. 1 pp. 411-412 in Proc. Wth IMACS
World Congress on Syst. Simul. and Scient. Comp., Montreal. (Aug.
1982).

[Crosbie82d] Crosbie R. E. "Interactive and Real-Time Simulation" pp. 393-406 in
Progress in Modelling and Simulation, éd. Cellier F. E., Academic
Press (1982).

BIBLIOGRAPHY 217

[CrosbieSSa]

[CrosbieSóa]

[DahI66a]

[Dec84a]

[EllisonSla]

[EImqvist78a]

[ElmqvistSOa]

[Elzas79a]

[Freeman84a]

[GoldenSSa]

[Guasch84a]

[GuaschSSd]

Crosbie R. E.,Hay J. L.,Savey S. and Pearce J. G. "ESL - A new
continuous-system simulation language" in Summer Computer Sim-
ulation Conference (1983).

Crosbie R. E. and Hay J. L. "Description and processing of discon-
tinuities with the ESL simulation language" pp. 30-38 in Languages
for continuous system simulation, éd. Cellier F. D. (1986).

Dahl O. J. and Nygaard K. "SIMULA - An ALGOL- based Simula-
tion Language" pp. 671-678 SIMULA simulation in CACM (1966).

Dec "VAX/VMS DCL Commands and Lexical Functions" in
VAX/VMS Software, Massachusetts. (1984).

Ellison D. "Efficient Automatic Integration of Ordinary Differential
Equations with Discontinuities" in Mathematics and Computers in
Simulation Vol. 23 (1), pp. 12-20 (March 1981).

Elmqvist H. in DYMOLA - A Structured Model Language for Large
Continuous Systems, Lung, Sweden. (1978).

Elmqvist H. "Manipulation of Continuous Models Based on Equa-
tions to Assignment Statements." pp. 15-21 in Simulation of Systems'
79, North-Holland (1980).

Elzas M. S. "What is needed for robust simulation T in Methodol-
ogy in Systems Modelling and Simulation, ed. Zeigler et al., North-
Holland (1979).

Freeman T. G. and Benyon P. R. "Comments on the proposal for a
new simulation language standard" in TC3-IMACS Simulation Soft-
ware Committee Newsletter No. 12 (August 1984).

Golden D. G. "Software engineering considerations for the design
of simulation languages" in Simulation (4), pp. 169-178 (October
1985).

Guasch A.,Huber R. and Ilari J. "ICDSL (Instituto de Cibernetica
Digital Simulation Language)." pp. 349-356 in ¡FAÇ Simposium,
Automatica en la Industria, Zaragoza. (Noviembre 1984).

Guasch A. "Aplicación de la teoria de grafos a la ordenación de un
submodelo MUSS" in Memoria interna, Barcelona, (octubre 1985).

218 BIBLIOGRAPHY

[Guasch86a]

[Guasch86b]

[Hay84a]

[HaySSa]

[HelsgaunSOa]

[Hindmarsh82a]

[HoareSla]

[HoIlanderSla]

[HorstSfia]

[Huber82b]

[Huber86a]

[Hurst73a]

[JacksonoOa]

Guasch A. and Huber R. "Precompiled Submodels: A General Sort-
ing Procedure" pp. 172-178 in Proc, of the 2nd European Simulation
Congress, Antwerp, Belgium. (Sept. 1986).

Guasch A. "A draft of the MUSS grammar." in Internal Report ICIN
- 860715/04, Barcelona. (July 1986).

Hay J. L.,Crosbie R. E. and Pearce J. G. "ESL: A Simulation Lan-
guage for the Space Industry" in ESA Journal Vol. 8 (1984).

Hay J. L. J'earce J. G.,Turnbull L. and Crosbie R. E. in ESL software
user manual (April 1985).

Helsgaun K. "DISCO-SIMULA-based language for continuous com-
bined and discrete simulation" in Simulation pp. 1-12 (May 1980).

Hindmarsh A. C. "Towards a Systematized Collection of ODE
Solvers" Vol. 1 pp. 427-429 in Proc. 10th IMACS World Congress
on Syst. Simul. and Scient. Comp., Montreal. (1982).

Hoare C. A. "The emperor's old clothes" in Communications of the
ACM Vol. 24 (2), pp. 75-83 (February 1981).

Hollander E. H. D.,Spriet J. A. and Vanteenkiste G. C. "The 'Alge-
braic Loop" problem in continuous system simulation" pp. 368-379
in Proc. of the UKSC conference on computer simulation, Harrogate.
(May 1981).

Horst A. "Model validation in a modern simulation environment" pp.
64-72 in Languages for continuous system simulation, éd. Cellier F.
E., SCS (1986).

Huber R. M.,Basanez L.,Juan R. A. and Fernandez R. O. "Hybrid
computation experience at the Instituto de Cibernetica, Spain" Vol.
4 in Proc. 10th IMACS World Congress on Syst. Simul. and Scient.
Comp., Montreal. (Aug. 1982).

Huber R. M. and Guasch A. "Towards a specification of the structure
for Continuous System Simulation Languages: Evolution and a pro-
posal draft" Vol. 2 in Computer Systems: Architecture, Applications,
ed. M. Ruschitzka, North-Holland (1986).

Hurst N. R. in GASP IV: Combined Continuous/Discrete Fortran
Based Simulation Language, Purdue University. (1973).

Jackson A. S. in Analog Computation, McGraw-Hill (1960).

BIBLIOGRAPHY 219

[James67a] James M. L.,Smith G. M. and Wolford J. C. in Analog Computer
Simulation of Engineering Systems, International Textbook Company
(1967).

[James77a] James M. L.,Smith G. M. and Wolford J. C. in Applied Numerical
Methods for Digital Computation, Harper and Row (1977).

[Johnson7Sa] Johnson S. C. "Yace: Yet Another Compiler Compiler" in Comput-
ing Science Technical Report N. 32, Bell Laboratories, Murray Hill,
NJ. (1975).

[Karplus82a] Karplus W. J. and Makoui A. The Role of Dataflow Methods in
Continuous System Simulation" in Proceedings of the 1982 summer
Computer Simulation Conference pp. 13-16, Denver. (July 1982).

[Karplus82b] Karplus W. J. "Software for distributed system simulation" pp. 293-
308 in Progress in modelling and simulation, éd. Cellier F. E., Aca-
demic Press (1982).

[Kernighan78a] Kemighan B. W. and Ritchie D. in The C programming language,
Prentice-Hall (1978).

[KernighanSla] Kernighan B. W. "Why Pascal is not my favorite programming
language" in Computing Science Technical Report No. 100, Bell-
Laboratories, July 18. (1981).

[Kettenis83a] Kettenis D. L. "The COSMOS modelling and simulation language"
pp. 249-260 in First european simulation congress ESC 83, Aachen.
(Sept 1983).

[Kettenis86a] Kettenis D. L. "The Simulation Environment of the COSMOS-
language" in European Simulation Meeting, Boeblingen. (May
1986).

[Kettenis86b] Kettenis D. L. "Cosmos: A Member of a New Generation of Simu-
lation Languages" pp. 263-269 in Proc. of the 2nd European Simu-
lation Congress, Antwerp, Belgium. (Sept 1986).

[Knuth73a] Knuth D. E. Vol. 1 in The art of computer programming, ed. Varga
R. S., Addison-Wesley Company (1973).

[Korn87a] Korn G. A. "A new software technique for sub-model invocation"
in Simulation Vol. 48 (3), pp. 93-97 (March 1987).

220 BIBLIOGRAPHY

[Kreutzer86a] Kreutzer W. ¡n System simulation: programming styles and lan-
guages, ed. McGettrick A.D. and Leeuwen J., Addison-Wesley Pub-
lishing Company (1986).

[LedgardSla] Ledgard H. in ADA An Introduction and Ada Reference Manual,
Springer-Verlag (1981).

[Lehmann87a] Lehmann A. "Taxonomy and Application of Expert Systems in Sim-
ulation" pp. 1-7 in Preprints of Intern. Symp. on AI, Expert Systems
and Languages in Modelling and Simulation (June 1987).

[Lesk75a] Lesk M. E. "Lex - A Lexical Analyzer Generator" in Computing
Science Technical Report N. 39, Bell Laboratories, Murray Hill, NJ.
(March 1975).

[Locke56a] Locke J. "An Essay Concerning Human Understanding" pp. 33 in
The Age of Enlightenment, ed. Berlin I., New York. (1956).

[McCormack83a] McCormack J. and Cleaves R. "MODULA-2. A Worthy Successor
to Pascal" in BYTE Publications Inc. pp. 385-395, Del Mar, CA.
(April 1983).

[MitchellSla] Mitchell E. E. L. and Gauthier J. S. "ACSL User Guide/Reference
Manual", Mitchell and Gauthier, Assoc., Inc. (1981).

[Mitchell82a] Mitchell E. E. L. "Advanced continuous simulation language (ACSL)
: an update" pp. 462-464 in Proc. 10th IMACS world congress,
Montreal. (1982).

[MitcheII84a] Mitchell E. E. L. and Gauthier in ACSL Newsletter (1 dec 1984).

[Nilsen82a] Nilsen R. N. "Macros Make More Meaningful Models" in Proceed-
ings of the 1982 summer Computer Simulation Conference pp. 17-23,
Denver. (July 1982).

[Ni!sen83a] Nilsen R. N. "CSSL-IV : a software system for computer aided
analysis" in Advances in simulation software technology (meeting),
Atlanta, Georgia. (October 20-21, 1983).

[Ören79a] Ören T. I. and Zeigler B. P. "Concepts for Advanced Simulation
Methodologies" in Simulation Vol. 34 (3), pp. 49-82 (March 1979).

[Ören79b] Ören T. I. "Concepts for Advanced Computer Assisted Modelling"
pp. 29-55 in Methodology in Systems Modelling and Simulation
(1979).

BIBLIOGRAPHY 221

[Oren84a]

[Reiss87a]

[Richards78a]

[RieraSSa]

[Rigas76a]

[Runge77a]

[Sedgewick83a]

[SelfridgeSSa]

[Shah76a]

[Smart84a]

[SteineOa]

[Strauss67a]

[Symons86a]

Oren T. I. "GEST - A modelling and simulation language based on
system theoretic concepts" pp. 281-335 in Simulation and Model-
Based Methodologies: An Integrative View, Oren T. I. (1984).

Reiss S. P. "Automatic compiler production: the front end" in IEEE
transactions on software engineering Vol. SE-13 (6), pp. 609-627
(June 1987).

Richards C. J. ""What's Wrong with my Model" pp, 223-228 in 2nd.
UKSC Conference, United Kingdom. (1978).

Riera J. "Anàlisi i modelització de la regulació frequencia-potencia
de sistemes elèctrics interconectats" in Tesi doctoral UPC (Octobre
1985).

Rigas H. B. "Software for Hybrid Computation-Past,Present and Fu-
ture" in Computer Vol. 9 (7), pp. 26 (July 1976).

Runge T. F. "An Universal Language for Continuous Network Simu-
lation" in Ph. D. Thesis, University of Illinois at Urbana-Champaign,
Urbana, Illinois. (1977).

Sedgewick R. in Algorithms, Addison-Wesley Publishing Company
(1983).

Selfridge R. G. "Coding a General-Purpose Digital Computer to Op-
erate as a Differential Analyzer" pp. 82-84 in Proc. Western Joint
Comp. Conf. (1955).

Shah M. J. "Engineering Simulation Using Small Scientific Comput-
ers", Prentice-Hall (1976).

Smart P. J. and Baker N. J. C. "SYSMOD - An environment for
modular simulation" pp. 77-82 in Proc. 1984 Summer Computer
Simulation Conference, Boston. (July 1984).

Stein M. L. and Rose J. "Changing from Analog to Digital Program-
ming by Digital Techniques" Vol. 7 pp. 10-23 in JACM (1960).

Strauss J. C. "The SCi Continuous-System simulation language" in
Simulation Vol. 9 (6), pp. 281-303 (Dec. 1967).

Symons A. "Summary of some current issues" in TC3-IMACS Sim-
ulation Software Committee Newsletter No. 86101 (January 1986).

222 BIBLIOGRAPHY

[Symons87a] Symons A. "Model Structuring Philosophies" in TC3-IMACS Simu-
lation Soßware Committee Newsletter No. 87/01 (January 1987).

[SynSSa] Syn W. M. and Dost M. H. "On the dynamic simulation language
(DSL/VS) and its use in the IBM corporation." in llth IMACS World
Congress, Oslo. (August 1985).

[Tarjan72a] Tarjan R. "Depth-First Search and Linear Graph Algorithms" in
SIAM J. Vol. 1 (2), pp. 146-160 (June 1972).

[ThompsonSSa] Thompson S. "Rootfinding and Interpolation with Runge-Kutta-
Sarafyan Methods" in Transactions of the Society for Computer Sim-
ulation Vol. 2 (3), pp. 207-218 (September 1985).

[Troch86a]

[Vaucher84a]

[Wirth83a]

[Wolverton86a]

[Wymore76a]

[Zeigler76a]

[Zenor87a]

Troch I. "There is a Need for Simulation Based on Implicit Models"
pp. 157-162 in Proc. of the 2nd European Simulation Congress,
Antwerp, Belgium. (Sept 1986).

Vaucher J. "Futute directions in simulation software (panel)" Vol.
13 (2), pp. 122 in Simulation in strongly typed languages: ADA,
PASCAL, SIMULA..., ed. Bryant R. and Unger B. W., Society for
Computer Simulation, San Diego, California. (February 1984).

Wirtli N. pp. 10-11 in Programming in Modula-2, Springer.Verlag
(1983).

Wolverton F. B. and Hedrick E. L. "Code optimization speeds C
throughput" in Computer Design pp. 117-120 (November 1986).

Wymore A. W. in Systems Engineering Methodology for Interdisci-
plinary Teams, John Wiley, New York. (1976).

Zeigler B. P. "Theory of Modelling and Simulation", John Wiley
and Sons, New York. (1976).

Zenor J. J. and Zenor J. J. "Software engineering for real time sim-
ulation environments" pp. 143-151 in Preprints of Iniern. Symp. on
AI, Expert Systems and Languages in Modelling and Simulation,
Barcelona. (June 1987).

Index

Emphasized items are original terms in-
troduced in this thesis.

ACSL 213
Artificial intelligence 144
CAMAS 48, 213
COSMOS 12, 14, 18, 213
COSY 12, 14, 213
CSMP 213
CSSL 213
DEC 213
DISCO 13, 14, 213
ESL 13, 14, 213
GEST 13, 14, 213
IMACS 213
LEX 148, 213
MACRO 10, 17
MCL commands 149, 150

calculator 151
comment line 152
control 152
create 132, 153
do 132, 153
edit 153
exit 155
external file 156
help 156
parameter 157
prepare 157
print 158

remove 132, 159
scope 159
set 132, 160
show 132, 161
type 132, 163

MCL grammar 147
MCL 110, 131, 149, 213
Mi/55213
MUSS architecture 1
MUSS grammar 147
MUSS simulation system 4
ODE segment digraph 68, 87
ODE segment 38, 68, 87, 129
ODE 213
PI controller submodel 184
SCS 213,,.
SEDOPS48, 214 %i

SMPR circuit submodel 206
SMPR circuit 171
SMPR 214
SYSMOD 12, 13
SYSMOD 14
TC3 214
YACC 147, 214
addressO 122
algebraic segment digraph 89
algebraic segment 89, 94, 113
analysis, phases 67
analysis, submodel digraph 66
analysis, submodel 106
biplanar representation 34, 43
block, experiment 18, 8, 111, 131, 166
block, study 8, 18, 20, 131, 166

223

224 INDEX

block, submodel 8, 109, 111, 166
calling sequence 25
combined simulation 145
complete graphs 49
connected graph 48
constant symbol vertex 50
constr. rules 53

declarative assig, st. 59
if stai. 62
initial region 56
static region 56
when stat. 60

continuous process 111
control circuit submodel 197
control circuit 174
control-circuit derivative segment 128
control-circuit discontinuous segment 128
control-circuit state segment 128
control-circuit submodel 123
coupled model 11
definition digraph 113, 117
definition digraph 125
definition routine 113, 117, 119
dense graphs 49
derivative executable vertex 51
derivative segment digraph 89
derivative segment 113, 89
derivative segment 94
derivative symbol vertex 50
dialog level 111
digraph,

ODE segment 68, 87
algebraic segment 89
definition 113, 125
derivative segment 89
discontinuous segment 68, 82
initial segment 68, 78
reduced 90
segment-link 43, 54
segment 68
state segment 89

submodel 17, 33, 42, 50, 108
digraph 48
directed acyclic graphs 49
directed cycle 48
directed path 48
discontinuous executable vertex 51
discontinuous functions 82
discontinuous segment digraph 68, 82
discontinuous segment 38, 68, 82, 113,

129
distributed parameters submodel 16,146
dynamic continuous region 15
dynamic initialization 28, 74, 110, 124
dynamic sampled region 16
dynamic sequence 113
environment generator 130
executable vertex 50, 59

derivative 51
discontinuous 51
j/51, 63
initial 51, 56
state 51
when 51, 60

executable vertex
expjnstance data structure 131
expJable data structure 130, 134
experiment block 18, 8, 111, 131, 166
experiment instance 131
filter submodel 181
flat model 11
fused vertices 92
fusion 90
generic model 113
global data 25
global symbol vertex 50, 56
grammar,

MCL 147
MUSS 147

hidden edges 44
hierarchical model 11
if executable vertex 51, 63

INDEX 225

if statement 36, 54, 55
if symbol vertex 51, 64
information loops 34, 88
initial executable vertex 51, 56
initial segment digraph 68, 78
initial segment 38, 68, 78,113, 124,129
initial symbol vertex 50, 57
initialization sequence 113, 124
initialization,

dynamic 28, 74
static 26, 74

initpar() 122
input symbol vertex 50
input weight 90
integrator submodel 176
limiter submodel 187
local symbol vertex 50, 57, 61, 64
lower submodels data structure 119
lumped parameters submodel 16
memory management 110, 113
metalanguage 147
model initialization 113
model instance 111, 113
model,

flat 11
hierarchical 11
modular coupled 11

model 109
modular coupled model 11
modularity 109
non linear system submodel 39
non linear system 38
object oriented languages 146
output symbol vertex 50
output weight 89
parameter symbol vertex 50
paths 48
planar representation 34, 42
power circuit submodel 202
power circuit 172
pulse-width modulator submodel 76,191

reachable vertex 49
real time simulation 145
real-pole submodel 115, 119
reduced digraph 90
reentrance 112
sampled submodel 16
scope of variables 25
second order submodel 40
segment digraph,

ODE 68, 87
algebraic 89
derivative 89
discontinuous 68, 82
initial 68, 78
state 89

segment,
ODE 38, 68, 129
algebraic 89, 94, 113
derivative 89, 94, 113
discontinuous 38, 68, 113, 129
initial 3S, 68, 113, 124,129
state 89, 94, 113
terminal 129

segment-link digraph 43, 54, 96
segments 34, 38
semipath 48
simulation environment 9, 110, 175
simulation experiment 18
simulation program 8
simulation study 18
sort 38, 117
sparse graphs 49, 51
spring and mass system submodel 98
spring-and-mass system 97
state executable vertex 51
stale segment digraph 89
state segment 89, 94, 113
state symbol vertex 50
static initialization 26, 74, 113
strongly connected graph 48
structured programming 109

226 INDEX

study block 18, 20, 8, 131, 166 terminal segment 129
submodel analysis 106 transformation rules 53
submodel block 8, 14, 109, 111, 166 visit() 122
submodel data structure 113 weakly connected graph 48
submodel definition routine 122 when executable vertex 51 60
submodel digraph analysis 66 when statement 37, 55
submodel digraph construction 51 vv/^n symbol vertex 51
submodel digraph 17, 33, 42, 50, 108
submodel instance 110, 113, 116
submodel segment 53
submodel,

PI controller 184
SMPR circuit 206
controLcircuit 197, 123
filter 181
integrator 176
limiter 187
non linear system 39
power circuit 202
pulse-width modulator 76, 191
reaLpole 115, 119
second order 40
spring and mass system 98

submodel,
distributed parameters 16
lumped parameters 16
sampled 16

submodels 10
symbol vertex, 50

constant 50
derivative 50
global 50, 56
1/51, 64
initial 50, 57
input 50
local 50, 57, 61, 64
output 50
parameter 50
state 50
when 51

symbolic access 109, 112, 117

	TAGP00004.pdf
	TAGP00156.pdf
	TAGP00157.pdf
	TAGP00158.pdf
	TAGP00159.pdf
	TAGP00160.pdf
	TAGP00161.pdf
	TAGP00162.pdf
	TAGP00163.pdf
	TAGP00164.pdf
	TAGP00165.pdf
	TAGP00166.pdf
	TAGP00167.pdf
	TAGP00168.pdf
	TAGP00169.pdf
	TAGP00170.pdf
	TAGP00171.pdf
	TAGP00172.pdf
	TAGP00173.pdf
	TAGP00174.pdf
	TAGP00175.pdf
	TAGP00176.pdf
	TAGP00177.pdf
	TAGP00178.pdf
	TAGP00179.pdf
	TAGP00180.pdf
	TAGP00181.pdf
	TAGP00182.pdf
	TAGP00183.pdf
	TAGP00184.pdf
	TAGP00185.pdf
	TAGP00186.pdf
	TAGP00187.pdf
	TAGP00188.pdf
	TAGP00189.pdf
	TAGP00190.pdf
	TAGP00191.pdf
	TAGP00192.pdf
	TAGP00193.pdf
	TAGP00194.pdf
	TAGP00195.pdf
	TAGP00196.pdf
	TAGP00197.pdf
	TAGP00198.pdf
	TAGP00199.pdf
	TAGP00200.pdf
	TAGP00201.pdf
	TAGP00202.pdf
	TAGP00203.pdf
	TAGP00204.pdf
	TAGP00205.pdf
	TAGP00206.pdf
	TAGP00207.pdf
	TAGP00208.pdf
	TAGP00209.pdf
	TAGP00210.pdf
	TAGP00211.pdf
	TAGP00212.pdf
	TAGP00213.pdf
	TAGP00214.pdf
	TAGP00215.pdf
	TAGP00216.pdf
	TAGP00217.pdf
	TAGP00218.pdf
	TAGP00219.pdf
	TAGP00220.pdf
	TAGP00221.pdf
	TAGP00222.pdf
	TAGP00223.pdf
	TAGP00224.pdf
	TAGP00225.pdf
	TAGP00226.pdf
	TAGP00227.pdf
	TAGP00228.pdf
	TAGP00229.pdf
	TAGP00230.pdf
	TAGP00231.pdf
	TAGP00232.pdf
	TAGP00233.pdf
	TAGP00234.pdf
	TAGP00235.pdf
	TAGP00236.pdf
	TAGP00237.pdf
	TAGP00238.pdf
	TAGP00239.pdf
	TAGP00240.pdf
	TAGP00241.pdf
	TAGP00242.pdf
	TAGP00243.pdf
	TAGP00244.pdf
	TAGP00245.pdf
	TAGP00246.pdf
	TAGP00247.pdf

