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This chapter describes the different benchmarks we used to evaluate our proposed optimizations,
as well as the simulation and performance measuring tools used across the work.

We have used three different benchmarks to evaluate our proposals: the SPEC integer bench-
marks, and two different database workloads, a decision support system (DSS), and an on-line
transaction processing system (OLTP). This section describes each setup in detail, including the
special characteristics of each set.

The use of code layout optimizations implies the use of profile information, and the generation
of two sets of executables: the unoptimized set, and the optimized set. This chapter also describes
the tools used to obtain the profile data, and the process followed to obtain the optimized code
sets.

Finally, this chapter includes a detailed description of the different simulation environments
used and those we developed, the parameters explored, and the metrics obtained. We also specify
which simulators were used for each benchmark, as some had special requirements. In this section,
we also include a description of the real machine run measurements we performed.

3.1 Benchmarks

This section provides a brief description of the different benchmark sets used in this work. We
have tried to use a wide variety of workloads, to exercise every possible situation in which our pro-
posals may be useful. In particular, we were very interested in commercial workloads. Database
application represent the most important market segment for high-performance servers, and their
importance is constantly growing.

In addition to commercial applications such as decision support systems (DSS) and on-line
transaction processing (OLTP), we tested our proposals using a wide variety of applications, such
as those represented by the SPEC integer benchmarks. We did not use any floating-point intensive
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application in our study because the performance bottleneck for these workloads is not in the fetch
engine.

3.1.1 SPEC int 95

The SPEC’95 benchmark suite [16], released on August 19951 by the Standard Performance Eval-
uation Corp. (SPEC) represents the latest version of the worldwide standard for measuring and
comparing computer performance across different hardware platforms. SPEC’95 was developed
by SPEC’s Open Systems Group (OSG), which includes more than 30 leading computer vendors,
systems integrators, publishers and consultants throughout the world.

SPEC’95 comprises two sets (or suites) of benchmarks: CINT95 for compute-intensive inte-
ger performance and CFP95 for compute-intensive floating point performance. The two suites
provide component-level benchmarks that measure the performance of the computer’s processor,
memory architecture and compiler. SPEC benchmarks are selected from existing application and
benchmark source code running across multiple platforms. Each benchmark is tested on different
platforms to obtain fair performance results across competing hardware and software systems.

SPEC’95 is the third major version of the SPEC benchmark suites, which in 1989 became
the first widely accepted standard for comparing compute intensive performance across various
architectures. The new release replaced SPEC’92. Performance results from SPEC’95 cannot
be compared to those from SPEC’92, since new benchmarks have been added and existing ones
changed.

Improvements to the suites include longer run times and larger problems for benchmarks,
more application diversity, greater ease of use, and standard development platforms that will allow
SPEC to produce additional releases for other operating systems.

go Board game simulator
m88ksim Motorola 88K simulator

gcc C/C++ compiler
compress Lempel-Zip encoder/decoder

li Lisp interpreter
ijpeg JPEG compressor/decompressor
perl The Perl language interpreter

vortex Simple database application

Table 3.1. Description of the SPEC’95 integer benchmarks.

Table 3.1 shows a brief description of the SPEC’95 integer programs. We did not use go
because our profiling tool (pixie) could not obtain profile data for it, due to some unexplained
program errors. The lack of profile data prevented us from generating an optimized code layout,
which excluded go from our benchmark set. We also excluded compress due to the small size of
its code. It fits completely in a very small instruction cache, and concentrates most of its execution
is a small loop with very few branches, which leaves no room for code layout optimizations to
have any effect.

We generated the baseline code for our work using Compaq’s C compiler, using -O2 optimiza-
tion level. The simulation methodology has varied across the work, depending on the speed of the

1The SPEC’95 benchmark suite was declared obsolete as of July 2000, replaced by the SPEC 2000 suite.
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simulator we used for each set of results. It is discussed in detail in Section 3.3, where we describe
the different simulators we used.

3.1.2 PostgreSQL and TPC-D

PostgreSQL is a public domain, client/server database developed at the University of California-
Berkeley, very popular among the Linux community, with a large number of users. PostgreSQL
has a client/server structure and compromises three types of processes; clients, backends and a
postmaster. Each client communicates with one backend that is created by the postmaster the first
time the client queries the database. The postmaster is also in charge of the initialization of the
database.

We use PostgreSQL as the execution engine for the Transaction Processing Performance Coun-
cil benchmark for Decision Support Systems (TPC-D) [90]. DSS workloads imply large data sets
and complex, read-only queries that access a significant portion of this data.

TPC-D has been described in the recent literature on the topic [5, 91] and for this reason we do
not give a detailed account of it. At a glance, the TPC-D benchmark defines a database consisting
of 8 tables, and a set of 17 read-only queries and 2 update queries. It is worth noting that the
TPC-D benchmark is just a data set and the queries on this data; it is not an executable. The
tables in the database are generated randomly, and their size is determined by a Scale Factor. The
benchmark specification defines the database scale factor of 1 corresponding to a 1GB database.
There are no restrictions regarding the indexes that can be used for the database.

We set up the Alpha version of the Postgres 6.3.2 database compiled with the �
���

optimiza-
tion flags and Compaq’s compiler. A TPC-D database is generated with a scale factor of 0.1
(100MB of data). With the generated data we build two separate databases, one having Btree
indexes and the other having Hash indexes. Both databases have unique indexes on all tables for
the primary key attributes (those attributes that identify a tuple) and multiple entry indexes for
the foreign key attributes (those attributes which reference tuples on other tables). More indexes
could be created to accelerate the query execution, as the standard does not restrict those, but we
were more interested in the database behavior than in the performance of the benchmark.

Query 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Training Set - - X X X X - - X - - - - - X - -
Test Set - X X X - X - - - - X X X X X - X

Table 3.2. TPC-D queries used to obtain the profile information (training) and to obtain perfor-
mance results (test).

We run the TPC-D queries on the PostgreSQL database management system assuming the
data is disk resident, not memory resident. We do not perform any warm up to load the database
in memory, so TPC-D data must be loaded for every new query. The set of queries used to obtain
the profile information and the ones used to evaluate the performance of our method are shown
in Table 3.2. The Training set is executed on the Btree indexed database only, and the Test set is
executed on both the Btree and the Hash indexed databases.



50 Chapter 3: Platform, Tools, and Benchmarks

3.1.3 Oracle and TPC-B

Our OLTP workload runs on top of the Oracle 7.3.2 DBMS. The Oracle 7.3.2 DBMS runs on
both uniprocessor and multiprocessor shared memory machines, and recent benchmark results
demonstrate that the software scales well on current SMP machines [17].

Figure 3.1 illustrates the different components of Oracle. The server executes as a collection
of Unix processes that share a common large shared memory segment, called the System Global
Area (SGA). Oracle has two types of processes: daemons, and servers. The daemons run in
the background and handle miscellaneous housekeeping tasks such as checking for failures and
deadlocks, evicting dirty database blocks to disk, and writing redo logs. The server processes are
the ones that actually execute database transactions and account for most of the processing. Both
daemons and server processes share the same code, but have their own private data segment called
the Program Global area (PGA). Daemons and servers primarily use the SGA for communication
and synchronization, but also use signals to wake up blocked processes.
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DB writer Log writer
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Figure 3.1. Major components of the Oracle 7.3.2 server.

The SGA is roughly composed of two regions, namely the block buffer and meta-data areas.
The block buffer is used for caching the most recently used database disk blocks in main memory,
and typically accounts for 80% of the SGA. The meta-data area contains directory information
used to access the block buffers, and space for miscellaneous buffers and synchronization data
structures.

As other database engines, Oracle maintains two important types of persistent data structures:
the database tables and the redo log. The latter keeps a compressed log of committed transactions,
and is used to restore the state of the database in case of failure. Committing only the log to disk
(instead of the actual data) allows for faster transaction commits and for a more efficient use of
disk bandwidth.

Our OLTP workload is modeled after the TPC-B benchmark [89]. This benchmark models a
banking system, with each transaction simulating a balance update to a randomly chosen account.
the account balance update involves updates to four tables: the branch table, the teller table, the
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account table itself, and the history table. Each transaction has fairly small computation needs,
but the workload is I/O intensive because of the four table updates per transaction. Fortunately,
even in a full-size TPC-B database (a fer hundred GB), the history, branch, and teller tables can be
cached in physical memory, and frequent disk accesses are limited to the account table and redo
log.

We use Oracle in a dedicated mode for this workload, where each client process has a dedicated
server process for serving its transactions. The communication between client and server occurs
through a Unix pipe. Each transaction consists of five queries, followed by a commit request. To
guarantee the durability of a committed transaction, commit requests block the server until the
redo log has been written. To hide the I/O latencies, including the latency of log writes, OLTP
runs are usually configured with multiple server processes per processor. We have used 8 server
processes per processor.

Although TPC-C has superseded TPC-B as the official OLTP benchmark [88], we have chosen
to model TPC-B because it is simpler to set up and run, and yet exhibits similar behavior to TPC-C
as far as processor and memory are concerned [86].

3.2 Optimized code generation

In most of our work we use two different sets of applications: the baseline set, and the code
layout optimized set. Generating a layout optimized version of an application is done in two
steps. First, it is necessary to obtain adequate profile information to process the code and generate
the desired basic block ordering information. Then we can use a binary optimizer to read the
baseline application, and apply the transformations required to generate the code layout desired.
This section describes both the process we followed to generate our optimized benchmark set, and
the tools we used to do it.

3.2.1 Profiling tools

During this work we have used two different code layout optimizers: the software trace cache
(described in Chapter 4), and SPIKE [13]. Each requires a different set of profile data to process
the original binary.

The software trace cache requires the profile data to have an exact count of how many times
each basic block transition was followed. That is, for each pair of basic blocks A and B, the
number of times that block B was executed after block A. From this edge count we can easily
derive the number of times each basic block was executed.

We obtain this profile data using ATOM [83]. We instrument the baseline application so that
each time a basic block is executed, a profiling routine is called with the basic block identifier as
argument. The routine keeps track of which was the previously executed block, and maintains a
structure with all edges seen to that point.

On the other hand, SPIKE requires a basic block execution count profile in the pixie format.
Pixie is one of the ATOM tools, and basically counts how many times a basic block was exe-
cuted. As an alternate source for profile information, it is possible to feed SPIKE with profile data
obtained with DCPI [1].

DCPI is a continuous profiling infrastructure which monitors the system at random intervals,
and builds its profile database using a sampling of the actual execution. It allows the gathering of
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profile information in a non-intrusive way, as it does not require any modification of the application
to analyze, and has a very low execution overhead. However, the sampling nature of the profile
obtained, makes it inaccurate if the profiling period was not long enough. We experimented with
both profile sets (pixie and DCPI), and used the one which provided the best results. In our case,
that was the pixie profile.

3.2.2 Code optimizers

Figure 3.2 shows the process we used to generate the optimized application codes. The first
optimizer we used implements the software trace cache algorithm, as described in Chapter 4. It
reads the profile data generated by ATOM (see previous section), and generates a file containing
a PC translation table.

It is important to note that we did not actually generate an optimized code for the software
trace cache. The result of running the STC algorithm is an address translation table, which maps
each instruction in the original application to its new location, as calculated by the algorithm. We
then use this PC translation table to feed the simulator with translated addresses. The use of a
PC translation table does not account for code transformations that may be required in the actual
executable, such as branches that should be added or removed. However, Pettis and Hansen report
that these instructions represent only 2–3% of all the executed instructions [59]. We also used the
same technique to generate optimized code layouts for the Pettis & Hansen algorithm [59], and
the Torrellas et al. [87] algorithm.
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Figure 3.2. Profiling of the baseline application and generation of the optimized code layouts.

The second optimizer used is a variation of Compaq’s SPIKE [13], extended to include the
fine-grain subroutine splitting and the CFA optimizations used in the STC. The output of SPIKE
is a valid executable application which can be run directly on the simulator, or even on a real
machine. The main difference between the STC optimizations and SPIKE is that SPIKE does not
inline subroutines (or chains), which reduces the spatial locality, and introduces additional control
transfers (subroutine calls and returns) that would have been avoided in the STC.



Chapter 3: Platform, Tools, and Benchmarks 53

The results shown in Figure 4.4, Sections 4.2.2 and 4.2.3, and Chapters 5 and 6 were generated
using the STC layout. The remaining results, in particular all Oracle/TPC-B results in Chapter 4,
were obtained with applications optimized with Spike.

3.3 Simulators

3.3.1 Fetch engine simulation

The first stages of this work were evaluated using a fetch engine simulator which implements the
trace cache mechanism as described in Figure 2.16. We simulate in detail the branch prediction
mechanism (return address stack (RAS), muti-ported BTB, and multiple branch predictor), the
instruction cache, and the trace cache. We use an adapted version of the gshare branch predictor as
a multiple branch predictor. We augment the PHT so that it contains three separate 2-bit counters
instead of one. Each counter is used as a separate branch prediction.

We read two consecutive lines from the instruction cache, to ensure that a full width of instruc-
tions can be provided. If any of the two lines is not present in the L1 cache, the fetch stage stalls
until both lines are available.

The branch prediction mechanism uses the fetch address to provide 16 consecutive entries
from the BTB, which allow the engine to identify branch instructions. The RAS is used to predict
the target address of return instructions, and the multiple branch predictions are used for the first
three conditional branches encountered. Using all this information we generate in instruction
mask which selects only the instructions until the first taken branch from the instruction cache.

The trace cache is accessed using only the fetch address. If an appropriate trace is found, it
is still necessary to check if it matches the path predicted by the multiple branch predictor. If it
matches, we provide the instructions stored in the trace cache, and use its prediction as the next
fetch address. If the trace is not present, or does not match the predicted path, fetch proceeds from
the instruction cache, and the next fetch address is taken from the branch prediction mechanism.

Table 3.3 shows the default setup for the fetch engine simulator. Unless otherwise stated, these
are the values used in all results using this simulator.

Instruction cache 32KB, 64B lines, direct mapped
64KB, 64B lines, 2-way set associative

Fetch 2 lines per cycle
6-cycle miss penalty

Trace cache 32 to 2048 entries, 2-way set associative
gshare Adapted to 3 predictions per cycle

12 bit history, 4K-entry PHT
12-cycle misprediction penalty

BTB 512 entries, 2-way set associative
12-cycle misprediction penalty

RAS Perfect

Table 3.3. Default simulator setup for the isolated fetch engine simulator.

In addition to measuring individual component statistics, such as instruction cache hit rate,
trace cache hit rate, or branch prediction accuracy, this simulator generated two different fetch
performance metrics:
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Fetched instructions per access (FIPA): Measures the effective fetch width of the fetch engine.
The FIPA is the average number of correct path instructions that the fetch engine provides
each time it is accessed, regardless of how many cycles it takes to fetch the instructions.
This metric does not account for cycles wasted fetching down a wrong speculative path, not
stall cycles due to instruction cache misses, it is a raw fetch width metric.

Fetched instructions per cycle (FIPC): Measures the isolated fetch performance of the engine.
The FIPC is the average number of correct path instructions that the fetch engine provides
each cycle. Unless otherwise stated, we assume that the engine stall for 6 cycles on each L1
instruction cache miss, and that 12 cycles are wasted fetching from a wrong path for each
branch misprediction.

This simulator was used to generate the results in Figures 4.4 and 4.12, and Chapter 5.

3.3.2 The Simplescalar toolset

In some parts of our work we have used the SimpleScalar 3.0a tool set [7]. SimpleScalar is
advertised to perform fast, flexible, and accurate simulation of processors implementing a MIPS-
like architecture. The tool set takes an executable file, and simulates its execution on one of several
processor simulators.

The tool set includes simulators to simply test the correct execution of the program, simulate
the branch prediction mechanism, the memory hierarchy, or a fully detailed out of order super-
scalar processor. The simulation speed depends on the detail level of the simulation, with the
functional simulator being the fastest, and the out of order model the slowest.

The out of order model simulates a 6 stage pipeline with fetch, decode/rename, issue/schedule,
execute, writeback, and commit stages using a centralized structure (the reservation stations) to
guarantee the correct execution semantics. The simulator is execution-driven (as opposed to trace-
driven), and is able to accurately simulate instructions on a wrong speculative path.

The default processor setup we used resembles the configuration of the Alpha 21264 processor,
and is summarized in Table 3.4.

L1 cache 64KB, 32B lines, 2-way associative
L2 cache 1MB, 32B lines, 4-way associative

15-cycle latency
Memory 120-cycle latency

BTB 4K-entry, 4-way associative
gshare 4K-entry, 12-bit history
RAS 64-entry
width 4-wide fetch, issue, commit

Table 3.4. Default setup for our SimpleScalar simulator.

The simulator provides very detailed metrics on most structures found in the simulated su-
perscalar processor, but the metric we are most interested in is the overall processor performance
measured in instructions per cycle (IPC).

We used the simplescalar out of order model to generate the results shown in Figure 4.22.
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3.3.3 Branch predictor simulation

In addition to a complete fetch engine simulator, we required a fast and detailed branch predictor
simulator to evaluate the impact of code layout optimizations and the usage of profile data on the
branch prediction mechanism.

The branch predictor simulator we used is derived from the SimpleScalar tool set [7], which
we extended to implement not only two-level adaptive branch predictors but also static branch
prediction strategies, dealiased branch predictors, and to incorporate the profile data that was
obtained to generate the optimized code layouts.

Table 3.5 shows the default setup for the branch predictor simulator. Unless otherwise stated,
these are the values used in all results using this simulator.

BHR Global register, 10–16 bits
PHT ���������
	��� entries

3 tables for gskew
BTB 4K-entry, 4-way associative

Bias table uses the BTB (agree only)
Selector ��� � of the total size (bimode only)

RAS 64-entry

Table 3.5. Default simulator setup for the branch predictor simulator.

In addition to the branch prediction accuracy, this predictor was extended to classify all exe-
cuted branches by their actual behavior, to measure prediction table interference, and classify the
conflicts among positive (the conflict causes a correct prediction), neutral (the conflict does not
cause the prediction to change, but may cause a non-saturated counter to saturate), and negative
(the conflict causes a misprediction), and to provide statistics about the distribution of data on the
second level table.

All results in Section 4.2.3 and Chapter 6 where generated using this simulator.

3.3.4 SimOS

In order to model a multiprocessor OLTP workload we used SimOS [73]. SimOS is a full system
simulation environment initially developed at Stanford University to study MIPS-based multipro-
cessors. We used the Alpha port of SimOS developed at Compaq’s Western Research Lab, which
models the hardware components of Alpha-based multiprocessors (processors, MMU, caches,
disks, console) in enough detail to run unmodified Compaq’s system software and the Oracle
DBMS.

SimOS supports multiple levels of simulation detail, and allows the user to choose the most
appropriate trade-off between simulation speed and detail. The fastest simulation mode uses on-
the-fly binary translation to position the workload in a steady state. at that point, the simulator
takes a state checkpoint, and the it is possible to switch to a more detailed (and slow) simulation
mode.

The ability of SimOS to run both application and system code is essential to simulate all the
rich interactions between operating system and application code in OLTP workloads.

Our simulations run from a checkpoint that is taken when the workload is already in its steady
state, and run for 500 transactions (after a warm-up period) on a simulated 4-processor Alpha



56 Chapter 3: Platform, Tools, and Benchmarks

system. The basic SimOS-Alpha simulations use a 1 GHz single-issue pipelined processor model
with 64KB 2-way instruction and data caches (64-byte line size), and a 1.5MB 6-way unified L2
cache. The memory latencies assume aggressive chip-level integration [4]: 12ns L2 hit, 80ns for
local memory, and 150-200ns for 2-hop and 3-hop remote misses. This data is summarized in
Table 3.6.

L1 cache 64KB, 64B lines, 2-way instruction and data
L2 cache 1.5MB, 128B lines, 6-way unified

12ns latency
Memory 80ns local access

150ns 2-hop remote access
200ns 3-hop remote access

CPU 1-way, in-order, 1GHz clock freq.
4 CPU multiprocessor system

Oracle 8 server processes per CPU
500 transactions per server

Table 3.6. Default SimOS simulations setup.

We used SimOS to monitor the memory hierarchy of a multiprocessor system running an
OLTP workload. We obtained results regarding L1 instruction caches (data and instructions), the
shared L2 cache (but distinguishing data misses from instruction misses), and TLB (both data and
instructions).

In addition to direct monitoring experiments, we also used SimOS to obtain instruction traces
from our OLTP workload, containing information about the interaction between application and
system code. We then analyzed these traces using a very detailed instruction cache simulator
which provides data about temporal and spatial locality characteristics of the trace examined.

The results in Figure 4.21 were obtained using SimOS, and the analysis of instruction cache
impact in Section 4.2.1 were obtained by analyzing the traces obtained.

3.3.5 Real machine runs

In addition to using SimOS to simulate a multiprocessor system running an OLTP workload, we
used Spike to obtain an optimized version of the Oracle DBMS, and examined its behavior on a
real multiprocessor system.

The setup examined on the real systems is exactly the same as the one examined under SimOS.
We tested two different Alpha platforms: a 21164 and a 21264, both shared memory multiproces-
sors.

After code layout optimizations, the improved efficiency of the workload often causes it to
be more I/O bound. This leads to higher idle time, making elapsed execution time comparisons
meaningless. In practice, the workload can be re-tuned to eliminate the excess idle time. However,
such re-tuning would further modify the behavior of the optimized runs with respect to the unop-
timized runs, making it difficult to isolate the effects of our optimizations. Therefore, we chose
to use non-idle execution cycles instead of elapsed execution time as our performance metric. We
used DCPI and the Alpha performance counters to measure this non-idle execution time.

The results for our real machine runs are shown in Figure 4.23. The performance results
obtained compare correctly to those experienced in full-size audit runs of TPC-C.
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3.3.6 Ideal pipeline simulator

After all the analysis of the impact of code layout optimizations, we propose a new fetch archi-
tecture which aims at minimum complexity, while maintaining a high fetch performance. We
evaluate our fetch architecture in comparison to a classic BTB architecture, and the trace cache
architecture.

We simulate the processor front-end in detail, and allow wrong-path instruction fetch to allow
wrong speculative predictor updates, and the possible interference and prefetching effects on the
instruction cache.

The processor back-end simulates a perfect in-order pipeline, with a perfect L1 data cache.
Branch mispredictions are detected at the commit stage (last pipeline stage), and non-speculative
branch predictor updates and fetch redirection also happen there. That is, the processor perfor-
mance is limited only by the fetch stage.

small predictor large predictor
BTB 512 entries, 4-way 2048 entries, 4-way

gshare 14 bits, 16K entries 16 bits, 64K entries
stream pred. 1024 entries, 4-way 4096 entries, 4-way
trace pred. 1024 entries, 4-way 4096 entries, 4-way

RAS 64 entries
issue width 2, 4, and 8
pipe depth 8 stages 16 stages

FTQ 4 entries
inst. cache 64KB, 2-way

trace. cache 32KB, 2-way
line size 4x pipe width

L2 latency 15 cycles

Table 3.7. Detailed simulator setup for the complete processor simulator.

Table 3.7 shows the values used in the processor simulation. Most of the setups correspond to
the fetch engine, which was simulated in greater detail. The BTB architecture uses only the BTB
and gshare predictors, the stream architecture uses only the stream predictor, but the trace cache
uses both the trace predictor and the BTB.

We simulate two different processors: one with a short pipeline (8 stages) and a small branch
predictor (6KB of storage), and one with a deep pipeline (16 stages) and a large branch predictor
(40KB). For both processors, we simulate fetch and issue widths from 2 to 8, with cache line sizes
from 8 to 32 instructions (32 to 128 bytes).

The trace cache processor uses a 32KB trace cache (instruction storage), and a 32KB instruc-
tion cache, both 2-way set associative. We tested multiple combinations of instruction and trace
cache sizes (big trace cache with small instruction cache and vice versa), and selected the optimum
one. We use optimized codes for all setups.

This simulator allows us to compare the performance of the three fetch architectures in terms
of processor IPC, as well as measuring the individual fetch performance factors (memory latency,
fetch width, and prediction accuracy).
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3.4 Final remarks

We have used a large variety of workloads and simulators in this work. The initial work was done
using a simple fetch engine simulator that we developed ourselves, and the TPC-D workload only.
Later on we included the SPEC benchmarks. Then SPIKE was made available to us, and we could
use it to generate optimized applications which could be run on a real machine, which changed
our simulation methodology. At the same time, we had the chance to work with Oracle and TPC-
B, which further extended our benchmark set2. Finally, new and more complete simulators were
developed as they were needed to obtain more detailed results, and better knowledge about the
internal behavior of optimized applications.

However, we do not believe that having used different benchmarks, and different simulators
across this work invalidates our conclusions in any way, but quite the opposite. We have obtained
similar and consistent results using different applications and different workloads, which makes
us feel confident about the validity of our experiments. Furthermore, our simulation results were
validated by multiple real machine runs, and even audit size runs of commercial workloads. We
believe that far from making our results dubious, the consistency of the results across multiple
platforms and benchmarks makes our conclusions more solid.

2Many thanks to Luiz Barroso and Kourosh Gharachorloo, as well as the whole Western Research Lab. team for
the unique opportunity granted to us to interact with them, and access their tools and expertise on the subject.


