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Our first approach to high fetch performance is the use of compiler optimizations to optimize
the layout of instructions in memory, so that the code makes a better use of the underlying hard-
ware resources regardless of the specific details of the processor/architecture.

The Software Trace Cache (STC) is a code layout algorithm with a broader target than previous
layout optimizations. We target not only an improvement in the instruction cache hit rate, but also
an increase in the effective fetch width of the fetch engine.

The STC algorithm organizes basic blocks into chains trying to make sequentially executed
basic blocks reside in consecutive memory positions, then maps the basic block chains in memory
to minimize conflict misses in the important sections of the program.

We evaluate and analyze in detail the impact of the STC, and code layout optimizations in
general, on the three main aspects of fetch performance: the instruction cache hit rate, the effective
fetch width, and the branch prediction accuracy.

Our results show that layout optimized codes have some special characteristics that make
them more amenable for high performance instruction fetch: they have a very high rate of not-
taken branches, and execute long chains of sequential instructions; also, they make a very effective
use of instruction cache lines, mapping only useful instructions which will execute close in time,
increasing both spatial and temporal locality.

4.1 Placement algorithm

The Software Trace Cache (STC) layout algorithm is largely based on the work of Torrellas et
al. [87], which in turn is based on the work of Hwu and Chang [32].

The STC presents several improvements on the previously proposed algorithms. As opposed
to a manual seed selection, based on source code and profile data analysis, we use an automatic
process for selecting the starting point of our basic block traces. Our basic block chaining algo-
rithm does not use the ExecThreshold and BranchThreshold parameters used in [87]. Instead, we
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build all our basic block traces in a single pass of the algorithm, without any user intervention to
determine threshold values.

Finally, we map whole basic block traces into the Conflict Free area (CFA) instead of mapping
individual basic blocks as done in [87]. Mapping whole traces may introduce less frequent basic
blocks in the CFA, but allows us to exploit more spatial locality, which proves important to the
effective fetch width.

4.1.1 Seed selection

Our algorithm is based on profile information. This means that the results obtained will depend
on the representativity of the training inputs. The most popular execution paths for a given input
set do not need to be related to the execution paths of a different input set.

Running the training set on each benchmark, we obtain a directed graph of basic blocks with
weighted edges. An edge connects two basic blocks � and � , if � is executed after � . The weight
of an edge ��������� is equal to the total number of times � has been executed after � . The weight
of a basic block �����	� can be obtained by adding the weight of all outgoing edges. The branch
probability of an edge 
������� is obtained as �����������������	� . All unexecuted basic blocks are pruned
from the graph.

Before we can organize the basic block set into traces, we need to select the seeds or starting
points for those traces. In [87], the operating system code is studied in detail to find the most
frequent entry points, and so a few subroutines are selected (the page fault handling routine, ...).
In [68] we analyze the code of a relational database management system (DBMS) and select the
entry points for the different query operations as seeds.

However, a detailed analysis of source code is not always feasible nor desirable. For this
reason we have selected all subroutine entry points as seeds. We maintain the list of seeds ordered
by basic block weight: from the most frequently executed seed to the least executed one. We
explore each seed in turn, ignoring those seeds which have already been included in a previous
trace, recording the order in which traces were created.

This automatic selection of seeds is an important advantage of the STC over previous work, in
which the seed basic blocks where selected by the user based on a detailed analysis of the dynamic
behavior of the application, or the analysis of source code.

4.1.2 Trace construction

From the selected seed, we proceed using a greedy algorithm which follows the most likely path
out of a basic block, recording the path followed as the required trace. The algorithm follows
paths regardless of them crossing the subroutine boundary, effectively building traces which cross
multiple subroutines. The trace ends when all targets from a basic block have been visited, or a
subroutine return for the main procedure is encountered.

For example, following the graph in Figure 4.1.a, the algorithm starts from seed A1. From
basic block A1 the algorithm selects the most likely outgoing path, which leads to block A2. From
basic block A2, the most likely outgoing path leads to an already explored seed C1. Discarded
block B1 is already a seed, and will be explored later. The trace starting from seed C1, and
containing blocks C1 to C4 (excluding block C5) is then inlined after block A2. The algorithm
continues at the next sequential block A3 (the return point for trace C1-C4).
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Figure 4.1. Example of the Software Trace Cache basic block chaining algorithm. Basic blocks
are mapped so that the execution trace is consecutive in memory.
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From basic block A3, the most likely outgoing path leads to block A4. Discarded block A5 is
added to the list of unvisited seeds, which is maintained in weight order. From basic block A4, the
algorithm visits blocks A7 and A8, adding discarded block A6 to the seed list. Figure 4.1 shows
the resulting trace, including basic blocks from both routine A and routine C.

The chain inlining step is a novel contribution of the STC on top of what was done in [32, 87].
It allows the STC to build long basic block chains without need of a careful seed selection based
on source code analysis, and makes the use of threshold values unnecessary.

4.1.3 Trace mapping

As shown in Figure 4.2, we map the resulting traces in the order they were created: from the most
frequently executed one, to the least executed one. In this way, we map equally popular traces
next to each other, reducing conflicts among them. Also, we divide traces in instruction cache
sized chunks, and leave an empty space at the beginning of each block except the first one (the
one containing the most popular traces).

All code gaps map to the same place in the instruction cache, so that there is no other code
mapping to the same place as the most popular traces, creating a conflict free area (CFA) for these
traces which completely shields them from interference.
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Figure 4.2. Trace mapping for a direct mapped instruction cache.

The size of the CFA is among the most determinant factors in the performance obtained using
this mapping algorithm. A larger CFA fits more of the most popular traces, shielding them from
interference, which reduces conflict misses in the most important segments of the code. However,
it leaves less space in the instruction cache for the remaining traces, increasing conflict misses
among them. Both factors balance each other, and after a given size, further increases in the CFA
size actually decreases instruction cache performance.

As a difference with previous work, we use heuristics in order to determine an adequate CFA
size without requiring a trial and error approach. Figure 4.3 shows an example of how we deter-
mine an appropriate size for the CFA.

We take the most popular traces, one at a time. Then we compare the percentage of the total
execution time that it gathers compared to the percent of the instruction cache that it requires. If
the execution percent is higher than the space taken in the cache, we include the trace in the CFA.
We then add the next trace, and consider the percent of the execution they take together, and the
fraction of cache they require. As long as the fraction of execution is larger than the fraction of
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Figure 4.3. Determining the size of the CFA from the execution frequency and size of the most
popular traces.

instruction cache they require, we keep adding traces to the CFA trying to balance the two factors.
In the example of Figure 4.3 we would devote 32% of the instruction cache to the CFA, as it
gathers exactly 32% of the program execution.

This heuristic depends on the execution frequency of the traces built and the instruction cache
size. For small caches, the size of the CFA will also be smaller, while larger caches allow for a
larger CFA. Smaller codes which concentrate most of their execution in a few traces will almost
completely fit in the CFA, while large codes with fiat execution profiles will have little or no use
for a CFA.

4.2 Performance impact

This section presents our analysis of the impact of the STC and other code layout optimizations on
all three aspects of fetch performance. Using detailed simulation of specific components, and in-
direct performance metrics, we are able to explain the reasons for the performance improvements
obtained.

Our results show that code layout optimizations not only improve instruction cache perfor-
mance by avoiding conflict misses, but that they also make a much better use of the available
cache space, thus reducing capacity misses, and that spatial locality is the main advantage of
optimized codes.

We also show that after optimizations, it is possible to feed even the most aggressive super-
scalar processor by reading only chains of sequential instructions.

Our analysis of the impact of layout optimizations on the branch prediction mechanism shows
that they can have a positive impact in the simple two-level adaptive predictors, and a small nega-
tive impact on dealiased predictors. However, the improvements in other aspects of fetch perfor-
mance overcome this slight drop in prediction accuracy.

Finally, we analyze the impact of layout optimizations in other elements beyond the fetch en-
gine, and fins that they not only have a positive impact on the instruction memory hierarchy, but
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that they also improve data memory performance, due to a reduced interference between instruc-
tions and data.

4.2.1 Impact on the instruction cache

In this section we examine the impact of code layout optimizations on the instruction memory
latency. That is, how long it takes to fetch an instruction from memory. Because the main approach
to reducing memory latency is the use of caches, the performance metric we use is the instruction
cache miss rate.

Figure 4.4 shows the instruction cache miss rate of a baseline cache setup compared to that of
the same cache running optimized codes, and two hardware optimized setups. The code layout op-
timizations explored are those proposed by Pettis & Hansen (PH) [59], Torrellas et al. (TXD) [87],
and the Software Trace Cache (STC). The hardware optimized setups are a 2-way set associative
cache, and a 16-way fully associative victim buffer. None of the hardware optimized setups uses
an optimized code layout.
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Figure 4.4. Instruction cache miss rate for various cache sizes when using different hardware
configurations and code layout optimizations.

The results in Figure 4.4 show that code layout optimizations have a very significant impact
on the instruction cache miss rate for all explored cache sizes, much larger than the two hardware
optimizations explored. The instruction cache miss rate of a 16KB instruction cache running
optimized codes is lower than that of a 64KB cache running unoptimized codes. This shows that
optimized codes make a more effective use of the available cache space, requiring a smaller cache
to fit the instruction working set.

Comparing the STC with other code layout optimizations, our results show that the STC offers
lower instruction cache miss rates than either the Pettis & Hansen or the Torrellas et al. optimiza-
tions, specially for the smaller cache sizes.

Code layout optimizations are very effective at reducing instruction cache miss rates. The
usual explanation for this miss rate reduction is that a careful layout of the routines may reduce
the number of conflict misses, and that is the main aspect where code layout optimizations differ
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from each other. However, we will show that layout optimizations not only have an impact on
conflict misses.

Figure 4.5 shows the number of instruction cache misses of two version of a commercial
database management system (DBMS) running an OLTP workload (TPC-B). Commercial databases
are very large codes, with flat execution profiles, which suffer from heavy capacity problems rather
than conflict misses.
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(a) Baseline DBMS application
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(b) Optimized DBMS application

Figure 4.5. Instruction cache misses for various cache and line sizes for a commercial database
management system running an OLTP workload.

The results in Figure 4.5 show that code layout optimizations also have a significant impact on
the number of misses of such big workloads, although the number of conflict misses can not be
reduced because the working set is too large to fit in the cache regardless of the layout of routines.

Figure 4.6 shows the relative number of misses of the optimized DBMS application compared
to the unoptimized code. That is, for each instruction cache and line size, the graph shows the
percentage of misses still present in the optimized application. For example, on a 64KB cache
with 128-byte lines, the optimized binary has only 45% of the misses of the unoptimized code.
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Figure 4.6. Relative number of misses in the optimized DBMS binary compared to the baseline
application for various cache and line sizes.

The results in Figure 4.6 show that even for large workloads which do not fit in the instruction
cache, code layout optimizations can obtain important miss reductions (up to an 80% reduction
for a 256KB cache with 256-byte lines).

Further analysis of these results show that larger caches obtain better miss reductions. This
trend holds up to the 256KB cache, because the workload already fits in a 512KB cache. The same
trend is present for the instruction cache line size: longer cache lines obtain better miss reductions.
The results if Figure 4.5 show that the unoptimized application does improve performance as the
cache line and size increase, but the optimized application improves faster than the baseline.

This trend shows that layout optimized codes exploit larger caches and longer cache lines
better than unoptimized ones. Next, we analyze the reasons for these improvements in terms of
spatial and temporal locality.

Spatial locality

Code layout optimizations modify the basic block mapping to align branches towards their not
taken direction, increasing the number of sequentially executed instructions. This increase in the
sequence length translates immediately in an increase in spatial locality.

Figure 4.7.a shows the sequence length increase experienced by our commercial database en-
gine. We compare the basic block size with the average number of sequentially executed instruc-
tions in the baseline (unoptimized) application, and the optimized application.

Our results show that there is a significant increase in the average sequence length from the
baseline to the optimized application. However, this increase is not enough to justify all the
improvements seen in the instruction cache performance.

Figure 4.7.b shows a detailed breakdown of the number of sequences of each length for both
binaries. The graph shows that there is a 30% decrease in the number of sequences of length 1,
and a large increase in the number of sequences of length 17. That is, we are reducing the number
of short sequences, and increasing the number of long sequences. However, there is still more
spatial locality than that explained by the basic block chaining optimization.
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Figure 4.7. Code layout optimizations increase the number of sequentially executed instruc-
tions.
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Figure 4.8 shows the percentage of times that a number of unique words is used in a 128-byte
cache line before it is replaced (32 instructions per cache line), for both the baseline and optimized
application.
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Figure 4.8. Layout optimized codes use all the instructions in a cache line before it is replaced.

The results in Figure 4.8 show that the optimized application uses the whole cache line over
60% of the time. That is, in most cases, all instructions in a cache line will be executed at least once
before that cache line is replaced. Such behavior is not present in the unoptimized application,
and would explain the improved instruction cache performance.

The basic block chaining optimization alone does not explain this full usage of cache lines, as
most executed sequences are not long enough to fill an entire cache line. It is the combination of
the routine splitting and the procedure ordering optimizations that causes this high percentage of
cache lines to be fully used.

The routine splitting optimization separates the useful instructions from those which will rarely
or never be executed, which reduces the size of the procedure. Then the procedure ordering moves
the useless instructions away, and maps procedures which execute close in time next to each
other. After this optimizations, not only we execute longer sequences of instructions, but when a
sequence is terminated, it is likely that the target sequence is in the same cache line.

By reducing the size of the procedures, optimized codes are able to better exploit larger sized
caches by not wasting space to store instructions which will not be executed. And they obtain
higher improvements from longer cache lines because they exploit spatial locality, which increases
significantly.

Temporal locality

We have shown that optimized codes compact the useful sections of the code in a reduced number
of cache lines, moving unused parts of the code towards the bottom of the program. This reduced
size may have an impact on the temporal reuse of instructions.

Figure 4.9 shows the number of cycles that a given line has been present in the cache before
being replaced. That is, we measure the lifetime of a cache line, from the moment it is loaded into
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the cache to the moment it is evicted. Note that the X axis showing the lifetime is in a logarithmic
scale: a single step through the axis means the cache line was active for double the amount of
time.
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Figure 4.9. Instruction cache lines have an increased lifetime in layout optimized codes.

Our results show that cache lines have an extended lifetime in the optimized binary. The
average lifetime has moved from

�����
cycles to

�����
or more cycles, meaning that cache lines are

available for twice the amount of cycles. Because we require fewer cache lines, we can keep a
given cache line for longer before having to replace it, offering more opportunities for temporal
reuse of instructions.

Figure 4.10 shows the average number of times that a given instruction is used every time it
is loaded into the cache. That is, every time we load a cache line, we count how may times each
instruction was used before the line was replaced.

Our results show that the baseline (unoptimized) application does not use over 50% of what is
loaded into the cache, while the optimized application uses over 80% of what is loaded (only 18%
is left unused). This reflects the code compaction which we saw in the previous section.

If we examine the percentage of instructions which are used more than once, we see an in-
creased reuse in the optimized application: 16% of all instructions are used twice, compared to a
mere 10% in the unoptimized code. There is an increased percentage of instructions in all other
reuse categories in the optimized application, thanks to the increased lifetime of cache lines.

4.2.2 Impact on the fetch width

The layout of basic blocks in memory may also have an effect on the effective fetch width. Fig-
ure 4.11 shows an example of how an optimized code increases the number of instruction that can
be fetched per cycle.

The presence of branches disrupts the fetch sequence, but it is taken branches which actually
interrupt it. It is difficult to fetch both a taken branch and its target in the same cycle, as is done in
the branch address cache [94] and the collapsing buffer [14]. It requires fetching multiple cache
lines per cycle, and a complex instruction alignment network which may add extra pipeline stages.
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Figure 4.10. Almost all instructions loaded in the cache are used at least once, and instruction
reuse increases in optimized codes.

(a) It is hard to fetch a branch
and its target in the same cy-
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(b) It is easy to fetch past a not
taken branch

Figure 4.11. Code layout optimization increase the fetch width by aligning branches towards
not taken.
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Meanwhile, it is easy to fetch a not taken branch and its target in the same cycle, because they
reside in consecutive memory positions. It is not necessary to fetch additional cache lines, nor
re-align the instructions to reflect the actual execution flow.

As will be shown in Section 4.2.3, code layout optimizations are very successful at aligning
branches towards their not taken direction, reaching an 80% not-taken rate among conditional
branches. Furthermore, 60% of all executed branches are always not taken.

Figure 4.12 shows the impact of code layout optimizations on a fetch engine capable of fetch-
ing up to 3 sequential basic blocks per cycle (the SEQ.3 engine describes in [74]), and a trace
cache architecture.
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Figure 4.12. Code layout optimizations effectively increase the fetch width of baseline and
trace cache fetch architectures.

The results in Figure 4.12 show that code layout optimizations such as the one proposed by
Pettis & Hansen [59] and the Software Trace Cache effectively increase the number of instructions
provided by the fetch engine each cycle, reaching a performance level close to that of a trace cache.

Comparing the STC with the Pettis & Hansen optimized code, our results show that the STC
offers a better fetch width, in addition to the improved instruction cache miss rate observed in the
previous section.

But the benefits of code layout optimizations are not restricted to architectures which fetch
consecutive basic blocks. The trace cache allows the fetch engine to fetch non-consecutive basic
blocks in a single cycle, but it also experiences a significant performance boost when combined
with code layout optimizations. Our results show that a small 16KB trace cache used on a layout
optimized code has a better performance than a much larger trace cache using unoptimized code.

The trace cache reads the dynamic instruction stream, and so is unaffected by the layout of
instructions in memory. However, the trace cache is not a stand-alone fetch mechanism. If the
requested trace is not present in the trace cache, it has to be fetched from a secondary fetch path,
usually a sequential fetch engine. It is in those cases when code layout optimizations help a small
trace cache to increase performance: if the secondary fetch engine has a performance close to that
of the trace cache, it is less critical to miss in the trace cache.
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4.2.3 Impact on the branch predictor

We have shown that code layout optimizations have a positive impact on the instruction cache
performance, and that they increase the effective fetch width, but we have not examined the impact
of the code layout on the branch prediction mechanism.

A better instruction cache performance means that instructions can be provided faster, without
waiting for the lower memory hierarchy levels. An increased fetch width means that each time
we fetch instructions, a larger amount of instructions is provided. But if we impact negatively
the branch prediction accuracy, we will be fetching very fast, and very wide, but from a wrong
speculative path.

Effect on static prediction

In this section we will examine the prediction accuracy that some simple static branch prediction
schemes achieve for the examined benchmarks. The static strategies examined are: predict that all
branches will be taken, predict that all branches will be not taken, predict that backward branches
will be taken and forward branches will not, and predict that a branch will always take its most
usual direction based on profile information.

Figure 4.13 shows the branch prediction accuracy of some simple static branch prediction
strategies (always taken, always not taken, backward taken forward not taken) and the profile
based predictor for both the original code layout and the compiler optimized layouts. For the
optimized layout, we show results for the same input set used for training (self-optimized) and
for a different input set (cross-optimized). The prediction accuracy of an 8KB Gshare predictor is
shown for comparison purposes.
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Figure 4.13. Static branch prediction accuracy for the original and optimized code layouts (self
and cross trained).

The simple static prediction approaches prove quite useless for the baseline code layout with
near 50% prediction accuracy, only the BTFNT predictor reaches 60%, and doesn’t go under 50%
for any of the studied benchmarks (individual benchmark results not shown). On the other hand,
the profile static predictor proves very accurate, predicting correctly over 90% of the branches.
This shows that branches can be predicted statically, but not with this simple strategies.
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We optimize the code layout using the Software Trace Cache (STC) algorithm, which targets
an increase in the sequentiality of the code, that is, it reorders basic blocks so that branches tend
to be not taken.

Once we have optimized the code layout, the static branch prediction accuracy changes dra-
matically. The Not Taken and the BTFNT predictors now predict correctly over 80% of the
branches, losing some accuracy in the cross-trained test. This 80% prediction accuracy shows
that static branch prediction can be very accurate for these optimized code layouts; but it is still
much lower than what can be achieved with modern two level adaptive branch predictors like the
Gshare.

To gain further insight on this high predictability of optimized binaries, we explore in depth
the changes in branch behavior introduced by the code layout optimization. Figure 4.14.a shows
a classification of all dynamic branches by the percentage of times they are taken or not taken for
both the original and the optimized code layouts. Branches to the left of the plot are always not
taken, while branches to the right are always taken.

Examining the branch classification for the original code layout, we observe that 36% of the
branches are always not taken, while 32% are always taken. The rest of the branches are evenly
spread across all taken percent values, with a slightly higher peak for branches that are 50% taken.
This explains the low prediction accuracy obtained, because branches do not seem to follow such
simple behavior rules.

By optimizing the code layout, we can reverse the direction of those branches which are taken
more than 50% of the times. This way, a branch which was taken 80% of the times will now only
be taken 20% of the times.

The classification for the optimized code layout shows that we were quite successful at revers-
ing the branch direction for those usually taken branches. The fraction of always taken branches
is reduced from 32% to 10%, and most categories over 50% taken also present reductions in
the number of branches. This leads to a significant increase in the number of always not taken
branches, from 36% to 59%. With most highly biased branches in the not taken side, and most
other branches moving from over 50% taken to mostly not taken, the prediction accuracy of an
always not taken (or BTFNT) predictor, increases significantly, as we have seen in Figure 4.13.

As shown in Figure 4.14.b the average number of branches in the 0-4% taken class does not
actually represent the typical behavior of our benchmarks. Only two benchmarks stand above
the average: vortex and postgres (with perl joining the group for the optimized layout), while all
others stay well under the 59% average.

The increase in the number of usually not taken branches explains the different behavior of the
two code layouts regarding static branch prediction. Further increases in static prediction accuracy
can be expected of a code layout optimization that explicitly targets a specific branch predictor,
like the BTFNT predictor, or uses code replication techniques to use path information in its static
predictions.

Next, we will examine how this change in branch direction affects dynamic branch prediction.

Effect on two-level adaptive predictors

Figure 4.15 shows the effect of code reordering on dynamic prediction accuracy for the Gshare,
PAg, and bimodal predictors. Predictor sizes from 512 bytes to 16KB are explored for both the
baseline (dotted line) and the optimized code layout (solid line).
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Figure 4.15. Dynamic prediction accuracy for both the base and the STC optimized code layouts
using two-level adaptive prediction schemes.

Clearly, the STC increases the prediction accuracy of the examined branch predictors, spe-
cially for the smaller predictor sizes. Both the Gshare and the bimodal predictors seem to converge
at infinite predictor size, which points that the benefits of using the STC are related to prediction
table interference. The larger the table, the less interference, the closer the prediction accuracy for
both layouts.

Figure 4.16 shows the percent of dynamic branches which introduce conflicts in the predic-
tion tables of the gshare branch predictor with both the baseline and the optimized code layouts.
We classify conflicts in three groups: neutral interference when the conflict does not change the
prediction, and positive or negative if the conflict changes the prediction for good or bad.
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Figure 4.16. Percent of dynamic branches which cause interference in the gshare prediction
tables for the baseline and optimized code layouts.

As expected, there is a significant reduction in the number of negative conflicts when the STC
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layout is used with the Gshare branch predictor. For example, a 1KB gshare goes down from
1.45% of negative conflicts to 0.79% using the optimized code layout.

Intuitively, the increase in the number of not taken branches favors positive interference, be-
cause it is more likely that when two branches interfere, they both behave the same way (both not
taken) resulting in a positive or neutral conflict.

The total amount of conflicts shows a different behavior. The optimized code layout has fewer
neutral conflicts for small predictor sizes, but it ends up with a larger amount of neutral interfer-
ence for the largest configurations.

We will look further into this neutral interference increase in the next section, where we will
examine dealiased branch prediction schemes.

Effect on dealiased predictors

Given that the use of an optimized code layout is reducing the negative interference found in the
dynamic prediction tables, it is interesting to examine what happens with modern branch predic-
tors that are already organized to minimize such interference like the agree [82], bimode [39],
and gskew [46, 77] predictors. We will refer to these predictors as dealiased branch prediction
schemes.

Figure 4.17 shows the prediction accuracy of the dealiased predictors with both the baseline
and the optimized code layouts. The prediction accuracy of the gshare predictor with the optimized
layout is shown for reference purposes.

These results show that for small predictor sizes, the use of optimized code layouts obtains
equivalent or higher accuracy even in the dealiased branch predictors. The advantage of the opti-
mized layouts is specially clear in the 0.4KB gskew predictor, which increases prediction accuracy
from 93.5% to 94.4%.

For medium and large predictor sizes, all dealiased branch predictors obtain higher accuracy
with the baseline code layout, being the difference specially significant with the 16KB agree
predictor, which obtains a 96.2% accuracy with the baseline layout and a 95.8% with the optimized
code.

A more important result shows that the use of a large agree or bimode predictor with the
optimized code layout does not yield significant improvements over a gshare predictor. Only
the gskew predictor obtains significantly better results than the gshare predictor when using the
optimized code layout.

Figure 4.18 shows the percent of dynamic branches which introduce conflicts in the prediction
tables of the gshare branch predictor with the optimized code layout and the agree predictor using
both code layouts.

These results show that the agree prediction scheme with a non optimized layout obtains a
slightly better negative interference reduction than the optimized code layout. It is surprising that
using the agree predictor, the optimized code layout has more negative conflicts than the baseline.

From these results it seems that the dealiased predictors prove more effective at reducing
interference than the optimized code layout, but the more important result is that it seems more
difficult to reduce conflicts in an optimized binary. The fact that the optimized code layout has
more total interference for the larger predictor sizes can explain this higher fraction of negative
conflicts.
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Figure 4.17. Effect of the optimized code layout on dealiased branch predictors.
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Figure 4.18. Percent of dynamic branches which cause interference in the gshare prediction
tables optimized code layout and the agree predictor using both code layouts.

The fact that dealiased predictors using an optimized binary obtain worse results than a gshare
predictor points to some other factor hindering the performance of these predictors.

The high fraction of not taken branches found in the optimized code layout (80% of all
branches are not taken) may be hindering the branch distribution in the BHR. When working with
an optimized binary, the BHR will tend to be full of zeros, causing many possible BHR values to
be never or rarely used, leading to a worse branch distribution and a loss of useful information to
make a correct prediction.

If that is the case, a branch prediction scheme solely based on a global branch history such
as the GAg predictor should suffer heavily from this effect. Figure 4.19 shows the prediction
accuracy of the GAg predictor using both code layouts, compared to the prediction accuracy of a
gshare predictor.
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Figure 4.19. Prediction accuracy of the GAg branch predictor compared to that of the gshare
predictor using the baseline and the optimized code layouts.
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Clearly, the GAg predictor only benefits from the interference reduction obtained with the
optimized layout for the smaller predictor size. For all other configurations the baseline layout
obtains higher accuracy than the optimized one, confirming that the branch history distribution is
causing a prediction accuracy loss. The gshare predictor XORs the branch address with the branch
history, hiding this effect, which causes the interference reduction effect to dominate, increasing
accuracy.

The dealiased predictors do not benefit from the interference reduction effect, because they
are quite good at reducing it themselves, thus they only suffer the negative BHR effect and loose
accuracy with the optimized code layout.

To analyze this BHR distribution factor, Figure 4.20 shows the number of times each possible
history value was found in an 11-bit global history predictor for both code layouts. The BHR
values are sorted by the number of zeros their binary value contains (from all 1’s to all 0’s). In
addition to the BHR value usage, the figure shows the average usage, and the average + standard
deviation. The average usage is the same in both code layouts. Note the Y axis is in ����� ��� scale.

The first remarkable aspect of these plots is the position of the highest peak. The most popular
history value for the baseline layout is a BHR full of 1’s (leftmost value), while the highest peak
of the STC layout corresponds to a BHR full of 0’s (rightmost value). Aside from that, the BHR
value usage in the baseline layout is mostly spread across 1–2 orders of magnitude. Meanwhile,
the STC layout has its BHR value usage spread across 4–5 orders of magnitude, with very high
peaks on a reduced set of values. It is clear that values having mostly 1’s are less used than those
having mostly 0’s.

To summarize these observations, we can just look at the distance between the average usage
and the standard deviation lines. The more distance between them, the worse the BHR value
distribution. In this case, the distance between both lines in the STC layout is 2.5x larger than in
the baseline code layout.

4.2.4 Overall performance impact

In this section we examine the impact of code layout optimizations on the overall processor and
system performance. Although code layout optimizations usually target the L1 instruction cache
performance, they have a significant impact on other components of the fetch engine, and other
levels of the memory hierarchy.

Figure 4.21 shows the number of misses in the instruction TLB, and the shared L2 cache for a
commercial database management system running an OLTP benchmark, using both unoptimized
and optimized code. The misses in the shared L2 cache have been classified as either instruction
misses, or data misses.

Our results show a reduction in the number of instruction TLB misses. Procedure placement
optimizations move unused routines towards the end of the procedure, condensing the useful code
in fewer pages, which explains this result.

The L2 shared cache shows a significant reduction in the number of instruction misses, as a
consequence of the careful layout of routines and basic blocks. A code which has been mapped to
avoid conflicts in the L1 will also avoid conflicts in the larger L2.

A more surprising result is the significant reduction in L2 data misses. The increase in in-
struction spatial locality makes the code fit in fewer code pages, and the decreased L1 and L2
instruction miss rate leaves more space in the shared L2 cache for the data to sit more comfort-
ably, reducing conflicts among data and instructions, which leads to fewer data misses.
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Figure 4.20. Branch history register value distribution for the baseline code layout (a), and the
STC optimized layout (b).
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Figure 4.21. Code layout optimizations impact not only the L1 instruction cache, but the whole
memory hierarchy.

These results show that code layout optimizations have a positive impact not only on the
L1 instruction cache, but in all levels of the memory hierarchy. This allows the performance
improvements to go beyond what could be obtained by merely improving the instruction cache
miss rate.

Figure 4.22 shows the average processor performance measured in instructions per cycle (IPC)
for the SPECint95 benchmarks using unoptimized and optimized codes for a variety of instruction
cache sizes, and a perfect instruction cache. Results are shown for a processor with a realistic
branch predictor, and a perfect branch predictor.
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Figure 4.22. Overall processor performance increases beyond the perfect instruction cache
using code layout optimizations.

The results in Figure 4.22 show that processor performance using layout optimized codes is
higher than that of unoptimized codes using an instruction cache of twice the size. Moreover,
the performance of the unoptimized binaries saturates after 128KB are devoted to the instruc-
tion cache, while the performance of optimized codes with a 32KB cache is higher than that of
unoptimized codes using a perfect instruction cache.
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There is more than just an instruction cache performance improvement to consider: a fetch
width increase, a better branch prediction accuracy, a lower TLB miss rate, and fewer data misses
to the L2 al contribute to increasing performance.

When using perfect branch prediction, the improved prediction accuracy advantage of the opti-
mized binaries dissolves, and unoptimized codes can reach a higher performance. Still, optimized
codes using a 32KB instruction cache reach the same performance as unoptimized codes on a
128KB cache.

Figure 4.23 shows the relative execution time of our commercial database application as we
include different code layout optimizations. The optimization combinations explored include:
procedure ordering alone (porder), basic block chaining alone (chain), basic block chaining with
procedure splitting (chain+split), basic block chaining with procedure ordering (chain+porder),
and all optimizations together (chaining, splitting, and ordering). We show results for real machine
runs on two different Alpha platforms.
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Figure 4.23. Impact of several code layout optimizations on the overall system performance.

Our results show that most of the performance improvement obtained derives from the ba-
sic block chaining optimization, which is the main responsible for the increased spatial locality
experienced.

The next big step in performance is encountered when we add routine splitting and procedure
ordering on top of the basic block chaining. The routine splitting provides an extra degree of
freedom to the procedure ordering optimization, which now can move away the unused portions
of a routine, compacting the code so that most cache lines contain only useful instructions.

Overall our results show that code layout optimizations can reduce execution time by 25%
in a difficult and important workload domain such as commercial databases. Furthermore, our
results show that the performance improvements obtained are consistent across different processor
generations.
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4.3 Conclusions

In this chapter we have described the Software Trace Cache (STC), a code layout optimization
which targets not only the instruction cache performance, but also the effective fetch width of the
fetch engine.

We analyze the performance impact of the software trace cache and other code layout opti-
mizations on all three aspects of fetch performance: the instruction cache miss rate, the effective
fetch width, and the branch prediction accuracy.

Our results show that code layout optimizations are very effective at improving the instruction
cache performance. A detailed analysis of the reasons for this improvement shows that in addition
to a reduction in the number of conflict misses, optimized codes make a much more effective use
of the available cache space, packing only useful instructions in a cache line, and moving unused
sections of the code towards the end of the executable. This tight packing of instructions leads to
a high increase in spatial locality, and an increased lifetime of cache lines, which offers extended
opportunities for temporal reuse.

We also show that layout optimizations, and the STC in particular, can increase the effective
fetch width of the front-end engine. A fetch engine capable of fetching multiple consecutive basic
blocks increases performance to a level close to that of a trace cache, and a small trace cache
using optimized codes has a performance higher than that of a much larger trace cache running
unoptimized applications.

Having a positive impact on the instruction cache and the fetch width may be worthless if we
are decreasing the branch prediction accuracy. But we show that such is not the case. Layout
optimized codes are more amenable to branch prediction using either static branch predictors
or simple 2-level adaptive branch predictors. Only for dealiased branch predictors, which use
hardware mechanisms to remove branch aliasing from their prediction tables we experience a
slight performance drop in the branch predictor when using optimized codes. However, the loss
in prediction accuracy is more than compensated by the increased cache hit rate and fetch width.

Finally, we also examine the impact of code layout optimizations on the remaining levels of
the memory hierarchy, and find that optimized codes have not only a better instruction memory
performance, but also a better data memory performance due to the reduced conflict rate between
data and instructions. Our results show that processor performance increases beyond what could
he provided by a mere instruction cache performance increase, confirming that fetch width, branch
prediction accuracy and data memory performance are also important performance contributions
by code layout optimizations. Our experiments with a commercial database application running
an OLTP workload on real machine runs show that layout optimized codes can reduce execution
time by 25%.

In this chapter we have advocated for the use of compiler optimizations to increase fetch and
processor performance, without the need for complex and expensive hardware modifications. We
have improved on previous work on code layout optimizations with the STC, and analyzed in
detail the reasons for the increased fetch and processor performance. Our results show signifi-
cant performance improvements by adapting the software to the characteristics of the underlying
hardware.
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