The improvement of confidence levels could be achieved with the inclusion of more accelerometric data with sufficient magnitude values and the most rigorous homogenization of the magnitude scales.

Another proposal of future works is to extend the comparisons of accelerometric data to the whole Mediterranean area. This will allow us to verify if the observed behaviors must be atributed to the magnitude range or if the Mediterranean area has a regional behavior.

The NERIES project (Network of Research Infraestructures for European Seismology, FP6-2004-infraestructures-5, 2006-2009) can help in the next future in this aspect, because the definition of protocols and communication system that will allow to access easily to the European accelerometric data is being carried out. This database will concentrate a huge quantity of European data. This availability of European accelerometric data will be an important goal to develop new ground motion predictive equations.

Local scale:

The Benchmark exercise analysis at the Volvi valley has been completed. The extracted conclusions are very useful for future local effects studies in other regions. However, other Benchmark exercises will be useful to generalize these conclusions.

Important consequences from the analysis of the Benchmark exercise is the application of one of the proposed theoretical methodologies to the Pyrenean valley of Cerdanya. The results presented in this thesis (chapter 5) constitute a beginning of a comparative study. It is necessary to perform more seismic modelling methods in the valley for such purpose.

Also, more geophysical experiments are needed to provide accurate geophysical data that describe the valley structure in a more realistic way, fact that will provide more reliability to the modeling results.

According to the seismic modeling, future works would be focused in the accomplishment of computations using real input motions. Also, it is interesting the use

more realistic sources to study directivity effects according to the location of the sources with respect to the valley.

To validate the seismic modeling it would be also needed to dispose of real seismic records in the area. This will allow to make comparisons between the simulated motions and the real ones. This implies the need of deploying strong ground motion instrumentation in the area with surface and borehole instruments.

The future application of numerical modeling in other 2D profiles in the valley as well as the creation of a 3D model for the application of 3D modeling of the Cerdanya valley will be of great interest and will improve the results. 6: Conclusions

Referencias

Bibliográficas

- Aki, K. y Larner, L. (1970). Surface motion of a layered medium having an irregular interface due to incident plane SH waves. *J. Geophys. Res.*, 75, n.5, 933-953.
- Aki, K. y Richards, P. (1980) *Quantitative Seismology. Theory and Methods*. 1980. W. H. Freeman and Company, San Francisco. ISBN 0-7167-1058-7.
- Alterman, Z. y Karal, F. C. (1968). Propagation of elastic waves in layered media by finitedifference methods. *Bull. Seism. Soc. Am.* 58, 367-398.
- Ambraseys, N. N., Douglas, J., Sarma, S. K. y Smit, P. M.(2005a). Equations for the Estimation of Strong Ground Motions from Shallow Crustal Earthquakes Using Data from Europe and the Middle East: Horizontal Peak Ground Acceleration and Spectral Acceleration. *Bulletin* of Earthquake Engineering, 3, 1, Jan 2005, 1–53.
- Ambraseys, N. N., Douglas, J., Sarma, S. K. y Smit, P. M.(2005b). Equations for the Estimation of Strong Ground Motions from Shallow Crustal Earthquakes Using Data from Europe and the Middle East: Vertical Peak Ground Acceleration and Spectral Acceleration. *Bulletin of Earthquake Engineering*, 3, 1, Jan 2005, 55–73.
- Ambraseys, N. N., Simpson , K. A., y Bommer, J. J. (1996). Prediction of horizontal response spectra in Europe. *Earthquake Engineering and Structural Dynamics*, 25, 371-400.
- Anderson, J.G. (2003). Strong-Motion Seismology. In:W. Lee, H. Kanamori, P. Jennings and C. Kisslinger (Editors). International Handbook of Earthquake and Engineering Seismology, Part B. Elsevier, ed. 1000.
- Arias, A. (1970). A measure of earthquake intensity, in R.J. Hansen, ed. *Seismic Design for Nuclear Power Plants*, MIT Press, Cambridge, Massachusetts, 438-483.

- ATC (1978). *Tentative provisions for the development of seismic regulations for buildings*. ATC 3-06. Applied Technology Council, Palo Alto, California.
- Beauval, C., Bard, P-Y., Moczo, P. y Kristek, J. (2003). Quantification of frequency-dependent lengthening of seismic ground motion duration due to local geology: applications to the Volvi area (Greece). *Bull. Sism. Soc. Am.*, 93, 371-385.
- Berge-Thierry, C., Cotton, F., Cushing, M., Griot-Pommera, D.A., Joly, J., Levret, A. y Scotti, O. (2000). Méthode de détérmination des spéctres horizontaux et verticaux adaptés au site dans le cadre de la RFS I.2.c. Rapport IPSN/Sépartement de Protection de l'environnement. SERGD/00-53. 76.
- Bitri, a., Chardon, A. y Richalet, G. (2004). Microzonage sismique de la vallée de la Cerdagne et de la pricipauté d'Andorre. Évaluation de répartition en profondeur de la vitesse de propagation des ondes de cisaillament par la méthode SASW. Bureau de Recherches Géologiques et Minières. Informe técnico del proyecto ISARD.
- Bragato, P.L. y Slejko, D. (2005). Empirical ground-motion attenuation relations for the Eastern Alps in the magnitude range 2.5-6.3. *Bull. Seism.Soc. Am.*,95,1, 252-276.
- Cabañas, L., Benito, B., Cabañas, C., López, M., Gómez, P., Jiménez, M. E. y Álvarez, S. (1999). Banco de Datos de Movimiento Fuerte del Suelo. Aplicaciones. *Física de la Tierra*, 11, 113-139.
- Campbell, K.W. (2003). Strong-Motion Attenutaion Relations. In:W. Lee, H. Kanamori, P. Jennings and C. Kisslinger (Editors). International Handbook of Earthquake and Engineering Seismology, Part B. Elsevier, ed. 1000.

- Cantavella, J.V., Herraiz, M., Jiménez, M.J. y García, M. (2004). Seismic attenuation in the SE of the Iberian Peninsula. *Proceedings of the Asamblea Hispano-Portuguesa de Geodesia y Geofísica* (S07.23).
- Cerjan, C., D. Kosloff, R. Kosloff y M. Reshef (1985). A nonreflecting boundary condition for discrete acoustic and elastic wave equations. *Geophysics*, 50, 705-708.
- Chang, W.-F. y G.A. McMechan (1989). Absorbing boundary conditions for 3-D acoustic and elastic finite-difference calculations. *Bull. Seism. Soc. Am.*, 79, 211-218.
- Chávez-García, F.J.; Raptakis, D.; Makra, K. y Pitilakis, K. (2000). Site effects at Euro-seistest-II. Results from 2D numerical modelling and comparison with observations. *Soil Dyn. Earthq. Eng.*, 19(1), 23-39.
- Cid, X. (1996). Estimació dels paràmetres dinàmics dels sòls, procediment i aplicació a Barcelona. Tesis de Master Enginyeria Sísmica i Dinàmica Estructural. Universitat Politècnica de Catalunya, Barcelona. 227.
- Cid, X. (1998). Zonación sísmica de la ciudad de Barcelona basada en métodos de simulación numérica de efectos locales. Tesis doctoral. Universitat Politècnica de Catalunya, Barcelona. 215
- Coral, H. (2002). Utilización de métodos experimentales y de simulación numérica para la microzonación sísmica de áreas urbanizadas en Andorra. Tesis Doctoral. Universitat Politècnica de Catalunya. 207.
- Cotton, F., Berge, C., Lemeille, F., Pitarka, A., Lebrun, B. y Vallon, M. (1998). Three-dimensional simulation of earthquakes in the Grenobles's basin. In: *The effects of Surface Geology on Seismic Motion*. Irikura, Kudo, Okada And Sasatani (Editors). 1998 Balkema, Rotterdam, ISBN 90-5809-030-2.

- Coutant, O., Virieux, J. y Zollo, A. (1995). Numerical source implementation in a 2D finite difference scheme for wave propagation. *Bull. Seism. Soc. Am.* 85, 1507-1512.
- Crecit (2005). Centre de Recerca en ciències de la Terra. Institut d'Estudis andorrans (IEA). http://www.iea.ad/crecit/index.html (consultado en Abril 2006)
- Douglas, J. (2003). Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. *Earth.Science Reviews*, 61, 43 104.
- Drouet, S., Souriau, A. y Cotton, F. (2005). Attenuation, Seismic moments and site effects for weak motion events. Application to the Pyrenees. *Bull. Seism.Soc. Am.*,95, 5, 1731-1748.
- Dufumier, H. (2002). Synthesis of magnitude and focal mechanism computations for the M³4.5 earthquakes in France for the period 1995-2000. *Journal of Seismology*, 6, 163-181.
- Emerman, S.H. y R.A. Stephen (1983). Comment on "Absorbing boundary conditions for acoustic and elastic wave equations," by R. Clayton and B. Engquist. *Bull. Seism. Soc. Am.*, 73, 661-665.
- Fäh, D. (1992). A hybrid technique for the estimation of strong ground motion in sedimentary basins. Diss. ETH Nr. 9767, Swiss Federal Institute of Technology, Zurich.
- Figueras, S. (1994). Simulació numèrica del moviment del sòl produït per terratremols. Aplicació a moviments febles i forts. Tesis doctoral. Universitat Politècnica de Catalunya, Barcelona. 279.

- Frankel, A. (1993). Three-dimensional simulations of ground motions in the San Bernardino Valley, California, for hypothetical earthquakes on the San Andreas fault. *Bull. Seism. Soc. Am.* 83, 1020-1041.
- Fuyuki, M. y Y. Matsumoto (1980). Finite difference analysis of Rayleigh wave scattering at a trench. *Bull. Seism. Soc. Am.*, 70, 2051-2069.
- Gaffet, S., Cultrera, G., Dietrich, M., Courboulex, F., Marra, F., Bouchon, M., Caserta, A., Cornou, C., Deschamps, A., Glot, J. y Guiguet, R. (2000). A site effect study in the Verchiano valley during the 1997 Umbria-Marche (Central Italy) earthquakes. *Journal of Seismology*, 4, 525 541.
- Giardini, D., di Donato, M. y Boschi, E. (1997). Calibration of magnitudes scales for earthquakes of the Mediterranean. *Journal of Seismology* 1, 161-180.
- GIS-RAP (2003). Bulletin d'Information Réseau Accélérométrique Permanent n.1 http://wwwrap.obs.ujf-grenoble.fr/bulletin/Seisme_Nice_2001.02.25/BULLETIN_WEB_RAP.htm (consultado en Abril 2006).
- GIS-RAP. Réseau accélérométrique pérmanent. (French accelerometrique network). http://www-rap.obs.ujf-grenoble.fr/ (consultado en Abril 2006)
- Goula, X. y Susagna, T. (2006). Observation, characterization and prediction of strong ground motion. In: C.S. Oliveira, A.Roca and X. Goula, (Editors), Assessing and Managing Earthquake Risk, 463-478, Springer.
- Goula, X., Gonzalez, M., El Hassan, A. y Susagna, T. (2004). Terratrèmol d'Al-Hoceima. *Horitzó*, 6, 24-36.

- Goula, X., Susagna, T y Gonzalez, M. (2000) *Pla de sismicat: proposta de definició de criteris de situacions d'emergència i de plans d'actuació municipal*. Institut Cartogràfic de Catalunya. Informe técnico.
- Graves, R. W. (1996). Simulating seismic wave propagation in 3D elastic media using staggeredgrid finite differences. *Bull. Seism. Soc. Am.* 86, 1091-1106.
- GSHAP. (1999). The Global Seismic Hazard Program, 1992-1999. Annali di Geofisica, 42, 2.
- Hamilton, E. (1971). Elastic properties of marine sediments. *Journal of Geophysical Research*, vol. 76, pp. 579-604.

Harris, C. y Crede, Ch. (1976). Shock and vibration handbook. McGraw-Hill, Inc.

Heaton, T.H., Tajima, F. y Mori, W. (1986). Estimating ground motions using recorded accelerograms. *Survey in Geophysics* 8, 25-83.

Higdon, R.L. (1991). Absorbing boundary conditions for elastic waves. *Geophysics*, 56, 231-241.

- Housner, G.W. (1959). Behavior of structures during earthquakes. *Journal of the Engineering Mechanics Division*, ASCE, Vol. 85, No. EM14, pp. 109-129.
- ICC (1999). Seismicity map of Catalonia, 1977-1997, 1:400 000. Institut Cartogràfic de Catalunya. Barcelona.
- ICC (2005). Xarxa d'accelerògrafs de l'Institud Cartogràfic de Catalunya. Enregistraments. Institut Cartogràfic de Catalunya. http://www.icc.es/sismes/catala/accenreg.html (consultado en Abril 2006).

- IGN (2005). Catálogo de acelerogramas de la red nacional de acelerógrafos de España. Instituto Geográfico Nacional (España) www.mfom.es/ign (consultado en Abril 2006).
- Jongmans, D., Pitilakis, K., Demanet, D., Raptakis, D., Riepl, J., Horrent, C., Tsokas, G., Iontzeditis, K. y Bard, P-Y. (1998). Euroseis-test: determination of the geological structure of the Volvi graben and validation of the basin response, *Bull. Sism. Soc. Am.* 88, 473-487.
- Kanamori, H. (1983). Magnitude scale and quantification of earthquakes. *Tectonophysics* 93, 185-199.
- Kennet, B. L. N. y Kerry, N. S. (1979) Seismic waves in a stratified half space. *Geophys. Journal Royal Astron. Soc.*, v.57, pp. 557-583.
- Kenneth, W. y Campbell, Ph.D. (2003). A contemporary guide to strong-motion attenuation relations. In: W.H.K. Lee, H. Kanamori and P.C Jennings (Editors), International Handbook of Earthquake and Engineering Seismology. Supplement to Chapter 60, Vol.2, Part B, Handbook CD, Academic Press, London, 122.
- Konno, K. y T. Ohmachi (1998). Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor, *Bull. Seism. Soc. Am.*, 88-1, 228-241.
- Korn, M. y H. Stöckl (1982). Reflection and transmission of Love channel waves at coal seam discontinuities computed with a finite difference method. *J. Geophys.*, 50, 171-176.
- Kristek, J y Moczo, P. (2003). Seismic-wave propagation in viscoelastic media with material discontinuities: a 3D 4th-order staggered grid finite-difference modeling. *Bull. Seism. Soc. Am.*,93, 5, 2273-2280.

- Kristek, J., Moczo, P. y Archuleta, R. (2002). Efficient methods to simulate planar free surface in the 3D 4th-order staggered.grid finite-difference schemes. *Stud. Geophys. Geod.*, 46, 355-381.
- Levander, A. (1988). Fourth-order finite-difference P-SV seismograms. *Geophysics*, 53, 1425-1436.
- Liu, H.-P., Anderson, D.L. y Kanamori, H. (1976). Velocity dispersion due to anelasticity: Implications for seismology and mantle composition. *Geophys. J. R. Astron. Soc.*, 47, 41-58.
- Macau, A., Figueras, S. y Susagna, T. (2006a). *Efectos de suelo en la Cerdanya y Andorra. Institut Cartogràfic de Catalunya.* Informe técnico del proyecto ISARD.
- Macau, A., Figueras, S., Colas, B., Le Brun, B., Bitri, A., Susagna, T., Cirés, J., González, M. y
 Roullé, A. (2006b). Seismic microzonation in two valleys of the eastern Pyrenees:
 Andorra and the Cerdanya. *Proceeding* presentado en el First European Conference on
 Earthquake Engineering and Seismology, 3-8 Septiembre, 2006, Ginebra, Suiza.
- Macau, A., Figueras, S., Susagna, T., Cirés, J., Colas, B. y González, M. (2006c). Seismic microzonation in two valleys of the Pyrenees: Andorra and la Cerdanya. *Proceeding* presentado en la 5^a Asamblea Hispano-Portuguesa de Geodesia y Geofísica, 30 enero -3 febrero, 2006, Sevilla, España.
- Makra, K.; Raptakis, D.; Chávez-García, F.J. and Pitilakis, K. (2001). Site effects and design provisions: The case of Euroseistest. *Pure and Applied Geophysics*; 158: 2349-2367.
- Makra, K.; Raptakis, D.; Chávez-García, F.J. y Pitilakis, K. (2002). How important is the detailed knowledge of a 2D soil structure for site response evaluation?. 12th European Conference on Earthquake Engineering. London. Ref 682. 10.

- Marin, S., Avouac, J-P., Nicolas, M. y Schlupp, A. (2004). A probabilistic approach to seismic hazard in metropolitan France. *Bull. Seism.Soc. Am.*, 94, 6, 2137-2163.
- Moczo, P y Kristek, J. (2005). On the rheological models used for time-domain methods of seismic wave propagation. *Geophysical Research Letters*, 32.
- Moczo, P. (1998). Introduction to Modeling Seismic Wave Propagation by the Finite-Difference Method. Lecture Notes. Kyoto University.
- Moczo, P., Bystrický, E., Kristek, J., Carcione, J. M. y Bouchon, M. (1997). Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures. *Bull. Seism. Soc. Am.* 87, 1305-1323.
- Moczo, P., Kristek, J. y Bystricky, E. (2000). Stability and grid dispersion of the P-SV 4th-order staggered-grid finite-difference schemes. *Studia Geophysica et Geodaetica*, V.44, n.3, 381-402.
- Moczo, P., Kristek, J. y Halada, L. (2004) *The Finite-Difference methods for seismologists. An introduction.* Comenius university, Bratislava. (Disponible en www.spice-rtn.org; ftp.seismology.sk/pub/papers/FDM-Intro-SPICE.pdf)
- Moczo, P., Robertsson, J. O. A. y Eisner, L. (2006). The Finite-Difference Time-Domain Method for Modelling of Seismic Wave Propagation. In: Advances In Wave Propagation In Heterogeneous Earth. Wu, R.-S. and Maupin, V. (Editors) in the series Advances in Geophysics, Dmowska, R. (Editor). Elsevier-Pergamon, 2006.
- Mohammadioun, B. y Serva, L. (2001). Stress drop, Slip type, earthquake magnitude, and seismic hazard. *Bull. Seism. Soc. Am.*, 91, n°4, 694-707.

- Nakamura Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremors on the ground surface. Quarterly Report of Railway Technical Research Institute. 30-1, 25-33.
- Peng, C. y Toksöz, M.N. (1994). An optimal absorbing boundary condition for finite difference modeling of acoustic and elastic wave propagation. J. *Acoust. Soc. Am.*, 95, 733-745.
- Peng, C. y Toksöz, M.N. (1995). An optimal absorbing boundary condition for elastic wave modeling. *Geophysics*, 60, 296-301.
- Riepl, J.; Zarhradník, J.; Plicka, V. y Bard, P-Y. (2000). About the efficiency of numerical 1D and 2D modelling of site effects in basin structures. *Pure and Applied Geophysics*, 157: 319-342.
- Sabetta, F. y Pugliese, A. (1996). Estimation of respnse spectra an simulation of nonstationary earthquake ground motions. *Bull. Seism. Soc. Am.*, 86, n°2, 337-352.
- Sánchez-Sesma, F., Herrera, I. y Avilés, J. (1982). A boundary method for elastic wave diffraction. Application to scattering of SH waves by surface irregularities. *Bull.Seism.Soc.Am.* 72, 473-490.
- Sawada, S. (1998). Phase characteristics on site amplification of layered ground with irregular interface, in *The effects of surface geology on seismic motion*, Irikura, Kudo, Okada and Sasatani (eds), Balkema, Rotterdam, 1009-1013.
- Schnabel, B., Lysmer, J. y Seed H. B. (1972) Shake. A computer program for earthquake response analysis of horizontally layered sites. College of Engineering University of California, Berkeley. Rep. N°EERC 72-12. 88.

- Secanell, R., Martin, C., Goula, X., Susagna, T., Tapia, M., Bertil, D., Dominique, P. y Fleta, J. (2006). Probabilistic Seismic Hazard Assessment of the Pyrenean region. *Journal of Seismology*. (Submitted).
- Semblat, J.F., Dangla, P., Kham, M. Y Duval, A.M. (2002). Seismic site effects for shallow and deep alluvial basins: in-depth motion and focusing effect. *Soil Dynamics and Earthquake Engineering*, 22, 849-854
- Skarlatoudis, A.A., Papazachos, C.B., Margaris, B.N., Theodulidis, N., Papaioiannou, Ch., Kalogeras, I. y Karacostas, V. (2003). Empirical peak ground motion predictive relations for shallow earthquakes in Greece. *Bull.Seism.Soc.Am.* 93, 2591-2603.
- Sochacki, J., Kubichek, R., George, J., Fletcher, W.R. y Smithson, S. (1987). Absorbing boundary conditions and surface waves. *Geophysics*, 52, 60-71.
- SSN-ENEL (1998). Elaborazioni delle principali registrazioni accelerometriche della sequenza sismica umbro-marchigiana del settembre ottobre 1997. Volume I, II. Servizio Sismico Nazionale, Roma.
- Stacey, R. (1988). Improved transparent boundary formulations for the elastic-wave equation. *Bull. Seism. Soc. Am.*, 78, 2089-2097.
- Susagna, T.,Goula, X., Roca, A., Pujades, L., Gasulla, N. y Palma, J. J. (2006). Loss scenarios for regional emergency plans: application to Catalonia, Spain. In: C.S. Oliveira, A.Roca and X. Goula, (Editors), *Assessing and Managing Earthquake Risk*, 463-478, Springer.
- Tapia, M. y Figueras, S. (2003). *Benchmark exercise: results and. Euroseisrisk progress report.* Institut Cartogràfic de Catalunya. ICC GS-194/2004.

- Tapia, M. y Figueras, S. (2005). Benchmark exercise: results obtained in the numerical simulations with the Arnaia earthquake, comparisons with real observations and final conclusions. Euroseisrisk final report. Institut Cartogràfic de Catalunya. ICC GS-210/2005.
- Tapia, M. y Figueras, S. (2006). Comparación entre métodos 1D y 2D para la evaluación de efectos locales en el valle de Volvi. *Proceeding* de la 5^a Asamblea hispano-portuguesa de Geodesia y Geofísica, Sevilla, Enero 2006.
- Tapia, M., Macau, A., Figueras, S. y Franek, P. (2006). 1D and 2D seismic wave propagation modelling in the Cerdanya valley (Catalonia, Spain). *Third International Symposium on the Effects of Surface Geology on Seismic Motion.* Grenoble, France, 30 August – 1 September, 2006. Paper n.67.
- Theodulidis, N. (1998). Peak Ground acceleration of small earthquakes: Analysis of Euroseistest, Greece, data. In: Irikura, Kudo, Okada and Sasatani (Editors). *The effects of surface geology on seismic motion*. 1998 Balkema, Rotterdam. ISBN 90 5809 030 2.
- Theodulidis, N. y Papazachos, (1992). Dependence of strong motion on magnitude-distance, site geology and macroseismic intensity for shallow earthquakes in Greece: I, Peak horizontal acceleration, velocity and displacement. *Soil Dynamics Earthquake Engineering*, 11, 387-402.
- Trifunac, M.D. y Brady, A.G. (1975). A study of the duration of strong earthquake ground motion, *Bull. Sism. Soc. Am.*, 65, pp. 581-626.

Von Neumann, J. (1943). Matematische Grundlagen der Quantenmechanik. Dover. New York.

Yomogida, K. y Etgen, J. T. (1993). 3-D wave propagation in the Los Angeles basin for the Whittier-Narrows earthquake. *Bull. Seism. Soc. Am.* 83, 1325-1344.

- Zahradník, J. (1995). Comment on 'A hybrid method for estimation of ground motion in sedimentary basins: Quantitative modeling for Mexico City' by D. Fäh, P. Suhadolc, St. Mueller and G.F. Panza. *Bull. Seism. Soc. Am.* 85, 1268-1270.
- Zahradník, J. y Moczo, P. (1996). Hybrid seismic modeling based on discretewavenumber and finite-difference methods. *Pageoph* 148, 21-38.
- Zeevaert, L. (1983). *Foundations engineering for difficult sub-soils conditions*. Van Nostrand R. Co.

Referencias Bibliográficas

Apéndices

Apéndice A:

Atenuación sísmica en la parte Oeste de la vertiente mediterránea

	Agencia	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel. 1998
	Estación	Colfiorito	Nocera Umbra	Assisi Stallone	Bevagna	Catelnuovo	Monte Fiegni	Matelica	Cascia	Spoleto Monteluco	Forca Canapine	Gubbio (Piana)	Leonessa	Rieti	Aquilpark Citta	Aquilpark Galleria	Aquilpark Parcheggio	Borgo Ottomila-2	Colfiorito
	Distancia epicentral (km)	4	13	23	24	24	25	28	35	35	39	40	51	66	86	86	86	126	9
nica.	ML	5.6																	6.0
ación sísn	h (km)	6.9																	8.0
el estudio de atenua	Área epicentral	Umbria-Marche (Italy)																	Umbria-Marche (Italy)
lizados para	Longitud	12°52'52"E																	12°51'04"E
registros uti	Latitud	43°01'05"N																	43°01'45"N
ado de los	Tiempo (UTC)	00:33:12																	09:40:26
A.1. List	Día	26																	26
Tabla ,	Mes	60																	60
	Año	1997																	1997

А
Se
ĺρί
Dél
Ą

encia	1998 jel, 1998	1998 Jel, 1998	1998, 1998	1998, 1998	1998 iel, 1998	1998 jel, 1998	1998 iel, 1998	ıel, 1998	1998 iel, 1998	1998 Jei, 1998	1998 Jel, 1998	1998 iel, 1998	1998 Jei, 1998	1998 iel, 1998	1998 iel, 1998	1998 Jei, 1998	1998 Jel, 1998	ıel, 1998	nel, 1998	nel, 1998
Age	SSN-Er	SSN-Er	SSN-E	SSN-Er	SSN-E	SSN-Er	SSN-E	SSN-E	SSN-E	SSN-E	SSN-E	SSN-E	SSN-Er	SSN-Er	SSN-E	SSN-E	SSN-E	SSN-E	SSN-E	SSN-E
Estación	Nocera Umbra	Assissi Stallone	Castelnuovo	Bevagna	Monte Fiegni	Matelica	Cascia	Gubbio (Piana)	Forca Canapine	Gubbio	Leonessa	Pietralunga	Cagli	Rieti	Peglio	Senigallia	Valle Aterno-Colle	Aquilpark Ciitta	Aquilpark Galleria	Aquilpark Parcheggio
Distancia epicentral (km)	11	20	21	22	27	28	37	38	42	42	53	55	59	67	79	79	83	88	88	88
ML																				
h (km)																				
Área epicentral																				
Longitud																				
Latitud																				
Tiempo (UTC)																				
Día																				
Mes																				
Año																				

۲	
g	
ğ	
é	
AC	

b Día Tiempo (UTC)	Tiempo (UTC)		Latitud	Longitud	Área epicentral	h (km)	R	Distancia epicentral (km)	Estación	Agencia Sevi End 1008
								100 126	Pennabilli Borgo Ottomila-2	SSN-Enel, 1998 SSN-Enel, 1998
06 23:24:52 42°59'55"N 12°49'27" Un	:3:24:52 42°59'55"N 12°49'27" Un	42°59'55"N 12°49'27" Un	12º49'27" Un	Ч	nbria-Marche (Italy)		5.4	7	Colfiorito (Casermette)	SSN-Enel, 1998
								6	Colfiorito	SSN-Enel, 1998
								12	Nocera Umbra (Biscon.)	SSN-Enel, 1998
								13	Nocera Umbra	SSN-Enel, 1998
								13	Nocera Umbra-2	SSN-Enel, 1998
								17	Nocera Umbra (Salmata)	SSN-Enel, 1998
								19	Bevagna	SSN-Enel, 1998
								19	Castelnuovo	SSN-Enel, 1998
								20	Assesi Stallone	SSN-Enel, 1998
								30	Monte Fiegni	SSN-Enel, 1998
								32	Norcia	SSN-Enel, 1998
								35	Cascia	SSN-Enel, 1998
								40	Gubbio (Piana)	SSN-Enel, 1998
								41	Forca Canapine	SSN-Enel, 1998
								44	Gubbio	SSN-Enel, 1998
								50	Leonessa	SSN-Enel, 1998
								63	Rieti	SSN-Enel, 1998
								87	Aquilpark Citta	SSN-Enel, 1998

А	
dice	
oénc	
Ā	

ncia	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998	iel, 1998
Age	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er	SSN-Er
Estación	Aquilpark Galleria	Aquilpark Parcheggio	Cesi Monte	Colfiorito (Casermette)	Colfiorito	Annifo	Cassignano	Serravalle di Chienti	Norcia	Cascia	Nocera Umbra (Biscon.)	Nocera Umbra	Spoleto Monteluco	Nocera Umbra-2	Bevagna	Monte Fiegni	Forca Canapine	Nocera Umbra (Salmata)	Castelnuovo (Assisi)	Assisi Stallone
Distancia epicentral (km)	87	87	10	13	14	17	18	18	19	22	24	25	25	25	26	27	28	29	29	32
ML			5.5																	
h (km)																				
Área epicentral			Umbria-Marche (Italy)																	
Longitud			12°55'42 E																	
Latitud			42°54'39"N																	
Tiempo (UTC)			15:23:00																	
Día			14																	
Mes			10																	
Año			1997																	

А
S
jq
é
Ac

Agencia	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	SSN-Enel, 1998	IGN, 2005	IGN, 2005	IGN, 2005	IGN, 2005	IGN, 2005	IGN, 2005	IGN, 2005	IGN, 2005				
Estación	Matelica	Leonessa	Gubbio (Piana)	Rieti	Valle Aterno-Moro	Valle Aterno-Valle	Valle Aterno-Fiume	Valle Aterno-M.Pettino	Aquilpark Citta	Aquilpark Galleria	Aquilpark Parcheggio	Borgo Ottomila-2	Adra (AL)	Motril (GR)	Comares (Alhambra, GR)	Fac. Ciencias (GR)	Albolote (GR)	Jayena (GR)	Alhama (GR)	Vera (AL)
Distancia epicentral (km)	38	39	52	54	68	68	68	69	74	74	74	126	7.5	54.1	73.0	75.1	81.2	81.2	96.7	108.1
ML													5.0(m _b)							
h (km)																				
Área epicentral													Adra (S. Spain)							
Longitud													02°56.2°W							
Latitud													36°46.8'N							
Tiempo (UTC)													14:22							
Día													23							
Mes													12							
Año													1993							

Año	Mes	Día	Tiempo (UTC)	Latitud	Longitud	Área epicentral	h (km)	M	Distancia epicentral (km)	Estación	Agencia
1994	01	04	08:03	36°34.3'N	02°48.9'W	Adra (S. Spain)		4.9(m _b)	26.6	Adra (AL)	IGN, 2005
									44.5	Almería (AL)	IGN, 2005
									67.1	Motril (GR)	IGN, 2005
									96.6	Comares (Alhambra, GR)	IGN, 2005
									98.4	Fac. Ciencias (GR)	IGN, 2005
									104.7	Albolote (GR)	IGN, 2005
									112.7	Vera (AL)	IGN, 2005
									114.9	Alhama (GR)	IGN, 2005
1996	02	18	01:45	42° 47.66' N	02° 32.05' E	Sant Pau de Fenollet (Pyrénées Orientales, France)	ω	5.2	σ	Agly	Presa
									70.1	Olot (GI)	IGN and ICC, 2005
									389.3	OGGM	GIS-RAP, 2005
1996	60	02	19 :07	37°32.5'N	01°30.4'W	Mazarrón (S.Spain)	2	4.5(m _b)	22.8	Lorca (MU)	IGN, 2005
									87.9	Torrevieja (A)	IGN, 2005
									45.9	Vera (AL)	IGN, 2005
1997	07	02	09:38	36°23.8'N	03°09.0'W	Adra (S.Spain)	~	4.6(m _b)	63.4	Ugijar (GR)	IGN, 2005
									75.3	úrcal (GR)	IGN, 2005
									85.9	Jayena (GR)	IGN, 2005
1997	07	02	12:53	36°25.68'N	03°15.17'W	Adra (S.Spain)	2	4.4(m _b)	41.8	Adra (AL)	IGN, 2005

Año	Mes	Día	Tiempo (UTC)	Latitud	Longitud	Área epicentral	h (km)	M	Distancia epicentral (km)	Estación	Agencia
									42.2	Motril (GR)	IGN, 2005
									61.9	Ugijar (GR)	IGN, 2005
									68.0	úrcal (GR)	IGN, 2005
									77.1	Jayena (GR)	IGN, 2005
1999	02	02	13:45	38.1100N	1.4900W	Mula (S.Spain)	4	4.8(m _b)	21.1	Lorquí (MU)	IGN, 2005
									43.3	Jumilla (MU)	IGN, 2005
									47.5	Orihuela (A)	IGN, 2005
									51.4	Lorca (MU)	IGN, 2005
									71.5	Torrevieja (A)	IGN, 2005
									110.4	Alcoy (A)	IGN, 2005
1999	10	04	18:14	42.7900 N	0.5800 W	B de Luchon (S. France)	10.2	4.5(m _b)	20.3	Vielha (L)	IGN and ICC, 2005
2001	02	25	18:34:42.93	43.49 N	7.47 E	Nice (France)	14	4.7	26.1	NBOR	GIS-RAP, 2005
									27.7	NPOR	GIS-RAP, 2005
									28.9	NROC	GIS-RAP, 2005
									28.9	NALS	GIS-RAP, 2005
									29.6	NLIB	GIS-RAP, 2005
									32.7	MENA	GIS-RAP, 2005
									53.0	CALF	GIS-RAP, 2005
									55.5	SAOF	GIS-RAP, 2005
									95.9	STET	GIS-RAP, 2005

۲
G
ĺρί
Dél
Ā

Año	Mes	Día	Tiempo (UTC)	Latitud	Longitud	Área epicentral	h (km)	ML	Distancia epicentral (km)	Estación	Agencia
									121.4	- 90	GIS-RAP, 2005
									123.0	IRVA	GIS-RAP, 2005
									128.2	IRSE	GIS-RAP, 2005
									138.5	IRVL	GIS-RAP, 2005
									139.0	IRCA	GIS-RAP, 2005
									141.5	IRMA	GIS-RAP, 2005
									142.8	IRSP	GIS-RAP, 2005
									144.9	IRPV	GIS-RAP, 2005
									167.7	RUSF	GIS-RAP, 2005
									173.8	ARBF	GIS-RAP, 2005
									198.2	OGBB	GIS-RAP, 2005
									200.3	OGMO	GIS-RAP, 2005
									218.9	OGGM	GIS-RAP, 2005
									219.6	OGAV	GIS-RAP, 2005
									232.0	OGFB	GIS-RAP, 2005
									232.0	OGFH	GIS-RAP, 2005
									233.2	OGCU	GIS-RAP, 2005
									235.1	OGMU	GIS-RAP, 2005
									240.4	OGLE	GIS-RAP, 2005
									254.3	OGCH	GIS-RAP, 2005

	Área epicentral
	Longitud
	Latitud
	Tiempo (LTC)
ce A	Día
Apéndi	Mes
·	Año

1 Latitud Longiud Num Estacion Agencia 1 Latitud Longiud Num Estacion General Agencia 1 1 1 1 1 1 1 2580 0GBL 615-RAP.2006 1 1 1 1 2540 0GBL 615-RAP.2006 615-RAP.2006 1 1 1 1 256-0 0GBL 615-RAP.2006 615-RAP.2006 1											
2800 00BL 65-Kay 2006 287.3 287.3 00AN 65-Kay 2006 287.4 287.3 00AN 65-Kay 2006 37.08V 254W 05A 05A 05-Kay 2006 37.08V 254W 6ega (AL) 0 5.70 148 Ameria (AL) 16N 2005 37.08V 254W 05 577 27.3 Ameria (AL) 16N 2005 1 1 1 1 1 1 1 1 1 1 <td< th=""><th>Día Tiempo (UTC)</th><th>Tiempo (UTC)</th><th></th><th>Latitud</th><th>Longitud</th><th>Área epicentral</th><th>h (km)</th><th>۳</th><th>Distancia epicentral (km)</th><th>Estación</th><th>Agencia</th></td<>	Día Tiempo (UTC)	Tiempo (UTC)		Latitud	Longitud	Área epicentral	h (km)	۳	Distancia epicentral (km)	Estación	Agencia
23701 2540 00AN 65484,200 2505 556 518 615484,200 2709 2544 6191(J1) 01 2709 2549 01 01 2701 2549 01 01 01 2703 2549 01 01 01 2704 2549 01 01 01 01 2705 240 21 21 01 01 01 2700 254 21 21 21 01 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>269.0</td> <td>OGBL</td> <td>GIS-RAP, 2005</td>			1						269.0	OGBL	GIS-RAP, 2005
3708N 574M 674M 6154A7,200 3708V 254W 6egal(AL) 0 5.0(m) 148 Alman 6 Almeria (AL) 10, 2005 1 1 27.3 Almaria (AL) 10, 2005 10, 2005 10, 2005 1 1 1 1 1 1 10, 2005 10, 2005 10, 2005 1 1 1 1 1 1 1 10, 2005									287.3	OGAN	GIS-RAP, 2005
37.08N 2.54W Gergal (AL) 0 5.2(m) 14.8 Althana de Althaneria (AL) (BN.2005 7 7 7.73 Althaneria (AL) (BN.2005 27.3 Althaneria (AL) (BN.2005 7 7 7 7 7.3 Althaneria (AL) (BN.2005 7 7 7 7 27.3 Althaneria (AL) (BN.2005 7 7 7 7 27.3 Althaneria (AL) (BN.2005 7 7 7 7 56.4 Attention(GR) 16N.2005 7 7 7 7 56.4 Attention(GR) 16N.2005 8 1									526.6	STSM	GIS-RAP, 2005
273 Almeria (AL) (BV.2005 273 Almeria (AL) (BV.2005 273 Almeria (AL) (BV.2005 274 Almeria (AL) (BV.2005 275 Almeria (AL) (BV.2005 264 Almeria (AL) (BV.2005 277 Almeria (AL) (BV.2005 279 Almeria (AL) <td>04 20:09</td> <td>20:09</td> <td></td> <td>37.09N</td> <td>2.54W</td> <td>Gergal (AL)</td> <td>0</td> <td>5.2(m_b)</td> <td>14.8</td> <td>Alhama de Almería (AL)</td> <td>IGN, 2005</td>	04 20:09	20:09		37.09N	2.54W	Gergal (AL)	0	5.2(m _b)	14.8	Alhama de Almería (AL)	IGN, 2005
27.3 Ameria (M) GN.2005 41.8 ElEjado(AL) GN.2005 65.7 Cadix (AL) GN.2005 66.4 Adar (AL) GN.2005 66.4 Adar (AL) GN.2005 66.4 Oldo (AL) GN.2005 66.4 Oldo (AL) GN.2005 66.4 Oldo (AL) GN.2005 77 GLARY (CR) GLARY (CR) 19.8 To (AL) GN.2005 19.4 Oldo (AL) PPLO 19.4 Auon (France) 10 19.4 PPLO PPLO 19.4 PPLO GN.247.2005 19.4 PPLO PPLO 19.4 PPLO GN.247.2005 19.4 PPLO PPLO 19.4 PPLO PPLO 19.4 PPLO PPLO 19.4 PPLO GN.244.2005 19.4 PPLO PPLO 19.4 PPLO PPLO 19.4 PPLO PPLO 19.4 PPLO PPLO 11									27.3	Almería (AL)	IGN, 2005
418 Elejido(AL) IGN, 2005 664 Adra (AL) IGN, 2005 664 Adra (AL) IGN, 2005 677 Guadx (GR) IGN, 2005 77 77 PTLS IGN, 2005 78 153 PTLS IGN, 2005 79 Adra (AL) IGN, 2005 IGN, 2005 79 PTLS PTLS IGN, 2005 79 Adra (AL) IGN, 2005 IGN, 2005 79 Adra (AL) IGN, 2005 IGN, 2005 79 PTLS PTLS IGN, 2005 IGN, 2005 79 PTLS PTLS IGN, 2005 IGN, 2005 79 PTLS PTLS PTLS IGN, 2005 79 PTLS PTLS IGN, 2005 IGN, 2005 79 PTLS PTLS PTLS IGN, 2005 70 PTLS PTLS IGN, 2005 IGN, 2005 70 PTLS PTLS IGN, 2005 IGN, 2005 70 PTLS PTLS IGN, 2005 IGN, 2005 71 <									27.3	Almería (AL)	IGN, 2005
64 Ada (AL) (61, 2005) 77 57.7 Guadix (GR) (61, 2005) 78 2.94 0.16W Ada (AL) (61, 2005) 79 2.94 0.16W (61, 2005) (61, 2005) 79 2.94 10 4.8 (72, 2005) (71, 2005) 71 7 7 27.9 (74, 2005) (74, 2005) 71 7 7 27.9 (74, 2005) (74, 2005) 71 7 7 27.9 (74, 2005) (74, 2005) 71 7 7 27.9 (74, 2005) (74, 2005) 71 7 7 7 (74, 2005) (74, 2005) 71 7 7 14.3 (74, 2005) (74, 2005) 71 7 7 14.4 (74, 2005) (74, 2005) 71 7 7 14.4 (74, 2005) (74, 2005) 71 7 7 14.4 (74, 2005) (74, 2005) 71 7 7 14.4 (74, 2005) (74, 2005) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>41.8</td><td>EI Ejido(AL)</td><td>IGN, 2005</td></t<>									41.8	EI Ejido(AL)	IGN, 2005
31 57.1 Guadix (GR) IGN, 2005 32 42.94N 0.16W Aucun (France) 10 4.8 15.2 PYLO GIS-RAP, 2005 31 42.94N 0.16W Aucun (France) 10 4.8 PYLO GIS-RAP, 2005 32 43.1 27.9 7.9 PYLO GIS-RAP, 2005 33 4.8.1 4.8.1 PYLO GIS-RAP, 2005 34 4.8.1 PYLO PYLO GIS-RAP, 2005 34 4.8.1 PYLO PYLO GIS-RAP, 2005 34 1.4.2 PYLO PYLO GIS-RAP, 2005 34 1.4.3 PYLO GIS-RAP, 2005 PYLO 34 1.4.3 PYLO GIS-RAP, 2005 PYLO 34 1.4.3 PYLO GIS-RAP, 2005 PYLO GIS-RAP, 2005 34 1.4.3 PYLO PYLO GIS-RAP, 2005 PYLO GIS-RAP, 2005 34 1.4.3 PYLO PYLO PYLO GIS-RAP, 2005 PYLO GIS-RAP, 2005 PYLO GIS-RAP, 2005 PYLO GIS-RAP,									56.4	Adra (AL)	IGN, 2005
64 42.94N 0.16W Aucun (France) 10 4.8 15.2 PYLS GIS.RAP.2005 19.8 PYLO 615.RAP.2005 19.8 PYLO GIS.RAP.2005 19.1 PYLO 19.8 PYLO GIS.RAP.2005 19.8 19.1 PYLO PYA GIS.RAP.2005 14.3 14.4 14.4 10.1 PYLO PYLO GIS.RAP.2005 106.0 14.3 105.RAP.2005 11.1 PYLO PYLO PYLO GIS.RAP.2005 106.0 105.RAP.2005 11.1 PYLO PYLO GIS.RAP.2005 117.3 117.3 117.3 11.1 PYLO PYLO GIS.RAP.2005 117.3 111.4.2 111.4.2 11.1 PYLO PYLO GIS.RAP.2005 117.3 117.3 117.3 11.1 PYLO PYLO GIS.RAP.2005 117.3 111.4.2 111.4.2 111.4.2 111.4.2 111.4.2 111.4.2 111.4.2 111.4.2 111.4.2 111.									57.7	Guadix (GR)	IGN, 2005
19.8 PYLO GIS-RAP, 2005 27.9 PYA GIS-RAP, 2005 48.1 PYLO GIS-RAP, 2005 48.1 PYLO GIS-RAP, 2005 64.4 PYLO GIS-RAP, 2005 105.0 PYLO GIS-RAP, 2005 105.0 PYLO GIS-RAP, 2005 105.0 PYLO GIS-RAP, 2005 110.1 PYLO GIS-RAP, 2005 111.1 PYLO GIS-RAP, 2005	16 14:56:33.6	14:56:33.6	4	42.94N	0.16W	Aucun (France)	10	4.8	15.2	ЬҮLS	GIS-RAP, 2005
27.9 PYA GIS-RAP, 2005 48.1 PYA GIS-RAP, 2005 48.1 PYL PYLU GIS-RAP, 2005 90.9 PYLU GIS-RAP, 2005 106.0 PYLU GIS-RAP, 2005 114.3 PYFO GIS-RAP, 2005 173.1 PYFO GIS-RAP, 2005 181.9 PYFO GIS-RAP, 2005 181.9 PYFO GIS-RAP, 2005 215.0 PYFO GIS-RAP, 2005									19.8	РУГО	GIS-RAP, 2005
48.1 PYA GIS-RAP, 2005 64.4 PYLU GIS-RAP, 2005 90.9 PYLU GIS-RAP, 2005 106.0 PYLU GIS-RAP, 2005 113.1 PYFO PYFO 173.1 PYFO GIS-RAP, 2005									27.9	РҮА	GIS-RAP, 2005
64.4 PYLU GIS-RAP, 2005 90.9 PYPP GIS-RAP, 2005 106.0 PYLI GIS-RAP, 2005 114.3 PYFO GIS-RAP, 2005 173.1 PYFO GIS-RAP, 2005 181.9 PYFO GIS-RAP, 2005 181.9 PYFO GIS-RAP, 2005 215.0 PYFO GIS-RAP, 2005									48.1	РҮА	GIS-RAP, 2005
90.9 PYPP GIS-RAP, 2005 106.0 PYLI GIS-RAP, 2005 144.3 PYFO GIS-RAP, 2005 173.1 PYFO GIS-RAP, 2005 181.9 PYFO GIS-RAP, 2005 215.0 PYFO GIS-RAP, 2005									64.4	РУЦИ	GIS-RAP, 2005
106.0 PYLI GIS-RAP, 2005 144.3 PYFO GIS-RAP, 2005 173.1 PYBE GIS-RAP, 2005 173.1 PYBE GIS-RAP, 2005 181.9 LINia-2(L2) GIS-RAP, 2005 215.0 PYPR GIS-RAP, 2005									90.9	ддγд	GIS-RAP, 2005
144.3 PYFO GIS-RAP, 2005 173.1 PYBE GIS-RAP, 2005 181.9 LIivia-2(L2) GIS-RAP, 2005 215.0 PYPR GIS-RAP, 2005									106.0	PYLI	GIS-RAP, 2005
173.1 PYBE GIS-RAP, 2005 181.9 Llivia-2(L2) GIS-RAP, 2005 215.0 PYPR GIS-RAP, 2005									144.3	РҮГО	GIS-RAP, 2005
181.9 Llivia-2(L2) GIS-RAP, 2005 215.0 PYPR GIS-RAP, 2005									173.1	РҮВЕ	GIS-RAP, 2005
215.0 PYPR GIS-RAP, 2005									181.9	Llívia-2(L2)	GIS-RAP, 2005
									215.0	РҮРК	GIS-RAP, 2005

Año	Mes	Día	Tiempo (UTC)	Latitud	Longitud	Área epicentral	h (km)	ML	Distancia epicentral (km)	Estación	Agencia
									218.4	PYFE	GIS-RAP, 2005
									220.9	МЧҮЧ	GIS-RAP, 2005
									250.4	РҮРЕ	GIS-RAP, 2005
									273.5	РҮВА	GIS-RAP, 2005
2002	05	16	15:14:44.57	42.82N	0.15W	Aucun (France)	10	4.2	12.4	БУLS	GIS-RAP, 2005
									32.0	РҮLО	GIS-RAP, 2005
									38.2	РҮА	GIS-RAP, 2005
									55.1	РҮАТ	GIS-RAP, 2005
									61.5	PYLU	GIS-RAP, 2005
									107.0	ΡΥΓΙ	GIS-RAP, 2005
									144.5	РҮГО	GIS-RAP, 2005
									172.0	РҮВЕ	GIS-RAP, 2005
									212.6	РҮРК	GIS-RAP, 2005
									217.2	МЧҮЧ	GIS-RAP, 2005
									217.4	PYFE	GIS-RAP, 2005
									248.6	РҮРЕ	GIS-RAP, 2005
2002	08	90	06:16:18	37.88N	1.83W	Bullas (S. Spain)	2	4.8(m _b)	27.8	Lorca (MU)	IGN, 2005
									32.5	Mula (MU)	IGN, 2005
									53.6	Lorquí (MU)	IGN, 2005
									62.9	Murcia (MU)	IGN, 2005

Año	Mes	Día	Tiempo (UTC)	Latitud	Longitud	Área epicentral	h (km)	ML	Distancia epicentral (km)	Estación	Agencia
									73.7	Vera(AL)	IGN, 2005
									130.2	Olula del Río (AL)	IGN, 2005
									172.9	Jaén (J)	IGN, 2005
2002	08	24	10:08:08	36.39N	4.60W	Málaga (S. Spain)	69	4.2(m _b)	41.1	Málaga (MA)	IGN, 2005
2002	12	11	20:09:52.15	43.04N	0.33W	Pau (France)	ъ	4.4	10.1	РҮА	GIS-RAP, 2005
									31.6	РҮАТ	GIS-RAP, 2005
									33.0	PYLS	GIS-RAP, 2005
									152.8	PYOR	GIS-RAP, 2005
2002	12	12	17:59:49.55	43.11N	0.28W	Pau (France)	10	4.6	12.0	РҮА	GIS-RAP, 2005
									18.9	РУLО	GIS-RAP, 2005
									35.1	РҮАТ	GIS-RAP, 2005
									35.5	PYLS	GIS-RAP, 2005
									116.0	PILI	GIS-RAP, 2005
									150.4	PYOR	GIS-RAP, 2005
									197.2	Llívia-2 (L2)	ICC, 2005
									235.6	МЧҮЧ	GIS-RAP, 2005
									262.6	РҮРЕ	GIS-RAP, 2005
									270.2	РҮРТ	GIS-RAP, 2005
2003	01	21	18:00:59	43.05N	0.36W	Pau (France)	10	4.4	7.6	РҮА	GIS-RAP, 2005

Año	Mes	Día	Tiempo (UTC)	Latitud	Longitud	Área epicentral	h (km)	ML	Distancia epicentral (km)	Estación	Agencia
									26.0	РҮLО	GIS-RAP, 2005
									29.0	РҮАТ	GIS-RAP, 2005
									35.6	PYLS	GIS-RAP, 2005
									72.7	РҮРР	GIS-RAP, 2005
									94.4	PYAS	GIS-RAP, 2005
									155.4	PYOR	GIS-RAP, 2005
									233.2	РҮРК	GIS-RAP, 2005
									235.6	PYFE	GIS-RAP, 2005
									239.9	МЧҮЧ	GIS-RAP, 2005
									268	РҮРЕ	GIS-RAP, 2005
									276.7	РҮРТ	GIS-RAP, 2005
									539.3	OGRS	GIS-RAP, 2005
									542.4	OGMU	GIS-RAP, 2005
2003	01	24	20 :35 :01	37.76N	4.63W	Espejo (S. Spain)	7	4.6(m _b)	19.1	Montilla (CO)	IGN, 2005
									46.6	Ecija (SE)	IGN, 2005
									74.1	Jaén (J)	IGN, 2005
2003	02	18	13:09:37	35.80N	3.46W	Alborán (S. Spain)	168	4.6(m _b)	103.5	Motril (GR)	IGN, 2005
									125.9	Jayena (GR)	IGN, 2005
2003	02	26	03:32:57.2	42.30 N	2.22 E	Ripolles (Spain)	7	3.8	22.4	МЧҮЧ	GIS-RAP, 2005
									27.3	Llívia-2 (L2)	ICC, 2005

Año	Som M	Qía	Tiempo	L atitud	- Conditud	Área enicentral	h (km)	ž	Distancia epicentral	Estación	Aconcia
	60M	2	(UTC)	רמווממ	Foliglitad		(Ē	(km)	20100	
									38.5	РҮРК	GIS-RAP, 2005
									61.4	PYFE	GIS-RAP, 2005
									67.9	РҮРЕ	GIS-RAP, 2005
									71.7	Celoni-2 (C2)	ICC, 2005
									76.2	РҮВА	GIS-RAP, 2005
									78.6	Celoni-1 (C1)	ICC, 2005
									78.9	PYOR	GIS-RAP, 2005
									103.0	РҮРТ	GIS-RAP, 2005
									117.6	PILI	GIS-RAP, 2005
									117.8	Olot (O)	ICC and IGN, 2005
									140.3	PYAS	GIS-RAP, 2005
									192.8	PYLS	GIS-RAP, 2005
									205.6	РҮLО	GIS-RAP, 2005
									233.9	РҮА	GIS-RAP, 2005
									255.2	РҮАТ	GIS-RAP, 2005
									282.6	BRGM	GIS-RAP, 2005
2003	60	21	10:34:16	39.42N	0.01W	Valencia (Spain)	10	4.6(M _{bLg})	31.4	Puig (V)	IGN, 2005
									50.3	Gandía (V)	IGN, 2005
2004	03	07	06:37	35.04 N	4.02 W	Alhucemas	ı	5.0(M _{bLg})	8	CME (temporal st.)	ICC, 2005

ICC, 2005

GAS (temporal st.)

œ

Día	, ĭ, ĭ	этс) JTC)	Latitud	Longitud	Área epicentral	h (km)	ML	Distancia epicentral (km)	Estación	Agencia
21 15:48:04.8 42.34 N	48:04.8 42.34 N	42.34 N		2.17 E	Ripollés (Spain)	4	4.0	55.8	Andorra	Crecit, 2005
								76.9	Celoni-1 (C1)	ICC, 2005
								78.2	Celoni-2(C2)	ICC, 2005
								22.6	Llívia-1 (L1)	ICC, 2005
								21.2	Llívia-2 (L2)	ICC, 2005
								111.6	PILI	GIS-RAP, 2005
								15.2	РУЦ	GIS-RAP, 2005
								36.8	РҮРК	GIS-RAP, 2005
								59.1	РҮГЕ	GIS-RAP, 2005
								68.7	РҮРЕ	GIS-RAP, 2005
								72.8	PYOR	GIS-RAP, 2005
								79.3	РҮВА	GIS-RAP, 2005
								83.6	РҮГО	GIS-RAP, 2005
								102.3	РҮРТ	GIS-RAP, 2005
								134.4	PYAS	GIS-RAP, 2005
								179.2	РҮСА	GIS-RAP, 2005
								187.4	РҮLS	GIS-RAP, 2005
								199.9	РУГО	GIS-RAP, 2005
								249.8	РҮАТ	GIS-RAP, 2005
								353.1	000	GIS-RAP, 2005

А
g
ä
Ĩ,
ğ
\checkmark

Jencia	tAP, 2005	tAP, 2005	tAP, 2005	tap, 2005	1 IGN, 2005
β	GIS-F	GIS-F	GIS-F	GIS-F	ICC and
Estación	1 90	РҮВЕ	ОССН	OGAN	Olot (O)
Distancia epicentral (km)	381.7	56.3	461.0	505.7	31.7
ML					
h (km)					
Área epicentral					
Longitud					
Latitud					
Tiempo (UTC)					
Día					
Mes					
Año					

h _o = 10 m					
T(s)	Freq (Hz)	C1(freq)	C2(freq)	C4 (freq)	Sigma
10.0000	0.1000	-3.7	0.69	0.0011	0.598
9.0090	0.1110	-3.7	0.72	0.0009	0.589
8.0000	0.1250	-3.8	0.76	0.0008	0.584
6.9930	0.1430	-3.9	0.80	0.0007	0.589
5.9880	0.1670	-3.9	0.85	0.0006	0.590
5.4945	0.1820	-4.0	0.88	0.0005	0.592
5.0000	0.2000	-4.1	0.93	0.0004	0.593
4.5045	0.2220	-4.1	0.93	0.0003	0.595
4.0000	0.2500	-4.1	0.96	0.0002	0.604
3.8023	0.2630	-4.1	0.97	0.0001	0.606
3.5971	0.2780	-4.1	0.98	0.0000	0.606
3.4014	0.2940	-4.1	0.99	0.0000	0.603
3.3333	0.3000	-4.1	0.98	0.0000	0.602
3.2051	0.3120	-4.1	0.99	0.0000	0.603
3.0030	0.3330	-4.1	1.01	0.0000	0.603
2.8011	0.3570	-4.0	1.01	-0.0001	0.597
2.5974	0.3850	-4.1	1.02	-0.0001	0.589
2.5000	0.4000	-4.1	1.04	-0.0002	0.586
2.3981	0.4170	-4.1	1.04	-0.0002	0.584
2.1978	0.4550	-4.0	1.04	-0.0003	0.575
2.0000	0.5000	-3.9	1.05	-0.0004	0.577
1.7986	0.5560	-3.9	1.07	-0.0005	0.582
1.6667	0.6000	-3.9	1.08	-0.0006	0.582
1.6000	0.6250	-3.9	1.09	-0.0007	0.584
1.4993	0.6670	-3.8	1.09	-0.0008	0.585
1.4286	0.7000	-3.7	1.09	-0.0008	0.584
1.4006	0.7140	-3.7	1.09	-0.0008	0.584
1.3004	0.7690	-3.7	1.10	-0.0009	0.590
1.2500	0.8000	-3.6	1.10	-0.0009	0.590
1.2005	0.8330	-3.6	1.09	-0.0010	0.588
1.1111	0.9000	-3.4	1.08	-0.0010	0.581
1.1001	0.9090	-3.4	1.08	-0.0010	0.580
1.0000	1.0000	-3.3	1.06	-0.0011	0.576
0.9091	1.1000	-3.2	1.07	-0.0012	0.569
0.9001	1.1110	-3.2	1.07	-0.0012	0.568
0.8503	1.1760	-3.2	1.07	-0.0012	0.566

Tabla A.2. Coeficientes de la ecuación predictiva de las ordenadas del espectro de aceleración, SA, $(\log_{10} SA_H(f) = C_1(f) + C_2(f) \cdot M_L - \log_{10} r + C_4(f) \cdot r \pm \sigma)$ para h_o = 10 km. El PGA y el SA están expresados en cm/s².

T(s)	Freg (Hz)	C1(freg)	C2(freg)	C4 (freg)	Sigma
0.8333	1.2000	-3.2	1.07	-0.0012	0.567
0.8000	1 2500	-3.1	1 05	-0.0013	0.569
0 7692	1 3000	-3.0	1 04	-0.0013	0.571
0 7502	1 3330	-2.9	1.03	-0.0013	0.569
0 7143	1 4000	-2.8	1.02	-0.0014	0.560
0.6998	1 4290	-2.8	1.02	-0.0014	0.556
0.6798	1 4710	-2.7	1.01	-0.0014	0.548
0.6667	1.5000	-27	1.01	-0.0015	0.544
0.6601	1.5150	-2.7	1.01	-0.0015	0.543
0.6402	1.5620	-2.6	1.00	-0.0015	0.539
0.6250	1.6000	-2.6	1.00	-0.0015	0.536
0.6200	1.6000	-2.6	0.99	-0.0015	0.534
0.5200	1.6670	-2.5	0.99	-0.0015	0.532
0.5999	1.0070	-2.5	0.99	-0.0015	0.532
0.5862	1.7000	-2.5	0.99	-0.0016	0.531
0.5500	1.7240	-2.5	0.98	-0.0010	0.530
0.5599	1.7800	-2.4	0.98	-0.0016	0.526
0.5556	1.0000	-2.4	0.98	-0.0018	0.527
0.5400	1.0520	-2.4	0.98	-0.0017	0.523
0.5263	1.9000	-2.4	0.97	-0.0017	0.518
0.5200	1.9230	-2.4	0.97	-0.0017	0.516
0.5000	2.0000	-2.3	0.96	-0.0017	0.509
0.4801	2.0830	-2.2	0.95	-0.0018	0.505
0.4762	2.1000	-2.2	0.94	-0.0018	0.504
0.4600	2.1740	-2.1	0.93	-0.0019	0.502
0.4545	2.2000	-2.0	0.92	-0.0019	0.501
0.4399	2.2730	-1.9	0.90	-0.0019	0.499
0.4348	2.3000	-1.9	0.90	-0.0019	0.498
0.4200	2.3810	-1.8	0.88	-0.0019	0.492
0.4167	2.4000	-1.7	0.87	-0.0019	0.491
0.4000	2.5000	-1.6	0.85	-0.0019	0.484
0.3846	2.6000	-1.5	0.84	-0.0020	0.479
0.3799	2.6320	-1.5	0.83	-0.0020	0.477
0.3704	2.7000	-1.5	0.82	-0.0020	0.474
0.3600	2.7780	-1.4	0.81	-0.0021	0.474
0.3571	2.8000	-1.4	0.81	-0.0021	0.473
0.3448	2.9000	-1.2	0.79	-0.0021	0.470
0.3400	2.9410	-1.2	0.78	-0.0021	0.469
0.3333	3.0000	-1.1	0.77	-0.0021	0.468
0.3200	3.1250	-1.0	0.75	-0.0022	0.464
0.3170	3.1550	-1.0	0.75	-0.0022	0.463
0.3030	3.3000	-0.9	0.73	-0.0023	0.457

T(e)	Frog (Hz)	C1(frog)	C2(frog)	C4 (frog)	Sigma
0 3000	3 3330		0.73	0.0023	0.457
0.3000	3.3350	-0.9	0.73	-0.0023	0.457
0.2900	3.5710	-0.9	0.72	-0.0023	0.456
0.2800	3.6000	-0.8	0.72	-0.0024	0.455
0.2778	3.0000	-0.8	0.72	-0.0024	0.455
0.2632	3.8000	-0.7	0.70	-0.0025	0.449
0.2597	3.8500	-0.7	0.70	-0.0025	0.448
0.2500	4.0000	-0.6	0.68	-0.0025	0.444
0.2400	4.1670	-0.5	0.66	-0.0026	0.442
0.2381	4.2000	-0.5	0.66	-0.0026	0.442
0.2273	4.4000	-0.4	0.65	-0.0027	0.440
0.2198	4.5500	-0.3	0.64	-0.0027	0.438
0.2174	4.6000	-0.3	0.63	-0.0027	0.438
0.2083	4.8000	-0.2	0.62	-0.0027	0.435
0.2000	5.0000	-0.1	0.61	-0.0028	0.435
0.1905	5.2500	-0.1	0.59	-0.0028	0.435
0.1900	5.2630	0.0	0.59	-0.0028	0.435
0.1818	5.5000	0.1	0.56	-0.0029	0.432
0.1800	5.5560	0.1	0.55	-0.0029	0.431
0.1739	5.7500	0.3	0.52	-0.0029	0.427
0.1700	5.8820	0.3	0.51	-0.0029	0.427
0.1667	6.0000	0.4	0.50	-0.0029	0.427
0.1600	6.2500	0.4	0.49	-0.0029	0.427
0.1538	6.5000	0.5	0.48	-0.0029	0.429
0.1500	6.6670	0.5	0.47	-0.0029	0.432
0.1481	6.7500	0.6	0.46	-0.0029	0.433
0.1429	7.0000	0.7	0.43	-0.0030	0.431
0.1400	7.1430	0.8	0.42	-0.0030	0.429
0.1379	7.2500	0.8	0.42	-0.0030	0.429
0.1333	7.5000	0.9	0.40	-0.0031	0.428
0.1300	7.6920	0.9	0.40	-0.0031	0.428
0.1290	7.7500	0.9	0.40	-0.0032	0.428
0.1250	8.0000	1.0	0.39	-0.0032	0.426
0.1200	8.3330	1.0	0.38	-0.0033	0.428
0.1176	8.5000	1.0	0.38	-0.0033	0.428
0.1111	9.0000	1.1	0.36	-0.0033	0.429
0.1100	9.0910	1.1	0.36	-0.0033	0.430
0.1053	9.5000	1.1	0.35	-0.0033	0.433
0.1000	10.0000	1.1	0.35	-0.0033	0.438
0.0952	10.5000	1.1	0.35	-0.0033	0.446
0.0909	11.0000	1.1	0.35	-0.0033	0.445
0.0900	11.1110	1.1	0.35	-0.0034	0.445

					1
T(s)	Freq (Hz)	C1(freq)	C2(freq)	C4 (freq)	Sigma
0.0870	11.5000	1.1	0.35	-0.0034	0.442
0.0850	11.7650	1.1	0.34	-0.0034	0.441
0.0833	12.0000	1.1	0.34	-0.0034	0.441
0.0800	12.5000	1.1	0.34	-0.0035	0.445
0.0769	13.0000	1.1	0.34	-0.0035	0.447
0.0750	13.3330	1.1	0.34	-0.0035	0.444
0.0741	13.5000	1.1	0.34	-0.0035	0.443
0.0714	14.0000	1.1	0.35	-0.0036	0.442
0.0700	14.2860	1.1	0.35	-0.0036	0.443
0.0690	14.5000	1.1	0.35	-0.0036	0.445
0.0667	15.0000	1.1	0.36	-0.0037	0.447
0.0650	15.3850	1.0	0.36	-0.0037	0.449
0.0625	16.0000	1.0	0.37	-0.0036	0.452
0.0600	16.6670	1.0	0.36	-0.0037	0.456
0.0588	17.0000	1.0	0.35	-0.0037	0.456
0.0556	18.0000	1.0	0.35	-0.0037	0.459
0.0530	18.8680	1.0	0.36	-0.0037	0.458
0.0500	20.0000	1.0	0.36	-0.0037	0.461
0.0455	22.0000	0.9	0.36	-0.0037	0.471
0.0400	25.0000	0.9	0.37	-0.0036	0.477
0.0357	28.0000	0.8	0.39	-0.0036	0.473
0.0340	29.4120	0.7	0.40	-0.0035	0.470
0.0323	31.0000	0.7	0.40	-0.0035	0.466
0.0300	33.3330	0.6	0.41	-0.0035	0.462
0.0294	34.0000	0.6	0.41	-0.0034	0.462

Apéndice B

Apéndice B:

Validación de técnicas de simulación numérica del movimiento sísmico del suelo

Apéndice B

cicio Benchmark.
l ejerc
n del
realizaciór
oara la
oonibles p
nes dis
odelizacio
las m
de
I. Listado
bla B.1
ם'

Participante	Método	Estructura geológica	Valores de Q	Ondas Incidentes	Movimientos de Entrada	Puntos de cálculo
Institut Cartogràfic de Catalunya (Barcelona)	Shake	AUTH	Real values*	S waves	Ricker 1Hz	60 receivers and strong motion stations
Institut Cartogràfic de Catalunya (Barcelona)	Shake	ГСІН	Real values*	S waves	Ricker 1Hz	60 receivers and strong motion stations
Institut Cartogràfic de Catalunya (Barcelona)	Kennet	AUTH	Real values*	S waves	Ricker 1Hz	60 receivers and strong motion stations
Institut Cartogràfic de Catalunya (Barcelona)	Kennet	HI91	Real values*	S waves	Ricker 1Hz	60 receivers and strong motion stations
Institut Cartogràfic de Catalunya (Barcelona)	Aki-Larner	Simplified	Real values*	S waves	Ricker 1Hz	60 receivers
Institut Cartogràfic de Catalunya (Barcelona)	Shake	AUTH	Real values*	S waves	Ricker 5Hz	60 receivers and strong motion stations
Institut Cartogràfic de Catalunya (Barcelona)	Shake	ГСІН	Real values*	S waves	Ricker 5Hz	60 receivers and strong motion stations
Institut Cartogràfic de Catalunya (Barcelona)	Kennet	АЛТН	Real values*	S waves	Ricker 5Hz	60 receivers and strong motion stations
Institut Cartogràfic de Catalunya (Barcelona)	Kennet	ГСІН	Real values*	S waves	Ricker 5Hz	60 receivers and strong motion stations
Institut Cartogràfic de Catalunya (Barcelona)	Aki-Larner	Simplified	Real values*	S waves	Ricker 5Hz	60 receivers

ш
Ð
ŝ
Ĕ
ğ
A

Institut Cartogràfic de Catalunya (Barcelona)	Shake	AUTH	Real values*	S waves	Arnaia earthquake	Strong Motion Stations
Institut Cartogràfic de Catalunya (Barcelona)	Shake	АUTH	Real values*	S waves	Kozani earthquake at Profitis station	Strong Motion Stations
Comenius University (Bratislava)	Finite Differences	АЛТН	Real values*	S waves	Ricker 1Hz	60 receivers and strong motion stations
Comenius University (Bratislava)	Finite Differences	АUTH	Real values*	P waves	Ricker 1Hz	60 receivers and strong motion stations
Comenius University (Bratislava)	Finite Differences	АUTH	High values	S waves	Ricker 1Hz	60 receivers and strong motion stations
Comenius University (Bratislava)	Finite Differences	AUTH	High values	P waves	Ricker 1Hz	60 receivers and strong motion stations
Comenius University (Bratislava)	Finite Differences	HI91	Real values*	S waves	Ricker 1Hz	60 receivers and strong motion stations
Comenius University (Bratislava)	Finite Differences	НВН	Real values*	P waves	Ricker 1Hz	60 receivers and strong motion stations
Comenius University (Bratislava)	Finite Differences	AUTH	Real values*	S waves	Ricker 0.3Hz	60 receivers and strong motion stations
Comenius University (Bratislava)	Finite Differences	AUTH	Real values*	P waves	Ricker 0.3Hz	60 receivers and strong motion stations
Comenius University (Bratislava)	Finite Differences	АUTH	High values	S waves	Ricker 0.3Hz	60 receivers and strong motion stations
Comenius University (Bratislava)	Finite Differences	АUTH	High values	P waves	Ricker 0.3Hz	60 receivers and strong motion stations
Comenius University (Bratislava)	Finite Differences	НСІН	Real values*	S waves	Ricker 0.3Hz	60 receivers and strong motion stations

60 receivers and strong motion stations	60 receivers and strong motion stations									
Ricker 0.3Hz	Ricker 3Hz	Arnaia earthquake	Arnaia earthquake	Arnaia earthquake	Kozani earthquake at Profitis station					
P waves	S waves	S waves	S waves	S waves						
Real values*	Real values*	Real values*	High values	High values	Real values*	Real values*	Real values*	High values	Real values*	Real values*
НЮЛ	АЛТН	АЛТН	АЛТН	АЛТН	HIGIH	HIBT	НТИА	НТИА	HIBT	AUTH
Finite Differences	Finite Differences									
Comenius University (Bratislava)	Comenius University (Bratislava)									

ш
ģ
ŝ
Ĩ,
ğ
マ

60 receivers and strong motion stations	60 receivers	60 receivers	60 receivers	60 receivers	Strong Motion Stations				
Kozani earthquake at Profitis station	Kozani earthquake at Profitis station	June 24, 1994	June 25, 1994	June 26, 1994	Ricker 1Hz	Ricker 1Hz	Arnaia earthquake	Kozani earthquake at Profitis station	Ricker 1Hz
S waves	S waves	S waves	S waves	S waves	S waves				
High values	Real values*	Real values*	High values	Real values*	Real values*	Real values*	Real values*	Real values*	Real values*
АЛТН	HBJ	AUTH	АЛТН	НВЛ	АЛТН	HIBT	АЛТН	AUTH	АЛТН
Finite Differences	Aki-Larner	Aki-Larner	Kennet	Kennet	Shake				
Comenius University (Bratislava)	Joseph Fourier University (Grenoble)	Joseph Fourier University (Grenoble)	Joseph Fourier University (Grenoble)	Joseph Fourier University (Grenoble)	Aristotle University of Thessaloniki				

ш
Ð
ŝ
Ĕ
ğ
A

Strong Motion Stations	TST (Test Site)								
Ricker 1Hz	Ricker 5Hz	Ricker 5Hz	Kozani earthquake at Kozani station	Kozani earthquake at Kozani station	Ricker 1Hz scaled to 0.2g	Ricker 1Hz scaled to 0.2g	Ricker 5Hz scaled to 0.2g	Ricker 5Hz scaled to 0.2g	Ricker 1Hz scaled to 0.2g
S waves									
Mean values	Real values*								
LGIH	А∪ТН	НЮТ	АЛТН	НЮТ	А∪ТН	НЮТ	АЛТН	НЮТ	АИТН
Shake	Cyberquake								
Aristotle University of Thessaloniki	Ecole Centrale de Paris (Chatenay- Malabry)								

ш
ice
pu
Ъé
P

TST (Test Site)	TST (Test Site)	60 receivers	60 receivers and strong motion stations	60 receivers and strong motion stations	60 receivers and strong motion stations	60 receivers and strong motion stations	60 receivers and strong motion stations	0006
Kozani earthquake at Kozani station scaled to 0.2g	Kozani earthquake at Profitis station scaled to 0.2g	Ricker 4Hz	Arnaia earthquake	June 24, 1994	Ricker 1Hz	Ricker 3Hz	Ricker 5Hz	Número de Archivos ∼
S waves	S waves	S waves	S waves	S waves	S waves	S waves	S waves	
Real values*	Real values*	Real values*	Real values*	Real values*	Real values*	Real values*	Real values*	en previos proyectos :elerométricas.
АИТН	АИТН	НЮЛ	ГСІН	LGIH	LGIH	LGIH	LGIH	ición geofísica en la zona le se sitúan estaciones ac
Cyberquake	Cyberquake	Finite Differences	Boundary Elements	Boundary Elements	Boundary Elements	Boundary Elements	Boundary Elements	a el valle tras la investiga ólo para los puntos dono
Ecole Centrale de Paris (Chatenay- Malabry)	Ecole Centrale de Paris (Chatenay- Malabry)	Charles University (Praha)	Ecole Centrale de Paris (Paris)	Ecole Centrale de Paris (Paris)	Ecole Centrale de Paris (Paris)	Ecole Centrale de Paris (Paris)	Ecole Centrale de Paris (Paris)	*valores propuestos par ** cálculos disponibles s
	Ecole Centrale de Paris (Chatenay- Malabry) TST (Test Site) Malabry) TST (Test Site)	Ecole Centrale de Paris (Chatenay- Malabry)Cyberquake CyberquakeAUTHReal values*S wavesKozani earthquake at Kozani station scaled to 0.2gTST (Test Site)Ecole Centrale de Paris (Chatenay- Malabry)CyberquakeAUTHReal values*S wavesKozani earthquake at Profitis station scaled to 0.2gTST (Test Site)	Ecole Centrale de Paris (Chatenay- Malabry)CyberquakeAUTHReal values*S wavesKozani earthquake at Kozani station scaled to 0.2gTST (Test Site)Ecole Centrale de Paris (Chatenay- Malabry)CyberquakeAUTHReal values*S wavesKozani earthquake at Profitis station scaled to 0.2gTST (Test Site)Charles University (Praha)Finite DifferencesLGIHReal values*S wavesRicker 4Hz60 receivers	Ecole Centrale de Paris (Chatenay- Malabry)CyberquakeAUTHReal values*S wavesKozani earthquake at Kozani station scaled to 0.2gTST (Test Site)Ecole Centrale de Paris (Chatenay- Malabry)CyberquakeAUTHReal values*S wavesKozani earthquake at Profitis station scaled to 0.2gTST (Test Site)Charles University (Praha)Finite DifferencesLGIHReal values*S wavesKozani earthquake at Profitis station scaled to 0.2gTST (Test Site)Charles University (Praha)Finite DifferencesLGIHReal values*S wavesRicker 4Hz60 receivers and strong motion stationsEcole Centrale de (Praha)Boundary ElementsLGIHReal values*S wavesRicker 4Hz60 receivers and strong	Ecole Centrale de Paris (Chatenay- Malabry)Cyberquake Chatenay- Malabry)AUTHReal values* Real values*S wavesKozani earthquake at Kozani station scaled to 0.2gTST (Test Site)Ecole Centrale de Paris (Chatenay- Malabry)CyberquakeAUTHReal values*S wavesKozani earthquake at Profitis station scaled to 0.2gTST (Test Site)Ecole Centrale de Paris (Chatenay- Malabry)Charles UniversityKozani earthquake at Profitis station scaled to 0.2gTST (Test Site)Charles University (Prana)Finite DifferencesLGIHReal values*S wavesRicker 4Hz60 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesArnaia earthquake Arnaia earthquake60 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesArnaia earthquake60 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesArnaia earthquake60 receivers and strongFeole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesArnaia earthquake60 receivers and strong	Ecole Centrale de Paris (Chatenay- Malabry)CyberquakeAUTHReal values'S wavesKozani earthquake at Kozani stationTST (Test Site)Ecole Centrale de Paris (Chatenay- Malabry)CyberquakeAUTHReal values'S wavesKozani earthquake at Profitis stationTST (Test Site)Ecole Centrale de Paris (Chatenay- Malabry)CyberquakeLGIHReal values'S wavesKozani earthquake at Profitis stationTST (Test Site)Chateray- Malabry)Chateray- Malabry)LGIHReal values'S wavesKozani earthquake at Profitis stationTST (Test Site)Chateray- Malabry)Finite DifferencesLGIHReal values'S wavesKozani earthquake at Profitis stationTST (Test Site)Chateray- Malabry)Finite DifferencesLGIHReal values'S wavesMalabry60 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values'S wavesJune 24, 190460 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values'S wavesJune 24, 190460 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values'S wavesJune 24, 190460 receivers and strong	Ecole Centrale de Paris (Chatenay- Malabry)CyberquakeAUTHReal values*S wavesKozani earthquake at Kozani station TST (Test Ste)TST (Test Ste)Ecole Centrale de Paris (Chatenay- Malabry)CyberquakeAUTHReal values*S wavesKozani earthquake at Kozani station TST (Test Ste)TST (Test Ste)Ecole Centrale de Paris (Chatenay- Malabry)CyberquakeAUTHReal values*S wavesKozani earthquake at Profitis station TST (Test Ste)TST (Test Ste)Chartes UniversityFinite DifferencesLGIHReal values*S wavesKozani earthquake at Profitis stationTST (Test Ste)Chartes UniversityFinite DifferencesLGIHReal values*S wavesRicker 4Hz60 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesJune 24, 190460 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesJune 24, 190460 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesJune 24, 190460 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesJune 24, 190460 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesJune 24, 190460 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*	Ecole Centrale de Paris (Chatrendy Maladyry)CyberquakeAUTHReal values*S wavesKozani earthquake at Kozani stationTST (Test Site)Ecole Centrale de Paris (Chatrendy (Paria)CyberquakeAUTHReal values*S wavesKozani earthquake at Profits stationTST (rest Site)Ecole Centrale de (Paria)CyberquakeAUTHReal values*S wavesKozani earthquake at Profits stationTST (rest Site)Charles UniversityFinite DifferencesLGIHReal values*S wavesRicker 4Hz60 receivers and strongEcole Centrale de (Paris)Boundary ElementsLGIHReal values*S wavesArnaia earthquake60 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesArnaia earthquake60 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesArnaia earthquake60 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesArnaia earthquake60 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesArnaia earthquake60 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesRicker 1Hz60 receivers and strongEcole Centrale de Paris (Paris)Boundary ElementsLGIHReal values*S wavesRicker 1Hz60 receivers and str

Apéndice C:

Modelización sísmica 2D en el valle pirenaico de la Cerdanya

Apéndice C

Figura C.1. Registros sísmicos temporales de la componente U y W simulados utilizando el Modelo 1 de estructura y materiales elásticos. La señal está escalada en amplitud por 100.

Apéndice C

Figura C.2. Espectro de la componente U y W simulados utilizando el Modelo 1 de estructura y materiales elásticos. La señal está escalada en amplitud por 1000.

Apéndice C

Figura C.3. Registros sísmicos temporales de la componente U y W simulados utilizando el Modelo 1 de estructura y materiales ligeramente viscoelásticos. La señal está escalada en amplitud por 100.

Figura C.4. Espectro de la componente U y W simulados utilizando el Modelo 1 de estructura y materiales ligeramente viscoelásticos. La señal está escalada en amplitud por 1000.

Figura C.5. Registros sísmicos temporales de la componente U y W simulados utilizando el Modelo 1 de estructura y materiales altamente viscoelásticos. La señal está escalada en amplitud por 100.

Figura C.6. Espectro de la componente U y W simulados utilizando el Modelo 1 de estructura y materiales altamente viscoelásticos. La señal está escalada en amplitud por 1000.

Apéndice C

Figura C.7. Registros sísmicos temporales de la componente U y W simulados utilizando el Modelo 2 de estructura y materiales elásticos. La señal está escalada en amplitud por 100.

Figura C.8. Espectro de la componente U y W simulados utilizando el Modelo 2 de estructura y materiales elásticos. La señal está escalada en amplitud por 1000.

Apéndice C

Figura C.9. Registros sísmicos temporales de la componente U y W simulados utilizando el Modelo 2 de estructura y materiales ligeramente viscoelásticos. La señal está escalada en amplitud por 100.

Figura C.10. Espectro de la componente U y W simulados utilizando el Modelo 2 de estructura y materiales ligeramente viscoelásticos. La señal está escalada en amplitud por 1000.

Figura C.11. Registros sísmicos temporales de la componente U y W simulados utilizando el Modelo 1 de estructura y materiales altamente viscoelásticos. La señal está escalada en amplitud por 100.

Figura C.12. Espectro de la componente U y W simulados utilizando el Modelo 2 de estructura y materiales altamente viscoelásticos. La señal está escalada en amplitud por 1000.

Figura C.14. Fotogramas de la evolución del frente de ondas planas propagándose en el valle.

Apéndice C

Apéndice C

