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companys amb qui he col·laborat en aquest projecte.
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Abstract

This PhD thesis is concerned with survival analysis in the presence of multiple endpoints and
complex censoring patterns. In this context, we propose a new methodology for interval-censored
semi-competing risks data. This work is motivated by the Spanish Bladder Cancer/EPICURO
Study, the most important study on bladder cancer ever done in Spain. Our contribution in this
study was focused on modelling the course of the disease and on identifying prognostic factors of
its evolution.

The course of complex diseases such as cancer or HIV-infection is characterized by the occurrence of
multiple events on the same patient, for instance, the relapse of the disease, or death. These events
can be terminating events, if the follow-up of the individual is stopped by their occurrence, or inter-
mediate events, if the individual continues under observation after their occurrence. The presence
of terminating events complicates the analysis since their occurrence prevents from observing other
events later, inducing a possibly dependent censoring.

Appropriate methods are required in this context and, specifically, in this thesis we will focus on
competing risks, multi-state models and semi-competing risks. These methodologies will be useful
to describe important aspects of bladder cancer course. In particular, two novel contributions to the
understanding of bladder cancer result from an appropriate use of competing risks and multi-state
models: (1) the characterization of those patients with a high risk of progressing as a first event
after diagnosis, and (2) the proposal of a dynamical prognostic model for progression.

Competing risks arises when we model the time until the first of K possible events, together with
the indicator of the type of event observed. In the Spanish Bladder Cancer/EPICURO Study
we are interested in the time until the first event is observed, distinguishing between recurrence,
progression or death. The characterization of this first event is of paramount clinical importance
in order to better target the adequate treatment for each patient.

Multi-state modelling is handled by describing all possible paths that the course of disease could
follow, and establishing relationships between the events of interest. In the Spanish Bladder Can-
cer/EPICURO Study, for instance, a patient after is diagnosed could experience a recurrence, and
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then die, or he/she could die in remission (before any disease-related event is observed). One in-
teresting feature of multi-state models is the possibility to make updated predictions according to
the occurrence of intermediate events along time. For the bladder cancer course, we will be able to
assess the influence that the occurrence of a recurrence has on the posterior risk of progression.

A special kind of multi-state model is one with an intermediate event, E1, and a terminating event,
E2. Denote by T1 and T2 their corresponding time-to-event endpoints. The study of the marginal
law for T1 is not addressed neither by the competing risks approach nor by the multi-state modelling.
While the competing risks approach allows us to analyse the time T to the first between E1 and
E2, that is, T = min(T1, T2), multi-state modelling focus on the conditional law of T2|T1, that is, in
how the occurrence of E1 modifies the risk of E2. The distribution of T1 is unidentifiable based only
on observed data. The above situation is known as semi-competing risks data (Fine et al. 2001),
where the occurrence of the terminating event prevents the observation of the intermediate event,
and thus T2 dependently censors T1. The strategy of Fine and colleagues to solve this problem
is to assume a joint model for (T1, T2), and then recover the distribution for T1 derived from the
assumed joint model.

Our contribution is focused towards the development of new methods in this area of survival
analysis. Specifically, we propose a new methodology to deal with interval-censored semi-competing
risks data, which arises when the time to the intermediate event, T1, is interval-censored. In many
longitudinal studies the occurrence of the intermediate event is evaluated at periodic visits, so T1

is only known to lie between the times of two specific visits. Methods for right-censored semi-
competing risks data are no longer valid in this scenario and a new approach is necessary. We
extend the semi-parametric method proposed by Fine et al. (2001), which assumes a Clayton’s
copula model (1978) to describe the association between T1 and T2. Our methodology consists of
an iterative estimation algorithm which jointly estimates the association structure of the model
and the distribution of the intermediate event.



Resumen

La presente tesis trata sobre técnicas de análisis de supervivencia en situaciones con múltiples even-
tos y patrones complejos de censura. Proponemos una nueva metodoloǵıa para tratar el problema de
riesgos semi-competitivos cuando los datos están censurados en un intervalo. La motivación de este
trabajo nace de nuestra colaboración con el estudio Español de Cáncer de Vejiga (SBC/EPICURO),
el más grande estudio sobre cáncer de vejiga realizado en España hasta el momento. Nuestra par-
ticipación en el mismo se centra en la modelización e identificación de factores pronósticos en el
curso de la enfermedad.

El curso de enfermedades complejas tales como el cáncer o la infección por VIH, se caracteriza por
la ocurrencia de múltiples eventos en el mismo paciente, como por ejemplo la recáıda o la muerte.
Estos eventos pueden ser finales, cuando el seguimiento del paciente termina con el evento, o bien
intermedios, cuando el individuo sigue bajo observación. La presencia de eventos finales complica
el análisis de los eventos intermedios, ya que impiden su completa observación, induciendo una
posible censura dependiente.

En este contexto, se requieren metodoloǵıas apropiadas. Se utilizan los siguientes métodos: ries-
gos competitivos, modelos multi-estado y riesgos semi-competitivos. De la aplicación de métodos
para riesgos competitivos y modelos multi-estado resultan dos aportaciones relevantes sobre el
conocimiento de la enfermedad: (1) la caracterización de los pacientes con un alto riesgo de pro-
gresión como primer evento después del diagnóstico, y (2) la construcción de un modelo pronóstico
y dinámico para el riesgo de progresión.

El problema de riesgos competitivos aparece cuando queremos describir el tiempo hasta el primero
de K posibles eventos, junto con un indicador del tipo de evento observado. En el estudio
SBC/EPICURO es relevante estudiar el tiempo hasta el primero entre recidiva, progresión o muerte.
La caracterización de este primer evento permitiŕıa seleccionar el tratamiento más adecuado de
acuerdo con el perfil de riesgo basal del paciente.

Los modelos multi-estado describen las diferentes tipoloǵıas que el curso de la enfermedad puede
seguir, estableciendo relaciones entre los eventos de interés. Por ejemplo, un paciente puede ex-
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perimentar una recidiva y después morir, o bien puede morir sin haber tenido recáıda alguna. El
potencial interesante de los modelos multi-estado es que permiten realizar predicciones sobre el
riesgo de futuros eventos dada la historia del paciente hasta ese momento. En el caso del cáncer de
vejiga, podremos evaluar la influencia que tiene en el riesgo de progresar el haber tenido o no una
recidiva previa.

Un caso especial de modelo multi-estado es el que contiene un evento intermedio E1 y uno final, E2.
Sean T1 y T2 los tiempos hasta tales eventos, respectivamente. Ni el análisis de riesgos competitivos
ni los modelos multi-estado permiten estudiar la distribución marginal de T1. En efecto, el análisis
de riesgos competitivos trata con la distribución del mı́nimo entre los dos tiempos, T = min(T1, T2),
mientras que los modelos multi-estado se centran en la distribución condicional de T2 dado T1, T2|T1,
en cómo la ocurrencia de E1 modifica el riesgo de E2. En ambos casos, la distribución de T1 no es
identificable a partir de los datos observados. La situación anteriormente descrita donde un evento
final impide la observación de un evento intermedio se conoce como riesgos semi-competitivos (Fine
et al., 2001). La estrategia de estos autores asume un modelo para la distribución conjunta (T1, T2)
para aśı recuperar la distribución de T1 derivada de ese modelo.

Proponemos una nueva metodoloǵıa para tratar con riesgos semi-competitivos cuando el tiempo
hasta el evento intermedio, T1, esta censurado en un intervalo. En muchos estudios médicos lon-
gitudinales, la ocurrencia del evento de interés se evalúa en visitas periódicas al paciente, por lo
que T1 es desconocido, aunque se conoce que pertenece al intervalo comprendido entre los tiempos
de dos visitas consecutivas. Los métodos para riesgos semi-competitivos en el contexto usual de
censura por la derecha no son válidos en este caso y se requiere una nueva aproximación. En este
trabajo ampliamos la metodoloǵıa semi-paramétrica propuesta por Fine et al. (2001), que asume
una cópula de Clayton (1978) (1978) para describir la dependencia entre T1 y T2. Bajo el mismo
modelo de asociación, desarrollamos un algoritmo iterativo que estima conjuntamente el parámetro
de asociación del modelo de cópula, aśı como la función de supervivencia del tiempo al evento
intermedio T1.



Resum

Aquesta tesi tracta sobre tècniques d’anàlisi de supervivència en situacions amb múltiples esde-
veniments i patrons complexes de censura. Proposem una nova metodologia per tractar la situació
de riscos semi-competitius quan les dades estan censurades en un interval. La motivació del treball
neix de la nostra col·laboració amb l’Estudi Espanyol del Càncer de Bufeta (SBC/EPICURO), el
més gran estudi sobre càncer de bufeta realitzat fins ara a l’Estat Espanyol. La nostra contribució
en el projecte es centra en la modelització i identificació de factors pronòstics de l’evolució de la
malaltia.

L’evolució de malalties complexes, com el càncer o la infecció VIH, es caracteritza per la ocurrència
de múltiples esdeveniments en el mateix pacient: per exemple, la recaiguda de la malaltia o
la mort. Aquests esdeveniments poden ser finals, quan el seguiment del pacient s’atura de-
sprés de l’esdeveniment, o bé intermedis, quan l’individu continua sota observació. La presència
d’esdeveniments finals complica l’anàlisi dels intermedis ja que n’impedeix la seva completa obser-
vació, induint una possible censura depenent.

En aquest context, es requereixen metodologies apropiades. En aquest treball els següents mètodes
són emprats: riscos competitius, models multi-estat i riscos semi-competitius. A resultes de
l’aplicació de mètodes per riscos competitius i models multi-estat, proposem dues noves aporta-
cions rellevants al coneixement de la malaltia: (1) la caracterització dels pacients amb un alt risc
de progressió com a primer esdeveniment després de la diagnosi, i (2) la construcció d’un model
pronòstic dinàmic per al risc de progressió.

La situació de riscos competitius apareix quan es vol descriure el temps fins al primer esdeveniment
d’entre K possibles, juntament amb un indicador del tipus d’esdeveniment observat. En l’estudi
EPICURO, és rellevant estudiar el temps fins al primer esdeveniment, distingint entre una recidiva
del tumor, progressió del mateix o mort. La caracterització d’aquest primer esdeveniment permetria
seleccionar el millor tractament d’acord amb el perfil de risc basal del pacient.

Els models multi-estat descriuen les diferents evolucions que la malaltia pot seguir, establint rela-
cions entre els esdeveniments d’interès: per exemple, un pacient pot experimentar una recidiva del

v



vi

tumor primari, i després morir, o bé pot morir en remissió (morir abans de tenir una recaiguda
relacionada amb la malaltia). Una caracteŕıstica interessant d’aquests models és que permeten fer
prediccions del risc de futurs esdeveniments per a un pacient, d’acord amb la història que hagi
pogut tenir fins aquell moment. En el cas de càncer de bufeta podrem avaluar la influència que té
en el risc de progressar haver patit o no una recidiva prèvia.

Un cas especial de model multi-estat és aquell que conté un esdeveniment intermedi E1, i un
esdeveniment final, E2. Siguin T1 i T2 els temps fins aquests esdeveniments, respectivament. Ni
l’anàlisi de riscos competitius ni els models multi-estat permeten adreçar l’estudi de la distribució
marginal de T1. En efecte, l’anàlisi de riscos competitius tracta amb la distribució del mı́nim entre
els dos temps, T = min(T1, T2), mentre que els models multi-estat es centren en la distribució
condicional de T2|T1, és a dir, en com la ocurrència de E1 modifica el risc de E2. En aquest cas, la
distribució de T1 no és identificable a partir de les dades observades. La situació abans descrita, a on
la ocurrència d’un esdeveniment final impedeix l’observació de l’esdeveniment intermedi, i per tant
T2 censura de forma possiblement depenent T1, és coneguda com a riscos semi-competitius (Fine
et al., 2001). L’estratègia que seguiren passà per assumir un model per a la distribució conjunta
(T1, T2), i aleshores recuperar la distribució marginal de T1 derivada d’aquest model.

Proposem una nova metodologia per tractar amb riscos semi-competitius quan T1, el temps fins a
l’esdeveniment intermedi, està censurat en un interval. En molts estudis mèdics longitudinals, la
ocurrència de l’esdeveniment d’interès s’avalua en visites periòdiques del pacient, i per tant, T1 és
desconegut, però es sap que pertany al interval comprès entre els temps de dues visites consecutives.
Els mètodes per riscos semi-competitius en el context usual de censura per la dreta no són vàlids
en aquest context i és necessària una nova aproximació. En aquest treball, ampliem la metodologia
semi-paramètrica proposada per Fine et al. (2001), que assumeix un model de còpula de Clayton
(1978) per a descriure la dependència entre T1 i T2. Prenent el mateix model per l’associació entre
els temps d’interès, desenvolupem un algoritme iteratiu que estima conjuntament el paràmetre
d’associació del model de còpula, aix́ı com la funció de supervivència del temps intermedi T1.
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Introduction

This PhD thesis is concerned with survival analysis in the presence of multiple endpoints and
complex censoring patterns. In this context, we propose a new methodology for interval-censored
semi-competing risks data.

This work was motivated by the Spanish Bladder Cancer/EPICURO Study, the most important
study on bladder cancer ever done in Spain, supervised by Dr. Núria Malats from the Centro
Nacional de Investigaciones Oncológicas (CNIO). Our contribution in this study was focused on
modelling the course of the disease and on identifying prognostic factors of its evolution.

The course of complex diseases such as cancer or HIV-infection is characterized by the occurrence of
multiple events on the same patient, for instance, the relapse of the disease, death, or the recovery of
the normal levels of a biomarker. These events determine several lifetime or time-to-event endpoints,
which can be described by survival analysis techniques. These events can be terminating events,
if the follow-up of the individual is stopped by their occurrence, or intermediate events, if the
individual continues under observation after their occurrence. The presence of terminating events
complicates the analysis since their occurrence prevents from observing the complete course of
intermediate events, inducing a possibly dependent censoring.

Appropriate methods are required in this context and, specifically, in this thesis we will focus on
competing risks, multi-state models and semi-competing risks. These methodologies will be useful
to describe important aspects of bladder cancer course. In particular, two novel contributions to the
understanding of bladder cancer result from an appropriate use of competing risks and multi-state
models: (1) the characterization of those patients with a high risk of progressing as a first event
after diagnosis, and (2) the proposal of a dynamical prognostic model for progression.

In the following section we briefly describe the three methodologies that we consider in this work.

1
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Figure 1: Evolution of published papers on competing risks in recent years.

Competing risks, multi-state models and semi-competing risks

Competing risks arises when we model the time until the first of K possible events, together with the
indicator of the type of event observed. Competing risks is a field of survival analysis still in ongoing
research. In the last decade (2000-2009), more than 300 methodological papers have appeared
in probability and statistical journals.1 On the other hand, more than 350 papers published in
biomedical journals deal with the competing risks problem.2 Figure 1 shows the increasing trend of
published papers on this topic in the last 10 years, both methodological or applied papers, specially
the second one. The awareness on the competing risks problem has fortunately gone beyond the
statistical community.

In the Spanish Bladder Cancer/EPICURO Study we are interested in the time until the first event is
observed, distinguishing between recurrence, progression or death. The characterization of this first
event is of paramount clinical importance in order to better target the adequate treatment for each
patient. Competing risks could as well help to assess whether the presence of non disease-related
deaths have an impact on the observation of the course of bladder cancer.

Multi-state modelling is handled by describing all possible paths that the course of disease could
follow, and establishing relationships between the events of interest. In the Spanish Bladder Can-
cer/EPICURO Study, for instance, a patient after is diagnosed could experience a recurrence, and
then die, or he/she could die in remission, that is, before any disease-related event is observed. One

1A total of 306 papers identified by a search in Web of Science on May, 18th, with the keyword competing risks
as a topic, from 2000 to 2009, restricted to subject area Statistics&Probability.

2A total of 353 papers identified by a search in Pubmed on May, 18th, with the keyword competing risks in all
fields, from 2000 to 2009, excluding the following statistical journals: Annals of Statistics, Bioinformatics, Biometrical
Journal, Biometrics, Biometrika, Biostatistics, Journal of Applied Statistics, Journal of Biopharmaceutical Statistics,
Lifetime Data Analysis, Pharmaceutical Statistics, statistics in Medicine and Statistical Methods in Medical Research.
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interesting feature of multi-state models is the possibility to make updated predictions according
to the occurrence of intermediate events along time. For instance, for the bladder cancer, we will
be able to assess the influence that the occurrence of a recurrence has on the posterior risk of
progression.

A special kind of multi-state model is described in Figure 2, with an intermediate event, E1, and a
terminating event, E2, with corresponding survival times T1 and T2.

ε1 ε2T1
T2=T1+XX

Origin

ε
T2

ε2

Figure 2: Illustration of the semi-competing risks situation.

This situation is known as semi-competing risk data and differs from the usual multi-state models
formulation because the main interest in a semi-competing risk analysis is the marginal distribution
of the intermediate event. The study of the marginal law for T1 is not addressed neither by the
competing risks approach nor by the multi-state modelling. While the competing risks approach
allows us to analyse the time T to the first between E1 and E2, that is, T = min(T1, T2), the multi-
state modelling focus on the conditional law of T2|T1, that is, in how the occurrence of E1 modifies
the risk of E2.

The difficulty for analyzing the marginal distribution of T1 comes from the fact that the occurrence
of the terminating event prevents the observation of the intermediate event, that is, T2 dependently
censors T1. Fine et al. (2001) first addressed this issue and proposed a strategy for solving this
problem by taking advantage of the fact that, for some individuals, T1 and T2 are both observed.
Thus, if a joint model for (T1, T2) is assumed and fit it with data from these individuals, it will
be possible to recover the distribution for T1. Specifically, they proposed a semi-parametric me-
thod which assumes a Clayton’s copula model to describe the association between the time to the
intermediate event and the time to the terminating event.

Fine’s method is only valid for right-censored data while, in practice many studies involve interval-
censored observations. This is the case, for instance, in most longitudinal studies, where events
are evaluated at periodic visits and the time of interest is only known to lie between two conse-
cutive visits. For this reason, the second part of this thesis is devoted to interval-censored semi-
competing risk data. Specifically, we propose a new methodology to deal with interval-censored
semi-competing risks data, which arises when the time to the intermediate event, T1, is interval-
censored. As an extension of Fine et al. (2001) method, we assume a Clayton’s copula model to
describe the association between T1 and T2. Our methodology consists of an iterative estimation
algorithm which jointly estimates the association structure of the model and the distribution of the
intermediate event.



4 INTRODUCTION

Structure of the thesis

Part I concerns the modelling of bladder cancer course by means of competing risks and multi-state
models techniques.

In Chapter 1 we present with some detail the Spanish Bladder Cancer/EPICURO Study (SBC/
EPICURO), together with relevant aspects of the disease necessary to understand the course and
the problem being modelled. The events of interest are identified and their corresponding life-
time variables defined. We deal with the aspects of the modelling of bladder cancer motivating
subsequent chapters, competing risks and multi-state models.

In Chapter 2 we present the state of the art on competing risks methods. These methods are then
employed to analyse the data from the SBC/EPICURO Study. We discuss the results, highlighting
the differences with standard survival analyses that would ignore the presence of competing risks,
specially in two aspects of regression modelling: interpretation of parameters and prediction of
future probabilities.

Chapter 3 discusses multi-state models. After a brief summary of the theoretical background for
multi-state models, we propose a multi-state approach to model the risk of progression in bladder
cancer, which takes into account all the events involved in the evolution of bladder cancer. After
modelling each transition, we study the predictive process for progression, which is defined as the
probability to progress at a given time u given the history of the individual at the actual time
of evaluation, t. The history of the patient is determined, besides baseline characteristics, with
the path the patient has followed up to time t. We obtain a dynamic model to make updated
predictions on the risk of progression.

Part II is devoted to the problem of interval-censored semi-competing risks data.

In Chapter 4 we present the semi-competing risks problem for right-censored data. First, some
issues on bivariate survival data are presented: basic concepts such as the bivariate joint survival
functions, as well as measures to assess the dependence between two times of interest. Next, the
methodology of Fine et al. (2001) is presented in detail: from model specification (Clayton’s copula
model) to inference on the association structure and the marginal distribution of the intermediate
event. Other possible methods are sketched within the chapter.

However, in those situations where the intermediate event is interval-censored, the previous methods
are no longer valid, unless some simplification such as midpoint imputation is taken. We need to
consider interval censoring into account. So we first provide, in Chapter 5, a state of the art on
interval-censored methods, both for univariate and bivariate survival data. Specific methods for
interval-censored semi-competing risks data are presented in Chapter 6. Following the ideas of
Fine et al. (2001), we propose a new estimation algorithm which takes into account the presence
of interval-censoring. We deal with the theoretical background of the assumed model and the
estimation procedure with some detail. Chapter 7 contains a study on the asymptotical properties
of the methods proposed: issues such as consistency and asymptotical behavior are confronted.

The proposed methodology for interval-censored semi-competing risks data is illustrated in Chapter
8 by three examples: one based on simulated data and two taken from the SBC/EPICURO Study.
Different approaches to the analysis are considered, some ignoring interval censoring, and some
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acknowledging for its presence. We compare the different estimations obtained and interpret the
results in the context of bladder cancer.

In Chapter 9, a simulation study is carried out to compare the proposed estimation procedure
for interval-censored semi-competing risks data with methods that ignore the presence of interval
censoring. In this chapter, we present the design of the simulation study and discuss the most
relevant results.

In Chapter 10 we outline the software contributions we have made to implement the methods
presented in this work.

This PhD thesis concludes contains the closing Chapter 11, where the main results are summarized
and several aspects which remain unsolved or might be approximated differently are addressed.
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Modelling the evolution of bladder
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CHAPTER 1

The Spanish Bladder Cancer/EPICURO Study

The study that has motivated the present PhD thesis is the Spanish Bladder Cancer/EPICURO
Study, a multicenter study of 1278 newly-diagnosed bladder cancer cases recruited between 1998
and 2001 in 18 Spanish hospitals. The data base includes information on risk factors, genomic
DNA, data on the diagnostic and therapeutic processes, and follow-up data, including histological
information for recurrences of the tumour. Since recurrences of the tumour remain common among
cancer patients, efforts to reduce them are of paramount clinical importance. The availability of
prognostic markers that could accurately predict the appearance of new tumoral cells would allow
urologists to treat patients more effectively.

The general motivation for this part of the thesis is to model the evolution of disease through the
study of the different survival endpoints of interest, and to identify prognostic factors involved in
such an evolution. In this chapter, we start presenting the biological background of the bladder
cancer disease, and then present the Spanish Bladder Cancer Study in Section 1.1. We describe
the cohort under study in Section 1.2. Definition of the events of interests and their corresponding
survival endpoints are addressed in Section 1.3. In Section 1.4 we discuss the different censoring
patterns arising from the follow-up of the SBC/EPICURO study. We present then our proposed
modelling of the course of bladder cancer in Section 1.5.

1.1 Bladder cancer and the SBC/EPICURO Study

1.1.1 Bladder Cancer

Urothelial cell carcinoma of the bladder (UCC) is the fifth most common neoplasm in men in in-
dustrialized countries, occurring with a male-to-female ratio of approximately 3:1. Spain is among
the countries with highest incidence rate among men (55.0 per 100,000 person-years), but with the

9
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Figure 1.1: Diagram showing the T-stages of bladder cancer.

lowest among women (7.4 per 100,000) (Guey et al., 2009). In addition to male gender, acknowled-
ged risk factors today include high age, tobacco smoking and occupational exposure to carcinogens
(Babjuk et al., 2008). The prevalence (persons alive with bladder cancer at any given time) is
three to eight times higher than the incidence, making bladder cancer one of the most prevalent
neoplasms, and hence, a major burden for all health care systems (Lotan et al., 2008). The overall
cause-specific five-year survival rate is about 65%.

Bladder cancer (BC) is a paradigm of a complex disease, both in its etiology and specially in
its course. Recurrences of the tumour remain common among cancer patients, with about 40%
of the patients experiencing multiple recurrences over many years. The frequency of recurrences
forces an strict follow-up of the patients that has a significant impact on the patients’ quality of life.
Tumours can be classified as either superficial, if the tumour is confined to the lining of the bladder,
or invasive, when cancer spread through the lining and invade the muscle wall of the bladder, or
spread to nearby organs and lymph nodes. Approximately 75-85% of newly diagnosed cases are
classified as superficial or non-muscle invasive (Babjuk et al., 2008).

Superficial tumours can be further classified depending on the depth of invasion or stage into
non-invasive papillary carcinoma (Ta), carcinoma in situ or flat tumour (Tis) or tumour invading
subepithelial connective tissue (T1). On the other hand, in muscle-invasive tumours, stage can
be further classified in muscle-invasive (T2), tumour invading perivesical tissue (T3) or invading
nearby organs (T4). Figure 1.11 represents graphically the different depth of invasion for each stage
in the bladder.

The seriousness of the tumour determine the treatment to give as a first-line therapy. In superficial
tumours, the standard treatment is a transurethral resection (TUR) to remove the tumour followed
by, in most cases, either immunological therapy, chemotherapy or both. The usual treatment for
invasive tumours is cystectomy (removal of the bladder), chemotherapy and radiation therapy. The
different course of these two types of cancer suggests the need to perform separate analysis on
them. In the present work, we will focus on the course of superficial tumours.

1Image from the web site of the College of Medicine, from the University of Oklahoma, http://www.
oumedicine.com/bodycontent.cfm?id$=$2495.
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Because of the existing risk of recurrence for these patients, they need to be routinely monitored
by performing a series of cystoscopies to control the appearance of tumoral cells. A cystoscopy
is an examination of the bladder tissue in order to determine the presence of malignant agents
(Babjuk et al., 2008). The frequency and duration of the tests to be performed has not been
established, but some recommendations are available from the European Association of Urology
(Babjuk et al., 2008, 2009). For instance, the result of a first cystoscopy at three months after TUR
is highly predictive for the relapse of disease, and thus this test is almost mandatory for all types
of patients. After this first test, it is advisable to distinguish between low and high risk patients,
identified according to the characteristics of the patient and the characteristics of the primary
tumour, including number of tumours, size of the largest tumour, stage, grade and concomitant
CIS (Babjuk et al., 2008). The recommended follow-up for low-risk patients, if the 3-month results
were negative, is to perform a cystoscopy at 9 months and then yearly for 5 years. For high-risk
patients, cystoscopies should be repeated every 3 months during two years, every 4 months in the
third year, every 6 months until 5 years, and yearly thereafter.

1.1.2 The Spanish Bladder Cancer/EPICURO Study

The Spanish Bladder Cancer/EPICURO Study is the largest bladder cancer case-control study
ever done in Spain. Our collaboration in this study was motivated by a joint project held between
the Centro Nacional de Investigaciones Oncológicas (CNIO), from Madrid, the Institut Municipal
d’Investigació Mèdica (IMIM), from Barcelona, and the University of Vic (Vic, Barcelona). This
project, entitled ’Genetic and Environmental Factors in the Etiology and Prognostic of Bladder
Cancer’, and funded by the Marató de TV3 Foundation, was aimed at identifying environmental risk
factors, genetic susceptibility factors and gene-environment interactions involved in the diagnosis of
bladder cancer. In addition, the role of inherited and somatic genetic alterations in the development
and progression of bladder cancer, including their prognostic value, was the second main goal of
the project. Some results derived from this important study can be found in Garćıa-Closas et al.
(2005), Hernandez et al. (2006), Murta-Nascimento et al. (2007), Samanic et al. (2006) and Guey
et al. (2009).

Patients were recruited between 1998 and 2001 in 18 Spanish hospitals of five areas in Spain
(Asturias, Barcelona, Vallès Occidental/Bages, Alicante and Tenerife). Cases were patients with
a newly diagnosed, histologically confirmed, urothelial cell carcinoma of the bladder. Controls
were hospital-matched patients according to gender, age within 5-year categories, ethnic origin and
region. The end of the follow-up time for the cases is June 30th 2007, so the length of follow-up
ranges from 1 month to 117 months (9.8 years).

From the original 1278 cases, 995 were newly-diagnosed with superficial bladder cancer, while the
rest 283 patients were diagnosed with invasive bladder cancer. In this thesis, we restrict to the
cohort of superficial bladder cancer cases, that is, 995 patients between 22 and 80 years whose
tumour is classified in stages Tis, T1 or Ta. Patients with a previous diagnosis of cancer in the
urinary system or with bladder tumours that were secondary to other malignancies were excluded.

Clinical and socio-demographic information was obtained from the patients’ hospital history. Cases
were followed yearly: trained monitors reviewed information on clinical visits and recorded the
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events of interest as well as any relevant change in treatment. Telephone interviews were made to
expand information on the disease or vital status of the patient.

1.2 Description of the data base

1.2.1 Prognostic factors

The original data set comprised more than 100 variables, including medical and genetic markers.
For the present study, we have considered those variables that have been agreed to be risk factors
for some bladder cancer survival endpoint as reported in the guidelines for the management of
bladder cancer patients (Babjuk et al., 2008):

• Gender: Males vs females.

• Age: Continuous variable, sometimes categorized for descriptive purposes into younger or
equal to 60 years, between 61 and 70 years or older than 70 years.

• Tumour number or multiplicity: Categorized between single or multiple tumours.

• Tumour size: Size in centimeters of the largest tumour found. Categorized into more or
less than 3 centimeters.

• Stage of the tumour: Depth of invasion of the tumour. Only superficial tumours are
considered in this database, corresponding to stages Ta, T1 or Tis.

• Tumour grade: It refers to the grade of differentiation of the cell: well differentiated (Grade
1), moderately differentiated (Grade 2) and poorly differentiated (Grade 3). There can be
also neoplasms with low malignant potential (Benign).

• Smoking status: Smoking is highly predictive of the development of primary tumours,
and can be relevant for the course of the disease. Patients were categorized into smokers,
including current and former smokers, and non-smokers, including occasional smokers (defined
as patients smoking at least 100 cigarettes in their lifetime but who never smoked regularly).

1.2.2 Descriptive characteristics

Table 1.1 summarizes the distribution of the risk factors across the cohort of superficial cases. The
mean age of the 995 patients was 65.7 years (standard deviation 10.0) at the moment of diagnosis
of the primary tumour, with women being slightly older (66.9; sd 10.5) than men (65.5; sd 9.9).
The cohort was composed mainly by males (87.2%), more than two thirds were older than 60 years,
and more than 70% of patients were or had been regular smokers.

As for the characteristics of the tumour, the majority were solitary or single tumours (66.3%), the
diameter of the largest being less than 3 cm (57%), more than 80% of them of stage Ta, and benign
or grade 1 (42.4%). Notice that the variable size of the tumour was unknown for almost 30% of
individuals. An exploratory study comparing the behavior of the three categories (less than 3 cm,
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Table 1.1: Patients distribution according to the study variables

Variable Categories n(%)

Gender Male 868 (87.2%)
Female 127 (12.8%)

Age (years) ≤60 254 (25.5%)
61-70 378 (38.0%)
>70 363 (36.5%)

Tumour number Single 660 (66.3%)
Multiple 283 (28.4%)
Unknown 52 (5.3%)

Tumour size ≤ 3cm 567 (57.0%)
>3 cm 141 (14.2%)
Unknown 287 (28.8%)

Stage Ta 828 (83.2%)
T1 161 (16.2%)
Tis 6 (0.6%)

Histological grade Benign 50 (5.0%)
GI 374 (37.6%)
GII 332 (33.4%)
GIII 239 (24.0%)

Smoking status Never smoked 117 (11.8%)
Occasional smokers 38 (3.8%)
Former smokers 358 (36.0%)
Current smokers 370 (37.2%)
Unknown 112 (11.2%)

Total 995 (100.0%)

greater or equal than 3 cm and unknown), both with other variables but also with the survival
endpoints explained in next section, showed certain evidence that the behavior of the unknown
category was similar to the small tumours of less than 3 cm. In order to not losing this large
amount of cases, together with feedback from clinicians, we decided to join these two categories in
a single one for the analysis. Results did not vary significantly by considering these two categories
from ignoring those cases with missing size. Under this conjecture, we are assuming that missing
data for this variable was non-ignorable or not at random (Rubin, 1976).

We pay special attention to smoking status. We encounter statistical significant differences (χ2 test
for homogeneity) between smokers and non-smokers both in gender and age. Table 1.2 summarizes
these differences. Within smokers, the vast majority are male (96.7%), while in non-smokers, the
proportions are quite similar. On the other hand, the mean age in non-smokers is 67.6 years (sd
11.4), while smokers are younger (65.3 years, sd 9.77), showing significant differences (t-Student
test, p-value 0.0182). No relationship was found with the rest of clinical covariates (results not
shown).
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Table 1.2: Comparison between non-smokers and smokers

Smoking status
Variable Categories Non-smokers Smokers p-Value

Totala 155 728
Genderb Male 68(43.9%) 704 (96.7%) < 0.0001c

Female 87(56.1%) 24 (3.3%)

Age (years)b ≤60 28(18.1%) 195 (26.8%) 0.0058c

61-70 45 (29.0%) 289 (39.7%)
>70 82 (52.9%) 244 (33.5%)

Age (years) (cont.) Mean (sd) 67.6 (11.4) 65.3 (9.77) 0.0182d

Min-Max 22-80 33-80
a Sample of non missing data.
b Percentages computed on the totals of non-missing data.
c χ2 tests for homogeneity.
d Student t-test for equal means.

The strong relationship of smoking status with these demographic variables introduces a possible
confounding effect that should be appropriately addressed when interpreting the results.

1.3 Lifetime endpoints of interest

1.3.1 Events involved in the evolution of bladder cancer

During his follow-up, a patient with a primary superficial tumour can be diagnosed of a new tumour
in the bladder in the form of a recurrence or a progression. Recurrence refers to a new tumour
classified as superficial while progression applies when the new tumour is classified as invasive.
Furthermore, recurrence and progression may occur more than once in a patient: with any new
appearance of the tumour, new treatment is given, and follow-up restarts. A subject may also die
due to bladder cancer.

A natural sequential scheme indicating the increasing seriousness of the different types of failures
is given by the following linear model in Figure 1.2. A patient may experience a recurrence of the
tumour that may lead to a progression of the tumour and possibly to death due to cancer.

Diagnosis Recurrence Progression Death BC

Figure 1.2: Linear model to represent the increasing seriousness of events involved in bladder cancer.

However, this linear order is not observed in practice and a variety of evolutions can be seen in
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the study. There are patients who tend to suffer several superficial recurrences of the tumour, but
never a progression. Another group of patients develop invasive tumour so rapidly that recurrence
is never observed. We adopt the usual terminology that after an invasive tumour is diagnosed, any
new tumour is labeled as a progression. The medical need to characterize and differentiate the
various evolutions of the disease leads to reckon a non-linear multi-state model for the statistical
analysis of the problem. In Figure 1.3 we show the different paths of evolution observed in the
SBC/EPICURO study and the number and percentage of patients within each path.

995 
superficials

330 (33.2%) 
recurrence

55 (5.5%) 
progression

13 (1.3%) 
cancer death

20 (6.0%) 
progression

10 (3.0%) 
cancer death

13 (65.0%) 
cancer death

30 (54.5%) 
cancer death

441 (44.3%)     
disease-free

*212 (21.3%) cases died of other causes

Figure 1.3: Paths representing the observed disease-related events in the follow-up of bladder cancer.

*Percentages at each box are computed over the number of cases of the previous box.

* 212 cases (21.3%) died from other causes.

With respect to the first observed event, the majority are recurrences (33.2%), there are few pro-
gressions as a first event (5.5%) and deaths from bladder cancer before any recurrence or progression
are scarce (1.3%). Among the patients who suffer at least one recurrence, about 6% progress and
3% die due to bladder cancer. On the other hand, among those patients progressing, a 54.5% dies
due to the disease.

1.3.2 Lifetime endpoints considered

Different survival times are usually considered with the goal of characterizing and/or describing
different types of events. These survival times are expressed in months:

• Event Free Survival (EFS) , TEFS
Time from diagnosis to relapse (recurrence, progression or death due to bladder cancer).

• Recurrence Free Survival (RFS), TRFS
Time from diagnosis to first recurrence.

• Progression Free Survival (PFS), TPFS
Time from diagnosis to first progression.
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• Disease Specific Survival (DSS), TDSS
Time from diagnosis to death due to bladder cancer.

• Overall survival (OS), TOS
Time from diagnosis to death due to bladder cancer or due to any other cause.

Note that, unlike other works, we use the term Event Free Survival for the time from diagnosis to
BC-related event, excluding non BC-related deaths. This could also be referred as Relapse Free
Survival.

In this work we focus on the two endpoints TEFS and TPFS since they represent the most relevant
events of bladder cancer evolution. Event Free Survival is important since it characterizes the most
frequent event, and the importance of Progression Free Survival is unquestionable: prediction of the
disease progression from superficial to invasive stage would be of great benefit in the management
of patients diagnosed with early stage bladder tumours. For those patients dying due to bladder
cancer before the diagnosis of a progression, we assign a time to progression equal to the time from
diagnosis until death due to bladder cancer.

1.4 Follow-up and censoring patterns

The way individuals are observed in a medical study depends on factors such as the time needed to
observe the event of interest, the feasibility of following individuals over time and the mechanism
for recording lifetimes and covariate values. It is common in medical studies to follow individuals
longitudinally over time, and limitations on the information collected may be imposed by time,
cost and other constraints. It is often unfeasible to follow a patient over a long period of time, and
many times, the study ends before the event of interest has occurred. Furthermore, a continuous
evaluation of the patient is usually unaffordable, and the patient is only observed at scheduled
visits. Partial observation of the lifetime variable of interest is known in the survival framework
as censoring. This incomplete information of the outcome must be taken into account to derive
correct descriptors of the lifetime variable.

In the SBC/EPICURO Study, the observed process, called also inspection process, is as follows.
The origin of time is defined as the date that treatment against the primary tumour starts, which
we have defined by Diagnose date. Data on the diagnostic process, initial treatment and tumour
characteristics were recorded, as well as other characteristics of the patient, such as tobacco and
drugs consumption, demographic data, diet and familiar history of disease. When evidence is found
of a recurrence or progression, date of new diagnosis is recorded, as well as the date of the previous
visit where the subject had still not developed the new tumour. In case of death, the exact date
was available. Changes in life habits were also collected annually through a telephonic interview
with the patient. The fact that patients are observed intermittently causes some incompleteness on
the information available on the exact times of the events of interest producing both right censoring
and interval censoring.

Let T be the time of interest, which in our case could be TEFS or TPFS . Right-censoring occurs
when only lower bounds on the lifetime are available. The individual is followed up to time C,
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when the event of interest has not occurred yet, so T is greater than C. Right-censoring in the
SBC/EPICURO data is due to either the end of study, or loss to follow-up. Deaths from other
causes will be included as a competing risk event. This type of right-censoring is assumed to be
independent.

As we have already mentioned, in the SBC/EPICURO Study, situations of dependent censoring
arises. For instance, let TR be the time to the first recurrence. Given the assumption of the biological
model that, after a progression arrives, a recurrence cannot occur, the time to Progression, TPFS ,
censors the time to recurrence, TR, TPFS < TR. Given that these two events are closely related,
this fact causes dependent censoring.

On the other hand, interval censoring arises in the SBC/EPICURO Study data due to the inspection
process, and it could affect both recurrences and progressions. Since the exact time, say T , when
a new tumour develops is unknown, the time of interest is known to lie somewhere between them,
L < T ≤ R, where only the previous visit date where the patient was disease-free, L, and the
diagnosis date of the new tumour, R, are available. Hence T is said to be censored in the interval
(L,R]. Therefore, because the occurrence of a recurrence or a progression are interval-censored,
TEFS or TPFS are interval-censored when a recurrence or progression occurs (when applicable),
exact-censored when death occurs or right-censored, when no event is observed.

The interval censoring problem will be tackled in the second part of the thesis (Chapters 4 to 9).
In the first part (Chapters 2 to 3) the interval-censored is reduced by midpoint imputation.

1.5 Modelling the course of bladder cancer

Despite of its complexity and the effort on improving the predictions with the use of biomarkers,
bladder cancer is usually modelled with standard survival methods, such as the Cox model or
Kaplan-Meier curves. However, more advanced methods such as competing risks and multi-state
methods can provide a deeper understanding of the bladder cancer course. Specifically, we will
focus on three important aspects: first, the presence of deaths from other causes which prevent
the observation of disease-related events. Can they be ignored assuming that they are independent
of the disease process? Second, the characterization of the first observed event. Characterizing
those patients that progress so rapidly that no recurrence can be observed before their progression
is of primary medical interest. And, third, the construction of a dynamic model for the risk of
progression that takes into account the history of the patient until a given time. In next Chapters
2 and 3, these questions will be developed and addressed in full detail.
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CHAPTER 2

Competing risks analysis of the Spanish Bladder

Cancer/EPICURO Study

In this chapter, we analyze Event Free Survival, Progression Free Survival and First Relapse for the
SBC/EPICURO study. Most bladder cancer studies treat non bladder cancer deaths as censored
observations for the time of interest. This is only appropriate as long as the survival time of interest
and the time to non bladder cancer deaths are independent. As we will show next, this is not the
case in the Spanish Bladder Cancer Study where non bladder cancer deaths are related to smoking
and, in turn, smoking is associated with gender and age, possible risk factors of recurrence and
progression. Thus, a competing risk analysis accounting for the type of failure is required.

Though the theoretical basis for competing risks are well developed, its implementation and correct
interpretation of results is far from being a straightforward task. For this reason, our emphasis will
not only be on the interpretation of the results for a better understanding of the bladder cancer
course, but also, on the discussion on how the results of any competing risk analysis should be
correctly interpreted.

We start this chapter with a review of competing risks methods in Section 2.1, including model
specification, nonparametric methods to estimate the functions of interest and regression modelling.
Competing risks models can be used for the identification of risk factors and also as predictive
models. However, simple tools for visualizing and validating the predictive probabilities, such as
nomograms and calibration plots, are not available for competing risks. We have adapted such tools,
available in the statistical software R (R Development Core Team, 2009) for standard univariate
survival analysis, to competing risks. A brief description of the procedure is given in within Section
2.1.4.

In Sections 2.2 and 2.3 we perform analogous competing risks analysis for Event Free Survival (EFS)
and Progression Free Survival (PFS) for the Spanish Bladder Cancer/EPICURO Study accounting
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for the competing event Deaths from Other Causes (DOC). In both sections, we first explore
nonparametrically the cumulative incidence curves for each of the risk factors considered and then
perform a multivariate regression approach in order to explore the joint effect of the variables.
We also address the question of whether the presence of the competing event can be ignored by
comparing our results with those obtained treating deaths from other causes as independent right-
censored observations.

Section 2.4 is devoted to the characterization of the first relapse. We perform a competing risk
analysis of the time to the first observed bladder cancer event, distinguishing between recurrence,
progression or bladder cancer death and deaths from other causes. This is an unusual approach for
modelling bladder cancer events but, as mentioned in the introduction, this modelling is clinically
relevant since it will allow identifying those patients with a high risk of fast progressions.

All analyses were done with the statistical software R (R Development Core Team, 2009). In
Appendix D.1 we illustrate how to use available functions in this software to perform a competing
risks analysis.

2.1 Methods for competing risks

Competing risks data usually arises in studies in which the failure of an individual may be classified
into one of k mutually exclusive causes of failure. Examples of competing risks data are found in
many fields. In a demographic study we might be interested in analysing mortality distinguishing
between leading causes of death: heart disease, cancer, accident... Other instances occur in clinical
trials where the endpoint of interest if the first among several events. For instance, in a clinical
trial addressed to find the benefits of a new drug to prevent myocardial infarction, patients with
coronary heart disease are followed. The failure of interest is myocardial infarction though patients
are also at risk of dying for other causes. In reliability analysis, failure may correspond, for example,
to breakdown of a mechanical device where there are two causes of failure, vibration or corrosion.
Classical survival analysis in this context, which ignores competing risks, may not be appropriate.

A competing risk model is specified through the joint distribution of the time to failure, T , and
the cause of failure C. The joint distribution for (T,C) is completely described either by means
of the cause-specific hazard functions, representing the rate of occurrence of each cause of failure,
or through the cumulative incidence functions, that is, the probability of a subject failing from
each cause in the presence of all the competing risks. It has been shown (Pepe and Mori, 1993)
that classical survival methods such as the Kaplan-Meier estimate may provide biased results when
the competing causes of failure are ignored and treated as right-censored observations. Standard
survival analysis techniques rely on the assumption of independence between the failure time and
the censoring random variable, which may not be fulfilled by the competing causes.

2.1.1 Model specification

Define, for each individual, the pair (T,C), T being the failure time and C the failure cause. T

is assumed to be a continuous and positive random variable, and C takes values in the finite set
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{1, . . . , J}. It is considered that the individual fails from one and only one cause. For instance,
when studying the benefits of a new drug to prevent myocardial infarction, C would take values in
{1, 2}, corresponding to myocardial infarction and death due to other causes, respectively. In the
reliability example also two causes of failure are possible, 1 for failures due to vibration and 2 for
failures due to corrosion. The joint distribution of (T,C) is completely specified through either the
cause-specific hazards, λj(t), or through the cumulative incidence functions, Fj(t) (Lawless 2003).

While the cause-specific hazard function for the jth cause, j = 1, . . . , J ,

λj(t) = lim
∆t→0

P
(
T < t+ ∆t, C = j|T ≥ t

)
∆t

,

represents the rate of occurrence of the jth failure, the cumulative incidence function from type j
failure, j = 1, . . . , J ,

Fj(t) = P (T ≤ t, C = j), (2.1)

corresponds to the probability of a subject failing from cause j in the presence of all the competing
risks.

The overall hazard function λ(t), defined as the hazard function of T , is obtained summing up all the
cause-specific hazards, λ(t) =

∑J
j=1 λj(t). Denote by Λj(t) =

∫ t
0 λj(u)du and by Λ(t) =

∫ t
0 λ(u)du

the cumulative cause-specific and overall hazards, respectively. The overall survival function S(t)
for T is defined as follows:

S(t) = P (T > t) = e−Λ(t) = e−
∑J
j=1 Λj(u)du.

Thus, the survival function can be factorized into the following J functions Sj(t) = e−Λj(t) as
follows

S(t) =
J∏
j=1

e−Λj(t) =
J∏
j=1

Sj(t). (2.2)

Caution is needed when interpreting functions Sj(t). Despite having the mathematical properties
of continuous survivor functions, they are not the survivor functions of any observable random
variables. Moreover, Sj(t) 6= 1− Fj(t).

The distribution function for T is obtained from the cumulative incidence functions through F (t) =
P (T ≤ t) =

∑J
j=1 Fj(t), and the marginal distribution of C is:

πj = P (C = j) = lim
t→∞

Fj(t) j = 1, . . . , J.

The cumulative incidence function for cause j, Fj(t), can be derived from the cause specific hazard
λj(t) and the overall survival function S(t) from the relationship:

Fj(t) =
∫ t

0
λj(u)S(u)du j = 1, . . . , J. (2.3)

A different way of describing a competing risks model with J causes of failure is to consider a
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failure time Tj for each cause, j ∈ {1, . . . , J}. These times are latent variables corresponding to
the hypothetical failure times if the other causes of failure were not present. It has been argued
that multivariate models F (t1, . . . , tJ) could be specified for the joint distribution of T1, . . . , TJ

(see Andersen et al., 2002, Kalbfleisch and Prentice, 2002, Lawless, 2003 for further references).
However, when all risks are present only T = min(T1, . . . , TJ) can be observed, together with
C = j, such as T = Tj , and an identifiable problem is found (Cox and Oakes, 1984, Tsiatis, 1975).
F (t1, . . . , tJ) is inestimable solely based on these observations. Two different distributions for
F (t1, . . . , tJ) may result in the same marginal for (T,C). Only under strong assumptions, such as
independence, the multivariate distribution is identifiable. However, this assumption is untestable
based solely on observed competing risk data. More details on this discussion are given in Putter
et al. (2007).

A competing risks model can also be seen as a special case of a multi-state model (Andersen
et al., 2002), with one transient state ’Alive’ and J absorbing states for each cause of failure. In
this framework we can think of as a Markovian process when the goal is to model the transitions
between states, through the probabilities of transition, Phj(s, t), that is, the probability of being in
state j at t, provided that at time s, the state h was occupied. Note that P0j(0, t) = P (T ≤ t, C = j)
are the cumulative incidence functions as defined in (2.1), whereas the intensity transition functions
are the cause-specific hazards.

2.1.2 Likelihood function

Consider a random sample of n individuals, (T1, C1), . . . , (Tn, Cn), where Ti is the time of failure
and Ci is the cause of failure for subject i. For each individual, there exists a non-negative right
censoring time Vi. Let δi = I(Ti ≤ Vi) be the censoring indicator, and define C̃i = δiCi. C̃i is the
cause of failure for failing individuals or 0 for censored individuals. The observed data for each
individual are given by {(Yi = min(Ti, Vi), δi, C̃i), i = 1, . . . , n}.

Define by q(v) and Q(v) the density and distribution functions of the censoring variable V . The
observed data for an individual i consists of either (Ti = yi, Ci = ci) (and thus Vi ≥ yi) or Ti > yi

(and thus Vi = yi). The contribution of each individual to the likelihood function is then

(fci(yi)Q(yi))
δi (S(yi)q(yi))

1−δi .

Under the assumption that V is independent of (T,C) and that the supports of T and V are
disjoint, the likelihood function for the sample is proportional to

L ∝ L =
n∏
i=1

fci(yi)
δiS(yi)1−δi .

Denote by δij = I(Ci = j), where δi =
∑J

j=1 δij . If δi = 1, then it exists some j with δij = 1.
From the factorization of the survival S(t) =

∏J
j=1 Sj(t) (see (2.2)), and defining gj(t) = −S′j(t) =

λj(t)Sj(t), the likelihood function can be rewritten as a product of k components, one for each
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failure cause j as follows:

L =
n∏
i=1

 J∏
j=1

fj(yi)δij

S(yi)1−δi =
n∏
i=1


 J∏
j=1

(λj(yi)S(yi))
δij

 J∏
j=1

Sj(yi)1−δi


=

J∏
j=1

(
n∏
i=1

gj(yi)δijSj(yi)1−δij

)
=

def.

J∏
j=1

Lj . (2.4)

This expression provides a factorization of the overall likelihood L in terms of cause-specific likeli-
hoods Lj . This factorization shows how λj(t) and Λj(t) are directly estimable from data (Yi, δij),
if failure times from other causes are considered as censoring times. In fact, Lj corresponds to
the likelihood it would be obtained from this sample, where the corresponding hazard, density and
survival functions would be, respectively, λj(t), gj(t) and Sj(t). However, it does not exist any
observed random variable Uj whose survival function satisfies Sj(t) = P (Uj > t).

2.1.3 Nonparametric estimation

Given the observed data, {(yi, δi, c̃i), i = 1, .., n}, let 0 < y1 < · · · < yN be the ordered distinct
observed time points. We denote by dij the number of subjects failing from cause j at time yi. The
number of subjects failing at time yi from any cause is obtained by the sum of subjects failing for
each cause at yi, di =

∑J
j=1 dij . We define ni as the number of individuals at risk at yi, that is,

alive and uncensored just prior to this time.

An estimate of the cause-specific hazard for cause j at time yi is given by the Nelson-Aalen estimate
λ̂j(yi) = dij

ni
, and it is 0 at any other time. Hence, the estimator for the cumulative cause-specific

hazard function, Λj(t) =
∫ t

0 λj(u)du, is given by Λ̂j(t) =
∑

i:yi≤t
dij
ni

, j = 1, . . . , J , and its variance
estimated by

V̂ar
(

Λ̂j(t)
)

=
∑
i:yi≤t

dij
n2
i

.

The overall survival function for T can be estimated either by the Kaplan-Meier estimate

ŜKM(t) =
∏
i:yi<t

(
1− di

ni

)δi
,

with variance estimated using Greenwood formula by

V̂ar
(
ŜKM(t)

)
= (ŜKM(t))2

∑
i:yi<t

di
ni(ni − di)

,

or as a function of the Nelson-Aalen estimate, that is, ŜNA(t) = exp
[
−
∑J

j=1 Λ̂j(t)
]
.

A natural non-parametric estimate of the cumulative incidence function Fj(t) is then given by

F̂j(t) =
∫ t

0
λ̂j(u)Ŝ(u)du ≈

∑
i:yi≤t

dij
ni
Ŝ(y−i ) j = 1, . . . , J, (2.5)
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where Ŝ(t) is indistinctively ŜKM(t) or ŜNA(t), and, given that it is a step function jumping at yi,
Ŝ(y−i ) is the value of Ŝ at the left limit of yi. The variance of F̂j(t) can be approximated by the
following expression (Pintilie, 2006):

V̂ar
(
F̂j(t)

)
=
∑
i:yi≤t

{[
F̂j(t)− F̂j(yi)

]2 di
(ni − 1)(ni − di)

}
+
∑
i:yi≤t

Ŝ(ti−1)2dji(ni − dji)
n2
i (ni − 1)

− 2
∑
i:yi≤t

[
F̂j(t)− F̂j(yi)

]
Ŝ(ti−1)

dji(ni − dji)
ni(ni − di)(ni − 1)

.

(2.6)

2.1.4 Regression modelling

In competing risks, two different regression modelling strategies are possible: one could model
either the cause-specific hazards or the cumulative incidence functions. In the former, each cause-
specific hazard is analysed separately by treating individuals failing from other causes as censored
observations, as follows from the factorization of the likelihood function (2.4). This approach is
appropriate when we are interested in determining factors associated to the risk of a specific cause
of failure and it is developed in Section 2.1.4.1. For the latter, the modelling of the cumulative
incidence functions is adequate when we want to determine factors associated to the incidence of a
given cause, and it is described in Section 2.1.4.2. Finally, in Section 2.1.5 we will discuss how to
predict the probability of an event of a specific type to occur in a pre-specified time.

2.1.4.1 Cox proportional hazards model for the cause-specific hazards λj(t):

The classical regression analysis of competing risks establishes a Cox proportional hazards (PH)
model (Prentice et al., 1978) for each cause-specific hazard:

λj(t|Z) = λ0je
β′jZ j = 1, . . . , J,

where Z is a p × 1 vector of covariates and βj is a p × 1 vector of regression coefficients for each
cause. Each cause of failure is analysed separately, treating individuals failing from other causes
as censored observations. The effect of the covariates is assumed to act multiplicatively on an
unknown baseline hazard function λ0j . As in classical PH analysis, the validity of the models does
not depend on the true form of the baseline hazard, provided the multiplicative form of the model
is correct. The PH assumption is a strong one that must be carefully checked for each cause.

Estimation of the regression parameters βj is based on the partial likelihood approach. Given
consistent and asymptotically normal estimates β̂j , each cause-specific baseline hazard Λ̂0j(t) can
be obtained, for instance, by means of the generalized Nelson-Aalen estimates.

Λ̂0j(t) =
∑
i:t`≤t

(
δij∑n

`=1 Y`(ti)e
β̂
′
jZ`

)
j = 1, . . . , J.
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Figure 2.1: Individuals at risk for each modelling strategy.

2.1.4.2 Fine and Gray’s model for the cumulative incidence functions Fj(t):

Consider a new function, the sub-hazard γj(t) derived from the sub-distribution function:

γj(t|Z) = lim
∆t→0

Pr
(
T < t+ ∆t, C = j

∣∣ Z, {T ≥ t or (T < t and C 6= j)}
)

∆t

=
fj(t|Z)

1− Fj(t|Z)
j = 1, . . . , J.

This would be the hazard obtained if Fj were a proper distribution. The sub-distribution function
is expressed in terms of the sub-hazards as

Fj(t|Z) = 1− exp
(
−
∫ t

0
γj(t|Z)

)
. (2.7)

The conditional expression in the definition of the sub-hazard includes two different scenarios:

i) the event has not occurred at time t,

ii) the event has occurred from a different cause before t.

Thus, the risk set at time t is formed by two types of individuals, corresponding to the two different
scenarios. Contrary to the analysis based on the cause-specific hazards, a patient failing from other
causes would not be removed from the risk set at his/her time of failure. Figure 2.1 shows a simple
example on the differences between these two risk sets. We have four individuals who can experience
either an event of type R, or of type P or they can be censored. We have four observation times,
from t1 up to t4. Inference by means of Cox model for cause R specific hazard proceeds as follows:
at t1 all four individuals are at risk; at t2 individuals 1,2 and 4 are at risk, because individual 3 has
failed before due to cause R; at t3 only individuals 2 and 4 remain at risk, while at t4 only individual
4 is at risk. Inference by means of the cumulative incidence for cause R proceeds analogously at
times t1, t2 and t3, but differs at time t4 because individual 2, who experience an event of type P
at t3 < t4 is maintained in the risk set.
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Fine and Gray (1999) propose a Cox model for each subhazard, that is

γj(t|Z) = γ0j(t)eβ
′
jZ , j = 1, . . . , J,

where the covariates are linear on a complementary log-log transformed cumulative incidence func-
tion. The authors propose a weighted version of the partial likelihood method to estimate the
regression coefficients of Cox model. Indeed, if there are N failures at t1 < t2 < · · · < tN , the
partial weighted likelihood is defined by

L̃(βj) =
N∏
i=1

(
eβ
′
jZi∑

`∈R̃i wi`e
β′jZ`

)
.

Now the risk set for cause j at time ti is R̃i = {` : t` ≥ ti or (t` ≤ ti and C 6= j)}, where subjects
experiencing a competing cause remain in the risk set. The weight wi` given to such an individual is
G̃(ti)/G̃(min(t`, ti)), where G̃ is the survivor function for the censoring distribution. An individual
satisfying t` ≥ ti is unweighted (i.e. its weight is equal to 1). Maximization of this function
provides valid estimates for the coefficients, and inference is derived as for usual partial likelihood,
so hypothesis testing on the parameters and selection of the best model can be performed.

Recently, Geskus (2010) has shown that the sandwich type estimator proposed by Fine and Gray
to fit their model provide a non-optimal estimate for the standard errors for the coefficients of
the model. He proposes two alternative ways to express the estimator of the cumulative incidence
functions (2.5): as a weighted cumulative distribution function and as a product limit estimator.
These representations permit to make inferences at the cumulative scale by using weighted versions
of standard procedures.

2.1.4.3 Other regression models

There are other regression models suitable to fit cause-specific hazards such as parametric alter-
natives, or other semi-parametric and nonparametric options, such as the additive model (Aalen,
1993, Aalen et al., 2001). Less frequent, there also exist alternatives to Fine and Gray’s model
when it comes to the modelling of cumulative incidence functions. In the line of their work, more
general transformations of the cumulative incidence function are attempted (Fine, 2001). Scheike
and Zhang (2008) propose a Cox-Aalen model for the sub-distribution hazards γj(t|Z), and in
Scheike et al. (2008), they use binomial regression methods to estimate coefficients. Klein and
Andersen (2005) and Klein (2006) propose pseudo-values regression models to approximate the
sub-distribution functions.

2.1.5 Predictions

The issue of whether to use cause-specific hazards or cumulative incidence functions mainly depends
on the scientific question of interest. From a practical point of view, modelling the hazards could
be enough if the aim is to identify risk factors. However, the estimation of the cumulative incidence
functions is necessary if our goal is focused on prediction. To do so, we could either i) combine the
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cause-specific hazards resulting from several Cox models, or ii) fit a Fine and Gray model for the
cumulative incidence function.

Assume we have identified the risk factors for the time of interest T by fitting Cox proportional
hazards models for each cause-specific hazard, λ̂j(t|Z), j = 1, . . . , J . In order to predict the
probability of failing due to cause j before time t0, that is, the cumulative incidence function for
cause j, Fj(t), we plug-in the following estimates for Λj(t|Z) and S(t|Z) in equation (2.3):

Λ̂j(t|Z) = Λ̂0j(t)eβ̂
′
jZ j = 1, . . . , k.

Ŝ(t|Z) = exp

−
J∑
j=1

Λ̂0j(t)eβ̂
′
jZ

 ,

and the estimate for Fj(t|Z) is given by:

F̂j(t|Z) =
∫ t

0
Ŝ(u|Z)dΛ̂j(u|Z) ≈

∑
i:yi≤t

δijŜ(yi|Z)dΛ̂j(yi|Z). (2.8)

The problem with this approach is that no direct estimate for the effect of a covariate in the
cumulative incidence function Fj(t) is given. Although the effect of the covariates on the cause-
specific hazard λj(t|Z) is directly given by βj , the effect on the cumulative incidence function Fj(t)
combines βj together with the overall effect on Ŝ(t|Z). Moreover, it is not possible to test for
significant effects on the sub-distribution functions, because some covariates can have a significant
effect on the hazard, but not on the cumulative incidence.

To perform model selection and to obtain estimates for the effects of the covariates on the cumulative
incidence functions, as well as to obtain accurate predictions, models based directly on Fj(t), such
as Fine and Gray’s model, are needed. If the Fine and Gray approach has been used to model the
subhazards, γ̂j(t|Z), j = 1, . . . , J , then using expression (2.7) we can obtain estimates for Fj(t|Z):

F̂j(t|Z) = 1− exp
(
−
∫ t

0
γj(u|Z)du

)
. (2.9)

We can use graphical such as the nomogram, to represent this multivariate model, or calibration
plots, to assess the predictive validity of the model. In the following, we briefly present these
methods in the context of competing risks data.

2.1.5.1 Nomograms for competing risks

Nomograms are graphic representations of a multivariate regression model which provide direct
assessment on the predicted probabilities of the event of interest (Harrell et al., 1996). For instance,
Figure 2.2(a) represents a multivariate regression model based on simulated data to predict 1-year
survival in terms of one continuous covariate, z1 and one categorical covariate z2. Each covariate in
the model and its values is represented in an horizontal axis, and each of them is assigned a scale
of points according to its prognostic significance (in the figure, it is the upper axis labelled Points).
The total score for all the variables (Total Points axis) is converted to an estimated probability
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Figure 2.2: Examples of graphical tools for prediction: nomograms and calibration plots (based on simu-
lated data)

or risk (Predicted risk axis). Nomograms outperforms simple classification in groups of risk by
providing more tailored predictions for a patient using his/her specific features.

Nomograms have been widely adopted in the context of cancer prognosis (Chun et al., 2006, Iasonos
et al., 2008, Karakiewicz et al., 2006, Shabsigh and Bochner, 2006). These graphical tools can
be constructed for models involving single responses such as linear models (normally distributed
response), Cox proportional hazards models (single time to event endpoint) or logistic regression
models (binary response). In all these cases, a direct relationship between the distribution function
and the covariates is needed. Function nomogram of Frank Harrell’s library Hmisc construct
nomograms for these three examples of models, among others.

In the case of competing risks, the model providing a direct relationship between covariates and
probability of an event to occur (cumulative incidence) is Fine and Gray’s model. Kattan et al.
(2003a,b) first proposed a nomogram based on this model for the event of interest, acknowledging
for the presence of a competing event. This is achieved by obtaining, for each patient, the predicted
probabilities of the event of interest given in expression (2.9), which is derived from Fine and Gray’s
model, for a fixed time of prediction. Once the predicted probability is correctly computed taking
into account the presence of competing risks, the construction of the nomogram is similar to any
other regression model, by establishing a linear relationship with a scoring system.

In Chapter 10 we present the technical details and the R code based in Hsmic routines to construct
a competing risks nomogram. We will mimic Kattan’s nomogram in the context of the Spanish
Bladder Cancer Study later in this Chapter.
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2.1.5.2 Calibration curves for competing risks

The goal of an individualized risk prediction model is to predict the outcome as accurately as
possible. Calibration is a measure of predictive accuracy regarding how far predictions are from
the actual outcomes (Harrell et al., 1996). Calibration is assessed by reviewing the plot of predicted
probabilities from the multivariate regression model versus the actual probabilities. Figure 2.2(b)
shows a calibrated plot for the simulated model represented in the nomogram of Figure 2.2(a). A
perfectly calibrated model would result in a plot where the observed and predicted probabilities fall
along the 45-degree line, while the distance between the pairs and the 45-degree line is a measure
of the absolute error of the model’s prediction.

In the case of competing risks models, we have to compare predicted probabilities for the cause
of failure of interest given by Fine and Gray’s model and compare them to the nonparametric
estimated cumulative incidence functions. The calibration plot can also be constructed based on
probabilities resulting from the combination of all Cox cause-specific hazards (recall expression
(2.8)).

To obtain this plot, patients are grouped with respect to their predicted probability according to
the regression model (for instance, grouped by percentiles), and the mean of the group is compared
with the empirical estimation of the cumulative incidence function based in data from that specific
group. Bootstrap is then used to obtain confidence intervals for the predicted probability. The
implemented procedure to obtain these calibration plots in R is detailed in Chapter 10.

2.1.6 Existing software for competing risks

Competing risks analysis can be performed in R by means of the cmprsk package (Gray, 2004).
This package includes a function for non-parametric estimation of the cumulative incidence func-
tions (function cuminc). Function crr implements Fine and Gray’s model, and predictions under
this model can be obtained by means of function predict.crr. Recently, It has been shown
that standard errors given by the crr function are not optimal (Geskus, 2010) and that this
model can be implemented by means of a standard Cox proportional hazards model with time-
dependent weights. Thus, any software allowing for time-dependent weights could be used to fit
this model. Details on his procedure can be found as supplementary material of the paper at
http://www.biometrics.tibs.org/datasets/090931M.zip.

Cox models for the cause-specific hazards are implemented by the coxph function of the survival
package (Therneau and original R port by Thomas Lumley, 2009). Predictions arising from these
Cox models by means of equation 2.8 are not included in the cmprsk package, but they are easily
implemented in this language. Further packages and functions available in R can be found in
http://cran.r-project.org/web/views/Survival.html.

Regarding to SASr software, there are not specific procedures designed to perform a competing
risks analysis, though we can use existing procedures and web-available macros to implement the
methodology. Non-parametric estimates of cumulative incidence functions can be obtained at
the web site of the Division of Biomedical Statistics and Bioinformatics of Mayo Clinic (http:
//mayoresearch.mayo.edu/mayo/research/biostat/sasmacros.cfm); and at the web
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site of the Division of Biostatistics of the Medical College of Wisconsin (http://www.biostat.
mcw.edu/software/SoftMenu.html), among others. Cox proportional hazards models for
the cause-specific hazards can be fitted by means of the PHREG procedure, and estimates for the
cumulative incidence functions based on the fitted Cox models can be derived by using the macros
written by Rosthøj et al. (2004) (available at (http://staff.pubhealth.ku.dk/˜pka/). No
macro nor reference was found to fit Fine and Gray’s model using SAS software.

Methods to deal with competing risks analysis are not implemented in the mainstream statistical
software SPSSr. However, we can take advantage of the survival analysis facilities of SPSS in
order to estimate the cumulative incidence functions non-parametrically or through Cox regression
model by combining cause-specific hazard and overall survival estimates by means of expression
(2.8). Again, no specific procedure of the SPSS software is available to fit Fine and Gray’s model.

Finally, cumulative incidence functions can be estimated using the software Statar with the module
stcompet.ado (Coviello and Boggess, 2004). It also implements Fine and Gray’s model by its
function stcrreg (http://www.stata.com/stata11/stcrreg.html).

2.1.7 Final comments on competing risks

When competing risks are present, but only one of the causes is of interest, one might be tempted
to ignore the presence of competing risks and use standard survival techniques for a single time-
to-event endpoint, as if the competing event had no effect on the failure of interest. The strength
of the impact of the competing event on the cause of interest will depend on both the proportion
of observed competing events and the dependence between the competing causes. Indeed, under
different dependent causes of failure, the nonparametric Kaplan-Meier estimator is known to ove-
restimate the real proportion of observed events of a specific type, because it ignores that some of
the events of interest will be precluded by the occurrence of the competing event (Pepe and Mori,
1993, Putter et al., 2007). However, the independence assumption cannot be tested based solely
on observed data, and therefore, a competing risks analysis is always required.

We can also assess the impact of the competing failures through the joint interpretation of the
fitted models, and on the predictions of the probability of the event of interest (which we have
already explained in Section 2.1.5). For instance, assume we only have two causes of failure, and
hence, that we fit Cox models to their corresponding cause-specific hazards. The model for the
cause of interest (say C = 1), is identical to the Cox model that we would obtain if we ignored
the competing event (C = 2). Therefore, when exploring cause-specific hazards, the magnitude
of the effects is the same as ignoring competing events, but the important difference is how these
estimates (and their corresponding hazard ratios) have to be interpreted. If the competing event
is ignored, we will interpret that we obtain the hazard ratios of experiencing the event of interest,
while when acknowledging for competing risks, these numbers will be interpreted as the hazard
ratios of experiencing the event of interest before the competing event. This seemingly unimportant
difference is essential for a correct interpretation of the effects and may give rise to strange results,
difficult to interpret, such as what has been reported in the literature as ’unexpected protectivity’
(Serio, 1997), where the estimated hazard ratios of well-known established risk factors are smaller
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Figure 2.3: Competing risks structure for disease-related events (EFS) and Death from Other Causes

than one, as it is usual for protective factors. In next sections, we will discuss these topics for the
competing risks problems found in the Spanish Bladder Cancer Study.

2.2 Analysis of Event Free Survival in the SBC/EPICURO Study

2.2.1 Competing risks for Event Free Survival

In this section, we analyze Event Free Survival taking into account that deaths due to other causes
act as a competing risk for disease-related events. Let TDOC be the time from diagnosis to death
due to other causes (DOC), non disease-related. The notation for this competing risks problem is
the following:

Notation 2.1. The competing risks situation for the time to the first between EFS or DOC is
denoted by (T1, C1) where T1 = min(TEFS , TDOC) and C1 equals 1 when T1 = TEFS, or 2 if
T1 = TDOC .

Figure 2.3 represents the competing risks structure when studying disease-related events (EFS).
In this situation, TDOC censors TEFS , because the occurrence of DOC prevents the observation of
any other event. This censoring can be dependent if independence between the competing events
cannot be guaranteed. The percentage of failures due to the competing event is denoted here as the
percentage of (possibly) dependent censoring, 15.7% in this case. In many situations the impact
of this competing event will be small and a traditional analysis ignoring this fact would provide
similar results than the application of more sophisticated approaches for competing risks. Thus, a
natural question is whether it is worth the additional work that a competing risk study requires,
both in performance and interpretation, or other causes of death can simply be ignored. The degree
of impact of the competing event on the analysis will depend on both the proportion of observed
competing events and the dependence between the competing causes. We will try to answer this
question for Event Free Survival in the Spanish Bladder Cancer/EPICURO Study. To do so, we
perform a thoroughly competing risks analysis: we describe the joint distribution (T1, C1) by means
of a nonparametric description of the cumulative incidence functions in Section 2.2.2, and next by
regression modelling in Section 2.2.3. A similar question will be addressed in Section 2.3 for the
study of Progression Free Survival.
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2.2.2 Prognostic Factors for Event Free Survival. Univariate nonparametric

analysis.

We have estimated the cumulative incidence functions for each type of event (EFS and DOC),
comparing them across different stratums of the risk factors considered: gender, age, and smoking
status at diagnose of the patient, and number, size, grade and stage of the tumour.

We have tested differences between curves by means of a nonparametric test proposed by Gray
(1988), which generalizes the log-rank test to compare survival curves for two or more populations
for standard right-censored data. The results of these tests are given in Table 2.1. Figures 2.4a to
2.4d contain the plots for those variables that are significant at a 0.05 level for Event Free Survival
(gender, tumour number and grade) as well as for smoking status. The cumulative curves for the
other covariates can be found in Appendix A.1. We discuss in detail the results for each factor:

Gender: Figure 2.4a shows the cumulative incidence curves of EFS and DOC by gender. The
incidence of disease-related events is significatively higher in females than in males (p-value 0.0028).

This finding is very relevant and specific of the Spanish Bladder Cancer Study. In a recent meta-

Table 2.1: Results of Gray’s significance test to compare cumulative incidence curves across stratum for
Event Free Survival

Significance test p-values
Factor EFS DOC

Gender (Female/Male) 0.0028 0.0002
Age (<=60/61-70/>70) 0.6851 <0.0001
Tumour number (Multiple/Single) <0.0001 0.0302
Tumour size (>= 3cm/<3cm) 0.0560 0.7431
Stage (T1+Tis/Ta) 0.1482 0.0083
Grade (G1+Benign/G2/G3) 0.0103 0.0616
Smoking status (smoker/non-smoker) 0.1160 0.0003
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Figure 2.4a: Cumulative incidence functions for (T1, C1) by Gender
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Figure 2.4b: Cumulative incidence functions for (T1, C1) by Tumour number
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Figure 2.4c: Cumulative incidence functions for (T1, C1) by Grade
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analysis to identify prognostic factors for recurrence and progression in non-muscle invasive bladder
cancer, none of the 5 referred studies that included gender in the analysis found this factor as a
significant prognostic factor for recurrence (van der Aa et al., 2009). Given that the incidence of
deaths due to other causes (DOC) is higher in males than in females (p-value 0.0002), one could
speculate on what would happen if deaths from other causes would be prevented, and whether
the apparent effect of gender on EFS would be manifest then. In general, this question could not
be answered in this framework, because the latent marginal distributions are unidentifiable from
competing risks data.

Nonetheless, as described in Section 1.2.2, the majority of patients in our sample are males (87.2%),
and among them, 91% are smokers. The strong relationship of smoking status and gender has to be
addressed appropriately since it can induce a confounding effect. In particular, we observe in Figure
2.4d that the cumulative incidence of EFS is higher in non-smokers (though non-significantly). We
wonder if this is a genuine behaviour of smoking or, since most smokers are men and non-smokers
are women, this is just reflecting the differences in EFS by gender. Moreover, similar curves for
DOC are found for males (Figure 2.4a) and smokers (Figure 2.4d).

In order to clarify this possible confusion we reanalyze EFS and DOC by gender stratifying by
smoking status (Figure 2.5). Within non-smokers, few competing events are present: this fact
suggests that the observed differences in EFS between males and females are genuine and not caused
by the effect of the competing event. Within smokers, more competing deaths are observed but
the cumulative incidence curves of EFS for males and females are similar to those of non-smokers.
These explorations suggest that differences in EFS are explained by gender while no differences are
manifest by smoking status. They also suggest that the observed differences in mortality before
relapse by gender are actually due to smoking. The multivariate regression analysis of next section
also confirms these conclusions.

Age: There are no significant differences in EFS across stratum, but there are differences in DOC,
where the older the patient, the higher the probability of dying for other causes than to develop
disease (p-value<0.0001).

Tumour number: Multiple tumours (p-value<0.0001) exhibit a higher incidence of disease-
related events than single tumours (Figure 2.4b). Consequently, patients with single tumours have
more opportunities to be observed dying from other causes before a relapse (p-value 0.0302).

Grade: Grade 2 and 3 tumours (0.0103) have higher rates of relapse than Benign/Grade 1
tumours (Figure 2.4c).

Size and Stage: There are no significant differences in size or in stage.

2.2.3 Multivariate regression model for Event Free Survival.

After the univariate analysis of each covariate we proceed with the analysis of their joint effect on
Event Free Survival. We present in Tables 2.2 and 2.3 the hazard ratios (HR), the 95% confidence
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Figure 2.5: Cumulative incidence functions for (T1, C1) across Gender, for smokers and non-smokers.

intervals of the HR (CI95%) and the p-values of the fitted regression models for (T1, C1): propor-
tional hazards Cox models for the cause-specific hazards of EFS and DOC, referred in the following
as CSH models, and Fine and Gray’s model for the subhazard of the cumulative incidence function
of EFS, to which we will refer as FGH model.

Both approaches confirm gender, multiplicity and grade (Grade 2 vs Grade 1 plus Benign tumours)
as the most important prognostic factors for Event Free Survival. Multiplicity and grade are
common prognostic factors for recurrence in the literature (Babjuk et al., 2008, van der Aa et al.,
2009) while, as mentioned before, the effect of gender is specific of the SBC/EPICURO study and
raises the question of why this higher risk of recurrence among Spanish women. Tumour size and
Grade 3 vs G1+Benign are also well established prognostic factors for recurrence that, in our study,
do not yield strictly significance. However, with a p-value of 0.07, our results are in the line of most
studies, suggesting the same tendency: larger and G3 primary tumours are more likely to relapse
during the patient’s follow-up.

When it comes to smoking status, it is interesting to recover the discussion of the previous section.
Indeed, note how the obtained hazard ratios, though not significant for both models for EFS, are
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Table 2.2: Cause-specific hazards (CSH) Cox models for (T1, C1)

EFS DOC
Factor HR CI95% p-value HR CI95% p-value

Gender (Female vs Male) 1.701 (1.172, 2.469) 0.005 0.579 (0.195, 1.716) 0.324
Age (by year) 0.999 (0.988, 1.010) 0.837 1.087 (1.059, 1.116) 0.000
Tumour number (Multiple vs single) 1.566 (1.248, 1.965) 0.000 0.632 (0.408, 0.978) 0.040
Tumour size (≥ 3cm vs ≤ 3 cm) 1.298 (0.970, 1.737) 0.079 1.275 (0.786, 2.069) 0.326
Stage (T1Tis vs Ta) 0.971 (0.677, 1.392) 0.873 2.003 (1.121, 3.578) 0.019
Grade (G2 vs G1+Benign) 1.383 (1.069, 1.790) 0.013 1.180 (0.776, 1.795) 0.439
Grade (G3 vs G1+Benign) 1.374 (0.969, 1.947) 0.075 1.104 (0.614, 1.987) 0.741
Smoker vs Non-smoker† 1.149 (0.808, 1.634) 0.439 2.654 (1.164, 6.056) 0.020

†Smoker includes current and former smokers. Non-smoker includes occasional smokers.

Table 2.3: Fine and Gray (FGH) models of the subhazards for (T1, C1)

EFS DOC
Factor HR CI95%‡ p-value HR CI95%‡ p-value

Gender (Female vs Male) 1.718 (1.182, 2.497) 0.005 0.498 (0.168, 1.478) 0.209
Age (by year) 0.996 (0.985, 1.007) 0.497 1.080 (1.054, 1.107) < 0.001
Tumour number (Multiple vs single) 1.613 (1.286, 2.022) < 0.001 0.519 (0.335, 0.803) 0.003
Tumour size (≥ 3cm vs ≤ 3 cm) 1.280 (0.956, 1.713) 0.098 1.111 (0.685, 1.801) 0.670
Stage (T1Tis vs Ta) 0.934 (0.651, 1.341) 0.711 1.655 (0.945, 2.898) 0.078
Grade (G2 vs G1+Benign) 1.373 (1.061, 1.777) 0.016 1.054 (0.692, 1.605) 0.806
Grade (G3 vs G1+Benign) 1.346 (0.949, 1.911) 0.096 1.106 (0.626, 1.955) 0.728
Smoker vs Non-smoker† 1.108 (0.779, 1.577) 0.568 2.546 (1.113, 5.821) 0.027

†Smoker includes current and former smokers. Non-smoker includes occasional smokers.

‡FGH model fitted according to Geskus (2010).

greater than one in both cases, showing that smokers are at higher risk of a BC event than non-
smokers. Recall from Figure 2.4d how non-smokers exhibit a higher probability of EFS-specific
failures. When we adjust for other covariates, the more natural direction of effect is recovered,
probably corrected by the inclusion of the confounding effect of gender.

Apart from the identification of the prognostic factors, it is interesting to look at how the presence
of a competing event affects the coefficients of both the CSH model and the FGH model. Note that
the coefficients and p-values in the first two columns of Table 2.2, corresponding to a Cox model
for the cause-specific hazard (CSH model) for EFS, are identical to the coefficients of the standard
Cox model that we would obtain if we ignore the competing event DOC by treating these deaths as
censored observations. Instead, the coefficients of the Fine and Gray model (FGH model) include
the effect of the competing event. In this study, the coefficients and significance from both models
are fairly identical and the same conclusions for Event Free Survival would be driven if competing
risks would have been ignored. As we will see in next section when analyzing Progression Free
Survival, both approaches not always agree, and the competing event can affect the significance of
some prognostic factors.
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Figure 2.6: Competing risks structure for progression of disease (PFS) and Death from Other Causes

The validity of the fitted Cox models was checked by assessing their residuals: procedures based on
score residuals were used to assess the proportional hazards assumption, and martingale residuals
were used to test whether a transformation was needed to deal with the continuous effect of age.
The same checking was performed when analysing Progression Free Survival (Section 2.3) and time
to first event (Section 2.4).

2.3 Analysis for Progression Free Survival in the SBC/EPICURO

Study

2.3.1 Competing risks for Progression Free Survival

In this section, we focus on Progression Free Survival taking into account that non disease-related
deaths act as a competing event for progression of disease. This competing risks problem is formally
defined as:

Notation 2.2. The competing risks situation for the time to the first between PFS or DOC is
denoted by (T2, C2) with T2 = min(TPFS , TDOC) and C2 equals 1 if T2 = TPFS, 2 otherwise.

Figure 2.6 represents the competing risks structure for progression of disease (PFS) and DOC.
Again, TDOC censors TPFS , because the occurrence of DOC prevents the observation of progression.
The percentage of (possibly) dependent censoring in this case is 20.1%.

In the following, we address the question of whether the competing risk has an impact on the
estimation of Progression Free Survival, or, on the contrary, it could have been ignored. Again, we
first explore nonparametrically the covariates with their cumulative incidence functions (Section
2.3.2), and then perform a regression modelling to identify the risk profile for PFS (Section 2.3.3).
We present, in addition, an illustration of the computation of predictive probabilities of progression
in Section 2.3.4.

2.3.2 Prognostic factors for Progression Free Survival. Nonparametric analysis.

We have estimated the cumulative incidence functions for each type of event (PFS or DOC),
comparing them across different stratums of the risk factors considered: gender, age, and smoking
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Table 2.4: Results of Gray’s significance test to compare cumulative incidence curves across stratum for
Progression Free Survival

Significance test p-values
Factor PFS DOC

Gender (Female/Male) 0.4101 0.0011
Age (<=60/61-70/>70) 0.0030 <0.0001
Tumour number (Multiple/Single) 0.0014 0.6375
Tumour size (>= 3cm/<3cm) 0.3350 0.8394
Stage (T1+Tis/Ta) <0.0001 0.4814
Grade (G1+Benign/G2/G3) <0.0001 0.1130
Smoking status (smoker/non-smoker) 0.3478 0.0020

status at diagnose of the patient, and tumour number, size, grade and stage of the tumour. The
results of the nonparametric test proposed by Gray (1988) are given in Table 2.4. Figures 2.7a to
2.7d contain the plots for those variables significant at a 0.05 level for Progression Free Survival
(age, tumour number, stage and grade). The cumulative curves for the other covariates can be
found in Appendix A.2. In the following we discuss the results for each factor.

Gender: There are no significant differences between males and females in the incidence of
progression of disease (p-value 0.4101). Though still the curve for females is higher than the curve
for males, if we take into account the results for EFS, where differences existed, it seems that females
have a higher incidence of recurrence than males. This fact will be checked when characterizing
the time to the first event in Section 2.4.

Age: Age results in significant differences (Figure 2.7a): older patients are more incident not only
in deaths from other causes (p-value< 0.0001) but also on progression of disease (p-value 0.0030).
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Figure 2.7a: Cumulative incidence functions for (T2, C2) by Age



2.3. ANALYSIS FOR PROGRESSION FREE SURVIVAL IN THE SBC/EPICURO STUDY 39

0 20 40 60 80 100 120

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Month

P
ro

ba
bi

lit
y

Single
Multiple

p−value=0.0014

PFS−specific CIF

0 20 40 60 80 100 120

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Month

P
ro

ba
bi

lit
y

Single
Multiple

p−value=0.6375

DOC−specific CIF

Figure 2.7b: Cumulative incidence functions for (T2, C2) by Tumour number
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Figure 2.7c: Cumulative incidence functions for (T2, C2) by Stage
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Tumour number: Multiple tumours (p-value 0.0014) have a higher incidence of progression of
disease (Figure 2.7b).

Size: There are no significant differences in size of the tumour.

Stage: Figure 2.7c reveals that patients with stage T1 or Tis tumours have a significantly higher
incidence of progression of disease (p-value < 0.0001) before dying from other causes. No differences
in the incidence of DOC where found.

Grade: Grade 3 tumours have higher rates of progression of disease than Benign/Grade 1 and
Grade 2 tumours (Figure 2.7d, p-value < 0.0001).

Smoking status: There are no significant differences between smokers and non-smokers. In
numerical terms, though, non-smokers present a higher incidence of progression than smokers (see
Appendix A.2), probably justified by the presence of more non BC deaths in smokers (p-value
0.0020).

2.3.3 Multivariate regression model for Progression Free Survival

Now we explore the joint contribution of the covariates on Progression Free Survival. That is, we
fit regression models for (T2, C2), by applying the methods presented in Section 2.1.4. In Tables
2.5 and 2.6 we show, respectively, the estimated hazard ratios for the Cox Cause-Specific Hazard
(CSH) and the Fine and Gray Hazard (FGH) models for PFS and DOC failures.

Both modelling approaches provide similar results for the considered covariates and confirm that
the main prognostic factors for progression in the SBC/EPICURO Study are age, tumour number,
stage and grade 3. These are well established prognostic factors in most bladder cancer studies
(van der Aa et al., 2009). This agreement also applies in the magnitude of the effect of the prognostic
factors. The most important effect is provided by grade 3 (HR=3.25, p-value=0.0018), followed
by stage (HR=2.33, p-value=0.0049). Unlike other studies, we do not find significance for the
effect of tumour size, though the magnitude of the effect is on the expected direction (HR=1.36,
p-value=0.28).

Though smoking status resulted not significant, the direction of the effect goes in the ’natural’
sense: the hazard ratio of 1.18 suggests that smokers have a higher incidence of progression than
non-smokers. Again, the adjusted analysis has corrected the unexpected direction of the smoking
effect in the univariate analysis, where non-smokers exhibited a higher progression rate.

The significance and the magnitude of the effects of interest can be affected by the competing cause
of failure. To merely illustrate this fact, because the coefficients for PFS in both CSH and FGH
models are very similar, observe the results for age in this study. Age is a strong risk factor for
death from other causes (HR= 1.0868, p-value< 0.0001). According to the CSH Cox model, age is
also a significant risk factor for progression (HR= 1.0364, p-value= 0.0163), however, according to
the FGH model, age is at the limit of significance (HR= 1.029; p = 0.048) at the usual 0.05 level.
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Table 2.5: Cause-specific hazards (CSH) Cox models for (T2, C2)

PFS DOC
Factor HR CI95% p-value HR CI95% p-value

Gender (Female vs Male) 1.344 (0.601, 3.004) 0.471 0.764 (0.343, 1.702) 0.510
Age (by year) 1.036 (1.007, 1.067) 0.016 1.087 (1.063, 1.111) < 0.001
Tumour number (Multiple vs single) 1.548 (0.970, 2.470) 0.067 0.813 (0.574, 1.152) 0.244
Tumour size (≥ 3cm vs ≤ 3 cm) 1.367 (0.771, 2.423) 0.284 1.117 (0.732, 1.705) 0.608
Stage (T1Tis vs Ta) 2.334 (1.294, 4.212) 0.005 1.219 (0.736, 2.017) 0.442
Grade (G2 vs G1+Benign) 1.204 (0.587, 2.468) 0.613 1.158 (0.807, 1.662) 0.427
Grade (G3 vs G1+Benign) 3.258 (1.555, 6.830) 0.002 1.324 (0.824, 2.128) 0.247
Smoker vs Non-smoker† 1.182 (0.553, 2.526) 0.666 2.157 (1.116, 4.169) 0.022

†Smoker includes current and former smokers. Non-smoker includes occasional smokers.

Table 2.6: Fine and Gray (FGH) models for the subhazards of (T2, C2)

PFS DOC
Factor HR CI95%‡ p-value HR CI95%‡ p-value

Gender (Female vs Male) 1.344 (0.598, 3.022) 0.475 0.744 (0.337, 1.645) 0.465
Age (by year) 1.029 (1.000, 1.059) 0.048 1.083 (1.059, 1.107) < 0.001
Tumour number (Multiple vs single) 1.685 (1.058, 2.683) 0.028 0.766 (0.542, 1.084) 0.133
Tumour size (≥ 3cm vs ≤ 3 cm) 1.362 (0.768, 2.415) 0.291 1.095 (0.717, 1.673) 0.675
Stage (T1Tis vs Ta) 2.240 (1.238, 4.053) 0.008 0.984 (0.590, 1.640) 0.950
Grade (G2 vs G1+Benign) 1.198 (0.584, 2.456) 0.622 1.183 (0.825, 1.697) 0.361
Grade (G3 vs G1+Benign) 3.147 (1.498, 6.613) 0.002 1.271 (0.787, 2.053) 0.326
Smoker vs Non-smoker† 1.153 (0.536, 2.478) 0.716 2.117 (1.102, 4.066) 0.024

†Smoker includes current and former smokers. Non-smoker includes occasional smokers.

‡FGH model fitted according to Geskus (2010).

This result is indicating that though age is a risk factor for progression, we will actually observe
similar rates of progressions in older people than in younger, because older people tend to die for
other causes earlier, before being able to experience the bladder cancer progression.

Thus, the presence of a competing event may modify the effects on the event of interest and
their significance and should be appropriately addressed for a correct interpretation of results.
Furthermore, the existence of a competing cause of failure may have an important impact on the
estimated probability of the effect of interest. In next section, we show how to obtain accurate
predictions of the probability of progression while taking into account the competing event (DOC)
and compare the predictions with the ones obtained if ignoring competing risks.

2.3.4 Prediction of the probability of progression

Given the results of the multivariate regression analysis for PFS, we will describe three possible
strategies for estimating the probability of progression, one that ignores the existence of a competing
event and two alternatives that take competing risks into account.



42 CHAPTER 2. COMPETING RISKS ANALYSIS OF THE SBC/EPICURO STUDY

Denote by β̂ the coefficients for PFS of the CSH model, by γ̂ the coefficients for DOC of the CSH
model and by β̂

∗
the coefficients for PFS of the FGH model. Let Z be the vector of prognostic

factors.

(a) The first method, denoted by Cox, is the standard Cox model ignoring competing risks that
estimates the probability of the events using exclusively the coefficients β̂ for the cause-specific
hazard of PFS:

F̂Cox(t|β̂,Z) =
∫ t

0
λ̂PFS(u|β̂,Z) exp{−Λ̂PFS(u|β̂,Z)}du,

where λ̂PFS(u|β̂,Z) = λ̂PFS,0(u) exp{β̂
′
Z} is the CSH model for PFS, and Λ̂PFS(t|β̂,Z) is

its corresponding cause-specific cumulative hazards.

(b) The second approach, denoted by CSH, explicitly combines the results of the estimated cause-
specific hazards of all competing events, in our case, β for PFS and γ for DOC:

F̂CSH(t|β̂, γ̂,Z) =
∫ t

0
λ̂PFS(u|β̂,Z) exp{−(Λ̂PFS(u|β̂,Z) + Λ̂DOC(u|γ̂,Z))}du,

where Λ̂DOC(t|β̂,Z) is the cause-specific cumulative hazard corresponding to the model fitted
for DOC.

(c) The third approach, denoted by FGH, uses the coefficients β̂
∗

from Fine-Gray model, that
already were obtained taking into account the existence of competing events:

F̂FGH(t|β̂
∗
,Z) = 1− exp

(
−
∫ t

0
γ̂PFS(u|β̂

∗′
Z)du

)
,

where γ̂PFS(u|β̂
∗′
Z) is the subhazard derived from the cumulative incidence function for

PFS.

Though the second and third approach give similar results, the FGH approach is more handy,
because it involves only one coefficient per variable. Moreover, it establishes a direct relationship
between covariates and probability of progression, and thus it allows for graphical representations,
such as the nomogram in Figure 2.8. With this nomogram, and following a scoring system, one
can easily obtain the predicted probability of progression before 5 years taking into account the
presence of a competing event.

We remark here that, though in the bladder cancer data approaches (b) and (c) lead to similar
results, this is not true in general. Both approaches rely on different proportional hazards model
which may not hold at the same time or may provide different results in practice. Indeed, suppose
we are interested in obtaining the predicted probability of progressing before 5 years for a women,
aged 72 years-old, with a solitary tumour of more than 3 cm of diameter, classified as T1 Grade
II, and non-smoker. First, we locate the patient’s gender on the Gender axis, and draw a straight
line up to the points to determine how many points towards progression a female should receive: it
results in 27 points (approximately). Then locate the patient’s age on the age axis, and, again, draw
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Figure 2.8: Nomogram for the predicted probability of prediction at five years accounting for competing
risks.

a straight line up to the points’ axis to obtain the corresponding punctuation: 60 points. Repeat
this process for each of the remaining axes, drawing a straight line each time to the points axis:
for a solitary tumour, 0 points; for size greater than 3 cm, 25 points; for stage T1, 67 points; for
grade 2, 15 points; for non-smoker, 0 points. Now we sum the points received for each prognostic
factor (194 points), and locate this score on the total points axis. Then, we draw a straight line
down from total points to the 5-years probability of PFS axis to obtain the patients’ predicted
probability to progress within five years, which, for 194 points, it corresponds to a probability
of 0.14 approximately. Details on system to assign the punctuation in a nomogram is given in
Appendix D.1.2.

We center now our attention on exploring the differences between predictions from the standard
Cox approach ignoring competing risks (F̂Cox(t)) and predictions from the Fine and Gray approach
(F̂FGH(t)).

In Figure 2.9(a) we compare F̂FGH(t) (dashed line) with 1 − ŜCox(t) (solid line) for progression
for a smoking person older than 71 years, with multiple tumours, size of the main tumour being
larger than 3 cm, stage T1 and Grade 3, by gender (red for female and blue for male). It can be
observed that predictions based on the Cox model, ignoring competing risks, slightly overestimate
the probability of observing the event which is correctly estimated with the Fine-Gray approach.
In particular, if we focus on predictions of the probability of progression during the first 5 years
from diagnosis, the predicted probability of progression for the considered individual profile is
larger when the competing risk from other causes of death is ignored (for males, 0.442 vs 0.412,
for females, 0.544 vs 0.514). However, the magnitude of the overestimation is small and probably
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Figure 2.9: Comparisons between the standard Cox model F̂Cox(t) and the Fine and Gray model F̂FGH(t)
in terms of prediction of the probability of progression.

both models would yield to similar conclusions.

In order to further evaluate the impact of ignoring competing risks we can compare the performance
of both predictive models, as proposed in Wolbers et al. (2009), with the usual measures for
predictive ability, appropriately adapted to the competing risks framework. In particular, the
calibration plot provides a tool for visualizing the agreement between predicted and observed events.
Figure 2.9(b) is the calibration plot for predictions of the probability of progression during the
first 5 years from Fine and Gray model (red) and Cox model ignoring competing risks (black).
Departures from the diagonal indicate worse predictions, and this case, the standard Cox model
performs slightly worse than the Fine and Gray’s approach, specially for the higher predictions.

2.4 Characterization of the first relapse

2.4.1 Motivation

The characterization of the first relapse after diagnosis is also a relevant issue. Though all bladder
cancer patients follow similar follow-up protocols, the aggressiveness of the disease is very different
and some patients with a superficial primary tumour have a first relapse in the form of an invasive
tumour. Characterizing the risk factors for these first-event progressions is very important in order
to define a more strict follow-up for these patients. Moreover, if identified, these patients could be
treated more aggressively.

Table 2.7 displays the median transition times from diagnosis to each event of interest. The median
time to develop a recurrence or a progression as first event is similar, equal to 10.33 and 10.04
months, respectively. This fact discards the possibility that these first event progressions are due
to an inappropriate follow-up, and suggests that there exist distinct courses and/or aggressiveness
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TIME TO FIRST EVENT: 

 
  

Diagnosis 

Recurrence 330 (33.2%) 

Progression/Death BC  68 (6.8%) 

Death other causes 156 (15.7%) 

T 
x 

Time 0 

N=994, no event: 479 ()  No event: 441 (44.3%) 

N=995 

Figure 2.10: Competing risks structure for the time to the first event in the SBC/EPICURO Study

of the tumour development.

Table 2.7: Median† time between events

Transition Median Q25% Q75%

Diagnosis −→ Recurrence 10.33 4.500 22.99
Diagnosis −→ Progression 10.04 3.780 25.46
Diagnosis −→ Death BC 19.15 15.080 32.56
Diagnosis −→ No event 82.73 75.530 91.07

†Median times computed among those patients with observed events.

Again, a competing risk analysis is the appropriate tool for this problem:

Notation 2.3. The competing risks situation for the time to the first between recurrence, progres-
sion/death from BC or DOC is defined by (T1, C

∗
1 ), where T1 = min(TR, TPFS , TDOC), is the time

to the occurrence of the first event observed, TR is the time to the first recurrence, and C∗1 equals 1
if T1 = TR, 2 if T1 = TPFS and 3 is T1 = TDOC .

In the SBC/EPICURO Study about 33% of the patients experienced a recurrence as a first relapse,
7% were progressions or BC-deaths and 16% died from other causes (see Figure (2.10)). In the
following section, we provide the risk profile of patients that will progress as a first event.

2.4.2 Prognostic factors for the first event

We first obtain the nonparametric estimates of the cumulative incidence functions specific of each
cause of failure. Figure 2.11 shows the estimated cumulative incidence functions for each kind of
failure. We observe that the cumulative incidence of experiencing a recurrence is higher than the
incidence of experiencing a progression or death. Notice that the risk of dying from other causes
increases more rapidly than the risk of progressing along with time; this is due to the risk of dying
of other causes increasing with age in our cohort. Progression or death due to bladder cancer as
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Figure 2.11: Nonparametric estimates of the the cumulative incidence functions for (T1, C
∗
1 )

a first event has a low cumulative incidence of occurring. The curves across stratums of the risk
factors considered can be found in Appendix A.3.

Regression models are used in order to identify prognostic factors which characterize and differen-
tiate patients who progress from those experiencing a recurrence as a firsts event. In Table 2.8
we present the Cox proportional hazards model fitted to our data to describe the cause-specific
hazards for each cause. In Table 2.9 we present the results for the Fine and Gray models for the
subhazard of the cumulative incidence functions. Both approaches give similar results, and we will
use mainly FGH since it implicitly contains the effects of the other competing events and it informs
on cumulative incidence functions, that is, on the incidences that we will actually observe.

Apart from acknowledging the usual prognostic factors for progression (age, multiplicity, stage and
grade 3), though only stage is significant, the main finding of this analysis is gender. Gender is
not a prognostic factor for progression but it turns up for progression as a first observed event
with women having more than twice the risk of men of having a progression before any other event
(FGH HR=2.269, p-value=0.075). This cannot be explained by the fact that males could die more
frequently due to other causes as a first event than women since the effect of gender in DOC is not
significant (FGH HR: 0.498, p-value=0.209).

Notice that the issue of correct interpretation of the coefficients is also present here. Regarding
recurrence as a first event, both CSH and FGH models give a hazard ratio for stage lower than
one (0.639 and 0.554, respectively). An incorrect interpretation of these results will conclude that
tumours with deeper invasion of the bladder protect against recurrences, while the correct expla-
nation for the obtained hazard ratios is that less T1/Tis tumours experience recurrence because
progression or death due to bladder cancer occur first (CSH HR: 3.025, FGH HR: 3.123).

To conclude, individuals at higher risk of observing a progression as a first event are females, with
stage T1/Tis and Grade 3 tumours. A more accurate follow-up should be planned for these patients
in order to prevent the aggressive course of the tumour.
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CHAPTER 3

Multi-state models: a dynamical model

for the risk of progression

In this chapter we use the multi-state modelling approach to derive a dynamical model for the risk
of progression. This approach will allow updating the prognostic of an individual according to his
evolution during his follow-up.

Most prognostic models for bladder cancer progression are static in the sense that predictions
are based on the baseline characteristics of the patient and the tumour. These approaches are
incomplete since they do not allow for including potential informative events, such as recurrence,
which happens during patient’s follow-up. Some models include this important information by
including the rate of previous recurrences as an additional prognostic factor. This is only valid for
modelling secondary tumours that enter the study with a history of previous recurrences. Once
the patient is included in the new study, and the follow-up is started, the new observed recurrences
cannot be added to the rate of recurrences or treated as a baseline covariate; they have to be treated
as a time varying covariate that only affects the risk of progression of a patient after the recurrence
has occurred.

Besides providing a clear graphical representation of the process under study, a multi-state model
permits to obtain a complete picture of it by modelling the different paths a patient can follow along
the multi-state. It permits to establish relationships between events of interest and, in addition,
it is useful to obtain updated predictions of a final outcome conditioning on which intermediate
states a patient has visited. The literature in multi-state models is extensive and in Section 3.1 we
will review the most important elements for building and using multi-state models: how to specify
such models (Section 3.1.1), how to perform regression modelling and identify regression factors
of interest (Section 3.1.2) and, finally, how to summarize the information of each path to build a
single prediction of some future outcome (Section 3.1.3).

49
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Next, a multi-state model for the course of bladder cancer is built. In Section 3.2 we construct
the multi-state model and adjust adequate models for each transition. In Section 3.3, a predictive
process is obtained with which we will obtain dynamical predictions of the risk of progression.

3.1 Review of multi-state models

Multi-state models generalize competing risks models to acknowledge the presence of intermediate
events. Indeed, competing risks could be represented as a multi-state model with one initial state
and J mutually exclusive absorbing states. Often, the course of complex time-varying processes
involve several events of interest that can be intermediate, in the sense that they occur during
follow-up and they do not prevent the observation of some final endpoint of interest.

The most simple of this multi-state models is the unidirectional illness-death model represented in
Figure 3.1: individuals start at a healthy state (State 0) and they may become ill (State 1) and
afterwards die (State 2), or they may die from the healthy state (direct arrow from State 0 to State
2). In this unidirectional model, individuals cannot recover from illness: this model represents for
instance chronic diseases such as HIV.

 

12 

02 

01 

State 0 

(Healthy) 

State 2 

(Death) 

State 1  

(Illness) 

Figure 3.1: The illness-death unidirectional multi-state model.

For the sake of simplicity we will use the illness-death model for introducing the main theoretical
aspects of multi-state models. Moreover, we will focus on regression modelling and we will restrict
to the use of Cox proportional hazards and extensions of it. This review does not pretend to
be exhaustive: we focus on the relevant and practical issues of this methodology that will help us
understand the course of a complex disease such as bladder cancer. We mainly follow the references
from Klein and Moeschberger (1997, ch.5) and Putter et al. (2007), which summarize and complete
the readings from Andersen and Keiding (2002), Hougaard (1999) or the different papers about
the modelling of bone marrow transplantation published by John Klein and others (Keiding et al.,
2001, Klein and Shu, 2002, Klein et al., 1994, 2001a,b).

A Bayesian approach, out of the scope of this work, can be found in Kneib and Hennerfeind
(2008). An updated review on the literature can be found in Meira-Machado et al. (2009), which
includes a useful summary on existing software to deal with multi-state models (see Section 3.1.4
for details). Advanced methods in multi-state models are currently appearing in statistical journals
due to the concern for the modelling of complex diseases (Aalen, 2010). These papers include new



3.1. REVIEW OF MULTI-STATE MODELS 51

tools to deal with distinct elements arising from the observation of the dynamics o the disease: for
instance, interval-censored data (Foucher et al., 2010), current-status data (Lan and Datta, 2010),
or nonignorable inspection processes (Chen et al., 2010, Sweeting et al., 2010).

3.1.1 Model specification

Multi-state models may contain initial states, final or absorbing states and intermediate or transient
states. Initial states represent the state in which the individual remains from the origin of time until
an event occurs. For instance, the healthy state in the illness-death model. Final states typically
represent an endpoint: the individual remains in this state after entering. A typical example is
death. Transient states represent events that occur during the course of disease and might modify
the risk of some final endpoint. In the illness-death model, illness is the transient state.

A multi-state model is characterized by describing all of its transitions. Transitions are depicted
by arrows between states, and represent the occurrence of an event which determines the passing
from one state to another. The hazard rate (or intensity) of the transition rs is

λrs(t) = lim
∆t→0

P
(
t ≤ Trs < t+ ∆t|Trs ≥ t

)
∆t

,

where Trs represents the time of entering state r coming from state s. The cumulative hazard for
transition rs is given by

Λrs(t) =
∫ t

0
λrs(u)du.

In the illness-death model, with three states, one has to characterize the following three transitions:
transition 01 representing from the healthy state to illness, transition 02 from the healthy state to
death, and transition 12 from the illness state to death. We will use the ’clock forward’ time scale
(Putter et al., 2007), in which the time points always refer to the time since the individual entered
the initial state.

A common assumption to simplify the model is the Markov assumption, which states that the
future evolution of the process studied only depends on the state at time t, that is, the history
of the individual is summarized by the state at time t. The model could also be assumed to be
semi-Markovian if the future depends not only in the present state but also on the time since entry
on this state.

3.1.2 Regression modelling

In this section, we consider distinct modellings of the transition intensities for a multi-state model.
We summarize three approaches, two assuming the Markov property and a third relaxing this
hypothesis into a more flexible semi-Markov assumption. Let Z be a vector of fixed covariates,
that is, covariates defined at the origin of time, t = 0, which are not time-dependent.

The first approach fits a Cox proportional hazards model for all the transitions in the model. For
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a model with p states and k transitions, we would fit k models to the hazards of each transition:

λrs(t|Z) = λrs,0(t) exp{β′rsZ}

where λrs,0(t) is the baseline hazard for transition rs and βrs are the vector of regression coefficients
measuring the effect of the covariates Z on the transition intensity. In the illness death model, we
would fit the following three models

λ01(t|Z) = λ01,0(t) exp{β′01Z}

λ02(t|Z) = λ02,0(t) exp{β′02Z}

λ12(t|Z) = λ12,0(t) exp{β′12Z}.

The second approach is based on the idea of modelling endpoints of interest instead of all possible
transitions. It consists in assuming that some of the transitions have proportional baseline hazards.
For instance, in the illness-death model, we may assume that transitions 02 and 12 are proportional.
Let TI be the time from origin until the individual reaches the illness state, and TD the time it
takes until death. Modelling transition 01 is equivalent to model TI , the time until the intermediate
event (illness) occurs, that is,

λ01(t|Z) = λI(t|Z) = λI,0(t) exp{β′IZ}, (3.1)

where λI(t) is the hazard function of TI . This model, in fact, is the same as we would obtain from
the first approach. Transitions 02 and 12 result from modelling the hazard of the time to the final
event, TD, including time to the intermediate event as a time-dependent covariate. This is a way
to ensure the proportionality of the transitions. Indeed, let

I(t) =

 0 if t < TI

1 if t ≥ TI
,

be the time-dependent covariate, zero if at the time point t the individual has not left the healthy
state, one if by time t the individual is already at the illness state. Both transitions 02 and 12 can
be derived from the model:

λD(t|Z, I(t)) = λD,0(t) exp{β′DZ + δI(t)}, (3.2)

so to recover the transition-specific hazards,

λ02(t|Z) = λD(t|Z, I(t) = 0) = λD,0(t) exp{β′DZ},

λ12(t|Z) = λD(t|Z, I(t) = 1) = λD,0(t) exp{β′DZ + δ}.

The second approach provides more parsimonious models than the first one: in the illness-death
model, for three states with three transitions, only two Cox models are needed. More generally, for
a multi-state model with p states and k > p transitions, we could analyse the multi-state model
with p − 1 Cox proportional hazards models, one for each endpoint representing the arrival to a
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non-initial state.

Another advantage of this approach is that the coefficient δ quantify the effect of the intermediate
event on the risk of the final endpoint death. Naturally, some evidence is needed to assume the
proportionality between transitions. An informal check of this condition might be obtained by
fitting models for all transitions according to the first approach and then plot and compare the
estimated baseline hazards for each transition.

The third approach assumes proportionality of hazards but also that the multi-state model is semi-
Markov, by explicitly including in the model the time until the intermediate event, TI = tI , as a
time-dependent covariate:

I1(t) =

 0 if t < tI

tI if t ≥ tI
.

Therefore, the model for transition 01 remains the same as in (3.1), but the model for TD is now:

λD(t|Z, I(t), I1(t)) = λ̃D,0(t) exp{β̃
′
DZ + λI(t) + γI1(t)}, (3.3)

and the transition-specific hazards are given by

λ02(t|Z) = λD(t|Z, I(t) = 0, I1(t) = 0) = λ̃D,0(t) exp{β̃
′
DZ},

λ12(t|Z) = λD(t|Z, I(t) = 1, I1(t) = tI) = λ̃D,0(t) exp{β̃
′
DZ + λ+ γtI}.

3.1.3 Predictive Process

The modelling of all transitions permits us to identify the risk factors associated to each hazard, but
also to go one step further, and obtain updated predictions based on the history of disease described
for each patient (Andersen and Keiding, 2002, Klein and Moeschberger, 1997, Klein et al., 1994).
To do so, we need to summarize the information included in all the transitions involved in the
specific history of the patient.

In the present section we deal with the problem of making predictions at time t of future events
that may occur between t and u, t < u, given the history of the patient at the instant t. The history
of the patient, besides baseline covariates, is given by the path of intermediate events followed until
instant t. In other words, it is determined by the observed course of disease. Let’s denote by H(t)
the history of the patient at instant t.

In the illness-death model, for instance, we are particularly interested in two histories. Firstly, we
denote by H0(t) the history of a patient who, at time t remains at state 0 (healthy state), so the
endpoints of interest, illness and death have not occurred by that time. More formally:

H0(t) = {TI > t, TD > t}.

Secondly, we consider H1(t), the history of a patient who, by time t, is alive and has already moved
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to the illness state at time r

H1(t, r) = {TI = r, TD > t, r ≤ t}.

In a Markov model, the history of the patient is summarized by the present state, that is, the
history of the patient reduces to

H1(t) = {TI ≤ t, TD > t},

and it does not depend on the exact time at which the illness state was entered.

We define the predictive process π(u, t) as the probability of an event to occur by time u given the
baseline covariates and the history of the patient at time t. In the case of the illness-death model,
this predictive process is defined by

π(u, t) = P (t < TD ≤ u | Z, H(t)).

In a multi-state model with no recurrent events, we can obtain explicit expressions for this predictive
model depending only on the hazards of the transitions λrs. We illustrate this fact with the illness-
death model.

We first compute the predictive process for the history of a patient who, by time t, has already
experienced the intermediate event. We consider the case of a Markov model, that is

π1(u, t) = P (t < TD ≤ u | Z, H1(t))

where H1(t) = {TI ≤ t, TD > t}. This probability can be further developed by

π1(u, t) = P (t < TD ≤ u | Z, TI ≤ t, TD > t)

=
∫ u

t
λ12(s|Z) exp

{
−
[
Λ12(s|Z)− Λ12(t|Z)

)}
ds.

(3.4)

This expression is obtained integrating out, between all possible values of TD = s between t and
u, the risk of entering the death state at t (λ12(s|Z)) multiplied by the probability of remaining in
the illness state and thus not dying between t and s (exp {− [Λ12(s|Z)− Λ12(t|Z)]}).

Now we compute the predictive process for the history of a patient who by time t is alive and at
the healthy state, π0(u, t) = P (t < TD ≤ u | Z, H0(t)), which can be expressed by

π0(u, t) = P (t < TD ≤ u | Z, TI > t, TD > t)

=
∫ u

t
exp{−(Λ(s|Z)− Λ(t|Z))} [λ02(s|Z) + λ01(s|Z)π1(s, t)] ds.

(3.5)

We explain with some detail this expression. Transitions 01 and 02 are competing risks, because
are mutually exclusive. This competing risks problem involves the time to the first observed event,
T = min(TI , TD), together with the type of failure, D or I. The cause-specific hazards for each
failure are the hazard transitions λ01 and λ02. Therefore, the hazard function for variable T is
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obtained by
λ(t) = λ01(t) + λ02(t),

the corresponding cumulative hazard

Λ(t) = Λ01(t) + Λ02(t),

and the survival function for T is equal to

S(t) = P (T > t) = exp{−(Λ01(t) + Λ02(t))}.

The predictive process (3.5) can be hence rewritten in terms of T :

π0(u, t | Z) = P (t < TD ≤ u | Z, T > t) =
∫ u

t

S(s|Z)
S(t|Z)

[λ02(s|Z) + λ01(s|Z)π1(s, t)] ds. (3.6)

The first summand in the previous expression represents the instant probability of entering state 2
directly from state 0: it is the product between the risk of dying at s (λ02(s|Z)) and the probability
that a patient is alive and healthy at s, given he was alive and healthy at t < s (S(s)/S(t)). The
second summand represents the instant probability of entering state 2 after having entered into
state 1 at s, given that at t the patient was in state 0: it is the product between the risk of
entering the illness state at s (λ01(t|Z)), the probability of dying between s and u (π1(s, t)) and
the probability that a patient is alive and healthy at s, given he was alive and healthy at t < s

(S(s)/S(t)).

The predictive processes π0(u, t) and π1(u, t) can be estimated with the estimated risk factors
obtained from the modelling approach chosen. For instance, for the second approach, the Markov
proportional hazards approach, we fit models (3.1) and (3.2) to obtain:

λ̂01(t|Z) = λ̂I,0(t) exp{β̂
′
IZ}

λ̂02(t|Z) = λ̂D,0(t) exp{β̂
′
DZ}

λ̂12(t|Z) = λ̂D,0(t) exp{β̂
′
DZ + δ̂}.

Then, the predictive processes (3.4) and (3.5) are estimated by:

π̂1(u, t|Z) =
∑

t<ti<u

λ̂12(ti|Z) exp
{
−
[
Λ̂12(ti|Z)− Λ̂12(t|Z)

)}
π̂0(u, t|Z) =

∑
t<ti<u

exp{−(Λ̂(ti|Z)− Λ̂(t|Z))}
[
λ̂02(ti|Z) + λ̂01(ti|Z)π̂1(ti, t|Z)

]
.

with Λ̂(s|Z) = Λ̂01(s|Z) + Λ̂02(s|Z), the sum of Breslow estimates of the baseline cumulative ha-
zards for models (3.1) and (3.2).
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3.1.4 Existing software for for multi-state models

In this Section we present a brief review on existing software, summarizing the completer reviews
found in Putter et al. (2007) and Meira-Machado et al. (2009): we refer to them for further details.

Estimation of the models for each transition presented in this work can be done in R, SAS and
Stata using the counting process notation defined by Therneau and Grambsch (2000), by essentially
employing Cox proportional hazards models fitted to data sets where all the transitions made by
a single individual are specified. SPSS does not allow for left truncation, thus only Cox models
with time-dependent covariates assuming proportionality between transitions can be fitted (Putter
et al., 2007).

Several R packages exists which permit to fit multi-state models under several assumptions and to
obtain summary information from the modelling of all transition hazards: msm (Jackson, 2009),
mstate (de Wreede et al., 2010), changeLOS (Wangler and Beyersmann, 2009) or tdc.msm

(Meira-Machado et al., 2007). These packages permit dynamically predict the evolution of disease
according to the past history of disease.

Specific procedures to implement predictive processes or summary information on multi-state mo-
dels are not readily available in SAS, Stata nor SPSS. SPSS would be the most limited software
for the simplicity of the models it can manage to fit. Hui-Min et al. (2004) published a sAS macro
program for estimating the transition parameters in multi-state homogeneous or non-homogeneous
Markov. This macro permits to incorporate covariates, or derive transition probabilities, among
other features.

3.2 A dynamical model for the SBC/EPICURO Study

3.2.1 The complete picture of the disease

Classical univariate methods, focused on a particular event of interest, and the competing risks
approach presented before, dealing with different causes of failure, provides valuable information
on different aspects of the bladder cancer course. However, a global description of the whole
complexity of the process is still lacking and can be approached by a multi-state modelling.

A multi-state model starts with a graphical representation of the different possible events (states)
linked with arrows representing the different paths (transitions) between events. The bladder
cancer course can be described with a multi-state model with five states: Diagnosis, Recurrence,
Progression, Death due to Bladder Cancer (Death BC in the figure) and Death due to Other Causes
(Death OC in the figure) (Figure 3.2):

A patient diagnosed with a primary tumour remains in the Diagnosis state as long as no other event
is observed or until the end of follow-up. The state Recurrence is reached after the first recurrence
occurs, and the end of the stay is determined by the occurrence of progression or death, or by the
end of follow up. When progression of the tumour occurs, we enter the third state Progression.
From Progression, a patient can die due to disease or recover and die due to other causes. Both
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Diagnosis Recurrence Progression Death BC 

Death OC 

Figure 3.2: Multi-state model for bladder cancer events.

death states are absorbing states. A patient can experience several recurrences and progressions
and this is considered by a recursive transition within these states.

To simplify the problem, we have considered only the first recurrence and the first progression as
intermediate events, ignoring second, third,...recurrences or progressions. Not only the problem is
simplified, but also different modellings including distinct aspects of the recurrence process (number
of recurrences, for instance) indicated us that the first recurrence has the greater impact on the risk
of progression, and adding posterior recurrences add no valuable information on the progression
process. Therefore, the final multi-state model we are going to analyse is the following (Figure 3.3):

 

λPD* λRP 
λPD λRD 

λD 

λR 

λP 

Diagnosis Recurrence Progression Death BC 

Death OC 

Figure 3.3: Multi-state model for bladder cancer events.

In each arrow we have written the hazard function λ specific for the transition between two conse-
cutive states. In the following Section, the adjustment of this model is undertaken, following the
strategies presented in the methods section.

3.2.2 Model fitting

To adjust the multi-state model given in Figure 3.3, we need to specify a model for each transition.
For the SBC/EPICURO data we chose the second modelling approach presented in Section 3.1.2:
we assume a Markov multi-state model with proportional hazards of several transitions. We take
this approach instead of the first for several reasons. First, this approach employs all available
individuals for fitting the models involved, while if we modelled one by one the transitions, only
individuals at risk for each transitions will be used. Second, we will be able to explicitly quantify the
effect of recurrence on progression. Third, more parsimonious models are obtained. The markovian
assumption has been checked by fitting model (3.3). No significant evidence for a semi-markovian
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process was found: the coefficient γ in this model, which quantified the effect of the time being
recurrence-free, was statistically non-significant.

The competing risks endpoints involved in this multi-state model are three: the time to the first
event observed distinguishing between different types, (T1, C

∗
1 ), given in Notation 2.3; the time until

the first between PFS or death, (T2, C2), given in Notation 2.2; the time until death distinguishing
between deaths due to bladder cancer or due to other causes, (TD, CD), where CD = BC (if due
to bladder cancer) or CD = DOC (if due to other causes). Consider the following time-dependent
covariates corresponding to each intermediate event:

R(t) =

 1 if T1 ≤ t, C∗1 = R

0 if T1 > t or T1 ≤ t, C∗1 6= R
,

for recurrences, and

P (t) =

 1 if T2 ≤ t, C2 = PFS

0 if T2 > t or T2 ≤ t, C2 = DOC

for progressions. The multi-state model can be analysed with the following four Cox proportional
hazards (PH) models:

• Model 1: Cox PH model for the risk to recurrence, (T1, C
∗
1 = Recurrence):

λ1(t|Z) = λ1
0(t) exp{θ0 + θ1Z1 + . . . θkZk}. (3.7)

• Model 2: Cox PH model for the risk to progression, (T2, C2 = PFS):

λ2(t|Z, R(t)) = λ2
0(t) exp{β0 + β1Z1 + . . . βkZk + δR(t)}. (3.8)

• Model 3: Cox PH model for the risk to death due to bladder cancer, (TD, CD = BC):

λ3(t|Z) = λ3
0(t) exp{γb0 + γb1Z1 + . . . γbkZk + λbR(t) + νbP (t)}, (3.9)

• Model 4: Cox PH model for the risk to death due to other causes, (TD, CD = DOC):

λ4(t|Z) = λ4
0(t) exp{γo0 + γo1Z1 + . . . γokZk + λoR(t) + νoP (t)}. (3.10)

Table 3.1 summarizes the fitting of the 4 above models for the SBC/EPICURO data. We have used
all baseline covariates for the 4 models to provide better distinction and interpretation between
different individual profiles. In other instances, only a subset of the baseline covariates could be
considered.

When we look at the estimated hazard ratios for Model 2, we observe that the effects for the
baseline covariates Z are similar to the obtained in the model without time-dependent covariates
(in Table 2.5). However, the time-dependent effect of recurrence resulted significant for PFS (p-
value 0.0049). We obtain a HR of eδ = 2.0746, indicating the increase of risk of progression for
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Table 3.1: Cox models to fit the multi-state model.

Mod.1 Rec Mod.2 PFS
Factor HR CI95% p-value HR CI95% p-value

Gender (Female vs Male) 1.580 (1.050, 2.379) 0.028 1.301 (0.574, 2.948) 0.528
Age (by year) 0.995 (0.983, 1.006) 0.359 1.038 (1.008, 1.069) 0.012
Tumour number (Multiple vs Single) 1.554 (1.213, 1.990) < 0.001 1.472 (0.922, 2.350) 0.106
Tumour size(≥3cm vs <3cm) 1.305 (0.950, 1.794) 0.100 1.339 (0.755, 2.374) 0.318
Stage (T1+Tis vsTa) 0.639 (0.406, 1.005) 0.053 2.435 (1.354, 4.379) 0.003
Grade (G2 vs G1+Benign) 1.462 (1.120, 1.908) 0.005 1.111 (0.540, 2.285) 0.775
Grade (G3 vs G1+Benign) 1.150 (0.776, 1.703) 0.487 3.213 (1.541, 6.699) 0.002
Smoker vs non-smoker 1.060 (0.727, 1.544) 0.763 1.182 (0.545, 2.567) 0.672
Recurrence (Yes vs No)† – – 2.075 (1.247, 3.451) 0.005

Mod.3 DBC Mod.4 DOC
Factor HR CI95% p-value HR CI95% p-value

Gender (Female vs Male) 1.479 (0.546, 4.002) 0.441 0.848 (0.403, 1.784) 0.663
Age (by year) 1.055 (1.014, 1.099) 0.009 1.084 (1.061, 1.108) < 0.001
Tumour number (Multiple vs Single) 0.987 (0.544, 1.792) 0.966 0.825 (0.590, 1.154) 0.262
Tumour size (≥3cm vs <3cm) 0.912 (0.438, 1.899) 0.807 1.046 (0.690, 1.585) 0.833
Stage (T1+Tis vs Ta) 1.137 (0.524, 2.465) 0.745 1.197 (0.737, 1.943) 0.468
Grade (G2 vs G1+Benign) 0.755 (0.300, 1.900) 0.551 1.210 (0.848, 1.726) 0.294
Grade (G3 vs G1+Benign) 1.972 (0.794, 4.897) 0.143 1.308 (0.821, 2.085) 0.258
Smoker vs non-smoker 1.321 (0.505, 3.455) 0.570 2.077 (1.108, 3.895) 0.023
Recurrence (Yes vs No)† 2.776 (1.453, 5.306) 0.002 0.980 (0.696, 1.380) 0.908
Progression (Yes vs No)‡ 35.121 (18.341,67.252) < 0.001 1.372 (0.686, 2.747) 0.371

†Time-dependent covariate R(t).
‡Time-dependent covariate P (t).

a patient if suffering a recurrence. Model 1 coincides with the cause-specific model for recurrence
we performed for the time to the first observed event (Table 2.8): it specifies the transition from
Diagnosis to Recurrence. On the other hand, the analysis of the different causes of death shows
that, as expected, recurrence (p-value 0.0020) and above all, progressions (p-value < 0.0001), are
highly predictive of death due to bladder cancer (Model 3). As well as expected, recurrence and
progression do not predict death due to other causes.

Now, the hazards between transitions defined in the multi-state model in Figure 3.3 are obtained
from models (3.8), (3.7), (3.9) and (3.10) as follows:

Transitions from Diagnosis:

λR(t|Z) = λ1(t|Z) = λ1
0(t) exp{θ′Z}

λP (t|Z) = λ2(t|Z, R(t) = 0) = λ2
0(t) exp{β′Z}

λD(t|Z) = λ4(t|Z, R(t) = 0, P (t) = 0) = λ4
0(t) exp{γo′Z}
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Imagine a patient who, by time t is alive and satisfying R(t) = 0 and P (t) = 0: the patient is
hence at risk of experiencing any of the events, and thus we can compute his risk of recurrence
from Model 1 (λR(t|Z)), his risk of progression from Model 2 with R(t) = 0 (λP (t|Z)) and his risk
of death due to other causes from model 4 with R(t) = 0 (λD(t|Z)).

Transitions from Recurrence:

λRP (t|Z) = λ2(t|Z, R(t) = 1) = λ2
0(t) exp{β′Z + δ}

λRD(t|Z) = λ4(t|Z, R(t) = 1, P (t) = 0) = λ4
0(t) exp{γo′Z + λo}

If by time t, recurrence has already occurred (R(t) = 1), but progression not (P (t) = 0), then the
patient has moved to state Recurrence, and therefore, he’s no longer at risk of recurrence. We can
compute, though, his risk of progression from Model 2 with R(t) = 1 (λRP (t|Z)), or his risk of
death from Model 4 with R(t) = 1 (λRD(t|Z)).

Transitions from Progression:

λPD(t|Z, R(t) = 0) = λ4(t|Z, R(t) = 0, P (t) = 1) = λ4
0(t) exp{γo′Z + νo}

λPD(t|Z, R(t) = 1) = λ4(t|Z, R(t) = 1, P (t) = 1) = λ4
0(t) exp{γo′Z + λo + νo}

λPD∗(t|Z, R(t) = 0) = λ3(t|Z, R(t) = 0, P (t) = 1) = λ3
0(t) exp{γb′Z + νb}

λPD∗(t|Z, R(t) = 1) = λ3(t|Z, R(t) = 1, P (t) = 1) = λ3
0(t) exp{γb′Z + λb + νb}

If by time t, progression has already occurred (P (t) = 1) but recurrence not (R(t) = 0), the patient
has moved from the Diagnosis state to the Progression state directly, and he is at risk of death,
due to bladder cancer or due to any cause. Therefore, we can compute both risks from Models 3
and 4 with R(t) = 0 and P (t) = 1 (λPD(t|Z, R(t) = 0) and λPD∗(t|Z, R(t) = 0)). On the contrary,
if by time t both recurrence and progression have occurred, then the risk of patient of dying due
to disease or due to other causes is obtained from Models 3 and 4 by considering R(t) = 1 and
P (t) = 1 (λPD(t|Z, R(t) = 1) and λPD∗(t|Z, R(t) = 1)).

For simplicity, in the following section we omit, from the intensity transitions described above, the
dependency from Z, though it is implicitly assumed.

3.3 Predictive process of the risk of progression

Now we turn to the construction of the predictive process for the risk of progression. This process
will permit us to dynamically predict the occurrence of a future progression: we will be able to
update our predictions based on the history of the patient up to the time from where we want to
predict. For instance, we will be able to compare the predicted probability of progression at time
u of two patients, both alive by time t < u, one having experienced a recurrence before t, and the
other not. This feature of multi-state models allow us to enrich our analysis by obtaining more
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accurate predictions based on up-to-date information, and not only on baseline information, whose
impact at long-term is often diminished with time.

We define the predictive process for progression by

π(u, t) = P (t < T2 ≤ u,C2 = PFS | H(t)),

which is the probability that an event of type PFS occurs between t and u given the history H(t)
of the patient at the instant t. We consider two type of histories:

• Patients who are alive and without events at time t,

H0(t) = {T1 > t},

so the patient is at risk of all events.

• Patients alive and with at least one recurrence at time t,

H1(t) = {T2 > t,R(t) = 1} = {T2 > t, T1 ≤ t, C∗1 = R},

so the patient is at risk of progression or death.

Let’s denote by π1(u, t) the predictive process corresponding to the history H1(t). This process has
the following expression:

π1(u, t) = P (t < T2 ≤ u,C2 = PFS | H1(t))

= P (t < T2 ≤ u,C2 = PFS | T2 > t,R(t) = 1)

=
∫ u

t

fRP (s)
S2(t)

ds =
∫ u

t

λRP (s)S2(s)
S2(t)

ds

=
∫ u

t
exp{−(Λ2(s)− Λ2(t))}λRP (s)ds,

(3.11)

where S2(t) = P (T2 > t) is the overall survival function for time T2 and Λ2(t) is the overall
cumulative hazard function. As explained in Section 2.1.1 when introducing competing risks, the
overall cumulative hazard can be expressed as the sum of the cause-specific cumulative hazards of
the competing causes for T2, PFS and DOC:

Λ2(t) = ΛRP (t) + ΛRD(t).

The expression of this predictive process (3.11) is obtained integrating out s between t and u

(see the first integral) the probability of moving to the Progression state at time s from the state
Recurrence (fRP ) given that at time t the patient was alive and without recurrence (1/S2(t))

We consider now the predictive process π0(u, t) for the history H0(t):

π0(u, t) = P (t < T2 ≤ u,C2 = PFS | H0(t))

= P (t < T2 ≤ u,C2 = PFS | T1 > t)
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=
∫ u

t

[
fP (s)
S1(t)

+
fR(s)
S1(t)

π1(u, s)
]
ds

=
∫ u

t

[
λP (s)S1(s)
S1(t)

+
λR(s)S1(s)
S1(t)

π1(u, s)
]
ds

=
∫ u

t

S1(s)
S1(t)

[λP (s) + λR(s)π1(u, s)] ds

=
∫ u

t
exp{−(Λ1(s)− Λ1(t))} [λP (s) + λR(s)π1(u, s)] ds, (3.12)

where S1(t) = P (T1 > t) is the overall survival function for time T1 and Λ1(t) is the overall cumu-
lative hazard function. This function can be expressed in terms of the cause-specific cumulative
hazards of the competing causes for T1, recurrence, progression and death due to other causes:

Λ1(t) = ΛR(t) + ΛP (t) + ΛD(t).

The expression of this predictive process (3.11) is obtained integrating out s between t and u (see
the first integral) the probability for a patient of moving to the Progression state at time s given
that at instant t the patient was alive and without events (1/S1(t)). For this, he has two options:
(i) he can go directly from Diagnosis, and thus the probability of progressing at instant s from
the state Diagnosis is fP (s), or (ii) he can have first a recurrence, and thus the probability of
progression at s is the probability of experiencing a recurrence at time s (fR(s)) multiplied by the
probability of progressing at u given that at s a recurrence has occurred (π1(u, s)).

The predictive process depends on the time t at which the history is known, and the point u at
which we wish to make a prediction. By fixing or varying t and u we get different insights into
the problem. For instance, if we fix the point at which the history of the patient is known, t, and
vary the time at which the predictions are made, u, we obtain the residual cumulative incidence
function, that is, the residual probability of progression once the information of the patient up to
time t is known. On the other hand, another perspective is obtained if we vary the time t at which
we assess the history of the patient, and compute the predicted probability of progression at time
u = t+ ∆, with ∆ fixed, which would give us, for each time t, and given the history of the patient
at this time t, the probability of progression in the next ∆ months. In the following, we present
two numerical examples of these quantities.

3.3.1 Residual cumulative incidence of progression

We first consider the predictive process when the history of the patient is known at t = 24 months
(2 years) and we vary u, the time at which we want to make the predictions, from 24 to 96 months
(8 years). This corresponds to the predicted residual probability of progression for patients 2 years
after the diagnosis of the primary tumour. The predictive process for an individual alive at 24
months, who has already experienced a recurrence is

π1(u, 24) = P (24 < T2 ≤ u | T2 > 24, R(24) = 1),
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Figure 3.4: Predicted PFS cumulative incidence curves for patients after 24 months after diagnosis.

and, on the other hand, the predictive process for an individual for whom no event has been
observed by 24 months is

π0(u, 24) = P (24 < T2 ≤ u | T1 > 24, R(24) = 0).

In Figure 3.4 we plot the predicted residual cumulative incidence curves at 24 months after diag-
nosis, for males of 60 years or 70 years, with a low-risk profile (Fig. 3.4(a): single tumours, size
less than 3cm, Ta, Grade 1 or Benign, non-smoker) or a high-risk profile (Fig. 3.4(b): multiple
tumours, size of the largest greater than 3 cm, T1 or Tis, Grade 2, smoker). Notice the different
scales chosen for each plot in order to highlight differences between curves. In both plots, it can be
observed the effect of age as a fix risk factor, because older patients (70 years, dashed lines) have
higher predicted incidence than younger (60 years, solid lines).

If we fix age, there are differences between the curves for those patients who have already suffered
at least one recurrence (blue lines) with respect to the ones who have not experienced any (red
lines). For instance, for a 60 years old low-risk profile having at baseline a predicted probability
of progressing in the first 5 years equal to 0.010, his updated probability after 2 years of follow-up
is π1(60, 24) = 0.016 if recurrence has occurred (R(24) = 1) and π0(60, 24) = 0.008 if no events
have occurred (R(24) = 0). These differences are even more remarkable for high-risk patients: the
predicted probability of progression at baseline within the next 5 years was 0.076 and, if R(24) = 1,
the residual probability 60 months is 0.086, and if R(24) = 0, it is 0.048.

3.3.2 Conditional risk of progression

Another analysis of the predictive process can be done by varying the time t at which we assess
the history of the patient. For instance, we can compute the predicted risk of progression at time
u = t+ 36 that, given the history at time t, provides the probability of progressing in the following
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Figure 3.5: Risk of progression in the next 3 years given the history at time t after Diagnosis

3 years (36 months). We consider the predictive process for a patient with R(t) = 1: alive at t
months, who has already experienced a recurrence by then,

π1(t+ 36, t) = P (t < T2 ≤ t+ 36 | T2 > t,R(t) = 1),

and on the other hand, the predictive process for an individual for whom no event has been
observed by t months,

π0(t+ 36, t) = P (t < T2 ≤ t+ 36 | T1 > 36, R(36) = 0).

Figure 3.5 depicts such probabilities. As it was expected, the risk of progression diminishes as
time goes by and patient remains in the same state. In Figure 3.6 we observe how, after a patient
experiences a recurrence, his individual risk curve π0 jumps to the risk curve π1 indicating an
update in his predicted risk of progression.

3.3.3 Updated classification in risk groups

The construction of a predictive process based on a multi-state model allows henceforth to make
dynamical predictions on different courses of disease. It is clear that the occurrence of an interme-
diate event (recurrence) at a certain time during follow up changes the prognostic of the patient.
And the non-occurrence of the intermediate event during a reasonable period of time also changes
the prognostic of the patient: we have seen in the last figure how the risk of progression diminishes.
Therefore, by using the last updated information, we can reclassify patients into new risk categories,
and thus obtain a more accurate classification of patients.

For instance, Table 3.2 contains the classification of the patients according to their risk of pro-
gressing before 60 months (5 years). This classification is based on the predicted probability of
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Figure 3.6: Change in the predicted risk of progression when recurrence occurs.

progressing before 60 months made at baseline (rows of the table), and it is compared with the
classification made according to the predicted probability of progressing before 60 months given
the history of the patient at 12 months. The cuts for the classification for both predictions are
obtained from quartiles Q2 and Q3, resulting in:

• Low risk: probability of progressing before 60 months ≥ 0.025.

• Medium risk: probability of progressing before 60 months between 0.025 and 0.050.

• High risk: probability of progressing before 60 months above 0.050.

Table 3.2: Classification of the risk to progress according to the probability of progression before 60 months
(5 years). Baseline prediction vs updated prediction at 12 months.

Updated prediction given H(12)
Low Risk Medium Risk High Risk Total

Low Risk 321 71 11 403 (51.4%)
Baseline Medium Risk 74 95 39 208 (26.5%)

prediction High Risk 0 11 162 173 (22.1%)
Total 395 (50.4%) 177 (22.6%) 212 (27.0%) 784†(100.0%)

†Patients alive and at risk of progression at 12 months, with non-missing covariates.

In the table we observe the changes in the predicted risk categories when the predictions are updated
after 12 months of follow-up. Of the 408 patients at low risk at baseline, 321 (80%) remains at low
risk after 12 months of follow-up, and the rest are reclassified as medium or high risk of progression.
In the medium risk group at baseline, 74 (35%) are still as low risk and 39 (19%) as high risk. Of
the 173 patients in the high risk group at baseline, 162 (94%) are still at high risk after 12 months,
while 11 are reclassified as medium risk.
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To evaluate if this new reclassifications are beneficial for the patients, we consider first those
patients that suffered a progression after 12 months (a total of 48 individuals). Table 3.3 reflects
the updated predictions for this subgroup of patients. For them, any change to a higher risk
category is beneficial. Six over 14 patients initially classified as low risk are reclassified in a higher
risk category; 6 over 12 in the medium risk category are reclassified as high risk and one patient
initially classified as high risk is reclassified as medium risk. Consequently, a total of 12 patients
(25%) would benefit from the update while only 1 (2%) would be erroneously reclassified in a lower
risk category.

Table 3.3: Patients progressing after 12 months (n=48%).

Updated prediction given H(12)
Low Risk Medium Risk High Risk Total

Low Risk 8 3 3 14 (29.2%)
Baseline Medium Risk 0 6 6 12 (25.0%)

prediction High Risk 0 1 21 22 (45.8%)
Total 8 (16.7%) 10 (20.8%) 30 (62.5%) 48†(100.0%)

†Patients alive and at risk of progression at 12 months, with non-missing covariates.

Evaluating the benefits of the reclassifications in the rest of individuals is complex because this
group contains both individuals alive and progression free at the end of follow-up and patients that
have died because other causes during follow-up. For this reason we restrict now the analysis to
those individuals alive and progression-free at 60 months, a total of 571 patients (Table 3.4). For
these patients, any change to a higher risk category is incorrect or unnecessary. This happened
to a total of 74 patients (13%). There are 62 patients (10.9 %) that benefit from the acquired
information by being reclassified in a lower risk category.

Table 3.4: Patients alive and progression free at 60 months (n=571%).

Updated prediction given H(12)
Low Risk Medium Risk High Risk Total

Low Risk 269 49 4 322 (56.4%)
Baseline Medium Risk 52 63 21 136 (23.8%)

prediction High Risk 0 10 103 113 (19.8%)
Total 321 (56.2%) 122 (21.4%) 128 (22.4%) 571†(100.0%)

†Patients alive and at risk of progression at 12 months, with non-missing covariates.

In addition, if we consider the high risk category versus the low and medium categories together,
we can obtain from Tables 3.3 and 3.4 an approximate measure of the sensitivity and specificity
of both approaches. By updating the predictions after 12 months of follow-up, the sensitivity is
increased from 45.8% to 62.5% while the specificity is hardly reduced, 80.2% versus 77.6%.

All in all, and taking into account the bad prognosis after progression, we can assert a clear
benefit of the new reclassification that uses the information on recurrence during the first year
after diagnosis.
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CHAPTER 4

Methods for semi-competing risks data

In this Chapter, we present the problem of semi-competing risks for right-censored data (Fine
et al., 2001). A semi-competing risks situation can be described as a bivariate survival situation
with dependent censoring. In this setting, individuals are at risk of experiencing two events, E1 and
E2, one of them intermediate, and the other terminating, in such a way that the occurrence of the
terminating event E2 precludes the observation of the intermediate one, E1, and thus the time until
the terminating event, T2, dependently censors the time until the intermediate event, T1. The goal
of the semi-competing risks methodology is to recover and characterize the marginal distribution
of T1 through the characterization of the association structure between T1 and T2.

Semi-competing risks data is also encountered in the Spanish Bladder Cancer Study. Recurrence
is an intermediate event for both progression and death, and we may be interested in the marginal
recurrence process or in evaluating the influence of factors in the marginal recurrence process. This
situation is depicted in Figure 4.1 where T1 is the marginal lifetime to recurrence and T2 is the
time to the first occurring event, progression or death.

By a competing risks analysis, we were able to characterize T , the minimum between T1 and T2 but
not the marginal law of T1. Indeed, the dependent censoring of T2 on T1 generates an identifiability
problem (Tsiatis, 1975) on the distribution of T1. However, under semi-competing risks data we can
take advantage of that for some patients, since both events can be observed on the same individual.
Hence, using these patients, we can explore the dependency between T1 and T2, fit a model for
their joint distribution and derive the marginal distribution of T1.

The discussion about whether or not the distribution of the intermediate event is clinically mea-
ningful has been in the past controversial (Fine et al., 2001, Jiang et al., 2003, Wang, 2003). There
are situations where it is difficult to interpret the meaning of the assumed marginal or latent dis-
tribution, as the process that would be observed if terminating events, such as death, would be
avoided. In other clinical studies, its interpretation is more clear: Jiang et al. (2003) present an

69



70 CHAPTER 4. METHODS FOR SEMI-COMPETING RISKS DATA

Progression / 
Recurrence

g

DeathT1 X
T2=T1+X

Diagnose

Progression /
T2

Progression / 

Death

Figure 4.1: Semi-competing risks setting for the SBC/EPICURO Study.
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Figure 4.2: Induced protective effect in a competing risks analysis.

HIV study where the intermediate event is virological failure and the terminating event is dropout
due to adverse effects of treatment and thus, informative of the process being described. In this
case, the clinical interest relies on the virological failure and on the effect the given treatment has
on it.

Semi-competing risks can also be useful in clinical trials where the goal is to evaluate the effect
of a treatment. In this kind of studies, the presence of a competing risk event complicates the
analysis since the effect of the treatment can not be evaluated on the marginal distribution of
interest but only on the cause-specific hazard or the cumulative incidence hazard. This competing
risks analysis may provide regression coefficients that do not reflect the real effect of the treatment
on the marginal distribution.

In Figure 4.2 we represent this phenomenon through a simulated example that mimics a clinical
trial for proving the effectiveness of a treatment A over a treatment B. We have simulated bivariate
correlated data of (T1, T2) in the two categories of treatment, A and B, such that treatment
A reduces significantly the proportion of events in both T1 and T2 (HR 1.6 for both times, p-
value<0.0001). In the figure, we represent the marginal distribution functions for T1, P (T1 ≤ t),
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in both treatment arms (solid lines). The competing risks analysis of this data analyzes T =
min(T1, T2) and do not provide significant differences between treatment arms at the cumulative
incidence levels (Fine and Gray model, dashed lines in Figure 4.2, HR 1.1, p-value 0.5). The
presence of a competing risk makes the cumulative incidence functions to be far from the true
marginal distributions and, in addition, the effect of treatment in the marginal scale cannot be
recovered. As we will show later in this Chapter, when we will go back to this example, if the
situation is not truly competing risks but instead, one of the events is not terminating, we will
be able to recover the marginal distribution and the real effect of the treatment using the semi-
competing risk methodology.

The present chapter is organized as follows. Before directly addressing semi-competing risks me-
thods, in Section 4.1 we provide basic concepts of bivariate survival data. Section 4.2 is devoted
to right-censored semi-competing risks data. After introducing the problem in Section 4.2.1, we
present one specific model based on a copula approach and we explore in detail the estimation pro-
cess (Sections 4.2.2 and 4.2.3). In Section 4.3, we conclude with some numerical examples where
we apply the reviewed semi-competing risks methods.

4.1 Concepts of bivariate survival data

4.1.1 Notation

Let T1 and T2 be two survival times corresponding to events E1 and E2, respectively, with marginal
survival functions S1(s) = P (T1 > s), S2(t) = P (T2 > t) and bivariate survival function S(s, t) =
P (T1 > s, T2 > t).

The marginal laws can be recovered from the bivariate as follows: S1(s) = S(s, 0) and S2(t) =
S(0, t). The relationship between the joint survival function and the joint distribution function,
F (s, t) = P (T1 ≤ s, T2 ≤ t) is given by

F (s, t) = S(s, t)− S1(s)− S2(t) + 1. (4.1)

Similarly, the marginal distribution functions for T1 and T2 are given by F1(s) = 1 − S1(s) and
F2(t) = 1− S2(t), and we can rewrite equation 4.1 in terms of the marginal distributions:

F (s, t) = S(s, t)− 1 + F1(s) + F2(t).

The joint density, hazard and cumulative hazard functions for (T1, T2) as well as the relationship
between S and Λ are given by

f(s, t) =
∂2S(s, t)
∂s∂t

,

λ(s, t) = lim
max(δ1,δ2)→0+

P (s ≤ T1 ≤ s+ δ1, t ≤ T2 ≤ t+ δ2|T1 > s, T2 > t)
δ1δ2

=
f(s, t)
S(s, t)

,

Λ(s, t) =
∫ s

0

∫ t

0
λ(u, v)dudv, and

S(s, t) = S1(s)S2(t)eΛ(s,t).
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4.1.2 Measures of dependence

The dependence between T1 and T2 can be described through measures of concordance such as
Spearman’s rank correlation ρS , or Kendall’s coefficient of concordance, τK.

Spearman’s ρS for T1 and T2 is defined by

ρS(T1, T2) = ρ(F1(T1), F2(T2)) =
cov(F1(T1), F2(T2))√

var(F1(T1))var(F2(T2))
(4.2)

where ρ is the linear correlation coefficient (Pearson correlation) between two random variables.
That is, ρS is the linear correlation coefficient between F1(T1) and F2(T2), and thus a measure of
rank correlation. The use of the linear correlation coefficient ρ directly on (T1, T2) is not appropriate
since this measure is restricted to random variables with bivariate normal distribution, which is
unusual in the context of lifetime random variables.

On the other hand, Kendall’s coefficient of concordance for two pairs (T1i, T2i) and (T1j , T2j) is
defined by

τK = E
[
sgn((T1i − T1j)(T2i − T2j))

]
= P

(
(T1i − T1j)(T2i − T2j) > 0

)
− P

(
(T1i − T1j)(T2i − T2j) < 0

)
= 4

∫ ∫
S(u, v)f(u, v)dudv − 1,

(4.3)

where (T1i, T2i) and (T1j , T2j) are two independent and identically distributed random vectors and
sgn is the sign function, that is, sgn(x) = 1 when x > 0, −1 when x < 0 and 0 for x = 0. This
coefficient measures the difference between the probability for a pair being concordant and a pair
being discordant. In the following, we will mainly use this measure of global dependence instead
of Spearman’s ρS for its intuitive interpretation in terms of concordance.

A measure of local dependence could be given the ratio

θ(s, t) =
S(s, t)∂

2S(s,t)
∂s∂t

∂S(s,t)
∂s

∂S(s,t)
∂t

∀(s, t), (4.4)

referred to as cross-ratio function θ(s, t) by Oakes (1989). This measure gives information on the
strength of the local dependence at the point (s, t). A natural interpretation is given in terms of
conditional hazards by

θ(s, t) =
λ2(t|T1 = s)
λ2(t|T1 > s)

∀(s, t), (4.5)

where λ2(t|A) is the hazard function of T2 given that event A occurs. We can also express the
cross-ratio function in terms of λ1(s|A), the hazard function of T1 given event A:

θ(s, t) =
λ1(s|T2 = t)
λ1(s|T2 > t)

,

because of the symmetric role of T1 and T2. The equivalence between (4.4) and (4.5) is shown in
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Appendix B.1.

A conditional version of τK, related to the cross-ratio, is given by τ∗(s, t):

τ∗(s, t) = E[sgn(T1i − T1j)(T2i − T2j)|T̃1ij = s, T̃2ij = t] =
θ(s, t)− 1
θ(s, t) + 1

∀(s, t).

The relationship is justified by the following proposition.

Proposition 4.1. The cross-sectional ratio can be expressed in terms of conditional probabilities
of concordance and discordance (Oakes, 1989):

θ(s, t) =
P ((T1i − T1j)(T2i − T2j) > 0|T̃1ij = s, T̃2ij = t)

P ((T1i − T1j)(T2i − T2j) < 0|T̃1ij = s, T̃2ij = t)
, (4.6)

where T̃1ij = min(T1i, T1j) and T̃2ij = min(T2i, T2j).

The proof of this proposition can be found in B.1.

4.1.3 Copula models for bivariate survival data

Copulas have become a popular tool when bivariate dependence is of interest, because they allow
to model separately the marginal distributions and the association structure. Copulas methods
assume that the marginal distributions do not depend on the dependence structure. Exhaustive
revisions of the copula approach can be found in Nelsen (2006), Georges et al. (2001), Trivedi and
Zimmer (2007), Joe (1997) or Hougaard (2000).

Definition 4.1. A copula Cα(u, v) is a continuous bivariate function defined as

Cα : [0, 1]× [0, 1] −→ [0, 1],

such that is non-decreasing on each component of (u, v) and satisfies Cα(u, 0) = Cα(0, v) = 0, and
Cα(u, 1) = u, Cα(1, v) = v. The functional form of Cα(u, v) depends on a vector of parameters
α′ = (α1, . . . , αp).

Let T1 and T2 be two non-negative random variables with marginal survival functions S1(s) and
S2(t). Let Cα(u, v) be a copula function for 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 and where α measures
the association between T1 and T2. We assume that the joint survival function of (T1, T2), S(s, t),
can be written as a function of the marginals S1, S2 and the parameter α through the following
expression

S(s, t) = Cα
(
S1(s), S2(t)

)
. (4.7)

It is satisfied that S(s,∞) = 0, S(∞, t) = 0 and

S(s, 0) = Cα(S1(s), 1) = S1(s)

S(0, t) = Cα(1, S2(t)) = S2(t).
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Sklar’s canonical representation (see Nelsen (2006), for instance) guarantees that S(s, t) defined as
in (4.7) is indeed a joint survival function. We adopt the notation of survival copulas, where the
copula function relates the joint survival with its marginal survivals, instead of the more common
use that relates the joint distribution with its margins.

Following (4.2) and (4.3), Spearman’s ρS and Kendall’s τK can both be expressed in terms of the
copula function:

ρS = 12
∫ 1

0

∫ 1

0
{Cα(u, v)− uv}dudv = 12

∫ 1

0

∫ 1

0
Cα(u, v)dudv − 3

τK = 4
∫ 1

0

∫ 1

0
Cα(u, v)dCα(u, v)− 1.

(4.8)

Definition 4.2. Let φα be a decreasing convex function defined in (0, 1] such that φα(1) = 0. An
Archimedean copula function of (u, v) ∈ [0, 1]2 is given by

Cα(u, v) = φ−1
α {φα(u) + φα(v)}, (4.9)

The cross-ratio (4.5) of an Archimedean copula model only depends on (s, t) through S(s, t), that
is θ(s, t) = θα{S(s, t)}, where

θα(v) = −vφ
′′
α(v)
φ′α(v)

.

From Proposition 4.1, a new expression for τK is obtained:

τK = E

[
θ(T̃1ij , T̃2ij)− 1

θ(T̃1ij , T̃2ij) + 1

]
= E

[
θα
[
S(T̃1ij , T̃2ij)

]
− 1

θα
[
S(T̃1ij , T̃2ij)

]
+ 1

]
.

Definition 4.3. Clayton’s copula (1978) is a special case of Archimedean copula with φα(x) =
(x1−α − 1)/(α− 1). The copula functions is explicitly given by

Cα(u, v) = {u1−α + v1−α − 1}1/(1−α), (4.10)

with α > 1, (u, v) ∈ [0, 1]2. Another parametrization with θ = α− 1 is often given instead.

Model (4.10) is valid for positive associations between times. As α → 1+, S(s, t) → S1(s)S2(t),
corresponding to independence between T1 and T2, and if α→∞, S(s, t)→ min{S1(s), S2(t)}, the
bivariate distribution exhibiting maximal association between T1 and T2 (Oakes, 1982). Kendall’s
tau under this model is equal to τK = α−1

α+1 .

Among the many possible choices for a copula we are choosing Clayton’s archimedean copula
because it has many interesting features. First, it is equivalent to a model with constant cross-ratio
(Clayton, 1978). Second, it is equivalent to the gamma frailty model (Oakes, 1989), and third, if T1

and T2 are the lifetimes corresponding to events E1 and E2, then λ2(t|T1 = s) = αλ2(t|T1 > s). That
is, the conditional hazard for E2 given the occurrence of T1 is α times the conditional hazard for E2

given that E1 will occur after s. This relationship gives an intuitive interpretation of parameter α.
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Figure 4.3: Regions of observation in the semi-competing risks framework.

4.2 Semi-competing risks

4.2.1 Semi-competing risks data

As we have briefly discussed in the introduction of this chapter, semi-competing risks data arises
as a consequence of having two events of interest in such a way that one of them, E2, prevents the
observation of the other, E1, and thus, T2 might censor T1, but not viceversa.

Let C be a censoring time independent of (T1, T2), and defineX = min(T1, T2, C), δ1 = I(T1 < min(T2, C)),
Y = min(T2, C) and δ2 = I(T2 < C), where I(.) is the indicator function. Now, a sample of semi-
competing risks data is denoted by Dr, the sample of 4-dimensional vectors on n independent
individuals

Dr = {(Xi, δ1i, Yi, δ2i), i = 1, · · · , n}.

In this setup, while the distribution of T2 is only subject to independent right-censoring, and hence
it can be observed in all the plane defined by (T1, T2) and can be consistently estimated only from
observed data, the distribution of (T1, T2) is only nonparametrically identifiable in the upper wedge
of the plane, that is, in the region D1 = {(s, t)|s ≤ t}, where both events are observed (Figure 4.3).

An appropriate nonparametric estimator for the joint survival function S(s, t) is given by

Ŝ(s, t) =
1

Ĝ(t)

{
1
n

n∑
i=1

I(Xi > s, Yi > t)

}
,

where G(t) = P (C > t) is the survival function of the censoring time C, and Ĝ(t) is its Kaplan-
Meier estimator evaluated from observed data {(Yi, 1 − δ2i), i = 1, . . . , n}. It can be proved that
Ŝ(s, t) is uniformly consistent for S(x, y) for 0 ≤ x ≤ y ≤ τ , where P (min(T,C) > τ) > 0 (that is,
ST (τ)G(τ) > 0) (Lin and Ying, 1993). This estimator is derived from the following proposition.

Proposition 4.2. In D1 = {(s, t)|s ≤ t}, we can rewrite the joint survival function as

S(s, t) =
P (X > s, Y > t)
G(max(s, t))

.
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Proof. Indeed, for s ≤ t

P (X > s, Y > t) = P (min(T1,min(T2, C)) > s,min(T2, C) > t)

= P (T1 > s, T2 > s,C > s, T2 > t,C > t)

=
C⊥(T1,T2)

P (T1 > s, T2 > s, T2 > t)P (C > s,C > t)

=
max(s,t)=t

P (T1 > s, T2 > t)P (C > t) = S(s, t)G(t).

The symbol ⊥ indicates independence.

Since X and Y are observation times, it is natural to estimate P (X > s, Y > t) by the empirical
survival function n−1

∑n
i=1 I(Xi > s, Yi > t).

Corollary 4.1. S(s, 0) cannot be recovered from observed data, and thus S1(s) = S(s, 0), is not
empirically identifiable.

Proof. Indeed, for s > 0, from the previous expression,

S(x, 0) = P (X > s, Y > 0) = P (min(T1,min(T2, C)) > s,min(T2, C) > 0)

= P (T1 > s, T2 > s,C > s, T2 > 0, C > 0)

=
C⊥(T1,T2)

P (T1 > s, T2 > s)P (C > s) = S(s, s)G(s).

To recover the marginal distribution S1(s), a model for the joint survival function is needed.

4.2.2 Clayton’s copula model for semi-competing risks data

The proposal of Fine et al. (2001) is to posit a Clayton’s copula model (4.10) to describe the
association between T1 and T2 in the upper wedge D1. This copula model expresses the joint
survival function S(s, t) in terms of the marginal survival functions of T1 and T2, S1(s) = P (T1 > s)
and S2(t) = P (T2 > t), respectively, by

S(s, t) = P (T1 > s, T2 > t) =
(
S1(s)1−α + S2(t)1−α − 1

)1/(1−α)
. (4.11)

The specification of the copula model only in the upper wedge D1 implies that not all the properties
of this model are valid. In particular, the relationship of the association parameter with Kendall’s
τ , τK = (α − 1)/(α + 1), does not hold. Moreover, though the general Clayton’s copula model
is equivalent to the gamma frailty model (Clayton, 1978), when restricted to D1, the association
parameter α is no longer interpretable as the variance of the gamma random variable (Jiang et al.,
2005a). On the contrary, Day et al. (1997) showed that the property of the cross-ratio being
constant and equal to α is valid even restricted to the upper wedge,

θ(s, t) = α ∀(s, t) ∈ D1.
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Figure 4.4: Example of concordant pairs (∆ij = 1) and discordant pairs (∆ij = 0).

Some hints on the proof are found in Appendix B.2.

Let f(s, t) = ∂2S(s, t)/∂s∂t be the density function of model (4.11). The joint distribution on the
lower wedge D2 = {(s, t)|s > t} is unspecified, but its joint density function fD2 must satisfy

S(s, t) =
∫ ∞
t

∫ v

s
f(u, v)dudv +

∫ ∞
t

∫ ∞
v

fD2(u, v)dudv.

There are infinite solutions to the previous integral equation, but it is difficult to find one which is
valid. Fine et al. (2001) propose a class of joint distributions satisfying that S1(s) = S(s, 0) in the
lower wedge. We assume, in the rest of this work, that this condition holds, and thus S1(s) and
S2(t) are interpreted as the marginal survival functions of T1 and T2, respectively.

4.2.3 Estimation under Clayton’s copula model

In the usual bivariate survival framework, estimation of the association parameter α can be obtained
by maximization of a pseudolikelihood derived from inserting consistent estimates for S1(·) and S2(·)
into the likelihood function (Shih, 1998). One can use their corresponding Kaplan-Meier estimates,
and a consistent estimate for α is obtained. In the case of semi-competing risks data, this strategy is
not valid: since the marginal distribution of T1 is empirically non-identifiable, without an estimator
of α, a consistent estimate of S1(·) may not exist. Therefore, the proposal of Fine and colleagues is
to obtain a closed-form estimate of α based on a concordance measure between pairs of individuals,
which does not depend on S1(·) nor on S2(·). Then, an estimate for S1(·) is proposed, based on
consistent estimates of α, S2(·) and ST (·), the survival function of T = min(T1, T2), the time to the
first event occurring.
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4.2.3.1 Estimation of the association parameter α

A consistent estimator for the association parameter α is obtained based on the concordance indi-
cator between two pairs (T1i, T2i) and (T1j , T2j) of individuals i and j:

∆ij = I((T1i − T1j)(T2i − T2j) > 0).

Figure 4.4 shows an example of concordant pairs (∆ij = 1) and discordant pairs (∆ij = 0).

In the presence of right-censoring, the concordance indicator between two individuals cannot always
be determined. It is necessary that the minimum T1 and the minimum T2 of the two individuals are
exactly observed in the observable region D1. This condition is formally expressed in the following
definition of comparable pairs:

Definition 4.4. A pair (i, j) is said to be comparable if

T̃1ij < T̃2ij < C̃ij

where where T̃1ij = min(T1i, T1j), T̃2ij = min(T2i, T2j) and C̃ij = min(Ci, Cj).

Let ORij = I
(
T̃1ij < T̃2ij < C̃ij

)
be the indicator to determine the comparable sample. Then the

set of comparable pairs for right-censored semi-competing risks data is denoted by

CR = {(i, j) ∈ Cn,2|ORij = 1}, (4.12)

where Cn,2 is the set of all
(
n
2

)
combinations of 2 integers (i, j), i < j chosen from (1, 2, . . . , n).

Figure 4.5 shows examples of comparable and non-comparable pairs.

Proposition 4.3. Under Clayton’s copula model, it is satisfied that E [∆ij ] = α/(1 + α).

The proof of this proposition can be found in Appendix B.3. This property is true even when
the model is only assumed in the upper wedge, thanks to the fact that the cross-ratio func-
tion or predictive hazard ratio θ(s, t) is constant. Given a sample of semi-competing risks data
{(Xi, δ1i, Yi, δ2i), i = 1, . . . , n}, an estimate α̂ is obtained as the root of the estimating equation

UR(α) =
(
n

2

)∑
i<j

W (X̃ij , Ỹij)ORij

{
∆ij −

α

α+ 1

}
= 0, (4.13)

where W (u, v) is a weight random function satisfying supu,v |W (u, v) − W̃ (u, v)| → 0 in probabi-
lity, where W̃ (u, v) is a deterministic and bounded function for (u, v) in the support of (X̃ij =
min(Xi, Xj), Ỹij = min(Yi, Yj)). Fine et al. (2001) propose the use of function

W−1
a,b (x, y) = n−1

n∑
i=1

I(Xi ≥ min(a, x), Yi ≥ min(b, y)), (4.14)

where a and b are constants. When a = b = 0, it corresponds to W = 1. When a = b = ∞, the
contribution of each pair is weighted by the size of the risk set at their observation times, and it
results the same estimator as in Oakes (1986) for the case of bivariate survival data.
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Figure 4.5: Examples of comparable and non-comparable pairs: (a) Comparable pair: (T̃1ij = T1i, T̃2ij =
T2i) ∈ D1, (b) non-comparable pair: T̃1ij is not determined, and T̃2ij = T2j ≤ T̃1ij (c) comparable pair:
(T̃1ij = T1i, T̃2ij = T2i) ∈ D1, (d) non-comparable pair: T̃1ij = T1i but T̃2ij is not observed.

Proposition 4.4. UR(α) is a unbiased zero-mean random variable, E[UR(α)] = 0.

Proof. We compute the expectation of UR(α):

E
[
UR(α)

]
=
(
n

2

)∑
i<j

E
[
W (X̃ij , Ỹij)ORij

{
∆ij −

α

α+ 1

}]

=
(
n

2

)∑
i<j

E
[
E
[
W (X̃ij , Ỹij)ORij

{
∆ij −

α

α+ 1

}
| X̃ij , Ỹij

]]

=
(i)

(
n

2

)∑
i<j

E
[
W (X̃ij , Ỹij)E

[
ORij | X̃ij , Ỹij

]
E
[
∆ij −

α

α+ 1
| X̃ij , Ỹij

]]

=
Prop.4.3

(
n

2

)∑
i<j

E
[
W (X̃ij , Ỹij)E

[
ORij | X̃ij , Ỹij

]
· 0
]

= 0.

(i) Oij and ∆ij are independent conditionally on X̃ij and Ỹij (Oakes, 1986).

The estimate α̂, the unique solution of equation (4.13), is explicitly given by

α̂ =

∑
i<jW (X̃ij , Ỹij)ORij∆ij∑

i<jW (X̃ij , Ỹij)ORij(1−∆ij)
, (4.15)
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and is shown to be strongly consistent for α, and asymptotically normal (Fine et al., 2001). An
intuitive interpretation of parameter α is derived from expression (4.15): if W (u, v) = 1 for any
(u, v), then α is the ratio between concordant and discordant pairs.

4.2.3.2 Inference on the marginal S1(·)

The marginal survival function of T1 evaluated at time s, S1(s) can be isolated from Clayton’s
copula equation (4.11) with s = t and be expressed as a function of S(s, s), S2(s) and α. In
addition, the bivariate survival S when s = t can be expressed in terms of T = min(T1, T2):

S(s, s) = P (T1 > s, T2 > s) = P (min{T1, T2} > s) = P (T > s) = ST (s). (4.16)

Thus, S1(s) can be expressed as a function of ST (s), S2(s) and α. Specifically:

S1(s;ST (s), S2(s), α) = g(ST (s), S2(s), α), (4.17)

where g(a, b, c) = (a1−c − b1−c + 1)1/(1−c). Function g is continuous and has bounded derivatives.

Consider the following estimates for α, S2(s) and ST (s): α̂ given in (4.15), and the Kaplan-Meier
estimates ŜT (s) and Ŝ2(s) based, respectively, on {(Xi, δT i = δ1i + (1− δ1i)δ2i), i = 1, . . . , n}, and
{(Yi, δ2i), i = 1, . . . , n}. Then we can plug-in the estimates instead of the theoretical values in
expression (4.17) to obtain an estimator of S1(·):

Ŝ1(s) = g(ŜT (s), Ŝ2(s), α̂). (4.18)

ŜT (s) and Ŝ2(s) are known to be strongly consistent in s ∈ [0, τ ], with τ satisfying ŜT (τ)Ĝ(τ) > 0
with ŜT as defined above, and Ĝ the Kaplan-Meier estimate of G(t) = P (C > t) as defined in page
75. Since α̂ is consistent, the following theorem ensures the strong consistency of Ŝ1(s) in s ∈ [0, τ ]:

Theorem 4.1. Continuous mapping theorem

(a) Let {Xn} be a sequence of random variables, converging in probability to a, Xn
P→ a, and g a

continuous function. Then g(Xn) P→ g(a).

(b) Let {Xn} be a sequence of random variables, converging in distribution to the random variable
X, Xn

D→ X, and g a continuous function. Then g(Xn) P→ g(X).

(c) Let {Wn}n be a consistent sequence of estimators of θ. Let g be a continuous function defined
in Θ. Then, {g(Wn)}n is a consistent sequence for g(θ).

Moreover, it can be be shown that n1/2(Ŝ1(t)− S1(t)) converges weakly to a Gaussian process for
t ∈ [0, τ ]. The proposed estimator Ŝ1(s) is a step function which jumps at the observed values of
T1 and T2 such that ŜT (s)1−α̂ − Ŝ2(t)1−α̂ jumps. It may be non-monotone or not well defined: in
finite samples ŜT (s) may be greater than Ŝ2(t), although ST (s) ≤ S2(s) for all s. In addition, α̂
might be less than one.
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To address this issue, the authors propose the isotonic estimate Ŝ∗1(s) = mins≤t{Ŝ1(s)}, where
t ∈ [0, t∗], with t∗ satisfying

t∗ ≤ max{s : ŜT (s)1−α̂ − Ŝ2(t)1−α̂ > −1, 0 ≤ Ŝ1(u) ≤ 1, u ≤ s}.

4.2.4 Alternative models

The concept of semi-competing risk is introduced by Fine et al. (2001), however, as a special
bivariate distribution with dependent censoring has been studied in a large number of papers. Day
et al. (1997) use Clayton’s copula to model the joint survival function of (T1, T2) in the observable
region D1, though the estimation of the copula parameter is achieved modifying the likelihood
proposed originally by Clayton (1978), whilst the proposal of Fine extends the methods in Oakes
(1982, 1986). We refer to the original paper by Fine et al. (2001) and to a nice summary by Jiang
et al. (2003) to deepen on this particular work.

Wang (2003) propose a more general model allowing the dependence structure to vary with time,
by the use of the Archimedean copula family (4.9), stating the relationship

S(s, t) = φ−1
α [φα{S1(s)}+ φα{S2(t)}] .

Complex estimating equations are proposed to obtain the dependence parameter α. Lakhal et al.
(2008) chooses as well the Archimedean family to model the association between times, but the
estimation procedures are based in the concordance indicator. In fact, they propose a common
framework in which the estimates given by Day et al. (1997), Fine et al. (2001) and Wang (2003)
can be included.

When it comes to the estimation of the marginal S1(s), some criticism has been done to the simple
plug-in proposal of Fine’s. This estimator cannot be considered as a generalization of the product-
limit estimator, since it jumps outside the observed times X, and monotonicity is not granted,
which is the reason why Ŝ∗1 must be defined. Alternatives have been proposed: Jiang et al. (2005a)
obtain an estimate satisfying pseudo-self consistent equations, while Lakhal et al. (2008) use the
so-called copula-graphic estimator proposed by Zheng and Klein (1995) in the context of competing-
risks. Both estimators are shown to perform better than the original plug-in estimate, but similar
between them. In the following chapters when accounting for interval censoring, we adopt the
plug-in estimator, and we explore how other estimates can be extended.

The presence of covariates is indeed a relevant issue and Ghosh (2006), under Clayton’s copula
model, proposes a class of rank statistics to test whether the association between T1 and T2 remains
constant across strata for a discrete covariate Z. Hsieh et al. (2008) also considers a single discrete
covariate, but proposes flexible copula models for each stratum of the covariate. Peng and Fine
(2007) propose a very general framework of regression modelling in semi-competing risks, where the
effect of the covariates on the marginal S1(·) are included via a functional regression model, and a
general time-dependent copula model is adopted. Non-linear estimating equations are derived for
both the dependence model and the marginal of T1.

The extension of semi-competing risks models to left-truncation data is proposed in Jiang et al.
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(2005b) and in Peng and Fine (2006). To our knowledge, no work has been done to extend semi-
competing risks data in the presence of interval censoring.

4.3 Numerical examples

4.3.1 An example based on simulated data

We present an example of simulated data to illustrate a right-censored semi-competing risks ana-
lysis. This example completes the one presented in the motivation of this Chapter, thought as to
mimic a clinical trial for proving the effectiveness of a treatment A over a treatment B.

Bivariate correlated data of (T1, T2), corresponding to the times until the intermediate E1 and ter-
minating E2 events, was simulated following Clayton’s copula 4.11 model to describe the association
structure. For both treatment arms, a copula parameter of αA = αB = 4 was chosen, but marginal
distributions were taken in such a way that treatment A reduced significantly the proportion of
events in both T1 and T2 (HR 1.6 for both times, p-value<0.0001). This was achieved by picking
up Exponential distributions for both T1 and T2 with rates λA1 = λA2 = 0.025 (E[T1] = E[T2] = 40),
for treatment A, and rates λB1 = λB2 = 1.6λA2 = 0.4 for treatment B. Data for 500 individuals was
generated, half at each treatment arm. In Figure 4.2 the distribution function of the marginals at
each treatment arm is depicted. An independent censoring variable C was generated following a
Uniform distribution, C ∼ U [0, 200], providing 18.4% of non-informative censoring in our data.

This way, we obtained a sample of right-censored semi-competing risks data of 500 individuals,

{(Xi, Yi, δ1i, δ2i, Zi), i = 1, .., 500},

where Xi = min(T1i, T2i, Ci), Yi = min(T2i, Ci), δ1i = I(T1i < min(T2i, Ci)), δ2i = I(T2i ≤ Ci) and
Zi is the treatment indicator.

A competing risks approach would result from analysing the sample X = min(T,C), where T =
min(T1, T2), together with an indicator of the type of the first event observed. Within our data,
37.6% of patients experience E1 as a first event, while 46.1% experience E2 as a first event. The rest
are censored observations. We already showed in the opening of this Chapter that the cumulative
incidence functions for (T, 1) were far from the true marginal distribution T1 at each treatment
arm (Figure 4.2). Moreover, this analysis did not provide significant differences between treatment
arms at the cumulative incidence levels.

In the semi-competing risks framework, however, we analyse the bivariate distribution to estimate
the association between the times, correct the existing dependent censoring and recover the marginal
scale. The dependence censoring is quantified by individuals for whom the terminating event
is observed to occur before the intermediate event (δ1 = 0, δ2 = 1). This corresponds to 234
individuals (46.8%): this simulated data set exhibits a large percentage of dependent censoring.

The estimates for α obtained by Fine’s method for right-censored data are α̂A = 4.12(0.42) for
treatment A and α̂B = 3.87(0.29) for treatment B (standard deviations of the estimators in paren-
theses). Both estimates are reasonably close to the true value α = 4. Figure 4.6 shows the estimates
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Figure 4.6: Semi-competing risks analysis for right-censored data: Estimated distribution function vs real
distribution function for T1.

for 1 − S1(t) at each treatment arm. We see that the estimators appropriately approximate the
marginal distributions. Most importantly, the distance between estimators reflect the marginal
effect of treatments. Therefore, a semi-competing risks analysis permits to recover the significant
marginal effect.

4.3.2 Semi-competing risks with interval-censored intermediate event

An additional complication in the analysis of semi-competing risks data is the possibility that the
intermediate event is interval-censored. This situation is frequent in medical studies, where the
status of the disease or the event of interest are assessed only at scheduled visits. The simplest ap-
proach to deal with this kind of censoring is to convert the data into right-censored semi-competing
risks by imputation of a single point. A common choice is to assign the midpoint of the censoring
interval to T1, T1 = L+ R−L

2 . However, other choices are possible, for instance, whenever interval
censoring is present, to impute the left extreme of the interval, T1 = L, or the right extreme of the
interval T1 = R.

We use the above simulated example to explore the impact of the imputation choice (left, midpoint
or right imputation) in the estimators obtained. With this aim, we have generated intervals of
observation for T1: whenever T1 belonged to the upper wedge D1 of the plane T1×T2, we generated
L and R such that T1 ∈ (L,R], R < ∞ (the method to generate such intervals is explained in
Chapter 9).

The results for the estimation of α are presented in Table 4.1, and the estimators for 1− S1(t) are
presented in Figure 4.7.

We note in this example that the choice of the imputed value has a great impact on the results,
giving very different values for the estimate of α. Left imputation underestimates the true value
of α, while right imputation greatly overestimates the true value of α. This pattern is meaningful
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Figure 4.7: Illustration 1: Impact of imputation methods on the estimation of 1−S1(t), by treatment arm.

Table 4.1: Estimates of α resulting from semi-competing risks analysis. Imputation methods for the
simulated example

α̂(SE)
Method Trt. A Trt. B

Left imputation 2.55 (0.27) 2.34 (0.19)
Midpoint imputation 3.93 (0.41) 4.07 (0.34)
Right imputation 7.61 (1.17) 12.30 (2.67)

a SE: standard error.
b Fine’s method with W∞,∞ (see Section 4.2.3.1).

since the larger the imputed value is, the more we favor positive association between T1 and T2. In
this example, the estimates obtained by midpoint imputation are the best for both, α and S1(t).
The different results obtained of the different imputation schemes and the fact that none of this
imputations takes into account the uncertainty contained in the censoring interval suggest the need
for a specific method, as the one we propose in Chapter 6, that appropriately deals with interval-
censored semi-competing risks data. Before, next Chapter is a review of some methods available
in the literature of interval censoring



CHAPTER 5

Methods for interval-censored data

Interval censoring appears when the time of interest is not exactly observed, but is known to occur
within an observed interval of time. This censoring pattern is frequent in longitudinal studies in
many areas of medical research, where the occurrence of the event can often be recorded only
at periodic follow-ups. Interval censoring may also arise when an individual misses one or more
scheduled visits, and when returns, its disease status has changed. Examples of interval-censored
data are found, in particular, in dentistry studies when analysing time to caries development or
to emergence of a tooth, where the event occurs between consecutive visits of a patient. Another
example is found in the evolution of an individual after diagnosis of a complex disease such as
cancer or HIV, where biological markers are used to asses the relapse of disease. Relapse is defined
as the time until exceeding a determined threshold of a biological marker. If such a marker is not
obtained continuously on time, interval censoring between consecutive measurements might arise.

Despite the fact that there exists specific methodology to tackle with interval-censored data, it is
still common practice to simplify the problem and use imputation approaches to reduce to the right-
censoring framework. Though they might obtain biased estimates, or underestimate the variability
of point estimates (Sun, 2006), their use is widespread, one of the reasons for this being the lack of
software and/or implemented routines to perform specific analysis accounting for interval-censored
data. In order to invert this tendency and make them available to a more general audience, the
recent tutorial by Gomez et al. (2009) is focused on the implementation of interval censoring
methods in R.

Section 5.1 provides the most relevant procedures of univariate interval-censored data, without
intending to be exhaustive. Other reviews on this topic are: Gómez et al. (2004), Lesaffre et al.
(2005), Sun (2006), and recently, Zhang and Sun (2010). We focus on maximum-likelihood estima-
tion methods to estimate nonparametrically the survival function (Section 5.1.2), and to perform
regression modelling via parametric models (Section 5.1.3). We review the literature available ad-

85
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dressing the problem of competing risks when interval-censored data is present in Section 5.1.4,
illustrating the methodologies with the data from the Spanish Bladder Cancer/EPICURO Study.

Section 5.2 is devoted to the existing references dealing with bivariate interval-censored data. The
general framework is defined in Section 5.2.1. In the analysis of bivariate interval-censored data,
two difficulties arise: (i) the presence of interval censoring, and (ii) the treatment of the correlation
structure between the times of interest. In Sections 5.2.2 and 5.2.3 we focus, respectively, on
existing methods to deal with nonparametric estimation of the bivariate distribution function, and
on estimation of the correlation structure. Issues on multi-state models or regression modelling are
not covered here (see, for instance, Sun (2006) or Cook et al. (2008)). In section 5.2.4, we expose
the difficulties to apply the presented existing methods when dependent censoring (and thus, a
structure of semi-competing risks data) is present.

5.1 Univariate interval censoring

The notation used throughout this work is the following. Let T be a nonnegative random variable
representing the time of interest, and let L and R be the times such that T ∈ (L,R] with probability
one. In addition, L ≤ R almost surely. We use the convention that L = R means an exact
observation, and R =∞ represents a right-censored observation (Sun, 2006).

5.1.1 Noninformativity conditions

The majority of methods for interval-censored data are based on the assumption that the censoring
mechanism is noninformative. Noninformativeness means that the mechanism that generates the
censoring is noninformative for the underlying variable of interest, T . In other words, the observed
interval (L,R] carries no further information on the survival time T other than the fact that T lies
in the interval (L,R]. This assumption permits evaluating censored data without modelling the
censoring process.

We adopt the noninformativity conditions in Oller et al. (2004) where three equivalent characteri-
zations of noninformativeness are given, conditions ensuring that the censoring mechanism cannot
affect the distribution of T ; moreover, they provide a constant-sum property which ensures that
the inference process can omit the randomness of the intervals. In Oller et al. (2007), the authors
study the relevance of this constant-sum property in the identifiability of the lifetime distribution.
For technical details, we refer the reader to the original papers.

These properties describing non-informativeness guarantee that the contribution to the likelihood
function of an individual with observed interval (`, r] ,∫ R

L
fT,L,R(t, `, r)dt = P (T ∈ (L,R], L ∈ d`,R ∈ dr), (5.1)

is proportional to P (T ∈ (`, r]), that is, the probability that T belongs to (`, r] ignoring the
censoring mechanism. This probability is denoted as simplified likelihood.



5.1. UNIVARIATE INTERVAL CENSORING 87

5.1.2 Nonparametric maximum likelihood estimation

Consider first the problem of estimating nonparametrically the survival function of the lifetime of
interest, S(t) = P (T > t). Let {(`i, ri]; i = 1, . . . , n} be a sample of interval-censored data from
n independent individuals, where the time of interest for the ith individual, Ti, belongs to the
observed interval (`i, ri]. Under non-informative censoring, the likelihood function corresponding
to this sample is

L(S) =
n∏
i=1

[
S(`+i )− S(r−i )

]
. (5.2)

The nonparametric maximum likelihood estimator (NPMLE) of S(t) has been developed by Peto
(1973) and Turnbull (1976). Define the sets L = {`i, i = 1, . . . , n} and R = {ri, i = 1, . . . , n}, and
the intervals

I = {(q1, p1], . . . , (qm, pm]}, (5.3)

where qj ∈ L, pj ∈ R, and no other elements from L and R are contained in the intervals. Turnbull
proved that in this set of intervals I is where the NPMLE concentrates its mass. That is, he
proved that any function maximizing (5.2) is constant between intervals [qj , pj ] and decreasing
within them.

Define the weights for each interval in I, wj = P (qj < T ≤ pj) = S(qj) − S(pj) for j = 1, . . . ,m.
If αij = I

(
(qj , pj ] ⊆ (`i, ri]

)
, then the likelihood (5.2) can be rewritten by

L(w1, . . . , wm) =
n∏
i=1

 m∑
j=1

αijwj ,

 (5.4)

and thus maximizing (5.2), a non-finite dimensional problem reduces to the finite-dimensional
problem of maximizing (5.4), subject to wj ≤ 0 and

∑m
j=1wj = 1. The NPMLE for S(t) is then

given by

Ŝ(t) =


1 if t ≤ q1

1− (ŵ1 + · · ·+ ŵk) if pk ≤ t ≤ qk+1, 1 ≤ k ≤ m− 1

0 if t ≥ pm,

and is not specified within (qk, pk], k = 1 ≤ k ≤ m.

While Peto uses the Newton-Raphson algorithm to solve this maximization problem, Turnbull
proposes the self-consistency algorithm, based on the simultaneous solution of the following self-
consistent equations:

ŵj =
1
n

n∑
i=1

αij∑m
l=1 αilŵl

, 1 ≤ j ≤ m.

Given the somehow slow convergence of the self-consistency algorithm, more efficient algorithms
have appeared, such as the Iterative Convex Minorant (ICM) algorithm or the EM-Iterative Convex
Minorant (EM-ICM) algorithm. Details on these algorithms can be found in the cited reviews at
the beginning of this chapter.
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5.1.3 Parametric maximum likelihood estimation

We now consider now the problem of regression modelling for interval-censored data via parametric
models. That is, assume that Ti follows a parametric model with survival function S(t;θ,Z), with
θ = (θ1, . . . , θp)′ denoting the unknown parameters of the parametric model, and Z = (Z1, . . . , Zp)
a vector of known covariates.

Most common survival models can be expressed as a log-linear model:

lnT = µ+ β′Z + σW

where W stands for the error term distribution. In this case, the vector of parameters corresponds
to θ = (µ,β, σ). Common choices for T are the Weibull, the log-logistic and the log-normal model,
in which cases the error term W follows the extreme value, the logistic and the normal distribution,
respectively.

Given a sample of n individuals with data {(`i, ri],Zi; i = 1, . . . , n}, where Zi is the vector of
covariates of the ith individual, estimates for θ can be obtained by maximizing the likelihood
function

L(θ) =
n∏
i=1

[
S(`i;θ,Zi)− S(ri;θ,Zi)

]
=

def.

n∏
i=1

Li(θ),

under the assumption that `i < ri for all i = 1, . . . , n. That is, the maximum likelihood estimator
θ̂ is obtained as the solution of the score equation

U(θ) =
n∑
i=1

∂Li(θ)
∂θ

= 0.

Under some regularity conditions, θ̂ is consistent and unique, and asymptotically normal with mean
θ and covariance matrix I−1(θ), where I(θ) =

∑n
i=1 ∂

2Li(θ)/∂θ∂θ′.

5.1.4 Competing risks analysis when data is interval-censored

Now we address the problem of competing risks, described extensively in Chapter 2, when data is
interval-censored. Literature in this topic is scarce. Recall that a competing risk model is specified
through the joint distribution of the time to failure, T , and the cause of failure C, which takes
values in the finite set {1, . . . , J}. The joint distribution for (T,C) is completely described either
by means of the cause-specific hazard functions,

λj(t) = lim
∆t→0

P
(
T < t+ ∆t, C = j|T ≥ t

)
∆t

,

representing the rate of occurrence of the jth failure, or by the cumulative incidence function for
type j failure,

Fj(t) = P (T ≤ t, C = j)
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corresponding to the probability of a subject failing from cause j in the presence of all the competing
risks, j = 1, . . . , J . The survival function of time T , S(t) = P (T > t) satisfies that S(t) =
1 −

∑J
j=1 Fj(t). In our setting, T is interval-censored, that is, there exists L and R such that

T ∈ (L,R] with probability one.

Hudgens et al. (2001), in the line of Turnbull’s estimator, derived the NPMLE of the cumulative
incidence function for each cause of failure when data is subject to interval censoring and truncation.
For teh sake of simplicity, we ignore truncation in this exposition. Consider a sample of n observed
individuals

{(`i, ri, δi, ci), i = 1, . . . , n},

where Ti ∈ (`i, ri], δi = 1 if the failure type is known, 0 otherwise, and ci ∈ {1, . . . , J} is the type
of failure (if known). The likelihood function in this setting is proportional to

L =
n∏
i=1

[Fci(r
+
i )− Fci(`−i )]δi

[ J∑
j=1

Fj(r+
i )− Fj(`−i )

]1−δi . (5.5)

Let Nj = {i : δi = 0 or ci = j} be the index set for observations with type j failure, or having
unknown failure type. Define the sets Lj = {`i : i ∈ Nj} and Rj = {ri : i ∈ Nj}, and the intervals

Ij = {(qj1, pj1], . . . , (qjmj , pjmj ]}, (5.6)

where qjk ∈ Lj , pjk ∈ Rj , and no other elements from Lj and Rj are contained in the intervals.
The authors provide two lemmas to show that the NPMLE of Fj(t) is constant outside Ij and
increasing in some or all of the intervals.

Define now the weights for each interval in Ij , wjk = Fj(p+
jk) − Fj(q

−
jk) for k = 1, . . . ,mj . Let

αijk be an indicator variable equal to one if [qjk, pjk] ⊆ (`i, ri], and i ∈ Nj , zero otherwise. The
likelihood (5.5) can be rewritten by

L(w1, . . . ,wJ ) =
n∏
i=1

J∑
j=1

mj∑
k=1

αijkwjk, (5.7)

where wj = (wj1, . . . , wjmj )
′, j = 1, . . . , J . Then, maximizing (5.5) reduces to a finite-dimensional

problem of maximizing (5.7), subject to wjk ≤ 0 for all j, k and
∑J

j=1

∑mj
k=1wjk = 1. Once

(ŵ1, . . . , ŵJ ) are obtained, the NPMLE of Fj(t) is given by

F̂j(t) =


0 if t < qj1

ŵj1 + · · ·+ ŵjk if pjk < t < qjk+1, 1 ≤ k ≤ mj − 1

ŵj1 + · · ·+ ŵjmj if t > pmj ,

For t ∈ [qjk, pjk], F̂j(t) is undefined if ŵjk > 0 and [qjk, pjk] ⊆ Ij and equals ŵj1 + · · · + ŵjk−1

otherwise. If pjmj = ∞ and wjmj > 0, Fj(t) is undefined for t > qjmj . Hudgens propose an EM
algorithm to solve the maximization problem.

Special mention deserves the problem of competing risks in the presence of current status data,
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object of an active research in recent years. Current status data, also known as interval-censored
data case 1, arises when T is only known to be larger or smaller than an observed monitoring time,
C. In this case, the study subject is observed only once producing either a left (T ∈ (0, C]) or a
right-censored observation (T ∈ (C,∞)). Jewell et al. (2003), Maathuis (2006) and Groeneboom
et al. (2008a,b) develop the inference of this particular problem.

When it comes to regression modelling, inferences based on cause-specific hazards can be derived
using regression methods to account for interval-censored data (some of which are reported in
Section 5.1.3). On the other hand, and up to our knowledge, the problem of extending Fine and
Gray’s model when data are interval-censored has not been addressed in scientific publications.

5.1.4.1 Illustration: the Spanish Bladder Cancer Study

In the competing risks analysis of the time to the first event (see Chapter 2) we computed the cu-
mulative incidence functions for recurrence, progression of disease (including deaths from bladder
cancer) and deaths due to other causes. In that analysis, we ignored the presence of interval cen-
soring, but in fact, recurrences and progressions of the tumour were detected between consecutive
visits of the patient, and therefore, the exact time of recurrence or progression was known to lie
within a censoring interval. It was decided then to use midpoint imputation: it was assumed that
the exact time of recurrence or progression was the midpoint of the observed interval.

In this section we want to apply the methodology of Hudgens to estimate the cumulative incidence
functions taking into account that: (i) type 1 (recurrence) is interval-censored, and (ii) type 2
(progression or death due to bladder cancer) is interval-censored or exactly observed (death). We
compare the results with the nonparametric estimator obtained by midpoint imputation. We must
check that the estimated cumulative incidence function for death due to other causes (type 3),
which is NOT interval-censored, and thus no imputation is necessary, coincides coincides for both
methods. We use the SAS macro implemented by the authors and available in http://www.

bios.unc.edu/˜mhudgens/cr_npmle_8.sas.

Figure 5.1 contains the estimates for the cumulative incidence functions for recurrence and pro-
gression (and death due to bladder cancer) obtained by assuming midpoint imputation (black solid
line) or accounting for interval censoring (red dashed line). Only small differences are observed
between both nonparametric estimators of the cumulative incidence functions, which justify the
use of the midpoint imputation in this example for simplicity reasons. However, as we will show
in next chapters, this strategy of ignoring interval censoring can lead to biased results in other
situations, in particular, when estimating the correlation between two survival times.

5.2 Bivariate interval-censored data

5.2.1 Notation and likelihood function

Let T1 and T2 be two survival times observed in the same individual. We denote their bivariate
distribution function by F (s, t), their joint survival function by S(s, t), and their corresponding
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Figure 5.1: Competing risks analysis with interval-censored data: analysis of the time to the first event
occurring, either recurrence (left), or progression/death due to bladder cancer (right).

marginal distribution and survival functions by F1(s), F2(t), S1(s) and S2(t), as defined in Section
4.1.

We assume that both times of interest are interval-censored, that is, there exist L1, R1 and L2, R2

random variables such as T1 ∈ (L1, R1] and T2 ∈ (L2, R2] with probability one, and L1 ≤ R1 and
L2 ≤ R2 almost surely.

For n independent individuals, let (T1i, T2i) their bivariate vector of times. Then, the observed
bivariate interval-censored data consists of the rectangles Bi{

Bi = (`1i, r1i]× (`2i, r2i], i = 1, . . . , n
}

such that T1i ∈ (`1i, r1i] and T2i ∈ (`2i, r2i], and (`1i, r1i, `2i, r2i) are realizations of the vector
(L1, R1, L2, R2). For every individual i = 1, . . . , n, and for each k = 1, 2, Tki is either exactly
observed (`ki = rki), interval-censored (`ki < rki <∞) or right-censored (rki =∞). Therefore, Bi
is a region of the plane T1 × T2 which can be a point, a line-segment or a rectangle.

For instance, in Figure 5.2(a), we have plotted five different types of observed individuals, corres-
ponding to the case when either T1i or/and T2i are exactly observed. Then, the regions Bi for each
case are:

Bi = (`1i, r1i]× (`2i, r2i] =



{l1i} × {l2i} for i = 1

(l1i, r1i]× {l2i} for i = 2

{l1i} × (l2i, r2i] for i = 3

(l1i,∞)× {r2i} for i = 4

{l1i} × (l2i,∞) for i = 5

On the other hand, Figure 5.2(b) contains 4 types of observed individuals, corresponding to the
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Figure 5.2: Examples of bivariate interval-censored data

cases where nor T1i neither T2i are exactly observed. The regions Bi for each case are:

Bi = (`1i, r1i]× (`2i, r2i] =



(l1i, r1i]× (l2i, r2i] for i = 1

(l1i, r1i]× (l2i,∞) for i = 2

(l1i,∞)× (l2i, r2i] for i = 3

(l1i,∞)× (l2i,∞) for i = 4

We assume noninformative censoring of (L1, R1) on T1 and (L2, R2) on T2, but (L1, R1) and
(L2, R2) could be dependent. Under this assumption, the likelihood function of the observed data
is proportional to

L(F,B) =
n∏
i=1

F (Bi) =
n∏
i=1

[
F (r1i, r2i)− F (r1i, `2i)− F (`1i, r2i) + F (`1i, `2i)

]
, (5.8)

where B = (B1, . . . , Bn).

5.2.2 Nonparametric estimation of F (s, t)

The approach to obtain the NPMLE of the joint distribution F (s, t) generalizes the NPLME for the
univariate case (Betensky and Finkelstein, 1999). By studying the likelihood function (5.8), it can
be shown that the NPMLE has to be discrete, and that it concentrates its mass on the observed
rectangles or on intersections of such rectangles (mimicking the role of Turnbull’s intervals defined
in (5.3)). Let

Ib =
{
B̄j = (q1j , p1j ]× (q2j , p2j ], j = 1, . . . ,m

}
be the set of disjoint rectangles defining the possible support of the NPMLE of F .

The likelihood function is independent of the behavior of F within these regions, that is, its pro-
bability mass can be distributed arbitrarily within the rectangles. Define then the weights within
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each rectangle by wj = F (B̄j) = P
(
(T1, T2) ∈ (q1j , p1j ] × (q2j , p2j ]

)
for j = 1, . . . ,m. Given

αij = I
(
B̄j ⊆ (L1i, R1i]× (L2i, R2i]

)
, we can rewrite the likelihood function by

L(w1, . . . , wm) =
n∏
i=1

m∑
j=1

αijwj .

We obtain the NPMLE by maximizing this function over the unknown quantities wj , subject to
wj ≥ 0 and

∑m
j=1wj = 1. This maximization can be achieved for instance by using the self-

consistent algorithm for the univariate case (5.1.2). The greatest difficulty for bivariate interval-
censored data is posed by determining the regions Ib. In order to characterize B̄j we encounter a
computational challenge since the number of iterations to decide whether or not a rectangle is a
subset of another rectangle can be very large. Betensky and Finkelstein (1999) propose an iterative
algorithm which searches directly for all rectangles in Ib, but it is very time-consuming. Other
proposed algorithms by Bogaerts and Lesaffre (2004) and Maathuis (2005), among others, try to
reduce the dimension of the problem in order to reduce computation time .

5.2.3 Estimation of the correlation structure

5.2.3.1 Direct estimation of association measures

The dependency between two completely observed times of interest can be described through mea-
sures of association such as Spearman’s rank correlation ρS , or Kendall’s coefficient of concordance,
τK, as defined in Section 4.1.2.

When data is censored, the computation of these measures of association is not straightforward. In
the case of right-censored data, pairs of observations may not be comparable (comparability issues
were discussed in Section 4.2), and ranks between observations cannot be computed. Oakes (1986)
extends τK by assigning a score equal to 0 to those non-comparable pairs. Following this idea, the
proposal of Betensky and Finkelstein (1999) extends τK in the case of bivariate interval-censored
data, by analysing the comparability condition between pairs of observed rectangles in the plane.

In general, it is not possible to compare pairs of bivariate interval-censored data because the rec-
tangles of observation may overlap, or even some non-overlapping intervals cannot be ordered. More
details of this bivariate comparability problem will be discussed in the framework of semi-competing
risks in chapter 6, where the same phenomenon arises. The idea of Betensky and Finkelstein (1999)
is to use multiple imputation to fill in interval as much as possible: by first estimating the joint
survival function S(s, t) parametrically or nonparametrically (following any of the procedures des-
cribed above), impute the most refined failure time following this joint distribution to the whole
interval, and then compute τK and its variance. This procedure is repeated M times, and the final
estimate is obtained by averaging the obtained M measures.

Bogaerts and Lesaffre (2008a) propose an alternative based on smoothing techniques to estimate
the joint density function. Then, estimating τK by means of the expression

τK = 4
∫ ∫

S(u, v)f(u, v)dudv − 1,
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is straightforward. They also provide local measures of association for bivariate interval-censored
data using the same techniques.

5.2.3.2 The copula approach

Another approach to study the association structure between two times of interest is via copula
models. These models have been described with some detail in Section 4.1.3, their advantage being
that the marginal distributions of the bivariate times (T1, T2) and the association structure are
modelled separately. This property is very convenient in the present approach.

Indeed, assume that the joint survival function S(s, t) follows a general copula model

S(s, t) = P (T1 > s, T2 > t) = Cα
(
S1(s), S2(t)

)
,

where Cα(u, v) is a bivariate copula function defined in [0, 1]×[0, 1], continuous and non-decreasing,
such that Cα(u, 0) = Cα(0, v) = 0, and Cα(u, 1) = u, Cα(1, v) = v. We consider copula functions
ruled by a a single dependence parameter α, that is, the association structure can be summarized
by a single parameter for all (s, t).

Under this model, Kendall’s τK is

τK = 4
∫ 1

0

∫ 1

0
Cα(u, v)dCα(u, v)− 1.

Since for copula models the marginal distributions and the association parameter are modelled
separately, to obtain τK we only need to estimate α.

Sun et al. (2006) considered a two-stage estimation procedure to estimate the association parameter
α. They based their method in the log-likelihood function obtained from (5.8), but expressed in
terms of the joint survival function

`(S,B) = `(S1, S2, α,B) =
n∑
i=1

log
[
S(`1i, `2i)− S(r1i, `2i)− S(`1i, r2i) + S(r1i, r2i)

]
.

The first stage consists in obtaining estimates Ŝ1(t) and Ŝ2(t) of S1 and S2, respectively. They
propose the use of the nonparametric methods described in Section 5.1.2, based on the univariate
interval-censored data samples, {(`1i, r1i), i = 1, . . . , n} and {(`2i, r2i), i = 1, . . . , n}, respectively.

The second stage consists in estimating α by maximizing the pseudo log-likelihood given by
`(α, Ŝ1(·), Ŝ2(·)), that is, α̂ is obtained as a solution of the pseudo score equation

∂`

∂α
(α, Ŝ1(·), Ŝ2(·)) = 0.

A numerical maximization method, such as Newton-Raphson, is proposed to solve this equation.

Bogaerts and Lesaffre (2008b) extend this two-stage procedure allowing for covariates, both in
the marginal distributions, by means of an accelerated failure time model, and in the dependence
parameter α.



5.2. BIVARIATE INTERVAL-CENSORED DATA 95

5.2.4 Final comments

Specific methods for bivariate interval-censored data, as the described above, could be extended
to interval-censored semi-competing risks data. However, some of these methods do not treat
adequately dependent censoring, and are not straightforward applicable. For instance, the methods
based on the copula approach are not valid because we cannot reproduce the two-stage process
explained above: since we cannot empirically estimate S1(·), we need to first estimate α, inverting
the two-stage estimation process.

In line with the methods aiming at estimating directly an association measure, in the next chap-
ter we proceed to determine the concordance status (measure of dependence) between pairs of
individuals by comparing their rectangles of observation. In next chapter, we proceed by taking
advantage of the need for an assumed model in the semi-competing risks framework, and show how
to estimate the dependence structure when dependent censoring is present.
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CHAPTER 6

Interval-Censored Semi-Competing Risks Data

In Chapter 4 we presented the semi-competing risks problem for right-censored data. Now we
consider the situation where the time to the intermediate event is interval-censored. This situation
is quite common in longitudinal medical studies: in the Spanish Bladder Cancer Study, for instance,
interval censoring arises because recurrence or progression of the tumour are detected between
consecutive visits of the patient. Until Chapter 4, interval censoring was ignored by imputing the
midpoint of the observed interval to T1.

Existing methods accounting for bivariate interval-censored data, reviewed in Chapter 5, are not
appropriate in this setting, because they do not take into account the dependent censoring induced
by the terminating event on the intermediate event. In this chapter, we propose a new methodology
to deal with interval-censored semi-competing risks data.

In the following Section 6.1 we introduce the notation and the assumed Clayton copula model for
the joint law of the times of interest. Next, we make a brief outline of the estimating strategy in
Section 6.2, which is based in two points: (i) the estimation of the dependence parameter of the
copula model, and (ii) the estimation of the marginal law of the intermediate event. In Sections
6.3 and 6.4, we deal with estimation of the dependence structure, and in Section 6.5, with the
estimation of the survival functions involved. The chapter ends up with the iterative algorithm
which performs the proposed methodology in Section 6.6.

6.1 Notation and model

6.1.1 Interval-censored semi-competing risks data

Consider the semi-competing risks framework for (T1, T2) introduced in Chapter 4, where T1 re-
presents the time until an intermediate event and T2 represents the time to a terminating event.

97
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Figure 6.1: Different situations of observed interval-censored semi-competing risks data.

This is a particular case of a bivariate survival problem where the occurrence of the terminating
event, if first, prevents the observation of the intermediate event. The support of (T1, T2), denoted
by supp(T1, T2), is included in the upper wedge of the plane defined by

D1 = { (s, t) | 0 ≤ s ≤ t ≤ ∞}.

In our setup we encounter three different censoring mechanisms acting concurrently:

(a) Right-censoring: The first mechanism occurs because data is subject to a non-informative
right-censoring, C, due, for instance, to the end of the study. Hence, T1 and T2 are right-
censored by C, which is assumed independent of both T1 and T2.

(b) Dependent censoring: Because T1 and T2 are possibly related, T2 induces a dependent
right-censoring on T1.

(c) Interval censoring: T1 is interval-censored, that is, there exist two random variables L ≥ 0
and R > 0, with L < R almost surely, such that P (T1 ∈ (L,R]) = 1. Note here that
exact observations for T1 are not allowed. We use the convention that R = ∞ represents a
right-censored observation when T1 > T2.

We assume that (L,R) censors non-informatively T1 in the sense described by Oller et al. (2004)
(see section 5.1.1). These assumption ensures that P (T1 ∈ (a, b], L = a,R = b) is proportional to
P (T1 ∈ (a, b]). We also assume that C and (L,R) are independent.

The observable data consists of the vector V = (L,R, Y, δ1, δ2) where Y = min(T2, C), δ1 =
I(R < +∞) and δ2 = I(T2 ≤ C). We adopt the usual convention that realizations of random
variables are denoted by lower-case letters. The different censoring patterns give raise to four
distinct types of observed individuals, as shown in Figure 6.1:
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(1) T1 is interval-censored and T2 is exactly observed:

It corresponds to δ1 = δ2 = 1, that is, T1 ∈ (L,R], L < R ≤ Y and Y = T2. This situation
describes the region of the plane: (L,R]× {Y }.

(2) T1 is interval-censored and T2 is right-censored:

It corresponds to δ1 = 1 and δ2 = 0, that is, T1 ∈ (L,R], L < R ≤ Y and Y = C < T2. This
situation describes the region of the plane: (L,R]× (Y,∞).

(3) T1 is dependently censored by T2 and T2 is exactly observed:

It corresponds to δ1 = 0 and δ2 = 1, that is, T1 ∈ (L,∞), L = Y and Y = T2. This situation
describes the region of the plane: (L,∞)× {Y }.

(4) T1 and T2 are right-censored:

Corresponds to δ1 = δ2 = 0, that is, T1 ∈ (L,∞), L = Y and Y = C < T2. This situation
describes the region of the plane: (L,∞)× (Y,∞).

For simplicity, we assume that at the end of follow-up (Y ) of each individual, the status of his
intermediate event (occurred or not) is known. However, the methods proposed in this chapter are
also valid when the status of the intermediate event at the end of the follow-up is uncertain.

6.1.2 Model for (T1, T2)

The joint law for (T1, T2) is specified through a survival copula model. We have chosen a Clayton’s
archimedean copula in the upper wedge D1 in order to extend to the interval-censored case the
right-censored semi-competing risks method in Section 4.2. That is, given the marginal survival
functions S1(·) and S2(·) for T1 and T2, respectively, the joint survival is given by

S(s, t) = P (T1 > s, T2 > t) = (S1(s)1−α + S2(t)1−α − 1)
1

1−α , (6.1)

for 0 ≤ s ≤ t ≤ ∞, where α is the association parameter.

The main purpose of this chapter is to estimate the joint law of (T1, T2), that is, the association
parameter α, and the marginal laws S1(·) and S2(·), based on n independent and identically dis-
tributed realizations of the observable data, {(ai, bi, yi, δ1i, δ2i), i = 1, . . . , n}, under the censoring
mechanisms described previously in 6.1.1. We outline the estimation strategy in Section 6.2.

6.2 Outline of the estimating strategy

We extend the two-steps estimation procedure proposed by Fine et al. (2001) to the interval-
censored framework. Fine’s proposal for right-censored semi-competing risks data is based
on the concordance indicator,
∆ij = I((T1i − T1j)(T2i − T2j) > 0), an unbiased estimate of α/α+ 1:

E[∆ij ] =
α

1 + α
, (6.2)

and consists of the following two steps:
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(a) Estimation of the association parameter α: An estimate α̂ is obtained as the unique root of
the equation UR(α) = 0, where

UR(α) =
(
n

2

)−1∑
i<j

ORij

{
∆ij −

α

α+ 1

}
, (6.3)

is a zero-mean random variable presented in Section 4.2.3. For simplicity, we consider the
unweighted estimating equation (WR = 1 in equation (4.13)).

(b) Estimation of the marginal survival function of T1: A consistent estimate for S1(·) is obtained
by plugging-in consistent estimates for S2(s), ST (s) and α in

S1(s;ST (s), S2(s), α) = {ST (s)1−α − S2(s)1−α + 1}
1

1−α , (6.4)

where ST (s) = S(s, s) = P (min(T1, T2) > s).

The adaptation of the above procedure to interval censoring arises two main difficulties: the non
observability of the concordance indicator ∆ij , and the definition of comparable pairs. Our approach
also consists of the two previous steps, (a) estimation of α, and and (b) estimation of S1(·), but
within an iterative process:

(a’) For the association parameter α we will

(i) propose a new measure of concordance for interval-censored semi-competing risks data
(Section 6.3.1),

(ii) define a new condition of comparable pairs, Oij (Section 6.3.2), and finally

(iii) propose two alternative estimating equations U1(α) and U2(α) for α, based respectively
on

• correction of the bias induced by the comparable sample (Section 6.4.1), and

• inverse weighting by the probability of being comparable (Section 6.4.2).

(b’) For the estimation of the marginal S1(·) we will consider the same plug-in estimator as for
the right-censoring case, but taking into account the interval-censored nature of data (Section
6.5).

Section 6.6, contains the iterative algorithm to jointly estimate the association parameter α and
the marginal S1. The asymptotic properties of the proposed estimates are developed and assessed
in Chapters 7 and 9.

6.3 The expected concordance and the comparable sample

6.3.1 Definition and estimation of the expected concordance

For a pair (i, j) of individuals, when T1i and T1j are interval-censored, the concordance indicator
cannot in general be determined. Figure 6.2 shows two examples of observed pairs. Let (T1i, T2i)
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Figure 6.2: Examples of observed pairs of individuals

and (T1j , T2j) be their corresponding bivariate times, and assume the observed data consists of
T1i ∈ (ai, bi], T2i = yi, T1j ∈ (aj , bj ] and T2j = yj . In Figure 6.2(a), the pair (i, j) is concordant,
because yi is smaller than yj , and, though we do not know exactly T1i nor T1j , the disposition of
the intervals, without overlapping, ensures that T1i < T1j . On the contrary, for the pair in Figure
6.2(b), ∆ij is unknown because, since the intervals overlap, the exact position of T1i and T1j within
their corresponding intervals is unknown. In a given data set, many of these pairs with overlapping
intervals will be found. If we discard these pairs, much information will be lost. For this reason we
propose a new concordance measure, Zij , which unbiasedly estimates α/α+ 1 as the concordance
indicator does.

Definition 6.1. Given two individuals i and j, we define the expected concordance Zij between
the pair (i, j) as the expectation of the concordance indicator given their observed data. That is

Zij = E
[
∆ij |Hij

]
= P

(
∆ij = 1|Hij

)
= P

(
(T1i − T1j)(T2i − T2j) > 0|Hij

)
, (6.5)

where Hij = {(ai, bi, yi, δ1i, δ2i), (aj , bj , yj , δ1j , δ2j)}, the observed data for the pair (i, j), consists of
two realizations of vector V = (L,R, Y, δ1, δ2). When the intervals including T1i and T1j do not
overlap, Zij = ∆ij, and if they overlap, 0 < Zij < 1.

The random variable Zij depends on α, S1(·) and S2(·), as it is shown in Section 6.3.1.

Proposition 6.1. Zij is an unbiased estimator of α/α+ 1.

Proof. Zij is a random variable with expectation

E
[
Zij
]

= E
[
E[∆ij |Hij ]

]
= E

[
∆ij

]
=

α

α+ 1
.
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Proposition 6.2. Given a bivariate model for (T1, T2) in the upper wedge D1, the expected concor-
dance Zij for a comparable1 pair (i, j) is

Zij =
1

P (Hij)
(δ2iδ2jP1(i, j) + δ2i(1− δ2j)P2(i, j) + (1− δ2i)δ2jP2(j, i)) (6.6)

where Hij = {(ai, bi, yi, δ1i, δ2i), (aj , bj , yj , δ1j , δ2j)} is the observed data for the pair (i, j) and

P1(i, j) = K2

∫ bi

ai

dx

∫ bj

aj

I((x− u)(yi − yj) > 0)f(x, yi)f(u, yj)du, (6.7)

P2(i, j) = K2

∫ ∞
yj

dv

∫ bi

ai

dx

∫ bj

aj

I((x− u)(yi − v) > 0)f(x, yi)f(u, v)du, (6.8)

and

P (Hij) =
∏
`=i,j

[
δ2`K

∫ b`

a`

f(x, y`)dx+ (1− δ2`)K
∫ b`

a`

∫ ∞
y`

f(x, y)dxdy
]
,

where K is a constant of proportionality derived of the noninformativity condition.

Proof. Given Hij = {(ai, bi, yi, δ1i, δ2i), (aj , bj , yj , δ1j , δ2j)}, the observed data for the pair (i, j), the
expected concordance Zij can be explicitly computed when a model is assumed for (T1i, T2i) in the
upper wedge D1, and when the pair is comparable. In next Section 6.3.2 a thoroughly description
of comparable pairs is given, which requires, at least, that one of the two individuals is not right-
censored neither for T1 (δ1i + δ1j ≥ 1) nor for T2 (δ2i + δ2j ≥ 1). We develop the expectation in
(6.5) by

Zij = E [∆ij |Hij ] =
P (∆ij = 1,Hij)

P (Hij)

=
1

P (Hij)
(δ2iδ2jP1(i, j) + δ2i(1− δ2j)P2(i, j) + (1− δ2i)δ2jP2(j, i))

where

P1(i, j) = P (∆ij = 1,Hij , δ2i = 1, δ2j = 1)

P2(i, j) = P (∆ij = 1,Hij , δ2i = 1, δ2j = 0).

and P (Hij) is the probability of the observed data. This probability, given that i and j are
independent, can be factorized into

P (Hij) = P
(

(Li, Ri, Yi, δ1i, δ2i) = (ai, bi, yi, δ1i, δ2i)
)
P
(

(Lj , Rj , Yj , δ1j , δ2j) = (aj , bj , yj , δ1j , δ2j)
)
.

1In next Section 6.3.2 a description of comparable pairs is given.
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Now, the subject-specific probability can be expressed by

P
(

(L`, R`, Y`, δ1`, δ2`) = (a`, b`, y`, δ1`, δ2`)
)

= δ2`P
(
T1` ∈ (a`, b`], T2` = y`, L` = a`, R` = b`

)
+ (1− δ2`)P

(
T1` ∈ (a`, b`], T2` > y`, L` = a`, R` = b`

)
=
(i)
δ2`KP

(
T1` ∈ (a`, b`], T2` = y`

)
+ (1− δ2`)KP

(
T1` ∈ (a`, b`], T2` > y`

)
= δ2`K

∫ b`

a`

f(x, y`)dx+ (1− δ2`)K
∫ b`

a`

∫ ∞
y`

f(x, y)dxdy,

` = i, j. Equality (i) is justified by the noninformativity condition of (L,R) over T1, implying that
P (T1 ∈ (a, b], L = a,R = b) = KP (T1 ∈ (a, b]) for some constant K > 0. Function f is the joint
density function under the copula model (6.1), which is well defined in the upper wedge and has
the following expression:

f(x, y) =
∂2S(x, y)
∂x∂y

= αf1(s)f2(t) (S1(s)S2(t))α S(s, t)2α−1. (6.9)

We can develop the probability P1(i, j) and obtain

P1(i, j) =

P (∆ij = 1, T1i ∈ (ai, bi], T1j ∈ (aj , bj ], T2i = yi, T2j = yj , Li = ai, Ri = bi, Lj = aj , Rj = bj)

=
(i)
K2P (∆ij = 1, T1i ∈ (ai, bi], T1j ∈ (aj , bj ], T2i = yi, T2j = yj)

= K2

∫ bi

ai

dx

∫ bj

aj

I((x− u)(yi − yj) > 0)f(x, yi)f(u, yj)du.

Analogously, the expression for P2(i, j) is given by

P2(i, j) =

P (∆ij = 1, T1i ∈ (ai, bi], T1j ∈ (aj , bj ], T2i = yi, T2j ∈ (yj ,∞), Li = ai, Ri = bi, Lj = aj , Rj = bj)

=
(i)
K2P (∆ij = 1, T1i ∈ (ai, bi], T1j ∈ (aj , bj ], T2i = yi, T2j ∈ (yj ,∞))

= K2

∫ ∞
yj

dv

∫ bi

ai

dx

∫ bj

aj

I((x− u)(yi − v) > 0)f(x, yi)f(u, v)du.

The constant K2 resulting from the noninformativity condition does not appear in the final expres-
sion (6.6) because it appears in both the numerator and the denominator, and so it cancels out.
We postponed to Appendix B.4 the expanded expression for the integrals (6.7) and (6.8).

6.3.2 The comparable sample

A pair (i, j) is comparable if Zij can be computed based on observed data Hij and on the assumed
underlying model. In other words, the comparable sample determines the pairs contributing in
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Figure 6.3: Determination of Zij

the estimation of α. When T1 is interval-censored, these pairs in general do not coincide with the
comparable sample for right-censored data, CR = {i < j|ORij = 1}. In this section, we provide the
necessary conditions for a pair (i, j) to be comparable given their observed data (in Section 6.3.2.1),
summarizing 24 situations which are explored in detail in Appendix B.5. We illustrate some of the
most important cases, the comparable pairs, in Section 6.3.2.2.

6.3.2.1 Conditions of comparability for the interval censoring setting

Figure 6.3 shows an example of a comparable pair and one of a non-comparable pair. For the pair
plotted in Figure 6.2(a), we can be sure that both events occur in the upper wedge D1, where the
assumed model is valid, so we can compute Zij following expression (6.6). On the other hand, for
the pair in Figure 6.2(b), Zij cannot be estimated. Indeed, suppose for example that both T2i = yi

and T2j = yj are exactly observed, and yi < yj . The intermediate event for the ith individual occurs
in D1 within the interval T1i ∈ (ai, bi], while for the jth individual T1j does not belong to D1 (so
T1j ∈ (aj ,∞)). To compute Zij we need to integrate out in the overlapping region (aj , bi)× {yj},
which is not included in D1. Therefore, the copula model is not valid and Zij cannot be computed.

Before giving a general condition of comparability we need to introduce some notation. Given a
pair of individuals and their observed data, Hij = {(ai, bi, yi, δ1i, δ2i), (aj , bj , yj , δ1j , δ2j)}, consider
the following scenarios:

• In the case that only one T1 time of the pair is interval-censored, δ1i + δ1j = 1, define the
index o, which stands for observed, by

o =

 i if δ1i = 1

j if δ1j = 1
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as the index of the interval-censored individual. Define the index c, which stands for censored,
by

c = {i, j}\o,

the index of the other individual, the right-censored one.

• Similarly, in the case that only one T2 time is exactly observed, δ2i+ δ2j = 1, define the index

o′ =

 i if δ2i = 1

j if δ2j = 1

to indicate the index of the exactly observed pair, and

c′ = {i, j}\o′,

the index of the right-censored T2 time.

Proposition 6.3. A pair of individuals (i, j) is comparable, given their observed data Hij, if the
three following conditions are satisfied:

1. At least one of T1i or T1j must be interval-censored (δ1i + δ1j ≥ 1), and at least one of T2i or
T2j must be exactly observed (δ2i + δ2j ≥ 1).

2. When only one T1 time is interval-censored in D1 (δ1i + δ1j = 1), the intervals must not
overlap, that is, bo < ac, which can also be expressed as

δ1ibi + δ1jbj < (1− δ1i)ai + (1− δ1j)aj .

3. When only one T2 time is exactly observed (δ2i + δ2j = 1), this time must be smaller than the
right-censored value, that is yo′ < yc′, which can also be expressed as

δ2iyi + δ2jyj < (1− δ2i)yi + (1− δ2j)yj .

Proof. The previous three conditions results from the study of the 24 possible dispositions of the
pair (i, j) on the plane T1 × T2 according to the observed values for the pair. An exhaustive
description of all 24 situations is described in Appendix B.5. It results that only six of the 24
initial dispositions correspond to comparable pairs, the pairs satisfying conditions 1 to 3.

Given a pair (i, j), if the previous conditions hold, the comparable indicator Oij equals 1, in any
other case is 0. We define the set of comparable pairs by

CIC = {i < j|Oij = 1}.

Let T̃1ij = min(T1i, T1j) and T̃2ij = min(T2i, T2j). Consider also C̃ij = min(Ci, Cj), L̃ij =
min(Li, Lj) and R̃ij = min(Ri, Rj), the minimums among the right censoring variables and the
extremes of the intervals, respectively. Given that Li < T1i < Ri and Lj < T1j ≤ Rj , it is satisfied
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Figure 6.4: Cases of comparable pairs.

that ãij < T̃2ij ≤ b̃ij . An equivalent formulation for the comparability condition is given by the
following proposition.

Proposition 6.4. A pair of individuals (i, j) is comparable, given their observed data Hij, if the
following conditions hold:

(i) T̃1ij < C̃ij,

(ii) T̃2ij < C̃ij, and

(iii) R̃ij < T̃2ij.

Proof. The proof of this proposition can be found in Appendix B.6.

The two first conditions mimic the concept of orderable pairs proposed by Oakes (1986), determining
those pairs in the whole plain for whom the concordance indicator could be computed regardless
of the censoring mechanism. Fine et al. (2001) pointed out that in the context of semi-competing
risks data, where only the upper wedge is observable, it is trivially satisfied that T̃1ij < T̃2ij . The
third condition is necessary when the intermediate event is interval-censored.

6.3.2.2 The comparable pairs

In this section we characterize the 6 situations, among the 24 possible, which correspond to com-
parable pairs. They are plotted in Figure 6.4.

The first condition in Proposition 6.3 states that δ2i + δ2j must be either 1 or 2. The first row in
Figure 6.4, cases A1, B1 and C1, correspond to δ2i + δ2j = 2, that is a situation where both T2

times are exactly observed: T2i = yi and T2j = yj .
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• Case A1 δ1i + δ1j = 2: in this case, T1i ∈ (ai, bi] and T1j ∈ (aj , bj ], bi ≤ yi and bj ≤ yj .

• Case B1 δ1i + δ1j = 1 and yo < yc: in this case, T1o ∈ (ao, bo], T1c ∈ (ac,∞), bo ≤ yo < yc

and ac = yc (in the plot, o = i and c = j).

• Case C1 δ1i + δ1j = 1 and yo > yc and bo < ac: in this case, T1o ∈ (ao, bo], T1c ∈ (ac,∞),
bo ≤ yc < yo and ac = yc (in the plot, o = i and c = j).

Cases B1 and C1 correspond to a situation where only one of the T1 times is interval-censored, but
the intervals do not overlap (condition 2 of Proposition 6.3).

The second row in Figure 6.4, cases A2, B2 and C2, correspond to δ2i + δ2j = 1, that is, only
one T2 time is exactly observed, and the other is right-censored. Using the notation introduced
above, we have T2o′ = yo′ and T2c′ > yc′ , and, according to the third condition in Proposition 6.3,
a comparable case must satisfy yo′ < yc′ . Under this assumption, the comparable cases are:

• Case A2 δ1o′ + δ1c′ = 2: in this case, T1o′ ∈ (ao′ , bo′ ] and T1c′ ∈ (ac′ , bc′ ], bo′ ≤ yo′ and
bc′ ≤ yc′ and yo′ < yc′ < T2c′ (in the plot, o′ = i, c′ = j).

• Case B2 δ1o′ = 1, δ1c′ = 0: in this case, T1o′ ∈ (ao′ , bo′ ], T1c′ ∈ (ac′ ,∞), bo′ ≤ yo′ < yc′ < T2c′

and ac′ = yc′ (in the plot, o′ = i and c′ = j).

• Case C2 δ1o′ = 0, δ1c′ = 1 and bc′ < yo′ : in this case, T1o′ ∈ (ao′ ,∞), T1c′ ∈ (ac′ , bc′ ],
bc′ ≤ yo′ < yc′ < T2c′ and ao′ = yo′ (in the plot o′ = j, c′ = i).

6.4 Estimating equations for α

Assume functions S1(·) and S2(·) are known. Since the expected concordance Zij has the same
expectation as ∆ij , our first attempt to extend the estimating equation for the right-censoring case,

UR(α) =
(
n

2

)−1∑
i<j

ORij

{
∆ij −

α

α+ 1

}
.

was to substitute the concordance indicator ∆ij by its expected concordance Zij ,

U0

(
α
)

=
1(
n
2

)∑
i<j

Oij

{
Zij
(
α
)
− α

α+ 1

}
,

where only the comparable pairs CIC = {(i, j) | Oij = 1} contribute to the summation. However, we
will prove that though UR(α) is an unbiased estimating equation for α, U0(α) is biased. The reason
for this is that the sample of comparable pars CIC is not a random sample of the set of observed
pairs. In fact, in Section 6.4.1 we prove that the summation in U0(α) has less terms than in UR(α).
We will show that the bias of equation U0(α) is given by the lost terms and that this yields to a
systematic overestimation of α. We propose a new estimating equation by explicitly correcting the
bias. On the other hand, in Section 6.4.2, we propose an alternative unbiased estimating equation
based on inverse weighting by the probability if being comparable.
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6.4.1 Estimation of α by direct estimation of bias

Proposition 6.5. Any pair (i, j) that is comparable in the interval censoring framework (Oij = 1)
would also be a comparable pair if T1 was exactly observed (ORij = 1). Thus, the set of comparable
pairs for interval censoring, CIC , is a subset of the comparable sample for right-censored data CR,

CIC ⊆ CR.

We refer to as excluded pairs those pairs in

CR \ CIC = {(i, j) | ORij = 1, Oij = 0},

that is, those pairs that would be comparable if T1 was exactly observed but they are not comparable
with interval censoring.

Proposition 6.6. The excluded pairs are characterized by the following three conditions:

(i) δ2i + δ2j = 2 or (δ2i + δ2j = 1 and yo′ < yc′), and

(ii) δ1i + δ1j = 1, yo > yc, ac = yc, ao < ac, bo > ac, and

(iii) T1o ∈ (ao, ac].

Proof of Propositions 6.5 and 6.6. The excluded cases are determined by revision of all possible
cases. Indeed, Figure 6.5 shows two examples of excluded pairs. In Figure 6.5(a), a pair with both
T2i and T2j exactly observed which would be comparable if T1i was exactly observed (ORij = 1),
but in the presence of interval censoring, Zij cannot be determined because the intervals overlap
outside the region of observation D1. Figure 6.5(b) shows a similar case when δ2i + δ2j = 1.

Proposition 6.7. The contribution of any excluded pair (i, j) ∈ CR \ CIC to the summation in the
estimating equation UR(α) = 0 is − α

α+1 .

Proof. All excluded pairs correspond to discordant pairs: indeed, from condition (ii) of the previous
theorem, yo > yc, and T1c > ac. From (iii), T1o ∈ (ao, ac], so T1o ≤ ac. Therefore, T1o < T1c and
(T1o − T1c)(yo − yc) < 0, and the pair considered is discordant. Hence, ∆ij = 0, and the term in
the summation of UR(α) is (

∆ij −
α

α+ 1

)
= − α

α+ 1
.

Denote by ne the cardinal of the set of excluded pairs, CR \ CIC = {(i, j) | ORij = 1, Oij = 0}.

Proposition 6.8. The bias of the estimating equation U0(α) is

E[U0(α)] = pe
α

α+ 1
,

where pe = ne/
(
n
2

)
is the proportion of excluded pairs among all possible pairs.
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Figure 6.5: Excluded pairs (i, j) ∈ CR \ CIC , satisfying OR
ij = 1, Oij = 0.

Proof. We directly compute the expectation of U0(α). By Proposition 6.5 we can split up the sum
in two terms:

E [U0(α)] = E

(n
2

)−1
∑
i<j

Oij

(
Zij
(
α
)
− α

α+ 1

)


=
Prop. 6.5

(
n

2

)−1
E

∑
i<j

ORij

(
Zij
(
α
)
− α

α+ 1

)− E

∑
i<j

ORij(1−Oij)
(
Zij
(
α
)
− α

α+ 1

)
=

Prop. 6.7
E[UR(α)] +

ne(
n
2

) α

α+ 1
=

Prop. 4.4
0 + pe

α

α+ 1
.

The existing bias in equation U0(α) prevents from obtaining an unbiased estimate for α as the
root of the estimating equation. Indeed, a root of U0(α) would overestimate the real value of α.
Recall from Proposition 4.1 that under Clayton’s copula model α can be estimated by the number of
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concordant pairs divided by the number of discordant pairs. If we systematically exclude discordant
pairs, we are removing terms from the denominator of this ratio, and thus increasing the estimation
of α.

We propose an alternative estimating equation U1(α) that explicitly corrects this bias:

U1

(
α
)

=
(
n

2

)−1∑
i<j

Oij

(
Zij
(
α
)
− α

α+ 1

)
− pe

α

α+ 1
. (6.10)

U1(α) is a zero-mean random-variable, and a root of equation U1(α) = 0 provides an unbiased
estimate of α, namely α̂1. An implicit form for such root is given by

α̂1 =

∑
i<j OijZij(α̂1)∑

i<j Oij (1− Zij(α̂1)) + ne
. (6.11)

As we will discuss in detail in the following section, the exact number of excluded pairs, ne, cannot
be exactly determined. We propose a procedure for estimating ne.

6.4.1.1 Estimation of ne

Recall Proposition 6.6, where the excluded pairs were characterized. The number ne of excluded
pairs cannot be exactly determined because of the third condition (iii) in that proposition: the
event T1o ∈ (ao, ac] is usually unknown under interval censoring.

We propose to estimate ne as

n̂e =
∑
(i,j)

P
(
T1o ∈ (ao, ac]

∣∣(i) and (ii) are satisfied
)
.

Define D as the set of pairs (i, j) satisfying (i) and (ii). These pairs are represented in Figure 6.6.
Now n̂e can be expressed as:
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n̂e =
∑

(i,j)∈D

1aP
(
T1o < ac|T1o ∈ (ao, bo], T2o = yo, T1c > ac, T2c = yc = ac, yo > yc, bo > ac

)
+

∑
(i,j)∈D

1bP
(
T1o < ac|T1o ∈ (ao, bo], T2o > yo, T1c > ac, T2c = yc = ac, yo > yc, bo > ac

)
where 1a = I(δ2i + δ2j = 2) and 1b = I(δ2i + δ2j = 1)I(yo′ < yc′). By developing the conditional
probabilities and simplifying expressions, we finally have:

n̂e =
∑

(i,j)∈D

1a
P
(
ao < T1o < ac, T2o = yo

)
P
(
ao < T1o < bo, T2o = yo

) + 1b
P
(
ao < T1o < ac, T2o > yo

)
P
(
ao < T1o < bo, T2o > yo

) , (6.12)

where P (a < T1 < b, T2 = c) =
∫ b
a f(x, c)dx, P (a < T1 < b, T2 > c) =

∫ b
a

∫∞
c f(x, y)dxdy and

f(x, y) is the joint density of Clayton’s copula model as defined in (6.9).

6.4.2 Estimation of α by inverse probability weighting

The bias induced by the comparable sample can be corrected by inverse probability weighting
(IPW), following the ideas in Lakhal et al. (2009). We consider the comparable pairs as a sample
of the

(
n
2

)
possible pairs of individuals. Since the comparable sample is not obtained at random, the

contribution of each comparable pair to the estimation of α is weighted by the inverse probability
of being comparable. This type of correction is known in the survey sample framework as Horvitz-
Thomson correction (Horvitz and Thompson, 1952).

Our proposed estimating equation for α is

U2

(
α
)

=
(
n

2

)−1∑
i<j

Oij
wij

{
Zij
(
α
)
− α

α+ 1

}
, (6.13)

with wij the probability of being comparable.

We propose then an estimator of α obtained as the root of equation U2(α) = 0, namely α̂2. An
implicit form for such root is given by

α̂2 =

∑
i<j OijZij(α̂2)/wij∑

i<j Oij (1− Zij(α̂2)/wij)
. (6.14)

This solution requires the computation of the probabilities of being comparable, wij . Note that for
all comparable pairs, we observe that T̃1ij ∈ (ãij , b̃ij ], and that T̃2ij = ỹij , and in addition, we know
that L̃ij < T̃1ij ≤ R̃ij . Taking the conditions of comparability given in Proposition 6.4, a pair’s
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probability of being comparable is given by:

wij = P (Oij = 1|T̃1ij ∈ (ãij , b̃ij ], L̃ij < T̃1ij ≤ R̃ij , T̃2ij = ỹij)

= P (T̃1ij < C̃ij , T̃2ij < C̃ij , R̃ij < T̃2ij |T̃1ij ∈ (ãij , b̃ij ], L̃ij < T̃1ij ≤ R̃ij , T̃2ij = ỹij)

=
T̃1ij<T̃2ij

P (T̃2ij < C̃ij , T̃1ij ∈ (ãij , b̃ij ], L̃ij < T̃1ij ≤ R̃ij , R̃ij < T̃2ij |T̃2ij = ỹij)

P (T̃1ij ∈ (ãij , b̃ij ], L̃ij < T̃1ij ≤ R̃ij |T̃2ij = ỹij)

=

∫ b̃ij
ãij

P (ỹij < C̃ij , L̃ij < u, u ≤ R̃ij < T̃2ij |T̃2ij = ỹij)P (T̃1ij = u|T̃2ij = ỹij)du∫ b̃ij
ãij

P (L̃ij < u, u ≤ R̃ij |T̃2ij = ỹij)P (T̃1ij = u|T̃2ij = ỹij)du

=
C⊥(L,R)

P (ỹij < C̃ij |T̃2ij = ỹij)

∫ b̃ij
ãij

P (L̃ij < u, u ≤ R̃ij < T̃2ij |T̃2ij = ỹij)P (T̃1ij = u|T̃2ij = ỹij)du∫ b̃ij
ãij

P (L̃ij < u, u ≤ R̃ij |T̃2ij = ỹij)P (T̃1ij = u|T̃2ij = ỹij)du
.

(6.15)

In the last expression, we can use SC(c), the survival function of the random variable C, to compute

P (ỹij < C̃ij |T̃2ij = ỹij) = P (ỹij < Ci, ỹij < Cj |T̃2ij = ỹij) = [SC(ỹij)]2.

On the other hand, if we observe the last quotient in expression 6.15, we obtain similar integrals in
both the numerator and the denominator involving both the distribution of (L̃ij , R̃ij) given T̃2ij ,
and the distribution of T̃1ij given T̃2ij . We start studying the latter.

6.4.2.1 The distribution of T̃1ij |T̃2ij

We first note that:

P (T̃1ij = u|T̃2ij = ỹij) =
P (T̃1ij = u, T̃2ij = ỹij)

P (T̃2ij = ỹij)
=
f̃(u, ỹij)
f̃2(ỹij)

.

Function f̃(s, t) is the joint density function of (T̃1ij , T̃2ij) and can be recovered from the joint
survival function of (T1, T2). Indeed, because individuals i and j are assumed independent,

S̃(s, t) = P (T̃1ij > s, T̃2ij > t) = P (T1i > s, T1j > s, T2i > t, T2j > t)

= P (T1i > s, T2i > t)P (T1j > s, T2j > t) = [S(s, t)]2.

Therefore,

f̃(s, t) = 2

[
∂2S̃(s, t)
∂s∂t

=
∂S(s, t)
∂s

∂S(s, t)
∂t

+ f(s, t)S(s, t)

]
.

Similarly, function f̃2(t) is the density of the variable T̃2ij , and can be obtained from the corres-
ponding survival function:

S̃2(t) = P (T̃2ij > t) = P (T2i > t, T2j > t) = [S2(t)]2 =⇒ f̃2(t) = −2S2(t)f2(t).
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Equation (6.15) is reexpressed by

wij = [SC(ỹij)]2
∫ b̃ij
ãij

P (L̃ij < u, u ≤ R̃ij < T̃2ij |T̃2ij = ỹij)
f̃(u,ỹij)

f̃2(ỹij)
du∫ b̃ij

ãij
P (L̃ij < u, u ≤ R̃ij |T̃2ij = ỹij)

f̃(u,ỹij)

f̃2(ỹij)
du

= [SC(ỹij)]2
∫ b̃ij
ãij

P (L̃ij < u, u ≤ R̃ij < T̃2ij |T̃2ij = ỹij)f̃(u, ỹij)du∫ b̃ij
ãij

P (L̃ij < u, u ≤ R̃ij |T̃2ij = ỹij)f̃(u, ỹij)du
. (6.16)

6.4.2.2 The distribution of (L̃ij , R̃ij)|T̃2ij

Finally, we have to study the probabilities in the numerator and the denominator of expression
(6.16) involving the joint distribution of L̃ij and R̃ij) conditional to T̃2ij , (L̃ij , R̃ij)|T̃2ij . Indeed,
define by G̃(l, r|y) the joint survival function of (L̃ij , R̃ij) given T̃2ij = y,

G̃(l, r|y) = P (L̃ij > l, R̃ij > r|T̃2ij = y).

Now, we can write

P (L̃ij < u, u ≤ R̃ij < T̃2ij |T̃2ij = ỹij) = G̃(0, u|ỹij)− G̃(0, ỹij |ỹij)− G̃(u, u|ỹij) + G̃(u, ỹij |ỹij)

P (L̃ij < u, u ≤ R̃ij |T̃2ij = ỹij) = G̃(0, u|ỹij)− G̃(u, u|ỹij)

Again, we can obtain G̃(l, r|y) from the joint distribution of (L,R)|Y :

G̃(l, r|y) = P (L̃ij > l, R̃ij > r|T̃2ij = y) = P (Li > l, Lj > l,Ri > r,Rj > r|T̃2ij = ỹij)

= I(T2i < T2j) [P (Li > l, Lj > l,Ri > r,Rj > r|T2i = ỹij , ỹij < T2j)]

+ I(T2i > T2j) [P (Li > l, Lj > l,Ri > r,Rj > r|T2j = ỹij , T2i > ỹij)]

= P (L > l,R > r|T2 = ỹij)P (L > l,R > r|T2 > ỹij)

= G1(l, r|ỹij)G2(l, r|ỹij),

where G1(l, r|y) and G2(l, r|y) are the joint survival functions of (L,R)|{T2 = y} and (L,R)|{T2 >

y}, respectively.

Therefore, to estimate wij we need consistent estimations of SC(c), G1(l, r|y) and G2(l, r|y), but
also of f(s, t) and S(s, t), and thus implicitly on S1(·), S2(·) and α, to plug-in in the expression of
wij . The dependency of wij on the latter justifies, the need for an iterative algorithm to jointly
estimate α and S1(·). In the next section, issues concerning the estimation of all the marginal
survivals are discussed.

Before, we need to establish the next property, which follows easily from the computation of wij .

Proposition 6.9. U2(α) is an unbiased zero-mean random variable.

Proof. Recall that we are in a scenario where S1 and S2 are assumed to be known. We start directly
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computing the expectation of
(
n
2

)
E [U2(α)]:(

n

2

)
E [U2(α)] =

∑
i<j

E

[
Oij
wij

{
Zij(α)− α

α+ 1

}]

=
∑
i<j

E

[
E

[
Oij
wij

{
Zij(α)− α

α+ 1

} ∣∣∣T̃1ij , T̃2ij

]]

=
∑
i<j

E

[
1
wij

E

[
Oij

{
Zij(α)− α

α+ 1

} ∣∣∣T̃1ij , T̃2ij

]]
.

Once T̃1ij and T̃2ij are given, we have seen in the computation of wij (Equation 6.15) that the
comparability indicator Oij only depends on the distribution of the censoring variables C̃ij , L̃ij and
R̃ij , while the expected concordance Zij depends on the original data (T1i, T2i, T1j , T2j). Therefore,
Oij and Zij are conditionally independent:(

n

2

)
E [U2(α)] =

∑
i<j

E

[
1
wij

E
[
Oij |T̃1ij , T̃2ij

]
E

[{
Zij(α)− α

α+ 1

} ∣∣∣T̃1ij , T̃2ij

]]
,

which equals zero, by Proposition 6.1 (the expectation of the expected concordance is α/α+ 1.

6.5 Estimation of the marginal survivals

6.5.1 Estimation of SC(c), G1(l, r|y) and G2(l, r|y)

In the computation of the subject-specific weights proposed in Section 6.4.2, estimates for SC(·),
the survival function of the censoring variable C, G1(l, r|y), the joint distribution function of the
interval censoring variables (L,R) given T2 = y, and G2(l, r|y), the joint distribution function of
the interval censoring variables (L,R) given T2 > y, are needed.

Function SC(c) = P (C > c) can be estimated by ŜC(·), the Kaplan-Meier estimator based on
{(yi, 1− δ2i), i = 1, . . . , n}.

For the estimation of G1(l, r|y) = P (L ≤ l, R ≤ r|T2 = y) and G2(l, r|y) = P (L ≤ l, R ≤ r|T2 > y),
we restrict to the subsample of nk < n individuals such that δ1i = 1, that is, the individuals for
whom the intermediate event is known to have occurred in the upper wedge D1, and therefore, the
time of the intermediate event is interval-censored between L and R, with R <∞. Denote by

{(ak, bk, yk, δ1k = 1, δ2k), k = 1, . . . , nk},

the subsample of interval-censored semi-competing risks data of such individuals.

We will obtain stratified estimations of G1 and G2 by stratifying the observed y1, . . . , ynk in M

groups defined by the corresponding m − 1 quartiles (with M=4 or 5 groups, it behaves nicely).
Let Sm be the mth stratum, and nm the cardinal of this group.

Now, to approximate G1(l, r|y), we obtain the empirical joint survival function within each stratum.
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That is, for stratum Sm, consider only the subsample {(ak, bk), k = 1, . . . , nk, yk ∈ Sm}, and the
estimate within this stratum is

Ĝ1(l, r|m) =
1
nm

nk∑
k=1,yk∈Sm

I(ak > l, bk > r).

To approximate G2(l, r|y), consider the cumulative stratums

S∗m =
M⋃
k=m

Sm m = 1, . . . ,M.

The cumulative stratum S∗m contains all yk such that yk ≥ ym for all ym ∈ Sm. Let n∗m be the
cardinal of S∗m. Now we obtain the empirical joint survival function within each cumulative stratum.
For stratum S∗m, we restrict to the subsample {(ak, bk), k = 1, . . . , nk, yk ∈ S∗m}, and the estimate
within this stratum is

Ĝ2(l, r|m) =
1
n∗m

nk∑
k=1,yk∈S∗m

I(ak > l, bk > r).

6.5.2 Estimation of S2(·) and ST (·)

We need to consistently estimate S2(·) and ST (·) to recover the marginal survival S1(·) of T1. On
one hand, S2(·) can be estimated nonparametrically through the Kaplan-Meier estimator or by
adjusting a parametric model based on data D2 = {(yi, δ2i), i = 1, ..., n}. On the other hand, to
estimate ST (·) interval-censored data must be accounted for. Indeed, T = min(T1, T2), the time to
the first event occurring, is either interval-censored when T = T1, exactly observed when T = T2

or right-censored when T > C. Therefore, ST (·) can be estimated through the nonparametric
maximum likelihood estimate (NPMLE) proposed by Turnbull (1976), or through a parametric fit
taking into account the intervals of observation, based on data

DT = {(aTi , bTi , δT i = δ1i + (1− δ1i)δ2i), i = 1, . . . , n},

where aTi = ai and bTi = bi when Ti = T1i; aTi = bTi = yi when Ti = T2i; and aTi = yi, bTi =∞ if T
is right-censored at yi.

Nonparametric estimates have been presented in Sections 2.1.3 and 5.1.2 for the Kaplan-Meier and
Turnbull’s estimates, respectively. Parametric models can be fitted by assuming that T2 and T

follow a log-linear model:

lnT2 = µ2 + σ2W2

lnT = µT + σTWT .

where W2, WT stand for the error term distributions. Common choices for T2 and T are the Weibull,
the log-logistic and the log-normal model, that correspond to error terms W2, WT following the
extreme value, the logistic and the normal distributions, respectively.

Estimates of parameters θ2 = (µ2, σ2)t and θT = (µT , σT )t are obtained by maximizing the log-
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likelihood of the given samples, that is:

lnL2(θ2; D2) =
n∑
i=1

lnL2i(θ2),

lnLT (θT ; DT ) =
n∑
i=1

lnLT i(θT ).

where the contribution of the ith subject to the likelihood is given by

L2i(θ2) = f2(yi)δ2iS2(yi)1−δ2i

LT i(θT ) =
[
ST (aTi ;θT )− ST (bTi ;θT )

]δTiδ1ifT (aTi ;θT )δTiδ2iST (aTi ;θT )1−δTi

6.5.3 The plug-in estimation of S1(·)

An estimate for S1(·) is obtained by plugging-in estimates for Ŝ2(·), ŜT (·) and α̂ in equation (6.4),
that is,

Ŝ1(s; ŜT (s), Ŝ2(s), α̂) = g(ŜT (s), Ŝ2(s), α̂), (6.17)

where g(a, b, c) =
(
a1−c − b1−c + 1

) 1
1−c . In fact, two estimates of S1(·) are considered, depending

on which estimating method for α is assumed: we can plug-in α̂1 (resulting from direct estimation
of the bias) or α̂2 (resulting from inverse probability weighting) in (6.17). Both estimates are
consistent (see next chapter), deriving thus consistent estimates for S1(·).

The plug-in estimator has some problems of definition, as stated for the right-censored case (Fine
et al., 2001). In finite samples, ŜT (s) may be greater than Ŝ2(s), although ST (s) ≤ S2(s) for all s.
In addition, α̂ might be less than one, because no restriction is assumed in the concordance-based
method. To address this issue and ensure monotonicity, we restrict inferences to the interval [0, τ ]
where

τ ≤ max{s : ŜT (s)1−α̂ − Ŝ2(s)1−α̂ > −1, 0 ≤ Ŝ1(u) ≤ 1, u ≤ s} (6.18)

For t ≤ τ , define Ŝ∗1(t) = mins≤t{Ŝ1(s)}, which is monotone.

6.6 Estimation algorithm

6.6.1 Algorithm

The algorithm to jointly estimate α and S1(·) runs as follows:
INITIAL PHASE:

(i) Obtain Ŝ2(·) and ŜT (·), estimates of S2(t) and ST (t) respectively.
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(ii) Obtain initial estimates of α and S1(·), α̂(0) and Ŝ1(·)(0).

(iii) Determine the comparable sample, CIC = {i < j | Oij = 1}

ITERATIVE PHASE: repeat until convergence

1. Compute the expected concordance Z(k−1)
ij = Zij(α̂(k−1), Ŝ1(·)(k−1), Ŝ2(·)).

2. Obtain α̂(k) as the unique root of the corrected estimating equation, according to

(a) Strategy I: Estimate ne from (6.12), n̂e, and then

α̂
(k)
1 =

∑
i<j OijZ

(k−1)
ij∑

i<j Oij

(
1− Z(k−1)

ij

)
+ n̂e

(b) Strategy II: Compute ŵij and then

α̂
(k)
2 =

∑
i<j

Oij
ŵij
Z

(k−1)
ij∑

i<j
Oij
ŵij

(
1− Z(k−1)

ij

)
3. Update S1(·): for t ≤ τ , with τ defined as in (6.18)

Ŝ1(t)(k) = min
s≤t
{g(ŜT (s), Ŝ2(s), α̂(k))}.

Further details on the implementation of this algorithm in R are given in Chapter 10.
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CHAPTER 7

Asymptotic theory

In this chapter, we derive the asymptotic properties of the estimators presented in the previous
chapter. First, in section 7.1.1, we show that the estimating equations given in (6.10) and (6.13)
can be seen as U-statistics. We use their properties to show the consistency and the limiting
distribution of n1/2(α̂− α) when S1(·) and S2(·) are known (Sections 7.1.2 and 7.1.3) or estimated
(Section 7.1.4). In Section 7.2, we study the properties of

√
n
(
Ŝ1(t)− S1(t)

)
, where Ŝ1(t) is the

proposed estimator for the marginal distribution of the intermediate event T1.

7.1 Inference on the copula parameter α

7.1.1 Estimating equations and U-statistics

Under the assumption that S1(·) and S2(·) are known, in the previous chapter we presented two
unbiased estimating equations for α. The estimating equation resulting from strategy I presented
in Section 6.4.1 was:

U1

(
α
)

=
(
n

2

)−1∑
i<j

Oij

(
Zij
(
α
)
− α

α+ 1

)
− pe

α

α+ 1
,

where Zij = E[∆ij |Hij ] is the expected concordance defined in Section 6.3.1, and pe is the proportion
of excluded pairs within all possible pairs with i < j defined in Proposition 6.8. In that proposition,
excluded pairs were defined as pairs for which, under interval censoring, the expected concordance
Zij is not well defined based on observed data (the pair (i, j) is not comparable, Oij = 0), but, if
interval censoring was not present, the concordance indicator ∆ij could be determined (the pair
(i, j) would be comparable in a right-censoring data scenario, ORij = 1).

119
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On the other hand, the estimating equation resulting from strategy II presented in Section 6.4.2
was:

U2

(
α
)

=
(
n

2

)−1∑
i<j

Oij
wij

{
Zij
(
α
)
− α

α+ 1

}
, (7.1)

where wij is the probability of being comparable given the observed data Hij ,

wij = P (Oij = 1|Hij).

Proposition 7.1. The two statistics U1(α) and U2(α) are inverse weighting estimators. We can
express U1(α) in a unique summation

U1

(
α
)

=
(
n

2

)−1∑
i<j

Oij
vij

{
Zij
(
α
)
− α

α+ 1

}
, (7.2)

where

vij =

 nc
ne+nc

if (i, j) ∈ CIC
⋂
{(i, j) is type C1 or C3}

1 in any other case.

The constant nc is the cardinal of the set of comparable pairs from type C1 or C3 (see Section
6.3.2.1), and ne is the cardinal of the excluded pairs.

The statistic U2(α) is already expressed in a single weighted summation.

Proof. Indeed, recall that the comparable sample CIC consists of six types of pairs, namely A1, A2,
B1, B2, C1 and C3 pairs. The contribution of these pairs to the statistic U1 is 0 ≤ Zij ≤ 1 for A1
and A2 pairs, 1 for B1 and B2 pairs, and 0 for C1 and C3 pairs. The sum of Oij{Zij(α)−α/α+ 1}
over all (i, j) with i < j can be split into three terms as follows:

∑
(i,j)∈A1∪A2

(
Zij
(
α
)
− α

α+ 1

)
+

∑
(i,j)∈B1∪B2

(
1− α

α+ 1

)
+

∑
(i,j)∈C1∪C2

(
0− α

α+ 1

)

=
∑

(i,j)∈A1∪A2

(
Zij
(
α
)
− α

α+ 1

)
+ nb

(
1− α

α+ 1

)
− nc

α

α+ 1
,

where nb is the number of B1 and B2 pairs, and nc the number of C1 and C3 pairs. Thus, from
(6.10),

(
n

2

)
U1

(
α
)

=
∑

(i,j)∈A1∪A2

(
Zij
(
α
)
− α

α+ 1

)
+ nb

(
1− α

α+ 1

)
− (nc + ne)

α

α+ 1

=
∑

(i,j)∈A1∪A2

(
Zij
(
α
)
− α

α+ 1

)
+ nb

(
1− α

α+ 1

)
− nc

(nc + ne)
nc

α

α+ 1
.

We observe in the last term of this equation that the contribution − α
α+1 of individuals C1 and C3
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is weighted by nc+ne
nc

, which suggests the definition of the inverse weights as

vij =


1 if (i, j) ∈ A1 ∪A2

1 if (i, j) ∈ B1 ∪B2
nc

nc+ne
if (i, j) ∈ C1 ∪ C3

.

we obtain a unique summation where only comparable pairs contribute.

Theorem 7.1. Given S1(·) and S2(·), the statistics U1(α) and U2(α) defined in (7.2) and (7.1),
are U-statistics of degree 2.

Proof. In this proof, we use the properties of U-statistics, which are briefly reviewed in Appendix
B.7. For further theoretical background see, for instance Lehman (1999).

Consider n i.i.d realizations of the random vector X = (L,R, Y, δ1, δ2), that is, the observed interval-
censored semi-competing risks data {Xi = (Li, Ri, Yi, δ1i, δ2i), i = 1, .., n}. The 2-degree kernel for
U1 and U2 are given by

φ1(Xi, Xj) =
Oij
vij

{
Zij(α)− α

α+ 1

}
,

and
φ2(Xi, Xj) =

Oij
wij

{
Zij(α)− α

α+ 1

}
.

In addition, the expectation of both U-statistics is zero. In Proposition 6.8 we showed that
E [U1(α)] = 0. In proposition 6.9 we showed the same for U2(α). Therefore, U1

(
α
)

and U2

(
α
)

are zero-mean U-statistics.

Corollary 7.1. Given S1(·) and S2(·), the roots of U1(α) = 0 and U2(α) = 0, α̃1 and α̃2, provide
unbiased estimates of α.

It can be checked empirically that α̃1 and α̃2 are unique roots of their respective equations (see
Appendix B.8).

In what follows we use general theory of U-statistics to derive the asymptotic properties of α̃1 and
α̃2. Since the structure of U1 and U2, and their relationship with α̃1 and α̃2, is analogous, we will
only derive the asymptotic properties for α̃1.

7.1.2 Consistency of α̃1 when S1(·) and S2(·) are known

Assume S1(·) and S2(·) are known functions and denote by α0 the true value of α. The following
lemma is needed to prove the consistency of α̃1:

Lemma 7.1. The second derivative of U1(α) with respect to α, that is,

U ′′1 (α) =
1(
n
2

)∑
i<j

Oij
vij

(
∂2Zij
∂α2

(α) +
1

(α+ 1)3

)
,

is bounded for all values of α, that is, it exists C > 0 such that |U ′′(α)| ≤ C <∞.
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Proof. Since 0 < vij ≤ 1, then 0 ≤ Oij
vij

< ∞. Therefore, Ũ ′′(α) is bounded when ∂2Zij/∂α
2 is

bounded. Given that Zij is expressed as sums, products and definite integrals of functions S(s, t)
and H(s, t), which have bounded second derivatives, then ∂2Zij/∂α

2 is also bounded.

Proposition 7.2. α̃1 is a strongly consistent estimator for α, that is α̃1
a.s−→ α.

Proof. Consider the first-order Taylor expansion of function U1(α) around α0, and evaluated at the
estimator α̃1:

0 = U1(α̃1) = U1(α0) + U ′1(α0)(α̃1 − α0) +RU1,1(α̃1, α0), (7.3)

where
U ′1(α0) =

∂U1

∂α

∣∣∣
α=α0

=
1(
n
2

)∑
i<j

Oij
vij

(
∂Zij
∂α

(α0)− 1
(α0 + 1)2

)
.

Taylor’s remainder is defined by RU1,1(α̃1, α0) = 1
2 U
′′
1 (ξ)(α̃1 − α0)2, where ξ is a value between α̃1

and α0. From Taylor’s theorem, the remainder satisfies

RU,1(α̂, α0) = oP (α̃1 − α0) (7.4)

when U ′′1 (α) is bounded, which is satisfied by Lemma 7.1. Denote by I1(α0) = −U ′1(α0). Because
α̃1 is the root of U1(α̃1) = 0, from (7.3) and (7.4) we obtain that the random variables α̃1−α0 and
I1(α0)−1U1(α0) are asymptotically equivalent.

The variable I1(α0)−1U1(α0) converges to zero almost surely by the strong law of large numbers
for U-statistics, which states that

U1(α0) a.s−→ 0.

Therefore, α̃1 − α0 must also converge almost surely to zero, and so α̃1 is strongly consistent of
α0.

7.1.3 Asymptotical distribution of α̃1 when S1(·) and S2(·) are known

Proposition 7.3. Given S1(·) and S2(·), the distribution of
√
n(α̃1−α0) is asymptotically normal

with mean zero and variance equal to
Σ = 4I−2

1 σ2
1,

where σ2
1 = σ2

1(α0) = Cov
[
Qij(α0), Qir(α0)

]
, Qij(α) = Oij

vij

{
Zij(α)− α

α+1

}
, and I1 = I1(α0) =

−U ′1(α0) as defined in the previous section.

The variance Σ can be approximated by Σ̃ = Ĩ−2
1 J̃ , where

J̃ =
4

n(n− 1)2

∑
i<j<r

Q̃ijQ̃ir + Q̃ijQ̃jr + Q̃irQ̃jr,

obtained replacing α0 by its estimate α̃1, Q̃ij = Qij(α̃1) and Ĩ1 = I1(α̃1).
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Consequently, confidence intervals at the δ-level are given byα̃1 − zδ

√
Σ̃
n
, α̃1 + zδ

√
Σ̃
n

 ,

where zδ is the critical value of the standard normal distribution for a level δ.

Proof. Due to the central limit theorem for U-statistics (see Theorem B.1(c)) applied to the U-
statistic

U1(α) =
(
n

2

)−1∑
i<j

Qij(α),

we have that
√
nU1(α0) is asymptotically normal with mean zero and variance 4σ2

1(α0), that is

√
nU1(α0)→ N

(
0, 4σ2

1(α0)
)

(7.5)

where σ2
1(α0) = Cov

[
Qij(α0), Qir(α0)

]
. Hence, it suffices to compute the covariance function

between Qij and Qkr when they share a common index, k = i. To simplify notation, we write
Qij = Qij(α0) and σ2

1 = σ2
1(α0).

As shown in the proof of Proposition (7.2), α̃1−α0 and I1(α0)−1U1(α0) are asymptotically equiva-
lent. Hence,

√
n(α̃1−α0) and

√
nI1(α0)−1U1(α0) are also asymptotically equivalent. From (7.5), the

distribution of
√
n(α̃1 − α0) is asymptotically normal with mean 0 and variance Σ = 4I1(α0)−2σ2

1,
that is

√
n(α̃1 − α0)→ N

(
0, 4I1(α0)−2σ2

1

)
.

In order to make inferences on α̃1, notice first that, if S1(·) and S2(·) were known functions, we
could estimate 4σ2

1 consistently. Indeed, since E [U1(α0)] = 0,

Var
[√
nU1(α0)

]
= E

[
nU1(α0)2

]
= E

 4n
n2(n− 1)2

∑
i<j

Qij

2
= E

 4
n(n− 1)2

∑
i<j<r

QijQir +QijQjr +QirQjr

 .
The limiting variance 4σ2

1 is then equal to limn→∞
4

n(n−1)2
E
[∑

i<j<rQijQir + QijQjr + QirQjr

]
,

and can be approximated by replacing α0 by its estimate α̃1, that is, by expression

J̃ =
4

n(n− 1)2

∑
i<j<r

Q̃ijQ̃ir + Q̃ijQ̃jr + Q̃irQ̃jr

where Q̃ij = Qij(α̃1). Therefore, the variance Σ = 4I−2
1 σ2

1 can be approximated by Σ̃ = Ĩ−2
1 J̃ .

The general situation, however, is that S1(·) and S2(·) are unknown functions. What we can obtain,
at most, are consistent estimates for them.
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7.1.4 Inference on α when S1(·) and S2(·) are estimated

Assume we can derive strongly consistent estimates of S1(t) and S2(t), uniformly in t ∈ [0, τ ], and
denote them by Ŝ1(t) and Ŝ2(t), respectively. Recall from (6.18) that τ satisfies

τ ≤ max{s : ŜT (s)1−α̂ − Ŝ2(s)1−α̂ > −1, 0 ≤ Ŝ1(u) ≤ 1, u ≤ s}.

Consider now α̂1, the root of equation U1

(
α, Ŝ1(·), Ŝ2(·)

)
= 0. In this section we derive the asymp-

totic properties of this estimator.

Proposition 7.4. The estimate α̂1, root of equation U1

(
α, Ŝ1(·), Ŝ2(·)

)
= 0, is asymptotically

equivalent to α̃1.

Proof. Consider the continuous function gα0(u, v) = U1(α0, u, v). Because we have consistent es-
timates for S1(·) and S2(·), then by Theorem 4.1, gα0(Ŝ1(t), Ŝ2(t)) P−→ gα0(S1(t), S2(t)). Thus
U1

(
α0, Ŝ1(·), Ŝ2(·)

)
and U1

(
α0, S1(·), S2(·)

)
are asymptotically equivalent.

In the proof of Proposition 7.2 we have shown that

α̃1 − α0 and I1

(
α0, S1(·), S2(·)

)−1
U1

(
α0, S1(·), S2(·)

)
(7.6)

were asymptotically equivalent. Following similar arguments, we can see that

α̂1 − α0 and I1

(
α0, Ŝ1(·), Ŝ2(·)

)−1
U1

(
α0, Ŝ1(·), Ŝ2(·)

)
(7.7)

are asymptotically equivalent. It follows naturally that α̂1 and α̃1 are also asymptotically equivalent.

Corollary 7.2. The estimate α̂1 is strongly consistent and asymptotically normal with the same
limiting distribution as α̃1:

√
n(α̂1 − α0)→ N

(
0, 4I1(α0)−2σ2

1

(
α0, S1(·), S2(·)

))
.

The consistency of α̂1 is directly inferred by the strong consistency of α̃1.

The limiting variance σ2
1

(
α0, S1(·), S2(·)

))
can be approximated by

Ĵ =
4

n(n− 1)2

∑
i<j<r

Q̂ijQ̂ir + Q̂ijQ̂jr + Q̂irQ̂jr

where Q̂ij = Qij
(
α̂1, Ŝ1(·), Ŝ2(·)

)
= Oij

vij

{
Zij
(
α̂1, Ŝ1(·), Ŝ2(·)

)
− α̂1

α̂1+1

}
, and I1(α0, S1(·), S2(·)) can

be approximated by I1(α̂1, Ŝ1(·), Ŝ2(·)) = −U ′1
(
α̂1, Ŝ1(·), Ŝ2(·)

)
.

7.2 Inference on the survival function S1(·)

An estimate for S1(·) could be obtained by plugging in ŜT (·), Ŝ2(·), α̂, consistent estimates for
S2(·), ST (·) and α respectively, in g(a, b, c) =

(
a1−c + b1−c − 1

) 1
1−c . That is, as was defined in
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Section 6.5
Ŝ1(t) = g(ŜT (t), Ŝ2(t), α̂).

Note that we employ the general notation α̂ to refer to α̂1 and α̂2 indistinctively, the roots of
U1

(
α, Ŝ1(·), Ŝ2(·)

)
and U2

(
α, Ŝ1(·), Ŝ2(·)

)
, respectively.

To study the asymptotic properties of Ŝ1(t) we need to study the asymptotic properties of ŜT (t)
and Ŝ2(t) (properties of α̂ have been studied in the previous sections).

We begin discussing the asymptotics when a parametric model is fitted for S2(t) and ST (t). Maxi-
mum likelihood is hence used to estimate the parameters of the models, θ2 = (µ2, σ2)t and
θT = (µT , σT )t, as defined in Section 6.5.2. Under some regularity conditions, their correspon-
ding estimators, θ̂2 and θ̂T , are unique and consistent, and their asymptotic distributions are
multivariate normal distributions

√
n(θ̂2 − θ2)→ Np2(0, I−1

2 (θ2)) and
√
n(θ̂T − θT )→ NpT (0, I−1

T (θT )),

where I2(θ2) and IT (θT ) are their corresponding information matrices, and p2 = dimθ2 and pT =
dimθT . The information matrices can be approximated by their observed information matrices,
I2(θ2) = −

∑n
i=1

∂2 lnL2i(θ2)
∂θ2θ2

′ and IT (θT ) = −
∑n

i=1
∂2 lnLTi(θT )
∂θT θT

′ , where L2i and LT i are given by

L2i(θ2) = f2(yi)δ2iS2(yi)1−δ2i

LT i(θT ) =
[
ST (aTi ;θT )− ST (bTi ;θT )

]δ1ifT (aTi ;θT )δTiδ2iST (aTi ;θT )1−δTi .

The form of these likelihood functions is determined by the type of observed data. Recall that,
while T2 is exactly observed or right-censored, T , the minimum between T1 and T2, may be interval-
censored (when T = T1), exactly censored (when T = T2) or right censored (when T = C).

Due to the invariance property of the maximum likelihood estimators, S2(t; θ̂2) is the maximum
likelihood estimator of S2(t;θ2) for all t ∈ [0, τ ], and therefore, it is uniformly consistent for
all t ∈ [0, τ ]. Moreover, by applying the delta method, we can conclude that the asymptotic
distribution for the parametric estimate S2(t; θ̂2) is

√
n
(
S2(t; θ̂2)− S2(t;θ2)

)
→ N (0,W1(θ2)) , (7.8)

where W1(θ2) =
(
∂S2(t;θ2)
∂θ2

)t
I−1

2 (θ2)
(
∂S2(t;θ2)
∂θ2

)
. The same arguments apply to ST (t, θ̂T ), and its

asymptotic distribution is given by

√
n
(
ST (t, θ̂T )− ST (t,θT )

)
→ N (0,W2(θT )) , (7.9)

where W2(θT ) =
(
∂ST (t;θT )

∂θT

)t
I−1
T (θ2)

(
∂ST (t;θT )

∂θT

)
.

The consistency of Ŝ1(t) is guaranteed by Theorem 4.1 and the consistency of α̂, S2(t; θ̂2) and
ST (t; θ̂T ). With respect to the weak convergence of Ŝ1(t) for t ∈ [0, τ ], applications of the functional
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and finite-dimensional delta methods show that
√
n(Ŝ1(t)− S1(t)) is asymptotically equivalent to

Jx(t) = g1(ST (t), S2(t), α0)
[√
n{ST (t; θ̂T )− ST (t;θT )}

]
+ g2(ST (t), S2(t), α0)

[√
n{S2(t; θ̂2)− S2(t;θ2)}

]
+ g3(ST (t), S2(t), α0)

[√
n{α̂k − α0}

]
for t ∈ [0, τ ], where

g1(a, b, c) = ∂g(a, b, c)/∂a = a−c(a1−c − b1−c + 1)c/(1−c),

g2(a, b, c) = ∂g(a, b, c)/∂b = −b−c(a1−c − b1−c + 1)c/(1−c),

g3(a, b, c) = ∂g(a, b, c)/∂c = g(a, b, c)
{

log(a1−c − b1−c + 1)
(1− c)2

+
−a1−c log(a) + b1−c log(b)
(a1−c − b1−c + 1)(1− c)

}
.

Being a sum of asymptotically normal distributions, we can conclude the asymptotical normality
of
√
n(Ŝ1(t)−S1(t)). The computation of the variance, however, is not straightforward because we

cannot use the theory of U-statistics just as in Fine et al. (2001) or Lakhal et al. (2008), because
since data is interval-censored, theory of counting processes does not apply here and we cannot
derive a martingale representation of

√
n{ST (t; θ̂T )−ST (t;θT )}. We suggest the use of the jackknife

or bootstrap methods to approximate the variance.

More difficulties are found to make inferences on S1(t) when S2(t) and ST (t) are estimated non-
parametrically. In particular, the asymptotical behaviour of the NPMLE (Turnbull’s estimate) for
ST (t) is far much complex than for its counterpart for right-censored data. Indeed, the Kaplan-
Meier estimate Ŝ2(t) is strongly consistent and asymptotically normal (a similar expression to (7.8)
holds). On the contrary, the consistency, the

√
n convergence and the asymptotic normality of

Turnbull’s estimate ŜT (t) can only be assured under some restrictive situations. We summarize
the discussion on the asymptotics of the NPMLE estimator found in Gomez et al. (2009) and refer
the reader to this tutorial for a complete discussion on the convergence of ŜT (t).

In general, the NPMLE estimator is uniformly strongly consistent if the theoretical survival ST (t)
is continuous and its support is contained in the support of the inspection times. In addition,
Yu et al. (1998) assumed a setting where the inspection times are discrete random variables (for
instance, a longitudinal study with a fixed number of scheduled visits) and the survival function
ST (t) is continuous. In this setting, they showed the uniformly consistency of ŜT (t) whenever the
closure of the subset A of all the possible values of L and R contained all the points where ŜT (t)
jumps. Moreover, if A = {a1, . . . , am} is a finite set, and for all ai, aj with ai < aj it is satisfied
that 0 < ST (ai) < ST (aj) < 1, then

√
n{ŜT (a1)− ST (a1), . . . , ŜT (am)− ST (am)}

is asymptotically normal. Moreover, Huang (1999) proved that
√
n(ŜT (t0) − ST (t0)) converges to

a Gaussian process whenever we have enough exact failure times together with enough censoring
intervals (with the right-extreme R <∞), ST (t) is continuous and A is finite.

Whenever these restrictions are satisfied, we could obtain similar expression as in (7.9), and thus
derive the asymptotic normality of the plug-in estimator for S1(t) for a given t.



CHAPTER 8

Interval-censored semi-competing risks analysis of the

Spanish Bladder Cancer Study

Understanding bladder cancer disease requires knowledge about the following three processes: re-
currence of the tumour, progression and death (due or not to the tumour). Recurrence is an
intermediate event and its study is hindered by the dependent censoring provoked by progression
or death, terminating events of recurrence. Analogously, the observation of progression may be
prevented by the occurrence of death. Competing risks is the the usual approach for modelling
these two intermediate processes. In Chapter 2 we used competing risks for modelling relapse free
survival and progression free survival and obtained some relevant conclusions on the most important
risk factors for these two processes. However, the competing risks approach treated both recurrence
and progressions as terminating events, ignoring that after the occurrence of each of these events
the patient has been followed, hence the course of the disease after recurrence or progression has
been ignored.

The semi-competing risk approach provides a new insight into these two processes by making use
of the whole history of the patient in order to recover the marginal distribution of recurrence and
progression. The results obtained from competing risk and semi-competing risk approaches are
complementary, since the first focus on the cumulative incidence of events (the events that are
observed in presence of other causes of failure) while the second focus on the marginal distribu-
tions of the process (if other causes of failure would not be present). In the Spanish Bladder
Cancer/EPICURO Study both recurrence and progression are interval-censored, hence the semi-
competing risks methods have to acknowledge this incompleteness. In this chapter we apply the
two estimation strategies presented in Chapter 6 to deal with interval-censored semi-competing risk
(ICSCR) data.

In Table 8.1 we briefly summarize the most relevant endpoints of bladder cancer, as defined in

127
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Table 8.1: Relevant lifetime variables for bladder cancer.

Right-censored Int.cens./exact data†
Endpoint % Median % Median

TR 66.8% 79.9 months 33.2% 8.2 months
TP 92.5% 75.9 months 7.5% 9.1 months
TDBC 93.4% 78.9 months 6.6% 38.8 months
TDOC 78.7% 81.2 months 20.3% 42.7 months

†TR and TP are interval-censored, TDBC , TDOC exactly observed.

Chapter 1: TR, the time to the first recurrence; TP , the time to the first progression; TDBC , the
time to death due to bladder cancer; and TDOC , the time to death due to other not disease-related
causes. In the table, we describe for each time, the percentage of right-censored observations,
the median time among these, the percentage of interval-censored (in the case of recurrence or
progression) or exactly observed data (in the cases of death), and the median time among these. In
Part I we ignored the presence of interval censoring by imputing the midpoint of the corresponding
observed intervals to TR and TP . In this Chapter, we will account for interval-censored data
whenever the events are considered intermediate, while we keep the midpoint imputation strategy
when these events are terminating. In Section 8.1, we present the setting where recurrence acts
as an intermediate event for progression or death. Section 8.2 is devoted to the analysis where
progression acts as an intermediate event for death. In Section 8.3 we present a simulated example
in which the association between TR and TP , for instance, is strong and the amount of dependent
censoring is higher than that encountered in the SBC/EPICURO Study. We use this illustration
to show how, when strong association and dependent censoring exists, the semi-competing risks
methodology enables us to recover the marginal laws of TR and TP .

8.1 The recurrence process in bladder cancer: a situation with

low association

The recurrence process is right-censored by the occurrence of progression or death. This semi-
competing risks situation is depicted in Figure 8.1. Recurrence is the intermediate event thus T1 =
TR is right-censored by the time until the first between progression or death occurs, namely T2 =
min(TP , TDBC , TDOC). In Part I we focused the analysis on T2|TR, assessing how the occurrence
of a recurrence modified the risk of a posterior progression (Chapter 3). We are now interested in
studying the recurrence process if progression or death had not occurred before; that is, we want
to recover TR and assess its behavior marginally.

Denote by δ1 the indicator for recurrence (1 if occurs, 0 otherwise), and by δ2, the corresponding
indicator for the occurrence of progression or death. Table 8.2 summarizes the number of events
for each type. Observe that only 87 patients (8.7% of the total 995) experience first a recurrence
and then progress or die, while for 243 patients only recurrence is recorded (24.4%). On the other
hand, there is a 22.5% of dependent censoring caused by 224 patients experiencing progression or
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Progression / 
Recurrence

g

Death

Diagnose

Progression /Progression / 

Death

Figure 8.1: Semi-competing risks data for Recurrence and Progression/death.

death (δ2 = 1), but not recurrence (δ1 = 0).

Table 8.2: Events of interest (intermediate=recurrence).

Progression/Death

Recur. No Yes Total

No 441 224 665
(44.3%) (22.5%) (66.8%)

Yes 243 87 330
(24.4%) (8.7%) (33.2%)

Total 684 311 995
(68.7%) (31.3%) (100.0%)

In the following sections, we obtain estimators for α, the association parameter and S1(t), the
survival function of TR, for the whole group of superficial bladder cancer cases (n = 995), and we
also perform stratified analysis for each of the prognostic factors presented in Chapter 1: gender,
age, tumour number, tumour size, stage, grade and smoking status. We have used nonparametric
estimates for ST (t) and S2(t) and we plugged them in Equation (6.4) to obtain an estimator for
S1(t). Since in the SBC/EPICURO Study patients are observed at regular visits due to their
medical antecedents caused by the primary tumour, it is reasonable to assume that the inspection
process has been made at discrete time points. Under this assumption (see the discussion in Section
7.2) the NPMLE for ST (t) converges to a Gaussian process at a

√
n rate, therefore, the asymptotic

properties of the ICSCR estimate for S1(t) are fulfilled.

We start checking whether Clayton’s copula can be assumed in the upper wedge of observation.
An approximate check of this assumption can be done by imputing the midpoint of the censoring
interval and applying the goodness-of-fit test proposed by Fine et al. (2001) for right-censored
semi-competing risks data. The results are given in Table 8.3 which shows that the fit is plausible
except for the female’s group. We analyse subsequently the data without incorporating gender.
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Table 8.3: Goodness-of-fit tests for the Clayton’s model (Fine et al., 2001).

Variable Categories n Z test p-value
Total group 995 0.679 0.249
Gender Male 868 1.343 0.090

Female 127 2.707 0.003
Age (years) ≤ 60 254 0.423 0.336

61-70 378 0.679 0.249
>70 363 0.694 0.244

Tumour number Single 660 0.812 0.208
Multiple 283 0.504 0.307

Size < 3cm 854 1.136 0.128
> 3 cm 141 0.261 0.397

Stage Ta 828 1.460 0.072
T1/Tis 167 1.234 0.109

Grade G1/Benign 424 0.767 0.222
G2 332 1.148 0.126
G3 239 1.142 0.127

Smoking status Non-smoker 155 0.616 0.269
Smoker 728 0.480 0.316

8.1.1 Estimation of the association parameter α

The two estimation strategies presented in Chapter 6 are labeled Strategy 1 or ICSCR1 (direct
estimation and correction of bias) and Strategy 2 or ICSCR2 (inverse-weighting by the probability
of being comparable). The estimators for α together with its standard error for the two methods
in the total group and within each category are given in Table 8.4.

We observe, for all cases, small differences between Strategy 1 and Strategy 2, and, in particular,
we do not observe a systematic trend in both estimates such as one being consistently larger than
the other. The estimation and variability of α show little association between recurrence and
progression, with values near the unity. However, a 95% confidence interval shows that for age
greater than 70 years, Stage Ta, Grade 2 and non-smokers the association is greater than 1.

Both strategies require the specification of initial values for α and S1(t). The estimate from mid-
point imputation is usually chosen, provided it is greater than one. When this condition is not
fulfilled, we can use other initial values but we checked that our method is robust event if an ar-
bitrary initial value (such as α = 10) is chosen. In addition, initial values taking midpoint, left or
right imputation results as a starting point resulted in similar estimates.

8.1.2 Estimation of the time to recurrence

Aiming to analyse the marginal distribution of recurrence, 1 − S1(t), and to compare it to the
incidence for recurrence, we present plots in Figures 8.2a to 8.2d for those covariates exhibiting
more evidence of association, namely: age, stage, grade and smoking status. Since Strategies 1 and
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Table 8.4: Estimates for α when recurrence is an intermediate event (ICSCR analysis).

Strategy 1 Strategy 2

Variable Categories n α̂1 ŜD1 IC195% α̂2 ŜD2 IC295%

Total group 995 1.271 0.152 (0.507, 2.035) 1.190 0.151 (0.428, 1.951)
Age (years) <60 254 1.219 0.485 (0.268, 2.169) 1.261 0.487 (0.307, 2.216)

60-70 378 1.056 0.212 (0.640, 1.471) 0.966 0.031 (0.904, 1.027)
>70 years 363 1.518 0.243 (1.042 ,1.993) 1.513 0.237 (1.048, 1.978)

Tumour number Single 660 1.241 0.202 (0.846, 1.637) 1.176 0.196 (0.792, 1.561)
Multiple 283 1.497 0.294 (0.920, 2.074) 1.526 0.285 (0.968, 2.084)

Tumour size ≤3cm 854 1.334 0.172 (0.997, 1.671) 1.214 0.172 (0.877, 1.551)
>3cm 141 1.094 0.389 (0.331, 1.856) 1.127 0.366 (0.410, 1.844)

Stage Ta 828 1.562 0.200 (1.170, 1.954) 1.483 0.192 (1.105, 1.860)
T1/Tis 167 0.452 0.234 (-0.006, 0.910) 0.889 0.028 (0.835, 0.943)

Grade G1/Benign 424 1.327 0.281 (0.776, 1.878) 1.276 0.301 (0.686, 1.866)
G2 332 1.742 0.353 (1.050, 2.434) 1.561 0.320 (0.934, 2.187)
G3 239 0.844 0.370 (0.118, 1.570) 0.781 0.031 (0.721, 0.841)

Smoking status Non-smoker 155 2.536 0.955 (0.664, 4.409) 2.653 0.953 (0.785, 4.521)
Smoker 728 1.189 0.164 (0.867, 1.511) 1.168 0.157 (0.859, 1.477)

ŜD: estimated standard deviations for α̂.

2 provide similar results and the simulation study in next Chapter 9 has shown a better behaviour
for Strategy 1, only results for this approach are shown.

The fact that the association between TR and T2 = min(TP , TDBC , TDOC) is mild or even no-
nexistent and the relatively small number of terminating events (8.7%) which furthermore tend
to occur later than recurrences, causes a very similar behaviour between the cumulative incidence
functions and the marginal distributions for recurrence. In such a situation the benefit of a semi-
competing risks methodology to recover the marginal distribution of the intermediate event is not
substantial.

Nevertheless, we can observe a modest trend of the semi-competing risks methodology to recover
the marginal distribution of the events that the competing event did not allowed to observe. For
instance, in the case of age, the competing risks analysis showed that older patients (more than
70 years-old) had less recurrences as a first event than younger patients (Chapter 2), of course
induced by the competing terminating event (progression or death). The marginal distribution
recovered by the ICSCR analysis shows a higher incidence of recurrences in this group than the CR
estimate, and shows a similar rate as for younger patients. At this marginal scale, age is not related
with the recurrence process. In the case of Stage, differences between Ta and T1/Tis tumours are
detected both by competing and semi-competing risks analysis, though the probabilities of the
marginal distribution, as expected, are higher. In the case of grade of the tumour, the probability
of recurrence in G3 tumours is pushed up to become similar to G1/Benign tumours, while in the
CR setting this category showed a probability of recurring as a first event behind other grades.
Finally, differences between non-smokers and smokers are emphasized at the marginal scale: in this
case, the competing event prevents observing the true differences between these two groups.
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Figure 8.2a: ICSCR vs CR for Age (intermediate=recurrence)
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Figure 8.2b: ICSCR vs CR for Tumour stage (intermediate=recurrence)
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Figure 8.2c: ICSCR vs CR for Grade (intermediate=recurrence)
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Figure 8.2d: ICSCR vs CR for Smoking status (intermediate=recurrence)
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Besides the above considerations, the results of the ICSCR analysis for the Spanish Bladder Can-
cer/EPICURO study show no substantial gain on information on the recurrence process, not more
information that it could be extracted from a competing risks analysis. The reason why competing
risks and semi-competing risks analysis are similar is because of the small amount of dependent
censoring present in the bladder cancer data.

8.2 The progression process in bladder cancer: a situation with

moderate association

Now we are interested in the progression of disease, taking into account that death due to other
causes acts as a competing event (see Section 2.3). Given that for some patients, death for not
disease-related causes can occur after a progression, we want to include this information to recover
the marginal distribution of the time describing Progression Free Survival. Figure 8.3 describes
this semi-competing risks problem. In this setting, the time until the intermediate event is defined
by T1 = min(TP , TDBC), and the time until the terminating event is T2 = TDOC . We denote by δ1

Death due to

PFS

Progression

Death due

other causes

Diagnose

Death due

bladder cancer

Death due to

other causesother causes 

Figure 8.3: Semi-competing risks data for Progression and Death due to Other Causes.

the indicator for progression (1 if occurs, 0 otherwise), and by δ2, the indicator for death due to
other causes. The different combinations of these indicators for the total group (n=995) are given
in Table 8.5. Observe that the percentage of dependent censoring is around 20%, that both events
of interest are observed in only 1.2% of the patients, while 8.6% patients experience progression but
not death due to other causes. Given that both events are only observed in 1.2% of patients, the
estimation of the joint survival function of (T1, T2) is hopeless and all the results must be taken with
caution. The exploration of Clayton’s copula fitting yields a valid modelling only for multiplicity
and stage.

8.2.1 Estimation of the association parameter α

The estimates for α for the two strategies of ICSCR are given in Table 8.6. More association
is observed between progression and deaths due to other causes than between recurrence and
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Table 8.5: Events of interest (intermediate=progression).

Death OC

Progression No Yes Total

No 697 200 897
(70.1%) (20.1%) (90.2%)

Yes 86 12 98
(8.6%) (1.2%) (9.8%)

Total 783 212 995
(78.7%) (21.3%) (100.0%)

PFS/Death. Nevertheless, this is a moderate association: around 1.7 for the total group, slightly
higher for Ta tumours, which would represent, on a complete plane, a correlation of 0.42. In
addition, the estimates for the standard deviation are high, because in this setting, there are not
enough events to properly estimate α.

Table 8.6: Estimates for α when progression is an intermediate event (ICSCR analysis).

Strategy 1 Strategy 2

Variable Categories n α̂1 ŜD1 IC195% α̂2 ŜD2 IC295%

Total group 995 1.731 0.537 (0.295, 3.167) 1.703 0.548 (0.252, 3.154)
Tumour number Single 660 1.831 0.784 (0.294, 3.368) 1.771 0.773 (0.255, 3.287)

Multiple 283 1.999 0.950 (0.136, 3.862) 2.135 1.016 (0.144, 4.126)
Stage Ta 828 2.139 0.864 (0.445, 3.833) 2.167 0.923 (0.359, 3.976)

T1/Tis 167 1.051 0.512 (0.047, 2.055) 0.905 0.035 (0.836, 0.974)

ŜD: estimated standard deviations for α̂.

8.2.2 Estimation of the time to progression

The analysis of time to progression both marginally and as the cumulative incidence is explored
and plotted in Figures 8.4a and 8.4b. The probability of progressing to bladder tumour computed
by CR and ICSCR before 12, 24 and 60 months is presented in Table 8.7.

Observe that, while 5% of individuals with multiple tumours progress before 12 months, about
14% do so among individuals with T1/Tis. Furthermore, while only 6% progress in 5 years among
Stage Ta, about 28% of the individuals do so in 5 years if their stage is T1/Tis.

For stage T1/Tis tumours, the probability of progression has almost doubled from 12 to 60 months,
while for multiple tumours, the probability at 60 months has almost tripled the probability at 12
months.

Though the marginal probabilities for 12 and 24 months do not differ significantly from the cumula-
tive incidence curves for progression estimated at the same time points, differences are encountered
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Figure 8.4a: ICSCR vs CR for Tumour number (intermediate=progression)
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Figure 8.4b: ICSCR vs CR for Tumour stage (intermediate=progression)

at 5 years. Regarding the plotted curves, indeed larger differences exist for larger times. Marginal
curves are pushed up with respect to cumulative incidence functions due to the correction of the
dependent censoring performed by the ICSCR analysis.

Again in this setting the two times of interest exhibit small dependent censoring and low association,
thus no substantial information is gained from a semi-competing risks analysis. However, we
have observed that differences exists with regard to a competing risks analysis. In our situation,
marginal curves and cumulative incidence functions are similar, but they can be radically different
(see next section). Indeed, they estimate distinct quantities: via ICSCR, the distribution of T1 is
estimated, while a CR analysis provides an estimate of the joint distribution of (T,C = Prog), where
T = min(T1, T2). A common error in competing risks is to interpret this distribution marginally.

8.3 Illustration: strongly associated simulated data

We turn back to the example presented in Chapter 4, Section 4.3, in which bivariate data was
generated following Clayton’s copula model with a strong dependency between T1 and T2 (α = 4).
These data were generated assuming significant differences between a Treatment variable at the
marginal scale. We discussed there how the semi-competing risks methodology permitted to recover
the marginal effect of the intermediate event which was hidden by the presence of the competing
terminating event. A considerable amount of dependent censoring (around 50%) is present in this
illustration, contrary to the bladder cancer situation, were a small amount of dependent censoring
was present. On these data, censoring intervals have been generated for those T1 events observed
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Table 8.7: Estimates of the probability of progression at 12, 24 and 60 months.

Variable Months CR ICSCR1 ICSCR2

Single tumours 12 0.026 0.028 0.028
24 0.044 0.045 0.045
60 0.067 0.078 0.077

Multiple tumours 12 0.050 0.050 0.050
24 0.089 0.092 0.092
60 0.128 0.146 0.148

Stage Ta 12 0.016 0.017 0.017
24 0.036 0.035 0.035
60 0.056 0.066 0.067

Stage T1/Tis 12 0.138 0.149 0.148
24 0.192 0.206 0.204
60 0.261 0.283 0.274

in the upper wedge D1: therefore, we can apply the ICSCR strategies 1 and 2 developed in Chapter
6.

Table 8.8 contains the estimates of α according to Strategy 1 (ICSCR1) and Strategy 2 (ICSCR2).
While Strategy 1 obtains accurate estimates of α, specially in treatment group A, Strategy 2
performs poorly in treatment group B (a value of 6.707 is obtained for a true parameter of α = 4).
Figure 8.5 shows the estimated marginal distributions S1(t) at each treatment arm and for each
Strategy. Again, non-parametric estimates for ST (t) and S2(t) were used in the plug-in estimate
to obtain S1(t). For treatment B, Strategy 2 (blue dotted line) is surpassed by Strategy 1 (blue
solid line), as reflected by the worse estimate of α. Despite the small differences, we observe that
in both treatment arms and for both strategies, the shape of the real marginal distribution of T1 is
recovered.

Table 8.8: Estimates for α = 4 for the simulated set (ICSCR analysis).

Strategy 1 Strategy 2

Variable Categories n α̂1 ŜD1 α̂2 ŜD2

Treatment A 250 4.064 0.745 4.465 0.857
B 250 4.451 0.909 6.707 1.861

ŜD: estimated standard deviations for α̂.

Some questions remain concerning the impact of interval-censored data: except for Strategy 1 in
treatment A, midpoint imputation estimates show less bias than ICSCR strategies, but ICSCR
strategies present more variability so in fact no differences exists between them. Moreover, in this
setting with a considerable amount of dependent censoring, Strategy 2 provided biased estimates of
α, while in the bladder cancer case, with small percentages of dependent censoring, both strategies
performed similar.



8.3. ILLUSTRATION: STRONGLY ASSOCIATED SIMULATED DATA 137

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

Treatment A, ICSCR1
Treatment B, ICSCR1

Treatment A, ICSCR2
Treatment B, ICSCR2

Figure 8.5: Interval-censored semi-competing risks analysis: Estimated distribution function vs real distri-
bution function for T1.

A simulation study is performed in Chapter 9 to compare both approaches. We need to further
explore different scenarios of dependent censoring as well as different association levels, and their
impact on both estimation strategies.
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CHAPTER 9

Simulation Study

In this chapter we explore the performance of the methodologies proposed for interval-censored
semi-competing risks data (ICSCR) in Chapter 6 by means of a simulation study. The goal of a
semi-competing risks analysis that assumes a bivariate Clayton’s copula model is to estimate both
the association parameter α and the marginal survival function, S1(t), of the intermediate event.
The estimators of α and S1(t) will be obtained and compared under the following three strategies:

1. Midpoint imputation (Midpoint),

2. Strategy 1, direct estimation of bias (ICSCR1), and

3. Strategy 2, inverse probability weighting (ICSCR2).

The midpoint imputation approach is the simplest strategy for avoiding the problem of interval
censoring. If T1 ∈ (L,R], we assign to T1 the value of the midpoint of the interval, T1 = (L+R)/2,
and we perform the semi-competing risks analysis for right-censored data proposed by Fine et al.
(2001) and presented in Chapter 4. The second and third approaches are our proposals for analysing
ICSCR data, and have been developed in Chapter 6. The difference between these two approaches
rely in the estimation of the copula parameter. For the first approach, the proposed estimating
equation explicitly corrects the bias induced by the comparable sample, while the second approach
employs inverse weighting techniques to account for such bias. The estimation of the marginal
distribution of T1 is taken similarly using a plug-in estimate based on the assumed structure of the
joint survival function, and for both methods, an iterative algorithm is required.

We first present the 48 different simulation settings and the evaluation criteria used for the com-
parison of the methods in Sections 9.1 and 9.2, respectively. The simulation results are summarized
in Section 9.3, and the corresponding tables are presented in Appendix C.

139
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9.1 Simulation scenarios and data generation

9.1.1 Parameters defining simulation scenarios

The simulation scenarios are defined by the following parameters. A total of 48 scenarios are
considered, and B = 1000 data sets were generated for each scenario.

• Sample size, n

Number of observations per generated data set, n ∈ {200, 500}

• Copula parameter, α

Value of the dependence parameter α ∈ {3, 5}. Under Clayton’s copula model and following
expressions (4.8), the chosen parameters represent values for Kendall’s tau of τK ∈ {0.50, 0.67}
and Spearman’s rho of ρS ∈ {0.65, 0.81} corresponding to moderate and strong association,
respectively.

• Average length of intervals (L,R], w
On one hand, we have narrow intervals referring to a scenario where, on average, the generated
intervals have length around 6 units of time. On the other hand, we refer to wide intervals
when the average length of the intervals is within 12 to 15 units of time.

• Percentage of dependent censoring, p

The dependent censoring appears when T1 > T2, thus this percentage is obtained from
p = P (T1 > T2) ∈ {0.25, 0.50, 0.75}, corresponding to moderate, high and heavy dependent
censoring.

• Distribution of the marginals T1 and T2

We assume that both marginals have the same distribution, which can be:

– Exponential: T1 ∼ Exp(λ1) and T2 ∼ Exp(λ2).
The following parametrization is taken: the survival function is Sk(t) = e−λkt for k =
1, 2. We assume that E[T2] = 1/λ2 = 40, and

– Weibull: T1 ∼Weibull(ρ1, µ1) and T2 ∼Weibull(ρ2, µ2).
The following parametrization is adopted: the survival function is Sk(t) = e−µkt

ρk for
k = 1, 2. We assume ρ1 = ρ2 = 1/2 and E[T2] = 40.

A summary of the simulation parameters and the simulation settings is given in Table 9.1.

9.1.1.1 Determination of the parameters of the marginal distributions

The parameters for the distribution of T1 depend on the percentage of dependent censoring p, the
copula parameter α and the parameters for T2. Indeed, the probability of dependent censoring is
obtained from

p = P (T1 > T2) =
∫ ∞

0
dt

[∫ ∞
t

f(s, t)ds
]

=
(6.9)

∫ ∞
0

dt

[∫ ∞
t

f1(s)f2(t)(S1(s)S2(t))−αS(s, t)2α−1ds

]
.

(9.1)
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Table 9.1: Simulation parameters.

Parameter Values Settings

n 200, 500 2
α 3, 5 2
w Narrow,Wide 2
p 0.25, 0.50, 0.75 3
Margins Exponential, Weibull 2

Total settings 48

By performing the following change of variables:

v = S2(t) du = −f2(t)dt t = 0⇒ v = 1, t =∞⇒ v = 0

u = S1(s) du = −f1(s)ds s = t⇒ u = S1(t) = S1(S−1
2 (v)), s =∞⇒ u = 0,

we can rewrite (9.1) by

p = P (T1 > T2) =
∫ 1

0
dv

[∫ 1

S1(S−1
2 (v))

(uv)−αC(u, v)2α−1du

]
. (9.2)

In the case of the Exponential distribution,

S1(S−1
2 (v)) = S1

(
log
{

1
v1/λ2

})
= v

λ1
λ2 .

With this parametrization, E[T2] = 40 = 1/λ2 and thus λ2 = 0.025. Therefore, the parameter λ1

must satisfy

p =
∫ 1

0
dv

[∫ 1

vλ1/0.025
(uv)−αC(u, v)2α−1du

]
. (9.3)

By varying p and α we obtain λ1 for each simulation setting.

In the case of the Weibull distribution,

S1(S−1
2 (v)) = S1

([
1
µ2

log
1
v

]1/ρ2
)

= exp

{
−µ1

[
1
µ2

log
1
v

]ρ1/ρ2}
.

With the assumed parametrization,

E[T2] =
1

µ
1/ρ2
2

Γ
(

1
ρ2

+ 1
)
,

where Γ(t) is the gamma function, equal to (t−1)! if t is an integer. Because we assume E[T2] = 40



142 CHAPTER 9. SIMULATION STUDY

and ρ2 = 1/2, then we have

µ2
2 =

Γ(3)
E[T2]

= 0.05⇒ µ2 = 0.2236.

To obtain µ1, and given that ρ1 = ρ2 = 1/2, we must solve the equation

p =
∫ 1

0
dv

[∫ 1

u0(v)

{
(uv)−αC(u, v)2α−1du

}]
, (9.4)

where u0(v) = exp
{
−µ1

[
1
µ2

log 1
v

]}
= v

µ1
µ2 .

9.1.1.2 Percentage of independent censoring

In all simulation scenarios we have considered an independent censoring variable C following a
uniform distribution, U [0, Cm]. To guarantee a fixed percentage of 20% of independent censoring
in all scenarios, we take Cm = 200. Indeed, if fC(c) = 1/(Cm) is the density function of C, then
Cm is obtained resolving the following equation:

0.20 = P (C < T2) =
∫ ∞

0
dy

∫ y

0

1
Cm

f2(y)du =
1
Cm

∫ ∞
0

yf2(y)dy =
1
Cm

E[T2].

In all the scenarios considered, we have fixed E[T2] = 40 (both for Exponential and Weibull
distributions). Therefore,

Cm =
40
0.2

= 200,

and C ∼ U [0, 200].

9.1.2 Generation of data sets

For each of the B data sets of a particular scenario, n data vectors of the form (L,R, Y, δ1, δ2) are
generated as follows:

1. Generation of (T1, T2)

A bivariate sample is drawn from a Clayton’s copula model in all the plane following the
Inverse Probability Method (Trivedi and Zimmer, 2007). We draw v1 and v2 from a uniform
random variable in (0, 1), U(0, 1). We set u1 = v1 and

u2 =
∂Cα(u1, u2)

∂u1
=
(
v1−α

1

(
v

(1−α)/α
2 − 1

)
+ 1
)1/(1−α)

.

Then, we obtain T1 = S−1
1 (u1) y T2 = S−1

2 (u2), where the inverse survivals depend on the
chosen parametric model (Exponential or Weibull).

2. Generation of Y , δ1 and δ2
We generate C following U [0, 200]. Calculate then Y = min(T2, C), δ1 = I(T1 ≤ Y ), and
δ2 = I(T2 ≤ C).
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3. Generation of (L,R)

The censoring intervals were simulated by reproducing a follow-up study where a number of
visits were scheduled for each individual and, in order to introduce randomness in the process,
a probability of attending the scheduled visit was also considered. See Gomez et al. (2009)
for a detailed description of the approach. In this simulation study we considered that visits
were scheduled for each individual at times k = 1, 2, . . . , 200. Denote by q the probability of
a patient to attend the visit, and Vk, k = 1, . . . , 200 the corresponding indicator variable for
attendance to visit k, following a Bernoulli distribution of parameter q.

Then, R is defined as the first visit after T1, that is, the first visit where the intermediate
event can be detected, and L is the previous visit. Formally,

L =

 max{tk|tk < T1, Vk = 1} if δ1 = 1

Y if δ1 = 0

R =

 min(Y,min{tk|tk ≥ T1, Vk = 1}) if δ1 = 1

∞ if δ1 = 0

To obtain narrow intervals, a probability of q = 0.225 is chosen, and to get wide intervals, we
need a probability of q = 0.085.

The code for the Exponential case is shown in Appendix D.4.8; the code for the Weibull case is
similar and can be obtained upon request.

In order to visualize the sort of data that we are dealing in this simulation study, we provide in
Figure 9.1 four of the simulated bivariate distribution (T1, T2) generated from a Clayton’s copula
model with Exponential and Weibull distributions and for α = 3 and α = 5. Fixed α, the Weibull
setting presents more dispersion than its Exponential counterpart.

9.2 Evaluation criteria

9.2.1 Estimation of the association parameter α

As mentioned at the beginning of the chapter for each simulation setting, B data sets are generated,
and for each of them, the association parameter is estimated through three different methods. The
estimates of α are denoted by α̂bm, when midpoint imputation and right-censoring semi-competing
risks analysis is used; α̂b1, corresponding to strategy 1 for ICSCR, and α̂b2, corresponding to strategy
2 for ICSCR. Thus a vector of parameter estimates is obtained,

α̂b = (α̂bm, α̂
b
1, α̂

b
2)t, b = 1, .., B.

Let
V̂
b

=
(
V̂ b
m, V̂

b
1 , V̂

b
2

)t
,

denote the estimators for the variance of α̂b, obtained as follows. For midpoint imputation, the
variance is estimated according to the asymptotic behavior of α̂bm, as explained in Chapter 4.
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Figure 9.1: Bivariate data generated following Clayton’s copula, with Exponential (top) and Weibull
margins (bottom)

In the case of V̂ b
1 and V̂ b

2 , though the asymptotic properties were also developed in Chapter 7,
their computation is time-consuming and thus intractable in this simulation setting. We opted for
obtaining the jackknife estimator of the variance, Vk = Σ/n (Proposition 7,3),

V̂ b
k =

n− 1
n

n∑
i=1

(
α̂
b(−i)
k − α̂b(·)k

)2

where α̂b(−i)k is the estimator of α resulting from the data set obtained by removing the ith individual,
and

α̂
b(·)
k =

∑n
i=1 α̂

b(−i)
k

n
k = 1, 2.

Based on these estimations and given the true value of the association parameter (in vectorial form)
α0 = (α0, α0, α0)t, known in every setting, we calculate the mean, the bias, the average variance,
the mean square error (MSE) and the coverage probability:

α̂ =
1
B

B∑
b=1

α̂b
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B̂ias(α̂) = α̂−α0

ÂveVar(α̂) =
1
B

B∑
b=1

V̂
b

M̂SE(α̂) = ÂveVar(α̂) + B̂ias(α̂)2

Cover95 =
1
B

∑
I
(
α0 ∈ IC95(α̂b)

)
,

where IC95(α̂b) corresponds to the 95% confidence interval for α̂b (zα/2 = 1.96),(
α̂b − 1.96

√
V̂
b
, α̂b + 1.96

√
V̂
b

)
.

9.2.2 Estimation of the marginal survival S1(·)

When it comes to the estimation of S1(·), for each strategy of estimation of α, we obtain the
corresponding estimations of the marginal. Therefore, for each setting and each data set generated,
we ob tain,

Ŝ1b(t) =
(
Ŝb1,m(t), Ŝb1,1(t), Ŝb1,2(t)

)t
for t in their corresponding support. For the purpose of comparison, we estimate Ŝ1b(t) at five
percentiles of the theoretical distribution (10%,30%,50%,70%,90%). These theoretical percentiles
zp, for p in {0.9, 0.7, 0.5, 0.3, 0.1} are computed according to the generating distribution for T1, that
is, for T1 ∼ Exp(λ1),

zp = − log(1− p)
λ1

,

and for T1 ∼Weibull(ρ1, µ1),

zp =
{
− log(1− p)

µ1

}1/ρ1

.

So we obtain Ŝ1b(zp) for each data set, and calculate their mean, bias, average variance (from the
jackknife estimators at each percentile) and mean square error.

9.3 Simulation results

In the following, we present the simulation results for the 24 scenarios considered. In Section 9.3.1
we discuss the relevant findings regarding estimation of the association parameter α, while Section
9.3.2 is devoted to the estimation of S1(t).

9.3.1 Results for α

9.3.1.1 Exponential marginal distributions

In this Section, we present the results of the 12 simulated settings corresponding to Exponential
marginal distributions. We will compare the performance of the three available methodologies,
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Table 9.2: Estimation of α: comparison of bias between ICSCR1, ICSCR2 and Midpoint (Exponential
margins).

α = 3 α = 5
Width p† n ICSCR1 ICSCR2 Midpoint ICSCR1 ICSCR2 Midpoint
Narrow 25% 200 0.021 0.167 0.133 0.031 0.358 0.154
intervals‡ 500 0.005 0.068 0.107 0.021 0.162 0.146

50% 200 0.006 0.319 0.063 0.066 0.773 0.113
500 0.004 0.164 0.071 0.011 0.356 0.061

75% 200 0.061 0.624 0.109 0.112 1.319 0.123
500 0.008 0.297 0.039 0.047 0.675 0.050

Wide 25% 200 −0.056 0.195 0.253 −0.156 0.449 0.130
intervals‡ 500 −0.082 −0.032 0.220 −0.173 −0.022 0.112

50% 200 −0.059 0.452 0.102 −0.058 1.200 −0.094
500 −0.064 0.098 0.106 −0.142 0.261 −0.150

75% 200 0.021 1.116 0.114 0.049 2.614 −0.092
500 −0.039 0.365 0.042 −0.037 0.857 −0.151

†p: Percentage of dependent censoring, 100× P (T1 > T2).

‡Narrow intervals: average width 6 time units.

Wide intervals: average width 12 to 15 time units.

Strategy 1 (ICSCR1), Strategy 2 (ICSCR2) and midpoint imputation (Midpoint), for estimating
the association parameter α in terms of bias, relative bias, mean square error and confidence interval
coverage probability.

Bias and relative bias:

Table 9.2 provides the bias of the three approaches of the association parameter estimate. In terms
of absolute bias, Strategy 1 outperforms the other two approaches in all the settings considered.
Imputation methods are known to be biased (Sun, 2006), therefore Strategy 1 targets better the
true value of the parameter than midpoint imputation. It also performs systematically better than
Strategy 2, which, on the contrary, only provides better results than midpoint imputation in those
scenarios with low dependent censoring (25%). As expected, the three strategies benefits of larger
sample sizes, lower percentages of censoring and narrow intervals. Not so obvious is the fact that
the three methodologies perform worst when α = 5 which corresponds to a strong association
between T1 and T2. We will discuss this later in Subsection 9.4.

Similar results and conclusions are obtained in terms of relative bias. The relative bias is defined
by B̂ias(α̂)/α0, where α0 is the true value for α. The relative bias permits to compare the bias of
different parameter values on the same scale. These results are highlighted in Figure 9.2, where
we plot the relative bias for the three strategies, distinguishing by different α and selecting those
scenarios with n = 500. Again, Strategy 1 clearly outperforms midpoint imputation and Strategy
2 in most of the settings. Its behavior is robust in terms of percentage of dependent censoring and
association parameter, and it is only seen to be affected for the length of the censoring intervals.
With narrow intervals the observed relative bias of Strategy 1 is fairly non-existent, while for wider
intervals Strategy 1 tends to underestimate a little the true association parameter. For low censoring
(25%), Strategy 2 outperforms midpoint imputation but, as censoring increases, the performance
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Figure 9.2: Estimation of α: comparison of relative bias between ICSCR1, ICSCR2 and Midpoint (Expo-
nential margins, sample size n = 500)

of Strategy 2 get worse providing strongly biased results when the censoring percentage is 75% for
both, narrow and wide intervals and both values of α. On the contrary, midpoint imputation seems
to benefit of larger censoring percentages.

MSE and coverage probability:

The simulation results for Strategy 1 and Strategy 2 are summarized in Table 9.3, where we provide
the mean, the bias, the mean square error (MSE) and the confidence interval coverage probability.
Though we have already discussed the behaviour of the three approaches in terms of bias, we keep
the mean and bias values in this table. However, now we focus on the variability of the estimates
by evaluating the MSE and the coverage probability of the three strategies across the different
simulation settings. The performance in terms of mean square error (MSE) can be visualized in
Figure 9.3 for n = 500. Note that the scale of the plots for α = 3 and for α = 5 are different.

Midpoint imputation have not been included in the comparison because such a comparison would
be unfair: imputation techniques ignore the variability contained in the interval of time and thus
underestimate the real variability of the estimator.

As it was expected, the variability of both estimates is affected by (1) the sample size, with larger
samples giving more precise estimates, (2) the percentage of censoring, where higher percentages
results in more variability, and (3) the length of the censoring intervals, with wider intervals larger



148 CHAPTER 9. SIMULATION STUDY

MSE. As it was the case in terms of bias, the association parameter also affects variability, with
more precise estimates for α = 3 than for α = 5. Strategy 1 always outperform Strategy 2 in
terms of MSE but the advantage is small for low and moderate censoring percentages, specially
with n = 500, where both strategies perform similarly. As already mentioned, both strategies give
more variable results with heavy censoring (75%), but Strategy 2 is clearly more affected for this
than Strategy 1.

The results for the coverage probabilities are less robust. Coverage probability is highly affected by
the variability of results in some settings, which result in wider intervals. For instance, consider the
results for α = 3 and narrow intervals: the bias is almost inexistent for all 6 cases. Those settings
with n = 200 have higher coverage probability than n = 500, because for equal bias, the n = 200
settings obtain wider CI intervals, increasing the chances to contain the true parameter. Moreover,
within these settings with n = 200, the coverage probability increases as the dependent censoring

Table 9.3: ICSCR estimation of α for a model with Exponential marginals, T1 ∼ Exp(λ1), T2 ∼ Exp(λ2).

ICSCR1 ICSCR2
Int.Width p† n Mean Bias MSE Cov95‡ Mean Bias MSE Cov95‡

α = 3

Narrow 25% 200 3.021 0.021 0.178 0.954 3.167 0.167 0.187 0.941
intervals 500 3.005 0.005 0.067 0.957 3.068 0.068 0.063 0.950

50% 200 3.006 0.006 0.261 0.960 3.319 0.319 0.366 0.950
500 3.004 0.004 0.097 0.940 3.164 0.164 0.118 0.951

75% 200 3.061 0.061 0.522 0.963 3.624 0.624 1.014 0.956
500 3.008 0.008 0.174 0.947 3.297 0.297 0.265 0.952

Wide 25% 200 2.944 −0.056 0.199 0.928 3.195 0.195 0.245 0.941
intervals 500 2.918 −0.082 0.079 0.957 2.968 −0.032 0.079 0.946

50% 200 2.941 −0.059 0.331 0.972 3.452 0.452 0.635 0.966
500 2.936 −0.064 0.122 0.942 3.098 0.098 0.151 0.985

75% 200 3.021 0.021 0.790 0.969 4.116 1.116 2.698 0.970
500 2.961 −0.039 0.245 0.933 3.365 0.365 0.459 0.988

α = 5

Narrow 25% 200 5.031 0.031 0.546 0.973 5.358 0.358 0.630 0.956
intervals 500 5.021 0.021 0.205 0.943 5.162 0.162 0.207 0.936

50% 200 5.066 0.066 0.822 0.958 5.773 0.773 1.512 0.939
500 5.011 0.011 0.292 0.949 5.356 0.356 0.417 0.946

75% 200 5.112 0.112 1.599 0.969 6.319 1.319 3.957 0.960
500 5.047 0.047 0.534 0.933 5.675 0.675 1.053 0.924

Wide 25% 200 4.844 −0.156 0.658 0.952 5.449 0.449 0.936 0.953
intervals 500 4.827 −0.173 0.261 0.925 4.978 −0.022 0.270 0.949

50% 200 4.942 −0.058 1.137 0.964 6.200 1.200 3.317 0.946
500 4.858 −0.142 0.403 0.912 5.261 0.261 0.601 0.980

75% 200 5.049 0.049 2.823 0.978 7.614 2.614 14.641 0.978
500 4.963 −0.037 0.830 0.895 5.857 0.857 2.082 0.975

†p: Percentage of dependent censoring, 100× P (T1 > T2).

‡Cov95: coverage probability, P (α ∈ CI).
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Figure 9.3: Mean Square Error for the ICSCR estimation of α (sample size n = 500, Exponential marginals.)

increases, while an inverse relationship is observed in n = 500 scenarios.

In general, in those settings for which results have low precision, the coverage probability is over-
estimated. This phenomena is also observed for Strategy 2, where several settings (for 50% and
75%) obtain larger coverage probabilities than Strategy 1, which outperforms the others in terms
of bias and variability.

9.3.1.2 Weibull Margins

Now we turn to the discussion and comparison of the three methods, Strategy 1 (ICSCR1), Strategy
2 (ICSCR2) and midpoint imputation (Midpoint), to estimate the association in the 12 settings
generated with Weibull marginals.

Bias and Relative bias

Table 9.4 contains the absolute bias for the estimation of the association parameter for the three
strategies. Strategy 1 clearly outperforms Strategy 2 and midpoint imputation. Following a similar
trend as for exponential margins, the three strategies benefit again of larger sample sizes, narrow
intervals and lower percentages of censoring. The three strategies, in addition, obtain higher bias
for α = 5. What most strikes on these results, however, is that the bias obtained is, in magnitude,
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Table 9.4: Estimation of α: comparison of bias between ICSCR1, ICSCR2 and Midpoint (Weibull margins).

α = 3 α = 5
Width p† n ICSCR1 ICSCR2 Midpoint ICSCR1 ICSCR2 Midpoint
Narrow 25% 200 0.182 0.955 0.798 0.245 1.617 1.174
intervals‡ 500 0.160 0.839 0.748 0.246 1.412 1.179

50% 200 0.147 1.133 0.636 0.325 2.401 1.126
500 0.139 0.917 0.631 0.268 1.794 1.054

75% 200 0.231 1.785 0.725 0.476 4.222 1.347
500 0.156 1.211 0.614 0.371 2.832 1.225

Wide 25% 200 0.142 1.404 1.414 −0.031 2.419 1.969
intervals‡ 500 0.113 1.043 1.328 −0.052 1.641 1.938

50% 200 0.164 1.771 1.102 0.245 4.004 1.587
500 0.129 1.165 1.083 0.167 2.325 1.511

75% 200 0.277 3.210 1.147 0.617 8.752 1.749
500 0.198 1.765 1.028 0.502 4.535 1.649

†p: Percentage of dependent censoring, 100× P (T1 > T2).

‡Narrow intervals: average width 6 time units.

Wide intervals: average width 12 to 15 time units.
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Figure 9.4: Estimation of α: comparison of relative bias between ICSCR1, ICSCR2 and Midpoint (Weibull
margins, sample size n = 500)
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Table 9.5: ICSCR estimation of α for a model with Weibull marginals, T1 ∼ Weibull(µ1, ρ1), T2 ∼
Weibull(µ2, ρ2).

ICSCR1 ICSCR2
Int.Width p† n Mean Bias MSE Cov95‡ Mean Bias MSE Cov95‡

α = 3

Narrow 25% 200 3.182 0.182 0.263 0.655 3.955 0.955 1.176 0.570
intervals 500 3.160 0.160 0.110 0.938 3.839 0.839 0.800 0.206

50% 200 3.147 0.147 0.338 0.838 4.133 1.133 1.803 0.749
500 3.139 0.139 0.136 0.938 3.917 0.917 1.020 0.391

75% 200 3.231 0.231 0.813 0.934 4.785 1.785 4.847 0.871
500 3.156 0.156 0.264 0.963 4.211 1.211 1.904 0.614

Wide 25% 200 3.142 0.142 0.300 0.750 4.404 1.404 2.384 0.426
intervals 500 3.113 0.113 0.112 0.981 4.043 1.043 1.243 0.205

50% 200 3.164 0.164 0.462 0.907 4.771 1.771 4.260 0.692
500 3.129 0.129 0.168 0.960 4.165 1.165 1.714 0.523

75% 200 3.277 0.277 1.470 0.966 6.210 3.210 16.957 0.895
500 3.198 0.198 0.415 0.956 4.765 1.765 4.250 0.747

α = 5

Narrow 25% 200 5.245 0.245 0.753 0.936 6.617 1.617 3.489 0.638
intervals 500 5.246 0.246 0.315 0.939 6.412 1.412 2.316 0.271

50% 200 5.325 0.325 1.162 0.967 7.401 2.401 7.840 0.692
500 5.268 0.268 0.439 0.937 6.794 1.794 3.882 0.377

75% 200 5.476 0.476 2.933 0.989 9.222 4.222 26.190 0.821
500 5.371 0.371 0.976 0.934 7.832 2.832 10.047 0.478

Wide 25% 200 4.969 −0.031 0.836 0.923 7.419 2.419 7.341 0.517
intervals 500 4.948 −0.052 0.290 0.980 6.641 1.641 3.250 0.427

50% 200 5.245 0.245 1.647 0.976 9.004 4.004 21.614 0.646
500 5.167 0.167 0.544 0.946 7.325 2.325 7.007 0.596

75% 200 5.617 0.617 7.087 0.992 13.752 8.752 145.794 0.857
500 5.502 0.502 1.839 0.874 9.535 4.535 28.017 0.720

†p: Percentage of dependent censoring, 100× P (T1 > T2).

‡Cov95: coverage probability, P (α ∈ CI).

greater than the bias obtained when marginal Exponentials where used to generate the data. This
fact may be reflecting the greater dispersion of the Weibull setting (recall Figure 9.1).

In Figure 9.4, we compare the three strategies in terms of relative bias for n = 500. The performance
of Strategy 2 and Midpoint imputation is not comparable, in any setting, to Strategy 1 even when
dependent censoring is low (in which case, Strategy 2 outperforms midpoint imputation).

MSE and coverage probability

The simulation results for Strategy 1 and Strategy 2 are summarized in Table 9.5, where we provide
the mean, the bias, the mean square error (MSE) and the confidence interval coverage probability.
We discuss the variability of the estimates by studying the MSE and the coverage probability of the
ICSCR strategies (midpoint imputation is not comparable in terms of variability). The performance
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Figure 9.5: Mean Square Error for the ICSCR estimation of α (sample size n = 500, Weibull marginals.)

of the MSE can be visualized in Figure 9.5 for n = 500. Note that the scale of the plots for α = 3
and for α = 5 are different.

Again, both strategies exhibit an increase of variability along with (1) smaller samples, (2) larger
dependent censoring settings, (3) wider censoring intervals, and (4) the magnitude of α. In terms
of MSE, Strategy 1 outperforms Strategy in any setting.

It is difficult to make conclusive statements in terms of coverage probabilities, though, because they
are highly affected by the large amount of variability. For Strategy 1, and α = 3, higher coverage
probabilities are obtained for larger sample sizes, as it would be expected. However, within smaller
sample sizes (n = 200), the coverage probability increases with dependent censoring. On the other
hand, Strategy 1 outperforms in general Strategy 2 in terms of coverage probability, but results
from the latter are seldom comparable due to the severe bias in the estimation of α.

9.3.2 Results for S1(·)

In order to explore the performance of the three methodologies, Strategy 1 (ICSCR1), Strategy
2 (ICSCR2) and midpoint imputation (Midpoint), for estimating the marginal distribution of the
intermediate event, we obtain the pointwise estimate of the survival function at the 90%, 70%,
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Figure 9.6: Bias of S1(t) estimates: comparison of ICSC1, ICSCR2 and Midpoint (α = 3, Exponential
margins)

50%, 30% and 10% percentiles of the theoretical marginal distribution of T1, that we denote by
Q90, Q70, Q50, Q30 and Q10.

In Figure 9.6 we provide the biases of the survival estimates for Exponential marginal distributions
and association parameter α = 3. In Figure 9.7 we plot the corresponding biases for the case of
Weibull marginal distributions and α = 3. The results for α = 5 can be found in Appendix C,
Section C.1, Figures C.1 and C.2 for exponential and Weibull distributions, respectively. Tables
summarizing the mean, bias and MSE for all the percentiles can also be found in Appendix C.1.

Naturally, the accuracy of the marginal distribution estimate is directly related to the accuracy
of the association parameter estimate. The results for Exponential marginal distributions (Figure
9.6) are much more accurate than for Weibull distribution (Figure 9.7). Note that different scales
are considered in both Figures.

More specifically, for Exponential marginal distributions we observe (Figure 9.6) that the three
approaches provide very good results for all percentiles of the marginal distributions when the
censoring percentage (p) is low or moderate (p=25% or 50%) and for both, narrow and wide
intervals: the bias in absolute terms is less than 0.03. For heavy censoring (p=75%), Strategy 1
and Midpoint imputation still provide very accurate results except in the tail of the distribution
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Figure 9.7: Bias of S1(t) estimates: comparison of ICSC1, ICSCR2 and Midpoint (α = 3, Weibull margins)

where less information is available. In this setting (p=75%), Strategy 2 estimates for α were a bit
biased (bias around 0.3) and, consequently, the estimates of the marginal distribution are also a
bit biased (absolute bias at Q50 and Q30 around 0.06).

For Weibull marginal distributions (Figure 9.7) we observe how Strategy 1 systematically gives less
biased estimates than Strategy 2 and midpoint imputation for all the percentiles. Again, this is
related with the accuracy of the three approaches for estimating the association parameters with
Weibull marginal distributions. In this setting, both Midpoint imputation and Strategy 2 provide
strongly biased estimates for α and, consequently, the estimates of the marginal distribution of the
intermediate event is strongly biased. In this setting, only Strategy 1 provides reliable results.

9.4 Discussion

In this chapter we have explored the performance of three methodologies for interval-censored
semi-competing risks data: midpoint imputation and the two new approaches proposed in this
thesis, Strategy 1 and Strategy 2, described in chapter 6. The simulation scenarios distinguish
between Exponential and Weibull distributions, different sample size, dependent censoring, width
of intervals and levels of association.
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Strategy 1 outperforms both Midpoint imputation and Strategy 2 in most simulated settings. It
provides accurate estimates for both, the association parameter α and for the marginal distribu-
tion of the intermediate event. In terms of bias the estimates are robust, hardly affected by the
percentage of dependent censoring or the length of the censoring intervals. The two factors affect
the variability of the estimates. Strategy 1 performs similarly well under Exponential marginal
distributions and Weibull marginal distributions.

Contrary to what we had expected, Strategy 2 is not performing accurately in many settings. It
performs well for low dependent censoring (25%). For wide intervals and Exponential margins, it
performs slightly better than Strategy 1 in terms of bias and identically in terms of MSE. However,
as the censoring increases, the bias and variability increases. In the case of Weibull margins,
a situation with higher dispersion in the data, some bias is observed even with low dependent
censoring. The reason for the bad behavior of Strategy 2 and thus, its weakness, is that this
strategy requires estimation of G1(l, r|y), the joint distribution function of the interval censoring
variables (L,R) given T2 = y, and G2(l, r|y), the joint distribution function of the interval censoring
variables (L,R) given T2 > y. We have proposed a strategy to empirically estimate G1 and G2

(Subsection 6.5.1) but accurate estimates of these two functions would require large sample sizes.
In situations with considerable dependent censoring and wide intervals the available sample size for
estimating G1 and G2 is insufficient. Future work is to explore alternative strategies to estimate,
perhaps parametrically, G1 and G2 more accurately.

A similar reason is behind the less accurate results when α = 5. This parameter represents a
strong association (under Clayton’s copula model in all the plane, Kendall’s tau of τK = 0.67 or
Spearman’s ρS = 0.81). Therefore, bivariate points (T1, T2) lie close to the diagonal of the plane
T1 × T2, forcing the right endpoints of the censored interval, R, to be close, if not equal, to Y , the
observed value of T2. Again, less ’pure’ intervals (with R < Y ) are available, and functions G1 and
G2 are not enough accurately estimated.
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CHAPTER 10

Software contributions

In this Chapter, we enumerate the software functions that have been implemented in the statistical
software R (R Development Core Team, 2009) to deal with the methods described in this thesis.
Firstly, we explain the code needed to obtain a nomogram and a calibration plot in the context of
competing risks (Section 10.1). Then we will present the code developed to obtain the predictive
process of the multi-state model for progression of bladder cancer in Section 10.2. Section 10.3
contains the programmed functions to perform the semi-competing risks analysis for right-censored
data proposed by Fine et al. (2001). Finally, in Section 10.4, we explain how to implement the
analysis for interval-censored semi-competing risks data and we describe the main functions to run
the analysis.

10.1 Competing risks

10.1.1 A nomogram for competing risks

To build a nomogram for competing risks in R, we have to first load the packages Hmisc (Frank E
Harrell Jr and with contributions from many other users., 2009) and Design (Harrell Jr., Frank
E., 2009), in order to use their specific functions to build a nomogram (see Harrell et al. (1996) for
further details). We will take advantage of these functions and their already defined data structures
to build our competing risks nomogram.

We will follow the steps to build the nomogram in Figure 2.8, in the context of a competing risks
model for PFS. Let Tev2 and Cev2 two vectors containing, respectively, the time to the first
observed event between PFS and DOC, and the cause of failure (Cev2=1 for PFS, Cev2=2 for
DOC or Cev2=0 for a censored observation). We first obtain Fine and Gray’s model for the time
to progression using the crr function of the cmprsk package (see D.1). To include covariates on
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this function, these need to be coded into dummy variables and stored into a matrix structure. Let
cov1 be such a matrix for covariates considered in the model: gender, age, multiplicity, size of the
tumour, stage and grade and smoking status.

fine1<-crr(Tev2,Cev2,cov1=cov1,failcode=1)

Now we extract from the model the necessary information to construct the nomogram: the coef-
ficients of the model, the times at which the baseline sub-hazard is estimated and the size of the
jumps of this estimation:

beta<-fine1$coef

time<-c(0,fine1$uftime,max(Tev2[is.na(Tev2)==F])) #failure times

jump<-fine1$bfitj #jumps (baseline sub-hazards)

Finally, we compute the cumulative subhazard function, the corresponding subsurvival and the
linear predictors of each individual of the data set:

bascum<-c(0,cumsum(jump),cumsum(jump)[length(cumsum(jump))])

bassurv<-exp(-bascum)

lin.pred<-cov1%*%beta

Now we need the structure necessary to apply function nomogram: it needs a cph object, obtained
by applying the cph function, a Design variation of the original function coxph included in the
survival package:

#covariates to make nicer axis in nomogram --> not dummies

f.sex<-factor(female,label=c(’Male’,’Female’))

f.age<-factor(agec,label=c(’<=60y’,’61-70y’,’>70y’))

f.mult<-factor(mult,label=c(’Single’,’Multiple’))

f.size<-factor(size3cm,label=c(’<3cm’,’>=3cm’))

f.stage<-factor(T1Tis,label=c(’Ta’,’T1Tis’))

f.grade<-factor(grade,label=c(’Benign/G1’,’G2’,’G3’))

f.smok<-factor(smoking,label=c(’Non-smoker’,’Smoker’))

#structure of cph object to fill-in with FGH estimates

ddist<-datadist(f.sex,f.age,f.mult,f.size,f.stage,f.grade,f.smok)

cox1<-cph(Surv(Tev2,Cev2==1)˜f.sex+f.age+f.mult+f.size+f.stage+f.grade+

f.smok,method="breslow",surv=T)

fine2<-Newlabels(cox1,c(f.sex="Gender",f.age="Age(year)",f.mult="Number",

f.size="Size",f.stage="Stage", f.grade="Grade",f.smok="Smoking status"))

Now we replace the coefficients, linear predictors and predictions of the baseline survival function
of the cph model by the values of Fine and Gray’s model:

fine2$coefficients<-beta

fine2$linear.predictors<-lin.pred

fine2$surv<-bassurv

fine2$center<-0

Finally, we can construct a nomogram that takes into account the presence of competing risks:
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#construction of nomogram

ddist <-datadist(f.sex,f.age,f.mult,f.size,f.stage,f.grade,f.smok)

options(datadist=’ddist’)

surv2<-Survival(fine2)

FP.60<-function(lp) 1-surv2(60,lp)

at.surv<-c(.01,.05,seq(.1,.9,by=.1),.95,.98,.99,.999)

nom<-nomogram(fine2,lp=F,conf.int=F,fun=list(FP.60),funlabel=

c("Probability of PFS before 5 years"),fun.at=list(at.surv),

intercept=0, force.label=T)

title(main="Nomogram for Progression Free Survival ",cex.main=1.4)

10.1.2 A calibration plot for competing risks

Function getCalibrateCIF (the code is given in Appendix D.1.3) implements the calibration
plot for predictions of the probability of an event when competing risks are present. In particular,
Fine and Gray’s model, estimated by the crr function, is included. The function also provides the
calibration plot for the corresponding Cox model obtained ignoring competing risks (Section 2.3.4,
option (a)).

First, we need to estimate the models to be compared. Following the previous example on progres-
sion free survival:

cox1<-cph(Surv(Tev2,Cev2==1)˜female+age+mult+size3cm+T1Tis+G2+G3+smoking,

surv=T,x=T,y=T,data=TOTAL1)

fine1<-crr(Tev2,Cev2,cov1=cov1,failcode=1).

Observe the parameters required in the calling of the cph function (surv=T,x=T,y=T). TOTAL1
is the data frame of size n containing the variables of interest, and covar is the matrix containing
the dummy variables representing the covariates in the model.

To obtain hence the calibration plot for the predicted probability of progression at time u=60

months, which has been modelled by cox1 and fine1 (Figure 2.9(b)) the following call is made:

getCalibrateCIF(cox.obj=cox1,fine.obj=fine1,g=5,Srv=Srv,dades=TOTAL,

covar=cov1,which.cause=1,u=60, B=100,pl=TRUE,conf.int=0.95,unit=’Month’).

For each model (say generically M), the function’s program proceeds as follow:

1) Obtain predictions from model M at time u for all individuals in dades using function
getEstimates (see Appendix D.1.3.1).

2) Compute the apparent calibration:

• Divide the sample in dades into g groups according to the predicted values in point 1)
and compute the empirical cumulative incidence function (Obs) and the mean predicted
values within each group (Pred). This can be achieved using function groupCIF (see
Appendix D.1.3.2).

• Compute the differences D=Obs-Pred.
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3) Internal validation of the calibration curves (Boostrap): take B samples with replacement
form the original data dades.

• For each bootstrap sample dades.b, fit model M. Coefficients for the covariates are
hence re-estimated in new model M.b.

• Execute 2) with the bootstrap sample dades.b and model M.b to obtain Obs.b,
Pred.b and the differences D.b.

• Execute 2) with the original sample dades and model M.b to obtain the differences
D.b∗.

• Estimate the possible overoptimistic bias, bias.b=D.b∗-D.b.

4) Obtain bootstrap confidence intervals at a significance level conf.int from the percentiles
of Obs.b, and the estimated bias from the average of bias.b, Mbias .

5) Plot the apparent calibration points (Pred vs Obs) with their corresponding confidence
intervals.

6) Plot the calibration points corrected by overoptimistic bias (Pred vs Obs+MBias).

Some parameters of the getCalibrateCIF function have not been mentioned above: Srv and
which.cause. Srv is a matrix containing the vector of times and the vector of causes:

Srv<-cbind(Tev2,Cev2).

On the other hand, which.cause specifies the code of the cause of interest in the vector of causes
in order to properly fit the successive bootstrap models M.b. Other parameters can be added to
modify the plots.

10.2 Multi-state models

10.2.1 The predictive process

We have implemented functions Pi1cr.0 and Pi1cr.1 (see the code in Appendix D.2.1) corres-
ponding to the predictive processes defined in expressions (3.11) and (3.12). These processes are
defined as the predicted probability if progression at time u given the history of past events at
the moment t. In order to compute these probabilities, Models 1 to 4 detailed in equations (3.7)
to (3.8) must have been fitted, and estimates of the cumulative hazards for all transitions in the
desired values of the covariates and in a specified vector of times have to be available (see pages 59
and 60).

For instance, let new1 be a data.frame containing the different risk profiles in the bladder cancer
data:

new<-expand.grid(female=0:1,age=c(60,70),mult=0:1,size3cm=0:1,T1Tis=0:1,

G2=0:1,G3=0:1,smoking=0:1)

new1<-new[new$G2+new$G3<2,].
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Let coxP be the coxph object corresponding to Model 2 (3.7). Then, the cumulative hazard
function of the transition from Recurrence to Progression, assessed at the distinct risk profiles can
be obtained by:

new2<-data.frame(new1,Rec=1)

haRP=survfit(coxP,type=’br’,newdata=new2)

timeRP=c(0,haRP$time,Inf)

HRP0=rbind(rep(0,ncol(haRP$surv)),-log(haRP$surv),

-log(haRP$surv[nrow(haRP$surv),]))

The cumulative hazard function of the transition from Diagnose to Progression is obtained by:

new3<-data.frame(new1,Rec=0)

haP=survfit(coxP,type="breslow",newdata=new3)

timeP=c(0,haP$time,Inf)

HP0=rbind(rep(0,ncol(haP$surv)),-log(haP$surv),

-log(haP$surv[nrow(haP$surv),]))

The rest of transitions are obtained similarly. Then, the predictive process can be estimated calling
functions Pi1cr.0 and Pi1cr.1. For instance, to obtain the residual cumulative incidence of
progression after 24 months from diagnosis (Figure 3.4) we execute the following:

t<-24

u<-seq(t,96,1)

PPT2<-matrix(nrow=nrow(new1),ncol=length(u))

PPT1<-matrix(nrow=nrow(new1),ncol=length(u))

for (j in 1:length(u))

{

for(i in 1:nrow(new1))

{

PPT1[i,j]<-Pi1cr.1(t,u[j],time,H2[,i],HRP[,i])

PPT0[i,j]<-Pi1cr.0(t,u[j],time,H1[,i],HP[,i],HR[,i],H2[,i],HRP[,i])

}

}

10.3 Semi-competing risks for right-censored data

We have implemented in R the proposal of Fine et al. (2001) to deal with semi-competing risks
data. The main functions are corSCR to estimate the association parameter α of Clayton’s copula
model, and margSCR to obtain the plug-in estimator of the marginal survival function S1(t). The
code for these procedures together with some internal functions for their execution can be found
in Appendices D.3.1 and D.3.2 respectively. In the following we explain their use to obtain a
semi-competing risks analysis.
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10.3.1 Data preparation

In a situation of semi-competing risks data we need to define in advance the role of the variables
involved. For instance, consider the bladder cancer situation where progression or death prevents
the observation of recurrences (Section 8.1). Let Tev1 be the minimum between the time to the
first event or the censoring time. Let C1 be the indicator of a recurrence, that is, C1=1 if the first
event is a recurrence, 0 otherwise. Let Tev2 the minimum between the time to progression or death
and the censoring time, and C2 its correspondent indicator1. Define Cz to the indicator of the first
event observed, no matter if a recurrence, progression or death. We define the semi-competing risks
data structure as

dSCR<-list(X=Tev1,d1=C1,Y=Tev2,d2=C2,dz=Cz)

Functions corSCR and margSCR will search for the elements X,Y, d1,d2 and dz of such a list.

10.3.2 Estimation of α and S1(t)

Estimates of α are hence obtained by the following call:

alp<-corSCR(dSCR,-1,-1)

Returning: >alp

$con.index [1] 1.098853

$se [1] 0.1178480

$a [1] -1

$b [1] -1

$I [1] 0.0378401.

The function returns a list with the estimate (alp$con.index), its standard error (alp$se), the
parameters a and b employed for the weight function Wa,b (equation (4.14)), and a parameter used
in the computation of the standard error (alp$I) which may be needed in the computation of the
standard errors for the marginals. When a=b=-1, the weight function corresponds to W∞,∞.

Estimates for the marginal survival S1(t) are given in the $S1.e element at the times $tim of the
list provided by the call

hS1<-marg.SCR(dSCR,alp).

10.4 Interval-censored semi-competing risks data

The estimation algorithm in Section 6.6 is implemented in function algICSCR (see appendix D.4.1)
with the following calling:

algICSCR<-function(dSCRi,e.alp.m, sh1.0,sc1.0,p0=TRUE,p1=TRUE,survC=NULL,

datLR=NULL,strat=NULL, breaks=NULL,time=time){..}.

1In this case, Tev1 and Tev2 would correspond to midpoint imputation values, since we are dealing with right-
censored data.
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The parameters to call this function are the following:

• dSCRi: An ICSCR data object.

• e.alp.m, sh1.0, sc1.0: Initial values for α and S1(t).

• p0: Logical value to indicate whether estimates for Strategy 1 are returned.

• p1: Logical value to indicate whether estimates for Strategy 2 are returned.

• survC: Suvfit object containing the survival function of the censoring time C. Only required
for Strategy 2.

• datLR, strat, breaks: Data to estimate the distribution of (L,R)|Y . Only required for
strategy 2.

• time: Vector with time points where S1(t) will be estimated.

In the following section, we expose how to initialize the parameters for the algorithm. In Section
10.4.2 we discuss the functioning of algICSCR.

10.4.1 Initialize parameters

Data preparation

We need to pre-specify the role of the variables involved in the ICSCR situation. For instance,
consider again the bladder cancer situation where progression or death prevents the observation of
recurrences (Section 8.1). Let L1 and R1 be the variables containing the limits of the censoring
intervals. Let C1 be the indicator of a recurrence, that is, C1=1 if the first event is a recurrence
(in such case, R1< ∞), 0 otherwise. Let Tev2 the minimum between the time to progression or
death and the censoring time, and C2 its correspondent indicator. We define the interval-censored
semi-competing risks data structure as

dSCR<-list(L=L1,R=R1,d1=C1,Y=Tev2,d2=C2)

All the functions implemented will search for the elements of this list.

Estimation of SC(t), G1(l, r|y) and G2(l, r|y)

To obtain the estimates for the survival distributions of C, (L,R)|Y = y and (L,R)|Y > y (functions
SC(t), G1(l, r|y) and G2(l, r|y) as defined in Section 6.5.1), the package survival must be loaded.
We fit the survival function and implement a small function to access the information at any moment
during the algorithm:

survC<-survfit(Surv(T2,1-C2)˜1)

sC<-function(x,survC){

ind<-findInterval(x,survC$time)

return(survC$surv[ind])

}
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When it comes to G1 and G2 we have take the subsample of individuals experiencing a recurrence
within an interval (C1=1). Matrix datLR is defined by selecting vectors L1, R1 and Y1 within
this subsample. Then, we stratify Y1 in gr groups according the corresponding percentiles (which
are stored in vector breaks). Vector strat labels each individual to its corresponding stratum.

L1<-L[d1==1]

R1<-R[d1==1]

Y1<-Y[d1==1]

datLR<-cbind(L1,R1,Y1)

nk<-nrow(datLR)

gr<-if(nk/n>=0.5) 5 else 4 #sstratum must contain enough data

breaks<-quantile(Y1,probs=seq(1/gr,1,1/gr))

strat<-findInterval(Y1,breaks,rightmost.closed=T) +1

The following functions permit us to obtain the empirical bivariate survival function of (L,R)
for any given set of observed values contained in (L,R): this way, the stratified distributions of
(L,R)|Y and (L,R)|Y > y can be obtained just varying the set datLR.

empSurv<-function(l,r,datLR){

return(mean((datLR[,1]>l)*(datLR[,2]>r)))

}

jLR<-function(l,r,datLR){

return(mapply(empSurv,l,r,MoreArgs=list(datLR=datLR)))

}

GLR<-function(l,r,datLR1,datLR2){

return(mapply(jLR,l,r,MoreArgs=list(datLR=datLR1))*
mapply(jLR,l,r,MoreArgs=list(datLR=datLR2)))

}

The algICSCR function call the GLR function t compute the inverse weights of Strategy 2.

Estimation of S2(t) and ST (t)

Parametric and nonparametric estimates for S2(t) and ST (t) can be used to feed the estimating
algorithm. Parametric models can be adjusted by means of the survreg function of package
survival, which can deal both with right-censored(T2) and interval-censored data (T ). Assume
we choose a Weibull fit. Let S2.wei and ST.wei be the survreg functions for each function.
Since these estimates remain invariant during the iterative process, we define the following functions
to obtain their survival whenever required during the algorithm:

S2<-function(t){ return(exp(-sc2*tˆsh2))}

Sz<-function(t){ return(exp(-scT*tˆshT))}.

Caution is needed with the parametrization chosen because estimates from the survreg function
are given at the log-linear scale. For the parametrization of the Weibull chosen, the parameters
sc2,sh2,scT,shT are obtained by:

sh2<-1/S2.wei$scale

sc2<-exp(-S2.wei$coef/S2.wei$scale)
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shT<-1/ST.wei$scale

scT<-exp(-ST.wei$coef/ST.wei$scale)

When nonparametric estimates are used, the survfit function can be employed to estimate S2(t).
However, to obtain Turnbull’s estimate for ST (t) we have used the PGM function of the Icens

package (Gentleman and ., 2009). Let hatS2 and hatST two lists containing the times and values
at which they are estimated. Similarly to the parametric case, we need to define functions S2 and
Sz:

S2<-function(t){

ind<-findInterval(t,hatS2$time)

return(hatS2$S2[ind])

}

Sz<-function(t){

ind<-findInterval(t,hatSz$time)

return(hatSz$Sz[ind]).

}

Initial values for α and S1(t)

Initial estimates for α and S1(·) are needed to start the iterative phase. Our choice is to impute to
T1 the midpoint of the interval and then perform a semi-competing risks analysis for right-censored
data. The resulting estimates for α and S1(·) are taken as the initial steps of our algorithm. Let
u0 and v0 be the results from corSCR and margSCR, respectively.

In order to run the estimating algorithm, it is convenient to smooth the step function given in u0 as
well as the successive estimations obtained at each iteration step. Indeed, if we choose a parametric
fit, only the parameters need to be updated at each step. Moreover, it is a technical solution to avoid
problems of definition with the integrals employed to compute expected concordance and weight
probabilities, as well as to easily compute the density function f1(t) which is needed at every call
of the joint density f(s, t) (6.9). the provided code assumes that Weibull fits were adopted.

Therefore, in the call of function algICSCR, the initial estimate for α would be e.alp.m=

u0$con.index, while sh1.0 and sc1.0 are the parameters of the Weibull fit obtained from
v0.

10.4.2 Estimation algorithm

Internally, function algICSCR execute the following steps:

1) Obtain the comparable sample Oij , and identify the distinct types of observed individuals
(defined in detail in Appendix B.5) by means of functions compIC and compIC.1 (Appendix
D.4.2).

2) At each iteration step compute:

• For Strategy 1, the number of excluded pairs ne (Equation 6.12) with function nD

(Appendix D.4.3).
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• For Strategy 2, the probability for a pair to be comparable wij (Equation 6.15) with
function pes0.5n (Appendix D.4.4).

• Solve the corresponding estimating equation U1(α) or U2(α), computing Zij with func-
tion f.Zij (Appendix D.4.5).

• Update S1 by the plug-in estimator implemented in function iS1 (Appendix D.4.6)

3) Repeat until convergence.

4) Compute the jackknife variance of the estimates.

10.4.3 Comments on the estimation algorithm

The iterative phase is repeated until convergence , when the difference in estimated consecutive α
is smaller than a tolerance value, or whether a maximum number of iterations is reached.

The several definite integrals that must be computed during the iterative algorithm have been
implemented with the integrate function included in the R software, which performs numerical
integration by means of the adaptive quadrature of functions. Nevertheless, this function is time
consuming, and during the simulation study, an approximation using Simpson’s composite rule
has been implemented. In the simulation study, specially for Strategy 2, it was mandatory to use
this approximation to reduce computation time. In addition, when S2(t) and ST (t) are estimated
non-parametrically, the integrate function may cause if we do not take care to select the grid of
points among those with S2(t) and ST (t) being strictly greater than zero.
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Discussion and future research

This thesis has been developed with two main goals in mind: the first, of an applied nature, was to
model the course of bladder cancer by means of survival analysis techniques; the second, to propose
a methodological contribution to the problem of semi-competing risks data when interval censoring
is present. In the following sections we summarize the results of this work with respect to these
two main goals, while suggesting limitations as well as other possible approaches to the problem.

11.1 Modelling the evolution of bladder cancer

In the first part of the PhD manuscript, we have described and analysed the Spanish Bladder
Cancer Study by means of survival analysis techniques, emphasizing the use of competing risks and
multi-state models, which, although well developed from a methodological point of view, they are
not routinely used. We have focused on two survival endpoints of interest: Event Free Survival
(EFS), defined by the time from diagnosis until some disease-related event occurs, and Progression
Free Survival (PFS), defined by the time from diagnosis until progression or death due to bladder
cancer occurs. These endpoints are frequently analysed in the literature of bladder cancer and in
other types of cancer.

First, competing risk was used in order to appropriately accommodate the existence of non disease-
related deaths in the study. The presence of this competing event could prevent the complete
observation of both endpoints of interest, EFS and PFS. Actually, since EFS includes recurrences
that usually occur in the first years of follow-up, this process is reasonably well observed. Instead,
progressions take a longer time to occur and, consequently, PFS is more affected by non disease-
related deaths. We assessed and confirmed in the Spanish Bladder Cancer/EPICURO Study the
effect of the agreed prognostic factors for EFS (multiplicity, tumor size and grade) and PFS (age,
multiplicity, stage and grade). In addition, gender turned out to be also a risk factor for EFS. This
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effect of gender is specific of the SBC/EPICURO study and raises the question of why this higher
risk of recurrence among Spanish women.

Competing risks methods were also used to analyse the time to the first observed event, distingui-
shing among recurrence, progression of disease (including deaths due to disease) and deaths due to
other causes. The clinical motivation for this approach was the characterization of those patients
who may experience a progression as a first detected event. These patients are probably suffering
from a more aggressive disease and they might benefit of a more strict follow-up protocol. A part
from the most important prognostic factors of progression (stage T1/Tis and Grade 3 tumours),
we also found differences in gender: females resulted to have higher risk of progression as a first
event than males.

Multi-state modelling permitted us to obtain a complete picture of the evolution of bladder cancer,
because distinct events, intermediate and terminating, are explicitly linked into the multi-state
model. We explore the effect of having or not a recurrence during the follow-up on the rate
of progression, finding that experiencing at least one recurrence increased significantly the risk of
progression of disease. Additionally, in order to assess the effect of this recurrence on the probability
of progression (at a cumulative scale), we computed the predictive process of progression, thus
obtaining a dynamical model which permits to update the predicted probability for a patient, at
a certain time point t, given the path of the disease the patient has followed until that particular
moment. These dynamic predictions may prove useful for clinicians in the management of the
patients with bladder cancer.

During the multi-state modelling we acknowledged the presence of distinct types of event: interme-
diate and terminating. For instance, recurrence was intermediate event for progression and death.
After the occurrence of a progression or death, an individual is no longer at risk of recurrence,
despite still being under observation. As such, in the modelling of the time until recurrence, ter-
minating events cannot be simply treated as independent censoring. In the search of methods to
account for this induced dependent censoring, we came across with semi-competing risks.

The semi-competing risks problem describes a situation where two events compete but one can
be observed after the other. Therefore, for a portion of the observed individuals, information
on the time of the two events is available. This extra amount of information permits to explore
the marginal distribution of the time to the intermediate event, T1, by taking advantage of the
modelling of the joint distribution of T1 and the time to the terminating event, T2. This approach
has been explored in depth in the second part of the thesis, and it has given raise to an extension
of the semi-competing risks problem in order to account for interval-censoring.

The modelling approaches followed to describe the course of bladder cancer, mainly competing
risks and multi-state models, present some limitations: (i) interval censoring was ignored, (ii) only
the first of the recurrences was modelled, ignoring that several were possible, and (iii) more flexible
models could have been used.

Firstly, the problem of interval censoring has been simplified in order to apply techniques for
right-censored data. The time to recurrence or progression was assumed to be exactly observed
by imputing the midpoint of the interval where they where known to lie in. However, there exist
methods to deal with interval-censoring both in competing risks (the work of Hudgens et al. (2001)
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has been presented in Chapter 5) and in multi-state models (Commenges and Gégout-Petit, 2007,
Foucher et al., 2010, Joly et al., 2002). It would be interesting then to study the impact of the
presence of interval-censoring data and compare the performance of right-censored (plus midpoint
imputation) and interval-censored specific methods.

Secondly, in order to describe all aspects of the evolution of bladder cancer, the distinct recurrences
and progressions must be modelled. In the SBC/EPICURO Study, out of 330 patients with at
least one recurrence, 179 (54.2%) had a single recurrence, 62 (18.8%) had 2 recurrences, and 89
(27%) had three or more recurrences. Recurrences were solely explored to assess if the impact
of the number of recurrences on the risk of progression was significant. However, it would be
of interest to characterize those patients who tend to experience more recurrences than others.
An extensive literature on this issue exists, which was reviewed to some extent in my Thesis
proposal project at the beginning of our research in 2006. Different methodologies can be used
depending on whether the main goal is to study marginal and conditional distributions, or the
degree of association among the distinct failure times. Regression models conditioning on previous
recurrences, marginal models undertaking a working assumption on the dependence of the distinct
recurrent events, frailty models introducing between-subject heterogeneity by a random effect, and
multivariate parametric or copula models are some of the approaches for this type of data (Cook
and Lawless, 2002, Lawless, 2003). In addition, the problem of dependent censoring in the recurrent
process induced by a terminating event has been described (Cook et al., 2009, Ye et al., 2007).

Last but not least, we have been pointed out during the referral process of this work that more
flexible nonparametric regression models could have been used to fit cause-specific hazards models
in Chapter 2 and the transition intensities in Chapter 3. A good overview on these models can be
found in Martinussen and Scheike (2006). Among others, it has been suggested the use of additive
hazards models (Aalen, 1993), or the use of smoothing techniques such as P-splines (Eilers and
Marx, 1996) to introduce flexibility into the Cox model. These models, free of the assumptions that
can invalidate results from parametric and semi-parametric models, are an attractive alternative.
Additive hazards models have been explored at the beginning of our research on competing risks
(Porta et al., 2007), but since we focused the methodological research in the semi-competing risks
problem, we did not further explore these models. However, we believe them to be useful to explore
how the effects of the covariates diminish with time, which is a more realistic framework for long
follow-up studies such as the SBC/EPICURO Study.

11.2 Interval-censored semi-competing risks data

We have proposed a methodology to deal with semi-competing risks data when T1 is interval-
censored. Assuming a Clayton’s copula model to fit the dependency between T1 and T2, we have
developed an algorithm to jointly estimate the copula parameter and the marginal distribution of
T1. Firstly, a new measure of concordance between two pairs of individuals given their observed
interval-censored data has been defined. The concordance is computed among these pairs for
which an ordering scheme can be defined, the so-called comparable sample. The properties of the
concordance sample lead us to define two unbiased estimating equations for α: in Strategy 1, the
bias induced by the comparable sample is explicitly corrected; Strategy 2 employs inverse-weighting
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techniques to correct such bias. Finally, S1(t) is approximated using a plug-in estimator based on
the Clayton’s copula parametric form.

Both the illustrations in Chapter 8 as well as the simulation study in Chapter 9 showed that
Strategy 1 provides accurate estimates for α, while Strategy 2 is more sensible to the amount of
information present in our data, performing poorly in scenarios where much association as well as
a high percentage of dependent censoring are present.

We believe that Strategy 1 provides an appropriate tool to account for interval censoring in this
setting. It behaves better than midpoint imputation, which would be the easiest way to reduce the
problem of interval censoring to right-censored data. Furthermore, it provides unbiased estimates
of the copula parameter.

One of the reasons for the poor performance of Strategy 2 is that it involves the estimation of the
joint distribution of L and R, the extremes of the censoring intervals. In settings where not enough
’pure intervals’ (those with R < Y < ∞) are available, this joint distribution is estimated with
large variability, and this fact has an important impact on the inverse-weighted estimator of α.
Moreover, Strategy 2 is more sensible to inaccuracies on the estimates of ST (t), S2(t) and on the
numerical integration method employed during the computation.

On the other hand, results of the simulation study were limited due to the fact that it resulted
highly time-consuming. To complete a simulation setting (1000 iterations) with sample size equal
to 500, Strategy 1 took an average of 2.5 days, while Strategy 2 could last around 5 to 6 days.
Several computers have undertaken the simulations, some of them being servers, but they were not
specially empowered for such computations (the most powerful being an Intelr CoreTM 2 Quad
Processor with 3-25 of RAM memory). The ’neck of the bottle’ of the algorithm are the two-by-
two comparisons between individuals, which greatly increases as sample size gets larger. With the
simulation process being so cumbersome, this prevented us to explore more scenarios.

We applied the proposed methodologies for interval-censored semi-competing risks data to the
SBC/EPICURO study since it was the study that motivated this methodology. Firstly, we explored
the recurrence process as an intermediate event for progression or death. Secondly, we analysed
progressions acting as a non-terminating event and death due to other causes as terminating event.
However, the results should be taken with caution or just as an illustrative real example since the
two basic elements required for a study to enjoy the benefits of a semi-competing risks analysis,
say the dependence between the intermediate and the terminating event and a certain amount of
dependent censoring, were not present in the SBC/EPICURO study.

11.3 Future work

Several lines of research are now open to keep on working on the issues proposed in this thesis: firstly,
to complete the analysis of the course of bladder cancer; secondly, to consolidate and extend the
methodology of interval-censored semi-competing risks data; thirdly, the software implementation
and transferral of the developed methods.

A simulation study is needed to assess the impact between methods accounting for interval censoring
and standard methods for right censoring in the framework of competing risks and multi-state
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models. The SBC/EPICURO data might potentially be re-analyzed taking into account interval
censoring. On the other hand, the modelling will be completed by the analysis of recurrent events.
The use of more flexible models, if suitable, shall be considered to gain insight into the bladder
cancer data. Another point of interest in our research is on the prediction of the bladder cancer
events, and in the tools to validate a predictive model for this disease, such as the calibration plot.
Some tools are available for several regression models (Harrell et al., 1996), but in the context
of competing risks and multi-state models tools for the validation of a predictive model, like the
calibration plot we have proposed in this thesis, need to be adapted.

When it comes to future work related to the proposed methodology for interval-censored semi-
competing risks data, further simulation settings need to be explored. Larger sample sizes, smaller
association parameters (to cover more realistic scenarios, such as weak association), and varying
amounts of ’pure’ intervals (to confirm the dependency of Strategy 2 on this quantity) would allow
for more robust conclusions on the methods proposed. In addition, more insight into the choice
of the generating marginals (Exponential or Weibulls) as well as on the choice of the estimating
procedure for ST (t) and S2(t) (only parametric fits were used in the simulation study) would
complete the results.

From a theoretical point of view, there are several aspects of the proposed methodology for ICSCR
data which could be extended to a more general setting: (i) T2 could also be interval-censored, (ii)
a less restrictive copula model could be assumed, and (iii) regression modelling is needed.

(i) We have covered the frequent situation where the exact time of the terminating event could
be easily obtained, for instance in the case of death. However, situations arise where T2 could
be exactly observed or interval-censored. We have ignored this fact in the SBC/EPICURO
Study when analysing progression as a terminating event for recurrence (see Chapter 8). The
interval-censored semi-competing risks methods could be extended with a moderate effort to
bivariate interval censoring by redefining the comparable sample Oij (Section 6.3.2) and the
expected concordance (Section 6.3.1) in order to include two ’pure’ interval comparisons.

(ii) On the other hand, extensions to other copula models are not straightforward and deeper
work is needed. An important milestone of our methodology is the relationship between the
expectation of the concordance indicator and the copula parameter α,

E[∆ij ] =
α

α+ 1
,

maintained by the new concordance measure Zij . In the case of an archimedean copula
(Definition 4.2), the previous expectation, for right-censored semi-competing risks data equals
(Lakhal et al., 2008)

E
[
∆ij |(T̃1ij , T̃2ij)

]
=

θα
[
S(T̃1ij , T̃2ij)

]
θα
[
S(T̃1ij , T̃2ij)

]
+ 1

,

which depends on the copula parameter α and also on the observed data through the joint
survival S(s, t). The impact of this property in the extension of the ICSCR methods with a
more general copula must be carefully assessed.
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(iii) Finally, in Chapter 8 we performed stratified analysis for distinct levels of a covariate, but
no inferential tests specific for ICSCR data when covariates are present were performed. It
would be useful to generalize to this situation tests for goodness-of-fit of Clayton’s model
(such as the one referred in Fine et al. (2001) and used in this work for right-censored data),
or for testing constancy of association across strata of a covariate (such as the ones proposed
by Ghosh (2006) for the right-censored case). In order to deal with regression modelling for
interval-censored semi-competing risks data we would need first to go into the semi-competing
risks problem in depth, a problem that, besides few references (Hsieh et al., 2008, Peng and
Fine, 2007) is far beyond from being solved.

Future contributions arising from the modelling of bladder cancer includes the implementation
of an R package containing the prediction tools developed for competing risks (nomograms and
calibration tools) and multi-state models (predictive process). In addition, a paper concerning
the multi-state modelling of the course of bladder cancer based on the SBC/EPICURO data is in
preparation.

As future research, we want to improve the efficiency of the algorithm, with the target in mind of
building an R package to make these ICSCR functions available. One option could be to employ the
combined features of R with Fortran or C++ implementations. We have to assess these tools, of
course, in order to transfer this aspect of our work to the statistical community as soon as possible.
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logy (EAU), E. A. (2008). Eau guidelines on non-muscle-invasive urothelial carcinoma of the
bladder. European Urology, 54(2), 303–314.

Babjuk, M., Oosterlinck, W., Sylvester, R., Kaasinen, E., Böhle, A., and Palou, J. (2009). Guide-
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Garćıa-Closas, M., Malats, N., Silverman, D., Dosemeci, M., Kogevinas, M., Hein, D. W., Tardón,
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APPENDIX A

The Spanish Bladder Cancer Study

A.1 Cumulative incidence functions for (T1, C1)

Cumulative incidence functions for each type of event are empirically estimated from observed data.
The time T1 correspond to the minimum between TEFS , the time to any disease-related events, and
TDOC , time to death due to other non disease-related causes. We present the curves distinguishing
between stratums of age, tumour size and stage of the tumour.
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Figure A.1: Cumulative incidence functions for EFS and DOC in the analysis of (T1, C1) across age
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Figure A.2: Cumulative incidence functions for EFS and DOC in the analysis of (T2, C2) across the
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A.2 Cumulative incidence functions for (T2, C2)

Cumulative incidence functions for each type of event are empirically estimated from observed data.
The time T2 correspond to the minimum between TPFS , the time to progression or death due to
bladder cancer, and TDOC , time to death due to other non disease-related causes. We present the
curves distinguishing between stratums of gender, tumour size and smoking.
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Figure A.3a: Cumulative incidence functions for (T2, C2) by Gender
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Figure A.3b: Cumulative incidence functions for (T2, C2) by Tumour size
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Figure A.3c: Cumulative incidence functions for (T2, C2) by Smoking status

A.3 Cumulative incidence functions for (T1, C
∗
1)

Cumulative incidence functions for each type of event are empirically estimated from observed
data. The time T1 correspond to the minimum between TR, the time to recurrence, TPFS , the
time to progression or death due to bladder cancer, and TDOC , time to death due to other non
disease-related causes. It corresponds to the minimum between TEFS and TDOC . We present the
curves distinguishing between stratums of gender, age, smoking status, tumour number, tumour
size, stage and grade.
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Figure A.5: Cumulative incidence functions for (T1, C
∗
1 ) across the tumour’s features

A.4 Members of the participating centres
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APPENDIX B

Theoretical Aspects

B.1 Expressions of the cross-sectional ratio θ(s, t)

B.1.1 Equivalence of (4.4) and (4.5)

Consider the random variable T2|T1, its hazard function given by

λ2(t|T1 = s) =
fT2|T1=s(t)
ST2|T1=s(t)

=
f(s,t)
f1(s)

P [T2>t,T1=s]
f1(s)

=
f(s, t)∫∞

t f(s, v)dv
, (B.1)

where fT2|T1=s(t) and ST2|T1=s(t) are the density and survival functions of the random variable
T2|T1, f(s, t) is the joint density function of (T1, T2) and f1(s) is the density function of T1.

The survival and hazard functions of the random variable T2|{T1 > s} are given by

ST2|{T1>s}(t) = P [T2 > t|T1 > s] =
P [T2 > t, T1 > s]

P [T1 > s]
=
S(s, t)
S1(s)

λ2(t|T1 > s) = λT2|{T1>s}(t) =
d

dt

[
− logST2|{T1>s}(t)

]
=

∫∞
s f(u, t)du
S(s, t)

. (B.2)

Then, from (4.5), substituting the numerator and denominator by the previous expressions (B.1)
and (B.2), we have:

θ(s, t) =
λ2(t|T1 = s)
λ2(t|T1 > s)

=

f(s,t)∫∞
t f(s,v)dv∫∞
s f(u,t)du

S(s,t)

=
f(s, t)S(s, t)∫∞

s f(u, t)du
∫∞
t f(s, v)dv
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B.1.2 Proof of Proposition 4.1:

Proof. To show expression (4.6),

θ(s, t) =
P ((T1i − T1j)(T2i − T2j) > 0|T̃1ij = s, T̃2ij = t)

P ((T1i − T1j)(T2i − T2j) < 0|T̃1ij = s, T̃2ij = t)
,

we develop the conditional probabilities:

pc = P ((T1i − T1j)(T2i − T2j) > 0|T̃1ij = s, T̃2ij = t)

= P (T1i > T1j , T2i > T2j |T̃1ij = s, T̃2ij = t) + P (T1i > T1j , T2i > T2j |T̃1ij = s, T̃2ij = t)

=
(1)

2P (T1i > T1j , T2i > T2j |T̃1ij = s, T̃2ij = t)

=
2P (T1i > T1j , T2i > T2j , T1j = s, T2j = t)

P (T̃1ij = s, T̃2ij = t)

=
(1)

2P (T1i > s, T2i > t)P (T1j = s, T2j = t)

P (T̃1ij = s, T̃2ij = t)
=

2S(s, t)f(s, t)

P (T̃1ij = s, T̃2ij = t)

pnc = P ((T1i − T1j)(T2i − T2j) < 0|T̃1ij = s, T̃2ij = t)

= P (T1i > T1j , T2i < T2j |T̃1ij = s, T̃2ij = t) + P (T1i < T1j , T2i > T2j |T̃1ij = s, T̃2ij = t)

=
(1)

2P (T1i > T1j , T2i < T2j |T̃1ij = s, T̃2ij = t)

=
2P (T1i > T1j , T2i < T2j , T1j = s, T2i = t)

P (T̃1ij = s, T̃2ij = t)
=
(1)

2P (T1i > s, T2i = t)P (T1j = s, T2j > t)

P (T̃1ij = s, T̃2ij = t)

=
2
∫∞
s f(u, t)du

∫∞
t f(s, v)dv

P (T̃1ij = s, T̃2ij = t)
=

2(−∂2S(s, t))(−∂1S(s, t))

P (T̃1ij = s, T̃2ij = t)
,

where (1) holds for independence of the par (i, j) and the symmetry of the problem. Substituting
these expressions in the right side of equation (4.6), we recover the predictive hazard ratio given in
(4.5).

Note that pc is the probability for a pair of being concordant, and pnc is the probability for a pair
being discordant, and pnc = 1−pc. The previous expression can be rewritten by θ(s, t) = pc/1−pc,
and, ailing pc,

pc =
θ(s, t)

θ(s, t) + 1
.

We then develop τ∗:

τ∗(s, t) = E[sgn(T1i − T1j)(T2i − T2j)|T̃1ij = s, T̃2ij = t] = pc − pnc = 2pc − 1

= 2
θ(s, t)

θ(s, t) + 1
− 1 =

θ(s, t)− 1
θ(s, t) + 1
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B.2 Equivalence of Clayton’s copula model

Day et al. (1997) showed that model

S(s, t) = P (T1 > s, T2 > t) =
(
S1(s)1−α + S2(t)1−α − 1

)1/(1−α)
. (B.3)

is equivalent to a model where the predictive hazard ratio is constant and equal to the copula
association parameter, that is

θ(s, t) =
λ2(t|T1 = s)
λ2(t|T1 > s)

= α ∀(s, t) ∈ D1, (B.4)

where λ2(t|A) is the hazard function of T2 given event A occurs.

Here are some hints on the proof: to see that model (B.3), implies model (B.4), first note that
under the copula model, the joint density function f(s, t) of (T1, T2) is given by

f(s, t) =
∂2S(s, t)
∂s∂t

= αD
2α−1
1−α

f1(s)f2(t)
S1(s)αS2(t)α

,

where D = {S1(s)1−α + S2(t)1−α − 1} and the marginal density functions are given by f1(s) =
−dS1(s)/ds and f2(t) = −dS2/dt.

Now consider the expression (4.5) of the cross-ratio function, and express the joint survival and
density functions in terms of the copula model:

θ(s, t) =
f(s, t)S(s, t)∫∞

t f(s, v)dv
∫∞
s f(u, t)du

=

[
αD

2α−1
1−α f1(s)f2(t)/ (S1(s)αS2(t)α)

] [
D

1
1−α
]

[
D

α
1−α (−f1(s))/S1(s)α

] [
D

α
1−α (−f2(t))/S2(t)α

] = α

for (s, t) ∈ D1. The proof that the inverse (B.4) ⇒ (B.3) is valid can be found in Day et al. (1997).
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B.3 The expectation of the concordance indicator

Proof of Proposition 4.3.

E
[
∆ij

]
= P

(
∆ij = 1

)
= P

(
(T1i − T1j)(T2i − T2j) > 0

)
= P

(
T1i > T1j , T2i > T2j

)
+ P

(
T1i < T1j , T2i < T2j

)
= 2P

(
T1i > T1j , T2i > T2j

)
= 2

∫ ∞
0

∫ ∞
0

P (T1i > x, T2i > y)f(x, y)dxdy = 2
∫ ∞

0

∫ ∞
0

S(x, y)dS(x, y)

=
(4.11)

2
∫ ∞

0

∫ ∞
0

Cα(S1(x), S2(y))dS(x, y) = (1)

Now, given the change of variable u = S1(x), v = S2(y) and the following functions,

∂Cα(u, v)
∂u

= Cα(u, v)αu−α

∂Cα(u, v)
∂v

= Cα(u, v)αv−α

dCα(u, v) =
∂2Cα(u, v)
∂u∂v

= αCα(u, v)2α−1u−αv−α

we can solve integral (1), which is equivalent to

2
∫ 1

0

∫ 1

0
Cα(u, v)

[
αCα(u, v)2α−1u−αv−αdudv

]
=

2α
α+ 1

∫ 1

0
u−α

[
Cα(u, 1)α+1 − Cα(u, 0)α+1

]
du

=
Cα is copula

2α
α+ 1

∫ 1

0
udu =

α

α+ 1
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B.4 The expected concordance

Let (T1i, T2i) and (T1j , T2j) be the bivariate times of two independent individuals (i, j). Consider
the expectation of the concordance indicator for two individuals, given their observed data Hij =
{(ai, bi, yi, δ1i, δ2i), (aj , bj , yj , δ1j , δ2j)},

Zij = E [∆ij |Hij ] = P (∆ij = 1|Hij) =
P (∆ij = 1,Hij)

P (Hij)
.

The previous expression is developed obtaining

Zij =
1

P (Hij)
(δ2iδ2jP1(i, j) + δ2i(1− δ2j)P2(i, j) + (1− δ2i)δ2jP2(j, i)) .

Under Clayton’s copula model for the survival joint function, the following functions are well defined
in the upper wedge:

H(s, t) =
∂S(s, t)
∂t

= −f2(t)S2(t)−αS(s, t)α

f(x, y) =
∂2S(x, y)
∂x∂y

= αf1(s)f2(t) (S1(s)S2(t))α S(s, t)2α−1.

Define ãij = min(ai, aj), a∗ij = max(ai, aj), b̃ij = min(bi, bj) and b∗ij = max(bi, bj). The expression
for P1(i, j) is given by

P1(i, j) = P (∆ij = 1,Hij) = P (∆ij = 1, T1i ∈ (ai, bi], T1j ∈ (aj , bj ], T2i = yi, T2j = yj)

=
∫ bi

ai

dx

∫ bj

aj

I((x− u)(yi − yj) > 0)f(x, yi)f(u, yj)du

= I
(
b̃ij < a∗ij

)[∫ bi

ai

dx

∫ bj

aj

I((ai − bj)(yi − yj) > 0)f(x, yi)f(u, yj)

]

+ I
(
b̃ij > a∗ij

)[

I(yi < yj)
{
I(ai < aj)

∫ aj

ai

dx

∫ bj

aj

f(x, yi)f(u, yj)du+
∫ b̃ij

a∗ij

dx

∫ bj

x
f(x, yi)f(u, yj)du

}

+ I(yi > yj)
{
I(bi > bj)

∫ bi

bj

dx

∫ bj

aj

f(x, yi)f(u, yj)du+
∫ b̃ij

a∗ij

dx

∫ x

aj

f(x, yi)f(u, yj)du
}]

=
(1)
I
(
b̃ij < a∗ij

)[
I
(
(ai − aj)(yi − yj) > 0

)(
H(bi, yi)−H(ai, yi)

)(
H(bj , yj)−H(aj , yj)

)]

+ I
(
b̃ij > a∗ij

)[
I(yi < yj)

{
I(ai < aj)

(
H(aj , yi)−H(ai, yi)

)(
H(bj , yj)−H(aj , yj)

)
+
∫ b̃ij

a∗ij

(
H(bj , yj)−H(x, yj)

)
f(x, yi)dx

}
+ I(yi > yj)

{
I(bi > bj)

(
H(bi, yi)−H(bj , yi)

)(
H(bj , yj)−H(aj , yj)

)
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+
∫ b̃ij

a∗ij

(
H(x, yj)−H(aj , yj)

)
f(x, yi)dx

}]

= I
(
b̃ij < a∗ij

)[
I((ai − aj)(yi − yj) > 0)P (Hij)

]

+ I
(
b̃ij > a∗ij

)[
I(yi < yj)

{
I(ai < aj)

(
H(aj , yi)−H(ai, yi)

)(
H(rj , yj)−H(aj , yj)

)
+H(bj , yj)

(
H (̃bij , yi)−H(a∗ij , yi)

)
−
∫ b̃ij

a∗ij

H(x, yj)f(x, yi)dx
}

+ I(yi > yj)
{
I(bi > bj)

(
H(bi, yi)−H(bj , yi)

)(
H(bj , yj)−H(aj , yj)

)
+
∫ b̃ij

a∗ij

H(x, yj)f(x, yi)dx−H(aj , yj)
(
H (̃bij , yi)−H(a∗ij , yi)

)}]
,

where (1) is justified because∫ b

a

∂2S(x, y)
∂x∂y

dx =
∂S(x, y)
∂y

∣∣∣x=b

x=a
= H(b, y)−H(a, y).

Notice, in the expression, that b̃ij < a∗ij indicates that the observed intervals in T1 do not overlap.
These scenarios is particularly simple, because Zij = ∆ij : the concordance indicator can be defined.

The expression for P2(i, j) is given by

P2(i, j) = P (∆ij = 1,Hij) = P (∆ij = 1, T1i ∈ (ai, bi], T1j ∈ (aj , bj ], T2i = yi, T2j ∈ (yj ,∞))

=
∫ ∞
yj

dv

∫ bi

ai

dx

∫ bj

aj

I((x− u)(yi − v) > 0)f(x, yi)f(u, v)du

= I(yi < yj)

[
I
(
b̃ij < a∗ij

){∫ ∞
yj

dv

∫ bi

ai

dx

∫ bj

aj

I(ai < aj)f(x, yi)f(u, v)du
}

+ I
(
b̃ij > a∗ij

){∫ ∞
yj

(
I(ai < aj)

∫ aj

ai

dx

∫ bj

aj

f(x, yi)f(u, v)du

+
∫ b̃ij

a∗ij

dx

∫ bj

x
f(x, yi)f(u, v)du

)
dv

}]

= I(yi < yj)

[
I
(
b̃ij < a∗ij

){
I(ai < aj)

∫ ∞
yj

dv

∫ bi

ai

dx

∫ bj

aj

f(x, yi)f(u, v)du
}

+ I
(
b̃ij > a∗ij

){
I(ai < aj)

(
H(aj , yi)−H(ai, yi)

)(∫ ∞
yj

∫ bj

aj

f(u, v)dudv

)

+
∫ b̃ij

a∗ij

(∫ ∞
yj

∫ bj

x
f(u, v)dudv

)
f(x, yi)dx

}]

= I(yi < yj)

[
I
(
b̃ij < a∗ij

){
I(ai < aj)P (Hij)

}
+ I
(
b̃ij > a∗ij

){
I(ai < aj)

(
H(aj , yi)−H(ai, yi)

)
(S(aj , yj)− S(bj , yj))
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+
∫ b̃ij

a∗ij

(S(x, yj)− S(bj , yj)) f(x, yi)dx
}]

= I(yi < yj)

[
I
(
b̃ij < a∗ij

)
I(ai < aj)P (Hij)

+ I
(
b̃ij > a∗ij

){
I(ai < aj)

(
H(aj , yi)−H(ai, yi)

)
(S(aj , yj)− S(bj , yj))

+
∫ b̃ij

a∗ij

(S(x, yj)− S(bj , yj)) f(x, yi)dx
}]

P2(i, j) can only be estimated for comparable pairs, and in these scenario, it is necessary that, if
δ2i = 1 and δ2j = 0, then yi < yj .
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Figure B.1: Case A: Comparable and not comparable pairs when δ1i + δ1j = 2.

B.5 The comparable sample

B.5.1 Case A: when δ1i = 1, δ1j = 1

We face to fourth different scenarios, shown in Figure B.1:

A.1 δ2i + δ2j = 2 → T2i = yj , T2j = yj → the pair (i, j) is comparable.

A.2 δ2i = 1, δ2j = 0 and yi < yj → T2i = yi, yj < T2j → the pair (i, j) is comparable.

A.3 δ2i = 0, δ2j = 1 and yi < yj → yi < T2i, yj = T2j → the pair (i, j) is NOT comparable.

A.4 δ2i = 0, δ2j = 0 → yi < T2i, yj < T2j → the pair (i, j) is NOT comparable.

Notice that the previous scenarios are valid independently of the relative position of the intervals,
given that δ1i = δ1j = 1. They can overlap or not, but this does not change the comparability
status. In addition, cases A.2 and A.3 are also valid for the symmetric situation, that is (i) δ2i = 0,
δ2j = 1 and yi > yj and (ii) δ2i = 1, δ2j = 0 and yi > yj .

B.5.2 Case B: δ1i = 1, δ1j = 0, and yi < yj

Assume now that δ1i = 1, δ1j = 0 and consider the setting where yi < yj , shown in Figure B.2:

B.1 δ2i + δ2j = 2 → yi = T2i, yj = T2j , and T1i < T1j → the pair (i, j) is comparable.
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Figure B.2: Case B: Comparable and not comparable pairs when δ1i = 1, δ1j = 0, yi < yj .

B.2 δ2i = 1, δ2j = 0 → yi = T2i, yj < T2j , T1i < T1j → the pair (i, j) is comparable.

B.3 δ2i = 0, δ2j = 1 → yi < T2i, yj = T2j → the pair (i, j) is NOT comparable.

B.4 δ2i = 0, δ2j = 0 → yi < T2i, yj < T2j → the pair (i, j) is NOT comparable.

The previous settings are also valid for their symmetric counterparts, that is, when δ1i = 0, δ1j = 1
and yj < yi.

B.5.3 Cases C, D and E: When δ1i = 1, δ1j = 0, and yi > yj

Consider now that δ1i = 1 , δ1j = 0 and yi > yj . In this setting, we must distinguish between three
cases: (C) bi ≤ aj , (D) ai < aj and bi > aj , and (E) ai > aj . Case (C) is shown in Figure B.3:

C.1 δ2i + δ2j = 2 → yi = T2i, yj = T2j , and T1i < T1j → the pair (i, j) is comparable.

C.2 δ2i = 0, δ2j = 1 → yi < T2i, yj = T2j , yi > yj → the pair (i, j) is comparable.

C.3 δ2i = 1, δ2j = 0 → yi = T2i, yj < T2j , yi > yj → the pair (i, j) is NOT comparable.

C.4 δ2i = 0, δ2j = 0 → yi < T2i, yj < T2j → the pair (i, j) is NOT comparable.

Figures B.4 and B.5 show the second (D) and third (E) cases, which can never give raise to a
comparable pair. Indeed, in all the scenarios, overlapped area is not contained in D1, and since
Clayton’s copula model cannot be valid outside, Zij cannot be computed.

As before, the comparable distribution among cases C,D and E is also valid for their symmetric
counterparts, that is, when δ1i = 0, δ1j = 1, yj > yi and (C) bj < ai, (D) aj < ai, ai < bj , and (E)
aj > ai.
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Figure B.3: Case C: Comparable and not comparable pairs when δ1i = 1, δ1j = 0, yi > yj and bi < aj .

B.5.4 Case F: δ1i = 0, δ1j = 0

This setting, which we refer to as case F, always produces non comparable pairs, no matter the
values of δ2i and δ2j : no T1 event is observed in the upper wedge D1 and the underlying bivariate
model outside the region D1 is unknown. Figure B.6 contain the complete description of cases.
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Figure B.4: Case D: Non comparable pairs when δ1i = 1, δ1j = 0, yi > yj and ai < aj , bi > aj .
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Figure B.5: Case E: Non comparable pairs when δ1i = 1, δ1j = 0, yi > yj and ai > aj .
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Figure B.6: Case F: Non comparable pairs when δ1i = 0 and δ1j = 0.

B.6 Equivalence on the conditions of comparability

In this Section we prove Proposition 6.4. To do so, we must see that the conditions in Proposition
6.3 (Conditions 1) and the conditions in Proposition 6.4 (Conditions 2) are equivalent.

B.6.1 Conditions 1 =⇒ Conditions 2:

LetHij = {(ai, bi, δ1i, yi, δ2i), (aj , bj , δ1j , yj , δ2j)} be the observed data for the pair (i, j). We assume
that Conditions 1 hold:

1. δ1i + δ1j ≥ 1 and δ2i + δ2j ≥ 1.

2. If δ1i + δ1j = 1, δ1ibi + δ1jbj < (1− δ1i)ai + (1− δ1j)aj .

3. If δ2i + δ2j = 1, δ2iyi + δ2jyj < (1− δ2i)yi + (1− δ2j)yj .

To show T̃1ij < C̃ij , from Condition 1, δ1i + δ1j ≥ 1, so we have δ1i + δ1j = 2 or δ1i + δ1j = 1:

• If δ1i + δ1j = 2 and, for instance, T̃1ij = T1i:

δ1i = 1⇒ T̃1ij = T1i ≤ min(T2i, Ci) ≤ Ci
T̃1ij = T1i < T1j ≤

δ1j=1
min(T2j , Cj) ≤ Cj

⇒ T̃1ij < C̃ij

The case T̃1ij = T1j is obtained similarly.
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• If δ1i + δ1j = 1 , and, for instance, δ1i = 1, then from Condition 2,

δ1i = 1⇒ T1i ≤ min(T2i, Ci) ≤ Ci
δ1i = 1⇒ T1i ≤ bi ≤

Cond2
aj = yj =

δ1j=0
min(T2j , Cj) ≤ Cj

δ1j = 0⇒ T1j > min(T2j , Cj)

⇒ T̃1ij = T1i < C̃ij

The case δ1j = 1 is obtained similarly.

To show T̃2ij < C̃ij , from Condition 1, δ2i + δ2j ≥ 1, so we have δ2i + δ2j = 2 or δ2i + δ2j = 1:

• If δ2i + δ2j = 2 and, for instance, T̃2ij = T2i:

δ2i = 1⇒ T̃2ij = T2i ≤ Ci
T̃2ij = T2i < T2j ≤

δ2j=1
Cj

⇒ T̃2ij < C̃ij

The case T̃2ij = T2j is obtained similarly.

• If δ2i + δ2j = 1 , and, for instance, δ2i = 1, then from Condition 3,

δ2i = 1⇒ T2i ≤ Ci
T2i = yi ≤

Cond3
yj =

δ2j=0
Cj < T2j

⇒ T̃2ij = T2i < C̃ij

The case δ2j = 1 is obtained similarly.

Finally, to obtain R̃ij < T̃2ij ,

• If δ1i + δ1j = 2 and δ2i + δ2j = 2, and assume bi < bj :

Ri = bi ≤ yi = T2i

Ri = bi < bj = Rj ≤ T2j = yj

⇒ R̃ij < T̃2ij

The case bi > bj is done similarly.

• If δ2i + δ2j = 2 and δ1i + δ1j = 1, for instance δ1i = 1:

R̃ij = min(Ri, Rj =∞) = Ri

Ri = bi ≤
Cod2

yj = T2j

Ri = bi ≤ T2i = yi

⇒ R̃ij < T̃2ij

The case δ1j is done similarly.

• If δ1i + δ1j = 2 and δ2i + δ2j = 1, and assume δ2i = 1 and bi < bj :

δ2i = 1⇒ T2i = yi ≤
Cond3

yj = Cj < T2j

R̃ij = Ri = bi ≤ T2i = yi

⇒ R̃ij < T̃2ij
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If δ2i = 1 and bi > bj :

δ2i = 1⇒ T2i = yi ≤
Cond3

yj = Cj < T2j

R̃ij = Rj = bj < bi ≤ T2i = yi

⇒ R̃ij < T̃2ij

The case δ2j = 1 is done similarly.

• If δ1i + δ1j = 1 and δ2i + δ2j = 1, and assume δ1i = δ2i = 1:

δ2i = 1⇒ T2i = yi ≤
Cond3

yj = Cj < T2j

δ1i = 1⇒ b̃ij = Ri = bi ≤
Cond2

yj = Cj < T2j

b̃ij = Ri = bi ≤ yi = T2i

⇒ R̃ij < T̃2ij

The case δ1j = δ2j = 1 is done similarly.

If δ1i = 1 and δ2j = 1,

δ2j = 1⇒ T2j = yj ≤
Cond3

yi = Ci < T2i

δ1i = 1⇒ b̃ij = Ri = bi ≤
Cond2

yj = Cj < T2j

⇒ R̃ij < T̃2ij

The case δ1j = 1 and δ2i = 1 is done similarly.

B.6.2 Conditions 2 =⇒ Conditions 1

Assume now the following:

(i) T̃1ij < C̃ij ,

(ii) T̃2ij < C̃ij , and

(iii) R̃ij < T̃2ij .

To show that δ1i + δ1j ≥ 1 and δ2i + δ2j ≥ 1, note that from (i) and (ii):

T̃1ij < C̃ij ⇒ T̃1ij < Ci, T̃1ij < Cj

T̃2ij < C̃ij ⇒ T̃2ij < Ci, T̃1ij < Cj

In addition, in the semi-competing risks setting, T̃1ij < T̃2ij , so T̃1ij < T2i, T̃1ij < T2j . Now, if

T̃1ij = T1i ⇒ T1i < Ci, T1i < T2i ⇒ δ1i = 1⇒ δ1i + δ1j ≥ 1

T̃2ij = T2i ⇒ T2i < Ci ⇒ δ2i = 1⇒ δ2i + δ2j ≥ 1
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To show that, if δ1i + δ1j = 1, δ1ibi + δ1jbj < (1− δ1i)ai + (1− δ1j)aj , assume that δ1i = 1:

T1i ∈ (ai, bi], bi ≤ yi
T1j ∈ (aj ,∞), aj = yj

• If δ2i + δ2j = 2,
bi = b̃ij <

(iii)
T̃2ij < T2j = yj = aj .

• If δ2i = 1,
bi = b̃ij <

(iii)
T̃2ij < C̃ij < Cj =

δ1j=0
aj .

• If δ2j = 1,
bi = b̃ij <

(iii)
T̃2ij < T2j = yj = aj .

The case δ1j = 1 is done similarly.

Finally, to show that, if δ2i + δ2j = 1, δ2iyi + δ2jyj < (1− δ2i)yi + (1− δ2j)yj , assume that δ2i = 1:

δ2i = 1⇒ T2i ≤ Ci, T2i = yi

δ2j = 0⇒ T2j > Cj , yj = Cj

T̃2ij <
(ii)

C̃ij < Cj .

Therefore, T̃2ij = T2i = yi = δ2iyi + δ2jyj = yi < Cj = Yj .

The case δ2j = 1 is done similarly.
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B.7 U-statistics

Suppose that X1, . . . , Xn are i.i.d. with cumulative density function F , where F is completely
unspecified and restricted only to general conditions such as continuity or existence of moments.
Denote by F the nonparametric family of such functions. The parameter θ = θ(F ) to be estimated
is a real-valued function defined over F . θ(F ) is an estimable parameter within F if, for some
integer r and a real-valued measurable function φ(x1, . . . , xr) of r arguments,

EF [φ(X1, . . . , Xr)] = θ(F ) ∀F ∈ F , (B.5)

when X1, . . . , Xr are i.i.d with distribution F . That is, there exists an unbiased estimator of θ(F )
based on r i.i.d. random variables distributed according to F . The smallest integer r with this
property is called the degree of θ(P ). In the following, we focus on the case for r = 2, though the
results are valid for any finite r.

Without loss of generality, we can assume function φ to be symmetric, because if φ was not
symmetric, one can build a symmetric function based on φ and satisfying (B.5) (Lehman (1999),
chapter 6). Now, for a real-valued measurable function φ(x1, x2), and a sample X1, . . . , Xn with
n ≥ 2 from distribution F , the U-statistic with kernel φ is defined as

Un =
1(
n
2

) ∑
Cn,2

φ(Xi1 , Xi2),

where the summation is over the set Cn,2 of all
(
n
2

)
combinations of m integers, i1 < i2 chosen from

(1, 2, . . . , n). Clearly, φ(Xi1 , Xi2) is an unbiased estimator of θ(F ) for any 2-tuple 1 ≤ i1 < i2 ≤ n,
and therefore, Un is also an unbiased estimator of θ(F ). In fact, it is the only symmetric estimator
unbiased for all F for which θ(F ) exists, and it can be shown to have smaller variance than any other
such unbiased estimator. The following theorem summarizes the main asymptotical properties of
U-statistics.

Theorem B.1. A U-statistic Un with a kernel φ of degree r = 2, satisfies:

(a) The variance of the U-statistic Un is given by

Var[Un] =
2∑
i=1

(
2
i

)(
n− 2
2− i

)
σ2
i

/(n
2

)

where σ2
1 = Cov

[
φ(X1, X2), φ(X1, X

′
2)] and σ2

2 = Var
[
φ(X1, X2)], and X1, X2, X

′
2 are i.i.d

according to F .

(b) If σ2
1 > 0 and σ2

2 <∞ for all i = 1, . . . , n, then

Var[
√
nUn] →

n→∞
22σ2

1
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(c) The central limit theorem for U-statistics states that, if 0 < σ2
1 <∞, then as n→∞,

√
n(Un − θ)→

D
N (0, 22σ2

1).

(d) If, in addition, σ2
2 <∞, then also

Un − θ√
Var[U ]

→
D
N (0, 1)

(e) The strong law of large numbers for U-statistics states that

1(
n
2

) ∑
Cn,2

{
φ(Xi1 , Xi2)− E

[
φ(Xi1 , Xi2)

]}
→a.s. 0

The previous results are defined for the case where X1, . . . , Xn are i.i.d random variables, but they
equally apply when the X’s are i.i.d. random vectors.
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B.8 Unicity of U(α) = 0

When S1(·) and S2(·) are known, a estimates for α are obtained by the root of equations

U1

(
α, S1(·), S2(·)

)
= 0

U2

(
α, S1(·), S2(·)

)
= 0,

depending on the strategy to correct bias selected. The root of each equation is unique: for S1(·)
and S2(·) known, Uk

(
α, S1(·), S2(·)

)
is a strictly decreasing function of α, k = 1, 2. This can

be seen graphically: Figure B.7 contains (a) the function Uk
(
α, S1(·), S2(·)

)
for different choices

of S1(·) and S2(·), where the monotonicity is clear, as well as (b) a numerical approximation of
∂Uk

(
α, S1(·), S2(·)

)
/∂α, which results negative for all the values of α considered.
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Figure B.7: Behavior of function U
(
α, S1(·), S2(·)

)
for known S1(·) and S2(·).



APPENDIX C

Tables of simulation results

C.1 Estimation of the marginal survival function S1(t)

This section contains 8 tables summarizing the results of the simulation study described in Chapter
9 regarding the estimation of the marginal S1(t). For each table, we present the mean estimated
probabilities at the 0.90, 0.70, 0.50, 0.30 and 0.10 percentiles, together with their bias and mean
square error. Results obtained for generated samples from Exponential and Weibull marginal
distributions are given in Tables C.1a to C.1d and Tables C.2a to C.2d, respectively. Results for
Strategy 1 and Strategy 2 are shown. In Figures C.1 and C.2, comparison of the bias obtained for
Strategy 1, Strategy 2 and midpoint imputation for α = 5 and Exponential and Weibull marginals
is made.
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Table C.1a: Estimation of S1(t), for a model with T1 ∼ Exp(λ1), T2 ∼ Exp(λ2) and α = 3. Narrow
intervals.

Narrow intervals†, α = 3

ICSCR1 ICSCR2
n p ‡ S1(t) Mean Bias MSE Mean Bias MSE

200 25% 0.9 0.901 0.001 0.000 0.900 0.000 0.000
0.7 0.708 0.008 0.018 0.704 0.004 0.002
0.5 0.501 0.001 0.030 0.495 −0.005 0.004
0.3 0.294 −0.006 0.025 0.289 −0.011 0.012
0.1 0.100 0.000 0.002 0.099 −0.001 0.000

50% 0.9 0.898 −0.002 0.002 0.896 −0.004 0.002
0.7 0.715 0.015 0.077 0.701 0.001 0.005
0.5 0.510 0.010 0.167 0.487 −0.013 0.044
0.3 0.295 −0.005 0.155 0.275 −0.025 0.083
0.1 0.102 0.002 0.047 0.092 −0.008 0.008

75% 0.9 0.905 0.005 0.011 0.897 −0.003 0.001
0.7 0.713 0.013 0.306 0.672 −0.028 0.216
0.5 0.485 −0.015 0.856 0.424 −0.076 1.151
0.3 0.293 −0.007 1.102 0.232 −0.068 1.231
0.1 0.225 0.125 2.739 0.165 0.065 1.357

500 25% 0.9 0.897 −0.003 0.001 0.896 −0.004 0.001
0.7 0.704 0.004 0.006 0.702 0.002 0.000
0.5 0.498 −0.002 0.012 0.495 −0.005 0.003
0.3 0.291 −0.009 0.015 0.289 −0.011 0.012
0.1 0.099 −0.001 0.001 0.098 −0.002 0.000

50% 0.9 0.896 −0.004 0.002 0.895 −0.005 0.002
0.7 0.713 0.013 0.037 0.705 0.005 0.004
0.5 0.506 0.006 0.064 0.494 −0.006 0.015
0.3 0.292 −0.008 0.059 0.281 −0.019 0.043
0.1 0.097 −0.003 0.012 0.093 −0.007 0.006

75% 0.9 0.905 0.005 0.005 0.901 0.001 0.000
0.7 0.711 0.011 0.125 0.688 −0.012 0.065
0.5 0.478 −0.022 0.375 0.442 −0.058 0.599
0.3 0.272 −0.028 0.443 0.237 −0.063 0.633
0.1 0.205 0.105 1.500 0.169 0.069 0.787

†Narrow intervals: average width 6 time units.

‡p: Percentage of dependent censoring, 100× P (T1 > T2).
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Table C.1b: Estimation of S1(t), for a model with T1 ∼ Exp(λ1), T2 ∼ Exp(λ2) and α = 3. Wide intervals.

Wide intervals†, α = 3

ICSCR1 ICSCR2
n p ‡ S1(t) Mean Bias MSE Mean Bias MSE

200 25% 0.9 0.882 −0.018 0.032 0.881 −0.019 0.037
0.7 0.678 −0.022 0.060 0.672 −0.028 0.079
0.5 0.475 −0.025 0.092 0.466 −0.034 0.117
0.3 0.279 −0.021 0.065 0.272 −0.028 0.078
0.1 0.097 −0.003 0.004 0.095 −0.005 0.002

50% 0.9 0.886 −0.014 0.023 0.881 −0.019 0.035
0.7 0.696 −0.004 0.072 0.674 −0.026 0.078
0.5 0.495 −0.005 0.194 0.462 −0.038 0.185
0.3 0.291 −0.009 0.202 0.261 −0.039 0.177
0.1 0.105 0.005 0.075 0.091 −0.009 0.012

75% 0.9 0.898 −0.002 0.015 0.883 −0.017 0.032
0.7 0.703 0.003 0.420 0.632 −0.068 0.723
0.5 0.483 −0.017 1.178 0.385 −0.115 1.932
0.3 0.302 0.002 1.608 0.206 −0.094 1.544
0.1 0.247 0.147 3.962 0.150 0.050 1.102

500 25% 0.9 0.877 −0.023 0.051 0.877 −0.023 0.053
0.7 0.674 −0.026 0.074 0.673 −0.027 0.076
0.5 0.472 −0.028 0.092 0.470 −0.030 0.092
0.3 0.277 −0.023 0.062 0.275 −0.025 0.062
0.1 0.096 −0.004 0.002 0.096 −0.004 0.002

50% 0.9 0.884 −0.016 0.027 0.882 −0.018 0.032
0.7 0.694 −0.006 0.031 0.686 −0.014 0.024
0.5 0.491 −0.009 0.080 0.479 −0.021 0.069
0.3 0.287 −0.013 0.083 0.276 −0.024 0.075
0.1 0.100 0.000 0.017 0.095 −0.005 0.004

75% 0.9 0.897 −0.003 0.006 0.891 −0.009 0.008
0.7 0.701 0.001 0.159 0.669 −0.031 0.241
0.5 0.475 −0.025 0.514 0.427 −0.073 1.142
0.3 0.281 −0.019 0.590 0.234 −0.066 1.054
0.1 0.231 0.131 2.352 0.181 0.081 1.503

†Narrow intervals: average width 6 time units.

‡p: Percentage of dependent censoring, 100× P (T1 > T2).
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Table C.1c: Estimation of S1(t), for a model with T1 ∼ Exp(λ1), T2 ∼ Exp(λ2) and α = 5. Narrow
intervals.

Narrow intervals†, α = 5

ICSCR1 ICSCR2
n p ‡ S1(t) Mean Bias MSE Mean Bias MSE

200 25% 0.9 0.903 0.003 0.002 0.902 0.002 0.000
0.7 0.699 −0.001 0.019 0.693 −0.007 0.005
0.5 0.484 −0.016 0.046 0.478 −0.022 0.050
0.3 0.285 −0.015 0.027 0.283 −0.017 0.031
0.1 0.104 0.004 0.002 0.103 0.003 0.001

50% 0.9 0.905 0.005 0.006 0.901 0.001 0.000
0.7 0.702 0.002 0.059 0.685 −0.015 0.027
0.5 0.487 −0.013 0.093 0.469 −0.031 0.100
0.3 0.287 −0.013 0.056 0.275 −0.025 0.063
0.1 0.116 0.016 0.042 0.109 0.009 0.008

75% 0.9 0.913 0.013 0.027 0.903 0.003 0.001
0.7 0.694 −0.006 0.222 0.655 −0.045 0.248
0.5 0.459 −0.041 0.479 0.419 −0.081 0.708
0.3 0.280 −0.020 0.337 0.244 −0.056 0.356
0.1 0.244 0.144 2.405 0.204 0.104 1.135

500 25% 0.9 0.902 0.002 0.001 0.901 0.001 0.000
0.7 0.695 −0.005 0.010 0.692 −0.008 0.006
0.5 0.481 −0.019 0.044 0.478 −0.022 0.047
0.3 0.285 −0.015 0.025 0.283 −0.017 0.028
0.1 0.104 0.004 0.002 0.103 0.003 0.001

50% 0.9 0.903 0.003 0.002 0.901 0.001 0.000
0.7 0.699 −0.001 0.023 0.690 −0.010 0.012
0.5 0.483 −0.017 0.058 0.473 −0.027 0.076
0.3 0.284 −0.016 0.038 0.278 −0.022 0.050
0.1 0.110 0.010 0.015 0.107 0.007 0.005

75% 0.9 0.911 0.011 0.015 0.905 0.005 0.003
0.7 0.690 −0.010 0.096 0.667 −0.033 0.134
0.5 0.454 −0.046 0.323 0.430 −0.070 0.519
0.3 0.273 −0.027 0.170 0.251 −0.049 0.252
0.1 0.246 0.146 2.253 0.221 0.121 1.496

†Narrow intervals: average width 6 time units.

‡p: Percentage of dependent censoring, 100× P (T1 > T2).
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Table C.1d: Estimation of S1(t), for a model with T1 ∼ Exp(λ1), T2 ∼ Exp(λ2) and α = 5. Wide intervals.

Wide intervals†, α = 5

ICSCR1 ICSCR2
n p ‡ S1(t) Mean Bias MSE Mean Bias MSE

200 25% 0.9 0.881 −0.019 0.038 0.878 −0.022 0.050
0.7 0.666 −0.034 0.136 0.656 −0.044 0.192
0.5 0.458 −0.042 0.200 0.449 −0.051 0.260
0.3 0.271 −0.029 0.088 0.267 −0.033 0.109
0.1 0.102 0.002 0.001 0.101 0.001 0.000

50% 0.9 0.889 −0.011 0.017 0.881 −0.019 0.035
0.7 0.678 −0.022 0.120 0.652 −0.048 0.234
0.5 0.469 −0.031 0.186 0.444 −0.056 0.319
0.3 0.279 −0.021 0.095 0.262 −0.038 0.146
0.1 0.118 0.018 0.057 0.106 0.006 0.005

75% 0.9 0.903 0.003 0.021 0.882 −0.018 0.034
0.7 0.679 −0.021 0.362 0.617 −0.083 0.741
0.5 0.451 −0.049 0.681 0.391 −0.109 1.224
0.3 0.281 −0.019 0.498 0.226 −0.074 0.593
0.1 0.252 0.152 2.855 0.190 0.090 0.862

500 25% 0.9 0.878 −0.022 0.050 0.878 −0.022 0.046
0.7 0.656 −0.044 0.192 0.660 −0.040 0.164
0.5 0.449 −0.051 0.260 0.453 −0.047 0.222
0.3 0.267 −0.033 0.109 0.270 −0.030 0.093
0.1 0.101 0.001 0.000 0.101 0.001 0.000

50% 0.9 0.881 −0.019 0.035 0.884 −0.016 0.025
0.7 0.652 −0.048 0.234 0.665 −0.035 0.129
0.5 0.444 −0.056 0.319 0.454 −0.046 0.213
0.3 0.262 −0.038 0.146 0.269 −0.031 0.097
0.1 0.106 0.006 0.005 0.108 0.008 0.007

75% 0.9 0.882 −0.018 0.034 0.892 −0.008 0.007
0.7 0.617 −0.083 0.741 0.645 −0.055 0.370
0.5 0.391 −0.109 1.224 0.415 −0.085 0.789
0.3 0.226 −0.074 0.593 0.245 −0.055 0.348
0.1 0.190 0.090 0.862 0.221 0.121 1.543

†Narrow intervals: average width 6 time units.

‡p: Percentage of dependent censoring, 100× P (T1 > T2).
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Table C.2a: Estimation of S1(t), for a model with T1 ∼ Weibull(µ1, ρ1), T2 ∼ Weibull(µ2, ρ2) and α = 3.
Narrow intervals.

Narrow intervals†, α = 3

ICSCR1 ICSCR2
n p ‡ S1(t) Mean Bias MSE Mean Bias MSE

200 25% 0.9 0.913 0.013 0.000 0.782 −0.118 0.014
0.7 0.719 0.019 0.001 0.617 −0.083 0.007
0.5 0.502 0.002 0.000 0.496 −0.004 0.000
0.3 0.285 −0.015 0.000 0.393 0.093 0.009
0.1 0.091 −0.009 0.000 0.272 0.172 0.029

50% 0.9 0.907 0.007 0.000 0.857 −0.043 0.002
0.7 0.720 0.020 0.001 0.744 0.044 0.002
0.5 0.503 0.003 0.002 0.650 0.150 0.023
0.3 0.282 −0.018 0.002 0.559 0.259 0.067
0.1 0.089 −0.011 0.000 0.436 0.336 0.113

75% 0.9 0.912 0.012 0.000 0.908 0.008 0.000
0.7 0.708 0.008 0.004 0.824 0.124 0.016
0.5 0.466 −0.034 0.010 0.747 0.247 0.062
0.3 0.254 −0.046 0.011 0.667 0.367 0.136
0.1 0.188 0.088 0.017 0.549 0.449 0.203

500 25% 0.9 0.908 0.008 0.000 0.778 −0.122 0.015
0.7 0.714 0.014 0.000 0.614 −0.086 0.007
0.5 0.498 −0.002 0.000 0.496 −0.004 0.000
0.3 0.283 −0.017 0.000 0.391 0.091 0.008
0.1 0.090 −0.010 0.000 0.271 0.171 0.029

50% 0.9 0.904 0.004 0.000 0.856 −0.044 0.002
0.7 0.717 0.017 0.001 0.746 0.046 0.002
0.5 0.500 0.000 0.001 0.656 0.156 0.024
0.3 0.279 −0.021 0.001 0.564 0.264 0.070
0.1 0.086 −0.014 0.000 0.442 0.342 0.117

75% 0.9 0.910 0.010 0.000 0.910 0.010 0.000
0.7 0.708 0.008 0.002 0.833 0.133 0.018
0.5 0.461 −0.039 0.005 0.763 0.263 0.069
0.3 0.240 −0.060 0.007 0.684 0.384 0.148
0.1 0.163 0.063 0.007 0.568 0.468 0.220

†Narrow intervals: average width 6 time units.

‡p: Percentage of dependent censoring, 100× P (T1 > T2).
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Table C.2b: Estimation of S1(t), for a model with T1 ∼Weibull(µ1, ρ1), T2 ∼Weibull(µ2, ρ2) and α = 3.
Wide intervals.

Wide intervals†, α = 3

ICSCR1 ICSCR2
n p ‡ S1(t) Mean Bias MSE Mean Bias MSE

200 25% 0.9 0.898 −0.002 0.000 0.749 −0.151 0.023
0.7 0.690 −0.010 0.000 0.579 −0.121 0.015
0.5 0.473 −0.027 0.001 0.460 −0.040 0.002
0.3 0.265 −0.035 0.001 0.362 0.062 0.004
0.1 0.084 −0.016 0.000 0.249 0.149 0.022

50% 0.9 0.897 −0.003 0.000 0.836 −0.064 0.004
0.7 0.700 0.000 0.001 0.712 0.012 0.000
0.5 0.483 −0.017 0.002 0.614 0.114 0.013
0.3 0.271 −0.029 0.002 0.523 0.223 0.050
0.1 0.087 −0.013 0.000 0.405 0.305 0.093

75% 0.9 0.905 0.005 0.000 0.888 −0.012 0.000
0.7 0.692 −0.008 0.006 0.788 0.088 0.008
0.5 0.452 −0.048 0.014 0.701 0.201 0.041
0.3 0.247 −0.053 0.015 0.616 0.316 0.101
0.1 0.186 0.086 0.019 0.498 0.398 0.160

500 25% 0.9 0.893 −0.007 0.000 0.748 −0.152 0.023
0.7 0.685 −0.015 0.000 0.578 −0.122 0.015
0.5 0.469 −0.031 0.001 0.463 −0.037 0.001
0.3 0.263 −0.037 0.001 0.363 0.063 0.004
0.1 0.083 −0.017 0.000 0.250 0.150 0.022

50% 0.9 0.893 −0.007 0.000 0.838 −0.062 0.004
0.7 0.696 −0.004 0.000 0.720 0.020 0.000
0.5 0.480 −0.020 0.001 0.627 0.127 0.016
0.3 0.268 −0.032 0.002 0.535 0.235 0.055
0.1 0.084 −0.016 0.000 0.417 0.317 0.100

75% 0.9 0.903 0.003 0.000 0.898 −0.002 0.000
0.7 0.692 −0.008 0.002 0.810 0.110 0.012
0.5 0.446 −0.054 0.008 0.731 0.231 0.054
0.3 0.233 −0.067 0.008 0.648 0.348 0.122
0.1 0.161 0.061 0.007 0.530 0.430 0.187

†Narrow intervals: average width 6 time units.

‡p: Percentage of dependent censoring, 100× P (T1 > T2).
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Table C.2c: Estimation of S1(t), for a model with T1 ∼ Weibull(µ1, ρ1), T2 ∼ Weibull(µ2, ρ2) and α = 5.
Narrow intervals.

Narrow intervals†, α = 5

ICSCR1 ICSCR2
n p ‡ S1(t) Mean Bias MSE Mean Bias MSE

200 25% 0.9 0.909 0.009 0.000 0.804 −0.096 0.009
0.7 0.698 −0.002 0.000 0.654 −0.046 0.002
0.5 0.475 −0.025 0.001 0.546 0.046 0.002
0.3 0.278 −0.022 0.001 0.453 0.153 0.023
0.1 0.098 −0.002 0.000 0.338 0.238 0.057

50% 0.9 0.910 0.010 0.000 0.850 −0.050 0.002
0.7 0.702 0.002 0.001 0.728 0.028 0.001
0.5 0.482 −0.018 0.001 0.633 0.133 0.018
0.3 0.281 −0.019 0.001 0.546 0.246 0.061
0.1 0.106 0.006 0.000 0.434 0.334 0.112

75% 0.9 0.915 0.015 0.000 0.882 −0.018 0.000
0.7 0.691 −0.009 0.003 0.771 0.071 0.005
0.5 0.451 −0.049 0.006 0.682 0.182 0.033
0.3 0.263 −0.037 0.004 0.598 0.298 0.089
0.1 0.219 0.119 0.017 0.486 0.386 0.149

500 25% 0.9 0.905 0.005 0.000 0.801 −0.099 0.010
0.7 0.693 −0.007 0.000 0.651 −0.049 0.002
0.5 0.474 −0.026 0.001 0.546 0.046 0.002
0.3 0.278 −0.022 0.001 0.451 0.151 0.023
0.1 0.098 −0.002 0.000 0.338 0.238 0.057

50% 0.9 0.906 0.006 0.000 0.851 −0.049 0.002
0.7 0.697 −0.003 0.000 0.729 0.029 0.001
0.5 0.477 −0.023 0.001 0.637 0.137 0.019
0.3 0.278 −0.022 0.001 0.548 0.248 0.062
0.1 0.102 0.002 0.000 0.436 0.336 0.113

75% 0.9 0.914 0.014 0.000 0.887 −0.013 0.000
0.7 0.687 −0.013 0.001 0.780 0.080 0.007
0.5 0.446 −0.054 0.004 0.693 0.193 0.037
0.3 0.257 −0.043 0.003 0.607 0.307 0.094
0.1 0.218 0.118 0.015 0.494 0.394 0.156

†Narrow intervals: average width 6 time units.

‡p: Percentage of dependent censoring, 100× P (T1 > T2).
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Table C.2d: Estimation of S1(t), for a model with T1 ∼Weibull(µ1, ρ1), T2 ∼Weibull(µ2, ρ2) and α = 5.
Wide intervals.

Wide intervals†, α = 5

ICSCR1 ICSCR2
n p ‡ S1(t) Mean Bias MSE Mean Bias MSE

200 25% 0.9 0.889 −0.011 0.000 0.767 −0.133 0.018
0.7 0.664 −0.036 0.002 0.613 −0.087 0.008
0.5 0.447 −0.053 0.003 0.509 0.009 0.000
0.3 0.260 −0.040 0.002 0.421 0.121 0.015
0.1 0.092 −0.008 0.000 0.314 0.214 0.046

50% 0.9 0.895 −0.005 0.000 0.821 −0.079 0.006
0.7 0.678 −0.022 0.001 0.692 −0.008 0.000
0.5 0.462 −0.038 0.002 0.598 0.098 0.010
0.3 0.270 −0.030 0.001 0.515 0.215 0.046
0.1 0.104 0.004 0.000 0.410 0.310 0.096

75% 0.9 0.905 0.005 0.000 0.852 −0.048 0.002
0.7 0.671 −0.029 0.005 0.734 0.034 0.001
0.5 0.436 −0.064 0.008 0.645 0.145 0.021
0.3 0.254 −0.046 0.006 0.564 0.264 0.070
0.1 0.210 0.110 0.016 0.459 0.359 0.129

500 25% 0.9 0.884 −0.016 0.000 0.766 −0.134 0.018
0.7 0.660 −0.040 0.002 0.614 −0.086 0.007
0.5 0.446 −0.054 0.003 0.511 0.011 0.000
0.3 0.260 −0.040 0.002 0.421 0.121 0.015
0.1 0.092 −0.008 0.000 0.315 0.215 0.046

50% 0.9 0.891 −0.009 0.000 0.826 −0.074 0.005
0.7 0.673 −0.027 0.001 0.699 −0.001 0.000
0.5 0.457 −0.043 0.002 0.607 0.107 0.011
0.3 0.267 −0.033 0.001 0.521 0.221 0.049
0.1 0.100 0.000 0.000 0.415 0.315 0.099

75% 0.9 0.903 0.003 0.000 0.865 −0.035 0.001
0.7 0.666 −0.034 0.003 0.749 0.049 0.003
0.5 0.429 −0.071 0.007 0.661 0.161 0.026
0.3 0.246 −0.054 0.004 0.577 0.277 0.077
0.1 0.207 0.107 0.013 0.469 0.369 0.137

†Narrow intervals: average width 6 time units.

‡p: Percentage of dependent censoring, 100× P (T1 > T2).
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Figure C.1: Bias of S1(t) estimates: comparison of ICSC1, ICSCR2 and Midpoint (α = 5, Exponential
margins)
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Figure C.2: Bias of S1(t) estimates: comparison of ICSC1, ICSCR2 and Midpoint (α = 5, Weibull margins)
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APPENDIX D

R Programmes

D.1 Competing risks analysis with R

D.1.1 Nonparametric and regression modelling with R

In the following, we describe the necessary code to implement a competing risks analysis in R (R
Development Core Team, 2009). Two packages are needed: survival (Therneau and original R
port by Thomas Lumley, 2009) and cmprsk (Gray, 2004). The former is included by default with
the software, but cmprsk needs first to be downloaded from R’s web site. Both packages must be
loaded at the beginning of the session.

Assume we have a data frame containing at least two columns T1 and C1, being, respectively, the
vector with observed times for each individual, and the vector of failing causes. The length n of
these vectors correspond to the sample size we dispose of. We will assume that the n× p matrix Z
is the matrix of the p covariates for all n individuals to be included in the regression models. The
C1 vector equals 0 when individuals are censored at their observed time, or takes value j among
the distinct possible causes of failure. For this illustration, assume there are only two causes of
failure, and therefore, C1 takes values in {0, 1, 2}. Data may have this appearance:

T1 C1 cens gender age stage

70.6 2 1 0 47 1

12.8 1 1 1 44 1

42.6 2 1 0 74 0

91.0 0 0 0 64 0

44.3 2 1 0 74 1

71.7 0 0 0 60 0

Matrix Z of covariates would consist of columns gender, age and stage.

223
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D.1.1.1 Nonparametric estimation

Two simple functions can be implemented to obtain, at any given time t, the number of individuals
at risk of failing for any cause and the number of individuals failing from each cause:

risk<-function(t=0,vT){ fail<-function(t=0,vT,vC,c=1){

val<-sum((vT>=t),na.rm=T) val<-sum((vT==t)*(vC==c),na.rm=T)

return(val) return(val)

} }.

The risk function provides, at any time t, the number of individuals at risk, based on the
information given by the vector of times vT. The fail function provides the specific number of
failures at time t from cause c, based on the information given by the vector of times vT and the
vector of causes vC.

Now we apply functions risk and fail to each element of vector ts containing the ordered
and unique values of T1, in order to obtain vectors of the same length containing the number of
individuals at risk (ni), and the number of individuals failing from each cause (d1 and d2):

ts<-c(0,unique(sort(T1)))

ni<-sapply(ts,risk,vT=T1)

d1<-sapply(ts,fail,vT=T1,vC=C1,c=1)

d2<-sapply(time,fail,vT=T1,vC=C1,c=2)

Now, estimates for the cause-specific hazards at any observed time are easily obtained by:

lam1<-d1/ni

lam2<-d2/ni.

We obtain that, for instance, at time ts= 1.4, there are 993 individuals at risk (ni), one failure
due to cause 1 (d1), and one due to cause (d2), and so there are two failures for any cause (d).
The cause-specific hazard at this point for both causes of failure is 0.001 (lam1 and lam2):

ts ni d1 d2 d lam1 lam2

[1,] 0.0 995 0 0 0 0.000 0.000

[2,] 1.0 995 0 0 0 0.000 0.000

[3,] 1.2 994 0 1 1 0.000 0.001

[4,] 1.4 993 1 1 2 0.001 0.001

[5,] 1.5 991 1 0 1 0.001 0.000

[6,] 1.6 990 1 0 1 0.001 0.000

[7,] 1.8 989 2 0 2 0.002 0.000

[8,] 1.9 987 1 0 1 0.001 0.000

[9,] 2.0 986 1 1 2 0.001 0.001

[10,] 2.1 984 2 0 2 0.002 0.000

The Kaplan-Meier estimate of the survival function for T1, without taking into account distinct
causes of failure, is obtained by the survfit function. We need to define a censoring indicator for
any of the two events: cens=1 when cause=1 or 2, 0 otherwise.

cens<-as.integer(C1!=0)

sur<-survfit(Surv(T1,cens)˜1)

S<-c(1,sur$surv)
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The cumulative incidence functions can be obtained using the cuminc function from the cmprsk
package, where we must specify, at least, the vector of times T1, the vector of event types C1 and
the category of C1 which corresponds to right-censored obervations:

cif<-cuminc(T1,C1,cencode=0).

From this object cif we can extract the cumulative incidence function from each cause, cif1 and
cif2:

> cif

Estimates and Variances: $est

20 40 60 80 100

1 1 0.04940253 0.07370225 0.09016217 0.1003712 0.1003712 1 2

0.04135428 0.08691458 0.15380532 0.2037241 0.2317216

$var

20 40 60 80 100

1 1 4.739837e-05 6.900797e-05 8.323041e-05 9.293715e-05 9.293715e-05

1 2 4.002899e-05 8.030162e-05 1.328502e-04 1.743529e-04 3.160064e-04

Function plot.cuminc directly plots both cumulative incidence functions. Also different curves
for each stratum of a categorical covariate can be graphically assessed by using the option group
of the cuminc function:

plot(cuminc(T1,C1,group=gender,cencode=0)).

Plots of the cumulative incidence function in Chapter 2 were obtained from this function.

D.1.1.2 Regression modelling

To adjust Cox proportional hazards model for each cause-specific hazard, we use function coxph
of the package survival. We adjust two models, one for each type of event:

cox1<-coxph(Surv(T1,C1==1)˜gender+age+stage,data=data)

cox2<-coxph(Surv(T1,C1==2)˜gender+age+stage,data=data)

To fit Fine and Gray’s model, we use function crr of the package cmprsk:

Z<-cbind(data$gender,data$age,data$stage)

fine1<-crr(T1,C1,cov1=Z,failcode=1)

fine2<-crr(T1,C1,cov1=Z,failcode=2),

where we need to introduce specifically the matrix with the covariates Z, and adjust again one
model for each cumulative incidence function.

Fine and Gray’s model can be estimated using coxph as explained in Geskus (2010). First, data
must be preprocessed in order to obtain time-dependent weights. This could be achieved by function
crprep, available from the author at

source(’crprep.R’)

data.tr1<-crprep("T1", "C1", data=data, Tstart=0, Z=Z, riskcode=1,censcode = 0)

fine1rev<-coxph(Surv(Tstart,Tstop,status==1)˜gender+age+stage,data=data.tr1,

weight=weight.cens,subset=failcode==1)

data.tr2<-crprep("T1", "C1", data=data, Tstart=0, Z=Z, riskcode=2,censcode = 0)

fine1rev<-coxph(Surv(Tstart,Tstop,status==2)˜gender+age+stage,data=data.tr1,

weight=weight.cens,subset=failcode==2)
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D.1.1.3 Prediction

Now we want to predict the probability of failure due to cause 1 before time u=60 for a 65 years
old male with tumour in stage T1. To use the first approach based on the fitted Cox models, we
need to obtain the cumulative hazard functions from the two models. We first obtain the predicted
survival function for each model for this individual by means of the survest function:

cov<-c(0,65,1)

ha1=survfit(cox1,type=’br’,newdata=cov)

ha2=survfit(cox2,type=’br’,newdata=cov)

Note that the obtained estimation is not a proper survival function, because it is obtained from
the cause-specific hazards, that is, Sj(t) = exp{−

∫ t
0 λj(u)du}. Now we obtain the cause-specific

cumulative hazard functions Λj(t):

H10=c(0,-log(ha1$surv))

H20=c(0,-log(ha2$surv))

We obtain the estimates for these cumulative hazards in all observed time points:

time1=c(0,ha1$time)

time2=c(0,ha2$time)

time<-unique(sort(c(time1,time2)))

k1<-findInterval(time,time1)

k2<-findInterval(time,time2)

H1<-H10[k1]

H2<-H20[k2].

To obtain the cumulative incidence function for type 1 we need the cause-specific hazard for type
1, λ1, as well as overall survival function S(t) = P (T1 > t):

lambda1=c(0,diff(H1))

ST<-exp(-(H1+H2))

We use the following function to implement expression 2.8:

Cif<-function(t,time,S,lam){

fi=findInterval(t,time)

cif=sum(S[1:fi]*lam[1:fi])

return(cif)

}

Now we can obtain the predicted value for this individual at time 60:

Cif(60,time,ST,lambda1)

To obtain predictions from the Fine and Gray model is more direct using function predict.crr:

cif1.f<-predict(fine1,cov1=cov)

aux<-findInterval(60,cif1.f[,1])

cif1.f[aux,2]
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D.1.2 Technical details on the construction of a nomogram

We illustrate with an example how the transformation between the predicted probability and the
scoring system is obtained for a nomogram. Indeed, suppose the following Fine and Gray’s model
for the subhazard of the event of interest and only two binary covariates, x1 and x2:

γ1(t|x1, x2) = γ1,0(t) exp{β1x1 + β2x2},

or, equivalently, its cumulative subhazard:

Γ1(t|x1, x2) = Γ1,0(t) exp{β1x1 + β2x2}.

From expression (2.9), we have:

1− F1(t) = exp{−Γ1,0(t)}exp{β1x1+β2x2}.

If we apply logarithms twice, we obtain the linear relationship:

log(− log(1− F1(t)) = log(Γ1,0(t)) + β1x1 + β2x2.

Now, let βmax be the greatest among the estimated effects of the model: βmax = max{β1, β2}. The
points assigned at each variable axis are then

Points(xi) = 100× βi
βmax

xi i = 1, 2.

The most significant variable is assigned 100 points, and for the rest of variables, the points assigned
correspond to the relative importance of the variable as compared with the most significant variable.
The Total Points are defined by

TPoints = 100
[
β1

βmax
x1 +

β2

βmax
x2

]
.

If a = log(Γ1,0(t)), the relationship between predicted probabilities and score is given by:

F1(t) = 1− exp{− exp(a+ k ∗ TPoints)}.
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D.1.3 Function getCalibrateCIF

getCalibrateCIF<-function(cox.obj,fine.obj,g=6,Srv,dades,covar,which.cause=1,u, B=20,

pl=FALSE,conf.int = 0.95, unit=’Month’,xlab, ylab, main, cex.subtitle = 0.7,...){

pred<-getEstimates(cox.obj,fine.obj,u,covar)

pred.group.cox<-groupCIF(pred$getS1,Srv,g=g,which.cause=which.cause,u=u) #Pj.c

Pr.c<-pred.group.cox$est[,1]

O.c<-pred.group.cox$est[,4]

dif.c<-Pr.c-O.c

pred.group.fine<-groupCIF(pred$getF1,Srv,g=g,which.cause=which.cause,u=u) #Pj.f

Pr.f<-pred.group.fine$est[,1]

O.f<-pred.group.fine$est[,4]

dif.f<-Pr.f-O.f

CIF.c<-matrix(ncol=g,nrow=B)

CIF.f<-matrix(ncol=g,nrow=B)

D.c<-matrix(ncol=g,nrow=B)

D.f<-matrix(ncol=g,nrow=B)

D.O.c<-matrix(ncol=g,nrow=B)

D.O.f<-matrix(ncol=g,nrow=B)

Bias.c<-matrix(ncol=g,nrow=B)

Bias.f<-matrix(ncol=g,nrow=B)

for(b in 1:B){

set.seed(345/b)

sampB<-sample(1:nrow(Srv),nrow(Srv),replace=T)

coxb<-cph(cox.obj$terms,data=dades[sampB,],surv=T,x=T,y=T)

fineb<-crr(Srv[sampB,1],Srv[sampB,2],cov1=covar[sampB,],failcode=which.cause)

# partition on bootstrap sample

prB<-getEstimates(coxb,fineb,u,covar[sampB,])

estB.c<-groupCIF(prB$getS1,Srv[sampB,],g,which.cause=which.cause,u=u)

estB.f<-groupCIF(prB$getF1,Srv[sampB,],g,which.cause=which.cause,u=u)

CIF.c[b,]<-estB.c$est[,4]

D.c[b,]<-estB.c$est[,1]-CIF.c[b,]

CIF.f[b,]<-estB.f$est[,4]

D.f[b,]<-estB.f$est[,1]-CIF.f[b,]

# partition over the original sample

prB.O<-getEstimates(coxb,fineb,u,covar)

estB.O.c<-groupCIF(prB.O$getS1,Srv,g,which.cause=which.cause,u=u)

estB.O.f<-groupCIF(prB.O$getF1,Srv,g,which.cause=which.cause,u=u)

D.O.c[b,]<-estB.O.c$est[,1]-estB.O.c$est[,4]

D.O.f[b,]<-estB.O.f$est[,1]-estB.O.f$est[,4]

Bias.c[b,]<-D.c[b,]-D.O.c[b,]

Bias.f[b,]<-D.f[b,]-D.O.f[b,]

}

mBias.c<-colMeans(Bias.c)

mBias.f<-colMeans(Bias.f)

if (pl) {

if (missing(xlab))

xlab <- paste("Predicted ", format(u), "-", unit, " probability", sep = "")

if (missing(ylab))
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ylab <- paste("Observed ", format(u), "-", unit, " probability", sep = "")

if (missing(main))

main <- paste("Cumulative incidence function for cause ",

which.cause, sep = "")

if (conf.int) {

alp<-(1-conf.int)/2

low.c<-apply(CIF.c,2,quantile,probs=c(alp))

hi.c<-apply(CIF.c,2,quantile,probs=c(1-alp))

low.f<-apply(CIF.f,2,quantile,probs=c(alp))

hi.f<-apply(CIF.f,2,quantile,probs=c(1-alp))

xmin<-min(Pr.c,Pr.f,low.c,low.f)

xmax<-max(Pr.c,Pr.f,hi.c,hi.f)

errbar.CIF(Pr.c, O.c, hi.c, low.c,type=’b’,pch=19,xlab = xlab, ylab = ylab,

ylim=c(xmin,xmax),xlim=c(xmin,xmax),...)

title(main=main)

points(Pr.c,O.c+mBias.c, pch=4,lwd=2)

errbar.CIF(Pr.f, O.f, hi.f, low.f, add = TRUE,col=2,pch=15,type=’b’)

points(Pr.f,O.f+mBias.f, pch=4,col=2,lwd=2)

} else {

xmin<-min(Pr.c,O.c,O.c+mBias.c,Pr.f,O.f,O.f+mBias.f)

xmax<-max(Pr.c,O.c,O.c+mBias.c,Pr.f,O.f,O.f+mBias.f)

plot(Pr.c, O.c, xlab = xlab, ylab = ylab, main=main, type = "b",

ylim=c(xmin,xmax),xlim=c(xmin,xmax), pch=19,...)

points(Pr.c,O.c+mBias.c, pch=4,lwd=2)

lines(Pr.f,O.f,type=’b’,pch=15,col=2)

points(Pr.f,O.f+mBias.f, pch=4,col=2,lwd=2)

}

if (!is.logical(cex.subtitle)) {

nn<-nrow(Srv)

events<-sum(Srv[,2]==which.cause)

mm <- round(nn/g)

title(sub = paste("n=", nn, " d=", events,

", avg. ", mm, " patients per group", sep = ""),

adj = 0, cex = cex.subtitle)

}

abline(0,1,lty=2)

legend(’bottomright’,legend=c(’Cox ignoring CR’,’Fine & Gray model’),lty=1,

col=c(1,2),pch=c(19,15),inset=0.025,cex=0.95)

}

}

D.1.3.1 Function getEstimates

getEstimates<-function(cox.obj,fine.obj,u,newdata,...){

getS1<-1-survest(cox.obj,newdata=newdata,times=u,what=’survival’,se.fit=FALSE)$surv

ind<-findInterval(u,fine.obj$uftime)

getF1<-predict(fine.obj,cov1=as.matrix(newdata))[ind,-1]



230 APPENDIX D. R PROGRAMMES

return(data.frame(cbind(getS1,getF1)))

}

D.1.3.2 Function groupCIF

groupCIF<-function(x,Srv,g=6,which.cause=1,u){

if (missing(u))

stop("u (time point) must be given")

s <- !(is.na(x) | is.na(Srv[, 1]) | is.na(Srv[, 2]))

x <- x[s]

Srv <- Srv[s, ]

x[abs(x) < 1e-10] <- 0

e <- Srv[, 2]

if (nrow(Srv) != length(x) )

stop("lengths of x and Srv must match")

q0 <- cut2(x, g = g,onlycuts=TRUE)

q<-findInterval(x,q0,all.inside=TRUE)

cif <- single(g)

pred <- single(g)

std.err <- cif

events <- integer(g)

numobs <- events

for (i in 1:g) {

s <- q == i

nobs <- sum(s)

ne <- sum(e[s]==which.cause)

if (nobs < 2) {

numobs[i] <- 0

events[i] <- 0

pred[i] <- if (nobs == 1)

mean(x[s], na.rm = TRUE)

else NA

cif[i] <- NA

std.err[i] <- NA

}

else {

pred[i] <- mean(x[s], na.rm = TRUE)

ob1<-cuminc(Srv[s,1],Srv[s,2])

tim<-ob1[[which.cause]]$time

ind<-findInterval(u,tim)

cif[i]<-ob1[[which.cause]]$est[ind]

std.err[i] <- sqrt(ob1[[which.cause]]$var[ind]/nobs)

numobs[i] <- nobs

events[i] <- ne

}

}

z <- cbind(pred, n = numobs, events = events, CIF = cif, std.err = std.err)

return(list(est=z,cuts=q0))

}
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D.2 Multi-state models with R

D.2.1 Functions Pi1cr.0 and Pi1cr.1

Pi1cr.1=function(t1,s1,time1,H2,HRP){

if(time1[1]==0 & HRP[1]!=0) lambdaRP=c(HRP[1],diff(HRP)) else lambdaRP=c(0,diff(HRP))

iniT=findInterval(t1,time1)

finT=findInterval(s1,time1)

PrT=0

iT<-iniT+1

while (iT<=finT){

PrT=PrT+exp(-(H2[iT]-H2[iniT]))*lambdaRP[iT]

iT<-iT+1

}

return(PrT)

}

Pi1cr.0=function(t1,s1,time1,H1,HP,HR,H2,HRP){

if(time1[1]==0 & HP[1]!=0) lambdaP=c(HP[1],diff(HP)) else lambdaP=c(0,diff(HP))

if(time1[1]==0 & HR[1]!=0) lambdaR=c(HR[1],diff(HR)) else lambdaR=c(0,diff(HR))

iniT=findInterval(t1,time1)

finT=findInterval(s1,time1)

PrT=0

iT<-iniT+1

while (iT<=finT){

PrT=PrT+exp(-(H1[iT]-H1[iniT]))*(lambdaP[iT]+lambdaR[iT]*
Pi1cr.2(time1[iT],s1,time1,H2,HRP))

iT<-iT+1

}

return(PrT)

}
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D.3 Semi-competing risks analysis with R

D.3.1 Function corSCR

corSCR<-function(A,a,b,v=T,mQ=F...){

n<-length(A[[1]])

R<-matrix(0,nrow=n,ncol=n)

S<-matrix(0,nrow=n,ncol=n)

D<-matrix(0,nrow=n,ncol=n)

d<-matrix(0,nrow=n,ncol=n)

d0<-matrix(0,nrow=n,ncol=n)

W<-matrix(0,nrow=n,ncol=n)

for(j in 2:n){

for(i in 1:(j-1)){

S[i,j]<-min(min(A$X[i],A$X[j]),min(A$Y[i],A$Y[j]))

R[i,j]<-min(A$Y[i],A$Y[j])

d[i,j]<-conc(i,j,A)

D[i,j]<-comp(i,j,A)

W[i,j]<-Wab(S[i,j],R[i,j],a,b,A)

}

}

con<-sum(W*D*d)/sum(W*D*(1-d))

#variance

if(v==TRUE){

I0<-0

for(j in 2:n){

for(i in 1:(j-1)){

I0<-I0+(W[i,j]*D[i,j]*(1+con)ˆ(-2))

}

}

I<-I0*nˆ(-2)

Q<-matrix(0,nrow=n,ncol=n)

for(j in 2:n){

for(i in 1:(j-1)){

Q[i,j]<-W[i,j]*D[i,j]*(d[i,j]-(con/(1+con)))

}

}

J0<-0

for(m in 3:n){

for(k in 1:(m-2)){

for(l in (k+1):(m-1)){

J0<-J0+(Q[k,l]*Q[k,m]+Q[k,l]*Q[l,m]+Q[l,m]*Q[k,m])

}

}

}

J<-(2/(nˆ3))*J0

sig<-(1/n)*(1/Iˆ2)*J

} else (sig<-NA)

ifelse(mQ==F,return(list(con.index=con, se=sqrt(sig), a=a,b=b, I=I)),

return(list(con.index=con, se=sqrt(sig), a=a,b=b, I=I,Q=Q)))

}
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D.3.2 Function margSCR

marg.SCR<-function(A,u,m=1,alp=0.05,ic=F){

con.ind<-u$con.index

n<-length(A$X)

Kz<-survfit(Surv(A$X,A$dz)˜1,type=’kaplan-meier’)

K2<-survfit(Surv(A$Y,A$d2)˜1,type=’kaplan-meier’)

time<-unique(sort(c(0,Kz$time,K2$time)))

nt<-length(time)

Sz<-numeric(length(time))

S2<-numeric(length(time))

indz<-findInterval(time,Kz$time)

ind2<-findInterval(time,K2$time)

for(i in 1:length(time)){

if (indz[i]==0) Sz[i]<-1

else Sz[i]<-Kz$surv[indz[i]]

if (ind2[i]==0) S2[i]<-1

else S2[i]<-K2$surv[ind2[i]]

}

S1<-g(Sz,S2,con.ind) #lines(time,S1tz,type=’s’,col=5)

#S1tz<-((Szˆ(1-con.ind)) - (S2ˆ(1-con.ind)) + 1)ˆ(1/(1-con.ind))

aux<-ifelse(sum(is.na(S1))>0,min(which(is.na(S1)==T)),9999999)

s1<-c(0,diff(S1))

t1<-min(max(which(((Szˆ(1-con.ind) - S2ˆ(1-con.ind)) >-1 ) & (0<=S1) & (S1<=1))),

aux-1)

S1.e<-numeric(length=t1)

S1.e[1]<-S1[1]

for(i in 2:t1){

S1.e[i]<-min(S1[1:i])

}

#Variance

if(ic==T){

o<-sapply(time,sigmt,time,A,Sz,S2,u)

Sig<-as.numeric(o[1,])

Sig.est<-as.numeric(o[2,])

if(m==1){

LF<-numeric(t1)

UF<-numeric(t1)

for(i in 1:t1){

if(S1[i]==1) {

LF[i]<-1

UF[i]<-1

}else{

LF[i]<- im1(m1(S1.e[i])-(nˆ(-0.5))*dm1(S1.e[i])*
(Sig.est[i]ˆ(0.5))*qnorm(1-2*alp))

UF[i]<- im1(m1(S1.e[i])+(nˆ(-0.5))*dm1(S1.e[i])*
(Sig.est[i]ˆ(0.5))*qnorm(1-2*alp))

}

}

}
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}

tim<-time[1:t1]

S1t<-S1[1:t1]

if(ic==T) return(list(time=tim,S1.e=S1.e,Sig=Sig,Sig.est=Sig.est, LS1=LF,US1=UF))

else

return(list(time=tim, S1.e=S1.e))

}

D.3.3 Internal functions

The following functions are employed by the previous procedures and will be soon available at
http://www-eio06.upc.es/research/grass/. The notation used follows the notation em-
ployed in the paper from (Fine et al., 2001).

• Function Wab: It computes the bivariate weighted random function Wab(x,y) specified in
the estimating equation.

• Function comp: It computes the indicator of comparability ORij for a pair (i, j) of observed
right-censored semi-competing risks data subjects.

• Function conc: It computes the concordance indicator ∆ij for a pair (i, j) of observed
right-censored semi-competing risks data subjects.

• Function pi.f: Function appearing in the martingale representation of the estimates of
ST (t) = P (T < t) and S2(t) = P (T2 > t).

• Function M.f: Martingales involved in the martingale representation of the estimates of of
ST (t) = P (T < t) and S2(t) = P (T2 > t).

• Functions g, g1, g2, g3: Functional of the plug-in estimator, and partial derivatives
with respect to a,b and c.

• Function V: Units of the summary forming the U-statistic Jx(t) (used to determine the
asymptotic variance of Ŝ1(t).

• Function sigmt: Consistent estimator of the covariance function of
√

(n)(Ŝ1(t) − S1(t)),
evaluated at s=t.

• Functions m1,dm1,im1: Functions used to compute confidence intervals for hatS1.
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D.4 Interval-censored semi-competing risks analysis with R

D.4.1 Function algICSCR

1 algICSCR<-function(dSCRi,e.alp.m, sh1.0,sc1.0,p0=T,p1=T,survC,datLR,strat,breaks,

time=time)

{

n<-length(dSCRi[[1]])

5 I<-t(combn(c(1:n),2))

C.0<-mapply(compIC,I[,1],I[,2],MoreArgs=list(A=dSCRi))

C.01<-mapply(compIC.1,I[,1],I[,2],MoreArgs=list(A=dSCRi))

fila<-C.01%%6

fila[fila==0]<-6

10 colum<-(C.01-1)%/%6+1

mat<-table(fila,colum)

nc1<-sum(C.01==3)

nc3<-sum(C.01==15)

15 max.iter<-20

tol<-0.001

#STRATEGY 1 ##############################################################

if(p0){

20 iter<-1

sh1<-sh1.0

sc1<-sc1.0

valp.0<-numeric(length=max.iter+1)

vS1.0<-vector(’list’,length=max.iter+1)

25 alp0<-999

alp<-e.alp.m

while((iter<=max.iter)&(abs(alp-alp0)>tol)){

p.nd<-mapply(nD,I[,1],I[,2],MoreArgs=list(A=dSCRi,alp=alp,

sh1=sh1,sc1=sc1))

30 e.nd1<-sum(p.nd[C.01==4])

e.nd3<-sum(p.nd[C.01==16])

pes0.ij<-(nc1+nc3)/(nc1+nc3+e.nd1+e.nd3)

Dij.0<-C.0/ifelse(C.01==3 | C.01==15, pes0.ij,1)

alp0<-alp

35 Zij<-f.Zij(alp0,dSCRi,sh1=sh1,sc1=sc1,I,Dij.0)

alp<-sum(W*Dij.0*Zij)/sum(W*Dij.0*(1-Zij))

eS1<-iS1(time,alp,sh1=sh1,sc1=sc1)

valp.0[iter]<-alp

vS1.0[[iter]]<-eS1

40 y0<-log(-log(eS1))

y<-y0[!is.infinite(y0)]

t<-time[!is.infinite(y0)]

fit1<-lsfit(log(t),y)

sh1<-fit1$coefficients[2]

45 sc1<-exp(fit1$coefficients[1])

iter<-iter+1

}

e.alp.0=valp.0[[max(which(valp.0!=0))]]
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S1.p0=vS1.0[[max(which(valp.0!=0))]]

50
p.nd<-mapply(nD,I[,1],I[,2],MoreArgs=list(A=dSCRi,alp=alp,sh1=sh1,sc1=sc1))

e.nd1<-sum(p.nd[C.01==4])

e.nd3<-sum(p.nd[C.01==16])

pes0.ij<-(nc1+nc3)/(nc1+nc3+e.nd1+e.nd3)

55 Dij.0<-C.0/ifelse(C.01==3 | C.01==15, pes0.ij,1)

Zij<-f.Zij(alp0,dSCRi,sh1=sh1,sc1=sc1,I,Dij.0)

jalp<-numeric(length=n)

jS1<-matrix(nrow=length(time),ncol=n)

60 rownames(jS1)<-round(time,1)

for(i in 1:n){

indJ<-which(I[,1]!=i & I[,2]!=i)

jalp[i]<-sum(Dij.0[indJ]*Zij[indJ])/sum(Dij.0[indJ]*(1-Zij[indJ]))

jS1[,i]<-iS1(time,jalp[i],sh1=sh1,sc1=sc1)

65 }

e.jalp<-mean(jalp,na.rm=T)

var.p0<-(n-1)*mean((jalp-e.jalp)ˆ2)

e.jS1<-apply(jS1,1,mean)

var.S1.p0<-(n-1)*apply((jS1-e.jS1)ˆ2,1,mean)

70
}else{

e.alp.0=NA

var.p0=NA

S1.p0=rep(NA,length(time))

75 var.S1.p0=rep(NA,length(time))

}

#STRATEGY 2 ##############################################################

if(p1){

80 iter<-1

sh1<-sh1.0

sc1<-sc1.0

valp.01<-numeric(length=max.iter+1)

vS1.01<-vector(’list’,length=max.iter+1)

85 alp0<-999

alp<-e.alp.m

pes01.ij<-rep(1,length(C.0))

while((iter<=max.iter)&(abs(alp-alp0)>tol)&(alp>1)){

pes01.ij[C.0==1]<-mapply(pesC,i=I[C.0==1,1],j=I[C.0==1,2],

90 MoreArgs=list(A=dSCRi,alp=alp,sh1=sh1,sc1=sc1,survC=survC,

datLR=datLR,strat=strat,breaks=breaks))

Dij.01<-C.0/pes01.ij

alp0<-alp

Zij<-f.Zij(alp0,dSCRi,sh1=sh1,sc1=sc1,I,Dij.01)

95 alp<-sum(W*Dij.01*Zij)/sum(W*Dij.01*(1-Zij))

eS1<-iS1(time,alp,sh1=sh1,sc1=sc1)

valp.01[iter]<-alp

vS1.01[[iter]]<-eS1

100 y0<-log(-log(eS1))
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y<-y0[!is.infinite(y0)]

t<-time[!is.infinite(y0)]

fit1<-lsfit(log(t),y)

sh1<-fit1$coefficients[2]

105 sc1<-exp(fit1$coefficients[1])

iter<-iter+1

}

e.alp.01=valp.01[max(which(valp.01!=0))]

S1.p01=vS1.01[[max(which(valp.01!=0))]]

110
pes01.ij[C.0==1]<-mapply(pesC,I[C.0==1,1],I[C.0==1,2],MoreArgs=

list(A=dSCRi,alp=e.alp.01,sh1=sh1,sc1=sc1,survC,datLR,strat,breaks=breaks))

Dij.01<-C.0/pes01.ij

Zij<-f.Zij(e.alp.01,dSCRi,sh1=sh1,sc1=sc1,I,Dij.01)

115
jalp<-numeric(length=n)

jS1<-matrix(nrow=length(time),ncol=n)

rownames(jS1)<-round(time,1)

120 for(i in 1:n){

indJ<-which(I[,1]!=i & I[,2]!=i)

jalp[i]<-sum(Dij.01[indJ]*Zij[indJ])/sum(Dij.01[indJ]*(1-Zij[indJ]))

jS1[,i]<-iS1(time,jalp[i],sh1=sh1,sc1=sc1)

}

125 e.jalp<-mean(jalp,na.rm=T)

var.p01<-(n-1)*mean((jalp-e.jalp)ˆ2)

e.jS1<-apply(jS1,1,mean)

var.S1.p01<-(n-1)*apply((jS1-e.jS1)ˆ2,1,mean)

130 }else{

e.alp.01=NA

var.p01=NA

S1.p01=rep(NA,length(time))

var.S1.p01<-rep(NA,length(time))

135 }

return(list(mat=mat,e.alp.0=e.alp.0,var.p0=var.p0,e.alp.01=e.alp.01,var.p01=

var.p01,S1.p0=S1.p0,var.S1.p0=var.S1.p0,S1.p01=S1.p01,var.S1.p01=var.S1.p01))

}

D.4.2 Functions compIC and compIC.1

compIC<-function(i,j,A)

{

min.R=min(A$R[i],A$R[j])

min.Y=min(A$Y[i],A$Y[j])

tmp<-0

A1<-(A$d1[i]+A$d1[j]>0)& (A$d2[i]+A$d2[j]>0)

A2<-if(A$d1[i]+A$d1[j]==1) min.R<=min.Y else T

A3<-if(A$d2[i]+A$d2[j]==1)

A$d2[i]*A$Y[i]+A$d2[j]*A$Y[j]<(1-A$d2[i])*A$Y[i]+(1-A$d2[j])*A$Y[j] else T

return(A1*A2*A3)

}
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compIC.1<-function(i,j,A)

{

rw<-0

min.R=min(A$R[i],A$R[j])

min.Y=min(A$Y[i],A$Y[j])

if(A$d1[i]+A$d1[j]==2) rw=1

if(A$d1[i]+A$d1[j]==1){

if(A$d1[i]*A$Y[i]+A$d1[j]*A$Y[j]<(1-A$d1[i])*A$Y[i]+(1-A$d1[j])*A$Y[j]) rw=2

else{

if(min.R<=min.Y) rw=3

else{

if((A$d1[i]*A$L[i]+A$d1[j]*A$L[j]<=(1-A$d1[i])*A$L[i]+(1-A$d1[j])*A$L[j])) rw=4

if((A$d1[i]*A$L[i]+A$d1[j]*A$L[j]>(1-A$d1[i])*A$L[i]+(1-A$d1[j])*A$L[j] ) ) rw=5

}

}

}

if(A$d1[i]+A$d1[j]==0) rw=6

if(A$d2[i]+A$d2[j]==2) cl=1

if(A$d2[i]+A$d2[j]==1) {

if(A$d1[i]+A$d1[j]==2 | A$d1[i]+A$d1[j]==0){

if(A$d2[i]*A$Y[i]+A$d2[j]*A$Y[j]<=(1-A$d2[i])*A$Y[i]+(1-A$d2[j])*A$Y[j]) cl=2

if(A$d2[i]*A$Y[i]+A$d2[j]*A$Y[j]>(1-A$d2[i])*A$Y[i]+(1-A$d2[j])*A$Y[j]) cl=3

}

if(A$d1[i]+A$d1[j]==1){

if(A$d1[i]*A$d2[i]+A$d1[j]*A$d2[j]==1) cl=2

if(A$d1[i]*(1-A$d2[i])+A$d1[j]*(1-A$d2[j])==1) cl=3

}

}

if(A$d2[i]+A$d2[j]==0) cl=4

return(cod=(cl-1)*6+rw)

}

D.4.3 Function nD

nD<-function(i,j,A,alp,sh1,sc1)

{

IND<-c(i,j)

if(A$d1[i]+A$d1[j]==1)

{

obs<-IND[which(c(A$d1[i],A$d1[j])==1)]

cen<-IND[which(c(A$d1[i],A$d1[j])==0)]

obs.R<-A$R[obs]

obs.L<-A$L[obs]

cen.L<-A$L[cen]

obs.Y<-A$Y[obs]

cen.Y<-A$Y[cen]

if(A$d1[i]+A$d1[j]==1 & obs.Y>cen.Y & obs.R>cen.L & obs.L<cen.L)

{

if(A$d2[i]+A$d2[j]==2)

Int<-integrate(f,obs.L,cen.Y,t=obs.Y,alp=alp,sh1=sh1,sc1=sc1)$value/
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integrate(f,obs.L,obs.R,t=obs.Y,alp=alp,sh1=sh1,sc1=sc1)$value

else if(A$d2[i]+A$d2[j]==1 & A$d2[obs]==0)

Int<-integrate(Q0,obs.L,cen.Y,t=obs.Y,alp=alp,sh1=sh1,sc1=sc1)$value/

integrate(Q0,obs.L,obs.R,t=obs.Y,alp=alp,sh1=sh1,sc1=sc1)$value

else {Int<-1}

}

else {Int<-1}

} else{Int<-1}

return(Int)

}

D.4.4 Function pesC

pesC<-function(i,j,A,alp,sh1,sc1,survC,datLR,strat,breaks)

{

Rmin=min(A$R[i],A$R[j])

Lmin=min(A$L[i],A$L[j])

Ymin<-min(A$Y[i],A$Y[j])

Y.obs<-A$d1[i]*A$Y[i]+A$d1[j]*A$Y[j]

Y.cens<-(1-A$d1[i])*A$Y[i]+(1-A$d1[j])*A$Y[j]

if(A$d2[i]+A$d2[j]>0 &Rmin<=Ymin){

if(A$d1[i]+A$d1[j]==2) Int<-(sC(Ymin,survC)ˆ2)

if(A$d1[i]+A$d1[j]==1){

if(Y.obs<Y.cens) Int<-(sC(Ymin,survC)ˆ2) else {

ind<-findInterval(Y.obs,breaks,rightmost.closed=T)+1

datLR.st<-datLR[strat==ind,]

datLR.st1<-datLR[strat>=ind,]

num<-integrate(fun4.a,Lmin,Rmin,y=Ymin,alp=alp,sh1=sh1,sc1=sc1,

datLR.st=datLR.st,datLR.st1=datLR.st1)$value

den<-integrate(fun4.b,Lmin,Rmin,y=Ymin,alp=alp,sh1=sh1,sc1=sc1,

datLR.st=datLR.st,datLR.st1=datLR.st1)$value

Int<-(num*(sC(Ymin,survC)ˆ2))/den

}

}

if(A$d1[i]+A$d1[j]==0) Int<-1

} else Int<-1

return(Int)

}

D.4.5 Function f.Zij

f.Zij<-function(alp,A,sh1,sc1,J,D)

{

n<-length(A$L)

Zij.0<-rep(0,nrow(J))

Pi<-rep(0,nrow(J))

Pj<-rep(0,nrow(J))

Zij<-rep(0,nrow(J))

Zij.0[D!=0]<-mapply(pij,J[D!=0,1],J[D!=0,2],MoreArgs=list(A=A,alp=alp,sh1=sh1,sc1=sc1))

Pi[D!=0]<-pHi(J[D!=0,1],A,alp=alp,sh1=sh1,sc1=sc1)
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Pj[D!=0]<-pHi(J[D!=0,2],A,alp=alp,sh1=sh1,sc1=sc1)

ind2<-which((Pi!=0)&(Pj!=0))

Zij[ind2]<-Zij.0[ind2]/(Pi[ind2]*Pj[ind2])

return(Zij)

}

D.4.6 Function iS1

iS1<-function(time,alp=0.01,sh1,sc1)

{

eS1.0<-((Sz(time)ˆ(1-alp)) - (S2(time)ˆ(1-alp)) + 1)ˆ(1/(1-alp))

eS1<-eS1.0

eS1[eS1.0>1]<-1

aux<-min(which(is.na(eS1)==T & is.na(Sz(time))==F),9999)

s1<-c(0,diff(eS1))

t1<-min(max(which(((Sz(time)ˆ(1-alp) - S2(time)ˆ(1-alp)) >-1 ) & (0<=eS1) & (eS1<=1))),aux-1)

S1.e<-numeric(length=t1)

S1.e[1]<-eS1[1]

for(i in 2:t1){

if(is.nan(eS1[i])) S1.e[i]<-NaN

else {S1.e[i]<-min(eS1[1:i],na.rm=TRUE)}

}

d<-length(time)-t1

return(c(S1.e,rep(S1.e[t1],d)))

}

D.4.7 Internal functions

The following functions are employed by the previous procedures and will be soon available and
documented at http://www-eio06.upc.es/research/grass/.

• Functions S1, f1, S, H, G, f, Q0: Functions describing the parametric form of

– S1: Survival function of T1 (local parametric Weibull fit).

– f1: Density function of T1 (local parametric Weibull fit).

– S: Joint survival function of (T1, T2) (Clayton’s copula).

– H: Minus partial derivative of S with respect to the second component (T2) (Clayton).

– G: Minus partial derivative of S with respect to the first component (T1) (Clayton).

– f: Joint density function of (T1, T2) (Clayton model).

• Functions Q0, I1, I2: Functions returning arithmetic operations with the previous func-
tions:

– Q0: It returns -G.

– I1: It returns H*f.

– I2: It returns S*f.
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• Functions pHi, pHij: Functions returning, under Clayton’s copula model,

– pHi: the probability of the observed data for individual i, P (T1 ∈ (a, b], T2 = yi) or
P (T1 ∈ (a, b], T2 > yi),

– pHij: the probability of the observed pair (i,j), PHij=PHi*PHj.

• Function pij: It computes the probability of being concordant and of observing the data
Hij for the pair (i, j), P (∆ij = 1,Hij).

• Functions pij.1, pij.2: Functions returning the probability of being concordant given
that δ2i = 1 and δ2j = 1 (P1(i, j), page 103) and the probability of being concordant given
that δ2i = 1 and δ2j = 0 (P2(i, j), page 103).

D.4.8 Functions rclay.exp and fsimulICSCR3

These functions are used to generate censored bivariate data following Clayton’s copula model for
the survival function with exponential margins.

rclay.exp<-function(N,alp,lam1,lam2){
v1<-runif(N)
v2<-runif(N)
u1<-v1
u2<-((v1ˆ(1-alp))*((v2ˆ((1-alp)/alp))-1)+1)ˆ(1/(1-alp))
x<-(-1/lam1)*log(u1)
y<-(-1/lam2)*log(u2)
return(samp=cbind(x,y))

}

simulICSCR.3<-function(n,alp,rate1=1,rate2=1,cmax=5,nvisit=20,pvisit=0.70,
sed=NA,C=T,pf=0){

if(alp<=1) return(’ERROR: the association parameter must be > 1’)
else {
library(Epi)

#generation of bivariate data
if(!is.na(sed)) set.seed(sed)
samp <- rclay.exp(N=n,alp=alp,lam1=rate1,lam2=rate2)
T1<-samp[,1]
T2<-samp[,2]

#generation of censoring variable
if(C==T) cens<-rep(cmax,n)
else {

if(!is.na(sed)) set.seed(round(sed/alp)+sed)
cens<-runif(n,(pf)*cmax,cmax)

}

#generation of intervals of observation
amp<-cmax/(nvisit)
V<-matrix(nrow=n,ncol=nvisit+1)
V[,1]<-rep(1,n) #all subjects are observed at baseline
if(!is.na(sed)) set.seed(round(sed/alp)+sed)
for(i in 2:(nvisit+1)){

V[,i]<-rbinom(n,1,pvisit)
}

#generation of semi-competing risks data
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X<-pmin(T1,T2,cens)
d1.s<-1*(T1<=pmin(T2,cens))
Y<-pmin(T2,cens)
d2.s<-1*(T2<=cens)
Tz<-pmin(pmin(T1,T2),cens)
dz<-1*(pmin(T1,T2)<cens)
A<-as.data.frame(cbind(T1,T2,cens,X,d1.s,Y,d2.s,Tz,dz))

#generation of interval-censored data

I<-seq(0,cmax,by=amp)
L<-numeric(length=n)
R<-numeric(length=n)
d1<-d1.s
d2<-d2.s
for(i in 1:n){

if(d1.s[i]==1){
max1<-which(I<=T1[i])
max2<-max(max1[V[i,max1]==1])
L[i]<-max(I[max2],0.01)
min1<-which((I>T1[i])&(V[i,]==1))
if(length(min1)>0) min2<- min(min1)
else min2<-0
R[i]<-min(I[min2],Y[i])

}
if(d1.s[i]==0){

L[i]<-Y[i]
R[i]<-Inf

}
}
B<-cbind(A,L,R,d1,d2)

#summary statistics
dist<-B$R-B$L
tab1<-stat.table(list(’Intermediate’=d1),contents=list(count(),percent(d1)),data=B)
tab2<-stat.table(list(’Final’=d2),contents=list(count(),percent(d2)),data=B)
tab3<-stat.table(list(’Intermediate’=d1,’Final’=d2),contents=list(count(),

percent(d1,d2)),data=B)
tab4<-summary(dist[!is.infinite(dist)])

a=c(n,rate1,rate2,alp,pvisit,tab1[2,2],ifelse(dim(tab2)[2]==2,tab2[2,2],tab2[2,1]),
ifelse(dim(tab2)[2]==2,tab2[2,1],0),ifelse(dim(tab3)[3]==2,tab3[2,1,1],0),
ifelse(dim(tab3)[3]==2,tab3[2,1,2],tab3[2,1,1]),
ifelse(dim(tab3)[3]==2,tab3[2,2,1],0),ifelse(dim(tab3)[3]==2,tab3[2,2,2],

tab3[2,2,1]), tab4[c(1,3,4,6)])
names(a)<-c(’n’,’rate1’,’rate2’,’alfa’,’pvisit’,’%d1’,’%d2’,’%Ind. cens’,’%00’,

’%Dep.cens’,’%10’,’%11’,’Min’,’Median’,’Mean’,’Max’)
return(list(a=a,b=V, D=B))
detach("package:Epi")

}


