
Chapter 4

Nonlinear modelling of

shoreface{connected sand ridges.

As an extension of the model discussed in the chapter 2 of this thesis, a nonlinear stability analysis is
applied to investigate the long-term behaviour of �nite-amplitude shoreface-connected sand ridges.
These bedforms are trapped on the inner shelf, have alongshore spacings of 5�8 km and the crests
form an oblique angle with the coast. The basic model consists of the 2DH shallow water equations,
a local sediment transport parametrization and a bottom evolution equation. This model allows for
a basic state which describes a steady alongshore uniform 
ow over the inner shelf. The instability
of this 
ow with respect to bottom perturbations, as triggered by the transverse shelf slope, causes
the formation of ridges of which the initial behaviour is described by linearized equations.

The studies of chapter 2 and Trowbridge (1995) are both linear stability analyses. They yield
information about the growth rate, migration speed and spatial patterns of the bottom modes. In
chapter 2 we even predict a most preferred mode, which has the largest growth rate, by incorpo-
rating the e�ect of the bed slope in the sediment transport. A serious limitation of linear stability
analyses is that they only describe the initial formation of the bed forms. The reason is that the
amplitudes are assumed to be in�nitesimally small, such that nonlinear terms can be discarded.
However, if there exist modes with positive growth rates, after some time their amplitudes will
become so large that nonlinear terms become important: there will be mode competition. Previ-
ous studies on nonlinear morphodynamics (e.g. Blondeaux 1990; Vittori & Blondeaux 1990, 1992
on sea ripples, Colombini et al. 1987; Schielen et al. 1993 on river bars or Schuttelaars 1998 on
tidal embayments) have demonstrated that this can result in complex behaviour of bed forms,
such as amplitude modulation, multiple attractors and aperiodic solutions. There is no a priori
reason that the long-term dynamics is dominated by the linearly most favourable modes, although
this is what is observed in most nonlinear morphologic models. Also the 
ow pattern induced by
�nite-amplitude ridges may be substantially di�erent from that observed during the initial growth
stage.

The objective of the present chapter is to extend the models of chapter 2 and Trowbridge
(1995) into the nonlinear regime and use the full model to study the long-term, �nite-amplitude
behaviour of the ridges. In particular results on the characteristic amplitudes of the bed forms,
the feedback to the net currents, and the existence of multiple equilibria as well as periodic and
aperiodic behaviour will be presented. Furthermore, it will be shown that in this model for realistic
parameter values the long-term behaviour is not dominated by the linearly most preferred mode.

The nonlinear behaviour is computed by expanding the 
ow and bottom in eigenfunctions of
the linear problem and appears to be controlled by the bed slope coeÆcient 
 in the sediment
transport. For large 
 only one mode initially has a positive growth rate and solutions tend
to �nite-amplitude ridges, with an amplitude proportional to (
�1 � 
�1c )1=2. For smaller 
 more
modes initially grow and the dynamics is no longer dominated by the linearly most preferred mode.
In this regime quite a large number of eigenfunctions are required to obtain reliable solutions. As a
result multiple attractors are found and even aperiodic behaviour is observed. Typical amplitudes
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Figure 4.1: Sketch of the geometry and the coordinate system. For explanation of the symbols see
the text.

and corresponding bottom and 
ow patterns correspond quite well with observations.
In the next section the model will be presented, followed by a discussion of the basic state and

formulation of the perturbed model in sections 4.2.1 and 4.2.2, respectively. In section 4.2.2 the
linear and the non{linear models are formulated, the main results of the linear stability analysis
are summarized, and the truncation of the system is discussed. Next, in section 4.3 the nonlinear
model set-up is discused by expanding the solutions in eigenfunctions of the linear problem. In
section 4.4 the �nal the conclusions are given.

4.1 Governing equations. Scaling

Results of chapter 2 and 3 have shown that a model consisting of the 2DH shallow water equations
with the friction and sediment tranport varying linearly with velocity and a steady basic veloc-
ity driven by a longshore pressure gradient is able to reproduce the main characteristics of the
shoreface{connected sand ridges. The nonlinear stability analysis discussed iin this chapter is also
based on this model. The model presented in section 2.1 of chapter 2 is reproduced in this section
for the case of linear friction and sediment transport varying linearly with velocity. An extended
and detailed discussion can be found there.

The 
uid motion is considered to be governed by the depth-averaged momentum equation
and mass conservation equation. The bottom evolution follows from the sediment conservation
equation. An orthogonal coordinate system (�gure 4.1) is taken with the x, y and z-axes pointing
in the cross{shore, longshore direction and vertical direction, respectively. The still water level is
represented by z = 0.

In order to make the equations of motion (2.1), (2.2) and (2.3) dimensionless we introduce
characteristic magnitudes LH , LV and U for the horizontal length, the depth and the current.
LH is the width of the inner shelf, LV and U are typical values of the water depth and the mean
current. The variables are made dimensionless as follows:

(x; y)! LH(x; y) zb ! LV zb v ! Uv t! Tmt zs ! U2

g
zs :

where Tm is a morphological time scale that will be de�ned below. Free surface elevation is
scaled from the balance between the advection and the presure gradient terms. For example,
representative values for the Dutch inner shelf are LH � 12 � 103 m, LV � 15 m and U �
0:25 m s�1. The scaled momentum and mass conservation equation read:

�@tv + (v �r)v + f̂ � v = �rzs + �

D
(4.1a)

�@tD +r � (Dv) = 0 (4.1b)

and the sediment conservation equation read:

@tzb +r � q = 0 : (4.2)
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where � = Th=Tm is the ratio of the hydrodynamic time scale to the morphological one. Here v
is the current vector, f̂ � v is the Coriolis acceleration, � represents the free surface and bottom
stress terms (� = � s� � b). The free surface, the bottom and the total height of the water column
are given by z = zs, z = zb and D = F 2zs � zb, where F the Froude number (F 2 = U2=g LV ).
The volumetric sediment 
ux per unit width is denoted by q. By performing the scaling of the
equations, two time scales appear: a hydrodynamical one, Th; from the scaling of the three 
ow
equations (4.1) and a morphological one, Tm; from the scaling of the bottom evolution equation
(4.2). They are de�ned as

Th =
LH
U

Tm =
LHLV
�U

The constant � is the proportionality coeÆcient between the sediment 
ux, q; and the mean
current. It depends on the wave stirring and on the sediment properties and bed porosity, but it
has been assumed to be constant in this study. Thus, it is incorporated in the scaling and the non
dimensional sediment transport parametrization is then written as

q = jvj
�
v

jvj � 
rh

�
: (4.3)

The term �
rh accounts for the tendency of sand to move downslope, where h is the elevation
of the bottom with respect to a speci�c equilibrium pro�le to be discussed in the next sections.
In linear stability analysis performed in chapter 2, shoreface{connected ridges were found for the
case that the sediment transport was linear in the velocity, which applies to stormy conditions. It
motivates the choice of a sediment transport which is linear in the mean current. From the same
analysis, a linear friction law � b = rv will be considered. The relation between the dimensional
Coriolis, frictional and bed slope parameters, fc; r�; 
 and their non-dimensional counterpart reads

f̂ = fc
LH
U

= Ro�1 r = r�
LH
ULV


̂ = 

LV
LH

Using the scales of motion and assuming the hydrodynamic timescale much smaller than the
morphological one, it appears that the Froude number can be neglected (F = 0) and that the
quasi-steady hypothesis can be assumed (� = 0). See chapter 2 for an extended discussion of the
parameter values. It is important to note that, since the growth of the ridges takes place on very
long time scales (O(103 yr)), all the quantities in the governing equations have to be considered as
averages over a long time (O(10 yr )).

The boundary conditions imposed for this system are periodic conditions in the longshore
direction. At the transition shoreface-inner shelf and far o�shore we assume that the cross-shore

ow component vanishes and the bottom elevation is �xed to its reference value.

The formation and evolution of rhythmic bed forms will be investigated in the following sections
by studing the dynamics of pertubations (u; v; �; h) evolving on a steady state (0; V; �;H):

v = (0; V ) + (u(x; y; t); v(x; y; t))
zs = � + �(x; y; t)
zb = �H + h(x; y; t)

(4.4)

4.2 Stability analysis

4.2.1 Basic state

Field observations of the bathymetry of the inner shelf indicate that the mean bottom pro�le (ie.,
averaged in the longshore direction) is characterized by a nearly constant slope. The slope of the
outer shelf is considerably smaller. In this study we model the reference bottom pro�le as

H(x) =

�
1 + �x (0 � x < 1)
1 + � (x � 1)

:

Note that H(x) and x are dimensionless and that the depth at the seaward end of the shoreface
has been chosen as vertical length-scale, LV . In case of the Dutch inner shelf, LV � 15 m,
LH � 12� 103 m and the water depth on the outer shelf is approximately 20 m , so that � = 0:33.
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As a consequence of the analysis done in chapter 2 we neglect the e�ect of the surface wind
stress and we will consider a steady mean longshore current with a cross-shore gradient, V (x),
which is driven by a uniform mean longshore gradient in the free surface elevation, s. This velocity
pro�le is equivalent to the one in chapter 2 with a = 1. This would mean a basic steady state of
the form

v = (0; V (x)) zs = Æ y + �(x) zb = �H(x)

where Æ = g sLH=U
2 is the dimensionless parameter for the longshore gradient in the sea surface,

s.

The momentum equations (4.1a) for this reference state read

f̂ V =
d�

dx
; 0 = Æ +

r V

H
:

A velocity pro�le given by V = �(Æ=r)H obeys the alongshore momentum balance between forces
related to the longshore pressure gradient and bottom friction. The mass conservation equa-
tion (4.1b) is veri�ed identically and, since h = 0, the sediment 
ux (4.3) is directed alongshore
and there are no spatial divergences in the transport. Now de�ne the velocity scale U such that
jV j(x = 0) = 1. This yields r = Æ and using the expression for the reference bottom results in the
velocity pro�le

V (x) =

� �(1 + � x) if 0 � x � 1
�(1 + �) if x > 1

:

The sign of the 
ow is determined by the direction of the applied longshore pressure gradient
forces: Æ is negative in case V > 0. Assuming that r� = cd U and a drag coeÆcient of the
bottom cd ' 0:002, and a velocity scale of approximately 0:25 m s�1, the sea surface slope will be
s � 8 � 10�7. This surface slope will induce over a distance of 100 km a free surface elevation
di�erence �zs � 0:1 m.

4.2.2 Perturbed equations

The perturbed momentum, mass and sediment conservation equations for the perturbed state (4.4),
discussed in section 4.1, read:

0 = V @yu+ (u@x + v@y)u� f̂v + @x� +
ru

H � h
(4.5a)

0 = V @yv + uVx + (u@x + v@y)v + f̂u+ @y� +
rv � Æh

H � h
(4.5b)

0 = Hxu+H@xu� @x(uh) +H@yv � V @yh� @y(vh) (4.6)

@th = �r � (v � 
jvjrh) (4.7)

with jvj = (V 2 + 2V v + u2 + v2)1=2.

Equations (4.5), (4.6) and (4.7) can symbolically be written as:

S�t = L� +N (�) (4.8)

where � = (u; v; �; h). The subscript t denotes di�erentiation with respect to the time, the matrix
S is given by

S =

0
BB@
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

1
CCA

whereas L and N (�) are the linear operator and the non{linear operator with the higher than
linear terms of (4.5){(4.7), respectively.
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Linear analysis: formulation

The stability of the basic state discussed in 4.2.1 can be studied by considering the evolution of
small perturbations. They can symbolically be written as:

S�t = L�

Because of the structure of these equations and the boundary conditions in the longshore direction,
we will consider alongshore travelling and growing wave solutions of the form

�(x; y; t) = 	knk(x; y)e
!knk t where 	knk (x; y) =  knk (x)e

iky

and  knk (x) = (u(x); v(x); �(x); h(x))knk . Then, for each alongshore wavenumber k and cross-shore
modenumber nk, an eigenvalue problem is obtained to determine !knk and  knk (x),:

!knkS knk = Lk knk
The solution of this eigenvalue problem yields for each k a spectrum of eigenvalues !knk (nk =
1; 2; 3; :::) with their eigenfunctions, 	knk . The eigenvalue !knk is a complex number, Re(!knk )
denotes the growth rate and �Im(!knk )=k is the migration speed of the perturbations, in particular
of the bed forms. Note that the eigenfunctions of the linear problem (normal modes) are two-fold;
k referring to the longshore structure of the solution and, for each k, nk referring to the cross-shore
structure. Because eigenvalues will be sorted by their real part, nk also refers to the relative value
of the growth rate of !knk .

For each k, the linear operator can be rewritten as:

Lk =

0
BBBBBBBB@

ikV +
r

H
�f̂ d

dx
0

Vx + f̂ ikV +
r

H
ik � Æ

H

Hx +H
d

dx
ikH 0 �ikV

� d

dx
�ik 0 
jV j(Vx

V

d

dx
+

d2

d2x
� k2)

1
CCCCCCCCA

The pertinent boundary conditions are that u and h should vanish at x = 0 and x ! 1 for
each solution k nk. As in chapter 2, in the discretization of the cross{shore direction a collocation
method has been used. For good precision in spatial structure of the eigenfuctions  knk (x) more
than 60 collocation points are needed.

Linear stability analysis: results

Before dealing with the nonlinear equations, it is convenient to brie
y summarize the main results
of the linear stability analysis. A detailed description can be found in chapter 2. The choice of the
parameter values has already been discussed in section 4.2.1 and are representative for the inner
shelf along the central Dutch coast.

In �gure 4.2 the growth rates of the perturbations are shown as a function of the longshore
wavenumber for di�erent cross-shore modes (mode numbers nk = 1; 2; 3). Clearly, growth rates
are positive for a broad spectrum of perturbations, hence there is a positive feedback between the
water motion and bed forms. Furthermore, the growth rate curve of each cross-shore mode attains
a maximum. The corresponding wavenumber is that of the perturbation which is initially most
preferred. For 
 = 1:0 � 10�4 the maximum growth rate corresponds to an e-folding timescale
of approximately 5000 yr and the longshore wave-length of the most preferred bed form is about
8 km. The migration speed appears to be rather insensitive to the wavenumber; characteristic
values are 10 myr�1 in the downstream direction.

In �gure 4.2 contour plots are shown of the �rst three most preferred cross-shore modes for

 = 1:0 � 10�4. The ridges appear to be rotated upcurrent, ie. their seaward ends are shi�ed
upstream with respect to their shoreface attachments. Furthermore an o�shore de
ection of the
current over the bars is observed. All these properties are in good agreement with those of observed
shoreface-connected ridges (cf. Swift et al., 1978; Van de Meene, 1994).
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Figure 4.2: Nondimensional growth rate, � = Re(!knk ) as a function of the wavenumber, k, for the

�rst three cross-shore modes, nk = 1; 2; 3 (upper part). Parameter values are r = 1:5, f̂ = 5:35,

 = 10�4, � = 0:33 and V < 0. The corresponding contour plots of the bottom perturbations
are shown. Shoals and troughs are indicated by solid and dashed lines, respectively. In each plot
the y axis (vertical on the left) represents the shoreface and the horizontal axis is the x-axis, with
x = 1 the transition from inner to outer shelf. The direction of the basic current is shown by a big
arrow. Note the upcurrent rotation of the ridges.

The dependence of the growth rate on the bed slope coeÆcient 
 for the most unestable cross-
shore mode is shown in �gure 4.3. It shows that for values of the bed slope coeÆcient larger than
a critical one, 
c � 10 � 10�4, the basic state is linearly stable. For 
 < 
c the the basic state
is linearly unestable. Decreasing from 
c the value of this di�usive parameter, the growth rate
increases and the longshore wavelength of the preferred mode becomes longer.

As already has been pointed out in chapter 2 and by Trowbridge (1995) the mechanism which
causes the growth of the ridges is related to the transverse slope of the inner shelf. Water columns
moving over an upcurrent rotated ridge are de
ected o�shore, because due to mass conservation the
velocity perpendicular to the crest increases if water depths become smaller. Due to this o�shore
de
ection the water column will expand and experience a mass de�cit. This is compensated for
by a convergence in the 
ow velocity, causing a convergence in the sediment transport, since the
latter depends linearly on the 
ow. As a result there is accumulation of sediment in the crest area,
hence the bed form will grow.

Finally we remark that, although the linear stability analysis yields quite satisfactory results,
it is subject to the limitation that it only describes the initial formation of bed form with a
very small amplitude. Due to the transverse slope instability mechanism, the perturbation grows
exponentially in time. However, after some time �nite-amplitude e�ects will become important.
Consequently, nonlinear terms in the equations of motions for the perturbation, which are neglected
in a linear stability analysis, will become important. This motivates the study of a nonlinear mode
which will be discussed in the next section.

Non-linear analysis: formulation

The nonlinear theory provides the tool to examine the long-term evolution of the shoreface-
connected ridges with �nite amplitudes, which will allow for a closer comparison between model
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Figure 4.3: Contour plot of the growth rate of the �rst cross-shore mode as a function of wavenum-
ber k and of the bed slope coeÆcient 
. All other parameter values are r = 1:5, f̂ = 5:35, � = 0:33
and V < 0.

results and �eld data. Because of the resemblance between the eigenfunctions of the linear problem
and the observed ridges, and following Schuttelaars (1997), the nonlinear solution of the complete
system (4.5)-(4.6)-(4.7) is expanded in terms of the linear eigenfunctions. This method has the
considerable appeal of using actual linear solutions as a basis -rather than, say, some arbitrary
polynomial- so that relatively few terms are necessary to describe the nonlinear evolution accu-
rately. In addition, the use of the eigenfunction of the linear problem can be combined with the
knowledge of the physical mechanisms, analyzed in chapter 2, in order to understand the physical
processes.

The non-linear time-dependant solution �(x; y; t) is expanded as

�(x; y; t) =
X
k

X
nk

0
BB@
û(t)u(x)
v̂(t)v(x)
�̂(t)�(x)

ĥ(t)h(x)

1
CCA
knk

eiky + c.c. (4.9)

A standard method to derive the time evolution equations is to insert the expansion into the
full nonlinear equations (4.8) and then to project the resulting equations onto the adjoint linear
eigenfunctions. After de�ing the inner product and because of the quasi{steady hypothesis, only
the component of bottom modes of the eigenfunctions (hknke

iky) are orthogonal to their adjoint
(h+knke

iky), see appendix F.1. A �rst set of equations come from the projection equation (4.7) onto
the adjoint linear eigenfunctions of the bottom. To complete the system, equations (4.5) and (4.6)
should be used. The projections over these equations is arbitrary and the adjoint linear eigenfunc-
tions of the hydrodynamic variables are used. Following this Galerkin method, the equations for
the amplitudes of each magnitude and mode knk read

0 = (u+knke
iky;Lu�) + (u+knke

iky;Nu(�)) (4.10a)

0 = (v+knke
iky;Lv�) + (v+knke

iky;Nv(�)) (4.10b)

0 = (�+knke
iky;L��) + (�+knke

iky;N�(�)) (4.10c)
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(h+knke
iky;Sh�) = (h+knke

iky;Lh�) + (h+knke
iky;Nh(�)) : (4.10d)

Linear and nonlinear terms of equation (4.5a) are denoted in equation (4.10a) by Lu� and Nu(�),
respectively. The same terminology is used for the other equations. In appendix F.2 equations
(4.10) are explicitly written.

The �rst right terms of this system of equations are linear in the amplitudes (û; v̂; �̂; ĥ)knk .
Thus, the system can symbolically be written as

0 = L1U +M1h+ f(U; h) (4.11a)

S
dh

dt
= L2U +M2h+ g(U; h) (4.11b)

where h is a vector with components ĥknk of the bottom perturbation and U represents the 
ow
variables (u; v; �)knk . Furthermore, f and g are vectors with components which are known nonlinear
functions of the components of U and h.

The model is truncated in three ways: in the x and y coordinates, in time and in the expan-
sion (4.9). The discretization in the x direction has been done by means collocation methods. The
accuracy of the approximation is controlled by the number of collocation points and 80 points are
usually enough. Because the dimension of the linear problem is proportional to the number of
collocation, the number of eigenvalues are proportional to the number of collocation points. In
the y direction a normal modes expansion, ie. Fourier Galerkin, method has been used. The time
discretization is discussed in the appendix F.3.

The truncation of the expansion (4.9) is a crucial aspect of the model. Minimizing the number
of modes (k; nk) used in (4.9) will provide us with a more eÆcient and numerically stable code, as
wil be shown later on. Furthermore, by reducing the dimension of our complex problem we gain
physical insight. Nevertheless, this reduction should keep the physics of the problem. In order
to carry out a proper truncation the eigenvalue spectrum has been analyzed. In the next section,
detailed analysis of the solutions of the eigenvalue problem and an explanation of the criteria used
to truncate the expansion (4.9) will be given.

Non{linear analysis: truncation

Characteristics -growth rate, migration speed and spatial structure- of the eigenfunctions of the
linear problem and their dependence in knk should be analysed in order to �nd objective criteria
to apply to the truncation in (4.9). As illustrated in �gure 4.4, di�erent behaviours of the growth
rate curves are found, depending on the value of the cross-shore modenumber, nk. In �gure 4.5 a
plot of the growthrate, � = Re(!k;nk ), is shown as a function of nk for a �xed wavenumber k. It
can be seen that the thick black line in �gure 4.4 is the accumulation of eigenvalues with equal real
and imaginary values (modes nk = 5 to � 30). Furthermore the crossing of modes in �gure 4.4
corresponds not only to modes with di�erent k dependence but also, see �gure 4.5, to di�erent nk
dependence of the migration speed c. There appear to be three di�erent types of modes: a �rst
set of modes with jcj considerably smaller than 1 (modes nk = 1 to nk = 5, nk = 34; 41) that will
be named by modes type I, another group with jcj = 1, type II, and the rest of teh modes which
jcj have other slightly smaller than 1, type III. This classi�cation from the migration speed is also
coherent with the spatial structures these modes as we will see.

The �rst six type I modes are inner shelf modes. The contour plots of the bottom eigenfunctions,
ie. the bottom perturbations, of these modes are shown in �gures 4.6, 4.7 and 4.8. They appear
to be the �rst six modes of upstream rotated ridges. Modes type II manifest themselves on the
outer shelf and they are longshore perpendicular series of shoals and pools, �gure 4.7. From their
dependence on k (�gure 4.4) and 
, Re(!k;nk ) is proportional to 
k

2, these eigenfuctions come
from the di�usive term �
jV j@2yyh in the linear equation for the bottom, and, therefore, they are
interpreted as di�usive modes. Figure 4.8 shows contourplots of modes which are called type III-
modes. They have even smaller -more negative- growth rates; they resemble a mixture of di�usive
and frictional and Coriolis modes, see chapter 2. Figure 4.5, where !knk is plotted as a function of
nk for k = 40, shows that for other wavenumbers k, although the migration speeds become closer
to each other, a similar distribution of the eigenvalues is found. Their eigenfunctions are plotted
in �gure 4.9. Comparing �gures of 4.5 we can see that for a �xed nk a mode can change its type
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Figure 4.4: Nondimensional growth rate, � = Re(!knk ) and migration velocity, c, as a function
of the wavenumber, k, for di�erent cross-shore modenumbers nk. Parameter values are r = 1:5,
f̂ = 5:35, 
 = 10�4, � = 0:33 and V < 0.

if the wavenumber k is varied. For instance for k = 10 node nk = 31 is a type II-mode while for
k = 40 is a type I-mode.

Since di�usive modes mainly occur on the outer shelf they do not project onto the modes in the
inner shelf and vice versa. The higher nk modes have growth rates much smaller than the upstream
rotated ridges. Therefore, only upstream rotated ridges will be used in the expansion (4.9).

The selection of the nk modes of type I will be done using the di�erence in the migration
speed c. This criterion, although clear for the modes with low nk, is not speci�c enough for the
higher ones; therefore it limits the number of nk modes that would be used. In the same way, it is
important to note that an increase of the resolution in the cross shore direction would increase the
number of eigenvalues. Most of these eigenvalues will appear as di�usive modes (type II), but some
eigenvalues will correspond to the complex modes (type III) with migration velocities and growth
rates similar to the high nk upstream ridges. This further complicates an objective choice of the
eigenfunctions. On the other hand, for a numerically stable and correct solution a high number of
collocation points is required by the computations. These two facts constrain us to deal with the
number of collocation points and the necessity of distinguishing the di�erent modes.

Expansion (4.9) is also truncated in the number of wavenumbers (Fourier modes) used. Only
the mode with wavenumber KM , having the largest initial growth rate (maximum in �gure 4.3
for each 
) and its superharmonics will be used. This means that the computations are carried
out in a longshore box of length L = 2�=KM . As a �rst approximation, the k = 0 mode is not
used; a justi�cation of this is given in appendix F.4. The eigenfuctions in the expansion will be
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Figure 4.5: Nondimensional growth rate, � = Re(!knk ) and migration velocity, c, for k = 10:0
(top) and k = 40:0 (bottom), as a function of nk. Parameter values are the same as in �gure 4.4.
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Figure 4.6: Contour plots for type I modes.
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Figure 4.7: Contour plots for type II modes.

denoted by a pair (j; nj); the �rst symbol, j, corresponds to the number of the longshore mode
(k = KM ! j = 1, k = 2KM ! j = 2, ...) and the second one, nj , refers to the cross-shore
structure of the retained modes used in the expansion. For example, in case of 
 = 1:0� 10�4 the
most unstable mode is KM = 10, so the upstream rotated ridge of k = 40 and nk = 31 of �gure 4.9
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Figure 4.8: Contour plots for type III modes.

is renamed as (4,7). After these considerations, the expansion (4.9) for the type I modes is

�(x; y; t) =

JX
j=1

NJX
nj=1

0
BB@
û(t)u(x)
v̂(t)v(x)
�̂(t)�(x)

ĥ(t)h(x)

1
CCA
jnj

eijKMy + c.c. ; (4.12)

where J is the number of Fourier modes and NJ the number of cross-shore modes for each j. This
notation will be used in the next section. Furthermore, the number of collocation points used in
the discretization of the x{coordenate will be denoted by Nx.
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Figure 4.9: Eigenfunctions for k = 40 (�gure 4.5 bottom).
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Figure 4.10: Example of time evolution of the amplitude of the di�erent bottom modes. Top:

 = 8:0� 10�4 and the truncation parameters are KM = 5:3, Nx = 100, J = 5, NJ = 4. Bottom:

 = 2:0� 10�4 and KM = 8:3, Nx = 100, J = 15, NJ = 7.

4.3 Results: nonlinear model

The results of the nonlinear model for di�erent values of the 
 parameter are shown in this section.
The number of superharmonics, J , used depends on the 
 parameter; with decreasing 
 the basic
state becomes more unstable, so more superharmonics are needed. Since the complexity of the �nal
solution also increases with decreasing 
, more cross-shore modes, NJ , are needed in that case. For

 > 4:0�10�4, 5 Fourier modes in the longshore direction and 4 modes in the cross-shore direction
are suÆcient in the sense that results remain unchanged if the number of modes in either direction
is increased. Instead, for smaller values of 
 the model becomes very sensitive to the number of
modes used and 20 Fourier modes and 8 cross-shore modes are needed. The computations have
been done with 100 collocation points in the discretization of the cross-shore direction. The time
integration scheme to solve the coupled system of algebraic and di�erential equations (4.11) is
shown in the appendix F.3. The time integration has been carried out with a time step �t = 10�3

morphological units in a third order scheme. As initial conditions, in the numerical experiments
all the modes have the same initial amplitude which is between 1:0 � 10�3 and 2:5 � 10�3. For
large 
 (9:5� 10�4 � 4:0� 10�4) the �nal state does not depend on this initial amplitude but for
smaller 
 values the model behaviour starts to depend on the initial condition.

Numerical experiments for 
 slightly larger than 
c ' 10� 10�4 show agreement between the
linear and the nonlinear analysis in the stability of the basic state, i.e, the amplitude of all the
modes tend to zero. For values of 
 = 9:5� 10�4 � 4:0� 10�4 the (1; 1) mode is the mode with
the highest amplitude. The time evolution of the modal amplitudes and the bottom perturbation
for 
 = 8:0� 10�4 is shown in �gures 4.10 and 4.11. If the initial amplitude of the perturbation
is very small, the initial growth is exponential, followed by saturation. If the initial amplitude is
larger, the system evolves to the same �nal state, no matter which initial conditions have been
taken. The migration speed of the modes does not di�er from its corresponding velocity in the
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Figure 4.11: Topographic perturbation and 
ow perturbation for 
 = 8:0 � 10�4 (left) and 
 =
2:0� 10�4 (right) of �gure 4.10. Shoals in dark, troughs in white.
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Figure 4.12: Top: Nondimensional growth rate of the modes (j; nj) unestables as a function of
the bed slope parameter, 
. Bottom: KM as a function of the bed slope parameter.

linear problem, which is close to �1.
By decreasing 
 to more realistic values, more modes become linearly unstable andKM becomes

larger, see �gure 4.12. For small 
, higher cross{shore modes in k = KM ((1,2), (1,3)...) grow in
time even to �nal amplitudes which are larger than the �nal amplitude of the linearly dominant
mode, (1,1). This can be seen in �gure 4.13.

The time evolution of the mode amplitudes and the �nal bottom and velocity perturbation for



4.3. RESULTS 77

0.0 2000.0 4000.0 6000.0 8000.0 10000.0

γ-1

0.0E+0

5.0E-3

1.0E-2

1.5E-2

2.0E-2

|A|

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

0.0 2000.0 4000.0 6000.0 8000.0 10000.0

γ-1

0.0E+0

5.0E-1

1.0E+0

1.5E+0

2.0E+0

H
ei

g
ht

Figure 4.13: Top: Final amplitude of the di�erent bottom modes as a function of the bed slope
parameter, 
. Bottom:Height of the bed forms (in m) as a function of 
.
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Figure 4.14: Time evolution of the amplitude of the di�erent bottom modes for 
 = 3:0 � 10�4,
i the top for the higher (high-amplitude) and in the bottom for lower branch (low-amplitude) of
�gure 4.13. Note that the scale of both the horizontal and vertical axes is di�erent.


 = 2:0� 10�4 are shown in �gure 4.10 and 4.11. The perturbed topography shows a complexity
which is not displayed by any of the individual eigenmodes of the linear problem and is much more
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Figure 4.15: Perturbation of the bottom and total depth for the upper branch (top) and lower
branch (bottom). Shoals in dark, troughs in white.

similar to the observed topographic patterns. For instance, secondary shoals and dislocations of
the main sand bank occur. A typical nonlinear e�ect which is observed is a clear asymmetry along
the current: the slope on the lee side is much pronounced than the slope in the stoss side. It is also
important to remark that the 
ow velocity perturbation is slightly accelerated and de
ected in the
o�shore direction, whereas over the troughs the 
ow is strongly curved and de
ected inshore.

The height of the bed forms is of the order 1 � 2 m in accordance with observations on the
Dutch coast. As it can be seen in �gure 4.13, it does not change very much by changing 
, except
for 
 close to 
c where the total amplitude is proportional to (


�1 � 
�1c )1=2. This dependence on
the control parameter 
�1 of the amplitude of the periodic solution is what is expected from the
bifurcation theory in case of a Hopf bifurcation (see e.g. Guckenheimer & Holmes, 1983).

A second bifurcation has been found for 
 ' 3:0 � 10�4 (ie. 
�1 ' 3000). Time evolution
of the amplitudes for both branches at 
 ' 3:0 � 10�4 are shown in �gure 4.14. The numerical
experiment of lower branch of �gure 4.13 at 
 ' 3:0 � 10�4 has been done with Nx = 100 and
for KM = 7:2, J = 15 and NJ = 7. For the upper branch Nx = 60, KM = 7:2, J = 15 and for
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N1 = 6, N2 = 5 and for J = 3 � 15 ; NJ = 4. The amplitudes jAj of each mode of upper branch
are modulated in the long term, then at least in two frequencies the solution depends; one related
with the migration and the other with the modulation. These two frequencies seem to have an
irrational ratio. In �gure 4.15 the perturbation of the bottom and total depth corresponding to
the two branches are plotted. Both solutions look like upstream rotated ridges, but di�er in the
height of the perturbation and in the 
ow structure. The amplitudes of the upper branch are
large enough to be an appreciable proportion of the total depth, something that does not hold
for the lower branch solution. The amplitude of the solution is not the only di�erence; in the
upper branch the bottom mode with the larger amplitude is mode (1,2) while for the lower is the
mode (1,1). Also the 
ow over the ridges appears to be di�erent. The appearance of two types of
solutions allows us to suggest that several unstability or saturation mechanisms are competing in
the model. However, in this parameter range the model behaviour is very sensitive to the initial
conditions and to the discretization parameters (number of longshore and cross-shore modes) so
that a more systematic analysis is required. The experiments for 
 < 2:0� 10�4 correspond to the
lower branch.

In some of the previous �gures, time evolution of the bottom amplitudes has been shown; it
is also interesting to look how the perturbations of the bottom and the 
ow evolves in time. An
example of this time evolution for 
 = 8:0 � 10�4 and 
 = 2:0 � 10�4 is shown in �gures 4.16
and 4.17, respectively. The amplitude behaviour of the di�erent bottom modes as a function of
time are shown in �gure 4.10. For instance, in �gure 4.17 can be seen that from t = 0 to t = 75
bottom perturbations grow and the 
ow is de
ected in the o�shore direction over the ridges, as the
linear stability analysis predicts. At the �nal saturated state the o�shore de
ection is also present.
Both in the transient and in the �nal state the migration of the bottom modes has the same speed
as the linear modes. At the �nal state the amplitude of the bottom pertubation is 1 m and the
deviation of the velocity is about 10%. The maximum variation in the depth and the 
ow velocity
is between the crest and the adjacents trough.

It is important to note that the time unit is the morphodynamic one which, for a migration
speed of 10 myr�1 is Tm = 1000 yr. Because the time that the bedforms need to grow signi�cantly
is of the order of 100Tm the results only make sense as a continuation in the 
 parameter. A
way to reduce this evolution time to a more realistic one is to increase the initial amplitude of the
perturbation. This can be done for large values of 
 with the result that the time is reduced to
order of a few times Tm. However, for more realistic values of 
 (
 = 1:0� 10�4) a larger initial
amplitude makes the model numerically unstable. Finally it should be remarked that numerical
experiments without �ltering the di�usive modes have been carried out; all these experiments not
only need too much time for each time step but it also produce a strong numerical unstability the
model.

4.4 Conclusions

In this chapter a nonlinear morphodynamic model has been analyzed to gain more fundamental
knowledge about the initial and long-term behaviour of observed shoreface-connected sand ridges.
The model describes quasi-steady, depth-averaged 
ow on a storm-dominated inner shelf with an
erodible bottom and a transverse slope. A local parametrization for the sediment transport is used,
which is assumed to be linear in the current and accounts for the e�ect of local bedslopes.

A linear stability analysis has revealed that the initially formation of bed forms is very sim-
ilar to the observed shoreface-connected ridges which can be described as an instability of the
coupled water-bottom system. The most preferred bottom modes have characteristic longshore
wave-lengths of 5� 8 km, and they migrate in the downstream direction with a velocity of about
10 myr�1. The bed forms are trapped on the inner shelf and the seaward end of the crest are
rotated upstream with respect to their sore face attachments. The growth is triggered by the
transverse slope of the inner shelf which causes accumulation of sediment in the ridge area for
o�shore directed 
ow. The latter condition only occurs for upcurrent-rotated bars.

A limitation of the linear stability analysis is that it does not yield information about the
�nite-amplitude behaviour of the ridges. Hence, a nonlinear analysis has been carried out to study
the long-term dynamics of the bed forms. This was done by expanding the 
ow and the bottom
perturbations in a truncated series of eigenfuctions of the linear problem for a coastal stretch with
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Figure 4.16: Time evolution of the bottom perturbation for 
 = 8:0� 10�4.

a �xed longshore length. The result is a set of nonlinear algebraic equations, describing the 
ow
over the topography, and di�erential equations for the bottom amplitudes.

The robustness of the model is strongly related to the �ltering of di�usive modes in the truncated
eigenfunction expansions. If these modes are retained the model appears to be subject to numerical
instabilities. This is due to the fact that the di�usive modes mainly occur on the outer shelf and
therefore do not project well onto the relevant inner shelf modes; they become a source of numerical
troubles and give a limitation on the parameter range where the model can be run. Therefore, it has
been necessary to develop a numerical procedure in order to avoid the blow up of the model. The
results appear to depend strongly on the number of modes which have initially positive growth
rates, as controlled in the present experiments by the value of the bed slope coeÆcient in the
sediment transport, 
: For large values of 
 no bed forms develop and the reference state (which
describes a longshore uniform 
ow over the transversely sloping shelf) is stable. If 
 is decreased
below a critical value 
c there is one mode which initially ampli�es. Due to nonlinear e�ects
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Figure 4.17: Time evolution of the bottom perturbation for 
 = 2:0� 10�4.

solutions starting from arbitrary initial conditions tend to a unique equilibrium. The latter is
dominated by the initial most preferred mode and resembles a shoreface-connected ridge with an
amplitude which scales like (
�1�
�1c )1=2. A migration speed of this �nite-amplitude perturbation
appears to be una�ected by nonlinear e�ects. This is probably due to the fact that the dispersive
properties of the linear perturbations are very weak.

If 
 is reduced to even more realistic values more modes have initially positive growth rates
and the model behaviour becomes rather complex. First results indicate that there are multiple
attractors, in other words, the long-term behaviour depends on the initial conditions. It turns out
that the �nal solutions are often dominated by a mode which is not the initially most preferred
mode. There are also indications that the attractors have di�erent properties. The 'low-amplitude'
equilibrium describes a periodic bottom pattern whereas the 'high-amplitude' �nal state may show
quasi-periodic behaviour. However, the latter case has to be studied in more depth, by including
more eigenfuctions in the model to reach more de�nitive conclusions.

The spatial patterns of these �nal states have the typical characteristics of nonlinear features:
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steep bottom gradients on the downstream side, the presence dislocations and the mixture of
large-scale and smaller-scale patterns.

The overall conclusion is that the results obtained with the nonlinear model are very promising
and may have important consequences for the interpretation of �eld observations near the shoreface-
connected ridges. The model can also be used to get indicative information about the e�ect of the
human interferences on the dynamics of these ridges and the implications for coastal stability.


