Universitat Politècnica de Catalunya Departament de Física Aplicada

Simulación Monte Carlo de la población de enanas blancas de la Galaxia

Memoria presentada por Santiago Torres Gil

PARA LA OBTENCIÓN DEL TÍTULO DE DOCTOR EN CIENCIAS

Director de Tesis: Enrique García-Berro Montilla

Barcelona, marzo de 2002

Agradecimientos

Quisiera agradecer, en primer lugar y con especial énfasis, el apoyo, orientación y esfuerzo que de manera constante durante estos años me ha ofrecido de forma incondicional el director de mi tesis, Dr. Enrique García—Berro. Este agradecimiento es doble, pues sin duda, si su colaboración no hubiera sido posible la realización del presente trabajo, mientras que gracias a su dedicación entusiasta ha contribuido de manera impagable en mi formación personal como investigador.

Por otra parte, numerosas son las personas que han contribuido con su generosidad a la elaboración y desarrollo de la presente tesis. De manera destacada quisiera hacer explícito mi agradecimiento al Dr. Jordi Isern, del Institut de Ciències de L'Espai de Catalunya (CSIC), por la permanente revisión de ideas y conceptos, así como al Dr. Andreas Burkert, del Max-Planck-Institut für Astronomie, por la innumerable aportación de sugerencias y generosa colaboración durante mi estancia en Heidelberg.

De igual modo quisiera agradecer al grupo Interdepartamental de Astronomía de la UPC por su acogida y compañerismo ofrecido durante estos años, en especial a Eduardo Bravo, Domingo García, Jordi Gutiérrez, Jordi José y Andreea Munteanu. Al igual que a las personas de Cesca Figueres y Jordi Torra, del departamento de Astronomía de la Universitat de Barcelona, y a Margarita Hernanz, del Institut de Ciències de L'Espai de Catalunya (CSIC), y Maurizio Salaris de la John Moores University of Liverpool, por su colabaración en diversos aspectos de la astronomía.

Mencionar también mi más sincero agradecimiento al Dr. Manuel Hernández-Pajares, del departamento de Matemática Aplicada de la UPC, por su inestimable aportación de los algoritmos neuronales de clasificación.

Al departamento de Física Aplicada de la UPC, a todos sus miembros, y en particular a Amador Alvarez y a Silvia Soriano, por el apoyo prestado en incontables ocasiones, al igual que a l'Escola Politècnica de Mataró, y en especial al profesor Jordi Sardà, por su compañerismo y comprensión ofrecidos.

De manera muy grata he de mencionar a Pilar Gil por compartir, no sólo un mismo espacio físico, sino con su amable simpatía los esfuerzos diarios que una tesis requiere. Su ejemplo de compañerismo y entusiasmo me ha alentado de manera muy especial, por lo que sin duda mi agradecimiento es totalmente sincero.

Por último, con nostálgico cariño quisiera agradecer a Patricia Capdevila, por su apoyo personal que durante muchos años me ha ofrecido de forma incondicional.

A UNA ESTRELLA

Chispa de luz que, fija en lo infinito, absorbes mi asombrado pensamiento: tu origen, tu existencia, tu elemento, menos alcanzo cuanto más medito.

[...]

Carolina Coronado (1821-1911)

Índice general

1.	Intr	oducci	ón	1
	1.1.	Introd	ucción histórica	1
	1.2.		edades básicas de las enanas blancas	9
	1.3.	_	mentación teórica de las enanas blancas	ļ
	1.4.		ceso de enfriamiento	8
	1.5.		ciones de las enanas blancas	ç
	1.6.		vos	13
2.	Sim	ulació	a de la población de enanas blancas del disco	15
	2.1.	Const	rucción de la muestra	15
	2.2.	Propie	edades cinemáticas de la población de enanas blancas	$2\overline{2}$
		2.2.1.	Propiedades cinemáticas generales de las muestras	23
		2.2.2.	Comportamiento temporal de las muestras	26
		2.2.3.	Una observación final sobre la fiabilidad de las muestras	31
	2.3.	La fur	ción de luminosidad de las enanas blancas	33
		2.3.1.	Distribución espacial y completitud de la población de enanas	
			blancas	33
		2.3.2.	Simulaciones de la función de luminosidad de las enanas blancas	40
		2.3.3.	Análisis bayesiano de las muestras simuladas	45
		2.3.4.	La edad del disco	49
3.	Los	efecto	s de un episodio de acreción violento en el disco galáctico	53
	3.1.	Simula	aciones Monte Carlo	54
	3.2.	Muest	ra observacional	57
	3.3.	Result	ados y discusión	58
		3.3.1.	Episodio de acreción masivo	58
		3.3.2.	Episodio de acreción menos masivo o menos eficiente	63
		3.3.3.	El papel de la altura patrón en los episodios de acreción	66
	3.4.	Anális	is estadístico de los resultados	69
		3.4.1.	Test de compatibilidad Z^2	69
		3.4.2.	Test de Kolmogorov–Smirnov	71

II Índice general

4.	Ide	ntificación de las enanas blancas del halo	75	
	4.1.	Metodología	76	
		4.1.1. Algoritmos de redes neuronales	76	
		4.1.2. Mapa auto-organizativo de Kohonen	77	
		4.1.3. El catálogo observacional: un análisis en componentes principale		
		4.1.4. Las poblaciones sintéticas de enanas blancas	82	
	4.2.	Resultados	85	
		4.2.1. Aplicación del algoritmo	85	
		4.2.2. Objetos candidatos a enanas blancas del halo	90	
		4.2.3. Función de luminosidad preliminar de las enanas blancas del		
		halo	91	
5.	Sim	ulación de la población de enanas blancas del halo	95	
	5.1.	Construcción de la muestra	96	
		5.1.1. Simulación del halo luminoso	96	
		5.1.2. Simulación de microlentes en la dirección de la Gran Nube de		
		Magallanes	100	
	5.2.	La función de luminosidad del halo	101	
		5.2.1. Análisis de completitud	101	
		5.2.2. Dependencia de la función de luminosidad con respecto a la		
		IMF y la densidad local de materia oscura	103	
	5.3.		106	
	5.4.	Enanas blancas en el Hubble Deep Field	113	
6.	Cor	nclusiones	119	
Α.	Sist	emas de Referencia	125	
в.	3. Rotación galáctica			
С.	Pot	encial gravitatorio galáctico	135	
D.	Mic	rolentes gravitacionales	139	
	Dik	liografía	145	
•	מים	ווטבו מוומ	149	