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Abstract

Task-based programming models allow programmers to express applications as a collec-

tion of tasks with dependences. They are simple to use and greatly improve programma-

bility by using software runtimes to exploit task parallelism and heterogeneity over mul-

ticore, many-core and heterogeneous platforms. In these programming models, the run-

times guarantee correct execution order by managing tasks using task-dependency graphs

(TDGs). These runtimes are powerful enough to provide high performance with coarse-

grained tasks although they impose oveheads on the application execution to maintain all

the information they need to do their work. However, as the current trend in processor

architectures keeps including more cores and heterogeneity (in fact complexity) in the

system, coarse-grained parallelism is not enough to feed all the underlying resources. In-

stead, fine-grained tasks are preferable as they are able to expose higher parallelism in

applications but the overhead introduced by the software runtimes under these conditions

prevent an efficient exploitation of fine-grained parallelism. The two most critical runtime

overheads are task dependency graph management and task scheduling to heterogeneous

systems.

There is no doubt that software is of great importance, as it allows for great expressiv-

ity and flexibility. However, it is also unquestionable that hardware is known for higher

speed and energy-efficient designs. Therefore, we propose a hardware architecture, Picos,

consisting of a hardware task dependence manager including nested task support, and a

heterogeneous task scheduler, to accelerate the critical runtime functions for task-based

programming models. With Picos, we aim at extending the benefit of these programming

models into exploiting fine-grained task parallelism and heterogeneity.

As a proof-of-concept, in this work Picos has been designed in VHDL and imple-

mented in a System-on-chip platform consisting of regular ARM SMP cores and an inte-

grated FPGA. Three prototypes of Picos have been designed, developed and analyzed with

real benchmarks. Picos designs have been connected to the SMP processors and numer-

ous HW functional accelerators (Hardware specialized task execution units). In addition,
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Abstract

the designs have been integrated with a state-of-the-art task-based parallel programming

model, running in a Linux system.

Performance and energy consumption results have been obtained with real executions

in real hardware platforms and compared to the results using a task-based parallel pro-

gramming with a software-only runtime. These results show that our proposed runtime

system obtains better performance with a lower energy consumption than the software-

only alternative. With 4 threads and up to 4 HW functional accelerators, it achieved up to

7.6x speedup and up to 90% of energy savings with real benchmarks comparing against

the software-only runtime. In addition, with 4 threads and 12 accelerators, it gains up to

16.2x speedup with real applications when compared with the software-only runtime. The

trend of obtaining more benefits when there are more system resources (in terms of both

their core count and heterogeneity) leads us to believe that the impact of using a hard-

ware accelerated runtime will be even more significant than a software-only alternative in

bigger systems than the ones evaluated.

This research work has also opened several future directions that are worth exploring.

Although currently only SMP and FPGA have been explored due to the limited hardware

available, Picos is not restricted to these platforms, as it is designed to be adaptable to

manage a great variety of hardware such as ASICs, GPUs, Big-little type architectures,

etc. In addition, Picos runtime can be easily adapted to support other task-based pro-

gramming models; as the main three functions - task dependency graph management,

nested task support and heterogeneous task scheduling - are common characteristics of

nearly all of them. Finally another interesting proposed path is the use of Picos to man-

age the sleep/wake-up of cores and other hardware execution units. During this work, we

discovered that for many applications, the hardware resources are kept on working nor-

mally when there is not enough parallelism available. A hardware manager like the one

proposed can be used for a quick hardware sleep/wake-up mechanism leading to a large

amount of time savings without reducing the performance.
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Chapter 1
Introduction

For many years, the prediction of Moore’s law that the number of transistors in a dense

integrated circuit doubles about every two years has been accurate, and the semiconductor

tecnology has droven the progress of every new generation of processors by increasing

the frequency and the number of transistors in the chip, allowing to build faster and more

complex single-core processors that could exploit high Instruction Level Parallelism (ILP)

out of sequential programs. As shown in Figure 1.1, this trend continued until the early

2000s, when this tecnology scaling enabled rapid growing has encountered two funda-

mental obstacles: the ever increasing latency of memory accesses due to the speed gap

between the processor and the main memory, known as the Memory Wall [84], and the

ever increasing power consumption of chips with higher number of transistors and clock

rates, known as the Power Wall [58], or the end of Dennard’s scaling [34].

In the early 2000s, to overcome the stagnation of single-core processors’ performance,

the landscape of microprocessors design entered the multicore and many-core era. Shared

memory multiprocessors are the most genuine representatives of chip multiprocessors.

This family embraces a wide number of chips, from the first commercial multicore pro-

cessors such as the IBM POWER4, the Intel Core Duo or the AMD Opteron, to current

high-end many-core architectures for HPC such as the Intel Xeon Phi or the IBM Blue

Gene/Q. The distinctive characteristic of shared memory multiprocessors is its memory

organization, composed by a hierarchy of caches with a cache coherence protocol. This

scheme allows the different cores to share data without any intervention from the pro-

grammer.

Multicore processors can potentially provide the desired performance gains by ex-

ploiting the Task Level Parallelism (TLP) of parallel programs, but they have introduced

significant challenges for adapting from sequential to parallel computing such as detect-

ing parallel workloads/regions/tasks, distributing and synchronizing those tasks between
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Figure 1.1: Evolution of microprocessors

the available cores. With the trend of ever-increasing core counts in many-core platforms,

parallel computing exposes great challenges and responsibilities to the programmer, as to

partition the data, evenly distribute different workloads between a large number of cores

and communicate between them, which, in the end, significantly degrades programmabil-

ity.

To further complicate things, computer architecture is exhibiting a tendency towards

more heterogeneity, which is promised to be highly effective and power efficient. Some

of the important examples are Cell B.E. [51], the SARC architecture [63], the Run-

nemede [21], the Imagine [53], General-purpose processors plus GPGPUs architectures,

Xilinx UltraScale+ MPSoC series [86], Intel Stratix-10 SoC Chips [48], IBM FAbRIC

POWER8+CAPI system. All the attention on heterogeneous platforms reflect their po-

tential to offer higher performance and lower energy consumption than traditional multi-

core and many-core systems. They can exploit high TLP of parallel programs due to their

ability to execute both SMP tasks (tasks that can be executed in any of the cores of general-

purpose processors) and heterogeneous tasks (tasks that can be accelerated in specialized

hardware units). Unfortunately, they raise new problems such as managing different types

of hardware engines and hybrid memory systems during parallel computing. Once more,

programmers have to be very aware of the underlying hardware architecture in order to

achieve good performance. Moreover, they are also responsible for explicitly transfer-
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CHAPTER 1. INTRODUCTION

ing data between memory spaces and handling potential data replications. Additionally,

applications often need to be modified to do a good porting to different platforms.

To automate the parallelization and synchronization of workloads in applications and

to ease the effort for efficient data movements in heterogeneous systems, task-based pro-

gramming models are quickly evolving to tackle all these challenges. Significant exam-

ples are OpenMP 4.5 [2], OmpSs [35], Codelets [3], StarPU [69], Intel’s TBB [46]. Using

task-based programming models, an application can be expressed as a collection of tasks

with dependences, which are then managed at runtime. They are very simple to use: for

example, with OpenMP 4.5 and OmpSs, simply by annotating functions with their data

dependences and their types (input, output, inout)[27], the sequential version of applica-

tion can be transformed into a functional parallel version according to the dependences

expressed by the programmer. When the corresponding compilers encounter these an-

notations, they generate runtime API calls in order to create and submit tasks. Then, at

execution time, the runtime will dynamically manage inter-task dependences and sched-

ule tasks for out-of-order execution. They are also very powerful to be able to obtain high

performance with applications. An additional important benefit of these programming

models is that they decouple the application from the architecture which allows to take

advantage of the available information in the runtime system to drive optimization in a

generic and application-agnostic way [80, 56, 57]. Moreover they delegate the runtime

system the responsibility to exploit task annotations to map the data specified in the task

dependences to different memory spaces and schedule tasks to the corresponding exe-

cution unit, contributing to the programmability advantages for complex heterogeneous

architectures.

However, there are certain non-trivial disadvantages of the default software-only run-

times currently employed. They often have too large overheads that prevent them from

exploiting fine-grained task parallelism and heterogeneity. Examining the current exist-

ing computer architectures and their future trend, fine-grained parallelism is preferable

in a large range of domains for computing. Theoretically with fine-grained tasks, there

is a much higher parallelism to be exploited and it is easier to manage workload bal-

ance in the system, resulting in higher performance and energy efficiency. In reality the

software-only runtime overheads including task dependence management and heteroge-

neous task scheduling cause performance degradation with fine-grained tasks. Task de-

pendence management overheads are usually related with the way that software runtimes

are designed in order to perform their work. For example inserting a task into a task-
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dependency graph (TDG) requires the comparison of each of its dependences against

those of the existing tasks; in addition, to maintain a global order of tasks, there are often

locks to allow only one thread to update the TDG at a time. All of these processes are

costly and can incur a lot of thread contention [30, 71, 87, 14]. The problem with het-

erogeneous task scheduling is closely related to the underlying hardware that applications

run. For example, current heterogeneous systems often are consisting of architectures

such as big-little cores and general-purpose processors with specialized hardware units.

They often have complex memory system such as a mixed layer of shared coherent mem-

ory and private non-coherent local memories. Therefore, several threads are often dedi-

cated for those purposes in software-only runtimes because automatically managing task

scheduling and data movements among those can be a nightmare. Those management

operations are not trivial and they definitely under exploit those threads.

To overcome these deficiencies and extend the benefit of task-based programming

models into a finer-grained parallel and heterogeneous computing, in this thesis we pro-

pose the Picos system. It is a hybrid hardware/software co-design runtime, which not

only reduces critical-path runtime overheads as both the task dependence management

and heterogeneous task scheduling are in hardware, but also keeps the flexibility of other

software runtime functions.

1.1 Main Objectives, Ideas and Contributions

1.1.1 Main Objective

The main objective of this thesis is to propose a general-purpose hardware accelerated

runtime for task-dependence management and heterogeneous task scheduling. It aims to

speedup the runtime system, meanwhile reducing the contention among all the thread ex-

ecuting runtime functions. It should be easily adaptable to be integrated with the runtimes

of different task-based programming models, transparent to application programmers and

even to the programming model that it accelerates. In addition, it should also be easily

adaptable to manage a large variety of hardware units like SMP, Big-little cores, FPGA,

ASIC, GPU, ..., etc. Finally, as one of the most concerned features in parallel computing,

it should be energy efficient.
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CHAPTER 1. INTRODUCTION

1.1.2 Main Ideas

To achieve our objective, we describe three main ideas that have driven this research work.

Task dependence management.

With task-based programming models, an application can be expressed as a collection

of tasks with data dependences of type input, output or inout (both input and output), and

the runtime system analyzes the inter-task dependences and ensures the correct execution

order of the program. One critical runtime overhead is constructing and managing the

TDG during the application execution. For this reason, we propose a hardware architec-

ture (Picos) to accelerate this part and be seamlessly integrated with the software runtime.

The guidance for the functionality of this architecture should be as follows: when a new

task is created in the software side of the runtime, Picos should read the task and its de-

pendences, and insert it into a TDG; when all the dependences of a task in the TDG are

ready, Picos deems the task as ready and schedules it to execute in threads; when a task

finishes executing in a thread, Picos should read this information and finalize its remain-

ing role. If this finished task has successors that depend on it, then these tasks are awaken;

afterwards this task is deleted from the TDG directly. The implementation of the design

should focus on balancing the speed and cost among many other trade-offs.

Nested task support.

With the support for task dependence management as described above, we are able

to handle most of the regular and irregular application dependence patterns. However, to

be a truly general-purpose hardware task-dependence manager, nested task support is a

necessary feature. Nested tasks are those that have been created by another task. They

are often seen in applications with recursive algorithms or programmed with libraries

that embedded tasks inside. However, to the best of our knowledge, there is no nested

task support in the State-of-the-Art hardware task-dependence managers. The reason

for that is due to the limited resources of hardware-based implementations after being

implemented or tapped, which can lead to a system deadlock. For this, we propose a

novel hardware/software co-design, based on a deadlock-free architecture, that includes

nested task support.

Heterogeneous task scheduling.

Heterogeneous architectures are ubiquitous in present days, for they are able to pro-

vide higher performance and energy efficiency. One of the challenges for managing them

is the task scheduling and data movements among their often-complex memory systems.
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1.1. MAIN OBJECTIVES, IDEAS AND CONTRIBUTIONS

With a software-only runtime of task-based programming models, the cost for launching

computations and managing data movements is high. Since Picos has already managed

all the tasks and their dependences inside hardware, it has all the information required

to manage task scheduling and data copies for heterogeneous hardware execution units.

Therefore, we extend Picos with the followings.

1 Very tied co-processors or accelerators directly managed by Picos.

2 Heterogeneous task scheduling that optimizes the execution of tasks.

With these three main ideas, during our research, we have built three prototypes that

tackle each of these ideas one at a time, with each prototype being built on top of the

previous one. Besides these implementations, we have also spent a lot of time on the

integration process in order to be able to obtain real measures that can compare against

current software runtimes. We categorize this process into three different integrations.

1 Hardware integration. By this, we refer to the connection of Picos hardware task

dependence manager and scheduler with the SMP in a SoC chip. Later, when we

test the heterogeneous task scheduling, we also need to connect numerous HW

functional accelerators with Picos and SMP in a MPSoC chip.

2 Runtime or programming model integration. It refers to the process that we iso-

late the TDG management and task scheduling in the software-only runtime, and

replace them with the hardware manager and scheduler. This is partly achieved by

developing the Picos API libraries.

3 OS integration. It refers to modify the fsbl, boot files and devicetrees to ensure that

Linux recognizes and is aware of the hardware platform that includes our custom

designs.

1.1.3 Main Contributions

The main contributions of our research can be summarized as follows:

• A high speed and energy efficient hardware task dependence manager. It accepts

newly created tasks and their dependences, constructs the TDG in hardware and

schedules those tasks to be executed, when they are ready, in any of idle threads

running in the SMP.
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• A novel hardware/software co-design supporting nested tasks. It is developed to

prevent potential system deadlocks when the hardware resources are fully used or

when internal memory conflicts appear in the Picos task dependence manager, thus

allowing the design to be more general purpose. To the best of our knowledge, this

is the very first time that a nested-task feature has been included, described and

functionally implemented in a hardware task dependence manager.

• A new heterogeneous task scheduling support in hardware. In a real system in-

cluding SMP and numerous other hardware execution units, tasks are scheduled to

a suitable destination and data movements are automatically managed to shorten

the total execution time of the application. This is realized by constantly tracking

the workloads waiting for each hardware component in the system, and scheduling

tasks to the component that has the least amount of waiting jobs and has the highest

priority. It does not require any profiling and the workloads are well balanced with

fine-grained tasks.

• A fully integrated and functional hybrid hardware/software runtime based on real

commodity hardware platforms. A State-of-the-Art task-based programming model

OmpSs is up and running with Ubuntu Linux, with our hybrid runtime. The base

hardware platforms are Xilinx Zynq-7000 series SoCs and Ultrascale+ MPSoCs,

which include the SMP threads, the Picos task-dependence manager and heteroge-

neous task scheduler, and numerous HW functional accelerators (HwAccs, used as

proof-of-concept heterogeneous hardware execution units).

• Detailed study of scalability and energy consumption for each Picos prototype, with

both synthetic and real applications. For the first and second prototype, beside all

the task-dependences being managed in Picos, all the tasks are scheduled to execute

in SMP. For the third prototype, all the tasks are scheduled to execute in both SMP

and HwAccs. All the performance and energy consumption results are compared

with a cutting-edge parallel task-based programming model.

• Visualization analysis of real application executions on real hardware, with tasks

executed in both threads and HwAccs. This gives insight on application execution,

Picos activities on both homogeneous and heterogeneous systems. This insight also

opens future directions on higher energy saving designs.

During the development process, there are other practical and more general gains that
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are worth mentioning. First, it offers insight on how to design from scratch a hardware ar-

chitecture and different layers of integration with other hardware, with software runtime,

and with high level OS such as Linux. Second, we realize that many hardware execution

units are kept busy-waiting when there is not parallelism to exploit. This leads to a huge

waste of energy. Thus, a future feature can be to use hardware to sleep/wake-up them to

achieve a higher energy efficient system without influencing performance. Finally, from

our experience, we conclude that the most beneficial design is a combination of the soft-

ware and hardware, as they both have their limitations and advantages. Indeed, with each

new advancement of technology, algorithms that were previous more suitable in software

can become more beneficial if implement in hardware, and vice-versa. Therefore, the

proper software/hardware combination will contribute to achieving a performance and

energy wise architecture.

1.2 Publications

In this section, we briefly summarize the publications derived from this research.

1 “Task dependences management hardware acceleration for task-based dataflow
programming models” [77], in Proceedings of the 3rd International BSC Doctoral

Symposium. 2015. 1st author. This paper describes the preliminary research and

results of our proposals.

2 “Performance Analysis of a Hardware Accelerator of Dependence Manage-
ment for Task-based Dataflow Programming models” [71], in ISPASS ’16: Pro-

ceedings of the IEEE International Symposium on Performance Analysis of Systems

and Software, 2016. 1st author. This paper describes our very first prototype Picos.

It is a major milestone as it built up the foundation architecture of our research. It is

a hardware task-dependence manager designed in VHDL, implemented and tested

in a Xilinx Zynq-7000 series SoC platform. This work has also been published and

presented in other places [76, 4].

3 “Picos, A Hardware Task-Dependence Manager for Task-Based Dataflow Pro-
gramming Models” [73], in HPCS ’17: Proceedings of the International Con-

ference on the High Performance Computing and Simulation, 2017. 1st author.

This paper decribes the preliminary research and results of our second prototype

Picos++.
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4 “General Purpose Task-Dependence Management Hardware for Task-based
Dataflow Programming Models” [72], in IPDPS ’17: Proceedings of the 31th

IEEE International Parallel and Distributed Processing Symposium, 2017. 1st author.

This paper describes our second prototype Picos++, which introduced a new fea-

tures for nested task support, allowing it to be a general-purpose hardware task-

dependence manager. It was designed in VHDL, implemented and tested in the

same SoC platform as our work. It is a fully operational system with integration in

hardware, runtime and Linux. Results of performance and energy consumption are

obtained during real application executed on real hardware system.

5 “Characterizing and Improving the Performance of Many-Core Task-Based
Parallel Programming Runtimes” [14], in IPDPS ’17: Proceedings of the 31th

IEEE International Parallel and Distributed Processing Symposium Workshops,

2017. 2nd author. This paper introduces a full implementation of a centralized

runtime manager DAST with automatic load balancing between the manager and

the workers. As mentioned earlier, the runtime integration requires the isolation of

task-dependence analysis from software and support for Picos APIs. The central-

ized software runtime described inside has been used to integrate with the Picos

prototypes.

6 “Hardware Heterogeneous Task Scheduling for Task-based Programming Mod-
els” [74], in The 2018 OpenMP Developers Conference (OpenMPCon), 2018 (ac-

cepted). 1st author. This paper mainly focuses on describing the runtime support

for heterogeneous task scheduling in the third prototype of Picos++, for task-based

programming models. Preliminary results with real applications are presented and

analyzed.

7 “Asynchronous Task Creation for Task-Based Parallel Programming Runtimes” [16],
in The 2018 OpenMP Developers Conference (OpenMPCon), 2018 (accepted).

2nd author. Although the runtime systems of task-based programming models have

the ability to manage different hardware accelerators, they employ a master/slave

model where only the threads can create tasks and the hardware accelerators are

only consumers, which eventually limits the system possibilities. This paper pro-

poses a general organization to allow the accelerators to interact with the runtime

in order to create tasks and synchronize with them.
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8 “Picos++: a Hardware Accelerated Runtime for Task-dependence Manage-
ment and Heterogeneous Task Scheduling” [75], in IEEE Transactions on Paral-

lel and Distributed Systems (TPDS), 2018 (submitted for review). 1st author. This

paper describes the third prototype, which introduced a new feature to support het-

erogeneous task scheduling and to automatically manage data movements among

different memories in hardware. It is a fully operational system in real hardware

in a Xilinx Ultrascale+ MPSoC platform. Results of performance and energy con-

sumption are obtained for real benchmarks executing on the Picos++ system with

up to 4 SMP threads and 15 HW functional accelerators. It has also been shown in

the RoMoL final workshop [5].

9 “Application Acceleration on FPGAs with OmPss@FPGA” [15], in the 2018

International Conference on Field-Programmable Technology (FPT) (accepted).

2nd author. This paper presents the OmpSs@FPGA toolchain, which extended

the OmpSs programming model with the support for automatically generating and

mapping HW functional accelerators in FPGA for functions annotated by specific

pragmas. Real applications such as Matrix Multiplication, Cholesky and N-Body

are used to evaluation this toolchain on a Zynq Ultrascale+ MPSoC.

1.3 Thesis Structure

The contents of this thesis are organized as follows:

Chapter 2 first provides a general review of several task-based programming mod-

els in literature, focusing on OpenMP and OmpSs. Then it remarks some of the most

representative architecture works that are related to this thesis.

Chapter 3 first introduces hardware infrastructure, focusing on how Picos works and

connects with other hardware execution units in the system. Then it shows the two runtime

systems used to evaluate the system mentioned. Afterwards it shows both the synthetic

and real benchmarks selected for the functionality and performance examination. Finally,

it presents the metrics for testing and evaluating our prototypes.

Chapter 4 presents our very first hardware prototype of Picos, which manages all

the task-dependences in hardware. To better explain the context, this chapter starts with

the introduction of the existing problems in the default software-only runtimes of task-

based programming models; followed by a top-to-bottom explanation of organization of

the first prototype Picos. Afterwards, we discuss experimental setup and benchmarks,
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present detailed performance and scalability studies of Picos, and analyze the results.

Chapter 5 describes a hardware/software co-design to support nested/multi-level tasks

with dependences. It extends the benefit of the task dependence management in the Pi-

cos++ system to a much larger set of applications. For applications with recursive al-

gorithms or libraries embedded with tasks, the nested task support greatly simplifies the

programming effort and improves nested parallelism. In this chapter, we also present and

analyze results of performance and energy consumption.

Chapter 6 proposes a heterogeneous task scheduling policy to effectively schedule

ready tasks to suitable hardware execution units with the least amount of active waiting

work and with the highest priority in the system. It also manages the corresponding

data movements among the shared memory and local memories. As a proof-of-concept

implementation, we have constructed systems including SMP, Picos++ and numerous

specialized HW functional accelerators for task execution.

Chapter 7 concludes this dissertation by remarking its main contributions and by pro-

viding a brief summary of the future work.
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Chapter 2
State of the Art

This chapter first gives an overview of the State-of-the-Art task-based programming mod-

els, focuses on OpenMP and OmpSs. Then, we take a look of numerous representative re-

lated works on hardware task-dependence management and heterogeneous task schedul-

ing in the literature.

2.1 Task-based Programming Models

Many task-based programming models have emerged in recent years to face the expected

complexity of future multicore, many-core and heterogeneous architectures. These pro-

gramming models conceive the execution of a parallel program as a set of tasks with

dependences among them.

In task-based programming models the programmer only has to express or define the

tasks and their dependences in the sequential code. With this information, the runtime

system manages the parallel execution of the tasks, taking care of scheduling tasks to

different cores and synchronizing them without any intervention from the programmer. In

order to manage the execution of the tasks the runtime system constructs a TDG, which is

a directed acyclic graph where the nodes are tasks and the edges are dependences between

them. Similarly to how an out-of-order processor schedules instructions, the runtime

system schedules a task on a core when all its dependences are satisfied, and when the

execution of the task finishes, its output dependences become ready for the successor

tasks.

OpenMP 3.0 [8] provides compiler directives to support basic tasking constructs, that

are extended with data dependences in OpenMP 4.0 [59], while OmpSs [36] extends

OpenMP 4.0 with additional directives to specify task priorities and special tasking con-

structs. The latest release of OpenMP 4.5 [2] and OmpSs [27] further provide pragmas
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to specify the types and number of instances of available hardware devices in the under-

lying system. These pragmas are also used to assist heterogeneous task (task that can

be executed in heterogeneous hardware units) scheduling and its coupled data movements

between different memories.

The Codelet model [90, 3] breaks applications into codelets (a similar concept as

tasks) with data or control dependences. A codelet is a (usually short) sequence of ma-

chine instructions that executes until completion. Once it is scheduled to execute, it cannot

be interrupted and migrated elsewhere. Each codelet is associated with a locale, which

gives a high-level description of available hardware components as a suggestion to where

it can be scheduled to execute. The Codelet model uses Codelets Graphs (CDG) to man-

age the execution orders. When all the data or control dependences of a codelet instance

are ready, it can be scheduled to execute. When a codelet finishes, it releases some re-

sources or produces some data items. The other codelets that are dependent on this fin-

ished one will then becomes ready and be scheduled.

StarPU [6, 69] is a runtime system that offers support for heterogeneous multicore

architectures. It supports task-based programming models. Applications submit compu-

tational tasks, with CPU/GPU implementations, and StarPU schedules these tasks and

manages associated data transfers automatically between accelerators and the main mem-

ory transparently. One of the important data structures in StarPU is task, by default task

dependencies are inferred from data dependency and they are managed by the runtime in

StarPU.

Others such as Sequoia [39] uses tasks to express the data movements among abstract

complex hierarchical memories that existed in the system. Each Sequoia task is an explicit

expression of data movement through the memory hierarchy. Tasks have their private ad-

dress space and the programmer organizes them hierarchically. Legion [10] programs are

decomposed in tasks that access data partitions and potential execution hardware compo-

nents manually specified by the programmer. Charm++ [52] is a C++ based asynchronous

message driven programming model where the programmer decomposes a program into

message-driven objects called chares. Chares are distributed among the processors and

the runtime system is in charge of sending messages to the chares to trigger the execution

of the code within them.

Intel TBB [64] is a C++ template library that implements a task execution model

where the programmer splits the serial code into tasks that have implicit control depen-

dences with their parents and child tasks. The latest release Intel TBB 4.4 introduces a
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flow graph feature with enhancements to specify concurrency, external communications,

and a composability layer to support heterogeneous computing.

Cilk [12] extends C and C++ with keywords to spawn and synchronize tasks, and

uses a simple fork-join model enhanced with work-stealing primitives to balance the load

efficiently. Vandierendonck et al. [82] proposed to extend Cilk with data dependences

between tasks.

The characteristics of task-based programming models make them very suitable for

current and future homogeneous and heterogeneous architectures. The main reason is

that these models allow the programmer to specify parallelism in an architecture-agnostic

way [80, 18, 60, 56, 57, 40], hiding from the programmer the complex architectural details

and enabling the same code to be executed in very different platforms. In addition,the

data dependences of task-based data-flow programming models can be used to program

not only shared memory multiprocessors but also heterogeneous architectures that require

explicit data transfer between address spaces.

2.1.1 OpenMP

OpenMP is the most commonly used programming model for shared memory multipro-

cessors. It allows to specify parallel constructs in C, C++ and FORTRAN using simple

and portable compiler directives. These directives are supported by the vast majority of

modern compilers and operating systems for shared memory multiprocessors. The core

elements of OpenMP are the directives to specify parallel regions, workload distribution,

data-environment management and thread synchronization.

OpenMP 3.0 uses a fork-join parallel execution model, where a single thread is used

in sequential regions and the execution branches off in parallel at designated points in

the program, specified by the programmer with the #pragma omp parallel direc-

tive. OpenMP also allows to specify how the work is distributed between threads in

a parallel region, either assigning independent blocks of code to each thread using the

#pragma omp section directive or distributing the loop iterations among threads

using the #pragma omp for directive. Loop parallelism is the prominent feature of-

fered by OpenMP 3.0.

Besides a lot of features provide for loop parallelism, OpenMP 4.0 officially intro-

duces the task dependences into the programming model. By using #pragma omp

depend(dependence-type: list), where the dependence-type is one of the

following as input (in), output (out), input and output (inout), applications can be ex-
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pressed as a collection of tasks with dependences. Nested task support requires syn-

chronization between parent and children tasks, this synchronization can be realized ei-

ther by implicit task dependences or by explicitly using taskwait. It also provides a set

of directives to instruct the compiler and runtime to offload a block of code to the de-

vice. Such as #pragma omp target map(to: variable, array-lists)

map(from: variable, array-lists), by combining with the depend clauses,

they can be used to schedule task and map variables/move data between the host and tar-

get devices, which can be SMP, GPU, FPGA etc. During the execution of tasks in target

devices, the host device has to start and wait for the execution.

OpenMP 4.5 introduces major features for task support. Task priority is added by

using #pragma omp task priority(priority-value) to support hints that

specify the relative execution priority of explicit tasks. Taskloop constructs are added to

support specially nestable parallel loops. It also continues the effort to add more features

and clarifications of the device constructs for offloading tasks and data mapping to differ-

ent devices. For example, by combining depend clauses and #pragma omp target

nowait, with map(to: variable, array-lists), further with map(from:

variable, array-lists), this allows the host thread to perform other work while

asynchronously waiting for the target region execution to complete.

The directives introduced by the programmer are processed by the compiler to gen-

erate parallel code. In this process the compiler arranges the code so that the parallel

regions are encapsulated in separate functions/tasks, it sets up the declaration of the vari-

ables according to its sharing attributes, and it adds function calls to the runtime system

in the points of the code where the parallelism is created, executed and synchronized.

When the code is executed the runtime system is in charge of managing the threads, tasks

and devices. For this purpose the runtime system provides routines to create threads, syn-

chronize them, and destroy them. In order to assign tasks to threads the runtime system

implements schedulers and work queues that support all the forms of parallelism allowed

by the OpenMP directives.

This coordinated effort between the compiler and the runtime system is what allows

OpenMP and also OmpSs in the following to generate parallel code and to manage the

parallel execution from simple directives. This model has been very successful because

it allows to exploit the capabilities of shared memory multiprocessors and heterogeneous

systems with a programming interface that is easy to use for programmers and portable

across many architectures and systems.
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2.1.2 OmpSs

The OmpSs programming model [27], developed by the Programming Models group at

Barcelona Supercomputing Center (BSC), is an effort to integrate different features from

the OpenMP standard and the StarSs programming model family. The name of OmpSs is

a combination of these two programming models.

Mercurium
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Figure 2.1: OmpSs operational flow

OmpSs inherits from OpenMP 3.0 the philosophy to develop parallel code: begin from

a sequential program and annotate candidate regions or functions in the source code with

certain directives, to guide the compiler on the transformation into a parallel program. The

difference and beneficial feature is that, instead of using a fork-join model as in OpenMP

3.0, OmpSs uses a thread-pool model. By using OmpSs pragmas, such as #pragma omp

task in(variable or array-lists), out(), inout(), applications are

abstracted as a collection of tasks, and the runtime tracks the inter-task dependences and

copies them into a ready task pool when all their predecessors are ready. Threads are
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free to acquire ready tasks for execution when they are idle. This approach is specially

beneficial when trying to accommodate irregular applications. For this reason, OmpSs

strongly influenced the OpenMP 4.0 releases [8].

Similarly, the nested task support can be realized either by implicit task dependences

or by explicitly using #pragma omp taskwait. Additionally, OmpSs task directive

allows the programmer to specify data dependences and to map the execution of cer-

tain tasks to different types of hardware devices. By using #pragma omp target

device(device-type-list), tasks of applications can be scheduled to execute in

different type of devices including SMP, FPGA, GPU, ..., etc. Optional clauses, for exam-

ple onto(accelerator-id) and num_instances(n), can be appending to the

previous directive when FPGA is used, to decribe the types and number of accelerators

that should be created and can be used at runtime. Optional clause like (copy_deps)

can be used to inform the runtime to also copy the data specified by the data dependences

between the host processor and the target devices.

OmpSs is composed of the Mercurium source-to-source compiler [9] and the Nanos++

runtime. As can be seen in Figure 2.1 [13], an OmpSs application is first compiled by

Mercurium which applies the source-to-source transformations and replaces annotations

by API calls to the Nanos++ runtime library. After that, the native compiler is used to

generate the object files, which are linked against the Nanos++ library to generate the

executable. When the application is executed in the system, the Nanos++ runtime creates

one Work Descriptor (WD) for each task. Each WD includes all the information required

to mange the task through its life time. It includes information such as task id (including

parent and child task id), all the memory addresses and directions of its dependences,

etc. The parent task contains the task-dependency graph of its children, this ensures that

only tasks from the same parent are dependent on each other (one of the definition in

OmpSs and OpenMP standard). In this way, the global order can be managed by a set

of distributed and hierarchical TDGs and is guaranteed because a parent always has a

super-set of all its children dependences.

An OmpSs task typically has six stages in the runtime. (1) Task creation, when the

WD is allocated and initialized; (2) Task submission, when the dependences of this task

are submitted to the task-dependency graph, the runtime computes its relationship with

others that arrived earlier and inserts it at the right place. (3) Task ready, when all its de-

pendences are resolved, the runtime schedules it to an idle thread. Otherwise it is (4) task

blocked. (5) Task finalization, when a task finishes execution, runtime checks whether
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there are any successors of this task and updates the readiness of their dependences. Fi-

nally (6) when there are no more successors, its WD is deleted by the runtime.

Our proposal is to use hardware to accelerate the task-dependence management and

heterogeneous task scheduling, therefore mainly the Dependence Management, Task

Scheduling and Data movement part in Figure 2.1 will be served by the hardware.

With the pragmas for different target devices both supported in OpenMP 4.5 and

OmpSs, there are different options for the communication between the host processors

and heterogeneous devices such as FPGA in this case.

OmpSs@FPGA [83] proposes different ways to communicate between processors and

FPGA. One of the proposals is to use FPGA as a master module, in which commands

(including tasks and dependence addresses) are sent to FPGA by the processors and all

the data movements are managed by the accelerators themselves.

OpenCL implementations [31, 47] use similar approaches for scheduling workloads

to FPGA as it uses for GPUs. In this case, there are four different types of memories that

the runtime may have to manage in the task execution. Host memory connects to the host

processor directly, global memory is shared between processor and FPGA, while local and

private memories are inside the FPGA. Data is stored in the host memory by default, to

schedule workloads and transfer data to the FPGA, the programmer has to allocate space

in global memory and issues write/read commands to copy data between host and global

memories, and from local memory to global memory. Different FPGA accelerators or

kernel instances can only communicate through the shared global memory. In OpenCL,

the data communication has to be 64-byte aligned, and is initiated by the processor and

will be performed using DMA transfers.

OpenARC is an implementation [55] that translates OpenACC applications into OpenC,

therefore it inherits the same communication approaches as described above with OpenCL

implementations. The difference is that it introduced two new features: kernel-pipelining

and dynamic memory-transfer alignment. The first one allows different FPGA acceler-

ators or kernels to communicate through the FIFO channels between them, this is faster

than to go through the global memory every time. The second one overcomes situations

when the data between host and device memories are not fully 64-byte aligned. Despite

that, all the communications are performed by DMA transfers and have to be managed by

the processor.

OpenMP 4.5 [2] has the standard with similar processor-FPGA communication ap-

proaches. There are some works [19, 68], similarly to OpenCL implementations, FPGA
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is treated as a passive accelerator, and all the communication is started by the host CPU

through DMA engines.

Using FPGA accelerators as slave modules (that rely on processors to perform data

movements) allows for simpler designs on the communication mechanism between the

processors and the accelerators. However, the overhead is large and only large amount

of data movements can be justified with such methodology. On the other hand, using

FPGA accelerators as master modules that can read/write memories on their own greatly

reduces the amount of works required from the processors, and ultimately improves the

data movement speed. In our proposal, the HW accelerators use a master mode for the

communication with the processors.

2.2 Related Hardware Proposals

There are several research works focusing on similar topics as addressed in this thesis.

This section shows some of the representative ones in the literature that have inspired us

on our research work. Some of those works focus on hardware support for task depen-

dence management and task scheduling. However, the programmer had to manage the

inter-task dependences. They were either studied with gem5 [11] or other simulators,

or were synthesized or even implemented in real hardware. Intel CARBON [54], Asyn-

chronous Direct Messages (ADM) [65] and Task Scheduling Unit [43] introduced hier-

archy hardware queue architectures to speedup task stealing and scheduling. Although

these works did not include task dependence analysis, their hierarchy hardware queues

are a really general-purpose and useful way for fast task scheduling, which can be used to

schedule tasks both to homogeneous or heterogeneous systems.

Video-oriented task scheduler [1] and Programmable Task Management Unit (TMU) [67]

were inspired by the works mentioned earlier. Besides with hierarchy hardware queues,

they added hardware support to accelerate task creation, synchronization and scheduling

for applications with specific dependence patterns found in video processing domains.

Multilevel Computing Architecture (MLCA) [20] introduces a novel multi-core architec-

ture for coarse-grained task parallelism for multimedia applications. The MLCA aug-

ments a traditional multicore architecture to serve as low level processing units (PU) with

a high level control processor (CP). The CP employs task queue, register renaming, out-

of-order execution to dynamically detect the inter-task dependences and schedule tasks

when they are ready. Although these works are specialized for video/multimedia applica-
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tions and coarse-grained parallelism, they share the common belief that hardware can be

used to accelerate task-dependence analysis and task scheduling more efficiently.

Swarm [50] uses the co-design of the execution model and micro-architecture to ex-

ploit ordered irregular parallelism in task-based parallel applications. It relies on spec-

ulative task execution and conflict detection to preserve dependences. Swarm requires

hardware support for speculation rather than for dependence management and uses either

a FIFO queue or a spatial scheduler fixed in the architecture [49]. Fractal [70] extends

Swarm to allow nested parallelism by means of task domains, that can be ordered or

un-ordered to avoid over-serialization.

F. Yazdanpanaha [89] proposed a task dependence manager architecture for task-based

dataflow programming models for fine-grained parallelism based on simulation results. It

inputs newly created tasks and their data dependences, constructs task-dependency graph

and schedules ready tasks dynamically to idle threads. E.Castillo [24] proposed a similar

hardware task-dependence manager, studied with gem5 simulator for design space explo-

ration. Both research works proved that using hardware for task-dependence management

can be beneficial for fine-grained parallelism. The difference is that the first work also be-

lieves in using hardware for task scheduling while the second one shows preference in

using software for task scheduling. In our opinion, the combination of both software and

hardware scheduling is beneficial depending on the hardware platform used.

Nexus# [32], Task Superscalar [88] were also proposed to accelerate task dependence

management in hardware for task-based dataflow programming models. They were both

coded in industrial standard hardware design language Verilog and VHDL. Task Super-

scalar was discontinued due to some design deadlocks, and inspired Picos as an early

example of a Runtime-Aware architecture [81, 23]. On the other hand, Nexus# was eval-

uated using traces of real applications. The performance results proved to be better than

using software alternatives. Our proposals have several new contributions in addition to

improve performance over Nexus#. They require less than half of the hardware cost,

add nested task support, allow the execution of a much larger range and general-purpose

applications, and finally also include heterogeneous execution support.

Task scheduling has been studied intensively and there are a large number of published

paper works. In the following, we present some of the representative ones that could be

combined with our proposals.

The Heterogeneous Earliest Finish Time (HEFT) algorithm [78] maintains a list of

tasks sorted in decreasing order of their upward rank. At each schedule step, HEFT as-
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signs the task with the highest upward rank to the processors that finishes the execution

of the task at the earliest possible time. The Critical-Path-on-a-Processor (CPOP) algo-

rithm [78] also maintains a list of tasks sorted in decreasing order as in HEFT, but in this

case it is ordered according to the addition of their upward rank + downward rank belong

to the critical-path. Both of them are static algorithms.

Kallia Chronaki [28, 29] proposed a criticality-aware task scheduler (CATS) and a

critical-path scheduler (CPATH), to dynamically assign critical tasks to fast cores in a

heterogeneous multicore and non-critical tasks to the slower cores in the system. The

first method considers critical tasks as tasks that are in a longer dependence chain; the

second approach is based on the first one, in addition with the consideration of task ex-

ecution time. Both of them prioritizing the newly-created tasks at runtime and updating

the criticality of tasks in the dynamic task dependency graph.

Judit Planas [62] described a scheduling policy where different implementations of

functions suitable for different hardware units are managed dynamically. Their policy

has two stages, first a training stage where the scheduler learns about the execution time

of each implementations in the system. On the second stage it tries to schedule the task

to the hardware unit that has an estimated earliest finish time. In our last proposal, we

include this concept for heterogeneous executions implying hardware accelerators.

2.3 Heterogeneous systems

There exist many heterogenous architectures. Some of the main representative examples,

types of accelerators used on those architectures, and software support for those architec-

tures are described in this section.

The Cell B.E. [51] is one of the first breakthrough heterogeneous multicore proces-

sors for HPC and multimedia workloads. The architecture consists of a general-purpose

core called Power Processor Element (PPE) and eight accelerator cores called Synergis-

tic Processor Elements (SPEs) connected through a high bandwidth NoC named Element

Interconnect Bus (EIB). PPEs have shared memory with a global address space, while

SPEs have their own private virtual and physical address spaces and are not coherent with

the rest of memories in the architecture. Each SPE can issue load and store instructions

only to its private memory and a DMA control unit is used to transfer data from or to the

rest of memories in the architecture and maintains the coherence with PPE. The SARC

architecture [63] is a heterogeneous architecture with clusters of master and worker cores.
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Similarly to the Cell B.E., the master cores are general-purpose cores responsible for run-

ning the OS, starting applications and spawning tasks to the worker cores. The worker

cores in charge of running the tasks have different ISAs and pipelines optimized for dif-

ferent applications. The Runnemede [21] is a modular and hierarchical architecture. The

basic module of the Runnemede is called block, which consists of a general-purpose core,

eight execution engines, an intra-block network. The Imagine [53] is a stream accelerator

for media processing. Its architecture consists of a microcontroller that stores VLIW in-

structions, eight arithmetic clusters with eight functional units each, a local register file,

and a 128 KB Stream Register File (SRF) as an array of memory. The Merrimac [33] is a

stream accelerator with a very similar architecture. It has twice the number of arithmetic

clusters with a different mix of functional units that are better suited for HPC workloads,

a correspondingly larger SRF.

General-Purpose Graphics Processing Units (GPGPUs) are accelerators designed to

execute massively parallel workloads very efficiently. These architectures have received

a lot of attention during the last years, specially the ones manufactured by NVIDIA, Intel

and AMD. GPGPUs are often attached to a general-purpose processor (called the host

processor), and they have different address spaces1. The host processor is in charge of

running the OS, starting applications and executing the sequential parts of the applica-

tions. The GPGPU executes those parts of the applications that expose a high degree of

parallelism, which are encapsulated in kernels. When the application encounters a kernel,

the host processor transfers the code of the kernel and the data accessed by the kernel

to the GPGPU, triggers its execution, and transfers the data back to the main memory if

needed.

Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are based

around a matrix of configurable logic blocks (CLBs) connected via programmable inter-

connects. They can be programmed to desired applications or functionality requirements

after manufacturing. This feature distinguishes FPGAs from Application Specific Inte-

grated Circuits (ASICs), which are custom manufactured for specific design tasks. FP-

GAs especially from Xilinx and Intel (formerly Altera) are widely used in many different

domains like Aerospace and Defense, Media, Automotives, Data Center, Medical and

High Performance Computing.

1Architectures consist of host processors and GPUs usually have separate physical addresses, at least
for discrete GPUs with their own physical memory. Integrated GPUs often shared physical memory but had
no efficient way to access CPU’s memory space, but with latest ones (especially from AMD) supporting
virtualization and address translation for virtual memory, the border has become blurred.
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Multiprocessors plus FPGAs are revolutionary hardware architectures that are getting

more popular and successful in recent years. They are able to provide high performance

at a low energy cost as the other heterogeneous architectures mentioned earlier. They

are also flexible to allow reconstructing different heterogeneous system through repro-

gramming, with a much faster developing period and a much lower cost. Top hardware

and software vendors have started making it a standard to incorporate FPGAs into their

compute platforms for performance and power benefits. For example, Xilinx Zynq Ul-

traScale+ MPSoC series [86], which offer up to 4 ARM A53 cores for general-purpose

computing, includes FPGA logic for customer functions. Intel’s new Altera-powered

Stratix-10 SoC Chips [48] have a similar architecture. IBM Coherent Accelerator Pro-

cessor Interface (CAPI) [44] for POWER8 Systems provides an easy-to-use API to attach

custom acceleration engines to the coherent fabric of the POWER8 chip. IBM FAbRIC

POWER8+CAPI system is a cluster of several x86 servers and nine POWER8 servers.

The x86 nodes serve as the gateway node and build machines for running FPGA tools.

Each POWER8 node is a heterogeneous compute platform equipped with three acceler-

ating devices: a Nallatech 385 A7 Stratix V FPGA adapter, an Alpha-data 7V3 Virtex7

Xilinx-based FPGA adapter and a NVIDIA Tesla K40m GPGPU card. FPGA boards are

CAPI-enabled to provide coherent shared memory between the processor and accelera-

tors.
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Chapter 3
Methodology

This chapter describes the experimental methodology followed in this thesis. The first

section describes the development infrastructure, focusing on how Picos works with other

hardware devices. In addition, the two runtime systems used to evaluate the system are

described. The second section shows both the synthetic and real benchmarks, with their

main characteristics and the setup employed in the experiments to execute them. Finally,

the third section defines the metrics used to evaluate the proposals of this thesis: task

and dependence repetition rate, performance, hardware resource utilization and energy

consumption.

3.1 Development Infrastructure

Picos aims at accelerating task dependence management and heterogeneous task schedul-

ing for task-based programming models in order to overcome the software-only runtime

overheads for fine-grained parallelism and heterogeneity.

Figure 3.1 shows a simple illustration of how a hardware architecture with Picos inside

could look like. The left side of the figure shows how Picos is connected to threads, N

different HW functional accelerators and some other types of hardware. Picos receives

new tasks from threads and manages all the task dependences; when a task is deemed

ready, Picos sends it to be executed in either threads or in other hardware devices; finally,

all the finished tasks are sent back to Picos to update its internal task dependency graph.

On the right side, one of the hardware platforms selected for prototyping Picos is shown.

This hardware platform is called the AXIOM board1, it includes 4 ARM Cortex-A53

cores and a FPGA for custom functions. When we map the Picos system on top of the

platform, the software part of the runtime and the OS operate inside the ARM cores. The

1Zynq Ultrascale+ based board designed and developed under AXIOM european project[66].
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Figure 3.1: A general view of Picos and other hardware devices

Picos hardware, its communication interconnection and the HW functional accelerators

reside in the FPGA part.

In the following sections, first the hardware platforms, the design tools and languages

selected are described. Then, the HW functional accelerators shown in Figure 3.1 are

explained along with their connection to the system; Afterwards, the two runtimes - the

baseline software-only and the Picos runtime - operating on top of our system are shown.

3.1.1 Design Tools and Languages

The different prototypes of Picos have been coded in VHDL (VHSIC Hardware Descrip-

tion Language), while the communication logic for Picos and the HW functional acceler-

ators have been coded with C++ with Xilinx High-Level Synthesize (HLS) directives.

VHDL together with Verilog are the two most widely used hardware description lan-

guages used in electronic design automation to describe digital and mixed-signal systems

such as field-programmable gate arrays (FPGAs) and integrated circuits (IC), in both aca-

demic and industrial domains.

High-Level Synthesis (HLS) directives is an effort from Xilinx to facilitate the pro-

gramming for FPGA-based designs. Instead of using low-level HDL languages, pro-

grammers can design certain circuits by adding HLS directives into C/C++ source code,

allowing them to be transformed into VHDL/Verilog codes. It is convenient and time sav-

ing for offloading mathematic functions and managing communication networks between

processors and custom designs.

In this thesis, Xilinx Vivado Design Suite 2014.4 was used for developing the first

prototype of Picos, version 2015.4 was used for developing the second prototype, and
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Table 3.1: Main characteristics of Zedboard and the AXIOM board
Platform Zedboard AXIOM

Main Chip XC7Z020 XCZU9EG-FFVC900

SMP
Core count 2 ARM Cortex-A9 4 ARM Cortex-A53
Core Frequency 667MHz 1.1GHz
L1/L2 Cache 32KB/512KB 32KB/1MB

FPGA
LUTs 53,200 274,080
FFs 106,400 548,160
BRAM_36Kb 140 912
DSP(18x25 MACCs) 220 2,520
FPGA Frequency 100MHz 50 to 300MHz

Main memory 512MB DDR3 4GB DDR4

version 2016.3 was used to design and synthesize the third prototype of Picos system.

3.1.2 Hardware Platforms

Two main hardware platforms have been used to develop and evaluate different proto-

types of Picos. The common characteristic among these platforms is that they all include

general-purpose processors where the OS and software runtime can operate, and a FPGA

part where Picos and many other hardware accelerators can be configured. In addition,

these hardware platforms offer tight integration between the processor and the FPGA

through AXI interconnection network, which is very suitable for our user case for fast

and small amount of data exchange pattern.

Table 3.1 summarizes the main specifications of these hardware platforms. Each plat-

form contains a main chip and a main memory. Each main chip includes two main parts:

SMP and FPGA resources.

The first hardware platform shown is Xilinx Zedboard[7], it has a Zynq-7000 series

SoC chip XC7Z020 [85] which includes 2 ARM Cortex-A9 cores (operating at 667MHz)

with a shared main memory of 512MB DDR3 and a FPGA. By default, the ARM cores

and FPGA are not connected. However, users are free to design the interconnection net-

work and communication schemes for connecting custom designs to the dual ARM cores,

in addition to the main memory. We obtained this platform in 2015, and on top of it we

built and tested the first and second prototype of Picos.

The second hardware platform is the SECO AXIOM Board [66]. When compared to

the previous one, it has some exciting new features. First, it has a Zynq Ultrascale+ MP-

SoC Chip XCZU9EG-FFVC900 [86] which includes 4 ARM Cortex-A53 cores operating

at a higher core frequency 1.1GHz than only 2 ARM Cortex-A9 operaing at 667MHz.

Second, it has a much bigger FPGA and main memory. This allows the development of
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hardware architectures that includes Picos and significant number of hardware accelera-

tors to explore highly heterogeneous systems. In this board, we also tested out our designs

with several choices of FPGA operating frequencies ranging from 50 to 300MHz. Finally,

it has dedicated chips [45] for measuring the power consumption in real time during ap-

plication executions. We obtained this platform in late 2016, on top of which we built and

tested the third prototype of Picos.

3.1.3 HW Functional Accelerators

The HW functional accelerators (HwAccs) are designed in order to form highly hetero-

geneous systems, allowing tasks to be executed in different hardware devices. On one

hand, they free us from the limited number of cores available in the existing boards and

allow to construct highly diversified hardware structures to test Picos. On the other hand,

they offer insight on how to integrate Picos with other types of hardware such as different

processors, FPGA accelerators, and others as GPU. Finally, with the continuous advance

in FPGA and FPGA+CPU technology, they can be also be seen as an alternative way to

replace traditional processors for high performance and low power computing.

In this thesis, we annotated the C code tasks with High-Level Synthesis (HLS) direc-

tives to design different HwAccs. They are highly related to the applications, therefore a

different HwAcc is generated for each different function in the applications.

Listing 3.1 shows an example of a functional accelerator that computes the tile matrix

multiply (Matmul block) of a submatrix A per another submatrix B and adds the result in

C. With this code, a HwAcc for Matmul block function with submatrices of size 32x32

(block size 32x32) can be generated. Afterwards, it can be integrated with Picos and the

ARM cores.

There are three important sections in the code. First, the function interface definition

from Line 1 to Line 8. It indicates that this function has three interfaces: FIFO interfaces

readyTask and finishTask, and a AXI memory-mapped interface data. Second,

the definition part for internal memory to hold matrices A, B, C from Line 10 to Line 13.

At last, the third section is the actual funtional body part. In this section, this matmulBlock

HwAcc first reads the addresses of the three matrices A, B and C, in the main memory.

Then, three memcpy statements are used to read the submatrices using previous addresses.

Afterward the matrix multiply computation is performed, and a memcpy is used to write

the result submatrix C to main memory. Function matmulBlock is not shown here, but the

details of the code are explained in Chapter 6, Section Background.
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Listing 3.1: matmulBlock function with HLS directives for Picos++

1 vo id matmulBlockWrapper ( h l s : : s t r eam < u i n t 3 2 _ t > &readyTask , f l o a t * da t a , \

2 u i n t 3 2 _ t * f i n i s h T a s k ) {

3

4 / / d e f i n i t i o n o f i n t e r f a c e s

5 # pragma HLS i n t e r f a c e a p _ c t r l _ n o n e p o r t = r e t u r n

6 # pragma HLS INTERFACE m_axi p o r t = d a t a

7 # pragma HLS INTERFACE a p _ f i f o p o r t = f i n i s h T a s k

8 # pragma HLS INTERFACE a p _ f i f o p o r t = readyTask

9

10 / / d e f i n i t i o n o f i n t e r n a l memory f o r h o l d i n g t h e m a t r i c e s b l o c k s A, B , C

11 f l o a t A[ 3 2 ] [ 3 2 ] ; f l o a t B [ 3 2 ] [ 3 2 ] ; f l o a t C [ 3 2 ] [ 3 2 ] ;

12 s t a t i c u i n t 3 2 _ t t a s k I n f o [ 6 ] ;

13 s t a t i c u i n t 3 2 _ t taskID_h , t a s k I D _ l , p icos ID , addrA , addrB , addrC ;

14

15 / / r e a d a d d r e s s e s and ID i n f o r m a t i o n from P i c o s

16 S t r e a m I n D a t a ( t a s k I n f o , readyTask , 6 ) ;

17 t a s k I D _ h = t a s k I n f o [ 0 ] ;

18 t a s k I D _ l = t a s k I n f o [ 1 ] ;

19 p i c o s I D = t a s k I n f o [ 2 ] ;

20 addrA = t a s k I n f o [ 3 ] ;

21 addrB = t a s k I n f o [ 4 ] ;

22 addrC = t a s k I n f o [ 5 ] ;

23

24 / / copy d a t a o f m a t r i c e s A, B , C from main memory t o FPGA i n t e r n a l memories

25 memcpy (A, ( c o n s t f l o a t * ) ( d a t a + addrA / s i z e o f ( f l o a t ) ) , 1024* s i z e o f ( f l o a t ) ) ;

26 memcpy (B , ( c o n s t f l o a t * ) ( d a t a + addrB / s i z e o f ( f l o a t ) ) , 1024* s i z e o f ( f l o a t ) ) ;

27 memcpy (C , ( c o n s t f l o a t * ) ( d a t a + addrC / s i z e o f ( f l o a t ) ) , 1024* s i z e o f ( f l o a t ) ) ;

28

29 / / compute

30 matmulBlock (A, B , C ) ;

31

32 / / copy d a t a o f m a t r i c e s C from FPGA i n t e r n a l memory back t o main memory

33 memcpy ( ( c o n s t f l o a t * ) ( d a t a + addrC / s i z e o f ( f l o a t ) ) , ( c o n s t f l o a t * )C , 1024* s i z e o f ( f l o a t ) ) ;

34

35 f i n i s h T a s k [ 0 ] = t a s k I D _ h ;

36 f i n i s h T a s k [ 1 ] = t a s k I D _ l ;

37 f i n i s h T a s k [ 2 ] = p i c o s I D ;

38 }

The HW functional accelerators used in Picos and the software-only runtime are

slightly different. In the Picos runtime, the HwAccs receive a ready task from and send

back a finished task to Picos, therefore simple FIFO interfaces are generated for those

HwAccs described earlier. However, in the software-only runtime, HwAccs exchange

ready and finished tasks with the ARM cores and therefore more complex AXI Stream

interfaces have been used for connecting to ARM cores.
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3.1.4 Operating System Support

The Linaro Embedded Linux OS with kernel version 3.19 has been used to operate on

Zedboard, and the Ubuntu Embedded Linux OS with kernel version 4.19 has been used

to operate on the AXIOM board. Picos and HW functional accelerators memories are

mapped into the global address space, so Linux can recognize and interact with them. To

successfully boot Linux in these hardware platforms, there are many steps to prepare after

generating our custom designs, these steps can be found in Xilinx wiki pages.

3.1.5 Runtime Systems

Two runtime systems have been employed to manage the parallel execution of the appli-

cations when using the OmpSs programming model. One is the original software-only

runtime Nanos++, and the other is the Picos accelerated runtime.

The Nanos++ [36] runtime is used as the baseline software-only runtime in this thesis.

It natively supports the OpenMP task directives and the additional tasks constructs pro-

vided by OmpSs. As mentioned earlier in Chapter 2.1, an OmpSs task has typically six

stages in the runtime. These stages are task creation, submission, ready, blocked, final-

ization and worker descriptor deletion. During task submission, the new task and all its

dependences are submitted from the thread to the shared task dependency graph (TDG)

in the runtime, and the runtime computes its relationships and inserts it in the right place.

During task ready, the runtime schedules it to an idle thread for execution. During task

finalization, when a task finishes execution, the runtime checks whether there are any

successors of this task and updates the readiness of their dependences. These steps are

slightly different in the Picos runtime.

Picos accelerated runtime is built on top of a modified implementation of Nanos++ [14],

with the TDG management and task scheduling performed in hardware instead of soft-

ware. In the Picos runtime, the task submission, ready and finalization are decoupled to

be completed by the cooperation of both software and hardware. During task submis-

sion, the new task and all its dependences are sent directly to Picos either synchronously

(described in Chapter 4) or asynchronously (described in Chapter 5). Then this task sub-

mission function returns and Picos tackles the computation and insertion of this task into

the TDG in hardware. When a task is ready, Picos writes it into the main memory, then

during task ready, the runtime simply checks if there are any tasks that are in the ready

task pool in the main memory and dispatches them to the threads. Finally, during task
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finalization, when a task executed in a thread finishes, it is sent directly to Picos either

synchronously or asynchrously, and Picos updates and wakes up the successors. In order

to perform this, a set of Picos APIs for Picos communication are embedded inside the

Nanos++ libraries. By this way, the Picos runtime is transparent to application or even

runtime programmers. The most important Picos APIs are shown below. The Picos APIs

have evolved from the first to the third prototype, so there are some small technical differ-

ences between the different versions, but the following ones are representative and show

the main common ideas. More details specified to each prototype can be found in Chapter

4, 5 and 6.

1 picosInitialize(unsigned int buffersSize); This function is used

to initialize Picos with the size of the communication buffers that are going to be

used to store the tasks. It includes allocating circular buffers for tasks and sending

their addresses to Picos.

2 picosShutdown(); This function is used to shutdown Picos, including HW re-

seting and deallocating all the communication buffers allocated in the initialization.

3 picosSendNewTask(const *ptr task); This function writes the task and

dependences information of a new created task into the new task buffer.

4 picosStatSendNewTask(); This function checks if a new task can be sent to

Picos through the new task buffer.

5 picosStatGetReadyTask(); This function checks if there is an available

ready task in the ready task buffer.

6 picosGetReadyTask(const *ptr task); This function retrieves a ready

task from the ready task buffer to the ready tasks pool for idle threads.

7 picosFinishTask(unsigned int taskHandler); This function puts

the task information of a finished task into the finished task buffer.

8 picosStatFinishTask(); This function checks if a finished task can be sent

to Picos through the finished task buffer.

9 picosSendExecTask(const *ptr task); This function puts the task in-

formation of a ready task into the bypass task buffer.
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10 picosStatSendExecTask(); This function checks if a ready task can be sent

to Picos through the bypass task buffer.

11 setRegister(size_t id, uint32_t val); This function sets the can-

didate register in Picos.

12 getRegister(size_t id); This function reads the value of the candidate

register in Picos.

13 picosPrintRegisters(); This function prints out all the debugging register

values from Picos.

3.2 Benchmarks

This section shows the synthetic and real benchmarks[25, 79] that are specifically con-

structed and selected to show the capabilities of the different prototypes of the Picos

system.

3.2.1 Synthetic Benchmarks

A brief description of the synthetic benchmarks follows. They have been carefully con-

structed to test the capabilities of the Picos system.

TestFree creates N tasks with M dependences. Each task has the same execution

time T and all of them can be executed in parallel (all tasks are independent of each

other). This benchmark is designed to illustrate the maximum processing capacity of

the three prototypes of Picos, as it has the maximum parallelism among all the synthetic

benchmarks.

TestChain creates N tasks with M dependences, each of a execution time T. Each

task is the consumer of the previous task, and the producer of the next task. This bench-

mark is designed to show the worst case, as it has no parallelism at all and suffers the

communication latency for offloading task dependences to hardware.

TestNested creates 16 parent tasks. The first 15 parent tasks have 2 dependences per

task but they are independent from each other. Each parent task creates an inout chain of

M child tasks, each child task can be configured to create it own nesting tasks. This inout

chain is implemented by using the first dependence of each parent. The 16th parent task

has 15 dependences that depend on all the previous 15 parent tasks by using their second
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(a) Test-1P10C (b) Test-10P1C (c) Test-10P10C

Figure 3.2: Task dependence graphs of Test-1P10C, Test-10P1C and Test-10P10C

dependence. This benchmark with configurable nesting levels of tasks and configurable

child task per parent is constructed to test the nested task support.

Test-1P10C creates N sets of 11 tasks. For each set, the first task is a producer task

which has 10 dependences per task, the following 10 tasks are consumers that depend

on each dependence of the producer task. Each task has the same execution time T. To

facilitate the understanding of this benchmarks, we show the dependence relationships in

Figure 3.2a.

Test-10P1C creates N sets of 11 tasks. For each set, the first 10 tasks are producers

that have 1 dependence per task, the 11th task is a consumer with 10 dependences that

depends on the previous 10 tasks. Each task has the same execution time T. The task-

dependency graph is shown in Figure 3.2b.

Test-10P10C creates N sets of 20 tasks with 10 dependences per task. For each set,

the first 10 tasks are producers with 10 output dependences each; the second 10 tasks

are consumers where each task depends on all the first 10 tasks. Each task has the same

execution time T. The task-dependency graph is shown in Figure 3.2c.

These last three synthetic benchmarks have been constructed to show the processing

capability of the Picos designs for common complex dependences with different paral-

lelism between TestFree (total parallelism) and TestChain (no parallelism).

3.2.2 Real Benchmarks

A representative set of real benchmarks in scientific computing and video/media decod-

ing [25] [79] have been selected to show the abilities of task-dependence management,

nested task support, and heterogeneous task scheduling in the Picos system during real

executions. A brief description of their functionality follows:
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Gauss-Seidel Heat is an iterative Gauss-Seidel solver for heat distribution.

LU Factorization decomposes an m × n matrix (m >= n) A = LU , with L unit

lower triangular (m× n) and U upper triangular (n× n).

Sparse LU performs a LU decomposition over a square sparse matrix.

Cholesky Factorization is a decomposition of a Hermitian, positive-definite matrix

into the product of a lower triangular matrix and its conjugate transpose, as computes A

= LL’, with A an n× n matrix and L lower-triangular.

H264dec is a high performance H.264 video decoder, a video pedestrian_area.h264 is

selected as input.

Multisort is a variant of the Mergesort, which sorts the input arrays using the divide

and conquer method.

Matmul is matrix multiplication. It calculates the multiplication of two matrices C =

AB.

Detailed configurations such as problem size and block size will be described in later

chapters including evaluations of performance and energy consumption.

Both synthetic and real benchmarks have been compiled with the Mercurium source to

source compiler, which translates the original C/C++ code of the benchmarks with prag-

mas for the task annotations. During execution, they invoke functional calls to either the

Nanos++ runtime or the Picos++ runtime, used for the task-based programming model.

The resulting code is compiled with cross compiler arm-linux-gnueabihf-gcc-4.5 or -5 for

ARM 32bits (Zedboard) and arch64-linux-gnu-gcc-4.5 or -5 for ARM 64bits (AXIOM),

with -O3 flags on when the applications are running on ARM cores only/SMP-only, with

-O22flags on when the applications are running on heterogeneous hardware.

3.3 Metrics

In this thesis, we aim at developing a hardware accelerated runtime Picos, which could

improve the software-only runtime overheads especially on task dependence analysis,

nested task support and heterogeneous task scheduling. In order to examine and evaluate

its functionality and capability, four common metrics are selected to be used with different

benchmarks. These four metrics are task and dependence repetition rates, performance,

hardware resource consumption, and energy cost.

2O2 flag is used in this case because with O3 the compiler may emit some aarch64 instructions that are
not valid when dealing with non-cacheable memory.
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The task and dependence repetition rate are shown in cycles. They are measured

first for the hardware manager only without any integration, and then repeated with the

communication cost, and the runtime and OS overheads. This metric aims to show the

exact processing abilities of Picos and also to give a general idea of the precise cost of

Picos if it is intended to be integrated with different communication connection networks,

with other runtimes or operating systems.

The performance is evaluated mainly with speedups, obtained by dividing the execu-

tion time of the sequential version by that of the parallel execution of the applications.

Since the objective of this research is to show that the Picos hardware runtime can reduce

the overheads caused by the default software-only runtime, all the speedups are obtained

by using both the Picos runtime and a cutting-edge software-only one. Furthermore, for

different prototypes different applications were selected in order to focus on examining

the different capabilities of the hardware runtime. For example, for the first prototype,

benchmarks with different and complex dependence patterns have been selected to show

its task-dependence analysis ability. For the second prototype, special benchmarks have

been selected to show the nested task support feature. Finally for the third prototype, be-

sides the two purposes mentioned, additional benchmarks have been selected to show the

heterogeneous task scheduling benefit.

In addition, to design such a hardware architecture, the hardware cost is without doubt

a very important factor. Therefore all the prototypes shown in the thesis are presented to-

gether with their hardware cost. During the development, both the speed and area are

important to consider when it comes to choose between different implementation meth-

ods.

Another goal of the Picos system is to be energy efficient. Energy is related closely

to both the speed and area of the design. Therefore we measure the energy consumption

of each application execution, and compare them with the software-only runtime and

sequential executions.

These are the four main metrics used to evaluate the proposals of this thesis, detailed

analyses are provided to explain the results showed in each chapter. Finally, note that the

designs shown in this thesis are specific implementations based on FPGA. They can be

implemented at a higher speed (operate at a higher frequency) by using more hardware re-

sources, or the other way around, the presented designs show a good compromise between

all these factors. Naturally, an ASIC implementation of the same designs would have a

much higher operating frequency and a much smaller hardware cost as could be proved
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by using exactly the same designs in different hardware design tools, but this aspect is out

of the scope of this thesis.
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Chapter 4
Task Dependence Manager -First prototype

Task-based programming models [59, 27, 3, 69, 39, 10, 52, 64, 12] are a very appeal-

ing approach to program multicore and many-core architectures as they are very simple

to use yet very powerful. In these programming models the programmer exposes the

available parallelism of an application by splitting the code in tasks and by specifying

the data and control dependences between them. They are powerful as they are able to

obtain high performance for a wide range of applications with a simple and clear set of

annotations. With those annotations the runtime system manages the parallel execution

of the workload, schedules tasks to available threads and synchronizes them. In addition,

it decouples the application from the hardware platform, by applying optimizations such

as locality-aware scheduling or data prefetching at the runtime system level in a generic

and application-agnostic way [80, 22].

However, there are non-trivial disadvantages of their default software-only runtimes

that prevent the exploitation of fine-grained parallelism. In theory, with fine-grained tasks

within applications there is more parallelism to be exploited and this is easier to be bal-

anced, thus leading to a higher performance. However, fine-grained parallelism usually

does not lead to higher performance [71] and instead, task-based programming model be-

haviour is better exploiting coarse-grained parallelism in the applications. One of the main

reasons is the software-only runtime system overhead, especially task dependence man-

agement, which increases significantly when exposed to a large amount of fine-grained

tasks. With smaller sizes, there are much more tasks to be inserted into the task de-

pendency graph. Indeed, there is much less time for the insertion as such tasks finish

execution much faster. Additionally, threads can have a lot of contention when updating

the aforementioned task dependency graph.

Figure 4.1 shows the speedup of OmpSs applications with a State-of-the-Art software-

only runtime. Y-axis shows the speedup achieved when using task-based parallelism in
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Figure 4.1: Speedup of OmpSs applications with software-only runtime with 12 threads.
All the applications are with a fixed problem size 2Kx2K.

the applications: Heat, Lu, Sparse Lu and Cholesky, compared to their sequential code.

X-axis shows the task granularity. In principle, the smaller the task size the more po-

tential parallelism and easier load balancing. However, the speedup starts to rise at the

beginning and then fall at the moment when the runtime overheads overtake the benefit of

parallelism.

To overcome this deficiency and improve the performance, a straightforward and ef-

fective way is to reduce the software-only runtime overhead. Note that reducing the task

creation overhead is important, nonetheless accelerating the task and dependence manage-

ment is far more crucial [37, 14]. Task Superscalar [38] was proposed to accelerate task

and dependence management using hardware. Its first VHDL prototype simulation analy-

sis using ModelSim demonstrated high potential [88] by employing inter-task dependence

analysis, dependence renaming and out-of-order execution. However, its straightforward

hardware implementation presented unresolved deadlocks due to queue saturation and

memory capacity. A new design called Picos [87] was proposed after a design space ex-

ploration using a simulator in C language to solve the Task Superscalar deadlocks and, in

addition, to improve its performance and hardware resources. In this chapter, we present a

hardware accelerator for task dependence management for task-based programming mod-

els for fine-grained parallelism. To the best of our knowledge, this first Picos prototype

was the first sucessfully hardware task dependence manager implemented and integrated

in a real system, and in particular, in an embedded system with an ARM-based SMP and

a FPGA.

The main contributions of this chapter can be summarized as follows:
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• A design exploration of different configurations of Picos with the objective of eval-

uating the best design to have the best task and dependence repetition rate.

• A proof-of-concept of functional hardware implementations for all the Picos con-

figurations analyzed. All of them have been implemented on a Zynq 7000 SoC.

• Performance evaluation of all the hardware designs presented. This evaluation in-

cludes scalability for synthetic and real applications, resource consumption, and

comparison to the current software runtime library of OmpSs.

4.1 Background

4.1.1 Task-based Programming Model

OpenMP provides a powerful way of annotating sequential programs with directives to

exploit heterogeneity and task parallelism. For example in C/C++ language: #pragma

omp task depend(in: ...) depend(out: ...) depend(inout: ...)

is used to specify a task with the direction of its data dependences (scalars or arrays). Im-

plicit synchronization between tasks is automatically managed by dependence analysis,

and explicit synchronization is managed by using #pragma omp taskwait, which

makes a thread wait until all its child tasks finish before it can resume the code execution.

We show an example of multisort source code with OpenMP annotations in List-

ing 4.1. Each multisort task instance can create four child multisort tasks as shown in

lines 5-12 and three child merge tasks as shown in lines 14-19. The taskwait ensures

that the calling multisort task (parent) has to wait for all its child tasks to finish before it

can end.

When the compiler finds a task annotation in the program it outlines the next statement

and introduces a runtime system call to create a task (represented as a Task Descriptor).

At execution time, the runtime system manages task creation, computes task dependency

graph, and schedules tasks when they can be executed because all their dependences are

ready.

4.1.2 Software-only Runtime Overhead

OmpSs is a forerunner of OpenMP. It allows programmers to transform a sequential pro-

gram into a parallel version with small effort, meanwhile ensures high performance with
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Listing 4.1: multisort with OpenMP directives
1 vo id m u l t i s o r t ( s i z e _ t n , T d a t a [ n ] , T tmp [ n ] ) {
2 i n t i = n / 4 L ; i n t j = n / 2 L ;
3 i f ( n < CUTOFF) { s e q u e n t i a l _ s o r t ( . . . ) ; }
4 e l s e {
5 # pragma omp t a s k depend ( i n o u t : d a t a [ 0 ] , tmp [ 0 ] )
6 m u l t i s o r t ( i , &d a t a [ 0 ] , &tmp [ 0 ] ) ;
7 # pragma omp t a s k depend ( i n o u t : d a t a [ i ] , tmp [ i ] )
8 m u l t i s o r t ( i , &d a t a [ i ] , &tmp [ i ] ) ;
9 # pragma omp t a s k depend ( i n o u t : d a t a [ j ] , tmp [ j ] )

10 m u l t i s o r t ( i , &d a t a [ j ] , &tmp [ j ] ) ;
11 # pragma omp t a s k depend ( i n o u t : d a t a [3L* i ] , tmp [3L* i ] )
12 m u l t i s o r t ( i , &d a t a [3L* i ] , &tmp [3L* i ] ) ;
13
14 # pragma omp t a s k depend ( i n : d a t a [ 0 ] , d a t a [ i ] ) depend ( o u t : tmp [ 0 ] )
15 merge ( i , &d a t a [ 0 ] , &d a t a [ i ] , &tmp [ 0 ] ) ;
16 # pragma omp t a s k depend ( i n : d a t a [ j ] , d a t a [3L* i ] ) depend ( o u t : tmp [ j ] )
17 merge ( i , &d a t a [ j ] , &d a t a [3L* i ] , &tmp [ j ] ) ;
18 # pragma omp t a s k depend ( i n : tmp [ 0 ] , tmp [ j ] ) depend ( o u t : d a t a [ 0 ] )
19 merge ( j , &tmp [ 0 ] , &tmp [ j ] , &d a t a [ 0 ] ) ;
20 # pragma omp t a s k w a i t
21 }
22 }
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Figure 4.2: Shared task dependency graph access

applications by using coarse/medium granularity tasks. The OmpSs runtime (Nanos++)

creates tasks, manages the inter-task dependences through constructing task-dependency

graph, and enforces the correct task execution order. The task dependency graph is a

shared memory structure that all threads in the system update concurrently whenever a

task is created or once it is finished.

Figure 4.2 shows the runtime operational flow. The threads attempt to update the task

dependency graph when they have a newly created task (red circle) or a finished execution

one (black circle). When a new task arrives, its dependences are compared to those of all

the earlier arrived tasks to determine its predecessors; when a finished task arrives, its

dependences are used to update all its successors. Once all the dependences of a task

are ready (green circle), it is copied to the ready pool and scheduled to the idle threads.
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In the case of fine-grained parallelism, the number of tasks to be created increases and

also, the task execution time is shorter. Those two aspects may impact the size of the task

dependency graph, the contention inserting and updating it, and consequently, may lead

to a performance degradation [71].

In addition, to ensure correctness the updates are protected with graph locks and only

one thread can update the task graph at a given time. Once a thread gains a lock, several

actions should be performed before it finishes its work and then it can release the lock so

that another thread can obtain it. This can significantly reduce performance on many-core

systems where a large amount of time is spent by workers waiting to get the lock and

update the task dependency graph due to contention [14].

The next section describes the hardware architecture proposed to manage the task de-

pendency graph. This architecture speeds up the task dependency graph management,

reduces the execution time and the contention, and is more energy effective than the

software-only runtime.

4.2 Picos Design Overview

The first prototype of Picos [71] aims to accelerate task dependency graph management

for a large number of fine-grained tasks with complex patterns of dependences, for task-

based data-flow programming models on multicore and many-core platforms. From the

software aspect, it can be seen as a blackbox that (1) reads new tasks and their depen-

dences from memory at task creation time; (2) writes ready-to-execute tasks back in mem-

ory for the worker threads and (3) reads finished tasks from memory to update the internal

hardware task dependency graph.

Figure 4.3 shows a conceptual view of Picos organization. It is composed of five

main components: one Gateway (GW), one Task Scheduler (TS), one Arbiter (ARB), and

one Task Reservation Station (TRS) and Dependence Chain Tracker (DCT). Each pair of

them are connected with one or more FIFO queues, and each has its own control logic,

which only relies on the status (empty or full) and packets of those FIFO queues to ensure

asynchronous communications with the others. This architecture is scalable by simply

increasing the number of TRS and DCT instances. A design with four instances is able

to manage up to 256 cores, and a baseline configuration with only one TRS and DCT is

able to manage up to 8 cores without significant performance loss based on simulation

results[87].
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Figure 4.3: Picos task dependence manager

To begin with the explanation, it is important to know Picos exchanges three important

types of tasks - new, ready and finished - with threads through three FIFO queues. The

following text describes their specifications.

1 New task packet in the new task FIFO queue. It includes the task identifier (TaskID),

the number of dependences (#Num.Dep), and the dependence memory address and

dependence memory direction (input, output, and inout) for each dependence. In

this implementation the number of dependences per task is limited to 15. However

the software/hardware system is able to process tasks with any number of depen-

dences as will be explained in the next chapter. The TaskID is used by the threads

in the system to execute the task, the dependence memory addresses and directions

are required for constructing the task-dependency graph.

2 Ready task packet in the ready task FIFO queue. It includes the TaskID and the

Picos Task Identifier PicosID. PicosID contains TRSID (explained later) and

the number of dependences of this task. As explained the TaskID is used by the

threads to execute the task and the PicosID is sent back to Picos by the threads to

notify the end of the task.

3 Finished task packet in the finished task FIFO queue. A finished task is represented
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by the PicosID, which contains the TRSID and the number of dependences of

the task. It is used to notify Picos, so it can update the internal task-dependency

graph.

In the following, we will describe the five main components in details.

4.2.1 Gateway (GW)

GW is the first interface of Picos with the processing cores. It fetches new tasks and

their dependences from the main memory, and requests a free TRS entry (represented by

TRSID) from a TRS unit. Afterwards it dispatches the TaskID with the TRSID to the

corresponding TRS, and the dependences with the TRSID to the DCT unit. It also fetches

finished tasks from the main memory, and forwards them to the corresponding TRS.

4.2.2 Task Reservation Station (TRS)

TRS is the major task management unit. It stores all the in-flight tasks (up to 256), tracks

the readiness of new tasks and manages the deletion of finished tasks. To manage the func-

tionality of TRS, there are two main parts, one is the Task Memory shown in Figure 4.4,

the other is the main control logic shown in Figure 4.5.

4.2.2.1 Task Memory (TM)

We first take a look at the TM design in Figure 4.4. It includes 6 independent internal

memories (in the FPGA implemented as Block RAMs - BRAMs) named as TM Slot0 to

5, each slot has 256 entries. The TM control logic maintains a list of free memory entries.

It accepts requests for a new free TM entry and recycles a released used one.

Each entry in TM Slot0 stores the TaskID, the number of dependences per task

(#Deps), the number of ready notifications of dependences received from DCT (#ReadyDep)

and a Valid bit. When the ready notifications equal to the number of dependences, the

task in this entry is marked as a ready-to-execute task.

Each entry in TM Slot1 to 5 is used to store information associated with three de-

pendences of the task in the corresponding entry in TM Slot0. Consequently the TM

Slot1 stores information associated with the first three dependences and the Slot5 stores

that of the last three dependences. The information of one dependence in each entry

consists of the position of the dependence, the DCTID ("00", reserved for fu-

ture use when we extend Picos to include 4 instances of DCT), the Version Memory
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Figure 4.4: Task Memory organization

address (VM, explained later) where it is saved, the Consumer bit and the Consumer

task TRS entry.

The TM control logic manages the 6 independent BRAMs as a set of 256 registers,

each register has 6 78bits data that can be read in one cycle. Each TRS entry or TRSID is

represented by 10bits where the lowest 8bits is used as TM entry to access one of the 256

entries, and the highest 2bits "00" are reserved for future use when we extend Picos to

includes 4 instances of TRS module. For example, if a new task A enters and is assigned

with TM entry 5, then its TaskID A and the number of its dependences are saved in TM

Slot0 entry 5. After DCT analyzes all its dependences related to all those of tasks arrived

earlier, DCT will notify the TRS. Then the aforemetioned information associated with its

first three dependences are saved in TM Slot1 entry 5, that of its second three dependences

are saved in TM Slot2 entry 5 and so on until that of its 13th to 15th dependences are saved

in TM Slot5 entry 5.

4.2.2.2 Main Control Logic in TRS

As can be seen in Figure 4.3, TRS is connected to seven FIFO queues. For input, it mainly

checks three FIFO queues from GW for new and finished task and from the Arbiter unit

(ARB) for communication dependence packets. For output, it outputs free TRS entries

for new tasks to the GW, communication dependence packets to the ARB, finished de-

pendence packets to DCT, and ready tasks to the Task Scheduler (TS). Communication

dependence packets are used between TRS and DCT and they are managed by the ARB

module (explained later in Section 4.2.3).
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Figure 4.5: TRS control logic in Figure 4.3

Figure 4.5 shows the main Finite State Machine (FSM) for the TRS module. As can

be seen, the reset signal sets the state machine to IDLE. Then if the new task FIFO queue

is not empty, TRS enters state Check New task and sets a read FIFO queue signal to

read a new task packet (this packet including a new task and all its dependences). When a

new task and all its dependences are read from the FIFO queue, they are processed. When

the processing finishes, a finish signal is set and the state machine jumps back to IDLE.

On the other hand, if the new task FIFO queue is empty, and the FIFO queue from ARB

to TRS is not empty, TRS sets a read FIFO queue signal to read a communication depen-

dence packet and enters state Check from ARB. When a communication dependence

packet is read and processed, a finish signal is set and the state machine jumps back to

IDLE_1. Else if the finished task FIFO queue is not empty, TRS enters state Check

Finished task and reads a finished task packet. Afterwards it goes back to check for

new task.

Listing 4.2 describes the actions completed during the state Check New task. As

we have mentioned earlier, new task packet includes TaskID, #Deps, ..., etc. In our

system, since each main module is decoupled from the others through FIFO queues, there

is a possibility that the new task packet from GW might come later than the communica-

tion dependence packet from ARB to TRS, which changes the TM Slot0 entry. Therefore
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Listing 4.2: State Check New task in Figure 4.5
1 Check New t a s k :
2 − IDLE : i f ( r e a d _ a c k = 1) t h e n
3 r e a d t h e c o r r e s p o n d i n g TM S l o t 0 e n t r y ;
4 check d i n _ f i f o _ n e w t a s k ;
5 end ;
6 − Check_DIN : save TaskID , #Deps and s e t t h e V a l i d b i t t o 1 i n t h e TM S l o t 0 e n t r y ;
7 i f ( ( # Deps = 0) o r (# Deps != 0 and #Deps = #ReadyDep ) ) t h e n
8 mark t h i s t a s k r e a d y and send t o TS ;
9 end

10 jump back t o IDLE ;

Listing 4.3: State Check from ARB to TRS in Figure 4.5
1 Check from ARB:
2 − IDLE : i f ( r e a d _ a c k = 1) t h e n
3 check din_f i fo_ARB ;
4 end ;
5 − Check_DIN : i f ( i t i s an empty r e a d y p a c k e t ) t h e n
6 #ReadyDep++ i n TM S l o t 0 e n t r y ;
7 save VMaddr i n t h e c o r r e s p o n d i n g TM S l o t 1 −5 e n t r y ;
8 e l s i f ( i t i s a c h a i n e d r e a d y p a c k e t ) t h e n
9 #ReadyDep++ i n TM S l o t 0 e n t r y ;

10 i f ( t h e TM e n t r y has a c h a i n e d t a s k ) t h e n
11 send a c h a i n e d and r e a d y p a c k e t t o ARB;
12 end
13 e l s i f ( i t i s an empty u p d a t e ) t h e n
14 save VMaddr i n t h e c o r r e s p o n d i n g TM S l o t 1 −5 e n t r y ;
15 e l s i f ( i t i s a c h a i n e d u p d a t e ) t h e n
16 u p d a t e t h e Consumer and Consumer_TRS_slot i n TM S l o t 1 −5 e n t r y ;
17 end ;
18
19 i f (# Deps = #ReadyDep ) t h e n
20 mark t h i s t a s k r e a d y and send t o TS ;
21 end ;
22
23 jump back t o IDLE ;

we always read that entry first before modifying it as can be seen in states IDLE and

Check_DIN in listing 4.2.

Listing 4.3 decribes the actions completed during the Check from ARB state in the

main FSM. There are four different types of communication dependence packets neces-

sary to manage the communication between TRS to TRS, and TRS with DCT. The details

of these communication dependence packets are described in Section 4.2.2. As can be

seen, each packet here can be an empty ready, a chained ready, an empty update or a

chained update, each different packet corresponds to different actions. In this state, we

also check if the number of dependences is equal to that of the ready dependence notifica-

tions received from DCT. If they are, we mark the task ready and send to TS. Listing 4.4

describes the actions completed during the Check Finished task state in the main

FSM. As we mentioned earlier, Finished task packet includes PicosID, which consisting

of TRSID and #NDeps. For each dependence, TRS sends a finished dependence packet
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Listing 4.4: State Check Finished task in Figure 4.5
1 Check F i n i s h e d t a s k :
2 − IDLE : i f ( r e a d _ a c k = 1) t h e n
3 check d i n _ f i n i s h t a s k ;
4 end ;
5 − Check_DIN : r e a d TM S l o t 0 f o r #Deps :
6 f o r 1 : # Deps loop
7 r e a d c o r r e s p o n d i n g TM S l o t 1 −5 e n t r y and o b t a i n VM a d d r e s s ;
8 send a f i n i s h e d dependence p a c k e t t o DCT;
9 end

10 jump back t o IDLE ;
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Figure 4.6: FIFO packet from TRS to TRS, DCT to TRS through ARB

to DCT, this packet only contains VM address.

In Picos, the tasks are organized in the producer-consumer (out/inout-in) and the

producer-producer (out/inout-out/inout) chains. The producers and the last consumer are

always saved in DCT, while all the previous ones are saved in TM using the consumer sec-

tions as can be seen in Figure 4.4. In the producer-producer chain, the tasks are awaken

in sequence, while in the producer-consumer chain, the tasks are awaken in a reversed

way from the last consumer. The mechanism for waking up dependences dynamically

can be tricky to understand, therefore there is a separate Section 4.3.2 dedicated for this

explanation.

4.2.3 Arbiter (ARB)

The ARB module reads the packets from TRS and from DCT in turns, and writes them

into the FIFO queue to TRS. There are four types of communication dependence packets

necessary to coordinate the TRS and DCT. Figure 4.6 shows the specification of the com-

munication dependence packets. It is composed of Chained, Ready, TRSID, Position of

Dependence, DCTID ("00", reserved when we extend Picos to have 4 instances of DCT),

VM address, Chained TRSID and Chained Position of dependence. The last two fields are

only used by the chained update dependence packet as explained in the following list. The

(Chained, Ready) bits are used to represent four different types of communication

dependence packet.

1 Type "01" indicates an empty ready dependence packet. It usually happens to be

the first time a dependence has ever appeared in DCT. In this packet, only limited
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areas are used. The TRSID is pointing to the task that is associated with this de-

pendence in TM Slot0. The Pos.Dep indicates it is the N-th dependence of the task

and the location of the dependence in TM Slot1-5. The VM address in the figure

indicates where the information of this dependence is saved in VM.

2 Type "11" indicates a chained ready dependence packet. The chained ready is

to address when this dependence is not the first consumer, and when the producer

in this producer-consumer chain has finished. This packet is sent from TRS to itself

(or to other TRS units if they exist in the system ) through the ARB module.

3 Type "00" indicates an empty update dependence packet. This usually happens

for the first input consumer or a producer dependence.

4 Type "10" indicates a chained update dependence packet. This happens when

the dependence is in a consumer chain by DCT, while the producer (output) depen-

dence is not ready.

4.2.4 Dependence Chain Tracker (DCT)

DCT is the major dependence management unit. It manages task dependences through

one Dependence Memory and one Version Memory (DM and VM respectively). Their

specifications in Figure 4.7. For each new arrived dependence, DM performs hashes and

compares (address match) the dependence address to look for it among the tags of all these

arrived earlier. DM saves it in the matched place and notifies their relations to VM and to

TRS. VM receives those notifications from DM and keeps all the references (consumer

and producer matches) to the same dependence address (called versions). Otherwise,

the dependence with unique memory address is allocated with a new space and is saved

as a tag. TRS receives those notifications - communication dependence packets - and

processes them (can be seen in Section 4.2.2 Listing 4.3).

4.2.4.1 DM Designs

For each new dependence entering DCT, DM performs address match for it to these ar-

rived earlier, to establish data dependences. Later, for each finished dependence from

TRS, DM read/write are performed on DM for releasing data dependences. Both pro-

cesses such as finding a place to save the dependence, and matching addresses are critical

for the prototype performance. On one hand, each task can have multiple dependences

48



CHAPTER 4. TASK DEPENDENCE MANAGER -FIRST PROTOTYPE

valid Tag
64bits

VMaddr
9bits

countvalid Tag
64bits

VMaddr
9bits

countvalid Tag
64bits

VMaddr
9bits

count

V
1bit

DMaddr
9bits

Consumer?
1bit

Consumer_TRS_entry
10bits

Producer?
1bit

Producer_TRS_entry
10bits

Count
10bits

Dependence Memory (DM)

V
1bit

I
1bit

VMaddr
9bits

Count
10bits

64
 e

nt
rie

s

51
2 

en
tr

ie
s

8 
way

s"

A new dependence
(Mem. Addr./64 bits, 
 Dir./2 bits)

HashingHashing
6 bits

Compare with 
all 8 ways

Tag
64bits

Hit/miss

VM

1
2

3

4

Notify TRS

If hit & input & all predecessors are input→action one
Elsif hit & input & not all predecessors are input → 
action two
Elsif hit & output → action three 
Elsif miss & 8ways is not full → action four
Elsif miss & 8ways is full → action five
Else error
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that stresses DCT more than TRS; on the other hand, the whole system may stall if new

dependences cannot be stored in DM which can be due to DM conflicts (more than 8

dependences try to use the same DM entry in the case of 8-way) or memory capacity.

To overcome possible conflict stalls meanwhile lowering hardware cost, three different

designs of DM are proposed and evaluated as one of the many trade-off implementation

decisions in Picos:

• DM 8way: a 64-entry, 8-way associative cache-like memory with direct hash.

• DM 16way: a 64-entry, 16-way associative cache-like memory with direct hash.

• DM P+8way: a 64-entry, 8-way associative cache-like memory with Pearson hashing[61].

Figure 4.7 shows a simplified diagram of one of the DM designs: DM P+8way. The

other two designs are identical if the Hashing unit is removed. The memory is imple-

mented by using 8 independent bank memories (BRAMs in case of using a FPGA imple-

mentation) with 64 entries each, therefore, with 6-bits entry address, we can access it and

obtain the context of all 8 ways in 2 cycles; in order to access a specific way, 3 additional

address bits are required. Each DM way comprises the Valid bit (V), the Input bit (I), the

Tag and the Data (VM address, count). The Valid bit indicates the way is occupied or free.

The Input bit (I in the DM entry in Figure 4.7) indicates that all the dependences arrived

earlier in this way are of input direction (dependences with the same memory address are
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saved in the same DM way), thus they are independent as they all indicate consuming

data from the same memory address. The count value in a DM way indicates the number

of appearances of the same dependence address while the count value in a VM entry in-

dicates the number of consumer dependences that are dependent on this entry. The VM

address saved in each DM way points to the latest VM entry of the dependence with the

same memory address, also known as the latest version.

DM supports three operations: read, write and compare. DM read/write are general

RAM memory read/write operations. For DM read operation, on the first cycle the user

provides address and asserts read enable signal, one the second cycle, the user gets the

output result. For DM write operation, the user provides address and data, asserts write

enable signal and on the next cycle the data is written into the designated location. For

easier understanding, the DM comparison operation is similar to cache look up. With DM

compare operation, the Pearson hashing function is first applied to each 8bits of the 64bits

to randomize the value of the dependence address; and then the least significant 6bits after

the xor of these hashing values are used to index the 64 entries of memory; one cycle

later the whole 64bits dependence address is used to compare with the tags of all 8 way

outputs of the entry. Depending on the dependence direction (Dir), Hit/Miss results from

comparing with all 8 ways, we either obtain the Hit DM way and VM entry addresses for

updating actions or a new DM way and VM entry for saving the new dependence. When

there is a miss and there are multiple free ways inside an entry, way 0 has the highest

priority and way 7 has the lowest priority for being selected as a free DM way.

Memory addresses of dependences always tend to group in clusters for certain ap-

plications, and the addressing of DM 8/16way configurations leads to large amount of

conflicts that stall the design. By applying Pearson hashing, the memory conflicts are

expect to reduce and thus greatly speedup the dependence management.

4.2.4.2 Version Memory

Figure 4.7 also shows a simplified diagram of the VM design. VM is a 512 entry mem-

ory, implemented using a BRAM in the FPGA with 512 entries of 42 bits each. VM is

managed as a set of 512 registers. Similarly to the TM control logic, the VM control logic

also maintains a list of free and occupied entries. It accepts free entry request and recycles

used ones.

50



CHAPTER 4. TASK DEPENDENCE MANAGER -FIRST PROTOTYPE

4.2.4.3 Operational Flow in DCT

DCT mainly processes new and finished dependence packets. In Figure 4.7 when a new
dependence packet enters (step with circle 1 in the figure), first all the 64bits of its

memory address go through the hashing module to obtain a 6 bits entry address (step with

circle 2 in the figure). Then the 64 bits are used to compare with all the tags from the 8

ways (step with circle 3 in the figure). Depending on the DM comparison results, different

actions named as action one to five are performed (step with circle 4 in the figure).

If it is an input and got a hit in one of the 8ways, additionally the Input bit I

was set to 1, action one is performed. In DM and VM, the count value is increased

by 1. Then an empty ready dependence packet is sent to TRS through the ARB mod-

ule. However if the I bit was not set, action two is performed. First in DM and VM,

the count value is increased by 1. Second, if the consumer bit in the VM entry had

been set to 1, it means the current dependence is not the first consumer of a previous pro-

ducer dependence. In this case, a chained update packet is sent to TRS with the TRSID,

Pos.Dep updated with the new dependence, and the Chained TRSID, Pos.Dep

with the previous one in VM. Otherwise, it is the first consumer, an empty update packet

is sent to TRS. Finally, in VM, the Consumer_TRS_entry is updated with the new

one associated with the new dependence.

If it is an output and got a hit, action three is performed. First, in the hit DM way,

the count is increased by 1. In VM, a new entry is allocated with the count value

initialized with 1 and the DM address value updated. Second, in the old VM entry,

the count value remains the same, and we set the Producer bit to 1 and update the

Producer_TRS_entry with the TRSID associated with this new dependence. If the

I bit was set to 1 in the hit DM way, we also set it to 0 now. Finally, an empty update

packet is sent to TRS.

If it is the first time that the dependence appeared in DM, and the 8 ways are not full,

action four is performed. A new DM way and a new VM entry are allocated. If there are

multiple free ways in the DM entry, a new DM way with the smallest address is allocated.

An empty ready packet is sent to TRS. if the dependence is input, the I bit will be set to

1, otherwise it remains at 0.

If there is a miss and the 8 ways are all occupied we consider there is a DM full

and action five is performed. DCT stops reading and processing new dependences, and

continues reading and processing finished dependences until DM has an empty slot to

process the one that caused this full situation.
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When a finished dependence packet enters, the associated VM address is first used

to read the VM entry, and then the DM way. In the VM entry, if the Consumer is set,

DCT sends a empty ready packet to TRS to wake up the last consumer task in chain,

and the counts in both VM and DM are decreased by 1. When TRS receives this

communication dependence packet, it checks if the task is ready and also if any of its

dependences had previous consumer tasks to be waken. If so, TRS sends an empty ready

packet to the ARB module. When all the consumer tasks have eventually finished, the

count value in VM will be reduced to 0; when it is 0, DCT checks if the VM entry also

has the Producer bit set. If it was set to 1, DCT sends an empty ready packet to TRS to

wake up the next producer task. When the count reaches 0 in the DM way or VM entry,

they are freed and recycled.

4.2.5 Task Scheduler (TS)

TS is the second interface between Picos and the processing cores. It stores all ready tasks

and schedules them to idle workers.

4.3 Operational Flow of Picos

4.3.1 New and Finished Task Processing

Picos consists of two major procedures: new and finished task processing as shown in

Figure 4.3.

When a new task arrives (N*): GW reads its meta-data and dependences (N1). Then

it checks for a free TRS entry. If there is not any, the GW does not process the new task,

instead it starts to process finished tasks until a TRS entry is freed (which happens after

the first finished task is processed). Otherwise, it obtains one free TRS entry (N2) and

dispatches the new task to TRS (N3). If the new task has dependences, GW forwards

each of them with the TRS entry to DCT (N4). The TRS entry will be used by DCT to

index the task that owns the dependence.

Once TRS receives this new task from GW, it saves its TaskID and number of de-

pendences inside the assigned TM Slot0 entry. If it has no dependences (#Num.Dep.

= #Ready Dep. = Zero), TRS marks it ready and sends it to TS for execution (N6);

otherwise, TRS will wait for notifications (ready or dependent, N5) from DCT for each de-

pendence. For each ready notification, TRS increases the corresponding #Ready Dep.
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by 1 in TM Slot0; and for each communication dependence packet, TRS saves it in the

corresponding TM SlotX (X: 1, 2, 3, 4, 5) entry. TRS only marks the new task ready after

all its dependences are ready.

When DCT receives the dependences. For each of them, DCT checks whether it is

dependent on those arrived earlier (N5), and saves it in both DM and VM. If the depen-

dence is not dependent on previous ones, DCT sends a ready packet (the corresponding

TRS entry and VM address) to TRS; otherwise DCT sends an update packet (TRS entry,

VM address, dependent TRS slot) to TRS. The VM address is to be used by TRS later to

reference the location of this dependence in DCT.

When a finished task arrives (F*): GW reads the finished task (F1), and then distributes

it to TRS (F2). Once the TRS receives the finished task, firstly it checks TM Slot0 entry

for #Num.Dep. then examines this #Num.Dep. of dependences in TM SlotX; sec-

ondly it sends finished packets (VM address) for each dependence to DCT (F3); finally it

deletes the task inside the assigned TM entry and sends a release TM entry request to the

TM control logic.

When DCT receives finished dependences packets. For each dependence, DCT checks

the corresponding VM entry (Consumer, Producer, Count) to see if there are other ones

that depend on it. If there exist no such dependences, DCT deletes it from the DM and VM

directly; otherwise DCT keeps on tracking of its consumers/producers, and send ready

dependence packet to TRS to wake up the last consumer or the next producer task in the

chain (F4). When TRS receives this message, it first checks in TM Slot0 (#Num.Dep,

#Ready Dep) whether this task is ready or not. Then it checks the corresponding TM

SlotX consumer section to see if there is another task that depends on this dependence

and sends a message to wake it up (F4). Once all such dependences that depend on it

are resolved and finished, the dependence is deleted inside the VM and DM eventually.

The detailed communication flow have also been explained in Section DCT, moreover it

is also shown in the following example.

4.3.2 An Example of Dependence Chains

To dynamically establish dependences and wake up tasks rapidly and economically is

challenging and crucial for system performance. Figure 4.8 shows an example of six

tasks, where each task has only one dependence (A) with different directions. This ex-

ample assumes that all the described tasks arrive to Picos before the first task finishes

its execution. The six tasks form a mixed Producer-Consumer chain (Task1, 2, 3 and 4)
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and Producer-Producer chain (Task1, 5, 6) established inside TRS and DCT. Each solid

line shows how the dependence chain is established according to the sequence of new

tasks. The dashed line (with labeled number) shows the order in which they are woken

up after Task1 finishes. Note that the Producer-Consumer chain is woken up from the last

consumer, the Producer-Producer chain is woken up in sequence.

Task1 Task5 Task6

Task4

Task2

Task3

1

2
3

4 5

// Pseudo code
Task1(output(A));
Task2(input(A));
Task3(input(A));
Task4(input(A));
Task5(output(A));
Task6(output(A));

Figure 4.8: An example of dependence chain

When Task1 arrives, its dependence is forwarded to DCT. For the first task as its

dependence is independent, a new DM way and VM entry are assigned to it. The DM

way stores the memory address of the dependence as Tag, and the VM entry stores con-

sumer/producer related information. In each DM way, it saves this VM entry address;

similarly this DM address is saved inside the VM entry. In addition, in each DM way,

there is a 10-bits counter to count the total appearances of the dependence with the same

memory address. In each VM entry, there is a 10-bits counter to count the total appear-

ances of the consumer dependences with the same memory address. Therefore with this

first dependence A of Task1 enters, the counters are assigned with 1. For this dependence,

DCT sends a ready message to TRS. TRS then saves the VM address of this dependence

inside the assigned TM SlotX entry, marks it ready and sends it to TS for execution.

When Task2 arrives, its dependence is forwarded to DCT. Once DCT receives the

dependence, it first does a DM compare and realizes that it is the first consumer. In this

case, it is saved in the same DM way and VM entry (increase the count of this dependence

to 2, and update the Consumer TRS entry of Task1 with Task2 inside VM). An empty

update message is sent to TRS.

When Task3 arrives, DCT detects that its dependence is the second consumer. The

dependence is then saved in the same DM way and VM entry (increase the count of this

dependence to 3, and update the Consumer TRS entry of Task2 with Task3 inside VM).
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At the same time DCT notifies TRS that Task2 will be waken up after Task3 through

a chained update message. The same happens for Task4 (increase the count of this de-

pendence to 4, and update the Consumer TRS slot section in VM). In this way the last

consumer is stored in DCT while the former ones are kept chained in TM SlotX entry of

the previous task inside the TM. Until now one DM way and one VM entry have been

assigned, and the count in both DM way and VM entry are 4.

When Task5 arrives, DCT detects that it is the fifth time when the A dependence

appears and it is a producer. A new VM entry is assigned to store this latest version of

producer, the count is initialized with 1. In the old VM entry, this dependence A is saved

in the Producer section. Both VM entries point to the same DM way, while in the DM

slot it updates to point to the new VM entry. An empty update message with the new VM

address is sent to TRS. Now there are one DM way and two VM entry allocated in total.

In the DM way, the count is 5, in the old VM entry the count is 4, and in the new VM

entry the count is 1. The same happens for Task6 to keep the producer-producer chain in

DCT. Up to this point, one DM way and three VM entries have been assigned. The count

in the DM way and the three VM entries are 6, 4, 1 and 1 respectively.

When Task1 finishes, TRS notifies DCT of the finish of the first A dependence. DCT

checks the corresponding VM entry and sends a ready message to TRS for Task4 (dashed

line with label 1 in Figure 4.8). Meanwhile the count in the DM way and the first allocated

VM entry are decreased by 1. Once TRS receives this message, it wakes Task4 and sends

another ready message (managed by the Arbiter module) to wake Task3 (dashed line 2),

and then Task2 (dashed line 3). Now Task2, 3 and 4 are marked ready after TRS receives

these three ready messages and are sent to TS then be scheduled to execute in idle workers.

Whenever a task finishes, TRS notifies DCT. DCT decreases the count value in the DM

way and the first allocated VM entry. Once DCT receives three more finished messages

from Task4, Task3 and Task2, it wakes up Task5 (dashed line 4). Meanwhile the count

DM way and the first allocated VM entry are 2 and 0, therefore it deletes the first VM

entry of the dependence.

When Task5 finishes, DCT wakes up Task6, meanwhile the count DM way and the

second VM entry are decreased by 1. So now the value in both places are 1 and 0,

therefore the second VM entry is deleted. Finally after Task6 finishes TRS notifies DCT

to delete both the DM way and the third VM entry.
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4.4 Experimental Setup and Methodology

This section describes the experimental setup, the testing platform for the first prototype

of Picos, and the synthethic and real benchmarks used for evaluating the hardware task

dependence manager.

4.4.1 Experimental Setup

Xilinx ISE Design Suite 14.4, Vivado 14.4, SDK and a Zynq 7000 SoC Platform (Zed-

board) are used to develop the Picos prototype and its embedded system. Zedboard in-

cludes one FPGA Chip XC7Z020-CLG484[85] which comprises the Dual ARM Cortex-

A9 MPCores and a FPGA part, also know as the processing system (PS) and the pro-

grammable logic (PL) part. The OmpSs programming model in use in this work to pro-

gram the benchmarks is supported by the Mercurium compiler 1.99 [42] and the associ-

ated Nanos++ RTS [17].

Sequential and parallel execution time, in addition to execution traces, of OmpSs ap-

plications from the software-only implementation are obtained from a shared memory

machine which has up to 12 cores (Zedboard was not used for obtaining workloads be-

cause it has only two cores). The shared memory machine has 2 NUMA nodes with 1

socket each, each node has 64GB main memory. Each socket is a Xeon E5-2630L with

6 cores with dynamic frequency control up to 2.0GHZ. Each core has 2 threads sharing

resource. In total, we can use 12 cores and up to 24 threads with hyper-threading.

Sequential and parallel execution time of the same applications from the Picos proto-

type are obtained in Zedboard by using the information of aforementioned traces. Traces

include task creation and execution time in cycles, task identification, dependence ad-

dresses and directions. The task creation and execution time in cycles is obtained through

instrumenting the sequential execution in the shared 12-core memory machine described

above. In Zedboard, there are one counter for task creation time, and another 24 counters

served as 24 workers for task execution time. When the value of the task creation counter

is equal to the task creation time of a task, this new created task and its dependences are

sent to Picos. When a ready task is scheduled to a worker by Picos, this worker counts

until the task’s execution time and then notifies its finished status to Picos. In this way,

although task creation and execution are simulated in the ARM cores in Zedboard, Picos,

is executed for real as a co-processor synthesized in the FPGA in Zedboard. Traces are

also used to feed a Perfect simulator which measures critical-path task execution to show
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the roofline speedup of each OmpSs application.

All the speedup shown in this paper is computed against the sequential execution time.

4.4.2 Hardware Testing Platform

The embedded system also named Hardware-In-the-Loop (HIL) Simulation Platform is

a modern way to validate the functionality and examine the performance of IP-cores.

Figure 4.9 shows the organization of the HIL Platform developed for testing the first

prototype of Picos hardware task dependence manager. The PL part uses a 80 MHz global

clock, and a 64bits AXI Timer synchronized with the same clock as the global timer. In

the PS part, the two threads are operating at 667 MHz. In this section, we present two

major operational modes of the platform:

Figure 4.9: Hardware-In-the-Loop Platform

HW-only (Dashed labeled line): employs a naive process as all the tasks are sent to

Picos once (1, 2), and all the finished tasks are retrieved all at one time (5, 6). Workers are

implemented inside the PL part so that ready tasks can start executing shortly after there

are idle workers (3) and finished tasks are sent back to Picos for updating its internal task-

dependence graph (4). This mode is chosen to show the task and dependence repetition

rate without any scheduling or communication overheads.

Full-system (Solid labeled line): employs a close-loop process. Each task is created

and sent to Picos for dependence analysis (1, 2); ready task is retrived from Picos to the

ARM core for execution in the workers (3, 4); finally finished task is sent back to notify

Picos (5) to carry on the process until the last task. Each message between Picos and

ARM core carries one task at once.
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Three queues are employed inside the Picos prototype for new, ready and finished

tasks; and SR0-2 are the corresponding status registers. The communication latency for

sending or retrieving data via AXI Stream interface takes around 200 to 300 cycles for

each message. When comparing with the HW-only mode, the Full-system mode is much

more closer and accurate to the Picos system we proposed, as it takes into consideration

the data exchange scheme between ARM cores and FPGA, moreover the task creation

and executions are simulated in the ARM cores.

4.4.3 Benchmarks

Both synthetic and real applications are chosen to evaluate the Picos prototype.

Synthetic benchmarks including TestFree, TestChain, Test-1P10C, Test-10P1C and

Test-10P10C are selected. The first one is designed to illustrate the maximum processing

capacity of Picos, since all its tasks can be executed in parallel (tasks are independent

of each other). The second one is designed to show the worst case in Picos, since it has

no parallelism at all, additionally it has all the communication overheads for offloading

all the task dependence analysis to Picos. The following three are designed to show the

ability of Picos by using some common complex dependence patterns that are not as free

as TestFree while are not as rigid as TestChain. Their functionality description can be

found in Chapter 3, Section 3.2.

Real applications Gauss-Seidel Heat, Lu, Sparse Lu, Cholesky[25] and H264dec[79]

are selected to study the performance and detect possible bottlenecks in Picos prototype.

Their functionality description can be found in Chapter 3, Section 3.2.

Table 4.1 shows basic information about these real benchmarks obtained on a shared

memory machine. For each benchmark, the table shows, from left to right, its problem

and block size (for H264dec, 10f stands for 10 HD frames), number of tasks, number

of dependences per task, average task size and the sequential execution time in cycles

respectively.

4.5 Results

This section evaluates the first prototype of Picos design. First, both the performance and

hardware cost of three different DM designs are analyzed to select one that balances both.

Next the task and dependence repetition rates of Picos are evaluated by using synthetic
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Table 4.1: Characteristics of tasks in real benchmarks

Name Problem/ #Tasks #Dep Ave.Task Size Seq. Exec. Time
Block size in cycles in cycles

Heat

2048/256 64

5

3.51e+06 2.25e+08
2048/128 256 8.20e+05 2.07e+08
2048/64 1024 2.17e+05 2.11e+08
2048/32 4096 7.19e+04 2.41e+08

Lu

2048/256 36

2

5.67e+07 2.04e+09
2048/128 136 1.49e+07 2.04e+09
2048/64 528 4.13e+06 2.17e+09
2048/32 2080 1.53e+06 3.18e+09

SparseLu

2048/256 34

1-3

2.74e+07 9.30e+08
2048/128 212 4.36e+06 9.24e+08
2048/64 1512 6.47e+05 9.78e+08
2048/32 11472 8.28e+04 9.50e+08

Cholesky

2048/256 120

1-3

6.63e+06 7.61e+08
2048/128 816 9.71e+05 7.89e+08
2048/64 5984 1.47e+05 8.77e+08
2048/32 45760 2.94e+04 1.34e+09

H264dec

10f/8 2659

2-6

2.06e+06 5.48e+09
10f/4 9306 5.91e+05 5.50e+09
10f/2 35894 1.53e+05 5.48e+09
10f/1 139934 3.94e+04 5.51e+09

benchmarks. Finally, a much thorough scalability study of Picos with the most balanced

DM design is shown by using real benchmarks.

4.5.1 Difference between DM Designs

To decide the best implementation, we first check the performance of all three DM de-

signs with up to 12 workers. Figure 4.10 shows their speedup (bar, y-axis) by using four

real benchmarks under the HW-only model. Each benchmark is shown with two repre-

sentative block sizes. The speedup is calculated by comparing the sequential execution

time with the parallel execution time of the same benchmarks with the same problem and

corresponding block sizes.

For Heat and Cholesky, Picos P+8way achieves the best speedup and scales well from

2 to 12 workers. For example with Picos P+8way, Heat with blocksize 64 scales from 2x

to 5.9x, Cholesky with blocksize 128 scales from 2x to 11.5x. While with the other two

designs, Heat achieves up to 1.2x and Cholesky achieves up to 4x speedup in total.

For LU and SparseLU, Picos P+8way and Picos 16way yield similarly good results.

For example, with these two designs SparseLU achieves close to 11.5x with 12 workers.

For LU Picos 16way achieves slightly better results up to 8.5x. In general all three Picos

designs benefit from the decreasing block sizes and scales well.
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Figure 4.10: Speedup of real benchmarks by using Picos with different DM designs

Picos with DM P+8way yields better results than the other two designs in most cases.

One exception is LU with DM 16way, which will be further examined later.

The performance results above are greatly dependent on the number of DM conflicts.

A DM conflict is detected when a new dependence cannot be saved in any of the 8ways

of the designated entry (indexed by its dependence address), because all 8 ways are oc-

cupied and are incompatible with this one. When there is a DM conflict, Picos stalls the

new dependence processing until a suitable finished dependence arrives and resolves the

conflict. Therefore it is essential to have less DM conflicts in the system.

Table 4.2 shows the number of DM conflicts detected during executions with 12 work-

ers. Regarding the DM conflicts impact, we can observe that the Picos P+8way is no doubt

the best solution with less DM conflicts.

Table 4.2: #DM conflicts in three Picos designs

Name BlockSize #DM Conflicts
DM 8way DM 16way DM P+8way

Heat 128 254 252 65
64 1022 1020 757

SparseLU 128 189 166 0
64 239 0 0

LU 64 491 392 0
32 2039 1937 0

Cholesky 256 108 79 0
128 807 792 0
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The execution of LU is a corner case which is caused due to the way that Picos proto-

type is designed to awake the producer-consumer chain from the last consumer. With DM

P+8way, there are no DM conflicts, so the task dependency graph is created much faster.

When the producer task finishes, the consumer tasks are woken up from the last one,

causing the schedule of some tasks in the critical path to be postponed and thus resulting

in lower speedup. As for DM 16way, the task dependency graph is created much slower

due to the delays caused by DM conflicts. These tasks in the critical path are therefore

scheduled earlier and result in higher speedup.

To prove the cause of this behaviour and our point, we adopted two different ap-

proaches. One is to modify the task creation order of LU to avoid this corner behavior.

Another is to use last-arrive-first-serve (LIFO) scheduling policy instead of the default

first-arrive-first-serve (FIFO) for ready tasks. Figure 4.11 shows the performance of the

modified LU (MLU) with the default scheduling and LU with a LIFO scheduling policy.

As it can be seen, from block size 64 to 32, the Picos with DM P+8way now yields better

results than the other approaches in both cases.

Figure 4.11: Speedup using a modified LU with the default FIFO scheduling and LU with
a LIFO scheduling

4.5.2 Resource Consumption

To continue with our examination of the DM designs, Table 4.3 shows the resource con-

sumption of the main memories of Picos for different designs, main modules and the full

Picos prototypes.

The size from DM 8way to 16way is doubled with the objective to speedup this com-

ponent by using higher associativity to reduce DM conflicts. This increasing can be ob-

served in the increase in BRAM usage of DM 8way and 16way, from 9% to 17% respec-

tively. The corresponding VM is also doubled from 512 to 1024 entries to keep it coherent
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Table 4.3: Hardware Resource consumption
Design LUTs FFs BRAM(36Kb)
XC7Z020 53,200 106,400 140

Mem

TM 0.4% 0.01% 6%
VM for 8way/P+8way 0.4% 0.01% 1%
VM for 16way 0.4% 0.01% 2%
DM 8way 1.1% 0.1% 9%
DM 16way 3.1% 0.1% 17%
DM P+8way 1.7% 0.1% 10%

Module

TRS 1.6% 0.6% 6%
DCT (DM 8way) 2.5% 0.3% 10%
DCT (DM 16way) 4.1% 0.3% 19%
DCT (DM P+8way) 2.9% 0.3% 11%
GW+ARB+TS 1.3% 0.4% -

Full
Picos (DM P+8way) 5.8% 1.2% 17%
Picos (DM 8way) 5.4% 1.2% 17%
Picos (DM 16way) 7.1% 1.2% 26%

with the DM size[87].

Resource consumption of DM 8way and P+8way are very close (BRAM usage are 9%

and 10%), both are much lower than DM 16way. Although the resource consumption of

DM 16way is not very demanding, its number of DM conflicts is much higher than that of

the DM P+8way in Table 4.2. We could further increase the 16way into a 32way doubling

the size in order to reduce the DM conflicts, but this would lead to a quadruple increase of

the resource usage. Regarding the performance difference in Figure 4.10 and the hardware

cost, we consider that it is unnecessary to use a DM with 32 ways. Instead Picos with DM

P+8way is the most promising and balanced design among all those. Therefore, in the

following sections, we will only evaluate Picos with DM P+8ways.

Hardware costs for TRS and DCT are also shown in the table, the other modules GW,

TS and ARB are simple designs and their costs are small.

4.5.3 Task and Dependence Repetition Rate

In this section, the processing capacity (task and dependence repetition rate) of the hard-

ware design is first evaluated by using the synthetic benchmarks with the HW-only mode.

Then the influence of integrating the full system (ARM processing, communication and

Picos) is analyzed. The cost of integrating hardware and software is mainly composed of

two parts: the communication latency, the task creation and submission cost to Picos of

Nanos++ runtime system (RTS). In this prototype, a bare-metal OS is used which has a

much lower overhead cost than a high-level one.

Figure 4.12 shows the task creation and submission overhead measured in cycles (y-
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Figure 4.12: Nanos++ RTS overheads including task creation and submission cost for
single task. The submission cost here only includes sending newly created task and its
dependences to Picos, it does not include the computation of task dependence relations
and insertion into TDG.

Table 4.4: Processing capacity of Picos P+8way
Testcase TestFree TestChain Test-1P10C Test-10P1C Test-10P10C
#d1st/avg#d 0/0 1/1 15/15 1/1 2/2 11/2 11/11

HW-only
L1st 45 73 312 72 96 287 233
rrTask 15 24 243 24 35 38 178
rrDep - 24 16 24 18 19 16

HW+comm.
L1st 1172 1174 1293 1151 1158 1274 1279
rrTask 740 740 734 743 743 743 743
rrDep - 740 49 743 371 372 68

Full-system
L1st 3879 4240 4710 4246 4217 4531 4549
rrTask 2729 3125 3413 3124 3168 3165 3379
rrDep - 3125 228 3124 1584 1583 307

axis) of the Nanos++ RTS with different number of threads (x-axis). Creation shows

the task creation overhead per task (that is the same independently of the number of

dependences); x DEPs shows task submission overhead from the software runtime to

Picos for single task with x dependences. As explained in Section 3.1.5, when using Picos,

the task submission now in the runtime only includes sending task and its dependences

to Picos, without any dependence analysis. As can be seen, with 12 workers, the task

creation time is 2730 cycles and the task submission cost for task with 1 dependence is

395 cycles. If an application has N tasks, the overhead of the Nth task is the accumulation

of all the previous N-1 tasks.

Table 4.4 shows the processing capacity of Picos P+8way with the HW-only mode,

HW+communication and Full-system modes with 12 workers. The HW-only and Full-

system mode have been explained in earlier sections. The HW+communication mode

basically adds communication latency based on the HW-only, and still no task creation

and submission cost are considered. Row (#d1st/avg#d) indicates the number of depen-
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dences for the first task and the average number of them for all the tasks. All the results

are shown in 80 MHz cycles.

Firstly, in the HW-only mode, the latency of the 1st task (L1st) is proportional to

the number of dependences of the lst task (#d1st). Without dependence, for example

TestFree the L1st takes around 45 cycles. With 1 dependence, with TestFree, TestChain,

it takes 73 or 72 cycles. With 2 dependences, with Test-1P10C, it takes around 96 cycles.

With Test-10P1C to Test-10P10C with 11 dependences for the 1st task, L1st take similar

time as 287 or 233 cycles. Finally with TestFree with 15 dependences per task, L1st

takes 312 cycles.

Secondly, the task repetition rate (rrTask) mainly depends on the average number

of dependences (avg#d) and the type of the dependences. With 1 dependence per task

in average with TestFree and TestChain, rrTask costs 24 cycles. With 2 dependences

per task in average with Test-1P10C and Test-10P1C, although they have different de-

pendence patterns, their rrTask take 35 or 38 cycles. With 11 dependences per task

in average with Test-10P10C, it costs 178 cycles. With 15 dependences per task with

TestFree, it costs around 243 cycles.

Thirdly, the dependence repetition rate (rrDep) remains stable in all the test cases and

decreases when the average number of dependences (avg#d) increases. For benchmarks

with only one dependence, the rrDep is around 24 cycles. For benchmarks with more

dependences, it is around 16 to 19 cycles. This can be seen as the repetition rate of the

first and following independent instructions flow into a pipelined functional unit.

However, this effect for L1st and for rrTask in the HW-only mode is nearly hidden

in the HW+comm and the Full-system modes, showing that the hardware part is fast

enough with the current integration. Moreover, the effect for rrDep in the HW-only is

greatly enhanced in the Full-system mode where the communication and Nanos overheads

become the main performance factor. As can be seen, for the HW+communication to the

Full-system mode, the rrDep with TestFree from 1 to 15 depenences per task drops

from 740 to 49 cycles and from 3125 to 228 cycles, respectively. Indeed, in the Full-

system mode, as the number of dependences increases, the time required to process a task

rrTask remains stable while the rrDep decreases proportionally. This is a key factor

contributing to the powerful performance of Picos with the Full-system mode presented,

as this effect does not appear in the software-only implementation.
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4.5.4 Scalability

Finally to show the real potential of the Picos prototype, real benchmarks are used for its

scalability studies with up to 24 workers. Figure 4.13a to 4.13e show the speedup (bar,

y-axis) of Heat, SparseLU, LU, Cholesky and H264dec with four block sizes obtained by

Picos with the Full-system mode, the Perfect simulator and the Nanos++ RTS (software-

only implementation).

Results of the Perfect simulator shows the available peak parallelism in these applica-

tions. When compared with this perfect speedup, with Heat, SparseLU, LU and Cholesky,

the Picos prototype achieves nearly roofline speedup with block sizes from 256 to 64 and

with up to 24 workers. With H264dec, it scales very well with block size (8, 4, 2, 1) and

up to 12 workers, then remains stable.

With Heat, Cholesky with block size 32 and H264dec, there are emerging gaps be-

tween the results obtained by the Picos prototype and the Perfect simulator. There are

several reasons here, firstly the Perfect simulator calculates an ideal speedup of applica-

tions without any communication and OS costs. Secondly, the first prototype is the sim-

plest configuration with only one TRS and DCT, which is unable to unfold such a high

and fine parallelism from applications here. For example, with H264dec with 1x1, there

are 139934 tasks with the average execution time of 39400 cycles per task in Table 4.1.

With this simple configuration, it also lacks hardware resources to manage so many pro-

cessors. Notwithstanding, the Picos prototype with more module instances should be able

to obtain higher speedup and fill this gap[87].

Compared to the Nanos++ software-only RTS, Picos greatly exceeds its performance

in all the benchmarks. For each benchmark, given a fixed block size, Nanos++ RTS scales

up to 8 workers maximum while the Picos prototype continues to scale up to 24 workers

in some cases. For example, for SparseLU with block size 32 and Cholesky with block

size 64, the Picos prototype achieves 16x to 24x and 15x to 21x with 16 and 24 workers,

respectively.

More importantly, for each benchmark, as its block size decreases, Nanos++ RTS

starts to degrade rapidly after some point while the Picos prototype keeps on advanc-

ing or at least remains stable. For example, in Figure 4.13a, the speedup achieved by

Nanos++ RTS for Heat (64 to 32) drops from 4.5x to 1.6x with 8 workers while that by

Picos prototype remains stable as 6.3x; and for SparseLU in Figure 4.13b and LU in Fig-

ure 4.13c with block size 64 to 32, when the speedup achieved by Nanos++ RTS starts
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to degrade, the Picos prototype continues to advance from 3.3x to 8x with 16 workers.

In Figure 4.13e, for H264dec, as the block size and the performance of Nanos++ RTS

decreases, Picos prototype remains stable.

All of the above prove that even the simplest configuration of Picos Hardware fulfills

our expectations, and larger configurations are expected to be able to cope with future

many-cores.

(a) Heat (256x256, 128x128, 64x64, 32x32) (b) SparseLU (256x256, 128x128, 64x64, 32x32)

(c) LU (256x256, 128x128, 64x64, 32x32) (d) Cholesky (256x256, 128x128, 64x64, 32x32)

0
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Picos Full-system Perfect Simulator Nanos++ RTS 

(e) H264dec (8x8, 4x4, 2x2, 1x1)

Figure 4.13: Strong Scalability (Speedup) results of Picos Full System, Perfect Simulator
and Nanos++ RTS (software-only) for applications with different block sizes, compared
to the sequential version.

4.6 Summary and Concluding Remarks

Task-based programming paradigms such as OpenMP 4.5 and OmpSs are ubiquitous ap-

proaches to program multicore and many-core architectures. They are simple to use,

and are powerful to gain high performance with coarse-grained tasks. However, their
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software runtime overhead especially the task dependency graph management and thread

contention prevent the exploitation of fine-grained parallelism, which leads to perfor-

mance degradation among applications.

In order to avoid this problem and extend the benefit of these programming models

into a finer-grained parallelism, this chapter proposes and presents the very first hardware

prototype of Picos, as a hardware task dependence manager. The presented implementa-

tion is coded in VHDL, has been carefully analyzed and tested on an embedded system

on a Zynq 7000 SoC Platform (Zedboard).

This prototype is able to manage 256 in-flight tasks with up to 15 dependences per

task. This configuration was selected based on a previous work which used a C simu-

lator to perform design space exploration [87]. In this previous work, a design like this

prototype is estimated to be able to scale up to 8 workers while a larger design with four

times the size is able to scale up to 256 workers without damaging the performance. With

real benchmarks, our prototype Picos is able to scale up to 24 workers, which has greatly

exceeded the estimation from the design space exploration. In addition, the performance

results have also been compared with a State-of-the-Art software-only runtime system,

and Picos greatly outperforms the software-only alternative with fine-grained tasks.

This first prototype is a milestone, as it sets the foundation architecture for all our

future designs, and it realized the ideas in our mind into a real hardware.
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Chapter 5
Nested Task Suppport -Second prototype

Standard task-based programming models such as OpenMP and OmpSs define nested

tasks as tasks that have been created by other tasks, with or without dependences. The

OpenMP and OmpSs standard define two limitations for nested tasks, which are necessary

to consider:

1 A "child task" can only have a subset of the set of dependences of its parent task.

2 The dependences of a "child task" only affect its sibling tasks ("child tasks of the

same parent").

Nested tasks are generally supported to improve the programmability of parallel pro-

grams. For instance, a nested task can be found in recursive codes where the recursive

function is a big task and can be further decomposed into smaller tasks for more paral-

lelism. Another usual circumstance for the use of nested tasks is the case where a task is

used to call a library that has already been programmed with tasks. Therefore, nested task

support is a necessary feature of any task manager that wants to execute general-purpose

codes.

Although our first prototype Picos, presented in previous chapter, obtains much higher

performance than the software-only runtime, it does not support nested tasks in hardware.

This fact reduces the programmability and exploitation of parallelism as for example the

case of task-based recursive functions or task-based libraries.

The main reason why Picos does not support nested tasks is due to the fact that hard-

ware task managers, opposed to software ones, have a limited amount of memory. Thus

it is possible that a hardware task manager reads a task and runs out of memory space

in the middle of processing task dependences. Without nested tasks, this is not a prob-

lem because previously processed tasks are scheduled to execute when they are ready and

eventually they will finish. When these previous tasks finish their execution, they free
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resources that allow the hardware to proceed with the processing of the stalled task. For

nested tasks with dependences, the situation is much more complicated and can lead to

system deadlocks.

This chapter describes the second prototype Picos++ [72], which proposes a hard-

ware/software co-design to extend the first prototype of Picos with the support for nested

tasks. The first condition to avoid deadlocks is to read and process tasks atomically. Once

a task is read, all its dependences should be processed (i.e. integrated in the task depen-

dency graph). Additional actions are required to deal with the task and the remaining

dependences when the hardware is used up. In addition, actions are required to resume

the hardware processing when the full situation is cleared.

The main contributions of this chapter can be summarized as follows:

• A hardware/software co-design for supporting nested tasks in Picos++. In the hard-

ware part, new information and an additional memory structure have been added to

the design. In the software part, a control system has been added to prevent dead-

locks when the hardware resources are fully used or when internal memory conflicts

appear in Picos++.

• A different communication mechanism between the General Purpose Processor and

the hardware accelerator.

• A fully integrated Picos++ system based on a Xilinx Zynq 7000 series SoC with

Picos++ connected with the processors in hardware. This includes the integration

of Picos++ with a State-of-the-Art programming model and a Linux OS in software

and consequently the capability of executing real applications using Picos.

• Performance and energy consumption analysis of applications executing in real

hardware when running a task-based dataflow programming model using a software-

only compared with a Picos++ accelerated runtime.

• Visualization of real application executions and Picos++ activities.

5.1 Picos++ system

Picos++ is an evolution of the Picos design. In order to support nested tasks without

deadlocks, a hardware/software co-design is introduced in Picos++. In the hardware part,

additional hardware support is added to ensure atomic task processing. In the software
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part, a mechanism named buffered task recovery is introduced to intervene when it de-

tects a potential deadlock threat during execution. Additionally, the data communication

is also modified to allow higher performance and easier support for the co-design. This

section shows a conceptual view of Picos++ system, and explains the different data com-

munication mechanisms used in both Picos and Picos++.

5.1.1 System Organization

Figure 5.1 shows the Picos++ system based on a commodity SoC. It consists of the Pro-

cessing System (with 2 ARM cores), the Programmable Logic, the main memory and

other peripherals required for the system to work. Applications, programming models

and Picos++ APIs reside in the Processing System. Picos++ and its communication logic

reside in the Programmable Logic.

The Processing System and Programmable Logic are connected to the main memory

where they share three buffers managed as circular FIFO queues. Each buffer stores up

to N units (each unit represents one task). Each unit inside the new task buffer consists of

these fields: TaskID (8 bytes), Number of Dependences (4 bytes) and Dependence Memory

Address and Direction (12 bytes) of each dependence for up to 15 dependences, in total

192 bytes. Each ready task unit includes TaskID, Picos++ID (4 bytes). Each finished task

is represented by its Picos++ID.

Special values of TaskID and Picos++ID in the new and finished task unit are reserved

in order to indicate a valid task. Also, a special value of Picos++ID in the ready task unit

is used to indicate empty space in this unit.

5.1.2 Number of Dependences per Task

One of the fixed parameters of the hardware is the maximum number of dependences per

task, fixed to 15 originally as a "more than enough" value. Although currently all the

evaluated applications have less than 15 dependences and thus fit in the current system, it

is possible that this changes in the future with new applications.

To solve this problem a hardware-software mechanism has been designed that allows

Picos++ to process tasks with any number of dependences. As the number of dependences

is known at compile time, if any corner case with more dependences appears, the software

part of the runtime will create two (or more if necessary) helper tasks to accommodate

them. Figure 5.2 shows how an original task A with 16 dependences is splitting into three
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Figure 5.1: Picos++ based on Zynq 7000 SoC

tasks A1, A2 and A3 that have 15 or less dependences per task and maintains the correct

execution order. Task A1 will be created with 14 of the original dependences and an Extra

(E) helper dependence with inout type. It will be a empty task that has no execution time.

Task A2 will have the remaining 15th and 16th original dependences and the same Extra

(E) helper dependence with inout type. It will inherit all the computation from the original

Task A. This way through the inout dependence chain, the original code will be executed

only after all the original dependences are ready. Finally, another empty helper task A3

will be the same as task A1. This last task will ensure that any task that depends on any

of the 16 original dependences is executed in the correct order. This simple mechanism

can be replicated for any number of dependences using more helper tasks. In fact, it

allows Picos++ to process tasks with more dependences than fit in its internal memories

(as the helper tasks don’t need to be processed as a single unit) and maintains the parallel

processing in a nested task environment.

5.1.3 Data Communication

The data communication between the general purpose processors (GPPs, the ARM cores)

and the hardware task manager is one of the key factors that determines the final system
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Figure 5.2: Software mechanism to tackle tasks with more than 15 dependences

performance. The first prototype Picos uses synchronous communication. As shown in

Figure 5.3a, the threads running inside GPPs are in charge of programming DMA for each

data movement (new, ready, finished task) from memory to Picos or backwards. In this

case, Picos is a slave module, which relies on DMA for all the data transfers. Although

simple, this method is costly due to the frequent small data exchange between Picos and

threads, and the constant interference required from GPPs. Although DMA is also useful

for asynchronous communication, its benefit is not obvious due to the frequent small data

exchange pattern in our user case. As a result, the overall system performance is burdened.

Picos++ implements a buffered and asynchronous communication which requires much

less support from GPPs as shown in Figure 5.3b. During the initialization process, the

threads running inside GPPs allocate three buffers (new, ready, finished) in the memory

and send the addresses and lengths of these buffers to Picos++. Picos++ has a master

module which can then access these buffers in memory without further intervention from

the threads. It decouples the data communication between software and hardware, ensur-

ing a more efficient small data exchange and releasing GPPs for more useful work. As a

result, there is a significantly higher overall system performance.

The operational flow of the communication module in Figure 5.1 follows: 1) Read
new task. It reads the TaskID field of a unit in the new task buffer. If this is valid, it reads

the new task and then invalidates this unit. Otherwise, it tries to write a ready task. 2)

Write ready task. It reads the TaskID field of a unit in the ready task buffer. If this unit

is empty and Picos++ has a ready task, it writes the ready task from Picos++ to the ready
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Figure 5.3: Data communication between Picos designs and General purpose processors

task buffer. Otherwise it checks for finished tasks. 3) Read finished task. It reads the

Picos++ID field of a unit in the finished task buffer. If this is valid, it reads the finished

task and afterwards invalidates this unit. Otherwise, it checks for new tasks. This process

starts when software writes a start to the data communication logic, and stops when it

writes a stop to the communication logic.

Certain modifications are required in the software runtime in order to offload the de-

pendence analysis to hardware and to support the hardware/software co-design for nested

tasks. The main operations of the modified software runtime are as follows: (1) It opens

Picos++ for access and allocates three buffers for new, ready and finished tasks in DDR3

(as shown in Figure 5.1). Afterwards, it sends the buffer addresses and lengths to Picos++

and starts the following process. (2) It creates tasks and copies them to the free spaces in

the new task buffer. (3) It checks for ready tasks in the ready task buffer and copies them

to the ready task pool for worker threads. Afterwards it resets the entries in the ready task

buffer to an empty state. (4) When there are finished tasks, it copies them to the free space

in the finished task buffer. (5) When the process finishes, it deallocates buffers and stops

Picos++.

5.2 Nested task and Software support

5.2.1 Deadlock Scenario

In order to support nested tasks it is necessary to have an additional field in the new

task packet containing the parent ID of the task. Picos++ reads this field and sends it

to the DCT with every task dependence. After that, the corresponding DCT differenti-

ates dependences using the parent ID as an additional tag. This extension tag allows the

dependences of non-sibling tasks to be maintained in separate task dependency graphs,

so inter-task dependence relationships are only applied between sibling tasks (due to the
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Figure 5.4: Multisort with nested task dependences

second limiation of the definition of nested tasks mentioned earlier).

Nonetheless, the above implementation is not enough to avoid corner cases that lead

to a whole system deadlock. Those corner cases derive from the fact that hardware task

managers, opposed to the software ones, have a limited amount of memory. Thus it

is possible that hardware task dependence managers read a task and run out of internal

memory space in the middle of processing task dependences. Without nested tasks, this

is not a problem because previous processed tasks go to execution and eventually they

finish. and free out resources that allow the hardware to proceed with the stalled task.

For nested tasks with dependences, the situation is much more complicated. As an

example, Figure 5.4 shows two levels of nested tasks, where tasks in level i are labeled

i.X. While all tasks in level 1 are shown, only child tasks of multisort 1.1 are shown for

the second level.

To simplify the deadlock scenario, assume that Picos++ has memory capacity for only

7 tasks. In this case, the first level tasks would quickly fill the Picos++ manager before

the first task multisort 1.1 goes to execution and starts creating new tasks. In particular,

at the moment that multisort 1.1 creates the first child task multisort 2.1, this task will go

into the hardware manager and gets stuck due to a full memory problem. As the parent

task multisort 1.1 will have to wait until all its child tasks end (and they will not end), it

will not able to finish and all the following multisort and merge 1.X tasks, already inside

the hardware manager, will not able to proceed (and free memory for more tasks), so the

system will go into a deadlock.
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5.2.2 Deadlock Free Hardware/Software Co-design

In order to support nested tasks without deadlocks, we introduce a hardware/software

co-design in Picos++. The explanation of this co-design and how it works follows.

5.2.2.1 Atomic Task Processing

The first condition to avoid deadlocks is to read and process tasks atomically. Once a task

is read all its dependences should be processed (i.e. integrated in the task dependency

graph). The first prototype Picos uses a non-atomic task processing, where until the FIFO

queues connecting GW with TRS and DCT are full, GW can read new tasks without

considering the free spaces in all Picos memories (TM, DM and VM). Without nested

tasks, this method ensures efficient inter-component communication. However, it leads to

deadlocks easily with nested tasks. For instance, assume the scenario shown in Figure 5.4

where task multisort 2.1 is stuck in those FIFO queues. Thus, in Picos++ the hardware is

modified to read and process tasks as a whole, which means that the GW is conscious of

the free spaces in all Picos++ memories before it reads a new task.

This awareness has two cases to consider: when the new task has no unique depen-

dences (all of them are versions of dependences already existed in the DM and VM in the

hardware) and when there are unique dependences. For the first case, it is easy to ensure

the processing of a new task and new versions of already known dependences as they can

be stored in any empty entry in their respective memories (TM and VM). In this case, one

empty space in the TM and 15 empty spaces in the VM are enough to read a new task.

The implementation of TM and VM allow to know the amount of their empty spaces in

advance easily.

For the second case, ensuring the processing of new dependences is more difficult as

they are stored using a hash process in order to have a fast location mechanism in DM [71].

DM uses hashing and a 8-way associative memory, a full-associative memory has been

discarded due to its complexity and resource requirements. Therefore, a dependence may

not be stored because all the 8 ways of the DM entry indexed by the dependence address

are full, independently of the whole DM usage. This problem can not be anticipated and

results in a negligible slow-down without nested tasks, but with nested tasks may lead to

a deadlock.

To overcome it, Picos++ has a new fall-back memory that is able to store up to 16

dependences. This memory is used whenever a new dependence cannot be stored in DM.
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Once it is used, it raises the memory full signal. This signal stops the GW from reading

more new tasks while allows it to continue processing the remaining dependences of the

current task. As soon as DM has free space, the dependences are moved from the fall-back

memory back to DM, so Picos++ resumes new task processing.

5.2.2.2 Buffered Task Recovery

Atomic task processing alone cannot avoid deadlocks. If the aforementioned child task

multisort 2.1 is stored inside the new task buffer, but cannot be read by the hardware, the

system stalls. This is only an issue for the first non-executed child of its parent. Due to

the fact that child dependences are always a subset of their parent, the first child is always

ready. This does not hold true for the second and subsequent children. Therefore, if the

first child is still in the new task buffer, it has to be processed (somehow) in order to avoid

deadlocks. Otherwise (if the first child is not stored in the new task buffer) there is not

going to be a deadlock. Thus, the remaining children of a task must remain in the queue

until the hardware processes them in order to avoid race conditions.

To fulfill this requirement, the software support of Picos++ keeps track of the entries

in the new task buffer where a parent has stored its children. Whenever a full condition

arises, it checks the state of the first child. If the first child task has been read, the software

support stays at normal routine (the main operations). Otherwise the software support

intervenes to avoid a possible deadlock. First, the thread locks the new task buffer and

removes all its child tasks. Then, the buffer is reconstructed if it has any remaining tasks

(created by other running tasks) by updating all the corresponding pointers. Afterwards,

either the child tasks are directly executed in order by the thread (without allowing them to

create more tasks) or submitted as a whole to a software task dependency graph manager.

Finally, when the full condition in hardware is cleared, the software support reverts to use

hardware for dependence processing. The first option is simpler and keeps the complexity

of the software part at bay. The second may allow extra parallelism to be extracted in some

corner cases.

5.2.3 DM and Fall-back Memory Design

As we mentioned in the previous chapter, DCT is the major dependence management unit.

It manages task dependences through one Dependence Memory and one Version Memory

(DM and VM respectively). For each new arrived dependence, DM performs address
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match of it to the tags of all these arrived earlier. The dependence with unique memory

address is allocated with a new space in DM and is saved as a tag, otherwise DM saves it in

the matched place belonging to the earlier arrived dependence. VM receives instructions

from DM and keeps the chain of consumers and producers of all the references to the

same dependence address (called versions).

In order to support nested tasks in hardware, a fall-back memory as part of a new DM

design is introduced to ensure space in DM for one new task. Figure 5.5 shows this new

DM design in the second prototype. It includes both the primary dependence memory

(PDM) (the same design as the original DM in the first prototype), and the fall-back

memory (FBM). The PDM is a 64-entry, 8-way associative cache-like memory while the

FBM is a 1-entry, 16-way associative design.

Figure 5.5 also shows VM in this prototype. VM is a 512 entry memory, implemented

by using a BRAM with 512 depth, it accepts free entry requests and recycles used entries.

When compared to the VM design in the first prototype, the only difference here is the

width of the DM address (11bits, we will introduce it later) stored inside.

The new DM operational flow can be seen in Figure 5.5. When a new dependence

packet enters the DM memory (circle 1), first all the 64 bits of its memory address go

through the hashing module to obtain a 6 bits entry address (circle 2). Then the 64 bits are

compared against all the tags from the 8 ways (circle 3). Then depending on whether

there is a hit or miss, the direction of this dependence, and the usage of the 8 ways of the

PDM entry, DCT performs different actions to update PDM and VM, and sends different

notifications to TRS. This has been documented in great detail in Chapter 4 and therefore
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it is not repeated here. However, one outcome is processed differently in this new DM

design. When there is no hit and all the 8 ways of the PDM entry are full, instead of

stopping DCT to process this new dependence, this new dependence goes to the FBM

(circle 5). When the FBM is used, GW will stop reading new tasks. Therefore there are

two possible situations in Picos++. First, if this is not the last dependence of the current

new task, it is guaranteed that the current new task is the only new task in Picos++,

therefore 14 more spots are the maximum number required to save it. Second, if it is the

last dependence of the current new task, then potentially there can be another new task in

Picos++, in this case an additional 15 spots are required. With 16 ways, FBM is able to

handle both situations. VM is updated accordingly and the corresponding communication

dependence packets are sent.

When a finished dependence packet enters, the associated VM address is first used to

read the Consumer information and the DMaddr in the VM entry. If there is a consumer

task, it sends a ready notification to TRS with the Consumer_TRS_entry to wake up

the last consumer task in chain, and the count in both VM and DM are deducted by 1;

afterwards, if the count value reaches 0, and the VM entry has a Producer informa-

tion, a ready notification is sent to TRS. When TRS receives a ready notification, it checks

if the task is ready-to-execute and also TRS in turn wakes up the previous consumer task

if it exists. When each of these consumer tasks finished execution and their finished de-

pendence packets enter, the same procedure continues. When the count reaches 0, the

corresponding VM entry or DM way is freed.

Since Picos++ supports tasks with up to 15 dependences, we mentioned earlier that

the FBM has the ability to save all the dependences from the tasks already read. Whenever

the FBM is used, the GW stops reading new created tasks but the processing of finished

tasks continues. Once the suitable space (one of the ways in the corresponding entry) is

emptied in the PDM, the context in FBM is moved to that entry in PDM. Note that, the

context in FBM cannot be moved back to a random way in a random entry, it has to be one

of the ways in the same entry after hashing, therefore FBM has to remember this entry

address.

The PDM is implemented by using 8 BRAMs with 64 entries each, therefore to access

a specific way, 9 bits address (6 bits for entry, 3 bits for way) is required. The FBM is

realized by using 16 registers and the necessary control logic, a 4 bits address is required

to access one of its 16 ways. To distinguish these two memories in the new DM design,

and for the movement of content from FBM to PDM, we extend the address to access
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DM from 9 bits to 11 bits. If Bit10 of the address is zero, then Bit8 to Bit0 form the

9bits address needed to access the PDM; otherwise, the FBM is accessed. In addition,

Bit9 to Bit4 inherited the entry address that can be used to move between PDM and

FBM, and Bit3 to Bit0 are used to access the FBM. This DM design works correctly

with applications with or without nested tasks, it is fast and has a low hardware resource

consumption.

DCT is a complicated module for several reasons. On one hand, dependence address

matching gets very complicated and time consuming as the new tasks are created much

faster and in great number when exploiting fine-grained parallelism. This effect is re-

sponsible for the performance degradation in the software-only runtime. On the other

hand, it is desirable to have a balanced speed between different design parts, such as TRS

and DCT, to achieve a good performance and be cost wise as a chain is only as strong

as its weakest link. However, this is not easy to achieve because each task can have up

to 15 dependences. That fact stresses DCT much more than TRS. Additionally memory

addresses of dependences always tend to group in clusters for many applications, leading

to a lot of hot spots in memory, and system stalls. Finally, with nested tasks, the fact that

implementations of hardware task managers, opposed to the software ones, have a limited

amount of memory can lead to corner cases that result in a whole system deadlock. All

the above reasons are considered for the design of DCT and even the whole prototype.

5.3 Experimental Setup and Benchmarks

5.3.1 Experimental Setup

Picos++ is coded in VHDL and implemented in a Zynq 7000 series SoC platform (Zed-

board). Its communication logic is coded in C with Vivado HLS directives. For the

experiments in this chapter, Picos++ and its communication mechanism were synthesized

with Xilinx Vivado Design Suite 14.4. Zedboard includes one FPGA Chip XC7Z020-

CLG484 [85] which comprises a Processing System (PS) with 2 ARM Cortex-A9 (work-

ing at 667MHz) and a Programmable Logic (PL) part (at 100MHz).

The evaluation of Picos++ is done with OmpSs[35], a forerunner for the OpenMP

Standard. OmpSs is supported by the source-to-source Mercurium compiler and the

Nanos++ runtime system. Picos++ uses a modified version of Nanos++, as its own

software counterpart runtime. We also use performance tools Extrae and Paraver[26]
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to analyze the application behavior in our system. Sequential and parallel execution time

of OmpSs applications are obtained in real executions in Zedboard which operates on

Ubuntu Linaro Linux 14.04.

5.3.2 Benchmarks

A set of synthetic and real benchmarks[25, 79] are selected to show the capability of

Picos++, the impact of different communication systems and nested task support.

Synthetic benchmarks include TestFree, TestChain and TestNested. TestFree consists

of tasks that are all independent with each other, thus is selected to test the maximum

ability of Picos++. TestChain is the opposite, it consists of tasks with dependences that

form an inout chain, thus there is no paralellelism at all. It is selected to show the worst

case of Picos++. TestNested is selected to test the functionality of nested task support in

Picos++.

Real benchmarks include Cholesky, Multisort and H264dec. Cholesky is a represen-

tative application in scientific computing with complex dependence patterns. Multisort is

a representative application with a recursive algorithm. Finally, H264dec is a popular me-

dia/video decoding application. Both Multisort and H264dec are chosen to test not only

the task dependence management, but also the nested task support. Their functionality

description can be found in Chapter 3, Section 3.2.

Table 5.1: Characteristics of Real benchmarks
Name Configurations #Tasks AveDep AveTSize (ns)

Cholesky

2k 128 816

2.5

6074213
2k 64 5984 887365
2k 32 45760 128693
2k 16 357760 22239
2k 8 2829056 4627

H264dec

10f 16 16 549

6

3138500
10f 8 8 1580 998445
10f 4 4 5490 289683
10f 2 2 21110 89809
10f 1 1 82310 32293

Multisort

128k 4k 32k 45

2

1994309
128k 1k 32k 157 639705

128k 256 32k 605 237811
128k 64 32k 2397 219350

Table 5.1 shows the characteristics of the real benchmarks with different problem and

task sizes. Column configuration shows the problem and block size for Cholesky; the

number of frames and block sizes for H264dec; the input array size, the minimal sort size
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Table 5.2: Hardware Resource and Power Consumption
Name Resource Power
Design LUTs FFs BRAM(36Kb) Watts

XC7Z020 53,200 106,400 140 -
Picos++ 11.32% 4.22% 18.57% 0.011

Data Communication Logic 3.90% 2.93% 0% 0.009
2 ARM Cortex-A9 cores - - - 1.53

and the minimal merge size for Multisort. Column #Tasks and AveDep shows the number

of tasks and average number of dependences per task. Finally column AveTSize shows

the average task size in nanoseconds of these real applications.

5.4 Results

This section examines the Picos++ system in both performance and energy consumption.

It starts with an assessment of the hardware and power cost of Picos++. Followed with

a comparison between Picos++ with the first prototype Picos regarding their different

communication schemes and the influence on their processing capacity. Afterwards per-

formance and energy studies of Picos++ are presented by using both synthetic and real

benchmarks. Then a visualized analysis of application execution in the Picos++ system

is illustrated to show insights for higher energy efficient designs in the future. Finally

since the commodity hardware used for building Picos++ system has a limited 2 threads,

a discussion of Picos++ scalability with more threads and resources is presented.

5.4.1 Hardware Resource and Power Consumption

Table 5.2 shows the on-chip resource utilization and dynamic power consumption of Pi-

cos++ on the Xilinx XC7Z020-CLG484 chip [85]. All the results are obtained from

Vivado post-implementation reports. The on-chip static power (not shown in the table) is

0.163W. The Processing System which includes 2 ARM Cortex-A9 CPUs takes around

90% of the on-chip power consumption. Picos++ and its data communication logic con-

sume a small fraction, around 0.02W, less than 1.3% of the chip power. This, and the

fact that Picos++ requires less than 20% of the Programmable Logic, makes it feasible to

be integrated in multicore CPUs. Since the design of Picos++ is stable, its hardware and

power consumption will be similar if implemented in other different FPGAs.
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Figure 5.6: Communication latency in Picos and Picos++

5.4.2 Picos++ versus Picos

In this section, Picos and Picos++ will be compared regarding their communication laten-

cies, task and dependence repetition rates, and performance.

5.4.2.1 Synchronous versus Asynchronous Communication

Figure 5.6 shows the communication latencies shown in cycles (at a frequency of 100MHz)

between the CPUs and Picos or Picos++. Tnew, Tready and Tfinish are the latencies for

transferring a new, ready and finished task message. Tcomm is the accumulation of all

three previous latencies. The communication latency is similar for tasks with different

number of dependences. As it can be seen, for one task the communication in Picos++ is

more than 2x faster than in Picos.

5.4.2.2 Task and Dependence Repetition Rate

Table 5.3 shows the task and dependence repetition rates (rrTask and rrDep) of Picos

and Picos++ by using TestFree and TestChain with different number of dependences, and

with empty tasks (0 execution time). The results are shown in 100MHz clock cycles with

2 threads. Note that the Picos results vary from Table 4.4 for the Full-system since the

latency in cycles now accounts the real execution of the application with real software task

creation and Linux OS overheads, when previous chapter shows results with simulated

task creation and execution, in addition without Linux OS.

HW-only indicates results without any communication latencies or software runtime

overheads, and the evaluation results were based on execution traces. The Picos and Pi-

cos++ rows show results obtained in real executions (both are integrated with a modified

version of the Nanos++ runtime where the dependence analysis is offloaded to the hard-
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Table 5.3: Task and Dependence Repetition Rates
Testcase TestFree TestChain
Average number of dependences 1 15 1 15

HW-only rrTask 24 243 35 348
rrDep 24 16 35 23

Picos rrTask 8418 9060 9359 10424
rrDep 8418 604 9359 695

Picos++ rrTask 1288 1635 1771 1791
rrDep 1288 109 1771 119
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Figure 5.7: Execution time and speedup of Cholesky by using Picos and Picos++ with 2
threads

ware).

Picos and Picos++ have similar results for HW-only, thus we only show one set of

results for both. In this scenario, the task and dependence repetition rates are really small.

The task repetition rate is proportional to the number of average dependences and it in-

creases slightly with a more complex dependence pattern. For example, for tasks with

1 dependence in TestFree and TestChain, it takes around 24 and 35 cycles respectively.

With 15 dependences, it takes around 243 to 348 cycles. The dependence repetition rate

is quite steady for different dependence patterns from 16 cycles to 23 cycles. This is due

to the fact that Picos and Picos++ pipeline the processing of all the dependences of a task.

The data communication mechanism and the integration of Picos++ may have signif-

icant impact over system performance. In Picos, the communication cost is too high to

gain any performance for real benchmarks.

Figure 5.7 shows the performance results for Cholesky by using Picos, Picos++ and

the software-only Nanos++ runtime. The application uses a matrix size of 2048x2048

and different block sizes from 16x16 up to 128x128. The primary Y-axis shows the se-
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quential execution time in seconds in bars. The secondary Y-axis indicates the speedup

with 2 threads against the sequential execution in lines. Although all three have similar

performance with block size 128, they behave very different as the block size decreases.

For instance, Picos has the worst speedup while Picos++ has the best speedup among all

of them with 2 threads. This is due to the asynchronous data communication mode in

Picos++. It allows efficient small amount of data exchange by decoupling hardware and

software communication. Moreover it allows an easier integration through significantly

reducing the amount of interference between the CPUs and the hardware task dependence

manager. Therefore, as it can be seen in Table 5.3 and in Figure 5.7, Picos++ always has

better speedup than Picos and Nanos++, specially for fine-grained tasks.

5.4.3 Performance and Energy Consumption

5.4.3.1 Synthetic Benchmarks

In this section, the performance of Picos++ is shown in figures 5.8 to 5.10 by using syn-

thetic benchmarks to study the impact of different number of dependences and task gran-

ularities on Picos++. Picos++ performance is compared with that of the software-only

Nanos++ runtime. All the diagrams in Figure 5.8, 5.9 and 5.10 have two Y-axis, with the

primary one (in bars) indicating the execution time in seconds, and the secondary one (in

lines) showing the speedup of Picos++ against Nanos++ with 1 or 2 threads.

Figure 5.8 shows results of TestFree and TestChain executing 65536 empty tasks (0

execution time) with different number of dependences. Picos++ and Nanos++ are using

the same task creation mechanism. With empty tasks the results highlight the dependence

analysis cost in both systems. As the number of dependences (X-axis) increases, we

can see that the execution time when using Picos++ (in bars) in both benchmarks barely

increases, meanwhile that of the version using Nanos++ increases significantly. This can

be also seen as the speedup of Picos++ against Nanos++ with 2 threads (in lines) reaches

up to 5.9x and 4x with TestFree and TestChain respectively. TestChain has a tumbling

behavior with the software runtime using 2 threads. This effect is due to erratic memory

access patterns that are out of the scope of this thesis.

Figure 5.9 shows results with TestFree and TestChain with 65536 tasks, 15 depen-

dences per task and with increasing task sizes. From left to right, the task granularity

(X-axis) increases from 30 to 984,000 ns. For tasks around 984,000 ns, the overhead of

managing the task dependency graph becomes negligible and both systems deliver nearly
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Figure 5.9: Execution time and speedup of TestFree and TestChain with different task
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the same performance. However, with tasks of a finer granularity Picos++ has an increas-

ing speedup against Nanos++ that increases with the number of threads. For instance,

Picos++ against Nanos++ (Secondary Y-axis, in lines) reaches a speedup up to 4.7x and

3.8x with 2 threads compared to 4.3x and 1.9x with 1 thread. This trend is expected to

continue with a larger number of cores.

Figure 5.10 shows results of TestNested with different levels of nested tasks. When

comparing with Nanos++, the speedup of Picos++ increases slightly as the nesting level

deepens, from up to 1.4x to 1.55x (Secondary Y-axis, in lines) with 4 and 8 levels of

nested tasks.

An interesting observation is that with 2 threads Picos++ achieves the highest speedup

against Nanos++ with task size smaller than 4 microseconds for independent tasks like

TestFree, and around 5 microseconds for dependent tasks like TestChain and TestNested.

In addition, Picos++ performs steadily when the number of dependences per task in-

creases, and it achieves better performance with finer task granularity. With more threads,

the task size where Picos++ achieves the peak speedup and also outperforms the software-

only runtime shall move to the right, thus a larger range of task granularities will benefit
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from Picos++.

5.4.3.2 Real Benchmarks

In this section, we present scalability studies and energy savings of OmpSs applications

Cholesky, H264dec and Multisort with 2 threads. Note that the original implementation

of H264dec has two modes of execution with or without nested tasks. The one without

nested tasks was used in the original Picos while here the one with nesting is presented.

In Figures 5.11a, 5.12a and 5.13a, each graph has two Y-axis. The primary Y-axis

indicates the execution time in seconds (in bars), and the secondary Y-axis shows the

speedup (in lines). The X-axis indicates that the task size is increasing from left to right.

We also show labeled speedup of Picos++ over the sequential execution, and Picos++

versus Nanos++ runtime with 2 threads in those figures.

Figures 5.11b, 5.12b and 5.13b show the energy savings obtained when using Picos++

instead of Nanos++ for the corresponding real benchmarks. The legends of the graphs are

the same, therefore they are only shown in Cholesky.

For Cholesky, with block size 32, Picos++ achieves 1.6x speedup over the sequential

version, and 1.2x over Nanos++ (Secondary Y-axis, in lines). Correspondingly, it saves

15% of energy. With block size 64, Picos++ achieves the highest speedup of 1.9x over

the sequential version, similar to Nanos++. With block size 16 and 8, due to the limited

system with only 2 threads and the complex pattern of dependences in Cholesky, both

Picos++ and Nanos++ degrade, but Picos++ degrades much slower. As it can be seen

with block size 8, Picos++ reaches up to 2.1x against Nanos++. The obtained performance

results are relevant because those are for only 2 threads where it is easy to exploit all the

available parallelism. For bigger systems, Picos++ will show better scalability when the

task granularity becomes very fine.
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Figure 5.12: Scalability (a) and energy savings (b) of H264dec, with 2 threads.
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Figure 5.13: Scalability (a) and energy savings (b) of Multisort, with 2 threads.
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For H264dec, when compared to the sequential execution, Picos++ has a 2x speedup

with size 16 (Secondary Y-axis, in lines). Moreover, with size 2, it is 20% faster than the

software-only runtime Nanos++. With size 1, there is a soaring gain for Picos++ against

Nanos++ with 2 threads, raising up to 89% of energy savings.

For Multisort, with 1 thread, the execution times of Picos++ are higher than the se-

quential execution, which is expected because it introduces a lot of communication over-

heads when no parallelism can be exploited with single thread. However, this degradation

in performance using only one thread is significantly overcame by using 2 threads, where

Picos++ achieves from 1.3x to 1.9x speedup over the sequential execution, and up to 1.8x

over Nanos++ (Secondary Y-axis, in lines). Correspondingly, with sortsize 256, Picos++

saves up to 15% of energy, and with sortsize 64, it saves up to 42% of energy.

5.4.4 Execution Trace Analysis of Multisort

In this section, a 2-threads multisort execution trace using Picos++ is analyzed with Par-

aver. A similar behavior has been observed for other real benchmarks. Figure 5.14a and

Figure 5.14b show different views of the same execution trace. Different colors mean

different activities. As explained in the caption of the figures, they show the application

task instances and the Picos++ API calls done by the software counterpart runtime during

the multisort execution, with 2 threads.

Figure 5.14b has four main Picos++ API calls: send new task, send finished

task, receive and process ready task. The process ready taskmeans

checking for ready tasks when there are no ready tasks available. The receive and

process ready task are displayed with the same color. In the whole trace, the

receive ready task uses 3.20% and 3.40% of the whole time in thread 1 and

thread 2 while the process ready task uses 8.93% and 12.79%, respectively.

At the beginning of Figure 5.14a, it can be observed that the main program starts to

execute. Meanwhile, thread 2 tries to check for ready tasks before any new tasks are

actually created (Figure 5.14b). Afterwards, new tasks are created and thread 1 starts to

send new tasks to Picos++, and thread 2 receives some ready tasks. Correspondingly,

multisort tasks start to execute. When those tasks end, both threads send finished tasks

to Picos++. When the last task finishes its execution, we can see that thread 1 is still

checking for ready tasks.

There is a good amount of time when the threads are checking for ready tasks when

there are none. For example, at the beginning and end of the trace because there are
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(a) Tasks instances

(b) Software API calls for Picos++

Figure 5.14: Visualization of a real execution of multisort with 2 threads

no ready tasks available at these moments. While in the middle of the execution, the

reason for this behavior is that there is no parallelism available. An integrated Picos++

mechanism should be able to generate signals to put the threads to sleep during those

times and wake them up later. By doing this, Picos++ could save the energy wasted along

these times (21.7% of total time for 2 threads). In this scenario, an integrated hardware

manager has the potential to save an additional 10% of energy over Figure 5.13b without

affecting the performance. With a large system with more threads, the energy savings can

be even more significant.

There is also critical-path tasks information available inside Picos++. Due to the lim-

ited system available (with only 2 threads), the current experiments use a simple first-

come-first-serve policy for task scheduling. Therefore one interesting future work in Pi-

cos++ is to explore the potential performance gain by using critical-path task scheduling

with more threads available.

5.4.5 Scalability Discussion

Current implementation of Picos++ shows good results in a fully integrated system with

only two available cores. Previous design exploration of the same design, with more

threads and no software integration, proved to have great scalability for up to 24 workers

for Cholesky (21x speedup) and for SparseLU (24x speedup)[71]. Even more, by using

a software cycle-level simulator [87] it has been measured that the same baseline design

with one instance of GW, TS and ARB, and four instances of TRSs and DCTs is able to

manage up to 256 workers.

To achieve this target, Picos++ should include more logic in terms of more instances

of TRS and DCT modules, and communication buffers to distribute and gather tasks and

their dependences. On one hand, using more modules linearly increases both the memory
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capacity of Picos++ and its internal management flow parallelism. Although the number

of modules increases, the characteristics of each module remain the same, therefore the

cycle time of the critical path (frequency) should not be significantly affected. On the

other hand, increasing the number of components implies adding extra buffers to store all

inter-modules messages. This may affect both the operational latency and the frequency

depending on the overall implementation size. However, with the current implementation

of Picos++, using different lengths of communication buffers has no influence on the

performance of real applications, thus the results shown here are with fixed length buffers.

For example, Picos++ with four instances of TRSs and DCTs is four times bigger

than the current implementation being able to hold up to 1024 in-flight tasks, and it has

the potential to manage 256 workers without introducing overheads in the system with

respect to the ideal case [87].

5.5 Summary and Concluding Remarks

This chapter presents Picos++, a general purpose hardware task dependency graph man-

ager for task-based dataflow programming models. The presented design includes for the

first time a novel hardware/software co-design that extends the hardware with the capa-

bility to manage nested tasks with dependences. In addition, it evaluates real executions

of Picos++ as a hardware accelerator support for a task-based programming model, in a

Linux embedded system with two ARM Cortex-A9 cores and a FPGA.

Picos++ is a high speed, small and energy efficient runtime accelerator. In a sys-

tem limited to 2 threads, using Picos++ results on a speedup of more than 1.8x over its

software-only counterpart for the most demanding cases of real benchmarks. The corre-

sponding energy savings are greater than 40%.

The gains reported are good for an environment with only 2 threads and they are

expected to increase with more resources. Indeed, the hardware accelerated runtime per-

formance speedups are always better than the software-only runtime ones, presenting a

better scalability when passing from one to two threads. This effect allows us to conclude

that the greater the number of cores the more important the influence of using a hardware

task manager would be.
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Chapter 6
Heterogeneous task scheduling -Third prototype

The demand for more performance and less energy consumption in computing has lead

to a trend towards more heterogeneity in computer architecture. For example, the Cell

B. E. [51] consists of a general-purpose core named Power Processor Element and eight

accelerator cores named as Synergistic Processor Elements. Another example are GPG-

PUs [41] which usually are attached to a host processor to be used as accelerators. More

examples of this trend are the Imagine [53] and Merriamac [33] stream accelerators, that

consist of a grouping of microcontrollers and arithemetic function units. The SARC [63]

and the Runnemede [21] heterogeneous architectures which include master and worker

cores. Especially significant to our work are the latest Xilinx Zynq Ultrascale+ De-

vices [86], Intel Stratix 10 SoC chips [48] and the IBM Fabric Power8+CAPI system [44].

When compared with homogeneous processors, heterogeneous ones are able to obtain

higher performance with energy efficiency for a large range of applications.

However, they also imply several new challenges. Heterogeneous architectures of-

ten have complex hybrid memory hierarchies, which impose serious limitations for the

widespread usage of these systems. First, redefining the memory model for heteroge-

neous systems breaks backwards compatibility, so every new architecture requires adapt-

ing scientific and industrial codes. Second, exposing deep and hybrid memory hierarchies

to the programmer significantly degrades programmability, as the programmer needs to

partition the data, explicitly transfer data between memory spaces, and handle potential

data replications. These responsibilities greatly complicate the coding process and, more

importantly, require the programmer to have advanced knowledge of the architecture to

perform the data management operations efficiently.

One of the most promising solutions to program heterogeneous architectures is using

task-based programming models. The task-based extensions were introduced by OmpSs

and afterwards added to the OpenMP standard in version 4.5. In task-based programming
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models, the programmer exposes the available parallelism of an application by splitting

the code in sequential pieces of work, called tasks, and by specifying the data and control

dependences between them. With this information the runtime system manages the par-

allel execution of the workload following a data-flow scheme, scheduling tasks to cores

and taking care of synchronization between tasks. In order to manage hybrid memory

hierarchies without affecting the programmability of the architecture, in some cases (like

OmpSs) the runtime system takes the responsibility of exploiting task annotations to map

the data specified in the task dependences to the corresponding memories. So, memory

accesses to this data are served more efficiently during the execution of the tasks.

However the cost of using the default software-only runtime system for managing

these accelerators is high. Together with the task-dependence analysis, these runtime

tasks greatly hinders the potential performance a system can achieve, especially when

exploiting fine-grained parallelism.

To accelerate the parallelization and synchronization of workloads in applications and

to ease the effort required for data movement in the heterogeneous systems, we further

extend the second prototype with a new heterogeneous task scheduling feature. For homo-

geneous multicores, the software runtime overhead is mainly composed of task creation,

dependence analysis and task scheduling. In this environment, task dependence analysis

is the most time consuming function [37, 14]. However, for heterogeneous architectures

the task scheduling cost is also very high due to the loading imbalance caused by the

necessary data movements between different memories and the synchronization between

the different heterogenous parts of the system. There are some state-of-the-art works

that tackle the load imbalance in heterogeneous systems (in Section 2.2), however their

scheduling policies are in software and are themselves often very complex therefore only

coarse-grained tasks can be justified to be used to overcome the scheduing overheads. Our

third prototype aims to tackle these problems by improving both task dependence analysis

and heterogeneous task scheduling in hardware.

In this chapter we present the third prototype of Picos, Picos++ (uses the same name as

the second prototype). It is a general purpose hardware for task-dependence management

and heterogeneous task scheduling for task-based dataflow programming models. Now

with this prototype, we can further improve the performance that can be achieved by the

system, and the utilization of the threads that are previously dedicated for task scheduling

and data movements in heterogeneous systems. The main contributions of this chapter

can be summarized as follows:

94



CHAPTER 6. HETEROGENEOUS TASK SCHEDULING -THIRD PROTOTYPE

• A new heterogeneous task scheduling support in hardware. For each ready task,

Picos++ schedules it to a suitable hardware execution unit with the least number of

waiting tasks to shorten the total execution time. As a proof-of-concept, different

hardware accelerators are developed and integrated with Picos++ to form highly

diversified hardware systems.

• A systematic view of the Picos++ system based on a new Xilinx Zynq Ultrascale+

MPSoC platform. It offers insight on how to integrate a hardware task-dependence

manager and task scheduler with HW functional accelerators and with host proces-

sors when using a parallel task-based programming model.

• Three different studies of scalability and energy consumption when running real

benchmarks using the Picos++ system: tasks executing in threads only, HW func-

tional accelerators only and in a mixture of both types. All the evaluation results

are compared with a State-of-the-Art software-only runtime.

• Detailed analysis of a Cholesky execution on a system including Picos++, with

tasks executed in both threads and HW functional accelerators. This highligths

how the application is executed in this heterogeneous system, and future directions

to obtain higher energy saving designs.

6.1 Background

OmpSs@FPGA is an effort to support FPGAs as execution units for tasks. It allows pro-

grammers to easily create parallel applications which offload some functions to FPGA

accelerators. In the source code, the programmer annotates the function that should be of-

floaded to the FPGA with #pragma omp target device(fpga, smp) onto(acc

id) num_instances(num instances) (copy_deps). The source-to-source

Mercurium compiler analyzes the whole code and detects two main parts: the host and

the FPGA code. The host code is transformed to include calls to the OmpSs runtime

Nanos++ to spawn tasks and to transfer the task identification and dependence addresses

specified with the copy_deps clauses. A specially designed DMA library implements

the task and dependences transfers to and from the FPGA. The actual computation data

then will be read/write by the accelerators themselves in FPGA after they receive these

dependence addresses. Afterwards it is compiled using the GCC compiler. After that,

the Mercurium compiler separates the FPGA code, including all High-Level Synthesize

95



6.1. BACKGROUND

Listing 6.1: Matmul block functions with OmpSs annotation
1 # pragma omp t a r g e t d e v i c e ( fpga ) copy_deps on to ( 0 )
2 n u m _ i n s t a n c e s ( 4 )
3 # pragma omp t a s k i n o u t ( [ bs ]C) i n ( [ bs ]A, [ bs ]B)
4 vo id matmulBlock ( T (*A) [ bs ] , T (*B ) [ bs ] , T (*C ) [ bs ] ) {
5 u n s i g n e d i n t i , j , k ;
6
7 # pragma HLS a r r a y _ p a r t i t i o n v a r i a b l e =A b l o c k f a c t o r =bs / 2 dim=2
8 # pragma HLS a r r a y _ p a r t i t i o n v a r i a b l e =B b l o c k f a c t o r =bs / 2 dim=1
9 f o r ( i = 0 ; i < bs ; i ++) {

10 f o r ( j = 0 ; j < bs ; j ++) {
11 # pragma HLS p i p e l i n e I I =1
12 T sum = 0 ;
13 f o r ( k = 0 ; k < bs ; k ++) {
14 sum += A[ i ] [ k ] * B[ k ] [ j ] ;
15 }
16 C[ i ] [ j ] += sum ;
17 }}}
18
19 # pragma omp t a r g e t d e v i c e ( smp ) no_copy_deps
20 implemen t s ( matmulBlock )
21 # pragma omp t a s k i n ( [ bs ]A, [ bs ]B) i n o u t ( [ bs ]C)
22 vo id matmulBlockSmp ( T (*A) [ bs ] , T (*B ) [ bs ] , T (*C ) [ bs ] ) {
23 T c o n s t a l p h a = 1 . 0 ; T c o n s t b e t a = 1 . 0 ;
24 cblas_gemm ( CblasRowMajor , CblasNoTrans , CblasNoTrans ,
25 bs , b s i z e , bs , a lpha , a , bs , b , bs , be t a , c , bs ) ;
26 }

(HLS) directives regarding communication interfaces and uses autoVivado tool to process

it. The autoVivado tool chain, also developed at BSC, it calls the Vivado_HLS and Vivado

Xilinx proprietary tools to generate a hardware system to be mapped onto the specific SoC

platform on which OmpSs applications can be executed. The num_instances direc-

tive is used to automatically generate as many accelerators for the annotated function as

specified. Afterwards the runtime will take care of using all these available accelerators

in parallel when the parallelism of the application allows it.

Listing 6.1 shows an example of OmpSs application Matmul block with two func-

tion implementations, one that can be executed in FPGA and the other in SMP. The first

function matmulBlock in Line4 indicates that it can be executed in any one of the four

instances of HwAccs that will be created at compilation time; the second function mat-

mulBlockSmp in Line22 indicates that it can be executed in SMP and will perform the

same function (indicated with implements clause) as the previous one. With this code,

if a task is scheduled to FPGA, the first version will be used; otherwise the second ver-

sion will be executed in SMP. This code with target device fpga is also used to generate

the function body of the HW functional accelerator for Matmul as mentioned in Chapter

3.1.3.

Both the software-only runtime and the Picos++ runtime can be used to schedule tasks

in the application in Listing 6.1 to SMP and HW functional accelerators.
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Figure 6.1: Picos++ system organization

6.2 Picos++ System

The third prototype Picos++ adds to the already existing features in the previous proto-

types the management of different HW functional accelerators. In order to obtain good

performance, Picos++ introduces a new heterogeneous scheduling policy that schedules

ready-to-execute tasks to suitable hardware with the least amount of waiting work with

consideration of task execution time and the priorities of those accelerators in the system.

In this section, we first present an overview of the new Picos++ system. Then we show

the hardware support necessary for heterogeneous task scheduling. Finally we show the

operational flow of ready tasks in this improved system.

6.2.1 System Organization

Figure 6.1 shows the Picos++ system based on a Xilinx Zynq Ultrascale+ MPSoC. It

consists of the Application processing unit (APU) with 4 symmetric ARM cores, the

FPGA fabric and the main memory. Applications, programming model runtimes and

Picos++ APIs reside in the APU part. Picos++, its data communication, and different HW

functional accelerators (HwAccs) are implemented in the FPGA part. There are two clock
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domains for the design in FPGA, with the HwAccs in one clock domain and the Picos++

system in the other. All necessary data exchange between these two clock domains are

dealt with either asynchronous FIFO queues or clock-crossing (standard method to pass

multibits or 1-bit data safely from one clock domain to another).

The APU part includes a central interconnection module that offers a communication

interface exposed to the FPGA part. With this system, users can design their own com-

munication network in FPGA and connect through these interfaces to the processors and

the main memory. There are two communication channels implemented in the prototype:

the first one is used for new, ready, finished and bypass tasks (explained later), where

Picos++ and APU share these information by circular FIFOs stored in the main memory.

These circular buffers are configurable and can store up to N units representing N tasks.

The second communication channel is used to transfer the computation data between the

main memory and the internal memories of HwAccs.

New task buffer stores all the information required for Picos++ to manage the inter-

task independence. Each unit consists of Task ID (8 bytes), HWACCID/16bits plus Num-

ber of Dependences (in total 4 bytes), and the Dependence Memory Address and Direction

of each dependence (12 bytes) for up to 15 dependences, to add a total of 192 bytes per

task. HWACCID is used to mark on which hardware devices a particular task can be

executed, it can be up to 16 different types.

Ready task buffer, the third prototype extends its functionality into holding more

types of messages. Therefore besides holding the ready-to-execute SMP tasks as in the

second prototype, it also holds messages that signal the software part of the runtime that

a HwAcc has finished executing a normal ready task from Picos++ or a bypass task (this

concept is explained later). Each unit includes a TaskID field and another field composed

of(SMP/1bit, HwAccs/1bit, Bypass/1bit, reserved zeros/16bits and Picos++ID/14bits).

Each SMP task message indicated by the SMP bit is used to schedule a task to be executed

in SMP as in previous prototypes; Each message indicating the finished execution of a

HW task indicated by either the HwAcc or the Bypass bit is used to notify the deletion of

its corresponding task/work descriptor in memory to the software part of the runtime.

Finished task buffer stores all the information of finished tasks from threads to up-

date the Picos++ internal task-dependency graph, it is represented by Picos++ID. HW

tasks that have finished execution in HwAccs are directly sent back through FIFO queues

to Picos++ (all in FPGA), thus do not go through this buffer.

Bypass task buffer stores all the information of bypass tasks with the same format as
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the new task buffer. The concept of bypass task is introduced to tackle two new situations

raised by HW tasks. The first one is a compatibility problem raised by HW tasks that

don’t use the dependence mechanism (i.e. are synchronously and sequentially executed

by the threads). For example, if we want to use the HwAccs without either OmpSs or

Picos++, these tasks/workloads need a direct communication mechanism from the APU

to the FPGA that bypasses the dependence manager and be directly executed in HwAccs.

The second situation appears, for example, in applications with nested tasks like Multi-

sort. As mentioned earlier in nested task support in Chapter 5 section 5.2.2.2, when the

first child task has not been read by the hardware because there is a full condition in Pi-

cos++, the software support intervenes to avoid a possible deadlock. Afterwards, there

are two options for the software to solve the situation, it could either execute the child

tasks directly in order by the thread (without allowing it to create more tasks) or submit

the blocked task graph as a whole to a software task dependency graph manager. The

bypass task channel is added to allow any of these solutions to continue executing HW

tasks and avoid a deadlock situation.

Special values of TaskID or Picos++ID in the new and bypass task units are reserved

in order to indicate a valid task, so that Picos++ can read the valid task and process

it. Similarly, the 3bits value -SMP, HwAccs, Bypass - in the ready task unit are used to

indicate three different valid types of tasks that the software runtime can distinguish and

process accordingly.

In the Picos++ system, we use a fixed 192 bytes for each new task regardless of its

number of dependences, so that the hardware in the FPGA always knows that it has read

a complete task and all its dependences. There are also other ways to design the new

task communication using variable length of data. For example, using a special value

reserved at the end of each variable length as an indication for the end of a new task; or

having an additional register to indicate the length of each task. However these ways are

much more complicated and costly to be implemented through the AXI interconnection

network in hardware, and they are not being proven to be able to improve the performance

in our user case. To be worse they are very error-prone for deadlocks due to the delicate

synchronization between the software threads and hardware devices.

6.2.2 Data Communication

Data communication is a key factor determining the final system performance. For new,

ready, finished and bypass task communication, Picos++ uses the same buffered and asyn-
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chronous communication as the second prototype, with the addition of the bypass channel.

This communication scheme allows Picos++ to share memory with the threads without

support from software side. It decouples the data communication between software and

hardware, ensuring a fast and efficient small data exchange.

On the other hand, Picos++ connects to HwAccs through FIFO queues, one ready

and one finished queue per HwAcc. Ready tasks are directly dispatched through the

ready FIFO queue to the chosen HwAcc. Such ready task include the TaskID and all

its dependence memory addresses. Each HwAcc reads ready task from the FIFO queue

and the input data from these memory addresses, After the computation it writes back

the output data to the main memory and the finished HwAcc task is sent back through

the finished queue to Picos++. Therefore the ready and finished task exchange between

Picos++ and the HwAccs are directly done in hardware, without the main memory as

the middleman. This close interaction between Picos++ and HwAccs and their ability to

read/write their own computation data result in a very high overall system performance,

as we will see in the performance evaluation.

A general description of the system communication of the third Picos++ prototype in-

cludes both the software and the hardware side. The software side of the runtime operates

as follows: (1) It opens Picos++ for access and allocates four buffers in the main memory.

Afterwards, it sends the buffer addresses and lengths to Picos++ and starts the following

process. (2) It creates new tasks represented as task descriptors and copies the necessary

information to the free spaces in the new task buffer. (3) It checks the ready task buffer. It

copies SMP ready tasks to the ready task pool of the worker threads or deletes the corre-

sponding task descriptors in the memory for finished HW tasks. Afterwards it resets the

entries in the ready task buffer to an non-valid state. (4) It copies finished SMP tasks to

the free space in the finished task buffer for Picos++. Afterwards jumps back to new task

processing. (5) When the process finishes, it deallocates buffers and stops Picos++.

In the hardware part, Picos++ has a master module that accesses these buffers by itself.

The operational flow of this module follows: (1) Read new task. It reads the TaskID field

of a unit in the new task buffer. If this is valid, it reads the new task and then invalidates

this unit. Otherwise, it tries to write the ready task. (2) Write ready task. It reads the

second field of a unit in the ready task buffer. If this unit is non-valid and Picos++ has

a ready task, it retrieves the ready task from Picos++ to the ready task buffer. Otherwise

it checks for finished task. (3) Read finished task. It reads the Picos++ID field of a

unit in the finished task buffer. If this is valid, it reads the finished task and afterwards
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invalidates this unit. Otherwise if bypass channel is enabled, it checks for bypass tasks.

(4) Read bypass task. It reads the TaskID field of a unit in the bypass task buffer. If this

is valid, it reads the bypass task and then invalidates this unit. Otherwise, it tries to read

new task.

6.2.3 Heterogeneous Task Scheduling Support

To support heterogeneous task scheduling in hardware, a new module Dependence Re-

serve Station (DRS) is introduced to facilitate the read process of dependences for het-

erogeneous tasks. We also extend the TS module to support task scheduling to up to 16

different hardware units. In addition a new bypass task channel is added to allow tasks to

be executed in HwAccs when HW tasks do not use the dependence manager or Picos++

internal memories are full.

6.2.3.1 Dependence Reserve Station (DRS)

DRS includes a internal memory used to save the dependence memory addresses in a sim-

pler memory design to allow easier and faster access for heterogeneous task scheduling.

As can be seen in Figure 6.1, DRS receives the same dependence packets annotated with

TRS Slots from GW as DCT. For each dependence arrived, the annotated TRS Slot that

came together in the packet is directly used as the entry address to the internal memory

where the dependence will be saved. When TS wants to schedule a heterogeneous task,

all the dependence memory addresses required can be read sequentially from DRS.

6.2.3.2 Task Scheduler (TS)

In this new prototype, in addition to the SMP task scheduling of the TS design in the previ-

ous prototype, we added two new functions. Therefore the TS module now is responsible

for storing all the ready tasks and schedules them to the suitable hardware execution unit

with the least number of waiting tasks; also for receiving all the finished execution tasks

from the HW functional accelerators, and organizing them into the ready task buffer for

the deletion of task descriptors.

Figure 6.2 shows a simplified scheme of the heterogeneous task scheduling in TS

assuming that there are 5 hardware units. It has one ready and one finished task queue for

SMP, and one ready and finished task queue for each HwAcc. There are two sources of

ready tasks: normal ready tasks that are deemed ready by Picos++, and the bypass tasks.

101



6.2. PICOS++ SYSTEM

Three counters for each hardware device
SMP_readytask_wait_cnt = SMP_readytask_cnt ­ SMP_finishtask_cnt;
Acc0_readytask_wait_cnt = Acc0_readytask_cnt – Acc0_finishtask_cnt
Acc1_readytask_wait_cnt = Acc1_readytask_cnt – Acc1_finishtask_cnt
Acc2_readytask_wait_cnt = Acc2_readytask_cnt – Acc2_finishtask_cnt
Acc3_readytask_wait_cnt = Acc3_readytask_cnt – Acc3_finishtask_cnt

Average task execution time registers
T_SMP, T_Acc0, T_Acc1, T_Acc2
SMP_readytask_wait_cnt * T_SMP,   Acc0_readytask_wait_cnt * T_Acc0
Acc1_readytask_wait_cnt * T_Acc1, Acc2_readytask_wait_cnt * T_Acc2
Acc3_readytask_wait_cnt * T_Acc3

Finish task 
if(finish task from SMP)    if(finish task from ACC0)
 SMP_finishtask_cnt++;      Acc0_finishtask_cnt++;
Same for ACC1, ACC2, ACC3. 

Ready task scheduling
STATE_Readytask_0:
If (ready task from Picos++){
    Read it and its dependences from DRS;
    Get the HWACCID;
    IF(HWACCID only has one ‘1’ bit)
      Send it to the FIFO connecting to the corresponding hardware device;
    Else
      If((!HWACCID[4], SMP_readytask_wait_cnt)) < (!HWACCID[3],Acc0_readytask_wait_cnt)) 
          tmp_cnt = (!HWACCID[4],SMP_readytask_wait_cnt);
          sig_sel_device = SMP;
      Else
          tmp_cnt = (!HWACCID[3],Acc0_readytask_wait_cnt);
          sig_sel_device = ACC0;
      End if;

      If((!HWACCID[2],Acc1_readytask_wait_cnt) < (!HWACCID[1],Acc2_readytask_wait_cnt)) 
          tmp_cnt_1 = (!HWACCID[2],Acc1_readytask_wait_cnt);
          sig_sel_device_1 = ACC1;
      Else
          tmp_cnt_1 = (!HWACCID[1],Acc2_readytask_wait_cnt);
          sig_sel_device_1 = ACC2;
      End if;
   End IF;
   Go to STATE1;
ELSE
   Go to STATE_BYPASS_0;
End if;

STATE1: 
If (tmp_cnt < tmp_cnt_1)
     tmp_cnt_2 = tmp_cnt;
     sig_sel_device_2 = sig_sel_device;
Else
     tmp_cnt_2 = tmp_cnt_1;
     sig_sel_device_2 = sig_sel_device_1;
End if;
Go to STATE2;

STATE2: 
IF(tmp_cnt_2 >= (!HWACCID[0], Acc3_readytask_wait_cnt))
   Send the ready task to the FIFO  connecting to HwAcc3;
Elsif(sig_sel_device_2 = SMP)
   Send the ready task to SMP;
Elseif(sig_sel_device_2 = ACC1)
   Send the ready task to HwAcc1;
Elseif(sig_sel_device_2 = ACC2)
   Send the ready task to HwAcc2;
Else
   Error;
End if;
Go to STATE_Readytask_0;    

STATE_Bypass_0: 
If(Bypass task FIFO is not){
     Read bypass task and HWACCID;
     Same algorithm for scheduling task to HwACC0 to HwAcc3;
}

               
  

Bypass task
 FIFO

Bypass task
 FIFO

Ready task
FIFO to SMP

Ready task
FIFO to SMP

Ready task 
from Picos++

Ready task 
from Picos++

Ready task
FIFO to Acc0
Ready task

FIFO to Acc0
Finish task

FIFO from Acc0

Finish task
FIFO from Acc0

Finish task
FIFO from SMP

Finish task
FIFO from SMP

DRSDRS

Ready task
...

Ready task
...

Finish task
...

Finish task
...

Ready task
FIFO to Acc3

Ready task
FIFO to Acc3

Finish task
FIFO from Acc3

Finish task
FIFO from Acc3

Figure 6.2: Task scheduling to different hardware units
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TS checks alternatively for ready task from TRS in Picos++ and from the bypass task

queue.

To select a hardware device for task execution, there are four registers associated with

each hardware. For example, for HwAcc0, two registers count the number of ready tasks

assigned to and the number of finished tasks from this unit, the third register indicates the

total amount of work still waiting for this unit; and finally the fourth register counts the

average task execution time. When a ready task arrives, Picos first checks its hardware

mask to see which hardware devices it can be executed on. If there are several possibil-

ities, Picos compares and selects the one with the least number of waiting work. As can

be seen in Figure 6.2, the 5-bits HWACCID correponds to masks for SMP, HwAcc0,

HwAcc1, HwAcc2, HwAcc3. When the ready task cannot be execute on some of the

units, its corresponding !HWACCID[i] bits will always be 1 and the (!HWACCID[i],

_readytask_wait_cnt) will always be the bigger number in the comparison for

looking for the smallest amount of waiting work. In the case of multiple identical ones,

Picos selects the one with the higher priority. In this prototype, the priorities of differ-

ent hardware accelerators are fixed and are based on the infrastructure generated. As can

be seen in Figure 6.2, the HwAcc3 has the highest priority and the SMP has the lowest

priority.

This scheme has a small hardware cost, and it balances the workloads well among

different hardware devices considering both different task sizes and the priorities of hard-

ware units in the system. For systems that that have different connections and hardware

devices, the priorities can be modified to suit the characteristics of the system, thus achiev-

ing a better performance.

6.2.4 Ready Task Operational Flow

In Figure 6.1, besides the New and Finished task processing labels that follow the same

pattern as in the previous prototypes, there is also a sequence of Ready task processing

(labeled R#) that shows how ready tasks are processed taking into account HW tasks. The

process starts with a ready task in the TRS. When TRS has processed all the necessary

notifications and marked a task ready (N6), TS reads the message from TRS (R1). If the

ready task messages indicates that it is a SMP-only executable task or SMP currently has

the least number of waiting tasks, TS schedules it to SMP (R2); otherwise TS reads all its

dependences from DRS (R3) and schedules it to one of the HwAccs (R4). For a bypass

task (R1’), TS reads all its dependences from DRS (R3) and schedules it to one of the
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HwAccs (R4). When a task in the HwAcc finishes, TS reads it (F5) and notifies the HW

task finalization through the ready task buffer in the main memory (F6).

6.3 Experimental Setup and Benchmarks

6.3.1 Experimental Setup

This last prototype of Picos++ is coded in VHDL and implemented in a Xilinx Zynq

Ultrascale+ MPSoC platform. Its communication logic and all the HwAccs are coded

in C with Vivado HLS directives. The final system designs are synthesized with Vivado

Design Suite 2016.3.

The hardware platform contains a Zynq Ultrascale+ MPSoC Chip XCZU9EG-FFVC900 [86].

It includes the Application Processing Unit (APU) with 4 ARM Cortex-A53 cores operat-

ing at 1.1GHz and a FPGA. Both APU and FPGA are connected to a 4GB DDR4 as main

memory. Picos++ and HwAccs reside in FPGA, and can operate at different frequencies

ranging from 50 to 300MHz.

The evaluation of Picos++ is done with the task-based parallel programming model

OmpSs[35]. OmpSs is supported by the source-to-source Mercurium compiler and the

Nanos++ runtime system. Picos++ uses a modified version of Nanos++, as its own soft-

ware counterpart runtime. Performance tools Extrae and Paraver[26] are also used to

analyze the application behavior in the system. Sequential and parallel execution time of

OmpSs applications are obtained in the system which operates on Ubuntu Linux 16.04.

6.3.2 Benchmarks

This section shows the synthetic and real benchmarks[25, 79] that are specifically se-

lected to analyze the new features of this prototype of Picos++. Table 6.1 and 6.2 shows

the characteristics of the benchmarks and the features of the HwAccs implemented in

hardware.

6.3.2.1 Synthetic and Real Benchmarks

A set of synthetic benchmarks TestFree, TestChain and TestNested is selected to test the

ability of Picos++. TestFree consists of tasks that are all independent with each other,

thus is selected to test the maximum processing capability of Picos++. TestChain is the
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opposite with tasks that cannot be executed in parallel at all and thus shows the worst case

for Picos++. TestNested is used to test the functionality of nested task support.

Some representative real benchmarks - Matmul, Cholesky and Multisort are selected

to focus on testing not only the task dependence management, but also the heterogeneous

task scheduling. Table 6.1 shows the number of tasks, sequential execution time and task

Table 6.1: The parameters, execution time and task size of the real benchmarks
Name Configs #Tasks Seq exec time (µs) Tasksize (µs)

Matmul
(2K, 32) 262144 6820850 26
(2K, 64) 32768 5463956 167
(2K, 128) 4096 5435528 1327

Cholesky (2K, 32) 45760 1232664 27
(2K, 64) 5984 1087485 182

Multisort
(1M, 256, 256k) 9565 395594 41
(2M, 512, 512K) 9565 832882 87
(1M, 1K, 512K) 2397 407648 170

size (granularity) in µs of the applications when executed with different problem size and

block size. For example, Matmul with problem size 2kx2k and block size 32x32 has

262144 tasks and takes 6.8 seconds to execute. For Multisort, column Configs indicates

the problem, minimal sort and merge sizes. During sequential and parallel execution,

the non-recursive tasks of Matmul and Cholesky that are executed in threads are using

OpenBlas; for Multisort, the non-recursive basic sort tasks executed in the threads are

using qsort.

6.3.2.2 HW Functional Accelerators

Table 6.2 shows the hardware cost (absolute number of units and percentage in FPGA) of

the different HwAccs used, and their task size in µs. First row of the table indicates that

the task size (amount of time to finish the execution) of the fgemm task using the fgemm32

HwAcc, which is working with 32x32 block size, is 27µs. The same row presents which

are the hardware resources that this implementation of the HwAcc needs. The results are

obtained with HwAccs at 200MHz. With higher frequency, their hardware cost might

change (increase) and their latency will be shorter. For each application, several HwAccs

are used at the same time integrated with Picos++ to form a heterogeneous system.

For Matmul, HW functional accelerators with block sizes 32x32, 64x64 and 128x128

were generated: fmatmul32, fmatmul64 and fmatmul128, respectively. For Cholesky,

four different kinds of HW functional accelerators were generated to execute the four

kernel functions inside the application. They correspond to functions gemm, syrk, trsm
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Table 6.2: Characteristics of HwAccs in XCZU9EG-FFVC900

Name HWACCs Task size
BRAM_18Kb DSP48E FFs LUTs µs

fgemm32 68/3.7% 160/6.4% 19771/3.6% 15559/5.7% 27
fsyrk32 36/2.0% 160/6.4% 19822/3.6% 16149/5.9% 63
ftrsm32 36/2.0% 104/4.1% 11482/2.1% 10875/4.0% 67
fpotrf32 10/0.6% 22/0.9% 3487/0.6% 3302/1.2% 168
fgemm64 74/4.1% 160/6.4% 23887/4.4% 30032/11.0% 126
fsyrk64 42/2.3% 160/6.4% 23849/4.4% 30727/11.2% 270
ftrsm64 42/2.3% 250/9.9% 28734/5.2% 25753/9.4% 314
fpotrf64 28/1.5% 22/0.9% 3514/0.6% 3350/1.2% 981
fmatmul32 68/3.7% 162/6.4% 20106/3.7% 14671/5.4% 27
fmatmul64 138/7.6% 322/12.8% 38770/7.1% 27668/10.9% 105
fmatmul128 287/15.7% 642/25.5% 76147/13.9% 54462/19.9% 497
sort256 68/3.7% 0 20106/3.7% 14671/5.5% 5
sort512 138/7.6% 0 38770/7.1% 27668/10.1% 26
sort1024 159/8.7% 0 47034/8.6% 71124/26.0% 92

and potrf that can be found in the library OpenBlas. In order to study different task

granularities, they were generated with block sizes 32x32 and 64x64.

Multisort uses a divide and conquer algorithm, where a multisort task can create 4

nested child multisort tasks when its sort size is larger than a given threshold value. When

the sort size reaches the given threshold, it is sorted as a basic sort. In the SMP threads

the standard C qsort is used for this basic sort. However qsort is not friendly to be imple-

mented inside FPGA, therefore an even-odd sort is used to generate the HW functional

accelerators for this function.

The main purpose of these implemented accelerators shown is not to obtain the fastest

execution possible for the applications in FPGA. Instead, they are balanced designs that

are quick enough to be considered as fine-grained tasks. Meanwhile their hardware cost

are small enough that multiple instances can be fit in the hardware to form a heterogeneous

system. They can also be seen as a way of using small HwAccs to solve big problems.

6.3.3 Hardware Resource and Power Consumption

Table 6.3 shows the on-chip resource utilization and the power consumption of Picos++

on the Zynq Ultrascale+ XCZU9EG chip [86]. The resource utilization is obtained from

Vivado post-implementation reports while the power consumption is measured during

execution time by sampling the electric current in the real platform. All the measure-

ments are done with ARM cores running at 1.1GHz, Picos++ at 100MHz, and HwAccs

at 200MHz.

Picos++ and its communication logic together costs around 5% of the available FPGA
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Table 6.3: Hardware Resource and Power Consumption

Name FPGA resource Power
BRAM18Kb DSP48E FFs LUTs in watts

XCZU9EG 1824 2520 548160 274080
Picos++ 87/5.0% 0 5478/1.0% 9793/4.0% 0.07

Comm. Logic 2/0% 0 3421/0.6% 4244/1.0% 0.03
APU Watts

4 ARM Cortex-A53s - - - - 1.4

resources. This is meaningful as not only it is small enough so it is feasible to integrate

it into multicore CPUs, its size also allows us to build a highly heterogeneous platform

with Picos++ and several HwAccs in the same FPGA. The 4 ARM Cortex-A53 cores

take around 93.3% of the whole chip power. Picos++ and its data communication logic

consume a small fraction, around 0.1W.

6.3.4 Power Consumption Measurement

Power consumption is measured through multiplying voltage and sampling current. The

voltage is constant at 0.85V for the parts we measured. The sampling current values

are obtained through dedicated measurement hardware chips in three main hardware

parts: FPGA, APU and the main memory DDR4. As an example, Figure 6.3 shows the

power consumption of the APU and FPGA parts in Watts, with an approximate sample of

1/160 µs. The hardware contains APU, Picos++ and one Matmul HwAcc with block size

256x256.

To have an accurate power measurement, different hardware designs were used. For

SMP-only tasks, the power measurement of using a software-only runtime is obtained by

using a baseline hardware that only includes the APU system. Therefore for software-

only, the power consumption of FPGA is considered zero. With Picos++, we consider

both APU and only 5% of the whole FPGA (as Picos++ uses 5% of the hardware resources

available in the FPGA). For HwAcc tasks, due to the high hardware resource consumption

of these HwAccs, we measure the power of the whole FPGA part.

Energy consumption is calculated by integrating the power consumed by APU, FPGA

and main memory along the application execution time. Based on these measured en-

ergy, the energy savings obtained by using Picos++ versus the software-only runtime or

sequential execution are calculated.
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Figure 6.3: Power measurement of APU and FPGA

6.4 Results

This section evaluates the performance and energy consumption of Picos++. Section 6.4.1

analyzes the task and dependence repetition rates in both Picos++ and software-only run-

times. In Section 6.4.2, synthetic benchmarks are executed with different task granular-

ities, dependence patterns and with up to 15 HW functional accelerators to study their

performance impact on the Picos++ and software-only runtimes. In Section 6.4.3, real

benchmarks are executed with different task granularity and with heterogeneous task man-

agement to study the scalability and energy savings of using Picos++. In the same section,

more in-depth studies are performed to explore more thoroughly the Picos++ runtime. Fi-

nally, visual analysis during application execution is performed.

6.4.1 Task and Dependence Repetition Rate

Table 6.4 shows the task and dependence repetition rates (rrTask and rrDep) of the software-

only runtime and Picos++ in 100MHz clock cycles. TestFree and TestChain with 65536

empty tasks (whose execution time is zero) are used to reduce the influence of task exe-

cution time, and different number of dependences, from 1 to 15 dependences per task are

used to study its performance impact. Row HW-only shows results without any commu-

nication latency or software runtime overheads (task creation and scheduling) in Picos++.
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Table 6.4: Task, Dependence Repetition Rate in cycles (at 100MHz frequency)
Testcase TestFree TestChain
Number of dependences 1 15 1 15

HW-only rrTask 24 243 35 348
rrDep 24 16 35 23

SW-only 2t rrTask 1175 5281 1668 3095
rrDep 1175 352 1668 206

SW-only 4t rrTask 1055 5272 1706 3118
rrDep 1055 352 1706 208

Picos++ 2t rrTask 731 855 1251 1419
rrDep 731 57 1251 96

Picos++ 4t rrTask 582 716 1250 1406
rrDep 582 48 1250 94

Row SW-only 2t and 4t show results obtained by using the software-only runtime with 2

and 4 threads. Similarly Row Picos++ 2t and 4t show results obtained by using Picos++.

As can be seen for HW-only, each task and dependence only takes a few cycles to be

processed. In addition, there are two main observations. First, the task repetition rate is

proportional to the number of dependences and increases slightly with a much more rigid

dependence pattern. For example, for tasks with 1 dependence in TestFree and TestChain,

it takes only from 24 to 35 cycles to process a task. Second, the dependence repetition

rate is similar for different dependence patterns from 16 cycles to 23 cycles. This is due

to the fact that Picos++ pipelines the processing of all the dependences of a task.

The data communication and integration may have a big impact over the whole system

performance as can be seen from the larger task and dependence repetition rates. Despite

that, in Picos++ system the two observations derived from the HW-only test still hold

true. In addition, we can see a clear advantage of managing task dependence analysis in

hardware over the software-only approach. For example, with TestFree, Picos++ requires

582 or 716 cycles per task with 1 or 15 dependences, and 48 cycles per dependence.

However, with software-only it requires 1055 and 5272 cycles per task. We can also see

a slight repetition rate decrease when using Picos++ from 2 to 4 threads. That effect does

not shown in the software-only runtime. Next, we move to see some results gathered from

real executions by using synthetic applications.

6.4.2 Synthetic Benchmarks

This section uses synthetic benchmarks to examine how the dependences (number and

pattern) and the task granularities influence the performance of the Picos++ and the

software-only runtime.
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Figure 6.4: Execution time and relative speedup of Picos++ versus the software-only
runtime with empty tasks

6.4.2.1 Performance Impact of the Number of Dependences

Figure 6.4 and 6.5 show the results of TestFree and TestChain executions. All the figures

presented in this section have two Y-axis, the left one (that applies to the bars) indicates

the execution time in seconds, and the right one (that applies to the lines) shows the

relative speedup of Picos++ against the software-only runtime with 1 or 4 threads.

Figure 6.4 displays these two benchmarks when executing 65536 empty tasks (tasks

with 0 execution time), and with different number of dependences per task. Picos++

and its software-only counterpart are using the same task creation and scheduling mech-

anisms, and therefore with empty tasks the results highlight the different dependence

analysis cost between these two runtimes.

There are two key observations in Figure 6.4. First, Picos++ maintains a nearly equal

performance from 1 to 15 dependences per task. Second, it has a much lower dependence

analysis cost. With TestFree, Picos++ has a 7.5x relative speedup versus software-only

with 4 threads. With TestChain, which opposed to TestFree has no parallelism at all,

Picos++ still manages to gain up to 2x versus the software-only approach.

6.4.2.2 Performance Impact of the Task Sizes

Figure 6.5 shows results with TestFree and TestChain with 65536 tasks, 15 dependences

per task and with increasing task sizes. From left to right, the task granularities (X-

axis) shown ranges from 530ns to 1ms. With 1ms, Picos++ is slightly faster than the

software-only runtime. However when the task size decreases, Picos++ outperforms the

software-only approach, achieving up to 8x with TestFree and 2.5x with TestChain.
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Figure 6.5: Execution time and relative speedup of TestFree, TestChain with different task
sizes, with 4 threads

6.4.2.3 Performance Impact of Nested Tasks

Figure 6.6 shows the relative speedup of TestNested with 4 and 16 nested child task per

parent task in the nesting level. As can be seen, with smaller task sizes, Picos++ obtains

better performance than the software-only runtime, and the same can be said with a bigger

number of child tasks per parent.

An interesting point is the task granularity when Picos++ achieves the best perfor-

mance than the software-only runtime. In Chapter 5, Section 5.4, with the second proto-

type in a different platform with only 2 threads available, Picos++ achieves the highest

speedup peak against the software-only runtime when the task size is around 4K-5K ns

with TestFree and TestChain. We predicted that with more threads, due to the faster de-

pendence analysis and reduced thread contention, Picos++ should be able to achieve the

highest speedup peak against the software-only runtime from a much larger task size. In-

deed, as can be seen in Figure 6.5, with 4 threads Picos++ achieves the best performance

against the software-only version starting with task sizes around 8K-16K ns, that is double

the task size obtained with 2 threads platform commented above. We expect this behavior

to continue with a growing number of cores.

In general, it can be seen that Picos++ has similar performance regardless of the num-

ber of dependences per task. In addition, with big task sizes it is as fast as the software-

only runtime, and with smaller task sizes it achieves much better performance. Note that

these results are obtained by operating Picos++ in FPGA at one-eleventh of the frequency

of the software-only runtime in the ARM processors (100MHz to 1.1GHz), with only 4

threads. With more threads or a higher design frequency of Picos++, it can be safely con-

cluded that a much larger range of task granularities would benefit from using Picos++.
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Figure 6.6: TestNested with 4 and 16 child per parent task in each nesting level

6.4.2.4 Scalability with Several Accelerators

Figure 6.7 shows three sets of results for the total execution time (bars, in the left Y-axis)

of using the Picos++ and the software-only runtime and the relative speedup comparing

these two (lines, in the right Y-axis). The X-axis in each set indicates different task size

decreasing from 0.5ms to 160ns. From left to right and top to bottom, the three sets of

results are differentiated by Picos++ operating at 50, 100 or 200MHz. All the HwAccs

are operating at 200MHz, and all the SMP cores are operating at 1.1GHz. For each set,

there are also results for using either sequential or parallel task creation mechanisms (in

the cores). In this experiment there are in total 15 HwAccs for task execution, TestFree

with 65536 tasks and with 15 dependences per task is executed to obtain all the results.

The sequential TestFree benchmark used to obtain the data in Figure 6.7 is the same

that has been used previously in all our experiments. In this version only one thread

creates all the tasks that are afterwards executed by the HW accelerators. We have realized

that in this particular experiment, as there were so many (15) fast accelerators the element

limiting the execution time was in fact the task creation. In order to overcome this problem

we have implemented the same program where three of the available threads create the

tasks in parallel (using nested tasks). The remaining thread is used to process the finished

tasks as this is the fastest configuration to execute this benchmark.

As it can be seen from the total execution time (bars) in Figure 6.7, the software-only

runtime benefits from the parallel task creation. However with task sizes smaller than

327,680ns (0.3ms) it is unable to execute the program faster (grey bars). Picos++, on

the other hand, when operating at 200MHz, is able to decrease the execution time with

task sizes of around 10,240ns (0.01ms) resulting in speedups against the software-only

runtime of around 25x. In this case Picos++ is able to fill all the HW accelerators of tasks
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Figure 6.7: Time of Picos++ and Software-only and their relative speedup by using Test-
Free, with different task sizes and 15 HwAccs

of sizes as short as 0.01ms.

If the results when executing Picos++ at different frequencies are compared (all the

other elements in the different plots are exactly the same), it can be seen that the bot-

tleneck in the first plot (Picos++ at 50MHz) is Picos++ as the times with sequential and

parallel task creation are the same. With this huge gap between the frequency of the cores

(1.1GHz) and Picos++ (50MHz), although it is around 10x faster than the software-only

runtime it is not fast enough to serve the parallel task creation with 4 cores at full speed.

If the 100MHz results are observed, it can be seen that Picos++ starts to take advantage

of parallel creation. Now Picos++ is exactly two times faster than before and that means

that it should be expected to obtain half the execution time for the smaller task sizes. This

holds true for the parallel task creation but not for the sequential one. And that means that

at 100MHz Picos is able to serve the sequential task creation with 1 core at full speed (the

software part is the bottleneck). The time when using the three cores at the same time is

larger than one third of the sequential time meaning that in this case Picos++ is still not

able to serve the full parallel task creation with 4 cores at full speed.

Finally, looking at the 200MHz results, it can be seen that the sequential time with
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Picos++ remains the same reflecting the fact that in this case the task creation is indeed

the bottleneck. When the parallel task creation is used, the time is roughly one third of

the time with the sequential task creation and larger than half of the time with the parallel

task creation with Picos++ at 100MHz. That means that in this last case the software part

remains the bottleneck and Picos++ is able to deal with the parallel task creation with 4

cores at full speed. Extrapolating these results, Picos++ operating at the same speed as

the cores (at 1.1GHz) should be able to serve around 22 cores creating tasks at full speed

with tasks as small as 1861ns executing at the same time.

6.4.3 Real Benchmarks

This section presents the scalability and energy savings obtained using Picos++ with real

application executions. The results are analyzed focusing first on the influence of the task

granularity and second on the capability of heterogeneous task scheduling.

6.4.3.1 Performance Impact of the Task Granularity

This section shows the impact of different task granularities especially fine-grained on

performance and energy. We obtained the results by using both the Picos++ and the

software-only runtime, with tasks that are only executed in the ARM cores.

Figure 6.8 shows the speedup, power consumption and energy savings obtained in the

analyzed applications when executing them with fine-grained tasks. Each figure shows in

the X-axis two sets of problem and block sizes per application (their task sizes are shown

in Table 6.1). The Y-axis of Figure 6.8a shows the speedup obtained by the different

runtimes when using a different number of physical threads against the sequential execu-

tion. In Figure 6.8b the Y-axis shows the average power consumption of both runtimes

and sequential execution along the application execution. Finally, Figure 6.8c shows the

Energy savings obtained by Picos++ against the software-only runtime and the sequential

execution for the same executions.

In Figure 6.8a, Picos++ exceeds the software-only runtime in all the cases. For exam-

ple, with Matmul with block size 64, Picos++ reaches 3.6x against sequential; in Cholesky

with block size 64, it reaches 3.8x and in Multisort with sort size 512, it reaches 3.4x. The

performance of block size 32 is worse than 64 in Matmul and Cholesky because there are

far more and smaller tasks to manage. These results are relevant due to the limited number

of threads and the operating frequency of Picos++. Managing more threads and operating
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at a higher frequency, Picos++ should be able to extract much higher performance with

block size 32 than with only 4 threads. Despite that, it can also be observed that the gap

between Picos++ and the software-only runtime enlarges as the task size becomes smaller

from block size 64 to 32. For example, with Matmul with block size 32, Picos++ is 1.5

times faster than the software-only runtime, a bigger difference than with block size 64.

A similar gap can be observed in both Cholesky and Multisort.

Figure 6.8b shows the power consumption of the system during Matmul execution.

The other applications have similar patterns and therefore only Matmul is shown as a rep-

resentative. The three main parts of the system: APU, FPGA and DDR are measured dur-

ing real executions with the board dedicated hardware. As can be seen in Figure 6.8b the

power consumption of the APU is proportional to the number of threads that are working,

and that of DDR is steady during all the executions. Both the software-only and Picos++

runtime use similar power in these two parts. For FPGA, using Picos++ consumes 0.1 watt

more power which explains the small increase in the SUM (SUM=FPGA+APU+DDR)

column.

Figure 6.8c shows the energy consumption of all the applications by using Picos++

versus the software-only runtime or sequential executions. When compared to the sequen-

tial version, with 4 threads using Picos++ runtime saves more than 60% of energy for all

the applications, mainly due to the faster execution. When compared to the software-

only runtime, with more threads available and smaller task sizes, Picos++ saves a much

higher amount of energy. For example, Picos++ saves 22%, 24% and 42% of the en-

ergy compared against the software-only runtime with the smaller task size for the three

applications.

Applications with medium size tasks can also benefit from using Picos++. For exam-

ple, with Multisort with sort size 1K, Picos++(4t) is slightly faster with 3.6x speedup than

SW-only(4t) that only reaches a 3.1x against sequential. Correspondingly, with Multisort,

Picos++(4t) saves 20% and 65% of the energy consumption compared to SW-only(4t)

and sequential execution. To sum up briefly, Picos++ exceeds the software-only runtime

in both performance and energy saving. Additionally the gap between them grows larger

as the tasks size diminishes.

6.4.3.2 Performance Impact of the Heterogeneous Task Management

This section shows the performance and energy savings of the same applications when

tasks are executed in both threads and HwAccs.
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Figure 6.8: Speedup, Power and Energy savings of applications with fine-grained SMP
tasks
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Figure 6.10: Energy savings of Matmul,
FPGA tasks

Figures 6.9, 6.11,and 6.13 show the speedup obtained in the three analyzed applica-

tions when comparing the parallel runtimes against the sequential execution (in the SMP)

and some tasks are executed in hardware accelerators. The legend SW-only(Na) indicates

results obtained by using the software-only runtime with tasks that are not executed in

threads but in N HwAccs. Legend SW-only(Na+4t) indicates results obtained by using

the software-only runtime with tasks that are executed in both 4 threads and N HwAccs.

The same logic applies to the legends for Picos++. Special attention should be paid for

the legend with "*" symbols. For example, with Matmul block size 128 and Multisort sort

size 1K in Figure 6.9 and Figure 6.13, it means that the system contains only 3 instead of

4 HwAccs due to the limited capacity of the FPGA that can not hold 4 of these acceler-

ators. It is also worth to mention that with Cholesky in Figure 6.11, two different sets of

HwAccs are used, hence the SW-only(4a+4t) and (4g+4t). This will be explained later.

For all the applications, using a system with HwAccs results in a much higher speedup

than using SMP threads only. Just for a brief comparison, in Figure 6.9 with Matmul

Picos++(4a+4t) achieves up to 11.2x speedup while when using only SMP threads (in

Figure 6.8a) the speedup obtained is only 3.6x. A similar behavior can also be observed

in the other two applications. Although the results are good, it is important to state that

the hardware accelerators developed in this work were well optimized, but not in the best

way. First of all, to continue striving for optimization would have meant a lot of repeated

work to obtain all the results again each time we discover a new optimization mechanism,

which was not in the best focus spot of this thesis. Secondly, but not least important the

accelerators used are perfectly valid as a proof of concept of both the functionality and

performance. As the difference in performance would only be better for Picos++ if the

accelerators are faster (as this would mean smaller task sizes).

Another conclusion that can be extracted from Figures 6.9, 6.11, and 6.13 is that Pi-

cos++ is much better at managing hybrid system than the software-only runtime. With

tasks that can be executed in both FPGA and SMP threads, Picos++ achieves up to 11.2x
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Figure 6.12: Energy savings of Cholesky,
FPGA tasks
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Figure 6.14: Speedup of Multisort, FPGA
tasks

speedup against the sequential while the software-only runtime only achieves up to 10.1x.

A similar trend can be observed even more dramatically in Cholesky and Multisort. For

Choleksy, Picos++(4a+4t) reaches up to 3x speedup while the software-only runtime dis-

plays 1.7x. Even better the implementation of Picos++(4g+4t) reaches up to 6.7x while

the software-only runtime only achieves 4.8x speedup. For Multisort, Picos++(4a+4t)*

achieves nearly 6x while the software-only runtime peaks at 3.6x; in addition, with only 1

HwAcc, Picos++(1a) achieves 3.8x speedup while SW-only(1a) even drops the sequential

performance (0.5x).

As in the previous section, the gap between Picos++ and the software-only runtime

enlarges as the task size becomes smaller (corresponding task sizes can be found in Ta-

ble 6.2). For Matmul, the performance gap obtained when going from block size 128 to

32 enlarges from 1.1x to 2.7x faster; for Cholesky, the gap when decreasing from block

size 64 to 32 goes from 1.4x to 2.7x and for Multisort, the gap grows from 1.6x to 7.6x.

Correspondingly, Figures 6.10, 6.12 and 6.14 show the energy savings of using Pi-

cos++ instead of the software-only runtime or doing a sequential execution for the same

applications and configurations.

As can be observed, with a smaller task size and more execution units, Picos++ saves

much more energy. For example, for Matmul with block sizes 64 to 32, Picos++ saves

from up to 27% to 64% respectively; in addition with Picos++ vs SW-only(1a) to (4a+4t),

Picos++ energy saving raises from 31% to 67%. With Multisort, the task sizes of 256
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and 512 are very close. As a result, Picos++ saves similar amount of energy for both

granularities, up to 90%. For Multisort, it can also be seen that the speedup and energy

savings obtained by using 1 to 4 HwAccs do not vary much for the different task sizes.

The bottleneck in this case is that most of the execution time is spent on unraveling the

nested layers. As a result very few tasks are executed in FPGA and therefore there are

simply not enough tasks to feed the accelerators. With Cholesky with block size 32, an

energy saving of up to 68% with Picos++ vs SW-only (4g+4t) can be observed.

To summarize, Picos++ is good at managing heterogeneous tasks when taking into

account both performance and energy savings. This is partly due to the fast dependence

analysis and nested task support as described in the other sections, but also a new factor

weights in. The heterogeneous task scheduling in hardware plays an important role in

this case as it not only balances the workload among all the devices, but also brings the

ready-to-execute tasks much closer to the execution units that reside in FPGA allowing a

really fast execution of tasks that depend one on the other.

As mentioned earlier, two different sets of HwAccs (4a and 4g) were used for Cholesky

executions. The reason is very application specific, let’s consider the three execution cases

showed in Table 6.5. The table shows the number of tasks that have been executed in the

different implemented hardware units by Picos++: The first case (4a) includes using four

different HwAccs only for executing tasks. The four accelerators correspond to four ker-

nel functions of Cholesky application: gemm, syrk, trsm and portf. Therefore each task

can only be executed in one of these accelerators. The second case (4a+4t) allows each

task to be executed in one specific accelerator or in the threads. Instead, the third case

(4g+4t) uses four instances of the same HwAcc (gemm) and uses the threads for the other

tasks.

In the first case, gemm tasks executed in HwAcc0 have the highest number among all

the four types. In this case, as there is only one accelerator per type of task, there is no

parallelism for the same type of tasks during execution. By allowing task to be executed in

both HwAccs and threads in the second case, it can be seen that nearly half of the dominate

gemm tasks are executed in the SMP threads, which improves 2x the performance when

compared to the first case in Figure 6.11. For the third case, by employing four instances

of gemm accelerators Picos++ balances better the workloads into the different hardware

units, and gains a 4x speedup compared to the first case.
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Table 6.5: The number of tasks executed in different hardware in the Picos++ system
Size Case #SMP #HWACC0 #HWACC1 #HWACC2 #HWACC3

(2k, 32)
4a 0 41664 2016 2016 64
4a+4t 17992 23839 2015 1850 64
4g+4t 4096 10300 10371 10451 10542

(2K, 64)
4a 0 4963 496 496 32
4a+4t 2344 2667 493 448 32
4g+4t 1024 1209 1235 1258 1258

6.4.3.3 Scaling Up the Number of HwAccs

Figure 6.15 shows the speedup of using matmul with problem size 2kx2k and block size

32x32 with up to 12 HwAccs (the maximum number that can be fit inside the available

hardware resources). There are two sets of results corresponding to Picos++ working at

100MHz and 200MHz. For each set, there are four bars corresponding to the speedup of

Picos++ versus sequential and the speedup of Picos++ versus the software-only runtime,

in addition each case is with the sequential task creation used in the previous Matrix

multiplication experiments (only one thread creates all the tasks) and the parallel task

creation explained in section 6.4.2.4 (three threads create the tasks) are used. The X-axis

shows an increasing number of HwAccs used in the system.

In Figure 6.15, when comparing Picos++ against the sequential execution it can be

seen that when executing Picos++ at 100MHz, using parallel task creation results in a

small boost of the performance of Picos++, allowing it to scale from 6 to 8 HwAccs

and obtaining from 3.72x to 5x speedup. With Picos++ at 200MHz, it further scales up

to 10 HwAccs and gains from 4.8x to 8.21x speedup. Both the size of the tasks (27

µs in Table 6.2, corresponding to 5440 cycles executed in the hardware accelerators at

200MHz) and the maximum number of accelerators that Picos++ is able to manage at the

same time are coherent with the results shown in Figure 6.7.

When Picos++ is compared against the software-only runtime, it can be seen that Pi-

cos++ executed at 200MHz and with parallel task creation achieves a 16.2x speedup. The

reason of this huge performance gap is that the software-only runtime is in fact slower

than the sequential execution by using 1 SMP thread due to the overheads introduced by

the taks management: task dependence analysis, task submission contention and hetero-

geneous task scheduling.

To further explain this effect, Figure 6.16 shows two different traces of the same

OmpSs matrix multiplication application (problem size and block size), with parallel cre-

ation of the tasks, using the Picos++ at 200MHz (Figure 6.16a) and the software-only run-
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Figure 6.15: Speedup of matmul by using Picos++ and the software-only runtime with up
to 12 HwAccs

time (Figure 6.16b). Both trace executions show the thread activities using 12 HwAccs in

order to perform the matrix multiplication.

As it can be seen, in both Figure 6.16a and Figure 6.16b, the parallel task creation and

the management of FPGA tasks are run among these four threads. The difference is that

when using Picos++, it manages the scheduling and finalization of FPGA tasks. In this

case the management of FPGA tasks only concerns the deletion of work descriptors in

the software part of the runtime. Therefore, the management overhead on those threads

is significantly reduced, which results in the performance improvement observed earlier.

For the software-only runtime, however, the management of FPGA tasks is much more

complex as the threads are required to manage scheduling, finalization and the deletion of

FPGA tasks. This overall management, which is expensive and also provokes contention,

is translated into a significant increment of the management overhead and the execution

time of the application. This explains the performance difference between the Picos++

and the software-only runtime.

6.4.3.4 Potential Energy Savings Analysis

In this section, we show the potential energy savings of Picos++. This is done through

analyzing an execution trace of the OmpSs cholesky application using 4 gemm HwAccs.

Similar behaviors have been observed for other real applications. Figure 6.17a shows the

tasks that each thread is executing at a given moment. As it can be seen, gemm tasks are

not shown as they are executed by the HwAcc instead of by the threads. Figure 6.17b

shows the Picos++ activities performed by each thread in the same execution. As it can

be seen any thread at a given moment is only executing either a SMP task, or a Picos++

121



6.4. RESULTS

3,529,008 ns0 ns

 Tasks and dependencies@Picos++_12accs_1k_32.prv

Main Parallel task creation

     Thread 1

     Thread 2

     Thread 3

     Thread 4

FPGA task management

(a)

3,529,008 ns0 ns

 Tasks and dependencies@SW-only_12accs_1k_32_throttle.prv

Main Parallel task creation FPGA task management

     Thread 1

     Thread 2

     Thread 3

     Thread 4

(b)

Figure 6.16: Task Instances of Matmul 2k, 32 execution with Picos++ and SW-only with
12 HwAccs

activity or nothing. In addition, we have zoomed in a region in Figure 6.17b to show the

series of sequential pollings that the threads perform due to the lack of available tasks.

These polling sequences are not continous. All the task dependences are analyzed in

hardware and all the omp_gemm tasks are executed in FPGA. This trace shows, for clarity,

an execution of a small problem size 256x256 with block size 64x64, which has 20 tasks

in total.

Figure 6.17a shows the duration of each task: main, omp_potrf, omp_syrk and omp_trsm.

Thread 1 (T.1 horizontal timeline in the figure) is the main thread and launches the main

function (shown in Figure 6.17a), which creates new tasks (shown in the thread activ-

ity in Figure 6.17b), at the beginning of the trace. During this time threads 2, 3 and 4

are actively polling for ready/executed HwAcc tasks. The first SMP task that was deemed

ready by Picos++ is omp_potrf, it was scheduled and executed in thread 2 in Figure 6.17a.

After omp_potrf, three instances of omp_syrk and then, three instances of omp_trsm are

executed in thread 2, 3 and 4. All the omp_gemm tasks are executed in FPGA, so they

are not shown in the diagrams timelines. Once a task finishes its execution in a thread,

this thread sends a finished task to Picos++. At the end of each task in Figure 6.17a, it

can be seen a finished task send action in Figure 6.17b. For all the tasks that are executed

in FPGA, there is a executed HwAcc task packet sent from Picos++ to the threads so they

can delete the task descriptors in the software part.

In Figure 6.17a, only a portion of time is spent executing useful work. A lot of the
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Figure 6.17: Visualization of Cholesky execution (With Problem size 256, block size 64,
with Picos++(4g+4t))

time is wasted on idle polling for ready/executed HwAcc tasks as shown in Figure 6.17b.

To quantify the execution time where the threads are actually doing useful work of the

application or runtime, it has been measured in the trace. Table 6.6 summarizes the per-

centage of time of all the useful functions in the threads and in the HwAccs for a real

problem with a bigger problem size 2Kx2K.

As it can be seen in the Tasks category, the main task is executed mainly in Thread 1

and consumes 97% of its time. The other threads execute mainly the potrf, syrk and trsm

functions when they are available. Gemm tasks are only executed in HwAccs (HwAcc0 to

HwAcc3) and do not consume any execution time in the threads but use 13.34%, 56.52%,

Table 6.6: Useful time consumption with problem size 2048, block size 64
Category Name T1/HwAcc0* T2/HwAcc1* T3/HwAcc2* T4/HwAcc3*

Measured Useful Time in the trace

Tasks

main 97.00% 1.24% 0.00% 0.00%
potrf 0.14% 0.78% 0.76% 0.75%
syrk 0.28% 15.32% 14.47% 15.00%
trsm 0.26% 20.79% 20.79% 22.64%
gemm* 13.34% 56.52% 56.52% 60.89%

Picos++APIs

New task 33.00% 0.00 0.00 0.00
Polling ready 0.81% 19.19% 19.16% 18.49%
Successful ready 0.05% 5.89% 5.52% 4.78%
Finished task 0.04% 3.08% 3.07% 3.06%

Potential energy savings time
HwAccs omp_gemm* 86.66% 43.48% 43.48% 39.11%
Threads Upper bound 0% 48.63% 54.75% 53.11%

123



6.4. RESULTS

56.52% and 60.89% of the execution time in each accelerator respectively.

Category Picos++ APIs shows the time that each thread expends dealing with Picos++

activities. New task includes the time of copying necessary data from newly created

Task Descriptor into the new task buffer. Finished task includes the time it takes to

copy the Task Descriptor of the tasks that finished executing in threads into the finished

task buffer; Polling ready includes all the time that threads spent for busy checking

for ready or finished executed FPGA tasks. As it can be seen, Polling ready is

the dominant factor, due to the fact that threads have no knowledge of when there is a

ready task and basically they are busy checking when there is no available parallelism.

Successful ready shows how much time consumed for the actual successful read

ready task action. New, Ready and Finished task buffer are described in Section 6.2.1.

Finally, in section Potential energy savings time in Table 6.6 it is summarized how

much of the traced execution time the Hardware functional accelerators or the Threads

are doing nothing. Picos++ has knowledge about when there is a ready task that can be

executed in FPGA or threads. Therefore it could issue commands to turn off the HwAccs

and to put threads to sleep. When there is work to be done, it can generate signals to active

FPGA and wake up the threads. There exist well documented methods such as clock

gating for turning on/off FPGA functions rapidly, and commands for sleeping/waking

commercial processors. Theoretically in this execution the HwAccs could be turned off

for more than 40% of time. The maximum time that can be saved in each thread is

computed by removing of the total execution time all but the useful functions including

task creation, execution and Picos++ activities. Taking into account this upper-bound,

threads 2 to 4 could be put in low power mode for approximately half of the execution

time.

6.4.3.5 Picos++ and HPC

In this section, the performance results obtained when using the fastest hardware func-

tional accelerators developed at the moment are shown. Although the accelerators used

could surely be improved by a low-level programmer (a work that it is out of the scope

of this thesis), the goal is to show how the use of a hardware task manager improves the

performance obtained by a heterogeneous system even for the best known case of the

software only approach.

Figure 6.18 shows the Gflops (Y-axis) obtained by both the software-only and Picos++

runtime when computing Matmul with 3 HwAccs of block size 128 each. From left to
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right, and for both the software-only and Picos++ runtime, the bars represent the perfor-

mance result (in Gflops) when using only FPGA task acceleration, FPGA acceleration and

1 SMP thread to execute SMP tasks, FPGA acceleration and 2 SMP threads, FPGA ac-

celeration and 3 SMP threads, and FPGA acceleration and 4 SMP threads executing SMP

tasks. Matrix Multiplication tasks in the SMP uses the optimized version of the OpenBlas

sgemm (single precision matrix multiply) implementation. The threads are operating at

1.1GHz, Picos++ at 100MHz and HwAccs at 300MHz. It is important to state that this

configuraction (3 HwAccs of block size 128) is the one that obtains the best performance

for this problem in this system when using the software-only runtime.

As can be observed in Figure 6.18, the software-only runtime requires 2 threads to

manage the task scheduling for 3 HwAccs, which causes a drop of performance when 3

or 4 SMP threads are enabled for task execution due to oversubscription (the same thread

is used both to compute tasks and send tasks to the hardware accelerators). On the other

hand, Picos++ schedules tasks to HwAccs without help from the threads, which greatly

improves the overall performance. There is a small slowdown when using HwAccs with

1 additional SMP thread due to load unbalance in the scheduling policy as task execution

time in HwAcc is smaller than in the threads. However, with more SMP threads in the

system, this unbalance disappears. This unbalance with one thread could also be solved

by enabling the average task execution time policy together with the smaller number of

waiting tasks in Picos++ scheduling as mentioned in earlier sections.

SW-only, 3Accs Picos++, 3Accs
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Figure 6.18: Gflops of Picos++ versus the software-only runtime with 3 HwAccs@(300
MHz) with Matmul with problem size 2k, block size 128

As it can be seen, Picos++ obtains more Gflops when more hardware resources ex-

ist in the system and better performance than the software-only runtime. For example,

the software-only runtime with 3 HwAccs achieves 39.6 Gflops while the Picos runtime
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obtains up to 49 Gflops. The whole system executing this problem has a power con-

sumption of only 5.74 watts, which results in 8.54 Gflops per watt. To show what this

value means, the same application was run on different machines. A Intel(R) Core(TM)

i5-3470 which has up to 4 threads operating at 3.20GHz achieves 0.51 Gflops per Watt.

A Intel(R) Xeon(R) CPU E5-2020 V2 which has up to 24 threads operating at 2.1GHz

achieves 4.14 Gflops per watt and a Intel(R) Core(TM) i7-4600U CPU which has up to

4 threads operating at 2.1GHz achieves 4.75 Gflops per watt. All of the Intel machines

were programmed using MKL sgemm to perform the matrix multiplication.

6.5 Summary and Concluding Remarks

This chapter presents the new features of Picos++, a hardware accelerated runtime for

task dependence management and heterogeneous task scheduling, for task-based pro-

gramming models. It includes all the features presented in the previous prototypes plus

the ability to schedule heterogeneous tasks and accelerate the synchronization with the

HwAcc tasks. This new capability helps to further free threads for other useful functions

and improves the performance over heterogeneous platforms.

In addition, the current implementation of the Picos++ system is built on one of the

Zynq Ultrascale+ MPSoC platform. Picos++ is connected with the SMP and numerous

HW functional accelerators. It is also integrated with the programming model OmpSs

and Ubuntu Linux 16.04.

The Picos++ runtime exceeds the default software-only runtime in terms of both speed

and energy efficiency. The smaller the task size or the more hardware resources available

in the system, the higher the performance that Picos++ is able to achieve compared against

the software-only runtime.

In a system with 4 threads, with tasks that can only be executed in threads, using Pi-

cos++ results on a speedup close to 4x versus sequential execution with real applications;

more importantly, it gains up to 2x over its software-only counterpart. When dealing with

tasks that can be executed in both threads and HW functional accelerators, with up to

4 threads and 4 such accelerators in the system, Picos++ achieves up to 11.2x speedup

versus sequential version; and when compared to the software-only runtime, it achieves

up to 7.6x speedup with real benchmarks and could saves up to 90% of energy with

fine-grained tasks. With even more hardware execution units, with up to 12 accelerators,

Picos++ achieves up to 16.2x when compared with the software-only runtime system.
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The fast dependence analysis and task scheduling in hardware, in addition to the re-

duced thread contention, are the key factors that contribute to the high performance and

energy savings of this design. Due to the experiments performed with a higher number

of accelerators, it is expected that in larger systems with more threads and hardware exe-

cution units the performance gains and energy savings obtained against current software-

only runtimes will be even more significant; making Picos++ a very suitable piece in

future many-core systems.
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Chapter 7
Conclusions

This chapter summarizes the main conclusions and contributions of this thesis and presents

the future research lines opened by this work. Afterwards it acknowledges the financial

support.

7.1 Goals, Contributions and Main Conclusions

The end of Moore’s law has significantly shifted the aims and landscape of processor

designs. In the early 2000s, to overcome the stagnation of single-core processor per-

formance, processor design entered a new era with multicore and many-core processors.

Shared memory multiprocessors are one of the most representative types of chip multi-

processors with examples such as the IBM POWER4, Intel Core Duo, AMD Opteron,

or more recently Intel Xeon Phi and IBM Blue Gene/Q. Such architectures can provide

the desired performance gains by exploiting high Thread Level Parallelism or Task Level

Parallelism from parallel programs. However, they also introduce significant challenges

for adapting from sequential to parallel computing. Parallel computing requires a huge

mount of programming effort to detect, distribute and synchronize parallel workloads/-

tasks among the available threads/resources.

Moreover, current processor designs exhibit a trend towards heterogeneity for even

higher performance and energy efficiency. Architectures as Cell B.E., the SARC archi-

tecture, Big-little cores, GPGPU, Xilinx Ultrascale+ MPSoC series and Intel Stratix-10

SoC series are all examples of this trend. While these architectures are able to offer poten-

tially higher performance at a low energy cost than traditional multicore and many-cores,

they also raise new complicated problems. Heterogeneous systems often are augmented

with complex memory systems, such as a mix of global coherent and local non-coherent

memories. Once more, programmers have to be aware on the underlying hardware ar-
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chitecture in order to obtain real benefits. They are even often responsible for explicitly

transfer data between those memories and handle potential data replications.

To tackle those challenges, to automate the parallelization process of workloads/tasks

in applications and ease the effort required for managing multicore, many-cores and het-

erogeneous systems, task-based programming models have appeared with new proposed

solutions. Significant examples of such programming models are OpenMP, Intel’s TBB,

OmpSs, Codelets, StarPU, Charm++. They are simple to use and are powerful enough to

gain high performance by exploiting task parallelism and heterogeneity using coarse or

medium grained tasks.

However, there are no trivial solutions to exploit parallelism with fine-grained tasks.

On one hand, fine-grained tasks are favorable for exposing higher parallelism within the

same application, and additionally they make it easier to manage load balancing among

different hardware execution units. On the other hand, task-based programming models

like OpenMP and OmpSs usually employ software-only runtimes as their default ones,

which have large overheads and thread contention, leading to performance degradation.

The critical overheads are mainly task-dependence management and heterogeneous task

scheduling.

To overcome these disadvantages, we propose a hardware architecture Picos to accel-

erate these two critical runtime functions. In Picos, a hardware task-dependence manager

manages all the task dependences with different patterns. A hardware task scheduler

schedules tasks to a hardware device (including SMP, FPGA, ASIC and GPUs) with the

least amount of active waiting work. It also takes care of the load balancing and task

synchronization among SMP and HwAccs. Three prototypes of our proposal have been

developed and studied. They are coded in VHDL and implemented in real commodity

hardware platforms.

The first prototype is a hardware task dependence manager, which has been imple-

mented in a Xilinx Zynq 7000 series SoC. It is connected to a 2-core ARM Cortex A9

processor, with bare-metal OS integration. With 24 simulated workers, and running real

task-dependence analysis in Picos, it scales up to 21x speedup with 24 workers with real

benchmarks. It costs only a tiny fraction of hardware resources and of the whole power

consumption.

The second prototype Picos++ extended Picos with an exciting new feature for nested

task support in hardware. To the best of our knowledge, this is the first time that such

a feature has been support fully in hardware task dependence managers. In addition,
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a different communication scheme is employed to allow a faster data communication

between Picos++ and ARM processors. The second prototype is fully integrated in not

only hardware, but also with a State-of-the-Art parallel programming model, and with

a Linux OS. Therefore, real applications are directly executed in the Picos++ system to

obtain performance and energy results. Since it has been evaluated with real executions in

real hardware, it is limited to only 2 worker threads. However the results are promising.

With only 2 threads available, it gained more than 1.8x over its software-only counterpart,

and saves more than 40% of energy.

The third prototype, with the same name, includes a hardware task dependence man-

ager and a heterogeneous task scheduler. The heterogeneous task scheduler receives ready

tasks from the task-dependence manager and then decides to schedule them to hardware

execution units that have the estimated earliest finish time. The third prototype is imple-

mented in a Xilinx Zynq Ultrascale+ MPSoC chip. In a system with 4 SMP threads and

up to 4 different types of HW functional accelerators (task execution units), it achieves

up to 7.6x speedup for real benchmarks, and saves up to 90% of energy comparing to the

software-only runtime. With up to 12 HW functional accelerators, it even achieves up to

16.2x speedup over the software-only alternative.

Generally speaking, this work aims to be a proof-of-concept of the suitability of hard-

ware runtime for current processors. The results obtained not only demonstrate that such

runtimes are possible, but also exhibit unexpectedly large performance gains for very

small systems. Even more, even in systems with a small number of cores they showed

a growing trend in both performance gains and energy savings. This trend is expected

to continue and even increase along with system complexity. As so, we suggest that, as

many other solutions in computer architecture before, runtimes should start moving part

of their complexity to the hardware to further separate the way a program is parallelized

from the underlying hardware and to avoid becoming the next bottleneck in computation.

7.2 Future Work

Along with the further development and analysis of the designed prototypes, there are

several future directions that we would like to investigate in the future.

• Fast sleep/wake-up in hardware. During the execution analysis of real applica-

tions on the second and third prototype, there is a recurring pattern that the threads

and other hardware execution units were not given enough information about the
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parallelism in the application. They are kept on working in a busy-waiting loop

when they could be put into a low energy mode without influencing the perfor-

mance. Since Picos++ has all the task-dependence information inside, we believe

that it can offer a very fast sleep/wake-up mechanism in hardware, allowing to build

a highly energy efficient system.

• Towards more heterogeneity. Our proposals in this thesis are real implementa-

tions and integrations, thus are limited by the hardware platforms that we have.

Currently the Picos++ design is integrated with SMP and HW Functional acceler-

ators in FPGA. However the design can be adapted to manage other devices such

as different types of processors, ASICs, GPUs, and other accelerators. From the

performance and energy saving results we have obtained so far, we believe that Pi-

cos++ can further boost the performance of other hardware architectures for paral-

lel applications. Additionally since the Picos++ design costs only a tiny fraction of

hardware and power, it is feasible to integrate it with architectures that target differ-

ent goals (and not only high-performance) without much area and power overheads

and with significant gains.

• Towards many-cores. In a previous work, a design space exploration estimated

that the current size of our prototypes is able to manage up to 8 cores without per-

formance losses over the ideal case. A larger design with four times more modules

(simulated by using a C model) was estimated to be able to manage up to 256 cores

without degrading performance. The current prototypes have proved to be able to

scale up to more than 8 cores in real situations, therefore it would be really interest-

ing to see the impact of a larger size design in more complex systems.

• Towards larger systems. It would be really interesting to develop Picos++ to man-

age systems composed of more than one node. Current programming models run-

times are being extended to manage multi-node systems by integrating complex

memory systems such as PGAS (Partitioned Global Address Space). We believe

that significant savings can be obtained in the synchronization time by integrating

the data communication between nodes (i.e. the network) with Picos++.

• Other task-based programming models or other usage. Currently Picos++ is

integrated with the OmpSs programming model. However, since It only requires

general information such as task identification and dependences, it can be integrated
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with other task-based programming models such as OpenMP, codelet, StarPU, etc.

Moreover, as long as a piece of work can be expressed as small workloads with

dependence relations between them, theoretically Picos++ can manage it.

There are also some other works that could be further studied with Picos++. As men-

tioned in the earlier chapters, It is always fast enough for the integrated system (judging

from the task and dependence repetition rates). This means that the data communication

and the software integration are the bottlenecks, therefore we could improve the integra-

tion and further boost the capability of a hardware accelerated runtime. In addition, we

can make more usage of the Picos++ internal task-dependency graph management, and

implement critical-path scheduling in hardware. Or with more threads in the future, we

can try a variety of software scheduling policies for ready tasks in SMP and combine

them with the hardware heterogeneous task scheduler for other hardware architectures in

the system.
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