UNIVERSITAT POLITECNICA
DE CATALUNYA

BARCELONATECH

Light Methods for the

Conformance Checking of
Business Processes

Doctorate of Philosophy Dissertations

by
Farbod Taymouri

Supervisor:
Prof. Josep Carmona

School of Computer Science
Polytechnic University of Catalonia (Barcelona Tech)

A dissertation submitted in partial fulfilment
of the requirements for the degree of
Doctor of Philosophy in Computer Science

November 9, 2018

Keywords: PhD Dissertation, UPC, Data Science, Process Mining,
Computing.

iii

In accordance with the requirements of the degree of Doctor of Philosophy
in Computer Science in the School of Computer Science, I present the
following thesis entitled,

Light Methods for the Conformance Checking of Business
Processes
Doctorate of Philosophy Dissertations

This work was performed under the supervision of Professor Josep Car-
mona. I declare that the work submitted in this thesis is my own, except
as acknowledged in the text and footnotes, and has not been previously
submitted for a degree at Polytechnic University of Catalonia (Barcelona
Tech) or any other institution.

Farbod Taymouri

To those who seek knowledge for the satisfaction of the mind,
and understanding of the world

Acknowledgements

First and foremost, I want to express my deepest gratitude and thanks to
my advisor Prof. Josep Carmona. It has been an honor to be his Ph.D.
student. He has taught me, both consciously and unconsciously, how a
good research is done, and how to be a researcher. I appreciate all his
contributions of time, ideas, comments and supporting to make my Ph.D.
degree. The joy and enthusiasm he has for his research was contagious and
motivational for me, even during tough times in the Ph.D. pursuit.

Also, I would like to express my sincere thanks and appreciation to Prof.
Boudewijn van Dongen, chair of the Process Analytics group at Eindhoven
University of Technology (TU/e). Your comments and points have had
significant impacts on my research.

I would also like to thank my committee members for letting my defense
be an enjoyable moment, and for your brilliant comments and suggestions,
thanks to you.

A special thanks to my family. Words can not express how grateful I
am to my father, mother, and my sister for all of the sacrifices that you
have made on my behalf. Your prayer for me was what sustained me thus
far.

vii

Abstract

In Process Mining, Conformance Checking of business process models ad-
dresses the deviations happened in their real executions. Though it is a
very important matter on its own by detecting where and which deviations
happened, more importantly it is a vital issue for organizations and many
other process mining techniques as well. For example, in model repair
techniques it opens a door for enhancement of processes. Indeed, identi-
fying these deviations boils down to the notion of alignment conceptually.
An alignment quantifies to what degree a process model can imitate what
happened in its observed behavior, i.e., an event log. In fact, an alignment
is a matrix data structure with two rows, where each column represents
whether an observed event can be lined up with the corresponding element
of the given process model. With that said, an optimal alignment is the
best combination by which the process model can imitate the corresponding
observed behavior. State of the art technique for alignment computation
has exponential time and space complexity, hindering its applicability for
medium and large instances.

The main aim of this thesis is to propose light and efficient methods
for alignment computation. Above that, the second aim is to tackle the
mentioned challenge in a big picture point of view, namely not considering
all details. In this case, the focus will be on fatal deviations. Doing this
not only alleviates the computational challenge, but also provides a greater
logical perspective of deviations.

All methods presented in this thesis are forms of combinatorial op-
timizations for alignment computation. They make close approximation
to an optimal solution. The corresponding contributions represent novel
ways in which they are proposed and their effectivenesses for the mentioned
challenge with respect to state of the art approach in different perspectives.
Generally speaking, methods presented in this thesis can be categorized as:

e Classical approaches: These techniques exploit Integer Linear Pro-
gramming (ILP) as well as structural theory of Petri nets to formulate
alignment computation as an optimization of a set of linear equations.
A modification to this strategy which trades-off between complexity
and quality is to integrate it with state of the art approach.

e Heuristic approaches: These techniques adopt different policy
with respect to the first approach, and take advantages of heuris-

ix

tic functions to explore the search space of alignments to find the
optimal one(s). This can be done by obtaining an initial solution
and iteratively improving it until saturation or reaching a certain cri-
terion. Another way could be by adopting a Genetic Algorithm with
well specific designed operators, by which exploration of the corre-
sponding search space can be speed up toward the best solution(s).

e Model reduction: Regardless of the two main approaches just men-
tioned, one way to boost the effectiveness of alignment computation
is reducing model and observed behavior without loosing alignment
information. This structure reduction not only boosts the alignment
computation, but also provides a big picture of detected deviations.
Above that, a divide-and-conquer strategy will be provided for the
first approach such that it breaks the original problem into a set of
smaller independent problems which can be solved independently.

Experiments witness the merit of proposed approaches with respect to
state of the art in different perspectives such as resource consumptions,
execution time, quality and accuracy of solutions found. All methods have
been implemented as a stand-alone tool box called ALI ! [73]. The tool
box and datasets used in this thesis are publicly available at https://www.
cs.upc.edu/~taymouri/.

1 Alignment of Large Instances

https://www.cs.upc.edu/~taymouri/
https://www.cs.upc.edu/~taymouri/

Abstract xi

The following plot summarizes the presented techniques in this thesis
based on different application demands.

Well Struc-
tured Model?

Spaghetti

Model?

‘ Exact

) Alignment?
04

Alignment?

Approximate
Alignment?

Multiple
Alignment?

Fast com-
pution?

Memory

bounded?

2 Integer Linear Programming (ILP) approach to alignment computation, Chapter 3.

3 Recursive Integer Linear Programming (ILPR) approach to alignment computation, Chapter
7.

4 Integer Linear Programming Sequential Dynamic Programming (ILSDP) approach to align-
ment computation, Chapter 5.

5 Integer Linear Programming Genetic Algorithm (ILPGA) approach to alignment computa-
tion, Chapter 6.

6 Integer Linear Programming A* (ILPA*) approach to alignment computation, Chapter 4.

Contents

I Introduction

1 Alignment in Conformance Checking
1.1 Introduction.
1.2 Motivation e
1.3 Contributions o
1.4 Related Work

2 Preliminaries

2.1 Process Modeling
211 PetriNetso o o
2.1.1.1 Subclasses of Petri Nets

2.1.1.2 Petri Nets and Linear Algebra

2.2 Process Mining o oo
22.1 EventLog,
2.2.2 Conformance Cheking
2.2.3 Alignment of Observed Behavior and Process Model
2.2.4 Synchronous Product Petri Net

2.3 Optimization Techniques
2.3.1 Integer Linear Programming
2.3.2 Heuristic Search
2.3.3 Localsearch.
2.3.4 Hill-climbing
2.3.5 Best-First Search (A*)
2.3.6 Genetic Algorithm

II Classical Optimization Approaches

3 Monolithic Integer Linear Programming
3.1 Introduction.
3.2 Approximate Alignment of Observed Behavior
3.3 Structural Computation of Approximate Alignments
3.4 ILP for Similarity (Seeking an optimal Parikh vector) . .
3.5 ILP for Ordering: Computing an Aligned Step-Sequence . .

xiii

Xiv

3.5.1 A note on completeness and optimality 66
3.6 Outlook 66
4 Incremental Integer Linear Programming 69
4.1 Introduction 69
4.2 Search Space oo 70
4.3 Search Space Exploration using ILP 71
4.3.1 Computing Optimal Alignments using ILP 71
4.3.2 Computing Alignments Without Optimality Guar-
anteeso e e 75
4.3.3 Quality of Alignments 78
4.4 Experiments.o 78
4.5 Outlook 82
IIT Heuristic Optimization Approaches 83
5 Local Search Optimization Approach 87
5.1 Imtroduction 87
5.2 Local Search Computation of Alignments 88
5.2.1 The Overall Perspective 88
5.3 Initial model trace generator 90
5.3.1 ILP for Similarity: Seeking for an Optimal Parikh
Vector 90
5.3.2 Replay The Parikh Vector: Computing An Exe-
cutable Model Trace 91
5.3.3 The feasibility of executing op 102
54 Aligningocand oy 103
5.5 Fitness improvement by local search 109
5.5.1 Alargeexample 110
5.6 Experiments. o 000 116
5.7 Outlook 121
6 Genetic Algorithm Optimization Approach 123
6.1 Introduction. 123
6.2 GA for Computing Several Explanations of Observed Behavior124
6.2.1 Generation of the Initial Population 125
6.2.2 Evaluation Criteria 127
6.2.3 Genetic Operators 130
6.2.3.1 Crossover operators 130
6.2.3.2 Mutation operators 133
6.3 General Framework for Obtaining Multiple Alignments . . . 139
6.3.1 Computing an Alignment using Dynamic Programming140
6.4 Experiments. o 141
6.5 Outlook 149

Contents XV
IV Reduction and Projection Frameworks 151
7 Recursive Approach for Large ILP Instances 155
7.1 Introduction 155
7.2 The Recursive Algorithm 156
7.3 Experiments.o 160
7.4 Outlook 163
8 Structure Reduction 165
8.1 Imtroduction., 165
8.2 Single Entry Single Exit (SESE) 166
8.3 Overall Framework 168
8.4 Reduction of Model and Observed Behavior 169
8.4.1 The Indication Relation 169

8.4.1.1 Detecing Flow-Indication Relation through
SESE. 170
8.4.2 Reduction of Observed Behavior 173
8.5 Expansion Through Local Optimal Indication Alignments . 173
8.6 Experiments and Results. 178
8.7 Outlook 185
V Conclusions and Tool Support 187
9 Conclusion 189
10 Tool Support 193
10.1 Introduction 193
10.2 Installation 193
10.3 Importing Model and Log 194
10.4 Algorithms 194
10.4.1 ILPSDP 194
10.4.1.1 Inputs. 195
10.4.1.2 Outputs. o 195
10.4.2 ILPGA 197
10421 Inputs. 197
10.4.2.2 Outputs. 198
10.4.3 Setting L 200
Appendices 203
A Datasets 205

Bibliography 209

Part 1

Introduction

This part starts with a brief introduction to process mining area and the
problem, i.e., alignment computation, which has been tackled in this thesis.
Next, the importance of alignment computation as well as motivation is
presented. Following that, the contribution of proposed algorithms in this
thesis will be given, and finally the required preliminaries and related work
are provided.

Chapter 1

Alignment in Conformance

Checking

1.1 Introduction

Big Data has gained much attention from the academia, IT and business
industry. In the digital and computing world, information is generated
and collected at a rate that rapidly exceeds the boundary range. Hence
organizations are facing a digital transformation, that primarily requires
an active use of the tones of data available as a result of their operation.
Big Data can be described in four dimensions as [38]:

e Volume: Huge amount of data can provide better understanding and
more comprehensive insights about the business in different aspects.
In effect making better decisions is affected by having more confidence
about the phenomenon under consideration.

e Velocity: The more rapidly information can be made from available
data, the more flexibility will be obtained to find answers in terms of
questions via queries, reports, dashboards, etc. A rapid data inges-
tion and rapid analysis capability provides timely and correct decision
performances.

e Variety: The more heterogeneous data types are available, from the
CRM system, social media, call-center logs, etc, the more multi-
faceted view can be developed about the business under considera-
tion, thus enabling an analyst to develop more customized businesses.

e Veracity: Managing a lot of data does not mean the data becomes
clean and accurate. Business data must remain consolidated, cleansed,
consistent, and current to make the right decisions.

statistics privacy,

security,
law &
ethics

algorithms

behavioral
/social
science,

business
data -

. maodels &
science marketing

visualization
& visual
analytics
distributed
systems

data
mining

machine
learning

process
mining

predictive
analytics

databases

Figure 1.1: Data Science techniques [3]

Alignment in Conformance Checking 7

Despite of living in Big Data age, the naive goal would not be to collect
as much data as possible. The real challenge is to make valuable insights
from this information. Most of the data stored in the digital universe is
unstructured, and therefore organizations have problems dealing with such
large quantities of data. One of the main challenges of todays organizations
is to extract information and value from data stored in their information
systems. The importance of information systems is not only reflected by
the massive growth of data, but also by the role that these systems play in
todays business processes as the digital universe, and the physical universe
are becoming more and more aligned [3]. Indeed this amount of data must
be managed efficiently. This has had an incredible impact on the way that
businesses are communicated [49]. For example, the state of a retailer
which sells many products and goods is mainly determined by the data
in its information system and when a purchase is done by a customer, the
retailer makes interactions with many organizations like banks, brokers and
etc. often without being aware of its state. If a purchase is successful the
customer receives purchased item. The activities of a business process like
the one just mentioned can be recorded which is called event logs. Events
might take place everywhere inside a machine (e.g., an X-ray machine, an
ATM, or baggage handling system), an enterprise information system, a
hospital, a social network, and a transportation system.

Classical data analysis methods can not take full advantages of other
available resources and data, hence the need for a new discipline of data-
driven science is needed for this issue. Data Science proposes modern and
scalable data analysis techniques which tackle the mentioned challenges
from different angles, to take fully advantages of available data. Under the
Data Science umbrella, Process Mining is a set of techniques and algorithms
that deal with event logs of processes, see Fig. 1.1. Only process mining
techniques directly relate event data to end-to-end business processes [3].
The growing interest is illustrated by the Process Mining Manifesto [83]
released by the IEEE Task Force on Process Mining some years ago.

Process mining is a relative young and fast growing research discipline,
that sits between traditional analysis paradigm like machine learning and
data mining on the one hand, and process modeling and analysis on the
other hand. It can be viewed as the link between data science and process
science. Process mining seeks how to confront event data, i.e., observed
behavior, and process models, i.e, de facto model which can be hand-made
or discovered automatically. Data mining, statistics and machine learn-
ing techniques do not consider end-to-end process models. Process science
approaches are process- centric, but often focus on modeling rather than
learning from event data or estimating parameters. The unique position-
ing of process mining makes it a novel strong tool to exploit the growing
availability of data for improving end-to-end processes.

Process mining can be best related to Business Process Management,
i.e., BPM, where the main focus of BPM is on process design and imple-

mentation [4], [24]. Process modeling plays a key role in the (re)design
phase and directly contributes to the configuration/implementation phase.
Originally, BPM approaches had a tendency to be model-driven without
considering the evidence hidden in the data. However, process mining is
not limited to BPM, and any process for which events can be recorded, is a
candidate for process mining [3]. A process can be seen as a set of related
business activities in an organization, for example it can be delivering of
products to customers, click streams of users over the Internet for buying
some special products or a an application process inside the RAM of a
machine which interacts with other processes and Operating System.

diagnosis/

requirements |
insight
discussion

animation

performance
analysis

enactment/
monitoring

re)design
data models (re)desig
] verification

documentation
specification

configuration/
implementation

configuration
Figure 1.2: Business process management life cycle [3]

The key role of process mining can be described more easily in BPM life-
cycle, see Fig. 1.2. It describes the different phases of managing a particu-
lar business process. In the design phase, a process is designed and running
into a system. In monitoring phase, the processes are running while being
monitored by management to see if any changes are needed. Some of these
changes are handled in the adjustment phase. In this phase, the process
is not redesigned and no new software will be developed only predefined
controls are used to adapt or reconfigure the process. The requirements
phase evaluates the process and monitors emerging requirements due to
changes in the environment of the process (e.g., changing policies, laws,
competition). Poor performance which results in new requirements trig-
gers the redesign phase. Process mining offers the possibility to truly close
the BPM life-cycle. Corresponding recorded data can be used to provide
a better view on the actual processes, i.e., deviations can be analyzed and
the quality of models can be improved.

The general idea of process mining is to discover, monitor and improve
real processes (i.e., not assumed processes) by extracting knowledge from
event logs readily available in todays systems. In general process mining
can be done in three dimensions as follows and shown in Fig. 1.3:

e Process Discovery: The goal in this part is to discover a new process
model based on provided event logs without any prior information.

Alignment in Conformance Checking 9

“ u) supports/ g
world business controls software
processes
people machines system
components
organizations records
events, e.g.,

messages,

spe_CIfleS transactions,
configures etc

implements

models
analyzes

analyzes
—C D
discovery
(process) event
model conformance Iogs
enhancement

Figure 1.3: Process mining types [3]

Since these algorithms are fed by raw data, the role of these algo-
rithms and the challenges ahead are similar to unsupervised tech-
niques in machine learning for discovering communities in social net-
works [44]. The first proposed approach for this challenge is called
a-algorithm and was presented in [82]. This algorithm has a very
restricted representational bias, and hence there are many other ap-
proaches which tackle discovering tasks from different perspectives,
some of them are as follows, [21], [42], [104], [89].

e Conformance Checking: This set of techniques assumes that there are
process model and corresponding event logs. The process model can
be obtained by hand or by applying a discovery technique. The main
objective is to examine whether the footprint agrees with the process
model. This can be viewed from different angles which provide useful
insights [3],

1. The model is wrong and unable to reflect the reality.

2. Cases deviate from the model and thus corrective actions are
needed.

These techniques are very important because they enable auditing
and checking whether business processes are executed within certain
boundaries set by managers, governments, and other stakeholders.
For example, specific rules may be enforced by law or company poli-
cies and the auditor should check whether these rules are followed or
not [78]. These techniques are similar to supervised learning meth-
ods since the existing process model provides information about the

10

rules that must be followed. Indeed, the existing model is supposed
to explain the underlying concept of the given phenomenon.

e Enhancement: These set of techniques can be applied from different
angles, first and the most important objective aims at improving the
existing process model with the use of event logs. That is, the model
is repaired or improved if it does not agree with its real execution and
some deviations identified. By highlighting the repaired parts of the
repaired model, one can show discrepancies succinctly. This may lead
to adaptations of the actual process (e.g., better work instructions or
more control) or to changes of the model to reflect reality better. In
the latter case the repaired model can be used as the new normative or
descriptive model [27]. Second, evolving in observed behavior can be
monitored and it signals the existing process needs to be updated [28].
The necessity of enhancement or improvement comes from the fact
that real world is dynamic and relations are changed over the time.
Hence concept drift is expected to happen and thus the corresponding
models must be adopted accordingly. These techniques in nature are
similar to semisupervised or more specific, active learning techniques,
where the learned patterns must be updated over the time.

Process mining has applications in diverse domains. It can be applied
in computer science to social science. Conceptually, wherever there is a
collection of event logs, one can take advantages of process mining [33]:

e Usage profiling: By using process mining one can build models de-
scribing the actual use of the application. Such models may reveal
that certain features are never used or that they are only used by
particular customers under particular circumstances. This helps to
characterize the different types of users and may influence further
development, training, and marketing [47].

o Reliability improvement and anomaly detection: The models discov-
ered through process mining show the actual use of the application
and also its failures. Insight into the actual use of the application can
be used to test the system under realistic circumstances (sometimes
this is even enforced by law). Moreover, a detailed analysis of fail-
ures using process mining can help to find root causes for reliability
problems [12].

o Usability improvement. If the intended use deviates from the actual
use, then this may point towards usability problems. Using confor-
mance checking one can locate such deviations and quantify their
impact.

e Remote diagnostics and servicing. Information in event logs can also
be used more actively. For example, process mining can help to

Alignment in Conformance Checking 11

predict failures. By combining current data and historic information,
it is possible to forecast likely problems. Moreover, if an error occurs,
the event log may be used to find the core problem and take counter
measures [3].

Also there are applications in software engineering like [48] where process
mining can facilitate evaluation and auditing. Designing social network
analysis from email logs with help of process mining is presented in [29]
or maintenance of the road and water infrastructure [79]. A massive col-
lections of real and synthetic event logs from different applications can be
found in IEEE TF on Process Mining - Event Logs.

This thesis is mainly centered around conformance checking of pro-
cess models. Before doing so, it would be instructive to shed light on the
relation between conformance checking, business alignment, and auditing
issues. The goal of business alignment is to make sure that the infor-
mation systems and the real business processes are well aligned to each
other. Unfortunately, there is often a mismatch between the information
system on the one hand, and the actual processes and needs of workers and
management on the other hand. One of the reasons could be that most
organizations use generic software that was not developed for a specific
organization. A typical example is the SAP system which is based on so-
called best practices, i.e., typical processes and scenarios are implemented
[3]. In spite of such systems are configurable, particular needs of an organi-
zation may be different from what was developed by the product software
developer, that is to say their specific requirements of that organization is
not included and indeed it is impossible. Second, processes may change
faster than the information system, because of external influences and be-
ing in agile environments. Finally, there may be different stakeholders in
the organization having conflicting requirements, e.g., a manager may want
to enforce a fixed working procedure whereas an experienced worker prefers
to have more flexibility to serve customers better.

Conformance checking can assist in improving the confrontation or
alignment of information systems, business processes, and the organiza-
tion. Given a process model and its real execution, by analyzing the later
with respect to the former and diagnosing discrepancies between them, new
insights can be gathered showing how to improve the support by informa-
tion systems. Conformance checking between a model and event logs can
be viewed and done in four separate dimensions as follows [6], [3]:

e Fitness: It measures the proportion of behavior in the observed trace,
i.e. log, according to the normative model. More specific how well
the model is enable to mimic the observed trace.

e Precision: It measures the behavior which is unlikely given the ob-
served races of the event logs. Stated differently, the model is able to
behave much beyond of the seen event logs.

https://data.4tu.nl/repository/collection:event_logs

12

e Generalization: The discovered model should generalize the example
behavior seen in the event log. This dimension examines the discov-
ered model in terms of overfitting.

e Simplicity: It measures how much the model is simple and under-
standable in which it is able to explain the behavior, [50] presents
many metrics to quantify the complexity and understandability of a
process model, the metrics consider perspectives like size of the model
and ”structure” of the model.

Abundance of efforts and papers were published recently to show the im-
portance of fitness dimension regarding conformance checking issue.

The backbone of most conformance checking algorithms is the notion of
alignment introduced in [5], where it denotes which events of the event log
can be aligned with the corresponding elements of the process model, and
this number must be maximized. This is a challenging combinatorial op-
timization problem. Different algorithms try to optimize various objective
functions [43], [20] and [66]. The complexity of solving these optimization
problems increase exponentially to the size of the problem and as a result
they are unable to compute alignments for medium to large datasets. In
spite of the importance of alignment computation and the mentioned chal-
lenge, the aim of this research is to present light methods for the alignment
computation i.e., light and efficient computational method of combinato-
rial optimization. This can be approached based on both classical and
heuristics optimization techniques where the corresponded algorithms are
presented in parts II, III respectively and following those, methods for
alleviating the burden of alignment computation in scale will be presented.

1.2 Motivation

As mentioned in the previous section this thesis is centered around propos-
ing light methods of conformance checking and will be focused on alignment
computation. In general the conformance checking of a process model and
an event log aims to answer this question: is the real execution, i.e., foot-
prints, of a process model is in accord with its model? If no, how to quantify
this situation and more importantly what the deviations are exactly.

This sort of analysis plays a vital role in both process mining and
process management, since obtained information not only can provide more
insights about the real execution of the process but also this information
can be used to improve or repair the existing process model from different
perspectives. Above that, this information can be used in usage profiling
recommendation and search engine information systems to make a decision
about the similarity of an event log to existing process models.

In order to make conformance checking more concrete in terms of the
mentioned question, the notion of alignment is proposed by [5] which will
be formally introduced in preliminaries chapter 2. In short, an alignment

Alignment in Conformance Checking 13

between a process model and an observed trace of event log is a two rows
matrix that denotes which elements of the process model can be aligned to
each events of the observed trace. To give an idea of what is an alignment
lets assume there is a process model like the one shown in Fig. 1.4 in Petri-
net formalism with four transitions t1, 2, t3 and t4 with the corresponding
labels.

l\ a4
P @Ol OO
Figure 1.4: Process Model

Also there is an observed behavior o = ajajaqas, then one possible align-
ment between the process model and observed trace could be:

ol o [L] i
BBEaE

Where each column represents a move. Obviously on the one hand if
there is no deviation, i.e., footprint is 100% in accord with the process
model, then all events can be aligned synchronously with elements of the
process model, i.e., synchronous move, for example (a1, t1), (a4, t4) are syn-
chronous moves. On the other hand if there are deviations, some elements
of the observed trace can not be aligned synchronously with elements of
the process model, i.e., asynchronous move, for example (a1, L), (L, t3) are
asynchronous moves. In short an alignment can be quantified by assigning
a number to it which is called fitness, a number between 0 and 1, where
a value from this interval represents how well the model can mimic the
observed trace.

It is clear that given a process model and an observed trace, by assigning
a weight to each move (an asynchronous move receives greater cost than a
synchronous move), an alignment with the minimum cost is a desired one,
since it shows the maximum similarity between the observed trace and
the process model. Stated differently, obtaining a desired alignment just
mentioned boils down to a Combinatorial Optimization Problem. State of
the art approach for alignment computation as presented in [5] is based
on A* algorithm. This algorithm is an informed search method and an
extension of best-first search methods, meaning that it solves problems by
searching among all possible paths to the solution (goal) for the one that
incurs the best cost [51]. In this problem it is defined as the search for
a minimal path on the product of the state space of the process model
and the observed behavior, an object that is worst-case exponential with
respect to the size of the model. This hampers the application of these
techniques for medium/large instances.

14

The efficiency of A* algorithm depends on the adopted heuristics to
prune the respective search space, and in case of having an admissible
heuristics it is guaranteed to find optimal solutions. Despite of having
an admissible heuristics, the corresponding search space even for medium
size of real world problems could be large and makes this kind of search
for obtaining an optimal alignment impractical. This issue becomes more
challenging when more than one solution is needed.

As mentioned shortly in the previous paragraph, alignment compu-
tation is not an easy task, and at the same time too expensive since in
technical terms it has exponential complexity to size of a given problem.
This research is manly focused on proposing light methods for alignment
computation to tackle mentioned challenges, and fulfill the following issues:

e Scalable methods of alignment computation: State of the art approach
has limitation in dealing with massive process and large even logs. A
way to get around of obtaining an optimal solution is to approximate
it, which could be much more affordable in terms of resource con-
sumptions, and therefore can be used in an scalable way and much
more faster to provide close results to the desired ones.

o Approximate alignments: In some applied areas like in medical or
health applications, it is not necessary to have all details of an optimal
alignment, and having a big picture could be enough. That is to say
this is a generalization to the notion of alignment. The advantages
are manifold: conformance checking techniques can be discretized
to a desired (time) granularity, e.g., when the ordering of activities
in a specific period is not important for the diagnosis. Also, other
techniques like model repair [28] may be guided to only repair coarse-
grain deviating model parts. Finally, in domains where a fine-grained
ordering of activities is not needed, approximate alignments can play
an important role (e.g., health care [45]).

o Multiple solutions: Some applications of process management like
model repair are heavily based on alignments. In these applications
for a given observed trace having different alignments with the same
fitness value could be beneficial, since the model can be repaired
from different perspectives. Having a set of solutions, i.e., optimal
alignments or alignments close to optimal ones, in an affordable way
is necessary for these applications.

o Abstract perspectives: Alignment computation can be alleviated by
reducing the size of a given problem in terms of model and event log
reduction. This policy not only simplifies alignment computation, but
also provides various perspectives of the given problem at different
levels. This kind of abstraction provides better understanding of
various parts of big process models, and reveals the main parts of it.

Alignment in Conformance Checking 15

So, as just demonstrated above in parallel to the main objective of this
thesis i.e., light methods of alignment computation, other topics will be
addressed to fulfill the mentioned challenges and requirements.

1.3 Contributions

Based on explained motivations in the previous section, in this thesis six
approaches are presented to fulfill the mentioned issues. None of techniques
covers all explained issues simultaneously, but each of them focuses on a
portion of challenges as will be explained in corresponding chapters.

All presented approaches are composed of different steps, but the first
step in all of them is based on a novel idea which is formulation of Integer
Linear Programming (ILP) and structural theory of Petri nets (will be
presented in Chapter 3, Section 5.3.1). Stated differently, in this thesis the
problem of alignment computation can be tackled in two main optimization
steps. The first step as mentioned is based on pure ILP and the second step
adopts separate new strategies which vary and depend on the underlying
challenges, for example a new genetic algorithm strategy is used to obtain
multiple solutions or a local search approach for scalable and fast alignment
computation. Contributions of each approach as well as the corresponding
publications are shown in Table 1.1:

Method Publication
[75]] ILP and Recursive | International Conference on Business
ILP, Chapters 3, 7 Process Management (BPM 2016)
[74]| Structure Reduction, | International Symposium on Data-driven
Chapter 8 Process Discovery and Analysis (SIMPDA
2016)-Best Research Paper Award
[90]] Hybrid Approach, | International Conference on Advanced In-
Chapter 4 formation Systems Engineering (CAISE
2017)
[76]] Local ~ Search Ap- | The journal paper was submitted to ACM
proach, Chapter 5 Transactions on Software Engineering and
Methodology
[77]] Genetic Algorithm | International Conference on Business
Approach, Chapter 8 | Process Management (BPM 2018)

Table 1.1: Publications of proposed approaches

e Integer Linear Programming (ILP): This approach presents a novel
optimization formulation based on ILP and structural theory of Petri
nets for alignment computation. This approach for the first time in-
troduces approximate alignment computation at different granularity
levels, and guarantees its optimality. Due to its complexity, i.e., NP-

‘paIapIsuod are siojersdo jo Ajxedwos oy, ,
“jueldyge A1oA ST 41 90130€Id UT 9I10J0I0Y} pue [[ews A10A ST yoroldde sIyy 10] sooue)sul J7I[JO 9ZIS AL, ,
'sofox quejrodurt Aefd [eTOUA[OJ oIe YOIym SWILIoS[e Jo sired Ioyjo ‘@ouw)sul JrI[JO 9ZIS [[RUWIS oY) 0} onp

oo19001d Ul JOAOMO] ‘[[om S J]] oSN Aoy} 9ouls 939[dwo)-JN oIe so1}IxXe[duWod [BI119109Y} ‘SUWN[od Yy pue y3anoj ‘soyoeoidde om) jse[oY) I0J jer) 9j0u o SN 9] ,

pepunog 4

‘Tewrtpdo ST UOTIN[OS A} I0J09A LI JO SULID) UJ,,

soyproxdde pasodoid :g'T 9[qe],

rerpuouodxryy J[erwouA[oq [eTWIOUATOJ arerduwon-dN pRRIdwo)n-dN arerdwon-dN S Kxeduwio)
MO[S MO[S jsej Todng arqepuada(y e MOTS poadg uornoaxy
(a@gn) ysy LA (ag) wmipajy | (qe) mo A1A (@gn) wopay | (qg) moT A1A (,ag) moq | gurrdjooq Arouwraynl
SO S9OX SOX SOX ON »(13dO) oN 1oexy
(£10A) (Apouronxyy) (1o19Y) (A10/)
ON oK .- oA o ON Aiqeress
poojueIRNY) | POdJURIBNY) JON | PO9jURIBNY) JON podjURIENY) JON | POOJURIRNL) JON | POdIURIRNY) JON AnrewrrydQ
o[dnmN % oAy 23
oBurg S8 o[3uIs o3urg or3uIg or3uIg uornjog
| (37 oty Jo oyeyg), | | WILIOS[y onewen | ypreag (80T | L %3 JTI PUQAAT] | JIT oatsImooy | dTI

16

Alignment in Conformance Checking 17

Hard, it is neither scalable nor fast for fine level of granularities. This
approach will be presented in Chapter 3.

e Recursive Integer Linear Programming (ILPR): The complexity of
an ILP optimization is NP-Hard, and therefore solving it for large
instances is impossible. Thus the only way to make it scalable is
to reduce the size of a problem and, at the same time, to preserve
features of the original problem to not affect the final solution. The
contribution of this approach is the decomposition a large ILP prob-
lem to a set of smaller ILPs and solve them recursively such that the
original ILP conditions are preserved. In this way the ILP instances
can be solved significantly faster than the original one. In spite of in-
creasing scalability, speed and reducing resource consumptions, doing
so increase the risk of having spurious solutions. Chapter 7 presents
this approach.

e Hybrid ILP (ILPA*): This approach presents a novel hybrid tech-
nique based on state of the art approach [5], i.e., A* and ILP opti-
mization. Stated differently, it represents a trade-off between com-
plexity and quality. The approach depends on desired quality and
complexity, and it computes an alignment in a hybrid way, where
giving more weight to A* provides better solutions in terms of qual-
ity, but at the same time sacrifices scalability and vise versa. This
approach will be discussed in Chapter 4.

e Local Search (LS): This approach and the next one tackle the opti-
mization problem in different ways, using novel heuristics methods.
Optimization with the help of heuristic functions can be efficient if
the domain knowledge of the problem is injected to these functions.
The novelty of this approach is to obtain an initial solution with re-
laxed ILP optimization, then improve it with the use of local search
iteratively. Despite of not having globally optimal solutions in gen-
eral, this approach is super light, very fast and extensively scalable.
This approach will be explored with more details in Chapter 5.

e Genetic Algorithm (GA): None of the previous methods are able to
provide multiple solutions, i.e., optimal or close to optimal alignments
for a given problem. This approach adopts genetic algorithm frame-
work, and propose novel domain specific operators to accelerate and
guide the algorithm into search space of a given problem to where
the desired solutions are located. The advantages of this approach
lay on the fact that it provides a bunch of solutions at once. It will
be discussed in Chapter 6.

e Reduction Algorithm: Apart from approaches mentioned in Table 1.2,
a novel framework for the reduction of a process model and event
log is presented based on detecting special substructures called Sin-
gle Entry, Single Exit (SESE) inside the given process model. The

18

main objective of this framework is the alleviation of alignment com-
putation, by reducing the size of a given problem. This reduction
framework can be integrated with all techniques of alignment com-
putation. Above that, the reduction of a process model is equivalent
to its structural summarization where at the end an abstract perspec-
tive of the model can be presented. Full description of this approach
is presented in Chapter 8.

Last but not least, Table 1.2 shows the main features and contributions
of each approach to demonstrate the most important features of them.
Specific attributes of each approach will be presented in the corresponding
chapters. In short, description of each row is as follow:

1.4

Optimality: This feature shows whether the obtained solution or
solutions are globally optimal.

Scalability: This feature demonstrates ability of the proposed ap-
proach in dealing with medium to large problems. For example, Local
Search approach is super light and can handle very large instances.

Exact: This attribute shows whether exact alignments (a concept
which will be presented later on in this thesis) can be obtained or no.

Memory Footprint: One of the very important metrics for eval-
uating alignment computation algorithms is considering its memory
consumption. This feature quantifies the mentioned metric.

Execution Speed: Apart from memory footprint, this feature shows
how fast will be the corresponding execution. Some approaches like
genetic algorithms though are memory bounded but having long ex-
ecution time.

Complexity: This row shows the theoretical complexity of each ap-
proach. This feature, though provides an intuition about theoretical
complexity of the proposed approaches, it can not be used alone to
judge an algorithm, for example, both ILP and Recursive ILP have
NP-complete complexities but due to different size of problems they
face, the later is much more efficient than the former in practice.

Related Work

The first and seminal paper regarding the fitness dimension of confor-
mance checking! was presented by [68] which introduced token replay and
also enumerated other dimensions of conformance checking. This approach

1 From now on for the sake of simplicity when ” conformance checking” is mentioned, its fitness
dimension is meant.

Alignment in Conformance Checking 19

represents a process model by a Workflow Net (WF-net), and replays the
observed trace from an initial marking to the final marking and then based
on the remaining and missed tokens quantifies the fitness value. This ap-
proach, despite of being fast is sensitive to noise. Paper [7] proposed a
cost-based replay technique that measures fitness and takes into account
the cost of skipping and inserting individual activities. The technique is
based on the A* algorithm, and can be tailored to answer specific questions
(e.g. Does the log conforms to the model? Which events are skipped and
inserted?) which ends up with the notion of alignment.

An alignment between a process model and corresponding observed
trace represents how well the later can be confronted with a trace of the
former. An optimal alignment shows the best trace of the model which
mimics the observed trace. The main problem with this approach is its
high complexity due to calculating alignments, but alignment techniques
are more robust with respect to noise rather than replay techniques. More
specific, for each observed trace ¢ in the log, the alignment consists on
exploring the synchronous product of model’s state space and o. In the
exploration, the shortest path is computed using the A* algorithm, once
costs for model and log moves are defined.

The A* approach is implemented in ProM [92], and can be considered
as the state-of-the-art technique for computing alignments. Several opti-
mizations have been proposed to the basic approach: for instance, the use
of ILP techniques on each visited state to prune the search space [5].

Alignment techniques from [5] have been extended recently in [15] for
the case of process trees, presenting techniques for the state space reduction
with stubborn sets’. Also, high-level deviations are proposed in [5] in form
of deviation patterns that, as the work in this paper, aim at providing less
detailed diagnostics. In spite of the optimizations, Unfortunately, these
techniques in [5] cannot handle large inputs. To tackle the mentioned
computational challenge, i.e., product of the state-space of a model and
the observed trace which is well-known state explosion problem, [31] pro-
posed an alternative for alignment computation of acyclic process models,
that encodes the alignment problem as a Constraint Optimization Prob-
lem (COP) where COP is a Constraint Satisfaction Problem (CSP) with
an objective function which must be optimized with respect to given con-
straints. The encoding schema is constraints that describe the possible
execution order of the transitions in a Petri net (expected behavior), and
the order of events in the logs (observed behavior). The COP will find the
minimum misalignment between the observed and the expected transitions
to compute the corresponding alignment.

Due to the mentioned challenge of alignment computation, some other
researchers adopted a decomposition approach. Proposed approaches split

2 There is no fundamental difference between aligning Petri nets or process trees: only the
latter allows for a slightly better memory representation.

20

the given model, and then conformance checking and alignment computing
will be done on each decomposed part separately. The Refined Process
Structure Tree (RPST), proposed by [97], is a graph parsing technique
that provides well-structured parts of a graph. The resulting parse tree is
unique and modular, i.e., local change in the local workflow graph results
in a local change of the parse tree. It can be computed in linear time
using the method proposed in [72], which is based on the triconnected
components of a given biconnected graph. The proposed approach only
works with single sink, single source workflow graphs, which hampers its
applicability to real world problems with many sink, source nodes. The
work in [63] presents a more efficient way to compute RPST which can deal
with multiple source, sink workflow graphs. Based on computed RPST,
approaches in [56], [55] and [54] adopt a decomposition approach, in which
a given process model is parsed and special structures which are called
Single Entry Single Exit (SESE) are identified, and then it is decomposed to
separate smaller parts for conformance checking of the model and observed
behavior. More specific, the observed trace is projected to each SESE and
the result will be used for conformance checking of the projected observed
trace and corresponding SESE, and this can be done for all SESEs in
independently. This technique is very efficient, but the result is decisional
(a yes/no answer on the fitness of the trace). Recently, [99] proposed a
new approach which provides an algorithm that is able to obtain such
an optimal alignment from the decomposed alignments if this is possible,
which is called proper optimal alignment. Otherwise, it produces a so-
called pseudo-alignment which may not be executable in the net.

Abstraction of business process models is presented in [62]. The core
idea is to replace the process fragments inside a given process model with
the process tasks of higher abstraction levels, to simplify the given pro-
cess models for non-technical stakeholders. The key property of the pre-
sented approach is order preservation, by which the abstraction mechanism
ensures that neither new task execution order constraints are produced
nor existing ones gone after abstraction. Stated differently, the mentioned
property secures the overall process logic to be reflected in the abstracted
model. To identify process fragments, the paper uses the notion of process
component i.e., a process fragment which is connected to the rest of the
model by only two nodes namely fragment entry and fragment exit. Iden-
tifying process components in a given process model amounts to finding
triconnected components of a graph. To this end the presented approach
lies on SPQR-tree decomposition, by which triconnected components can
be obtained. Afterwards, the proposed abstraction rules utilize these com-
ponents. Four abstraction rules are presented which depend on the struc-
ture types returned from the decomposition stage. Since the proposed
approach relays on identifying triconnected components of a process model
therefore it must have some structural characteristics like being free of self-
loop structural patterns and must contain no places with multiple incoming

Alignment in Conformance Checking 21

and multiple outgoing arcs. Similarly, the work in [103] presents causal be-
havioural profile notion for consistency verification between a normative
model and its workflow implementation, i.e., to what degree the behavior
of the later is captured by the former. The mentioned notion represents a
behavioural abstraction that includes dependencies in terms of order, exclu-
siveness and causality between pairs of activities of a process model. The
general idea of consistency measure is as follows: given the correspondence
relation between the sets of transitions of two WF-nets, all respective tran-
sitions of two models are aligned, and for each pair of aligned transitions it
is checked whether those transitions show the same constraints as defined
by the causal behavioural profile. To compute causal behavioural profile
efficiently, the presented approach concretises RPST fragments by anno-
tating them with behavioural characteristics. Stated differently, an explicit
relation between structural and behavioural characteristics is established.

The work in [65], presents automata-based technique which uses A*
to compute an alignment. In this technique, the process model is trans-
formed to its reachability graph which can be viewed as a automaton, and
the event log is converted to a minimal Deterministic Acyclic Finite State
Automaton (DAFSA), then the two automata are combined into an error-
correcting product automaton whose transitions are either a synchronous
or asynchronous moves. The created automaton uses three operations cor-
responding to synchronous move and moves in log or model to synchronize
the behavior between DAFSA and reachability graph. Stated differently,
nodes in the created automaton represent partial alignments and arcs are
operations by which different nodes can be reached. Despite the fact that
this method provides all optimal alignments, like state of the art technique
in [5], it suffers from state space explosion issue when deals with large
models containing nested loops.

Recently other researchers have been tried to apply conformance check-
ing in an online scenario and the rationale is to deal with incomplete ob-
served traces and aim to diagnose deviations when the process is run-
ning. In online scenarios, it is not always relevant to mimic the concept
of alignments. For example, in very critical environments, alarms must be
raised immediately when deviations take place. The first approach to com-
pute conformance checking for on-line data streams in presented in [18].
The core advantage of this technique, with respect to previous off-line ap-
proaches, is the ability to check deviations from the de facto behavior in
real-time, i.e., immediately after they occurred. This way, possible correc-
tions can be immediately enacted. The work in [93] aims at computing
prefix-alignments rather than conventional alignments mentioned earlier.
It entails an incremental algorithm that allows for computing both optimal
and approximate prefix-alignments in a greedy way which is the result of
solving such shortest problem. The approach in [94] takes advantages of de-
composition approaches presented earlier and decomposes the given process
model into a smaller subprocess models which gain a significant speed-up

22

when verifying events. Also, by applying decomposition techniques, lo-
calizing deviations and volatile parts of the process models becomes more
straightforward, allowing end-users to quickly get an insight in which parts
of the current model are failing or being violated. Online conformance
checking with BPMN formalism for process models is presented in [101]
and considers it as a service which in short is called CCaaS. It utilizes
basic token replay techniques for online conformance checking due to its
conceptual integration with BPMN but as the author mentioned this basic
mechanism has a challenge with decision gates, like XOR, hence they pro-
posed token pull mechanism to fix this issue and provides the mentioned
service.

Other approaches which made contributions to apply conformance check-
ing without focusing on alignment computations are as follows, the work
in [30] given a process model and event logs returns a set of statements
in natural language describing the behavior allowed by the model but not
observed in the log and vice versa. The method relies on a unified repre-
sentation of process models and event logs based on a well-known model
of concurrency, namely event structures. Specifically, the problem of con-
formance checking is approached by converting the event log into an event
structure, converting the process model into another event structure, and
aligning the two event structures via an error-correcting synchronized prod-
uct. Each difference detected in the synchronized product is then verbal-
ized as a natural language statement. The work in [43] introduced a con-
figurable divide-and-conquer Projected Conformance Checking framework
(pce framework) to compare logs to models and models to models. Instead
of comparing the complete behaviour over all activities, the problem is de-
composed into comparing behaviour for subsets of activities. For each such
subset, a recall, fitness, or precision measure is computed. The averages
over these subsets provide the final measures, while the subsets with low
values give information about the location in the model/log/system-model
where deviations occur. The approach in [14] introduced trace alignment
notion for diagnostics in process discovery and conformance checking, in
other words the method aligns all the observed traces in the event log to
each other with a dynamic programming method inspired from bioinfor-
matics, i.e., Multiple Sequence Alignment, to identify events of an observed
trace that are not in accord with general behavior of the same events in
other observed traces and uncovers interesting patterns and assists in get-
ting better insights on process executions.

Chapter 2

Preliminaries

This chapter provides the necessary requirements and preliminaries for
the presented approaches in the next parts. More specific details will be
presented in each part separately. It starts with one of the most well
known process modeling formalism, i.e., Petri nets, and explains the related
topics to process mining and techniques in this thesis. Following that
classical and modern optimization techniques which will be incorporated in
proposed approaches are presented. First, the mechanics of Integer Linear
Programming (ILP) will be presented, and finally Genetic Algorithm and
Heuristic search concepts are explained.

23

24
2.1 Process Modeling

Companies and organizations usually use different notations to represent
their business processes, which most of them are models made by hand and
are not based on a rigorous analysis of existing process data. For example,
at the highest abstraction level a process might be represented in Business
Process Model and Notation (BPMN), for the sake of understandability for
stakeholders and managers who do not want go to the details of the process
under consideration. Hand-made processes are delicate and their creation
can take a long time. An inadequate model can lead to wrong conclusions
and this is why discovering models from event logs can somehow alleviate
this issue [3].

With that said, in general a process can be represented in different for-
malisms, where each of them has various abilities and characteristics. In
other words, each process modeling approach is not a completely suitable
for everywhere. Thus, appropriate process modeling language selected is
especially important. But it must be stressed that often one formalism can
easily be translated to other notations and formalisms [80]. It is estimated
that there are around 350 process modeling tools, all claiming to support
effective, comprehensible, compact, suitable etc. conceptual business mod-
eling [36]. The most well-known and studied formalisms are Petri nets,
C-nets, BPMN, YAWL, EPCs and Transittion systems. Petri nets will
be explained in-depth since all the proposed approaches in this thesis are
based on this formalism and as mentioned earlier, this is without loss of
generality since the results can be translated to other formalisms.

as

tio

as py a2

to —>O—> ts
Po ar @ ps T \ &P ps
B i Ol O[O [0
AN a6
()_> ta tr
P2 as P3 ar

Figure 2.1: Labeled Petri net, transitions are squares, places are circles
and tokens are black dots

Preliminaries 25

2.1.1 Petri Nets

Petri nets are similar to block diagrams, flow-charts and networks. They
are graphical and mathematical modeling tool applicable to many systems.
They can describe systems that are being characterized as concurrent, par-
allel, asynchronous, distributed and stochastic [57]. Informally, a Petri net
is made of two building blocks called transition and place, and a set of
arcs that connects transitions to places and vise versa. The network struc-
ture is static, but, governed by the firing rule, tokens can flow through the
network. For example Fig. 2.1 shows a Petri net where places represent
different state of the system and py contains a token. More formally:

Definition 1 (Petri Net). A Petri Net [57] is a 3-tuple N = (P,T,F),
where P is the set of places, T is the set of transitions, PNT = 0,
F:(PxT)U(T x P)—{0,1} is the set of directed arcs which is called
flow relation.

For example in Fig. 2.1, the set of transitions 7" and places P are {t1, t, t3,
t49 t57 t67 t?? t87 t97 th} and {p07p17p27 P3,P4, D5, P6, P7, PS} respectively.

Definition 2 (Labeled Petri Net). A labeled Petri net (LPN) is a 3-tuple
(N,X,0), where N is a Petri net, ¥ is an alphabet (a set of labels) and
0:T — X U{7} is a labeling function that assigns to each transition t € T
either a symbol from X2 or the empty symbol 7. The set of labeled transitions
1s represented by Tj.

In Fig. 2.1 the set of labels related to transitions is {a1, as, as, a4, as, ag, az,
asg,7}. Note that tg’s label is 7 which shows it is an invisible or silent
transition. In this thesis for almost all presented approaches process models
are represented by labeled Petri nets. For the sake of simplicity and to avoid
complicated figures, labels are only shown when needed.

In response to above definitions, a marked Petri net is a pair (N, m),
where N = (P, T, F) is a Petri net and where m € B(P) is a multi-set over
P denoting the marking of the net. Also a marking is an assignment of
non-negative integers to places. If k is assigned to place p by marking m
(denoted mp|] = k), we say that p is marked with k& tokens. For example
in Fig. 2.1 m[pp] = 1 and for other places like p;, m[p;] = 0.

Definition 3 (Pre-set, Post-set, Sibling). Given a node x € P UT, its
pre-set and post-set (in graph adjacency terms) are denoted by *x and x°
respectively and an element with the same pre-set of x is called its sibling.

For example in Fig. 2.1, the pre-set and post set of p; are *p; = {t1},p} =
{t2,t3} and for t7, *ps, pa,p3 respectively. Also ty and t3 as well as tg and
t7 are siblings.

The dynamic behavior of a marked Petri net is defined by the so-called
firing rule. A transition is enabled if each of its input places contains a
token. An enabled transition can fire thereby consuming one token from

26

each input place and producing one token for each output place. More
rigorously: a transition ¢ is enabled in a marking m when all places in *t
are marked. More formally it is denoted by (N, m)[t), iff *¢ < m. When
a transition ¢ is enabled, it can fire or execute by removing a token from
each place in *t and putting a token to each place in t*. For example
in configuration of Fig. 2.1 only t; is enabled since its pre-set i.e., pg is
marked. When it is fired, it consumes the token in py and puts tokens in
7, i.e., p1 and po.

Definition 4 (Reachability Marking). Given a Petri net N, a marking
m’ is reachable from m, if there is a sequence of firings tits...t, that
transforms m into m', denoted by m[tity...tp)m’ or m' € R(N,m). A
sequence of transitions tits .. .1, is a feasible sequence if it is firable from

the initial marking my.

To derive this concept home consider the model in Fig. 2.1, marking
m'[pg] = 1 is reachable from m[py] = 1 because there is a sequence of
activities like t1t1otatste by which it is possible to reach from the former
to the later marking. The set of all reachable marking m from an initial
marking mg of a Petri net is called reachability graph of that model and
initial marking. It is not difficult to see that, a marked Petri net may have
infinitely many reachable states. Obtaining reachability graphs is easy
by simulation and using fast computers but in the case of having infinite
reachable state one can resort to coverability graph. Creating coverability
or reachability graphs can reveal some dynamic behavior properties of the
model as follows [57]:

e f-bounded: A marked Petri net (N, mg) is k-bounded if no place ever
holds more that k tokens. Formally Vp € P and Vm € [N, mg) :
mlp] < k.

e Liveness: A marked Petri net (IV,myg) is said to be live if, no matter
which marking has been reached from my, then for each transition
of the model like ¢ there must be a sequence of firing such that the
resulted marking enables t. More formally, Vm € [N, mg),Im’ €
[N, m) such that (N, m)[t).

e deadlock free: A marked Petri net (N, mg) is said to be deadlock free
if at each marking m derived from the initial marking mg at least
one transition is enabled.

e Reversibility: A marked Petri net (IV,myg) is said to be reversible if
from each marking m € [N, mg), mg is reachable from m. This prop-
erty says that the system can get initial settings after it is executed.

In addition to the above properties, a Petri net is safe if it is 1-bounded. To
derive these concepts home, the model in Fig. 2.2 (b) is 9-bounded since
none of the places can have more than 9 tokens. Also, it is not deadlock free

Preliminaries 27

?.ﬁ
[iey
o~
—

pp @

PP
N\

P2

Figure 2.2: Petri nets

since for marking m such that m[ps] = 9 there is no enabled transitions.
The model in Fig. 2.2 (a) is unbounded since infinite number of tokens can
be placed on p; and it is deadlock free since for any marking ¢ is active and
can be fired. The model in Fig. 2.1 is safe since the maximum number of
tokens a place can have is one also it is not reversible, i.e., initial marking
can not be reached when the model is being executed.

Definition 5 (Structural Deadlock). or simply deadlock in a Petri net is
a set of places such that every transition which outputs to one of the places
in the deadlock also inputs from one of these places. Formally, a nonempty
subset of places Py of a net N is a deadlock if *Py C Pj, See Fig. 2.5.
Deadlocks have the following properties [60], [19]:

e If marking m € RS(N,mg) is a deadlock state then Py = {p|m[p] =
0}, is an unmarked set of places.

e Once all of the places in the deadlock become unmarked, the entire
set of places will always be unmarked; no transition can place a token
in the deadlock because there is no token in the deadlock to enable a
transition which outputs to a place in the deadlock.

Figure 2.3: Pd = {Pl,PQ,Pg}, .Pd = {tg},PJ = {tl,tg}

28

2.1.1.1 Subclasses of Petri Nets

Workflow nets (WF-nets) are subclass of Petri nets which are more suitable
to model business processes [84] due to having special places called Start
and end. They are suitable since there could be a mapping from observed
traces in the even logs and firing sequences of a WF-net. The definition of
WPF-nets formally is as follow:

Definition 6 (Workflow Net). A Workflow net (WF-net) is a labeled Petri
net (N, 3, 0) where there is a place start (denoting the initial state of the
system) with no incoming arcs and a place end (denoting the final state of
the system) with no outgoing arcs, and every other node is within a path
between start and end.

The transitions in a WF-net represent tasks. For the sake of simplicity,
the techniques of this thesis assume models are specified with WF-nets.
Indeed the model in Fig. 2.1 is a WF-net where py and pg are the start and
end places. Though WF-nets are appropriate for process representation in
process mining tasks as mentioned, they must meet some properties to
avoids unexpected results. For example, no deadlocks must be presented,
more specific it must be sound according to [81]:

Definition 7 (Sound Workflow Net). A WF-net with input place start and
output place end is sound if the following conditions are met:

e Option to complete: Vm € R(N,start),m[end] € R(N,m) (this
property states that from any marking obtained from the initial mark-
ing, final marking can be reached);

e Proper completion: ¥m € R(N, start), if end € m then only mlend] =
1 (this property says, if the final marking is marked then other places
must be without tokens);

e No dead transitions: V¢ € T,3m € R(N, start) such that (N, m)[t).

Fig. 2.1 represents a WF-net which fulfills soundness requirements as just
mentioned.

Another important subclass of Petri nets are Free-Choice Nets (FC-
nets). FC-nets have the behavioral feature that if two transitions share
an input place and it gets marked then both transitions become active, or
there is no marking in which one is active and the other is disabled, more
formally FC-net is defined as follow [57]:

Definition 8 (Free-Choice Nets). A Free-Choice net (FC-net) is a Petri
net such that every arc from a place is either a unique outgoing arc or a
unique incoming arc from a transition, i.e., Vp1,p2 € P,p} Np] # ¢ —
Pt = Ip3| = 1.

According to the above definition an Extended Free-Choice Net (EFC), is
a Petri net such that if p} N p} # ¢ — p} = p},Vp1,p2 € P. Also Every

Preliminaries 29

m

5]

P1

O : —»o<
O/ D3

P2

(a) (b)

P2

Figure 2.4: (a) Extended Free-choice net, (b) Free-choice net

EFC system can be simulated by an FC system [11]. The models in Fig.
2.4 (a) and (b) are non free-choice and free-choice nets respectively. The
model in Fig. 2.4 (a) is not a FC-net since [p}| > 1 and [p§| > 1. In Fig.
2.4(b), transitions ¢ and t3 share ps as an input place, thus whenever it
gets marked both ¢2 and t3 are enabled.

There are some definitions related to FC-nets as follows:

Definition 9 (Clusters). Let x be a node of a process model (FC-net). The
cluster x, denoted by [x] is the minimal set of nodes such that:

o € [z]
e If a place p belongs to [x] then p® € [x]
e If a transition t belongs to [z] then *t € [z]

The above definition, poses some properties like, the set {[z]|x € (PUT)} is
a partition of nodes of the corresponding model or in FC-nets if an arbitrary
marking enables a transition like ¢ then it enables every transitions of [¢]
[23].

Definition 10 (Allocations). Let C be a set of clusters of a model N =
(P, T,F), such that every clusters C' contains at least one transition. An
allocation is a function o : C' = T such that Ve € C, a(c) € c. A transition
t is said to be allocated by o if t = a(c) for some cluster c. Also the set of
transitions allocated by o is denoted by a(C).

An allocation « is called cyclic if for every cluster ¢ € C, the set «a(c)®
contains only places of C' [23].

Fig.2.5 shows the set of clusters C' by rectangles and some corresponding
allocated transitions in green color.

2.1.1.2 Petri Nets and Linear Algebra

Let N = (P, T, F) be a Petri net with initial marking mg. Given a feasible
sequence mg[o)m, the number of tokens for a place p in m is equal to the

30

P2 Pa Pe

Py ,O‘*
N orlel

P3 Ps \p7
%?

Figure 2.5: Clusters and allocated transitions

tokens of p in mg plus the tokens added by the input transitions of p in o
minus the tokens removed by the output transitions of p in o:

mlp] = molp] + Y lole F(t,p) = D lole F(p,1)

te®p te p®

The marking equations for all the places in the net can be written in
the following matrix form (see Fig. 2.6(c)): m = my + N - 7, where N
€ ZP*T is the incidence matriz of the net: Np,t] = F(t,p) — F(p,t). If a
marking m is reachable from myg, then there exists a sequence o such that
molo)m, and the following system of equations has at least the solution
X=0

m=my+N-X (2.1)

If (2.1) is infeasible, then m is not reachable from mg. The inverse
does not hold in general: there are markings satisfying (2.1) which are
not reachable. Those markings (and the corresponding Parikh vectors)
are said to be spurious [71]. Fig. 2.6(a)-(c) presents an example of a net
with spurious markings: the Parikh vector ¢ = (2,1,0,0,1,0) and the
marking m = (0,0,1,1,0) are a solution to the marking equation, as is
shown in Fig. 2.6(c). However, m is not reachable by any feasible sequence.
Fig. 2.6(b) depicts the graph containing the reachable markings and the
spurious markings (shadowed). The numbers inside the states represent the
tokens at each place (p1,...,ps). This graph is called the potential reach-
ability graph. The initial marking is represented by the state (1,0,0,0,0).
The marking (0,0, 1,1, 0) is only reachable from the initial state by visiting
a negative marking through the sequence t1tatst1, as shown in Fig. 2.6(b).
Therefore, equation (2.1) provides only a sufficient condition for reachabil-
ity of a marking and replayability for a solution of (2.1).

Preliminaries 31

(00200] 11

51(—1:)010=

ol i]éé;;live

.~ marking

o C

m g N o
0 1 —1 0 0 0 +1 +1 ?
0 0 +1 -1 +1 0 -1 0 0
1 = 0 R +1 -1 0 +1 0 -1 0
1 0 o 41 -1 -1 0 0 1
0 0 0 +1 0 o -1 -1 0

(c)

Figure 2.6: (a) Petri net, (b) Potential reachability graph, (c) Marking
equation.

For well-structured Petri nets classes equation (2.1) characterizes reach-
ability. The largest class is free-choice, live, bounded and reversible nets [57].
For this class, equation (2.1) together with a collection of sets of places
(called traps) of the system completely characterizes reachability [22]. For
the rest of cases, the problem of the spurious solutions can be palliated
by the use of traps [26], or by the addition of some special places named
cutting implicit places [71] to the original Petri net that remove spurious
solutions from the original marking equation.

Furthermore, even in the case of reachable markings, the marking equa-
tion can fail to provide the right Parikh sequence. For instance, the mark-
ing (0,1,1,0,0) is reachable from the marking (0,0,0,1,1) by firing the
sequence t4tgt1. However, the Parikh vector corresponding to the sequence
tstqtsts is also a solution to the marking equation with initial marking set
to (0,1,1,0,0). This observation is important to figure out some issues in
the next chapters.

32

2.2 Process Mining

Process mining aims to discover, monitor and improve real processes by
extracting knowledge from event logs readily available in todays informa-
tion systems [3]. Spectacular growth of event data recently on the one side
and maturing process mining techniques on the other side push companies
and organizations to exploit process mining from various perspectives.

Starting point for process mining would be an event log and a pro-
cess model where the later can be modeled in different languages and for-
malisms. In this thesis as mentioned in the previous section, process models
will be modeled using Petri nets and this is without lose of generality. Each
event in a log refers to an activity (i.e., a well-defined step in some process)
and is related to a particular case (i.e., a process instance). The events be-
longing to a case are ordered and can be seen as one run of the process.
Event logs may store additional information about events. Event logs can
be used to conduct different process mining tasks like process discovery,
conformance checking and process enhancement.

a4 b4

a2
ay P3
@O _w OO
E
Figure 2.7: Process model

2.2.1 Event Log

To introduce what is an event log, first consider the simple process model
in Fig. 2.7. One possibility of an event log is shown in table 2.1

+# Traces
112 a1a204
159 a1a3a4
15 aj1a4

Table 2.1: Event log

This table shows the event log contains 112 + 159 + 15 = 286 cases, i.e.,
instances of some reimbursement process. There are 112 process instances
following trace ajasas and it contains three activities. Activities are repre-
sented by a single character depending on the nature of the given process.
For example if the process model in Fig. 2.7 represents an oversimplified

Preliminaries 33

purchasing a product mechanism, then transition of the model could be
a; ="add to card”, ag, az ="selecting types of card (Master or Visa)” and
¢ ="commit”.

Note that events can have all kinds of additional attributes (times-
tamps, transactional information, resource usage, etc.). Consider for ex-
ample one of the 843 = 112 * 3 + 159 * 3 + 15 x 2 events. Let say it is aq,
Such an event refers to the execution of add to card. The event may have a
timestamp, e.g., 23-01-2012:8.38, and an attribute describing the resources
involved. Moreover, other data attributes (e.g., name of customer or num-
ber of loyalty card, type of coupon if there is) and data attributes of the
registration event (e.g., a booking reference) may have been recorded. All
such attributes can be used by process mining techniques. However, the
backbone of process mining is the control-flow perspective. Therefore, for
simplicity, events in Fig. 2.7 are described by their activity names only.
However, it is good to note that events can have various attributes, e.g.,
timestamps can be used for bottleneck analysis and resource attributes can
be used for organizational mining (e.g., finding allocation rules).

2.2.2 Conformance Cheking

Conformance checking techniques relate events in the log to activities in the
model, e.g., events are mapped to transition firings in the Petri net. This
way it is possible to compare the observed behavior in the event log and the
modeled behavior. For example, one can quantify differences (e.g. to what
degree the real execution is in accord with the given process model) and
diagnose deviations (e.g., in reality activity ag is often skipped although
the model does not allow for this). Conformance checking has numerous
applications such as:

e For checking the quality of documented processes (asses whether they
describe reality accurately),

e To identify deviating cases and understand what they have in com-
mon,

e To audit purposes.
e As a starting point for model enhancement.

Conformance checking can be applied for evaluating a process model
in four different dimensions, i.e., fitness, precision, generalization and sim-
plicity which are explained in Chapter 1. Conceptually, this evaluation is
based on the notion of alignment which will be described in the next sec-
tion. In short, given a process model and observed behavior, an alignment
shows how they can be line-up in terms of corresponding event-activity.

34

2.2.3 Alignment of Observed Behavior and Process Model

Definition 11 (Trace, Event Log, Parikh vector). Given an alphabet of
events ¥ = {ai,...,an}, a trace is a word o € ¥* that represents a finite
sequence of events. An event log L € B(X*) is a multiset of traces’. |ol,
represents the number of occurrences of a in o. The Parikh vector of a se-
quence of events o is a function”: ¥* — N" defined as o = (|0|ay,- -, |0la,)-
For simplicity, we will also represent |o|q, as ola;]. The support of a Parikh
vector o, denoted by supp(c) is the set {a;|o]a;] > 0}. Given a multiset m,
tr(m) provides a trace o such that supp(c) = {x|m[x] > 0}.

For a trace o, o[l],0(2],..,0[k] denote its first, second and kth elements
respectively. For two Parikh vectors o7 and o2, 01 < 02 means that each
component of the former is less than or equal to each corresponding com-
ponent of the later.

Definition 12 (System Net, Full Firing Sequences). A system net is a
tuple SN = (N, mgiart, Mend), where N is a WF-net and the two last ele-
ments define the initial and final marking of the net, respectively. The set
{o | (N,mstart) [0)(N,menq)} denotes all the full firing sequences of SN.

Definition 13 (Full Model Step-Sequence). A step-sequence & is a se-
quence of multisets of transitions. Formally, given an alphabet T': ¢ =
ViVa .. . Vo, with V; € B(T). Given a system net N = ((P, T, F), Mstart, Mend)
a full step-sequence in N is a step-sequence V1Va ...V, such that there ex-
ists a full firing sequence o109 . ..0y, in N such that 6; = V; for 1 <i <n.

The main metric considered in this thesis to asses the adequacy of a
model in describing a log or observed behavior is fitness [85], which is based
on the reproducibility of a trace in a model:

Definition 14 (Fitting Trace). A trace o € ¥* fits SN = (N, Mstart, Mend)
if o coincides with a full firing sequence of SN, i.e.,(N, Mstart)[0) (N, Mend) -

Definition 15 (Step-Fitting Trace). A trace o109...0, € T* step-fits SN
if there exists full model step-sequence ViV ...V, of SN such that V; = 7;
for1 <i<n.

As outlined above, the fitness dimension requires an alignment of ob-
served trace and model, i.e., transitions or events of the observed trace need
to be related to elements of the model and vice versa. Such an alignment
reveals how the given trace can be replayed on the process model. The
classical notion of aligning event log and process model was introduced by
[5]. To achieve an alignment between a process model and an event log,
we need to relate mowves in the observed trace to moves in the model. It
may be the case that some of the moves in the observed trace can not be
mimicked by the model and vice versa.

L B(X) denotes the set of all multisets of the set 3.

Preliminaries 35

For instance, consider the model in Fig. 2.7, with the following la-
bels, £(t1) = a1,l(t2) = a2,l(t3) = a3 and £(t4) = a4, and the trace
o = ajajiaqas; four possible alignments are:

oo [Lo, Lo o[L]a]s)
SR T [[L1 TL 6 o [[L]
Lo Lo oo | L], Jor | ||| L]
LTI o (6] TLTa Lo 4]

The moves are represented in tabular form, where moves by trace log are
at the top and moves by model are at the bottom of the table. For example
the first move in ag is (a1, L) and it means that the observed trace (log)
moves a1 while the model does not make any move. Formally an alignment
is defined as follow:

Definition 16 (Alignment). Given a labeled Petri net N and an alphabet
of events ¥, Let Ay and Ap be the alphabet of transitions in the model
and events in the log, respectively, and L denote the empty set, then:

o (X,

o (X,
o (X,
(X,

is a synchronous move if X € A, Y € Ayf and X =4(Y)

Y)

Y) is a move in log if X € Ap andY =1.

Y) is a move in model if X =1 and Y € Ap.
Y)

s an tllegal mowve, otherwise.

The set of all legal moves is denoted as Apyr and given an alignment o €
A7 s the projection of the first element (ignoring L), o 4, , results in the
observed trace o, and projecting the second element (ignoring L), o la,,,
results in the model trace.

For instance consider the previous example, then, a1la,, = tit3t4 and
a1 la, = ajaiasas.

Cost can be associated to alignments, with asynchronous moves having
greater cost than synchronous ones [5]. Given assigned cost values, an
alignment with optimal cost is preferred.

Definition 17 (Cost of Alignment). The cost of an alignment can be mea-
sured based on its moves. We define distance function A : Appr — N, as
follows where:

0 If X = E()
V(X,Y) € Ay)\((X,Y))Z or If Y= And 0<dg < dp,0m

oy If X =1

(2.2)

dg is the match cost which represents the cost of a synchronous move, and
oy and 61, are penalties for move in model and log respectively or in short
asynchronous moves. Therefore the cost of an alignment can be summed
over costs of its moves, i.e., Aa) = X(x y)ea M(X,Y)).

36

Obviously given an observed trace o, an alignment, with maximum num-
ber of synchronous moves with respect to o is preferred. If unitary costs
are assumed, the goodness of an alignment or fitness is the ratio given
by the number of events in ¢ which can be mimicked by the model, i.e.,
synchronous moves, to the total number of moves in «. The fitness value,
is the normalized associate cost, that is a quantity between 0 and 1, thus,
the closer fitness value is to 1, the more similar is the model trace to the
given observed trace. Formally it is defined as follows.

Definition 18 (Cost Based Fitness Metric). For a given alignment «, the
fitness value, m,, is defined as follows:

(B(x,1)ea X 0L + (L y)ea X Onr)
(E(x,v)ea X 05 + B(x, 1)ea X 0L + (L y)ea X M)

(2.3)

T =1—

Def. 18 is the ratio of the total cost of synchronous moves to the whole cost
of the alignment, i.e., synchronous and asynchronous moves. It is apparent
from Eq. (2.3) that on the occasions when there are no synchronous moves,
i.e., ¥(xyjea X s = 0, the corresponding fitness value is 0 or 7, = 0,
and it turns out that the model can not mimic the observed trace i.e.,
maximum deviations. On the other hand if there are no deviations, i.e.,
Y(x,1)ea X 0, =0 and (| y)eqo X dar = 0, then the corresponding fitness
value is 1 or m, = 1, and it yields the model can mimic 100% the observed
trace. As an example given costs dg = 1,07, = 2 and dp; = 2, for ag has

1 _ 2x241%x2 _
three asynchronous moves, 7o, =1 — 5575757753 = 0.25.

2.2.4 Synchronous Product Petri Net

Given a Petri net and an observed trace, a synchronous product Petri net,
is a combination of the original model being aligned and a Petri net rep-
resentation of the (partially ordered) trace in the log. The core alignment
question is formalized as follows: Given a synchronous product with a
penalty function assigning a non-negative penalty to each transition firing,
find a firing sequence from the initial marking to the final marking with
the lowest total penalties.

Consider the example model in top of Fig. 2.8 (a). This model is
a simple parallelism between transitions B and C after A and before D.
Now, consider the trace ¢ = CD translated into a trace net as shown
in bottom of Fig. 2.8 (a). Obviously, this trace does not fit the model,
as transitions A and B are missing from it. Conceptually, the alignment
problem first constructs a so-called synchronous product which is shown in
Fig. 2.8 (b). Here, the two black transitions are synchronous combinations
of equally labeled transitions in the model and the trace, i.e. they have the
same input and output places in both the model and the trace net. The
alignment algorithm then finds the shortest execution sequence from the
initial state to the final state, where the firing of each transition has an
associated cost. Typically, the black transitions, called synchronous moves

Preliminaries 37

have the lowest cost, while the model transitions, called model moves and
the trace net transitions, called log moves, have higher costs. For this
example, the cheapest firing sequence would be ABC D as depicted in Fig.
2.8 (c). For this alignment, the white transitions A and B have been fired as
model moves, and the black transitions C' and D have fired as synchronous
moves. The marking equation used for the example synchronous product
model in Fig. 2.8 (b) is shown accordingly there?’. Here, the columns
corresponding to each transition in the incidence matrix are labeled with
m, s, or [for (m)odel, (s)ynchronous, or (log) move.

According to the notion of synchronous product Petri net, optimal
alignment can be reformulated. In effect, let N = (P,T,F) be a syn-
chronous product Petri net where 7' = T° U T' U T™ can be partitioned
into sets of transitions corresponding to synchronous moves, log moves and
model moves respectively let (N, msart, Meng) a corresponding net sys-
tem with specified initial and final markings. Furthermore let ¢ : T —
R* a cost function. An alignment is a full firing sequence o, € {o |
(N, Mstart)[0) (N, meng)} of this system. Let ¢ : T — R* a cost function,
then an optimal alignment is an alignment o, such that for all o € {0 |
(N, mgiart)[0) (N, Meng) } holds that c(o,) < (o).

2.3 Optimization Techniques

Optimization is the act of obtaining the best solution under given circum-
stances or conditions. In design, planning, construction, and maintenance
of any engineering system, engineers and scientist have to take many tech-
nological and managerial decisions at several stages with respect to corre-
sponding available limitations. The ultimate goal of all such decisions is
either to minimize the effort required or to maximize the desired benefit.
Since the effort required or the benefit desired in any practical situation can
be expressed as a function of certain decision variables, optimization can
be defined as the process of finding the conditions that give the maximum
or minimum value of a function.

Obviously there is no single method available for solving all optimiza-
tion problems efficiently. Hence a number of optimization methods have
been developed for solving different types of optimization problems. The
optimum seeking methods are also known as mathematical programming
techniques and are generally studied as a part of operations research. Op-
erations research is a branch of mathematics concerned with the applica-
tion of scientific methods and techniques to decision making problems and
with establishing the best or optimal solutions. In general a mathematical
optimization problem can be stated as follow:

2 Note that the incidence matrix N here is decomposed to two matrices. One shows token
consumptions and the other token productions.

38

Bn Cwn Dy Cs Dy Cl D;

Ap,

m;

mpy

X+

Po

b1

D2

b3

yZz

Ps

DPe

b7

Dps

Figure 2.8: (a) Process model and Petri net of observed trace, (b) Synchronous product Petri net, (¢) Optimal alignment

Preliminaries 39

x1
Z2
Find X = | . | which optimizes f(X)

Tn

2.4

Subject to the following constraints: (2:4)
1;(X) =0, j=1,...p
X eR"

where X is an n-dimensional vector called the design vector or vector of
variables, X is called objective function which must be minimized or maxi-
mized depending on a given problem. g¢;(X),1;(X) represent the constraints
of the given problem and are known as inequality and equality constraints,
respectively. The number of variables n and the number of constraints
m and p need to be related in any way. A feasible solution is a vec-
tor like X* such that it follows all the constraints, i.e., ¢;(X*) < 0 and
[;(X*) =0,V1i,5. It is called optimal feasible solution if for all feasible so-
lutions like X, f(X*) < f(X) if the objective function must be minimized
and vise versa.

The problem stated in Eq. 2.4 is called a constrained optimization
problem since the objective function will be optimized with respect to
some constraints. If there are no constraints then it will be called a non-
constraint optimization problem. Also optimization problems can be cat-
egorized based on types of variables involved and forms of objective func-
tions and constraints. For example, if the objective function as well as
constraints, i.e., f(X) and g¢;(X), {;(X) are linear in terms of variables
then it is called linear programming. Linear programming is by far the
most widely used method of constrained optimization. The largest opti-
mization problems in the world are LPs having millions of variables and
hundreds of thousands of constraints. With recent advances in both solu-
tion algorithms and computer power, these large problems can be solved in
practical amounts of time. Also, a problem with integer variables is called
integer programming and by considering linearity assumption it is integer
linear programming. All optimization problems in this thesis are of the
later forms.

The modern optimization methods, also sometimes called nontradi-
tional optimization methods, have emerged as powerful and popular meth-
ods for solving complex engineering optimization problems in recent years
due to emerging powerful computing machines and methods. These meth-
ods include genetic algorithms, simulated annealing, particle swarm opti-
mization, ant colony optimization, neural network-based optimization, and
fuzzy optimization. The genetic algorithms are computerized search and
optimization algorithms based on the mechanics of natural genetics and

40

natural selection. The genetic algorithms were originally proposed by John
Holland [35]. The simulated annealing method is based on the mechanics
of the cooling process of molten metals through annealing. The method
was originally developed by Kirkpatrick, Gelatt, and Vecchi [40]. local
search is a heuristic method for solving computationally hard optimization
problems. Also, Local search is an iterative method of optimization. It can
be used on problems that can be formulated as finding a solution maxi-
mizing a criterion among a number of candidate solutions. Local search
algorithms move from solution to solution in the space of candidate solu-
tions (the search space) by applying local changes, until a solution deemed
optimal is found or a time bound is elapsed.

x2
J . .
D \-\\ "< /
6 $—~—— —— :
Q‘F}}" \\'\
S5e 4 = 3
N1 /o4 55 .40
\\ ~
49 * ¢ ® ® \l \‘T\ =341
TN =3
(5, 4) S <
3 s L 2 T » \‘-_ _\
‘\\ \\
o S f=31
2 ¢ * 3 ‘V\Q/
—d } .L/
-~
Il-Iz——-lz
A B/ [
0 - 4 = X\
0 1 2 3 & 5 6

Figure 2.9: Graphical solution of Eq. 2.5 [2]

2.3.1 Integer Linear Programming

In all optimization techniques, variables can be of any types, i.e., contin-
ues or integer. When all the variables are constrained to take only integer
values in an optimization problem, it is called an all-integer programming
problem [2]. As mentioned above if the objective function and constraints
are linear in terms of involved variable it is called Integer Linear Program-
ming (ILP). An example which has variables x; and z3 is as follow:

Preliminaries 41

r1

Find X = <
T3

> which maximize f(X) = 3z + 42

Subject to the following constraints:
3rx1 — a0 <12
3z1 + 11ze < 66

x1,x9 > 0,21 and xo are integers

(2.5)

The graphical solution is demonstrated in Fig. 2.9, where the constraints
are shown by solid lines and values of the objective function by dashed
lines. One sees that point C' is not a feasible solution since it violates
the constraint of having integer solutions. Indeed it would be the optimal
feasible solution if the variables were continues. The optimal feasible solu-
tion where the variables are integer as demonstrated is (z1 = 5,22 = 4). It
must be mentioned despite of the fact that linear programing problems have
polynomial complexity or P, ILPs are NP-complete [71], which means that
the problem can be solved in polynomial time using a Non-deterministic
Turing machine.

2.3.2 Heuristic Search

Solving a problem, usually means looking for one or some solutions, which
will be the best among others. The whole space of all candidate solutions
(it means objects among those the desired solution is) is called search space
(or state space). Each point in the search space represent one feasible or
candidate solution. Each feasible solution can be scored by its value or
fitness for the given problem. Definitely the desired solution is a point in
the given search space. The search for a solution is then equal to looking for
some extreme (minimum or maximum) in the corresponding search space.
The search space can be identified totally by the time of solving a problem,
but in most cases only a few points are known to us and other points,i.e.,
candidate solutions, will be generated as the process of finding solution
continues.

The grand challenge which will be faced is that the search can be very
complicated in most real world problems. One does not know where to
look for the solution and where to start. Usually one must consider all the
points in the search space to find the best solution. This way of search
space exploration is called exhaustive search, i.e., it checks each and every
solution in the search space until the best global solution is found, meaning
that there is no way to be sure that you have found the best solution using
exhaustive search unless you examine every point in the search space.

There are many methods on how to find some suitable solutions (ie.
not necessarily the best solution). Hill climbing, tabu search, simulated
annealing and genetic algorithm are those methods which patrol the search
space with different methodologies to find suitable solutions. The solution

42

found by these methods is often considered a good but not the best solution,
because it is not often possible to prove what is the real optimum.

To help for finding desired solutions in the given search space usu-
ally some general techniques and domain knowledge can be injected to
the algorithm under consideration. Usually Heuristics are methods that
use intuition or common sense approaches to solve a problem. They help
algorithms in searching solutions to not consider all points in the search
space and only focus on areas where the chance of having good solutions
are higher than other areas. Obviously bad heuristics results in an almost
exhaustive algorithms. Heuristic algorithms usually are not expected to
find the best answer to a problem, but are only expected to find solutions
that are ”close enough” to the best.

2.3.3 Local search

Local search is a kind of heuristics for solving computationally hard opti-
mization problems. In other words, instead of exhaustively searching the
entire space of possible solutions or points, the attention can be focused
within a local neighborhood of some particular solution. This procedure is
explained in the following steps:

1. Generate a solution from the search space. It can be a random guess
or can be obtained by some other methods. Evaluate the merit of
the chosen solution and define this as the current solution.

2. Apply modifications to the current solution to generate a new solution
and evaluate its merit.

3. If the new solution is better than the current solution then exchange
it with the current solution; otherwise discard the new solution and
do another modification different from the previous one.

4. Repeat steps 2 and 3 until no transformation in the given set improves
the current solution.

The key to understanding how the local search algorithm works lies in
the kind of modifications applied to the current solution. There are two
extremes:

e At one extreme, the modifications could be defined to return a po-
tential solution from the search space selected uniformly at random.
In this case, the current solution has no effect on the probabilities of
selecting any new solution, and in fact the search becomes essentially
enumerative. In the worst case, it’s possible that one might resample
points that were already tried which is completely inefficient.

e At the other extreme, the modifications always return the current
solution and this gets you nowhere. In other words no improvement
can be achieved.

Preliminaries 43

Indeed one can take advantage of local searches where modifications lie
between two extremes. In that way, the current and starting solution
definitely imposes a bias on where the next search can be done, and when
something better can be found and current solution can be updated. If
the size of the neighborhood is small then neighborhood can be searched
quickly but it comes at the cost of getting trap at a local optimum. In
contrast, if the size of the neighborhood is very large then there is less
chance of getting stuck, but the efficiency of the search may suffer.
Algorithm 1 Local Search

1: t+0

2: Initialize best

3: repeat

4: local =0

5: Select a current point V¢ at random

6: Evaluate V.

7 repeat

8: N(V) =Select all new points in the neighborhood of V.
9: Select point Vi, € N(V,), with the best evaluation score, using
10: eval(Vy)

11: if eval(Vy) is better than eval(V.) then

12: Ve.+ Vi

13: else

14: local + 1

15: end if

16: until Local

17: t=t+1

18: if V. is better than best then
19: best <+ V¢

20: end if

21: until t = MAX

2.3.4 Hill-climbing

These methods, are all local search methods, which use an iterative im-
provement technique. The technique is applied to a single point, i.e., cur-
rent solution, in the search space. During each iteration, a new point is
selected from the neighborhood of the current point. If that new point
provides a better value in light of the evaluation function, the new point
becomes the current point. Otherwise, some other neighbor is selected and
compared against the current point. The method terminates if no further
improvement is possible, or it runs out of time or meets some stopping
criteria. It is clear that hill-climbing approaches find global optimum and
there is no guarantee on finding globally best solutions. Moreover, it is not
easy and most of the times impossible to evaluate error of the obtained so-
lution or bounding the relative error with respect to the best solution, i.e.,
global optimum, since it is unknown. Given the problem of converging on

44

only locally optimal solutions, we often have to start hill-climbing methods
from a large variety of different starting points. The hope is that at least
some of these initial locations will provide a path that leads to the global
optimum. Initial solutions or points must be chosen at random, or on some
grid or regular pattern, or even in based on other information that’s avail-
able, perhaps as a result of some prior search or some super light methods
which approximate better solutions rather than random guesses.

Alg. 1 represents the general schema of hill-climbing as a local search.
For a initial point V¢ all possible neighbors of it are considered. Among
them, the one with best fitness value, i.e., V, is selected to compete with
V. in terms of evaluation score (line 11). If the former was better than
the later in terms of fitness value then the algorithm jumps to V, and
consider it as the current solution. Otherwise, no local improvement is
possible and the algorithm has reached a local or global optimum (line 14).
In such a case, the next iteration (line 17) of the algorithm is executed
with a new current solution is selected at random. In other words, the
algorithms jumps to another area of search space with the hope of finding
better solution than ones found so far.

2.3.5 Best-First Search (A*)

Greedy algorithms like local searches do not always perform very well. The
problem is that the obtained solution at one time might not be the best
one at a later time, which is kind of trap. But if there was an evaluation
function that was sufficiently informative to avoid these traps, these greedy
methods could be used in a better way and taking advantage as much as
we can. This simple idea leads to a concept called best-first search, and
its extension, the A* algorithm. A* is a kind of algorithm for exploring a
given search space. It is an extension of Dijkstra’s algorithm for finding the
shortest path and proposed in [34]. If the search space can be organized
as a tree, then the challenge is how it must be parsed. The intuitive ways
are parsing the tree using depth-first or breadth-first alongside with back-
tracking strategies to parse the provided tree. The best strategy regardless
of those just mentioned is to order the available nodes according to some
heuristic that corresponds with our expectations of what we will find when
we get to the deepest level of our search. The aim is to search first those
nodes that offer the best chance of finding something good. The schema
of best-first search strategy is shown in Alg. 2, [51]:

Algorithm 2 Best-First

1 Input: v > A node in the graph
2: for each available w do > w is an available node from v
3: Assign a heuristic value to w > Evaluating the available nodes
4: end for

5: g < Best available w D> Selecting the best available node

6: Best-First(q)

Alg.2 has two lists of nodes, open and closed. The former indicates all of

Preliminaries 45

the available nodes, whereas the latter shows those nodes that met already.
When the best-first procedure starts from a particular node, which is placed
on the closed list, all its children are moved to the open list (i.e., they
become available). They are evaluated by some heuristic and the best is
selected for further processing. It is worth mentioning that if the search
space is a general directed graph, one of the children of a node might
already be present in the open or closed lists. If that happens, the node
that met already must be re-evaluated again and move it from the closed
list to the open list.
The main differences between uninformed searches, i.e., depth-first search

and breadth-first, and best-first search are

e Best-first search explores the most promising next node, i.e., the
algorithm hopes that from that node there is a path to the global
optimum. Depth- first search goes as deep as possible in an arbitrary
pattern and breadth- first search explores all the nodes on one level
before moving to the next.

e Best-first search uses a heuristic that provides a merit value for each
node, whereas depth-first search and breadth-first search do not.
Stated differently, best-first search look at the future whereas depth
and breadth searches do not. Best-first search uses a heuristic that
provides a merit value for each node, whereas depth-first search and
breadth-first search do not.

Obviously, The efficiency of a best-first algorithm is heavily based on the
adopted heuristic. More precisely a best-first algorithm, evaluates a node
like v as follow:

eval(v) = ¢(v) + h(v) (2.6)

Where the first term in Eq. 2.6 denotes the cost needs to reach v from
an initial point in the corresponding search space and the second term
shows the estimated cost to reach the desired solution from v. The main
challenge here is how to estimate the true cost for the future path inherits
from v. This is the place that heuristic functions play an pivotal role.
Indeed the quality of heuristics in best-first search can be judged in terms
of admissibility. A heuristic is admissible if it underestimate the true cost.
More formally let h*() be the function such that if it used in Eq. 2.6,
then we get global optimum. It is clear that there is no oracle to give us
h*(), therefore a heuristic function like () is admissible if for all nodes
underestimate the true cost, i.e., Vv, h(v) < h*(v). The aforementioned
condition, guarantees that an admissible heuristic will always find global
optimum.

2.3.6 Genetic Algorithm

Genetic algorithms (GAs) are the earliest, most well-known, and most
widely- used evolutionary algorithms. GAs are simulations of natural se-

46

lection that can solve optimization. GAs are usually used for function
optimization problems but, they comprise a much more broad class of sys-
tems than function optimizers. One can use GAs to study the dynamics
of adaptive systems, to provide advice to fashion designers and for many
other non-optimization applications [52]. Sometimes making a clear line
between an optimization algorithm and a non-optimization algorithm is
impossible because all algorithms attempt to function as well as possible.
Genetic Algorithms are kind of randomized in nature, but they perform
much better than random local or blind search but it comes at the price of
injecting the application information accurately.

Before moving forward, some basic terminologies which will be used
shortly, are explained in formally here:

e Chromosomes: A chromosome is one candidate solution to the
given problem.

e Gene: A gene is one element position of a chromosome.
e Allele: The value a gene takes for a particular chromosome.

e Population: It is a subset of all the possible (encoded) solutions
or chromosomes to the given problem. Obviously the greater the
population is, the higher chance of obtaining the desired solution.

GAs use a direct analogy of natural behavior in the real world. They
work with a population of individuals or chromosomes where each represent
a candidate solution to the given problem. Each candidate solution receives
a fitness score which denotes how good is that with respect to the problem.
Different fitness values can be defined according to the given problem.
The highly fit individuals have more chances to mate with others which
result in offspring that share some features in terms of genes from each
parents. Finally, low fit individuals have less chances of surviving in the
next generations. A new population of possible solutions is then produced
by selecting best individuals from the current generation and mating them
to produce new set of individuals. The new population of individuals in
average have better fitness value than previous one. In this way over many
generations good characteristics spread over the population. By mating
individuals with high fitness scores the most promising area of search space
will be explored. If the genetic operators designed well, then GA will
converge to optimal solution or very close to it. This procedure in flowchart
is depicted in Fig. 2.10. The details are as follows:

e Set GA parameters: In this step, different parameters which are
heavily based on the given problem, like encoding of the given prob-
lem, fitness function, and required operators are defined. There are
different types of encoding which are explained shortly as follows:

Preliminaries

Best chromosomes

End

Figure 2.10: GAs flowchart

yes

Start

i

Set GA parameters

|

Generate ini-
tial population

|

Evaluate fitness of

47

each chromosomes

Are optimization
criteria met?

Select elevated
chromosomes

|

New population

Apply crossover
operators

|

Apply muta-
tion operators

48

1. Binary encoding: In binary encoding every chromosomes are
represented by strings of 0 and 1. Binary encoding is the most
used encoding schema. Knapsack problem is the representative
one that can be solved easily with tis schema. Indeed each bit
says, if the corresponding item is in knapsack.

2. Permutation encoding: In this encoding each chromosome
is represented by a string of numbers which denotes different
permutation of a set. This kind of encoding is useful for order-
ing problems. Traveling Sales Man (TSP) problem is a typical
example for solving with this encoding, where each chromosome
shows the order of cities which will be visited [64]. This encod-
ing schema are used in one of the contributions in this thesis,
Chapter 6.

3. Value encoding: This kind of encoding can be used in prob-
lems, where some complicated value, such as real numbers, are
used. Use of binary encoding for this type of problems would be
very difficult. That is to say, this encoding is well suited where
the objective function is continues. The most representative
problem for this encoding is weights optimization in learning
Neural networks. Real values in chromosomes represent corre-
sponding weights [53].

4. Tree encoding: Tree encoding is used mainly for problems
like evolving programs or expressions which is called genetic
programming. A representative example is finding a function
given inputs and outputs.Stated differently some input and out-
put values are given. Task is to find a function, which will give
the best (closest to wanted) output to all inputs. Each chro-
mosome represent that function by a tree. Also, this kind of
encoding can be used in making tree-based classifiers. Indeed
they are important in pattern recognition and have been well
studied. Although the problem of finding an optimal decision
tree has received attention, it is a hard optimization problem
[37].

This part is the most important one in every GA, since it can com-
pletely affect the results.

Generate initial population: This step, generates chromosomes
or individuals according to the parameters defined in the previous
step.

Evaluation fitness of each chromosome: This step evaluates the
merit of each candidate based on the defined fitness function in the
fist step. It must be emphasized that this function which can be
composed of some other functions that must be super light in terms

Preliminaries 49

of computation since they are applied to each chromosome in every
generation.

e Are optimization criteria met?: This step is the one which states
whether chromosomes of the final population are enough good. There
are many criteria which can be considered to terminate for the fu-
ture generations, like convergence of the difference between average
fitness values of two consecutive populations or lacking the diversity
among chromosomes, i.e., all or most of chromosomes in the current
population are identical. If termination is decided then high elevated
chromosomes are selected as the best solutions.

e Select elevated chromosomes: If termination is not decided then
chromosomes with good fitness values will be selected, it is clear
that chromosomes with higher fitness values have more chances of
getting survived for the next generation of population. There are
some selection methods regarding this issue with different policies,
like Tournament Selection, Rank Selection, Roulette Wheel Selection
and Boltzmann Selection. A good survey which compares different
selection methods is presented in [13].

e Apply crossover operators: After selecting elevated chromosomes,
its time to apply different operators over them. This will allow us
to explore various parts of search space and navigate the algorithm
to areas where better solutions are resided. Crossover operators are
usually apply to a pair of chromosomes. In fact a chromosome with
high fitness score has more chances to mate with other chromosomes.
The resulted offspring might be better than their parents in terms of
fitness value or vice versa. The objective of these operators is to select
good parts of each parent to make better offspring. The success of
these operators result in goof convergence of solutions but if they are
not design well according to the given problem, GAs become super
slow and inefficient.

e Apply mutation operators: This operator receives one operand,
i.e., a chromosome, and does some modifications over operand’s genes.
The modification is based on the encoding problem, for example in
binary encoding it can be changing 0 to 1 or vice versa. The objective
of this operator is jumping to a new area of search space randomly.
Thus the probability of applying this operator should be kept very
short since otherwise it makes the whole algorithms as a random
search algorithm since jumping randomly in the search space never
allows convergence. Indeed this operator is a way to get rid of local
optima in the corresponding search space.

Whenever the above steps are done, there is a new population of chro-
mosomes which in average have better fitness scores with respect to past

50

generations. The iteration continues until a satisfaction criteria is met or
convergence happens.

GAs are usually simple and robust [10]. Some advantages of GA are as
follows:

e It can be faster and more efficient as compared to the traditional
methods.

e Has very good parallel capabilities.

e It can be use in both discrete and continuous domains as well opti-
mizing multi-objective functions very well.

e Providing a list of good solutions and not just a single solution.

e Always gets an answer (not the best one always) to the problem,
which gets better over the time.

e Useful when the search space is very large and there are a large
number of parameters involved.

Despite of having diverse and enormous applications and advantages just
mentioned, GAs also have some limitations as follows:

e Lack of guarantee for finding global optimal solutions.
e GAs might be computationally expensive to implement.

e GAs are not suited for all problems, especially problems which are
simple and for which derivative information is available.

=) sy (=72 =y7)

Figure 2.11: Surface of (a) a multi-modal and not convex function, (b)
Convex function

Usually real-world function optimization problems often pose nonlinear
constraints, objective functions which are not convex and incorporate noisy
observations or random processing, or include other conditions that do not

Preliminaries o1

conform well to the prerequisites of classic optimization techniques. thus,
in addition to advantages and disadvantages that just described, GAs can
be compared with traditional optimization techniques, for example ILP
and LP, in terms of surface optimization, see Fig. 2.11(a), (b). More pre-
cisely, the response surfaces, i.e., the objective function, posed in many
real-world problems are often multi-modal, i.e., having many local optima,
and gradient-based methods rapidly converge to local optima which may
yield insufficient performance. For simpler problems, where the response
surface is strongly convex®, GAs do not perform as well as traditional
optimization methods in terms of efficiency [8], in fact the later take ad-
vantages of analytical solutions and it is not a surprising fact because as
these techniques were designed to take advantage of the convex property
of such surfaces. Some works did empirical comparisons among applying
classical methods, i.e., linear programming, and GAs to multi-modal func-
tions, where the former posed significant advantage [70] in terms of the
found solutions.

In this thesis, the main interest in GAs is their specific application as
optimization algorithms.

3 A function surface is convex if a local optima exists then it is the global optima.

Part 11

Classical Optimization
Approaches

93

55

This part of the thesis is centered around alignment computation meth-
ods which are based on Integer Linear Programming (ILP) as an optimiza-
tion tool. This part starts with a method which fully takes advantage of
structural theory of Petri nets and the marking equation i.e., Eq. 2.1 in
Chapter 2, to obtain an approximate alignment. Following that another
method will be presented, which combines ILP with A* method to avoid
some deficiencies of the former approach. Indeed, the later approach pro-
vides a trade-off between complexity and quality of obtained solutions.

Contribution: The proposed approaches of this part, i.e., Chapters 3, 4
were published in International Conference on Business Process Manage-
ment (BPM 2016) [74] and International Conference on Advanced Infor-
mation Systems Engineering (CAISE 2017) [90] respectively as mentioned
in Table 1.1 in Chapter 1.1, Sect. 1.3. Also those approaches have been
implemented in Python (ALI [73]) and Java (ProM [92]).

Chapter 3

Monolithic Integer Linear
Programming

3.1 Introduction

This chapter presents a technique to compute a particular type of align-
ments, called approzimate alignments. In an approximate alignment, the
granularity of the moves is user-defined (from singletons like in the original
definition of alignments, to non-unitary sets of activities), thus allowing
for an abstract view, in terms of step-sequences, of the model capability
of reproducing observed behavior. The implications of generalizing the
concept of alignment to non-singleton steps are manifold: conformance
checking techniques can be discretized to a desired (time) granularity, e.g.,
when the ordering of activities in a period is not important for the di-
agnosis. Also, other techniques like model repair [28] may be guided to
only repair coarse-grain deviating model parts. Finally, in domains where
a fine-grained ordering of activities is not needed approximate alignments
can play an important role (e.g., health care [45]).

It is assumed that the input models to be specified as Petri nets. This
is without loss of generality, since there exist transformations from other
notations to Petri nets. Given a Petri net and a trace representing the
observed behavior, we use the structural theory of Petri nets, Sect. 2.1.1,
and materials presented in Chapter 2 to find an approximate alignment.
This means that at the end we solve Integer Linear Programming (ILP)
models whose resolution provide a model firing sequence that mimics the
observed behavior. Importantly, these ILP models are extended with a
cost function that guarantees (under certain structural conditions on the
process model) a global optimality criteria: the obtained firing sequence is
mostly similar to the observed trace in terms of the number of firings of each
transition. This optimality capability represents one clear difference with
respect to current distributed approaches for conformance checking which
focus on the decisional problem of checking fitness, but not to compute
optimal alignments [86, 56].

o7

58

The organization of this chapter is as follow. The formalization of ap-
proximate alignments will be presented in Sect. 3.2. Sect. 3.3 describes
the overall framework of ILP encoding for computing approximate align-
ments which consists of two steps. Sects. 3.4, 3.5 detail the mentioned
two steps. Finally, Sect. 3.6 provides advantages and disadvantages of the
presented approach.

3.2 Approximate Alignment of Observed Behav-
ior

As outlined in Sect. 2.2.3, the fitness dimension requires an alignment of
trace and model, i.e., transitions or events of the trace need to be related to
elements of the model and vice versa. Such an alignment reveals how the
given trace can be replayed on the process model. The classical notation of
aligning event log and process model was presented in Definition 16. As a
reminder an alignment between process model and event log relates moves
in the trace to moves in the model. It may be the case that some of the
moves in the trace can not be mimicked by the model and vice versa, i.e.,
it is impossible to have synchronous moves by both of them.

In this chapter a different notion of alignment is introduced. In this
notion, denoted as approrimate alignment, moves are done on multisets of
activities (instead of singletons, as it is done for the traditional definition
of alignment). Intuitively, this allows for observing step-moves at different
granularities, from the finest granularity (n = 1, i.e., singletons) to the
coarse granularity (n = |o|, i.e., the Parikh vector of the model’s trace).

a4 P4

a2
ay P3
JoEnSeodeRn=e

Figure 3.1: Process model
To illustrate the notion of approximate alignment, consider the process
model in Fig. 3.1 and trace ¢ = ajajaqas. Some possible approximate
alignments with different level of granularities are:

N :‘ {a1,a1,a4,a2} ‘a :‘ a1 | a1 | {ay, a9} |
YT ety | 0 | L] {ta o) |
gl a1l [asfas | L]
T 0 [L[t]

For instance, approximate alignment ap computes a step-sequence t1{t4, t2},
meaning that to reproduce o, the model first fires ¢; and then the step
{t4,t2} is computed, i.e., the order of the firings of the transitions of this
step is not specified.

Monolithic Integer Linear Programming 59

Definition 19 (Approximate Alignment). Given a labeled Petri net N, let
Ay and Ay, be the set of transitions in the model and events in the log,
respectively, and 1 denote the empty multiset.

o (X,Y) is a synchronous move if X € B(AL), Y € B(Ay) and
0Yy)=X

e (X,Y) is a move in log if X € B(AL) andY =1.

o (X,Y) is a move in model if X =1 andY € B(Ap).

e (X,Y) is a approximate move if X € B(Ar),Y € B(An), X #1,
Y#L, XZ#UY), and X NU(Y) #L

e (X.,Y) is an illegal move, otherwise.

The set of all legal moves is denoted as Apy. Given a trace o, an ap-
proximate alignment is a sequence o € A} ,,. The projection of the first
element (ignoring | and reordering the transitions in each move as the
ordering in o) results in the observed trace o, and projecting the second
element (ignoring 1) results in a step-sequence.

Moves in an approximate alignment can be assigned with different costs
similar to Definition 17. For a given trace different alignments it can be
defined with respect to the level of agreement with the trace.

Definition 20 (Cost of Approximate Alignment). The cost of an approz-
imate alignment can be defined based on its moves, i.e., step-sequences.
This distance function is V : B(Ap) x B(Ay) — N where:

V(X,Y), W(X,Y) = |XALY) (3.1)
although other possibilities could be considered as a distance function.’

For example (as) = W({ar}, {£(t)D+¥({ar}, 1)+¥({az, ar}, {£(t2), 0(t0)})
=041+ 0 = 1. For the other approximate alignments ¥(«;) = 0 and
U(az) = 3. Notice that the optimality (according to the distance function)
of an approximate alignment depends on the granularity allowed.

3.3 Structural Computation of Approximate Align-
ments

Given an observed trace o, in the presented approach computes approx-
imate alignments using the structural theory introduced in Subsection
2.1.1.2. The technique will perform the computation of approximate align-
ments in two pipelined phases, each phase considering the resolution of an

LXAY = (X \Y)U (Y \ X).

60

@— ILP Similarity I @ ILP Ordering }—@
| |

Figure 3.2: Schematic of ILP approach for computing approximate align-
ments.

(ILP) model containing the marking equation of the net corresponding to
the model. The overall approach is described in Figure 3.2. In the first ILP
model (ILP Similarity) a solution (the Parikh vector of a full firing sequence
of the model) is computed that maximizes the similarity to . Elements in
o that cannot be replayed by the model in the computed Parikh vector are
removed for the next ILP, resulting in the projected sequence o’. These
elements are identified as mowves in log cf. Definition 16 in Sect. 2.2.3, and
will be inserted in the approximate alignment computed «. In the second
ILP model (ILP Ordering), it is guaranteed that a feasible solution con-
taining at least the elements in o’ exists. The goal of this second ILP model
is to compute the approximate alignment given a user-defined granularity:
it can be computed from the finest level (n = 1), i.e., only singletons, to
the most coarse level (n = |o]), i.e., Parikh vector.

3.4 ILP for Similarity (Seeking an optimal Parikh
vector)

Let’s assume that there is a labeled Petri net N and an observed trace o.
This stage will be centered on the marking equation of the input Petri net.
Let J = £(X)Nsupp(a), i.e., the labels that appeared in the observed trace,
the following ILP model computes a solution that is as similar as possible
with respect to the firing of the activities appearing in the observed trace:

Maximize (» X[] =0 x Y X[]+0x > X[t]),

o(t)ed ot)¢J ot)=r

Subject to:

Mend = Mstart + N.X

(3.2)

Vte X,Vaco If (t)eJ and (({t)=a: Gla)= > (X[]+X°[t])
((t)=a

X, X*>0

¢ in the objective function is a user defined value with § > 1, which penal-
izes transitions of the model which do not have any labels in J. The larger

Monolithic Integer Linear Programming 61

is the value of 4, the greater penalty the elements not in J do receive. Also
note that silent or invisible transitions of the model, i.e., £(t) = T, receive
0 cost. Hence, the model searches for a vector X that both is a solution to
the marking equation and maximizes the similarity with respect to . No-
tice that the ILP problem has an additional set of variables X* € NI/|, and
represents the slack variables needed when a solution for a given activity
cannot equal the observed number of firings. By maximizing elements of
X in J and minimizing those not in J, solutions to (3.2) clearly try to both
assign zeros as much as possible to the X? variables on the one side, and on
the other side, try to do not fire the X variables not in J (i.e., activities not
appearing in o). Also if for an arbitrary event in the observed trace there
are some transitions of the model with the same label then the number of

firings for that event is equal to sum over all those transitions with that
label.

An optimal solution X to (3.2), denoted by op, represents the required
transitions of the model and their number of occurrences which must be
fired from the initial marking, mgtert, to reach the final marking, mepg.
Elements of p have the maximum similarity with respect to 6. Obviously
when o is not a fitting trace, then op # & due to skipped transitions, i.e.,
those which are supposed to happen but did not happen, and/or inserted
transition, i.e., those which were observed when they had not been enabled.

asg

tio

as pr Qa2

tz —>O—> tg
Do ar - bs T \ & P Ps
prot t ts t
a1 OB OO
()_> ta > t7
P2 as P3 ar

Figure 3.3: Process model

For example, consider the model depicted in Fig. 3.3 and the observed
trace o = ajasaqasarasasag, where o is depicted in Fig. 3.4 (b) and J =
{a1,a9,as3,a4,as,a6,a7}. Transitions with the same label are highlighted.
With the assumption of unitary costs, i.e., § = 1, by solving Eq. (3.2) for
these model and trace which (described in detail in Fig. 3.5), the computed
Parikh vector, X, which is called p, and it is depicted in Fig. 3.4 (a).

Notice that a4 happened twice in o but based on the model only one

62

of them is executed since otherwise we would miss a token in place p;.
Transitions t5 and ¢3 with the label a4 are eligible to be fired accordingly,
hence in Fig. 3.5, the following constraint is proposed, i.e., X [to] + X *[to] +
X|[ts] + X?[ts] = 2. Also, the occurrence of ag constitutes the constraint
X|[ts] + X?[ts] = 1. Finally, based on the just mentioned constraint, Eq.
(3.2) assigns X|[ts] = 1 and X[t2] = 1 to maximize the objective function
and therefore increases the similarity between elements of X and &, hence in
Fig. 3.4 (a) it assigns X [t3] = 0 and X®[ta] = 1 or X®[t3] = 1 and X*[ta] =0
to make the corresponding constraint valid”. Note that a7 occurred once in
the observed trace, i.e., d[ay] = 1 and therefore it suggests the constraint
X|[t7] + X?[t7] = 1, but ¢7 will not be fired because otherwise the solution
is infeasible’, hence X[t;] = 0 and X*[t;] = 1. Also, notice that no event
corresponding to transition ¢19 of the model occurred in o, hence in the
objective function this transition was penalized. Finally, tg with £(t9) = 7 is
a silent transition hence in the objective function it receives 0 cost. Finally,
see Fig. 3.4 (b) which represents ¢(X), i.e., the computed Parikh vector
with element labels, and ¢ to compare the similarity between elements of
the two vectors.

tl 1 [45] 1
tg 1 tl 0 a4 1
t3 | O o 1 as| 0 “ 1
_t5 |1 s ta] O) _as| 1 . g
X= |1 X=14lo é(X)_a,ﬁ 1 7= 24 rf
tz | O ts| O a-| 0 s .
ts | 1 t-| 1 ay| 1 s .
ty | 0O ts \ 0 r{o &7
tio \O ag \ 0
(a) (b)

Figure 3.4: (a) ILP resolution for the model in Fig. 3.3, (b) X with labels
and &

After having a solution of Eq. 3.2 for a given example, the observed
trace o must be updated according to the following definitions:

Definition 21 (Updating Observed Trace o). Given an observed trace o,
X and X? from Eq. 3.2. An event a; will be remowved from o if, a; € 6,Vt; €
X, l(t;) = a; and Y, X[t;] < 6[a;]. In case of transitions with duplicate
names the total number of deletion is such that the following equation,
namely ., X[t:] = 6la;] holds. However in this case all the possibilities
must be considered.

2 Notice that the choice of assignment for X® variables does not matter for the present ap-
proach.

31f t7 is fired, then reaching the final marking based on the remaining constraints is infeasible
because in that case t; and t4 must be fired twice, but this contradicts the constraints
X[t5} +Xs[t5} =1 and X[t4] +Xs[t4] =1.

63

Monolithic Integer Linear Programming

Constraints

Constraints

T =[x + [FX +[o)x + 7

cﬁw
67
7
4
9
“
"
£
4
1

¢'¢ "3 Ul [opow 10} Uone[nuLIoj 41 :G'¢ 2Imsig

O N Pu2qp “O N DSy
0<:X0<X
T=[l.x+[®x

—
I

—
|D
o o o

i en i an Bl an Bl an 3% [l an B an J an]

o
—
+
=3
+=
©
+
=
+

SO = O

—
|\—<DD

S oo oo

Jo

—\ O O O OO

O N pUdqyy hO N DTSy
0<:X'0<X
Ten]o = [B x + [3]x
[to]o = [M],x + M]X
[o0]o =[x + [x
T]o = [9.x + [9]x
o] = Ml x + My
oo = [Edox + Bl x +[@].x + [@]x
[lo =[x + [Ux
10Sq PUd
0 0\%Y 0 0
T 0 |«
0 0 |%9 m w
0 0 (%Y 0 0
0 0 T + 0 — 0
0 0 wm 0 0
0 T HQ 0 0
= 1 cD~ 0 0
0 1—-/'d 1 0
€7)

10} 100lqng

(Pax xo+["Mx x1-[Flx + [Mx +[Px+ [%x +

("X + [F] X + ()X + [4]x) ezrwurxepy

64

In Def. 21 in the simplest case, when X[t;] = 0 and &[a;] > 0, every occur-
rence of a; in o will not appear in ¢’*. For instance in the above example,
ST(X[ta] + X[t3]) = 1, £(t2), £(t3) = a4, and Glays] = 2, see Fig. 3.4. Thus
one of a4 in the observed trace must be removed. Therefore two updates
of the given trace are O'/ = aijasasar7a4a3ae and 0'/ = aijazaqasa7asag.

3.5 ILP for Ordering: Computing an Aligned Step-
Sequence

The schematic view of the ILP model for the ordering step is shown in
Fig. 3.6. Given a granularity n, A = (%1 steps are required for a step-
sequence in the model that is aligned with o’. Accordingly, the ILP model
has variables X7 ... X with X, € N1 to encode the A steps of the marking
equation, and variables X§ ... X§, with X7 € NI/l and J = ¢(X)Nsupp(o’),
to encode situations where the model cannot reproduce observed behavior
in some of these steps. We now describe the ILP model in detail.

e Objective Function: The goal is to compute a step-sequence which
resembles as much as possible to o’. Therefore events in supp(o’) have
cost 0 in each step X; whilst the rest have cost 1. Also, the slack
variables X have cost 1.

e Marking Equation Constraints The computation of a model’s

X X X .
step-sequence Maart — M1 =5 Mg ... Mr_1 — Menq is enforced by
using a chain of A connected marking equations.

e Parikh Equality Constraints To enforce the similarity of the Parikh
vectors X ... X with respect to ¢/, this constraints require the sum
of the assignments to variables X; and X for every variable t € J
should be greater or equal to its corresponding event in o’ [a], where
£(t) = a. Given the cost function, solutions that minimize the assign-
ment for the X} variables are preferred.

e Step Granularity Constraints Require that the sum of model’s
steps X; and the slack variables X7 is lower bounded by the given
granularity 1. Since the cost of variables X; is lesser than the cost of
X7 variables, the solutions will tend to assign as much as possible to
X;. Last step X is not constrained in order to ensure the feasibility
of reaching the final marking meyq.

e Mimic Constraints The input sequence ¢’ is split into A consec-
utive chunks, ie., 0/ = ojoh...0}, with |o]| = n, for 1 < i < A
This set of constraints require at each step that the multiset of ob-

served transitions (X;) must only happen if it has happened in the

41n our experiments, only the simplest cases were encountered.

65

Monolithic Integer Linear Programming

dogs Teur

v=(2)7
p%e S [y X

0= (7 I 23X DA

DTN

¢ "31q Jo dois puooss o) I0J [OPOUW RWOYIS JT[:9°¢ 9InJIg

doys (1 —)

1 = [pua]¥w
:Aurenuers dogg

0 <X '0< Yw
/\N.Z 4+ I=Xw = Yw
;uoryenby uryrepy

v=(1)7
P o S Ty K

R

to=(1) 3 23 VAX 3IA

DIWIA

=Xx>2
L (W Sx+Evx) X
:Atrenuers degg

0< 7YX '0< T
HI,QW.Z + e Xw = T-Xw
:uoryenbry urrepy

dogs ys11q

v=(7)7
Plle > 'y X
t0=(1)7 I ©3VAX A
DTy

. p=(3)7 1=1

Plo < (Blex + [x) X M

v = (3)y puo r
> M7 I 23 PANX'X DA
:Ayrenby LR

1=t

(sx *x)0 X
X
AZIWIIUTY :uoroung aAmalqQ

_ PEl
b (Mix +) X
:furenuern) doyg

0<'X'0< 'w
ﬁkz + 0w = Tw
:uoryenby Sunjrepy

66

corresponding chunk o}. It is worth to note that events with multiple
occurrences are distinguished based on their positions.

Once the two steps of Fig. 3.2 are performed, the gathered information
is sufficient to obtain an approximate alignment: on the one hand, the
removed activities from the ILP model (3.2) are inserted as “moves in the
log”. On the other hand, the solution obtained from the ILP model of
Fig. 3.6 provides the steps that can be appended to construct the final
approximate alignment.

3.5.1 A note on completeness and optimality

The global optimality guarantee provided in the approach of this section
is with respect to the similarity between the Parikh vectors of the com-
puted and the observed trace. Informally, the technique searches for traces
as similar as possible (c.f., ILP models (3.2)) and then computes the or-
dering (with respect to a given granularity). However, as the reader may
have realized, by relying on the marking equation the approach presented
in this section may be sensible to the existence of spurious solutions (see
Subsect. 2.1.1.2). This may have negative consequences since the marking
computed may not be possible in the model, and/or the Parikh vectors may
not correspond to a real model trace. For the former problem (marking
reachability), in case of free-choice, live, bounded and reversible nets, this
problem does not exists since the structural theory completely characterizes
reachability [71]. For non-structured process models (e.g., spaghetti-like)
or when the Parikh vector is spurious, the technique of this chapter may
still be applied, if the results obtained are verified a-posteriori by replay-
ing the step-sequence computed. The approach presented in this chapter,
will be incorporated with a divide and conquer framework in Chapter 7.
The corresponding results and experiments over both well-structured and
unstructured process models is showing the potentials of the technique in
practice for both situations.

3.6 Outlook

This chapter presents a novel approach for alignment computation based
on Integer Linear Programming (ILP) optimization technique and struc-
tural theory of Petri nets, i.e., marking equation. The presented approach,
given an observed trace formulates an alignment computation in two steps.
The first step considers how many of events in the observed trace can be
reproduced by the model regardless of their order. The second step looks
for the best ordering of the elements found already to obtain the best align-
ment with respect to the observed trace. Although this approach presents
a new framework for alignment computation, due to the complexity of an
ILP instance which is NP-complete, makes this approach inefficient to deal
with medium and large instances. To tackle this issue a new computation

Monolithic Integer Linear Programming 67

paradigm will be presented in Chapter 7 thus we postpone the experiments
to that chapter.

Chapter 4

Incremental Integer Linear
Programming

4.1 Introduction

This chapter presents an algorithm for computing alignments whose nature
is in between state of the art approach [5], i.e., defined as a search for
a minimal path on the product of the state space of the process model
and the observed behavior, an object that is worst-case exponential with
respect to the size of the model, and the technique presented in Chapter
3. In that chapter, we ground the technique on the resolution of ILP
models that guides the search for solutions while constructing the derived
alignment. However, the techniques of this chapter ensure the derivation
of an alignment by requiring the feasibility of individual steps computed.
Similar to state of the art approach in [5], the algorithm is defined on the
synchronous product between the observed trace and the process model,
and we use part of the ILP model (the tail of the solutions obtained at
each step) as an underestimate of the cost to reach a solution. The crucial
element of our approach is to incrementally construct the alignment by
“‘jumping” over the space of solutions in a depth-first manner, using ILP
models as oracles to guide the search. The approach is implemented in
the open-source platform ProM [92], and experiments are provided which
witness the distinctive capabilities of the proposed approach with respect
to the state-of-the-art technique to compute alignments.

The organization of this chapter is as follows. First, the formal defini-
tion of search space of synchronous product model is given in Sect. 4.2,
following that in Sect. 4.3 the mentioned search space will be explored
with the use of ILP techniques. Finally, experiments and results are given
in Sect. 4.4.

69

70

4.2 Search Space

According to the synchronous product Petri net defined in Sect. 2.2.4
of Chapter 2 for computing an alignment, traditional algorithms, like [5],
search for alignments using a depth-first search method over a search graph
in which each node represents a partial firing sequence of the system and
each edge the firing of a transition. More formally the corresponding align-
ment’s search space can be defined as follow:

Definition 22 (Search space). Let N = (P, T, F) be a synchronous product
Petri net where T = TSUT'UT™ can be partitioned into sets of transitions
corresponding to synchronous moves, log moves and model moves respec-
tively and let (N, Mstart, Meng) @ corresponding net system. Furthermore
let ¢c: T — RT a cost function. The alignment search space is defined as
S =(V,E,c), withV ={m | (N,mstart)[o)(N,m)} and E CV xT xV
such that (m,t,m’) € E if and only if (N,m)[t)(N,m’). The root of the
search space is Mgpqrt € V the initial marking. The target node in the
search space is the final marking menqg € V. Note that meyq € V' since the
final marking of a system net is assumed to be reachable.

Note that, in the general case, the search space is not bounded. There
may be infinitely many markings reachable from the initial marking and
hence in the search space. Finding an optimal alignment is translated as
finding a shortest path from mgert t0 Mepq in the search space, where ¢
represents the length of the edges’.

In order to find the shortest path? in the search space, traditional align-
ment approaches use the A* algorithm. This algorithm relies on a estimate
function that underestimates the remaining costs from the current node to
one of the target nodes. The cost between nodes m and m’ in V' can be
underestimated by the marking equation, cf. Equation 2.1, but to make
everything easier and derive the concepts home for the approach in this
chapter, that equation will be represented as:

m=mMgart — N~ - X +NT. X (4.1)

Where N~ and N are matrices which shows consumptions and produced
tokens respectively, see Fig. 2.8 in Chapter 2.

Definition 23 (Underestimating the costs). Let S = (V, E,¢) be a search
space and me € V' the current marking reached in the graph. We know
that if there exists a o’ such that (N, m¢)[0")(N, meng) then me + N - o/ =
Mend- Therefore, the solution to the linear problem minimize c(s) such

L Since the cost function ¢ does not allow for 0-length, there are no loops of length 0 in the
graph. In the available implementations of the alignment problem, this is hidden from the
end-user when instantiating the cost function, but an € > 0 is used in the core computation.

2 Note that there may be more than one shortest path. Where we talk about the shortest
path, we mean any shortest path.

Incremental Integer Linear Programming 71

that me + N - < = mepq provides an underestimate for the cost of o', i.e.
c(s) < e(d).

If no solution exists, the final marking cannot be reached, which implies
that part of the search space is not relevant or in other words a correct
underestimate for the remaining distance is infinite.

This approach to finding alignments has been implemented in ProM
and has been extensively used in many applications. However, there are
two problems with this approach. Firstly, the search space can be very large
(although only a finite part needs to be considered). Typically, the search
space size is exponential in the size of the synchronous product model
which is the product of the original model and the trace to be aligned.
Secondly, computing estimates is computationally expensive. This can be
done both using Linear Programming and Integer Linear Programming,
where the latter provides more accurate estimates. In practice however,
both techniques are equally fast as the increase in precision when doing
Integer computations allows the A* algorithm to visit fewer nodes.

4.3 Search Space Exploration using ILP

4.3.1 Computing Optimal Alignments using ILP

The presented approach in this section, is very similar in nature to the
technique in Chapter 3. Both approaches uses ILP to find an optimal set
of Parikh vectors that reach us from initial marking to the final marking
where the main difference would be that the former works with the original
process model and the later takes into account the synchronous product
model which is created from the process model and the observed trace.

In this chapter, we take a fundamentally different approach as we in-
crementally construct (possibly suboptimal) alignments. We do so, by
“‘Jumping” trough the synchronous product model in a depth-first manner
until we reach the final marking. Once the final marking is reached, we
terminate the search. Effectively, from a given marking, we fire a total of x
transitions such that these z firings are locally optimal with respect to the
cost function ¢ and we reach the next node in the search space, from where
we continue our search. However, before discussing our algorithm, we first
consider a method for computing optimal alignments of a given maximal
length using the marking equation.

The marking equation allows us to formalize x transition executions
at once by taking the consumption matrix for each step and the marking
equation for all preceding steps in the following way:

Property 1 (Marking equation for executing x transitions). Let N =
(P,T,F) be a Petri net, mo, mys two reachable markings of the net and let
o = (to,...,te—1) be a trace such that (N, mo)[o)(N,mys). Furthermore,
for 0 < i <z, let m; be such that (N, mo)[(to,...,t:))(N,m;). Using the

72

marking equation and general properties of transition firing, we know the
following properties hold:

e my=my— N~ -0+ NT .7 as the sequence o is executable,

e for 0 < i <z holds that m; = m;_1 —IN"-(t;_1) +N7T-(t; 1), i.e. the
marking equation holds for each individual transition in the sequence,

—

o for 0 < i < x holds that m;j — N~ -69; + NT - 59,1 > 0, i.e.
before firing of each transition there are sufficient tokens to fire that
transition.

The properties above are fundamental properties of Petri nets and the
marking equation [57]. They give rise to a new algorithm to find alignments
of a given length.

Definition 24 (Up To Length x Alignment as ILP problem). Let N =
(P, T,F) be a synchronous product Petri net and let (N, Mstart, Mend) @
corresponding net system. Furthermore let ¢ : T — RT a cost function.
Let 0g,...,0,_1 be a set of x wvectors’ of dimension |T| as the optimal
solution to the following {0,1} ILP problem:

minimize Z c(6;) (4.2)
> 0<i<z
subject to Mstart + Z N:0; = menpa (4.3)
0<j<z
T —>
Vo<ica 677 <1 (4.4
Mastart + Y, N-0; =N~ -6; >0 (4.5
0<j<1
Vo<i<z 9?,1 T> (9? T (4.6)

An optimal solution to the problem above constitutes a full firing se-
quence o of length 1 = 3 .. GZ-T T of the met N in the following way:
for each 0 < i < holds that o; =t = 6(t) = 1, i.e. the sequence o is made
up of those transitions which correspond to the variables taking value 1 in
this system. Note that for | < i < x holds that HZ-T T =0.

The target function shown as equation 4.2 above sums the costs of firing
transitions in the net. Equation 4.4 ensures that each vector corresponds
to at most one firing of a transition and Equation 4.5 ensures that firing
all transitions ¢; preceding transition ¢; from the initial marking produces
sufficient tokens in every place to enable transition ¢;. Equation 4.6 ensures
that in any solution the vectors 6 = 0 are grouped together and finally,

3 Note that 6; is a column vector and its transpose is denoted by GiT.

Incremental Integer Linear Programming 73

Equation 4.3 ensures that the final marking is reached after firing at most
k transitions.

To make the concepts in Def. 24 clear, consider the synchronous prod-
uct model provided in Fig. 4.1 (a). The optimal solution which is a set
of vectors 6; is presented in Fig. 4.1 (b). One can see that 6; is consist
of three parts, i.e., model, synchronous and log moves with correspond-
ing superscripts. It must be stressed that the number of steps is assumed

previously, however it is difficult to have such a knowledge in reality.
as

O
Da P1o P P12 P13
(a)
i1 0 t1 0 t1 0 t1 0 t1 0 t1 0
ta 0 ta 1 ta 0 (2] 0 2] 0 t2 0
t3 0 i3 0 t3 0 t3 0 ts 1 i3 0
tq 0 7] 0 tq 0 tq 0 i 0 iy 0
ts 0 123 0 ts 0 ts 0 ts 0 ts 0
f()' 0 fﬁ 0 f()' 0 tﬁ 0 fﬁ 0 f()' 0
7 0 tr 0 tr 0 tr 0 tr 0 tr 0
is 0 is 0 ts 0 ts 0 1s 0 ig 0
tg 0 ty 0 to 0 tg 0 ty 0 tg 0
thh= t1o 0] th=1t1p 0 | 2=ty 0| 03=ty 0| 4=t 0 L g=1t1g 0
tn | O tin | O f11 | O tin | O t1n [O t11 | O
aj | 1 ai |0 a; |0 a; |0 ai |0 af 0
aj 0 ad [0 a3 0 a3 | 0 aj [0 as 0
aj | 0 aj | 0 aj |1 aj |0 aj | 0 aj |0
aj; | 0 aj; | 0 aj; | 0 aj; | 0 aj; | 0 aj; | 1
ai] 0 (15] 0 al 0 al 0 al 0 al 0
ay |0 ay |0 ay |0 ay |1 ab, 10 ab |10
a fl 0 a fl 0 a fl 0 a fl 0 a 51 0 a fl 0
aly \ 0 aly \ 0 aly \0 aly \ 0 aby \ 0 aby \0
(b)

Figure 4.1: (a) Synchronous product model, (b) Solution of optimization
problem in Def. 24

Before showing how the ILP definition above can be extended to find

74

alignments up to length k, we first show that any optimal alignment o
indeed corresponds to an optimal solution to this ILP for k& = |o|.

Theorem 1. Let N = (P, T, F) be a synchronous product Petri net and let
(N, Mstart, Mend) @ corresponding net system. Furthermore let ¢ : T — Rt
a cost function and o an optimal alignment of N. We show that there is
an optimal solution to the k-alignment ILP for k > |o| corresponding to o,
i.e. the ILP-alignment problem provided us with optimal alignments.

Proof. The proof consists of two parts. First, we show that o translates
into a solution of the ILP. Then, we show that there cannot be a more
optimal solution as this would imply there is a more optimal alignment.
Let © = {0o,...,0),/—1} be a set of vectors, such that for all 0 < i < [0
holds that 6;[t] = 1 if and only if o; = t, otherwise 6;[t] = 0. We show that
this is a solution to the ILP of Definition 24 by enumerating the constraints:

(4.4) For all 0 < i < |og| it trivially holds that 67 - T = 1,

(4.5) Since o is a full firing sequence, we know that for each 0 < ¢ < |o]|
holds that (N, mstart)[00.i—1)(N,m) for some marking m in which
transition o; is enabled. Furthermore, the n/lirking equation states
that mggere + N - 00,1 =m and m — N~ - (g;) > 0.

The definition 6; leads to the fact that Zogj<i 0; = 70.i—1, hence
we conclude that mgere + N - Zong- 0j =mand m - N~ -60; > 0.
Combining this yields mgqrt + 20§j<i N-0; —N~-6; >0 for all
0<i<l]|ol,

(4.6) Since all vectors 6; contain one element equal to 1 this is trivially
true,

(4.3) Similar to the proof for Equation 4.5, this equation is satisfied.

The set of vectors © indeed is a solution to the ILP corresponding to the
full firing sequence o. Now we prove that no better solution to the ILP
exists by contradiction. Assume there is a solution ©’ = {6y, ... ,9{0‘_1}
which is a solution to the ILP with a lower target function than ©. We
know we can construct a o’ = (tg,...,t;—1) for © with length | < |o]
(Definition 24). Furthermore, we know ¢’ is a full firing sequence. Since
Zogi<\o’|c(0;) < 2 0<i<|o|e(e;) and the relation between o and ©, we know
that c¢(0’) < ¢(o). However, this violates the definition of o being an
optimal alignment. O

The ILP formulation above allows us to compute an optimal alignment
if we know an upper bound k for the length of such an alignment. Unfor-
tunately, such an upper bound cannot be given in advance as this would
require knowledge of the alignment sought. Furthermore, the large number
of variables in this ILP (the number of transitions in the synchronous prod-
uct model times the length of the alignment) makes this ILP intractable
in any real life setting.

Incremental Integer Linear Programming 75

4.3.2 Computing Alignments Without Optimality Guaran-
tees

To overcome the limitations of not knowing the length of the alignment
and the intractability of the ILP computation, we introduce an algorithm
for incrementally computing alignments. The core idea of this algorithm,
which again relies heavily on the marking equation, is the following. We use
an ILP problem that constructs an exact prefix of an alignment of relatively
short length (for example z = 10 transitions) and estimates the remainder
of the alignment in the same way the A* techniques do. Then, we execute
the exact prefix of relatively small length x, compute the resulting marking
and repeat the computation until we reach the target marking.

Definition 25 (k of x prefix Alignment as ILP problem). Let N = (P, T, F)
be a synchronous product Petri net where T = T*UT'UT™ are the partitions
of T and let (N, Mstart, Mend) @ corresponding net system. Furthermore let
c: T — R a cost function. We assume k < |T'|.

Let © = {6p,...,0.} be a set of x + 1 vectors of dimension |T| as the
optimal solution to the following ILP problem:

minimize Z c(6;) (4.7)
b’y 0<i<zx
subject to Mgtart + Z N-0; = Mena (4.8)
0<j<z

SO =k (4.9)

teTsuT! 0<i<z

Vo<i<a o7 T <1 4.10)

Mstart + Y, N-0; =N~ -6; >0 (4.11)
0<5<1

Vo<i<e or - T>06"-T (4.12)

c-or . T>60.T 4.13)

An optimal solution to the problem above constitutes a firing sequence
o of lengthl =3 o i .. OZT T of the net N identical to Definition 24. Note
that the constant C in Equation /.13 is a sufficiently large constant, for
ezample C = |T|2.

The difference between Definition 24 and Definition 25 is relatively
small, but significant. The added vector 6, in the solution does not rep-
resent a single transition execution. Instead, it represents the “tail” of
the alignment, i.e. the resulting firing sequence o is no longer a full firing
sequence as it is not guaranteed to reach the target marking. Instead, it
reaches some intermediate marking m and 6, is a vector underestimating
the cost for reaching the final marking from m identical to the underesti-
mate function in A* as defined in Definition 23. Once the optimal solution

76

to the ILP is found, the marking m reached after executing o is taken as
a new final marking and the problem is reinstantiated with that marking
as initial marking.

The second important difference is the k£ used solely in Equation 4.9.
This equation ensures that o contains at least k£ transitions from the set
of synchronous moves or log moves, i.e. it guarantees progress as it is a
property of a synchronous product that there are no loops in the log move
and synchronous move possible.

t 0 31 0 51 0 51 0 ty 0 t 0
ta 0 ta 1 fa 0 ta 0 to 0 ta 0
ta 0 ts 0 2 0 2 0 ts 1 ts 0
171 0 ta 0 t4 0 t4 0 t4 0 tq 0
ts 0 ts 0 ts 0 ts 0 ts 0 ts 0
ts 0 ts | 0 ty 0 ty] ts] te 1
tr 0 tz 1 0 tz | O tz |0 tz 10 tr 0
ts 0 g 0 g 0 tg 0 tg 0 tg 1
tg 0 tg 0 tg 0 tg 0 tg 0 tg 1
HQ: t]n 0 9]: f](] 0 92: f](] 0 9‘3: f’-]g U 9,1: tlﬂ U 95: t]_() 1
tin | O ti1] 0 ti1 | O tin | 0 tin | 0 tin [O
aj |1 aj | 0 aj |0 aj |0 aj |0 ai [0
a; | 0 as |0 a; |0 a; | 0 as |0 a3 0
a; | 0 aj |0 ay |1 aj |0 aj |0 aj 0
aji, | 0 aj; | 0 aj; | O aj,; | 0 aj, | 0 aj, [1
al 0 at 1o ai 10 ai |0 al 10 a} 0
ab | 0 ab |0 ah | 0 a, |1 al |0 ab 0
a fl 0 a fl 0 a 51 0 a 51 0 a 51 0 a fl 0
aly \ 0 aby \ 0 ab; \0 al; \ 0 al, \0 aly \0

Figure 4.2: Solution of optimization problem in Def. 25

To make the distinction between Definitions 24 and 25 more clear, we
provide an example here. Consider the synchronous product model in Fig.
4.1 (a) and consider x = 6 in Def. 25. Then the solution is presented in
Fig. 4.2. Note that for this example 65 does not show a single transitions
and it represents the tail of the alignment.

Using the k of ILP we present the sequential alignment algorithm as
Algorithm 3 and using the algorithm outlined in Algorithm 3 we define an
(k,z) sequential alignment.

Definition 26 ((k,z) - Sequential Alignment). Let N = (P,T,F) be a
synchronous product Petri net where T = T° U T U T™ are the par-
titions of T and let (N, Mstart, Mend) @ corresponding net system. o =
Align(N, Mssart, Mend, inf, [T, , k) is an (k, z) sequential alignment, where
kE<|T' and k < x.

The sequential alignment algorithm is a recursive algorithm. It starts
by solving a k of x ILP problem which for a solution is assumed to exist.
After solving the ILP, the solution is compared to the previous estimate
(the cost of 6,). If the new optimal solution deviates too much from the
expected solution €’ +¢ > 2-¢ and the 0, is non zero, i.e. the final marking

Incremental Integer Linear Programming 7

Algorithm 3 Sequential Alignment

1: Input: (N, Me, Mend, €, L, T, k‘) > A net N, the current marking m., the target
marking menq, the last estimate for the remaining cost e, the number of events to be explained

! and two parameters z and k with k < z and k < e.

2: Output: A firing sequence o

3: Align (N, me, mena, e,l, 2, k) {

4: if m, = Mmenq then

5: return ()

6: else

7 Solve © = {0y, ...,0,} as the optimal solution to the k of z ILP of

8: Definition 25 and let o be the firing sequence derived from 6 ...60;_1
d = Zogi@ c(0:)
e =c(6,)

9: if 0, 20 Ac +¢ >2-ethen

10: return Align(N, m¢, mena, e, 1, x + 1, min(k 4+ 1,1))

11: else

12: compute m as m = me + g, N-0;

13: K =2 eroun 2o<ica 0i(t)

14: return (o o Align(N, m, menqg, €', — k', z,min(k,1)))

15: end if

16: end if

is not reached, then we go into a backtracking phase. We try again, with
increased value of z (and k if applicable). If the initial ILP cannot be
solved, i.e. no solution exist, backtracking can also be used. However, we
typically assume our process models to be sound workflow models, see Def.
7 in Chapter 2.

It is easy to see that the algorithm terminates, i.e. either the final
marking me,q is reached, or the value of z is increased until it equals the
length of the shortest path from the current marking to the final marking
in which case the solution of the k of z ILP becomes optimal and 6, = 0.
The following lemma states this fact formally:

Lemma 1. Let (N, mstart, Meng) and o be in accord with Def. 206, then, x
in Alg. 3 has an upper bound.

To prove that Algorithm 3 terminates, lemma 1 must be proved. To
this end, we proceed by contradiction as follows:

Proof. Given an initial marking of the process model like mgtq,t, assume
that the final marking m.,q is not reachable. In other words z is infinite i.e.,
as long as it is increased m.,q according to Def. 26 the final marking is not
reachable. However this assumption contradicts with sound property of the
process model. Stated differently a sound WF-net (see Def. 7 in Chapter
2) has option to complete property and therefore x must be finite given the
observed trace. Thus after some iterations the algorithm terminates. [

78

4.3.3 Quality of Alignments

The sequential alignment algorithm presented in Algorithm 3 is guaranteed
to terminate and to return an alignment. However, it is not guaranteed
to return an optimal alignment. This is due to the fact that the marking
equation used for the 0, vector does not correspond to an actual realizable
sequence. Instead, as in the original A* approach, it merely underestimates
the optimal costs to reach the final marking. As such, sub-optimal decisions
may be made in each prefix. In particular, this is the case if the model
contains many so-called “transition invariants”, the simplest case of which
are structured loops of activities.

Even if a trace perfectly fits the model, extreme cases can be devised
where the sequential algorithm may construct sub-optimal alignments (al-
though this requires the introduction of duplicate labels), while at the same
time, for some classes of model and log combinations, optimality can be
guaranteed. Hence, overall, it is impossible to say anything about the qual-
ity of the delivered alignment in advance. However, as the experiments in
the next section show, in practical cases, the alignments are of high quality
and the reduced time complexity is well worth the trade-off.

In our experiments, which we present in the next section, we considered
the relative error of the costs as a measure for the quality. This relative
error is defined as the cost of the sequential alignment exceeding the cost
of the optimal alignment as a fraction of the cost of the optimal alignment.

4.4 Experiments

In order to assess the quality of the proposed technique, we conducted
various experiments. In this section, we show one of these experiments on
a real-life dataset and model. The dataset used deals with the treatment
of sepsis patients in a hospital . There are 1050 cases with in total 15214
events over 16 activities. There are 74 unique sequences of activities in the
log and the model used contains 19 labeled transitions and 30 unlabeled
routing transitions. The model is free-choice and contains both loops and
parallel constructs, i.e. it belongs to the class of models considered in this
chapter.

The experiments were conducted on a Core i7-4700MQ CPU with 16GB
of memory, of which at most 8 GB of memory were allocated to the Java
virtual machine. In the interest of fairness, all algorithms were executed in
single-threaded mode”.

Figures 4.3 and 4.4 show the analysis time of aligning this log on the

4Sepsis Cases - Event Log. Eindhoven University of Technology. Dataset. (2016) http:
//dx.doi.org/10.4121 /uuid:915d2bfb- 7e84-49ad-a286-dc35{063a460.

5 The classical A* approach can be executed in multi-threaded mode, in which case multiple
traces are aligned at once. Furthermore, the Gurobi solver can also be used in multi-threaded
mode, which only affects the branch-and-bound phase of the solving.

http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

Incremental Integer Linear Programming 79

given model using three techniques, namely (1) the baseline traditional A*
[5], (2) our approach using Gurobi [32] as a backend ILP solver and (3)
our approach using LpSolve [1] as a backend solver®. The x-axis shows
the fitness of the trace (based on the baseline which guarantees optimal
alignments) and for each trace, both computation time and relative error
in total costs for the alignment returned are plotted. The time is plotted
on the left-hand logarithmic axis and the error on the right-hand axis.

As shown in Figure 4.3, the computation time of alignments using our
approach is orders of magnitude lower than when using A*. However, in
some cases, suboptimal solutions may be returned which are up to 84% off
in terms of the total costs as shown in Figure 4.4. The overall error on
the entire log is 7,87% for Gurobi and 7,05% for LpSolve. The differences
between the two solvers are explained by their local decisions for optimal
solutions which may lead to different choices in the alignments. For two
other models in the same collection, the results are even better, with at
most an 6.7% cost overestimation.

What is important to realize is that the larger errors in the cost coincide
with higher computation times in the A* implementation. Inspection of
the specific cases shows that these cases suffer from the property that the
estimator used in A*, which coincides with our 6,, performs poorly. In the
A* case, optimality is still guaranteed, but at a cost of performance, while
in our approach, the “wrong” decision is made for the alignment, leading
to errors.

Figure 4.3 suggests that, when cases become more fitting, the compu-
tation becomes more expensive. However, this result is misleading as the
numbers are not corrected for the length of traces, i.e. the traces that are
better fitting in this dataset are typically longer. Therefore, in Figure 4.5
we show the relation between the trace length and the computation time
for both A* and for our approach using Gurobi.

Figure 4.5 shows that our approach scales linearly in the length of the
trace. This is expected since, for longer traces, more ILPs need to be
solved. However, these ILPs are all of equal size and, since they have the
same structure, of comparable complexity.

In the A* case, we see that there is a considerably larger influence of
the trace length to the time do compute alignments. The time complexity
of A* depends on two factors, namely the size of the synchronous product’s
statespace and the accuracy (and time complexity) of the internal heuristic
used. The size of the synchronous product’s statespace is the product of
the model’s statespace and the length of the trace, hence this also scales
linearly in the trace length. The internal heuristic used in A* is comparable
to our tail computation for 6, which, for most Petri nets, is a fairly good
heuristic. As such, the performance of A* is polynomial” in a linearly

6 We did not compare our approach to [74] since the latter does not always produce a real
alignment.
71In this case quadratic, but in general, the quality of the heuristic used in A* degrades with

80

1 of 4 LpSolve error

.
g
@

5
©
2
=

[}

=

u—
5]

-

|
I
|

= — — VBLESLESEO

= = = 10f 4 Gurobi time 1 of 4 LpSolve time

A* with ILP time

g
g

'SWiuj AW |

L¥80S0€E86'0
TEC69L0860
£999916460
9/¥06TIL6'0
€LE6TLETLE0
SEE88S0L60
§4896°0
£99999996'0
FTLS8LYI60
CIVBESTIG'0
EEEEEEBSH0
S9¥SParee’o
CIS6TITS6'0
TZr89cLv60
EPTLSBEV60
SLEED
EEEEEEEEL D
6ZrT.58760
§¢6°0
€769L0€76°0
8LVEVOETE'0
§2906°0

60
C68T68T680
Tr6CSEEss’0
£99999998°0
9P8ESTIVE'0
CIV6TSEL8'0
SZI8°0

80

98TV TLSBLO

| 8rSE6TrLLO

SL0

PILSBTYTLO
ST9r8EST90
TLS8TPTLSO

V8LEBLERGO
L¥8050€86°0
TEC69L0860
£9999T6460
9LF06TILE0
€L6TLETLE0
SETBBS0L6'0
S£896°0
£99999996°0
FTLS8LYI60
T9¥8ESTI60
€ECECERTE'0
SSrSravse’o
CISBTLIS60
TZr89cLv60
EPTLSBEV60
§/€6°0
EEEEEEEERD
6ZPTLS876°0
S¢6°0
€¢69L0ECH0
8LYEVOETE0
§2906°0

60
Z68T68T68'0
Tr6CSEe8s80
£99999998°0
9PBESTIVE0
CTP6TSET80
STI8°0

80
98ErTLS8L0
8PSE6TVLLD
S0
PTLS8CYTLO
STIV8ESTI0
TLSBTPTLSO

Fitness

Fitness

1gnments.

Relative error of 1-of-4 al

Figure 4.4

mes.

t

0on

Comparison of computat

Figure 4.3

81

Incremental Integer Linear Programming

‘SyuowusIe -Jo-T Yim "90RI} Teu
LV Jo 1011 pue owry uorpeindurod jo uostredwo)) :9§ 9InSL -ISLIO0) JO YISUI[‘SA sjyuowrusdI[e 9Indwod 0} dWlL], :G'§F 9IN3L

(ssaualy Buiseaudap) xapu) aded) 90e4] Jad SJUBAD JO JBagquINN
T ot 8 9 v [4 0 0oe 0st 00T 0s 0
0 M —— % 00T 0
-
10 |.||\F||+||0t|lllllu|
—
$oie et 661670 = o o00e
0 z
X086, =A
£0 0000T 000t
=
y =
® 0 w 0009
g 5 @
5 S0 =
S Z o008 3
g 40 000001 6v16°0= M 2]
X967 L€+ XT£9T°0=A
20 0000T
80 (aunl 4 ¥) "Ajod «+-eee (ewiL 1qoino) Jeaun
000ZT
W] oY —— auwi 1qoing
60 000000T
d -u=-dll . d 10oINg - @ -
. 10113 anjosdy 10112190ING = W = 41| . —e— 3Ajosd] qoing - & 000V T

82

growing graph, which is exactly what’s shown in the figure.

To emphasize the importance of our work even further, we show results
on a well-known, artificial benchmark example in Figure 4.6. This example
was taken from Table A.1 in Appendix A, i.e., prF'm6, where a model is
presented with 299 uniquely labeled transitions and massive parallelism.
Here, we clearly see that our approach, both using LpSolve or Gurobi,
can be used to find alignments for all traces within a couple of seconds.
The A* approach however, can only find alignments in some cases, before
running out of time (the limit per trace was set at 200000 states, roughly
corresponding to 15 minutes of computation time). Furthermore, in those
cases where the A* completes, our sequential algorithms returns optimal
alignments.

In all experiments above, the cost function used was chosen in such a
way that the penalties for labeling an event as a so-called log move or a
transition as a so-called model move were equal to 1 and all figures were
made using 1-of-4 prefix alignments. We tested various other values for
both k£ and x and the results were comparable as long as k is significantly
smaller than x. The full code is available in the anti-alignment package
in ProM and is fully integrated in the conformance checking framework
therein.

4.5 Outlook

This chapter presented an incremental approach to compute alignments for
a given log and model using ILP as a heuristic function for A*.

Our approach is heuristic in nature, i.e. the result is not guaranteed to
be optimal, but the computation time is shown to be linear in the length
of the input trace (around 8 ms per event in our experiments on a high-end
laptop computer) and the error in the final results, while depending on the
parameters, is shown to be reasonable.

Also, we introduced the theoretical foundations of our work, we pre-
sented the algorithm with proof of termination and we showed experimental
results on real-life cases. We compared our implementation using both a
freely available ILP solver as well as an industrial ILP solver with the state-
of-the-art in alignment computation. Recently the work in [91] considers
the heuristic function by exploiting knowledge of the traces being aligned.
More specific, it uses the original trace to guarantee progress in the depth
of the A* search.

All datasets and implementations used in this chapter are freely avail-
able for download and the software is integrated in the process mining tool
ProM [92].

the number of semi-positive transition invariants in the model, but that discussion is beyond
the scope of this chapter.

Part 111

Heuristic Optimization
Approaches

83

85

This part of thesis adopts completely different approaches for the align-
ment computation problem. Both methods in Chapters 5, 6 follow iterative
approaches to obtain solutions. The former, which is a form of local search,
is super light and fast and the later, which is grounded on Genetic Algo-
rithm is capable of providing multiple solutions.

Contribution: The work in Chapter 5 has been submitted as a journal
paper to ACM Transactions on Software Engineering and Methodology [76].
The second work in this part, i.e., Chapter 6 was published in International
Conference on Business Process Management (BPM 2018) [77]. Also those
approaches have been implemented in Python as a stand-alone application
framework ALI [73].

Chapter 5

Local Search Optimization
Approach

5.1 Introduction

The aim of this chapter is to deploy light techniques for computing align-
ments for well-formed process models, that can be used in the large. Pro-
cess models are well-formed if certain conditions on the structure of the
net are satisfied. In this chapter we consider that it is better to provide
an alignment, even if it is not the model trace that best resembles the ob-
served trace (a concept defined as optimal alignment), than not providing
an alignment at all. Dropping the optimality is not an objective of the ap-
proach presented in this chapter, but instead an artifact of the selection of
techniques done, that are grounded on the structural theory of Petri nets,
dynamic programming and local search methods. In practice, however, the
results obtained are close to optimal.

Intuitively, the proposed technique works as follows: given a process
model as a Free-Choice Petri net [23] satisfying the workflow structure and
being weakly sound [88], and a trace, a novel replay method is proposed.
It applies the structural theory of Petri nets, Sect. 2.1.1.2, to provide a set
of transitions that should be fired, which is then used to select globally the
set of transitions to replay the trace. To this end, first, it uses the method
presented in Chapter 3, Sect. 3.4 to get an initial solution. Second, the
replay relays in the workflow structure and the distance to the final marking
(assumed to be a single place) to choose, among sets of enabled transitions,
which one to fire at each reachable state in the replay. The replay is
guaranteed to reach the final marking of the Petri net, thus providing a
full sequence of the model. We then use a well-known technique from
bioinformatics to align the two traces [59], and then an initial alignment
is obtained. Finally, a local search technique is applied on top of the
current alignment to try to improve it by merging as much as possible the
deviations detected.

The techniques of this chapter have been implemented in a standalone

87

88

tool [73], and experiments done over the large problem instances publicly
available nowadays reflect the capability of the technique in providing align-
ments in reasonable time. Remarkably, when compared to the reference
technique [5], and a recent technique [67], the results are close to opti-
mal while there is a considerably reduction both in computation time and
memory consumption, often of orders of magnitude.

The chapter is organized as follows: section 5.2 provides the framework
proposed in this chapter for computing alignments, which includes the three
stages enumerated above. Sect. 5.3 presents the way an initial solution will
be computed, this approach is partially based on materials presented in
Chapter 3. Following that in Sect. 5.4 a dynamic programming approach
for aligning two sequences will be presented. After that Sect. 5.5 provides
a hill-climbing mechanism to improve the fitness value of the computed
alignment. Finally, Sect. 5.6 reports on the set of experiments performed
and shortly present the tool developed. Sect. 5.7 concludes the chapter.

5.2 Local Search Computation of Alignments

5.2.1 The Overall Perspective

Fig. 5.1 represents the overall proposed framework. The details of each
part will be presented in upcoming sections. Short descriptions of each
parts are presented here:

Cl - ; |

! Initial : - .

! Computing Fitness im-

|l taee @ et |—®
O |

Figure 5.1: General idea for local search computation of alignments.

e Initial modeled trace generator. Given a model, NV, and an ob-
served trace o, in this stage an initial modeled trace o is computed.
Obviously, the closer oy is to o, the better. For solving this prob-
lem, some possibilities exist, based on replay [68, 96]. In this work
we will use a novel technique that incorporates the marking equa-
tion, i.e., Eq. (2.1), in order to attain the maximum similarity to
the observed trace in terms of number of events fired, a term that we
denote Parikh similarity, see Chapter 3, Sect. 3.4. Then, since the
set of firings is computed as the solution of the marking equation, a
replay technique that considers the distances in the graph underlying
the Petri net is used to obtain the real sequence. This approach has
interesting features that makes it to avoid backtracking in the search

Local Search Optimization Approach 89

for a model trace. See Alg. 4 lines 2-4.

e Computing an Alignment. Computing an alignment between the
observed and modeled traces can be done through a well-known dy-
namic programming approach inspired from the bioinformatics field.
The result is the initial base alignment, «p. See Alg. 4 lines 6-8.

e Fitness improvement. The initial modeled trace, oy, upon which
ap is based, is not guaranteed in general to be the best possible
alignment. To improve the fitness value of the initial alignment, a
local search will be done reduce the number of asynchronous moves
in ay, while preserving the executable property of the modeled trace.
See Alg. 4 line 10.

This way, fitness improvement can be done iteratively, i.e., recomputing
the current alignment oy based on the previous improved alignment, until
no more improvement can be made. This explains the arc-back from the
fitness improvement part to the computing alignment part in Fig. 5.1.

Alg. 4 presents the general template for the framework proposed in this
chapter. Notice that particular instantiations can be done in some parts of
the algorithm, so that a personalized version can be obtained by selecting
each important piece. For instance, by choosing one or other replay tech-
nique, a different version will be derived. Next sections will provide further
details on each one of the stages.

Algorithm 4 Overall Framework

—_

Input: Global Variables SN (N, msart, Mend)y O D> Inputs are the

system net, observed trace and distance matrix

2: #Initial modeled trace generator

3: op + Result of Eq. 4 > Computing Parikh vector, o'p

4: ON < Execute (O’AP) > Replaying o'p to get model trace o

5. while (Fitness can be improved) do

6: #Computing alignment

7 M, S <« Align (O'7 O'N) D> Aligning o, on to get score and source matrices
M, S

8: Qap < Traceback (S) D> Using source matrix S, to traceback and obtain aj

9: #Fitness improvement

10: a < Alignment-Reordering () D> Reordering aj to improve
Tay (fitness value)

11: ap <— «

12: ON < O J, Apg

13: end while
14: Return «;

90

5.3 Initial model trace generator

Given an observed trace o the objective of this part is to generate an
executable modeled sequence o, whose Parikh vector has the maximum
similarity to &. In this chapter we propose a new approach for this problem,
which can be performed in two stages. In case of Free-choice Petri nets
and weakly sound models, formal guarantees will be provided that ensure
the derivation of a model trace.

The first stage, which is called ILP similarity, is originally presented in
Chapter 3, Sect. 3.4. By using equation (2.1), it relies on the resolution
of an ILP, which provides a Parikh vector cp whose elements are as much
similar as possible to the elements of &. Given op, the second stage is a
novel technique to replay the computed Parikh vector to get an executable
sequence oy, which excludes replaying spurious elements of op. It will be
proved that given the solution of the first stage, the second stage is com-
plete, i.e., it is able to find a solution.

5.3.1 ILP for Similarity: Seeking for an Optimal Parikh
Vector

Given a process model N and an observed trace o, the aim of this stage as
mentioned above is to get a Parikh vector called p with minimum distance
to the Parikh vector of observed trace o based on Eq. 3.2 in Sect. 3.4.

In short, an optimal solution X to Eq. (3.2), denoted by p, represents
the required transitions of the model and their number of occurrences which
must be fired from the initial marking, mgsrt, to reach the final marking,
Meng. Vector op has the maximum similarity with respect to o.

as

tio

as pr a2

to —>O—> ts
o ay / a4 P8 T \ as D5 Pe
m ts —)—O—)— tg —>O—> ts B ts —»O
@ h Py ae
\O_> ta > L7
P2 as P3 a7

Figure 5.2: Process model Ny

Local Search Optimization Approach 91

As a reminder the example in Sect. 3.4 is repeated in here. Con-
sider the model Ny depicted in Fig. 5.2 and the observed trace o =
ajasasasazagagag, where o is depicted in Fig. 5.3 (b). Solving Eq. (3.2)
for these model and trace results in the Parikh vector, X, which is called
op, depicted in Fig. 5.3 (a).

tl 1 (45} 1
tg 1 tl 0 a4 1
ts | 0 ta] 1 as| 0 a1 }
s | 1 . |0 a1 .0
X‘tﬁ] X—t5 0 E(X)_aﬁ 1 = 24 %
t- 10 ts] 0 a;| 0 ")
tg 1 t7 1 a9 1 6 1
to | 0O ts \ 0 r{o &7
tlg O as 0
(a) (b)

Figure 5.3: (a) ILP resolution for the model Na, (b) X with labels and &.

Also, see Fig. 5.3 (b) which represents ¢(X), i.e., the computed Parikh vec-
tor with element labels, and & to compare the similarity between elements
of the two vectors.

5.3.2 Replay The Parikh Vector: Computing An Executable
Model Trace

This stage consists of executing the computed Parikh vector op, in order
to get a feasible sequence on. As commented before, this step assumes a
model specified over a Free-choice, weakly sound Petri net'. The benefits
of getting a sequence, from the computed Parikh vector op are twofold.
First, for computing the initial alignment cy, both observed and modeled
traces are needed whereas at this point there is no information about the
order of elements in p. Second, because the computed Parikh vector is
the resolution of an ILP instance based on the marking equation, i.e. Eq.
(2.1), it may contain some spurious elements (see section 2.1.1.2), therefore
to fix this problem, i.e., getting a real solution which can be executed, op
is replayed from the initial marking to the final marking. Obviously, there
is not a unique way to execute a given Parikh vector.

The most simple way of executing a given Parikh vector op is based
on the idea of using a tree based search approach or ”generate and test”,
which could be done with the use of a depth-first search (DFS) mixed
with a backtracking approach. This approach starts at the initial marking

L In spite of this assumption, in practice it performs well for more general classes, including
unstructured Petri nets. This is illustrated in the experimental results provided in this
chapter.

92

and fires transitions in op as much as possible, and backtracks whenever
a deadlock situation is encountered. In the worst case, this approach may
require to explore the full set of reachable markings in order to find a
solution.

The approach proposed in this chapter prevents the backtracking mech-
anism. In our technique, a transition of the model is selected to be fired
depending on its distance to the final marking (i.e., the place corresponding
to the final marking): intuitively, a transition with the farthest distance
to the final marking is on priority to be fired. To achieve this goal, the
Floyd-Warshall algorithm, which computes the shortest path between two
arbitrary nodes in a graph, is used as the main criteria. The computed
shortest paths are represented by the distance matrix D, which is computed
only once for the graph underlying the WF-net. Avoiding backtracking is
the advantage of this approach, which comes at the expense of getting a
modeled trace that is not guaranteed to resemble optimally the observed
trace, thus potentially lowering the quality of the corresponding alignment.
In practice however, the sequences obtained by this approach are rather
useful in our setting. Definition 27 states the corresponding firing policy
based on the mentioned criteria. It provides only the necessary criterion
for a transition to be on priority of firing, whereas the sufficient condition
will be discussed shortly afterwards.

Definition 27 (Firing policy). Given Parikh vector op and system net
SN = (N, Mstart, Mend) With Meng = {pe}, where pe is the end place in
SN; Let Tc = {t € T|*t < m;}, i.e., enabled transitions in marking m;,
and To N supp(ap) = {t1,t2,...,tn}, i.e., enabled transitions that belong
to ap in marking m;. If D(tg,p.) represents the minimum distance of tj,
to pe then it is on priority to be fired if Vi # k : t; € Tc N supp(op),
D(tk7pe) > D(tiype)-

ta ts
Po / ./ Pe
@—>t1 —PO—> ﬁg—r t4—>O—> tﬁ—P tg—*O
Ps

P1 Q‘»’z Pa
ta 4—017 t7

Ps
Figure 5.4: Process model Nj.

Notice that in Def. 27, there might be more than one transition in priority
to be fired, in which case any of them can be fired according to the defini-
tion. Replaying op based on Def. 27 continues until the final marking is

Local Search Optimization Approach 93

reached (the proof of reaching the final marking will be presented later).
After firing t, the marking of the model and transitions remaining in op
are updated accordingly. Also notice that labels of transitions, i.e., dupli-
cate or invisible labels, do not pose any problem with respect to the firing
policy in Def. 27, since transitions are to be fired based on the computed
Parikh vector ap and not on £(gp).

Consider the model N3 and computed Parikh vector in Figures 5.4
and 5.6 (a), respectively. The initial and final marking of the model are
Mestart[Po] = 1, Mend[pe] = 1 respectively. DFS starts at ¢;, and without
loss of generality let us assume that given a set of enabled transitions the
one with larger subscript is chosen first, i.e, between tg and tg, the latter
will be expanded (fired) first. Executing op via backtracking by DFS, is
represented in Fig. 5.6 (b) and red colors represent where the algorithm
has to backtrack. On the other hand executing op using Def. 27 does not
need any backtracking. See Fig. 5.6 (c), distances are represented on the
top of each transition. The gray colored transitions represent those which
are enabled at the corresponding marking, i.e. TcNsupp(cp), but they are
not on priority to be fired due to Def. 27. For example if m[ps] = 1, then
both to with D(t2,pe) = 9 and t4 with D(t4,pe) = 5 are enabled, but the
former will be fired since it is farther than the later from the final marking,
or when m[py] = 1 then tg with D(ts,pe) = 5, tg with D(t9,pe) = 1 and t7
with D(t7,p.) = 9 are enabled, where the later is farther with respect to
others to the final marking, therefore it will be fired. Finally the computed
modeled traces oy by two approaches are represented in Fig. 5.6 (b) and
(c), respectively.

P1 D2 p3 Dltaspe) =7 P10 Ps Pe

O~ ti PO~ ta = ts O~ ts Ot PO~ ts O
P4

& T D(tl(?»Pe) =5

12 tio > t11
Po

Figure 5.5: Process model Ny.

94

t1—>t3—>t4—>t6—>t9
K>7f8->7f6-*'t9

Kt?*ts*h*tﬁ*tg

t1 /1
tQ 1 \»t2—>t3—>t4—>t6—>t9
ts] 2
O'Ap == t5 1
ts| 3
t-| 1
ts| 1 on = titstytetststrlstatstatety
to \ 1
(a) (c)
9 7 5 1
& 9 7 5 3/ 5
ty > ty3 > ty > tg > 13
9 7 5 3 1
l7 > t5 >ty > 16 > b
o
(d) tg > 1 = tg
on = Utitglatatatlelrtstatlelstsly
po [1 0 0 0 0 0 0 0 0 0 0 0
o |0 1 0 1 0 0 0 0 0 0 0 0
p |0 0 1 0 1 0 0 0 1 0 0 0
p3 | O _?;1 0 [t3] O |taf O Jta] O Jta| 1 ftg] O [t7| O Jts] O |ta] 1 |te| O |to] O
pi |0 oo o Tl lo T T oo o] 1o
ps | 0 0 0 0 0 0 0 1 0 0 0 0
p. \0 0 0 0 0 0 0 0 0 0 0 1
Mastart Mend
(e)

Figure 5.6: (a) Parikh vector, (b) Executing op using DFS, (¢) The mod-
eled trace computed by DFS, (d) Executing op using the proposed ap-
proach, (e) The modeled trace computed by the proposed approach

Local Search Optimization Approach 95

As mentioned already, replaying ocp based on Def. 27 , i.e., granting
priority of firing to the farthest transition with respect to p. avoids back-
tracking, but in some situations causes to miss some other transitions which
are supposed to be fired based on op. Hence, being in the farthest distance
with respect to p., albeit necessary, is not a sufficient criterion of being on
priority of firing for the technique of this chapter.

For example consider the model Ny in Fig. 5.5, and assume that both t3
and t19 are enabled in supp(op). Based on the given marking of the model,
t3 which is the farthest transition with respect to pe, has the priority of
firing, while doing so causes t19 to be missed in the replay, although it is
supposed to be fired according to op. To avoid such problems, a transition
with priority of firing must be fired legitimately according to Def. 28 as
follows:

Definition 28 (Legitimacy). Assume ti is defined according to Def. 27,
and let Ts = {t;|t; € Tc N supp(ap),®t; =* ti}, i.e., Ts represents the
enabled siblings of t;, which are in supp(op) as well, then t; will be fired
legitimately if and only if, 3t; € Ts and Ic € N, where D(ty,t;) = c.

Def. 28 informally states that, the priority of firing is granted to the far-
thest transition t; if and only if, at least one of its siblings in T would
be structurally accessible after it is fired. Notice that, as it happens with
Def. 27, there may be more than one transition legitimated to fired accord-
ing to Def. 28, which would require to pick any of them for firing. Def. 27
and 28 provide the necessary and sufficient criterion for a transition to be
fired on priority which guarantees no elements in TN supp(ap) are missed,
i.e. all of them will be fired without backtracking. It can be extended to
all encountered reachable markings and corresponding enabled transitions
of op given that they are not spurious (spurious elements, by definition,
will not get enabled).

Theorem 2 (Completeness given legitimate firing). Given the context pro-
vided on a transition ty by Def. 28, all elements of Tc N supp(cap) are fired
without backtracking if and only if ty fired legitimately.

Prior to prove Theorem 2, first it must be established that for a reach-
able marking m;, all the corresponding enabled transitions, i.e. T¢g N
supp(ap), are able to be fired in some order. Formally, it is presented
in the following Lemma. This Lemma can be extended to all reachable
markings from mgiqrt 10 Meng.

Lemma 2. Let Parikh vector op”, system net SN = (N, Mgstart, Mend) and
an arbitrary marking m; # menq. Vt; € T, cNsupp(op), there exists at least
one sequence of transitions oo such that supp(co) C supp(cp), o < op
and O/'a[tj] = Ej\a[tj].

2 Remember that &p is the solution of Eq. 3.2 in Chapter 3.

96

Proof. The proof has two parts, the first part shows the existence of oo
and the second part establishes there is a sequence of firing whose Parikh
vector is 0. The second part is crucial due to the fact that Parikh vectors
in general are not guaranteed to be executable (see the example provided
at the end of Sect. 2.1.1.2), and reach us to the final marking from an
initial marking.

e Part 1:
This part proceeds by contradiction. Consider a transition like ¢; €
Te N supp(ap) with apt;] = n;. To proceed, separate situations are
considered as follows:

1. Let £(tj) = a; € supp(c) with &[a;] = n, in other words for tran-
sition ¢; the corresponding events, i.e., a;, happened n times in
the observed trace o. Let’s assume that it is able to fire only
n; times, with n; < nj;, and there is no Parikh vector to fire
it n; times. In other words there exist no oo as stated by the
lemma. But this is impossible due to violation of the following
constraint of Eq. (3.2) in Sect. 3.4:

olaj] = X[t;] + X°[t;] + Res® where n=n;j+ns+ng
—_ e e

n n; no n3

Stated differently, n; times firing of ¢; makes the equality sign
7 =" to become ” > 7 since the difference value n; —n; cannot
be compensated by other terms in that equation. Therefore
there is a Parikh vector 6o in which ¢; fires n; times.

2. Let £(tj) = a; ¢ supp(c), in other words t; is a skipped tran-
sition. Now suppose that it fires only n; times, with n; < nj,
i.e., there is no Parikh vector like g0 to fire it n; times, and for
the next markings all the enabled transitions are fired without
violating any constraints with the absence of some ¢;. But, this
is im[/)gssible b/e\cause in that case at the end we reach a solution
like o with o/b[t;] < aplt;] such that the objective function

related to o', is greater than its counterpart, which corresponds
to op whereas the later is supposed to be the maximum one
based on given constraints in Eq. (3.2). Therefore there is a
Parikh vector g¢ in which ¢; fires n; times.

o Part 2:
Suppose that 6p[t;] = n; > 1, this means that ¢; might be in a loop
and the aim is to show that there exist a firing sequence in which t;
fires n; times.

3 In case of multiple transitions with the same label, for the sake of simplicity and comprehen-
sion the other corresponding terms are represented by the residual term, i.e., Res.

Local Search Optimization Approach 97

1. Lets first assume that it is in a loop. In this case given the
system net, i.e., SN, one can easily form a cyclic allocation «
according to Def. 10 with a non-empty domain C which contains
tj. Then based on Cyclic Allocation Lemma presented in [23] for
live and bounded FC-models* there exist an occurrence sequence

Mastart 38—5> such that:
— x is a finite and contains no transitions of C
— ¢ is infinite and contains only transitions allocated by «

The mentioned Lemma states that there exist a firing sequence
in which ¢; fires n; times.

2. Lets assume that ¢; is not in a loop, then there should be enough
tokens in *¢; such that if fires n; times since otherwise it violates
the soundness property of the given model.

O

It must be emphasized that Lemma 2 declares, given marking m;, for
all enabled transitions of supp(ap), there exists at least one firing sequence
according to their occurrences. It does not claim that all elements in op
are able to be fired in some order entirely. Also, the following consequence
can be obtained from Lemma 2.

Lemma 3. For an arbitrary marking m;, let tp € Tc N supp(op) and let
without loss of generality aplty] = ny, = 1°. Then by virtue of Lemma
2, there exists a sequence of firing, or,,, where supp(or,,) C supp(cp),
with op,, < op such that the following holds, m, = m; + N - or,, where
*t < my.

e e R e e e e e e

(a) (

o
=

Figure 5.7: (a) Process model N5, (b) Parikh vector.

4We can easily make SN live by connecting the final place to the start place by a silent
transition 7, a fact that does not harm the proof since the lemma holds for the elements
different from 7.

5 This corollary can be rephrased for ny, > 1 easily, but to keep things simple it was presented
for np = 1.

98

Lemma 3 states that given an arbitrary marking m;, Vi € To N
supp(ap), *t; will get or remains marked such that t; be able to fire ny
times. To clarify this issue, a simple example is provided. Consider the
model and op in Fig. 5.7 (a), (b). Take a closer look at t7, tg, tg € supp(cp)
with op[t7] = op[ts] = op[te] = 1 which are highlighted. Based on Lemma
2 given that they are enabled, there exists at least one firing order which
contains them, for example tgt7tg or t7tgts are two firing orders. Note that
according to Lemma 3 the set of places {pg, pr} = ®t7 = °tg = °t9 remains
or gets marked to let t7,tg and tg get fired according to the mentioned fir-
ing sequences. At the end of this example it must be stressed that Lemma
2 and 3 state that for an arbitrary marking there is at least one order of
firing to fire all transitions in T Nsupp(op) according to their occurrences.

Now based on Lemma 3, the proof of Theorem 2 is as follow:

Proof. Tt is assumed that the model is deadlock free (except the final mark-
ing mepg = {pe}). We proceed by contradiction, namely, legitimate firing
of a transition causes to miss at least one of its enabled siblings, therefore,
backtracking is required. Stated differently, given the context provided by
Def. 28, to fire t; after t;, backtracking needs to be done. But this is
impossible due to the following argument. Firing ¢; consumes tokens from
t, = t; that might make it unmarked which in that case based on Lemma
3 there is a set of transitions like Ty which marks *¢;. On the other hand,
based on the firing policy in Def. 27 all the elements in Th; are at most
as close as t; to the final marking since otherwise based on Def. 27 they
are fired earlier. Hence there is an arc-back path from T); to elements
of *t;. By the deadlock free assumption of the model this path amounts
to D(ty,t;), thus if D(t;,t;) # oo then the places in °t; are marked and
therefore t; is fired without backtracking. O

In Def. 28 if ¢, was unable to be fired legitimately, another candidate
in Tg which fulfills Def. 28, will be selected and fired. Therefore, t;, would
be the last transition to be fired for that marking. As an example, consider
again the model in Fig. 5.5, based on the provided marking, t3 and ¢;¢9 are
enabled, D(t3,p.) = 7 and D(t19,p.) = 5, and *t3 =* t19, but because of
D(t3,t19) = 00, i.e., there is no direct path from t3 to t19, the former is
unable to be fired legitimately, therefore ¢1¢ is fired instead.

The replaying approach presented in this chapter avoids the necessity
of backtracking, guarantees that the policy based on the legitimate firing
will not miss the firing of any enabled transition encountered during the
process. Nonetheless, for a given system net SN and op, regardless of
replaying approach the final marking me,q is reachable. More formally it
is stated as follow:

Theorem 3 (Reachability of the final marking). Let op be the Parikh
vector which is computed based on Eq. (3.2) in Sect. 3. for a given
system net SN = (N, Mstart, Mend), then Jog such that o < op and

Mstart [UR>mend .

Local Search Optimization Approach 99

Proof. Since SN is a WF-net, let *menq = {tena} and me,.p = {tstart}s
stated differently ts¢q.+ and t.,q are the only transitions of the model which
consumes token from the initial marking and puts token to the final mark-
ing respectively. The first part of proof proceeds by contradiction. Assume
that there is no o by which me,q is reachable. Since t.,q is the only
one element which marks me,q this assumption indicates te,q ¢ supp(or)
which implies te,q ¢ supp(cp). But this is impossible since in that case
the solution of Eq. (3.2) is infeasible and there is no solution. Thus ¢c,q
will be fired. By the same token tgs,+ Will be fired because it is the only
one transition of the model which consumes the initial token. Put it differ-
ently tstart, tend € supp(dr). The second part of proof continues as follow.
Due to firing of t.,4, some elements of op, denoted by @6 must be fired
to mark °t.,q since otherwise some tokens will be missed and therefore it
contradicts the solution of Eq. (3.2). Also, there is the same argument for
elements of op, as well, and it continues until we reach transition(s) of the
model which consume(s) the produced token(s) by tsqrt. More formally:

Mend = Mg + NXgi1, Xit1ltenal =1, o/w 0 and mg >0
mp = Mmg_1 + NXk, Vit € E}Z,X}c[t] = 1, O/W 0 and mg—1 >0

mo = mq + NXo, Vt € op,, Xo[t] =1, o/w 0 and my >0
m1 = Mgtart + NX1, X1 [tstart] =1, O/W 0 and mgpare >0

This argumentation establishes the existence of a sequence like o by which
the final marking m,,q is reachable from mgu+ and og < op. d

It is worth stressing that the existence of a firing sequence given a
Parikh vector is only guaranteed for weakly sound bounded free-choice
models, and not for more general Petri net classes. A representative exam-
ple is as follow, consider the the model in Fig. 5.8 which is not a FC-net
and an observed trace o = ajasagagag, the computed Parikh vector based
on Eq. 3.2, i.e., op, contains ty, to, ts, tg, tg which is not realizable in the
net.

6 1f supp(Gp,) > 1 then these elements are fired concurrently, i.e., there is no causality among
them.

100

Figure 5.8: Limitation for non free-choice models.

One can see that despite of having a feasible solution for the optimization
problem in Eq. 3.2, i.e., ap (see below that all constraints are satisfied) it
is unable to be fired and reach us from initial marking p; to final marking

Pe-

th (1 p1 /0 m 1
ta| 1 p2[0 p2| 0
t3 0 aq 1 pP3 0 p3 0
t41 O as | 1 pa| O ps| O
61\3: ts | 01, o= ag | 1|, Mena= ps | 0 |, Mstart= 05 0 |,
te 1 as 1 Pe 1 Pe 0
t71 0 ag \ 1 pr| O pr| O
ts| 1 ps| O ps| 0
to \ 1 po \0 P9 \0

Mend = Mstart + N.OP,

P

oplt1] = ola1] =1,
oplta] = olag] = 1,
aplts] = Tlag] = 1,
oplts] = olas] = 1,
oplto] = Glag] =1

Indeed whenever places ps and ps get marked then tg and tg can fire spu-
riously, namely they make negative marking for p; and pg and fill in these
transitions at the same time.

The mechanics of executing op are demonstrated by Alg. 5, 6 and 7.
The global variables are: op and its support, which are computed as shown
in the previous section, the distance matrix D and the system net, SN.
Alg. 5, for a given marking, i.e., meyur, identifies the farthest transition
and its siblings, i.e., tx and Tg, among the enabled set of transitions in
supp(ap), line (5-7). If Tg = ¢ then tj is fired simply and the current
marking, My, and op will be updated accordingly, line (8-10), otherwise
it is examined whether it can be fired legitimately, line (12-15). If ¢;, was

Local Search Optimization Approach 101

unable to be fired legitimately, other candidates in T are examined in
the same way until one could be fired legitimately, line (17-23). Alg. 5
continues this procedure until it reaches the final marking, hence there is
a loop in line 4. Notice that silent transitions, i.e., £(¢t) = 7, are removed
from the computed oy since they are invisible.

At the end one can see that for the presented approach the distance
matrix D is computed once for a given model and event log. So the time
complexity is Maz{O(|P|+ |T|)3, O(||cp|1)} where the first term denotes
the time complexity of computing D by Floyd-Warshall algorithm which
relays on the number of places and transitions in the model, and the second
term represents the number of elements in the Parikh vector p which are
supposed to be replayed.

Algorithm 5 EXECUTE op

1: Input: Global Variables supp(cp), Dy SN(N, Mstart, Mend)
2: ON — ¢ D> Initialize the modeled trace
3 Meyrr < Mstart
4: while (supp(op) # ¢ A Meyrr # Meng) do
5: To < {t € T|*t < meurr[p]} D> Enabled transitions in the .
6: Te < Te N supp(op) > Enabled transitions in supp(op)
7 Ts, ti, + MAX_DIST(T¢) D> Finding the farthest transition and its siblings
8 if Tg = ¢ then
9 FIRE_UPDATE(t) > Firing and updating the marking of the model
10: ON < ON + Tk D> Concatenating the fired transition
11: else
12: Paths« {C S N|E|7fj €Tg, D(tk,t]‘) = C}
13: if Paths # ¢ then > Examine the legitimacy definition
14: FIRE_.UPDATE(ty)
15: ON < oN + T
16: else > Violating the legitimacy definition
17: while Paths = ¢ do > Looking for another transition, i.e., sibling of t
to follow the legitimacy definition
18: Ts + Ts — {tx}
19: Ts, tp + MAX DIST(Ts)
20: Paths« {C S N’Ht]’ €Tg, D(tk,tj) = C}
21: end while
22: FIRE_UPDATE(ty)
23: ON < oN + 1
24: end if
25: end if

26: end while
27: Return oy

102

Algorithm 6 MAX _DIST

1. Input: T;, D> Ty, is a set of transitions
2ty < {t € Tin|Vt; € Tin, D(t) > D(t;)} > Farthest transition, i.e, t
3: Tg < {t; € Tin|®t; =t} D> Siblings of amaa
4: Return Tg, t;

Algorithm 7 FIRE_UPDATE

1: Input: t;

2. Initialize X with 0, X[t] < 1

3 Mpegt = Meyrr + N - X

4 opltg] < oplty] — 1 D> Updating o'p
5. Update supp(c'p)

6: Meyrr — Mpext D> Updating the current marking
7. Return

5.3.3 The feasibility of executing op

It is worth to point out that in the procedures just mentioned for executing
op to obtain oy, oy < op. This is due to the fact that computing op by
the formulation in Eq. (3.2) relays on marking equation, i.e., Eq. (2.1),
therefore on occasions it may have spurious elements, i.e., those which are
not reachable during replaying. Therefore in the worst case no complete
modeled trace oy with the following condition i.e., oy = op, is guaran-
teed to be generated neither by the proposed approach nor other replaying
techniques. But based on the following Theorem, the proposed approach
always finds a sequence like oy such that mgyart[oN)Mend.

Theorem 4 (Existence of the modeled trace). For the proposed replaying
approach given the contexts of Def. 27, 28, oy where oy < op such that
Mstart [UN>mend-

Proof. The proof proceeds by contradiction. Suppose that for the proposed
approach foy such that mert[0N)Meng. As such, it means the proposed
technique reaches to an arbitrary marking m; # mepq for which there are
no enabled transitions, i.e., T = ¢. But this is impossible due to the
following reasons:

1. There is no deadlock in the model (except the final marking)

2. By virtue of Theorem 3, Jogr such that mgeri[oR)Meng therefore
the initial assumption made at the beginning of the proof implies
backtracking since m; > 0 and m; # meyqg but it contradicts the
presented replaying technique since by virtue of Theorem 2 it does
not backtrack.

Therefore the presented technique finds a sequence like oy such that
Mstart [UN>mend- O

Local Search Optimization Approach 103

Theorem 4 states that the proposed technique finds a sequence like oy
by which my,q is reachable from mgert, in other words the technique is
complete. The following theorem proves that oy is the longest sequence
among the existing sequences by which the final marking is reachable from
the initial marking.

Theorem 5 (Length optimality of modeled trace). Given the context
of Theorem 4, fo’y where oy < gf\\, < op and |on| < |o%y| such that
Mstart [0’ §V>mend .

Proof. We present the proof by contradiction as follows. Suppose that 3o’
where oy < U/E\V < op and |on| < |oly| such that mgart [0y)Mend, in other
words Jt; € supp(g;\,) but ¢; ¢ supp(cy). The mentioned assumption im-
plies that there is marking m/ such that *¢; < m/ and it is not met while
on is being obtained. But this is impossible to have such an interme-

diate marking for the following reason. If we consider the corresponding
reachability markings for two sequences, i.e., on and o'y, as follows:

tstart tend
Mstart ——7 "My "+ — Mepd, ON
tstart tj / t; / tend /
Mstart Pt MMy o My = My g > Mend, Y

Then to reach m/ some transitions like tj7 from the previous marking, lets
say m;, must be fired. If m; is reachable while oy is being replied then m;
is also reachable by virtue of Theorem. 2, since all the enabled transitions
of m; will be fired. Indeed it is impossible to have such a marking like m/,
and corresponding previous markings like m; which are not met while oy
is replayed since the initial marking of both on and Uﬁv i8S Mstart-

O

Since oy < op then some elements of op are spurious, i.e., never get
enabled, and hence will not be fired. This is regardless of having well-
formed or not WF-net models, but for unstructured models, i.e., Spaghetti,
op may have in general more spurious elements. To enlighten this issue
consider the model Ng in Fig. 5.9 (a) and observed trace o = t1tatstrtststio.
The computed Parikh vector ap is represented in Fig. 5.9 (b). One can see
that oplts] = op[te] = op[t7] = 1 whereas the corresponding counterparts
in oy are zero. This is because those elements are spurious and never
get enabled while op is being replayed; also note that they do not violate
constraints of Eq. (3.2) while op is computed.

5.4 Aligning ¢ and oy

This section is centered around aligning a model trace oy, computed in
the previous section, and an observed trace 0. The computed alignment

7 To make everything simple assumes only one transition is enough. It can be easily rephrased
for the case with many transitions.

104

ty
P / ps Dg

@*tlf(}*tz*@*ts* tio PO
p(

(a)
to/1 t /1 4 /1
ity 1 1o 1 1) 1
t3 | O ts | O t3 | O
| o t o t |0
R ts 1 R ts 1 A 5 0
A o= 11 M=l o
i1 t |1 t | o
te | 1 ts | 1 s |1
to | 0 to | 0 th | 0
tip \1 tip \ 1 tio \ 1

on = titalslig
(b)
Figure 5.9: (a) Process model Ng, (b) Related Parikh vectors.

is called initial or base alignment, oy. It is called initial, since its fitness
value might be improved in the next stage.

Since both o and o can be seen as strings, we can adopt string match-
ing algorithms to compute «p. The string or sequence similarity problem
is a well known problem in computer science, that falls under the class
of algorithms computed efficiently through dynamic programming. Giving
two arbitrary sequences, instead of determining the similarity between se-
quences as a whole, dynamic programming tries to build up the solution by
determining all similarities between arbitrary prefixes of the two sequences.
The algorithm starts with shorter prefixes and uses previously computed
results to solve the problem for larger prefixes. To this end, Needleman-
Wunsch algorithm [59], attempts to maximize similarity between the two
input sequences by employing a scoring matrix to penalize gaps and mis-
matches among them. The scoring matrix can be obtained by aligning the
corresponding two sequences. Formally, the alignment of two sequences
defined by [59] in the organized way is as follow [58].

Definition 29 (Alignment of Sequences). Assume that S represent the
alphabet and let So and Sg be two members of ST with length m and n

Local Search Optimization Approach 105

respectively. Let | denote the empty set, then:

is a match, if A€ Sy, Be Sp and A=B

(4, B)

(A, B) is a mismatch, if A€ Sa, B € Sp and A# B
e (A, B)isagap, if A=1 and B € Sp

(4,B)

° is a gap, if A€ Sy and B=1

If the set of moves is shown by Sy then given an alignment o € Sy, the
projection of the first element (ignoring L) results in Sy4, and projecting
the second element (ignoring 1) results in Sp.

In Def. 29, match and gap are the same as synchronous and asynchronous
moves in Def. 16, but mismatch has no counterpart in the former. So after
aligning modeled and observed trace, i.e., o and o, by this method, if a
mismatch pair (X,Y) with X € 0,Y € on and £(Y) # X occurs, then it
will be transformed to (X, L) and (L,Y") to preserve properties of Def.16.

To this end, a primary matrix is created, where the first row and col-
umn are filled by observed and modeled traces respectively, as depicted in
Fig. 5.10 (a). The second row and the second column are initialized with
numbers starting from 0,-1,-2,..., they are depicted in yellow color in the
figure. The task then is to fill the remaining cells with the recurrence Eq.
(5.1), in which § represents the gap penalty, and s(¢;, a;) represents both
the match and mismatch cost between two elements ¢; and a; which are
modeled and observed trace elements, respectively.

SIM(ti—lvaj—1)+s(tiaaj) ﬁ If g(t) _
SIM(ti,aj) = MAX SIM(ti,h(lj) — (5 s(ti,aj) = N
-8 If Ut;) #
SIM(ti,aj,ﬁ -9
(5.1)

To enlighten of how to fill the scoring matrix, consider oy = t1t4tstg
with £(t1) = a1,€(t4) = aq,l(t5) = as,f(tg) = ag and observed trace o =
aiaqag. Also assume § = 1 and § = 1. Generally speaking, by the approach
of [59] filling the primary matrix is as follows: start from the up left corner
as depicted in Fig. 5.10 (b). Move through the cells row by row, calculating
the score for each cell by Eq. (5.1). The score is calculated as the best
possible score (i.e. highest) from existing scores to the left, top or top-left
(diagonal). When a score is calculated from the top, or from the left this
represents move in model and move in log in the alignment respectively,
see Fig. 5.10 (¢). When the score is calculated from the diagonal, this
might represent a synchronous move between two elements in the final
alignment ®. The final scoring matrix is depicted in Fig. 5.10 (d). Once

8 In some situation as mentioned in the context, alignment (A, B) might represent a mismatch,
hence in this case it will be decomposed to (A, L) and (L, B) to obey Def. 16.

aj

a;j

106

it is computed, given § and [, the bottom right entry of the matrix gives
the maximum score, i.e., the number which indicates maximum similarity
among the given strings, among all possible alignments.

(a)
a1 a4 g
0 |-1]-2]|-3
t, | -1
ty | -2
ts | -3
tg | -4
(b)
] (41X} ag
0 -1[-2]-3
ty | -1 |1
ty | -2
ts | -3
tg | -4
(c)
a7 4 g
0O |-11|-2]-3
tl -1 1—-0
ty | -2
ts | -3
te | -4
(d)
a1 4 (g
0O | -1]-2]|-3
tb -1]1 o [-1
ty | -2 |0 |2 1
ts | -3 | -1 |10
te | -4 -210 |2

s(ti,a1) =1
s(ty,) SIM(0,0) 4 s(ti,a1) =1

SIM(ty,a1) = MAX { SIM(t;,0) — 1 = —2
SIM(0,a1) — 1 = —2

Ma) ==L (GrN 0, a1) + s(t1,as) = —2

SIM(t,,ay) = MAX { SIM(t;,a;) — 1 =0
SIM(0,a4) —1=—3

slte, ag) = 1 SIM (t5,a4) + $(ts, as) = 2

Sfﬁf(fbab) =MAX Sfﬂ’f(fb(LL) —1=-1
SIM(ts,ag) — 1= —1

Figure 5.10: (a) Primary matrix, (b) and (c) Filling the matrix, (d) Final
scoring matrix

Local Search Optimization Approach 107

ty | -1

te | -4 | -2

ap—= }

Figure 5.11: (a) Trace back of the scoring matrix, (b) The computed align-
ment

To compute the alignment that actually gives this score, we start from
the bottom right entry, and compare the value with three possible sources,
i.e., top, left and diagonal to identify from which one of them it came
from. Obviously if it was fed by a diagonal entry, it represents a syn-
chronous moves between corresponding elements. If it was fed by a top or
left entries, then it represents an asynchronous move or a gap, see Fig. 5.11
(a). Following the above described steps, the alignment of two sequences
can be found which represented in Fig. 5.11 (b). Note that given § and
B, the score of ap is (+1)+(+1)+(-1)+(4+1)=2. Also based on Def. 18 in
Chapter 2, Sect. 2.2.3, by assuming 6g = 6;, = dps = 1, ap has the fitness
value, 1-1/4 or 75%. The important point to be noted here is that in some
situations there may be two or more possible alignments between the two
sequences which has the same maximum score, i.e., a3 is not unique.

The corresponding procedures for computing «y is represented in Alg.
8 and 9. Alg. 8 starts to compute the scoring matrix M for given oy and
o by initializing it, lines 4-9. Then, it fills each entry according to Eq.
(5.1), lines 11-21, and at the same time for each entry books the source of
the computed score, i.e., top, left or diagonal, in matrix S, line 21. Alg.
9 to obtain «p uses the source matrix S to trace back by starting at its
right bottom element S[|on|,|o|], lines 3-4, to find a path to the top left
element S[1, 1], lines 5-16. According to the content of the element under
consideration, the corresponding synchronous or asynchronous moves are
added to 3. This procedure continues until it reaches the top left element.
The time complexity of computing «y is related to the computation of
scoring matrix M, which is O(|on| * |o]).

108

Algorithm 8 Align o, oy

1:

N

@

© ® T > g

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24:

Input: o, oy, ¢, 8, 0 D> ¢ is the labeling functions of transitions in o
M <+ ¢ D> M is the primary scoring matrix with dimension (|on| + 1) * (|| 4+ 1)
S < ¢ D Sis the source matrix with dimension (Jox|) * (|7]) which books the source of
scores
for i - 0 to |o| do D> Initializing the first row of M

MI0,i] —i
end for
for j < 0 to |on| do D> Initializing the first column of M
M[]a 0] A _j
end for
for j < 1to |oy| do D> Filling the scoring matrix M
for i < 1 to |o| do
if ({(on[j]) = oli]) then D> Match between elements
s(onlgl,olil) < 5
else D> Mismatch between elements
s(onlfl, ofi]) = =5
end if
diag < M[j — 1,i — 1] + s(on|j], oli])
top « M[j —1,i] =9
left < Mj,i—1] — 9
M]j,], S[j, 1] =Max(diag, top, left) > Computing the maximum score

and the name of the source, i.e., diag, left, top
end for

end for

Return M, S

Algorithm 9 Traceback

e e e e o
U T A =

Input: S > S is the source matrix computed by previous algorithm
ap — ¢
: j < |on| [> Trace back from the bottom right element of S
i+ |o|
while (i £ 0V j # 0) do
if (S[j,1] =diag) then o < o + (o[i], on[j]) D> Synchronous move
14 1—1
J=g—1
end if
if (S[j,1] =top) then o < ap + (L, on[j]) B> Move in model
Je=g—1
end if
if (S[j,1] =left) then a; + ap + (oi], L) I> Move in log
1 1—1
end if
: end while

Return oy

Local Search Optimization Approach 109

5.5 Fitness improvement by local search

Having aligned o and oy only provides the optimal alignment between
these two sequences and it is not guaranteed that it is the best one by
which the model mimics the observed trace. The root cause of this problem
is not difficult to grasp and as mentioned, comes from the fact that there
may be several traces which can be obtained by executing the computed
Parikh vector op. Therefore the initial computed alignment oy in Sect.
5.4, might be far away from what is desired, i.e., the optimal one.

This section is centered around of reordering the initial alignment ay,
with the aim of improving the corresponding fitness value. This is obtained
by trying to increase the number of synchronous moves between observed
and modeled traces, given that the modeled trace oy remains executable.
More rigorously, the reordering of a4 can be accomplished by a local search
approach in which a move in log, i.e. (a;, L), will be merged by the corre-
sponding move in model, i.e., (L, ;) and £(t;) = a;, to make a synchronous
move, i.e., (a;,t;). This can only be done if: first, the resulted modeled
trace remains executable, and second, the order of events in the observed
trace remains unchanged. The iterative approach stops once no more merg-
ing can be made. To clear up this idea, first the formal definitions will be
presented and then an illustrative example will be provided.

Definition 30 (Alignment reordering). Given a system net SN (N, msart
,Mend) and an alignment «. Let o, and o | be the projection of o onto
the first and second elements (including L), respectively. The move in log
(aj, L) with a; = o [i], can be merged with the move in model (L,t;) with
tj = on,1[j], to make the synchronous move (a;,t;) given that the following
conditions are met:

[] E(tj) = ay

e After merging, the new modeled trace O'?V’J_ with the following changes:

on,Lk] ifk#i,j
onL[k] = {1 if k=3
t; if k=i

must be executable, i.e., (N, mstart)[aﬁv7L>(N, Mend)-

Def. 30 states that, the reordering of an alignment like @ via merging
the corresponding moves in log and model, i.e., increasing number of syn-
chronous moves by flipping corresponding elements in oy, , results in
improving the fitness value of «, i.e., m,. Stated differently the merging is
a means by which the number of asynchronous moves in « are decreased.
As implicitly stated in Def. 30, it must be emphasized that, after merging,
the order of events in the given observed trace, i.e., o, will not be changed.

Based on Def. 30, the reordering of the initial alignment «y, is done with
the aim of increasing the number of synchronous moves between modeled

110

and observed traces. It can be done in an iterative way as long as no more
synchronous matching can be obtained, hence the arc back from fitness
improvement part to computing alignment part in Fig. 5.1.

as

a6 a22
p a as @&@E—)
MY S i B o e X e
P2 @@@‘O/ ag P6 ay P26
P4 aqy; P20 ay P23 7 D5

(a)

Ozb:| a1 ‘ Gz _ 1 | a22. a21‘ G17| 1 | g ‘ a16|
| tir| L tor| L | toa| 6 | tos]
(b)
o :‘ ax ‘ a2 . 1 ‘ a22| Cl21| a17| Qg | alﬁ‘
’ |t | b tir| taz| tor]| L | tg | tos]

(©)

~
—
Sl
o)

Figure 5.12: (a) Process model N7, (b) Initial alignment ay, (¢) Alignment
after reordering

To illustrate how the reordering of an alignment works, a simple ex-
ample is presented. Consider the model and initial alignment o in Fig.
5.12 (a), (b) respectively. The appropriate asynchronous moves which are
candidate to merge and create corresponding synchronous moves are high-
lighted with the same color in Fig. 5.12 (b). One can see that (ag, L)
and (L, t16), highlighted in green, can be merged to make the synchronous
move (aig6,t16) and the resulted modeled trace remains executable. There
is the same story for moves (L, %22), (ag2, L), highlighted in blue, to make
(a2, t22). Notice that two synchronous moves (L, t17), (a17, L) can not be
merged since otherwise the resulted modeled trace is not executable, put
it differently, in that case, to; will be fired before ¢;7 which causes to lose
one token in pog.

5.5.1 A large example

This subsection presents a large example, to shed light on how the fitness
value of and initial alignment, «p, can be significantly by the reordering
technique in Def. 30 just mentioned in the previous section.

Consider the model in Fig. 5.13 (a), observed and modeled traces o, oy
in Fig. 5.13 (b). on was computed by the method in Sect. 5.3. Notice that

Local Search Optimization Approach 111

in the model, for the sake of simplicity, the subscript of each transition and
its label are the same except those highlighted, which represent transitions
with the same label. The initial alignment oy, its fitness m,,, and oy | is
depicted in Fig. 5.14 (a), (b). For the moment we ask the reader to ignore
highlighted parts.

The initial o is far from the optimal alignment. As mentioned al-
ready, this problem might be somewhat alleviated by reordering ay, i.e.,
by merging the appropriate moves in log and model, to improve the corre-
sponding fitness and preserve the executable property of the modeled trace
simultaneously.

For example in Fig. 5.14 (a), the asynchronous moves (a3, L) and
(L,t3), highlighted by green color, can be merged to make a synchronous
move (as, t3), highlighted with the same color in Fig. 5.14 (b). Notice that
the resulted modeled trace remains executable. The same holds for asyn-
chronous moves (ag, L), (as, L), which can be transformed to synchronous
moves (ag, tg), (as,tg) by the corresponding merging which is highlighted
accordingly. It is worth to note that (a9, L) and (L, t19), highlighted with
red, are not allowed to be merged to (ajg,t10), because in that case the
resulting modeled trace is not executable. Also note that (a9, L) and
(L, t18) can be merged without violating any conditions mentioned in Def.
30, as depicted in Fig. 5.14 (c) highlighted with gray. The same holds
for (ag3, L), which can be merged with its counterpart move in mode, i.e.,
(L,t22). The corresponding merging is depicted in Fig. 5.14 (e). The
last two merging reveals that transitions with the same label do not pose
any challenges during the reordering of ;. The final alignment and cor-
responding modeled trace, where no more reordering can be applied, are
represented in Fig. 5.15 (a), (b).

To measure how much the fitness value is improved for the mentioned
example, one can see that for the initial alignment «p in Fig. 5.14 (a),
based on Def. 18 (see Chapter 2, Sect. 2.2.3) with dg = 1, = 2, and
oM =2, Ty, =1— % = 0.139 and for the alignments depicted
in Fig. 5.14 (c), (e) after merging highlighted moves are 0.188 and 0.25
respectively. Finally, the alignment «, see Fig. 5.15 (a), for which no more
fitness improvement can be obtained has 7, = 1 — % = 0.675,
which represents rather magnificent fitness improvement, even though it
is not the optimal one. The optimal alignment a,pt, with m,,, = 0.764,
for the mentioned example provided by state of the art approach [5] is
depicted in Fig. 5.15 (¢). One can see that the only difference for this
example between our approach and the approach in [5] is the synchronous

move (t10,t10) in Qopt-

112

(q)
mmwmmwﬂmw/ I ‘_nmw cmwﬁwmmewmﬂnnmﬂwnnﬁ:wwwmmmmwmwhwcwmm”wm”wm;w:wwﬁwﬂmwﬁw — No
SeplepFeptlptdp 0eplepblpVlpSlpeepFiplip0lpSpipYpbplpdpitppeiplipdlpFpiply = A?_«buﬁw
REpTpFepLeptep 1ep0Tn6lp 6IpSInRepTInlinIen SEptinCiplintp0Iptpln8nIntninly = o

()

-0 [
£ep sed 1zp
/o510

6ed gop sed grp zed

OO

6Tp Ted

o0
L1 zip od
B O -0 o
ed wd ggp 0 ey fid erp /o E O "D

9id 11 vid

AIETO.IETO ed v

otd
5o l-o- -0
o1 td sp £n

EED

Figure 5.13: (a) Process model Ng, (b) Observed trace o and modeled trace

oy with and without labels

113

Local Search Optimization Approach

mmwwmwwww mmw T Cmm—muw:m—wcim—wmmw T w—wn__.mwc_w TT mw T cmw T mw T hw TT mmw TT m—w,. ...:ucum:_ ,..wwmu—u — TNp

_ TXETHTXITHIXOT |21

5ty _ﬂ,ﬁ _NE _«_E _ T _CE TE T:u T.E _@:

. 1 _ m
rall] THRETFEXTT =4

o1y _.o_f _ T _ﬂ,:
S ~u_ _

?N.& Feén _mw,_.u _mmd _—N.E _:N._c 7 T ?ﬁﬁ ?:u _ T T HED _w.:c
sl Tl | T | T T T e T T e %] %y I I
o T o |7 [[v 7o o | T [| T (sl T [T o] =

|2 o | 7| T
_pm,z _ T _cm.c tEp

—

mmwmmmwmu
T w—wmwwmmw T CNw—Nu T m—wc_uﬁw—wmmw T w—wn__.mwc_w TT ww T cmw T o.w T |__.w TT mmw TT m—w.. ...:wcwm—w_ ,_._r\wmu_w — TNop

ep o GXSTHTXETHIXET 4 ¢ T
8810 = “Fxarramer ~ — 1= X <1

2y Tm“ _ T _m: _.o_ﬁ _mmu _ T _cﬂ TE _ T T.:“ _@:
STp T,NE _mN,_(._ _ T _.mm,b _ T _—m.c _cm.c 7 T _mﬁﬁ 72.& _ T

a1
I L Wl o e o o 2 o o 20 W e o 0 70 A S o B T
[2e0 | T [%®n (o | T | T [T | T w0 | T[] 78] T|%]T Tlw|w]

o _ T |¥En _25

1y _.o_ﬁ _ T _wc
%)

mmwmmwwmw T m_wmmwmmw
T Eww-mw T m—wc-wr_—wmmw T w-whmw:C T9T mw T cmw T m_w T bw T cuml_L.:wu T £7 T m—w T :wl_|m—w|_rawmw_w = T'Np

crepn _ DXOTHEXRIHIXIT _ 9 . o ,)
@mﬂolowé%lﬂl 0y 87y |97y T.S _ T 814 _.oﬁ _NS T |ozg |12 | T |61y _@:

8Ty |STp ﬁms _mm_c T _.o_m,a _ T [en [0en | T [610 [61m _ T

Ly T8 vl v et 7% w1 K el T e o N el R N L
o | %o [TS0 | T [TEe | T T] T Tl | T T8 T7[%] T EIE

w—m emm T w—m
“Tp | T [¥%Ew [FIp

)]

(p)

(q)

Figure 5.14: (a) Initial alignment, (b) Initial modeled trace including L,

(c)-(f) Alignments and modeled trace after some adjustments

114

©)
‘A — CXETTXTHIXIT _ ydop ¢ 8Ty |Gey |¥Ty |cey | €Ty |18y |0Ty |8Iz |61 |9T3 | ST T |82
ﬂ@b O Nme_vNXM ! .F —wmﬁ fm@ —wmﬂ. MNG —mmﬂ. ﬁmd —ONH. mﬁ@ —m:u 1_\ —m,:u wmﬂ. — 1ﬂ

mmw _mﬁw ;Nﬁw _ﬁﬁw ; ww T:w _ m,w 7 @w _ bw 7 ww _ .ow 7 mw 7 Nw _ ﬁﬂ 7|w&06
9Ep _mﬁd _N.—.@ _.:d _ ¥n _Oﬁd _ T _m.@ _ ip _ 8y _ 9p _ £€p 7 n _ 157) 7‘

(q)
wmwmmwwmwmmwmmwHmwomwwﬂw@ﬂwwﬂwmﬂwmmw T wﬂwnmwoawwmwmmwmwmﬂwmaw:www T awhwwwwwmwmwaw — T'Np
(®)
¢ _wmw _mmw _wmw _mmw _mmw _Hmw TUS _wE T:w _@E TE _mmw 7 T _Sw
_wm@ _mm@ _wm@ _mm@ _mmd _S@ ?m@ _3@ Tﬂ@ _ T TA@ _ T 7@ _Ea
mmw_mw_mﬁw_mﬁw_ﬁﬁw_ww_lﬁimwihw_wﬂ_ww_mw_mw_ﬁw_
mm@_%_ﬂa _ﬁa_:d_wa_ﬁd:aia_m@_@a_ma_ma_g_

_wﬁw T‘mw _wmw
_wﬁﬁ _hmd _.omd

o GXVHEXETTXET)
GLO'0 = XV +exe — 1=

_ 189 7 01y _ 989

=0

_hmd 7 T _.omd

Figure 5.15: (a) Final alignment, (b) Final modeled trace including L, (c)

Optimal alignment provided by state of the art approach [5]

Local Search Optimization Approach 115

Algorithm 10 Alignment Reordering

10:
11:
12:
13:
14:
15:
16:

17

Input: Global Variables SN (N, mgtart, Mend)s b

1
2: prev-fitness < 0

3:

4: While (Curr—ﬁtneSS > prev—ﬁtneSS) dO D> Iterate until no fitness improvement can be

curr-fitness<«— g,

made
for (a,-, J_) in Qp do D> Iterate over moves in log
for (J_, tj) in Qap do D> Iterate over moves in model
if (ai = K(tj)) then > Examine whether move on log and model match
if (Merge((a;, 1),(L,t;))) then D> Merging corresponding

asynchronous moves
Break > Break the current loop and start for another move on log
end if
end if
end for

end for

prev-fitness < curr-fitness

curr-fitness < mq,
end while
Return oy

Algorithm 11 Merge

10:
11:

Input: (CLZ‘, J_),(J_, t]) D> Inputs are move in log and model respectively

1
2: ON,L [’L] — tj D> Flipping the corresponding elements to make a synchronous move
3:

4: if (mstaﬁ [O’N’J_>mend) then D> Examine whether the resulted modeled trace is

O'N7L[j] — 1

executable
Update Ty, > Updating the fitness value based on the reordered «;
Return 1

else D> Undo the flipping if oy, | is not executable
ON, 1 [’l] +—1
on,LJ] < t;
Return 0

end if

The corresponding procedures required for the reordering of an align-

ment « are depicted by Alg. 10 and 11. The input alignment will be con-
sidered as the initial alignment, ay. Given oy, for each move in log, (a;, L),
Alg. 10 finds the corresponding move in model (L, t;) with a; = £(t;) to be
merged, then examines whether the synchronous move (a;,t;) can be made
with the use of flipping corresponding elements, lines 5-8. Whenever the
candidate synchronous move is created without violating the conditions in
Def. 30, then it breaks the current loop, line 9, and starts the same pro-

116

cedure for the another move in log”. Merging corresponding asynchronous
moves can be accomplished successfully if the resulted modeled trace oy
is executable, Alg 11, line 4.

5.6 Experiments

The proposed approach in this chapter has been implemented in Python
2.7 as a prototype tool'” and Gurobi [32] was used as the LP solver. The
standalone files for both Linux and Microsoft Windows operating systems
can be downloaded from [73]. The tool has been evaluated over different
family of examples from artificial to realistic containing transitions with
duplicate labels and from well-structured to completely Spaghetti (see full
descriptions of these datasets in Appendix A). The results are compared
with the state of the art techniques for computing alignments [5](A*), and
a recent technique [67], from different perspectives which follow.

e Execution Times Comparison. Fig. 5.16 (a) and Fig. 5.16
(b), (c), (d) provide the required execution times for the mentioned
datasets by the proposed approach, i.e., ILPSDP, and the approaches
[5] (A*) and [67] (DAFSA).

One can see that for all benchmark datasets except Mg, Mg, ML
and Banktransfer, the proposed approach was faster than the A*
approach. For the DAFSA approach, when the state space becomes
large (e.g., Documentflow or most of the rest of the examples) it
cannot handle them. Hence, competency of the proposed approach
becomes more clear in dealing with big models and long traces where
the other approaches need to explore an exponential search space
to the size of the given problem. As an example for prDm6 the A*
approach runs out of memory (N/A in the figure) and the approach in
this chapter can accomplish the task in reasonable time. By the same
token, for realistic datasets the proposed approach is strongly faster
on Spaghetti or unstructured models even when there are many loops
in the model, see the results for Documentflowl, Documentflow2.

Also, it is not difficult to grasp that the required execution time for
the proposed approach is not as sensitive to the number of transitions
with the same labels or size of the problem as the rest of approaches.
Fig.5.16 (b) vividly represents this fact, see M Lsg, ML, where the
former model contains two transitions with the same label and later
have six transitions with the same label.

91t is worth to mention that the approach considered in Alg. 6 is the simplest one to clear-up
the idea in an algorithmic way, obviously for extremely large observed traces incorporating
a hash function to map corresponding moves would be more efficient.

10 The experiments have been done on a desktop computer with Intel Core i7-2.20GHz, and
8GB of RAM.

117

Local Search Optimization Approach

v Xpuaddy ul ‘py ¢y ‘T TV SO[qRI, 998
‘9se)ep 219 IUAS (P) ‘(9G] 1eseIRD 211eIUAG (9) ‘s[oqe] ayeor[dnp [IIm sjasejep o19IUAS (q) ‘jesejep onsieay () :91°G 23

() (@)
[vsavaeg .vop dasdiisgl [vsavaeg .vop dasdiisgl
A 57 87 o4 W W EV 244 W 0 “IIN N TN Y1 T 0
/NV/N i N INVINDNINV IS : s 7ZVIN 7, i Z 7 F/NV/N V/N W v/av/x N
V/NV/N \ it \ 62 € gg /N aama NV 4\ &o: o I8 i 9 ST 69 9€ ;\45/% % /vw /% o op
Loz 7 7 T Tt 00 % 8 €8 %
@@N@Hw 66¢C ore 007 / i /
IVE / mxw / OON
i 009 16T %
219 = N =
9ge £
008 \m; or &
0007 = =
002'T
626 009
007'T
009°T | vsdvaeg .vop dasdTisg
() (v)
gurad gurgad gurggad guucpad gupd gurgad gury.d 0 IosueIp[uIeg CMOTITDTNOO HBOEQuSsoo%
V/NV/N W V/NV/N W V/N wW\m V/N'V/N W o081 STl 87 7eg 091 187 o661 V2%, 085 aO/T | g aO/T ceq
& m \ G0
GCC'T 3
o 0 000
% w H
jddas 7 8re'e 000 g B
. 5 1 =
TLLY N
4
M 0009
7 00912
098 [vsdvang .vop dasdTisg a7z
00262

0T

118

&> () O) (o) O O
SR | 3 3 $ §
o J F Y ¢ & o
NY NY NY O NS Ny 3>
A
¥ & & & F & & g
1£0°0
¥90°0
110
vz:0
S 170 6v°0
65°0
€90
99°0
)
2,0
68°0
260
60

TUOWOAOIWIT SoN[eA SSOUL LT°C 9INS3I

SNEANE AR

910
810

920 e 920
L el 880
et SE0
€0
8E°0
)

et €50
50
850
. §9°0
sg0 s9o0 ggo 90
89°0

940

680

o OO P

vy

g70 €70
1 1
wo svo g8

A
-00'0
-52°0
-08°0
S9°0
-52°0
680
-00°}

(aw) Aowely painbay

119

Local Search Optimization Approach

(po1) [19] ur pue (Ae1d) [¢] ur yoeoidde o1y ‘(yorlq) yoeoidde pasodoid o1y jo a8esn ATowLIN :8T'G 9IN3I]

%%\%%%%%@@@@@ o PSS

A AR AR AN AR SR M A A R A

T T = == =s E= E= == == - = == == == == == == == m= _ -0
-000}
-000¢
-000¢€
-000%
-000S

00GG< 0066< 008G< 0055< 0066< 00SS< 0066< 0066<

(8IN) Alowapy painbay

120

Table 5.1: Comparison of fitness values

Model | Fitness MSE | Model Ftiness MSE
prAm6 | 0.059 Mg 0.047

prBmé6 | 0 My 0.022

prCm6 | 0.0038 MLy 0.0152
prEm6 | 0 MLs 0.034

M,y 0.0149 MLy 0.051

Moy 0.029 Banktransfer 0.0007

Ms 0.034 Documentflowl | 0.071

My 0.057 Documentflow2 | 0.069

Ms 0.037

e Fitness Comparison. Table 5.1 represents the mean square error

(MSE) of fitness values based on Def. 18, with dg = 1,0r, = 2 and
Oy = 2, between the computed alignments provided by the proposed
technique and state of the art approach in [5] as optimal solutions, re-
spectively''. These numbers simply quantify in average how close the
respective fitnesses are from each other. The results were rounded to
4 digits. Comparisons were done only for those benchmark datasets
whenever the approach in [5] could provide solutions. Overall, one
can see that the approach of this chapter is very close to the optimal
solutions computed by [5] in spite of, size of the model and observed
traces and more specific in presence of loops, silent transitions and
duplicate labels in the model.

Improvement of Fitness Values. Fig. 5.17 reports the average of
initial and final fitness values for the computed alignment before and
after reordering based on Def. 30 for alignment reordering, the range
of a fitness value represents the initial value for the base alignment
ap up to a stable alignment where no fitness improvement can be
obtained. One can see that for large models and observed traces there
is a magnificent jump for the corresponding fitness values and clearly
models with massive parallelizations can get maximum benefits of
the proposed technique, see prDm6, prEm6 and prFmé.

Memory Consumption. The memory usage of the proposed tech-
nique and state of the art approach in [5] and recent work in [67]
for benchmark datasets are represented in Fig. 5.18. One can see
that the proposed technique requires considerable less memory than
state of the mentioned approaches for computing an alignment. Ob-
viously for small and medium models, like prAmé6, prBmé6, prCmo,
Banktransfer, the required memory for the proposed approach is at

1 Since both [5] and [67] provide optimal solutions, we only need to compare the quality with
any of these two approaches.

Local Search Optimization Approach 121

least 10 times less than the other approach and this ratio increases
for large models with long traces. As an example, for prDm6 the
proposed method required around 105MB whereas the state of the
art approach needs more than 5500MB'?. Notice that the memory
consumption of the proposed approach for computing an alignment
is not sensitive to size of the model and length of the observed trace
whereas state of the art approach in [5] is significantly sensitive due to
expanding and exploring the corresponding search spaces, see prDm6,
prFm6, prGm6, Mg, My and Myg. Also, the required memory for
the proposed approach is not sensitive to the labels of transitions
i.e., silent or duplicate labels, see M Lq,..., M Ls. One can see that
for two benchmarks M Lg and M L4 with similar size in both model
and event log but having different number of duplicate transitions,
state of the art approach needs more memory for the one with more
duplicate labels, i.e., M L4 due to backtracking.

5.7 Outlook

A novel light and fast technique based on reordering of the initial alignment,
which comes from replaying the resolution of ILP instance was proposed
in this chapter. The proposed approach after obtaining an initial solution
does iterate over it to find a better one. It must be mentioned that other
heuristics can be applied to have an initial solution which definitely affects
the next step. The technique has been implemented into a publicly avail-
able tool, and the evaluation shows promising capabilities to handle large
instances including loops, silent transitions and transitions with duplicate
labels. The evaluation reveals that this approach has good performance in
different perspectives, and can deal with large and as well as Spaghetti and
well-structured models.

12 For each of benchmark datasets prDm6, prFm6, prGm6, Mg, My, Mg, M L2 and M Ls the
required memory for [5] is more than 5500MB but due to limited amount of memory of the
machine by which the experiments were done, the total required could not be measured.

Chapter 6

Genetic Algorithm
Optimization Approach

6.1 Introduction

This chapter proposes an evolutionary technique to approximate multiple
optimal alignments. We trade-off computation time for memory, i.e., as-
sume that in some contexts, it is acceptable to spend more time in the
computation, provided that the memory footprint is guaranteed to not ex-
ceed a given bound. To accomplish this, we encode the computation of
alignments as a genetic algorithm (GA), where tailored crossover and mu-
tation operators are applied to an initial population of candidate model
explanations. This way, the derivation of a set of alignments is the result
of genetic evolution.

The technique proposed has some weakness that should be reported:
first, it can only provide optimal alignments when certain conditions are
satisfied (variability in the population and genetic convergence). In prac-
tice, however, the number of iterations may be decided a priori, which
may be insufficient for genetic convergence, and the initial population may
not contribute to reach optimal solutions. Second, the number of optimal
alignments obtained is in practice inferior to the real number of all optimal
alignments, due to the dependence to the initial population and genetic
convergence. Hence, the proposed technique only approximates several
optimal alignments.

In spite of the approximation nature of the technique proposed, there
is a clear value for several reasons: first, to obtain more than one model
explanation of an observed trace may open the door to apply a posteri-
ori root-cause analysis to identify the most likely explanation, as has been
described in [41]. Second, the technique proposed represents the first algo-
rithmic alternative to search for multiple optimal alignments, which can be
applied on large instances under bounded memory. In the same way as GA
provided an interesting perspective for process discovery [87, 16, 98], this
work contributes to open a research direction for computing alignments

123

124

on the large. Third, in contrast to the A*-based alignment technique, our
technique is non-deterministic in providing alignments, so that two runs
of the method may obtain different result. This may be very useful in
multi-perspective alignments [46]: since control-flow is aligned before other
perspectives, randomness in the generation of the control-flow alignment
will enable the exploration of a broader solution space in the rest of per-
spectives.

The chapter is organized as follows: in Sec. 6.2 we describe the encod-
ing as a GA of the problem of searching several best model explanations.
The general framework for approximating multiple optimal alignments is
described in 6.3. Tool support and experiments with various benchmarks
are reported in Sec. 6.4. Finally, conclusions are reported in Sec. 6.5.

6.2 GA for Computing Several Explanations of
Observed Behavior

GA starts by creating an initial population, and then combining the best
solutions through operators, to create a new generation of solutions which
should be better than the previous generation. As it will be noticed bel-
low, in some cases the evaluation of solutions will be adapted depending
on the operator applied, so that the search for solutions can be better
guided. A GA approach to a problem usually starts by encoding a solution
which is called a chromosome, and define functions to evaluate how good
it is. Next, generating the initial population of chromosomes and defin-
ing corresponding operators, i.e., crossover and mutation. In our setting,
chromosomes will be potential model traces, which are combined through
tailored crossover and mutation operators. Alg. 12 demonstrates in short
the corresponding required steps adopted in this chapter for generating
several explanations of an observed trace.

Algorithm 12 GA for Computing Model Explanations of an Observed
Trace

1: Input: N, g D> Inputs are model and log trace respectively
2: pop < GEI\IE];{AT‘E(]\7’7 CT) D> Generating initial population
3: pop <]'__‘)\/A]-_J.UAAF]:‘E(pOp7 N, O') > Rank chromosomes
4: while Not satisfactory do

5: pop CROSSOVER(pOp) > Applying crossover operators
6: pop MUTATE(pOp) > Applying mutation operators
7. end while

8: Return pop

Given an observed trace ¢ and WF-net N, a random population of
chromosomes is first generated (Sect. 6.2.1). Then, it evaluates each chro-

Genetic Algorithm Optimization Approach 125

mosome based on a specific fitness function', which considers both the
initial model (for measuring replayability), and the observed trace (for mea-
suring similarity) (see Sect. 6.2.2). It then applies traditional crossover
and mutation operators, as well as novel ones defined for this problem, to
speed up the process of evolving chromosomes and convergence (see Sect.
6.2.3). This process continues until reaching satisfactory results, or will be
stopped by a predefined number of iterations. The detailed descriptions
will be presented in the next sections.

y n [n O fa}o a0
oﬁ»oﬂ»o»u»o/

ay P20 as

w}-0

a1 P26

(=2}

as

Figure 6.1: Process model Ms.

Before getting into the details, it is worth giving a big picture of one of
the advantages that this approach makes. Fig. 6.2 shows the search space
of a set of alignments with corresponding fitness values. Alignments with
close fitness values are located on the same contour such that center of the
plot shows alignments with better fitness values. The main objective of all
alignment computation algorithms so far is to find an optimal alignment in
this search space by exploring it. Stated differently, finding a point in this
search space which can be considerably large. A GA is able to find an area
in this search space which contains points with good (not exactly optimal)
fitness values. In other words, this approach has a broader perspective
than other approaches in search space exploration. This can be seen as
a superiority since not only it decreases the probability of getting stuck
in local optima, but also the algorithm might come up with more than
one solution. The later issue would be attractive for process model repair
techniques since it provides different angles of happened deviations.

6.2.1 Generation of the Initial Population

Given an observed trace o, and WF-net N, the objective of this part is
to generate an initial population. The population size is an important
decision, which often affects the final solution in terms of accuracy and

1 As the reader will soon realize, we refer to the term fitness in the genetic algorithms context.

126

Fitness value
0.04
0.08
0.12
0.16

Alignments.

Figure 6.2: Alignments search space and respective fitness values

convergence [61]. Also, diversity in the population will help reaching dif-
ferent parts of the solution space. We rely on previous works for obtaining
different model explanations, i.e., the methods presented in Chapters 5,
7 these methods are based on finding a maximal set of transitions, called
Parikh vector that the model can reproduce to mimic the observed trace.
A clear and detailed exposition is presented in Chapter 3, Sect. 3.4. More
in detail, the marking equation of Petri nets is used to solve an (ILP) model
for obtaining the corresponding Parikh vector. The ILP model has some
additional constraints and a tailored cost function, that jointly guide the
search for a maximal set with respect to its similarity (in terms of support)
to the observed trace o. To obtain the traces from the Parikh vector, we
perform linearizations of the Parikh vector, obtained by either replaying
it in the Petri net, or by arbitrary (possibly non-replayable) linearizations
that do not consider the Petri net. Those are the seeds for generating new
chromosomes. Formally a chromosome in this research is defined as follow:

Definition 31 (Chromosome). Let Parikh vector op be the solution of
the optimization Eq. 3.2 in Chapter 3, then x as a chromosome is the
linearization of op such that oy < op.

For example consider the model in Fig. 6.1, and the observed trace
0 = (1a308a402a905a¢. Some chromosomes with respect to o could be x1 =
titrtin, x2 = titatstotatstiotetin, x3 = tatitstatiolet1n and xa = titristyy.

Genetic Algorithm Optimization Approach 127

1 1 t1 1 1 1 t1 1 t1 1
to 1 to 0 to 1 to 1 to 0
t3 1 t3 0 t3 1 t3 1 t3 0
ty 1 ty 0 ty 1 ty 1 ty 0
t5 |1 ts | 0 ts | 0 ts | 0 ts |1
op=ts |1|lom=1t |0]|on=1t |1 |om=1te |1 |ou=1s | O
tr 1 tr 1 t7 0 tr 0 t7 1
ts 1 ts 0 ts 1 ts 0 ts 0
to 1 tg 0 tog 1 tg 0 tg 0
tio | 1 tio | O tio | 1 tio | 1 tio | O
t1p \ 1 t11 \ 1 t1p \ 1 t1p \ 1 t11 \ 1

Figure 6.3: Parikh vector op and respective Parikh vectors of chromosomes

It is worth mentioning that some chromosomes may not be replayable at
this stage (e.g., x4 above). The respective Parikh vectors are shown in Fig.
6.3.

6.2.2 FEvaluation Criteria

In GA’s jargon a fitness function is a particular type of objective function
that prescribes the optimality of a solution (that is, a chromosome) in the
corresponding population. Elevated chromosomes, which are the best ones
at the corresponding time are allowed to breed and mix their datasets by
any of several techniques, producing a new generation that will (hopefully)
be even better. An ideal fitness function correlates closely with the al-
gorithm’s goal, and yet may be computed quickly. Speed of execution is
very important, as a typical GA must be iterated many times in order to
produce a usable result for a non-trivial problem.

In this chapter a chromosome Y is evaluated based on two metrics. The
first one quantifies how good a chromosome is executable and the second
one measures how much difference will be between the chromosome and
the observed trace. Formal definitions of each operator are as follows.

Definition 32 (Executing fitness). For a given chromosome like x, f™(x)
denotes how good it is from execution perspectives. It is composed of three
functions, the number of missed tokens while it is replayed, a binary func-
tion on whether the final marking is hit and number of tokens (remaining
or missed) after execution. These functions are denoted by f°, f' and f?
respectively.

F™M(x) = Co-f(x) + C1. 1 (x) + Ca-f*(x) (6.1)
C's are constant that weight respective functions.

Each function in Def. 32 will be detailed as follows:

128

e f%(x): This function shows the ratio of missed tokens’ to the to-

tal tokens while y is being replayed in the model. In mathematical
notation:

= =
ijllx‘(mj — N.Xj_l)T. 1

= =1l 7= th € X, (6.2)

2j=1 (mj—1 + N.Xj1)3. 1

0

Function 6.2 fully takes advantage of the marking equation, i.e., Eq.
2.1 in Sect. 2.1.1.2. The numerator shows number of missed tokens
when x is replayed. Note that in each Parikh vector X; only the
element that is being replayed has value one and the rest are zero.
Denominator computes the number of generated tokens when chro-
mosome is replayed. The plus subscript means all elements of the
obtained marking are considered as positive.

f1(x): Although Eq. 6.2 gauges the executable property of a chro-
mosome, though, there are some caveats that must be addressed. If
during the execution of a chromosome it does not hit the final mark-
ing Mepg, i-e., the following condition holds:

3my, € {m; = mj_1+N.Xj_1}|1X|, such that ml .mepg =1 (6.3)

Then that chromosome will receive another penalization. The argu-
ment behind this penalization is to give greater favor to chromosomes
that hit the final marking.

f2(x): Another issue that is overshadowed in evaluating a chromo-
some like y, would be the number of missed and remaining tokens
after it is replayed, i.e., when we m,,| marking is reached. It is impor-
tant to consider these deficiencies as well, and distinguish them from
those problematic tokens during the chromosome execution. Stated
differently, these tokens show that the chromosome under considera-
tion lacks of some genes to get the final marking. Thus a chromosome
with this attribute receives extra penalty as follow:

f2(_ ,rn|7;(‘+T>

~ dim(myy) (64)

Where dim(m,|) shows the dimension of vector m,, or simply the
number of places in the respective model.

2In Petri net terms, missed tokens represent tokens that hamper the firing of a transition.

Genetic Algorithm Optimization Approach 129

Definition 33 (Normalized edit distance fitness). For a given chromosome
x and an observed trace o the normalized edit distance fitness between two
mentioned sequences is defined as follow:

_ Edit((x),0)

ed
) ™

(6.5)

Where Edit({(x),o) shows the edit distance between two sequences ¢(x)
and o, and || denotes the length of the chromosome.

After defining the required metrics for evaluating a chromosome, totally
they are composed to one single number as follow:

Definition 34 (Chromosome fitness). Given a chromosome like x, let
f™(x), fé be according to definitions 32 and 33 respectively, then fitness
of x 1is:

FLO0 = A ™) + Az fUx) (6.6)

Both A; and Ay denote the penalization terms which will be adjusted in-
dividually for each genetic operator, and will be discussed in the next
sections. It is clear that the lower value of f!() represents a better chro-
mosome, i.e., modeled trace, by which the observed trace is mimicked. It
should be pointed out that always having a chromosome x with small f%(y)
does not represent a desired or good solution if it is not replayable (i.e.,
J™(x) #0).

To get the idea of evaluation criteria, consider chromosome y = tytotgtsts
tytiot11te, the model in Fig. 6.1 and observed trace o = agajasagagasarag;
the number of missed and total tokens while x is replayed equals to 3 and
23 respectively. Also, note that the final marking is marked therefore no
penalization term applies from Eq. 6.2, i.e., f1(x) = 0. Above_;chat, the pe-

mT .1
. . } . . 2 o lend| 1
nalization that comes from Eq. 6.4 is 1, i.e., f%(x) = Tm(mionay = 17-Thus

fm(x) = %—I—O—l—% ~ 0.22, see Fig. 6.4. Additionally, unreplayable transi-
tions tg, tg and t11, are likely to be considered through genetic operators, in
the next step of the proposed approach. The corresponding edit distance,
i.e., f¢(x), between x ans ¢ is 5. Thereby, by selecting A1, Ay = 1, the
corresponding fitness value is f{(x) =1%0.22 + 1% 5 ~ 5.22.

3 Note that indeed the edit distance is computed between o and £(x).

130

j2 (1\ p {0 p (0 D1 0 p1 (0
p2 | 0 p2 |1 p2 | 0O D2 0 p2 | 0O
p3 | 0 p3 |0 p3 |1 3 1 p3 |0
P4 0 P4 0 P4 1 Pa 1 Pa 1
Ps 0 Ps 0 Ps 0 Ps 0 Ps 0
Mstast = Pé 0 I‘_1> Pe 0 f_2> Pe 0 Fa) Pe 0 f_s> Pe 0 f_z:
p2o | O p2o | O P2 | O P20 0 p2o | O
pas | O pas | O p3 | O pes | O pa3 | O
paa | O paa | O pa | O [paa | =1 || p2a | O
p2s | 0 p2s | 0 p2s | 0 pas | 1 pas | 1
P26 KO) p26 \ 0 P26 \ 0 P26 \ 0 P26 \ 0
P1 (0 P1 0 P1 0 Yot 0 P1 0
P2 0 pz |0 p2 | O j2! 0 p2 | O
D3 0 p3 |0 p3 |0 3 0 p3 |0
P4 1 ps | O ps | O 2! 0 ps | O
s 0 _, b5 0 D5 1 D5 1 ., b5 0
Pe 0 Jta pe | 0 |ti0o p6 | O ftinfps | =1 ||t 6 | O | =Mena
[p20 | =L [| p20 |0 P20 | 0 P20 | O P20 | O
P23 1 p23 | 1 p23 | O P23 0 p23 | O
P24 0 p2a | O p24a | O P24 0 P24 | O
P25 1 pas | 1 pas | 1 P25 1 p2s | O
P26 \ 0 p2e \ O p2e \ 0 P26 1 p2s \ 1

Figure 6.4: Replaying a chromosome

6.2.3 Genetic Operators

Genetic operators used in GA are analogous to those which occur in the
natural world: survival of the fittest, or selection; reproduction (crossover);
and mutation. When GA proceeds, both the search direction to optimal
solution and the search speed should be considered as important factors,
in order to keep a balance between exploration and exploitation in search
space. In general, the exploitation of the accumulated information resulting
from GA search is done by the selection mechanism, while the exploration
to new regions of the search space is accounted for by genetic operators. In
the remainder of this section, several genetic operators will be proposed.
Some of them are inspired from ones found in analogous problems, whilst
new ones are proposed that tend to improve the evaluation criteria de-
scribed in the previous section.

6.2.3.1 Crossover operators

Crossover is the main genetic operator. It operates on two chromosomes
at a time and generates two new chromosomes by combining both chro-
mosomes features. A standard way to achieve crossover is to choose a
random segment at both chromosomes, and generate two new chromo-
somes as the result of interchanging the two segments among the original

Genetic Algorithm Optimization Approach 131

two chromosomes. In this chapter some context dependent operators have
been proposed as follows:

e Modified Partially-Mapped Crossover (MPMX): We apply an
adaptation of this standard crossover operator, for chromosomes hav-
ing the same Parikh vector representation (see 2.1.1.2)*. The intuitive
idea for operating over chromosomes with identical Parikh vector is
due to the fact that the search space is reduced, and in particular the
generation of the initial population is oriented towards satisfying this
property. In order to keep Parikh vector representation of the origi-
nal chromosomes, some modifications are done after the segments are
interchanged. Let us look at the example in Fig. 6.5b to illustrate the
MPMX operator; the initial chromosomes x; and x2 are mixed with
this operator, generating the new chromosomes x3 and x4, choosing
a segment between positions 4 and 6.

To keep the Parikh vector representation of the original chromosomes,
some modifications are performed circularly starting from the first
position after the segment (in the example, position 7). For instance,
in xs (that arised from yo inserting the segment from xi), in the
third position ¢5 is removed since |x1|;; = 2 and when we reach this
position we already have 2 occurrences of t5.

e Cross-Insert Crossover (CIX): This operator tries to guide the
search towards chromosomes that are replayable in the model. Still,
the CIX operator works under the assumption of both initial chro-
mosomes have the same Parikh vector representation. To induce
replayability, it focuses on the parts of a chromosome that are not
replayable, and uses the other chromosome in order to find candidate
positions where it may be possible to reply the set of unreplayable
transitions. This is done for each unreplayable transition in each one
of the chromosomes that are merged. For each candidate position,
the transition is moved to that position and the chromosome is shifted
accordingly to fill the space left. For instance, let us look at the two
chromosomes 1 and x» in Fig.6.5a, and model Ms.

In x1 the transitions in the third, fifth and the eighth position cannot
be replayed, namely tg, tg and t1;. Transition t9 cannot be moved,
since in both chromosomes it is unreplayable (so there is no candidate
position in this case). However, for transition ¢g in x1 (which is at po-
sition 5) there is a candidate position (position 6, extracted from x2)
to move. Moving tg to position 6 and shifting once from position 6 will
leave the space in position 6 to put tg in y4. A similar situation hap-
pens with ¢11 position from y to the new position in x4. Notice that,
as denoted in x3 in yellow, shifting may introduce new unreplayable

4 The restriction on having the same Parikh vector is for the sake of simplicity of application.

132

s103e10d0 I9A0SSOI) :G'Q 9INTI

-107e10do XINJIN 94U (9)

2 11 I)) 1 —7X L9 11 €7 % L &} 9 %] —ZX
A |
+ |
9% [% [4 a]a]akx [] e D < | 4| Y =X
Q . 9 ¢ ¥ ¢ z 1 8 4 9 g ¥ e C T

o[qede[dorun awredaq A9y} ‘SoAOUL
19730 03 onp ‘o[qedrdor ATeryiur Sureq Jo 911ds U ‘() SUOIFISURI) SOJOUIP MO[[OL ‘POX U9 SARY SUOIIISTRI) 9[(RAR[doIUN SI0TM SOUIOSOWOID
mou o1} ul suoryisod s9jouep UedId O[Iym ‘eorI) oY) Jo suonrsod oqefe(dorun sueowl puNoISYorq pol ‘em3y oy ul :1o0jersdo XD oYL, (®)

o7 Lo T e Lo L I
oy T T T o [I - (o I 7 I I [
9 g ¥ € 4 T L 9 S ¥

6] y) 6 8 € z T

Genetic Algorithm Optimization Approach 133

Algorithm 13 Cross-Insert Operator

==
M2

Input: X1y X2 > Inputs are two chromosomes with &y, = 7,
X3, X4= Replicate(xl, XQ) D> xs, x4 are replicates of x1, x2 respectively
for tr € NOReplay(Xl) do D> ¢, is not executable in x; but it is x2
if ¢, ¢ NoReplay(x2) then
index_correct= IndeX(Xg, tk) D> Position of ¢y in xa2
index_incorrect= Index(x1, tx) > Position of ¢ in X1
Swap (xs,tr, index_incorrect, index_correct) > Change to the new position
end if
end for
Do another loop for x2 and x4.

: Return xs3, x4

transitions: see t17. Alg. 13 shows the implementation of this oper-
ator. The index operator in line 5 returns a random number among
correct positions for ¢ if there are more than one. The complexity
of this operator is linear to the number of non executable elements
in both chromosomes, i.e., O(NoReplay(x1)+NoReplay(x2)).

We stress that, since this operator tries to generate more executable
offspring regardless of the corresponding edit distance, in our exper-
iments we assign small values to Ay of Eq. 6.6, to retain the new
generated chromosomes in next generations even if the edit distance
has been degraded at the expense of improving replayability.

6.2.3.2 Mutation operators

Mutation applies to a single chromosome, generating a new chromosome
as a modification of the initial one. It is viewed as a background operator
to maintain genetic diversity in the population. Mutation helps escaping
from local minimas trap and maintains diversity in the population. This
part presents both generic and specific mutation operators related to the
problem considered in this chapter.

e Scramble Mutation (SM): This ia generic operator which simply
chooses a segment in the chromosome, and randomly shuffles it. For
instance, in Fig. 6.6 we show how the operator works. It selects a
segment of a given chromosome randomly and reorder the elements
of that segment.

134

1 2 3 4 15} 6 7 8
x|t [tr [ts | Lo | t3 | t7 | t5 | t1y |

1

1 2 3 4 5 6 7 8
xo=| ti [tr [t5 | t3 | t7 | ta [ts | tin |

Figure 6.6: Scramble mutation operator (SM).

e Mimic Mutation (MM): This is a specific operator proposed ex-

clusively for the problem at hand. It tries to mimic the observed
trace, by repositioning a transition ¢ as close as possible to the posi-
tion ¢(t) that is observed in o. Hence, this operator tends to reduce
the edit distance between ¢ and y by repositioning ¢. For example,
assume that we want to relocate ¢; in x to the position of a; in o where
L(t;) = a;. To decrease the edit distance between o and y, we can do
mirroring the respective elements, i.e., a;, t;. Doing so, it might end
up with a fatal error if the corresponding event in the observed trace
is a deviation. To tackle this challenge, we resort to information avail-
able in other observed traces to estimate approximately where ¢; can
be relocated. To this end, the positions of corresponding element,
i.e., a; will be extracted from the other observed traces, and after
that the corresponding histogram is created. This histogram shows
the distribution of positions that a; can have. It can be interpolated
to obtain a respective curve. Since interpolating the histogram in
our situation is very sensitive to noise, instead we adopt a smoothing
mechanism to alleviate this effect, and obtain a more stable density
function. Smoothing means decreasing the effect of seen events and
increasing the effect of unseen events. In mathematical notation it is
defined as follow:

Definition 35 (Smoothing histogram). Given an observed trace o,
let assume that event a; is in position x;, then for a; the corresponding
smoothed frequency is:

Yi = fo;(vi) + €, Vi €L (6.7)

Where x; is defined over the positions that a; takes in the whole set
of observed traces or event log L. y; shows the smoothed frequency
of the respected position x;. Also, the difference between actual and
smoothed frequency is packed into €;. Function fq,() is a smoothed
curve that must be estimated or learned accordingly.

Genetic Algorithm Optimization Approach 135

It must be stressed that, f,, varies for different element a;. Im-
plementing this operator has two main steps. First, estimating or
learning the smoothed frequencies, and second generating a random
number from the estimated curve. To proceed for obtaining smoothed
frequencies, for the sake of simplicity assume that x1,xo, ..., x, are
positions of element a; in L, where to each position a frequency num-
ber is assigned. To estimate f, ():

1. One can divide x1, x2, ..., T, into many equal-width bins. The
plot of bin centers versus bin heights is a rough estimate of fg, ().
Assume that the probability of having a point in bin [z;, z4+1]
is p; then, the likelihood of the given histogram is proportional
to multinomial likelihood Hjj? p%°, where B is the number of
bins. Also, it is equivalent to work with B separate Poisson dis-
tributions with expectations u; = np; [25], [69]. The previous
conclusion directs us to use Generalized Linear Model (GLM) for
smoothing. More precisely, assume that x,,;, and Z,,., are the
minimum and maximum of x1, xs, ..., z, respectively, and sup-
pose that we adopt B histogram bins on the interval [Z,,in, Tmaz]
so that bin widths are A = W Let N; be number of
points and let ¢; shows the center of bin. Since the area under
a density function is 1, then the height of jth bin is y; = éV—JA
To make a smooth estimation we can regress /V; on the c; using
Poisson regression spline. The fitted curve, i.e.,]/V\] then will be
divided by nA to yield the smooth density estimate, i.e., ¥;.

2. After estimating the corresponding density for a; then we can
generate a random number out of it by which ¢; will be relo-
cated to that position. There are many algorithms for generat-
ing random numbers from an arbitrary distribution, like inverse
transform sampling [100].

To derive the concept home, a concrete example is provided next.
Assume that x1 and o1 are given inputs to this operator as depicted
in Fig. 6.7 (a), (b). The task is, Element tg in x; will be mutated
SO as to mimic ag. To this end, we use the available information
in other 1000 observed traces to figure out, how this element, i.e.,
ag is distributed across other observed traces. The corresponding
histogram is shown in Fig. 6.7 (d). The next step, is to find the
center of bins which are plotted by black dots in Fig. 6.7 (e) (in this
figure 200 bins were executed). The last step is to learn a smoothed
curve according to the mentioned dot points, which can be done by
using a Poisson regression between center of bins as regressors and
height of bins or frequencies as the target variable. The estimated

5 Note that y; here is the number of points in the respective bin.

136

suoryisod jo Aouenbary peyjoouwrg (o)
‘suoryisod jo wre1do)siy (p) ‘emosowoayd panjy (9) ‘emwosowoay)) (q) ‘3o yueay (&) (NJN) I0yeredo woreInmI OTWIN :L'Q 2INSI]

() (P)

suIq o Jaual

-00

-0L

-2

sejouanbaly
Aysueq

-£'0

-0Z

-¥0

(%)

9 _ Tip _) _ 6D _wa 7 £p _ o 7 n _Hoooﬁb

[[op [om [e [ISR & [[5 =X

D 61 Tip 7 n _ 8P _ €p Zp In |=%0

9D 11p ¥n [P €D _ 61 Zp Ip |=Vo

9D 1Tp ¥p Sn 6p [505) Zp Ip |=%to

(Q)

_ 11 _ 97 7 62 7 01y _ € _ vy _ 87 _ 22 _ %] _HHX I9p | TIp | ¥pn | 8p _ 6p €p | Zp | Ip |=To

I 1Ip i) 6n _ 8D €p [4s) Ip |=<o

Genetic Algorithm Optimization Approach 137

Frequencles

curve is shown in Fig. 6.7 (e) with the red line. This curve shows
the behavior of element ag across observed traces. Whenever that
curve is learned, a random number is generated from that and the
respective element of x1, i.e., tg will be relocated to that position.

It is easy to see that, the more deviations observed in the event log
the wider distribution we would have. It is important to note that,
the learned curve is not necessary to be a bell-shaped, and it can be
of any shapes. This is why we resorted to nonparametric regression
techniques to consider this conditions. The other expected shapes
that usually happen are depicted in Fig. 6.8 (a), (b). In spite of
showing the behavior of an element, these plots can show other useful
information, for example Fig. 6.8 (a) sheds light on having a change
detection probably, since the distribution is very skewed, or Fig. 6.8
(b), suggests different scenarios, like having a loop in a model or
existing duplicate transitions or in worst case it can be a concept
drift for executing this activity which needs further investigations.

Figure 6.8: Learned curves of mimic mutation.

It is important to note that for each event element a; a unique curve
must be learned but this learning process needs to be done only once
as a preprocessing step and whenever this operator is invoked, it takes
advantage of them.

Finally, for a chromosome Y, and its offspring x’, since the goal is to
mimic the observed trace, if f™(x) < f™(x') and f¢(x) > f°4(x')
then Ay and Ay in Eq. 6.6 are adjusted so that sometimes x’ survives
in the next iteration. In other words replayability is overshadowed for
this operator. Playing with these parameters would decrease the risk
of getting stuck in a local optimum. Alg. 14 shows the required steps
to execute this operator. Note that in line 9, if the random generated
number does not work for the chromosome under consideration, for
example because of different length, then another random number
will be generated. This operator is super light because it only needs
to swap an element from an old to a new position.

138

Algorithm 14 Mimic Mutation Operator

==
M2

Input: Xy O > Inputs are a chromosome and an observed trace
a;= Random(a) D> Selecting a random event
if a; ¢ £(x) then

No mutation is done

Return D> If the corresponding element is not exist in x mutation can’t be done
else
X/: Replicate(x) > Replicating the chromosome
index_current= Index(y, tx) D> Position of tj, in x, given £(ty) = a;
index_-new = Random (faL()) D> Generating a random position
Swap (X/, tk, iIld(EX,CuI‘I‘QHt7 index_new) D> Change to the new position
end if
: Return y, y/

e Launch Mutation (LM). Up to this point, none of the mutation
operators above try to improve the replayable property of chromo-
somes. The intuitive idea is, for a given chromosome with an unre-
playable position i, the transition in ¢ will be relocated forward (i.e.,
in a position j > ¢) by this operator. The rationale behind this policy
comes from the idea that in some situations, by delaying the firing
of a transition to a future Petri net marking, enough tokens will be
placed by the transitions occupying positions between ¢ and j — 1.
Since the overall goal of this operator is to improve replayability,
we set A1 < Ag so that replayability has more importance to decide
survival for the next iteration.

To give a concrete example consider the chromosome in Fig. 6.9
(a), and the model M;. Unreplayable transitions are highlighted
(positions 3, 5 and 8). Assume that ¢g is selected to be mutated with
is operator. Fig. 6.9 (b) shows one possible launch mutation from
position 3 to position 7. One can see that transition g can now be
replayable, as highlighted in green. Unfortunately, this operator can
sometimes introduce new unreplayable transitions, as demonstrated
in Fig. 6.9 (c) for t1p.

Genetic Algorithm Optimization Approach 139

1 2 3 4 5 6 7 8 9
x= [t
(a)
X= |t | ts
(b)

X'=t |t | ts
()

Figure 6.9: (a) x, (b) X’ after LM on x to position 7, (¢) x” after LM on
X to position 9.

6.3 General Framework for Obtaining Multiple
Alignments

Given a process model represented as a WF-net, IV, and a trace o, the
schema of the proposed framework is depicted in Fig. 6.10. Explanations
of each part are provided below:

Genetic Computing
Algorithm Alignment
Framework Using D.P.

Figure 6.10: Overall description of the general approach to compute align-
ments.

o Genetic Algorithm Framework: In the initial stage, the genetic ap-
proach described in the previous section is performed. Once finished
it generates a final population of model traces. Among them, we
choose those chromosomes y having both f™(x) = 0 (so, replayable),
and minimal f¢4(y).

o Computing Alignment Using Dynamic Programming: This part con-
cerns the computation of alignments between the chromosomes of

140

final population and ¢. The adopted method in this section is a dy-
namic programming approach inspired from aligning two sequence of
genes [58], [59] and the exposition is in Chapter 5, Sect. 5.4. The
alignments computed are called best alignments, which are not nec-
essarily optimal: this is due to the lack of guarantees that the model
explanations provided in the previous stage correspond to the optimal
model explanation for o.

6.3.1 Computing an Alignment using Dynamic Program-
ming

To compute an alignment between a chromosome like x and observed trace
o, the technique presented in this chapter is inspired from [59]. This tech-
nique was already explained in details in Chapter 5, Sect. 5.4 for the same
task, so we informally describe it here as a refresher. Consider an over-
simplified example, y = t3t11t17 with ¢(x) = aszai1a17 and o = azai;. To
obtain an alignment « between these two sequences, a two-dimensional
table is created, where the first row and first column are filled with the
observed trace and chromosome, respectively, as depicted in Fig. 6.11 (a).
The second row and second column are initialized with numbers starting
from 0,-1,-2,..., they are depicted in yellow color. The task then is to fill
the remaining cells with the recurrence Eq. 5.1 in Chapter 5 where for
the sake of simplicity is repeated here. In this equation § represents the
gap penalty’ and s(t;,a;) represents both the match and mismatch cost
between two elements t; and a; which are modeled and observed trace
elements, respectively.

SIM(t;,a;) = MAX{ SIM(t;_1,a;) — 6
(a’]) S (1 a]) _B If g(tl) #CL]

SIM(ti_17aj_1)+S(ti,aj) B
s(tz-,a»:{ﬁ o=
SIM(ti,aj,l)—(S
(6.8)

SIM (t;,a;) represents the similarity score between t; and a;.

6 The gap penalty represents asynchronous move in our setting.

Genetic Algorithm Optimization Approach 141

as a1
S~ T
- - S Jas fan | L |
it = -1 TO a_| as ‘ ai ‘ arr ‘
ayy -3 -2 -1

(a) (b)

Figure 6.11: (a) Computing alignment using dynamic programming (b)
Obtained alignment.

After filling the matrix, to compute the alignment we start from the
bottom right entry, and compare the value with three possible sources, i.e.,
top, left and diagonal to identify from which one of them it came from. If
it was fed by a diagonal entry, it represents a synchronous move between
corresponding elements and if it was fed by a top or left entries then it
represents an asynchronous move or a gap. For the mentioned chromosome
and observed trace the computed alignment is shown in Fig. 6.11 (b).

6.4 Experiments

The approach of this chapter has been incorporated into the tool ALI [73].
This section evaluates the method proposed over the following perspectives:

e What is its sensitivity on the number of evolutionary iterations ?
e How does it compare to [5, 66] for the memory and execution time 7

e How does it compare to [5, 66] for the quality and quantity of align-
ments obtained ?

e What is the impact on the fitness calculation ?

The tool has been evaluated over different family of examples from ar-
tificial to realistic, containing transitions with duplicate labels and from
well-structured to completely Spaghetti’. The number of transitions varies
between models, i.e., minimum 15 and maximum 429. The full description
of datasets are presented in Appendix A. We also included a real-life bench-
mark from [20], where a model was discovered using the Inductive Miner
by sampling 10000 observed traces of a Road Traffic process dataset®, and
using the rest of the log for alignment computation. The results on these
benchmarks are compared with the state-of-the-art technique for comput-
ing one optimal alignments [5], since the version for computing all optimal

7 The experiments have been done on Intel Core i7-2.20GHz computer with 8GB of RAM.
8 https://data.4tu.nl/repository /uuid:270fd440-1057-4fb9-89a9-b699b47990f5

https://data.4tu.nl/repository/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

142

alignments ran out of memory for all models considered in this chapter.
We also compare ALI with a recent technique to compute all-optimal align-
ments [66].

e Configuration of the Genetic Algorithm. Since the decision of
the initial population and the probabilities of operators strongly in-
fluences the genetic algorithm, we have chosen to customize it so that
diversity is kept in early stages of the genetic evolution. It should be
stressed that in the general application of genetic algorithms, popu-
lations are significantly larger than the ones considered for this chap-
ter for the proposed approach, so that the probabilities for operators
have been set accordingly, to avoid that few high-ranked chromo-
somes dominate the rest in early stages of the genetic evolution. In
the implementation, the application of crossover had a high proba-
bility (80%, and then tuned with the individual probabilities set by
parameters A\; and A2), whilst mutation operators were applied with
a low probability (5%). In any case, the chosen probabilities are
common when applying genetic algorithms in other scenarios. As we
commented in the previous section, best alignments in our setting cor-
respond to replayable chromosomes with minimal edit distance to the
observed trace among the final population. For each observed trace
a population of 700 chromosomes was generated, and the quality and
quantity of them were compared with state of the art approach at
iterations 10,20,30 and 100. We also experimented with population
sizes significantly smaller (e.g., 100 chromosomes), and the results
obtained were proportional in the main perspectives considered in
this chapter: less memory footprint and execution time, but slightly
worst quality.

e Execution Times. Fig. 6.12 shows violin plots of execution time
(in seconds) for each model per iteration given an observed trace.
Obviously the required execution time varies from different observed
traces and this is why the corresponding distributions via violin plots
are presented. Omne can see that for big models with large traces
(prDmé6, prEm6, prF'm6), models with many deviations in observed
traces (prCm6) and models with many duplicate transitions (M Ls),
the corresponding distributions are wider due to more operations
made by the proposed operators at any iteration. An important
point should be done: although the computation time per trace (cor-
responding to multiplying the execution time per iteration shown in
the plot by the number of iterations performed) is significantly higher
with respect to [5], our evaluation is done with a simple, unoptimized
implementation of the technique of this chapter.

e Fitness Comparison. Table 6.1 represents the mean square error
(MSE) of fitness values (see Def. 18 in Chapter 2), among the best

143

Genetic Algorithm Optimization Approach

“uo1yeIoI Iod 90RI) POAISISCO UR I0] SUIT) UOIINISXS JO UOTINGLIISI(] g 9 2INSJI

Y

> 4@@4444{4\4174{114\,.«.%4544

o
» O O & &L O O o
S R AR R A AN R S

-0

-0S

-001

-0S1

-00¢

-0S¢

(s) awn uonnosx3y

144

Table 6.1: MSE comparison of fitness values of chromosomes at different
iterations and A* as the optimal one

Model | It.(10) | It.(20) | It.(30) | It.(100)
prAm6 | 0.0106 | 0.0055 | 0.0035 | 0

prBm6 | 0.0009 | 0 0 0

prCm6 | 0.0776 | 0.0044 | 0.0031 | 0.0012
prEm6 0.0436 | 0.0353 | 0 0

M, 0.0571 | 0.0089 | 0.0084 | 0.0046
Moy 0.0475 | 0.0116 | 0.0094 | 0.0070
Ms 0.0351 | 0.0341 | 0.0327 | 0.0219
My 0.1980 | 0.0512 | 0.0508 | 0.0398
Ms 0.0958 | 0.0289 | 0.0226 | 0.0155
Mg 0.0836 | 0.0384 | 0.0379 | 0.0357
My 0.0725 | 0.0220 | 0.0214 | 0.0203

ML, 0.0775 | 0.0400 | 0.0146 | 0.0091
MLs 0.1864 | 0.0991 | 0.0159 | 0.0142
MLy 0.3113 | 0.1740 | 0.0330 | 0.0251
Bank. 0.0013 | 0.0008 | 0.0005 | 0.0002
Doc.1 0.2912 | 0.1971 | 0.0702 | 0.0698
Doc.2 0.2581 | 0.1701 | 0.0579 | 0.0570
Road T. | 0.0036 | 0.0022 | 0.0018 | 0.0014

alignments provided by our technique and the approach in [5] as opti-
mal solutions, respectively. One can see that the quality of alignments
is improved from 10 iterations to 100 iterations for all models. For
models pr Am6, prBm6 and prEm6 optimal alignments were found
(for some of them, at iterations 2 and 3 respectively). Comparisons
were done only for those benchmark datasets whenever the approach
in [5] could provide solutions. Overall, one can see that the approach
of this chapter is very close to the optimal solutions computed by
[5], in spite of several factors like the size of the model and observed
traces, presence of loops, silent transitions and duplicate labels in the
model.

e Quantity of Best Alignments. Table 6.2 shows the average num-
ber of best alignment obtained per each observed trace and each
model at different number of iterations. In the last column, we re-
port this number for [66]: NA denotes that the tool was unable to
provide the result due to memory problems. When it can, we also
provide in parenthesis the percentage of the log traces where [66] can
find solutions; for instance, for My, only 39% of the traces have a
solution. One sees that these average numbers are improved from

Genetic Algorithm Optimization Approach 145

10 to 100 iterations and this improvements are usually more tangi-
ble in models containing loops, i.e., My, Ms, M3, M7. The approach
from [66] usually obtains more alignments than our method, but that
only holds for small or medium instances.

Also, Fig. 6.13 and 6.14 show for each model, the violin plots or
distribution of number of best alignment for 30 and 100 iterations, re-
spectively (the corresponding average values are shown in the fourth
and fifth column of Table 3, respectively). When focusing in the
experiment for 100 iterations (Fig. 6.14), It can be seen from the
plot that, for some models like My, My M5, M7 and M Lo, the num-
ber of distinct best solutions are close to 30 for some cases and for
Documentflow2 the best solutions are unique.

Table 6.2: Number of different alignments for the best solution found in
average for the approach in this chapter and the approach in [66]

Model | It.(10) | 1t.(20) | 1t.(30) | 1t.(100) | ATM. A[60]

prAm6 1.11 1.21 1.25 1.45 NA

prBm6 1.00 1.15 1.15 1.34 NA

prCm6 1.16 1.52 1.79 3.46 NA

prDm6 1.11 1.33 1.57 1.71 NA

prEmo6 1.16 1.43 1.52 1.56 NA

prFm6 1.03 1.17 1.36 1.46 NA

prGm6 1.08 1.30 1.49 1.78 NA

M, 1.94 |291 |[332 |4.32 62.12(92%)
M, 208 | 497 |589 | 7.13 320.1(53%)
M; 130 | 1.98 |[241 |279 NA

M, 1.00 | 1.01 |121 | 1.62 7.40 (39%)
M; 177 262 |[344 |6.01 114.78(10%)
Mg 1.68 | 234 |287 |4.37 NA

My 2.05 |3.38 |427 |7.12 NA

Mg 136 | 155 |171 |214 7.81(69%)
M, 1.01 | 1.02 |[1.31 |1.46 8.32(30%)
Mo 1.02 | 256 |354 |523 NA

ML, 1.04 | 115 |1.27 |1.29 11.78(34%)
ML, 185 | 249 |3.38 |4585 NA

ML 175 | 271 |[325 |3.60 7.94(21%)

MLy 1.72 2.98 3.39 5.80 NA

MLs 1.05 1.84 2.42 3.42 NA

Bank. 1.08 1.44 1.83 2.66 NA

Docl. 1.00 1.08 2.21 2.70 I/O Error

Doc2. 1.00 1.01 1.68 1.98 I/O Error

Road T. | 1.00 | 1.01 | 1.03 | 1.21 1.41 (100%)

146

O S
N) J N N\ X
VT F TSI T I T T T s p TSI

"SUOTYRIST ()¢ IOJ SUOIIN[OS S9(JO IOQUINU JO UOTINLIISI(] :ET"9 9InS1,]

O ts3 o
N S

R

9 4 @ b~

Z? TN

suonn|os 1seg 10 Jequiny

=1

-0¢

147

Genetic Algorithm Optimization Approach

"STUOIYeIdT ()T I0F SUOIN]OS 9S9(JO I9QUINU JO UOIINLIISI(] FT°9 9INJT

& o> o>

> oYW
S A AN A N N

T T

-0l

=)
«

SUONN|0S 158 JO JaqUINN

-0€

148

“(eury uryy ‘umoiq) [99] pue ‘(Leid) [c] ‘(3oerq) yoeoidde mo jo juridioo] ‘WO :G'9 9IS

S R
SR ENC SN HIRS SR
T 7 S
- L] |
n
-
L
L
00SS< 00S€< 00gS< 00s8<

E A R P S S T MR I NP

00g8<

008S< 0096<

00g6<

o
o
45

o
o
~

¢é&

&

-000€

-0

-0001

-000¢

(8) fowsapy painbay

-000%

-000S

Genetic Algorithm Optimization Approach 149

e Memory Consumption. The memory footprint of the proposed
technique and the ones in [5] and [66], for all the benchmark datasets
are represented in Fig. 6.15, using black, gray and brown colors,
respectively. It must be stressed that the comparison reported in
Fig. 6.15 provides just an indication of the huge difference in terms
of memory footprint between the technique of this chapter and the
other techniques: for [5], experiments were only done for computing
one optimal alignment inevitably, since the implementation for all
optimal alignments ran out of memory. In contrast, in Fig. 6.15
we provide the results of our technique and the technique in [66] to
compute multiple alignments.

One can see that the proposed technique requires considerable less
memory than the other two techniques. Obviously for small and
medium models, the memory footprints are similar. For large models
the tendency is inversed: as an example, for prDmé the proposed
method required around 1.5GB whereas [5] and [66] need more than
5.5GB Notice that the memory footprint of the proposed approach for
computing best alignments is bounded through iterations, and is not
sensitive to size of the model and length of the observed trace. Also,

the required memory for the proposed approach is not sensitive to the

labels of transitions i.e., silent or duplicate labels, see M Ly, ..., MLs.
The other two approaches are more sensitive to the aforementioned
factors.

6.5 Outlook

This chapter presents a novel approach to compute several approxima-
tion of an optimal alignment. It is based on an evolutionary algorithm,
where the memory footprint is guaranteed to be bounded. Tailored genetic
operators have been proposed, which help guiding the algorithm through
the search space of solutions, and speed up convergence accordingly. The
experiments performed on the tool developed witness the quality of ob-
tained alignments, deriving solutions that are close to optimal ones, and
which can be improved iteratively. Moreover, the quantity of alignments
improves considerably as more genetic iterations are performed. In spite of
not having theoretical guarantees on optimality or replayability, the results
show that in practice it is always the case that replayable, quasi-optimal
or optimal solutions are produced.

Part 1V

Reduction and Projection
Frameworks

151

153

This part of thesis presents new computing styles to alleviate alignment
computation problem. Chapter 7 proposes a divide and conquer algorithm
to solve very large ILP instances of the method presented in Chapter 3.
Following that, in Chapter 8 a new framework for structure reduction of
the model and event log will be presented. The main aim of this frame-
work is not alignment computation, but to alleviate the computational
burden of the mentioned issue. It can be integrated with all the alignment
computation approaches.

Contribution: The work in first chapter of this part, i.e., Chapter 7
alongside with the approach presented in Chapter 3 were published in In-
ternational Conference on Business Process Management (BPM 2016) [74].
The second work in this part, i.e., Chapter 8 was published in Interna-
tional Symposium on Data-driven Process Discovery and Analysis (SIM-
PDA 2016)-Best Research Paper Award. The mentioned approaches
have been implemented in Jython (Java-Python) and stand-alone frame-
work ALI [73] respectively.

Chapter 7

Recursive Approach for
Large ILP Instances

7.1 Introduction

Chapter 3 presents an ILP approach for alignment computation based on
structural theory of Petri nets. Since ILP is NP-hard, casting the problem
of computing approximate alignments as the resolution of ILP models is not
sufficient for alleviating the complexity of the problem. As the complexity
of ILP is dominated by the number of variables and constraints, we present
a recursive framework to compute approximate alignments that transforms
the initial ILP encoding into several smaller and bounded ILP encodings.
This approach reduces drastically both the memory and the CPU time
required for computing approximate alignments. Remarkably, it can be
applied not only with the ILP encoding used in this chapter, but also in
combination with current techniques for computing alignments.

155

156

—_
bl
ey
)
=
.=
e
—_
—
o=
wey =
k: 3 —
=
I
M s ~ =
=) < o=
V2 o~]
= 3 - 3
5 5 =
-+ Il = «»S/ g
?j =] [~] o
s 2")
5 el
= a -
a N o™
- s E nf
o~ - n
& 8 ;\;k:
= =R el o
™) - = i L=
5 5 - < — =B
g = E — | 3=
= i
5 —
B
z/—\-u
L
L o —— -
= _ o1 V)
Il K B —
- = *;;é" S
. & .
o -
= & 1 —_— .
2 *T S .
¢
E - —
: = W
g = -
g -
R el : =
s b o
= w
=] S
5 = - R}
= —_
—
0 - "
—_ G
—_— — =T
Wy il
% ~ o | AT —
2
= = P 2
= —=
= ~< ™ Bl
~ - B & &
L - -
) 2 - —
5 £ =z
= § £
— = v::
=) =]
> R =lial P
= = Bl =
= = =
£ 'os > —
= N~ = =
5 3 = — 1 W
— — —_E
5 — V=
— R by
=
e
=T
=k
B
= —
g
- =
-0
B —
.
-

Figure 7.1: Schema of the recursive approach.

7.2 The Recursive Algorithm

Section 3.5 shows how to compute approximate alignments using the struc-
tural theory of Petri nets through the marking equation. The complexity
of the approach, which is NP-hard, can be measured by the size of the

Recursive Approach for Large ILP Instances 157

ILP formulation in the minimization step, in terms of number of vari-
ables: given a trace o and a model with |T| transitions and |P| places,
(|T|+|J|+|P])-(Jo|/n) variables are needed, where 7 is the desired granular-
ity and J = ¥ Nsupp(c). This poses a problem for handling medium/large
process models.

In this section we will present a way to fight the aforementioned com-
plexity, by using a recursive strategy that will alleviate significantly the
approach presented in the previous section. The first step will be done
as in Fig. 3.2, i.e., solving optimization formulation Eq. 3.2. So we will
focus on the second step (Ordering), and will assume that o’ is the in-
put sequence for this step'. The overall idea is, instead of solving a large
ILP instance, solve several small ILP instances that combined represent a
feasible solution of the initial problem. Fig. 7.1 illustrates the recursive
approach: given a trace o, on the top level of the recursion a couple of

Parikh vectors X, X5 are computed such that mgq)i% mi)i? Mend, DY
using the Ordering ILP strategy of the previous section with granularity
lo|/2, with o = 0105. Some crucial observations can now be made:

1. X7 and Xy represent the optimal Parikh vectors for the model to
mimic the observed behavior in two steps.

2. Elements from X; precede elements from X5, but no knowledge on
the orderings within X; or within Xs is known yet.

3. Marking m; is the intermediate marking, being the final marking of
X1, and the initial marking of Xs.

4. Elements in supp(¢(X1)) Nsupp(c1) denote those elements in o1 that
can be reproduced by the model if one step of size |o|/2 was consid-
ered .

5. Elements in S1 = supp(£(X1)) \ supp(o1supp(e(x,))), denote the ad-
ditional transitions in the net that are inserted to compute the final
ordering. They will denote skipped “model moves” in the final align-
ment.

6. Elements in supp(X7) denote those elements in o9 that the model
needs to fire in the first part (but they were observed in the second
part). They will denote asynchronous “model moves” in the final
alignment.

7. 4, 5, and 6 hold symmetrically for X», X3 and 9.

The combination of these observations implies the independence be-
tween the computation of an approximate alignment for O'l‘supp(g(Xl)) .

1 For the sake of simplicity and to avoid complicated formulas we rename o’ to o.
21t is worth mentioning that in case of a model with duplicate labels, the mentioned statement
might result in unreplayable modeled trace.

158

tr(S1) - tr(€(X7)) and tr(£(X3)) - o2lsupp(e(x.)) * tT(S2), if the intermediate
marking mq is used as connecting marking between these two independent
problems®. This gives rise to the recursion step: each one of these two
problems can be recursively divided into two intermediate sequences, e.g.,
Mstart)gl mi1)gQ mq, and my)%1 mo1 X%Q Mend, With X7 = X11UX12 and
X9 = X971 UX99. By consecutive recursive calls, more precedence relations
are computed, thus progressing towards finding the full step sequence of
the model.

Now the complexity analysis of the recursive approach can be measured:
at the top level of the recursion one ILP problem consisting of (|T'| + |J1]) -
2 + |P| variables is solved, with J; = T'N supp(d). In the second level,
two ILP problems consisting of at most (|| + |J2|) - 2+ | P| variables, with
Jo = max{¥ N (supp(o1) U L(X1) U L(XF)), (XN (supp(o2)) U 4(X2) U
¢(X5))}. Hence as long as the recursion goes deeper, the ILP models have
less variables. The depth of the recursion is bounded by logs(|o|), but
in practice we limit the depth in order to solve instances that are small
enough.

P

Figure 7.2: Example with loop

Let us show how the method works step by step for an example. Con-
sider the model in Fig. 7.2 and a given non-fitting trace like 0 = asajazaqaq
asagaz. On this trace ILP model (3.2), i.e., seeking an optimal Parikh vec-
tor, presented in Section 3.4 will not remove any activity from o. We then
concentrate on the recursive ordering step. First at the top level of Fig.
7.1 the solutions X1, X7, X5 and X3 will be computed, with A =2 .

0402‘ 01 = a501a304 ‘ 09 = (4030403 ‘
| X1 UXG = {t1,t3,ta, to} | Xo U X5 = {t3,t3, 14,15, t2, ta} |

Notice that when seeking for an optimal ordering, t; does not appears
in X since then its firing will empty the net, and hence it appears in
X5 (to guarantee reaching the final marking). The intermediate marking
computed is m; = {%}. Accordingly, o1|supp(e(x,)) - tr(S1) - tr(€(X7)) =
aiasaq - az - 0, and 0'2’supp(£(X2)) . tl"(SQ) . tl"(g(X‘zs)) = as - 44030403 * G2.
Let us assume the recursion stops with subtraces of length less than 5, and
then the ILP approach (with granularity 1 in this example) is applied. The

3 Note the different way the traces are obtained, e.g., in the right part tr(X3$) is the leftmost
part since it denotes log moves that the model can produce on the left step.

Recursive Approach for Large ILP Instances 159

left part will then stop the recursion, providing the optimal approximate
alignment:

For the subtrace on the right part, i.e., asasasasasas the recursion
continues. Applying again the ILP with two steps, with m; = {P} as
initial marking, results in the following optimal approximate alignment:

041:‘ 0921 = 50403 ‘ 022 = 40302 ‘
| X1 UXS, = {ts,ta, ta} | Xoo U X5y = {ta, 13,13} |

With m; = {P»} as intermediate marking. Whenever the recursion goes
deeper, transitions are re-arranged accordingly in the solutions computed
(e.g., to moves to the left part of ayq, whilst ¢5 moves to the right part).
The new two subtraces induced from «; are t4t3ty and tst4t3. Since the
length of both is less than 5, the recursion stops and the ILP model with
granularity 1 is applied for each one, resulting in the solutions:

el e (L] e a |1
et | T L Tt [|

So the final optimal approximate alignment can be computed by con-
catenating the individual alignments found in preorder traversal:

a5‘a1‘a3‘a4‘J_‘a4‘ as ‘J_‘a4‘ as ‘J_‘
Lojtr |t | ta | to | L] {tasta} | ta| L | {taita} | t5 |

which represents the step-sequence o = titstato{ts, t4}to{ts, t4}t5 from the
model of Fig. 7.1. Informally, the final approximate alignment reports
that two activities to were skipped in the observed trace, the ordering
of two consecutive pair of events (t4t3) was wrong, and transition t; was
observed in the wrong order. Also, as mentioned in previous sections,
the result of proposed method is an approximation to the corresponding
optimal alignment, since some moves have non-singleton multisets (e.g.,
{t3,t4}). For these moves, the exact ordering is not computed although
the relative position is known. Cost of the final alignment, i.e., ¥U(«),

160

according to Def. 20 is sum of the followings:

U({as}, L
U({ar}, {€(t1)
U({as}, {€(ts)
U({as}, {€(ta)

(L, {e(t2)

¥({aa}, {i}
U({as}, {l(ts,ta)}) =

(L, {l(t2)}) =

Thus V(o) = 8.

7.3 Experiments

The techniques of this chapter have been implemented in Python as proto-
type tool that uses Gurobi for ILP resolution®. The tool has been evaluated
over two different families of examples with different challenges, i.e., (see
Appendix A, Tables A.1, A.4). We compare our technique over n = 1 with
the reference three approaches for computing optimal alignments from [5]°:
With or without ILP state space pruning, and the swap-+replacement
aware®. The comparisons are as follows:

4 The experiments have been done on a desktop computer with Intel Core i7-2.20GHz, and
5GB of RAM. Source code and benchmarks can be provided by contacting the first author.

51n spite of using n = 1, still the objects computed by our technique and the technique
from [5] are different, and hence this comparison is only meant to provide an estimation on
the speedup/memory/quality one can obtain by opting for approximate alignments.

6 The plugin ”Replay a log on Petri net for conformance analysis” from ProM with parameters
“A* cost-based fitness express with/without ILP and being/not being swap-replacement
aware”. We instructed the techniques from [5] to compute one-optimal alignment.

Recursive Approach for Large ILP Instances

<
E

Ak

= S I, <

— — | = . :

g SN\ 3

- Sk

f:": L ; -~

=9} =9 E

é =

=1 _ 2|

L0T*(s) emuy, (a)

Figure 7.3: Execution times

161

AT

6,300

-

LOT(s) sy

e Comparison for Well-Structured and Synthetic Models: Fig.

7.3 (b) provides the comparison in CPU time for the two families

priGmb

N/AN/AN/A 77 N/A N/AN/A

prEmb6G

1.47
prEmé

A\

7

N/A N/AN/A

prDmb

u
=
=

4308

7
prAmb

2,400

0.5

(b)

162

of approaches for big models presented in Table A.1. One can see
that for event logs with many short traces the approach from [5]
takes advantage of the optimizations done in the implementation,
e.g., caching and similar. Notice that those optimizations can also be
implemented in our setting. But clearly, in large models and event
logs with many long traces (prDm6, prF'm6 and prGmé6) the three
approaches from [5] either provide a solution in more than 12 hours or
crash due to memory problems (N/A in the figure), while the recur-
sive technique of this chapter is able to find approximate alignments
in a reasonable time. We have monitored the memory usage: our
techniques use an order of magnitude less memory than the tech-
niques from [5]. Finally, for these well-structured benchmarks, the
approach presented in this technique never found spurious solutions.

Comparison for Realistic Benchmarks: Fig. 7.3 (b) provides
the comparison for the realistic examples from Table A.4 presented
in Chapter 2. The figure is split into structured and unstructured
models, indeed except Documentflowl, Documentflow? the rest of
realistic models in Table A.4 are structured. For the structural re-
alistic models, the tendency of the previous structured benchmarks
is preserved. For the two unstructured benchmarks, the technique
of this chapter is able to produce approximate alignments in consid-
erably less time than the family of A*-based techniques. Moreover,
for the benchmarks from the BPI challenge, the A*-based techniques
crashes due to memory problems, whilst our technique again can han-
dle these instances. The memory usage of our technique is again one
order of magnitude less than the compared A*-based techniques, but
for the unstructured models spurious solutions were found.

Quality of Approximate Alignments: Table 7.1 reports the eval-
uation of the quality of the results obtained by the two approaches for
the cases where [5] provides a solution. We considered two different
comparisons: i) fine-grained comparison between the sequences com-
puted by [5] and the step-sequences of our approach, and ii) coarse-
grained comparison between the fitness value of the two approaches.
For i), we considered two possibilities: using the Edit or Jaccard dis-
tances’. For example for prAm6 dataset in average less than one
operation,i.e., 0.25, is needed to transform one step sequence to the
other. In some situations where there are a lot of deviations and the
model contains many concurrent transitions, Edit distance is unable
to identify very well the similarity of two step sequences, i.e., given
a model with many concurrent transitions and a trace with a lot of

7 Edit distance is a way of quantifying how dissimilar two strings (e.g., words) are to one
another by counting the minimum number of operations required to transform one string
into the other.

Recursive Approach for Large ILP Instances 163

deviations, both approaches provide valid step sequences but their
Edit distance is not small. To alleviate this problem, Jaccard dis-
tance, which measures dissimilarity between sample sets is used. It
considers each step sequence as a set. Although both of metric dis-
tances lack some information, they both together can provide more
representative information about the similarity of two step sequences.
For the first, given a trace o and a step-sequence 7, we simply take
the minimal edit distance between ¢ and any of the linearizations
of 4. For the Jaccard distance, which measures similarities between
sets, we considered both objects as sets and used this metric to mea-
sure their similarity. In the table, we provide the average of these
two metrics per trace, e.g. for prAm6 the two approaches are less
than 1 edit operation (0.25) different on average. For measuring ii),
the Root Mean Square Root (RMSE) over the fitness values provided
by both metrics is reported. Overall, one can see that both in fine-
grained and coarse-grained comparisons, the approach of this chapter
is very close to the optimal solutions computed by [5], specially for

well-structured models.
Table 7.1: Quality comparison.

Model/ Case ED | Jaccard | MSE
prAmo6 0.25 0 | 0.0002
prBm6 0 0 0
prCm6 2.99 0.01 | 0.0093
prEm6 0 0 0
Banktransfer 4.30 0.04 | 0.0400
Documentflow | 3.16 0.27 | 0.0310
Documentflow2 | 3.17 0.29 | 0.0330

7.4 Outlook

Approximate alignments generalize the notion of alignment by allowing
moves to be non-unitary, thus providing a user-defined mechanism to de-
cide the granularity for observing deviations of a model with respect to
observed behavior. A novel technique for the computation of approxi-
mate alignments has been presented in this chapter, based on a divide-
and-conquer strategy that uses ILP models both as splitting criteria and
for obtaining partial alignments. The technique has been implemented as
a prototype tool and the evaluation shows promising capabilities to handle
large instances.

One drawback of this method at the current time is its overhead of
multiplying matrices in each step and this is why the state of the art
approach had better computation times with small models and short traces.
But this problem can be tackled using caching mechanism in order to reduce
matrix multiplications and also with using multithreading and pipelining

164

the preparation time of each trace can be reduced remarkably. On the
other hand as explained in section 7.2 the recursive part can be done and
implemented in parallel mode on each subtrace as an independent process
or thread, where in that case the execution time reduces dramatically and
this is the future work of this approach.

Chapter 8

Structure Reduction

8.1 Introduction

This chapter presents a model-based technique for reduction of a process
model and observed behavior that both preserves the semantics of the
process model and retains the information of the original observed behavior
as much as possible. The technique is meant to fight the main problem
current approaches for alignment computation have: the complexity both
in space and time. In other words, the main purpose of the reduction of
a process model and event log presented in this chapter is to alleviate the
current computational challenge of computing an alignment, rather than
abstracting a process model to capture its essential fragments and hiding
details [62]. Therefore given a process model a particular type of relation
between transitions which implies causality is of interest, and the proposed
technique seeks fragments of the process model that easy the computation
of the relation. Other types of relation between transitions of the model for
the aim of abstraction or consistency verification between process model
are presented in [103] which are not suitable for the mentioned challenge.

Reducing the process model and observed behavior cause significant
reduction in resources usage for computing alignments, also reducing a
process model and observed behavior provide the analyst with an abstract
views of them, for example by reducing a process model multiple times the
analyst can have an abstract view of the process model which represent
the essence of its semantic, and by reducing observed behavior consecutive
times the analyst can gain an insight into general patterns and what is going
on in reality and where they are clustered. As in the previous chapter, we
assume that the input models are specified as Petri nets, this is without loss
of generality because this formalism can be converted to other formalisms.

The overall idea of this chapter relies on the notion of indication be-
tween activities of the process model when it is represented as a Petri net.
An indication relation between a set of transitions (indicated set) and an-
other transition (indicator) denotes a deterministic causal firing relation in
the model, which expresses that the presence in any model’s sequence of

165

166

the indicator transition requires the presence of the indicated set as well.
The notion of indication is inspired from the reveals relation from [9] and
co-occurrence relation in [103]. With the help of Refined Process Structure
Tree (RPST), we find logically independent parts of a graph (known as
fragment with entry-exit pair in [63] or the so-called Single Entry Single
Ezit (SESE) in [39]), which are then used to gather indication relations
efficiently. These relations dictate which parts of a process model are
abstracted as a single, high-level node. Once the model is reduced, the
observed trace to align is projected (hence, reduced as well) into the re-
duced model’s alphabet. This way, not only the model but also the trace
are reduced, which in turn makes the alignment techniques to be signifi-
cantly alleviated, specially for well-structured process models where many
indication relations may exist. Once alignments are computed, the final
step is also an interesting contribution of this chapter: to cast the well-
known Needleman-Wunsch algorithm [59] to expand locally each high-level
part of the alignment computed, using the indication relation. In must be
mentioned that aligning two sequences using this algorithm also used in
Chapter 5.

This chapter is organized as follow. The SESE structure and the overal
framework will be introduced and detailed in Sect. 8.2 and Sect. 8.3. Fol-
lowing that, in Sect. 8.4, the notion of indication, by which a process model
and an observed trace are reduced, is presented. The expansion mechanism
for an alignment, that is under the reduced language model is presented in
Sect. 8.5. Finally, Sect. 8.6 reports the conducted experiments.

8.2 Single Entry Single Exit (SESE)

The general idea of consistency measure is as follows, given the correspon-
dence relation between the sets of transitions of two WF-nets, all respective
transitions of two models are aligned and for each pair of aligned transitions
it is checked whether those transitions show the same constraints as defined
by the causal behavioural profile. To compute causal behavioural profile
efficiently, the presented approach concretises RPST fragments by anno-
tating them with behavioural characteristics. Stated differently, an explicit
relation between structural and behavioural characteristics is established.

This section introduces how a WF-net can be partitioned in terms of
modular components called Single Entry Single Exit (SESE).

Definition 36 (Mutli-Graph, Subgraph). A graph is 3-tuple (V,E (),
where V and E are two disjoint sets of nodes and edges respectively, and ¢
18 a mapping, which assigns to each edge either an ordered pair of nodes,
results in directed graph, or an unordered pair of nodes, results in undi-
rected graph. If a pair of nodes being connected by more than one edge it is
called multi-graph. A subgraph can be identified with a pair (V', E') where
V' CV and E' C E. Let F C E represents a set of edges, Gp = (Vp, F)

Structure Reduction 167

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ts

bdfhcegi k 1 n te
(c) (d)

Figure 8.1: (a) WF-net,(b) Workflow graph,(c) RPST, (d) Reduced WF-
net

is the subgraph formed by by F' if Vi is the smallest set of nodes such that
Gr is a subgraph.

A multi-terminal graph (MTG) is a directed multi-graph G that has at
least one source and at least one sink such that each node lies on a path
from some source to some sink. It is two-terminal graph (TTG) if it has
exactly one source and one sink. So if no distinctions are made between
places and transitions of a WF-net, it can be viewed as a TTG or simply
called Workflow graph. WF-graph of Fig. 8.1(a) is presented in Fig. 8.1(b).

Definition 37 (Boundary Node, Entry, Exit, Fragment). Let G =

(V,E) be an MTG and Gr = (Vp,F) be a connected subgraph of G. A
node in Vi is boundary with respect to Gp if it is connected to nodes in
Ve and in V — Vg, otherwise it is interior node of Gp. A boundary node
u of G is an entry of Gp if no incoming edge of u belongs to F' or if all
outgoing edges of u belong to F'. A boundary node v of G is an exit node
of G if no outgoing edge of v belongs to F or if all incoming edges of v
belong to F. Gp with one entry and one exit node is called SESE. The
entry and exit nodes of GF is represented by an ordered pair (u,v). F is
a fragment of G, if Gr has exactly two boundary nodes, namely one entry

168

and one exit. If it contains only one edge it is called trivial. Fragments are
represented by a set of edges.

Two SESEs G, and G, of G are nested if F1 C Fy or Fp C Fy. They
are disjoint if F1 N Fy = ¢, otherwise they are overlapped. A SESE of G
is called canonical if it does not overlap with any other SESEs of G. For
example in Fig. 8.1(b) all SESEs are canonical, Sy and Sy are nested, S3
and Sy are disjoint.

Definition 38 (Refined Process Structure Tree). Let G be an MTG graph,
then its Refined Process Structure Tree (RPST) is the set of all canonical
SESFEs of G. Because canonical fragments are either nested or disjoint,
they form a hierarchy.

In a typical RPST, the parent of a canonical SESE Gp is the smallest
canonical SESE that contains Gp. So the leaves of the tree are trivial
SESE and the root is the whole graph. Fig. 8.1(c) is the RPST of WF-
graph in Fig. 8.1(b), S1 which is the entire graph is at root and leaves are
trivial SESEs which only contain one edge.

8.3 Overall Framework

Given a process model N, represented by a Petri net, and o as observed
behavior, the strategy of this chapter is sketched in Fig. 8.2. We now
provide descriptions of each stage.

Model Reduction
(4.1)

@ - Alignment
Computing ;
; Expansion
Macro-Alignment @ (5) @
Log Reduction @—‘

(4.2)

Figure 8.2: Overall framework for boosting the computation of alignments

e Model Reduction: N will be reduced based on the notion of indication
relation which results in N,.. It contains some abstract events repre-
senting the indicators of certain indicated sets of transitions. Section
8.4 explains it in detail.

e Log Reduction: Using the indication relations computed in the model,
o is projected into the remaining labels in N,, resulting in o,. Sec-
tion 8.4.2 describes this step.

e Computing Alignment: Given N, and o,, approaches like [5] or other
methods of alignment computation can be applied to compute align-
ments. At this point because both N, and o, contain abstract events,

Structure Reduction 169

the computed alignment will have them as well. We call it macro-
alignment.

o Alignment Ezxpansion: For each abstract element of a macro-alignment,
the modeled and observed indications are confronted. Needleman-
Wunsch algorithm [59] is adapted to compute optimal alignments for
these abstracted elements. Section 8.5 will be centered on this.

It must be stressed that for the proposed framework, obtaining an optimal
alignment is not guaranteed due to the fact that the problem is distributed
into several smaller problems for which local optimal alignments are com-
puted. In spite of this, the experimental evaluation presented in Section
8.6 reveals that the results obtained in our framework are often close to
the optimal solutions.

8.4 Reduction of Model and Observed Behavior

8.4.1 The Indication Relation

Let us consider the model in Fig. 8.1(a). For any sequence of the model,
whenever transition ¢4 fires it is clear that transitions ¢1, t3, and to have
fired as well or firing of tg indicates that ¢;, t5 and ¢7 must be happened
already. Formally:

Definition 39 (Universal-Indication Relation). Let N = (P,T,F),Vt € T,
indication is defined as a function, 1(t) where, I : T — [P(T)T]* ! such
that for any sequence o € L(N), if t € o then I(T) € o. If I(t) =
WiWwe...wy, then elements of wy, precede the elements of wy in o for 1 <
m < n. It is called linear if it contains only singleton sets, i.e. Yw; €
I(t), |w;| = 1 otherwise it is non-linear.

Model reduction can be done through the subclass of universal-indication
relation, which is called flow-indication relation. Stated formally:

Definition 40 (Flow-Indication Relation). Given Def. 59, If I(t) =
wiWws...wn, it represents a flow-indication if and only if, for all consecu-
tive elements w;, wiy1, firing the whole elements of the former enable all
elements in the later, exclusively, for 1 <1i < n.

For example in Fig. 8.1(a), I(t4) = {t1}{{t2}, {t3} }{t4} (non-linear), which
is a flow-indication as well, and I(tg) = {t1}{t5}{t7}{ts} (linear), but it
is not a flow-indication because firing of ¢; will not enable 5 exclusively.
From now on, because the flow-indication relation is our concern for the
remaining parts of the chapter, for the sake of simplicity, by indication we
mean flow-indication relation, unless otherwise stated explicitly.

L P(T) is powerset of the set of transitions of the model.

170

Y P, th ta(New)
@ [—O— [D []
P tn P4 Py ty(New)
© O—1—0O— [O—O
R s N B t(New) By
o O—-U0—-0O—-1—0 O—0—0
R T TR TR TR pNew B

0 B-O-L-0-0-0 “Tro

Figure 8.3: Linear SESEs and corresponding reductions.

8.4.1.1 Detecing Flow-Indication Relation through SESE.

SESEs are potential candidates for identifying indication relations inside a
WF-net: the exit node of a SESE is the potential indicator of the nodes
inside the SESE. Since entry/exit nodes of a SESE can be either place or
transitions, SESEs are categorized as (P, P), (P,T), (T,P) or (T,T). In
case the SESE is linear, indication relations can be extracted easily and
the corresponding SESE is reduced (see Fig. 8.3).

Non-linear cases are decomposed into linear ones such that indication
relations can be computed directly on the linear components extracted.
After that, the indication relation of the corresponding linear SESEs are
computed and they are reduced as well. This procedure should be done
with caution to avoid reaching a deadlock situation. Hence a deadlock-free
post-verification must be done after reduction of these linear parts. Infor-
mally, the verification is only needed for particular type of linear SESEs
((T,T)), and consists on validating the property of the SESE after the
reduction. Notice the verification is necessary in these cases because, non-
linear SESEs may contain linear universal-indications at nested level, which
cannot be extracted as flow-indication relations due to choice or loop con-
structs. For example in Fig. 8.4 (a), (b) t5 can not be the indicator of
transitions in the corresponding SESEs due to choice and loop structures.

Stated differently, the reduction of non-linear SESEs must be done
alongside by a deadlock-free post-verification; for instance, Fig. 8.5 shows
that in spite of the indication arising from SESE S5, the net cannot be
reduced without changing the language. To put it another way, this re-
duction will cause a deadlock in the reduced model, and hence must be
avoided. Looking at the reduced result in Fig. 8.5 (b), transition ¢5(New)
never fires because after the reduction it is not enabled since P, never gets

Structure Reduction 171

(a) (b)

Figure 8.5: Incorrect indication-based reduction: a deadlock is introduced.

marked. To shed more light on the examination of the deadlock-free post
verification, more details are stated in the following theorem.

Theorem 6. Let S be a reduced linear SESE or the combination of other
reduced linear SESEs with entry, exit nodes (ty,t,) of the (T, T') category.
If OUT (ty) and IN(t,) represent the set outgoing and incoming arcs of t,,
and t, respectively, then the reduction is deadlock-free if and only if:

a) Yee OUT(t,), then ee€S,
b) VYeeIN(t,), then ee€S

Proof. First of all, assume that the original model before the reduction does
not have any deadlock and Ts and ¢, (y¢.) represent internal transitions of S
and the reduced SESE respectively. The proof is presented by contradiction
as follow:

Suppose that conditions in Theorem 6 hold and the reduction of S causes
deadlock in the system (see deadlock Def. 5 in Chapter 2). Namely, there
is a set of places, Py, which attributes deadlock or in other words t,(new)
outputs to one of places in P; and inputs from one of them. Due to the
fact that all transitions in Ts are internal and do not have direct access to
any places in Py, the only incoming and outgoing arcs of t,(ye.) belong to
t, and t, respectively. So it can be concluded that once the places in Py

172

become unmarked they will always be unmarked and neither ¢, nor ¢, can
place a token in the deadlock, but this contradicts with the assumption
that the original model does not have deadlock due to the fact that IN(¢,)
and OUT (t,) remain unchanged before and after reduction. O

@
RPST

s

{ Linear SESEs ’ Non-Linear SESEs ‘ Trivial SESEs
! h ; ——
. . Non-Linear SESEs
{ Linear SESEs Reduction |_. e
]
Linear SESEs

¥

Linear SESEs Reduction

"

Reduction Decompose to
Verifica- P

. Trivial SESEs
tion

- /

Reduced WF-net >

[
¥

Figure 8.6: Schema for reduction of a WF-net.

The reduction schema is depicted in Fig. 8.6. From the RPST, a top-
down approach is applied that searches for indication-based reductions that
do preserve the language of the initial model, once the net is expanded back,
i.e., the language of the model must be preserved after reduction. Notice
that the reduction can be applied more than once till saturation (hence the
arc back from the node “Reduced WF-net” to the node “WF-net” in Fig.
8.6).

Fig. 8.7 shows an example (for the sake of simplicity only linear SESEs
are shown). Obviously, SESE Sy is inherently a linear SESE but the rest
come from the decomposition of non-linear SESEs. The reduction schema is
as follows: Since S5 is inherently a linear SESE, hence it can be reduced eas-
ily according to Fig. 8.3 without any deadlock-free post-verification. The
rest of linear SESEs also will be reduced accordingly and the deadlock-free
post-verification will be done after each reduction to check that no deadlock
arises. One can see all reductions will pass the verification, except for Sy,
whose reduction induces a deadlock hence must be excluded from abstrac-
tion. Applying the reduction once, results in Fig. 8.7(b). As mentioned
earlier, the reduction can be applied more than once until no reduction can

Structure Reduction 173

be made. Fig. 8.7(c) is the reduction of the model in Fig. 8.7(b) and it is
clear that no more reduction can be made from this model.

8.4.2 Reduction of Observed Behavior

Given a reduced model N, and o, we show how to produce o,. We will use
the reduced model in Fig. 87(b) and the trace o1 = t1tststi1t10t21tstat7t1e
tostigtootag. The reduction of an observed trace is done by the notion of
observed indication.

Definition 41 (Observed Indication). Given a reduced model N, and an
observed trace o, for a model indication I(t;) the corresponding observed
indication is the projection (union of projections) of o over I(t;).

The indication of t5(ye,) in Fig. 8.7(b) which is linear, equals to {t5}{t15}.

So the observed indication for this abstract node is o1 Ve = ts. After
5(new)

computing the observed indication the reduced trace is t1t5(new)tstiitiot2ite

tatrtigtas tigtaotas. For tiz(vew)s I(tiz(New)) = {tsH{tio}, {tun}Htir},

which is non-linear and merged of two linear indications, I1(t17(yew))={t3}

{tioH{t17} and Ia(ti7(New)) = {ta}{t11}{t17}. So the projection must be

done for each linear indication separately, = tsti0 and
17(New)
= t3t11, removing transitions ts, t19, t11 and t17 from the

g
1J'11 (t

O-LLIQ(tl?(New))

current trace (notice that t17 does not appear originally, hence it is not
projected). Finally, we need to insert t;7(yew) into the reduced trace; it
will be inserted at the position of t19, because the end transition of the
abstract node, i.e. t17 did not happen in o, and t1yp happened last in o.
Therefore the reduced trace so far is 1185 (new) t17(new)t21tet2trti6t2s t19t20t26-
By applying this process for the rest of abstract nodes (t16(new)s t22(New))s

we reach o, = t1t5(new)tl?(new)t21t16(]\few) 7522(]V(3111)7526-

8.5 Expansion Through Local Optimal Indication
Alignments

After reducing a given process model and corresponding observed behavior,
we can use state of the art approach [5] or other methods for computing
alignments to align N, and o, deriving «,.. For example the following is
the macro alignment of o1, = t1l5(new)t17(new)t21t16(New) t22(New)t26 and
the model in Fig. 8.7(b) obtained by the approach in [5].

N :\ 31 \ t5(New) \ 17(New) \ to1 \ 1 \ 1 \ L16(New) \ oo (New) \ l26 \
Tt] L | tirvew) | 21 | tos | ts(vew) | tio(wvew) | toa(vew) | t26 |

When mapped to linear indications, indication of an abstract node and
the corresponding observed indication are both sequence of events; hence
for each linear combination of modeled/observed indication, we can adapt
the dynamic programming approach from [59] (used in bioinformatics) to

174

vﬂw

175

Structure Reduction

e

.ﬁ:Qﬂ

dﬁw
Mr.\/

NHM

(man)g)

mﬁ-ﬂ

O/.s

“

Ew

a0,

,a:&‘ Nﬁw wﬁm‘

O—[1—

(man)vey

(mapn) nSS/LNNw

(man)e;

v

i

(a) Process model, (b) One-time reduced (c) Two-times re-

Figure 8.7:
duced.

176

align two sequences. This approach is fully explained in Chapter 5, Sec-

tion 5.4. For the sake of simplicity a short description according to this
chapter is presented here. As example, we use indication of ¢17(yew) and
its observed indication computed in the previous section.

Table 1: Aligning modeled and observed indications

i3 t11 i3 t1o
0 A 2 0 1 2
ts 1 0 1 ts 1 N0 e
fll '2 -1 ’\ ﬂ fm -2 -1 n
ti7 =) -1 T ti7 = -2 -1 T
(a) (b)
s [t | L o s [to | L |
s [t |t | s |t | |

For each linear indication a table will be created, where the first row and
column are filled by observed and abstract node indications respectively,
as depicted in Table 1(a), 1(b). The second row and second column are
initialized with numbers starting from 0,-1,-2,..., they are depicted in yel-
low color. The task then is to fill the remaining cells as follows:

SIM(ti, tj) = Maximum{SIM(ti_l, tj_l) + S(ti, tj),
SIM(ti_l,tj) — 1,
SIM(ti, tj—1) — 1}

Where STM (t;,t;) represents the similarity score between t; and t;. s(t;,t;)
is the substitution score for aligning ¢; and t;, it is 0 when they are equal
and —1 otherwise.

The final step in the algorithm is the trace back for the best alignment.
In the above mentioned example, one can see the bottom right hand corner
in for example Table 1, score as -1. The important point to be noted
here is that there may be two or more alignments possible between the
two example sequences. The current cell with value -1 has immediate
predecessor, where the maximum score obtained is diagonally located and
its value is 0. If there are two or more values which points back, suggests
that there can be two or more possible alignments. By continuing the trace
back step by the above defined method, one would reach to the Oth row, Oth
column. Following the above described steps, alignment of two sequences
can be found.

Alignments can be represented by a sequence of paired elements, for ex-
ample a1 = (t3,t3)(t11,t11)(J.,t17), a9 = (t3,t3)(t10,t10)(J.,t17) and final
alignment which represent the non-linear indication is « = (t3, t3){(¢11, t11),
(t10,t10) }(L, t17). This information is booked for each abstract node.

177

Structure Reduction

(M2N)%) 10 uorswedxy] :¢'§ O[qR],

923 7] 7 02y 7 617 7 (] 7 913 7 82 7 92 7 Ly 7 [7 T 7 Y] 7 %] 7 vy 7 12y 7 L1 7 019 7 117 7 € 7 T 7 17 7H@
wmwi47037m:immwiwﬂin_|74|7$7mw7©w7%7%7|_|7HS71_|7057~57$7@“757
(m2N)2Zy pue (MPN)9T) j0 uorsuedxy] :7'] O[qR],
7 9¢q 7 ¢4 7 02g 7 619 7 Std] 7 919 7 87 7 97 7 Ly 7 (@] 7 T 7 ASqumw 7 veq 7 129 7 LTy 7 019 7 117 7 € 7 T 7 T2 7H@
7©Nw71ﬁ7037@37?“7@5747|_|7$7Nw7©w7 T 7|_|75“7Hioﬂwi:wimwiﬁamzvmwiﬂi
(M2N)L19 10 wotsuedxy :1°§ O[qRL,
7 929 7 (m2N)zz) 7 (m2N)9T 7 (maN)gg 7 %4 7 129 7 L1y 7 019 7 Ay 7 € 7 T 7 1 7
50y | @eRDEey | @AYy | T | T | | T |0 | Wy |6 | N [

178

After computing local alignments for abstract nodes, we can use them to
expand corresponding abstract nodes in a given «,.. The policy of expansion
depends on whether the abstract node is in synchronous or asynchronous
move. In ay, t17(yew) 18 in a synchronous move so we can expand it by its
local alignment, which results in an alignment depicted in Table 8.1. The
same story also happens for ¢15(yew) and fag(yew) that are both synchronous
moves, the result is shown in Table 8.2. On the other hand t5(ney) in o
is a asynchronous move both on the model and observed trace. The policy
of expansion is to expand move on log and move on model independently.
To put it in another way, move on log will be expanded using observed
indication and move on model will be expanded using the abstract node’
indication. The full expansion of «, is depicted in Table 8.3.

8.6 Experiments and Results

The technique presented in this chapter has been implemented in Python
as a prototype tool. The tool has been evaluated over different family
of examples with variety of difficulties which are presented in Appendix
A. Tt has been applied alongside with the state of the art techniques for
computing alignment [5] (A*) and the approach presented in Chapter 7.

e Reduction of Models. Table 8.4 provides the results of one-time
reduction by applying the proposed method to benchmark datasets.
Significant reductions are found often. Obviously one can see that
the results of reduction are more representative for models without
loops like (prAmé,..,prGm6) or for models that contain small loops,
like (Banktransfer).

e Executable Property of Alignments. Since the alignment com-
putation based on the approach presented in Chapter 7, i.e., ILP.R,
may be approximate or the results contain spurious elements, Table
8.5 provides an overview of how many of the computed alignments
can be replayed for I L P.R method when combined with the technique
of this chapter. Also the corresponding results for state of the art
technique in [5] are presented as well. One can see that the expanded
alignments provided by A* were replayed 100% for all datasets.

179

Structure Reduction

.mewgd.s
(%¥e)se o1 | (%L€)aL (%9%)19 86 TLT ian Ter | ueq
(%8¢)ey 9¢g | (%82)<0T (%6€)16 8¢ pee 9vT 0GT oLy
A&m@% 8L | (%68)6¢ @a&% ia 021 e Ly 677
(%L7)6 vT | (%€9)L (%59)9 LT 9¢ q1 LT S
(%¥z)se 70T | (%93)9% (%Fe)er L€ 87T z9 g9 Ly
(%61)er ceT | (%81)6¢ (%92)1¢ €g 89T zL 69 o
(%81)8¢ e9 | (%81).Lg (%€2)LT Ve) e G S
(%11)¢T 96 | (%8)8¥ (%F1)1€ 9z 90T s 9¢ 2
(%12)6¢ ¢1g | (%02)86 (%0€)9. L€ 9.2 €zl 80T e
(%ez)et 79 | (%81)8% (%€2)9¢ LT 08 e Ve a7
(%0¢)6 29 | (%82)8¢g (%L£)sC e1 z6 6¢ o v
(%F€)76 867 | (%¥e)1eT | (%SF)S6T er1 928 Gee L6¢ | gunad
(%ep)LeT 90% | (%eh)aLl | (%09)18T 0¥ Ll 662 g9e | gugid
(%ez)CL ver | (%92)602 | (%S€)08T 86 zs9 CLT LT | 9ugad
(%0%)8VT 819 | (%eh)Sve | (%6¥)0LT 8¥C OFTT 657 62¢ | quqad
(%12)ee 06% | (%62)522 | (%0¥)SST oy 49 L1€ L1¢ | 9upad
(%ez)es 067 | (%62)52g | (%07)SST e 49 L€ L1e | gwugad
(%62)3¢ 867 Qmmvmmm QSES I¢ 978 L¥E eog | gquryid
(103v) | (103v) | (YY) (1013v) | (o1050q) | (91030¢) | (910§0¢) | (e1030¢])
bavjo] | ouy]| .zl | | %o P4y | .| |l | 1ePoIN

S19seIep YIRWIYOUS(PAONPIY 'S 9[qel,

180

Table 8.5: Replaying of Computed Step-Sequences

Model Cases | Replay | Replay | Replay | Replay

%o %o % %
(Before) (After) | (Before] (After)
ILP.R | ILP.R | A* A*

prAm6 | 1200 100% | 100% | 100% | 100%
prBm6 | 1200 100% | 100% | 100% | 100%
prCm6 | 500 100% | 100% | 100% | 100%
prDm6 | 1200 100% | 100% | 100% | 100%
prEm6 | 1200 100% | 100% | 100% | 100%
prFm6 | 1200 100% | 100% | 100% | 100%
prGm6 | 1200 100% | 100% | 100% | 100%

My 500 94.2% | 86% 100% 100%
My 500 95.4% | 86.2% | 100% | 100%
Ms 500 98% 88.8% | 100% 100%
My 500 90% 81% 100% | 100%
M 500 94.8% | 95.2% | 100% 100%
Mg 500 98.6% | 90.8% | 100% | 100%
My 500 97.2% | 96% 100% 100%
Mg 500 100% 100% 100% 100%
My 500 100% | 98.8% | 100% | 100%
My 500 100% | 99.8% | 100% 100%
Bank- 2000 97.25% | 88.9% | 100% | 100%
transfer

e Comparing with Original Alignments. Table 8.6 reports the

evaluation of the quality of the results for both state of the art ap-
proaches [5] and the method in Chapter 7 with and without applying
the technique of this chapter. Columns ED/Jaccard report the ed-
it/Jaccard distances between the sequences computed, while (Mean
Square Error) MSE columns report the mean square error between
the corresponding fitness values. Edit distances are often large, but
interestingly this has no impact on the fitness, since when expanding
abstract nodes although the final position may differ, the model still
can replay the obtained sequences very often.

Memory Usage. By one-time reduction, the memory usage’ of
computing alignments using state of the approach [5], is reduced sig-
nificantly. See Fig. 8.8 which represents the required memory for
[5] without and with using the proposed framework respectively. For
large models, prDm6, prEm6, prGmé, it can only compute align-

2 Each dataset during its execution was monitored every 0.15 seconds, and the portion of
memory occupied by the corresponding process that is held in main memory (RSS) was
booked. Based on the gathered data 95% CI was computed.

181

Structure Reduction

M@mmgdmw
L9000 8T10°0 er G200 1€0°0 81 -[ueg
z10°0 8€000°0 el VN VN VN oTpy
G800°0 77000 ¢ VN VN VN 6y
Ge0'0 8L00°0 i 6€0°0 €200 i 8
610°0 L2000 Gl VN VN VN 4
8800°0 ¢100°0 4] VN VN VN N
€010°0 ¥2000°0 1 ¢%00°0 z200°0 T Sy
Gz0'0 G100 ré 8200 or i 4%
910°0 1100 G 120°0 9%0°0 8 e
8T0°0 0 9 €610°0 z10°0 9 92
¢910°0 6200 i 120°0 G80°0 i Iy
790000 110°0 L2 VN VN VN | 9unid
¥200°0 €10°0 L9 VN VN VN | qwgid
0 0 L€ c0’0 0 y1Le | 9uyad
70000 T0T0°0 87°€6 VN VN VN | quqd
9%900°0 6100°0 09'TT G000 910°0 ¢9'8 | 9upid
0 0 1€°8T 0 0 L18°L | 9ugad
180000 L10°0 GT'6 $90°0 0 67L | 9uyad
(MdTadxd | (Udmadxd | (OdmadxXd | (wydxd | (WVadxd |(Waddxd
sa q'dTI) SA Y'dTI) SA Y1) SA L) SA L) SA LY)
ASIN paeooe(ad HASIN paeooe(ad | PO

soouenbog-dojg pomduro)) jo Lyend) :9°g 9[qe],

182

ments if applied in combination with the technique of this chapter
otherwise it runs out of memory for the machine by which the ex-
periment are done, denoted by (> 5500 MB) in Fig. 8.8. For the
approach in Chapter 7, due to the fact that it is based on Integer
Linear Programming (ILP), to accentuate the effect of reduction, the
evaluation was done based on number of required variables for com-
puting alignments with and without the proposed approach. The
results in Table 8.7% represent, in average, significant reduction to
the number of variables when an ILP instance needs to be solved a
given problem.

Table 8.7: Average number of variables for the approach in Chapter 7

Model |Var| g | |Var|aug Model | |Var|aug | |Var|awg
(Before) | (After) (Before)| (After)
prAm6 10757 5170 (52%) | M, 578 364 (37%)
prBm6 13631 | 7425 (45%) | Ms | 4551 | 2842 (37%)
prCm6 13314 | 7425 (44%) | My 1352 | 1104 (18%)
prDm6 106392 | 36704 (65%) | Ms 1122 756 (32%)
prEm6 26950 15375 (43%) | Mg 3816 2537 (33%)
prFmé 71760 | 23564 (67%) | My 2204 | 1288 (44%)
prGm6 47905 20774 (56%) | Ms 255 63 (75%)
banktransfer | 6612 2736 (58%) | My 2420 1326 (45%)
M, 507 252 (50%) Mg 8468 4410 (48%)

e Computation Time Comparison.

Fig. 8.9, 8.10 (a)-(b) report execution times for BPM-2013 and other
benchmark datasets for the computation of alignments by techniques
in [5] and the one presented in Chapter 7 with and without using
the presented technique in this chapter (denoted by EXP.R.) respec-
tively. It is evident that A* approach combined with the proposed
method is significantly faster than the other approach in nearly all
datasets except (prGm6, prDm6, Mg, Mg). Still A* approach can-
not compute alignments for models Mg and My even after applying
the presented technique, which are denoted by (N/A), and in that
case the combination of ILP.R with the presented technique is the
best choice.

3 For a given model with |T'| transitions and an event log o, the required number of variables
for the ILP based technique in Chapter 7 is ©(|o| x |T|), totally.

183

Structure Reduction

(po1) 1ogdero sty jo enbrutyoe) SutAjdde 1ogye pue (Leid) o1ojoq uoryeindurod JUSWUSI[R JO oSN AIDOWSIN :{'Q 9INI3I]

JER=E]

«ww, NWV »mu va va omv ,u%u S N &

I W N S N S
-0

| 1
' I
_ 1 1 _ _
I
-000+
-0002
-000€
_ -000%
-0005
00SG< 00SS< 00SG< 00SG< 00GS< 00G6< 00GS< 00GS<

(8W) diowsi paunbsy

ojsur.Lued oty Spv 4y A W N W e 4 4
VIN Y w6t VING vIN 77 Y 7 g
Z \ 7 Z 7
\ 1 \ o N oor 69 ¢
\ 121 ~ ecl 9et—99T
\ 992 ¢92 7,
% pALS 9re
qav
022
<
= OFEF
m. (e)
m gunyad gu Jad guryad guu(rad gunad qugad guryad
m VINT VN \ (AL o%a 792261 022681
— V
_ _
7z 8Vt ©
\ CIET .
_
_
7
ZSOTT
_
7
999°GT
<t
B vOﬂ

00c

00y

009

008

0001

0021

¢'0
70
90
80

[
71

91

(s) o,

(s) ouurg,

Figure 8.9: (a) BPM-2013 datasets [56], (b) Synthetic datasets

Structure Reduction 185

ABEXP.R.Recursive ILP 00 Recursive ILP

E © 2 :%
= E g g
~ 3 &} — T (R =
ENE NNN\\E
g g
— ~ a
§F g SN \ =
<t
A BN ANAAANNNN
A E Tey®
:AN\\H)
4 I~
) NNk
% 2 N E = z =
Zamaag 2 RNNE
<t
S Em
2mls ENN
‘_‘Fto O o
By & = _ 5
AN
§ <o % — NN g
N8 7 NN
s\ \E _
v—<© @'
S\”
S 5
N o< bl Sy
2N & N
B Lol — D e o o o o o o o o o
- ° 8 8§ 8 8 8 8 § 8
(s) ouurg, (s) oumt,
Figure 8.10: (a) BPM-2013 datasets [56], (b) Synthetic datasets
8.7 Outlook

This chapter presented a technique that can be used to significantly alle-
viate the complexity of computing alignments. The general idea is with
preserving language of the given model, making it and corresponding ob-

(b)

186

served trace smaller and more compact. Alignment computation then can
be done with these compact representations. Finally the computed align-
ment will be expanded back in order to have the original representation
of the model and observed trace. The technique uses the indication re-
lation to abstract unimportant parts of a process model so that global
computation of alignments focus on a reduced instance. The reduced part
of computed alignments then will be expanded to represent local devia-
tions as well. Experiments are provided that witness the capability of the
technique when used in combination with state-of-the-art approaches for
alignment computation.

Part V

Conclusions and Tool
Support

187

Chapter 9

Conclusion

Conformance checking of business process models is a vital task in process
mining because it reveals where and to what extend a process model can
be lined up to its real execution. Having this knowledge opens a door for
further analysis and improvements, such as model repair and more impor-
tantly detecting individual deviations, therefore the advantage of having
this knowledge is manifold. Mathematical formulation of this issue boils
down to the notion of alignment, which details how a model and its event
log can be lined up with each other. Alignment computation itself is an
optimization problem, in other words given a cost function, the optimal
line up between a process model and its footprint is sought. This is a
challenging task from computing point of view, since the best devised al-
gorithm has exponential complexity in both memory and time dimensions
to the size of a problem.

This research work followed different objectives due to the existing chal-
lenges. The main challenge that tackled in all chapters of this thesis is
to present ways to alleviate the mentioned existing computation burden.
The other objectives which might be a bit overshadowed are both principal
and applied like process model summarization, approximate alignment and
multiple alignment computation, which have vast applications in numerous
domains.

For the main objective, i.e., alleviating optimal alignment computation,
this research work tackled it from different angles. The major adopted pol-
icy in all proposed techniques is to maintain a balance between three metric
dimensions i.e., memory consumption, quality of result and execution time.
Each proposed approach, by targeting the main challenge and considering
the mentioned dimensions, also takes into account other objectives as out-
lined earlier. Broadly speaking, all the works done in this thesis can be
summarized in three classes:

e The first class adopts classical optimization techniques namely ILP
to achieve alignment computation. Specifically, a new optimization
paradigm based on ILP, marking equation and structural theory of
Petri nets is introduced in Chapter 3. Stated differently, optimal

189

190

alignment computation is mapped to another problem which is solv-
ing an ILP instance with appropriate constraints. In spite of memory
efficiency and providing optimal solution in terms of Parikh vectors,
this approach can not deal with big process models since it results in
solving a large ILP instance which might be intractable. The novelty
of presented approach is to provide an infrastructure for approximate
alignment computation, which gives a more coarse perspective of the
existing detailed alignment.

Another challenge that this approach faces and can be seen as fu-
ture work is the existence of spurious solutions which can be more
problematic for spaghetti process models. Above that, this approach
solves a large ILP instances once, and that constitutes the alignment
steps. This raises another challenge and that is, how the number
of steps must be estimated or known in advance as a prior knowl-
edge. To cope with the mentioned challenges, Chapter 4 presented
alignment computation in an incremental way. More specific, an
alignment is computed in two stages. The first stage computes the
prefix of an alignment using the ILP method in Chapter 3 and the
corresponding tail will be computed by A* with an heuristic func-
tion comes from the first stage. This approach is a trade off between
complexity and quality, which means that having an optimal solution
might be intractable, thus the quality might be sacrificed to alleviate
the existing complexity. Having real solution is guaranteed in this
approach. Additionally, computing the tail of an alignment using
A* might requires backtracking which would increase the complexity.
Therefore as future work adopting more efficient heuristic functions
might be valuable and considered.

Above from these mentioned approaches, the technique in Chapter
7 presented a divide and conquer framework for solving large ILP
instances. Indeed, this technique targets the existing challenge in
Chapter 3, i.e., intractable property of large ILP instances. This ap-
proach by modifying some constraints of the original problem tries
to break a large ILP instances into a smaller set of ILP instances,
and by solving them in a recursive way in effect provides a solution
to the original problem. Although this approach is very efficient in
terms of resource usage, it suffers by increasing number of spurious
solutions. The root cause of this issue is not difficult to grasp since
a smaller ILP that must be solved can potentially inject a spurious
solution to the next level of recursion, which can then be propagated
consecutively. Therefore as future work one possibility is to manip-
ulate the existing constraints or adding extra constraints to prevent
propagation of spurious solutions to the next levels.

The second class revolves around incorporating modern optimization
techniques, like local search and genetic algorithm for alignment com-

Conclusion 191

putation. It must be mentioned that techniques in this class benefit
ILP optimization as well to some extent. Chapter 5 demonstrated a
fast and light alignment computation which is based on local search.
This approach obtains an initial solution with the help of ILP. Then
it is improved by swapping some of its elements and it continues until
saturation. This approach works excellent for large process models
which contains many parallelization tasks. In contrast, parallel tran-
sitions of a process model would be a huge barrier for state of the
art technique that explores the corresponding search space. In spite
of resource efficiency, low execution time and having close to optimal
results, this approach sometimes makes a bad initial solution from
where no more improvement can be achieved by swapping. This hap-
pens when the parallelization in a model is low, and the root cause is
due to the adopted heuristic whose policy makes an initial solution
that is far from the desired solution. On these situations, swapping
operations will no longer be beneficial. Therefore, one possibility
of future work would be devising better and more stable heuristic
functions.

Apart from that, to overcome the mentioned challenge, Chapter 6
presented an evolutionary approach for alignment computation. It
computes an alignment in two steps, the fist one is similar to the
technique in Chapter 5, but instead of improving the initial solution,
it generates a set of candidate solutions (chromosomes) by permuting
the elements of an initial solution. Having a set of candidate solutions
is twofold, firstly, the probability of getting stuck in local optima de-
creases and, secondly, due to the nature of GA it might come up with
more than one unique solution. Also, domain specific operators have
been devised to inject the knowledge of alignment computation to
GA. Having domain specific operators cause first to speed up the al-
gorithm, and second to prune the respective search space. It must be
noted that due to lack of convexity of the respective search space and
stochastic nature of GAs, there is no guarantee on having optimal so-
lutions, but by developing efficient and domain dependent operators
the probability of having desired solutions can be increased. Despite
of being slow execution time which is the nature of GA, this approach
is designed to be memory bounded, namely, the number of candidate
solution is fixed from time to time, and only candidate solutions are
replaced with improved ones.

e The third class of alignment computation in this research is a general
framework which can be integrated with all alignment computation
methods. It must be mentioned that for all methods of alignment
computation, the size of an input problem, i.e., process model and
event log, as a parameter affects resources consumption. This effect
varies for different techniques, and its consequences over methods in
this thesis is not to the extend it does over state of the art technique.

192

The main objective of this framework is to summarize the existing
process model and event log by preserving the respective semantics.
To achieve this goal, Chapter 8 proposed an approach in which a
process model is decomposed into smaller parts that can be regarded
totally as an atomic unit. Next, the event log is projected into these
new units to be in accord with the new summarized model. Stated
differently, it provides a coarse perspective of existing model and cor-
responding event log. Although alignment computation in summa-
rized dimension or language is less severe than the original one, the
result must be expanded to the initial dimension, which sometimes
sacrifices optimality of the obtained solutions. The loss varies across
different alignment computation methods under consideration. An-
other contribution of this framework lays on the fact that this model
reduction provides a big picture of the existing WF-net in a hier-
archical way, which would be useful for other tasks than alignment
computation, like model understanding. Also it must be mentioned
that the underlying technique for model summarization works well
with well-structured models, and it is less applicable for Spaghetti
ones which can be alleviated by incorporating other decomposition
techniques.

At the end, it must be said that all the techniques in this thesis were
implemented in Python from scratch, and the source codes are available
publicly. More importantly, a framework which provides a GUI and hav-
ing all these techniques was developed which is called Alignment Large
Instances (ALI) which you can find its manual in the next chapter.

Chapter 10

Tool Support

10.1 Introduction

ALI is a framework of alignment computation for a given Process Model
and an Event Log. It has been developed using Python 2.7. The standalone
files for both Linux based and Microsoft Windows Operating systems can
be downloaded from https://www.cs.upc.edu/~taymouri/tool.html. It has
been developed to work with all or some CPUs of the system under which
it works. Also, since many techniques of this thesis are based on ILP,
therefore, ALI is integrated to work with open-source LP solvers like Pulp'
as well as commercial LP solvers like Gurobi 2.

10.2 Installation

ALI automatically installs the required Python libraries (if you don’t have
them on your machine) for the fist time you run it. It installs the packages
via pip>. So be sure to have installed it alongside with Python 2.7 on your
machine.

e Linux: Please download the corresponding distribution for Linux
OS from https://www.cs.upc.edu/~taymouri/tool and unzip it some-
where on your local disk. Open the terminal and change your current
directory to where you downloaded the distribution, i.e., "cd /path
to the distribution folder /Linux ”. After that, in the terminal make
the shell script executable via command ”chmod +x All.sh”. Finally,
just type ”./ALLsh” and press Enter. For the first time it installs
the required packaged and then ALI will be ready to use.

¢ Windows: Please download the corresponding distribution for Mi-
crosoft Windows OS from https://www.cs.upc.edu/~taymouri/tool

L https://pypi.python.org/pypi/PuL.P
2 http://www.gurobi.com/index
3 https://pypi.python.org/pypi/pip

193

https://www.cs.upc.edu/~taymouri/tool.html
https://www.cs.upc.edu/~taymouri/tool
https://www.cs.upc.edu/~taymouri/tool
https://pypi.python.org/pypi/PuLP
http://www.gurobi.com/index
https://pypi.python.org/pypi/pip

194

and unzip it somewhere on your local disk and then open it. To run
ALI just click on ” ALI.bat”.

10.3 Importing Model and Log

ALI accepts Process models in PNML format which is a Petri Net Markup
Language (PNML) and it is a proposal of an XML-based interchange for-
mat for Petri nets. Also Event Logs must be presented in Fxtensible Event
Stream (XES) format *.

To import the model and event log files click on corresponding
buttons, select your model and even log. To specify the destination (where
the selected algorithm puts the final results) follow the same rule by the
button. The following picture, shows a snapshot of the tool when
it is fed by a model and an even log.

8 Alignment Framework

Help

Main] Algorithms] Setting]

— 1O
Model Location |,.fU BUNTU/modeltemp/pram&. pnml
Log Location |UBUNTLI,.fm odeltemp/A.xes
Destination Location /home

Figure 10.1: I/O Operations

10.4 Algorithms

This tab of ALI contains the related developed algorithms (It will be
updated with more algorithms).

10.4.1 ILPSDP

This algorithm is called Integer Linear Programming-Sequential Dynamic
Programming (ILPSDP) and presented in-depth in Chapter 5.

4 http://www.xes-standard.org/

http://www.xes-standard.org/

Tool Support 195

10.4.1.1 Inputs

e This technique only accepts WF-nets. This approach of alignment
computation first with the use of ILP finds a Parikh vector which
is as similar as possible to the Parikh vector of observed trace (this
similarity can be adjusted by Delta parameter, the default value is
-5. The greater absolute value of this parameter the more penalty
the skipped transitions do receive).

e Next, it tries to execute the computed Parikh vector (from the initial
marking to the final marking; end parameter denotes the final place
of the WF-net) to obtain an executable sequence.

e When you specified the mentioned issues, you can click on to
execute the approach. The following is a snapshot of ALI for the
mentioned issues.

8 Alignment Framework

Help

Main] AlgﬂrithmE] SEtting]
ILPSDP: | ILPGA |

— Main

Final Marking |end

Delta -5

Run

Figure 10.2: ILPSDP settings

10.4.1.2 Outputs

ILPSDP algorithm, provides an Excel file which has different columns for
each row, i.e., an observed trace, as shown in the following snapshot. De-
scription of each column are as follows:

e (Case-id: It denotes the id of each case in XES file. Sometimes, some
cases are the same hence only one row is considered for all of them.

e Replayed: This column denotes whether the obtained alignment is
executable or no. The value ”1” represents an executable alignment

196

WIE0] [ZHO] IWA] £T
WAN AV [201] | WA 6S
N3[WAT| Il v er
HawWAllwWv[] vl es
N1ISVT | 20W/] | VIWAT] 65
[W][3H]IGHN] [vIwA] se
WBWUENY

|SAOIN S[BPOIN | | |30BILU3iEd |

O [90X7] ue ut wyiosre JASJ I Jo mdmQ :¢'01 om31g

LT L1 €z £z 680'T [EFTLSBIVIED SEZERSOLKI0 EPTLCRTVTED SEZ8BS0LKT0 i |60T
45 65 £8 Sé CTE9°C STLGSLIT/920 4EEDTTESS O CEZLSSLTL920 6EEQZEESS O T 8%
£V £V ac 29 E€/8E'T TRTIBTIBIGIED LO6LEFTTSO0 LPPLC659LE°0 gTOTIS9F09°0 T |gt
&G 65 LL £6 £08F°C ¥PESBTEBTYED TVSTSTErE90 BEOPSLPITED FIELLIOVTIO T |gsz
65 65 18 6 LET'T (9620 TrP98TTLZ90 SZ182'0 ST6769T0T90 i ls¥T
GE cE o 65 T86L°E 9FBESTIOFRED EVTLSBIFTLO SOLTIFEESED LSREFTLS89°0 T |55
|0RiL || Jeuld [3uswWUBIY | [eQIUl [BWUBYY| BWIL|eUld SSaUN WBLIUENY [EUIS SSBUN [SPOIN | [BRIUI SSUNS WBWUBIY [EMIUI SSOUNS [Bpol| pakeidey presed
2 4 3 a 5 7

L) = x.h.
= | fo % $ 7|+ == = = |- |- 7 d|- L

Tool Support 197

and 70" otherwise.

o Model Fitness Initial: It denotes the fitness of the modeled trace
when the base alignment is obtained.

o Alignment Fitness Initial: It denotes the fitness of initial or base
alignment.

o Model Fitness Final: It denotes the final fitness of the modeled trace
when by filliping elements of initial alignment no improvement of
fitness can be obtained.

o Alignment Fitness Final: It denotes the fitness of final alignment.

e Time: This column denotes the execution time of obtaining the final
alignment for a given observed trace.

o |Alignment| Initial: It denotes the total number of moves (syn-
chronous + asynchronous) of the initial alignment.

o |Alignment| Final: It denotes the total number of moves (synchronous
+ asynchronous) of the final alignment.

e |Trace|: It denotes the length of the observed trace (the number of
events).

e |ParikhTracel: It denotes the length of the computed Parikh vector
(the number of elements in the Parikh Vector).

e |Model'sMovel|: Tt denotes the length of the modeled trace in the
final alignment (the number of elements in the modeled trace).

o Alignment: It denotes the final alignment obtained by ILPSDP tech-
nique.

10.4.2 ILPGA
This method is a genetic algorithm approach for alignment computation
which the details is presented in Chapter 6.

10.4.2.1 Inputs

e This technique only accepts WF-nets. This approach of alignment
computation first with the use of ILP finds a Parikh vector which is
as similar as possible to the Parikh vector of observed trace like the
previous method.

e Next, it generates a population of sequences (candidate solutions)
based on the computed Parikh vector.

198

e It then starts to iterate over the population by applying cross-over
and mutation operators that are defined in Chapter 6. The number
of iterations can be specified by the user. The algorithm will be
terminated whenever it reaches to the specified number of iterations.

e After initializing the mentioned parameters, you can click on
to execute the approach. The following is a snapshot of ALI for the
mentioned issues.

0 Alignment Framework

Help

Main] AlgﬂrithmE] Setting]

ILPSDP | iLEGA

..................

— Main
Final Marking |end

Mo. Population 100
Mo. Iteration 700

Run

Figure 10.4: ILPGA settings

10.4.2.2 Outputs

ILPGA algorithm, provides two files. The first, is an Excel file with differ-
ent information as shown in the following snapshot. Many of the features
in the Excel file are described earlier for the previous algorithm, thus we
don’t mention them here. The descriptions of other columns are as follows:

o Uniqueness of the Best Solution: It shows for a given observed trace
and specified settings, i.e., number of population and iterations, how
many different solutions (best ones) with the same fitness values are
obtained.

e Replication of the Best Solution: This column shows, for a given
observed trace and specified settings, how many copies of the best
solution(s) are available.

The second file is an XML file that contains all the best solutions for
each observed trace. The following snapshot demonstrates it. In more

199

Tool Support

O [90X7 ue Ut wryiosre JASJTI jo mdimQ :G'01 om3rg

B i R R i N e R s & & & ZYOED'Z T T vE T €'87'99€| LI
i1 HO W] oI IWT T WA oW INIWAT 30 [alwAl o] WAl lan] o] IWIWATTNAT DN WAL DIWAT vIWAl ve vE vE 8r 958ZF'9 LP68LSTEFT'O | TP6ZSEZBRSO [T T EEIET
laiWTlalwATl W] TINIWAT AN AT W] T AT aRT RINAT YIWAT] 6 6 6 [13 69€8.°C EEEEEEEEEE'D |L999999999°0 |1 [lese] 6
|alWAllalmAl 0w o[DIWATIHIWATIZIWAL 0] OlW] [A1 [NIWATIAIWAT HIWATIHIWA] D [WAT [3IWAT DIWAT VINA] 9T 91 9T [E9T6E'E PIEPEPEIETD SLBO € T lz9e| 8
[HIN]130] (D11 101 1301 [W (3] [T [OLWAT INIWAT QD] 1] DND [HITT [WDNT [0 1] [al] [INAT N 2T YINAL 2T L1 LT 9T SL9E9'E BTBIBTRIBTO ESETBRSOLYO [T T lov| 1
[8IWTIHOT Al] A IWATIHIWT (80T [2IWATI3IWAT [aIW] Al vl 8 8 8 [43 619€8°T 20 S0 ot T l99z o
WAL AW HIWATIOIWAT[3WATIW] 130T [O[W] 01 NWI TH[TT [alW] [HIW] 80T HIW] D[WATINDTI3IW] [o] 1 2[WAT VW] 9T 91 9T 3 TSRYI'E [ZEVZEVZEPE'D [5T95°0 € T lvve s
18[W1alWATHINTIB0THIW] D IWAT DO WSO 1DIW] [HIT VW] 8 8 8 [ETLIS'T 20 s [4 z ECIER
lalNA] QW] INATRINATTNATTININAT DNT DDA T VWA 6 6 6 ot 9PITS'T [£999999999°0 6888888880 ¥ 1 le9e] €
[0 8WATIalNT WO ETNTHINATDNAT WD [T Q0] W] INAT Y INAT 6 & 6 £T ¥OSSL'T TBETSE08ET0 96SSESSSSS0 €T z lsvz] 7z
JUSWUENY 6 12P0N | L UHHES || 2281l | Swudly | ALUIL3UNS UBWUENY SS3UNLT[DPOIA 4 2U3 JO uoLEd)|day | 43 4o ssauanbiun || prased)]

X | m | A T n T 1t [s T 4a[d [d o[NTIwTI[[xT[r [v T H]T»o T4 u_o_ufm!
prased) = T{ *| [a v

B EEy -T-=2.0 2 = b B oo % =z £ = -@m-Ton7d+] ul Hgie

s = H = B0 W& & N v O - 6 T aX uaen -d-d-H

200

details, The XML file contains the information about the original event
log, experiment setups (population size, number of iteration and optimizer
name), and for each observed trace it contains many useful information as
they are in the following picture.

—<log>
—<information>

<string key="concept:model id" value="Model: /home/farbod/Downloads/M-models/M8 petri pnml.pnml"/>

<string key="concept:log id" value="Log: /home/farbod/Downloads/M-models/M8.xes"/>

<string key="concept:destination” value="Destination: /home/farbod/Desktop/ALI"/>

<string key="concept:optimizer" value="Optimizer: Pulp"/>

<string key="concept:final marking" value="Final Marking: ['end']"/>

<string key="concept:population size" value="Population size: 100"/>

<string key="concept:number of iteration" value="Number of iteration: 7"/>

<string key="concept:number of cores" value="Number of cores: 3"/>

<string key="concept:execution_time" value="Execution time: 571.643815994"/>

</information>
—<irace>
<string key="concept:case id" value="123"/>
- <alignment> .

<string key="conceptmumber of replication" value="1"/> %
<string key="concept:model move fitness" value="0.777777777778"(> <
<string key="concept:alignment fitness" value="0.466666666667"/>
<string key="concept:best solution_found" value="1"/>
<move key="concept:synchronous" value="A"/>
<move key="concept:synchronous" value="C"/>
<move key="concept:synchronous” value="I"/>
<move key="concept:synchronous" value="K"/>
<move key="concept:move_in model" value="M"/>
<move key="concept:move _in log" value="D"/>
<move key="concept:synchronous” value="L"/>
<move key="concept:synchronous" value="J"/>
<move key="concept:move_in log" value="M"/>
<move key="concept:move in model" value="D"/>
<move key="concept:synchronous” value="B"/>

</alignment>

= <alignment>

<string key="concept:number of replication" value="5"/>
<string key="concept:model move_fitness" value="0.777777777778"/> €
<string key="concept:alignment fitness" value="0.466666666667"/> %
<string key="concept:best solution_found" value="1"/>
<move key="concept:synchronous" value="A"/>
<move key="concept:synchronous" value="C"/>
<move key="concept:synchronous” value="I"/>
<move key="concept:synchronous" value="K"/>
<move key="concept:move_in log" value="D"/>
<move key="concept:move_in model" value="M"/>
<move key="concept:synchronous" value="L"/>
<move key="concept:synchronous” value="]"/>
<move key="concept:move_in log" value="M"/>
<move key="concept:move in model" value="D"/>
<move key="concept:synchronous" value="B"/>
</alignment>
+ <alignment></alignment>
</trace>

Figure 10.6: XML output of ILPGA algorithm

10.4.3 Setting

e In this tab you can change the performance of ALI based on differ-
ent settings. Since the presented algorithm and the future ones are
based on ILP, therefore ALI has been integrated to work with both
commercial and open-source LP solvers. The default value is set to
” PulP”, but using Gurobi is strongly recommended if you have in-
stalled it on your machine and want to use methods that are based
on ILP heavily.

Tool Support 201

e Also it has been compatible with multi-core machines and takes the
advantage of running on multi-CPU such that you can specify how
many of CPUs are allowed to be used by ALI It automatically detects
the number of CPUs and except one of them, uses all the rest. The
following picture shows the snapshot of mentioned issues.

x Alignment Framework

Help

Main] AIgarithms] Setting]

’— Mumber of Processors— ptimizer

Cores m‘ m

Figure 10.7: ALI settings

Appendices

203

Appendix A

Datasets

All the approaches presented in this thesis are examined through different
datasets with various characteristics. Examples are artificial and realistic
containing transitions with duplicate labels and from well-structured to
completely Spaghetti. More specific they can be classified as follows:

e Medium and large models: These models are presented in Ta-
ble A.1 [56]. These datasets contain models without or very rare
deviations in event logs like pr Am6, prBm6 and large models like
prDm6, prFmé6,
prEm6, prGm6. These models do not have any loops, transitions
with duplicate labels and any invisible transitions. The main chal-
lenge of these models is the size of models.

Table A.1: BPM2013 artificial benchmark datasets [56]

Model |P| |7 |Are| | Cases | Fitting| |o|qug
prAmé6 363 347 846 1200 | No 31
prBm6 317 317 752 1200 | Yes 43
prCm6 317 317 752 500 No 43
prDm6 529 429 1140 1200 No 248
prEm6 277 275 652 1200 | No 98
prFm6 362 299 772 1200 | No 240
prGm6 357 335 826 1200 | No 143

e Models with loops: The specification of these models are presented
in Table A.2. These models are synthetic and generated by PLG2
[17]. Different levels of noises have been injected to these models. All
models contain nested loops, invisible transitions, but without dupli-
cate names. The main challenge of these models are dealing with
nested loops and very noisy event logs.

205

206

Table A.2: Artificial benchmark datasets containing loops

Model | P| |T| |Arc| | Cases | Fitting| |o|qug
My 40 39 92 500 No 13
Mo 34 34 80 500 No 17
M3 108 123 276 500 No 37
My 36 52 106 500 No 26
Ms 35 33 78 500 No 34
Mg 69 72 168 500 No 53
M- 65 62 148 500 No 37
Mg 17 15 36 500 No 17
My 47 95 120 500 No 44
Mo 150 146 354 500 No 58

e Models contain transitions with duplicate names: Details of

these models are shown in Table A.3. These models consist of dupli-
cate transition names with corresponding logs by different amount of
errors, 25%, 35%, 50%, 75%, 25%, which were generated by PLG2
[17]'. All models have nested loops, silent transitions and duplicate
labels. The main challenge will be dealing with duplicate labels.

Table A.3: Models with duplicate transition names

Model |P| |T| |Arc| | Cases | Fitting| |o|qwg | Duplicate
Transitiond

ML, 27 35 74 500 No 28 2

M Lo 165 177 404 500 No 87 12

MLs 45 45 106 500 No 26 2

MLy 36 33 80 500 No 28 6

MLs 159 172 390 500 No 42 14

e Realistic models: These models are realistic and some of them are

generated from the corresponding real logs obtained from https://
data.4tu.nl/repository/collection:event_logs real. Benchmark Bank-
transfer is taken from [95] and Documentflow benchmarks are taken
from [102]. Some event logs from the last edition of the BPI Challenge
were used, for which the models BPIC15_ 2, BPIC15_ 4, BPIC15_
2 were generated using Inductive Miner plugin of ProM with noise
threshold 0.99, 0.5 and 0.2, respectively. Details are shown in Ta-
ble A.4. Some of these models are unstructured, i.e., Spaghetti. All

L At the time of generating models for the experiments, PLG2 in fact was unable to produce
models containing duplicate labels from scratch, therefore the generated models and logs
were modified in order to have transitions with duplicate labels.

https://data.4tu.nl/repository/collection:event_logs_real
https://data.4tu.nl/repository/collection:event_logs_real

Datasets

207

models contain loop, invisible transitions but without duplicate la-
bels. The main challenge is to handle unstructured feature of process

models.
Table A.4: Realistic benchmark datasets

Model | P| T |Arc| | Cases | Fitting| |o]qug
Banktransfer 121 114 272 2000 No 58
Documentflowl| 334 447 2059 12391 | No 5
Documentflow2| 337 456 2025 12391 | No 5
BPIC15_ 2 78 420 848 832 No 53
BPIC15_4 178 464 954 1053 No 44
BPIC15_5 45 277 558 1156 No 51

Bibliography

[1]

Ipsolve : Open source (mixed-integer) linear programming system.
79

Integer Programming, chapter 10, pages 588-631. Wiley-Blackwell,
2009. 40

W. M. P. v. d. Aalst. Process Mining: Data Science in Action.
Springer, second edition, 2016. 6, 7, 8, 9, 11, 24, 32

W. Aalst, van der. Business process management: a comprehensive
survey. ISRN Software Engineering, 2013, 2013. 8

A. Adriansyah. Aligning observed and modeled behavior. PhD thesis,
Technische Universiteit Eindhoven, 2014. 12, 13, 17, 19, 21, 34, 35,
69, 70, 79, 88, 111, 114, 116, 119, 120, 121, 141, 142, 144, 148, 149,
160, 162, 163, 168, 173, 178, 180, 182

A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, and
W. M. P. van der Aalst. Measuring precision of modeled behavior.
Inf. Syst. E-Business Management, 13(1):37-67, 2015. 11

A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst. Con-
formance checking using cost-based fitness analysis. In Proceedings
of the 2011 IEEFE 15th International Enterprise Distributed Object
Computing Conference, EDOC ’11, pages 55—64, Washington, DC,
USA, 2011. IEEE Computer Society. 19

T. Back. Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford
University Press, Inc., New York, NY, USA, 1996. 51

S. Balaguer, T. Chatain, and S. Haar. Building occurrence nets from
reveals relations. Fundam. Inform., 123(3):245-272, 2013. 166

D. Beasley, D. R. Bull, and R. R. Martin. An overview of genetic
algorithms: Part 1, fundamentals, 1993. 50

E. Best. Structure theory of petri nets: the free choice hiatus. In
W. Brauer, W. Reisig, and G. Rozenberg, editors, Petri Nets: Cen-
tral Models and Their Properties, pages 168-205, Berlin, Heidelberg,
1987. Springer Berlin Heidelberg. 29

F. Bezerra, J. Wainer, and W. M. P. van der Aalst. Anomaly de-
tection using process mining. In T. Halpin, J. Krogstie, S. Nurcan,

209

210

[15]

[16]

[17]

[18]

E. Proper, R. Schmidt, P. Soffer, and R. Ukor, editors, Enterprise,
Business-Process and Information Systems Modeling, pages 149-161,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. 10

T. Blickle and L. Thiele. A comparison of selection schemes used in
evolutionary algorithms. Fvol. Comput., 4(4):361-394, Dec. 1996. 49

R. P. J. C. Bose and W. M. P. van der Aalst. Trace alignment in pro-
cess mining: Opportunities for process diagnostics. In Proceedings of
the 8th International Conference on Business Process Management,
BPM’10, pages 227-242, Berlin, Heidelberg, 2010. Springer-Verlag.
22

J. C. A. M. Buijs. Flexible Evolutionary Algorithms for Mining Struc-
tured Process Models. PhD thesis, Technische Universiteit Eindhoven,
2014. 19

J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst. A
genetic algorithm for discovering process trees. In Proceedings of the
IEEE Congress on FEvolutionary Computation, CEC 2012, Brisbane,
Australia, June 10-15, 2012, pages 1-8, 2012. 123

A. Burattin. PLG2: multiperspective process randomization with
online and offline simulations. In Proceedings of the BPM Demo Track
2016 Co-located with the 14th International Conference on Business
Process Management (BPM 2016), Rio de Janeiro, Brazil, September
21, 2016., pages 1-6, 2016. 205, 206

A. Burattin and J. Carmona. A framework for online conformance
checking. In E. Teniente and M. Weidlich, editors, Business Pro-
cess Management Workshops, pages 165-177, Cham, 2018. Springer
International Publishing. 21

J. M. Colom, E. Teruel, M. Silva, and S. Haddad. Structural Methods,
pages 277-316. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.
27

M. de Leoni and A. Marrella. Aligning real process executions and
prescriptive process models through automated planning. Fzxpert
Syst. Appl., 82:162-183, 2017. 12, 141

A. K. A. de Medeiros, A. J. M. M. Weijters, and W. M. P. van der
Aalst. Genetic process mining: an experimental evaluation. Data
Mining and Knowledge Discovery, 14(2):245-304, Apr 2007. 9

J. Desel and J. Esparza. Reachability in cyclic extended free-choice
systems. TCS 114, Elsevier Science Publishers B.V., 1993. 31

J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge Univer-
sity Press, Cambridge, Great Britain, 1995. 29, 87, 97

M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers. Introduc-
tion to Business Process Management, pages 1-33. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2018. 8

Bibliography 211

[25]

[26]

[27]

[31]

P. H. C. Eilers and B. D. Marx. Flexible smoothing with b-splines
and penalties. STATISTICAL SCIENCE, 11:89-121, 1996. 135

J. Esparza and S. Melzer. Verification of safety properties using
integer programming: Beyond the state equation. Formal Methods
in System Design, (16):159-189, 2000. 31

D. Fahland and W. M. P. van der Aalst. Repairing process models
to reflect reality. In A. Barros, A. Gal, and E. Kindler, editors,
Business Process Management, pages 229-245, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg. 10

D. Fahland and W. M. P. van der Aalst. Model repair - aligning
process models to reality. Inf. Syst., 47:220-243, 2015. 10, 14, 57

S. Farnham, S. U. Kelly, W. Portnoy, and J. L. K. Schwartz. Wal-
lop: designing social software for co-located social networks. In 37th
Annual Hawaii International Conference on System Sciences, 2004.
Proceedings of the, pages 10 pp.—, Jan 2004. 11

L. Garca-Bauelos, N. R. T. P. van Beest, M. Dumas, M. L. Rosa,
and W. Mertens. Complete and interpretable conformance checking

of business processes. IEEE Transactions on Software Engineering,
44(3):262-290, March 2018. 22

M. T. Gémez-Loépez, D. Borrego, J. Carmona, and R. M. Gasca.
Computing alignments with constraint programming: The acyclic
case. In Proceedings of the International Workshop on Algorithms
& Theories for the Analysis of Fvent Data 2016 Satellite event of
the conferences: 37th International Conference on Application and
Theory of Petri Nets and Concurrency Petri Nets 2016 and 16th
International Conference on Application of Concurrency to System
Design ACSD 2016, Torun, Poland, June 20-21, 2016., pages 96—
110, 2016. 19

I. Gurobi Optimization. Gurobi optimizer reference manual, 2016.
79, 116

C. W. Gunther, A. Rozinat, and K. V. Uden. Monitoring deployed
application usage with process mining, 2014. 10

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEFE Transactions
on Systems Science and Cybernetics, 4(2):100-107, July 1968. 44

J. H. Holland. Genetic Algorithms and Adaptation, pages 317-333.
Springer US, Boston, MA, 1984. 40

B. J. Hommes and V. van Reijswoud. Assessing the quality of busi-
ness process modelling techniques. In Proceedings of the 33rd Annual
Hawaii International Conference on System Sciences, pages 10 pp.
vol.1-, Jan 2000. 24

S. hyuk Cha. A genetic algorithm for constructing compact binary
decision trees, 2009. 48

212

[38]

[39]

[40]

[41]

[42]

[44]

[45]

IBM, P. Zikopoulos, and C. Eaton. Understanding Big Data: Analyt-
ics for Enterprise Class Hadoop and Streaming Data. McGraw-Hill
Osborne Media, 1st edition, 2011. 6

R. Johnson, D. Pearson, and K. Pingali. The program structure tree:
Computing control regions in linear time. SIGPLAN Not., 29(6):171—
185, June 1994. 166

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. SCIENCE, 220(4598):671-680, 1983. 40

M. Koorneef, A. Solti, H. Leopold, and H. A. Reijers. Automatic root
cause identification using most probable alignments. In Business Pro-
cess Management Workshops - BPM 2017 International Workshops,
Barcelona, Spain, September 10-11, 2017, Revised Papers, pages 204—
215, 2017. 123

S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Scalable
process discovery with guarantees. In K. Gaaloul, R. Schmidt, S. Nur-
can, S. Guerreiro, and Q. Ma, editors, Enterprise, Business-Process
and Information Systems Modeling: 16th International Conference,
BPMDS 2015, 20th International Conference, EMMSAD 2015, Pro-
ceedings (Lecture Notes in Business Information Processing, Volume
214), pages 85-101, Cham, Switzerland, 2015. Springer. 9

S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Scalable
process discovery and conformance checking. Software € Systems
Modeling, 17(2):599-631, May 2018. 12, 22

J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive
Datasets. Cambridge University Press, New York, NY, USA, 2nd
edition, 2014. 9

X. Lu, R. Mans, D. Fahland, and W. M. P. van der Aalst. Confor-
mance checking in healthcare based on partially ordered event data.
In Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation, ETFA 201/, Barcelona, Spain, September 16-19, 201/,
pages 1-8, 2014. 14, 57

F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. P. van der
Aalst. Balanced multi-perspective checking of process conformance.
Computing, 98(4):407-437, 2016. 124

R. Mans, H. Schonenberg, M. Song, W. M. P. Aalst, and P. Bakker.
Application of process mining in healthcare a case study in a dutch
hospital, 01 2008. 10

R. S. Mans, W. M. P. van der Aalst, and R. J. B. Vanwersch. Ap-
plications of Process Mining, pages b3—78. Springer International
Publishing, Cham, 2015. 11

J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh,

and A. H. Byers. Big data: The next frontier for innovation, competi-

Bibliography 213

[55]

tion, and productivity. Technical report, McKinsey Global Institute,
June 2011. 7

J. Mendling, G. Neumann, and W. van der Aalst. Understanding the
occurrence of errors in process models based on metrics. In R. Meers-
man and Z. Tari, editors, On the Move to Meaningful Internet Sys-
tems 2007: CooplS, DOA, ODBASE, GADA, and IS, pages 113-130,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. 12

Z. Michalewicz. How to Solve It: Modern Heuristics 2e. Springer-
Verlag, Berlin, Heidelberg, 2010. 13, 44

T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York,
NY, USA, 1 edition, 1997. 46

D. J. Montana and L. Davis. Training feedforward neural networks
using genetic algorithms. In Proceedings of the 11th International
Joint Conference on Artificial Intelligence - Volume 1, IJCAT’89,
pages 762-767, San Francisco, CA, USA, 1989. Morgan Kaufmann
Publishers Inc. 48

J. Munoz-Gama, J. Carmona, and W. M. P. van der Aalst. Confor-
mance checking in the large: Partitioning and topology. In F. Daniel,
J. Wang, and B. Weber, editors, Business Process Management,
pages 130-145, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
20

J. Munoz-Gama, J. Carmona, and W. M. P. van der Aalst. Hi-
erarchical conformance checking of process models based on event
logs. In J.-M. Colom and J. Desel, editors, Application and Theory
of Petri Nets and Concurrency, pages 291-310, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg. 20

J. Munoz-Gama, J. Carmona, and W. M. P. Van Der Aalst. Single-
entry single-exit decomposed conformance checking. Inf. Syst.,
46:102-122, Dec. 2014. 20, 57, 117, 184, 185, 205

T. Murata. Petri nets: Properties, analysis and applications. Pro-
ceedings of the IEEE, 77(4):541-574, Apr. 1989. 25, 26, 28, 31, 72
R. Neapolitan. Foundations Of Algorithms, pages 138-146. Jones
and Bartlett Publishers, Inc., USA, 5th edition, 2014. 104, 140

S. B. Needleman and C. D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443 — 453, 1970. 87, 104, 105,
140, 166, 169, 173

J. L. Peterson. Petri Net Theory and the Modeling of Systems. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 1981. 27

A. Piszcz and T. Soule. Genetic programming: Optimal population
sizes for varying complexity problems. In Proceedings of the 8th An-
nual Conference on Genetic and Evolutionary Computation, GECCO
06, pages 953-954, New York, NY, USA, 2006. ACM. 126

214

[62]

[63]

A. Polyvyanyy, S. Smirnov, and M. Weske. The Triconnected Ab-
straction of Process Models, pages 229-244. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009. 20, 165

A. Polyvyanyy, J. Vanhatalo, and H. Vélzer. Simplified computa-
tion and generalization of the refined process structure tree. In 7th
International Conference on Web Services and Formal Methods, WS-
FM’10, pages 25-41, Berlin, Heidelberg, 2011. 20, 166

J.-Y. Potvin. Genetic algorithms for the traveling salesman problem.
Annals of Operations Research, 63(3):337-370, Jun 1996. 48

D. Reifiner, R. Conforti, M. Dumas, M. La Rosa, and A. Armas-
Cervantes. Scalable conformance checking of business processes. In
H. Panetto, C. Debruyne, W. Gaaloul, M. Papazoglou, A. Paschke,
C. A. Ardagna, and R. Meersman, editors, On the Move to Meaning-
ful Internet Systems. OTM 2017 Conferences, pages 607627, Cham,
2017. Springer International Publishing. 21

D. Reifiner, R. Conforti, M. Dumas, M. L. Rosa, and A. Armas-
Cervantes. Scalable conformance checking of business processes. In
OTM CooplS, , Rhodes, Greece, pages 607-627, 2017. 12, 141, 142,
144, 145, 148, 149

D. Reifiner, R. Conforti, M. Dumas, M. L. Rosa, and A. Armas-
Cervantes. Scalable conformance checking of business processes.
Paper submitted to ”International Conference on Business Process
Management (BMP 2017)” in Barcelona, Spain., March 2017. 88,
116, 119, 120

A. Rozinat and W. M. P. van der Aalst. Conformance checking of
processes based on monitoring real behavior. Inf. Syst., 33(1):64-95,
2008. 18, 88

D. Ruppert, M. P. Wand, and R. J. Carroll. Scatterplot Smoothing,
page 5790. Cambridge Series in Statistical and Probabilistic Mathe-
matics. Cambridge University Press, 2003. 135

H.-P. P. Schwefel. Evolution and Optimum Seeking: The Sizth Gen-
eration. John Wiley & Sons, Inc., New York, NY, USA, 1993. 51

M. Silva, E. Teruel, and J. M. Colom. Linear algebraic and linear
programming techniques for the analysis of place/transition net sys-
tems. In Reisig, W. and Rozenberg, G., editors, Lecture Notes in
Computer Science: Lectures on Petri Nets I: Basic Models, volume
1491, pages 309-373. Springer-Verlag, 1998. 30, 31, 41, 66

R. E. Tarjan and J. Valdes. Prime subprogram parsing of a program.
In Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 80, pages 95-105, New
York, NY, USA, 1980. ACM. 20

F. Taymouri. ALI: Alignment for Large Instances, 2017. x, 55, 85,
88, 116, 141, 153

Bibliography 215

[74]

[80]

[81]

F. Taymouri and J. Carmona. Model and event log reductions to
boost the computation of alignments. In Data-Driven Process Dis-
covery and Analysis - 6th IFIP WG 2.6 International Symposium,
SIMPDA 2016, Graz, Austria, December 15-16, 2016, Revised Se-
lected Papers, pages 1-21, 2016. 15, 55, 79, 153

F. Taymouri and J. Carmona. A recursive paradigm for aligning
observed behavior of large structured process models. In 14th Inter-
national Conference of Business Process Management (BPM), Rio
de Janeiro, Brazil, September 18 - 22, 2016. 15

F. Taymouri and J. Carmona. Computing alignments of well-formed
process models using local search. Submitted to ACM Transactions
on Software Engineering and Methodology, 2018. 15, 85

F. Taymouri and J. Carmona. An evolutionary technique to approx-
imate multiple optimal alignments. In 16th International Conference
of Business Process Management (BPM), Sydney, Australia. Septem-
ber 9-14, Brazil, September 18 - 22, 2018. 15, 85

W. M. P. v. Aalst, K. M. v. Hee, J. M. v. Werf, and M. Verdonk.
Auditing 2.0: Using process mining to support tomorrow’s auditor.
Computer, 43(3):90-93, March 2010. 9

W. van der Aalst, H. Reijers, A. Weijters, B. van Dongen, A. A.
de Medeiros, M. Song, and H. Verbeek. Business process mining: An
industrial application. Information Systems, 32(5):713 — 732, 2007.
11

W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(1):5-51,
Jul 2003. 24

W. van der Aalst, K. van Hee, A. ter Hofstede, N. Sidorova, H. Ver-
beek, M. Voorhoeve, and M. Wynn. Soundness of workflow nets:
classification, decidability, and analysis. Formal Aspects of Comput-
ing: applicable formal methods, 23(3):333-363, 2010. 28

W. van der Aalst, A. Weijter, and L. Maruster. Workflow mining:
Discovering process models from event logs. IEEE Transactions on
Knowledge and Data Engineering, 16:2004, 2003. 9

W. M. van der Aalst, A. Andriansyah, A. K. A. de Medeiros,
F. Arcieri, T. Baier, T. Blickle, J. C. Bose, P. van den Brand,
R. Brandtjen, J. Buijs, A. Burattin, J. Carmona, M. Castel-
lanos, J. Claes, J. Cook, N. Costantini, F. Curbera, E. Damiani,
M. de Leoni, P. Delias, B. van Dongen, M. Dumas, S. Dustdar,
D. Fahland, D. R. Ferreira, W. Gaaloul, F. van Geffen, S. Goel,
C. Gunther, A. Guzzo, P. Harmon, A. H. ter Hofstede, J. Hoog-
land, J. E. Ingvaldsen, K. Kato, R. Kuhn, A. Kumar, M. L. Rosa,
F. Maggi, D. Malerba, R. Mans, A. Manuel, M. McCreesh, P. Mello,
J. Mendling, M. Montali, H. M. Nezhad, M. zur Muehlen, J. Munoz-
Gama, L. Pointieri, J. Ribeiro, A. Rozinat, H. S. Perez, R. S. Perez,

216

[91]

[92]

M. Sepulveda, J. Sinur, P. Soffer, M. Song, A. Sperduti, G. Stilo,
C. Stoel, K. Swenson, M. Talamo, W. Tan, C. Turner, J. Vanthienen,
G. Varvaressos, E. Verbeek, M. Verdonk, R. Vigo, J. Wang, B. We-
ber, M. Weidlich, T. Weijters, L. Wen, M. Westergaard, and M. T.
Wynn. Process mining manifesto. In 7th International Workshop on
Business Process Intelligence (BPI 2011), pages 169-194, Campus
des Cézeaux, Clermont-Ferrand, 2012. Springer-Verlag. 7

W. M. P. van der Aalst. Making work flow: On the application
of petri nets to business process management. In J. Esparza and
C. Lakos, editors, Application and Theory of Petri Nets 2002, pages
1-22, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. 28

W. M. P. van der Aalst. Process Mining - Discovery, Conformance
and Enhancement of Business Processes. Springer, 2011. 34

W. M. P. van der Aalst. Decomposing Petri nets for process mining;:
A generic approach. Distributed and Parallel Databases, 31(4):471—
507, 2013. 57

W. M. P. van der Aalst, A. K. A. de Medeiros, and A. J. M. M. Wei-
jters. Genetic process mining. In Applications and Theory of Petri
Nets 2005, 26th International Conference, ICATPN 2005, Miami,
USA, June 20-25, 2005, Proceedings, volume 3536 of Lecture Notes
in Computer Science, pages 48—69. Springer, 2005. 123

W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter Hofstede,
N. Sidorova, H. M. W. Verbeek, M. Voorhoeve, and M. T. Wynn.
Soundness of workflow nets: classification, decidability, and analysis.
Formal Asp. Comput., 23(3):333-363, 2011. 87

W. M. P. van der Aalst and H. M. W. Verbeek. Process discovery and
conformance checking using passages. Fundam. Inf., 131(1):103-138,
Jan. 2014. 9

B. van Dongen, J. Carmona, Th. Chatain, and F. Taymouri. Aligning
modeled and observed behavior: A compromise between complexity
and quality. In E. Dubois and K. Pohl, editors, Proceedings of the
29th International Conference on Advanced Information Systems En-
gineering (CAiSE’17), volume 10253 of Lecture Notes in Computer
Science, Essen, Germany, June 2017. Springer. 15, 55

B. F. van Dongen. Efficiently computing alignments. In M. Weske,
M. Montali, I. Weber, and J. vom Brocke, editors, Business Process
Management, pages 197-214, Cham, 2018. Springer International
Publishing. 82

B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J.
M. M. Weijters, and W. M. P. van der Aalst. The prom framework:
A new era in process mining tool support. In Proceedings of the
26th International Conference on Applications and Theory of Petri
Nets, ICATPN’05, pages 444-454, Berlin, Heidelberg, 2005. Springer-
Verlag. 19, 55, 69, 82

Bibliography 217

[93]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

S. J. van Zelst, A. Bolt, M. Hassani, B. F. van Dongen, and W. M. P.
van der Aalst. Online conformance checking: relating event streams
to process models using prefix-alignments. International Journal of
Data Science and Analytics, Oct 2017. 21

S. K. L. M. vanden Broucke, J. Munoz-Gama, J. Carmona, B. Bae-
sens, and J. Vanthienen. Event-based real-time decomposed confor-
mance analysis. In R. Meersman, H. Panetto, T. Dillon, M. Missikoft,
L. Liu, O. Pastor, A. Cuzzocrea, and T. Sellis, editors, On the Move
to Meaningful Internet Systems: OTM 2014 Conferences, pages 345—
363, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. 21

S. K. L. M. vanden Broucke, J. Munoz-Gama, J. Carmona, B. Bae-
sens, and J. Vanthienen. Event-based real-time decomposed confor-
mance analysis. In On the Move to Meaningful Internet Systems:
OTM 2014 Conferences - Confederated International Conferences:
CooplS, and ODBASE 201/, Amantea, Italy, October 27-31, 2014,
Proceedings, pages 345-363, 2014. 206

S. K. L. M. vanden Broucke, J. D. Weerdt, J. Vanthienen, and B. Bae-
sens. Determining process model precision and generalization with
weighted artificial negative events. IEEE Trans. Knowl. Data Eng.,
26(8):1877-1889, 2014. 88

J. Vanhatalo, H. Volzer, and J. Koehler. The refined process struc-
ture tree. In Proceedings of the 6th International Conference on Busi-
ness Process Management, BPM ’08, pages 100-115, Berlin, Heidel-
berg, 2008. Springer-Verlag. 20

B. Véazquez-Barreiros, M. Mucientes, and M. Lama. Prodigen: Min-
ing complete, precise and minimal structure process models with a
genetic algorithm. Inf. Sci., 294:315-333, 2015. 123

H. M. W. Verbeek and W. M. P. van der Aalst. Merging Alignments
for Decomposed Replay, pages 219-239. Springer International Pub-
lishing, Cham, 2016. 20

C. R. Vogel. Computational Methods for Inverse Problems. Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2002. 135

I. Weber, A. Rogge-Solti, C. Li, and J. Mendling. CCaaS: Online
conformance checking as a service. In International Conference on
Business Process Management, Demo Track, pages 45-49, Innsbruck,
Austria, Aug. 2015. 22

J. D. Weerdt, S. K. L. M. vanden Broucke, J. Vanthienen, and B. Bae-
sens. Active trace clustering for improved process discovery. IEEE
Trans. Knowl. Data Eng., 25(12):2708-2720, 2013. 206

M. Weidlich, A. Polyvyanyy, J. Mendling, and M. Weske. Causal

behavioural profiles - efficient computation, applications, and evalu-
ation. Fundam. Inf., 113(3-4):399-435, Aug. 2011. 21, 165, 166

218

[104] S. J. Zelst, B. F. Dongen, W. M. Aalst, and H. M. Verbeek. Discov-
ering workflow nets using integer linear programming. Computing,
100(5):529-556, May 2018. 9

	Acknowledgements
	Abstract
	Contents
	I Introduction
	Alignment in Conformance Checking
	Introduction
	Motivation
	Contributions
	Related Work

	Preliminaries
	Process Modeling
	Petri Nets
	Subclasses of Petri Nets
	Petri Nets and Linear Algebra

	Process Mining
	Event Log
	Conformance Cheking
	Alignment of Observed Behavior and Process Model
	Synchronous Product Petri Net

	Optimization Techniques
	Integer Linear Programming
	Heuristic Search
	Local search
	Hill-climbing
	Best-First Search (A*)
	Genetic Algorithm

	II Classical Optimization Approaches
	 Monolithic Integer Linear Programming
	Introduction
	Approximate Alignment of Observed Behavior
	Structural Computation of Approximate Alignments
	ILP for Similarity (Seeking an optimal Parikh vector)
	ILP for Ordering: Computing an Aligned Step-Sequence
	A note on completeness and optimality

	Outlook

	Incremental Integer Linear Programming
	Introduction
	Search Space
	Search Space Exploration using ILP
	Computing Optimal Alignments using ILP
	Computing Alignments Without Optimality Guarantees
	Quality of Alignments

	Experiments
	Outlook

	III Heuristic Optimization Approaches
	Local Search Optimization Approach
	Introduction
	Local Search Computation of Alignments
	The Overall Perspective

	Initial model trace generator
	 ILP for Similarity: Seeking for an Optimal Parikh Vector
	 Replay The Parikh Vector: Computing An Executable Model Trace
	The feasibility of executing P"0362P

	Aligning and N
	Fitness improvement by local search
	A large example

	Experiments
	Outlook

	Genetic Algorithm Optimization Approach
	Introduction
	GA for Computing Several Explanations of Observed Behavior
	Generation of the Initial Population
	Evaluation Criteria
	Genetic Operators
	Crossover operators
	Mutation operators

	General Framework for Obtaining Multiple Alignments
	Computing an Alignment using Dynamic Programming

	Experiments
	Outlook

	IV Reduction and Projection Frameworks
	Recursive Approach for Large ILP Instances
	Introduction
	The Recursive Algorithm
	Experiments
	Outlook

	Structure Reduction
	Introduction
	Single Entry Single Exit (SESE)
	Overall Framework
	Reduction of Model and Observed Behavior
	The Indication Relation
	Detecing Flow-Indication Relation through SESE.

	Reduction of Observed Behavior

	Expansion Through Local Optimal Indication Alignments
	Experiments and Results
	Outlook

	V Conclusions and Tool Support
	Conclusion
	Tool Support
	Introduction
	Installation
	Importing Model and Log
	Algorithms
	ILPSDP
	Inputs
	Outputs

	ILPGA
	Inputs
	Outputs

	Setting

	Appendices
	Datasets
	Bibliography

