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Fast Photorealistic Techniques to

Simulate Global Illumination in

Videogames and Virtual Environments
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Preface

This document is the Ph. D. dissertation entitled Fast Photorealistic Techniques
to Simulate Global Illumination in Videogames and Virtual Environments, pre-
sented by Àlex Méndez i Feliu to the Universitat Politècnica de Catalunya
to obtain the doctorate degree.

Abstract

To compute global illumination solutions for rendering virtual scenes, physically
accurate methods based on radiosity or ray-tracing are usually employed. These
methods, though powerful and capable of generating images with high realism,
are very costly. In this thesis, some techniques to simulate and/or accelerate
the computation of global illumination are studied. The obscurances technique
is based on the supposition that the more occluded is a point in the scene, the
darker it will appear. It is computed by analyzing the geometric environment
of the point and gives a value for the indirect illumination for the point that is,
though not physically accurate, visually realistic. This technique is enhanced
and improved in real-time environments as videogames. It is also applied to ray-
tracing frameworks to generate realistic images. In this last context, sequences
of frames for animation of lights and cameras are dramatically accelerated by
reusing information between frames.

Just a Tale

It was the end of 2001 and I was in Mexico.
One Sunday, few weeks after tragic September 11th and exactly the day

U. S. A. attacked Afghanistan, my ex-teacher and friend Isaac Rudomı́n and I
joined for breakfast. We had not seen in months and many things had happened
during that time.

2001 was not really a good year for me, at least professionally. I arrived to
Mexico in January with the only objective to be close to my girlfriend, but I
never imagined how hard it is to be a foreigner in a strange land, even when
they speak your own language. I did not find a job in six months and when I
found it, it was in substitution for a pregnant secretary. I answered phone calls
and wrote faxes to customers and suppliers: an awful job for a shy programmer
with the dream to work in computer graphics.

Meanwhile my friend Isaac had been traveling through Europe, gone to con-
ferences and met people. Among the people he met, there was Roel Mart́ınez
and Mateu Sbert from the Universitat de Girona.

That Sunday, in a beautiful all-you-can-eat restaurant in the middle of the
Naucalpan Gardens, he told me about Girona Graphics Group and the things
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they were doing. Then I devised the idea of coming back to my country to do
what I always wanted to do and it looked fascinating. I contacted Mateu and a
few months later I came to Girona.

There was only one problem to solve, but it had an easy solution: soon my
girlfriend had to become my wife, but that is another story...
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i al Narćıs, per omplir-nos els caps de setmana. A la quitxalla, l’Isma, el Fran i
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Àlex Méndez i Feliu
Girona, 24 d’Abril del 2007

ii



Contents

Preface i

Contents iii

List of figures vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope of the problem . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Chapter 2: Background . . . . . . . . . . . . . . . . . . . 3
1.4.2 Chapter 3: From obscurances to ambient occlusion: A

survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.3 Chapter 4: Improving obscurances . . . . . . . . . . . . . 3
1.4.4 Chapter 5: Obscurances in diffuse environments: videogames 4
1.4.5 Chapter 6: Obscurances in non-diffuse environments . . . 4
1.4.6 Chapter 7: Animations: reuse of information between

frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.7 Chapter 8: Conclusions and future work . . . . . . . . . . 5

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Monte Carlo techniques . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 How does it work? . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Error in Monte Carlo integration . . . . . . . . . . . . . . 8
2.1.3 Importance Sampling . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Multiple importance sampling . . . . . . . . . . . . . . . . 8
2.1.5 Quasi-Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Physics of the light . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Programming the light: local and global illumination . . . . . . . 11

2.3.1 Local illumination and global illumination . . . . . . . . . 11
2.3.2 The ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 The color . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 BRDFs and BTDFs . . . . . . . . . . . . . . . . . . . . . 11
2.3.5 The rendering equation . . . . . . . . . . . . . . . . . . . 12

2.4 Radiosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Radiosity equation . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Form factors . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Solving the radiosity matrix . . . . . . . . . . . . . . . . . 16
2.4.4 Cornell Box . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iii



2.5 Ray-tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 The concept . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Algorithm: recursive ray-tracing . . . . . . . . . . . . . . 18
2.5.3 Acceleration techniques . . . . . . . . . . . . . . . . . . . 19

2.6 Path-tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.1 The rendering equation and random walks . . . . . . . . . 20
2.6.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.3 Direct and indirect illumination . . . . . . . . . . . . . . . 21
2.6.4 Termination conditions: Russian Roulette . . . . . . . . . 21
2.6.5 Some discussion . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Other Global illumination techniques . . . . . . . . . . . . . . . . 22
2.8 Reuse of paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8.1 Reuse of gathering paths in path-tracing . . . . . . . . . . 23
2.8.2 Reuse of shooting light paths . . . . . . . . . . . . . . . . 23
2.8.3 Reuse of hits for neighbor eyes . . . . . . . . . . . . . . . 24

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 From obscurances to ambient occlusion: A survey 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Shading particle systems . . . . . . . . . . . . . . . . . . . 26
3.2.2 Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Extended Ambient Term . . . . . . . . . . . . . . . . . . . 27

3.3 Theoretical basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Observing reality . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 The obscurances illumination model . . . . . . . . . . . . 28
3.3.3 Ambient occlusion as a simplification for obscurances . . 29
3.3.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Computing methods . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Ray-casting . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 Keeping the values . . . . . . . . . . . . . . . . . . . . . . 33
3.4.3 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Advanced features . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.1 Color bleeding . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.2 Moving objects . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.3 Deformable objects . . . . . . . . . . . . . . . . . . . . . . 35
3.5.4 Trees and plants . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.5 Volumetric vicinity shading . . . . . . . . . . . . . . . . . 36
3.5.6 Light animation and frame optimization . . . . . . . . . . 36
3.5.7 Non-diffuse features . . . . . . . . . . . . . . . . . . . . . 37
3.5.8 Monte Carlo optimization . . . . . . . . . . . . . . . . . . 37
3.5.9 Bent normal and environment mapping . . . . . . . . . . 38

3.6 Comparison tables . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.1 Where is the value computed and saved . . . . . . . . . . 38
3.6.2 Object and scene consideration . . . . . . . . . . . . . . . 39
3.6.3 GPU and dynamics . . . . . . . . . . . . . . . . . . . . . 40
3.6.4 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.5 Add-ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7.1 Software packages . . . . . . . . . . . . . . . . . . . . . . 43
3.7.2 Movies and TV . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7.3 Videogames . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iv



3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Improving obscurances 47

4.1 Adding color bleeding . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.1 Modifying the formulas . . . . . . . . . . . . . . . . . . . 47

4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 The different ρ functions . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 The maximum distance (parameter dmax) . . . . . . . . . . . . . 49

4.4 Important secondary reflectors problem . . . . . . . . . . . . . . 52

4.5 Noise reduction using different sampling techniques . . . . . . . . 52

4.5.1 Hemisphere sampling . . . . . . . . . . . . . . . . . . . . . 53
4.5.2 Systematic Sampling . . . . . . . . . . . . . . . . . . . . . 53

4.5.3 Stratified Sampling . . . . . . . . . . . . . . . . . . . . . . 53

4.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Improving ambient light computation . . . . . . . . . . . . . . . 54

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Obscurances in diffuse environments: videogames 59
5.1 Real-time animation of objects . . . . . . . . . . . . . . . . . . . 59

5.1.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.3 Implementation and results . . . . . . . . . . . . . . . . . 60

5.2 Use of GPU: Obscurances with depth-peeling . . . . . . . . . . . 62

5.2.1 From Global Lines to Depth Peeling . . . . . . . . . . . . 62

5.2.2 GPU obscurances using depth peeling . . . . . . . . . . . 63
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Obscurances in non-diffuse environments 69

6.1 Obscurances with ray-tracing . . . . . . . . . . . . . . . . . . . . 69
6.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Obscurances in non-diffuse environments . . . . . . . . . . . . . . 73
6.2.1 Obscurances in diffuse environments . . . . . . . . . . . . 77

6.2.2 Generalization to other materials . . . . . . . . . . . . . . 78

6.2.3 Obscurances of a translucent material . . . . . . . . . . . 83

6.2.4 What about the other BRDFs and BTDFs? . . . . . . . . 86
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Animations: reuse of information between frames 89
7.1 Camera animation: reuse of illumination between neighbor frames 89

7.1.1 Frame reuse . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2 Camera animation with obscurances . . . . . . . . . . . . . . . . 98

7.3 Combining light animation with obscurances . . . . . . . . . . . 99

7.3.1 Animation of light sources . . . . . . . . . . . . . . . . . . 99
7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4 Light and camera animation to navigate a frame array . . . . . . 100

7.4.1 Combination of camera and light animation . . . . . . . . 100

7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

v



8 Conclusions and future work 107
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.1.1 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.1.2 General improvements of obscurances . . . . . . . . . . . 107
8.1.3 Improvements and new techniques for obscurances in real-

time environments . . . . . . . . . . . . . . . . . . . . . . 108
8.1.4 Generalization of obscurances to non-diffuse environments 108
8.1.5 Reuse of information between frames . . . . . . . . . . . . 108

8.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.3.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.3.2 Ambient term . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.3.3 Complex models . . . . . . . . . . . . . . . . . . . . . . . 112
8.3.4 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.3.5 Reuse of information . . . . . . . . . . . . . . . . . . . . . 114
8.3.6 Frame Array . . . . . . . . . . . . . . . . . . . . . . . . . 114

References 121

vi



List of Figures

2.1 Patch A receives the flux Φı from Aı. . . . . . . . . . . . . . . . 14

2.2 Geometry of the form factor between two differentials of surface
patches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Cornell box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Schema of the ray-tracing algorithm. The rays are cast from the
eye through the pixels to intersect the scene. In this example, ray
r1 hits a diffuse object o1 and its direct illumination is computed
shooting a shadow ray rs1. Ray r2 hits a specular object o2 that
reflects it (rrl1) to the diffuse object o1. A shadow ray rs2 is
also cast at this point but there is no visibility and the point
remains in shadow, computing only its ambient light. The third
ray r3 hits a transparent object o3 that refracts the ray (rrc1
and rrc2), and continues its path recursively. . . . . . . . . . . . 19

2.5 Reusing a path, in the context of the path-tracing algorithm, from
the second hit point, y, for a single observer O, creating thus the
new path O, x′, y, . . . at the cost of the visibility test vis(x′, y) . . 23

3.1 In [70], direct and indirect illumination are attenuated using dis-
tances dd and da respectively and disturbed by a random com-
ponent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Shape of function ρ(d). . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 A comparison between ambient occlusion and obscurances with
color bleeding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Schema of skylight ambient occlusion: light comes from all direc-
tions above the object. . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 A cube map is used for every object to store the necessary param-
eters to compute ambient occlusion in ambient occlusion fields [48]. 34

3.6 Trees are approximated for ellipsoids and an adapted formula
to compute ambient occlusion for ellipsoids filled with blocking
elements is used in [39]. . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 The bent normal N is the average direction of the unoccluded
portion of the hemisphere over point p. It is used to find the
color of the unoccluded zone of the environment. But in some
cases, like the one showing this image, the average direction is
occluded and another solution has to be used, as finding directly
the contributions of the unoccluded directions. . . . . . . . . . . 38

3.8 Ambient occlusion for Luigi the Fiat 500, a character from the
movie cars c©2006 Disney/Pixar. . . . . . . . . . . . . . . . . . . 44

4.1 These images show the Cornell Box scene with obscurances. The
left one without color bleeding and the right one with color bleeding. 48

vii



4.2 The use of different functions to calculate the obscurances can be
appreciated. In (1) the exponential function is used. In (2) the
function used is the square root one. And in (3) a stair function
equal to 0 when d ≤ dmax and to 1 when d > dmax is used, this
one is called ambient occlusion on several commercial renderers.
Here we take dmax = 1.0m. The kitchen model is approximately
2.0m to 3.0m long. See fig. 4.3 for a comparison of different dmax. 50

4.3 Comparison of the images of obscurances with different maximum
distances. This parameter allows us to control the locality of
the calculation. Due to the voxelization of the scene, when the
distance decreases, the calculation is faster. Image resolution is
800 x 600 pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 (a) An image computed with obscurances with the problem of
important secondary reflectors (b) The same image computed
with Hierarchical Monte Carlo radiosity (c) Obscurances with
direct illumination expansion. . . . . . . . . . . . . . . . . . . . . 52

4.5 Charts of the comparison of efficiency for both box and kitchen
models. Computation time in seconds for an image is measured
in X axis, and Y axis measures the Mean Square Error, averaged
for all pixels, for the computation of the obscurances. Series of
4, 9, 16, 25 and 36 samples, are measured for each technique
(random, systematic, stratified and halton) and model (box and
kitchen). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 These images represent maps of Mean Square Error (MSE) for
(a) uniform random and (b) systematic sampling obscurances.
Systematic variation of error in (b) is clearly appreciated. . . . . 56

4.7 Detail from the kitchen model image, for a visual comparison of
all four sampling methods; (a) uniform random, (b) systematic,
(c) stratified and (d) quasi-Monte Carlo with random offset. . . . 56

4.8 Color map for the sample variances for the obscurance computa-
tion. We can appreciate that different parts of the image show
different variance values. . . . . . . . . . . . . . . . . . . . . . . 57

4.9 These two images show different ambient intensities for indirect
lighting when different directional lights are applied. Image (a)
shows greenish ambient and image (b) shows reddish ambient
lighting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 A captured image of a scene of a demo videogame in Crystal
Space engine with obscurances illumination added. . . . . . . . . 61

5.2 A second snapshot of a Crystal Space scene with obscurances. It
demonstrates the yellow and red interreflection effects. . . . . . . 61

5.3 Different ray-tracing techniques for computing obscurances. . . . 62

5.4 Schema of the depth peeling with GPU. . . . . . . . . . . . . . . 64

5.5 Six different image layers showing depth information for each
pixel for the Cornell Box scene. . . . . . . . . . . . . . . . . . . . 64

5.6 Two consecutive layers (left) generate two streams of points car-
rying patch ID’s (middle) that are merged together and processed
by the vertex shader (right). . . . . . . . . . . . . . . . . . . . . . 65

5.7 Cathedral model, 193180 polygons, obscurances computed in 38
seconds. Left: obscurances map, middle: obscurances with direct
illumination, right: constant ambient term with direct illumination. 67

viii



5.8 Tank model, 225280 polygons, obscurances computed in 38 sec-
onds. Left: obscurances map, middle: obscurances with direct
illumination, right: constant ambient term with direct illumina-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.9 Car model, 97473 polygons, obscurances computed in 32 seconds.
Left: obscurances map, middle: obscurances with direct illumi-
nation, right: constant ambient term with direct illumination. . . 68

6.1 These six images show the contribution that each kind of ray
of our rendering algorithm give to the final image and how it
is computed. The first image (a) shows our main contribution:
the obscurances. The second (b) image shows the diffuse color
of each object in the scene. By multiplying both images we get
indirect light image (d). Direct light is shown in (c). Adding the
contribution of the specular surfaces (e) to (c) and (d) we get the
final image (f). All the images of the kitchen scene shown here
have a resolution of 800x600 pixels. . . . . . . . . . . . . . . . . . 71

6.2 Kitchen model showing the camera position. . . . . . . . . . . . . 72
6.3 Aircraft model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4 Stairs model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5 Multiple views of the kitchen scene compared with path tracing

results. Image resolution is 800 x 600 pixels. . . . . . . . . . . . . 74
6.6 The kitchen with daylight illumination and views of the aircraft

and the stairs, all compared with path tracing results. Image
resolution is 800 x 600 pixels. . . . . . . . . . . . . . . . . . . . . 75

6.7 Final aircraft images in more detailed presentation. Obscurances
image is computed 10 times faster and presents significantly less
noise than path tracing image. . . . . . . . . . . . . . . . . . . . 76

6.8 Model of a vase made of white diffuse lambertian material with
indirect illumination rendered using obscurances technique. It is
a 800× 600 pixels image and it takes 1563 seconds to compute. . 77

6.9 Indirect light is computed by multiplying the diffuse color, the
ambient intensity and the obscurances. Adding direct light and
specular effects to this image, we get image in figure 6.8 . . . . . 78

6.10 Map of the obscurance values for the diffuse vase image. . . . . . 78
6.11 Vase made of perfect specular material with obscurances com-

puted as in figure 6.13b. It is a 800× 600 px image and it takes
2108 seconds to compute. . . . . . . . . . . . . . . . . . . . . . . 80

6.12 Schema of the reflected obscurance rays. Obscurances of the dif-
fuse point P are computed by sending cosinus distributed rays
that query the space around P . If some ray finds a specular
surface, it follows the corresponding reflected path. . . . . . . . . 80

6.13 The base of the vase is here detailed with three different compu-
tations of the obscurances when the surrounding object is per-
fectly specular. The first row shows the schema of the way ob-
scurances are computed, the second row presents only the ob-
scurances and the third row presents final images. The complete
image (800 × 600px) of the first column takes 2179 seconds to
compute. For the image in column b it takes 2108 secs. The
third image takes 1693 secs. . . . . . . . . . . . . . . . . . . . . . 81

6.14 Vase made of transparent material like crystal. It is a 800× 600
px image and it takes 2403 seconds to compute. . . . . . . . . . . 82

ix



6.15 Schema of the refracted obscurance rays. Obscurances of P are
computed by sending cosinus distributed rays that query the
space around P . If some ray finds a transparent surface, it follows
the corresponding refracted path. . . . . . . . . . . . . . . . . . . 82

6.16 Vase made of translucent material like wax. It is a 800× 600 px
image and it takes 1433 seconds to compute. . . . . . . . . . . . 84

6.17 Schema of the computation of the inner obscurance value. From
the inner part of the objects its thickness is queried to obtain the
inner obscurances value. . . . . . . . . . . . . . . . . . . . . . . . 84

6.18 This method can be used with good results with models of plants
and trees. It is a 800 × 600 px image and it takes 894 seconds
to compute. We have to note that it is a simpler model than the
kitchen one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.19 Image of the vase with a combination of basic BRDFs and BTDFs.
Left: using a combination of the different strategies to compute
obscurances (7723 seconds). Right: a global illumination path
tracing image of the same vase (19431 seconds). . . . . . . . . . . 86

7.1 Reusing the path from observer O for observer O′, at the cost of
the visibility test vis(O′, x). . . . . . . . . . . . . . . . . . . . . . 92

7.2 Here is shown in a graphical way the interpretation of equation
(7.9). Ωj is the solid angle subtended by pixel j, and I is the
solid angle through which eye o sees what eye o′ can see through
Ωj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3 Here we show the same frame (the middle frame in our anima-
tion) obtained with three different computations. In the first one
(image a) an image with no reuse has been computed. It takes
more than 2,5 hours to be computed. Image b) shows Havran et
al. [38] version for reuse of frames and takes 18 minutes to com-
pute. Image c) is the result of our unbiased version and takes 20
minutes. The three images look very similar but there are some
differences besides computation time that are clearly visible in fig.
7.4. The unbiased c) version uses much more memory. Images b)
and c) presents noise near the border due to loss of reuses, and
image b) presents noise in glossy objects due to biased computation. 97

7.4 The differences between the methods are clearly appreciated for
non-diffuse materials when we reduce the computation time (noise
is higher, consequently) and the separation between frames in-
creases. Here we see the details of the vase for the 800 × 600
image when reusing only 3 frames fairly separated. First image
a) is computed with no reuse. Image b) is biased and computed
with Havran et al. [38] version and image c) is computed with
our unbiased method. We clearly see much more noise in image b). 98

7.5 One frame from each animation of the aircraft and the stairs.
The aircraft animation presents point light animation. The stairs
movie shows the sun-like movement of directional lights. . . . . . 100

7.6 The eyes (O, O’ and O”) are the different positions of the anima-
tion of the camera. The suns (l, l’ and l”) represent the different
positions of the light animation. The obscurances value for the
hit point x is computed with the dark rays leaving x, and it can
be reused for the different camera positions as well as for the
different light positions. . . . . . . . . . . . . . . . . . . . . . . . 101

x



7.7 The algorithm results in a matrix of images that we can navigate.
The rows are images with changes in camera animation and the
columns show the images with changes in light animation. We can
generate movies with camera animation for different light posi-
tions (horizontal arrow), see the animation of light from different
points of view (vertical arrow), or both animations simultane-
ously (diagonal). We have also the freedom to move along any
direction as, for example, following the dotted blue arrow. . . . . 103

7.8 Here we see a few frames of the animation of the aircraft model.
The arrows show a few of the multiple possibilities we have to
generate different movies with our set of images. . . . . . . . . . 104

xi



xii



Chapter 1

Introduction

This dissertation has been done in the context of computer graphics, in par-
ticular in the field of image synthesis. Its aim is to research new techniques
to accelerate the computation of global illumination, leading to photorealistic
results in shorter computation time. The results of this dissertation are of ap-
plication to videogames and virtual reality, as well as to production rendering
for movies and animations.

1.1 Motivation

Computing global illumination is a very costly process, as the interaction of
light within all surfaces of the scene has to be taken into account several times
to achieve an accurate computation of direct and indirect illumination.

Radiosity [32, 82] and some ray-casting techniques as path-tracing [43] and
bidirectional path-tracing [89] can be used for the computation of global illumi-
nation, and in the last twenty years a lot of research has been done to improve
and accelerate these techniques.

Nowadays, global illumination for virtual environments is used by two kinds
of applications: on the one hand those that require real-time rendering, as
videogames and virtual reality applications, and on the other hand those that
use high quality realistic rendering, as movie production or architecture.

The real-time applications can pre-compute radiosity and store it in a spe-
cial kind of texture called lightmap. The illuminated scenes are shown in scene
walkthroughs, and some direct illumination (or object shadows) can be com-
puted in real-time for every frame, but physically accurate global illumination
can not be recomputed at real-time frame rates, because if any object or light
source moves, it requires recomputing all illumination of the scene from scratch.

In applications that require high quality realistic rendering, computing a
single image can take hours in a personal computer. This is much more prob-
lematic if we need to compute an animation, even if it is a few seconds long,
at a rate of 24 frames per second the number of images to compute increases
dramatically. In production rendering in the industry, very fast and specialized
parallel hardware is used. The rooms where these powerful machines are placed
are called rendering farms, and they work 24 hours a day to compute a few
seconds of an animation.

For all these reasons, doing research on the development of techniques that
accelerate the process of computing global illumination can lead to save much
time and money in the production of movies and to achieve high realism in
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videogames and the visualization of virtual environments, that require real-time
frame rates.

1.2 Objectives

The main objective is to research and find techniques that simulate or accelerate
global illumination and that give visually plausible and realistic results.

In particular, on the one hand we improve a technique that simulates global
illumination, the obscurances, in different ways, so we obtain more realistic re-
sults with little added computation time. We add color bleeding, study different
functions for the computation of the obscurances, study the generation of sam-
ples over an hemisphere and propose some solutions for the special cases that
present problems.

On the other hand, obscurances and other global illumination techniques
are used in animations. For moving objects in videogame environments, ob-
scurances around the objects are recomputed. Moving lightsources combined
with obscurances accelerate the computation of a series of ray-traced frames in
a movie. For a moving camera in ray-tracing environments, hits in the scene are
reused, and, finally, this last technique can be combined with light animation,
too.

1.3 Scope of the problem

We will first focus on the obscurances, first introduced in [96] and [40], a tech-
nique that simulates global illumination and creates realistic images with much
less computational effort. We will also point out some techniques to accelerate
the computation of true global illumination when computing a series of frames
in an animation.

The obscurances are computed to simulate the indirect illumination of a
scene. The direct lighting is computed apart and in an independent way. The
decoupling of direct and indirect lighting is a big advantage, and we will take
profit from this. We can easily add color bleeding effects without adding com-
putation time (introduced in [60]). Another advantage is that to compute the
obscurances we only need to analyze a limited environment around the point.

For diffuse virtual scenes, the radiosity can be precomputed and we can
navigate the scene with a realistic appearance. But when a small object moves
in a dynamic real-time virtual environment, as a videogame, the recomputation
of the global illumination of the scene is prohibitive. Thanks to the limited
reach of the obscurance computation, we can recompute the obscurances only
for the limited environment of the moving object for every frame and still have
real-time frame rates (also in [60]).

Obscurances can also be used to compute high quality images, or sequences
of images for an animation, in a ray-tracing-like environment (discussed in [62]
and in [56]). This allows us to deal with non-diffuse materials and to research the
use of a commonly diffuse technique as obscurances in general environments (in
[59]). For static cameras, using light animation only affects to direct lighting,
and if we use obscurances for the indirect lighting, thanks to the decoupling
of direct and indirect illumination, the computation of a series of frames for
the animation is very fast (algorithm introduced also in [56]). The next step
is to add camera animation, reusing the obscurances results between frames
(presented in [58]).
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Using this last technique of reusing the illumination of the hit points between
frames for a true global illumination technique as path-tracing, we study how
we can reuse this information in an unbiased way (in [64]).

Besides, in [57] a study of different sampling techniques for the hemisphere is
made, and in [61], obscurances are computed with the depth-peeling technique
and using GPU.

1.4 Overview

In this section we overview the structure of this dissertation and summarize its
contents. Previous work is divided in two chapters. The first one, chapter two,
presents a general overview of the scientific background of global illumination.
The second one, chapter three, presents the basic concepts of the obscurances
and surveys similar techniques, as ambient occlusion, and their improvements.
The core of this dissertation comprises chapters four to seven. Finally, the
conclusions and future work are presented.

1.4.1 Chapter 2: Background

In this chapter, a general overview of the scientific background of this disserta-
tion is presented. The chapter is conceived to introduce some concepts needed to
understand and situate the context of this work. Starting with some mathemat-
ical and physical concepts, we get into the concepts and algorithms to compute
global illumination, finishing with a short overview of the previous work in the
reuse of paths for global illumination.

We start by reviewing some concepts and techniques of the Monte Carlo
probabilistic methods for solving complex equations. Then we move to explain
the light as a physical concept in section 2.2 and its computational models
(section 2.3). Next some classic algorithms to compute the illumination of a
scene are reviewed, as radiosity (section 2.4), ray-tracing (section 2.5), path-
tracing (section 2.6) and others (section 2.7). Finally the previous work on
reusing paths is reviewed.

1.4.2 Chapter 3: From obscurances to ambient occlusion:
A survey

This chapter is conceived as a survey and compiles the basic concepts of ob-
scurances and related techniques as ambient occlusion, their improvements and
additions.

1.4.3 Chapter 4: Improving obscurances

In this chapter we look more deeply into the obscurances concept by adding
some improvements, studying different options for actual implementations of
the technique and introducing some problems that might occur if we use obscu-
rances.

In section 4.1 the effect of color transfer between surfaces is added to the
original obscurances equations. In section 4.2, some different functions ρ for
the obscurances computation are analyzed and in section and 4.3 we study the
effect of different values for the maximum distance parameter dmax. Next in
section 4.4 a problem of the obscurances and one possible solution is introduced.
Next in section 4.5 we study different methods to sample the hemisphere for
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the obscurances and study their relative efficiencies. Finally, in section 4.6, a
different algorithm to account for average intensity and average reflectivity of
the scene is introduced.

1.4.4 Chapter 5: Obscurances in diffuse environments:
videogames

The idea of obscurances was first thought to be used in videogame environments,
by precomputing the obscurance values and saving them in obscurance maps,
using these maps in real-time while navigating the scene. As obscurances are
computed locally, we show in section 5.1 that they can be recomputed in real-
time in the environments of a moving object and we present an algorithm to do
that.

The advantage of obscurances with respect to radiosity in this context is
that they are much faster to compute, and can even be accelerated by using
GPU techniques. In section 5.2 we use the depth peeling technique to compute
the obscurances for objects and scenes, using programmable shaders of modern
GPU cards.

1.4.5 Chapter 6: Obscurances in non-diffuse environments

There are some environments and materials in which the perceived illumination
depends on the point of view, this is, the relative position of the eye and the
object with respect to the light. We will use ray-tracing techniques (see [31]) to
generate images with obscurances in which the illumination of the scene depends
on the point of view (i. e., the scene contains objects with non-diffuse materials)
and to include specular and translucent effects.

In this chapter we first envisage how the obscurances can be plugged in ray-
tracing-like algorithms (section 6.1) and in another section (6.2) we study how
we can modify the obscurances concept to deal with non-diffuse materials.

1.4.6 Chapter 7: Animations: reuse of information be-
tween frames

In this chapter we study how we can save computation time when computing a
series of frames in an animation and some of the elements of the scene move, as
the light sources or the camera.

First we study a technique to reuse information between neighbor frames in
camera animation. The technique presented here is general and useful for sev-
eral techniques that compute radiance of a hit point, including path tracing and
obscurances. Using examples of path tracing, an unbiased solution is presented.
Next, in section 7.2, we will apply the same technique to obscurances, but sim-
plified, as obscurances are always computed for diffuse materials. A technique
to reuse indirect lighting (computed with obscurances) between frames with still
camera and moving light sources is presented in section 7.3. Finally (section 7.4)
both camera and light sources animation are combined in a single algorithm,
leading to a new concept that we will call frame array ; a multi-dimensional
array of frames that can be navigated to form movies that present different
combinations of animations of light and camera.
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1.4.7 Chapter 8: Conclusions and future work

In the last chapter we present the final conclusions and the main contributions
of this dissertation are summarized. We list the publications that support this
dissertation, as well. In addition, we envisage the lines for future work.

1.5 Summary

In this chapter we have introduced this dissertation. First we have presented
the motivation of this research and next we have presented our main objectives.
Then we have introduced a more concrete explanation of the scope of our prob-
lems and how the possible solutions are devised. Finally the structure of this
document is presented.
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Chapter 2

Background

This chapter describes briefly the basic science behind the core of this thesis and
some of the previous work in global illumination. We start by reviewing some
concepts and techniques of the Monte Carlo probabilistic methods for solving
complex equations. Then we move to explain the light as a physical concept
in section 2.2 and its computational models (section 2.3). Next some classic
algorithms to compute the illumination of a scene are reviewed, as radiosity
(section 2.4), ray-tracing (section 2.5), path-tracing (section 2.6) and others
(section 2.7). Finally the previous work on reusing paths is reviewed.

2.1 Monte Carlo techniques

The Monte Carlo methods are probabilistic methods used to find an approxi-
mate solution to integral equations that have difficult analytical solution. These
equations may have a very complex domain or a high number of degrees of free-
dom, and this makes them hard to solve in classic analytical way. These methods
are useful for computations in the matters of physics of light. In this section we
will summarize the theoretical basis of Monte Carlo and the related methods,
as Quasi-Monte Carlo [67] and Multiple Importance Sampling [89].

2.1.1 How does it work?

We have a function g(x) to be integrated over a given domain D. The Monte
Carlo method allows to integrate the function g(x) over its domain D by gener-
ating a sequence of independent samples on D according to a probability density
function (pdf ) f(x). The value of the integral can be seen as the expected value

of the random variable g(x)
f(x) with pdf f(x) (2.1), and this can be estimated by

sampling the variable on D using f(x) as pdf, obtaining the unbiased estimator
(2.2):

I =

∫

D

g(x)dx =

∫

D

g(x)

f(x)
f(x)dx = Ef

[
g(x)

f(x)

]
(2.1)

I ≈ 〈I〉 =
1

N

N∑

ı=1

g(x)

f(x)
(2.2)
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The samples on D according to the density function f(x) are usually ob-
tained from the inverse of the distribution function F (x). This procedure is
known as inversion method [67], and consists in computing the sequence of
samples xk from F−1(ξk). < ξk > is a sequence of realizations of independent

random variables with uniform distribution in [0, 1)d, d being the dimension of
the integration domain. In practice, such a sequence < ξk > can be obtained
from the [0, 1) values provided by the computer random generator.

2.1.2 Error in Monte Carlo integration

Monte Carlo methods are probabilistic, based on sampling values from random
variables. The value of the integral is seen as an expected value, and variance
must be considered. Let us consider we are integrating a square integrable
function, that is, a function that belongs to L2 [67]. Then the error in the
Monte Carlo estimation (or convergence rate) is proportional to

√
N , where N

is the number of samples taken. As an example, this means that the number
of samples has to be multiplied by 100 to reduce the error by one order of
magnitude. The variance for the estimator (2.2), that is, the expected value of
the quadratic error for an unbiased estimator, is given by

V (〈I〉) =
1

N

(∫

D

g(x)2

f(x)
dx− I2

)
(2.3)

2.1.3 Importance Sampling

We can see in equation (2.3) that the variance depends on the probability density
function f(x) used in the Monte Carlo sampling. It can be shown that the

minimum variance is obtained taking f(x) = |g(x)|
I [44]. Since the value of the

integral I is unknown, density functions that mimic the integrand have to be
used. These functions are called importance functions. The sampling according
to these importance functions is called importance sampling. In other words,
importance sampling consists of sampling more points in the regions where |g(x)|
is greater. This technique is widely used in Monte Carlo methods.

2.1.4 Multiple importance sampling

Multiple importance sampling, introduced by Veach [89], is a Monte Carlo vari-
ance reduction technique consisting of generating the samples according to n
different pdf’s, and properly combining these samples in order to obtain low
variance estimators.

The multi-sample model allows one to optimally combine n estimators via
weighting functions, obtaining a new unbiased estimator. Suppose we are inte-
grating a function f(x) on a given domain (assuming that f can be evaluated for
any point on the domain). We can use n sampling techniques, represented by
the corresponding probability density functions p1, ..., pn. Let N1, ..., Nn be the
number of samples taken from each density function, and let N =

∑n
i=1Ni be

the total number of samples. The multi-sample estimator is defined (see Veach
[89]) as

F =

n∑

i=1

1

Ni

Ni∑

j=1

wi(X
j
i )
f(Xj

i )

pi(X
j
i )
, (2.4)
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where wi(X
j
i ) is the weight of the j-th sample drawn from pi. Note that the

estimator F is in fact a weighted sum of the Monte Carlo estimators
f(Xj

i
)

pi(X
j
i
)

obtained using each sampling technique i.
The weighting functions wi(x) can be chosen in different ways, but they have

to fulfill two conditions for F to be unbiased:

1. if f(x) 6= 0,
∑n
i=1 wi(x) must be equal to 1;

2. if pi(x) = 0, wi(x) must be 0.

These conditions imply that, at any point at which f(x) 6= 0, at least one of
the pi(x) must be positive (i.e., at least one sampling technique must be able
to generate samples there). Thus, it is not necessary for every pi to sample the
whole domain, namely, some of the pi can be specialized sampling techniques
that concentrate on specific regions of the domain, and are 0 for the rest of it.
However, note that each of these pdf’s has to have sum 1 for the whole domain.

A good choice for the weighting functions, that fulfills the conditions above,
is the balance heuristic. This strategy consists of taking the weight of each
estimator proportional to the corresponding pdf times the number of samples
for this technique:

wi(x) =
Nipi(x)∑n
k=1 Nkpk(x)

. (2.5)

2.1.5 Quasi-Monte Carlo

A quasi-Monte Carlo method can be seen as a deterministic version of a Monte
Carlo method, in the sense that the random samples in the Monte Carlo method
are replaced by well-chosen deterministic samples specially designed to be as
much evenly distributed on the domain as possible. Thus, quasi-Monte Carlo
integration follows the equation (2.2) but replacing Monte Carlo random samples
by deterministic samples uniformly distributed on the domain.

We can construct sequences of points uniformly distributed on the domain
using both Monte Carlo and quasi-Monte Carlo generation. In this last case we
call them quasi-Monte Carlo sequences (see [67]). Quasi-Monte Carlo generation
designs the sequences of points to be as evenly distributed as possible (or, in
simple words, trying to fill empty spaces).

The regularity (even distribution) of the samples on the integration domain
happens to be more relevant for integration than true randomness. This is the
reason for quasi-Monte Carlo integration to perform better than Monte Carlo
integration.

2.2 Physics of the light

Light is a form of energy that the eye receives from the environment and is
interpreted by the brain, allowing us to get information about our environment.

The physical properties of the light can be interpreted in two forms: waves
or photons. Many of the observable properties of light can be understood if it
is regarded as a wave which travels at a finite speed c (3×108m/s). But not all
properties of light can be explained with Maxwell’s electrodynamic theory and
for some properties, the light can be understood as a big amount of traveling
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tiny photons. Some light is emitted from the light sources, as the sun or a bulb,
and it travels at a high velocity. Different objects, depending on their material
properties, can absorb, reflect or refract the electromagnetic waves (or photons)
through which the light is propagated. Absorbed light usually is transformed
to another kind of energy as heat.

Light interacts with all near-by materials and some of the originally emitted
photons can finally arrive at our eye. The eye receives the signals and transmits
them to the brain, that interprets them and gives us information about the
colors (that depend on the lightwave longitude), shapes, textures, even the
depth (thanks to binocular vision) of the objects of our environment.

The visible light is a part of the spectrum of the electromagnetic radiation.
Electromagnetic radiation is classified into types according to the frequency of
the wave: these types include, in order of increasing frequency, radio waves (low
frequency), microwaves, terahertz radiation, infrared radiation, visible light,
ultraviolet radiation, X-rays and gamma rays (high frequency).

In optics, radiometry is the field that studies the measurement of elec-
tromagnetic radiation in optical spectrum. This part of the spectrum includes
infrared, visible and ultraviolet light, while photometry is the science that
studies the measurement of visible light in units that are applicable to the hu-
man eye perception. The difference between both fields is mainly the units of
measurement.

Radiant flux Φ is the ratio of radiant energy Q per unit of time. Irra-
diance E is the radiant flux coming from any direction per unit of area over a
surface. Radiant intensity I is the change of power with respect to a solid an-
gle. We can imagine a ray arriving or leaving a point of a surface, the radiance
L is the radiant power that the ray contains.

Table 2.1 shows a list of these physical magnitudes, their symbols, their
equations and the units of measurement for radiometry and photometry.

RADIOMETRY
Concept Symbol Equation Unit
Radiant energy Q, Qe J (Joule)
Radiant flux Φ, Φe Φ = dQ/dt W (Watt)
Irradiance E, Ee E = dΦin/dA Wm−2

Radiant exitance M , Me M = dΦout/dA Wm−2

Radiant intensity I , Ie I = dΦ/dω Wsr−1

Radiance L, Le L = d2Φ/dω(dA cos θ) Wm−2sr−1

PHOTOMETRY
Concept Symbol Equation Unit
Luminous energy Qv lms
Luminous flux Φv Φv = dQv/dt lm (lumen)
Illuminance Ev Ev = dΦvin/dA lmm−2

Luminous emittance Mv Mv = dΦvout/dA lmm−2

Luminous intensity Iv Iv = dΦv/dω cd (candela)
Luminance Lv Lv = d2Φv/dω(dA cos θ) cdm−2

Table 2.1: Names, symbols, equations and magnitudes of radiometry and pho-
tometry
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2.3 Programming the light: local and global il-

lumination

2.3.1 Local illumination and global illumination

To compute the illumination of a virtual environment, we need to find mathe-
matical models that describe the physical interaction of light with the objects
and materials. These models have to describe the lighting effects in such a
way that the computer can simulate with realism and detail the illumination of
the scene. Some examples of lighting effects that increase realism in the scene
are: diffuse and specular reflections, shines, refractions, color bleeding, caustics,
shadows and shades, participating media, etc.

The computational techniques to simulate illumination can be divided into
two kinds: local and global illumination. In local illumination only the light
that arrives to every surface directly from the light sources is taken into account.
This is called direct lighting. When using local illumination, the indirect
lighting, if used, is normally introduced as a constant ambient value by the user.
On the other hand, in global illumination, besides direct lighting, the indirect
lighting coming from all interreflections between the objects of the scene is taken
in to account. For this reason, global illumination is very costly to compute.
Different global illumination algorithms are described in [27].

2.3.2 The ray

Light energy travels following a straight line, so the simplest computational
model to work with light is the ray, a straight line that has its origin in a point
and transports an amount of light energy until it intersects some other point
of the scene. Thus, the ray has to have also the capability of intersecting the
objects of the scene, this has to be computationally fast and efficient, as millions
of rays have to be traced to compute a single image.

2.3.3 The color

The spectrum is simplified into three components that give us an amount of
red, green and blue intensities, respectively. Combining these tree values we
can obtain many of the colors that the eye can see.

2.3.4 BRDFs and BTDFs

Some of the most important mathematical models to use are those that imple-
ment the form in which the light is reflected and/or transmitted in the different
surfaces. For each material we can introduce a bidirectional reflectance dis-
tribution function (BRDF) that models how the light energy reflected gets
distributed for each incident angle, and a bidirectional transmittance dis-
tribution function (BTDF), that works the same but for transmitted light
in transparent and translucent objects. The opaque objects can have BRDF’s
that go from perfectly specular to perfectly diffuse. The perfectly diffuse objects,
called also lambertian, are those that distribute part of the incident light en-
ergy over a surface point among the hemisphere over this point with probability
proportional to the cosinus of the angle to the normal.

We can consider the light as a bundle of rays with direction and intensity.
If one of these rays arrives to a perfectly specular surface, it bounces out with a
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certain angle that depends on the incident angle and an equal or lesser intensity,
depending on the reflection factor (absorption) of the material.

Most of the materials are not ideally specular or diffuse, but semi-speculars.
For these kind of materials, the rays bounce off the surface in all directions,
but with a higher probability they take a direction close to a certain angle that
depends on the incident angle.

For transparent materials, the simplest BRDFs just change the ray angle for
every different material the ray traverses, depending on a refraction index of
every medium. We perceive two effects. First, considering the rays arriving to
the eye, we can see through the transparent object the objects that are behind it,
but deformed or displaced. Considering light rays, they change their trajectory
depending on the shape of the object and produce an effect called caustics.

For translucent materials, rays get into a surface and scatter inside the object
until they get absorbed or get out through another point of the same or other
surface of the object.

Besides BRDF’s and BRDFs, there are other functions that take into account
other degrees of freedom of the transport of light energy. We can consider non-
homogeneous material or all the different wavelengths of the spectrum of a
ray, instead of RGB discretization. We can even consider different colors for
entering and exitant rays (fluorescent materials), or time depending functions
(phosphorescent materials: those that are capable of keeping light energy and
emit it for a while, even when they have stopped receiving light).

2.3.5 The rendering equation

The rendering equation [43] describes light transport in a closed vacuum envi-
ronment:

L(x,w) = Le(x,w) +

∫

S

ρ(x,w,w′)L(x′, w′)G(x, x′)dA′ (2.6)

where:

• x and x′ are two surface points,

• w and w′ are the outgoing directions at x and x′ respectively,

• dA′ is a differential area at point x′,

• L(x,w) is the total exiting radiance (reflected + emitted) at point x in
the direction w,

• Le(x,w) is the emitted radiance at point x in the direction w,

• ρ(x,w,w′) is the BRDF (see section 2.3.4),

• G(x, x′) is a geometrical term, equal to V (x,x′) cos θ cos θ′

|x−x′|2 , where θ and θ′

are the angles between the directions w, w′ and the respective normals at
points x, x′, and V (x, x′) is a visibility function, equal to 1 if x and x′ are
mutually visible and 0 otherwise,

• S is the set of surface points.

The rendering equation describes the exchange of energy between all surfaces
and the final result is the distribution of light at every point of the environment.
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2.4 Radiosity

In essence, radiosity is about simulating the balance of radiant power between
the surfaces of the scene. The name of the radiosity family of techniques comes
from its objective, that is computing the radiance for each point of the scene,
as the light intensity per solid angle emitted at every point.

Proposed by Goral et al. in 1984 [32], the idea was to apply the heat transfer
methods to image synthesis. These methods can be applied to light interreflec-
tion between lambertian surfaces. In this case, the radiosity at each point is
equal in all directions of the hemisphere over the point, so it is independent of
the point of view. In the original Goral paper, all patches1 were visible to all
others. Occlusions were introduced later.

The main advantage is that radiosity can be computed previous to the scene
visualization, saving its values in textures or in discrete patches, and do a walk-
trough over the scene without the need of recomputing all or part of the illumi-
nation for each frame.

2.4.1 Radiosity equation

Radiosity, or more commonly in optics, radiant exitance is the power per unit
area leaving a surface. We recall here the definition of radiance, as the power
per unit solid angle per unit projected source area:

L(A, θ, φ)dA cos θdω = d2φ (2.7)

Integrating the previous equation over the hemisphere, we get the total ra-
diant power from dA:

dφ =

∫

Ω

d2φ = dA

∫
L(A, θ, φ) cos θdω (2.8)

This expression gives us radiosity per area unit, that for a point x is:

B(x) =
dφ

dA
=

∫
L(A, θ, φ) cos θdω (2.9)

2.4.2 Form factors

Now we want to solve a problem: in a diffuse and closed environment, knowing
the exitance, as the energy leaving from a patch, what portion of the flux will
arrive to any other patch? Fig. 2.1 shows this problem.

The relative position and orientation of both patches Aı and A are arbitrary.
Patch Aı is an emitter that sends a certain quantity of the flux Φı, while A
receives a portion of the emitted flux (Φı). The relation Φı/Φı is called form
factor from Aı to A and will be represented as FAı−A or Fı. Total emitted
flux by Aı is Φı = MıAı, where Mı is the emitted energy and Aı, its area.
Unfortunately, computing Fı analytically can be extremely difficult.

Consider two differentials of area dAı and dA as it is shown in fig. 2.2,
where dAı is the emitter. The fraction of flux emitted by dAı and received
by dA is the differential of form factor from dAı to dA and is represented as
dFdAı−dA .

1Patch is defined as each one of the small parts of the scene into which the surfaces are
divided to account for their radiosity.
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Figure 2.1: Patch A receives the flux Φı from Aı.

n

dA

i

n j

θ

θi

j

r

dω

dAi

j
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Computing form factors is a pure geometrical function, so no emittances
or reflectances of patches are involved. The form factor between two patches
depends on the distance and inclination that they respectively have, assuming
visibility between them:

dFdAı−dA =
cos θı cos θ

πr2
dA (2.10)

where θı is the angle between normal vector at dAı and the vector from dAı to
dA, θ is the angle between normal vector at dA and the vector from dA to
dAı, and r is the distance between the two areas.

Integrating (2.10), we get the form factor of a differential of area dAı to a
finite area:

dFdAı−A =

∫

A

cos θı cos θ
πr2

dA (2.11)

Form factor from Aı to A is obtained integrating (2.11) for every point of
Aı:

Fı =
1

Aı

∫

Aı

∫

A

cos θı cos θ
πr2

dAdAı (2.12)

Visibility has to be taken into account, though: two patches may not see
each other. In this way we include in equation (2.12) the operator Vı, that has
value 1 if there is visibility and 0 otherwise:

Fı =
1

Aı

∫

Aı

∫

A

cos θı cos θ
πr2

VıdAdAı (2.13)

The form factor as it is explained here does not take into consideration the
media between the patches: there is no absorption, refraction or scattering of
light. In other words, we have non-participative media.

To sum up, the form factor is a non-dimensional constant that represents
the fraction of the light emitted from a patch and received by another one. It
provides information about relative position and orientation between surfaces
and their visibility.

The form factors have these properties:

• Energy conservation:
∑
Fı = 1, all emitted energy arrives to some place,

no energy is lost in the way,

• Fıı = 0, the form factor of a patch with himself is always zero for flat or
convex surfaces,

• reciprocity: AıFı = AFı,

• additivity: Fı(∪k) = Fı + Fık where ı,  , k are different patches.
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2.4.3 Solving the radiosity matrix

If patches pı and p are lambertian surfaces, form factor Fı points out the frac-
tion of flux emitted by pı and received by p. Reciprocally, factor Fı indicates
proportion of flux emitted by p and received by pı. In any case, we must remind
that form factors themselves are not considered flux, only proportions.

Flux leaving p is Φ = BA. The fraction of flux received by patch pı
is BAFı. From this one, the flux immediately reflected by pı is ρıBAFı,
where ρı is the reflectance of pı. In this way:

Bı = ρıBAFı/Aı (2.14)

where we define Bı as the exitance of pı because of the flux received from p.
Using the reciprocal relation, we can write the later expression as:

Bı = ρıBFı (2.15)

To compute final exitance Bı from patch pı, we have to take into considera-
tion flux received by pı from all other patches p. In this way,

Bı = Eı + ρı

n∑

=1

BFı (2.16)

where Eı is the initial exitance (or emittance) of patch pı and it is the radiosity
emitted by patch pı by itself. If Eı > 0, patch pı is (or is part of) a light source.

When we isolate term Eı we get:

Eı = Bı − ρı
n∑

=1

BFı (2.17)

We can express this equation for all patches p1 to pn as a set of n linear
equations, that can be presented in matrix form:




E1

E2

· · ·
En


 =




1− ρ1F11 −ρ1F12 · · · −ρ1F1n

−ρ2F21 1− ρ2F22 · · · −ρ2F2n

· · · · · · · · · · · ·
−ρnFn1 −ρnFn2 · · · 1− ρnFnn







B1

B2

· · ·
Bn


 (2.18)

and can also be expressed as E = (I − T )B where I is the (n × n)-identity
matrix, B is the final (n × 1)-vector of exitances, E is the (n × 1)-vector of
emittances and T is a (n× n)-matrix, where its ı elements are ρıFı.

In conclusion, to solve radiosity we need to solve a set of linear equations
that contain all surface reflectances, the form factors and the exitances of the
different patches. We also need the emittances of the patches, as they will be
the known initial values that will allow us to solve the equation. The hard part
of all this work is to previously determine the form factors for every pair of
patches.

These equations are solved for every needed wavelength (usually, red, green
and blue). The system can be solved in many different ways, like direct inverting
the matrix (Gauss), Gauss-Seidel method, etc. Refer to [23] for details of these
methods.
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2.4.4 Cornell Box

To test the realism of radiosity algorithms, in Cornell University a box with
intensely painted inner walls was constructed. It included a cube and an cuboid
(rectangular parallelepiped). All this composition was illuminated by a squared
lamp from the ceiling. Fig. 2.3 shows one of the simulations of radiosity algo-
rithm. We will use this model to show the results of some of our algorithms in
the core of this thesis.

Figure 2.3: Cornell box.

2.5 Ray-tracing

The aim of the ray-tracing family of techniques [31] for rendering is to compute
a color for each pixel in an image or in a set of images. The three main elements
in ray-tracing are the camera (and the eye, among its parameters), the grid of
pixels in the image and the scene. From the eye, one or more rays are cast
through each pixel that are intersected with the scene; this is how we find the
hit points. Knowing a hit point we can compute its illumination following any
suitable technique. By sending rays from the hit point to the light sources and
computing visibility, we take care of direct illumination. The objects that are
not directly illuminated are visualized by means of an ambient light intensity.

The main advantage of ray-tracing with respect to radiosity is its capability
of computing the illumination of perfectly reflective and refractive materials, as
the change of directions of the light ray is well known physically and easy to
compute. Due to the dependence on the eye position, radiosity techniques do
not suit. On the other hand, real-time algorithms to compute and visualize ray-
traced images are still far from being realized nowadays, though some attempts
have been made. Some interactive ray-tracing with global illumination effects
has been achieved in a cluster of parallel personal computers thanks to the
increase in computing speed, optimized acceleration structures and extensive
use of cache [91].
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2.5.1 The concept

The couple of linked words ray-tracing may refer to different things. The most
common meaning in computer graphics is the idea of finding efficiently inter-
sections between a ray and the objects of a scene. This simple concept can be
used in many different algorithms, and ray-tracing may also refer to the family
of algorithms that are based on casting rays from the eye through the pixels
of an image to find the colors of the picture. There are also many algorithms,
including global illumination and ambient occlusion ones, that use ray tracing
for computing images, but they have very little in common with the classical
ray-tracing algorithm for rendering.

The main idea behind any kind of ray-tracing algorithm is to efficiently find
intersections of a ray with a scene, defined as a set of geometric primitives.
The ray R(t) = O + tD is described by its origin O and direction D, and may
additionally have a parameter tmax that specifies a maximum distance up to
which the ray is looking for intersecting objects.

At this level we have three different problems to solve: finding the closest
intersection, finding any intersection and finding all the intersections. To find
the closest intersection is the most fundamental operation in a ray tracer. It
requires to find the closest geometric primitive, the intersecting point and the
distance to it. Additionally, other parameters may be required for a later shad-
ing of the point, such as local surface properties or surface normal. Finding
any intersection is the problem commonly known as visibility. This is a simpler
problem than finding the closest intersection. Finding all intersections is a less
common problem used on some lighting algorithms such as in [75].

The scene consists in a set of geometric primitives. These primitives can be
any kind of object capable of being intersected by a ray, as polygons, triangles,
cones, spheres or parametric surfaces. In [31], an excellent overview of different
ray-primitive intersections can be found.

2.5.2 Algorithm: recursive ray-tracing

The idea of using ray-shoting for computing images was introduced by Arthur
Appel [11] as an alternative method for solving the hidden surface problem for
rendering solid objects.

The rays are generated from the eye (the focal point) of the virtual camera
through each pixel, traced into the scene, and the closest object is determined
(see fig. 2.4). The color of this ray is then determined based on the properties
of this object. Additionally, visibility rays to the light sources may be shot to
account for direct lighting.

In [95] the recursive form of the ray-tracing algorithm was introduced. It
casts secondary rays to account for indirect effects like reflection or refraction,
by following the path of the reflected or refracted ray (using well-known physical
equations) and recursively compute direct and ambient lighting.

Cook [24] extended the range of ray-tracing effects to include more realistic
effects like glossy reflections, smooth shadows from area light sources, motion
blur and depth of field. This was achieved by modeling all these effects with
a probability distribution, which allowed for computing them via stochastic
sampling. Originally this algorithm was named distributed ray-tracing, but due
to the later use of parallelization techniques for ray-tracing and the common use
of the word distributed for parallel algorithms running in different CPU’s and
different memory spaces, Cook’s enhancement of ray-tracing changed its name
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Figure 2.4: Schema of the ray-tracing algorithm. The rays are cast from the eye
through the pixels to intersect the scene. In this example, ray r1 hits a diffuse
object o1 and its direct illumination is computed shooting a shadow ray rs1.
Ray r2 hits a specular object o2 that reflects it (rrl1) to the diffuse object o1.
A shadow ray rs2 is also cast at this point but there is no visibility and the point
remains in shadow, computing only its ambient light. The third ray r3 hits a
transparent object o3 that refracts the ray (rrc1 and rrc2), and continues its
path recursively.

to distribution ray-tracing.

2.5.3 Acceleration techniques

Computing a single image with ray tracing usually involves millions of rays and
their respective intersections with the scene, specially since the introduction of
Cook’s distribution ray tracing. That is why lots of research has been done
aiming to reduce this high cost and/or accelerate ray-tracing computation.

One possible approach is to reduce the number of primary rays to cast in
the image plane. This can be done using some kind of adaptive sampling, i.
e., sending more rays for those pixels that present high variation of sampled
values and less rays for those pixels that have always the same or similar values.
A closer description of this method appears in [31]. Other methods to reduce
primary rays from the eye include vertex tracing [88] and render cache [93]. The
number of secondary rays can also be reduced by taking advantage of shadow
coherence in the case of direct illumination rays or other techniques for reflected
and refracted rays. These techniques are briefly surveyed in [91].

Also surveyed in [91], the most interesting techniques to accelerate ray-
tracing are the ones based in accelerating the intersections themselves, by re-
ducing the number of intersections of the ray with the scene, or by using some
kind of acceleration structure for the scene. For complex objects it is usually
better to try to intersect first the ray with a more simple structure as its bound-
ing volume. Another option is to use some spatial subdivision as grids, octrees,
BSPs, etc., to first try to intersect the ray with the closest environment. This
last technique will be very useful for obscurances, as we only need to look for
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intersections in a limited environment.

2.6 Path-tracing

The path-tracing algorithm [43] is based in the same principles that ray-tracing,
but aimed to obtain a global illumination image. A ray is cast from the eye to
the scene through a pixel, and direct lighting computed the same way as ray-
tracing, but instead of computing local illumination for indirect lighting using
an ambient intensity, an stochastic path is followed while collecting a sample
of the indirect illumination for the hit point. Casting many paths per pixel we
obtain an approximation for the final color of the pixel. The main problem of
this method is the slow convergence to a valid noiseless solution.

2.6.1 The rendering equation and random walks

The path-tracing can be included in the class of illumination algorithms that
solve the rendering equation (see section 2.3.5) using random walks.

Random walks are a Monte Carlo common tool to solve second kind Fred-
holm integral equation [73, 36, 44]. For instance, they are used in global illu-
mination and radiosity [13, 27] to solve the rendering equation using the path-
tracing algorithm [43].

Besides path-tracing, other algorithms as distribution ray-tracing [24], bidi-
rectional path-tracing [52, 89], photon map [41] and Metropolis light transport
[90] are main global illumination techniques that use random walk.

2.6.2 The algorithm

In the path-tracing technique (see Fig.2.5) an image is computed by tracing
paths from the eye (or observer position) trough the pixels that compose the
image plane towards the surfaces of the scene. Once the hits are found by tracing
the primary rays, a sample of the radiance arriving to the eye through the ray
is computed using the rendering equation (see section 2.3.5). The most simple
algorithm to compute the radiance value is to apply a basic and straightforward
Monte Carlo integration scheme (see section 2.1) to the rendering equation in
its hemisphere form:

L(x→ θ) = Le(x→ θ) +

∫

Ωx

L(x← ψ)ρ(x, θ ↔ ψ) cos(ψ,Nx)dωψ (2.19)

The integral is evaluated by Monte Carlo by generating N random directions
ψı over the hemisphere Ωx, distributed according to some probability density
function p(ψı):

〈Lr(x→ θ)〉 =
1

N

N∑

ı=1

L(x← ψı)ρ(x, θ ↔ ψı) cos(ψı, Nx)

p(ψı)
(2.20)

The cosine and the BRDF are evaluated easily by accessing the scene de-
scription, but L(x← ψı), the incident radiance at x, has to be evaluated. Since

L(x← ψı) = L(r(x, ψı)→ −ψı), (2.21)
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we need to trace the ray leaving x in direction ψı through the environment to find
the closest intersection point r(x, ψı). At this point, another radiance evaluation
is needed. Thus, we have a recursive procedure to evaluate L(x ← ψı), and a
path, or a tree of paths, is traced through the scene.

2.6.3 Direct and indirect illumination

With previous algorithm, the path only gets to transport some lighting if at any
time it hits an emissive surface. As the light sources are usually small compared
to the other surfaces, many of the radiance evaluations yield to zero. This causes
very slow convergence.

The solution of this problem comes from separating direct and indirect com-
putation of the illumination. The reflected radiance term of the rendering equa-
tion can be split in two parts: a term that describes the direct illumination due
to the light sources and one that describes the indirect illumination. At any hit,
a ray can be shot in the direction of a light source to account for visibility and
thus direct lighting. Additionally the path is continued recursively to account
for indirect lighting. If by chance this path hits a light source, its emissive radi-
ance contribution is not used (though a direct light ray is shot in anycase and
possibly hit the same object or other light source).

By sending paths to light sources explicitly, accurate pictures are obtained
much faster.

2.6.4 Termination conditions: Russian Roulette

The recursive path described in the simple stochastic path-tracing algorithm
needs a stopping condition to ensure a finishing algorithm. This condition must
not introduce any bias in the computation and a correct solution has to be
obtained. A possible technique is to cut the path at a fixed length. This puts
an upper bound on the amount of rays that need to be traced, but important
light transport might have been ignored and leads to a biased solution.

Russian Roulette is a technique that addresses the problem of keeping the
lengths of the paths manageable, but at the same time leaves room for exploring
all possible paths of any length. The technique works as follows. At a hit point,
we decide at random whether to terminate or follow the path with probability
equal to α, that we will call absorption probability. If α is small, the recursion
will continue many times, and the final estimator will be more accurate. If α
is large, the recursion will stop sooner, but the estimator will have a higher
variance. We can choose α to be a value directly related to 1− albedo (as the
hemispherical reflectance of the material of the surface) of the point, thus, dark
surfaces will absorb the path more easily, while lighter surfaces have a higher
chance of reflecting the path. This corresponds to the physical behavior of light
incident on these surfaces.

Another possibility is to accumulate the albedos of visited hit points and
stop when the accumulated albedo is below a given threshold.

2.6.5 Some discussion

The main drawback of these algorithms based on Monte Carlo random walks
is however the high number of paths needed to obtain an acceptable result. As
the variance of the estimators is proportional to N−1 with N the number of
paths, it makes necessary the use of many paths, of the order of millions, to

21



obtain an acceptable noiseless image. This is still more dramatic in an animation
computation, due to the high number of frames to be computed. Thus achieving
some sort of path reusing (see section 2.8) can reduce the computational cost.

2.7 Other Global illumination techniques

Ray-tracing and path-tracing are eye-driven (named also gathering), this is, as
only the light that arrives to the eye is taken into account to “see” the scene,
at first thought it does not make sense to simulate the paths of the light that
arrive somewhere else different than the eye. Then the paths of the light are
simulated inversely: the paths that the light has to be done to arrive finally
to the eye are tracked. But there are some situations in which it is difficult to
compute the indirect lighting, as when the light sources are somewhat hidden
and the random paths find hits that seldom have a direct link to the light source.
There are also some light effects as caustics that are difficult to compute with
eye-driven paths.

For these reasons, there is a collection of algorithms that actually simulate
the paths of the photons from the light sources and save in some way their
positions, intensity and incoming directions when they hit the objects in the
scene. In photon mapping (see [41, 42]), the algorithm is divided in two stages.
First, the photon tracing that simulates the paths of the light from the light
sources, and stores the photon information of the scene, commonly in a kd-
tree structure. Then, the photon gathering, that finds what photons are seen
in every pixel and using a technique called “density estimation”, computes an
approximation of the radiance to the eye.

In bi-directional path-tracing[52] there is no need of saving the positions for
all photons traced from the light sources. The idea is to find a stochastic path
of the photon from the light, and another path of a possible photon that arrives
to the eye. The different segments of both shooting and gathering paths can
be combined resulting in several paths that a photon can trace to arrive to the
eye, each with its own probability and giving a sample of the solution. These
samples are combined by multiple importance sampling (see section 2.1.4).

2.8 Reuse of paths

Bidirectional path-tracing [52, 89], previously presented in section 2.7, can be
considered as the first attempt to reduce the cost by reusing paths in the context
of global illumination. They consider gathering paths from the eye through the
image pixels and shooting paths from the light sources, and connect the hit
points of shooting and gathering paths using shadow (visibility) rays.

In the radiosity context, Besuievsky et al [14] used the same set of lines
to expand direct illumination from different light-source positions, which were
packed in a bounding box. Lines crossing this box expanded the power of all
intersected positions. This method had a drawback: lines would be wasted if
the source positions were not tightly packed. Also Besuievsky et al [16, 15]
presented the multi-frame lighting method, valid for animations with objects
that move in known-in-advance trajectories. In this approach, all the frames
are merged in a single one, with the moving objects replicated as many times
as frames in the animation.
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2.8.1 Reuse of gathering paths in path-tracing

The idea of the reuse of full paths and for different states (i.e., pixels, patches
or light sources) was first presented by John Halton in [35] in the context of the
random walk solution of an equation system.

This technique was applied by Bekaert et al. in the context of path-tracing
in [12] (see Fig. 2.5), combined with multiple importance sampling [89] to avoid
bias. Pixels were grouped in tiles, and paths belonging to a pixel in the tile were
reused for the other pixels in the tile from the second hit point of the path. A
speed-up of one order of magnitude was reported for fairly complex scenes.

x

O

y

x’

y’

Figure 2.5: Reusing a path, in the context of the path-tracing algorithm, from
the second hit point, y, for a single observer O, creating thus the new path
O, x′, y, . . . at the cost of the visibility test vis(x′, y)

Sbert et al [76] presented a theoretical framework valid to reuse paths in
gathering random walks, and outlined applications to radiosity and global illu-
mination.

2.8.2 Reuse of shooting light paths

Path-reuse has been applied to light source animation in [77, 79]. Both papers
apply the idea of path reuse but from the point of view of the shooting paths from
moving light sources. The first shot is then connected to previously computed
paths and the samples weighted by multiple importance sampling. In [77] it
is done using random walk algorithm for radiosity. In [79], a fast light source
animation algorithm based on the virtual light sources illumination method,
due to Wald et al [92], is presented. They reused paths in all frames (and not
only in the frame in which paths were obtained). This algorithm presented a
speed up close to the number of frames of the animation and interactive rates
are achieved.
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2.8.3 Reuse of hits for neighbor eyes

Havran et al. [38] presented the reuse of paths in a walk-through, that is,
when the observer changes position. Paths cast from one observer position were
reused for other neighbor positions. Their technique admitted motion blur and
they applied it in the context of bidirectional path-tracing. Although obtaining
a high speed-up, the method remained biased as the samples were not weighted
with the respective probability. Also Havran et al [37] presented a technique
that aimed at exploiting temporal coherence of ray cast walkthroughs. They
reused ray/object intersections computed in the last frame of the walkthrough
for accelerating the ray casting in the current frame.

2.9 Summary

We have seen in this chapter some of the concepts and previous work needed
to understand the core of this thesis and at the same time we have situated the
context of the subsequent chapters.

We have briefly reviewed basic mathematical concepts as Monte Carlo in-
tegration. Then we have summarized the physics of the light in the context
of optics and how to model it to do computations and create algorithms that
simulate the behavior of the light. Then we have seen some of the classic global
illumination algorithms: radiosity, ray-tracing and path-tracing. Besides the
importance that these algorithms have in the field of rendering, we thought
necessary to include them here because the obscurances technique, that is the
basic concept that guides this dissertation, is programmed under the environ-
ment of both radiosity and ray-tracing. In some cases it is also compared to
the results of true global illumination techniques as path-tracing and radiosity.
Finally a brief introduction to the algorithms that reduce cost by reusing paths
in the context of global illumination is presented.
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Chapter 3

From obscurances to
ambient occlusion: A
survey

This chapter aims to survey the previous and related work for the obscurances
and similar techniques.

3.1 Introduction

In 1998, Zhukov et al.[96] presented the paper “An Ambient Light Illumina-
tion Model”. It introduced the obscurances, an efficient technique that achieved
in a much less costly way some of the features that only global illumination
techniques had presented before. Those features included the realistic appear-
ance of objects diffusely illuminated, presenting a darker aspect in those zones
that are more occluded. The obscurances technique was presented to be used
in videogame environments, thus precomputed and stored in texture maps at-
tached to the objects.

In 2002, Landis[53] and Bredow[17] presented in the SIGGRAPH course
“RenderMan in Production” a technique that they had been using in the movies
Pearl Harbor and Stuart Little 2, respectively, and they called it ambient
occlusion. This technique was clearly based on the obscurances concept by
Zhukov et al. but ported to production rendering for movies that mixed live
footage with computer generated imagery (CGI), that is, programmed and ren-
dered in a ray tracing environment as, for example, Renderman.

Since then the concept has popularized under the name of ambient occlu-
sion and it is included as a shader in most commercial renderers. Nowadays,
many of the movies that include CGI use ambient occlusion as a cheap way
to simulate diffuse ambient illumination in substitution of previously common
“bounce lights”. Ambient occlusion effect, used altogether with environment
lighting and some other tricky effects (as caustics) are the state of the art for
illumination in production rendering.

Meanwhile, in academic environments obscurances and ambient occlusion
techniques are still under research in both movies and videogames facets. Many
different techniques to compute ambient occlusion have appeared. Some of these
techniques are aimed to solve particular cases as self-occlusion for an object,
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occlusion between different objects, indirect illumination for closed scenes, sky-
dome illumination, and changes of ambient occlusion for moving or deformable
objects. Some others are aimed to accelerate the computation itself by taking
advantage of the good features of the obscurances concept, or by adapting the
algorithms to be used with graphics hardware. Finally, some improvements to
those techniques are made.

In this article we survey the state of the art for the techniques of obscu-
rances and ambient occlusion. First, in next section, we explore two techniques
that appeared some years before the obscurances and use the same idea. Then
in section 3.3 we explain the basic concepts and its characteristics. Then we
take a look at the different improvements and accelerations for these techniques
(sections 3.4 and 3.5). Next some comparative tables are shown (section 3.6)
and we take a look at some current examples of the use of the techniques in the
industry (section 3.7). Finally we present our conclusions.

3.2 Previous work

3.2.1 Shading particle systems

Many years before obscurances or ambient occlusion were invented, a similar
idea was used in [70] for the rendering of grass and trees in the first animated
short movie “The adventures of André and Wally B.”. They rendered the veg-
etables using a kind of particle system to avoid the huge amount of memory (for
that time) that a complete polygonal model of a tree needs. They used three
components of light for the illumination of the trees, that they called ambient,
diffuse and specular shading. These concepts were used slightly different as
what they mean nowadays. Diffuse shading was a representation for the direct
lighting coming from the Sun. Ambient shading was a representation for the
light coming from the environment, i.e., indirect lighting including a minimum
constant lighting. In the case of the diffuse (direct) and ambient (indirect) shad-
ing for trees, the lighting was negative-exponentially attenuated for the particles
that represented the leaves, depending on the distance to the boundary of the
tree in the direction to the position of the Sun in the first case, and to the clos-
est boundary in the second case, both using a random component to cause the
effect of light occlusion for the leaves in a tree, some more illuminated and some
less (see fig. 3.1). The idea is quite similar to obscurances, as the more hidden
is a surface, the darker it is seen. A modern approach for trees and plants can
be found in [39] and is reviewed in section 3.5.4.

3.2.2 Accessibility

The aim and use of Miller’s approach [65] is different from obscurances, though
its results may be somewhat related. Miller defines the “accessibility of an
object” as a property of the surfaces of an object that can not be reached by a
“spherical probe” as a simplification for a sandpaper (to polish) or a cloth (to
clean the dust). Thus, the more hidden parts of the objects remain uncleaned
or unpolished and can be shaded in a different way (different color and/or
texture). Though the idea and the proposed solution is completely different,
in some cases the resulting images look similar to those computed with ambient
occlusion, specially when the shading of the unreached surfaces is darker than
the accessible ones. It is not by chance that if we change slightly this concept
to obtain the “accessibility of light” we get the ambient occlusion concept.
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Figure 3.1: In [70], direct and indirect illumination are attenuated using dis-
tances dd and da respectively and disturbed by a random component.

3.2.3 Extended Ambient Term

In [19] the Extended Ambient Term is presented. As in classic ambient term,
this extended version ignores geometric occlusion conditions to compute an ap-
proximation to indirect illumination, but adds the idea of computing not a single
ambient term, but a set of them.

The polygons of the scene are classified depending on their orientation in
a given number C of classes (this number will usually be 6 according to an
orthogonally oriented cube) and the distribution of unshot power of the classes
is then estimated by solving a small system of linear equations. If a polygon
is not orthogonally oriented, it will be assigned different weights for each class.
The unknowns are the indirect lighting colors (ambient terms) for each class,
and the wanted solution.

3.3 Theoretical basis

3.3.1 Observing reality

Let us take a look at the illumination of the objects in the real world. Imagine
we are in an environment where the illumination is mostly diffuse and indirect,
as if a clear white wall dominated the scene or we were in open air in a cloudy
day. In these cases, the objects that are more hidden are seen darker, as the
indirect light that comes from mostly everywhere is occluded by other objects.
We just have to look between the keys of our keyboard or the piece of road
under a car in a cloudy day to appreciate this effect.

Modeling this effect, that we will call obscurances from now on, following
[96], is much more simple and much less costly than global illumination. In
global illumination we need to simulate the interaction of light between all
objects of our scene. The obscurance effect can be considered as a pure geometric
property of every point in our scene: we just need to evaluate the hiddenness
or occlusion of the point by considering the objects around it.
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3.3.2 The obscurances illumination model

Let us move on again to the virtual world. The obscurances are introduced in
[96] and [40]. They first assume there is no specific light source in the virtual
scene, but a diffuse ambient light that comes from everywhere.

The obscurance of a point P is defined as the integral over the hemisphere
centered on the point P of a function ρ of the distance d from the point P to
the nearest object in all directions ω of the hemisphere, cosine weighted.

W (P ) =
1

π

∫

ω∈Ω

ρ(d(P, ω)) cos θdω (3.1)

where

• ρ(d(P, ω)): function with values between 0 and 1, and giving the magni-
tude of ambient light incoming from direction ω

• d(P, ω): distance of P to the first intersected point in direction ω

• θ: angle between direction ω and the normal at P

• 1/π is the normalization factor such that if ρ() = 1 over the whole hemi-
sphere Ω then W (P ) = 1.

The function ρ is a monotone increasing function of the distance d. It is
defined for all positive values and results in 0 when d is 0. From 0 to a determined
value dmax, the function increases from 0 to 1, and for values greater than dmax
the returned value is 1. This means that we only consider a limited environment
around the point P and beyond it we will not take care of the occlusions. The
shape of the function ρ is shown in figure 3.2.

1

ρ (d)

ddmax

Figure 3.2: Shape of function ρ(d).

In this way, the integral function W (P ) captures mathematically the geo-
metric properties of the environment of the point P . If we take a look at the
extreme cases, an obscurance value of 1 means that the point is completely open
(not occluded) and a value of 0 would mean that it is completely occluded. This
would be a very strange case, there exist points with an obscurance value of 0,
but as they are completely occluded, we can not see them.

The dmax (maximum distance) is the main parameter that controls the in-
direct illumination computed with obscurances. The user chooses the value of
dmax depending on the quantity of shadow she/he needs for the scene. It should
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be in concordance with the relative sizes of the objects with respect to the scene
and with the size of the scene itself. It should be much larger, for example, if
we compute a view of a stadium than if we compute a close-up of a foot and a
ball.

In sections 4.2 and 4.3 you can find a deeper study on the ρ function and
the dmax parameter.

Obscurances with light sources

The obscurances illumination model is thought to be used to simulate the in-
direct lighting caused by diffuse interreflections between objects in a fast and
simple way. The direct lighting has to be computed apart and in an indepen-
dent way. Fast, simple and known techniques to compute direct lighting are
commonly used. We can take any of them and add the direct lighting results to
the indirect lighting computation.

For more realistic results, the indirect lighting computed with obscurances
has to correlate with physically realistic indirect lighting. In particular, an image
of a scene computed with any global illumination technique, as path tracing, and
an image of the same scene with the same camera and light sources computed
with obscurances have to look similar, specially in average intensities.

For this reason, the obscurance value of a point has to be used in the following
way to obtain its indirect illumination:

I(P ) = R(P )× IA ×W (P ) (3.2)

This is, the obscurance at that point is multiplied by the diffuse reflectivity
(R(P )) at the point and by an average intensity value (IA) of the whole scene.

Ambient light

The average ambient intensity (IA) is computed assuming that light energy is
distributed in a uniform way among the whole scene and illuminates all objects
with the same intensity. In this way IA is:

IA =
Rave

1−Rave
× 1

Atotal

n∑

ı=1

Aı ×Eı (3.3)

where Atotal and Aı are the total area and the area of each patch respectively, Eı
is the emittance of the patch and Rave is the average reflectivity of all patches
weighted by the area:

Rave =
1

Atotal

n∑

ı=1

Aı ×Rı (3.4)

3.3.3 Ambient occlusion as a simplification for obscurances

The obscurances as described previously have inspired a family of techniques
that nowadays are implemented in most render software packages commonly
used by the animation and videogame industry.

It all started in a course about the widely known and used software package
RenderMan at SIGGRAPH 2002, where two of the speakers talked about a
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technique that they called ambient occlusion and had been using each one in
a different movie that same year. Hayden Landis [53] from Industrial Light &
Magic used the ambient occlusion for self-shadowing of objects to “attenuate
properly the surfaces not fully exposed to the environment”. The examples
were the planes from the movie Pearl Harbor. They got the unoccluded lighting
from a blurred environment map looked up in a direction that averaged the
unoccluded zone of the surroundings of the hit point and called that direction
bent normal.

The ambient occlusion defines the percentage of occlusion of a point on a
surface according to equation (3.5).

AO(P ) =
1

π

∫

ω∈Ω

V (P, ω) cos θdω (3.5)

In the same course and a few hours later, Bredow[17] presented the use of the
obscurance effect for the more hidden zones of the Pishkin building, a fictional
skyscrapper in the movie Stuart Little 2, and computed it by putting a large
area light source over the building and another one less intense under it, saving
the results in textures to reuse it in different frames.

The next year in another course at SIGGRAPH Christensen [21] did an in-
deep presentation following previous year Landis talk, centered on how to apply
the algorithms on Renderman. Some very good ideas are introduced for the
computation of ambient occlusion, as taking advantage of low frequency changes
to do a sparse computation and interpolate the results. Some adaptive sampling
is also used. The maximum distance parameter as used in the original paper
[96] and the introduction of the cone angle as “the fraction of hemisphere above
a point that should be taken into account” are also the add-ons of this course
presentation. Color bleeding is also treated in this talk, but presented apart
from ambient occlusion as single bounce global illumination. This is different
than the method presented in section 4.1, where obscurances and color bleeding
are presented together as a whole. In this talk, Christensen also reused results
between frames in an animation, by using an irradiance cache (or occlusion
cache) file.

The poster presented by Méndez et Al. at EUROGRAPHICS 2003 [62]
applied the original obscurances idea to the ray-tracing context, thus including
all aspects that ambient occlusion lacks: color bleeding, maximum distance and
the obscurance function. This is developed as part of the core of this thesis in
section 6.1 of chapter 6.

Differences between ambient occlusion and obscurances

Ambient occlusion as presented in the three presentations at SIGGRAPH rep-
resents a simplification of the obscurances as understood in previous section in
two ways. First, the distance of the ray intersection to the original point is not
taken into account, and the function just results in 0 (intersects) or 1 (does not
intersect). In a more conceptual way we could think of ambient occlusion as
a simple percentage of openness of a point, and in obscurances the secondary
interreflections are taken into account and some lighting intensity is added, this
is, diffuse indirect lighting is actually taken into account (see figure 3.3).

Second, the ambient intensity and average reflectivity parameters are nor-
mally not used, and some ambient parameter is adjusted in an empirical way.
It is easy to understand that physical accuracy is not really important in pro-
duction rendering and even less in videogames, as we only need to find realistic
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and visually pleasant images. Only in other kind of applications as for example
for architecture or interior design, accurate lighting is important. This is why
ambient occlusion has become so popular in CGI and it is becoming widely used
in videogames too.

(a) Ambient occlusion. (b) Obscurances.

Figure 3.3: A comparison between ambient occlusion and obscurances with color
bleeding.

3.3.4 Comparisons

Obscurances and ambient occlusion vs. constant ambient term

• Obscurance and ambient occlusion techniques are capable to simulate the
ambient light distribution in an environment in a non-constant way and
make possible to render realistic images.

• They increase realism by adding contact shadows and self occlusions for
objects.

• Constant ambient term techniques are faster.

Obscurances and ambient occlusion vs. global illumination

• Obscurance and ambient occlusion techniques are faster than global illu-
mination ones.

• Obscurance and ambient occlusion do not compute lighting in a physically
accurated way.

• The indirect illumination is computed in a visually realistic way with-
out the need for computationally expensive methods as radiosity or ray-
tracing-based methods for global illumination.

• Pre-visualization of scenes without light sources is possible.

• As they are computed for a limited environment of a point, they allow the
recomputation of small parts of the scene for moving objects.

• Their computation is pure geometrical, so changes in direct lighting or av-
erage ambient intensity do not affect the obscurances or AO computation.

• The direct and the indirect illumination are decoupled.
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Obscurances vs. ambient occlusion

• The use of a continuous function of the distance in obscurances to account
for indirect lighting gives better results than ambient occlusion and allows
the addition of color bleeding.

• The average ambient intensity and average reflectivity are used in obscu-
rances to search for a more accurate physical lighting.

• Both work in open environments.

3.4 Computing methods

3.4.1 Ray-casting

To compute the obscurances or the ambient occlusion of a point we need to
evaluate the occlusions in the environments of the point. One way to do it is
by sending rays from the point and make them intersect with the scene1.

Occlusion of a point

Obscurances integral can be evaluated using Monte Carlo evaluation (see section
2.1). Using 1

π cos θ as probability density function (pdf ), this is, casting rays
from P with uniform direction weighted by cosinus, the obscurances integral
(3.1) can be evaluated using nrays samples as:

W (P ) =
1

nrays
×
nrays∑

=1

ρ(d) (3.6)

The number of rays sent is given by the user or by some method (if adaptive
sampling is used, for example, it can be different for every point). Once a ray
is sent, an intersection test with the scene in a distance less or equal than dmax
is done. If the intersection test is positive, the ρ function is applied to the
distance from the original point to the intersection point. If no intersection
occurs, ρ returns value 1. The resulting value of the obscurances will be the
average of the values obtained by all rays cast.

This technique is used by those approaches that need to evaluate the obscu-
rances for a specific point. These points can be either the hits of a ray-tracing
algorithm as in [63, 56, 53] or the vertices of an object. For the vertices some
GPU approach as in [18] is more commonly used. Alternatively, the obscurances
can also be computed for the center of a triangle or face [48].

Obscurances of a patch

In some cases [96, 40, 60] the obscurances of a piece of surface (a patch) are
needed instead of a point. In this case we are evaluating a four dimensional
integral instead of a two dimensional one. The idea remains the same that
when computed for a point, except for the origins of the rays cast that are
randomly chosen among the points of the piece of surface that represents the
patch.

1A good algorithm for ray-scene intersection is needed for our purposes, specially if it
is faster for near intersections. We can find lots of literature on the subject as part of the
explanation on ray-tracing algorithms. See section 2.5.
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3.4.2 Keeping the values

The ray-traced approaches normally keep the values in image space or use them
directly to compute the final color of the pixel, stored in the final image. In the
cases that the value has to be reused, it can be used in several images [58] or
kept in a special texture called obscurance map [96, 21] or an atlas (one texture
for the whole scene or for a specific object) as in [61]. It can also be kept in the
vertex or in the triangle [29].

3.4.3 GPU

In the later years the power and computation capability of the specialized
hardware for graphics have grown incredibly faster and faster. First, graph-
ics cards specialized in matrix operations for projections appeared, and later,
programmable graphics hardware for massive parallel computations and spe-
cific memory for textures have arisen. Almost every old and new algorithm for
graphics (and even other algorithms for more general purpose) is revised and
tuned to be accelerated and fit in the newest hardware. Obscurances are no
exception.

Projecting shadows from lights

A first attempt to compute ambient occlusion aided by graphics hardware was
made by Pharr in the first GPU Gems book [68]. The method is purely based
on Landis work [53], saving the amount of occlusion and average unoccluded
vector for each triangle. First a software ray-traced method is shown. Later
a novel hardware accelerated approach using shadow maps is explained. This
hardware method is different than the software ray-traced one in the sense that
only an up vector for every point is used instead of the surface normal. The idea
is that the object is surrounded by a kind of sky light hemisphere that consists
in a set of directional lights pointing at the object (see fig. 3.4). To calculate
accessibility, the shadow contributions of each light are averaged in a floating
point accumulation buffer. The proposed future work at the end of the chapter
was later addressed by Kontkanen et al. [47], that we will see in section 3.5.3.

Figure 3.4: Schema of skylight ambient occlusion: light comes from all directions
above the object.

Use of buffers and occlusion queries

In [74] the ambient occlusion (or, as they name “first-order approximation of
the rendering equation”) is computed for every vertex. The scene is rendered
into the depth buffer from a directional light source point of view. The vertices
are rendered again as points and an occlusion query against the depth buffer is
performed. This is done for every element of a set of directional light sources
surrounding the scene. A visibility matrix is used to store the data.
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In [29], Franklin finds the “accessibility values” for every vertex or for every
face. The idea is to use occlusion queries by rendering the object from the
point of view of the face, looking up and directionally (5 renders per face) and
counting the pixels that present occlusion. The technique presented here is
useful for objects (self-occlusion) and floor.

Depth peeling

This technique is presented in [61]. The basic idea of the depth peeling technique
is to extract visibility layers from the scene in order to do some computation
between them. We can see the pixel image resulting from depth peeling as
being equivalent to tracing a bundle of parallel rays through the scene where
each pixel corresponds to a ray in the bundle. Each of these rays may intersect
several surfaces in the scene, and through depth peeling we can discover all of
the intersections in the form of image layers.

The computation of the obscurances is divided into two phases. In the
first phase, layers are obtained using depth peeling. In the second phase, the
obscurances between each pair of layers are computed and the result is added
and averaged in the correspondent obscurance map position. Both phases use
GPU programming. This is developed as part of the core of this thesis in section
5.2 of chapter 5.

Ambient occlusion fields

Kontkanen et al. presented in [48] a technique to compute ambient occlusion
where a field that encodes an approximation of the occlusion caused by an object
is precomputed in the surrounding space of it. The components (a, b and c) of
an inverse quadratic function 1/(ax2 + bx+ c), the center of the object and the
radius from this center to the convex hull is precomputed and stored in a cube
map for every object so that an spherical cap approximation of the ambient
occlusion can be computed in real time in graphics hardware (see fig. 3.5). The
technique is valid for inter-object ambient occlusion, but not for self-shadowing
or deformable objects.

The same authors published these ideas in chapter 2.4 of the ShaderX4 book
[49] but more focused on the shader programs for graphic cards.

Figure 3.5: A cube map is used for every object to store the necessary parameters
to compute ambient occlusion in ambient occlusion fields [48].
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3.5 Advanced features

3.5.1 Color bleeding

Until now the obscurances have been explained as a factor that multiplies the
whole light spectrum, lowering its intensity if there are objects around the point.
But in actual radiosity there is an effect, called color bleeding, that consists in the
perception that the objects around another object that has intense coloration
get dyed with this color. Adding this effect to obscurances is practically for free.
This contribution to obscurances is explained in [60] and it is part of the core
of this thesis and is developed in section 4.1 of chapter 4.

3.5.2 Moving objects

Mendez et al. [60] took advantage of the fact that the obscurances are computed
locally within a limited distance to recompute the obscurances of a moving
object and the objects around it. They keep in memory the list of patches that
need to be updated from frame to frame. There are patches of three kinds: One,
the patches of the moving object itself. Second, the patches that are within the
maximum distance around the moving object considering its position in the
actual frame. And third, the patches around, but for the position in the next
frame. The obscurances of the patches of the dynamic list, have to be updated
for the moving objects for each frame position. As only a small portion of the
scene is updated, real-time rates can be achieved. This is part of the core of
this thesis and is developed in section 5.1 of chapter 5.

In [54], Malmer et al. used a 3d texture containing the ambient occlusion
values, interpreted as the solid angle that the object, as occluder, projects to
every 3d-texel. The 3d texture is precomputed around an object, and in real
time ambient occlusion is computed between objects. An improved version saves
also the direction (cone) and is useful for self-shadowing.

3.5.3 Deformable objects

The technique presented in [18] by Bunnell works for dynamic and deformable
objects that need to compute self ambient occlusion on the fly in a videogame
context. The trick consists in considering the vertices of the object as small
portions of surface, each one defined by the position of its center, its normal
and area. These small surfaces can be projected to the other ones to account
for the occlusions. The technique works with environment lighting and bent
normals. The computation is made element-to-element, so it is n-square, and the
performance has to be improved by constructing a hierarchy grouping surfaces
and using a representative group for large distances. A few bounces of indirect
lighting can also be computed with the same technique.

Kontkanen and Aila presented in [47] an fast approximated solution for an-
imated characters. The idea is to precompute the ambient occlusion of some
poses of the character and find a correspondence to the parameters for these
poses, mainly the angles of the vertices. They compute the correspondence ma-
trix and the solution for any other pose is found by interpolating linearly via
the linear equation matrix.

Kirk and Orikan [45] present a method very similar to the previous one but
compressing the data used for computation, thus saving memory and reducing
computation time.
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3.5.4 Trees and plants

Obscurances have been applied to trees more or less directly in [30] and [59]. In
[30], the depth peeling approach (see section 5.2) has been used to precompute
obscurances and use them in real time for tree models simplified with leave clus-
ters. In [59], a ray-traced approach taking into account the leaves translucency
has been used.

Hegeman et al. [39] present a quite interesting approximation of ambient
occlusion for trees and grass. Trees are approximated to spheres or ellipsoids
and the ambient occlusion formula is computed considering this shape as if it
were full of blocking elements (see fig. 3.6). The result is that the more inner an
element (leave) is, the darker it appears. It considers skydome ambient occlusion
(normal always up). Inter-object occlusion (between trees, or between trees and
floor) is done using the solid angle approximation. A different formula is used
with grass.

Figure 3.6: Trees are approximated for ellipsoids and an adapted formula to
compute ambient occlusion for ellipsoids filled with blocking elements is used in
[39].

3.5.5 Volumetric vicinity shading

Stewart presented an algorithm to compute obscurances for volumetric data in
[84] and dubbed it vicinity shading. The objective was to compute an occlusion
value for each voxel of a 3D volume of densities aiming to use it for a later
rendering of any of its isosurfaces. Instead of computing first the surface (using
any classic algorithm as marching cubes) and then applying to the surface any
technique to compute occlusions, the volumetric data is used directly to compute
occlusions, changing the definition of occlusion to finding a voxel with equal or
more density in a given direction. The normalized gradients are used as the
normals of the surfaces. To reduce cost, instead of computing the occlusions for
every voxel independently, global directions are treated.

3.5.6 Light animation and frame optimization

In the context of global illumination, if we have to compute a series of frames
of an animation in which the camera and the objects in the scene are still and
only the light sources move, all the lighting computation has to start over from
frame to frame.
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In the context of obscurances, Mendez et al. [56] took advantage of one of its
properties, that is the decoupling between direct and indirect illumination. In
the case of light animation, they only needed to compute indirect illumination
once and reuse it in all frames and only direct illumination is recomputed for
every frame. Besides the animation of the light, other effects as reducing or
increasing the intensity of the light or changing its color could be incorporated,
as only the recomputation of the ambient intensity and the average reflectivity
were needed once for every frame. This is part of the core of this thesis and is
developed in section 7.3 of chapter 7.

In [37], Havran et al. presented a method to reuse diffuse lighting information
by reprojecting the hit in various neighbor frames in a camera walktrough.
This method can apply perfectly to obscurances. Thus, both strategies to gain
efficiency for camera and light animation with obscurances could be combined
in a single algorithm and the results were presented in [58] by Mendez et al.,
thus obtaining a big set of frames at once that can be used to create different
animations to see, for example, the animation of light from different points
of view, do the walkthrough with different direct light conditions, or see both
animations in a single movie. This is part of the core of this thesis and is
developed in section 7.4 of chapter 7.

3.5.7 Non-diffuse features

When obscurances were integrated to ray-tracing algorithms in [62] specular
and glossy effects could be easily incorporated by adding to the indirect lighting
computed with obscurances the illumination of the reflected or refracted rays as
in classical ray-tracing algorithms. Despite the introduction of these effects, the
computation of the obscurances itself only took account of the diffuse reflective
illumination. In [59], Mendez et al. studied how the obscurances should behave
when they are computed in an environment with non-diffuse materials, like
specular or refractive ones. They proposed to extend the original algorithm
that computes the obscurances with color bleeding in a way that it could cope
with other kind of materials and the interactions between them, such as perfect
specular surfaces, refractive and translucent objects. This is part of the core of
this thesis and is developed in section 6.2 of chapter 6.

3.5.8 Monte Carlo optimization

The obscurance method requires to take samples over the hemisphere to com-
pute the Monte Carlo integral of the obscurance function. The efficiency of the
obscurance computation is thus related to the sampling technique used.

Mendez et al. [57] compared four different sampling techniques: uniform
random, quasi-Monte Carlo with random offset, systematic [50, 22, 85, 78] and
stratified sampling. Both systematic and stratified showed an improvement of
50% in efficiency with respect to uniform sampling, although systematic sam-
pling presented a highly irregular distribution of the error. Halton sampling
with random offset resulted in still a higher improvement, so they found this
last one the best strategy to compute obscurances. This is part of the core of
this thesis and is developed in section 4.5 of chapter 4.
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Figure 3.7: The bent normal N is the average direction of the unoccluded
portion of the hemisphere over point p. It is used to find the color of the
unoccluded zone of the environment. But in some cases, like the one showing
this image, the average direction is occluded and another solution has to be
used, as finding directly the contributions of the unoccluded directions.

3.5.9 Bent normal and environment mapping

The bent normal is used from the first appearance of ambient occlusion by
Landis [53] and its immediate followers [21, 68, 18] and even in some of the late
improvements of the technique [48, 54].

It consists in saving the average direction of the unoccluded portion of the
hemisphere over every point at which the ambient occlusion is computed. This
value is then used to find, via environment mapping, the color of the light that
comes from this unoccluded hole. One possible problem here appears when the
computed average direction coincides with a direction occluded by some object
as it is the case when unoccluded area of the hemisphere forms a rim next to
the horizon of the hemisphere. In this case the blocking object is just above
the surface and the bent normal points directly to the occluder as in fig. 3.7.
Christensen [21] addresses this problem by averaging several unoccluded values
of the environment map, instead of using only the bent normal one.

When using the bent normal, it is assumed that no light comes from the
occluders, not even the indirect lighting. This is why this concept makes no
sense within the obscurances idea, where the indirect lighting is actually taken
into account wherever it comes from.

3.6 Comparison tables

In this section we overview most of the techniques previously referenced in this
survey using tables for comparison. In each table we mark which techniques
are related to which features. Each table refers to one or various aspects of the
techniques.

3.6.1 Where is the value computed and saved

The next table compares all studied articles with respect to where the obscu-
rances or ambient occlusion values are computed and saved.

• Surface: The value is computed (and possibly stored) for a piece of sur-
face called patch or for each triangle of an object.
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• Vertex: The value is computed (and possibly stored) for every vertex of
an object.

• Hit: The value is computed for every hit point of a pixel ray in a ray-
tracing algorithm. The value is usually stored per pixel in image-space.

• Texture: The value is saved in some kind of texture, obscurance map,
occlusion map, cube map or 3D texture.

• Vol: The value is saved in a volumetric data set.

Technique Surface Vertex Hit Texture Vol
Zhukov98-ALIM* [96] X X
Bredow02-ROF [17] X X
Landis02-PRGI [53] X
Iones03-FRLVG* [40] X X
Mendez03-RTOCB* [60] X X
Christensen03-GIAT [21] X
Stewart03-VSEPVD [84] X
Mendez03-ORTEV [63] X
Mendez03-ORT* [62] X
Pharr04-AO [68] X
Mendez04-CHSTO* [57] X
Mendez04-CLAOG* [56] X
Sattler04-HAAOC [74] X X
Bunnell05-DAOIL [18] X X
Kontkanen05-AOF [48] X X (cube)
Kontkanen06-AOF [49] X (cube)
Malmer06-FPAOPS [54] X (grid)
Mendez06-RTOCB [61] X X
Mendez06-OGE* [59] X
Mendez06-ERLCA* [58] X
Kontkanen06-AOAC [47] X X
Franklin06-HBAO [29] X X
Hegeman06-AOT [39] X X
Kirk07-RTAOD [45] X X

3.6.2 Object and scene consideration

The next table compares all studied articles with respect to the characteristics
of the objects or the scenes that are considered.

• Self-shadow: The technique takes self-shadowing (intra-object occlu-
sions) into account.

• Inter-objects: The technique computes occlusions between different ob-
jects.

• Closed: The technique can compute obscurances or ambient occlusion in
a closed scene.

• Sky: The technique computes skydome ambient occlusion, considering
ambient lighting coming from the sky.
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Technique Self-shadow Inter-objects Closed Sky
Zhukov98-ALIM* [96] X X X
Bredow02-ROF [17] X X
Landis02-PRGI [53] X
Iones03-FRLVG* [40] X X X
Mendez03-RTOCB* [60] X X X
Christensen03-GIAT [21] X X X
Stewart03-VSEPVD [84] X
Mendez03-ORTEV [63] X X X
Mendez03-ORT* [62] X X X
Pharr04-AO [68] X X
Mendez04-CHSTO* [57] X X X
Mendez04-CLAOG* [56] X X X
Sattler04-HAAOC [74] X
Bunnell05-DAOIL [18] X
Kontkanen05-AOF [48] X
Kontkanen06-AOF [49] X
Malmer06-FPAOPS [54] X (some) X
Mendez06-RTOCB [61] X X X
Mendez06-OGE* [59] X X X
Mendez06-ERLCA* [58] X X X
Kontkanen06-AOAC [47] X
Franklin06-HBAO [29] X Floor Floor
Hegeman06-AOT [39] X X X
Kirk07-RTAOD [45] X

3.6.3 GPU and dynamics

The next table compares all studied articles pointing out if they use GPU and/or
can consider dynamic objects.

• Classic GPU: The technique uses some non-programmable GPU algo-
rithm (like projections).

• Prog. GPU: The technique uses some modern GPU with programmable
vertex or fragment shaders.

• mov. obj.: Obscurances or ambient occlusion can be recomputed in
real-time for solid moving objects.

• def. obj: Obscurances or ambient occlusion can be recomputed in real-
time for deformable objects.
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Technique classic GPU prog GPU mov. obj. def. obj.
Zhukov98-ALIM* [96]
Bredow02-ROF [17]
Landis02-PRGI [53]
Iones03-FRLVG* [40]
Mendez03-RTOCB* [60] X
Christensen03-GIAT [21]
Stewart03-VSEPVD [84]
Mendez03-ORTEV [63]
Mendez03-ORT* [62]
Pharr04-AO [68] X
Mendez04-CHSTO* [57]
Mendez04-CLAOG* [56]
Sattler04-HAAOC [74] X X X
Bunnell05-DAOIL [18] X X X
Kontkanen05-AOF [48] X X
Kontkanen06-AOF [49] X X
Malmer06-FPAOPS [54] X X
Mendez06-RTOCB [61] X X
Mendez06-OGE* [59]
Mendez06-ERLCA* [58]
Kontkanen06-AOAC [47] X X
Franklin06-HBAO [29] X X
Hegeman06-AOT [39] X
Kirk07-RTAOD [45] X X

3.6.4 Optimizations

The next table compares all studied articles with respect to the optimizations
they use to compute occlusions faster.

• Precomp: Some precomputation of the values is done and stored for later
reuse.

• Frame opt: Some reuse of information is done between frames of an
animation.

• Sparse: Values are computed sparsely and interpolated.

• Adaptive: Some kind of adaptive sampling is made.
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Technique Precomp Frame opt Sparse Adaptive
Zhukov98-ALIM* [96] X
Bredow02-ROF [17] X
Landis02-PRGI [53]
Iones03-FRLVG* [40] X
Mendez03-RTOCB* [60] X
Christensen03-GIAT [21] X X X
Stewart03-VSEPVD [84] X
Mendez03-ORTEV [63]
Mendez03-ORT* [62]
Pharr04-AO [68]
Mendez04-CHSTO* [57]
Mendez04-CLAOG* [56] X
Sattler04-HAAOC [74]
Bunnell05-DAOIL [18]
Kontkanen05-AOF [48] X
Kontkanen06-AOF [49] X
Malmer06-FPAOPS [54] X
Mendez06-RTOCB [61]
Mendez06-OGE* [59]
Mendez06-ERLCA* [58] X
Kontkanen06-AOAC [47] X
Franklin06-HBAO [29] X
Hegeman06-AOT [39] X
Kirk07-RTAOD [45] X

3.6.5 Add-ons

The next table compares all studied articles with respect to the use of additional
techniques that help improve results.

• Env. map.: An environment mapping is used to acquire color.

• B. normal: An averaged non-occluded direction (bent normal) is com-
puted to account for the environmental color.

• Cone: A maximum angle is used to account for occlusions, that joined to
the normal (or the bent normal) forms a cone.

• dmax: A maximum distance is used to account for occlusions.

• function: A monotone increasing function of the distance is used to com-
pute the obscurance value.
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Technique Env. map. B. normal cone dmax Func
Zhukov98-ALIM* [96] X X
Bredow02-ROF [17]
Landis02-PRGI [53] X X
Iones03-FRLVG* [40] X X
Mendez03-RTOCB* [60] X X
Christensen03-GIAT [21] X X X
Stewart03-VSEPVD [84] X X
Mendez03-ORTEV [63] X X
Mendez03-ORT* [62] X X
Pharr04-AO [68] X X
Mendez04-CHSTO* [57] X X
Mendez04-CLAOG* [56] X X
Sattler04-HAAOC [74] X
Bunnell05-DAOIL [18] X X
Kontkanen05-AOF [48] X X
Kontkanen06-AOF [49] X
Malmer06-FPAOPS [54] X X X X
Mendez06-RTOCB [61] X X
Mendez06-OGE* [59] X X
Mendez06-ERLCA* [58] X X
Kontkanen06-AOAC [47]
Franklin06-HBAO [29]
Hegeman06-AOT [39] X
Kirk07-RTAOD [45]

3.7 Impact

Nowadays most commercial renderers include some kind of ambient occlusion,
normally in the form of an extra shader. We will study briefly in section 3.7.1
what software packages include it and how it can be used. Next in sections 3.7.2
and 3.7.3 we will enumerate some of the most important movies and videogames
that have included ambient occlusion among its features.

3.7.1 Software packages

Mental Ray
Mental Ray is a high quality production renderer usually included in third

party software packages as Maya or 3DStudio Max.
Mental Ray includes ambient occlusion in the form of a shader from version

3.1+, and names it dirtmap. It uses raytracing to determine the amount of
occluding geometry in the neighborhood of a rendered point, and outputs the
result as a blend of two colors (usually black and white, but the unoccluded
color can be a lookup to a environment map). You can modify the number of
samples, the sampled radii, and a number of other settings to create a plethora of
effects, like simple dirt, single-pass ambient occlusion, or even faked sub surface
scattering. See, for examples and tutorials, [8, 9, 3].

Renderman
As we have told before, Landis [53] and Christensen [21] popularized ambi-

ent occlusion in their respective talks at SIGGRAPH in 2002 and 2003, and
their talks were about RenderMan, the popular renderer made and used
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by Pixar from their beginnings. Using predefined functions as gather() and
occlusion() and setting the parameters, the ambient occlusion can be easily
computed in RenderMan.

Maya and 3D Studio Max
Both Maya and 3D Studio Max are very complete 3D software packages

aimed to modeling, lighting and animating, but for renderer purposes both
include an external renderer such as the previously discussed Mental Ray or
RenderMan, so ambient occlusion shader is integrated in the renderers.

Blender
Blender is a free 3D animation program and has become popular in the

open source community. It incorporates a kind of skydome ambient occlusion.
VRay
Ambient occlusion was available as a plugin for VRay from 2004 [10] and is

included in the renderer from version 1.5 [6] and named VRayDirt.
Cinema4D
Cinema4D does not incorporate ambient occlusion directly, but it does in

a separate module called Advanced Renderer. Alternatively a plugin can be
obtained [1].

Others
Other more specific shaders as QuteMol [4] for rendering molecular struc-

tures and ShadeVis [5] for cultural heritage rendering not only use ambient
occlusion but present it as its main attraction.

3.7.2 Movies and TV

According to the first tutorials that named ambient occlusion, the former movies
where the technique was used were Pearl Harbor, Jurassic Park III and Stuart
Little 2.

From then, almost five years ago, ambient occlusion has changed from being
the exception to become the standard. Nowadays few are the movies that use
CGI and do not take advantage of the benefits (speed and realism) of ambient
occlusion. This year, Academy Award winner for special effects, Pirates of the
Caribbean: Dead Man’s Chest, used the technique for its CGI characters [72].
Other recent examples are next Disney presentation, Meet the Robinsons, and
the later Pixar movies Cars [20] (see fig. 3.8) and Ratatouille.

Figure 3.8: Ambient occlusion for Luigi the Fiat 500, a character from the movie
cars c©2006 Disney/Pixar.
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3.7.3 Videogames

We have seen that ambient occlusion has become very popular in movies. On
the contrary, despite the obscurances technique was originally designed to work
with games, there are not so many games actually using it. Recent games that
use ambient occlusion (TimeShift, Ghost Recon Advanced Warfighter) compute
it in the game production process for characters and scenarios and store the
resulting static textures to use them in real-time while playing.

3.8 Summary

We have surveyed in this chapter the origins and evolution of two intimately
related concepts: the obscurances and the ambient occlusion. Both techniques
rely on the idea that, visually, the more hidden a point of a surface is, the darker
it is seen, and in practice they are computationally inexpensive with respect to
global illumination techniques and they achieve similar visual realism (though
not physically accurate).

After the basic definitions for the obscurances we have explored how ambient
occlusion appeared in the context of production rendering for movies and we
have compared both techniques looking for similarities and differences. Next
we have summarized the improvements and several techniques to accelerate
the computation that different authors have worked out during the later years.
Besides, the good features of obscurances have inspired new techniques as the
frame array [58].

Lately, ambient occlusion has become popular in the movie industry, since
the technique is included in most commercial renderers. The concept has become
so popular that even has an entry in the Wikipedia [7]. Concerning videogames,
it is included in some of them in the baked form, this is, precomputed and saved
in still textures that are used in real time by characters and scenarios.

Nowadays, the most challenging issue for obscurances and ambient occlusion
is to find a really fast technique to modify their values for dynamic objects in
real time for videogames. Some attempts have been made, but no released game
has still included this feature. Next generation consoles may change this.

45



46



Chapter 4

Improving obscurances

In the previous chapter the obscurances and the ambient occlusion techniques
have been introduced and compared. In this chapter we look more deeply into
the obscurances concept by adding some improvements, studying different op-
tions for actual implementations of the technique and introducing some prob-
lems that might occur if we use obscurances.

In section 4.1 the effect of color transfer between surfaces is added to the
original obscurances equations. In section 4.2, some different functions ρ for
the obscurances computation are analyzed and in section and 4.3 we study the
effect of different values for the maximum distance parameter dmax. Next in
section 4.4 a problem of the obscurances and its possible solution is introduced.
Next in section 4.5 we study different methods to sample the hemisphere for
the obscurances and study their relative efficiencies. Finally, in section 4.6, a
different algorithm to account for average intensity and average reflectivity of
the scene is introduced.

The techniques explained in this chapter are introduced in following papers:

• Real-Time Obscurances with Color Bleeding [60] (sections 4.1 and 4.4),

• Obscurances for Ray-Tracing (Extended Version) [63] (sections 4.2 and
4.3),

• Comparing Hemisphere Sampling Techniques for Obscurance Computation
[57] (section 4.5) and

• Combining Light Animation with Obscurances for Glossy Environments
[56] (section 4.6).

4.1 Adding color bleeding

Originally the obscurances were introduced as a factor that multiplies the whole
light spectrum, lowering its intensity if there are objects around the point. But
in actual radiosity there is an effect, called color bleeding, that consists in the
perception that the objects around another object that has intense coloration
get dyed with this color. Adding this effect to obscurances is practically for free.

4.1.1 Modifying the formulas

We modify equation (3.1) by adding a reflectivity term R(Q) for each differential
of solid angle that corresponds to the color (diffuse reflectivity) of points Q of
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objects around P :

W (P ) =
1

π

∫

ω∈Ω

R(Q)ρ(d(P, ω)) cos θdω (4.1)

When no surface is hit at a distance less than dmax in direction ω the ob-
scurance takes the value of Rave as computed in (3.4).

Thus, the obscurances factor is reduced by a reflectivity factor. This has to
be compensated in the ambient intensity factor (IA) of the indirect lighting. In
other words, we have to take in to account again the direct light intensity.

Ambient intensity will be, in this way:

IA =
1

1−Rave
× 1

Atotal

n∑

ı=1

Aı ×Eı (4.2)

The Monte Carlo version of the integral is:

W (P ) =
1

nrays
×
nrays∑

=1

ρ(d)Rint (4.3)

Rint is the reflectivity of the point of the scene that the random ray intersects,
and it will be Rave when there is no intersection.

4.1.2 Results

The cost for obscurances computation is less than one third of the cost for sec-
ondary illumination computation in the two radiosity algorithms used, shooting
Random Walk and Hierarchical Monte Carlo. As stated before, the computation
takes advantage of the fact that only a dmax-neighboorhood of the patch has to
be examined for intersection. The total number of available rays is distributed
in the obscurance computation according to the area distribution.

In fig. 4.1a we show the Cornell Box scene computed with the obscurances
without color bleeding, while in fig. 4.1b we have used the improved algorithm.

(a) Obscurances without (b) Obscurances with
color bleeding. color bleeding.

Figure 4.1: These images show the Cornell Box scene with obscurances. The
left one without color bleeding and the right one with color bleeding.

Color bleeding is clearly visible, adding a lot of realism to the image.
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4.2 The different ρ functions

There are different families of functions that give us an approximation to the
shape of the ρ function seen previously in figure 3.2. We have selected some of
them to study which one gives us the best results

• Exponential:

ρ(d) = 1− e d
dmax (4.4)

• Square root:

ρ(d) =

√
d

dmax
(4.5)

• Constant 0:

ρ(d) = 0 (4.6)

The shape and effect of each function can be appreciated in figure 4.2. The
exponential function (row (1.)) present a darker effect and less color bleeding
than the square root function (row (2.)). The constant function does not have
the desired shape and does not depend on the distance (d) parameter, but it
can be considered as a simplified version of the technique presented here and is
used under the name of ambient occlusion in several commercial renderers, such
as Photorrealistic Renderman by Pixar [53, 21]. In row (3.) of figure 4 we can
see that the use of this constant function results in a darker image and does not
present color bleeding.

Any of the two former functions may be useful for our purposes. We choose
the second one, the square root, as it is more simple and easier to compute than
the exponential one.

4.3 The maximum distance (parameter dmax)

Once the ρ() function is selected (see section 4.2) several parameters influence
the behavior of the obscurances. One parameter is the maximum distance se-
lected, dmax. If the ray-tracing routines used (to trace the rays to intersect
objects and thus compute obscurances) are accelerated by a voxelized structure
of the scene (see section 2.5.3 in chapter 2), shortest rays allow for a faster com-
putation. In this way, a small distance dmax will allow for a faster computation,
while a longer one will take into account more darkening (and color bleed-
ing) effects. In Fig.4.3 we see four obscurance images with different dmax. In
Fig.4.3.a dmax = 0.2m1, and the computation time is 219 sec.2, and in Fig.4.3.d
dmax = 2.0m, and the computation time is 314 sec. The other two images show
values in between, as expected. For the purpose of our comparisons we selected
the dmax = 1.0m. This value is chosen in an empirical way, as we have perceived
that a dmax value between a quarter and half the size of the bounding box of
the scene give better results than bigger or smaller values.

1Our model of the kitchen is approximatedly between 2 and 3 meters long
2Images are 800× 600 pixels and computed in a Pentium 4 1.6 Ghz with 1 Gb RAM.
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(1.a) Shape of the exp function. (1.b) Exp function obscurances.

(2.a) Shape of the sqroot function. (2.b) Sqroot function obscurances.

(3.a) Shape of the const function. (3.b) Ambient occlusion.

Figure 4.2: The use of different functions to calculate the obscurances can be
appreciated. In (1) the exponential function is used. In (2) the function used
is the square root one. And in (3) a stair function equal to 0 when d ≤ dmax
and to 1 when d > dmax is used, this one is called ambient occlusion on sev-
eral commercial renderers. Here we take dmax = 1.0m. The kitchen model is
approximately 2.0m to 3.0m long. See fig. 4.3 for a comparison of different
dmax.
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(a) Maximum distance 0.2 meters. (b) Maximum distance 0.5 meters.
219 secs. rendering. 241 secs. rendering.

(c) Maximum distance 1.0 meters. (d) Maximum distance 2.0 meters.
264 secs. rendering. 314 secs. rendering.

Figure 4.3: Comparison of the images of obscurances with different maximum
distances. This parameter allows us to control the locality of the calculation.
Due to the voxelization of the scene, when the distance decreases, the calculation
is faster. Image resolution is 800 x 600 pixels.
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4.4 Important secondary reflectors problem

Although the obscurances technique with color bleeding3 presented in previous
sections gives a good visual approximation to radiosity in most of the cases,
there are some configurations for which it fails. These configurations happen
when the light sources are very close to a surface, so that it becomes a very
important secondary reflector. In other words, when the light is not distributed
more or less uniformly in the scene.

An example is seen in figures 4.4a and 4.4b. In fig. 4.4a we have the
obscurances solution, while in fig. 4.4b the correct Hierarchical Monte Carlo
radiosity solution is shown. As in this scene there are very important secondary
reflectors (the light source points directly to the blue wall), the obscurances fail
to give an accurated representation of radiosity, in which the global ambient
light of the scene appears more blueish.

A possible solution is to further expand the direct illumination, at the ex-
pense of an increased computational cost. This is, the most important secondary
reflectors will redistribute the received direct illumination. This simple solution
gives very good results for most of the light positions. In fig. 4.4c, direct il-
lumination arriving at the wall patches near the source has been redistributed.
Compare fig. 4.4c, with fig. 4.4a, old obscurances, and fig. 4.4b, radiosity so-
lution. Observe in the new obscurance solution, fig. 4.4c, the color bleeding of
the blue wall against the ceiling and white wall as in the radiosity solution, fig.
4.4b.

(a) Obscurances (b) HMC (c) Improved obs

Figure 4.4: (a) An image computed with obscurances with the problem of im-
portant secondary reflectors (b) The same image computed with Hierarchical
Monte Carlo radiosity (c) Obscurances with direct illumination expansion.

4.5 Noise reduction using different sampling tech-

niques

The obscurance method requires to take samples over the hemisphere to com-
pute the Monte Carlo integral of the obscurance function. The efficiency of the
obscurance computation is thus related to the sampling technique used.

We compare in this section four different sampling techniques: uniform ran-
dom, quasi-Monte Carlo with random offset, systematic and stratified sampling.

3From now on, any time we name the obscurances it will be assumed that they include
color bleeding.
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4.5.1 Hemisphere sampling

To obtain a cosine weighted random direction over the hemisphere we sample
twice a random variable uniformly distributed in the unit interval (i.e. calling
the drand() function), obtaining ξ1 and ξ2. The direction (φ,θ) is then given by:

{
φ = 2πξ1
θ = arcsin

√
ξ2

(4.7)

Instead of using a pseudo-random number generator to obtain ξ1 and ξ2,
we can use deterministic or quasi-Monte Carlo sequences, like Halton one [67].
Quasi-Monte Carlo sequences distribute the samples more regularly over the
domain. To avoid bias, the values in the sequence can be added to the same
random offset (Cranley-Patterson rotation [46]).

4.5.2 Systematic Sampling

Systematic sampling [50, 22, 85, 78] is a classical Monte Carlo technique that
has been used for years in some fields, notably in Stereology [25, 26, 33]. In
systematic sampling a uniform grid is translated by a random offset giving
the sampling points to probe the target function. As systematic sampling is
based on regular sampling, we obtain cheaper samples than those obtained with
independent uniform random sampling. It can be proved that for certain kind
of functions the variance in systematic sampling decreases faster than in pure
Monte Carlo sampling [25]. The drawback is that systematic sampling produces
systematic error when the domain is somehow regular.

To take n1 x n2 systematic samples on the hemisphere, we proceed as follows
[33]. We consider first n1 x n2 partitions of the hemisphere, and take t1 = 2π

n1

and t2 = 1
n2

as the periods for longitude and latitude respectively. We sample
twice a random variable uniformly distributed in the unit interval, obtaining ξ1

and ξ2.
The directions are then computed as follows:

{
for i = 0 to (n1 − 1) φi = t1(ξ1 + i)

for j = 0 to (n2 − 1) θj = arcsin
√
t2(ξ2 + j)

(4.8)

4.5.3 Stratified Sampling

Stratified sampling [83, 80] is based on this same idea of dividing the domain
into subdomains of equal probability, but the samples are chosen in a different
way. Instead of choosing a random offset, we get a random sample from each
subdomain. For a certain kind of functions, the variance of stratified sampling
with one sample per stratum also decreases faster than in pure Monte Carlo
sampling [83]. To take n1 x n2 stratified samples on a hemisphere, we proceed
as follows.

We sample n1 x n2 pairs of random variable uniformly distributed in the unit
interval, obtaining pairs (ξi and ξj), i = 1, . . . , n1, j = 1, . . . , n2. The directions
are then given by:

{
for i = 0 to (n1 − 1) φi = t1(ξi + i)

for j = 0 to (n2 − 1) θj = arcsin
√
t2(ξj + j)

(4.9)
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4.5.4 Results

We have used two scenes, kitchen and box, and a series of five sample numbers,
2x2, ..., 6x6, to test uniform random, systematic, stratified and Halton sampling.
This last one is done with random offset, as used in [66], because pure Halton
sampling results in an unacceptable pattern. In fig. 4.5a and 4.5b we present
charts of Mean Square Error (MSE) versus time, for the average of 10 executions.
From these graphs we see that both systematic and stratified perform very
similar and overcome uniform random. However, the systematic nature of the
error in systematic sampling (see fig. 4.6) is an important drawback of this
technique. We see also from fig. 4.5a & 4.5b that Halton sampling with random
offset is the most efficient technique. See fig. 4.7 for a visual comparison of all
four methods.

4.6 Improving ambient light computation

Equation (3.3) describes how ambient intensity is computed, as a draft approx-
imation to what actual ambient intensity could be. It uses equation (3.4) for
average reflectivity. In both equations, the total area of the scene is taken into
account. It means that we make the assumption that the light energy gets
distributed around the scene and illuminates with the same intensity not only
every object but every part of every object, and that secondary lighting occur
in the same way. When light emitters are positioned in the center of the scene
and illuminate most of it, the ambient intensity given by equation (3.3) is a
good estimation.

But in most scenes these assumptions do not apply. Normally, a noticeable
part of the surfaces of the scene are hidden to the light, i. e., totally occluded
by other objects, for example, the objects inside a cupboard, the inner part of
an opaque vase and everything it could contain, etc. As we can see, normally,
more than half the surfaces of the scene should not be taken into account in
that total area term. On the other hand, if light sources illuminate with an
important portion of the total power directly to colored objects, previously
computed average reflectivity (3.4) from the scene would be biased with respect
to the actual one.

To solve this problem, IA and Rave can be more accurately estimated by
shooting a few rays from the light sources beforehand, and follow their paths
while computing stochastically the parameters we need. In this way ambient
intensity, average reflectivity and the area reached by the light are easily com-
puted. When we compute a series of frames of an animation, if the number of
samples is not big enough, a problem of noise in the form of flickering appears
between images. A filter is used to reduce this flickering. We will compute
ambient intensity for every frame, and use it to multiply the obscurances factor
and diffuse color to obtain indirect lighting.

This approach is used when animating light sources (section 7.3 in chapter
7) as for every frame different values of ambient lighting and average reflectivity
are needed. If light sources power changes among frames or light movement
causes changes in occlusion conditions, ambient intensity will also change and
result in beautiful effects in the animation. In fig. 4.9 these effects can be
appreciated.
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(a) Chart of Box scene.

(b) Chart of Kitchen scene.

Figure 4.5: Charts of the comparison of efficiency for both box and kitchen
models. Computation time in seconds for an image is measured in X axis,
and Y axis measures the Mean Square Error, averaged for all pixels, for the
computation of the obscurances. Series of 4, 9, 16, 25 and 36 samples, are
measured for each technique (random, systematic, stratified and halton) and
model (box and kitchen).
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(a) MSE map for random. (b) MSE map for systematic.

Figure 4.6: These images represent maps of Mean Square Error (MSE) for (a)
uniform random and (b) systematic sampling obscurances. Systematic variation
of error in (b) is clearly appreciated.

(a) Random. (b) Systematic. (c) Stratified. (d) Halton.

Figure 4.7: Detail from the kitchen model image, for a visual comparison of all
four sampling methods; (a) uniform random, (b) systematic, (c) stratified and
(d) quasi-Monte Carlo with random offset.
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Figure 4.8: Color map for the sample variances for the obscurance computation.
We can appreciate that different parts of the image show different variance
values.

(a) Greenish ambient term. (b) Reddish ambient term.

Figure 4.9: These two images show different ambient intensities for indirect
lighting when different directional lights are applied. Image (a) shows greenish
ambient and image (b) shows reddish ambient lighting.
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4.7 Summary

In this chapter we have presented various improvements for the computation
of obscurances. First we have added color bleeding by modifying slightly the
original equations and obtained much more realism with no added cost.

Some different possibilities for the ρ function have been studied and we have

concluded that the square root function ρ(d) =
√

d
dmax

is the one that works best

for our purposes. Different values for the maximum distance parameter dmax of
the obscurances have been tested, concluding that we obtain best visual results
when dmax has a value between 1/3 and 1/2 of the scene.

The problem of the strong secondary reflectors has been presented and a
possible solution has been introduced, but this solution increases the cost of
computing the obscurances.

Then we have compared four sampling methods to compute obscurances,
uniform sampling, systematic, stratified and Halton with random offset. Both
systematic and stratified have shown an improvement of 50% in efficiency with
respect to uniform sampling, although systematic sampling presents a highly
irregular distribution of the error. Halton sampling with random offset has
resulted in still a higher improvement, so this is the technique usually chosen to
compute obscurances.

Finally a new method to compute the average ambient intensity and the
average reflectivity is introduced. These values, combined with the obscurances,
are used to compute the final value of the indirect illumination and they are
considered unique for the scene at a given time. When light sources move or
change intensity, as we will see in section 7.3 of chapter 7, this method will be
useful to compute different intensities an reflectivities for every frame.

These studies and techniques to improve the computation of the obscurances
are general and applicable to most obscurances implementations. The methods
used in more particular implementations (videogames, production rendering and
animations) are studied in next chapters.
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Chapter 5

Obscurances in diffuse
environments: videogames

As seen in chapter 3 the idea of obscurances was first thought to be used in
videogame environments, by precomputing the obscurance values and saving
them in obscurance maps, using these maps in real-time while navigating the
scene. As obscurances are computed locally, we show in section 5.1 that they
can be recomputed in real-time in the environments of a moving object and we
present an algorithm to do that.

The advantage of obscurances with respect to radiosity in this context is
that they are much faster to compute, and can even be accelerated by using
GPU techniques. In section 5.2 we use the depth peeling technique to compute
the obscurances for objects and scenes, using programmable shaders of modern
GPU cards.

The techniques explained in this chapter are introduced in following papers:

• Real-Time Obscurances with Color Bleeding [60] (section 5.1 and

• Real-Time Obscurances with Color Bleeding (GPU Obscurances with Depth
Peeling) [61]. (section 5.2).

5.1 Real-time animation of objects

5.1.1 The problem

Although the computation of the initial obscurances is not real time, we can
update them in real-time for a small number of polygons.

The initial computation of obscurances may need several seconds to compute
depending on the scene complexity and the number of rays we send per patch.
Once we have the obscurances computed we can use them in obscurance maps
in real-time. In global illumination, if an object of the scene moves, the illumi-
nation of the object influences the illumination of the rest of the scene. But in
the case of obscurances, as they are computed locally within a limited distance,
if a small object of the scene moves we only need to recompute the obscurances
of the moving object and the objects around it, within the distance given by the
parameter dmax. This computation is much faster and we can achieve real-time.
The algorithm works as follows.
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for all p in patches do
computeInitialObscurances(p)
if ray from p hits moving object then

Store p in list of influenced patches
if p is part of moving object then

Store all hit patches in list of influenced patches

Algorithm 1: Program that creates the initial list of influenced patches.

for all p in moving object do
RecomputeObscurances (p)
Store hit patch in list of influenced patches
Store hit patch in new list of influenced patches

for all p in list of influenced patches do
RecomputeObscurances (p)
if ray from p hits moving object then

Store p in new list of influenced patches
List of influenced patches:=new list of influenced patches

Algorithm 2: Program that uses the previous list of influenced patches while
computing a new one.

5.1.2 The algorithm

We need to keep in memory the list of patches that need to be updated from
frame to frame. There are patches of three kinds: One, the patches of the moving
object itself. Second, the patches that are within the maximum distance around
the moving object considering its position in the actual frame. And third, the
patches around, but for the position in the next frame.

We store initially in a list the patches influenced by the dynamic objects,
i.e., the patches that have been reached by rays from a patch in a dynamic
object in the initial obscurances calculation. When the object moves to a new
position the obscurances of this list have to be recalculated. Obviously, also the
obscurances of the patches of the moving object have to be recalculated, and
this causes the update of the list of influenced patches. Lastly, the obscurances
of these patches have to be recalculated, ending the whole updating process.

The algorithm thus starts by creating the list of influenced patches (algo-
rithm 1). Once computed, and when an object moves to a new position, the
obscurances are recomputed (algorithm 2).

5.1.3 Implementation and results

Figs. 5.1 and 5.1 show images captured from a demo videogame done within
the game engine Crystal Space [2] to which real-time obscurances as previ-
ously described have been incorporated. In the web page http://ima.udg.es/

~amendez/thesis/ some more images and videos can be found. In the three
demonstrative videos we achieve rates up to 7 frames per second (computed
with a 900 Mhz AMD3) in a room with 4016 patches and recomputing about
150 of them.
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Figure 5.1: A captured image of a scene of a demo videogame in Crystal Space
engine with obscurances illumination added.

Figure 5.2: A second snapshot of a Crystal Space scene with obscurances. It
demonstrates the yellow and red interreflection effects.
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5.2 Use of GPU: Obscurances with depth-peeling

The basic idea of the depth peeling technique [28] is to extract visibility layers
from the scene in order to do some computation between them. We can see
the pixel image resulting from depth peeling as being equivalent to tracing a
bundle of parallel rays through the scene where each pixel corresponds to a ray
in the bundle. Each of these rays may intersect several surfaces in the scene,
and through depth peeling we can discover all of the intersections in the form
of image layers.

The computation of the obscurances is divided into two phases. In the
first phase, layers are obtained using depth peeling. In the second phase, the
obscurances between each pair of layers are computed and the result is added
and averaged in the correspondent obscurance map position. Both phases use
GPU programming.

5.2.1 From Global Lines to Depth Peeling

Global Lines

Sbert [75] demonstrated that casting cosine distributed rays from all patches
in the scene is equivalent to casting global lines joining random points of the
bounding sphere of the scene. Furthermore, it is also equivalent to casting
bundles or parallel rays of random directions (see Figure 5.3). Bundles of parallel
rays can be efficiently cast on the graphics hardware using the depth peeling
algorithm.

Rays from every patch Global lines Bundles of parallel rays

Figure 5.3: Different ray-tracing techniques for computing obscurances.

Depth Peeling

The basic idea behind the depth-peeling technique is to extract visibility layers
from the scene in order to do some computation between them. In [28], the tech-
nique is used to achieve order-independent transparency. Global illumination
[86, 34] has been done also with depth-peeling.

We can see the pixel image resulting from depth-peeling as being equivalent
to tracing a bundle of parallel rays through the scene where each pixel corre-
sponds to a ray in the bundle. Each of these rays may intersect several surfaces
in the scene, and through depth-peeling we can discover all of the intersections
in the form of image layers and not only the closest one obtained by the z-buffer
algorithm.
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5.2.2 GPU obscurances using depth peeling

Once we have chosen a random direction for the bundle, the computation of
obscurances with depth peeling is divided into two phases. In the first phase,
layers are obtained using depth-peeling. In the second phase, the obscurances
between each pair of layers are computed and the result is added and averaged
in the corresponding obscurance map position.

Depth Peeling

We assume that, in a pre-processing step, the scene is completely mapped to a
single texture atlas. A texel of the texture atlas corresponds to a small surface
area, that corresponds to obscurance patches. When a patch is referenced, we
can simply use the texture address of the corresponding texel. The obscurance
computation picks a random direction and carries out depth-peeling process in
this direction. When we let the GPU to do it for us, we use an orthogonal
projection, and from the sampled direction we render the scene setting the
model-view transform to rotate the sample direction to the z axis.

We use the pixel (RGBA) of an image layer to store the patch identification,
a flag indicates whether the patch is front-facing or back-facing to the camera
and the camera to patch distance. Our pixel buffer is initialized with (-1.0,-
1.0,1.0,1.0), giving us reasonable default values.

The facing direction of a pixel can be determined by using the cosine of the
angle between the camera’s -z vector and the normal vector of the patch. If the
result is greater than 0, it is front-facing, otherwise it is back-facing. The cosine
can be determined by using the z component of the dot product between the
inverse transpose model-view matrix and the normalized normal vector of the
patch.

As we store the pixels in a four-component float array (or the RGBA color),
we use the first two components to store the patch ID (RG← (u, v)), the third
to store the cosine (B ← cosα), and the fourth component to store the distance
between the camera and the patch (A← z).

The vertex shader receives the vertex coordinates, the texture coordinates
(in (u,v), identifying the texel), and the normal, and it generates the cosine and
the transformed vertex position:

void main( float4 position : POSITION,

float2 texCoord : TEXCOORD0, //Patch ID

float4 Norm : NORMAL, //Patch Normal

out float4 oposition : POSITION,

out float2 otexCoord : TEXCOORD0,

out float cosine : TEXCOORD1,

uniform float4x4 modelView,

uniform float4x4 modelViewInvTrans)

{
oposition = mul(modelView,position);

otexCoord = texCoord;

//sample direction is rotated to (0,0,1)

cosine = mul(modelViewInvTrans,Norm).z;

}

The fragment shader receives the interpolated texture coordinates of the
fragment, the position (where z is the depth), the cosine and the interpolated
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texture coordinates of the patch. For the first layer, the depth does not need
to be compared with the previous one. However, for all subsequent layers, we
sample the previous layer using the texture coordinates and discard it if the
depth of the previous layer (the fourth component of the sample) is closer to
the camera than the actual fragment thus getting the peeling effect (Figure 5.4).

Fragment 
Shader
Depth
Peeling

Previous
depth

Images

Figure 5.4: Schema of the depth peeling with GPU.

This rendering step is repeated until all pixels are discarded. The images of
all the rendered layers define all ray-surface intersections (Figure 5.5).

Figure 5.5: Six different image layers showing depth information for each pixel
for the Cornell Box scene.

void main(float4 position : WPOS,

float2 texCoord : TEXCOORD0, //Patch ID

float cosine : TEXCOORD1, //Patch Orientation

out float4 color : COLOR, //Patch ID + Orientation + Depth

uniform sampler2D ztex, //previous depth image

uniform float res, //resolution of projection window

uniform float first) //is first layer?

{
if( first == 0.0 ) // not first -> peel

{
float depth = tex2D(ztex,position.xy/res).a; //last depth

if (position.z < (depth + 0.000001)) discard; //ignore previous layers

}
color.rg = texCoord;

color.b = cosine;

color.a = position.z; //new depth

}

Obscurances

For each pair of consecutive layers, the obscurance formula is computed.
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We configure the camera to obtain a one-to-one mapping between pixels and
texels. The size of the viewport is set to the same resolution as the obscurance
map, starting from (0,0), with an orthogonal projection from -1 to +1 in both
dimensions.

Now each pair of consecutive images is taken from the texture memory and
sent to the graphic pipeline as a stream of points of size 1.0 (render to vertex
array). This way we can update a single position in the target buffer for each
element of the image. This will generate a pair of point streams A and B that
are merged together and sent to the Vertex Shader. Stream A is sent as vertex
positions and stream B as texture coordinates. As we generate the streams in
both images in the same way, points at the same position in streams A and B
are at the same position in consecutive images, thus may see each other in the
sampling direction and transfer energy consequently (Figure 5.6).

Vertex
Shader to 

calculate the
obscurances

A

B

Vertex
Positions

Texture
Coordinates

Figure 5.6: Two consecutive layers (left) generate two streams of points carrying
patch ID’s (middle) that are merged together and processed by the vertex shader
(right).

The obscurance computation needs to be done bidirectionally but we cannot
generate two values in different positions of the target buffer in a single pass and
thus we have to do a two-pass transfer. In the first pass, we update the patches
in the projection that generated stream A using the information in pixels of
stream B (Figure 5.6). In the second pass the streams are exchanged, thus the
same set of shaders are used in both directions.

If a patch in stream A cannot see the corresponding patch in stream B, the
vertex carrying this patch is eliminated by moving it out of the view frustum. If
patches see each other and the difference between their distances to the camera
is less than dmax , then the transfer is done. If the distance is greater or transfers
with the background, then the patch gets the ambient reflectivity. When the
transfer process is done, we generate vertex coordinates to update the position
in the obscurance map that corresponds to the patch identified by the two first
components of the current pixel element in stream A.

The vertex shader needs to generate vertex coordinates in homogeneous clip
space. The desired position is encoded as the patch ID but is in a normalized
form (as 2D texture coordinates are in the range [0..1]). The following formula
computes which homogeneous clip coordinates we need to generate to obtain
the desired normalized window coordinates given a camera and a viewport set
as explained earlier:




xc
yc
zc
wc


 =




2xw − 1
2yw − 1
2zw − 1

1


 (5.1)
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Note that the clipping process only keeps the fragment if −wc ≤ zc ≤ wc.
As we define a wc as 1, the clipping process will only keep the fragment when
−1 ≤ zc ≤ 1. If zc = 2.0 then zw = 1.5 and the fragment is out of the view
frustum and is discarded. If we set zc = 0.0 then zw = 0.5, thus the vertex is
kept by the clipping process. So we can use the zc value as a way to accept or
discard vertices. The vertex shader for the obscurance transfer process is:

void main( float4 A : POSITION, //x,y = ID; z = Orientation; w = Depth;

float4 B : TEXCOORD0, //x,y = ID; z = Orientation; w = Depth;

out float4 oposition : POSITION,

out float2 pA : TEXCOORD0, //Texture coordinates of A.

out float2 pB : TEXCOORD1, //Texture coordinates of B.

out float distance : TEXCOORD2, //Distance.

uniform float direction) //Switch of direction

{
//If patches see each other, i.e. both exist and one is front facing and

//the other is back facing.

//Direction tells if we are transferring in the camera -z direction or +z.

//A.r contains the patch ID. If it contains -1.0 means that it does not

//belong to the scene.

//A.b contains the cosine.

if(((direction == 0) && (A.r != -1.0) && (A.b < 0.0)

&& ((B.b > 0.0) || (B.r == -1.0)))

|| ((direction == 1) && (A.r != -1.0) && (A.b > 0.0)

&& ((B.b < 0.0) || (B.r == -1.0))))

{
pA = float2(A.r, A.g); //Set the texture coordinates for A.

pB = float2(B.r, B.g); //Set the texture coordinates for B.

//Create vertex to update desired position. z = 0.0 => kept by clipping

oposition = float4((pA * 2.0) - float2(1.0, 1.0), 0.0, 1.0);

//Calculate distance. If patch in stream B not in scene => distance = 1.0

distance = (texCoord.b != 1.0)? abs(B.a - A.a) : 1.0;

}
else //If there is no transfer move out from the view frustum.

{
// z = 2.0 to get the id ignored by clipping.

oposition = float4( 0.0, 0.0, 2.0, 1.0 );

p1 = p2 = float2(1.0, 1.0);

distance = 0.5;

}
}

The fragment shader just applies the obscurance formula ρ =
√
d/dmax if

d < dmax and 1 otherwise.

void main( float2 pA : TEXCOORD0, //Texture coordinates of A.

float2 pB : TEXCOORD1, //Texture coordinates of B.

float distance : TEXCOORD2,

out float4 ocolor : COLOR,

uniform sampler2D reflectivity,

uniform float dmax,

uniform float3 ambient)

{
if(d>=dmax) ocolor.rgb = ambient; //If distance > dmax, add ambient

//else we apply the obscurances formula

else ocolor.rgb = tex2D(reflectivity,pB).rgb * sqrt(distance/dmax);

ocolor.a = 1.0;

}
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Figures 5.7, 5.8 and 5.9 show the results of applying our algorithm to models
of the De Espona library. We show respectively the obscurances map, obscu-
rances with direct illumination, and direct illumination with constant ambient
term. Observe the quality of the illumination obtained with obscurances.

Figure 5.7: Cathedral model, 193180 polygons, obscurances computed in 38
seconds. Left: obscurances map, middle: obscurances with direct illumination,
right: constant ambient term with direct illumination.

Figure 5.8: Tank model, 225280 polygons, obscurances computed in 38 seconds.
Left: obscurances map, middle: obscurances with direct illumination, right:
constant ambient term with direct illumination.

5.3 Summary

In this chapter we have shown how obscurances can be computed for real-time
diffuse environments like videogames and virtual reality. Two different tech-
niques have been applied.

First we have demonstrated that obscurances can be updated at interactive
rates for a solid moving object and its close environment thanks tho the locality
of the computation of obscurances.

The second approach is useful to precompute initial obscurances for objects
or scenes using a GPU version of the depth peeling technique.
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Figure 5.9: Car model, 97473 polygons, obscurances computed in 32 seconds.
Left: obscurances map, middle: obscurances with direct illumination, right:
constant ambient term with direct illumination.
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Chapter 6

Obscurances in non-diffuse
environments

Until now we have computed the obscurances for every patch of the scene with-
out taking care of the point of view, as we have only dealt with diffuse envi-
ronments, that reflect to the eye the same illumination no matter its position.
There are, though, some environments and materials in which the perceived
illumination depends on the point of view, this is, the relative position of the
eye and the object with respect to the light. We will use ray-tracing techniques
to generate images with obscurances in which the illumination of the scene de-
pends on the point of view (i. e., the scene contains objects with non-diffuse
materials) and to include specular and translucent effects (see section 2.5 and
[31]).

In this chapter we first envisage how the obscurances can be used plugged in
ray-tracing-like algorithms (section 6.1) and in another section (6.2) we study
how we can modify the obscurances concept to deal with non-diffuse materials.

The techniques explained in this chapter are introduced in following papers:

• Obscurances for Ray-Tracing [62], (section 6.1),

• Obscurances for Ray-Tracing (Extended Version) [63] (section 6.1) and

• Obscurances in General Environments [59] (section 6.2).

6.1 Obscurances with ray-tracing

The value of the obscurances integral (3.1) is computed for the point hit by a
ray cast to the scene from the eye through a pixel. The main advantage of the
ray-tracing approach is that we can add to our rendered images some effects
that are easily obtained with ray-tracing, like specular reflections and gleams.

We compute the lighting of the hit point by sending three kind of rays. The
direct lighting is computed by sending rays to the light sources and computing
its contribution if they are visible. The diffuse indirect lighting is computed
using the obscurances. Finally, for specular objects additional rays are cast to
find the reflected (or refracted, if it is the case) object, finding its illumination
in a recursive way.
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6.1.1 Algorithm

A ray is traced in the usual way from the viewpoint through a pixel, hitting a
point P of some surface in the scene. Then from P , three kind of rays can be
traced:

• Shadow rays: Ndl direct illumination rays are traced to the light sources
from the hit points. Stochastically a random point of a random light
source of the scene is selected and a shadow ray is traced from the hit
point to the selected point. If both points see each other, contribution
of the light source to the hit point is computed. Figure 6.1.c shows this
contribution.

• Obscurance rays: Nobs rays are stochastically traced with a cos θ distri-
bution to compute the obscurance of point P , this is, we solve by Monte
Carlo the integral in (4.1). In this way we compute an estimator of indi-
rect light for this point by multiplying the obscurance term by the diffuse
reflectivity at the point and the ambient intensity. Figure 6.1.a shows the
obscurances contribution, that multiplied by the reflectivity color of the
objects (fig. 6.1.b) results in the indirect light contribution (fig. 6.1.d).

• Specular rays: When the hit point corresponds to a glossy or specular
surface a path is followed and the reflected contribution is computed in a
recursive way according to usual ray-tracing. This is shown in fig. 6.1.e.

The final illumination is then given by adding the direct lighting, specular
effect and diffuse effect represented by the obscurances multiplied by ambient
light. Following the kitchen example, we finally get the image in fig. 6.1.f.

6.1.2 Results

The ray-traced obscurances have been implemented in the SIR system [55].
All images have been rendered on a Pentium 4 1.6 Ghz with 1 Gb RAM. We

have used in the obscurances computation 8 rays per pixel and 5 rays per hit
point, that makes a total of 40 rays per pixel. The kitchen scene is composed
of 28937 triangles featuring 203 objects.

Besides the kitchen (fig. 6.2), two more models have been used to test
our algorithm. One represents the inner part of an aircraft, including seats,
windows, a screen, etc. It is composed of 184687 triangles featuring 461 objects
and it is shown in fig. 6.3. The other model represents a set of stairs, banisters,
columns, etc., that could be the main entrance of a castle or a theater. It has
121032 triangles featuring 580 objects and is shown in fig. 6.4.

Comparison to Path Tracing

Here we compare our method to Path Tracing (PT), implemented also in the
SIR [55]. Thus both methods share the same ray-tracing routines allowing for
unbiased comparison. In fig. 6.5 some other views of the kitchen are shown and
compared to PT. In fig.6.6 images rendered from the other models (aircraft and
stairs) and a different illumination of the kitchen are also shown and compared
to PT.

When rendering all these images, in the ray traced obscurances method, for
every pixel 40 rays are used to get the direct light, other 40 rays are traced to
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(a) Obscurances image. (b) Diffuse reflectivity.

(c) Direct light. (d)=(a)x(b) Indirect light.

(e) Specular surfaces. (f)=(c)+(d)+(e) Final image.

Figure 6.1: These six images show the contribution that each kind of ray of
our rendering algorithm give to the final image and how it is computed. The
first image (a) shows our main contribution: the obscurances. The second (b)
image shows the diffuse color of each object in the scene. By multiplying both
images we get indirect light image (d). Direct light is shown in (c). Adding the
contribution of the specular surfaces (e) to (c) and (d) we get the final image
(f). All the images of the kitchen scene shown here have a resolution of 800x600
pixels.
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Figure 6.2: Kitchen model showing the camera position.

Figure 6.3: Aircraft model.
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Figure 6.4: Stairs model.

get the obscurances, and if a ray hits a non-diffuse surface one additional ray is
cast to account for specular effects up to six levels of depth if applyable.

To achieve the same error for direct light in the path tracing method, 40
rays are also used per pixel. Each of these rays account for the first level of a
path that will continue up to 6 levels of depth to get the indirect light. And
same as before, when a non-diffuse surface is hit an additional ray is cast to get
the specular effects.

There is no surprise then that, for every pair of images, when a visual com-
parison is done, direct illumination looks the same and indirect illumination is
perceived with much more noise in PT than with obscurances, even when PT
images take almost 10 times more to compute than the obscurances ones.

To perceive much better the differences between both methods, fig. 6.7
show the final images of aircraft model in a bigger presentation: path tracing,
fig. 6.7a, and obscurances based, fig. 6.7b. Apart from the noise level, we
can see the difference between a true global illumination solution, PT, and our
obscurances based solution. In the PT solution, (figure 6.7a), the objects near
the light source (in this case we can not see the light source beause it is behind
the camera) are lighted due to the ceiling and other walls that act as secondary
sources. On the other hand in the obscurances image, the seats and walls in the
rear part of the aircraft image are more illuminated due to the ambient light
term. A solution to this problem would require to store the incoming lighting
of these secondary emitters.

6.2 Obscurances in non-diffuse environments

Despite the introduction of specular and glossy effects, the computation of the
obscurances itself only takes account of the diffuse reflective illumination. In this
section we study how the obscurances should behave when they are computed
in an environment with non-diffuse materials, like specular or refractive ones.
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(a.i) Path tracing. (a.ii) Ray traced obscurances.
11596 sec. rendering. 1318 sec. rendering.

(b.i) Path tracing. (b.ii) Ray traced obscurances.
17788 sec. rendering. 2210 sec. rendering.

(c.i) Path tracing. (c.ii) Ray traced obscurances.
14579 sec. rendering. 1624 sec. rendering.

Figure 6.5: Multiple views of the kitchen scene compared with path tracing
results. Image resolution is 800 x 600 pixels.
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(a.i) Path tracing. (a.ii) Ray traced obscurances.
6510 sec. rendering. 655 sec. rendering.

(b.i) Path tracing. (b.ii) Ray traced obscurances.
14309 sec. rendering. 1495 sec. rendering.

(c.i) Path tracing. (c.ii) Ray traced obscurances.
11180 sec. rendering. 858 sec. rendering.

Figure 6.6: The kitchen with daylight illumination and views of the aircraft and
the stairs, all compared with path tracing results. Image resolution is 800 x 600
pixels.
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(a) Path tracing. 10190 sec. rendering.

(b) Ray traced obscurances. 1000 sec. rendering.

Figure 6.7: Final aircraft images in more detailed presentation. Obscurances
image is computed 10 times faster and presents significantly less noise than path
tracing image.
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We propose to extend the original algorithm that computes the obscurances
with color bleeding in a way that it can cope with other kind of materials and
the interactions between them, such as perfect specular surfaces, refractive and
translucent objects.

The obscurances are always computed for a point in a diffuse surface, or at
least for a point in a surface that has part of its BRDF diffuse. The difference
is when the objects around this point have specular properties. The main ob-
scurances assumption is that the more occluded is a point, the darker it will
appear, this is why we apply the ρ function to the distance parameter. But
when the point is enclosed by specular (either reflective or refractive) objects
we have to think different, because indirect lighting can come reflected from the
rest of the scene and, in consequence, the point considered would not appear so
dark as if it were enclosed by diffuse objects. Some alternatives to achieve these
effects are discussed.

Another concept of obscurances (inner obscurances) is introduced for diffuse
translucent materials and the special case of plants and trees with translucent
leaves is studied.

6.2.1 Obscurances in diffuse environments

In this section we will be showing our results with the example of the vase view
of our kitchen model presented with different material properties.

Figure 6.8 presents an image of a vase made of a white diffuse material. The
indirect light is decoupled from direct light and is shown in figure 6.9. The
image of the obscurances values is shown in figure 6.10. Direct illumination is
computed by selecting random points on the light surface and testing visibility.
The specular effects are computed by following the corresponding reflected or
refracted rays.

All images presented in this paper are made of 800 × 600 pixels and are
computed on a Pentium 4 running at 1.6 Ghz with a memory of 2Gb. For each
pixel, 40 obscurance rays are sent.

Figure 6.8: Model of a vase made of white diffuse lambertian material with
indirect illumination rendered using obscurances technique. It is a 800 × 600
pixels image and it takes 1563 seconds to compute.
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Figure 6.9: Indirect light is computed by multiplying the diffuse color, the
ambient intensity and the obscurances. Adding direct light and specular effects
to this image, we get image in figure 6.8

Figure 6.10: Map of the obscurance values for the diffuse vase image.

6.2.2 Generalization to other materials

The obscurances concepts and formulae seen until now work well for diffuse en-
vironments, this is, when the object where the point P is located and the objects
around it are all made of diffuse reflective materials. But in general environ-
ments, materials can have many different reflective and refractive behaviors.
These behaviors are modelled with different BRDFs and BTDFs. Therefore
we are going to study how the obscurances computation should be modified ac-
cording to the basic cases for these BDFs different than diffuse: perfect specular
material, transparent material, and translucent material.
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We can consider that a point P from a perfect specular object has no “own”
color, as it takes the color of the object seen from the reflected direction on the
surface. For the same reason, it has no “own” obscurance value. We take the
color and obscurance value from the first diffuse object found by the recursive
reflections of the viewing ray. When we think of perfect refractive (transparent)
materials, we follow the same reasoning, but now considering the refracted ray
directions.

If point P is on a translucent object, the indirect light comes from the inside
of the object and it should be a function of the thickness of the object. In this
case, the classic obscurance method does not make sense. We propose a similar
method, that we call inner obscurances, and it is presented in section 6.2.3.

But even when we consider point P to be on a surface from a lambertian
reflective object, the interaction of the obscurance rays with the rest of the non-
diffuse materials has to be taken into account. In the following subsections we
study the changes on the obscurances computation when the objects around the
diffuse point P have other material properties.

From the obscurances definition (4.1) we have defined Q as the point seen
from P in direction ω. If no object is found in direction ω or it is further than
dmax, we consider R(Q) to be the average reflectivity color (Rave) and ρ() = 1.
If the object is found at a distance less than dmax, and if it is a lambertian
material we take its reflective color as R(Q) and we compute ρ according to the
shape in figure 3.2 (we will usually take ρ(d) =

√
d/dmax).

But what happens if the object, where Q is located on, is not lambertian?

What if the object is perfectly specular?

Technically, a pure specular material has no “own” color. The color of a specular
object in a certain point depends mainly on the “viewing” direction, taking the
color of another object seen at a direction given by the law of reflection. In
figure 6.11 an image of a perfect specular vase is shown.

In this way we can clearly see what value R(Q) should have taken in equation
(4.1) when Q is located on a specular object. As from the definition, R(Q) is
the color seen from P in direction ω, we will take the color of the first diffuse
object hit by the corresponding reflected direction ω′. Figure 6.12 shows this
situation.

We have to discuss also the use of the ρ function. The main obscurances
assumption is that the more occluded is a point, the darker it will appear,
this is why we apply the ρ function to the distance parameter. But when the
point is enclosed by specular objects we have to think different, because indirect
lighting can come reflected from the rest of the scene and, in consequence, the
point considered would not appear so dark as if it were enclosed by diffuse
objects.

We have considered three possible solutions. In the first solution, use ρ
the same way as with diffuse lambertian materials, i. e., taking into account
just the distance from P to Q, and as R(Q), the color of the first hit diffuse
material following the corresponding reflected ray. The schema of this solution,
the image of obscurances and final image are shown in the first column of figure
6.13. But we can see that this first solution does not fulfill our expectations
of less darkness around the base of the vase. That is because we use the same
distance parameter as if we were considering a diffuse vase. In a second solution,
we can consider the distance parameter as the sum of the distances of all the
corresponding reflected rays needed to find a diffuse surface. On the one hand we
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Figure 6.11: Vase made of perfect specular material with obscurances computed
as in figure 6.13b. It is a 800 × 600 px image and it takes 2108 seconds to
compute.

dmax

Rave

Rave

RaveR(Q1)

R(Q2)

Q1

Q2

P

Figure 6.12: Schema of the reflected obscurance rays. Obscurances of the diffuse
point P are computed by sending cosinus distributed rays that query the space
around P . If some ray finds a specular surface, it follows the corresponding
reflected path.
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obtain less dark obscurances (and this is what we are looking for). On the other
hand, as a collateral effect, we gain computation time, as we can stop sending
rays when the sum of the distances overcomes dmax. Schema and results are
shown in column b of figure 6.13. In any case, we have to cast additional rays
when we find a specular object, and this increases the computational cost. This
is why we suggest a third option that comes with no additional cost, though
visual results (figure 6.13, third column) are not so pleasant. In this last case,
we use directly R(Q) = Rave and ρ = 1.

Comparing visually these three solutions, the one that gives best results is
the second one, but if time is an important issue the third one is faster (1693
seconds in the example of figure 6.13) compared to the two former ones (2179
and 2108 seconds, respectively).

dmax dmax dmax

(1.a) (1.b) (1.c)

(2.a) (2.b) (2.c)

(3.a) (3.b) (3.c)

Figure 6.13: The base of the vase is here detailed with three different computa-
tions of the obscurances when the surrounding object is perfectly specular. The
first row shows the schema of the way obscurances are computed, the second
row presents only the obscurances and the third row presents final images. The
complete image (800×600px) of the first column takes 2179 seconds to compute.
For the image in column b it takes 2108 secs. The third image takes 1693 secs.

What if the object is perfectly transparent?

The problem here is similar to the specular case, but with refracted directions
instead of reflected ones. Light rays change their directions when traversing
through different dielectric materials following the Snell’s law of refraction. This
is well studied, known and programmed in early versions of ray-tracing (see [24]).
Figure 6.14 shows an image of a transparent vase with an index of refraction of
1.5 with respect to the air. In figure 6.15 this situation is shown.

We have similar problems and therefore we propose similar solutions as in
previous subsection. This is, an obscurance ray cast from a point of a diffuse
object near a transparent object, takes R(Q) as the color of the first hit point
of a diffuse material following the refracted (and/or reflected, if it is the case)
rays. The distance parameter in ρ(d) can be taken into account also in the same
way as the three different solutions previously seen in previous subsection.
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Figure 6.14: Vase made of transparent material like crystal. It is a 800 × 600
px image and it takes 2403 seconds to compute.

dmax

Q1

Q2

R(Q1)

R(Q2)Rave

Rave

Rave

P

Figure 6.15: Schema of the refracted obscurance rays. Obscurances of P are
computed by sending cosinus distributed rays that query the space around P .
If some ray finds a transparent surface, it follows the corresponding refracted
path.
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What if the object is translucent?

A completely different problem is presented here, and depending on the kind of
translucency we are considering we can have many different subproblems and
complexities. The main feature of a translucent object is that light gets into
it and many things can happen to a photon once inside the object, including
scattering, backscattering, attenuation or simply traversing the object (see [81]).
For simplicity we will only consider attenuation and distribution of photons as
they get into the object.

Taking all this into account, what should be the color and intensity seen from
P at point Q onto a translucent object? This is difficult to answer, specially if
we want to adapt it to the obscurances philosophy and preserve the decoupling
of direct and indirect lighting, because the light coming from inside the object
comes mainly from the direct light pointing to it from the other side. Certainly
it does not depend on the reflectivity color R(Q) (remember we are talking
of pure translucent objects) and it does not depend on any function of the
distance. One of the parameters we could think of is an average inner indirect
lighting for every translucent object, computed using its geometrical properties
and its attenuation parameters (possibly an attenuation color and a maximum
distance). The computation of these parameters are out of our focus by now
and remains as future work.

A provisional solution is to use black, Rave or any value in between as R(Q).
As no function of the distance is needed, we take ρ = 1.

6.2.3 Obscurances of a translucent material

As we have said before, we consider here a simplified problem of translucent
materials considering only the light absorption of the material, not the diffuse
scattering or back scattering. Of course the original concept of the obscurances
does not apply but we can use the same concept of space querying (inside the
object, in this case) and maximum distance to compute a similar concept, that
we can dub inner obscurances, and are shown in figure 6.17. A similar idea but
with a different solution is the vicinity shading used by Stewart [84].

We can define the inner obscurance as:

I(P ) =
1

π
a(P )RaveIA

∫

ω∈Ω

γ(d(P, ω)) cos θdω (6.1)

where

• γ(d(P, ω)): function with values between 0 and 1, and giving the magni-
tude of ambient light incoming from direction ω. It is a special function
useful for translucent objects and is equivalent to 1− ρ.

• d(P, ω): distance from P to the boundary in direction ω, from the inside
of the object.

• θ: angle between direction ω and the normal at P

• IA: ambient light intensity. It is multiplied by Rave because no color
bleeding is used inside the object.

• a(P ): Absorption coefficient.
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Figure 6.16: Vase made of translucent material like wax. It is a 800× 600 px
image and it takes 1433 seconds to compute.

Figure 6.17: Schema of the computation of the inner obscurance value. From the
inner part of the objects its thickness is queried to obtain the inner obscurances
value.

84



• 1/π is the normalization factor such that if γ() = 1 over the whole hemi-
sphere Ω then I(P ) is a×Rave × IA

Here a different maximum distance dmax is defined for each different translu-
cent material, giving the idea of the distance at which the light energy is com-
pletely absorbed by the material. The function γ can be defined as γ(d) =
1−

√
d/dmax.

Figure 6.16 shows our vase as made of a perfect translucent material. Though
it is directly illuminated, this kind of material does not reflect the direct light
in any way, as it is supposed to fully get into the object and scatter. We only
see our approximation of the indirect light getting out of the object as if direct
light had come to it from all directions. The slimmer parts of the object appear
more intensely illuminated than the thicker parts.

One specific case of translucency can be found in complex objects like trees
and plants. Normally the leaves are so slim that they are represented with a
single polygon with texture (or sometimes we represent many leaves in a poly-
gon, forming clusters). We modified our algorithm to deal with simple objects
made with single textured polygons, and applied it to trees and plants. In this
case we do not take into account the inner and outer spaces of an object, and in
consequence the inner obscurances do not make sense. We simply compute the
obscurances of the backface of a leave and multiply them by the translucency
factor. We finally add the back and front obscurances, and the final result is a
slightly more clear tree. Figure 6.18 shows our result with a lemon tree.

Figure 6.18: This method can be used with good results with models of plants
and trees. It is a 800× 600 px image and it takes 894 seconds to compute. We
have to note that it is a simpler model than the kitchen one.
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6.2.4 What about the other BRDFs and BTDFs?

(a) (b)

Figure 6.19: Image of the vase with a combination of basic BRDFs and BTDFs.
Left: using a combination of the different strategies to compute obscurances
(7723 seconds). Right: a global illumination path tracing image of the same
vase (19431 seconds).

So far, we have only explained the basic cases. But we can consider any mate-
rial as partly diffuse, partly specular, partly transparent and partly translucent.
Though reality is much more complex than these simple cases or even a lin-
ear combination of these, a wide range of materials can be modelled with this
method.

We consider in our examples every material as made of a percentage of each
four basic materials. Thus, a maximum of four different obscurances compu-
tations per hit have to be done using the appropriate algorithm for each case.
The problem comes with the specular and transparent cases, that require send-
ing additional rays to follow the paths of the viewing rays, and possibly (if a
material has both specular and transparent properties) casting two paths per
hit, leading to a quadratic increase of the number of rays sent. To reduce this
problem we could choose only one of the two possible ways at each impact hit,
using importance sampling. Also, a Russian roulette technique can be used to
stop recursion.

Figure 6.19a shows an image of a vase made of a material that combines all
BRDFs and BTDFs seen in this paper. Image in figure 6.19b is a path-tracing
(global illumination) version of the same model. Note that it presents much
more noise.

6.3 Summary

In this chapter we have first presented how the obscurances can be included in
a ray-tracing environment to obtain realistic looking ray-traced images. This
technique is much faster than ray-traced global illumination techniques, such
as path tracing, and resulting images present much less noise. The technique
presented here can be used as a fast editing tool or as the final image.

In a second section we have introduced how the obscurances technique can
be extended to deal with general environments. The different algorithms and
techniques for different basic BRDFs and BTDFs have been introduced. In the
case of translucent objects a measure of the inner thickness of an object from
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a point, an equation based on the obscurances integral but for the interior of
translucent objects, has been introduced. Also, a simple model of obscurances
for the special case of the leaves of trees has been tested. Finally one possible
way to combine these basic material properties has been shown.

We have shown that obscurances contribute to realism not only for diffuse
environments, but for general environments too.
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Chapter 7

Animations: reuse of
information between frames

In this chapter we study how we can save computation time when computing a
series of frames in an animation and some of the elements of the scene move, as
the light sources or the camera.

In the next section we will study a technique to reuse information between
neighbor frames in camera animation. The technique presented here is general
and useful for several techniques that compute radiance of a hit point, including
path tracing and obscurances. Using examples of path tracing, an unbiased
solution is presented. Next, in section 7.2, we will apply the same technique
to obscurances, but simplified, as obscurances are always computed for diffuse
materials. A technique to reuse indirect lighting (computed with obscurances)
between frames with still camera and moving light sources is presented in section
7.3. Finally (section 7.4) both camera and light sources animation are combined
in a single algorithm, leading to a new concept that we will call frame array ;
a multi-dimensional array of frames that can be navigated to form movies that
present different combinations of animations of light and camera.

The techniques presented in this chapter are introduced in following papers:

• Reusing Frames in Camera Animation [64], (section 7.1),

• Efficient Rendering of Light and Camera Animation for Navigating a
Frame Array [58] (sections 7.2 and 7.4) and

• Combining Light Animation with Obscurances for Glossy Environments
[56]) (section 7.3).

7.1 Camera animation: reuse of illumination be-

tween neighbor frames

In global illumination an image can be computed by tracing paths from the eye
(or observer position) trough the pixels that compose the image plane towards
the surfaces of the scene. In the path-tracing technique (see section 2.6), from
the hit point in the scene a random walk is followed, gathering the energy at
every new hit point. The main drawback of these Monte Carlo random walks
is the high number of paths needed to obtain an acceptable result. This is
still more dramatic in an animation computation, due to the high number of
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frames to be computed. Thus achieving some sort of path reusing can reduce
the computational cost.

To obtain an animation or a sequence of frames in a global illumination
framework with production quality, we need to cast many rays per pixel. Each
frame has to have high accuracy to avoid both noise in the frame and flickering
from frame to frame. An efficient solution to reduce this cost has been presented
for camera animation [38]. The first hit of the ray cast from the eye through
a pixel is reprojected to neighbor eyes and if there is visibility, the incoming
illumination to the hit multiplied by the corresponding BRDF is averaged to
previous results. Although very computationally efficient, this solution is biased,
as it does not take into account the different probability densities that generated
the different contributions to a pixel.

We propose one solution for this problem based on using multiple impor-
tance sampling [89], and show that for diffuse surfaces the results of [38] are
correct, and for neighbor eyes that are very near from each other the bias is
not noticeable. We test our solution with an animation using the path-tracing
algorithm for global illumination, and compare it with a classic independent
solution and the previous unweighted, biased, technique. Although the results
are shown in this section for the path-tracing algorithm, the validity of our
technique is general.

7.1.1 Frame reuse

In this section the theoretical framework of our algorithm is introduced. We
first introduce the basic native estimators, then we show how we can estimate
the radiance from a different eye and finally how the radiance estimators ob-
tained with paths from different eyes can be combined by multiple importance
sampling.

Estimating the native radiance

In global illumination we are interested in the integrals Lo(i) =
∫
Ai
L(p)dp

where Ai is the area of pixel i, and L(p) is the radiance from visible scene point
x that reaches the observer at point o through point p in pixel i . Introducing
a change of integration variable [87] we obtain

Lo(i) =

∫

S

L(x→ o)G(o, x)Vi(x)
cos3 θi
f2

dx, (7.1)

where the integration extends over all scene surface points S, θi is the angle
between the normal of the screen plane and direction ω(x→ o) at the center of
the pixel i, and f is the focal distance, i.e. the distance from o to the plane of
the screen. Vi(x) takes the value of 1 if x is visible through the pixel i and 0
otherwise. The geometric factor G(o, x) is defined as

G(o, x) = vis(o, x)
cos(Nx, ω(x→ o))

d2(x, o)
(7.2)

where vis(o, x) is 1 if x and o see each other and 0 otherwise, Nx is the normal
at point x, ω(x → o) is the direction from x to o, and d(x, o) is their distance.
The radiance L(x→ o) comes from the global illumination equation [43]:

L(x→ o) = Le(x→ o)+∫
Ω ρ(ωin, x, x→ o)L(x, ωin) cos(Nx, ω

in)dωin
(7.3)
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where Le(x→ o) is the self emitted radiance, ρ(ωin, x, x→ o) is the bidirectional
reflectance distribution (brdf) function at point x, incoming direction ωin 1 and
outgoing direction x → o. L(x, ωin) is the incoming radiance to x in direction
ωin.

Substituting (7.3) into (7.1), and dropping constant terms and self-emission
2, we obtain

Lo(i) =

∫

S

∫

Ω

G(o, x)Vi(x)ρ(ωin, x, x→ o)L(x, ωin) cos(Nx, ω
in)dωindx (7.4)

Primary estimator L̂o(i) for Lo(i) is obtained by selecting a point x with prob-
ability poi (x) and then direction ωin with probability p(ωin;x, x → o). An

unbiased estimator for L(x, ωin), ̂L(x, ωin), can be obtained by any suitable
technique, for instance by the random walk path-tracing technique. Thus

L̂o(i) =
G(o, x)Vi(x)ρ(ωin, x, x→ o) ̂L(x, ωin) cos(Nx, ω

in)

poi (x)p(ωin;x, x→ o)
(7.5)

With importance sampling we select probabilities

poi (x) ∝ G(o, x)Vi(x)

and

p(ωin;x, x→ o) ∝ ρ(ωin, x, x→ o) cos(Nx, ω
in)

In this case the estimator becomes:

L̂o(i) = a(x, x→ o)Ωi ̂L(x, ωin) (7.6)

where Ωi (solid angle subtended by pixel i) and a(x, x → o) (albedo) are the
probabilities normalization constants. Estimator (7.5) is the unbiased native
estimator for a pixel, that is, the one obtained by sending rays from the observer
through the pixel.

Estimating the radiance from a different eye

Consider now a different observer o′ (see Fig.7.1). This observer will see x
through a different pixel, j. We can obtain a (biased) estimator for Lo

′
(j)

reusing the value obtained for the radiance at x with estimator ̂L(x, ωin) (this
comes to reusing the path from x supposing the estimator is a random walk,
see Fig. 7.1). The estimator for pixel j from eye o′ obtained with a ray started
from eye o is given by the following expression:

̂Lo′,i(j) =
G(o′, x)Vj(x)ρ(ωin, x, x→ o′) ̂L(x, ωin) cos(Nx, ω

in)

poi (x)p(ωin;x, x→ o)
(7.7)

Note that the probabilities used in the denominator are the native probabilities
used to find point x from eye o through pixel i, but they should be normalized

1In fact, the true incoming direction is −ωin, but we use the opposite one to keep the
reciprocity in the brdf.

2Self emission can be easily dealt with separately.
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O

O’

x

Figure 7.1: Reusing the path from observer O for observer O′, at the cost of the
visibility test vis(O′, x).

with respect to pixel j as seen from eye o′. We have then to normalize poi (x) with
respect to the new eye. Let us drop the assumption that probability poi (x) de-
pends on pixel i as seen from o and through which the ray was generated (this is
an approximation, considering pixels on a spherical screen). The corresponding
normalization condition should be fulfilled∫

S

po(x)Vj (x)dx = 1 (7.8)

where Vj(x) = 1 if point x is visible from o′ trough pixel j and 0 otherwise.
Suppose now that we distribute eye rays from o with probability proportional
to G(o, x). To obtain probabilities po(x) we have to find the normalization
constant given by the integral:

I =

∫

S

G(o, x)Vj(x)dx (7.9)

Integral (7.9) can be interpreted as the solid angle from o that sees the
portion of the scene seen from the solid angle subtended by pixel j from eye o′

(Ωj), see fig. 7.2. Observe that when o = o′ integral (7.9) is equal to Ωj . Integral
(7.9) is not known and computing it (using Monte Carlo integration) would
require sending a lot of rays from o and comparing the visible or unoccluded
hit points from o′ to the total unoccluded+occluded. Lacking this information,
we make the assumption that we have no visibility problems. Thus, given hit
x from o obtained with probabilities proportional to G(o, x), and taking into
account that without occlusions ∆Ωj = G(o′, x)∆S and ∆I = G(o, x)∆S, the
normalization constant (7.9) is approximated by

I ≈ ΩjG(o, x)

G(o′, x)
(7.10)

Expression (7.10) is used to normalize poi and estimator (7.7) (having dropped
the dependence on the pixel i) thus becomes

̂Lo′(j) = G(o′,x)ρ(ωin,x,x→o′) ̂L(x,ωin) cos(Nx,ω
in)

G(o′,x)
ΩjG(o,x)

G(o,x)p(ωin;x,x→o)

=
Ωjρ(ω

in,x,x→o′) ̂L(x,ωin) cos(Nx,ω
in)

p(ωin;x,x→o)

(7.11)

92



O’

O

I

x
jΩ

∆S

Figure 7.2: Here is shown in a graphical way the interpretation of equation (7.9).
Ωj is the solid angle subtended by pixel j, and I is the solid angle through which
eye o sees what eye o′ can see through Ωj .

and for a diffuse hit point ρ (and thus neither p) depends on the incoming eye
ray, thus it becomes simply

̂Lo′(j) = ΩjL̂(x) (7.12)

where L̂(x) is the estimated radiance from hit point x.

Combining paths

In [38] an unweighted combination of estimators of kind (7.5) and (7.7) was
done, resulting in a biased estimator. We present now a strategy that gives
an unbiased estimator. For each pixel and frame, we keep accumulated ra-
diance value and native ray estimators (among many other data useful for
our computation, see memory cost analysis in section 7.1.2) generated with
probability poi (x)p(ωin;x, x → o)). When hits from neighbor frames can be

reused for this pixel (suppose estimator ̂Lo,j(i), generated with probability

po
j

j (xj)p(ωin,j ;xj , xj → oj)), we combine them using multiple importance sam-
pling with the native estimator. This gives the new unbiased estimator:

L̂o(i) =
∑

j

po
j

j (xj)p(ωin,j ;xj , xj → oj) ̂Lo,j(i)
∑

k p
ok
k (xj)p(ωin,j ;xj , xj → ok)

(7.13)

We show now how this estimator is applied.
For the sake of simplicity, and without loss of generality, consider only two

observers O1 and O2
3. In this case estimator (7.13) becomes estimator (7.14)

3For a clearer explanation we also drop here the albedo and solid angle Ω
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for observer O1, using the approximation (7.12) for the estimator and also (7.9)
for the normalization constant in the weights. We have taken the approximation
that all pixels subtend the same solid angle. Remember also that the visibility
boolean function is included in the G function. Consider first the particular
case for diffuse hit pixels.

L(O1) = G(O1,x1)

G(O1,x1)+G(O2,x1)
G(O1 ,x1)

G(O2 ,x1)

L(x1)

+ G(O2,x2)

G(O1,x2)
G(O2 ,x2)

G(O1 ,x2)
+G(O2,x2)

L(x2)

= 1
2L(x1) + 1

2L(x2)

(7.14)

Thus approximation (7.10) for the normalization constant leads to the sim-
ple unweighted estimator when we deal only with diffuse hits, and this is why
Havran et al. solution [38] works well for diffuse surfaces.

For the non-diffuse general case, using again approximation (7.10) allows us
to eliminate all G terms, and using estimator form (7.11) we obtain

L(O1) =
ρ(ωin,1;x1,x1→O1)L(x1,ω

in,1) cos(Nx1 ,ω
in,1)

p(ωin,1;x1,x1→O1)+p(ωin,1;x1,x1→O2)

+
ρ(ωin,2;x2,x2→O1)L(x2,ω

in,2) cos(Nx2 ,ω
in,2)

p(ωin,2;x2,x2→O1)+p(ωin,2;x2,x2→O2)

(7.15)

where L(x1, ω
in,1) and L(x2, ω

in,2) are the incoming radiances to x1 from di-
rection ωin,1 and to x2 from direction ωin,2.

7.1.2 Implementation

Algorithm

Once we hit a point in the scene from the eye, we can reuse this information
for all the other frames in our camera animation, but only if the point is visible
from the other eyes. For this reason and also because of memory restrictions,
we are only interested in reusing the hit with the closest neighbor frames, as
the probability of being visible is much higher.

We will consider two phases in the computation of our animation frames.
The first one is the hit harvest (see algorithm 3), where we find the native hit
points, compute the rest of the gathering path, connect every hit point with
the other eyes to see if they can be reused, and finally, if it is the case, we add
a pointer to it in the list of outer hits of the corresponding pixel. Meanwhile,
additional probabilities and reflectances needed for the computation are kept
in memory. The second phase is the image computation itself, in which we use
all the stored information, including the native and outer hits for every pixel to
compute the final pixel color.

As a few seconds animation involves hundreds of frames, it is not feasible
to keep all them in memory at the same time. We have two possible strategies.
The first one is to reuse a hit in the n previous and subsequent frames keeping in
memory all information needed for the final computation, that will be done once
we know we are not reusing more hits for that frame, that is, the (actual−n)th
frame. But as we can see in equations (7.15) and (7.13), for every hit that will
be used in a pixel computation, we need to use all probabilities in combination
with all the eyes that have been used in the other hits for that pixel. This means
keeping in memory also information for frames previous to the (actual − n)th,
or recompute these probabilities every time we need them. This is a waste of
time or a waste of memory.
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for i = firstFrame to lastFrame do
currentEye = getEye(i)
for all pixel in images[i] do

hit=traceRay(currentEye, pixel)
for j = firstFrame to lastFrame do

reuseHitinImage(hit,images[j])

Algorithm 3: The algorithm for the hit harvest phase, considering only the group
of neighbor frames.

The second strategy consists in considering a group of 2n+1 neighbor frames
and reuse every native hit in all the other frames in the group, no matter if it
is the first one, the last one or the one in the middle. When we are done for
the group, instead of moving to the next 2n+ 1 frames, we can move just one
frame, overlapping 2n frames, but without deleting the previous results for the
frames that are still active. This previous results can be simply averaged with
the new ones. This is the strategy we follow.

Cost analysis

Now we analyze the relative cost of the animations with and without reuse.
Suppose we cast nr rays per pixel and reuse nf frames at once. The cost of
tracing an eye ray is ce, the cost of computing the illumination at the hit point
in the scene is cl, and the cost of a visibility test is cv . In the case of no reuse,
the cost of computing nf frames is nfn

′
r(ce + cl). In the reusing case the cost is

nfnr(ce + cl) + nf (nf − 1)nrcv , where the second term in the sum accounts for
reusing all rays. In the optimal case a ray through a pixel would be equivalent
to a native ray, and we compare thus the cost of two animations with equal
number of rays per pixel, that is, n′r ' nfnr. The relative cost for this case is:

nfnfnr(ce + cl))

nfnr(ce + cl) + nf (nf − 1)nrcv
=

nfnr(ce + cl)

nr(ce + cl) + (nf − 1)nrcv
=

nf (ce + cl)

(ce + cl) + (nf − 1)cv
(7.16)

This last expression has the limiting value (ce+cl)
cv

when nf tends to infinite.
Supposing cl � ce, limit efficiency will be cl

cv
.

Observe that the above limit efficiency is an upper bound, as on the one
hand not all rays will be able to be reused, and on the other hand the variance
associated with a reusing frames estimator is higher than with an independent
one, because in the independent estimator we have the benefit of importance
sampling.

A second, and very important, independent increase in efficiency comes from
the reduction in flickering from frame to frame. This reduction is due to that
reuse of paths for different frames correlates the computations for all them. And
in the way we have constructed our algorithm there is no flickering shown when
passing from a group of reused frames to the following one, as we interleave
them.
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Memory use

We need a huge amount of memory to keep track of all our computation. We
have to keep not only all the images for the current group being computed
(including native reflectances and hits), but also the lists of outer hits for every
pixel and all possible combinations of probabilities and reflectances per pixel
and frame.

Same as before, suppose we use nh hits per pixel and reuse nf frames at
once. Images are made of w × h pixels, so we have a total number of pixels
npix = w × h× nf .

For every pixel we keep the final color and the number of samples to add
and average every result. We also need the list of outer hits for every pixel. The
total nodes of outer hits are nnod = nh × npix × (nf − 1) and are distributed in
lists among all the pixels. Every node contains four integers: the image number,
the pixel (w and h) and the number of sample, thus it can point towards the
data we need to reuse from another image. For every native hit in a pixel we
have to keep the native direct and indirect gathered radiance, cosinus weighted,
and a nf -vector containing all probabilities and reflectances if we combined the
hit with the rest of eyes.

Just to see the numbers in a concrete example, if we are using 2 samples for
every one of the 800×600 pixels and reusing groups of 7 images, we get 3360000
pixels (800 × 600 × 7), each containing a final color (3 floats), the number of
samples (one integer) and a pointer to the list of nodes. We have 40320000
nodes (2 × 800× 600× 7× 6), four integers and a pointer each. We also have
the 6720000 native radiances to reuse (direct and indirect, 3 floats each) and
47040000 (2× 800× 600× 72) probabilities (1 float) and reflectances (3 floats).
If we assume each float, integer and pointer is 4 bytes, we need a total memory
of 1787520000 bytes for this structure. That’s almost all the memory of our
2Gb pentium 4.

7.1.3 Results

We have applied the proposed algorithm to an animation computed using path
tracing. The frame resolution is 800 × 600 pixels. We rendered 48 frames, for
a 2 seconds animation4. For every pixel, we used 2 samples and reused them
in groups of seven neighbor frames. As these groups are overlapped, we get a
maximum average in number of samples of 98 (2 × 72). The actual average is
less than that (between 85 and 90) because some reuses are lost (they can lie
out of frame or be hidden by other objects) and it mainly depends on distances
between different neighbor eyes, i.e. the smoothness of the camera movement.
If camera movement is not smooth or the number of neighbor frames to reuse
is too high this ratio decreases, and noticeable differences of noise between
different parts of the same image might appear. In our example, as our camera
movement corresponds to a zooming of a glossy phong brdf vase, the pixels in
the center of the images get more samples than those lying near the borders.
This can be interpreted as an advantage, as perception focuses in the center of
the image when zooming, some kind of perception driven sampling is performed.
The first frames and the last ones present more noise because they cannot be
overlapped with previous (in the case of the first ones) or subsequent (for the
last ones) groups of frames. Computing time was approximately 40 hours, for a
PentiumIV with 2 Gigabytes of memory. That is 50 minutes per frame. A single

4Animations can be found in http://ima.udg.es/~amendez/thesis/.
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path tracing image without reuse and with 98 samples per pixel takes more than
5 hours to compute. It is more than 6 times faster, and it can be even faster
if we reuse more frames. If we compare this animation with the one computed
with Havran et al. method [38], we can appreciate almost no differences. This
is because we have reused very few frames and they are very close to each other.

We have computed a second animation with a higher number of reusing
frames to prove more clearly the differences between the methods. In this case
one hit is reused in 17 frames. We used 2 samples per hit, so we get a maximum
average in number of samples of 578 (2× 172). The actual average is about 500
due to loss of reuses. Due to memory restrictions, resolution is now reduced to
320× 240 pixels. Computation time is about 16 hours. This is 20 minutes per
frame, almost 8 times faster than the computation time of a single path tracing
image with 500 samples per pixel (155 minutes). If we look at Havran et al.
version of the same animation we clearly appreciate more noise in the vase in
the form of glittering.

In Fig. 7.3 we show the same frame (the middle frame in our second anima-
tion) obtained with three different computations. In the first one (image a) an
image with no reuse has been computed using 500 samples per pixel. It takes
more than two and a half hours to compute. Image b) shows biased Havran
et al. [38] version for reuse of frames. Time computation results in about 18
minutes per frame. Image c) is the result of our unbiased version. It takes 20
minutes to compute, a little more time than b), but we need much more mem-
ory. Both images b) and c) present more noise than image a) near the border
due to loss of reuses. Image b) presents more noise than image c) in the vase
and other glossy objects. Diffuse objects look the same in images b) and c).

In Fig. 7.4, details for the vase are shown. First image a) is computed with
no reuse and 15 samples per pixel. Image b) is biased and computed with the
Havran et al. [38] version and image c) is computed with our unbiased method.
Both are computed with 2 samples per pixel and reuse of three fairly separated
frames, i. e., a maximum average in number of samples of 18 (2 × 32). We
clearly see much more noise in image b).

(a) (b) (c)

Figure 7.3: Here we show the same frame (the middle frame in our animation)
obtained with three different computations. In the first one (image a) an image
with no reuse has been computed. It takes more than 2,5 hours to be computed.
Image b) shows Havran et al. [38] version for reuse of frames and takes 18
minutes to compute. Image c) is the result of our unbiased version and takes
20 minutes. The three images look very similar but there are some differences
besides computation time that are clearly visible in fig. 7.4. The unbiased
c) version uses much more memory. Images b) and c) presents noise near the
border due to loss of reuses, and image b) presents noise in glossy objects due
to biased computation.
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(a) (b) (c)

Figure 7.4: The differences between the methods are clearly appreciated for
non-diffuse materials when we reduce the computation time (noise is higher,
consequently) and the separation between frames increases. Here we see the
details of the vase for the 800 × 600 image when reusing only 3 frames fairly
separated. First image a) is computed with no reuse. Image b) is biased and
computed with Havran et al. [38] version and image c) is computed with our
unbiased method. We clearly see much more noise in image b).

7.2 Camera animation with obscurances

As seen in previous section, in [38], an architecture to reuse the information com-
puted for one frame to other frames is presented. From the eye, a ray is cast
through a pixel to find a hit point in the scene (named native hit to distinguish
it from the outer hits found through other eyes) and a sample of the radiant flux
to the eye is taken using any suitable technique as path tracing or bidirectional
path tracing. If the point is from a diffuse surface, the radiance information for
that point can be reused in the surrounding frames by reprojecting the point
(supposing visibility) and finding the corresponding pixel, where the sampled
values are simply averaged. Fig. 7.1 shows the idea. In [64] the same idea is
discussed under the point of view of path reuse using multiple importance sam-
pling, as different generation probabilities are involved for non-diffuse BRDF’s
with different points of view. A new algorithm is presented then to deal with
non-diffuse materials, but it requires big amount of memory as all radiances,
probabilities, and other data to be combined have to be saved until the final
computation of the image.

Now suppose we want to compute a series of frames in a camera animation
using ray-tracing with obscurances instead of a true global illumination tech-
nique. In this case the direct lighting of a point in a diffuse surface (or the
diffuse part of its BRDF, as we divide the BRDF in its pure diffuse and pure
specular part) and the obscurances for indirect lighting can be reused in multi-
ple frames using Havran et al’s technique. To deal with the specular part of the
BRDF’s we do not have the choice of reusing it as the probability of following
the path starting from another eye is zero in the case of pure specular materials.
In consequence, the pixels that show specular objects will need more samples
or they will have less quality than the diffuse ones.
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7.3 Combining light animation with obscurances

In the context of global illumination, if we have to compute a series of frames
of an animation in which the camera and the objects in the scene are still and
only the light sources move, all the lighting computation has to start over from
frame to frame.

In the context of obscurances, we can take advantage of one of its properties,
that is the decoupling between direct and indirect illumination. In the case of
light animation, we only need to compute indirect illumination once and reuse
it in all frames and only direct illumination is recomputed for every frame.

7.3.1 Animation of light sources

Instead of computing every frame from scratch, we can take advantage of the
fact that neither the obscurances nor the hit points have to be recomputed.
This is possible if the camera and all objects in the scene are fixed, and only
lights move from frame to frame. Thus we compute first the obscurances and
store the hit points and incoming directions of the eye rays. Then, for each
frame direct illumination and specular effects are computed using shadow and
specular rays using the stored hit points and directions. This has the side effect
of increasing frame-to-frame coherence, eliminating flickering.

If we take, for example, images of fig. 6.1 in chapter 6, images (a) and
(b) are the same for all frames. As we have seen in section 4.6, to compute
indirect light in image (d), ambient light factor can be estimated independently
for every frame. Thus, only direct light (c), specular effects (e), and an ambient
light factor, have to be recomputed when light sources move or change intensity
with respect to the next frame. We will compute ambient intensity for every
frame, and use it to multiply the obscurances factor and diffuse color to obtain
indirect lighting.If light sources power changes among frames or light movement
causes changes in occlusion conditions, ambient intensity will also change and
result in beautiful effects in the animation. In fig. 4.9 these effects can be
appreciated.

7.3.2 Results

The ray-traced obscurances with light animation have been implemented in the
SIR system [55]. Three types of light sources have been implemented: point,
directional and area light sources, but only point and directional have been ani-
mated, because area light sources are always associated to an object of the scene,
and moving objects are not treated yet in this context. Point and directional
lights are animated using classic keyframes.

Three movies5, where the three models seen in section 6.1 (figures 6.2, 6.3
and 6.4) are used to show our results. The movie corresponding to the aircraft
presents a 2 seconds animation (48 frames) where the point light runs along the
aircraft cabin from the camera position to the tail. Obscurances computation
take 462 seconds, and 484 seconds the rest of the animation, what makes an
average of 10.1 seconds per frame (19.7 seconds per frame if we take account of
obscurances).

The movie of the kitchen presents a 10 secons animation (240 frames) in
which directional light follows a direction from the windows given by the two
polar angles of the corresponding keyframe, thus simulating the movement of

5The movies can be downloaded from http://ima.udg.es/~amendez/thesis/
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the sunlight. Different ambient term intensities for each frame are clearly ap-
preciated. On the one hand, we get a brighter image when more light gets into
the room, which we take directly proportional to the cosinus of the angle be-
tween the window and the light ray. On the other hand the ambient intensity
color is directly related to the colors of the objects onto which the light rays
hit. Obscurances computation take 264 seconds, and 1960 seconds the rest of
the animation, what makes an average of 8.16 seconds per frame (9.27 seconds
per frame if we take account of obscurances).

The third movie follows the same idea than the previous one but with the
stairs model. In the animation we see the directional light from the seven
windows moving in a sun-like way. It takes 144 frames (6 seconds). Obscurances
computation take 290 seconds, and 1490 seconds the rest of the animation, what
makes an average of 10.35 seconds per frame (12.36 seconds per frame if we take
account of obscurances).

In fig. 7.5 we see two frames, each one of a different movie. All images have
a resolution of 800×600 pixels and have been rendered on a Pentium 4 1.6 Ghz
with 1 Gb RAM. We have used in the obscurances computation 40 rays per
pixel.

(a) Aircraft point light animation. (b) Stairs directional light animation.

Figure 7.5: One frame from each animation of the aircraft and the stairs. The
aircraft animation presents point light animation. The stairs movie shows the
sun-like movement of directional lights.

7.4 Light and camera animation to navigate a
frame array

Both strategies to gain efficiency for camera and light animation with obscu-
rances presented in subsections 7.2 and 7.3, respectively, can be combined in a
single algorithm, thus obtaining a big set of images at once that can be used to
create different animations to see, for example, the animation of light from dif-
ferent points of view, do the walkthrough with different direct light conditions,
or see both animations in a single movie. This multi-dimensional set of images
will be named frame array.

7.4.1 Combination of camera and light animation

Until now, we have seen on the one hand how to reuse information for neighbor
frames in a camera animation (section 7.2) and on the other hand how to an-
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imate lights reusing the indirect lighting from a fixed camera position (section
7.3). From now on we will combine both solutions in a unique algorithm.

The main idea is to compute simultaneously all combinations of camera and
light animation, this is, for every eye position we will compute the images for all
light positions. This is represented in figure 7.6. Of course this results in a high
number of images but if we want to generate movies with different combinations
of the light and camera animations, we clearly save time.

O

O’

O’’

l

l’

l’’

x

Figure 7.6: The eyes (O, O’ and O”) are the different positions of the animation
of the camera. The suns (l, l’ and l”) represent the different positions of the
light animation. The obscurances value for the hit point x is computed with
the dark rays leaving x, and it can be reused for the different camera positions
as well as for the different light positions.

We keep in memory only the images to reuse, this is, for the current eye
position, the indirect light image and an array of Nl direct and specular images,
being Nl the number of light positions. For every neighbor eye in which to reuse
the current results, we keep the indirect light image and the array of direct light
images.

The algorithm (see Alg. 4) goes as follows. As part of the initialization pro-
cess we compute the average light intensity of the scene for every light position.
Then, for every pixel in every frame in the camera animation we get as many
hits in the scene as samples we need for pixel. Once we have a hit we compute
the obscurance value for the indirect color, the direct lighting and the specular
values if the BRDF of the object has specular component. These specular and
direct values have to be computed for every light position. The specular values
are the ones that add more computation time to our algorithm, as a new ray
is sent in the reflection direction, a new hit is found and its illumination com-
puted in a recursive way. But the direct lighting values are very fast and easy
to compute, specially when we have a point light or a directional light, as we
have only to compute visibility in one direction for each light position.

The specular values can not be reused, so we keep them directly as final
values. We reuse the values for the different direct lighting positions and the
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for all l in lights do
ambient[l]=computeAmbientIntensity(l)

for i = 1 to numFrames do
currentEye = getEye(i)
for all pixel in images[i] do

hit=traceRay(currentEye, pixel)
obs=getObscurances(hit)
indirectcolor=obs*hit.diffuse
if isSpecular(hit) then

specularcolor=getSpecularColor(hit)
for all l in lights do

directcolor[l]=getDirectLight(hit,l)
for k = (i-Nr) to (i+Nr) do

if i==k then
setImageValues(images[k], directcolor, indirectcolor, specular-
color)

else
reuseValuesInImage(images[k], directcolor, indirectcolor)

computeFinalImage(i-Nr)
for i=(numFrames-Nr+1) to numFrames do

computeFinalImage(i)

Algorithm 4: The algorithm for the combination of camera and light animation.

obscurances values in the Nr previous and the Nr subsequent frames, as the
neighbor eyes are the ones more likely to have visibility with the hit. As they
are diffuse color values, they can be directly averaged with the previous results
in the corresponding image.

When we have treated all pixels in the current frame, and before we keep
treating the ones of the next frame, we have one frame for which we will not
reuse any more values, so we can compute its final values, i. e. multiply the
indirect color image and the corresponding average intensities and add them to
the respective direct and specular images of the array. Then save all images
with different direct light positions to disc. At the end of the computation, all
remaining images have to be finally computed and saved to disc the same way.

Cost analysis

From [64] we know the relative cost of the camera animations with and without
reuse. The cost of tracing an eye ray is ce, the cost of computing the illumination
at the hit point in the scene is cl, and the cost of a visibility test is cv . The

relative cost has the limiting value (ce+cl)
cv

when nf tends to infinite. This
makes sense, as we gain the time of computing all the illumination at the hit
point at only the cost of the visibility to a neighbor eye. If we separate the
different contributions of direct, indirect (obscurances) and specular lighting
(cl = cd + cind + csp), and we only consider pure specular lighting (as it will be
the case in our examples) the relative cost has to be modified to ce+cl

cv+csp
as the

pure specular lighting can not be reused at all.

On the other hand, the acceleration obtained due to the reuse of indirect
diffuse illumination is the number of frames this illumination is reused, nfr,
times the relative cost of computing indirect diffuse illumination respective to
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the cost of computing all illumination (this is direct+indirect+ specular), cind
cl

.

As both accelerations are orthogonal (i.e., independent), total acceleration
will be the product of both relative efficiencies ce+cl

cv+csp
×nfr cindcl ≈ nfr×

cind
cv+csp

,

when ce � cl.
In conclusion, we save time in both ways, on the one hand by reusing lighting

information between frames of different camera positions, and on the other hand
by reusing the indirect lighting computation for all positions of the light. The
final acceleration obtained will heavily depend on the relative cost of computing
the specular lighting, i.e. the depth of recursion and relative number of pixels
that show specular objects.

Application

At the end of our computation we get as result a set of images combining each
camera position with each light position. This is very useful when the animator
wants to see the same camera animation under different light conditions, check
the same animation of the light from different points of view or combine both
light and camera animations in the same or different movies. Figure 7.7 shows
clearly this application. Note that, though the directions and senses of the
grey arrows in the figure are the most common cases, the only restriction for
navigating the frames is to move only one step at a time in any direction, so a
movie that follows the path of the dotted blue arrow, for example, is perfectly
possible.

Figure 7.7: The algorithm results in a matrix of images that we can navigate.
The rows are images with changes in camera animation and the columns show
the images with changes in light animation. We can generate movies with cam-
era animation for different light positions (horizontal arrow), see the animation
of light from different points of view (vertical arrow), or both animations simul-
taneously (diagonal). We have also the freedom to move along any direction as,
for example, following the dotted blue arrow.

7.4.2 Results

To show the validity of our method we have computed three animations6. All
of them are computed in a Pentium IV PC with 1.8 Gh and 2 Gb of RAM. Two

6The animations can be found at http://ima.udg.es/~amendez/thesis/
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native rays per pixel are cast to find hits and five obscurance rays are cast per
hit. One ray per hit is cast to find direct light. If the hit object is specular (or
has a partly specular BRDF) a path is followed to find the reflected illumination
in a recursive way. The diffuse (direct and indirect) illumination per hit is reused
in the three previous and three subsequent frames for the camera animation,
what makes a total of seven frames to reuse, this is, a maximum theoretical
number of samples (if the hit is seen by all eyes to reuse) of 70 obscurances
samples and 14 direct light samples (per each light position) per pixel. The
resolution for all images is 400× 300 pixels.

The first movie shows the compound animation of a camera and a point light
in the cabin of an aircraft. The camera animation by itself would take eight
seconds (this is, 196 frames) and the light moves for 2 seconds (48 frames). The
final movie takes 10 seconds and we can appreciate that in the first 2 seconds
the camera is fixed and the light is moving. The next 2 seconds the camera
moves and the light stays still. The last 6 seconds both camera and light are
animated. Of course in this case we do not use all 9216 (196 × 48) images
generated , but it is worth having the freedom to generate any other movie
involving these two animations. Figure 7.8 shows part of the possibilities we
have. They took almost 18 hours to compute, an image every 7 seconds. A single
image of the aircraft model without any reuse and only one light position, using
70 rays per pixel for obscurances computation and 14 rays per pixel for direct
light computation, takes 260 seconds, more or less, depending on the camera
position and the number of pixels that show specular objects.

Figure 7.8: Here we see a few frames of the animation of the aircraft model.
The arrows show a few of the multiple possibilities we have to generate different
movies with our set of images.

The second movie shows the animations of the camera moving through a
kitchen (12 seconds, 288 frames) combined with an animation of a directional
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light coming from the windows and changing its angle for two seconds (48
frames). Same as before, it shows only a part of the possible combinations
for all 13824 images generated (288×48, that took almost 32 hours to compute,
an image every 8.2 seconds). Note the changes in the average ambient color and
intensity. A single image of the kitchen model without any reuse and only one
light position, using 70 rays per pixel for the obscurances computation and 14
rays per pixel for direct light computation, takes around 320 seconds.

The third movie is an animation of a camera traveling over the stairs of
a theater (6 seconds, 144 frames) combined with an animation (2 seconds, 48
frames) of the angle of a directional light from the seven windows. It also shows
the changes in ambient intensity. All 6912 images (144 × 48) took a bit more
than 14.5 hours, 7.6 seconds per image. A single image of the stairs model
without any reuse and only one light position, using 70 rays per pixel for the
obscurances computation and 14 rays per pixel for direct light computation,
takes around 230 seconds.

7.5 Summary

In this chapter we have presented efficient techniques to reuse illumination be-
tween frames.

First we have presented an efficient unbiased method to combine frames in
camera animation. It consists in reusing the incoming radiance information of
a hit point for the neighbor frames of the animation. The different probabili-
ties are taken into account and multiple importance sampling technique is used
to correctly combine the different samples. Our method makes the difference
when using non-diffuse materials, because the diffuse ones distribute reflected
rays with equal probabilities in all directions, and when the separation between
reusing frames increases. In diffuse cases or when reusing frames are very close,
other methods, though biased, can work fine. The new method has been demon-
strated with an animation of a camera in a scene that contains a vase with a
glossy brdf, computing the global illumination using the path-tracing technique.
The main drawback of our method is the large amount of memory needed for
the computation.

The previous technique can be simplified when using obscurances. As they
are computed for diffuse surfaces, the illumination is equally distributed among
the hemisphere and equal probabilities can be used, thus no multiple importance
sampling is needed. This is presented in another section.

Then we have presented the combination of the obscurances technique with
moving light sources. Since direct and indirect illumination are decoupled, an-
imation of source lights can be added with no extra computation time for ob-
scurances. Direct illumination is computed for every frame but we save compu-
tation time as the hard part of the indirect illumination is computed only once.
For indirect illumination, only the ambient light term is recomputed for every
frame by shooting a few rays from the light sources, and follow their paths while
computing stochastically the parameters we need. The technique presented here
can be used as a fast editing tool or as the final image. Light animation can
help in light design and to convey shape and features of the objects in the scene.

Finally we have seen an algorithm that combines the two previous introduced
transversal techniques that reuse information between frames in an animation.
On the one hand, the camera animation reuses the diffuse illumination of a
hit between neighbor frames by reprojection, and on the other hand, using
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the obscurances technique to simulate global illumination direct and indirect
illumination can be decoupled, and the animation of light can be computed
reusing the indirect lighting information. Besides the advantage of joining both
techniques, our algorithm is capable to generate images for all combinations
of both animations, giving freedom to generate different movies from the same
set of images, a multi-dimensional array of images that we dub frame array.
Considering the time of computation per image, the acceleration obtained with
our algorithm is lineal with the number of light positions, with a multiplicative
constant which depends on the relative cost of indirect and specular lighting.
In our experiments with several scenes and 48 light positions the speed-up was
between 35 and 40 relative to computing every frame from scratch.

When computing images for production rendering, lots of high quality images
are needed and the cost of computing only one of these images is very high.
These technique presented here help saving time by reusing information between
frames.
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Chapter 8

Conclusions and future
work

We have presented in this dissertation some improvements and applications
that take advantage of the good properties of the obscurances, a technique
that mimics and simplifies global illumination, and that presents good realistic
results, though it is not physically accurate. Also, for the computation of frames
of an animation, some techniques to reuse information and save computation
time have been introduced.

In this chapter we summarize the contributions of this dissertation in section
8.1, then in section 8.2 we present the list of publications that support this work,
and finally the lines for future work are described in section 8.3.

8.1 Contributions

8.1.1 Survey

In chapter 3 we have presented a survey on obscurances and similar techniques
as ambient occlusion. Ambient occlusion has become a widely known technique
to simulate realistic effects in illumination, specially in recent animated movies.

8.1.2 General improvements of obscurances

In chapter 4 some general improvements for obscurances have been presented.
The main contributions in this chapter are:

• Color bleeding: We modified slightly the obscurances equations to deal
with the exchange of coloration between surfaces with no added cost.

• Obscurances function ρ: We have tested different ρ functions conclud-

ing that the square root one (ρ(d) =
√

d
dmax

) is the one that fits best to

our purposes. The different maximum distances dmax have been tested
and we get the best results when dmax is between one third and half the
size of the scene.

• Hemisphere sampling: We have done a study on different techniques to
choose the hemisphere samples and we concluded that the most efficient
one is to choose numbers from Halton series with a random offset to avoid
correlation.
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• Important secondary reflectors: A problem that the obscurances tech-
nique presents has been addressed. If there are important secondary re-
flectors, as when the light source points directly to a wall, the obscurances
fail to compute a similar illumination as global illumination algorithms like
radiosity. Our solution consists in expanding direct illumination, though
it increases computational cost.

• New ambient intensity: A new technique to find average ambient in-
tensity and average reflectivity of the scene is tested. This technique give
good results when computing frames for animation of light sources.

8.1.3 Improvements and new techniques for obscurances
in real-time environments

In chapter 5 two new algorithms for obscurances in videogame environments are
presented:

• Moving objects: Thanks to the limited reach to a maximum distance of
the obscurances computation, the obscurances of the patches of a moving
object and its surroundings can be updated at interactive rates.

• Depth peeling with GPU: The precomputation of the obscurances for
objects and scenes is accelerated using a GPU approach of the depth
peeling algorithm.

8.1.4 Generalization of obscurances to non-diffuse envi-
ronments

In chapter 6 the obscurances are introduced in general environments (with ob-
jects that have materials with diffuse and non-diffuse properties), first embedded
in a ray-tracing-like algorithm and later modifying its computation to deal with
non-diffuse BRDFs and BTDFs:

• Obscurances in ray-tracing: The obscurances are plugged in a ray-
tracing algorithm. The classic ambient term to account for indirect illu-
mination is substituted by the obscurances computation at every hit point
of the scene. The results are compared to stochastic path tracing, a global
illumination algorithm, and we present similar results at one tenth of the
computation time.

• Obscurances for general environments: A study on the obscurances
algorithm is performed to deal with non diffuse environments. New algo-
rithms are proposed for the basic types of BRDFs and BTDFs (specular,
transparent and translucent) and a combination of the basic materials is
tested. Also, a measure of the illumination coming from a diffuse object
based on its thickness is introduced, and a test for the special case of trees
is done.

8.1.5 Reuse of information between frames

In chapter 7 our research is addressed to the field of path reuse for animations:
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• Reuse of hits in camera animation: We demonstrate that a frame in a
walkthrough (camera animation) can reuse its illumination of the scene in
the neighbor frames, even for view-dependent BRDFs. The hits obtained
from one frame are reprojected to neighbor frames and, if the other eyes
can see the point, its illumination can be reused in an unbiased way, by
weighting correctly the different generation probabilities using multiple
importance sampling.

• Reuse of indirect light in light source animation: When the camera
is still and the light sources move, the indirect illumination can be reused
in all frames using obscurances, as they allow decoupling between direct
and indirect illumination. The average intensity and average reflectivity
of the scene are computed for every frame, leading to a beautiful effect of
color-changing between frames.

• Frame array: combining light and camera animation: The two
previous results can be combined in a single algorithm. All combinations
of light and camera animations are computed at the same time at a small
part of the cost of computing all single images separately. Thus we create
the concept of frame array, a set of images that the user can navigate
to test a light animation from different camera positions, see the same
walkthrough with different lightings, or combine both animations in a
single movie.

8.2 Publications

The core of the research for the thesis is developed in two journal articles, four
papers of proceedings, one book chapter, one technical report and one poster. In
addition, one article is currently submitted to a journal. Following, we present
their references and the contribution that each one has done to this dissertation.

• Àlex Méndez Feliu, Mateu Sbert, Jordi Catà
Real-Time Obscurances with Color Bleeding
Proceedings of 18th Spring Conference on Computer Graphics SCCG 2003
Bratislava, Slovakia, April 2003.
Pp. 171–176, ACM Press, New York, NY, USA, 2003
Best presentation award

– Obscurances are extended with color bleeding

– Important secondary reflector problem is introduced

– Interactive frame-rates are accomplished for the update of the obscu-
rances for moving objects

• Àlex Méndez Feliu, Mateu Sbert, László Neumann
Obscurances for Ray-Tracing
EUROGRAPHICS 2003 Poster Presentation
Granada, Spain, September 2003.

– Obscurances in ray-tracing environments are presented

• Àlex Méndez Feliu, Mateu Sbert, László Neumann
Obscurances for Ray-Tracing (extended version)
Research report IIiA 03-09-RR
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Institut d’Informàtica i Aplicacions
Universitat de Girona, Desembre 2003.

– The poster is extended with a more detailed explanation and the
studies on function ρ and the maximum distance dmax.

• Àlex Méndez Feliu, Mateu Sbert
Comparing Hemisphere Sampling Techniques for Obscurance
Computation
Proceedings of the International Conference on Computer Graphics and
Artificial Intelligence 3IA 2004
Limoges, France, May 2004.

– Four sampling methods of the hemisphere for the obscurances com-
putation are compared.

• Àlex Méndez Feliu, Mateu Sbert
Combining Light Animation with Obscurances for Glossy Envi-
ronments
Computer Animation and Virtual Worlds 2004; 15(3-4): 463–470
John Wiley & Sons, July 2004.
The Very Best Papers of CASA 2004, Geneva, Switzerland

– Thanks to the decoupling of direct and indirect illumination, the
computation of a series of frames for moving light sources is acceler-
ated.

• Àlex Méndez Feliu, Mateu Sbert, Jordi Catà , Nicolau Sunyer, Sergi Fun-
tané
Real-Time Obscurances with Color Bleeding (GPU Obscurances
with Depth Peeling)
ShaderX 4, Chapter 2.6
Charles River Media, January 2006.

– A new technique for computing obscurances with depth-peeling and
GPU is presented.

• Àlex Méndez Feliu, Mateu Sbert, László Szirmay-Kalos
Reusing Frames in Camera Animation
Journal of Winter School of Computer Graphics, ISSN 1231-6972, Vol. 14,
2006
Plzn, Czech Republic, January 2006.

– A solution to reuse hit radiance information between frames in an
unbiased way is presented.

– It is shown that for diffuse materials and for very close neighbor
frames, the biased solution is valid.

• Àlex Méndez Feliu, Mateu Sbert
Obscurances in General Environments
Proceedings of Graphicon 2006
Novosibirsk, Russia, July 2006.

– A study for the modification of the obscurances algorithm in non-
diffuse environments is done.
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• Àlex Méndez Feliu, Mateu Sbert
Efficient Rendering of Light and Camera Animation for Navi-
gating a Frame Array
Proceedings of Computer Animation and Social Agents CASA 2006
Geneve, Switzerland, July 2006

– The combination of two previous techniques to reuse information
between frames is efficiently done.

– The frame array concept is introduced.

• Àlex Méndez Feliu, Mateu Sbert
From obsurances to ambient occlusion: A survey
Submitted to Visual Computer

– It is the survey corresponding to chapter 3.

8.3 Future work

Many paths are open for future directions of research. In this section we present
them.

8.3.1 Sampling

Adaptive sampling

As the error in computing the obscurances is unevenly distributed (see fig. 4.8),
depending on the relative positions of the objects of the scene, we plan to use
an adaptive sampling strategy, this is, using more samples where they are more
needed, according to some oracle function (variance [69], f-divergences [71]). In
this strategy, batches of samples are progressively cast and the homogeneity of
the obtained obscurances is examined. An heuristic is then devised to continue
or stop sampling.

Sparse sampling

The obscurances have usually a low variation along the surfaces. Christensen
in [21] takes advantage of this and performs a sparse computation of ambient
occlusion. This technique can be combined with adaptive sampling for the pieces
of surface with a higher variation of the values.

8.3.2 Ambient term

We could combine the obscurances with other ambient term methods, studying
the use of average ambient intensity, possibly using different terms depending
on the position and/or orientation of the point.

Orientation-depending ambient term (Extended Ambient Term)

The Extended Ambient Term (EAT) by Castro et al. is presented in [19].
Obscurances can be easily combined with EAT, using this value in substitution
for the average ambient intensity term (IA). The different IA can be used
depending on the orientation of the patch or the normal at the hit point for
which we compute the illumination.
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Position-depending ambient term

The different ambient terms can also be computed for every element of a 3D-
structure of the scene, i. e. for every voxel of a voxelization or for every leave in a
kd-tree. This improvement can be used for the animation of objects in the scene.
In addition to the real-time change of the obscurances computation presented
in section 5.1, the ambient term for the object also changes, emphasizing the
color bleeding effects and darker lighting for the zones more hidden to direct
lighting. This approach would take more into account the actual lighting of the
scene.

Time-depending ambient term

In section 4.6 we have explained how we can use time-depending ambient term to
change ambient intensity and color for every frame in an animation with moving
light sources. The algorithm presented works, but it requires some research for
improvement.

We have two problems with this algorithm, on the one hand the flickering
noise between frames and, on the other hand, the difficulty to compute the
actual area of the scene where the light arrives. We solve those problems in a
roughly way. The noise is solved directly by taking more samples, but some kind
of noise filtering between the values would lead to better results. The problem
of the area reached by the rays is solved using a rule of thumb, a multiplicative
term is put to obtain a natural observed result (not too dark and not too bright,
or the most similar to accurate global illumination methods). More research has
to be done in this last issue to find an automatic way to obtain the area reached
by the light.

8.3.3 Complex models

Plants and trees

For complex models with a huge number of polygons or a complex structure
as trees and plants, a simpler model for obscurances could be devised. For
example, Hegeman et al. [39] compute ambient occlusion for trees simplifying
the model to one or several ellipsoids and using a specific adapted equation for
the occlusion computation.

Hair, skin and cloth

Human hair or animal fur, besides having complex structures and posing a
similar problem to plants and trees, present anisotropic material properties.

Human skin is complex also, but in another level. Its surface is irregular,
presents imperfections, and it has a certain level of translucency. In [51], Krish-
naswamy et al. present a model that mimics the actual composition of the skin
by programming several layers of skin interaction with the light.

Cloth has, besides the complexities of previous seen models, an added level of
complexity, as several types of cloth can be manufactured and different compu-
tational models can be constructed for each one. The different textiles to make
cloth present different challenges to rendering. For example, silk and some syn-
thetic textiles as nylon are anisotropic, fur and wool present similar problems
as hair, etc.
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In this way, the adaptation of the obscurances computation model should
be devised for each one of these complex models, and in the case of cloth, a
previous classification of the models is necessary.

Participative media

Participative media as clouds, fog and smoke present added problems to ren-
dering. Their special characteristics of not having a limited boundary and their
particular distribution of the illumination of a scene make them difficult to
illuminate and render.

If the participative media is evenly distributed among the space in front of
the camera, and the illumination is mainly diffuse (it is the case of fog and
submarine rendering), the simple trick is to blur the object visualization as long
as it gets away from the camera. But for clouds and smoke, and when intense
light sources are in the scene, rendering these objects is a difficult problem.

We can study the different problems that participative media presents for
obscurances and adapt their computation to their particular problems.

Other BDFs

The images computed with obscurances in non-diffuse environments can be
improved by applying other lighting effects not yet considered.

Translucency of objects is a much more complex concept than as programmed
in section 6.2.3. For a more accurate computation of translucency, the different
scattering models have to be taken into account to know how much light gets
into an object, scatters, and then gets out and in which directions to influence
the obscurances around. The ideas to solve this can be similar to the ones for
participative media, but taking into account that in these cases we can not get
into the object.

There are some luminescence effects as phosphorescence (the light energy is
not immediately bounced off the surface material, but kept and released some
time later, i. e. the BDF is also a function of time) or fluorescence (where the
wavelength of the outgoing lighting is longer than the ingoing, i. e. it changes
color, specially when ultraviolet lighting is involved and the object seems to
increase its lighting intensity), that are not quite explored in rendering and
obscurances could be adapted to them. Other effects as caustics can also be
explored.

8.3.4 GPU

Most of the recent work in the graphics community take advantage of the great
possibilities that modern GPU cards present. Obscurances and ambient occlu-
sion are no exception. See chapter 3 for several examples.

In particular, the animation of objects in real-time scenarios seen in section
5.1, that in this dissertation is presented as only interactive (i. e. between five
and ten frames per second can be achieved, but not twenty-four, as needed for
real-time) could easily be real-time with the effort to apply vertex and fragment
shader programming.
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8.3.5 Reuse of information

Reuse of frames: camera

Future work will be addressed to increase the efficiency of our approach using
coherence in visibility computation, by guessing on the one hand the visibility
for one observer from the results for neighbor observers and on the other hand
by using an acceleration schema similar to [38]. Combination with an adaptive
sampling technique, i.e., using more native samples for those pixels that come
with not enough outer hit samples, because they are occluded by other objects
or because they lie near the bounder of the image. The algorithm could easily
be adapted to deal with stereo images.

Different concepts to keep the obscurance values in the scene can be explored,
as irradiance gradients by Ward and Heckbert [94] or a kd-tree structure as in
photon mapping [42].

8.3.6 Frame Array

Further research for the frame array structure for reusing information for multi-
dimensional independent animations of the elements of a scene will be explored.

The main problem to solve is the huge amount of memory used to keep all the
information needed to compute the images. The number of simultaneous images
to compute is limited due to memory restrictions, and a few secons of animation
require hundreds of images to compute for each dimension. In this dissertation
(see section 7.4) 2-dimensional frame arrays have been programmed. Adding a
third dimension (as a second light source, or a moving object) overloads memory
capacity.

In this way, an optimization of the memory has to be done. One possibility is
to optimize the algorithm to save images to disk as soon as they are computed,
with the objective to keep the minimum amount of images in memory at the
same time. A second possibility is to use some kind of compression for the
images.

Once solved the memory problem, future research for higher dimensional
frame arrays can be addressed. The camera walkthrough is always one of these
dimensions. The second dimension will be a moving light source. Further
dimensions, as a second animated light source, could be addressed. It does
not make sense to use a second dimension for a second path of the camera
animation, as two camera paths can be joined and considered as only one path,
i. e. the camera positions are always considere as one, and only one, dimension.
Another possibility would be to consider a rigid moving object as the third
dimension, and this would bring new challenges of research.
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atic sampling in image-synthesis. In Proceedings of ICCSA 2006 (LNCS
3980), May 2006.
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