

Systematic Construction Of Goal-
Oriented COTS Taxonomies

Doctoral Thesis

Presented by

Claudia Patricia Ayala Martínez

In partial satisfaction of the requirements
for the Degree of PhD in Software

Advisor: Dr. Xavier Franch

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

Copyright © 2008 by Claudia Patricia Ayala Martínez

To Sara and Pilar

with love and gratitude

iii

Acknowledgments

I would like to express my sincere gratitude to all who have made possible the achievement of
this work.

Firstly, I would like to thank my advisor Xavier Franch for the trust he placed on me and the
time, patience, guidance and invaluable advises he has given me throughout my PhD studies.
His engagement and knowledge have inspired me a lot.

To all members of the GESSI group for sharing their work with me; especially to Professor
Pere Botella for giving me the opportunity to form part of the GESSI group and sharing his
knowledge and experience with me.

To Professor Reidar Conradi from the Norwegian University of Science and Technology
(NTNU), for giving me the opportunity to learn the working philosophy of his group and for
impressing upon me the importance of empirical research as a fundamental part of the research
work within the field of Software Engineering. To all members of the Software Engineering
group at NTNU for their kind hospitality and cooperation during my stay there, mainly to
Professor Reidar Conradi, Dr. Carl-Fredrik Sørensen and Dr. Jingyue Li for their valuable
feedback and advise.

Thanks to all the reviewers that have contributed with their comments in different stages of
this work. To the researchers and students I have collaborated during the work of this thesis. I
acknowledge their invaluable contribution.

To my family; for always supporting me in the tough and happy moments, for their never
ending support and inspiration; for teaching me that no goal is too lofty given perseverance,
work and dedication; for their example and courage, integrity, and strength of character; and
especially to my grandmother Sara and my mother Pilar for instilling me in the values that have
made me the person I am today. To all of them I devote this project.

To my Spanish family (my family in-law), for their love and support; for always looking
after me and made feel as at home. Especially, to my husband Carlos, for his love and support,
and for being my best friend and companion along the same path.

To all the people and friends who have given me a hand whenever I needed.

This work has been possible thanks to the Mexican Research Council (CONACyT) and the
Agència de Gestió d´Ajuts Universitaris i de Recerca (European Social Fund) for financing my
work. This research was performed in the context of the Spanish MEC TIN2004-07461-C02-01
project.

Barcelona, Spain; January 2008

Claudia P. Ayala Martínez

v

Abstract

The process of building software systems by assembling and integrating pre-packaged solutions
in the form of Commercial-Off-The-Shelf (COTS) software components has become a strategic
need in a wide variety of application areas. In general, COTS components are software
components that provide a specific functionality, available in the market to be purchased,
interfaced and integrated into other software systems. The potential benefits of this technology
are mainly its reduced costs and shorter development time, while maintaining the quality.
Nevertheless, many challenges ranging form technical to legal issues must be faced for adapting
the traditional software engineering activities in order to exploit these benefits.

Nowadays there is an increasingly huge marketplace of COTS components; therefore, one of

the most critical activities in COTS-based development is the selection of the components to be
integrated into the system under development. Selection is basically composed of two main
processes, namely: searching of candidates from the marketplace and their evaluation with
respect to the system requirements. Unfortunately, most of the different existing methods for
COTS selection focus their efforts on evaluation, letting aside the problem of searching
components in the marketplace. Searching candidate COTS is not an easy task, having to cope
with some challenging marketplace characteristics related to its widespread, evolvable and
growing nature; and the lack of available and well-suited information to obtain a quality-assured
search. Indeed, traditional reuse approaches also lack of appropriate solutions to reuse COTS
components and the knowledge gained in each selection process. This lack of proposals is a
serious drawback that makes the whole selection process highly risky, and often expensive and
inefficient.

This dissertation introduces the GOThIC (Goal-Oriented Taxonomy and reuse Infrastructure
Construction) method aimed at building a domain reuse infrastructure for facilitating COTS
components searching and reuse. It is based on goal-oriented approaches for building abstract,
well-founded and stable taxonomies capable of dealing with the COTS marketplace
characteristics. Thus, the nodes of these taxonomies are characterized by means of goals, their
relationships declared as dependencies among them and several artifacts are constructed and
managed for reusability and evolution purposes.

The GOThIC method has been elaborated following an iterative process based on action-
research premises to identify the actual challenges related to COTS components searching.
Then, possible solutions were envisaged and implemented by several industrial and academic
case studies in different domains. Successful results were recorded to articulate the synergic
GOThIC method solution, followed by its preliminary industrial evaluation in some Norwegian
companies.

vii

Resumen

El proceso de construir software a partir del ensamblaje e integración de soluciones de software
pre-fabricadas, conocidas como componentes COTS (Comercial-Off-The-Shelf) se ha
convertido en una necesidad estratégica en una amplia variedad de áreas de aplicación. En
general, los componentes COTS son componentes de software que proveen una funcionalidad
específica, que están disponibles en el mercado para ser adquiridos e integrados dentro de otros
sistemas de software. Los beneficios potenciales de esta tecnología son principalmente la
reducción de costes y el acortamiento del tiempo de desarrollo, a la vez que fomenta la calidad.
Sin embargo, numerosos retos que van desde problemas técnicos y legales deben ser afrontados
para adaptar las actividades tradicionales de ingeniería de software para explotar los beneficios
del uso de COTS para el desarrollo de sistemas.

Actualmente, existe un incrementalmente enorme mercado de componentes COTS; así, una
de las actividades más críticas en el desarrollo de sistemas basados en COTS es la selección de
componentes que deben ser integrados en el sistema a desarrollar. La selección está básicamente
compuesta de dos procesos principales: La búsqueda de componentes candidatos en el mercado
y su posterior evaluación con respecto a los requisitos del sistema. Desafortunadamente, la
mayoría de los métodos existentes para seleccionar COTS, se enfocan en el proceso de
evaluación, dejando de lado el problema de buscar los componentes en el mercado. La búsqueda
de componentes en el mercado no es una tarea trivial, teniendo que afrontar varias
características del mercado de COTS, tales como su naturaleza dispersa y siempre creciente,
cambio y evolución constante; en este contexto, la obtención de información de calidad acerca
de los componentes no es una tarea fácil. Como consecuencia, el proceso de selección de COTS
se ve seriamente dañado. Además, las alternativas tradicionales de reuso también carecen de
soluciones apropiadas para reusar componentes COTS y el conocimiento adquirido en cada
proceso de selección. Esta carencia de propuestas es un problema muy serio que incrementa los
riesgos de los proyectos de selección de COTS, además de hacerlos ineficientes y altamente
costosos.

Esta disertación presenta el método GOThIC (Goal-Oriented Taxonomy and reuse
Infrastructure Construction) enfocado a la construcción de infraestructuras de reuso para
facilitar la búsqueda y reuso de componentes COTS. El método está basado en el uso de
objetivos para construir taxonomías abstractas, bien fundamentadas y estables para lidiar con las
características del mercado de COTS. Los nodos de las taxonomías son caracterizados por
objetivos, sus relaciones son declaradas como dependencias y varios artefactos son construidos
y gestionados para promover la reusabilidad y lidiar con la evolución constante.

El método GOThIC ha sido elaborado a través de un proceso iterativo de investigación-
acción para identificar los retos reales relacionados con el proceso de búsqueda de COTS.
Posteriormente, las soluciones posibles fueron evaluadas e implementadas en varios casos de
estudio en el ámbito industrial y académico en diversos dominios. Los resultados más relevantes
fueron registrados y articulados en el método GOThIC. La evaluación industrial preliminar del
método se ha llevado a cabo en algunas compañías en Noruega.

ix

Contents

Acknowledgments .. iii

Abstract.. v

List of Figures...xiii

List of Tables ... xv

Chapter 1. Introduction.. 1

1.1 The Problem: Searching COTS in the Marketplace... 2
1.2 Importance of the Problem... 4
1.3 Research Goal .. 4
1.3.1 Additional Objectives .. 6

1.4 Methodological Approach.. 7
1.5 Research Context ... 10
1.6 Contributions.. 11
1.7 Publications in Relation to this Thesis ... 11
1.8 Organization of the Document ... 14

Chapter 2. Related Work.. 17

2.1 Introduction.. 17
2.1.1 COTS Definition.. 18

2.2 State-of-the-art ... 20
2.2.1 COTS Selection Approaches ... 20
2.2.1.1 Analyzing COTS Selection Approaches.. 24

2.2.2 Software Reuse Infrastructures and Knowledge Bases.. 25
2.2.2.1 Classification and its Central Role in Implementing Reuse Infrastructures 27
2.2.2.2 Kinds of Software Classification Schemas .. 28

2.2.3 COTS Classification Approaches .. 31
2.2.3.1 Analyzing COTS Classification Approaches... 32

2.2.4 COTS Related Search Engines .. 34
2.2.4.1 Analyzing COTS Related Search Engines... 35

2.3 State-Of-The-Practice .. 36
2.3.1 COTS Location and Reuse... 37
2.3.2 Available COTS Catalogues and Repositories .. 37

2.4 Relevant Approaches Supporting the Solution Addressed by this Thesis 40
2.4.1 Goal-Oriented Approaches .. 40
2.4.1.1 Goal-Based Requirements Analysis Method (GBRAM)................................. 42
2.4.1.2 The i* Goal-Modeling Approach... 43

2.4.2 Software Quality .. 44
2.4.2.1 Software Quality Models ... 46
2.4.2.2 COTS Evaluation by Quality Models .. 48
2.4.2.3 ISO/IEC 9126-1 Software Quality Standard.. 49

x

Chapter 3. Research Method.. 53

3.1 Research Design... 54
3.2 Formative Case Studies.. 56
3.2.1 Business Applications (BA)... 56
3.2.2 Software Applications Development (SAD) and Requirements Engineering Support
Tools (REST).. 57
3.2.3 Real Time Synchronous Communication Tools (RTSC)... 57

3.3 Formative Research Stages Used to Develop the GOThIC Method................................ 57
3.3.1 First Stage: Proposal of an Initial Version of the Method 57
3.3.2 Second Stage: Validation and Improvement of the Resulting Method in Academic
Cases ... 59
3.3.3 Third Stage: Improvement of the Method to support suitable reuse and Industrial
Evaluation ... 61

3.4 Answers to Research Questions ... 64
3.5 Threats of Validity Discussion... 64

Chapter 4. The GOThIC Method .. 67

4.1 GOThIC: A Method to Build a COTS Domain Reuse Infrastructure Based on Goal-
Oriented Taxonomies... 68
4.2 Characteristics of the Proposal... 70
4.3 Intended Improvements.. 71
4.3.1 Improvement on the Effectiveness of COTS Marketplace Organization 71
4.3.2 Improvement on Managing COTS Marketplace Characteristics 72
4.3.3 Improvement on COTS Information Rendering .. 73
4.3.4 Improvement on Managing and Reusing COTS Related Issues.............................. 73

4.4 Intended Audience ... 74
4.5 Applicability of the Proposal ... 74

Chapter 5. Exploration of Information Sources... 77

5.1 Background .. 78
5.2 Capturing Information Quality Dimensions for COTS Selection.................................... 79
5.2.1 Identifying COTS Selection Information Problems... 79
5.2.2 Determining IQ in the COTS Selection Context.. 80
5.2.3 Determining a Measurable Framework for Assessing IQ in the COTS Selection
Context.. 83

5.3 A Systematic Approach for Managing and Reusing COTS Information Sources 87
5.3.1 Heuristics to Support IQ Assessment in the COTS Selection Context 87
5.3.2 A Conceptual Model for Systematically Supporting COTS Selectors Decision-
Making .. 88

5.4 Summary and Discussion... 90

Chapter 6. COTS Domain Analysis... 91

6.1 Background .. 92
6.2 Domain Analysis for Supporting COTS Selection: Dimensions 93
6.3 Domain Analysis for Supporting COTS Selection: Models .. 95
6.4 A Unified Model for COTS Domains.. 98

xi

6.4.1 Integrating all the COTS domain models into the ISO/IEC 9126-1 98
6.4.2 Transforming the Models into the ISO/IEC 9126-1 Framework 100

6.5 Domain Analysis-Based COTS Selection.. 101
6.6 Case Study Example .. 102
6.7 Summary and Discussion... 106

Chapter 7. Goal-Oriented Core of GOThIC... 107

7.1 Background .. 108
7.2 Activity 3: Identification, Refinement and Statement of Goals 108
7.2.1 Goal Identification and Refinement... 109
7.2.1.1 Supporting Mechanisms, Techniques and Models .. 109

7.2.2 Statement of Goals... 111
7.3 Activity 4: Establishment of Dependencies ... 112
7.3.1 Use of i* SD models .. 112
7.3.2 Identifying COTS dependencies .. 113

7.4 Activity 5: Goal Taxonomy Structuring... 120
7.5 Summary and Discussion... 124

Chapter 8. Goal Taxonomy Validation and Management .. 125

8.1 Predicates and Functions.. 125
8.1.1 Conditions Over Taxonomies .. 126

8.2 Four-Step Process for Transformation Rules Application ... 127
8.2.1 Transformation Rules in Step 1 ... 128
Heuristics, Combined Rules and Stop Condition for Step 1...................................... 130

8.2.2 Transformation Rules in Step 2 ... 131
Heuristics, Combined Rules and Stop Condition for Step 2...................................... 133

8.2.3 Transformation Rules in Step 3 ... 134
Heuristics, Combined Rules and Stop Condition for Step 3...................................... 135

8.2.4 Transformation Rules in Step 4 ... 135
8.3 Goal-Oriented Taxonomies Formulation, Evaluation and Management 137
8.4 Applying the Goal-Oriented Taxonomy Validation and Management Process............. 138
8.4.1 Validating and Manipulating the Goal-Oriented Taxonomy Obtained for the RTSC
Case Study .. 138
8.4.2 Validating and Manipulating an Existing COTS Classification Schema............... 140

8.5 Summary and Discussion... 142

Chapter 9. Knowledge Base Management .. 145

9.1 The Experience Factory (EF) and Learning Software Organization (LSO) Paradigms. 146
9.2 The GOThIC´s Knowledge Base as an EF + LSO... 148
9.3 The Context of Use of the GOThIC’s Knowledge Base.. 149
9.4 GOThIC’s Knowledge Base Population and Maintenance.. 150
9.5 Software Tools Supporting Some GOThIC’s Activities and their Deliverables............ 152
9.5.1 Existing Software Tools Supporting GOThIC’s Activities.................................... 152
9.5.1.1 DesCOTS System .. 152
9.5.1.2 REDEPEND-REACT Tool.. 155

9.5.2 New Software Tools Developed for Supporting GOThIC’s Activities 156
9.5.2.1 OTS-Wiki Prototype .. 156

xii

9.5.2.2 Information Quality (IQ) Tool... 159
9.6 Summary and Discussion... 161

Chapter 10. Method Evaluation... 163

10.1 Preliminary Industrial Evaluation of GOThIC... 164
10.1.1 Short/Medium Term Empirical Evaluation.. 165
10.1.1.1 Academic Seminar... 165
10.1.1.2 Explorative Survey .. 166
10.1.1.3 Industrial Seminar.. 167

10.1.2 Short/Medium Term Qualitative Results ... 169
10.2 Limitations of the GOThIC Method .. 170
10.3 The comparative of GOThIC with similar approaches .. 170

Chapter 11. Conclusions & Future Work... 173

11.1 Contributions of the Approach... 173
11.1.1 Reliability and Effectiveness related Contributions... 174
11.1.2 Reusability related Contributions... 175
11.1.3 Contributions in collaboration with other members of the GESSI group 175

11.2 Future Work ... 176
11.2.1 Major Future Research Lines... 176
11.2.2 A Multidisciplinary Intended Project to Put Forward Major Future Research Lines
.. 178

List of Abbreviations... 181

Glossary.. 183

References .. 185

Annex 1. Heuristics Supporting GOThIC Activities.. 205

Annex 2. IQ COTS Reference Model .. 211

Annex 3. Domain Model for the RTSC Case Study ... 219

 xiii

List of Figures

Fig. 1.1 Relationship among thesis chapters, GOThIC activities and publications....................................15

Fig. 2.1 Evolution of COTS selection practices [Moh+07]..21

Fig. 2.2 Components reuse environment..26

Fig. 2.3 Existing kinds of software classification techniques...29

Fig. 2.4 Overview of GBRAM activities ...42

Fig. 2.5 Excerpt of an i* model for an academic tutoring system ..43

Fig. 2.6 Conceptual model of the ISO/IEC 9126-1 standard..50

Fig. 3.1 Research phases, research questions and corresponding studies...55

Fig. 3.3 Formative research stages and their corresponding publications ..63

Fig. 4.1 High-level activities of the GOThIC method..68

Fig. 4.2 Conceptual model for goal-oriented COTS taxonomies: overview ..71

Fig. 4.2 Overview of the COTS marketplace structuring...75

Fig. 5.1 An excerpt of the COTS IQ Reference model ..89

Fig. 6.1 An overview of the ISO/IEC 9126-1-based quality model for COTS segments...........................98

Fig. 6.2 A conceptual model excerpt of our ISO/IEC 9126-1-based analysis model for COTS domains102

Fig. 6.4 Some dependencies among RTSC Tools and other types of tools ..104

Fig. 7.1 i* SD model progressively constructed to assess and understand the RTSC domain113

Fig. 7.6 Partial View of the elements of the goal-oriented hierarchy for the RTSC case.........................123

Fig. 8.1 Set of Transformation Rules ...129

Fig. 8.2 Heuristics driving transformation rules application in Step 1 ...130

Fig. 8.3 Heuristics driving transformation rules in Step 2..133

Fig. 8.4 Heuristics driving transformation rules application in Step 3 ...135

Fig. 8.5 Heuristics driving transformation rules application in Step 4 ...137

Fig. 8.6 Conceptual model of the goal-oriented core of GOThIC..138

Fig. 8.7 The Four-Step goal-taxonomy validation process applied to an excerpt of the RTSC case139

Fig. 8.8 An excerpt of the BA Gartner classification ...140

Fig. 8.9 The 4-step goal-taxonomy construction process applied to an excerpt of the BA case142

Fig. 9.1: The Experience Factory paradigm ...147

Fig. 9.2 The GOThIC activities supported by an experience base and its knowledge reuse artifacts148

Fig. 9.3 OTS-Wiki Portal Main Interactions ..151

Fig. 9.4 i* SD model summarizing the GOThIC population strategy ..152

Fig. 9.5 Overview of the DesCOTS System...153

Fig. 9.7 QM snapshot: defining a method ..155

Fig. 9.8 REDEPEND-REACT snapshot: constructing an i* SD model...156

Fig. 9.9 Goal-based Scenarios designed to reach the OTS-Wiki High-Level goals.................................157

Fig. 9.10 Scenario excerpts for enabling OTS-Wiki high-level goals..158

Fig. 9.11 A snapshot of the OTS-Wiki prototype ..159

Fig. 9.12 A snapshot of the Information Quality Tool ...160

 xv

List of Tables

Table 1.1 Research Questions of this Research ...7
Table 1.2 Shaw’s characterization of Research Questions related to Research Questions in this Thesis. ...7
Table 1.3 Shaw’s characterization of Software Engineering Research Results ...8
Table 1.4 Characterization of High-Level Research Results of this Thesis...8
Table 1.5 Shaw’s characterization of Software Engineering Research Validation......................................9
Table 1.6 Main Validation Efforts Pursued in this Thesis ...10
Table 2.1 The Fundamental change among custom-development and CBSD...18
Table 2.2 Different definitions of COTS, surveyed by [Mor-Tor02] ..19
Table 2.3 Activities and Roles in COTS Selection ..20
Table 2.4 Comparing some representative methodologies dealing with COTS selection25
Table 2.5 Summary of some relevant drawbacks of actual reusable software classification schemas30
Table 2.6 Summary of some COTS classification approaches ..33
Table 2.7 Summary of some COTS Related Search Engines ..35
Table 2.8 Summary of types of organizations relating with COTS selection activities.............................37
Table 2.9 Some representative COTS related repositories and catalogues ..38
Table 2.10 Assessment of the role-related challenges for supporting COTS Selection.............................39
Table 2.11 Summary of some relevant goal-oriented approaches as surveyed in [Kav-Lou05]................41
Table 2.12 Summary of some relevant quality models approaches as surveyed in [Car05T]47
Table 2.13 ISO/IEC 9126-1 quality model top level hierarchy ...49
Table 3.1 Availability of Case Studies Data ..56
Table 3.2 Research Questions Revisited with respect to the obtained results..64
Table 3.2 Strategies for dealing with threats to validity [Rob02] ..65
Table 4.1 High-level Inputs and Outputs of GOThIC Activities ...70
Table 5.1 COTS Related Information Sources Types..80
Table 5.2. Basic IQ dimensions to describe IQ in diverse settings suggested by [Wan-Str96]81
Table 5.3. An excerpt of COTS selection IQ needs and some facts elicited from COTS selectors...........82
Table 5.4 An excerpt of the GQM approach used to guide the information storage and metrics definition

...84
Table 5.5 Excerpt of the ISO/IEC 9126-tree like framework for stating and gauging COTS IQ85
Table 5.6 An excerpt of the prioritization of the Information Sources in the RTSC case87
Table 6.1 Summary of domain analysis practices for representing COTS dimensions96
Table 6.2 High-level characteristics and subcharacteristics describing COTS Non-technical factors.......97
Table 6.3 Excerpt of the quality model for the RTSC case..104
Table 6.4 Excerpt of a non-technical factor decomposition for the RTSC case104
Table 6.5 Excerpt of the unifying model for the RTSC case ...105
Table 7.1 Glossary of GBRAM heuristics used in GOThIC’s Activity 3..108
Table 7.2 Different types of actors related to COTS domains ...110
Table 7.3 An excerpt of actors and goal identification ..110
Table 7.4 A scenario excerpt of the RTSC case study...111
Table 7.5 Example of the identification and refinement process ...111
Table 7.6 An example of a goal-schema..112
Table 7.7 Excerpt of the identification of system actors and their coupling to some domain goals and

available functionalities...116

xvi

Table 7.8 Excerpt of the identification of system actors coupling them with domain goals...................121
Table 7.9 Excerpt of a possible goal-oriented taxonomy for the RTSC case...122
Table 7.10 Example questions and answers attained to taxonomy nodes..123
Table 8.1 Predicates and functions over taxonomies ...126
Table 8.2 Predicates, semantics and abbreviations used over goals ..126
Table 8.3 Effect of transformation rules on the stop condition for Step 1 ...130
Table 8.4 Effect of transformation rules application in Step 2 on the stop condition134
Table 8.5 Effect of transformation rules application in Step 3 on the stop condition135
Table 8.6 Summary of transformation rules and their applicability to the 4 steps process......................137
Table 8.7 Validating the RTSC goal-classificataion schema...139
Table 8.8 Discovering goals process for an existing ‘ad-hoc’ classification hierarchy140
Table 8.9 Goals bound to some nodes of the BA taxonomy..141
Table 8.10 Transforming the original Gartner classification into a goal-based taxonomy141
Table 10.1 Summary of issues regarding the use of GOThIC as perceived by researchers.....................166
Table 10.2 Excerpt of results obtained in the explorative survey applied to some Norwegian companies

...167
Table 10.3 Summary of issues regarding the use of GOThIC to build a reuse infrastructure in industrial

organizations ...168
Table 10.4 Research Questions Revisited with respect to short/medium term qualitative results169
Table 11.1 Intended benefits to the different roles involved in COTS Selection Processes175
Table A1.1 Glossary of heuristics and their codes in GOThIC ...205
Table A1.2 Heuristics that Support GOThIC Activities ...206
Table A2.1 COTS IQ Reference Model...213

1

Introduction

owadays, an alternative paradigm to the traditional software development lifecycles
consists on building systems by integrating pre-packaged solutions, usually known as

Commercial-Off-The-Shelf (COTS) components –hereafter COTS-; and migrating existing
systems towards COTS-Based Systems (CBS) [Mey-Obe02], [Car-Lon00], [Keil-Tiw05]. It has
become an economic and strategic need for developing large and complex software systems. As
a consequence, a vast marketplace of COTS is actually available and steadily growing.

In general, COTS are software components that provide a specific functionality and are
available in the market to be purchased, interfaced, and integrated into other software systems.
More precisely: “A COTS product is a [software] product that is: (1) sold, leased, or licensed

to the general public; (2) offered by a vendor trying to profit from it; (3) supported and evolved

by the vendor, who retains the intellectual property rights; (4) available in multiple, identical

copies; and (5) used without source code modification by a consumer” [Mey-Obe02].

The potential benefits of using this technology are mainly its reduced costs and shorter
development time [Obe-Bro97], which is due to the fact that components can be procured
instead of being developed from the scratch. Hence, as the size and complexity of systems
grow, the use of COTS has become the standard way of developing software [Rei+03], [Bhu-
Boe07].

However, COTS-Based Systems Development (CBSD) also introduces new risks and
challenges. It basically changes the focus of the development-centric approach assumed in
traditional software development by a procurement-centric approach characterized by a
constant, iterative trade-off among risks, user requirements, system architecture and
marketplace availability [Bro+00], [Kon-Hut07]. As a result, many challenges, ranging from
technical to legal issues, must be faced for adapting the traditional software engineering
activities with the aim of exploiting the benefits of using COTS [Mor+02].

In particular, one of the most critical activities in CBSD is the selection of the COTS
themselves: if the wrong COTS is selected, the risk of a project failure increases dramatically
[Bas-Boe01], [Vit+03a], [Bhu-Boe07].

Chapter

1

N

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

2

Several authors describe the selection process as a set of different phases and strategies, e.g.,
[Fin+96], [Obe-Bro97], [Kun-Bro99], [Moh+07]. All of them agree that the high-level selection
process is basically composed of two main activities:

1) Searching COTS candidates from the marketplace,

2) Evaluating them with respect to the system

requirements for taking the final decision.

The ever-growing nature of the COTS marketplace, both in the variety of market segments
available and the components offered therein [Vit+03b], as well as the lack of available and
well-suited information about the components, make difficult to obtain and efficient and
quality-assured search and evaluation [Li06], [Bhu-Boe07].

In this context, researchers and practitioners have been dealing with COTS selection for
quite a time and different selection methods have been proposed (e.g. CAP, CARE, CEP, CRE,
OTSO, PECA, PORE, QESTA, Scarlet, STACE, Storyboard, etc.), see Chapter 2. However,
most of them have been proposed for driving COTS evaluation, letting aside the problems
related to search COTS and information about them in the marketplace. This lack of support
affects the whole selection process, making it highly risky, often expensive and inefficient: no
matter how good is the evaluation process, selection may be wrong if the candidates chosen to
be evaluated are not the right ones [Neu-Stu07]. Trying to deal with this gap, this research
focuses precisely on the improvement of the COTS searching phase.

1.1 The Problem: Searching COTS in the Marketplace

It is well-known that one of the essential problems in software reuse is organizing collections of
reusable components in order that component re-users are able to find and understand them, in
other words, for effective search and retrieval [Pri91]. If this process fails, the reuse can not
happen [Fra-Pol94] or even worse, wrong components may be selected.

Storing, searching and retrieval of reusable components have been usually supported by
component repository systems. Each of these activities relies on the existence of a systematic
method of organizing the components in the repository so re-users can match existing reusable
parts to their current needs. However, although reusable component repositories have been an
active research area for more than a decade [Fra-Kan05], the special nature of the COTS has
taken the original concept of reuse into a completely different arena. COTS marketplace nature
drastically changes the “classical” component repository reuse schema to a global reuse
approach where the marketplace acts as a global, dynamic, distributed, and heterogeneous set of
repositories; and where nobody has knowledge or control of the available repositories
[Clar+04], [Wan-Hom06].

In this context, indexing and representing COTS so that they can be found and understood
are two important issues endangered by various facts:

1. Uncontrolled COTS marketplace basis. COTS marketplace acts as a continuous “product

conveyor belt” [Bro+98]. Lots of potential vendors or providers offer their products without
any direct control [Man+07], [Lau-Ped05] and no one has great influence over the speed,
content, or variety of products on the product belt.

2. Growing size of the COTS marketplace: New and improved products and technologies are
continuously offered [Bro+00], [Bhu-Boe07]. Thus, existing market segments offer more and
more products, and new market segments are continuously emerging [Ulk-Sep04]. Mobile
technologies are a good example of both situations.

Chapter 1: Introduction

3

3. Rapid changes in the COTS marketplace: New versions of existing products are released
every few months [Yan+05], [Mer06]. Moreover, market segments frontiers move slightly
over the years, making products to offer services that initially were seen as belonging to
different segments [Fra05]. For instance, current mail server systems usually provide instant
messaging facilities, even video-conferencing services.

4. Type of descriptions available for COTS: Given the commercial nature of the marketplace, it
is common that COTS suppliers tend to highlight strengths and hide weaknesses of their
licensed components; therefore, sometimes the trustworthiness of the COTS information
available is unclear. So, COTS re-users are faced with the problem of ensuring that COTS
perform the functionality they claim [Moh+04], [Ast+06], [Ast+06b].

5. Lack of standards for COTS descriptions. Currently, the amount of information available
about COTS is widespread, vast and still growing. Component providers and brokers do not
have a standard for describing components, which results in a variety of documentation styles
very difficult to compare [Tau+04]. This fact does not allow performing automated or at least
assisted search [Cec+06], [Ast+06]. A study conducted in [Ber+03] evidenced that the
required COTS information is highly incomplete, widespread and unstructured, becoming
very difficult to obtain.

6. Dependencies among COTS: Although COTS are attempting to simulate the “plug and play”
capability of the hardware world, in reality they are not designed to work isolated, but in
collaboration with others. Therefore many dependencies among them exist, either for
enabling, enhancing, or complementing their functionality [Fra-Mai03]. However,
commonly, these dependencies are not explicitly declared. It may result in several over-
costing and integration problems [Bhu-Boe07], [Don+05]. For instance, an organization
selecting a document management tool would discover quickly that they need to acquire a
document imaging tool for enabling the functionality of scanning and storing paper
documents.

7. Lack of COTS reuse support. As mentioned above, the special nature of COTS has taken the
original concept of reuse into a completely different arena [Aya-Fra06a], and actually there is
a lack of efficient mechanisms to effectively record and reuse COTS related issues.

This list is representative of the most important reasons why traditional component
repositories and associated searching and retrieval approaches break down in the COTS context
[Aya-Fra06a].

Consequently some practical questions without efficient answers arise when carrying out a
particular COTS searching process, such as:

• What kinds of components are available and which of them could be useful to solve this

particular problem?

• Which are the relationships among the market segments corresponding to these kinds

and which are their implied needs?

• How to find and process the information referred to the components of those kinds

which facilitate to perform an informed evaluation?

Therefore, this thesis focuses on how to provide an effective way to address these
practical questions in order to effectively exploit the benefits of the COTS technology and

deal with the risks implied in its use.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

4

1.2 Importance of the Problem

CBSD is an economic and strategic need in a wide variety of different application areas in both
public and private companies. According to studies performed by Gartner Group, at least 70%
of all new software applications developed in 2003 by major corporations involved COTS. At
this respect, Michael Blechar, vicepresident of Internet & e-Business Technologies at Gartner
added: "COTS can be a major enabler of productivity and savings. Through 2004, IS

organizations that are mature in CBSD methods and that use a model-driven or pattern-based

application development framework containing a large inventory of business components have

the potential to be 5 to 10 times more productive and responsive than those that do not."
[Gri02]. In addition, from previous empirical studies in small and medium companies [Li06] we
know that roughly half of all software projects make use of COTS in 2006 and this percentage is
rising rapidly.

Thus, whilst software engineers are becoming increasingly aware of the contribution that
such technology is making to the software industry, business, and society in general, they have
also recognized that fostering its adequate (re)use is actually a crucial task for progressing
towards improvements in a great variety of application areas [Sim-Dil06].

In summary, although the risks inherent to COTS usage are as large as their potential return,
they are foreseen as the standard way of developing software systems [Rei+03]. According to
Gartner Group, COTS are expected to constitute over 90% of the software applications running
in major corporations. As a result of this tendency, increasingly amounts (dozens of thousands)
of COTS are now accessible in the marketplace. Nevertheless, there is still a lack of well-suited
approaches to enable an effective COTS searching from the marketplace [Cec+06], making
difficult to obtain a quality-assured selection and the full potential of large-scale software reuse.
A critical consequence of performing the searching related activities poorly is that the whole
COTS selection process is damaged and confidence on the results of the process diminishes
[Req+05], [Cec+06], [Neu-Stu07].

Many studies report that an inadequate COTS selection process is a critical and common
cause of IT projects failure [Vit+03a], [Bas-Boe01]. For instance, the "Standish group" statistics
demonstrate that three out of four IT projects of CBS development fail [Cha02]1. Another study
[Hau02] shows that more than 30% of ERP2 projects are abandoned before the end of the
project, 20% of the remaining projects exceed budgets, and more than 20% do not keep the
project deadlines. They conclude that ERP projects face the same risks as any other IT project.
Furthermore, the study presented in [Bas+00] concludes that the main key inhibitor of CBSD is
the difficulty of finding components and information about them.

All this empirical evidence is a compelling reason for understanding that research efforts are
required to avoid these project failures, supporting the COTS searching and reuse activities that
are currently lacking of appropriate support.

1.3 Research Goal

This thesis is focused on improving COTS selection processes in the context of organizations
that regularly select and reuse COTS by offering a solution to deal with some open issues
related to categorizing and searching such components from the marketplace and their adequate
reuse.

1 Beware of method problems in the Chaos Report statistics reported in [Jør-Mol06].
2 Enterprise Resource Planning systems are one of the most COTS solutions used in industry, designed to handle
virtually all of an organization business computing needs.

Chapter 1: Introduction

5

This dissertation proposes a method called GOThIC (Goal-Oriented Taxonomy and reuse
Infrastructure Construction) to deal with COTS marketplace challenges by building a goal-
oriented domain reuse infrastructure that can evolve as the marketplace does, and may be used
in COTS search processes to obtain the appropriate criteria for locating the most appropriate
kind of components. The general objective of this work can be stated as:

“To provide support to the effective construction of a reliable and

understandable representation of the COTS marketplace for enabling COTS

search, especially for coarse-grained COTS”

The following paragraphs further analyze this general objective with some descriptions
intended to refine each one of its aspects.

What do we mean by “effective construction”?

Searching COTS from the marketplace is an activity endangered by various threats, as those
mentioned in Section 1.1 and the lack of experience in how to arrange the marketplace to deal
with these problems. These factors make the process of COTS marketplace arrangement and
representation difficult to rely only on common sense. Thus by effective construction we mean:

• To construct COTS marketplace classification schemas as a way of representation of the
marketplace’s contents by following a rigorous and systematic method, with well-defined
steps and objectives, leading to the identification of the appropriated elements of the
classification schema.

• To provide useful mechanisms to adapt and evolve the classification schema to the COTS
marketplace evolution and specific organizational needs for which they are intended.

What do we mean by “reliable and understandable representation of the COTS

marketplace”?

By reliable we mean the construction of a classification schema founded on a deep
understanding of the COTS domain and its environment. All the relevant market features,
components characteristics, technologies, regulations and standards of the domain should be
identified as well as their relationships and dependencies among them. The outcome of this
analysis should be formally represented and recorded to create a reliable COTS domain
knowledge base for supporting marketplace representation’s evolution.

By understandable we mean classification schemas which are based on a clearly stated,
complete and unambiguous quality framework, which includes all the required information to
perform an informed selection and their relationships. We also mean classification schemas
which, by providing a formal representation of all the relevant information for performing
COTS selection, can be clearly understandable by COTS re-users and providers in order to
enable adequate storing, searching and retrieval mechanisms.

What do we mean by “coarse-grained COTS”?

COTS available in the market differ widely among each other. They may range from simple
libraries which provide a limited and clear set of functions, to components whose functionality
is so broad and complex that their understanding requires extensive exploration. We call this
kind of COTS, coarse-grained COTS. They are the focus of our attention, because the risks
involved in selecting this kind of COTS are critically greater than the ones involved in smaller
COTS that are in addition usually more easily identifiable and comparable.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

6

1.3.1 Additional Objectives

In the course of this work we have identified some issues, which although not part of the initial
objectives, have been explored up to a certain extent in our research. In some ways they extend
or complement the original goals of this project, thus we have concluded that it is worth to
include them as significant objectives. These issues are:

The identification of artifacts to support the reusability of components information and
domain knowledge gained in the classification schema construction as well as in each
COTS selection experience

As our work progressed, it became evident that to deal with COTS marketplace evolution some
reusable artefacts must exist to support the classification schema evolution. Moreover, to be
effective, the classification schema must operate within the context of a domain reuse
infrastructure environment aimed at promoting the reuse at various levels. At this respect,
several works (e.g. [Mor+00], [Cla+04], [Moh+04], [Wan-Hom06]) advocate that having a
repository for COTS products with enough information about them is becoming a necessity for
improving the CBSD practice.

Several of the deliverables produced in the classification schema construction, or parts of
them were reusable. Consequently, we expanded our original objective to build a COTS domain
reuse infrastructure from the classification schema construction process that not only provides
an adaptable, evolvable, understandable and reliable structure of the COTS marketplace but also
is instrumented to reuse information and knowledge gained in each selection process
experience. Thus, the method relies on some artifacts and mechanisms aimed to this.

The search for alternative strategies for populating and maintaining the COTS reuse
infrastructure

By the nature of the COTS reuse infrastructure construction with GOThIC, we realized that the
applicability of the method was actually intended for medium and large size organizations that
can assume the related cost of constructing and maintaining a COTS domain reuse
infrastructure. However, we have expanded the method to build a generic and flexible domain
reuse infrastructure, and also explored some strategies to make feasible the open and global use
of such generic infrastructure to afford the related benefits to all COTS re-users, including
software organizations of any size. Although to deeply explore and evaluate these open and
global strategies are not into the goals of this thesis, they are considered as future work. Thus, as
a matter of fact most of our findings with regard to these issues are labelled as “intended
populating and maintenance strategies”, and their further exploration is considered as future
work related in Chapter 11.

The provision of tool support to the method

COTS classification schemas construction requires the management of several of issues and
their relationships at several levels. This is not an easy task. So it can be considered really
desirable to provide some tool-support for some method activities. Although it is not part of the
deliverables of this thesis, we briefly present some tools and proof-of-concept prototypes
developed in our project whose construction was partially guided by the concepts presented
here.

Chapter 1: Introduction

7

1.4 Methodological Approach

Software engineering research is often motivated by problems that arise in the production and
use of real world software. Shaw provides a way of characterizing software engineering
research, in terms of what she describes as types of research questions, research results and
validation techniques [Sha01]. To provide an overview of the research performed in this thesis,
this section characterizes the research questions, research results and validation efforts taken to
perform this thesis in the terms proposed by Shaw [Sha01]. Chapter 3 further details the
research approach taken.

In general, this research was elaborated following an iterative process based on action-
research premises jointly with case studies. Such combined approach was chosen because it
permitted a flexible design of research questions through the research process. Moreover, it
allows trying several action plans to solve some COTS searching related problems. Research
questions and possible solutions were envisaged and evaluated on iterative research stages
implemented by several industrial and academic case studies in different domains (see Chapter
3). Table 1.1 presents the research questions driving this research.

Table 1.1 Research Questions of this Research

Research Questions of this Research

RQ1: What are the actual challenges of COTS selection processes?

 RQ1.1- What are the actual challenges of COTS searching processes?

RQ2: How can we support COTS searching challenges?

 RQ2.1-Can goal-oriented approaches be used to produce useful results
for dealing with COTS searching challenges?

 RQ2.2-How can we characterize COTS in the marketplace?

 RQ2.3-How can relevant information related to COTS be gathered,
evaluated and synthesized?

 RQ2.4-How can such information be maintained for its reuse in different
COTS selection processes?

According to Shaw, software engineering research answers questions about: 1) methods or
means of development; 2) methods for analysis or evaluation; 3) details of designing, analyzing,
or evaluating a particular instance; 4) generalizations or characterizations over whole classes of
systems or techniques; 5) exploratory issues concerning existence or feasibility. Table 1.2 lists
the types of software engineering research questions proposed by Shaw [Sha01], [Sha03] and
characterizes the research questions driving this research.

Table 1.2 Shaw’s characterization of Research Questions related to Research Questions in this Thesis.

Type of Question Examples RQ

Method or Means of
development

How can we do / create / modify / evolve (or automate doing) X?
 What is a better way to do / create / modify / evolve X?

RQ2

Method for analysis or
evaluation

How can I evaluate the quality/correctness of X?
 How do I choose between X and Y?

RQ2.3

Design, Evaluation or
Analysis of a particular
instance

How good is Y? What is property X of artifact/method Y?
 What is a (better) design implementation,
 maintenance, or adaptation for application X?
 How does X compare to Y?
 What is the current state of X / practice of Y?

RQ1
RQ1.1

Generalization or
Characterization

Given X, what will Y (necessarily) be?
 What, exactly, do we mean by X? What are its important
 characteristics?
 What is a good formal/empirical model for X?
 What are the varieties of X, how are they related?

RQ1
RQ2

Feasibility study or
Exploration

Does X even exist, and if so what is it like?
 Is it possible to accomplish X at all?

RQ2.1
RQ2.2
RQ2.4

The different studies performed as part of this thesis yield to different kinds of research
questions proposed by Shaw. The first two types of research questions proposed by Shaw

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

8

produce methods of development or of analysis that the authors investigated in one setting, but
can presumable be applied in other settings. The third type of research question deals explicitly
with some particular system, practice, design or other instance of a system or method; these may
range from narratives about industrial practice to analytic comparisons of alternative designs.
Generalizations or characterizations explicitly rise above the experiments, case studies or
examples performed. Finally, researches that deal with an issue in a completely new way are
sometimes treated differently from researches that improve on prior art, so feasibility or
exploration as a separate category.

According to Shaw, the tangible contributions of software engineering research may be
procedures or techniques for development or analysis; they may be models that generalize from
specific examples, or they may be specific tools, solutions, or results about particular systems.
Table 1.3 lists the types of research results mostly reported in software engineering and provides
specific examples [Sha03], and Table 1.4 illustrate the high-level research activities performed
in this thesis, their relationship with research questions and the characterization of research
results as proposed by Shaw.

Table 1.3 Shaw’s characterization of Software Engineering Research Results
Research
Results

Abbreviation Research Approach or Method

Procedure or
Technique

PoT

New or better way to do some task.
It includes techniques for implementation, representation, management
and analysis.
A technique should be operational –not advice or guidelines, but a
procedure.

Qualitative or
Descriptive

Model
QDM Structure or taxonomy for a problem area.

Well-organized interesting observations.

Empirical model EMO Empirical predictive model based on observed data.

Analytic Model AMO Structural model that permits formal analysis or automatic manipulation.

Tool or notation ToN
Implemented tool that embodies a technique.
Formal language to support a technique or model (should have a
calculus, semantics, or other basis for computing or doing reference)

Specific solution,
prototype,
answer or
judgment

SPA
Solution to application problem that shows application of SE principles.
Careful analysis of a system or its development.
Result of a specific analysis, evaluation, or comparison

Report REP Interesting observations, rules of thumb, but no sufficiently general or
systematic to rise to the level of a descriptive model.

Table 1.4 Characterization of High-Level Research Results of this Thesis

High-Level Research Activities Performed in this Thesis
Research
Question
Related

Type of Research
Result

To conduct a careful analysis of the COTS selection processes state-of-
the-art and state-of-the-practice, in order to understand and organize the
problem area.

RQ1 QDM

To invent new ways to deal with the COTS searching detected
challenges to enable its effectiveness and reuse. They range from
specific solutions to notations, prototypes and tools implementation.

RQ2
PoT
SPA
ToN

Report interesting observations about such processes. RQ2 REP

To create and defend generalizations from real examples, drawn to the
performed case studies called “formative” (see Chapter 3 of this
dissertation).

RQ2 PoT

To embody results in a prescriptive method. RQ2 SPA

There are several kinds of evidence supporting research results [Sha01]. It was essential to
select a form of validation that was appropriate for the type of research result and the method
used to obtain the result. Different types of results have value, and more rigorous results emerge
only over time, either through cumulative evidence or by building rigorous experiments on a

Chapter 1: Introduction

9

base of more informal experience. The validation techniques in terms of Shaw’s
characterizations are illustrated in Table 1.5.

Table 1.5 Shaw’s characterization of Software Engineering Research Validation

Type of
Validation

Examples

Analysis

I have analyzed my result and find it satisfactory through rigorous analysis, e.g. …

 For a formal model …rigorous derivation and proof
 For an empirical model …data on use in controlled situation
 For a controlled experiment …carefully designed experiment with statistically
 significant results

Evaluation

Given the stated criteria, my result…

 For a descriptive model …adequately describes phenomena of interest …
 For a qualitative model …accounts for the phenomena of interest …
 For an empirical model …is able to predict … because …, or
 …generates results that fit actual data …
Includes feasibility studies, pilot projects

Experience

My result has been used on real examples by someone other than me, and the evidence of its
correctness/usefulness/effectiveness is …

 For a qualitative model …narrative
 For an empirical model or tool …data, usually statistical, on practice
 For a notation or technique …comparison of systems in actual use

Example

Here’s an example of how it works on …

 For a technique or procedure …a “slice of life” example based on a real system …
 For a technique or procedure …a system that I have been developing …
 For a technique or procedure …a toy example, perhaps motivated by reality

Persuasion

I though hard about this, and I believe passionately that …

 For a technique …if you do it the following way, then …
 For a system …a system constructed like this would …
 For a model …this example shows how my ideas works

Blatant
assertion No serious attempt to evaluate result. This is highly unlikely to be acceptable

The action-research process driving our research in order to develop the GOThIC method
required early validation while under development. Hence, we distinguish among two kinds of
validation: formative and summative. This distinction is key in that the formative validation
involves the evolution of the research work simultaneously coupled with validation (i.e., its
central role was shaping the GOThIC method by integrating successful results of the different
research stages); whilst the summative evaluation is addressed to validate the method developed
during the formative evaluation.

Table 1.6 summarizes the main validation approaches followed in this thesis in terms of the
Shaw characterization of research validation. It also provides the Chapters were detailed
information about these validation efforts are discussed.

In the software engineering area, it is very hard to industrially validate methods such as this.
It is because its further summative evaluation necessarily requires the implementation and use
of large scale repositories and analysis of COTS that are not feasible to be obtained in a short
period of time. Therefore, it would not be reasonable to argue a full industrial validation of the
ideas presented in this thesis within the terms of the PhD studies. Therefore, in this thesis
dissertation, as with all research topics for which a critical mass is an issue, for summative
evaluation we provide some feasibility and effectiveness insights by means of arguments that
extrapolate from academic cases and post-mortem summaries of industrial cases in order to
preliminary answer research questions. Of course, the whole industrial summative evaluation of
the method is one of our main goals but it is considered as future work (see Chapter 11).

It can be noted that regardless the research validation phase (i.e., formative or summative),
throughout this thesis work several kinds of research validation efforts have been carried out.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

10

Table 1.6 Main Validation Efforts Pursued in this Thesis

Type of
Validation

Used
High-Level Activities Chapter

� Implementation of formative and preliminary summative research validation
efforts to evaluate the proposed method.

Chapter 3 and 10
respectively

� Diverse results of the method have been evaluated by researchers and
industrial practitioners to provide evidence of their usefulness.

Chapter 3
Chapters 5 to 9

Evaluation

� Preliminary summative evaluation efforts have been performed in Norwegian
industries.

Chapter 10

Experience � Academic and industrial case studies were carried out and useful lessons
learned were summed up into heuristics.

Chapters 5 to 9

� Several case studies motivated by reality were performed and the obtained
results were evaluated by experts.

Chapter 3

� Implementation of two software tools supporting some issues of our
proposed method. Chapter 9 Example

� A proof of concept prototype of the GOThIC reuse infrastructure. Chapter 9
Chapter10

Persuasion
� Persuasion on the grounds of the formative and preliminary summative

evaluation results. Current results are discussed in their corresponding
chapters.

Chapter 11

1.5 Research Context

The research in this thesis has been conducted within the GESSI3 (Software Engineering for
Information System Group) research group from the Technical University of Catalunya (UPC).
The GESSI group conducts research in many fields of software engineering, with particular
emphasis on ontological approaches to support procurement and implementation of COTS
components, requirements engineering, software metrics, construction of quality models for
software domains, software process modelling, enactment, and software certification.

This thesis is specifically involved in the COTS selection and procurement research line
which has been progressing through several projects the group has carried out and is currently
carrying out. Some of the most representative projects are:

� PRISMA (Academic Record Management System) [PRI],

� DALI (Methodologies and tools for the Development, Acquisition, evaLuation and
Integration of software components) [DAL], and

� UPIC (towards a Unified approach to the Procurement and Implementation of
information system) [UPI].

The PRISMA project was a technology transfer project and the last ones refer to financed
research projects. The author of this thesis has been directly involved in the last two projects.

In the PRISMA project, the group was engaged to assess the development of an academic
record management information system which was planned to include some strategic business
functionalities. To select the required COTS, several problems were experienced. As a result,
several research works were envisaged and some of them were further explored through the
DALI project, which goal was to supply a methodological and technological platform for
component-based software development.

Although the DALI project’s goal was successfully attained, some other problems out of the
original scope of DALI were also evident, as those mentioned in Section 1.1. Consequently,
given the importance of the former findings, the current UPIC project was envisaged to study,
extend and apply methods, models, techniques and languages to help the effective and efficient

3 http://www.lsi.upc.es/~webgessi/index.html

Chapter 1: Introduction

11

procurement and implementation processes for COTS in the context of the information systems
organizations.

The work presented in this thesis is part of the UPIC project. Some members of the group are
engaged in complementary issues to reach the overall goal of the UPIC project, as the formal
representation of quality aspects driving COTS selection, the evaluation of architectures and
alternatives, etc. whilst this thesis is devoted to improve the COTS searching process. The work
presented here will be complemented with their results.

On the other hand, a preliminary industrial evaluation of GOThIC has been performed within
the European ITEA project, Norwegian COSI (Co-development using inner & Open Source in
Software Intensive products) [COS] which aims to enable the Norwegian IT sector to fully
exploit the benefits and advantages of COTS and Open Source Software (OSS) components.
Some of the involved partners of this project are IKT-Norge, the Norwegian University of
Science and Technology (NTNU), eZ systems, Keymind and Linpro corporations. Furthermore,
as a result of our collaboration from this intended evaluation, several future research lines are
envisaged with our GOThIC proposal as a core of a project having as potential partners to some
academic and industrial organizations as Hewlett Packard, NTNU, Politecnico di Torino, Centre
de Recherche Public Henri Tudor (CRPHT), Beijing University of Technology (BJUT) and
UPC among others (see Chapter 11).

1.6 Contributions

The primary contributions of this thesis are related with the COTS searching and reuse areas.
Since most of current COTS selection methods do not deal with COTS searching and reusability
issues, the GOThIC method proposed in this thesis advances in the state-of-the-art by providing
support to build a reliable COTS domain reuse infrastructure supported by highly evolvable and
adaptable goal-oriented COTS taxonomies. It not only deals with some open issues related to
categorizing and searching COTS but also it is aimed at supporting reusability of both COTS
related information and the knowledge gained in each selection process.

It impacts positively on the accuracy and reliability of COTS selection processes and
therefore improves the whole CBSD practice.

Throughout this thesis further contributions are described, which are then summarized in
Chapter 11.

1.7 Publications in Relation to this Thesis
4

Many aspects of this thesis have been published at different levels:

Journals

[Fra+07] Franch, X.; Grau, G.; Mayol, E.; Quer, C.; Ayala, C.; Cares, C.; Navarrete, F.; Haya,
M.; Botella, P.: “Systematic Construction of i* Strategic Dependency Models for
Socio-Technical Systems” International Journal of Software Engineering and
Knowledge Engineering (IJSEKE). Volume 17, No. 1, February 2007.

[Aya+05c] Ayala, C., Botella, P., Franch, X.: “Construction of a Taxonomy for Requirements
Engineering Comercial-Off-The-Shelf Components” Journal of Computer Science
and Technology, Special Issue on Software Requirements Engineering Vol. 5, No. 2,
August 2005.

4 All these publications can be downloaded from http://www.lsi.upc.edu/~cayala/

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

12

Conference Proceedings

[Aya-Fra08] Ayala, C., Franch., X.: “Assessing What Information Quality Means in OTS Selection
Processes”. International Conference on Composite-Based Software Systems
(ICCBSS 2008). To appear. IEEE Society Press

[Aya+07] Ayala, C., Sørensen, C.F., Conradi, R., Franch, X., Li, J.: “Open Source
Collaboration for Fostering Off-The-Shelf Components Selection”. In IFIP
International Federation for Information Processing, Volume 234, Open Source
Development, Adoption and Innovation. (OSS 2007). June 2007, pp. 17-30.

[Aya-Fra06c] Ayala, C.; Franch, X.: “Domain Analysis for Supporting Commercial Off-The-Shelf
Components Selection”. In Proceedings of the 25th International Conference on
Conceptual Modelling (ER 2006). Tucson, Arizona, USA. Lecture Notes in Computes
Science. Vol. 4215/2006. pp. 354-370.

[Aya-Fra06a] Ayala, C., Franch, X.: “A Goal-Oriented Strategy for Supporting Commercial Off-The-
Shelf Components Selection” In Proceedings of the 9th International Conference on
Software Reuse (ICSR). Torino, Italy. Lecture Notes in Computer Science. Vol.
4039-2006. pp. 1-15. June 2006.

[Aya-Fra05] Ayala, C.; Franch, X.: “Transforming Software Package Classification Hierarchies
into Goal-Based Taxonomies” In Proceedings of the16th International Conference on
Database and Expert Systems Applications (DEXA 2005). Copenhagen, Denmark.
22-26 August 2005. Lecture Notes in Computer Science. Vol. 3588/2005. pp. 665-
675

[Gra+05] Grau, G.; Franch, X.; Mayol, E.; Ayala, C.; Cares, C.; Carvallo, J.P.; Haya, M.;
Navarrete, F.; Botella, P.; Quer, C.: “RiSD: A Methodology for Building i* Strategic
Dependency Models” In Proceedings of the 17th International Conference on
Software Engineering and Knowledge Engineering (SEKE’05). 14-16 July, 2005.
Taipei, Taiwan, Republic of China. Pp. 259-266.

[Aya+05a] Ayala, C.P., Botella, P., Franch, X.: “On Goal-Oriented COTS Taxonomies
Construction” In Proceedings of the 4th International Conference on COTS-Based
Software Systems (ICCBSS 2005). Bilbao, Spain. Lecture Notes in Computer
Science. Vol. 3412/2005. pp. 90-100.

Doctoral Symposium

[Aya06] Ayala, C.: “Systematic Construction of Goal-Oriented COTS Taxonomies” In
Proceedings of the 3rd Doctoral Consortium at the 18th Conference on Advanced
Information Systems Engineering (CAISE 2006).5-9 June 2006, Luxembourg.

Workshops

[Aya-Fra06b] Ayala, C., Franch, X.: “Overcoming COTS Marketplace Evolvability and
Interoperability”. In Proceedings of CAISE Forum at 18th Conference on Advanced
Information Systems Engineering (CAISE 2006) June 2006, Luxembourg.

[Aya+05b] Ayala, C.; Cares, C.; Carvallo, J.P.; Grau, G.; Haya, M.; Salazar, G.; Franch, X.;
Mayol, E.; Quer, C.: “A Comparative Análisis of i* -Based Goal-Oriented Modelling
Languajes” In Proceedings of the International Workshop on Agent-Oriented
Software Development Methodology (AOSDM 2005), at the SEKE Conference. July
2005. Taipei, Taiwán; China. Pp.43-50.

[Aya+04c] Ayala, C.; Botella, P.; Franch, X.: “Construccion de una Taxonomía de Componentes
COTS Orientados a la Gestión de Requisitos” In Proceedings of the VII Workshop on

Chapter 1: Introduction

13

Requirements Engineering. Tandil, Argentina. December 2004. ISBN 950-658-147-9.
pp. 214-225.

[Aya+04b] Ayala, C.; Cares, C.; Carvallo, J.P.; Grau, G.; Haya, M.; Salazar, G.; Franch, X.;
Mayol, E.; Quer, C.: “Análisis Comparativo de Lenguajes de Modelado Orientados a
Objetivos basados en i*” In Proceedings of the Jornadas Iberoamericanas de
Ingeniería del Software e Ingeniería del Conocimiento (JIISIC’04). Madrid, Spain.
2004. Pages: 527-540.

[Aya+04a] Ayala, C.; Botella, P.; Franch, X. “Goal-Based Reasoned Construction of
Taxonomies for the Selection of COTS Products” In Proceedings of the 8th World
Multiconference on Systemics, Cybernetics and Informatics (SCI 2004). July 18-21,
Orlando, Florida, USA.

Technical Reports

[Aya-Fra07] Ayala, C., Franch X.:”A Systematic Aproach to Manage Information Quality for
Supporting Software Package Selection” Research Report Universitat Politècnica de
Catalunya, Departamento de Lenguajes y Sistemas Informáticos.

[Aya-Fra06TR-a] Ayala, C., Franch, X.: "Domain Analysis for Supporting Commercial Off-The-Shelf
Components Selection" (Extended Version) Research Report LSI-06-16-R.
Universitat Politècnica de Catalunya, Depto. de Lenguajes y Sistemas Informáticos.
http://www.lsi.upc.edu/dept/techreps/llistat_detallat.php?id=916

[Aya-Fra06TR] Ayala, C., Franch, X.: "A Process for Building Goal-Oriented COTS Taxonomies"
Research Report LSI-06-7-R.Universitat Politècnica de Catalunya, Departamento de
Lenguajes y Sistemas Informáticos.
http://www.lsi.upc.edu/dept/techreps/llistat_detallat.php?id=907

[Aya05PT] Ayala, C. “Systematic Construction of Goal-Oriented COTS Taxonomies”. Thesis
Project presented to fullfil the requirements of the ”Diploma de Estudios Avanzados”
and PhD Thesis Evaluation. July 2005.

[Aya+05TR] Ayala, C.P., Botella, P., Franch, X. "Goal-Based Reasoning in the Construction of
Taxonomies for COTS Components" Technical Report LSI-05-58-R. Universitat
Politècnica de Catalunya, Departamento de Lenguajes y Sistemas Informáticos.

[Aya+04TR] Ayala, C. P., Botella, P., Franch, X.:"Towards the Definition of a Taxonomy for the
COTS Product´s Market" Technical Report LSI-04-3-R. Universitat Politècnica de
Catalunya, Departamento de Lenguajes y Sistemas Informáticos. 2004.

Master Thesis Projects

[Aas-Lar07] Aaslund, K., Larsen S.: “OTS-Wiki: A Web Community for Fostering Evaluation and
Selection of Off-The-Shelf Software Components” Master Thesis. Department of
Computer and Information Science, Norwegian University of Science and
Technology (NTNU). Spring 2007. http://www.idi.ntnu.no/grupper/su/su-diploma-
2007/dipl07-larsen-aaslund.pdf

Undergraduate Students Projects

[Mes07] Messegue, F. “Eina de suport per al anàlisi de dominis”.
http://www.lsi.upc.edu/~cayala/Papers/IQToolDocumentation.pdf. Jan 2007. In
catalan.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

14

1.8 Organization of the Document

The thesis document is structured in the following 11 Chapters:

� Chapter 1. Introduction. It provides an introduction to the work, the objectives of the
thesis and an overview of the proposal.

� Chapter 2. Related Work. It presents an overview of the state-of-the-art and state-of-
the-practice of COTS selection, as well as a brief introduction to the most interesting
features related to the disciplines used to solve the problem presented in this thesis.

� Chapter 3. Research Method. It presents the research process used to produce the
method introduced in this thesis. It briefly presents the case studies which served as the
conceptual origin for the GOThIC method.

� Chapter 4. The GOThIC method. This chapter provides an overview of the GOThIC
method proposed in this thesis, including an introduction to its seven main activities
and their objectives. Additionally some of its high-level contributions, intended
audience and applicability conditions are discussed. It is also stated in [Aya-Fra06a].

From Chapter 5 to 9, the GOThIC method activities are further described. Each chapter
describes the background and the strategy used to deal with the problems mentioned in Section
1.1. Salient features and artifacts produced are illustrated through examples from the case
studies discussed in Chapter 3.

It is worth to mention that the focus in this thesis and the GOThIC method is on the
activities, not in the sequence of activities; it means that although the method activities are
described as sequential, they are in fact concurrent and overlapping.

The content of subsequent Chapters is as follows:

� Chapter 5. Activity 1: Exploration of Information Sources. It describes the approach to
systematically tackle the problems related with the vast amount of unstructured,
incomplete, evolvable and widespread COTS information that highly increases the risks of
taking a wrong decision when selecting them. This activity is also detailed in [Aya-Fra07].

� Chapter 6. Activity 2: COTS Domain Analysis. This chapter discusses the domain
analysis strategy for recording the information needed to describe COTS market
segments as required for effective COTS. A summary of this chapter can be found in
[Aya-Fra06c].

� Chapter 7. Activity 3, 4, 5: Goal-Oriented Core of GOThIC. This chapter tackles the
Identification, Refinement and Statement of Goals, Establishment of Dependencies, and
Goal Taxonomy Structuring activities. In summary it details the application of goal-
oriented approaches (e.g., GBRAM and i*) and some considerations for their usage in
the GOThIC method. It is also explained in [Aya-Fra06b].

� Chapter 8. Activity 6: Goal Taxonomy Validation and Management. This chapter deals
with the process of making goal-taxonomies schemas flexible to different intended
needs and marketplace evolution patterns as well as assuring their completeness and
correctness. Several transformation rules intended for this purpose, have been identified
and validated in our industrial and academic experiences. A former version of these
rules was published in [Aya-Fra05].

� Chapter 9. Activity 7: Knowledge Base Management. In this chapter, the advantages of
the existence of several reusable artefacts identified in our GOThIC process to reach
the Experience Factory [Bas+94b] and Learning Software Organization [Ruh01]
paradigms are illustrated. Also the intended strategies to populate and maintain the

Chapter 1: Introduction

15

knowledge base repository obtained with GOThIC [Aya+07]. Some tools developed
and/or used to support the method activities and knowledge management are
introduced.

� Chapter 10. Method Evaluation. This chapter discusses the main current evaluation
efforts for the method presented in this thesis.

� Chapter 11. Conclusions & Future Work. This chapter summarizes the contributions of the
thesis and details the future work.

Fig. 1.1 shows the relationship among the thesis chapters, the GOThIC method activities and
the publications related to this thesis dissertation.

Thesis Chapters GOThIC Activities Related Papers

Chapter 1: Introduction

Chapter 2: Related Work

Chapter 3: Research
Method

Chapter 4: The GOThIC
Method

Chapter 5: Exploration of
Information Sources

Chapter 6: Domain
Analysis

Chapter 7: Goal-Oriented
Core of GOThIC

Chapter 8: Goal-
Taxonomy Validation and

Management

Chapter 9: Knowledge-
Base Management

Chapter 10: Method
Evaluation

Chapter 11: Conclusions
& Future Work

Exploration of Information
Sources

COTS Domain
Analysis

Identification, Refinement
And Statement of Goals

Establishment of
Dependencies

Goal-Taxonomy
Structuring

Taxonomy
Validation and Management

Knowledge-Base
Management

Aya05PT

Aya06

Aya-Fra06a

Fra+07

Aya+05c

Aya-Fran07

Aya+07

Aya-Fra06c

Aya-Fran05

Gra+05

Aya+05a

Aya-Fra06b

Aya+05b

Aya+04c

Aya+04b

Aya+04a

Aya-Fra06TRa

Aya-Fra06TR

Aya+05TR

Aya+04TR

Aya-Fran08

Mes07

Aas-Lar07

Fig. 1.1 Relationship among thesis chapters, GOThIC activities and publications

17

Chapter

2
Related Work

he main purpose of this chapter is to position the work of this thesis by surveying the State-
Of-The-Art and State-Of-The-Practice on COTS selection and searching processes. Moreover,
the main topics used in shaping the method proposed in this thesis are discussed.

The Chapter is divided in 4 sections: Section 2.1 clarifies several definitions used through
this thesis. Section 2.2 discusses the State-Of-the-Art in COTS selection processes and the wide
range of works proposed to support COTS selection related issues. Section 2.3 tackles the State-
Of-The-Practice and highlights the main industrial problems detected. Tables are used to
summarize and compare the different approaches.

Finally, as this thesis builds upon existing work, in Section 2.4 some of the main approaches
used to develop the GOThIC method are briefly introduced, whilst many other important
approaches are discussed as background in their corresponding method’s activities description
(Chapters 5-9).

2.1 Introduction

Traditionally, organizations developed systems from scratch with control over all or most of the
pieces, following established process models in software engineering (e.g., Waterfall, Spiral, or
Iterative process models). Regardless of which process model an organization used, they
performed requirements, design, architecture, construction, integration and test activities.
However, the use of COTS changes the focus of the development-centric approach assumed in
traditional software development (i.e., custom development) by a procurement-centric approach
[Bro+00], [Kon-Hut07].

Table 2.1 provides a general overview of this fundamental software development change. It
can be observed that the nature, timing, and order of activities performed and the processes used
differ accordingly. Furthermore, it can be inferred that using COTS is not merely a technical
matter for system integrators, but many changes must be faced.

While some of these changes are obvious, others are quite subtle. Not only requirements
engineering activities must change to support simultaneous consideration of system
requirements and the marketplace, but also numerous technical, procurement, organizational,

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

18

management, and business activities must also be adapted to deal with the challenges and risks
of efficiently using COTS and exploiting their benefits [Voa98], [Mora+07].

In this context, it is obvious that the models traditionally used in custom-development do not
address the COTS related activities [Mor+02], [Kon-Hut07] making essential to perform further
studies for supporting them. It is especially true in the COTS selection arena which some
current open issues are discussed and addressed by this thesis.

Table 2.1 The Fundamental change among custom-development and CBSD

Traditional
Software
Lifecycle

Custom Development COTS-Based Systems Development

Requirements

Creation of system requirements to
create a software system that meets
these requirements (the engineers
are producers)

Creation of a set of flexible requirements
followed by the COTS marketplace exploration
for selecting components that best fit these
requirements. The engineers are consumers
who then integrate the products.

Design

Analyze requirements to produce a
description of the internal structure
and organization of the system that
will serve the basis for its construction

To integrate the products into a software
system that meets the requirements. It implies
an iterative trade-off process of requirements
analysis, architecture, COTS availability,
prioritization and negotiation.

Construction
Coding the detailed design to
implement the system requirements.

Some requirement functionalities that were not
addressed by any COTS are usually developed
in-house. In any case, usually glue code is
used to mediate components interactions; as
well as bridges or adaptors to smooth over
incompatibilities in the component interfaces.

Testing
Integration and evaluation of the
product quality by verifying its
behaviour by a finite set of test cases.

Although COTS are tested by the component
provider, they should be retested by the user to
assure their suitability and their good system
integration.

Maintenance
Modification to code and associated
documentation due to a problem or
need for improvement [ISO12207]

Due to maintenance effects, COTS-Based
systems undergo a technology refresh and
renewal cycle that has many implications.

2.1.1 COTS Definition

The literature about COTS addresses several development issues and is very heterogeneous in
terminology; therefore, we provide a brief discussion of the different definitions to clarify the
concepts used in this dissertation.

Firstly, it is important to stand out that there is a lack of consensus about the COTS
characteristics and their definition. The term COTS applies to a broad range of products, which
exhibit different issues [Car-Lon00], [Tor-Mor04], [Moh+07]. From the literature, the term
COTS results very generic, covering a large variety of products. However, all agree that COTS
are a special class of reusable components.

Indeed, COTS can be either software or hardware or a mixture of both. In this thesis, we
only focus on software COTS, however most of the issues and advices are equally applicable to
hardware.

Sometimes the terms software package, Non-Developmental Item (NDI), out-of-the-box
product, and shrink-wrap solution are used as COTS synonymous [Fra-Tor05]. In other cases,
other labels are used to capture the source of the component, as GOTS (Off-The-Shelf Software
owned by the government) and MOTS (Modifiable Off-The-Shelf).

In [Mor-Tor02] a survey about the different meanings and coverage of the term COTS is
presented. An excerpt of this survey is stated in Table 2.2.

Chapter 2: Related Work

19

Table 2.2 Different definitions of COTS, surveyed by [Mor-Tor02]

Source Definition

Vigder and Dean

[Vig-Dea97]

Define COTS as pre-existing software products, sold in many copies with
minimal changes; whose customers have no control over specification,
schedule, and evolution; access to source code as well as internal
documentation is usually unavailable; complete and correct behavioural
specifications are not available.

Carney and Long

[Car-Lon00]

This approach considers Origin and Modifiability as attributes to define
COTS. The possible values for these attributes are:

Origin: Independent Commercial Item, Special Version of Commercial
 Item, Component Produced by Contract, Existing Components
 from External Sources, Component Produced In-house.

Modification: Extensive Reworking of Code, Internal Code Revision,
 Necessary Tailoring and Customization, Simple
 Parameterization, Very Little or no Modification.

Basili and Boehm

[Bas-Boe01]

Specify that COTS has the following characteristics:

a) the buyer has no access to the source code;
b) the vendor controls its development, and;
c) it has a non-trivial installed base.

This definition is more restrictive and does not take into account some
types of software products like software products developed for special
purposes and not widely deployed, special version of commercial software
products and open source software.

Software Eng.
Institute (SEI)

[SEI]

A COTS product is: sold, leased, or licensed to the general public; offered
by a vendor trying to profit from it; supported and evolved by the vendor,
who retains the intellectual property rights; available in multiple, identical
copies; and used without source code modification.

In addition, in a more recent work, Torchiano and Morisio [Tor-Mor04] gives a more
detailed, empirically based definition stated as: “A COTS product is a commercially available

or open source piece of software that other software projects can reuse and integrate into their

own products”.

From these definitions we can realize that they are different in their coverage. It is common
that researchers and practitioners use the same word with different meanings. Some of them use
the term COTS covering freeware and Open Source Software (OSS) as well as other kinds of
components (e.g., [Ber+06], [Moh+07b]); whilst others are more restrictive (e.g. [Tau+04],
[Bhu-Boe05]).

In order to be precise, in this thesis we follow the SEI definition:

“A COTS product is a [software] product that is:

(1) sold, leased, or licensed to the general public;

(2) offered by a vendor trying to profit from it;

(3) supported and evolved by the vendor, who retains the intellectual property rights;

(4) available in multiple, identical copies; and

(5) used without source code modification by a consumer.”

B.C. Meyers, P. Oberndorf. Managing Software Acquisition, Addison-Wesley, 2001.

Consequently, we consider a COTS-Based System (CBS) as a computer based application
that integrates one or more COTS, while COTS-Based System Development (CBSD) as the
processes that lead to the development of a CBS.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

20

2.2 State-of-the-art

2.2.1 COTS Selection Approaches

This section discusses existing COTS selection approaches and summarizes their contribution to
the evolution of COTS selection practices. Subsequently, the main open issues of existing
COTS selection approaches with respect to the topics addressed by this thesis are highlighted.

COTS selection has been considered a relatively immature area [Rei+03]. As COTS research
has progressed, several approaches have been carried out for dealing with diverse aspects of
COTS selection.

Despite there is no commonly accepted method for COTS selection [Ruh03], [Moh+07] all
methods share the next high-level, iterative and overlapping steps:

� Searching COTS from the marketplace

� Evaluating candidate COTS with respect to the system requirements to select the

best COTS from a set of competing alternatives.

Some of the required roles to perform the COTS selection process and the activity of
documenting the decision are sketched in Table 2.3.

Table 2.3 Activities and Roles in COTS Selection

Activity COTS Users Roles

Searching
Candidates COTS

Market Watcher (MW) explores the marketplace segments to find components and
information about them that may match the established requirements.

Evaluating
Candidate COTS

Quality Engineer (QE) measures the factors that are related to the requirements in
the candidate components.

Deciding COTS
Component(s)

Selector (S) takes the final decision based on the evaluation of the candidates and
also taking into account other relevant information (mainly organizational).

Documenting the
Decision

Knowledge Keeper (KK) stores and documents the produced information and the
decisions taken in the process for their future use in forthcoming selection
processes.

In [Moh+07] the improvements made to the COTS selection process over the last decade are
highlighted. Fig. 2.1 shows such progression with respect to some representative approaches.

It is considered that the first widespread selection method was the OTSO (Off-The-Shelf

Option) Method, it was proposed by Kontio in 1995 [Kon95]. The method was further
elaborated in [Kon96] and [Kon+96]. This method defines the basic structure of COTS selection
methods and serves as a basis for other approaches. OTSO comprises 3 phases: searching,
screening, and evaluation. It provides specific techniques to define the criteria for searching,
evaluating and comparing the cost and benefits of alternative products. The Analytic Hierarchy
Process (AHP) [Saa-90] is used to consolidate the evaluation results for decision-making.
However, to perform the screening phase, no suitable techniques were provided to find the
candidate COTS in the marketplace.

In 1997 several approaches were proposed, examples are the IusWare approach [Mor-
Tsu97], PRISM (Portable, Reusable, Integrated, Software Modules) [Lin+97], and CISD
(COTS-based Integrated Systems Development) [Tra-Liu97]. Some of the main concerns of
these approaches were related with the need of formalization of the COTS selection activities
(mainly evaluation) [Mor-Tsu97] and providing a generic architecture to be used during COTS
evaluation [Lin+97].

The proposal of Tran and Liu [Tra-Liu97], is related with the fact that COTS are designed to
meet the needs of a marketplace instead of satisfying the requirements of a particular

Chapter 2: Related Work

21

organization; therefore, it is not possible to ensure that the COTS available will meet all stated
requirements, and usually there is no single COTS that satisfies all of them. Hence, they
realized the need of supporting the processes of selecting multiple homogeneous COTS.

1995 � The basic structure of COTS Selection Process (CSP): OTSO

1996 � Further elaboration of OTSO.

1997
� Formalization of CSP
� Generic component architecture
� Multiple COTS selection

1998 � Requirements Engineering process for CSP

1999 � Studying the effects of social factors

2000-
2001

� Tailorability of the evaluation process:
� Further refinement for the requirements engineering process

(ongoing project).

2002
� Detailed tailorable process
� Use of screenshots and use-cases for requirements
� Multiple COTS selection

2003
� Risk-driven evaluation
� Use of fuzzy theory and optimization techniques
� Use of models to decide the suitability of COTS

2004
� Emphasis on non-functional requirements
� Using quality models during the evaluation.

2005-
2006

� Systematic handling of mismatches between COTS attributes
and requirements

Future ?

Fig. 2.1 Evolution of COTS selection practices [Moh+07]

In 1998, the importance of a suitable requirements engineering process for CBSD was
further evidenced. In this context, the PORE (Procurement Oriented Requirements) [Mai-
Ncu98] approach represented a key milestone. PORE [Mai-Ncu98] is a template-based
approach supporting iterative evaluation and selection of COTS. Its model identifies four goals:
(a) acquiring information from stakeholders, (b) analyzing the information to determine if it is
complete and correct, (c) making the decision about product requirement compliance if the
acquired information is sufficient, and (d) selecting one or more candidate COTS. The
elicitation of features of existing COTS and requirements engineering are conducted in parallel
using an iterative process of requirements acquisition and product evaluation. PORE’s iterative
process selects products by rejection (i.e., the products that do not meet core customer
requirements are selectively and iteratively rejected and removed from the candidate list).
However, the method does not address how existing COTS are gathered. A prototype tool
known as PORE Process Advisor was developed to support the PORE approach. The
SCARLET approach [Mai+02], (formerly named BANKSEC) published in 2002, is the
successor of the PORE method. It adapts PORE to the banking domain and also enables
multiple selections. However, the problem of gathering suitable COTS from the marketplace is
still opened.

Along 1999 approaches as STACE (Social-Technical Approach to COTS Evaluation) [Kun-
Bro99] (further elaborated in [Kun03]) emphasized the social and organizational issues to
COTS selection process as well as the importance of non-technical factors such as business and
vendor capabilities during the evaluation process. However, the process of how to get this kind
of information about the components was not addressed.

Subsequently, since the selection of COTS involves an extensive process of requirements
analysis, prioritization, and negotiation; approaches as CAP (COTS Acquisition Process)

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

22

[Och+01], CRE (COTS-Based Requirements Engineering method) [Alv-Cas01], CEP
(Comparative Evaluation Process Activities) [Phi-Pol02], PECA (Plan, Establish, Collect, and

Analyze) [Cor+02], and StoryBoard [Gre+02], emphasized the decisive importance of the
evaluation process and its tailoring.

CAP [Och+01] addressed the concept of “tailorable evaluation process” for highlighting that
the COTS evaluation process should be tailored based on the available effort for each project.
For tailoring the process, they made us of expert’s knowledge.

The CRE approach [Alv-Cas01] was developed to facilitate a systematic, repeatable, and
requirements-driven COTS selection process. The method focuses on non-functional
requirements to assist the process of selection and evaluation of COTS. It has four iterative
phases: identification, description, evaluation and acceptance. The identification phase is based
on a careful analysis of influencing factors; there are five groups of factors: user requirements,
application architecture, project objectives & restrictions, product availability and
organizational infrastructure. During the description phase, the evaluation criteria are elaborated
in detail. In the evaluation phase, a particular COTS product is selected based on estimated cost
versus benefits.

The CEP approach [Phi-Pol02] claimed that the more reliable the source of data is, the
higher confidence on the results is. Therefore they introduce the use of a Confidence Factor
(CF). Any estimate made in the evaluation process should be adjusted based on the CF value of
the source based on which these estimations are made.

The PECA approach [Cor+02] from the Software Engineering Institute (SEI) [SEI] proposes
a COTS selection process which can be tailored by means of proposed guidelines. It is
important to mention that SEI has been greatly contributing to the advancement on COTS
selection practices since many years ago. Examples are [Bro+00], were they published a set of
guidelines for developing CBD processes; the APCS (Assembly Process for COTS-based

Systems) approach [Carn+03], a generic process framework for developing software systems
based on COTS; and quantitative methods for software selection an evaluation [Ban06]; as well
as many others COTS related works that can be consulted at [SEI].

The StoryBoard approach [Gre+02] suggests incorporating use-cases and screen-captures
during the requirements engineering process to help customers understand their requirements,
and thus acquire more appropriate COTS.

Several other approaches making use of different techniques were put forward as the DBCS
(Domain-Based COTS Selection) method [Leu-Leu03]; the composable process elements for
developing CBS proposed by Boehm et al [Boe+03a] that wakes use of the the WinWin Spiral
model [Boe+03b], and the approach presented by Erol et al [Ero-Fer03].

 The DBCS [Leu-Leu03] makes use of specific domain models to decide the suitability of
COTS products. This approach has as goal to reduce the amount of work required for the
selection process by reusing a domain model of the domain. However, it does not tackle how
the domain model should be constructed neither how candidate COTS are searched in the
marketplace.

The WinWin Spiral model [Boe+03b] makes use of the risk-driven paradigm to identify,
analyze and resolve risks in an iterative evaluation process, whilst the approach of Erol et al.
[Ero-Fer03] suggests the use of fuzzy theory to quantify qualitative data, as well as optimization
techniques to determine optimal solutions.

At this point, a common shortcoming of most COTS selection proposals was that they put
more emphasis on functionality and cost factors than on non-functional requirements. Thus,
some researcher and practitioners as Beus-Dukic and Bøegh [Beu-Bøe03] claimed that the role

Chapter 2: Related Work

23

of non-functional requirements becomes more important than functional requirements in regard
to COTS selection. It is worth noting that it is because COTS have their functionality already
built-in [Car+03].

In this sense, some approaches made a great emphasis on managing non-functional
requirements driving COTS selection by using quality models as [Fra-Car03] and [Bur+02]; this
last addressing combined selection of COTS. The proposal of Franch and Carvallo [Fra-Car03]
was further elaborated in the COSTUME (COTS-based System qUality Model dEvelopment)
method [Car+04c] and supported by a tool called DesCOTS system [Gra+04].

A special mention deserves a project started since 2001 by Chung et al. in order to define a
more complete COTS selection approach called CARE (COTS-Aware Requirements
Engineering) [Chu-Coo04]. It draws upon the ideas of existing methodologies including RUP
[RUP] and PORE [Mai+02]. The goal is to define an agent- and goal-oriented methodology that
supports the definition and selection of COTS from a technical view. Using goals, the
traceability relationships among the produced artifacts are established and maintained (e.g. a
soft-goal is refined and traced to specific system requirements). For each COTS they capture:
their goals (soft goals and hard goals) and their detailed specification. Thus, COTS are stored
and maintained in a knowledge base, or repository. Departing from COTS descriptions, searches
are enabled to determine which products appear to be potentially useful. However, despite
pretending to fill the gap of previously presented methods and improve reuse by means of this
COTS descriptions repository, the CARE approach also share some obvious drawbacks with
most existing proposals: 1) They assume that COTS candidates already exist as the system
requirements are under development. 2) All of them assume that a COTS repository exists but
any work addresses how to build such repository. 3) Finding COTS information to describe
COTS in the repository is not an obvious task, and they do not address how to obtain it. 4) The
maintainability and trustworthiness of the information in the repository is especially complex
since COTS marketplace characteristics are not greatly dealt. 5) The searching process is not
very efficient having to look for components in a widespread range of descriptions.

As it can be observed, although the COTS selection area has been greatly active in the last
decade, in recent years a plethora of proposals and studies have been put forward to support
COTS selection practices from many perspectives. Some examples are: [Ye-Kel04], [Dub-
Fra04], [Sai+04], [Yeo-Mil04], [Wan-Far05] [Bhu-Boe05], [Jin+05], [Car05T], [Don+05],
[Hen+05], [Req+05], [Bar+05], [Mic+05], [Man-And05], [Wan-Hom05], [Shy-Shi06], [Ban06],
[Vaf+06], [Sas+06], [Zhe+06], [How-Lig06], [Car06], [Car-Fra06], [Crn+06], [Lin+07], [Moh-
+07b], [Bhu+07], [Man+07], [Rom-Ken07].

For instance, in 2005, based on empirical data gathered from five years of developing e-
services applications, Bhuta and Boehm observed that projects that mitigated the risk of
component interoperability earlier in the project development cycle were more successful
during the integration phases than those projects that had neglected the component
interoperability issues during their component selection. Thus, they developed and applied a
method for component selection that focuses on piecewise evaluation, as well as the
interoperability between the candidate components [Bhu-Boe05], [Bhu+07].

The use of quality models to drive COTS evaluation is being also explored (e.g., [Sed+03],
[Car05T], [Raw-Mat06], [Ber+06], [Car+07a]); whilst several others selection methods are
being also proposed describing useful activities to be performed (e.g. [Don+05], [Jin+05],
[Sas+06], [Lin+07]).

Other works propose to add novel technologies emerging from other areas as decision
support systems, method engineering, strategic contracting and procurement, simulation and
formal reasoning. For instance, in [Coo+05], the use of finite value logic, fuzzy logic algorithms
are being investigated for the selection of COTS; and [Moh+07b] introduces a process for

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

24

handling mismatches between COTS and requirements using techniques as linear programming
to identify near optimal solutions. It is called MiHOS (Mistmatch-Handling aware COTS

Selection) and aims at addressing COTS mismatches during and after the selection process. A
tool support, namely MiHOS-SA which stands for MiHOS-Sensitivity Analysis is provided in
order check the robustness of MiHOS’s results against input errors.

On the other hand, a slight extent of industrial case studies, experiences and empirical
studies have been published (e.g. [Jen03], [Rei+03], [Tor-Mor04], [Min04], [And04], Li+05],
[Li+06], [Li06], [Kei-Tiw05], [Hsu-Wid06], [Sta-Lub06], [Don+06], [Car+07b]). However, it is
evident that more empirical data which analyzes the advantages and drawbacks of selecting
COTS in real software organizations is needed [Li06].

We may conclude that although many COTS selection issues still remain open, existing
approaches, whilst of different effectiveness and suitability for different contexts, have
contributed to the advance of COTS selection practices.

However, more empirical data is needed to drive COTS selection research into the right path.
A survey analysis is provided in the next subsection.

2.2.1.1 Analyzing COTS Selection Approaches

To highlight the main open issues of existing COTS selection approaches, some of them are
compared in terms of the following criteria:

a. SEARCH: Support they offer to the process of searching COTS from the whole
marketplace.

b. IDENT: Support they offer to the identification of candidate COTS and information
about them.

c. EVAL: Evaluating candidate COTS

d. REUSE: Reuse of knowledge gained in each selection process

e. SNG: Suitability for single COTS selection

f. MLT: Suitability for multiple COTS Selection

g. TAILOR: Tailorability of the process to the COTS selection needs.

h. TS: Availability of tool support to facilitate the application of the approach.

i. CVR: Coverage to the COTS selection involved roles introduced in Table 2.3.

Table 2.4 shows an excerpt of some of the COTS selection methodologies and their coverage
to the criteria exposed above.

From this Table, it is noticed that regardless of the different effectiveness and suitability for
different COTS selection contexts and activities, the focus of most of the existing methods is on
evaluating COTS alternatives with respect to the system requirements. Yet, it is necessary to
address many issues regarding how to search and identify COTS from the marketplace ad reuse
knowledge about them.

In general, most of these methods address adequately some of the complex characteristics of
the COTS selection process.

However, their main focus is to apply analysis, evaluation and decision techniques in the
selection process. Most of them assume that COTS candidates or a repository with enough
information about them already exist but do not address their construction. Just a few of them
informally address or suggest that support is needed to search, identify, and document COTS
from the marketplace.

Chapter 2: Related Work

25

Table 2.4 Comparing some representative methodologies dealing with COTS selection

APPROACH COMPARISON FACTORS

CVR
Name Year SEARCH IDENT EVAL SNG MLT REUSE TAILOR TS

MW QE S KK

OTSO 95/96 - - √ √ - - - - - * √ -

IusWare 1997 - - √ √ - - - - - √ * -

PORE 1998 - - * √ - - * √ - √ * -

STACE 1999 - * √ √ - - - √ √ -

CAP 2001 - - √ √ - - √ - - √ √ -

CRE 2001 - - √ √ * - - - - √ √ -

CEP 2002 - * √ √ - * - - - √ √ *

CARE 2001 - * * √ - * - √ - √ √ *

PECA 2002 - * √ √ - - √ - * √ √ -

StoryBoard 2002 - - * * √ - - - - * * -

Combined
Selection

2002 - * - * √ - - - - * * -

SCARLET 2002 - - * √ √ - * √ - √ * -

DBCS 2003 - - * √ - * * - - * √ -

WinWin 2003 - - √ √ * - - - - * √ -

COSTUME 2004 - - * √ √ √ √ √ - √ √ √

MiHOS 2007 - - √ √ - - - √ - √ √ -

(√) fully satisfies the criterion (*) partially, informally or implicitly satisfies the criterion (-) does not satisfy the criterion

The major shortfalls of most COTS selection methods in the reviewed literature are:

(1a) Lack of approaches that deal with all dimensions (i.e., functional aspects, non-functional,
non-technical, quality, etc.) required to select COTS, as well as the lack of guidelines to
support the users to tailor the method to their own processes.

(2a) Lack of techniques and mechanisms to document COTS. Most current approaches
assume that the knowledge required for evaluating COTS is available and reliable.
However, it is not in practice [Ber+03]. COTS related information is highly
heterogeneous and widespread making necessary to provide mechanisms to find and
assess it.

(3a) Absence of adequated mechanisms for helping the searching, identification, and
documentation of candidate components in the global marketplace [Aya06], [Tau+04].
Even when some of the existing methods recognize the importance of searching
candidate components to be evaluated, they do not specify how to search and identify
these components; most of them assume that they already exist in a common place (i.e., a
repository). (Section 2.2.3 describe different approaches trying to deal with some
searching and identification issues).

(4a) Most of the methods lack of knowledge management and reuse mechanisms. While most
of the methods recommend documentation of the selection process, they do not address
adequated mechanisms for recording and managing this body of knowledge. Thus, useful
knowledge gained in previous experiences tends to be lost.

Furthermore, several works (e.g., [Mor+00], [Clar+04], [Moh+04], [Wan-Hom06]) advocate
that having a repository for COTS products with enough information about them is becoming a
necessity for improving the CBSD practice.

2.2.2 Software Reuse Infrastructures and Knowledge Bases

Systematic software reuse is an engineering strategy proposed to increase productivity and
software quality and lead to economic benefits. Although COTS have been envisaged as
reusable components, their efficient reuse imposes many critical tasks. It is well known that to

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

26

reuse software components, re-users must be able to find and understand the components that
best fit their needs. If the process fails, reuse can not happen [Fra-Pol94], or even worst
erroneous components may be selected causing critical problems to the software development
project.

In this context, how to index and represent COTS so that they can be found and understood
are two important issues in enabling their efficient reuse [Bas+00], [Rav-Rot03].

There are two facets in software reuse: developing for reuse and developing with reuse.
Developing for reuse refers to developing components so that they can be reusable (e.g. the
development of COTS). Developing with reuse refers to the process of developing systems by
using reusable components (e.g. CBSD). In this thesis we focus on developing with reuse.

A typical systematic software reuse environment can be summarized as follows:

• Reusable software components must be indexed and stored in a software repository (also
called software component library or reusable software library), in such a way that they
can be found and understood by re-users.

• Re-users search the repository for the components, and if they meet requirements,
incorporate them into new applications. The structure of the repository is key in
obtaining good location and retrieval results.

Fig. 2.2 illustrates this process.

Repository

Classify

Components

Re-user

Search

Fig. 2.2 Components reuse environment

Knowledge may also be reused and knowledge reuse is partly reflected in reuse of
architectures, templates, processes or lessons learned from previous components selection. To
be successful, many authors claim that reuse must embrace the reuse of components and
experiences. This is the main idea of the so-called “Experience Factory” introduced by Basili et
al [Bas+94b] which enhances organizational learning by promoting an organizational reuse
infrastructure aimed at the storage and reuse of all sort of knowledge (experience and products)
resulting from the activities performed in the software lifecycle. Thus, having a knowledge base
to store and retrieve information during different component selection processes involves a lot
of advantages, for instance it reduces overall required evaluation time and effort whilst increase
the reliability of results. More recently, such concept has been enlarged to promote the concept
of Learning Software Organizations (LSO) [Ruh01] that are based on the same principle as the
Experience Factory but enhancing the reuse of knowledge into the organizations.

Systematic software reuse has been a popular topic of debate and discussion for over 30
years in the software community. A considerable number of research lines and approaches have
been put forward to support software reuse related activities. The reuse community initially
concentrated its research on technical issues, such as repositories, search-based tools, and
domain-specific languages; as well as information retrieval, information and knowledge
acquisition, knowledge management and representation (see [Luc+04] for a comprehensible
survey). Nevertheless, in practice, all these traditional approaches for building, maintaining, and
browsing software reuse repositories have suffered from lack of domain-specific components, a
heavy “fill-up” investment upfront, and under-critical information relevance later on [Fra-

Chapter 2: Related Work

27

Fox95], [Mor+02b], [Li+04], [Luc+07]. This has been associated to some problems as the
incomplete, unreliable, and too static characterization of components [Pou95], [Sea99],
[Luc+04].

In the context of CBSD these low success rates are in addition related with the actual
difficulty to deal with specific characteristics of the COTS marketplace and that traditional
approaches are mostly oriented to intra-organizational environments where the reusing
organization has control on the evolution of the functionality and assumptions of the assets,
which is not the case of COTS reuse. Therefore, the need of new approaches supporting COTS
reuse (i.e., extra-organizational reuse) has been widely recognized [Mor06].

2.2.2.1 Classification and its Central Role in Implementing Reuse Infrastructures

Classification (i.e., indexing) is central to the software reuse practice [Pri87]. A well-defined
classification structure is essential to the design of an effective storing, searching and retrieval
mechanism. Put simply, for reuse to be successful it must be easy to locate components with the
same or similar functionality in order to reduce the probability of retrieving non-relevant
components and make feasible their comparison in a component selection process.

Representation is an inherent problem of classification. The role of representation in a reuse
environment is fundamental. Representation is defined as a language (textual, graphical, etc.)
used to describe a set of objects. For instance, books in a library are represented by
bibliographic records in a library catalog. A representation allows operations that would be
more difficult or impossible on the represented object itself. It means, it is much easier, for
example, to sort a set of bibliographic records than to sort the same number of books.

Domain analysis is the process of acquiring and consolidating information about an
application domain so that a reusable infrastructure can be designed reliably [Fra+98]. Both
domain analysis and classification techniques have been used to derive representations of
reusable components in a domain in order to constitute a domain reuse infrastructure.

Classification Concept

The inherent concept of classification implies many terms that are often confused and used
interchangeably as taxonomy, typology, ontology, directory, cataloging, categorization and
classification are. For clarity, some of them are defined here [ClaSoc]:

• Categorization: is the process of associating a document with one or more subject
categories. So the entry for a page on cross trainer shoes could go into Running,
Manufacturing, and Sports Medicine. All of these are legitimate, depending on the context.

• Typology: is the study or systematic classification of types that have characteristics or traits
in common. This idea is the basis for most typological constructions, particularly of stone
artifacts where essential forms are often thought of as ‘mental templates’, or combinations
of traits that are favoured by the maker.

• Cataloging: come from libraries, where specialists enter the metadata (such as author, date,
title, and edition) for a document, apply subject categories to it, and place it into a class
(such as a call number) for later retrieval. It tends to be used interchangeably with
Categorization.

• Directory: is an organized set of links, like those on Yahoo or the Open Directory Project,
which allows a web site to display the scope and focus of its content. A directory can cover
a single host, a large multi-server site, an intranet, or the Web. At each level, the category
names provide instant context information to users. Rather than a simple list, such as the
results of a search, drilling down into the more and more specific categories (for example

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

28

Shopping>Clothing>Footwear>Athletic) explains how the pages fit into the larger set of
information.

• Clustering: is the process of grouping documents based on similarity of words, or the
concepts in the documents as interpreted by an analytical engine. These engines use
complex algorithms including Natural Language Processing, Latent Semantic Analysis,
Bayesian statistical analysis, and so on.

• Thesaurus: is a set of related terms describing a set of documents. This is not hierarchical: it
describes the standard terms for concepts in a controlled vocabulary. Thesauri include
synonyms and more complex relationships, such as broader or narrower terms, related
terms, and other forms of words.

• Taxonomy: is the organization of a particular set of information for a particular purpose. It
comes from biology, where it's used to define the single location for a species within a
complex hierarchic. Biologists have arguments about where various species belong,
although DNA analysis can resolve most of the questions. In informational taxonomies,
items can fit into several taxonomic categories.

• Ontology: is the study of the categories of things within a domain. It comes from
philosophy and provides a logical framework for academic research on knowledge
representation. Work on ontologies involves schema and diagrams for showing relationships
in Venn diagrams, trees, lattices, and so on.

Regardless the variety in this terminology, by classification, we mean ‘the ordering of
entities into groups or classes on the basis of their similarity’ [Bai94].

Classification systems structure a body of knowledge that constitutes a field, allowing
generalizing, communicating, and applying new findings. The advantages of using a
classification structure in software reuse are many [Pri85]. Some of them are:

1. Classification provides a means of neatly organizing reusable objects and quickly
retrieving them when needed.

2. It enables broadening and narrowing of searches, improving the recall and precision rate
of the searches made. Recall is the number of relevant items retrieved over the number
of relevant items in the database. Precision is the number of relevant items retrieved
over the number of all items retrieved. Recall and precision are the classic measures of
the effectiveness of an information retrieval system.

3. It also serves another purpose by acting as maps of knowledge content. We are able to
comprehend the knowledge stored in a repository not by merely knowing how many
objects it has, but also by distributing those numbers across various categories and sub
categories.

Thus, classification schemas are used to create an index to assist in the physical storage of
components and to provide input to search tools. The method classification is an important
ingredient in determining the types of indices that can be used, the types of searches that can be
conducted, and the type of tools that re-user can or must use [Pou-Ygl93].

2.2.2.2 Kinds of Software Classification Schemas

Various methods to classify and therefore represent reusable software in intra-organizational
contexts have been proposed and implemented, including numerous formal and automated
techniques [Kau05]. They can be classified into three broad families: library and information
science, artificial intelligence and hypertext [Fra-Gan90].

Chapter 2: Related Work

29

In [Ye-Lo01] a hierarchy of current kinds of classification techniques is given. It is
illustrated in Fig. 2.3. Artificial intelligence based and hypertexts based techniques have been
used only experimentally, examples may be found in [Fra-Pol94]. Most of the methods used in
industry are those from the library and information science, therefore, in this document, we will
only describe this kind of classification technique. Library and information science methods
break into two main categories: controlled vocabulary and uncontrolled vocabulary.

Software Classification
Techniques

Information
Science based

Hypertext
based

Artificial
Intelligence based

Uncontrolled
Vocabularies

Controlled
Vocabularies

Enumerated Faceted Free Text
Keyword

Semantic
Nets

Production
Rules

Frames

Fig. 2.3 Existing kinds of software classification techniques

A controlled vocabulary consists of a list of predefined terms that may be used to describe
and classify reusable components. The advantage of this approach is that the search can make
use of broader and narrower terms relationships within the controlled vocabulary, if such
relationships are defined. A controlled vocabulary built in such a way (i.e. a thesaurus or a
glossary) represents a domain knowledge model for the domain of application. The
disadvantage of this method is that it needs a lot of maintenance effort because the controlled
vocabulary must be adapted regularly.

Uncontrolled vocabularies do not place restrictions on the terms and syntax that can be used
to classify and describe a reusable component.

Enumerated classification is a well-known retrieval method used by the Dewy Decimal
system. In this method, information is placed in categories that are usually structured in a
hierarchy of sub-categories. The appeal of a classification scheme is the ability to iteratively
divide an information space into smaller pieces that reduces the amount of information that
needs to be perused. The issues involved in using an enumerated classification include its
inherent inflexibility and problems with understanding large hierarchies. There is a trade-off
between the depth of a classification hierarchy and the number of category members. Some
domains will lend themselves to many small classes. The effect is that users unfamiliar with its
structure will become lost in the morass of possible classes [Hen97]. Other domains will have
few categories, but must necessarily contain many members. In this case, selection of a class is
only a first step in the retrieval process, as the user must then search a large number of category
members for relevant information. Another issue is that once the hierarchy is in place, it gives
only one view of the repository. Changes to that view may reverberate throughout the
taxonomy, resulting in extensive redesign of class structures that can have consequences for the
entire contents of the repository. Hence, the labor-intensive nature of enumerated classification
remains a significant barrier to creating multiple structures. Enumerated classification requires
users to understand the structure and contents of the repository to effectively retrieve
information.

Faceted classification avoids enumerating component definitions in a hierarchy by defining
attribute classes that can be instantiated with different terms [Pri85]. This is a variation of the
relational model in which terms are grouped into a fixed number of mutually exclusive facets.
Users search for components by specifying a term for each of the facets. Within each facet,
classification techniques are used to help users to choose appropriate terms. This is very similar
to the attribute-value structures used in a number of frame-based retrieval techniques in artificial

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

30

intelligence [Bra+91], [Dev+91], [Pat+84], except that faceted techniques use a fixed number of
facets (attributes) per domain. Facets are more flexible than enumerated schemes because
individual facets can be re-designed without impact on other facets. But some of the usability
problems remain. While facets make it easy to synthesize and combine terms to represent
components, it becomes hard for users to find the right combination of terms that accurately
describe the information need, especially in large or complex information spaces [Fra-Gan90].
The method also requires that users know how the library and terms are structured, and have an
understanding of the significance of each facet and the terms that are used in the facet [Cur89].
Field use of faceted retrieval systems has shown the need for training people to use facets
effectively, and even more extensive training is necessary for designing faceted information
domains [Pri91].

Free-text indexing methods use the text from a document for indexing. Document text is
applied to a ‘stop list’ to remove frequently occurring words such as ‘and’ and ‘the’. The
remaining text is used as an index to the document. Users specify a query using key words that
are applied to the indices to find matching documents. No classification effort is required,
although human indexers are sometimes used to augment automatically extracted index terms.
Matching criteria can range from Boolean match to more sophisticated methods, such as the
vector model, that use statistical measures to rank retrieved information [Sal-McG83]. Free text
methods are simple to build and retrieve from, but rely on regularities in linguistic texts that
need large bodies of text to become statistically accurate. The non-linguistic nature of source
code and the fact that clear and accurate documentation is not necessary for working code make
these methods less attractive for software component repositories than for text documents. Free-
text methods are most applicable to domains with extensive documentation, but it would be
inaccurate to characterize most source code as being documented adequately for these methods.
Although retrieval effectiveness of free-text methods have been questioned [Bla-Mar85], the
low cost of building the repository coupled with adequate performance has made this approach
popular in commercial text retrieval systems, and World Wide Web engines such as Yahoo! or
Alta Vista.

In Table 2.5 we provide a summary of the mentioned reusable software classification
schemas that have been used in intra-organizational contexts. The aim of such this table is to
high-light relevant drawbacks that make these approaches inadequate to characterize COTS.

Table 2.5 Summary of some relevant drawbacks of actual reusable software classification schemas

Classification
Approach

Main Characteristics

Enumerated

• Inherent inflexibility and problems with understanding large hierarchies.
• Users unfamiliar with the structure of the classification will become lost in the morass of

possible classes.
• Once the enumerated schema is in place, it only gives one view of the repository.

• Changes to that view may reverberate throughout the taxonomy, resulting in extensive
redesign of class structures that can have consequences for the entire contents of the
repository.

Faceted

• It uses a fixed number of mutually exclusive facets.
• Facets are a little bit more flexible than enumerated schemes because individual facets

can be re-designed without impact on other facets.
• It becomes hard for users to find the right combination of terms that accurately describe

the information need, especially in large or complex information spaces
• It requires that users know how the library and terms are structured, and have an

understanding of the significance of each facet and the terms that are used in the facet.

Free-Text

• No classification effort is required.
• It is more attractive for searching text documents than for software component

repositories. Therefore, they are most applicable to domains with excessive
documentation.

Chapter 2: Related Work

31

An identified problem is helping users understand reusable software components. This is
important because if software engineers cannot understand components, they will not be able to
reuse them. Current methods for representing reusable components are inadequate [Frak05]. A
study of four common representation methods for reusable software components showed that
none of the methods worked very well for helping users understand the components [Fra-
Pol94].

In general existing approaches offer highly static and hard to understand classification
schemas. Part of the problem is that most of them assume that an information space can be
adequately represented with a single classification. But no classification is correct under all
circumstances, and it is impossible in principle to identify all possible relevant and future
features of the COTS marketplace.

We may conclude that although component reuse research is a very rich software
engineering area (see [Par-Con07a] for a survey), most of the proposed works have assumed
that reuse would take place in-house, with centralized repositories [Fra-Kan05] that are out of
the COTS reuse reality.

As a result, the software engineering community has realized the need of more
understandable and flexible approaches for characterizing and reusing COTS. Next subsection
provides an overview of the current proposals.

2.2.3 COTS Classification Approaches

From the increasing need of having COTS search and identification mechanisms to achieve
more efficient and reliable selection processes, many works have been proposed to deal with
classification of COTS by different classification mechanisms. Although the classification of
reusable components have been an active area since several years ago e.g., [Pri91], [Gla-Ves95],
the COTS classification area has recently emerged.

Several recent works arrange COTS by means of attributes for identifying relationships
between characteristics of products and their impact on CBSD.

For instance, Carney and Long [Car-Lon00] propose the classification of COTS products
using a bi-dimensional Cartesian space and report some examples that populated this space. The
dimensions they define are origin and modifiability. The origin dimension addresses the way the
product is produced and they propose the following possible values: Independent Commercial
Item, Special Version of Commercial Item, Component Produced by Contract, Existing
Components from External Sources, Components Produced In-house. These values can describe
products ranging from in-house components developed on purpose to commercial components
ready to use with a large number of customers. The modification dimension describes to which
extent the product either can or must be modified by the system developer that uses the
component. This attribute has five possible values: Extensive Reworking of Code, Internal Code
Revision, Necessary Tailoring and Customization, Simple Parameterization, Very Little or no
Modification. Two of them assume access to code (extensive reworking, internal code revision),
two (necessary tailoring, parameterization) imply some mechanisms built into the COTS to
modify its functionality.

Morisio and Torchiano [Mor-Tor02] extended the work proposed in [Car-Lon00], proposing
a classification schema for COTS products. They depart from the idea that different research
works often adopt different implicit definition of COTS, thus making difficult comparing them
and evaluating the applicability of proposed approaches. The purpose of their framework is
twofold: first it is a way to precisely define the meaning of COTS, second it represents a way of
specifying which sub-classes of products are addressed by a given work. The aim of their work

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

32

is mainly classification. This proposal is similar to [Tor+02] and [Jac-Tor02] that emphasizes
the assessment of the reuse of attributes.

In [Ack+02] a classification schema for business components is provided. Components are
characterized into seven levels: Marketing, Task, Terminology, Quality, Interaction, Behavior,
and Interface; whilst in [Li+04] an empirical study on COTS classification is provided and in
[Bia+03] a set of parameters characterizing COTS are identified and empirically assessed.

A special mention deserves the characterization of COTS for the business application market
segment presented by some members of our GESSI research group [Car+04] since it was the
origin of the research work exposed in this thesis. Such work proposed to characterize the
business application COTS market segment by means of “characterization attributes” (this
concept was taken from [Mor-Tor02], [Jac-Tor02]) to discriminate among different COTS
categories and market segments. However, the research performed in such work was in the
context of quality models reuse, and the rationale behind was not rigorous enough. Therefore,
some key problems were identified among we can mention: 1) The classification schema was
static and specific to the Business Applications market segment; 2) COTS marketplace
characteristics were not taken into account; 3) The way to identify the discriminating
characterization attributes (which capture the relevant information for discriminating categories)
was not defined; it was based on common sense; 4) It was not defined how to deal with all
COTS related information because the taxonomy presented departed from an existent taxonomy
which was only restructured.

More recently, the work presented by Erofeev and Di Giaccomo [Ero-Gia06] proposes an
agile approach for COTS taxonomies development. However, many COTS marketplace
characteristics are not dealt with, and the agile perspective of the method gives up many COTS
reliability issues.

In [Cec+06] a more detailed survey of trends on COTS identification and retrieval
approaches is provided.

2.2.3.1 Analyzing COTS Classification Approaches

In Table 2.6 we provide a summary of some of the most relevant COTS classification proposals
compared in terms of the following criteria:

a. Domain Specific: Describes if the approach is addressing a specific domain or it is used
for general domains.

b. Characterization Schema: Describes the attributes used to classify the components.

c. Guided Construction: Describes if the approach provides methodological support for
structuring the taxonomy.

d. Classification Schema Evolution: Describes if the approach provides effective
mechanisms to evolve the classification schema to deal with the constant growing and
evolution of the COTS marketplace.

e. Reuse: Describes if the approach tackles reuse of attributes. Satisfying this criterion
does not necessarily imply the existence of any systematic technique.

f. Population support: Describes if the approach addresses population strategies or not.

From Table 2.6, we can realize that the proposals cited before do not fully resolve the
problems of classifying COTS neither for performing efficient searching and retrieval
mechanisms, nor for reusing knowledge gained about COTS.

Chapter 2: Related Work

33

Table 2.6 Summary of some COTS classification approaches

Characterization
Approach

Characterization

Schema

Domain
Specific

Guided
Construction

Evolution Reuse
Population

Support

[Car-Lon00] Origin and Modifiability - - - - -

[Mor-Tor02] Categories of Source, Customization,
Bundle, and Role. - - - - -

[Tor+02] Set of general attributes similar to those
in the ISO 9126-1 - - - * -

[Jac-Tor02] kind, architectural, level, and phase * - - * -

[Ack+02]
Seven levels of attributes: Marketing,

Task, Terminology, Quality, Interaction,
Behavior, and Interface

- - - - -

[Car+04] Business Applications specific attributes √ - - * -

[Ero-Gia06] Guided by a decision model - √ - - -

(√) fully satisfies the criterion (*) partially, informally or implicitly satisfies the criterion (-) does not satisfy the criterion

Furthermore, they share some common characteristics that may be considered as drawbacks:

(1b) Lack of guidance and methodological support to construct and/or adapt the classification
schema. Although most of the approaches are developed for general COTS domains,
there is no a clear explanation of how they can be used in different contexts and projects.
Therefore, existing COTS classification schemas are often specific, and project bound.

(2b) Lack of mechanisms to identify the properties that can help to organize COTS. To
classify the items, the existing approaches rely on experience, knowledge, and
observation and they rarely use knowledge engineering and requirements engineering
techniques. This makes very difficult their general understanding, use, evolution and
extension.

(3b) Lack of mechanisms to deal with COTS marketplace evolution and growing. The
categorization model used in the mentioned approaches is mainly static. However, the
domain knowledge and the marketplace are constantly changing; new terms and
components appear and meaning of old terms can alter. Thus, existing COTS
classification schemas are very difficult to be evolved and extended.

(4b) Non-efficient reuse mechanisms. Though the idea of classification schema assumes
reuse, many of the approaches do not success in this issue. Most of them are too broad to
be useful. On the other hand, there is a lack of category understanding and evolvability
mechanisms that rapidly make the taxonomies obsoletes and/or unusable. Moreover, no
mechanisms to reuse the knowledge gained about COTS are proposed.

(5b) Absence of mechanisms to classify real items and populate the taxonomy. Existing
approaches exemplify COTS classification by assuming that suitable component
information already exists. None of them deal with population strategies and COTS
related information finding and assessing.

Thus, while these proposals paid attention to the structure of the classification, there are not
studied in deep to build these classifications taking into account the users requirements,
evolution of the domain and trends of the marketplace.

Moreover, even less attention has been paid to the methodological aspects required to
support its construction. In this context we argue that to be useful to support COTS marketplace
structuring, more important than the concrete form that a classification schema takes, is the
rationale behind its construction, (i.e., which are properties that may help to arrange it and how
the classification schema can be searched). This is especially true when considering not just the
construction of the classification schema, but its evolution.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

34

2.2.4 COTS Related Search Engines

Many potential candidate COTS are available on the web. Finding an adequate component
involves searching among abundant and heterogeneous information available and a need of
analyzing it efficiently. Thus, the use of search systems is proposed to make more efficient the
COTS selection processes.

Using classic search engines available on the web to search COTS related information (e.g.,
Google) is a very cumbersome task because: a) they are very generic and do not take into
account the specific characteristics of COTS; b) users have to browse long document lists,
analyze them and discriminate among the useful COTS related links. Hence, some automatic or
semi-automatic search engines using different technologies have been proposed for finding and
identifying COTS related issues in the web relying on available component catalogues supplied
by related companies.

Representative examples of these tools are: Agora [Sea+98], SCB (Software Commerce

Broker) [Aoy+98], IPSCom (Intelligent Portal for Searching Components) [Agu05],
MoreCOTS [Yan+06], and Sema-SC (Semantic Component Selection) [Sja-Beu06].

 Agora [Sea+98] is a research prototype developed by SEI which attempts to create an
indexed worldwide database of software components using JavaBeans and CORBA agents in
conjunction with Web search technologies. It supports two basic processes: the location and
indexing of components, and the search and retrieval of a component. The location and indexing
of components is primarily an automated background task, while a human typically perform
search and retrieval. There are exceptions in that an interface exists to allow a vendor to add a
specific component to the index. The system combines Web search engines with an
introspection process. Introspection, describes the capability of components to provide
information about their own interfaces.

SCB (Software Commerce Broker) [Aoy+98] is a research prototype which attempts to
collect information on software components worldwide over the Internet and provides a set of
electronic catalogues of software components in a semi-formal specification language called
SCL (Software specification and Commerce Language). Furthermore, SCB provides
mechanisms on which customers in remote locations can play the component through the Web.

Although the IPSCom project [Agu05] is still in the design phase, it aims at developing an
open information portal for COTS software and non software components, in which several
existing COTS repositories can be integrated making use of a generic ontology. The aim of this
generic ontology is to provide (i) a standard for the definition of components that unifies the
differences between different models (ii) a standard interface for component searching. As a
result the ontology is able to hold information for each component regarding: General
Information (e.g., name, version, language, etc.); Features (e.g., properties, methods and
events); and Design (it describes how to construct a composite component connecting pre-
existing components).

MoReCOTS [Yan+06] is a prototype of a specialized search engine for COTS marketed on
the Web. It is based on meta-searching online specialized databases maintained by five
publishers of COTS catalogues (i.e., “Componentsource”, “Knowledgestorm”, “CXP”,
“Enterprise SoftwareHQ”, and “Capterra5”). Thus, MoReCOTS is based on and inspired from
components taxonomies available in those COTS catalogues. As a result, it provides (i) a
directory containing a list of COTS categories, and (ii) a specialized search interface with
specific search fields related to COTS characteristics.

Sema-SC [Sja-Beu06] is a semi-automated generic method for component identification
and classification based on generic domain taxonomy and user generated semantic input. It was

Chapter 2: Related Work

35

inspired by the semantic we community. Every query is semantically tailored to what is being
looked for, arriving at better results then it is currently possible using available automated
categorisation systems. It also relies on the information contained on available COTS related
portals.

2.2.4.1 Analyzing COTS Related Search Engines

In Table 2.7 we provide a summary of some of the most relevant COTS related search engines
assessed in terms of the following criteria:

a. Search Method. It includes four criteria which are: search by category (c); search by
keywords (kw); search by category and keywords (c&k); and metasearching (ms).

b. Advanced Search. Describes if the approach provides any advanced mechanisms to
search. They can be Boolean operators or refined searches.

c. Main Search Result: Describes the main parameters the approach retrieves for describing
the component.

d. Portals it relies on. Describes the components repositories in which the approach relies
on.

e. Automatic Index: It refers if the indexing of components is intended to be automatic or
not.

f. Development Stage. Refers to the stage of the development or the tool is.

g. Language. Describes the language(s) supported by the approach.

Table 2.7 Summary of some COTS Related Search Engines

Advanced

Search COTS

Search

Engines

Search

Method
Boolean

Ref.

search

Main Search Result
Portals it

relies on

Autom.

Index

Dev.

Stage
Lang.

Agora c&k √ √ URL of the component
CORBA and

JavaBeans portals
√ Prototype English

SCB kw * √ Component location
Set of specific

portals it maintains
- Prototype English

IPSCom c&k √ √
General Information,
Features and Design

Intended catalogs in
the IPSCom ontoloy

√ Design English

MoReCOTS ms √ √
Component information
structured as suggested

in [Sas+03]

5 COTS publishers
portals

√ Prototype
English,
French

Sema-SC c&k √ √ Component information
Generic Ontology to

deal with several
portals

√ Prototype English

(√) fully satisfies the criterion (*) partially, informally or implicitly satisfies the criterion (-) does not satisfy the criterion

In general, regardless their development stage and maturity (most of them are in prototyping
or design stages), these kinds of tools are not widely succeeded in practice mainly because of
their conception of “structured and centralized catalogues of COTS”, which is not true in
practice (i.e., COTS marketplace is characterized by its widespread cataloguing nature, and non-
standard descriptions) as well as the lack of homogeneous and trustworthy information available
that hamper the obtention of effective and quality assured COTS information.

The main open issues that current COTS searching tools face can be summarized as:

(1c) Dependency on some COTS available catalogues. Current COTS related search engines
provide only the facility to browse COTS from some specific electronic catalogues.
Therefore, the searching space is focused only on the components available in the related
catalogues, so important components that exist in other catalogues could be deterred.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

36

(2c) Fully dependency on available information provided by vendors or catalogues publishers.
Studies confirm that the COTS information is usually incomplete and sometimes biased
in order to highlight components characteristics [Ber+03], [Tau+04], [Ast+06]. Further
discussion about the problems with using those catalogues is addressed in Section 2.3.2.

(3c) Difficulty to deal with COTS marketplace heterogeneity. Each COTS catalogue available
describes components following its own classification structure and description model
(i.e., non-standard descriptions). Although most approaches try to deal with
heterogeneity by using diverse techniques as: developing a general ontology, using
semantic web technologies and description logics; they can only address a limited set of
available catalogues. Therefore, the real applicability of most of these proposals have
resulted scarce [Req+05].

(4c) Finally, accuracy and information quality (i.e., trustworthiness, completeness, etc.) are
not greatly ensured with the use of existing automatic or semi-automatic search engines.
While COTS search engines achieve a high level of efficiency and low cost, they do not
achieve the same level of information accuracy and reliability as manual approaches.

2.3 State-Of-The-Practice

Some empirical studies in companies using COTS show several relevant results about how they
use such components [Tor-Mor04], [Li+04a], [Li+05], [Li06], [Hsu-Wid06]. Such studies
reveal that companies do not normally use any formal process for selecting components.
Instead, most of them are using an experience-based and/or hands-on trial-based selection
processes.

In the first case, developers already have experience with some specific components or
technology, and this experience is important in deciding which components to choose. In the
second case, the World Wide Web (WWW) is used to find executable components and a few of
them are then downloaded and further evaluated.

To specifically investigate how companies search COTS, we also performed an empirical
study [Ger06] together with the Software Engineering Group at the Norwegian University of
Science and Technology (NTNU).

Our results showed that the COTS searching and identification complexity is actually
twofold:

� How to know which kind of components are available and which of them

could be useful to solve a specific problem?

� How to find and process the information referred to those components to

perform an effective evaluation?

As a result, it is evident that there is an increased need for organizing and obtaining suitable
COTS information to achieve more efficient and reliable selection processes [Aya-Fra05].

From the answers of our respondents we found that the WWW is the most used means to
find candidate components (i.e., search on available catalogues or specialized search engines)
followed by colleague recommendations.

We also asked about the resources they usually use to locate components and information
about them, as well as the perceived utility of such information for performing the different
COTS selection activities.

Chapter 2: Related Work

37

2.3.1 COTS Location and Reuse

From our empirical study introduced before, we found that to satisfy COTS users practical
needs, many kinds of organizations provide online COTS catalogues, defining categories of
services, products, and knowledge, usually arranged in a hierarchical form. In some cases, they
also provide additional resources as search engines, newsletters, forums, comments, rating of
components, re-user opinions, white papers, case studies, lessons learned, etc. Table 2.8
provides a list of representative types of organizations issuing COTS related topics.

Table 2.8 Summary of types of organizations relating with COTS selection activities

Organization

Kind
Description Examples

IT Consultant Companies

They are commonly dedicated to technological analysis and
market monitoring. They play an important role in selling
expert support for selecting COTS. However, the analyses
they provide are often expensive and short-lived.

Gartner
Forrester Co.

Commercial Web-Based
companies

They range from general to domain-specific portals acting as
marketing channels of components.

ComponentSource

Knowledge Storm.

Professional Societies They use hierarchies to organize COTS systems related
knowledge

INCOSE

Portals with different
registration procedures

Offer white reports, re-user opinions, or technical products
from research projects.

eCots (currently not available)

and OpenCores.

The academic world
Several proposals have been presented with the purpose of
supporting COTS selection from the academia, see Section
2.2.1

CeBASE repository providing a
“COTS lessons learned”

database.

COTS vendors They directly offer their products to the general public. Any commercial firm

Open Based Portals
They act as a free indexing components information
repository.

CMSmatrix.org

WikiMatrix.org

 2.3.2 Available COTS Catalogues and Repositories

By asking our respondents about the main online resources they use to select COTS, as well as
performing an extensive online review and in the literature, we completed Table 2.9 that
summarizes some of the most representative catalogues, repositories and services available,
issued by different types of organizations as described in Table 2.8. Available catalogs are
described by the following features:

a. Name. Name of the approach or URL.

b. (C) Characterization. Refers to the characterization schema it uses to classify COTS. It
involves five features: by Name (N); by Software Categories (SC), by Platform (P); by
IT Solutions (ITS); and by Editors (E).

c. (RS) Retrieval Schema: Refers to the schema by which COTS and/or COTS related
issues may be searched. It implies four criteria: by Browsing (B); Keyword (KW); List
Selection (LS); Selection Wizard (SW).

d. (IR) Information Rendering. Illustrates the way the information in presented. It is
described in the next terms: Non-Structured (S); and Semi-Structured (SS).

e. Intended Objective. Describes the main objective of the organization that supports the
catalogue, repository or service.

f. Sponsor. Describes the main sponsor of the approach.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

38

g. Approx. Amount of Available Resources. It describes the amount of components and in
some cases the number of categories used to organize them.

Table 2.9 Some representative COTS related repositories and catalogues1

Name C RS IR Intended Objective Sponsor
Approx. amount

of Available
Resources

COTS Vendors N B, KS NS Marketing Private Company 1 to more comp.
each

eCots.org SC B, KS NS Research European Research Funds Over 550 Comp.

ComponentSource.com SC,P B, KS NS Marketing Private Company 102 categories/
3,369 Comp.

KnowledgeStorm.com ITS B, KS NS Marketing Private Company
17,943 Resources

(comp., papers,
etc.)

CMSmatrix.org N LS SS

Open and free
collaboration for indexing

Content Management
Systems (CMS)

Free and Open 675 Comp./ 2670
re-users

CompareIM.com N LS SS
Open and free

collaboration for indexing
Messaging systems

Free and Open Over 400 resources

JdoCentral.com N B NS Interchange of Java
components

Open Community and
vendors

Over 4000
resources

Tucows.com P B, KS NS Promote
freeware/shareware

Private Company Over 40,000
software titles

Krugle.com N KS NS Search engine designed
for developers

Private Company

Forrester.com ITS B, KS NS Selling IT Strategic Support Private Company Ad-hoc resources

Gartner.com ITS B, KS NS Selling IT Strategic Support Private Company Ad-hoc resources

Incose.org SC B, KS SS
Research Support in
Systems Engineering

International Council of
Systems Engineering

(non-profit)
1485 Comp.

CEBASE: http://fc-md.
umd.edu/ll/index.asp

N B, KS NS Sharing Lessons learned in
using COTS

CEBASE Research Over 100
experiences

Softguide.de
SC,
N, P,

E
B, KS SS

Brokering COTS suppliers
and COTS purchaser in

Germany

GmbH & Co. KG, D-
Wolfsburg

7500 COTS
products and 5000

editors

CXP.fr
SC,
N, P,

E
B, KS SS

Brokering COTS suppliers
and COTS purchaser in

France
Private Company

7 000 COTS
products

Eoslist.com SC B, KS NS

Maps the major OSS
projects and companies

delivering OS alternatives
to COTS

Free and Open 350 projects

Wikimatrix.org N
B,

SW
SS

Open and free
collaboration for indexing

Wiki Tools
CosmoCode Company 85 comp.

forummatrix.org N B, SW SS

Open and free
collaboration indexing

OTS-Forums management
systems

CosmoCode Company 39 comp.

weblogmatrix.org N B, SW SS
Open and free

collaboration for indexing
Weblog systems

CosmoCode Company 16 comp.

N: Name
SC: Software Categories
P: Platforms
ITS: IT Solutions

E: Editors
B: Browsing
KS: Keyword Search
SW: Selection Wizard

NS: Non-Structured
S: Structured
SS: Semi-Structured

1 This survey is due to February 2007

Chapter 2: Related Work

39

Our analysis of these cataloguing and repositories initiatives, lead us to claim that although
we can find many reuse repositories with sophisticated classification schemas and storage
structures for COTS, they do not provide complete and efficient information to perform an
informed COTS selection. Some common practical problems also related with the state-of-the-
art problems are:

� Uncontrolled repositories and cataloguing explosion: Currently, there is an uncontrolled
proliferation of cataloguing initiatives that describe the COTS software marketplace into
different levels, from different points of view, objectives, meanings and scopes.
Furthermore, each repository acts as the first one ever, leading to confusion by different
descriptions and cataloguing of the same component.

� Processes around these repositories are not clear: The different and fuzzy processes and
criteria used in each portal make difficult their use. Sometimes, the meaning of a particular
domain is not clear without further examining the items, especially if the domain is
absolutely unknown to the re-user. Consequently the understanding, use, evolution,
extension, and customization of the categorization proposals are difficult.

� Scarce information and updating. Regardless the completeness, domain, and scope of the
mentioned cataloguing initiatives, they contain only brief and unstructured descriptions of
some inventoried components. Moreover, they face serious difficulties to maintain up-to-
date information. Thus, structuring and discovering important information leads to rework,
confusion, missing critical information and possibly deterring the use of some components.

� Business-related nature of repositories. Given the commercial nature of the marketplace,
several sponsored repositories tend to highlight the strengths of some components and hide
their weaknesses to give competitive advantage to their licensed components.

� Non-suitable COTS Information Reuse. The relevant decision-making processes in
COTS selection are often intuitive and only sparsely documented in practice. Reuse
includes not only finding and understanding components but also reusing the
knowledge gained in each selection process to complete and improve COTS
information in order to enhance future COTS selection processes. It is particularly
important in the COTS context given the scarce nature of COTS-related information.
Moreover, ad-hoc support analysis for selecting COTS offered by specialized companies is
expensive and short-live above all for medium and small companies.

These drawbacks have been recognized as a barrier on the adoption of COTS in industrial
projects, since they make the selection process highly risky and expensive for finding and
managing component knowledge reuse. Some other studies supporting this claim are
[Cla+04], [Req+05], [Cec+06], [Car-Fra06], [Wan-Hom06].

Table 2.10 Assessment of the role-related challenges for supporting COTS Selection

Role Current Practice Problem

MW

• Proliferation of cataloguing initiatives
• Some inventoried components in each catalogue
• Widespread and unstructured components descriptions
• Most catalogues do not have a clear rationale behind.

Understanding and using the catego-
rizations may be difficult.
Several descriptions of the same
component.

QE

• Lack of structured and widespread COTS descriptions
• COTS providers do not provide structured and enough

information for supporting evaluation and product quality
assessment.

Complex discovering and structuring of
critical information.

S
• Difficulty to locate relevant information about the

components
Hard requirements negotiation.
Complex decision-making process.

KK
• No support for organizations that continuously select COTS

to reuse their knowledge or others knowledge about them.
Reuse of knowledge is usually tacit, leading
to be lost if people are replaced.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

40

In Table 2.10 the assessment of role-related current practices and their related problems
are summed up. They range from the need of having understandable taxonomies, a common
COTS description metamodel embracing all the informational dimensions for evaluating
COTS and a reuse infrastructure support able to deal with COTS marketplace
characteristics.

2.4 Relevant Approaches Supporting the Solution Addressed by this

Thesis

This thesis builds upon existing work. In this section we briefly describe some approaches that
played an important role in shaping the GOThIC method solution. Several other important
research approaches were related and they will be discussed in their corresponding method’s
activities description (Chapters 5-9).

2.4.1 Goal-Oriented Approaches

In the last years, the use of goals for supporting a variety of processes and disciplines, such as
business process reengineering, organizational impact analysis and requirements engineering, is
increasingly gaining importance.

Goals present several characteristics that make them attractive, e.g. expressiveness, stability
and evolvability [Lam01].

As a consequence of this tendency, the software engineering community is currently
addressing the problems associated with the formulation of business goals, plans, processes,
etc., in order to achieve organisational objectives in an ever-changing organizational
environment [Lou-Kav95].

From a methodological perspective, the intensive use of goals in these disciplines has led to
a whole stream of research. We term all these efforts goal-oriented approaches.

Goal-based approaches resulted appropriate for handling the problem of structuring the
COTS marketplace considering its rapid evolution and all the information related in a selection
process.

Studies confirm that software development teams and stakeholders have a better
understanding of the general goals they want to achieve than the functionality that should be
exhibit by the desired system. It is because goals attempt to a language based on concepts in
which most of the members of a development team and stakeholders are most comfortable and
familiar [Ant97]. Moreover, they are evolutionary, more stable respect to changes in processes,
and goal refinement provides a natural mechanism for structuring and exploring many
alternatives

A goal is an objective that should be achieved and may be formulated at different levels of
abstraction, ranging from high-level strategic to low-level technical concerns [Lam01]. Thus,
goals capture, at different levels of abstraction, the various objectives covered by a market
segment. Since a summary and comparison of several goal-driven approaches is available in
[Gre94] and [Kav-Lou05], we will only discuss the selection of the approaches used as
backbone of the GOThIC method and describe some of their particularities.

Table 2.11 provides an overview of some relevant goal-oriented approaches. The usage view
concerns the objectives of using goal modeling in RE, namely: (1) understanding the current
organizational situation; (2) understanding the need for change; (3) providing the deliberation
context within which the RE process occurs; (4) relating business goals to functional and

Chapter 2: Related Work

41

nonfunctional system components and (5) validating system specification against stakeholders’
goals.

The subject view looks at the notion of a goal and its nature. Initially, it seems difficult to
discern a uniform notion of goal in RE. Indeed, the term goal has been used in different
approaches to convey several meanings, including human tasks, problem solving outcomes,
desired states of the world, target concepts of human behaviour, policies and orientations for
acting, and so on.

Table 2.11 Summary of some relevant goal-oriented approaches as surveyed in [Kav-Lou05]

Goal-oriented Approaches

Framework Components

C
og

ni
tiv

e
T

as
k

A
na

ly
si

s

i*
 (

S
tr

at
eg

ic
 d

ep
en

de
nc

y
M

od
el

)

G
oa

l-B
as

ed
 W

or
kf

lo
w

E
K

D

F
3 (

O
M

)

IS
A

C

S
IB

Y
L

T
he

 r
ea

so
ni

ng
 lo

op
 m

od
el

R
E

M
A

P

K
A

O
S

G
B

R
A

M

G
oa

l-s
ce

na
rio

 c
ou

pl
in

g

N
F

R
 fr

am
ew

or
k

G
S

N

G
Q

M

Understand current org. situation � � � �

Understand the need of change � �

Provide deliberation context
within which RE occurs

 � � �

Relate business goals to system
components

 � � � �

U
sa

ge

Evaluate system specs. against
stakeholders goals

 � �

Enterprise goals � � � � � � � �

Process goals � � � � �

S
ub

je
ct

Evaluation goals � �

Formal � � � �

Semi-formal � � � � � � � � � �

R
ep

re
se

nt
at

io
n

Informal �

Way-of-working � � � � � � �

D
ev

el
op

m
en

t

Tool support M MF M M MG MG M MF MF MG MG MF M MG

� = deals with the issue
� = suggest a number of steps and associated strategies
M = support for model construction, F = formal reasoning support, G = process guidance

The representation view concerns the way goals are expressed. Goals can be expressed in a
variety of formats, using more or less formally defined notations. We differentiate between
informal, semi-formal and formal approaches. Informal approaches generally use natural
language text to express goals; semi-formal use mostly box and arrow diagrams; finally, in
formal approaches goals are expressed as logical assertions in some formal specification
language.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

42

Finally, the development view concerns the way that goal models are generated, and evolve.
This view considers the dynamic aspects of goal driven approaches, i.e., the proposed way-of-
working and the tool support provided for enacting this way-of-working.

Using the framework of usage, subject, representation, and development dimensions, it was
possible to easily understand and accordingly select the best fit for usage goal-oriented
approaches that may help us to reach our main objective that was the understandable and
flexible structuring of COTS marketplace domains.

In this context, two main goal-oriented approaches were chosen to reach our objectives
(although some others are also used and interrelated): The GBRAM method in order to have a
prescriptive method to elicit goals from several information sources; and the i* modeling
approach in order to formally record strategic dependencies existing among components in the
marketplace. The rationale behind these elections is further discussed in next subsections.

2.4.1.1 Goal-Based Requirements Analysis Method (GBRAM)

GBRAM was conceived by Annie I. Anton [Ant97] with the primary focus on the
transformation of enterprise and system goals into requirements, more specifically to assist
analysts in gathering software and enterprise goals from many sources and to support the
process of discovering, identifying, classifying, refining and elaborating goals into operational
requirements. The method’s chief contribution was the provision of heuristics and procedural
guidance for identifying and constructing goals. In other words, it was developed for to
identifying, elaborating, refining, and organizing goals for obtaining the software requirements
document.

The high level phases of GBRAM briefly explained are:

• Goal Analysis that concerns the exploration of available information sources for goal
identification followed by the organization and classification of goals.

• Goal Refinement that concerns the evolution of goals from the moment they are first
identified to the moment they are translated into operational requirements for the system
specification. It includes activities as refine, elaborate and operationalize of goals.

These high-level phases provide an overview of the GBRAM. Fig. 2.4 shows the activities
with which an analyst is intimately involved when applying the GBRAM.

Inputs

Output

Explore

Identify

Organize

Refine

Elaborate
Operationalize

Goal Analysis

Goal Refinement

Interview Facts Policies

Requirements Transcripts

Workflow Diagrams

SRD

Corporate Goals

Mission Statement

Inputs

Output

Explore

Identify

Organize

Refine

Elaborate
Operationalize

Goal Analysis

Goal Refinement

Interview Facts Policies

Requirements Transcripts

Workflow Diagrams

SRD

Corporate Goals

Mission Statement

Fig. 2.4 Overview of GBRAM activities

The ovals located within the dotted box on the upper right corner of the figure denote goal
analysis activities. The ovals within the dotted box on the lower half of the figure denote the
activities that take place during goal refinement. The box in the top left corner contains the

Chapter 2: Related Work

43

possible inputs, which may vary in accordance with the documentation initially available to
analysts. The output of GBRAM is always a software requirements document.

The suitability to apply GBRAM to our purpose of constructing COTS marketplace
taxonomies can be summarized as follows:

a) It assumes that goals have not been previously documented or explicitly elicited; it
supports the goal elicitation from all available sources of information. This is a very
helpful aspect because in the COTS context, we have to simultaneously evaluate
widespread and heterogeneous information related with the domain for which we want to
create the taxonomy.

b) Some heuristics and guidelines from GBRAM could be reused in the COTS context, and
many others can be added to support our specific task. This was proven to be useful for
guiding the exploration, identification, and organization of goals towards a high
probability of success while avoiding wasted efforts. (Annex 1 provides an excerpt of
some useful heuristics used in our approach.)

c) It offers a guide for applying an inquiry-driven approach to goal-based analysis; it was
useful for building our intended decision tree taxonomies guided by questions-answers.

d) It offers a dynamic framework to integrate other required techniques and mechanisms for
formalizing the construction of a COTS marketplace reuse infrastructure. For instance,
for constructing the models and artifacts required for the manipulation and evolution of
the taxonomies or interoperability issues.

2.4.1.2 The i* Goal-Modeling Approach

One of the most widespread goal-oriented modeling languages is the i* notation proposed by
Eric Yu in the first half of the 90’s [Yu95]. i* defines a repertory of intentional elements for
building two types of models: the Strategic Dependency (SD) model and the Strategic Rational
(SR) model, each one corresponding to a different abstraction level. Both models not only
provide means for reasoning about goals but also about agents, therefore i* is usually
considered also an agent-oriented modeling language.

Fig. 2.5 Excerpt of an i* model for an academic tutoring system

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

44

As mentioned above, the i* language proposes the use of two models: a SD model that
represents the intentional level of a system and SR models that represent its rational level (see
Fig. 2.5 for an example). A SD model consists of a set of nodes that represent actors and a set of
dependencies among them. Actors may be specialized through the is-a relationship.
Dependencies express that an actor (depender) depends on some other (dependee) in order to
obtain some objective (dependum). The dependum is an intentional element that can be a goal, a
task, a softgoal or a resource. The depender depends on the dependee to bring about a certain
state in the world in goal dependencies; to carry out an activity in task dependencies; to perform
some task that meets a softgoal in softgoal dependencies; and for the availability of an entity in
resource dependencies. The type of dependency also characterizes the actor of the dependency
that has the responsibility to make decisions: in goal dependencies the dependee is expected to
make any decisions required; in task dependencies the depender decides how the task will be
performed by the dependee; in softgoal dependencies the depender makes the final decision, but
does so with the dependee’s know-how; in resource dependencies no decisions are required.

A SR model allows visualizing the intentional elements into the boundary of an actor in
order to refine the SD model to add reasoning ability. The dependencies of the SD model are
linked to intentional elements inside the actor boundary. The elements in the SR model are
decomposed accordingly to the following links:

• Means-end links establish that one or more intentional elements are the means that
contribute to the achievement of an end. When there is more than one means, an OR
relation is assumed, indicating the different ways to obtain the end.

• Contributions to softgoals correspond to means-end links where the end is a softgoal. An
attribute stating the type of contribution (+, -) is required.

• Task-decomposition links state the decomposition of a task into different intentional
elements. There is a relation AND when a task is decomposed.

The graphical notation is shown in Fig. 2.5 using an excerpt of a model for an academic
tutoring of students. On the left-hand side, we show the SR model of a tutor and the hierarchical
relationships among their internal intentional elements. On the right-hand side, we show the SD
dependencies between a student and a tutor. Neither specializations nor subactors appear.

Usually i* models are used to discover business processes, to elicit requirements, to explore
possible variations in the organization behavior, etc. Many other kinds of applications have been
also envisaged, for instance, Franch and Maiden use them for assessing and comparing different
architectural solutions in the context of Off-The-Shelf (OTS) components selection [Fra-
Mai03]. From this reported experience we evaluated the idea of using i* SD models to represent
general dependencies that commonly exist among COTS domains in the marketplace.

From our survey analysis of the problems related with searching COTS information, we
realized the critical need to record COTS dependencies. i* SD models provided us the way of
doing it in a formal way whilst they resulted significantly understandable for almost any people.
Moreover, their use was also greatly harmonized with the GBRAM approach and the techniques
used to cover our research objectives. Chapter 3 provides details of our i* approach adoption
whilst Chapter 7 provides specific details of the way of using it as part of our intended GOThIC
method.

2.4.2 Software Quality

The business value of a software product results from its quality as perceived by both acquirers
and end-users. Therefore, quality is more and more often seen as a critical attribute of the
product, since its absence results in dissatisfied users and financial loss, and may even endanger

Chapter 2: Related Work

45

lives [Sur-Abr03]. Software development organizations, in general, are not best equipped to
deal with it: they do not have at their disposal the quality-related measurement instruments that
would allow (or "facilitate") the engineering of quality throughout the entire software product
life cycle, even less when CBSD is used [Car+07a].

Software quality has been one of the main goals of software engineering in the last decades.
However, despite of the efforts to develop new and more powerful software process
improvement techniques, such as CMM (Capability Maturity Model) [CMM93], Bootstrap
[BOO93] or SPICE [El+98], and the development of better metrics and product validation
techniques, it remains an elusive target [Kit-Pfl96], [Sur-Abr03]. More recently this problem
has been aggravated by some factors: the growing tendency of using COTS; the increasing
COTS marketplace availability; and the continuous creation of new communication and
marketing channels (e.g. web markets, search engines, etc.) which bridge the gap between
providers and consumers of those products.

A key factor in the selection of COTS is the assessment of their quality. Traditionally two
aspects have been considered when assessing software quality:

1. The software development process, which in some cases (e.g. when adopting a software
improvement process like CMM or SPICE) can be further certified by a third party
organization. However, even though the certification of the software development
process used by the supplier can be considered a favorable factor, it is a well known fact
that it does not necessarily leads to better products [Voas98], [Kit-Pfl6].

2. The inspection of the final product to measure its compliance with respect to some
quality characteristics. COTS are not bespoke software; they are acquired from external
suppliers. Thus, they are black boxes (or at best very dark ones), customers seldom own
their source code, and therefore product measurements can be applied and/or obtained
only for those externally observable quality characteristics. Thus it is external product
quality what really matters when it comes to decide to acquire a COTS or rather to
construct a component from the scratch.

These two aspects have to be carefully considered when evaluating COTS quality.
Furthermore, software quality characteristics are often difficult to check. This is partly due to
their very nature, but we argue that there is another reason that can be mitigated, namely the
lack of structured and widespread descriptions of COTS domains (i.e., categories of COTS,
such as ERP systems, graphical or data structure libraries, etc.). This absence hampers the
accurate description of COTS in the domain and the precise statement of quality requirements
[Car+07a]. As a consequence, the whole component evaluation is damaged, and confidence on
the result of the process diminishes. Hence, in order to assess the quality of a COTS, it is
necessary to provide a framework to represent quality which can be used as the basis for its
evaluation. As with all those concepts that require an understanding, it is necessary to create a
model which is representative of the area of interest. Therefore, we claim that the assessment of
COTS quality requires the existence of a COTS quality model.

A structured quality model for a given COTS domain will provide a hierarchy of software
quality features and also metrics for computing their values. Once available, requirements over
the domain, as well as components quality features, may be stated with respect to the quality
model. Product quality can be evaluated and their characteristics can be compared with
requirements based on a common description.

Therefore, we made use of existing work on the quality models area to support this claim.
After several industrial and academical experiences, we have confirmed that the basic set of
characterictics and subcharacteristics provided by the ISO/IEC 9126-1 standard is complete and

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

46

accurate enough to be used as starting point in the process of COTS domains quality models
construction.

Next subsections provide an overview of existing work and fundament our decision to use
the ISO/IEC 9126-1 standard. Also, work in the field of metrics was applied, as the work done
by Fenton et al [Fen-Pfl97], and the GQM (Goal-Question-Metric) approach [Bas+94].

2.4.2.1 Software Quality Models

Quality is a complex concept, for which no universal definition exists. Quality means different
things to different people, thus it is highly subjective and context dependant. This fact has been
corroborated in [Bas+04] where several top level software engineering practitioners, stated their
personal and very diverse views on software quality.

According to Voas [Voa04] “We live in a world where beauty to one is a complete turnoff to
another. Software quality is no different. We have the developer’s perspective, the end users’
perspective, the testers’ perspective, and so forth.” Because of this, it is really hard to get to an
agreement on how to measure software quality. Kitchenham [Kit89] stated that quality is “hard
to define, impossible to measure, easy to recognize”. Gilles [Gil97] stated "Quality is generally
transparent when present, but easily recognized in its absence". These statements imply that
quality is somehow perceptible. Thus, the problem is not quality being subjective, but how to
correlate the different views on quality into a measurable quality framework, which can be
commonly agreeable at least in some context (e.g., a domain of knowledge, an organization, a
project, etc.).

In the ISO standard 8402, a Software Quality Model is defined as:

“The set of characteristics and the relationships between them which provide

the basis for specifying quality requirements and evaluating quality”.

Software quality models have been proposed in order to provide many benefits: they can be
used as a base to define a commonly agreeable quality framework, which consolidates the
different views on quality; they can be tailored to specific contexts; they provided a measurable
base to the evaluation of software quality.

Since the late 70s, many proposals defining the hierarchy of a software quality model exist.
Some examples are [McC+77], [Boe+78], [Bas92], [IEEE1661-98], and [ISO-9126-1] (see
[Car05T] for a comprehensible survey).

Nearly all of these proposals share a hierarchical tree-like structure, composed of a set of
high-level quality characteristics to which identifiable and measurable low-level quality features
are linked. The number of layers of the hierarchy, as well as the number of fixed features differs
largely among the different proposals.

Table 2.12 provides a comparative summary of existing quality models approaches. We can
observe that while those proposals paid attention to high-level quality features, very little has
been devoted to the study of lower-level ones and their influence on the former, as well as the
methodological aspects required to support the construction of the proposed quality models.
Even less attention has been paid to the construction of quality models to support CBSD
[Car05T].

Quality models are engineered to provide the basis for software evaluation; therefore metrics
for the quality features have to be assigned. Earlier models were qualitative in nature. This was
due to the fact that little work on the software metrics field existed. However, as work on this
field evolved [Fen-Pfl97], [Zus97], quality model became a stronger framework to support
software quality evaluation. Gilb’s [Gil88] idea that all of the quality features have to be made

Chapter 2: Related Work

47

measurable, and Keller’s [Kel+90] introduction of qualitative and quantitative metrics at
different levels, are some of the contributions supporting this attempt.

Table 2.12 Summary of some relevant quality models approaches as surveyed in [Car05T]

Model Kinds of elements Number of Layers Metrics
Construction

Approach
Over

lapping

Kinds of
relationships

among
elements

Measures
applied to

method
provided

McCall
-Factors
-Criteria
-Metrics

4 (1 main subdivision,
1 layer of factors, 1 of

criteria and 1 of
metrics)

No
(examples

are
provided)

Fixed Yes Hierarchical Criteria No

Boehm

-High level
characteristics
-Primitive
Characteristics
-Metrics

4 (2 layers of high-
level characteristics,
1 of primitive and 1

of metrics)

No
(examples

are
provided)

Fixed Yes
Hierarchical

metrics
dependencies

Primitive
characteristi

cs
Yes

FURPS
-Quality Attributes
-Metrics

3 (2 layers of quality
attributes and one of

metrics)

No
(examples

are
provided)

Fixed No Hierarchical

Quality
attributes in
the lowest

hierarchical
levels

No

GQM
-Goals
-Questions
-Metrics

3 (goals, questions
and metrics)

No
(examples

are
provided)

Custom Lower-
levels

Hierarchical Questions Yes

Gilb

-High-Level
attributes
-Low-Level
attributes
-Metrics

Not fixed (user
definable)

No
(examples

are
provided)

Custom Yes Hierarchical
Low and

High-level
attributes

No

ISO/IEC
9126

-Characteristics
-Subcharacteristics
-Quality Attributes
-Metrics

-2 upper layers
(Characteristic and
Subcharacteristics)
-Attribute layers are
not fixed, they are

users definable
-Metrics layers are
associated to all
attribute layers

Yes Mixed Lower-
levers

Hierarchical Quality
Attributes

No

IEEE
1061-
1998

-Factors
-Subfactors
-Metrics

Not fixed (user
definable)

No
(examples

are
provided)

Custom Yes

Hierarchical,
conflicting and

supporting
relationships

among factors

To any
element in
any layer

(user
definable)

Yes

Dromey

-High-level
attributes
-Quality carrying
properties
-Components

2 upper layers (High-
level attributes and

quality carrying
properties), not fixed

in lower levels

No Custom Yes

Links among
components

and high-level
attributes

Not
included in

the
proposal

Yes

SQUID

-Quality
Characteristics
-Quality Attributes
-Metrics

Upper layers are not
fixed, they are user
definable. 1 layer of

quality attributes

No
(examples

are
provided)

Custom Yes

Hierarchical
links among

external
attributes and
the internal

affecting them

Quality
Attributes

No

Nowadays, a great deal of applications for software quality models have been suggested, and
in some cases explored. Although software quality models were originally tough to be used in
software evaluation, many different and in some case creative applications have been proposed
in the last decades.

Earliest works on software quality models such as Boehm’s [Boe+78], already outline some
alternative applications. On the preface of this work the authors suggest that a well defined
framework of various characteristics of software quality can be used to: (1) prepare the quality
specification of a software product, (2) checking for compliance with quality specifications, (3)
making proper design tradeoffs between development costs and operational costs and (4)
software package selection.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

48

Although the use of software quality models to specify systems requirements has been an
implicit goal since the early proposals (at least to specify non-functional requirements related to
reliability, efficiency, security, etc.), some authors (e.g., Dromey [Dro96], Bøegh [Bøe+99] and
Firesmith [Fir03]) have further explored this particular application and made some significant
contributions.

Other authors have explored the possible applications of software quality models to support
software architectural design. Representatives of this field are the works by Klein and Kazman
[Kle-Kaz99] on the definition of architectural patterns, Lundberg [Lun+99] on the analysis of
conflicting quality features in architectural design, and the works of Kazman and Klein [Kaz-
Kle00] and Losavio [Los+03] on architectural tradeoff analysis.

To support software implementation has been the target of some works. Dromey [Dro95],
[Dro96] considers that the only way to obtain quality products is to build quality into the
products. He also considers that software quality is heavily influenced by de programming
language used in product development. Thus, he has proposed a quality model aimed to the
evaluation of the programming languages used in software development. In the SQUID method
[Bøe+99]] and the Prometheus approach [Tren-Pun03], quality models are used to set targets
which are used to continuously evaluate the products through the development process.

2.4.2.2 COTS Evaluation by Quality Models

When selecting a COTS from a set of competing candidates, a comparison of the most
significant characteristics has to be performed. This is an implicit activity in any procurement
process, including software selection. This basic process allows to identify the mismatches
(additional benefits or drawbacks) among the candidates and to determine the best cost/benefit
rates. In today’s growing electronic world, it is common to find web pages offering comparative
tables of all sorts of products. Some examples in the software engineering domain can be found
in [Ader03], [NPL], [TEC], [INC]. Comparative tables although usual in some cases are
difficult to rely on, they are informally stated (not criteria for their definition are provided nor
are metrics formally stated). In response to these problems some authors have proposed the use
of software quality models as the most appropriated framework to compare the characteristics of
software products. This is the case of the works by Kontio [Kon96] and more recently
Rawashdeh [Raw-Mat06] on the evaluation and comparison of COTS and Olsina [Ols99],
[Ols+99] on the evaluation of web portals.

A special metion deserves the work done by Carvallo [Car+07b] that includes non-technical
factors into the evaluation framework.

COTS certification by third party independent organizations has been also explored
[Voa98b], [Kelk+07], [Kes07]. For instance, Yacoub [Yac+00] developed a hierarchical
reference model to guide the development of COTS certification criteria, for the National

Product Line Asset Center (NPLACE) [NPL]. The categorization of this model includes the
economical investment lifecycle and the product line engineering lifecycle. The risks are
associated to quality features in the model. Specific quality features are identified based on the
impact that they have in the specific project and their ability to be quantified. This framework is
then used to derive a set of metrics relevant to the evaluation of the process and the products.

In [Ber+03] the authors define ISO/IEC 9126-based components quality models as a base for
the evaluation of the information provided by product vendors. By examining manuals tutorial
and other sources of information, authors try to evaluate the set of features included in the
quality models and provide the percentage of components whose quality features could be
measured from the raw information included on them. After performing the experience authors
concluded that there is a gap between the information provided, and the theoretical metrics

Chapter 2: Related Work

49

defined in the model. The authors also propose some hints to improve software evaluation based
on the experience.

In [Ber+06] the same authors provide an example for measuring COTS usability. Whilst
Moraes et al [Mora+07] defines a COTS-based certification process based on experimental risk
assessment and provides a useful survey of the work done about COTS certification based on
standard quality models as the ISO/IEC 9126-1.

2.4.2.3 ISO/IEC 9126-1 Software Quality Standard

The most standardized and widespread of the software quality model approaches is surely the
ISO-9126-1 standard promoted by the International Standards Organization (ISO) which aims
the development of a standard framework for software quality [ISO9126].

Table 2.13 ISO/IEC 9126-1 quality model top level hierarchy

Characteristic/ Subcharacteristic Description

1 Functionality

 1 Suitability Presence and appropriateness of a set of functions for specified tasks

 2 Accuracy Provision of right or agreed results or effects.

 3 Interoperability Capability to the software products to interact with specified systems

 4 Security Prevention to (accidental or deliberated) unauthorized access to data

 5 Functionality Compliance Adherence to application of functionality related standards or conventions

2 Reliability

 1 Maturity Capacity to avoid failures as a result of faults in the software

 2 Fault Tolerance Ability to maintain a specified level of performance in case of faults

 3 Recoverability Capability to reestablish level of performance after faults

 4 Reliability Compliance Adherence to application of reliability related standards or conventions

3 Usability

 1 Understandability Effort for recognizing the logical concept and its applicability

 2 Learnability Effort for learning software application

 3 Operability Effort for operation and operation control

 4 Attractiveness Capability of the product to be attractive to the user

 5 Usability Compliance Adherence to application of usability related standards and conventions

4 Efficiency

 1 Time behaviour Response and processing times; throughput rates

 2 Resource Utilization Amount of resources used and the duration of such use

 3 Efficiency Compliance Adherence to application of efficiency related standards or conventions

5 Maintainability

 1 Analyzability Identification of deficiencies, failure causes, parts to be modified, etc.

 2 Changeability Capability to enable a specified modification to be implemented

 3 Stability Capability to avoid unexpected effects from modifications

 4 Testability Capability to enable for validating the modified software

 5 Maintainability Compliance Adherence to application of maintainability related standards or conventions

6 Portability

 1 Adaptability Opportunity for adaptation to different environments

 2 Installability Effort needed to install the software in a specified environment

 3 Coexistence
Capability to co-exist with other independent software in a common environment
sharing common resources

 4 Replaceability Opportinity and effort for using software in the place of other software

 5 Portability Compliance Adherence to application of portability related standards or conventions

It belongs to the first generation of software quality engineering standards for software
products, which comprises: the ISO/IEC 9126 (software quality) and the ISO/IEC 14598

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

50

(software product evaluation) which remain closely related. The main idea behind these
standards is the definition of a quality model and its use as a framework for software evaluation.
In addition, the ISO/IEC 9126 maps to each of the phases of the life-cycle described in the
ISO/IEC 15288.

The ISO/IEC 9126 consists on four parts: 9126-1 (quality model), 9126-1 (external metrics),
9126-3 (internal metrics), 9126-4 (quality in use metrics). The ISO/IEC 9126-1 part specifically
addresses quality models. A quality model is defined by means of 6 general characterictics of
software, which are furher refined into 27 subcharacteristics (see Table 2.13), but does not
elaborate the quality model below this level, making thus the model flexible.

Subsequent refinement of the quality model implies that subcharacteristics are in turn
decomposed into attributes, yielding to a multilevel hierarchy. Intermediate hierarchies of
subcharacteristics and attributes may appear making thus the model highly structured. Attributes
represent the bottom of the hierarchy and are properties that the software products belonging to
the domain of interest exhibit and are computed using some metric. Therefore, the model is to
be completed based on the exploration of a particular software product and its application
context; because of this, we may say that the standard is very versatile and may be tailored to
domains of different nature. Fig 2.6 shows the ISO/IEC 9126 conceptual model.

Many applications that make use of this standard can be found, for instance [Ols99]
[Ols+99], [Ban-Da02], [Los+03], [Sim-Bel03].

Moreover, the ISO commite has been actively working during many years to enhance such
generation of standards and they are currently in process of being replaced by a second
generation of software quality standards that enhances their applicability. They are called
SQuaRE, ISO/IEC 25000 (Software Product Quality Requirements and Evaluation) [SQU]
which follows the same general concepts used in the ISO/IEC 9126-1 and ISO/IEC 14598 but
enclosing them in a general umbrella.

Fig. 2.6 Conceptual model of the ISO/IEC 9126-1 standard

In our proposed GOThIC approach, the use of the ISO/IEC 9126-1 standard structure
[ISO9126] played a crucial role for structuring all COTS domain related information in a
unified framework in order to provide a reusable schema.

The reasons behind our decision were driven by the next considerations:

a) Although several other project- or product-specific quality models and attribute
catalogues (e.g., [Ader03], [Ber+03], [INC]) have been proposed, they are not so
standardized, widely used and general-purpose. In fact, they are the result of many
years of investigation on specific contexts such as the military, the banking, or the
space ones.

b) It represents a widespread used approach and most software engineers are familiar
with its structure.

c) The standard is highly customizable to different purposes and domains. Thus, it may
be naturally adopted when building quality models for COTS in virtually all
domains. However, in particular, the quality team may add new subcharacteristics

Chapter 2: Related Work

51

specific to the domain, refine the definition of some existing ones, or even eliminate
some (as explained in Chapter 6).

d) It outlines a uniform framework well-suited for the integrated evaluation of all
COTS selection related issues and their metrics. Also, work in the field of metrics
has been applied, as [Fen-Pfl97], [Bas+04] (see Chapters 5 and 6 for details).

e) It allows optimal reusability of product quality features throughout different COTS
selection processes.

Summarizing, the use of the ISO/IEC 9126-1 quality standard structure was vital in our
approach since it provided a very flexible structure whose hierarchy was tailored to embrace all
the informational dimensions required to select and reuse COTS, as detailed in Chapters 5 and
Chapter 6. This was achieved by adding, adapting, decomposing or discarding some of the
characteristics and/or subcharacteristics proposed by its structure, and then completing the
hierarchy with the features and metrics required for the evaluation of the specific COTS
domain.

Our approach was complemented by using (when applicable) several subcharacteristics
appearing in several COTS domains, as reported in [Car05-T]. It provides an ISO/IEC 9126-1-
based catalogue that provides a set of subcharacteristics which appear over and over in different
COTS domains. This catalogue has resulted from empirical experiences, providing a rich top-
level hierarchy that can be tailored to new domains in the same way than the original ISO/IEC
9126-1. We have followed this research line and adopted some of these useful subcharacteristics
in our approach related in Chapter 6.

53

Chapter

3
Research Method

he main purpose of this chapter is to present the process used to create the GOThIC
method. As mentioned in section 1.5, the research in this thesis was originated from previous
research and technology transfer projects. From these previous projects, several COTS selection
related problems were experienced and some practical solutions were proposed, as those related
in [Car05T]. However, to efficiently exploit the benefits of the former approaches, it was
evident the crucial need of dealing with COTS searching open issues.

Some members of the group exposed some preliminary ideas of using taxonomies to
structure the business applications marketplace (i.e. products that are used in the daily
functioning of all types of organizations worldwide) to support the selection of an academic
record management system [Car+04]. Although the idea was well-accepted by the community
(the paper [Car+04] was awarded best paper by the 3rd International Conference on COTS-
Based Software Systems –ICCBSS´04-), the proposed taxonomy was static, domain-specific,
constructed by experience and did not deal with COTS marketplace characteristics.
Consequently, the COTS searching problems detailed in section 1.1 were still remaining.
Hence, the need of pursuing further research for improving COTS searching gave the origin to
the research line leaded by this thesis.

This Chapter is structured as follows. Section 3.1 discusses the research design, techniques
and methods used to drive our research goal. This research has been divided into 2 phases:
formative and summative. In this chapter we focus on the formative one. It is called formative
because it served as the origin and evolution of the ideas and concepts presented in this thesis;
whilst the second phase (presented in Chapter 10) was used to evaluate the whole method
developed during the formative stages.

Section 3.2 introduces a summary of the formative case studies involving the evolution of
the development of the GOThIC method simultaneously coupled with validation; whilst Section
3.3 details the action-research stages used to develop the GOThIC method. Finally, Section 3.4
summarizes the answers obtained for the research questions and Section 3.5 provides a
discussion about the threats of research validity.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

54

3.1 Research Design

The general paradigm employed to reach our research goal was an iterative process based on the
action-research approach [Avi+99], [Gla94] jointly with case studies [Yin03]. It was chosen
because it permits a flexible design of research questions through an iterative research process,
trying several action plans to solve the detected problems in a suitable way.

Action research is also known by many other names, including participatory research,
collaborative inquiry, emancipatory research, action learning, and contextual action research.
Action research is “learning by doing” - a group of people identify a problem, do something to
resolve it, see how successful their efforts were, and if not satisfied, try again. More formally, it
consists in an engineering cycle addressed by 5 steps [Gla94]:

Step 1. Diagnosis of a problem,
Step 2. Examination of options to solve the problem,
Step 3. Selection of options and execution,
Step 4. Analysis of the results, and
Step 5. Repeat until no further improvements are possible.

Due to the general characteristics of the action-research approach, the methods used in our
research cycle were variform. The aim was to develop solutions on the basis of the observed
industrial problems and needs. Following the action-research steps, the research questions (as
introduced in Section 1.4) were iteratively defined and tackled as:

Step 1 (Diagnosis of a problem) was addressed by results of the studies related to RQ1.

RQ1: What are the actual challenges of COTS selection processes?

To tackle this research question, the process and risk issues affecting CBSD were firstly
identified. This was done through a literature survey study on how COTS selection processes
have been addressed both in practice and in theoretical frameworks, as well as our own
experiences that also range from academic to industrial settings.

Although there are several COTS selection challenges, we decided to focus our attention on
the mechanisms to deal with COTS searching since it was an area that was lacking of
suitable support.

 RQ1.1- What are the actual challenges of COTS searching processes?

Therefore, an in-depth study was performed for enlarging the previous survey to investigate
the COTS searching associated problems both in literature and practice. We also had the
opportunity to participate in an empirical study applied to some Norwegian industries
(leaded by Professor Reidar Conradi) in order to investigate how COTS selection processes
are done and the resources that are actually used for searching such components [Ger06],
[Ger07].

Results obtained in these studies motivated research question 2 and subsequent action-
research steps.

RQ2: How can we support COTS searching challenges?

Step 2 (Examination of options to solve the problem) was largely based on literature survey
and the initial ideas and shortcomings regarding solutions in other areas. These ideas were
processed in several brainstorming sessions, for example, and reviewed with other researchers
and experts in the field. Steps 3 (Selection of options and execution) and Step 4 (Analysis of the

results) were implemented iteratively refine and re-assess research questions and the identified
solutions as a whole in order to synchronize them and embody them in the proposed GOThIC
method.

Chapter 3: Research Method

55

Several case studies were performed in order to address the next research questions:

RQ2.1-Can goal-oriented approaches be used to produce useful results for dealing with COTS
searching challenges?

RQ2.2-How can we characterize COTS in the marketplace?

RQ2.3-How can relevant information related to COTS be gathered, evaluated and
synthesized?

RQ2.4-How can such information be maintained for its reuse in different COTS selection
processes?

As a result of this iterative process, the GOThIC method was tailored. The performed case
studies are called “formative” since their main objective was to shape the design of the method.

The analysis and follow-up of progress were based on the results obtained by the formative
case studies. Results were analyzed and evaluated by researchers and practitioners. Some
interviews, meetings, and also refereed publications were used. Data obtained was used in two
ways: in fine-tuning the method solution as a whole and as feedback to method development.

With respect to Step 5 (Repeat until no further improvements are possible), the engineering
cycle was conducted in three stages or main iterations (further detailed in Section 3.3), each one
with well-defined objectives and activities. The results of each stage were analyzed and used to
refine the objectives and activities of the succeeding ones. Unfortunately, in the dynamic area of
software engineering it will not be conceivable to state that further method enhancements would
not be possible. The second phase of our research (presented in Chapter 10) was used to
evaluate the whole method developed during the formative stages.

Fig. 3.1 shows the different phases of this research, the studies performed and their relation
with the research questions. Results from the first two studies addressing RQ1 and RQ1.1 were
further reported as state of the art and state-of-the-practice in Chapter 2. The methodological
approach of the action-research process is discussed in this chapter as formative studies and
results are reported throughout this thesis dissertation in the corresponding GOThIC method’s
activities Chapters. Finally, the evaluation studies of the whole method (i.e., the summative
phase) are reported in Chapter 10.

Fig. 3.1 Research phases, research questions and corresponding studies

An exploratory survey on how COTS Selection processes have
been addressed (both in practice and the literature) in order to

know what are their current challenges

An in-depth survey study on COTS searching processes and their
associated problems

Iterative execution and analysis of possible solutions driven by
academicals and industrial formative case studies to mitigate

problems detected in previous stages.
 <Result: GOThIC Method>

Forthcoming Studies: Summative evaluation of the
 GOThIC method in industrial settings.

(

 RQ1

 RQ1.1

 RQ2
 RQ2.1
 RQ2.2
 RQ2.3
 RQ2.4

See
Chapter

10

Formative
Phase

Summative
Phase

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

56

3.2 Formative Case Studies

The case studies presented in this section enabled the development of the GOThIC method.

Each of these case studies involves a COTS domain:

• Business Applications Tools (BA) case study. It refers to COTS that are used in the daily
functioning of all types of organizations worldwide.

• Software Applications Development tools (SAD) case study. It means, COTS tools
devoted to support activities related in the construction of software applications.

• Requirements Engineering Support Tools (REST) case study. It refers to COTS that are
used to support Requirements Engineering activities.

• Real Time Synchronous Communication Tools (RTSC) case study. It means the COTS
technologies used to enable communication and collaboration among people in a “same
time-different place” mode.

Table 3.1 summarizes the availability of data for each of the case studies discussed in this
chapter.

Table 3.1 Availability of Case Studies Data

Case Study Data Available

Business Applications Tools [Aya-Fra05], [Aya+04TR], [Aya-Fra06TR]

Software Applications Development Tools &
Requirements Engineering Support Tools [Aya+05TR], [Aya+04c], [Aya+05a]

Real Time Synchronous Communication Tools
[Aya-Fra06TRa], [Aya-Fra06a], [Aya-Fra06b],
[Aya-Fra06c]

In all the case studies presented in this chapter, an exhaustive literature study related with the
corresponding domain was performed.

Furthermore, an iterative analysis of the application of different methods for classifying
software, component reuse, requirements engineering, and goal-oriented research was carried
out. The selection of the case studies was mainly addressed by the thesis author knowledge and
expertise, as well as the availability of industrial or academic data to test with.

3.2.1 Business Applications (BA)

The BA case study was the first case study performed and was addressed to endorse the
classifying mechanisms to arrange COTS and the process of using goal-oriented approaches.

In particular we used the GBRAM method for providing methodological approach to the
COTS marketplace arrangement. This case study was appealing and well suited for beginning
this thesis research for two main reasons. First, from previous experiences in COTS selection
projects related with this domain, we had useful knowledge to start working with, and second
we also had industrial data from real COTS related selection cases in order to validate our
findings.

In this case, we mainly focus on learning, applying and adapting the GBRAM techniques to
our purposes. To analyze the GBRAM suitability, diverse information sources were analyzed to
elicit BA goals; also information from previous BA COTS selection processes was gathered and
assessed.

Some interviews with experts and practitioners were performed, providing an understanding
of their expected requirements for BA tools and how these requirements were satisfied by the

Chapter 3: Research Method

57

resulting goals. These served as a source for goal and scenario identification that leaded us to
formalize and validate the process of goal-oriented taxonomies construction.

3.2.2 Software Applications Development (SAD) and Requirements

Engineering Support Tools (REST)

Once we obtained preliminary data of the suitability of GBRAM to our purposes by the BA case
study, we intertwined the study and construction of several branches of the Application

Development category. Particularly the REST subcategory was refined in deep.

The main objectives of this process were in the one hand to test the scalability of the
intended method (i.e. by applying it to categories of different sizes) meanwhile it was also
tuned. On the other hand, this process was also crucial to identify and address issues for making
feasible the systematic construction of COTS taxonomies.

The selection of the case studies was determined by the availability of experts knowledge
and COTS projects information in the RE domain given the large background of the GESSI
group in this context.

3.2.3 Real Time Synchronous Communication Tools (RTSC)

The RTSC case study was intended to iteratively design and validate some improvements to the
activities of the GOThIC method.

It was mainly addressed to design and calibrate the different artifacts produced, and validate
some aspects of its usability.

This case study was chosen since it represents a popular COTS domain, greatly used in
almost all organizational settings (e.g., instant messaging tools). Therefore, it was easier to
explain the benefits of the method to industrial audience and to get feedback of the usability of
the outcomes.

3.3 Formative Research Stages Used to Develop the GOThIC Method

Formative case studies extended over time and GOThIC evolved as a result of its application to
them. The cyclic approach we adopted to develop the method was one in which it was
iteratively refined by its application to the formative case studies and the adoption of new
techniques intended to overcome the drawbacks emerging from the empirical evidence gathered
in each stage (as detailed below). Following this criteria, the main study of the formative
research has been conducted in three stages.

The next sections summarize each of the stages including a brief description of their
objectives, the activities performed and the principal findings resulting from them. Publications
are also cited because they offered valuable insights from experts as evaluation of the results of
each stage.

3.3.1 First Stage: Proposal of an Initial Version of the Method

Objectives

� To identify problems associated to the searching of COTS in real COTS selection
processes.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

58

� To identify a set of mechanisms and/or techniques that could be helpful to deal with the
identified problems.

� To select the mechanisms and/or techniques that better reach the objective of the research.

� To propose a method to drive COTS taxonomies construction.

Activities

� Survey of the state-of-the-art and investigation of the state-of-the-practice on COTS
selection methods with special focus on COTS searching issues.

� Analysis and identification of suitable approaches to provide a systematic rationale for the
construction of effective COTS taxonomies that support COTS searching and selection
issues.

� To perform some case studies (BA, SAD and REST) to evaluate the suitability of the
identified approaches and improve their drawbacks.

� Evaluation of the incoming results by practitioners and experts. A lightweight action
research method called participatory observation was applied.

Results

� Goal-Oriented approaches coupled with decision trees structures were useful to deal with
COTS marketplace evolvability and interoperability problems.

� It resulted in a very preliminary version of the method to build COTS taxonomies inspired
on GBRAM and the i* approach as a goal-modelling technique to record interoperability
issues. The method was called GBTCM [Aya+05a].

� GBTCM customized GBRAM to the COTS taxonomies context.

� Some meetings with practitioners and experts were held in order to get their feedback about
the intended method.

� The introduction of goal-oriented approaches resulted in an increased understanding and
management of the taxonomy content; it was perceived as a more reliable COTS selection
processes by the practitioners and experts.

� After case studies evaluation, some GBTCM design flaws were evident: Since GBRAM
was conceived to focus on a different in a setting than COTS market goal-oriented
taxonomies, more customization and improvement to our purposes was required to reach
our objectives (e.g., the i* approach did not handle explicitly the particularities of COTS
selection, it seemed to be addressed more to support the development of bespoken software
rather than the construction of systems based on COTS, therefore it also needed to be
adapted to our purposes).

Published Results

Several publications resulted from this stage:

� [Aya+04a]. It explored the applicability goal-oriented approaches, specifically GBRAM
and some other approaches suitable to our purposes. It was published in the
proceedings of the 8th World Multiconference on Systemics, Cybernetics and

Informatics (SCI 2004).

Chapter 3: Research Method

59

� [Aya+05a]. In this paper, a preliminary version of the GOThIC method called GBTCM
(Goal-Based Taxonomy Construction Method) was proposed. Specifically, we showed
how GBRAM was customized. We adjusted the inputs and modified the output. We
adapted and pruned some activities in order to obtain the statement goals to be considered
for the construction of COTS taxonomies in any area. For clarifying concepts, in this paper
we presented some insights of the REST case study. It was presented in the “4th

International Conference on COTS-Based Software Systems (ICCBSS05)”.

� [Aya+04c] and [Aya+05c]. These publications detail the procedure for constructing a
COTS taxonomy for the REST case study. The taxonomy and the obtained information
reached significant benefits to the selection of systems and tools that aid to Requirements
Engineering-related actors to simplify and facilitate their work. It also claims to foment the
use of standards and requirements reuse in order to support different process of selection
and integration of components. The first publication refers to the “VII Workshop on

Requirements Engineering (WER 2004)”. This paper was selected as one of the best
papers of the workshop and after a second review process it was included in the
“Journal of Computer Science and Technology. Special Issue on Software

Requirements Engineering Vol. 5, No. 2, 2005”.

� The preliminary bases for these publications were the technical reports [Aya+04TR]
and [Aya+05TR] which fully detail the customization of GBRAM to our purposes and
the GBTCM application to some case studies.

3.3.2 Second Stage: Validation and Improvement of the Resulting Method in

Academic Cases

Objectives

� To obtain new empirical evidence of the applicability of the newly proposed method.

� To identify method problems and drawbacks and to refine it.

� To explore the use of rigorous approaches to deal with each one of the identified
drawbacks.

Activities

� Finishing the construction and tuning of goal-based taxonomies for additional categories in
the SAD and REST case studies following the method proposed on the first stage.

� Further study of the i* and its customization to the COTS context.

� Exploration of diverse techniques to improve the method effectiveness.

� Identification of different artefacts and processes to improve the taxonomies construction,
their management evolution and reuse.

� Analysis of potential tools for supporting the method activities as GBRAT [Ant+96],
Protégé 2000 [Mus+95] and Taxonomy Tool [Gra+04].

� Performing some case studies activities by using the corresponding potential tools.

� Evaluation of the incoming results by practitioners and experts.

Results

� We found some method design flaws, some due to the use of GBRAM in a different
context, others due to our method as such. The flaws were:

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

60

• GBRAM is a requirements acquisition method; therefore the sources of information
are mainly human beings, which is not the case in the COTS context.

• GBRAM lacks of proper mechanisms to deal with the huge amount of unstructured
information of the COTS marketplace.

• GBTCM did not give the required importance to the analysis of the domain, which
is more difficult than in a non-COTS context because expertise is needed not only
on the domain itself but also on how this domain is represented in the marketplace.

• GBRAM is a one-shot method, with no orientation to knowledge reuse.

• GBTCM focused on market segments but did not consider the COTS components
themselves.

• GBTCM definition was not oriented to having tool-support.

� The i* approach was successfully customized to handle the particularities of COTS
selection; both to support the rationale of the taxonomies construction and to represent
COTS market segment dependencies.

� The method flaws were successfully overcome by a more consolidated version of the
method [Aya-Fra06a] presented as GOThIC (Goal-Oriented Taxonomy and reuse
Infrastructure Method). It was formally structured and defined into seven activities with
their respective artefacts, processes and relationships

� A conceptual model defining the GOThIC method was constructed [Aya-Fra06a].

� Taxonomies constructed in previous stages of our research were further addressed, taking
as a base the improved GOThIC method.

� The analysis of existing potential tools for supporting the method activities lead to decide
the implementation of several modules for the DesCOTS system [Gra+04], a tool already
developed in the GESSI group to support several activities of the COTS selection process.

� We discovered some drawbacks that mainly hampered the reusability purposes of the
method. These drawbacks stemmed from different issues, most of them derived from the
fact that the method did not consider a more exhaustive program of information sources
analysis and the reuse of knowledge from these sources, as well as an appropriate COTS
domain analysis that help to manage validate and customize the Knowledge Base.
Therefore, we realized that further investigation was needed to address activities 1, 2, 6 and
7 in an optimal way [Aya06].

Published Results

Published results of this stage include:

� The work performed together with other members of the GESSI group that was the base
for customizing the i* approach to the GOThIC purposes

• [Aya+04b] and [Aya+05b]. These publications detail the use of the goal- and agent-
oriented models as i* in other disciplines than requirements engineering and
organizational process modelling. They justified our decision of using i* in diverse
COTS selection related processes and presented a comparative study of the three
most widespread i* variants: Eric Yu’s seminal proposal, the Goal-oriented
Requirement Language (GRL) and the language used in the TROPOS method. We
also proposed a generic conceptual model to be used as reference framework of
these three variants and we showed its use for generating specific models for the

Chapter 3: Research Method

61

three mentioned variants, as well as for other existing proposals. The first
publication was presented in an Iberoamerican forum called “4as. Jornadas

Iberoamericanas de Ingeniería de Software e Ingeniería del Conocimiento, (JIISIC
2004)” and the second one refers to an improved version of the first one presented
in a worldwide forum “International Workshop on Agent-Oriented Software

Development Methodology (AOSDM 2005)”.

• [Gra+05], [Fra+07]. These papers defined a general methodology for building i*
Strategic Dependency Models, called RiSD for supporting the targets of the
different research lines pursued by the GESSI group, included the COTS
dependencies modeling pursued by GOThIC. The first one was presented in the
“17th International Conference on Software Engineering and Knowledge

Engineering” 2005. Subsequently it was selected as one of the best papers of the
Conference and after an extensive revision it was recently published in the
“International Journal of Software Engineering and Knowledge Engineering”.

� [Aya05PT] It refers to the Thesis Project document that satisfactorily fulfilled the
requirements to be considered a PhD thesis proposal. Such document contained the results
of the research made to this date.

� [Aya06], It tackled the research method used to develop the method, current results and
ideas guiding the next stage of research. It was presented in the 13th Doctoral Consortium
at the 18th Conference on Advanced Information Systems Engineering (CAISE 2006).

� [Aya-Fra06a]. It presents the GOThIC method, describing its characteristics, activities and
their respective artefacts and relationships; also the conceptual model defining the method
was stated. It was presented in the 9th International Conference on Software Reuse (ICSR
2006).

� [Aya-Fra06b]. It reports the improvements on the 3rd, 4th and 5th GOThIC activities, that
represent the goal-oriented core of the method by integrating goal-acquisition techniques
and our results of customizing the i* approach to our purposes. It was presented in the
CAISE Forum collocated at the 18th Conference on Advanced Information Systems

Engineering (CAISE 2006).

3.3.3 Third Stage: Improvement of the Method to support suitable reuse and

Industrial Evaluation

Objectives

� To explore the use of rigorous approaches to deal with the identified drawbacks.

� To propose a mechanism to ameliorate these problems.

� To empirically validate such mechanisms in industrial contexts.

� To perform qualitative studies addressed to COTS selection experts and practitioners to
evaluate and improve some GOThIC method activities.

� To encompass the obtained results into the whole GOThIC framework.

Activities

� Development of target improvements to the GOThIC method.

� Design of empirical studies, questionnaires and artefacts to obtain empirical evidence to
shape the method activities.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

62

� To perform a case study to design and validate the integration of these improvement
strategies in the whole method.

• Design of an exhaustive program of information sources acquisition, their reuse and
quality assurance.

• Design of a suitable domain analysis specifically to address COTS selection
problems

• Design of a suitable process to ensure the correctness and completeness of the
constructed taxonomies, and to customize them to specific users needs.

� Evaluation of the incoming results by practitioners and experts to evaluate the effectiveness
of the improvements. Participatory observation was applied.

Results

� A study aimed to empirically investigate the informational dimensions and data quality
aspects that are really expected for performing an informed COTS selection. Results from
this study are reported in [Aya-Fra07] and are the base of the design of our COTS
Information Quality management strategy introduced in Chapter 5. The study was divided
into two stages: the first one is addressed by a questionnaire aimed to investigate the data
quality dimensions of the information. The second part of the study use the data obtained in
the first one to design an interview aimed to further explore data quality measurement
issues supporting COTS selection. The questionnaire used was based on the seminal Data
Quality Survey Questionnaire by Wang and Strong [Wan-Str96].

� An approach to systematically tackle the COTS informational quality problems by stating a
reference model based on the ISO/IEC 9126 tree-like standard, embracing quality
indicators that facilitate the collection, storage, retrieval, analysis and reuse of information
in a quality assurance environment was designed.

� The lack of comprehensive mechanisms to record and manage the required information for
supporting COTS selection was overcome by designing a strategy based on domain
analysis principles. Due to the diversity of the information to capture, we propose different
dimensions of interest for COTS selection that were covered by different reusable artifacts.
These artifacts were articulated by means of a single framework based on the ISO-IEC
9126 quality standard.

� We reached the integration of all COTS related issues into a single framework based on the
ISO/IEC 9126 quality standard that provides a synergic approach among the artefacts
produced in all GOThIC method activities.

� To ensure trustworthiness and customization of the taxonomies constructed with GOThIC
to the users’ needs, we defined a process of taxonomy validation and management based on
the repeated application of transformation rules over the nodes of the source hierarchy. We
define the syntactic form of the rules and also their applicability conditions as properties on
the involved goals.

� Based on the empirical evidence of COTS usage in industrial settings [Ger06], [Ger07], we
envisaged new paradigms to improve the Knowledge Base Management activity of the
method.

Published Results

Published results of this stage include:

Chapter 3: Research Method

63

� [Aya-Fra07]. Based on the empirical evidence obtained, this technical report presents our
approach for systematically tackling the quality aspects of the COTS related information to
be considered for performing an informed selection. An improved version of this report
supported with improved empirical data is being elaborated to be submitted to a journal.

� [Aya-Fra06c]. In this paper we presented our domain analysis approach for gathering the
information needed to describe COTS market segments as required for effective COTS
selection. Due to the diversity of the information to capture, we proposed different
dimensions of interest for COTS selection that are covered by different domain models.
These models were articulated by means of a single framework based on the widespread
software quality standard ISO-9126. The paper was presented in the 25th International

Conference on Conceptual Modeling (ER 2006). An extended version of this paper was
also published as a research report [Aya-Fra06TRa].

� [Aya-Fra05]. This paper tackled the process of goal-oriented taxonomy validation. We
defined the syntactic form of the rules and also their applicability conditions as properties
on the assigned goals. We applied them to a particular case, a taxonomy for BA. Such paper
was presented in the “16th International Conference and Workshop on Database and

Expert Systems Applications” (DEXA 05). An improved version of this work, including the
formal demonstrations of the proposed transformation rules is being elaborated to be
submitted to a journal.

� [Aya+07] Based on the empirical results obtained results obtained in [Ger06] and [Ger07],
we envisaged an approach to effectively build, maintain and make available the GOThIC
infrastructure to enable systematic support for COTS selection. It is based on the Open
Source collaboration paradigm and social computing interaction. It was presented in the
Third International Conference on Open Source Systems (OSS 2007)/IFIP working group

2.13 Open Source Software.

Fig. 3.3 summarizes the published results in each of the formative research stages.

GOTHiC
Formative
Research

Cycle

GOThIC

DD
D
D

. .

D

D

Stage 3Stage 3
Further Method Validation and

Improvement

GOThIC

DD
D
D

. .

D

D GOThICGOThIC

DD
D
D

. .

D

D

Stage 3Stage 3
Further Method Validation and

Improvement

Stage 1
Proposal of a First

Version of the Method

Stage 1
Proposal of a First

Version of the Method

[Aya+04a]
[Aya+05a
[Aya+04c]
[Aya+05c]
[Aya+04TR]
[Aya+05TR]

[Aya+04b]
[Aya+05b]
[Gra+05]
[Aya05PT]
[Aya06]
[Aya-Fra06a]
[Aya-Fra06b]
[Fra+07]

Stage 2
Method Validation and

Improvement

C1

C2

C3

C4

Stage 2
Method Validation and

Improvement

C1

C2

C3

C4

C1

C2

C3

C4

C1

C2

C3

C4

[Aya-Fra05]
[Aya-Fra06c]
[Aya-Fra06TRa]
[Aya+07]
[Aya-Fra07]
[Ger06]
[Ger07]
[Aya-Fra08]

Fig. 3.3 Formative research stages and their corresponding publications

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

64

3.4 Answers to Research Questions

This section intends to describe the answers to the research questions based on the results
obtained through our research work.

Table 3.2 Research Questions Revisited with respect to the obtained results

Research Question Answer

RQ1: What are the actual challenges of
COTS selection process?

RQ1.1: What are the actual challenges
of COTS searching processes?

These questions were answered by the studies reported in [Ger06], [Ger07] and literature
survey. These results are enclosed in Chapter 2 of this thesis.

RQ2: How can we support COTS
searching challenges?

To answers this question, several sub-questions related below were defined and tackled.
The GOThIC method was conceived as a harmonized integration of these results. They are
related below.

RQ2.1: Can goal-oriented approaches
be used to produce useful results for
dealing with COTS searching
challenges?

Our results showed that the introduction of goal-oriented approaches for structuring COTS
taxonomies resulted in an increased understanding and management of the taxonomy
content; it was perceived as a more reliable COTS selection processes by the practitioners
and experts asked.
Further explanation of the suitability of the approaches is given in Section 2.4.1 whilst
Chapter 7 describes the goal-oriented core of the resulting method.

RQ2.2-How can we characterize COTS
in the marketplace?

Informational dimensions required to perform an informed COTS selection were identified
from experts. Results are further described in Chapter 6. To structure such information goal-
oriented taxonomies were applied and flexible mechanisms were defined to manipulate the
taxonomies with respect to the user needs (Chapter 8 further describe this process).

RQ2.3-How can relevant information
related to COTS be gathered, evaluated
and synthesized?

A Information Quality management strategy was envisaged in order to deal with the diversity
of COTS related information. Chapter 5 fully describes the strategy and the process that
leaded its development.

RQ2.4-How can such information be
maintained for its reuse in different
COTS selection processes?

Several processes were harmonized in order to pursue reuse. In general the GOThIC
method was designed following the Experience Factory (EF) paradigm introduced by Basili
[Bas+94b] and the Learning Software Organization (LSO) [Ruh01]. Chapter 6 and 9 further
describe the main reuse approaches taken.

3.5 Threats of Validity Discussion

A fundamental discussion concerning results of the main study is how valid they are. The
action-research qualitative research selected involves using the researcher himself as the
instrument for the research. A short discussion of the effects of the main researchers
involved is therefore appropriate [Rob02].

The author of this dissertation has been working within the CBSD area since 2003 and
has been performed research within the area for over four years. In addition, she received a
formation in empirical research in software engineering by taking some academic courses as
well as advanced courses. She has also worked with experienced people in the empirical
research field and COTS selection research and practice. In addition, she had the
opportunity to participate in some industrial both empirical experiments and qualitative
studies related to components selection and usage.

Other researchers greatly involved, participating and/or advising this research have a
strong background in software engineering, COTS related issues and process improvement,
both in industry and research.

To reduce the threats to validity of this research, we performed different strategies based
on the threats to validity and corresponding strategies proposed by Robson [Rob02] and
summarized in Table 3.2. The table defines six strategies which address three types of

Chapter 3: Research Method

65

threats to validity, namely reactivity, researcher bias, and participant bias. The strategies
may reduce the type of threat, increase it or have no effect, as defined in the table.

Reactivity refers to that the researcher may impact on the studied setting. Researcher
bias refers to the preconceptions of the researcher, brought into the studied situation, which
may impact on how the researcher asks questions or interpret results or answers. Participant
bias is based on the participant’s attitudes towards the study; it may be suspicion, leading to
withhold information, or in the other end of the scale, companionship, leading to attempts to
give the answer they think the researcher wants.

Table 3.2 Strategies for dealing with threats to validity [Rob02]

Threat to Validity
Strategy

Reactivity Researcher Bias Participant Bias

Prolonged Involvement Reduces Threat Increases Threat Reduces Threat

Triangulation Reduces Threat Reduces Threat Reduces Threat

Peer debriefing No effect Reduces Threat No effect

Member Checking Reduces Threat Reduces Threat Reduces Threat

Negative Case Analysis No effect Reduces Threat No effect

Audit Trail No effect Reduces Threat No effect

The specific strategies we take into account for the validity threats of our research are
explained below according to the strategies related in Table 3.2.

Prolonged involvement refers to that researchers have a long-term relationship with the
studied object. In our research, we have had a long-term research involvement in formative
case studies to try the effectiveness of different techniques for dealing with the detected
COTS searching problems. To provide a balance between researcher bias threats we
considered necessary the evaluation of the results of the case studies for practitioners and
researchers (e.g., meetings, interviews and submitting papers with the results of the case
studies as well as holding seminars and talks to explain and discuss our results). This was
also assumed to provide a balance between reactivity threats.

Triangulation refers to having multiple sources for the study information. In this
research, it was generally attained in three different ways, which further increases the
validity. A summary is provided below:

• Data triangulation. Multiple data sources were used in the study, interviews, archival
and informal.

• Investigator triangulation. In some cases, interviews or surveys were performed by
other researchers (commonly students) and their results compared with our own
results.

• Theory triangulation. Case studies results were evaluated by multiple perspectives (i.e.,
practitioners and researchers). Therefore their feedback was also varied. This approach
also provides negative case analysis, i.e., trying to find another explanation to the
observed phenomenon.

Peer debriefing means that researchers involve independent peers to review the research.
As mentioned above, results from case studies were evaluated by practitioners and
researchers on the area.

Member checking refers to involving the interviewing or questioning people in giving
feedback to the researchers. This was used continuously, by receiving useful feedback from
practitioners and researchers.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

66

An extensive approach to audit trail was used in the research, i.e., keeping a full record
of all case studies, from data collection all through the analysis. This data, as well as the
useful feedbacks and comments from researchers and practitioners have been recorded by
using the NVivo Software [NVi], keeping full traceability back to any study result.
Moreover, the analysis of results in each case study was conducted with rigor.

External validity, as stated by Wohlin [Who+00] is concerned with generalizations of
results outside the scope the case studies performed in our research. At this respect,
although a case study always is coloured by its specific context, we try to perform diverse
case studies involving COTS domains of different sizes and criticality. By the feedback
from practitioners and researchers, we can say that it seems reasonable to generalize the
activities of the GOThIC method in the way that their prescriptions may be useful and
applied to any domain and not only in the performed case studies. Nevertheless, we are
aware that some fine-tuning processes must be performed depending on the domain to be
dealt with, and; more extensive studies must be applied in industrial practice to demonstrate
the method validity (as explained in Chapter 10).

In summary, reasonable countermeasures to validity threats have been implemented in
the research. It may therefore be contended that the validity of the research is sound.

67

Chapter

4

The GOThIC Method

his thesis addresses the critical nature of the COTS marketplace (i.e., diversity, size,
evolvability, and interoperability) and the lack of available and well-suited information to obtain
a quality assured search.

Existing COTS selection approaches (as those surveyed in Chapter 2) usually fail to address
the process of searching and reusing COTS and information about them from the marketplace
[Aya-Fra06a].

Based on several industrial and academic experiences and aimed to contribute to these
problems, this chapter introduces the Goal-Oriented Taxonomy and reuse Infrastructure

Construction (GOThIC) method. It was conceived as a set of interrelated and synergic strategies
to deal with the problems mentioned in Section 1.1.

 It provides prescriptive support for the construction and maintenance of flexible goal-
oriented taxonomies that describe the contents of the COTS marketplace and, also for
organizing and recording COTS related information and knowledge in order to get full potential
of suitable software and knowledge reuse.

The approach can be used in the context of an organization or in a generic or global context.
The reuse infrastructure obtained by the application of the method may be used in several COTS
searching processes for obtaining the appropriate criteria for locating the most appropriate kind
of components and reuse information about them.

In contrast to other approaches proposed for classifying COTS, GOThIC assumes that COTS
information has not been previously gathered and provides support for gathering, assessing and
recording such information in a suitable and reusable way. The goal-oriented nature of the
method and the diverse artifacts produced during its application provide the rationale for
structuring, representing, evolving, and reusing COTS marketplace related information in a
repository or knowledge base.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

68

The underlying principle of the reuse infrastructure obtained with GOThIC relies on the
flexible goal-oriented classification schema that helps to categorize all COTS related with a
domain in an understandable way and in a coarse-grained level. It also supports the assessment
of components by stating their related information in a uniform way.

Next sections of this chapter introduce an overview of the method and the main benefits
expected from it whilst in Chapters 5 to 9 the strategies for dealing with these activities are
further explained and illustrated.

4.1 GOThIC: A Method to Build a COTS Domain Reuse

Infrastructure Based on Goal-Oriented Taxonomies

The GOThIC method has been conceived as a process in which six main activities are iterated
and/or intertwined to develop an evolvable COTS domain reuse infrastructure. Such reuse
infrastructure supports COTS searching processes in such domain and reuses the knowledge
gained in each one of these processes.

Fig. 4.1 shows the high-level activities as boxes, they are: Exploration of Information
Sources (Activity 1); COTS marketplace domain analysis (Activity 2); Identification,
refinement and statement of goals (Activity 3); Establishment of dependencies (Activity 4);
Goal-Taxonomy Structuring (Activity 5); Taxonomy validation (Activity 6); and Knowledge
base management (Activity 7).

The dotted box denoted as goal-oriented core groups the activities related with the
identification, manipulation, and representation of goals to construct the evolvable taxonomies.
Although all the method activities are illustrated as sequential for clarity, these activities do not
need to be performed sequentially; rather, they may be performed concurrently and iteratively
with occasional interleaving.

In the next paragraphs, the GOThIC method activities are briefly introduced to provide an
overview of the method. In Chapters 5 to 9 they are further detailed.

COTS
Domain
Analysis

Taxonomy
Validation

Exploration
of

Information
Sources

Identification,
Refinement &

Statement
of Goals

Establishment
of

Dependencies

Goal
Taxonomy
Structuring

Goal-Oriented Core

Identification,
Refinement &

Statement
of Goals

Establishment
of

Dependencies

Goal
Taxonomy
Structuring

Goal-Oriented Core

Knowledge Base
Management

Fig. 4.1 High-level activities of the GOThIC method

Activity 1: Exploration of information sources

This activity provides support for locating and choosing relevant information by means of a
suitable information acquisition program which allows extracting knowledge from the COTS
domain by reconciling the characteristics of the available sources (e.g., diversity of its type,
supporting media, cost, etc.) with those of the taxonomy construction project. Details of this
process are found in Chapter 5 and [Aya-Fra07].

Chapter 4: The GOThIC Method

69

Activity 2: COTS marketplace domain analysis

In order to facilitate its analysis and structuring, COTS marketplace has to be broken into
domains grouping related services. These domains should be described by several
characteristics. The goal of this activity is to identify, record and represent the basic elements
and relationships of the COTS domain that is being analyzed for reusability purposes. It is done
from the information sources acquired by the previous activity (Activity 1). Due to the diversity
of the information to capture, we propose different models to record the five dimensions of
interest for COTS selection: Fundamental Concepts, Functionality, Quality of Service, Non-
Technical Description, and Interoperability. Some of these models are further constructed and
detailed as part of other method activities which are run concurrently (e.g. Activities 1, 3, 4 and
5). Finally, as part of our proposed COTS domain analysis strategy, these models are articulated
by means of a single framework called Domain model that is based on the ISO-9126 quality
standard. A further explanation is given in Chapter 6 and [Aya-Fra06c].

Activity 3: Identification, refinement, and statement of goals

The use of goal-oriented approaches helped us to understand and capture the objectives covered
by a COTS domain in a natural way and at various levels of abstraction whilst goals remains
more stable with respect to changes. The process that conform this activity is based on the
GBRAM method. Heuristics are provided to perform these iterative activities which main
objectives are: Identification aims at extracting goals from available sources obtained from
Activity 1 by applying different goal-acquisition techniques. Refinement entails the goal
refinement considering obstacles, scenarios to uncover hidden goals and mechanisms to
discover synonymous or duplicated goals. Statement consists on expressing the goals in a
systematic way; it also specifies the pre/post conditions for the goals. To summarize all this
information we use goal-schemas. Further information of this process can be found in Chapter 7
and [Aya-Fra06b].

Activity 4: Establishment of dependencies

This activity helps to identify and establish the different dependencies that a COTS category or
market segment may have with another by analyzing the goals obtained in the previous activity.
Specifically, we have identified four basic types of dependencies: Goal dependency, Task
dependency, Resource dependency; and Soft-goal dependency. To represent these abstract
relationships, we use a combination of goal- and agent oriented model called i* SD models
[Yu95]. Support in identifying the appropriate kind of dependencies and their recording is given
in [Gra+05] and [Aya-Fra06b]. Chapter 7 also details this activity.

Activity 5: Goal-taxonomy structuring

This activity provides support for organizing the COTS related information in a hierarchical
structure. The rationale to organize the goals comes from the analysis of pre- and post-
conditions stated for each goal. Subsequently, goals are operationalized in terms of variables
which state the semantics to each taxonomy node for being used as a decision tree. The tree is
composed of two types of nodes, market segments and categories. Market segments are the
leaves of the taxonomy and represent atomic entities covering a significant group of
functionality; whilst categories serve to group related market segments and/or subcategories.
Further information of this process can be found in Chapter 7 and [Aya-Fra06b].

Activity 6: Taxonomy validation and managing

In order to be useful for driving COTS search processes, we require some mechanisms to make
the taxonomy flexible and at the same time to ensure its trustworthiness. Therefore, in this

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

70

activity we address the process of taxonomy validation and managing by using decision trees
properties. The process was defined as the repeated application of some stated transformation
rules over the nodes to manipulate the hierarchy until reaching a stop condition. This process
not only ensures the trustworthiness of the resulting taxonomy, but also provides a means to
manipulate the taxonomies to represent the abstraction level required by the context of use for
which the taxonomy is intended. We detailed this process in Chapter 8 and [Aya-Fra05].

Activity 7: Knowledge base management

The method is based on an Experience Factory (EF) perspective [Bas+94b] in order to enable
the Learning Software Organization (LSO) [Ruh01] paradigm. Therefore, all the method’s
activities and their resulting artifacts are aimed and synchronized to build a repository capable
of support reuse, maintenance and evolution of the obtained knowledge gained during the
COTS reuse infrastructure process, as well as the knowledge gained in each COTS selection
experience. This activity refers to populate the COTS repository or knowledge base and
managing its contents. It is important to remark that it is aimed to enable the storage, location
and retrieval of COTS information (not necessarily the components themselves). The strategy
defined to effectively populate and maintain the resulting repository or knowledge base is
detailed in Chapter 9 and [Aya+07].

A generalized summary of the high-level inputs and outputs of each GOThIC activity is
presented in Table 4.1.

Table 4.1 High-level Inputs and Outputs of GOThIC Activities

Activity Inputs Outputs

Exploration of Information
Sources

COTS-related information Prioritized set of COTS related information sources
and their management

COTS Domain Analysis

Prioritized set of COTS related
information sources
Diverse models completed and
refined by other method activities

Domain Model of the COTS market segment

Identification, Refinement
and Statement of Goals

Prioritized set of COTS related
information sources

Goal Schemas.
Domain Model refinement

Establishment of
Dependencies

Prioritized set of COTS related
information sources
Goal Schemas

COTS dependencies relations stated as i* SD
models.
Domain Model refinement

Goal Taxonomy Structuring

Prioritized set of COTS related
information sources
Goal Schemas
COTS dependencies relations

Variable assignment to goals that represent
taxonomy nodes
Goal-oriented hierarchy

Taxonomy Validation and
Management Goal-oriented hierarchy Correct, complete and ad-hoc goal taxonomy

Knowledge Base
Management

All inputs and outputs of the
previous activities are recorded

A domain reuse infrastructure composed of all the
evolvable artifacts produced throughout the method,
residing in a domain knowledge base or repository
organized on goal-oriented taxonomies aimed to
support the storage, location, and retrieval of COTS
information (not necessarily the components
themselves).

4.2 Characteristics of the Proposal

The UML class diagram in Fig. 4.2 defines the form that the repository or knowledge base
aimed by the GOThIC method exhibits.

At the heart of this model lies the taxonomy composed of two types of nodes, market
segments and categories, which are characterized by their goals. From a semantic point of view,
market segments stand for the basic types of COTS available in the marketplace (e.g., the

Chapter 4: The GOThIC Method

71

market segment of anti-virus tools or spreadsheet applications). As a consequence, COTS are
associated with market segments and not with categories (although an indirect relationship
exists, because market segments belong to categories). Components may cover more than one
market segment.

From the analysis of some information sources which are gathered, analyzed, and prioritized
according to several characteristics (as related in Activity 1), the domain analysis activity
(Activity 2) is performed. In fact, the domain analysis activity leads the performance of all
GOThIC method activities where several artifacts are produced. These artifacts are bounded to
taxonomy nodes.

Fig. 4.2 Conceptual model for goal-oriented COTS taxonomies: overview

The identification, refinement and statement of goals (Activity 3), the establishment of
dependencies (Activity 4) and the goal taxonomy structuring (Activity 5) enclose the goal-
oriented core of the method. Dependencies among nodes provide a comprehensive view of the
marketplace. In the case of dependencies among market segments, they stand for
interoperability issues (e.g. mail server systems depend on anti-virus tools to support integrity).
Concerning categories, more abstract relationships are modeled. In addition to taxonomy nodes,
dependencies may involve goals, when the relationship can be established more accurately. The
Dependable Entity superclass allows modeling this situation comfortably. Note that
dependencies are represented by a ternary association, because they involve two elements
(depender and dependee) and the relationship itself.

To validate and manipulate the resulting goal-taxonomy, a well-defined process is provided
(Activity 6). Finally, the ultimate goal of the method is to populate and maintain a domain
knowledge base (Activity 7) with the deliverables of all other method activities that have been
accordingly designed.

In next chapters, the model presented in Fig. 4.2 will be further detailed during the
explanation of each method activities from Chapter 5 to 9.

4.3 Intended Improvements

Based on the state-of-the-art, state-of-the-practice, the problems identified in section 1.1, and
the objectives of this thesis, we expect the GOThIC method provides the following high-level
contributions (more concrete contributions will be related in the context of the explanation of
each method activities from Chapters 5 to 9):

4.3.1 Improvement on the Effectiveness of COTS Marketplace Organization

To know the kind of COTS that are available in the marketplace and to know which of them
could be useful to solve a specific problem, structuring the marketplace is a growing need. It
facilitates the searching, comparison, and the decision about the appropriateness of the COTS to

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

72

the system-to-be. Furthermore, it could be the basis to reuse COTS related knowledge to gain
the full potential of large-scale software reuse.

GOThIC provides methodological support to COTS taxonomies construction and reuse
of knowledge and information gained in each selection process

To effectively deal with several COTS searching problems, COTS domains should be described
by several characteristics and, several models have to be constructed for reusability purposes.
This requires a well-defined methodological guidance and some techniques for the construction
of COTS taxonomies that are the backbone of a COTS reuse infrastructure.

The activities and sub-activities of the GOThIC method are well-defined and several well-
founded techniques have been used to overcome COTS marketplace related problems. Several
mechanisms from other areas are used as heuristics and rules based on decisions trees properties
to support COTS taxonomies construction and organize COTS related information. Such
methodological support improves the taxonomies understandability, usability, effectiveness, and
reliability. Furthermore, the GOThIC method does not depend on the extent and characteristics
of the addressed domain or taxonomy built (e.g., a small part of the COTS marketplace such as
photo processing software, or a huge portion like business applications).

GOThIC uses an iterative and intertwined approach to the construction of a COTS
domain reuse infrastructure

Due to the volatile nature of COTS domains, an iterative approach is a basic requirement. On
the one hand, diverse information related with the COTS domain being addressed is identified
as knowledge of the domain increases, thus the artifacts produced during the different activities
of the method may be extended and/or refined all the way through the process. On the other
hand, the level of detail to which the infrastructure has to be constructed, depends on the context
of use and the final application for which the infrastructure is intended. Moreover, an iterative
approach, in which the construction steps can be intertwined at any point helps to refine and
evolve the reuse infrastructure not only to the desired level of detail but also to the arising of
new COTS products characteristics.

GOThIC provides mechanisms to evolve and adequate taxonomies to ad-hoc needs
whilst ensuring their trustworthiness

COTS taxonomies may be manipulated with GOThIC by the application of a set of
transformation rules applied to the taxonomy nodes. These rules allow accomplish a desired
level of detail whilst ensuring the taxonomy trustworthiness.

The resulting taxonomy provides an external view enclosing all COTS related information
that is: well-founded (with a clear rationale of the proposed structure), validated (sound,
complete, pair-wise disjoint and balanced) and ready to browse (using the defined classifiers).

4.3.2 Improvement on Managing COTS Marketplace Characteristics

Goals imply stable concepts. Based on the notion of goal, the method aims at building abstract,
well-founded, and stable taxonomies, which may evolve as the marketplace does.

GOThIC uses goal-oriented approaches to deal with COTS marketplace evolvable
characteristics

Specifically, some of the problems related in Section 1.1 are dealt in the next way:

Chapter 4: The GOThIC Method

73

� Uncontrolled COTS marketplace: Goal-oriented taxonomies offer a natural way to be
understood and used to categorize any COTS product.

� Growing size of the COTS marketplace. Appearance of a new market segment or category
is easier to handle than in other approaches, since it requires locating its place in the
taxonomy using the defined classifiers, and once there even some useful artifacts are
inherited (e.g., quality models and glossaries of the domain). Proliferation and
trustworthiness of COTS related information is taken into account by prioritizing
information sources in the basis of specific criteria (e.g., time, money, reliability, …).

� Rapid changes in the COTS marketplace. This fact points out the need to separate
conceptually the COTS from the services that they cover. Thus, taxonomy nodes do not
stand for types of COTS available but for related groups of functionalities, it makes the
taxonomy more robust with respect to the segment barriers movement effect mentioned in
Section 1.1.

4.3.3 Improvement on COTS Information Rendering

The GOThIC method integrates some strategies for gathering the information needed to
describe COTS market segments as required for effective COTS selection.

GOThIC integrates all informational dimensions for selecting COTS in a uniform Domain
Model (meta-model)

Due to the huge amount and diversity of the information to capture, the method includes an
information acquisition and reuse strategy combined with a domain analysis approach that not
only impacts positively on reuse, but also ameliorates some well-known obstacles for COTS
selection processes success.

� Type of descriptions available for COTS. The GOThIC method identifies activities to cope
with the diversity, lack of structure, reliability and reuse of information about COTS. It
systematically tackles these information quality problems by stating a reference model
embracing quality indicators that facilitate the collection, storage, retrieval, analysis and
reuse of information in a quality assurance environment (See Activity 1).

� Lack of Standards for COTS descriptions: To avoid the lack of COTS standardization
concerns, GOThIC provides a unified framework based on the well-known ISO-IEC 9126
quality standard that integrates all the informational dimensions for selecting COTS in the
domain (i.e., the GOThIC´s domain model). This artefact is bound to taxonomy nodes and
is reused through them. Thus, once the taxonomy node that covers the required goals of the
user is located, this artifact (domain model) helps to elicit and negotiate the requirements,
making easier the evaluation of components in a uniform way. For doing so, we can
proceed manually, or use tool support ranging from a simple spreadsheet to a more
sophisticated tool, e.g. our DesCOTS system [Gra+04], as explained in Chapter 9.

� Dependencies among COTS. We represent explicitly these dependencies with a model built
with i*, a widespread and accepted notation in some other disciplines (e.g., requirements
engineering, and agent-oriented development). It allows not only to represent and record
these dependencies but also to transfer this knowledge from one experience to another.

4.3.4 Improvement on Managing and Reusing COTS Related Issues

The GOThIC method deals with the lack of comprehensive mechanisms to record, manage and
reuse the required information for supporting COTS selection by identifying several artifacts
which contribute to the reuse of knowledge gained in each experience as the “experience base”

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

74

paradigm introduced by Basili [Bas+94] and the Learning Software Organization (LSO)
approach [Ruh01].

GOThIC allows the construction and maintenance of an evolvable COTS domain reuse
infrastructure or knowledge base supported by goal-oriented taxonomies aimed to be
gradually improved by its application to several COTS selection processes

The method proposes suitable models to record and reuse the informational dimensions required
to select COTS, and provides effective strategies to harmonize them in an ISO/IEC 9126
standardized framework. Moreover, GOThIC provides mechanisms to allow the incremental
growth of the knowledge base, containing meta-data information describing COTS.

4.4 Intended Audience

The GOThIC method has been envisaged as a way to enable efficient COTS information and
knowledge reuse. As it embraces a process for building a COTS domain reuse infrastructure, it
is mainly addressed to organizations that usually carry out COTS selection processes and find
valuable to accumulate experiences from past selection processes in order to improve their
practice. Chapter 9 provides an overview of the kind of organizations and schemas where the
method could be used.

In a strict sense, given the required investment on building and maintaining the GOThIC
reuse infrastructure, we argue that the approach is mainly oriented to medium and large size
companies. However, we have actually envisaged other possible application to up-start,
populate, and maintain the reuse infrastructure to make the approach feasible to all kind of
organizations in an open and collaborative environment (it is discussed in Chapter 9 and
detailed as future work in Chapter 11).

4.5 Applicability of the Proposal

We argue that the extra effort needed for applying GOThIC to build a COTS domain reuse
infrastructure is more helpful and less risky than acting reactively in searching components. So,
we suggest the applicability of the method in organizations that deal with big projects and
multiple selections occur in which inefficient decisions would have critical consequences.

To be more precise, GOThIC requires the following characteristics to be applicable:

• The application of the method should be addressed to a domain that is of general interest.
This means that a great deal of COTS selection processes is taking place from its related
market segments. Some examples are: communication infrastructure, ERP systems, security-
related systems, etc. In these contexts, the number of selection processes that take place will
be high and then reusability of the models likely to occur.

• The addressed market segments offer COTS of coarse-grained granularity. This makes
domain understanding more difficult, time-consuming and cumbersome and therefore domain
analysis and taxonomy construction are helpful. Market segments such as CRM and ECM
systems are typical examples, whilst time or currency converters are not. In these cases,
having knowledge available and classifiers to know when a market segment is of interest is a
great help. This last point is especially appealing in those selection contexts in which the
organization that is interested in the selection does not have clear requirements about the kind
of system needed.

Chapter 4: The GOThIC Method

75

4.6 Summary and Discussion

The method describes seven main activities and several sub-activities or steps, designed to drive
the construction of COTS domain related taxonomies that describes the contents of the COTS
martketplace (see Fig, 4.3).

COTS
Marketplace

Component
Libraries

Comunication
Tools

Categories

Data Structure
Component

Libraries

Mathematical
Component

Libraries

Market
Segments

Mail
Servers

Video-
conference

Groupware
Components

Algorithmic
Libraries

GUIs
Libraries

GUIs

Fig. 4.2 Overview of the COTS marketplace structuring

Such taxonomies construction lead to the creation of domain-knowledge repositories
populated with COTS related information –not necessarily the components itself-. Such
construction has a well defined rationale which increases the efficiency of the process whilst
improving the reliability of the deliverables. The resulting artifacts can be seen as a friendly
and flexible taxonomy and knowledge base that can support the COTS selection process.

The method is based on an experience factory [Bas+94]and Learning Software Organization
[Ruh01] perspectives, which refers to an infrastructure for reusing and managing life cycle
experience, knowledge, processes and products for software development. Experiences are
collected from software development projects, and are packaged and stored in an experience
base. By packing, we mean to generalize, tailor and formalize experiences so that they are easy
to reuse and manage. The different deliverables of the method are summarized in a meta-quality
model of the domain (based on the ISO/IEC 9126-1 quality standard) that is flexible and
instantiable to the branches to the taxonomy and the components that belong to them, in such a
way that several important information (e.g. functional, interoperability, quality, non-technical)
is easy to find and can be reused and compared.

77

Chapter

5
Activity 1:

Exploration of Information
Sources

owadays, the amount of information available about COTS is vast and still growing. As it
was mentioned previously, to select COTS, decision-makers have to face not only the current
diversity of COTS types available in the marketplace, but also the great deal of widespread,
heterogeneous, and unstructured information describing each of them [Ber+03], [Tau+04],
[Cec+06], [Ast+06], [Ber+06]. The quality of this information largely determines the quality of
the decisions made, and ultimately affects the quality of the whole software system and its
development [Ber+03], [Ast+06]. Since COTS selectors must rely on the information for their
decision-making processes, ensuring Information Quality (IQ) is a critical success factor.

Over time, librarians and other information professionals have developed a set of criteria to
be used to evaluate IQ based on careful experts’ examination (e.g., authority, format, scope,
etc.) [Boo-Smi00]. However, these criteria are too general and do not provide much guidance to
the particular problem of COTS selection. Some recent approaches propose the use of automatic
or semiautomatic search engines to identify COTS, e.g., [Sea+98], [Yan+06], [Sja-Beu06] (see
Chapter 2). But to the best of our knowledge, they have not reached a generalized consensus on
their utility for the community and do not address the IQ problems. Therefore, IQ is still a
critical open issue from the COTS selection perspective [Ber+03], [Cec+06], [Ank+03], [Sim-
Dil06].

The goal of this research in progress study is twofold.

► To develop a comprehensive framework that states those important IQ aspects to
perform an informed COTS selection in order to be used as metadata to aid COTS
related information searching and analysis. Furthermore, to investigate how these aspects

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

78

may be feasibly gauged using a hierarchical quality model schema, providing metrics to
assess the value of the information.

► To offer a tool-supported conceptual model to add capabilities for recording, managing
and reusing IQ metadata in several COTS domain selection processes.

This chapter reports current results, and is structured as follows. Section 5.1 provides a brief
background of previous research and greatly justifies the need of this study. Section 5.2 details
the processes, methods and techniques used to capture IQ needs in the context of COTS
selection and the associated metrics. Section 5.3 encloses the obtained results related in the
previous sections in a conceptual model that is used as a reference for systematically support
COTS selectors decisions-making.

 5.1 Background

Domain analysis is the basis to build a reuse infrastructure (see Chapter 6). However, the
success of domain analysis is directly related to the quality of the information used to perform
this activity.

The industrial evaluation of GOThIC shown the critical difficulty reported by software
engineers to collect, process and analyze the vast amount of information sources for performing
the process of domain analysis and therefore for reaching a trustworthy decision-making.

While many approaches exist to state quality characteristics and requirements for improving
COTS selection processes, and the quality of the COTS documentation has been considered as a
crucial quality aspect affecting their usability [Ber+06]; the issue of where and how to get
trustworthy information about them in an efficient manner has been left out [Bob+02]. It is
causing several over-costing problems or even abandoned projects because of wrong decisions
based on untruthful information [Cha02].

In order to overcome the risks associated to poor domain quality information [Shan+03], we
realized the need of integrating an Exploration of Information Sources activity (i.e., an IQ
management strategy) into our GOThIC method to perform an efficient and proactive COTS

Domain Analysis (Activity 2), introduced in Chapter 6.

As stated in Chapter 2, quality is a difficult term to define, and there is no a single definition
or standard of quality. Most of the work currently conducted in the area of information quality
research has looked at quality from the organisational or information producer perspective
[Bur+04]. Therefore, most of IQ definitions that have been defined for use by information
providers are not suited to the information consumer.

To perform this research, the information consumer’s perspective of quality was followed.
The two main characteristics of this approach are:

► The consumer has no control over the quality of available information.

► The aim of the consumer is to find information that matches their personal needs, rather
than provide information that meets the needs of others.

Thus, we consider COTS selectors as COTS related information consumers. The typical
information consumer wants to find the best available information that meets their requirements,
at that point in time, in their current domain of interest and project. This may not necessarily be
the best possible result as the consumer often has restrictions, such as the time available to
spend searching for information. For example, the consumer may need the information quickly
so is unable to wait several hours while all possible sources of information are investigated to
find the best result across all sources. In this case the consumer will be willing to accept the best

Chapter 5: Activity 1 -Exploration of Information Sources

79

possible results obtainable within the given restriction, such as currently available data, data
within their price range, or all data that can be obtained within a specified time limit.

Moreover, we use the notion of information product [Wang+03] (i.e., information is treated
as a product).

In this context, we aimed to develope a framework embracing quality indicators that
facilitate the collection, storage, retrieval, analysis and reuse of COTS domain information in a
quality assurance environment [Aya-Fra07]. It captures the aspects of IQ that are important to
COTS selection and provides a systematic approach for supporting COTS selectors to decide
information sources to use according to their specific quality project needs. The approach is
based on the use of heuristics that support the extraction of knowledge about the COTS market
segment of interest by reconciling the characteristics of the available sources with those of the
taxonomy construction process.

5.2 Capturing Information Quality Dimensions for COTS Selection

The work presented here is based on relevant approaches from the IQ research, e.g., [Boo-
Smi00], [Shan+03], [Wan-Str96], [Lee+01], [Wang+03], several industrial experiences and case
studies analyzing COTS selection processes (see Chapter 3); interviews run in software
companies [Ger06], [Ger07], and is being iteratively improved with empirical data obtained
from an ongoing on-line questionnaire [Aya-Fra08].

Under action-research premises, we iteratively identified the IQ problems in the COTS
selection setting, trying out suitable IQ research approaches to resolve them, adapting and
evaluating how successful such strategies are in practice, until a satisfactory solution comes out.
Interviews were used to conduct an explorative survey in some Norwegian software companies.
They are fully reported in [Ger06], [Ger07].

These studies consisted of semi-structured interviews conducted to managers, software
architects and developers involved in COTS selection projects. Our first goal was to collect
information about the problems they face to get COTS related information, followed by
inquiring what they mean by IQ to perform an informed selection. As mentioned above, this
approach is currently being improved with a more extensive study [Aya-Fra08]. Current results
are detailed below.

5.2.1 Identifying COTS Selection Information Problems

To find out which are the most relevant dilemmas that companies face whilst processing
information during COTS selection, we asked interviewees about the resources they usually
used to locate COTS and/or information about them, as well as the perceived utility of such
information for performing the different COTS selection activities.

Summarizing the answers, in Table 2.9 (introduced in Chapter 2) we provided a list of some
existent resources, their intended objectives, characterization mechanisms, retrieval schema,
information rendering, and some additional information they offer. Such table intends to serve
as a guide for the identification of potential information sources for the domain of interest using
information acquisition techniques (e.g., literature review, web screening, etc.).

Since there are a great variety of types of information sources available, we decided to group
them for assessing their characteristics and actual IQ problems.

Table 5.1 shows this grouping and some representative examples. Based on our findings,
also heuristics were designed to support this process (see Section 5.3.1).

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

80

Table 5.1 COTS Related Information Sources Types

Types of
Source

Description
Information
Rendering

Examples

Existing
Hierarchies/
Taxonomies

COTS categorizations that offer descriptions of
diverse COTS with different objectives.

• Classifications
• Categories;
• Glossaries

ComponentSource.com
KnowledgeStorm.com
SourceForge.net

Vendor
Information

Information provided by the COTS supplier as its
characteristics, documentation and com-paratives
with previous or existent versions

• Brochures;
• Evaluation forms;
• Benchmarks

Any Commercial Firm

Related
Standards

Since there is no specific standardization concern
to describe COTS, some industrial organizations
group the main vendors of particular domains
maintain up-to-date information that sometimes
could be considered as a reference.

• Descriptions;
• Glossaries

Internet Mail
Consortium (IMC),
Workflow Management
Coalition (WfMC),
Enterprise Content
Management
Association (AIIM)

Independent
Reports

Third party organizations ranging from research to
consultant often provide support for selecting
COTS

• Papers,
• Comparative

Tables
• Descriptions and

tips

Scientific: Specialized
 Journals,
 Textbooks
Divulgation:Specialized
 Websites
Technical: Gartner,
 Forrester,
 etc.

Experiences on
the Field

Knowledge or practical information usually
provided by experts or domain stakeholders that
relate own experiences or lessons learned.

• Technical reports
• Forums
• Talks
• Seminars and

Courses

ICCBSS panels, SEI
courses, Luncheons,
interviews, CeBASE
repository,

Test of Tools
and Systems

Test descriptions of tools which have been really
used. They allow envisaging the real behaviour of
a COTS in a specific environment

• Test results;
• User’s manuals

Test results
Tucows.com
CMSmatrix.org

Others

Provide some specific functionality to find
expected COTS functionalities. They can range
from specialized searching tools to open source
code detection tools

• Queries

Agora
Koders Tool
Google.com/codesearc
h

Interviewees agreed that extracting COTS information from these resources is a critical
process because they do not have control over their availability, accessibility, heterogeneity,
impartiality, incompatibilities, inconsistencies, and mistakes that make difficult to guarantee IQ
and lead to failures that cost dearly. This could be the reason why there was not consensus of
the utility of these resources in the COTS selection community. Furthermore, we found that in
order to reach project constraints (mainly in terms of time and resources), actual decision-
making processes for finding and/or processing COTS information are rarely documented and
usually based on vague factors as own experiences and intuition, even in the cases of
organizations that periodically performed COTS selection projects. Also other researchers have
coincided with this finding [Li06], [Tor-Mor04]. This fact increases the risks of damaging the
whole software development process and continuously loose tacit knowledge when more
experienced people are replaced. This justifies further research on this topic.

5.2.2 Determining IQ in the COTS Selection Context

IQ researchers agree on the meaning of high-quality information as information which is fit for
use by consumers [Lee+01]. We considered crucial to collect empirical information from COTS
selectors (both COTS researchers and practitioners) about their IQ needs for performing an
informed selection and to assess what they generally mean by IQ.

The analysis of the outcomes was based on the framework presented in [Wan-Str96] and
refined in [Lee+01]. It helped to determine a basis for assessing IQ from the information
consumers’ perspective, and suggests to group IQ needs into 4 high-level IQ dimensions which

Chapter 5: Activity 1 -Exploration of Information Sources

81

are described by a set of quality assets that represent a single aspect or construct of IQ, as shown
in Table 5.2.

Intrinsic IQ implies that information has quality in its own right. Contextual IQ highlights
the requirement that IQ must be considered within the context of the task at hand; it must be
relevant, timely, complete, and appropriate in terms of amount, so as to add value.
Representational and Accessibility IQ emphasize the importance of computer systems that store
and provide access to information; that is, the system must present information in such a way
that it is interpretable, easy to understand, easy to manipulate, and is represented concisely and
consistently; also, the system must be accessible but secure.

Table 5.2. Basic IQ dimensions to describe IQ in diverse settings suggested by [Wan-Str96]

IQ Dimension Definition Quality Assets

Intrinsic
Denotes that information has quality in their own
right

Believability, Accuracy, Objectivity and
Reputation

Representational
Includes aspects related to the format and
meaning of the data

Concise Representation, Representational
Consistency, Interpretability, and Easy of
understanding

Accessibility
Emphasizes the importance of the role of
systems for providing access to information in a
secure setting

Accessibility, and Access Security

Contextual
Highlights the requirement that IQ must be
considered within the context of the task at hand

Relevancy, Timeliness, Completeness, and
Appropriate Amount of Data, Value-added.

Further evidence exist that these approaches provide comprehensive coverage of the multi-
dimensional IQ construct in very diverse settings [Shan+03], [Lee+01], [Wang+03].

As a next step, we intended to fit the IQ needs elicited from COTS selectors within the IQ
dimensions stated in Table 5.2. Such results are shown in Table 5.3.

Of course, different points of view on IQ were obtained from different interviewees, but such
differences were related to their specific projects requirements thus, they were successfully
represented by the high-level dimensions. To fit our findings into the stated dimensions, we
carefully analyzed the elicited IQ needs of COTS selectors to match them into the enclosed
assets of each proposed dimension; as a result, the assets were adapted, i.e. redefined,
abstracted, deleted, and carefully reviewed until agreement was reached. In addition, although in
most cases decision-making processes were based on vague factors, interviewees recognized
some important facts that they take into account to assess IQ.

The most significant issues of this process are summarized in Table 5.3 and detailed below:

• Intrinsic IQ. All the quality assets proposed were included since they were evident to
COTS selectors. Several facts with respect to this item were reported.

• Representational IQ. It included all the proposed assets. Although some misunderstanding
existed with respect to Concise Representation and Representational Consistency, they
were generally understood as highly structured information and homogeneity respectively.

• Accessibility IQ. COTS selectors understood accessibility assets well. The Access Security

asset was deleted since it was considered that COTS selectors acted as users of the
information and its security aspects were not relevant from their perspective.We also
replaced the name of the Accessibility asset by Availability in order to avoid
misunderstandings with the name of the IQ dimension it belongs to.

• Contextual IQ. The need of considering IQ within the context of their domain specific
project was clearly recognized by COTS selectors. This was consistent with the
information consumer perspective followed.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

82

• IQ Project Issues. Remarkably, a fifth dimension, the project dimension named IQ Project

Issues, was added. This last relevant change appeared because our findings showed that IQ
in the COTS selection context is largely determined by the resources allocated to the
software development project and related policies and procedures; therefore we needed to
take this into account.

Table 5.3. An excerpt of COTS selection IQ needs and some facts elicited from COTS selectors

IQ Dimension/Assets COTS Selection IQ Need Some IQ Facts Detected

Intrinsic

1 Believability Credible information Due to the commercial nature of the market, one should be
sure of the credibility of the information

2 Accuracy Precise information Due to the high volatility of the market, documents become
obsolete very quickly

3 Objectivity Impartial point of view Commercial and sponsored resources tends to be highly
partial

4 Reputation Coming from good sources

Well-known authors/sources represent a high reliability and
trustworthiness. Appropriate references, related resources,
and resource-dependencies are good indicators to recognize
reputation.

Representational

1 Concise Representation Highly Structured
COTS information tends to be unstructured, especially in the
cases of quality of service and non-technical information.

2
Representational
Consistency Homogeneity

The lack of standards for documenting COTS results in many
kinds of documentation. Such heterogeneity makes difficult to
easily compare IQ.

3 Understandability Easy to be understood
Information addressed to the general public is usually easy to
understand, but the information addressed to experts requires
a specific background to be understood.

4 Interpretability Easy to be interpreted
Different kinds of representation exist (e.g., ER models,
Natural Language). They should be easy to interpret by the
skills and background of the involved people.

Accessibility

1 Availability Free availability preferred Some informational resources or support are available only
for a fee.

2 Easy of Operation
Easy way to find and
retrieve the information.

COTS information tends to be very difficult to be located. The
way of obtaining the data is variform (e.g. direct download,
subscription based, etc.). The resources required to process it
should be compatible with the resources allocated to the
project.

Contextual

1 Relevancy Useful, and appropriate to
the project needs

Easy for the project team to understood and process the
information with the resources they have allocated)

2 Timeliness Sufficiently current and up-
to-date

The date of creation or update is the best indicator for that
asset

3 Completeness Covering all the informa-
tional project needs

Information should cover the scope of the project to assure a
good understanding of the requirements.

4
Appropriate Amount of
Data

Adequate volume of infor-
mation to be analyzed by
the resources available.

Depend on the skills of the people allocated to the project and
the size of the source.

5 Value-Added Add value to the project
operations

Heterogeneous and Unstructured information is difficult to be
processed. When its structure makes easier the work of the
project team in any of their tasks, it is considered a value-
added.

IQ Project Issues Describes the main IQ needs of the COTS selection project

1 IQ Project needs
Describes the IQ needs of
the COTS selection project

The high-level project goals drive the IQ COTS Selection
processes, they states the criticality of the project and its IQ
needs.

2 Allocated Resources

Aspects related to the set
of resources allocated to
the project for performing
the IQ process

The resources allocated to the project play a crucial role in
determining product suitability.

Chapter 5: Activity 1 -Exploration of Information Sources

83

Please note that there is a high synergy among the elicited COTS selection IQ needs. Hence,
many intuitive relationships become evident, for instance, some IQ needs are shared by different
assets from different perspectives (e.g. the Value-added asset is closely related to the facts
addressed by Concise Representation and Representational Consistency to denote the extent of
the value added; Reputation enhances Believability; and Accuracy greatly depends on
Timeliness, …).

5.2.3 Determining a Measurable Framework for Assessing IQ in the COTS

Selection Context

Our next goal was to develop a comprehensive framework that stated our IQ findings; and how
they could be feasibly gauged. An important aspect to be taken into account for determining this
measurable framework was the relevance of domain knowledge. Data can be useless for one
purpose but adequate for others, and domain knowledge is necessary to distinguish these
situations.

To manage and gauge all these different views and needs on quality, quality models seem the
most appropriate type of artefact since they provide a measurable framework which precisely
defines and consolidates the different views of quality. Specifically, we propose an ISO/IEC
9126 tree-like structure [ISO-9126] because:

� ISO/IEC 9126 quality standard is one of the most, if not the most, widespread quality
standard available in the software engineering community, as introduced in Chapter 2.
Therefore, most COTS selectors are familiar with it.

� It is compatible with the domain model from GOThIC, outlining an uniform framework
well-suited for the integrated evaluation of all COTS selection related issues.

� It allows considering IQ aspects as requirements from the beginning of the COTS
selection process in the same way that we have technical and non-technical
requirements.

� It allows optimal reusability of product quality features throughout different COTS
selection processes.

The ISO-IEC 9126-1 tree-like structure is based on a hierarchical model that offers quality
characteristics to represent the most important quality aspects. These characteristics are further
refined into multiple levels of subcharacteristics, which in turn are decomposed into attributes,
yielding to a multilevel hierarchy. Intermediate hierarchies of attributes may appear making thus
the model highly structured. At the bottom of the hierarchy there are the measurable attributes,
whose values are computed by using some metric.

In order to elaborate the quality model from the IQ dimensions presented in Table 5.3, we
adopted one of the most widespread approaches, the Goal-Question-Metric (GQM) approach
[Bas+94], for analyzing each asset belonging to the stated dimensions. Any assumption about
the assets other than they are built on top of the validated framework presented in Table 5.3 was
done.

In GQM, goals of the product under measurement are identified, and then some questions are
raised to characterize the way the assessment of a specific goal is going to be performed. Last, a
set of metrics is associated with every question in order to answer it.

The final result of the GQM approach is a hierarchical structure in graph-like form, since
metrics may influence in more than one question, and questions may be related to more than one
goal. Goals are composed of four elements: purpose, issue, object and viewpoint. In our
framework, these elements take the following form:

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

84

► Purpose: Presence of a particular feature or characteristic in the quality model.
► Issue: The GQM recommends identifying quality goals; then, we define one issue

for each asset stated in Table 5.2. As a consequence, we have as many
goals as assets.

► Object: Always the dimensions to which the asset belongs to.
► View Point: Always IQ needs for COTS selectors.

An excerpt of this process is shown in Table 5.4. To define the metrics, we have used the
general theory of software measurement presented in [Fen-Pfl97] as conceptual basis to define
the metrics for IQ aspects. Metrics can be objective or subjective and can be as simple as Integer
or Boolean values or more complex as Lists, Sets or Functions. An example of a predefined
function is the mean function used in Table 5.4, which has the meaning of returning the mean of
all values of the function it encloses (e.g. AuthorsBel, AuthorBelMarks, ProvBelMarks).
Moreover, we have considered very important that external marks can be computed to
determine some quality attributes; for instance, to determine the believability of an author by the
marks that other people have stated about him/her, and also to determine the believability of
these marks by the believability of the markers.

GQM analysis leaded us to observe that different kinds of IQ metrics were obtained. Some
of them were objective properties inherent to the product whilst others were subjective or
objective but external. In addition some metrics have applicability preconditions (e.g., Marks
available for the author, which precondition is the availability of some Marker). The use of
external metrics was greatly influenced by the intended reusability we aimed for the quality
model.

Table 5.4 An excerpt of the GQM approach used to guide the information storage and metrics definition

Purpose: Have an appropriate
Issue: Believability
Object: Intrinsic IQ
View Point: COTS Selectors

Question Metric Value Kind of metric

Who is/are the author(s) of
the product? Author(s) Name AName= Set (String) Objective, it is part of the own

product properties

What is the believability of
the Author(s)?

For each author, his/her
believability

AuthorsBel=
Function(String→TScore)

TScore: {Very High, High, Low,
Very Low}

Subjective, external property
of the product

What is the overall
believability of all authors?

Average of all authors
believability

OveAuthorsBel=
Mean(AuthorsBel)

Subjective, external property
of the product

How is the author
believability obtained?

Average of all marks that
he/she has received

IndAuthorBel=
Mean(AuthorBelMarks)

Subjective, external property
of the product

What are the marks that the
author has received?

Marks available for the author
(Marker Available)

AuthorBelMarks=
Function(String →TScore)

Subjective, external property
of the product

What is the believability of
those marks

For each Marker, his/her
believability

BelMarks=
Function(String → TScore)

Subjective, external property
of the product

What is the provider
Organization?

Organization Name OrgName=String Objective, it is part of the own
product properties

What is the believability of
the Organization? Organization Believability OrgBel= Mean(ProvBelMarks) Subjective, external property

of the product

What are the marks that the
provider has received?

Marks available for the author
(Marker Available)

ProvBelMarks=
Function(String →TScore)

Subjective, external property
of the product

What is the believability of
those marks

For each marker, his/her
believability

BelMarksOrg=
Function(String → TScore)

Subjective, external property
of the product

…

Subsequently, following some principles stated in [Car-Fra06] for building a good ISO-IEC
9126-1 tree-like quality model, and our results of applying the GQM approach to each asset, we
obtained a highly reusable quality model that can be adapted, improved and modified as
required.

Chapter 5: Activity 1 -Exploration of Information Sources

85

Table 5.5 presents an excerpt of such obtained model which has been structured according to
the following guidelines:

Table 5.5 Excerpt of the ISO/IEC 9126-tree like framework for stating and gauging COTS IQ1

Characteristic/Subcharacteristics/Attributes Metric Description

1
Intrinsic

Characteristic

Own properties of the information source
denoting its quality characteristics.

 1 Believability

 1 Author-Based Believability
Aspects that describe the believability of the
product based on its authors.

 1 Author(s) Name
AName = Set (String)
AName ≠∅
The names are directly obtained

Describes the name of the author(s) of the
product.

 2 Author(s) Believability
Derived Attribute
OveAuthorsBel= Mean(AuthorsBel)

Describes the overall authors believability by
the average of the believability of all authors.

 1 Individual Author Believability

AuthorsBel= Function(String→ TScore)
TScore: {Very High, High, Low, Very Low)
Dom(AuthorsBel) = AName
∀ x ∈ AName: AuthorsBel (x) = Mean
(AuthorBelMarks)

Describes the individual believability of the
authors by the average of all marks that he/she
has received

 1
Opinion Marks about the
Author

AuthorBelMarks = Function(String→ TScore)
TScore: {Very High, High, Low, Very Low)
These marks are directly obtained

Describes the marks that markers have done
about the author

 2 Provider Based Believability
Aspects that describe the believability of the
product based on the organization that
provides it

 1 Provider Name
OrgName=String
OrgName ≠ ∅

Describes the name of the product provider

 2 Organization Type
OrgType= Function(String→ TOrg)
TOrg:{ Academy, Standards, Commercial}

Describes the type of the organization provider

 3 Organization Believability
OrgBel= Function(String → TScore)
Dom (OrgBel) = OrgName
∀ p ∈ OrgName: OrgBel (s) = Mean (ProvBelMarks)

Describes the believability of the organization
provider

 1
Opinion Marks about the
Organization

ProvBelMarks = Function(String→ TScore)
These marks are directly obtained

Describes the marks that markers have done
about the organization

 3 Marker Based Believability
 Aspects that describe the believability of the

product based on its related marks

 1 Marker(s) Name
MName = Set (String)
MName ≠ ∅

Describes the name of the markers that have
made any mark for the product

 2 Marker(s) Believability OveMarkersBel=Mean(MarkerBel)

Describes the overall markers believability by
the average of the believability of all the
markers that have provided some mark for the
product.

 1 Individual Marker Believability

MarkerBel= Function(String→ TScore)
TScore: {Very High, High, Low, Very Low)
Dom(MarkerBel) = MName
∀ x ∈ MName: MarkerBel (x) = Mean
(MarkerBelMarks)

Describes the individual believability of the
markers by the average of all marks that
he/she has received

 1
Opinion Marks about the
markers

MarkerBelMarks = Function(String→ TScore)
TScore: {Very High, High, Low, Very Low)
These marks are directly obtained

Describes the marks that markers have
received

 2 Accuracy
Aspects that describe the accuracy of the
information source.

 …
Provision of the resources to allow the tracking
and verification of the content of the product

• Characteristics. The five highest-level quality factors correspond to the 5 IQ dimensions
obtained in the previous section: Intrinsic IQ, Representational IQ, Accessibility IQ,
Contextual IQ and IQ Project Issues. Due to their nature, the first three characteristics group

1 A more detailed version of this model is presented in Annex 2. It is being iteratively refined and improved as more
empirical data is gathered

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

86

IQ features to describe the product and can be reused in all COTS selection projects, whilst
Contextual IQ is envisaged to record the extent to which the product features meets the IQ

Project Issues. As a logical consequence of this fact, please note that Contextual

characteristics have been not further refined into specific attributes in the model. The reason
behind is that its intended attributes tends to be derived from the others attributes belonging
to the others characteristics. This reasoning provides a flexible model that can be instantiated
to the specific needs of any COTS selection project. Such structure allows an optimal degree
of reusability not only of the product but also the knowledge gained in every use of it.

• First-level subcharacteristics. The first 5 characteristics have been decomposed into 17
subcharacteristics that correspond to the assets leveraged in Table 5.3.

• Intermediate subcharacteristics. More than 30 intermediate subcharacteristics were used
since most of the first-level subcharacteristics stated above were still too abstract to be
measurable, and more COTS IQ needs were still remaining to completely express the
requirements of our interviewees. Thus, whenever it was required an additional level of
subcharacteristics for structuring or levelling purposes was added. It was primarily based on
the GQM application results. Subcharacteristics are used mainly for classification means.
This is the case of the Intrinsic IQ/Believability subcharacteristic which has been decomposed
into other subcharacteristics: Author Based Believability, Provider Based Believability and
Marker Based Believability.

• Attributes. Subcharacteristics were further decomposed into over 50 IQ attributes. To decide
which attributes were the most suitable for evaluation and reusability purposes, we choose the
most representative ones obtained from the application of GQM to the five COTS IQ
dimensions’ assets.

In general, they are two kinds of attributes: basic attributes which stand for objectively
measurable features (e.g., Author Name attribute categorized under the Intrinsic

IQ/Believability subcharacteristic); and derived attributes which require to be additionally
decomposed into other attributes (e.g., Author(s) Believability which has been decomposed
into Individual Author Believability and Opinion Marks about the Author).

In order to measure the attributes of our quality model, metrics were required, so we
attained the metrics previously obtained by the GQM application. For derived attributes,
sometimes it is not possible to find an objective metric to derive its value in terms of the
attributes in which it is decomposed. In these cases, subjective metrics are required. It is
evident from the model (See Table 5.5) that some IQ attributes may influence several other
attributes or subcharacteristics, and thus hierarchic overlapping is also supported in the
approach by considering the hierarchy as a graph.

It is important to stand out that we try to preserve homogeneity among the metrics of the
attributes, mainly because as we mentioned above, it is common that quality features are
closely related; and such homogeneity is the basis for a successfully Contextual IQ attributes
estimation, since it is stated as the combination of the other IQ characteristics. This is also the
reason why no metrics are provided for Contextual characteristics (since they are derived
from others). In addition, although all quality features are involved in determining the overall
IQ for a COTS selection project, elaborated types of relationships among quality features and
also intensities of these relationships exist, and may be depicted by means of tabular
representations as done in [Chu+00].

The characteristics, subcharacteristics, and attributes used on the proposed model (which
current version is presented in Annex 2) have resulted representative of most of the empirically
elicited COTS needs to date. Of course, several other subcharacteristics and attributes may be
added or deleted as required in order to tune the model to the specific contexts of use.

Chapter 5: Activity 1 -Exploration of Information Sources

87

We are aware that more empirical data is required to completed and further validate the
model with the assets that are really used in the COTS selection practice (research in progress is
seeking these issues). Current case studies performed to date using this framework have lead
promising results. As a result, information sources (i.e. products) are ranked based on the extent
to which they fit to the context and COTS selection project characteristics (e.g., criticality of the
domain, expected frequency of taxonomy use in future selection processes; resources allocated
to the project, especially deadline, money and person/months; current and future knowledge of
the domain and technical skills of the conformed team). Such prioritization is reached by
computing a consensual result from reconciling the Intrinsic, Representational, and
Accessibility attributes with Contextual and IQ COTS Selection Project attributes. The
homogeneity of the metrics used allows these comparisons.

Table 5.6 is an excerpt of some of the information sources attributes considered for
performing the prioritization of sources for the the RTSC case.

Table 5.6 An excerpt of the prioritization of the Information Sources in the RTSC case

PName Type of Source Organization Provider Author Location Cost …

Session Initiation Protocol Standard Engineering Task Force … … Free …

H.323 Standard International
Telecommunication Union

 ±80€

IMTC Independent
Report

International
Teleconferencing

Consortium

Free

RTC-Gartner-1 Hierarchy Gartner Free

…

5.3 A Systematic Approach for Managing and Reusing COTS

Information Sources

In the previous sections we have achieved our primary goal, namely to understand what quality
means for COTS selectors, and how it can be feasibly recorded, reused, gauged and integrated
into our GOThIC approach. Moreover, we enriched our approach by organizing our further
findings as a set of heuristics for supporting the collection, arrangement and decision-making
processes (see Section 5.3.1).

Although the obtained IQ attributes resulted satisfactory enough to describe IQ requirements
in several COTS industrial and academic selection project case studies, we realized that
supporting decision-making in the face of increasing information volumes and COTS
information characteristics, demands a systematic management of IQ to inform COTS selectors
about the quality and adequacy of the information to their tasks without having to do a full
inspection or regenerating the data anew. Besides, the reuse of the metadata about the
information sources and their assessment in diverse selection processes of the same domain,
would improve the efficiency and effectiveness of future selection processes.

As a result, we have partially implemented our previous work as a conceptual model for
systematically supporting COTS selectors not only to collect, to storage and to assess IQ, but
also to (re)use and manage it for improving their decision-making process. The current
conceptual model is detailed in Section 5.3.2.

5.3.1 Heuristics to Support IQ Assessment in the COTS Selection Context

Some examples of heuristics driven the information arrangement and decision making processes
are:

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

88

• “Diverse types of information sources exists, they can be grouped into: Hierarchy,
Standard, Vendor Information, Independent Reports (of scientific, divulgation and/or
technical nature), Oral Information, Test Of Tools Reports, Experiences, Other”,… Table
5.1 provided descriptions and examples.

• “Information sources available can provide insights into a diverse range of software
packages and/or vendor characteristics, but no requirements identified from these sources
should be used without careful consideration of their confidence”.

• “Information from experts is good at quickly identifying general principles, offering
explanations, validating analyses, and providing pointers that could be cross-validating
with Independent Reports”.

• “Information from COTS providers tends to highlight the strengths and hide the
weaknesses of licensing packages”.

• “Information from standards related to the field, are the best for identifying COTS high-
level goals”.

• “Test of tools and Systems are useful for complementing the information from vendors
regarded to detailed information on typical interfaces, architectures, dependencies between
products for enabling or complementing their functionality”.

Annex 1 further describes the heuristics driving this activity.

5.3.2 A Conceptual Model for Systematically Supporting COTS Selectors

Decision-Making

Results obtained in our preliminary study, have been enclosed into a conceptual model. This
model is being refined with as more empirical data is gathered. A comprehensive sketch of the
current model is shown in Fig 5.1. A more detailed view of the model is reported in [Mes07].
The ultimate goal of this intended model is to incrementally build a catalogue of COTS related
information sources, and describe them by means of the quality features defined in the quality
model explained in the previous section. This leads to inform COTS selectors about the quality
of the sources to decide if they are adequate to their objectives.

At the heart of this model lies the Information Source class described by a set of class
attributes or class relationships (e.g., the believability class attribute, or the Retrieval Schema
class). All of them correspond to the IQ attributes identified in the quality model.

Some attributes correspond directly to metrics previously identified; for instance, the
Representation Kind attribute categorized under the Understandability subcharacteristic, is
directly stated by the RepresentationKind attribute of the Information Source class. On the other
hand, information sources are characterized by diverse InformationSourceType (as detailed in
Table 5.1) and their extraction is supported by the application of the heuristics mentioned in
Section 5.3.1.

From the reuse and management perspective, we define the Participant class to describe the
subjects that provides a mark, create information sources, or are members of a producer
organization. This class is defined by a set of objective attributes (e.g., name), and a subjective
attribute named believability. This class can refer to a Person or an Organization. A person can
play several roles in an Organization. On the other hand, Participants play the Author or Marker

role. Author refers to the Information Source creator. Marker refers to who gives an opinion
and/or a mark about the believability of the information source based on his/her own assessment
of the source. Such opinion is denoted by the UserProductOpinion association class. Hence, an

Chapter 5: Activity 1 -Exploration of Information Sources

89

Information Source can collect more that one UserProductOpinion. In the same way,
Participants can provide marks and comments about the believability of other participants.

Fig. 5.1 An excerpt of the COTS IQ Reference model

Many other quality relationships extracted from the quality model exist, some of them are
easily inferred by the model. For instance Accessibility attributes of the Information source as
Format, Retrieval, Schema, Acquisition Cost; Representational ones as Language or
Representation Kind; and some kind of special relationships among the sources as Related To,
Depends On, and Reference that are Intrinsic attributes that denote, the products related,
dependent or referenced by the Information Source and have quality implications.

Of course, some integrity restrictions are defined in the model, e.g., Authors cannot issue a
mark about their own Information Sources, or a Participant cannot make a mark about
himself/herself.

Additionally, we have integrated this approach into our GOThIC method. The way to do that
is to consider that the Information Source and Taxonomy Node classes introduced in Fig. 4.2 in
Chapter 4 are in fact the same as the stated in Fig.5.1. Hence, as mentioned in Chapter 4, a
GOThIC taxonomy is used to locate the taxonomy node that fulfills the needs of the user in
charge of the COTS selection process. Once located, the information sources related to each
node can be assessed to obtain high-quality information to adapt the domain model to the
specific requirements of the selection project, applying the rules we defined in [Aya-Fra05] and
detailed in Chapter 8.

Thus, the approach described here can be used to guide data collection, storage and use,
allowing the comparison of various information sources in terms of their quality value for a
specific project.

Given the huge amount of information sources available, we considered crucial the
implementation of this strategy in a software tool for supporting this activity.

So far we have implemented the conceptual model in a software tool [Mes07]. Meanwhile
we have recorded over 150 information sources we have (re)used in several COTS domain-
related analysis projects.

Details of the tool that has been developed to support this activity are found in Chapter 9.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

90

5.4 Summary and Discussion

This research develops a framework that captures the aspects of IQ that are important to COTS
selectors. It was integrated into the GOThIC method activities framework for establishing the
properties of the information to be used in the Domain Analysis activity (see Chapter 6) in order
to make it more successful. This framework provides a systematic approach for supporting
COTS selectors to decide information sources to use according to their specific quality project
needs.

Relevant aspects of our research are:

• The resulting strategy driving the exploration and analysis of information sources was based
on relevant approaches from the IQ research, e.g., [Boo-Smi00], [Sha+03], [Wan-Str96],
[Lee+01], [Wang+03], several industrial experiences and case studies analyzing COTS
selection processes [Aya06], as well as interviews run in software companies [Ger06] and
[Ger07].

• Quality dimensions required to perform an informed COTS selection were identified from
experts, researchers, and practitioners as well as theoretically.

• The set of attributes that allows gauging, reusing, prioritizing, and managing IQ to support
COTS decision-making were defined. These attributes were organized into an ISO/IEC 9126
tree-like structure which outlines a uniform framework for the integrated evaluation of all
COTS selection related issues in the GOThIC method. Hence, IQ requirements can be
considered from the beginning of the COTS selection process in the same way we have other
kind of requirements (e.g., functional, non-technical, …). Moreover, we put emphasis on
reuse, which allows transferring knowledge from one information quality assessing
experience to another. See Annex 2 for a current representation of the model obtained.

• Heuristics are provided to locate and choose information sources suitable to the quality
objectives and/or resources allocated to any COTS selection project.

• A conceptual model and a tool support called IQ-Tool (introduced in Chapter 9) to
systematically tackle the collection, storage, retrieval, and analysis of information sources in
COTS selection processes has been defined [Mes07]. It is being improved by empirical
information which is allowing its refinement [Aya-Fra08].

• Finally, it is important to remark that although reaching the proposed IQ assessment process
and their related artifacts may seem time-consuming, they are in fact incrementally
constructed, improved and (re)used by the iterative application of the method to several
selection processes.

Our ongoing and future works with respect to this activity include:

► The integration of the IQ-Tool into the DesCOTS system [Gra+04] (see Chapter 9).

► To extend the approach with more empirical data by applying an online questionnaire to a
broader population [Aya-Fra08].

► To develop functions to systematically compute a consensual result from the match among
the IQ Project Issues´s attributes to the Intrinsic, Representational, and Accesibility IQ´s
attributes. It means to systematically generate Contextual IQ attributes results. To do this,
we are basing our efforts on the criteria for information quality reasoners defined for Wang
et al. [Wang+03]. Our main intention is to provide support and flexibility in dealing with the
subjective, decision-analytic nature of IQ judgements.

91

Chapter

6

Activity 2:

COTS Domain Analysis

he goal of the COTS domain analysis activity of GOThIC is identifying and recording the
most important aspects of a particular COTS domain in the COTS marketplace for reusability
and management purposes. It is done from the information sources previously obtained in the
Information Sources Exploration activity described in the previous chapter.

COTS domain analysis activity runs in parallel to several other GOThIC activities by
guiding the production of artifacts or models throughout all activities of the method.

The strategy to perform Domain Analysis includes producing several models, written
according to some widespread notations and standards. These models are then integrated and
synchronized using the ISO/IEC 9126-1 quality standard as a unifying framework called
“domain model”. Such domain model is the basis of the GOThIC method to gain knowledge for
identifying the correct goals and to build a reuse infrastructure with several kinds of reusable
assets of interest for COTS selection processes. This strategy was also published in [Aya-
Fra06c].

This Chapter is structured as follows. Section 6.1 provides a brief background of previous
research and greatly justifies the need of the study of domain analysis in the COTS selection
context and its feasibility. The informational dimensions for evaluating COTS are identified in
Section 6.2. Section 6.3 discusses the most appropriate types of models to record these
informational dimensions whilst Section 6.4 explains how these models are integrated into a
unified one. Section 6.5 outlines the impact of domain analysis on COTS selection and Section
6.6 illustrate the approach by an example which obtained domain model is further described in
Annex 3. Finally, summary and conclusions of the most relevant aspects of the chapter are
presented.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

92

6.1 Background

Systematic reuse is based on the observation that quality and productivity can be significantly
increased by shifting the focus of software engineering to a domain-centered view by means of
building an infrastructure support.

The engineering discipline concerned with building these optimal reusable assets is called
domain engineering [Pri-Ara91]. Domain engineering supports the notion of domain, a set of
applications that use common concepts for describing requirements, problems, capabilities and
solutions.

Particularly, being part of domain engineering, domain analysis has been identified as a
major factor in the success of software reusability. Domain analysis refers to the process of
acquiring and consolidating information about an application domain, so that reusable
infrastructure can be designed reliably [Frak+98]. Its purpose is to identify the basic elements of
the domain, to organize an understanding of the relationships among these elements, and to
represent this understanding in a useful way by means of different types of models [SDA].

The different existing views on domain modelling (e.g., [Corn96], [Nei80], [Pri-Ara91])
share then the same goal: to facilitate quality software development by reusing the knowledge of
the addressed domain.

Reuse is not a context-independent activity. The type of artifact to be reused impacts on the
reuse models to be adopted and the reuse processes to be undertaken; therefore, it is a fact that
the reuse discipline has to evolve as new paradigms and artifacts emerge. This is the case of the
CBSD paradigm [McC89].

As mentioned in Chapter 2, although several COTS selection methodologies, processes and
techniques have been formulated, they are maily oriented to individual selection processes and
do not explictly address reusability issues. Even in the cases in which a reuse infrastructure is
suggested (e.g., OTSO, CARE, PECA), no real support or precise guidelines are offered. This
lack of explicit proposals for dealing with COTS selection has been also recognized from the
reuse discipline [Mor06].

To solve this problem, it seemed feasible to use domain analysis for recording and
structuring information about COTS in order to enable their efficient reuse. However, as far as
we knew, COTS technology issues had not been explicitly addressed in the domain analsys
discipline (although of course many concepts of domain analysis apply to this particular case).

Therefore, we developed a particular strategy of domain analysis for supporting COTS
selection.

In this strategy we produce several domain models covering different dimensions that
capture and represent the most important aspects of a particular COTS segment in the COTS
marketplace. All the models are syncrhonized using a unifying framework. We use widespread
notations and standards to represent the dimension models. This strategy was integrated as a
fundamental basis for building the COTS segment reuse infrastructure aimed by the GOThIC
method. It was published in [Aya-Fra06c].

Bing part of GOThIC, the domain analysis activity has the mission of producing a domain

model (i.e., a representation of the most important aspects of a COTS segment) that serves as
the basis to gain knowledge for identifying the correct goals and to build the reuse infrastructure
with several kinds of reusable assests of interes for COTS selection processes.

Chapter 6: Activity 2 -COTS Domain Analysis

93

6.2 Domain Analysis for Supporting COTS Selection: Dimensions

In the previous section we have justified the concevience of having domain models for
describing COTS marketplace segments. In this section we identify several dimensions of
interest for describing the COTS information required during COTS selection processes. Each
dimension will be described by a model.

The identification of the dimensions was done by analyzing the different informational needs
and facts on COTS selection processes that have been reported in the literature (e.g., [Ber+03],
[Req+05], [Li06]), our GESSI group experiences in the field (e.g., [Fra-Car03], [Car+04b],
[Car+05], [Car06]), as well as some empirical studies in industry we had the oportunity to
participate [Ger06], [Ger07].

To search, elicit and process all the information from which domain analysis will be
performed, we made use of the framework introduced in Chapter 5, that provides an information
quality model supported by heuristics that facilitate the collection, storage, retrieval, analysis
and reuse of COTS information in a quality assurance environment. It captures the aspects of
information quality that are important to COTS selection and provides a systematic approach for
supporting COTS selectors to decide information sources to use according to their specific
project needs.

Fundamental concepts

In the COTS context the same concept may be denoted by different names in different products
or even worse, the same term may denote different concepts in different products. Currently, it
is not usual to find places in the COTS marketplace where fundamental concepts are stated.
Most normally, one may find items (products, services, etc., belonging to one or more market
segment) whose description uses some terms in a rather obscure way, making those descriptions
difficult to use (especially when comparisons among candidates are needed), customize them
and make them evolve as the marketplace does [Aya-Fra05]. See Section 2.3.2 for examples of
repositories containing COTS descriptions.

On the other hand, every single COTS segment defines lots of concepts that are used over
and over, e.g., anti-virus tools have “viruses”, e-mail systems have “messages” and “folders”,
etc. These concepts may be related in many ways, e.g. “messages” are “stored” inside “folders”.
A poor knowledge of these fundamental concepts and their semantic relationships may interfere
with the efficiency and effectiveness of COTS selection processes, especially taking into
account some of the risky COTS technology characteristics introduced in section 1.1 (e.g.,
COTS marketplace growing size and rapid changes). Therefore a model for representing all this
information is needed. Its purpose is to settle the scope of a particular segment, to define its
main concepts (both as a vocabulary and as a semantic model) and the relationships that
facilitate the understanding of the domain as a whole. The resulting model can be used as a
reference framework for the segment. To build this model, information sources such as
standards and textbooks are useful (see Chapter 5). We recommend to choose one of the most
trustable sources as starting point, then to synthesize the corresponding dimensions of the
domain model, and last to calibrate this dimension with other informational sources. The
resulting model can there be used as a reference framework for the segment.

Functionality

COTS have their functionality already built-in. Hence, instead of traditional requirements that
specify “must” and “should” needs, requirements for CBS articulate broad categories of needs
and possible trade-offs.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

94

Most of the existing COTS categorization proposals are based on COTS functionality
attributes for searching COTS. Thus, COTS functionality is a primary source of information in
COTS selection processes. Consequently, a model must cover this dimension. But a good
balance is needed. On the one hand, the most representative functionalities of a particular
segment should be included (e.g., virus repair, automatic resending of messages) and described
up to a level of detail that enables efficient survey and evaluation of particular COTS. On the
other hand, if too much detail is given, several obstacles mentioned in Section 1.1, remarkably
growing size and rapid changes of the COTS marketplace are harder to overcome, since a lot of
information would need to be updated continuously. Also, too much detail may commit the
description of the functionality to the behavior of particular components.

Quality of service

Since the quality factors are likely to break the tie when several COTS candidates provide the
required functionality, the role of quality information becomes utterly important for driving
COTS selection [Car+03]. In particular, quality requirements have been recognized as crucial
by the methods and processes proposed so far for driving COTS selection (see Chapter 2). Thus,
efforts are required to obtain reliable and comprehensible descriptions of COTS quality of
service in an efficient way. We propose then a dimension for stating quality of service.

The resulting model needs to offer a structured description of the COTS segment addressed,
organizing the different quality factors hierarchically (e.g., Throughput and Response Time as
sub-factors of Time Efficiency) and should also include metrics for the quality factors. This
model may serve as a framework in which particular COTS may be evaluated and compared to
user requirements during selection processes.

Non-technical description

Despite the fact that the evaluation of candidate COTS from a technical point of view
(functionality and quality of service) is necessary, experiences in COTS selection show that
non-technical information1 must be taken into account and, in fact sometimes it is even more
important than the technical information [Car-Fra06]. As a result, we need to record this
information.

This new dimension must distinguish several concepts and focus on the commercial nature
of COTS, stating information about licensing issues, provider reputation, post-sale supporting
services, etc.

One should be aware that part of the information may be difficult to obtain (e.g., provider
finance information) and the corresponding factor may not be included in the model for this
reason.

Interoperability

The analysis of any COTS market segment shows that some relationships among components
exist. We have analyzed the types of dependencies that may exist and we have concluded that a
COTS may need another for:

• Enabling its functionality (e.g., document management tools need workflow technology to
define life cycles).

1 Information that does not refer directly to the intrinsic quality of software, but to its context, including economic,
political and managerial issues; e.g., adequacy of the procedures imposed by the COTS with respect to procedures of
the organization.

Chapter 6: Activity 2 -COTS Domain Analysis

95

• Complementing its functionality with an additional feature, not originally intended to be part

of its suitability (e.g., a web page edition tool can complement a web browser to facilitate
web page edition).

• Enhancing its quality attributes (e.g., resource utilization can be improved significantly
using compression tools).

However, in the COTS selection arena, interoperability has been dealt within a case-by-case
basis. Furthermore, most of the COTS selection methods proposed so far just address single
component selection, they do not even address the need to select a suite as final solution.
Therefore, we propose a new dimension to cover this need, otherwise COTS selection becomes
not trustable. It is worth remarking that, since we are describing not a particular COTS but a
whole segment, interoperability issues must not be stated in much detail (e.g., data formats, API
specificities, etc.); instead the model should include the needs and expectations that one type of
component has on others in a very high-level way.

6.3 Domain Analysis for Supporting COTS Selection: Models

Taking into account the informational dimensions required by the COTS technology, in this
section we discuss which are the most appropriated types of models for representing them. A
first observation is that, due to their diversity, various types of models will be probably
required.

In the domain analysis field, a variety of methods and techniques have been proposed as:
FODA, DARE, ODM, DSSA and PLUS (see [Fer-Veg99] and [Poh+05] for a survey) which
use a diversity of different types of artefacts and mechanisms to record the knowledge that
range from the traditional requirements models (namely models of data, behaviour, and
function), as Data Flow diagrams [McM-Pal84], Entity-Relationship (ER) models [Che76],
Object Oriented models [Coh-Nor98], UML models [UML] Scenarios [Poh+01], and Feature
models [FOD], to UML metamodeling techniques and more elaborated UML extensions and
stereotypes for dealing with domain structural elements, relations and variability [Poh+05],
[Gom05].

In practice, these proposals vary in their terms, notations, and emphases, but in general they
are focused on designing product lines or product families for promoting reusability between
software applications by means of an intended reuse plan [Poh+05], [Gom05].

We have studied whether the models proposed by the actual domain analysis practices could
be suitable for recording all the COTS informational dimensions. As far as we know, none of
these approaches has examined in depth the special kind of relationships and information that
the COTS technology requires. We found that although some commonly used models could fit
well enough for representing some dimensions, some other dimensions were still lacking of an
adequated representation and analysis addressing the COTS information reusability and
management.

For instance those relationships that enable interoperability among components, which could
be partially fulfilled by establishing “Artifact Dependencies” (a special kind of variability in
variability models for Software Product Lines design [Poh+05]), as well as the dimension
related with stating non-technical information and quality of service (this last could also be
partially addressed by test cases, but generally they are considered to be out of domain
analysis). Additionally, although in [Leu-Leu03] the usefulness of having domain models to
reuse COTS related information is argued, they do not explain what should be the
characteristics of the domain models, neither how they should be constructed. For that reason, it
is a fact that actual domain analysis approaches do not address in an optimal way all the

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

96

fundamental informational dimensions required for assessing COTS in terms of expressiveness
and adequateness, structure, and compatibility.

Hence, existent domain analysis strategies have to be somehow adapted and complemented
to fully deal with the COTS technology characteristics [Alm+06], [Vit+03a].

In the rest of this section, we propose a set of models for covering all the required COTS
informational dimensions using widespread notations and standards.

Table 6.1 summarizes our proposal and makes clear the gap for recording non-technical
descriptions and interoperability with respect to other domain analysis approaches.

Table 6.1 Summary of domain analysis practices for representing COTS dimensions

COTS Dimension Domain Analysis Practices Our approach

Fundamental Concepts
& Standardized

Descriptions

ER Models, Feature Models,
UML Diagrams, Glossaries, etc. UML Class Diagrams + LEL

Functionality
Data Flow Diagrams, Scenarios,

UML Diagrams, etc.
UML Use Case Diagrams + brief individual

descriptions

Quality of Service None ISO/IEC 9126-1

Non-Technical
Description

None 3 categories of non-technical factors

Interoperability None i* SD Models

Fundamental Concepts

Two types of artifacts are adequate for representing fundamental concepts:

a. Conceptual data models or feature-oriented models to express the semantic meaning of
the terms in the market segment together with their relationships.

b. A glossary to set up a vocabulary of the domain with information about synonymous and
other lexical relationships.

In particular, we have chosen UML class diagrams for representing the semantic information
due to its expressiveness and acceptance in the community.

For the glossary, the Language Extended Lexicon (LEL) [Lei-Fra93] approach provides an
adequate level of service since it allows capturing the meaning and fundamental relationships of
the particular symbols (words or phrases) of the domain. The glossary includes at least the terms
that appear in the rest of the models (e.g., the names of classes, attributes, and associations of
the UML class diagram). One could also think of the general concept of ontology [Grub93] for
capturing all the information needed.

Functionality

Any approach based on the concept of scenario seems a good option. We remark that the
important point is to use the right level of detail.

Specifically, we propose the use of UML use case diagrams for defining the functionalities
of the COTS segment and a brief format of use cases [Coc01] for describing them individually.

Details of the use of such models are given in Activity 3 of the GOThIC method, related in
Chapter 7.

Chapter 6: Activity 2 -COTS Domain Analysis

97

Quality of Service

Quality models [Fra-Car03] provide a measurable framework which precisely defines and
consolidates the different views of quality (e.g. performance, reliability, integrity, etc.) required
for COTS evaluation. Among the different existing proposals, we adopted the ISO/IEC 9126-1
standard [ISO9126] for several reasons discussed in Chapter 2, remarkably: it provides a two-
level departing catalogue but at the same time it is highly customizable to each different COTS
segment; there are some metrics already defined for this standard; and it is widespread.

Non-Technical Description

Not only in the domain analysis context but in general, it is not usual to find models for
representing non-technical information. Usually, some categories are recognized and for each of
them, a list of non-technical factors identified. In [Car-Fra06] 3 high-level factors and 15
second-level sub-factors referring to COTS supplier information (e.g., organizational structure),
business information (e.g., licensing schemes) and other non-technical information about the
product (e.g., history) are identified and structured in the form of an ISO-IEC 9126 quality
model as shown in Table 6.1.

Such catalogue has been further improved and elaborated in several low-level characteristics
and their associated metrics in [Car+07a], [Car+07b], and is available on line at
http://www.lsi.upc.es/~gessi/QMTool/CQM/ExtNTISO.html. We suggest to use at least the 3 high-
level factors and 15 second-level sub-factors to capture this dimension.

Table 6.2 High-level characteristics and subcharacteristics describing COTS Non-technical factors

Characteristic/ Subcharacteristic Description

1 Supplier
Characteristics of the supplier that can influence the quality of the
software product.

 1 Organizational Structure Description of the organizational structure of the supplier company.

 2 Positioning and Strength
Description of the position and orientation of the supplier company in
the market.

 3 Reputation
Recognition of the capability of the supplier to perform similar projects
based on past experiences and certifications.

 4 Services Offered Description of the services offered by the supplier.

 5 Support
Description of the support mechanisms offered by the supplier
company.

2 Business
Characteristics of the contract among the supplier and the client that
can influence the quality of the software product.

 1 Licensing Schema Description of the COTS licensing options.

 2 Ownership Description of the aspects in relation to the intellectual property rights.

 3 Guarantees Detail of the guarantees provided over the product.

 4 Licensing Costs
Description of the costs components and total cost of ownership for
the different licensing options available

 5 Platform Costs Estimation of the cost for the required production platform

 6 Implementation Costs Estimation of implementation costs based on similar past experiences.

 7 Network Costs Estimation of additional costs for network operation.

3 Product
Characteristics of the commercial aspects of the software product that
can influence its quality.

 1 History Evolution of the COTS since it has been offered to the clients.

 2 Deliverables
Detail of the out-of-the-box and expected post-implementation
deliverables

 3 Parameterization/Customization Description of the initial effort required for the product to operate.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

98

Interoperability

Interoperability of COTS is usually described by means of APIs or data formats. However, as
already explained in Section 6.2, we are interested in describing not particular COTS but the
general behaviour of all the components belonging to a COTS market segment, therefore we
need more abstract descriptions. The combination of goal- and agent-oriented models provided
a good response to our needs. Goals allow expressing needs and expectations in a high-level
way, whilst agents are an appropriate way to model COTS segments. Then, one COTS segment
may state that depends on another to attain a goal. We have chosen i* Strategic Dependency
(SD) models [Yu95], adapting its semantic to represent COTS segments and their dependencies.
Details of the construction of such models are given in Activity 4 of the GOThIC method,
related in Chapter 7.

6.4 A Unified Model for COTS Domains

The models proposed in Section 6.3 cover the informational dimensions that were identified in
Section 6.2. However, the primary goal of COTS segments domain analysis is to characterize
COTS for their evaluation and selection, so it is clear that having these dimensions structured in
separate models hampers domain understanding and model management. For this reason, we
realized the need of a unifying model which facilitates this goal.

From the dimension models given, quality models seemed the most appropriate type of
artefact. Therefore, if we succeed in putting all the models in an ISO/IEC 9126-1 quality model
we will have our goal attained.

6.4.1 Integrating all the COTS domain models into the ISO/IEC 9126-1

In this subsection we aim at integrating the models obtained so far, even considering their
different nature, into an ISO/IEC 9126-1 quality model. Fig. 6.1 shows an overview of our
proposed framework.

Characteristic Subcharacteristics
Suitability
 Suitability of Services
 Suitability of Data
Accuracy
Interoperability
Security

Functionality

F. Compliance
Reliability …

Understandability
 Semantic Understandability
 Lexical Understandability

Usability

Learnability
 Available Documentation
Efficiency …
Maintainability ...

Q
u

a
li
ty

 o
f

S
e
rv

ic
e

Portability
 Extended

Characteristics

Organizational Structure
Positioning and Strength Supplier

…
Licensing Schema
Ownership Business
…
History
Deliverables N

o
n

-T
e
c

h
n

ic
a
l

Product

…

*

*

*

*

*
1

1..*

* Sub characteristic

{ di sjoint, complete}

{ di sjoint, complete}

Basic

Subchara cteristic

*

0..1 Derived

Subcharacteristic

Qual ityM odel 1 * Qualit yEntit y

{ disjoint, co mplete}

{ di sjoint, compl ete}

Ch aracter istic

1..*

*

M etric

{ disjoint, complete}

{ disjoint, co mplete}

Subjective Objectiv e

Attrib ute

{ di sj oint , compl ete}

{ disjoint, co mplete}

Basic Attribu teDerived Attribu te

*

*

*

*

*
1

1..*

* Sub characteristic

{ di sjoint, complete}

{ di sjoint, complete}

Basic

Subchara cteristic

*

0..1 Derived

Subcharacteristic

Qual ityM odel 1 * Qualit yEntit y

{ disjoint, co mplete}

{ di sjoint, compl ete}

Ch aracter istic

1..*

*

M etric

{ disjoint, complete}

{ disjoint, co mplete}

Subjective Objectiv e

Attrib ute

{ di sj oint , compl ete}

{ disjoint, co mplete}

Basic Attribu teDerived Attribu te

*

*

*

*

*
1

1..*

* Sub characteristic

{ di sjoint, complete}

{ di sjoint, complete}

Basic

Subchara cteristic

*

0..1 Derived

Subcharacteristic

Qual ityM odel 1 * Qualit yEntit y

{ disjoint, co mplete}

{ di sjoint, compl ete}

Ch aracter istic

1..*

*

M etric

{ disjoint, complete}

{ disjoint, co mplete}

Subjective Objectiv e

Attrib ute

{ di sj oint , compl ete}

{ disjoint, co mplete}

Basic Attribu teDerived Attribu te UML Class
Diagrams

Use Case
Specifications

i* SD Models

LEL Glossary

Available
Information

See

Chapter 5

Fig. 6.1 An overview of the ISO/IEC 9126-1-based quality model for COTS segments

Chapter 6: Activity 2 -COTS Domain Analysis

99

Functionality

Regardless of having the same name, the functionality of a COTS segment does not correspond
with the ISO/IEC 9126-1 Functionality characteristic. Instead, it corresponds to the Suitability
concept that is a subcharacteristic of Functionality. However, since functionality focuses on the
services provided but not the data managed, we create a new subcharacteristic:

� Suitability of Services, belonging to Suitability (a subcharacteristic of Functionality) that
contains the UML Use Case diagram and the individual use case descriptions.

Fundamental concepts

The UML class diagram is related to two ISO/IEC 9126-1 subcharacteristics. On the one hand,
as the case before, Suitability, because some of the classes (and their attributes) and
relationships are defining part of the suitability of the COTS segment. On the other hand,
Understandability, which is a subcharacteristic of Usability, because having a UML class
diagram provides a reference framework that allows testing how much a particular COTS
adheres to it. For the same reason, also the LEL glossary supports Understandability. Therefore,
we create 3 new subcharacteristics:

� Suitability of Data, belonging to Suitability, contains the class diagram;

� Semantic Understandability belonging to Understandability (a subcharacteristic of
Usability) also contains the class diagram;

� Lexical Understandability, belonging to Understandability, contains the glossary.

Non-technical description

Since non-technical factors proposed in [Car+07a] are actually in an ISO-9126-1-form (see
Table 6.2), in the intended integrated model, we only define the 3 high-level ones as
characteristics and the other 15 as subcharacteristics.

Interoperability

Interoperability is also a subcharacteristic of Suitability and in this case, we just consider the i*
SD model as the description of Interoperability.

Other Considerations

The existence and quality of the documentation available (i.e., information), from which all
domain analysis is based on, is crucial to assess several quality aspects of the product affecting
its learnability and several other issues. This is mainly related with the concept of the
Learnability subcharacteristic belonging to Usability in the ISO/IEC 9126-1. Thus, we add a
subcharacteristic belonging to Learnability named Available Documentation which contains
some information from the previously gathered sources summarized in the Information Quality
Model introduced in Chapter 5 and further presented in Annex 2.

We create 2 new subcharacterictics belonging to Available Documentation:

� Provider Documentation, contains information that is directly provided by the supplier
of the component

� External Documentation refers to all related documentation that is not provided by the
supplier of the component.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

100

6.4.2 Transforming the Models into the ISO/IEC 9126-1 Framework

Although we have achieved our primary goal, namely integrating all the dimension models
under the same umbrella, there is still a question left that may be considered as a drawback
when using the domain model for COTS evaluation purposes: the fundamental concepts,
functionality, and interoperability models are expressed with their own formalisms which are
not straightforward to evaluate.

In this subsection we deal with this problem by providing rules that map the constructs in
these models into ISO/IEC 9126-1 quality factors. Furthermore, we state how their metrics are
defined. These rules are defined in such a way that they could generate the new, final model
automatically from the former models. This integrated model is called Domain Model in our
GOThIC approach.

Next paragraphs describe the corresponding rules to map the content of the diverse
dimension models into the ISO/IEC 9126 framework. Once these rules are applied, evaluation
of COTS may be done in a more uniform and comfortable way. But of course, the original
models should be preserved since they are easier to understand and evolve.

Functionality

For each use case UC appearing in the Use Case diagram, a quality attribute UC belonging to
the Suitability of Services subcharacteristic is created. The individual use case specifications are
part of the description of these quality attributes.

For each obtained quality attribute, an ordinal metric which can take three values,
Satisfactory, Acceptable and Poor, is created. These values express how a particular COTS
covers the service represented by the use case.

Fundamental concepts

For each class or association C appearing in the class diagram that represents a concept
provided by the COTS in the segment, a quality attribute C belonging to the Suitability of Data
subcharacteristic is created. The elements of the class diagram are part of the description of
these quality attributes.

For each obtained quality attribute, an ordinal metric which can take three values,
Satisfactory, Acceptable and Poor, is created. These values express how a particular COTS
provides the data represented by the class or association. These values will be obtained during
evaluation by using different criteria (e.g., whether all the attributes are provided, whether the
instances are permanent or not, etc.).

Each term of the glossary is included as part of the description of the quality attribute(s) it is
related to. The same happens with the elements of the class diagram that were not tackled in the
previous step.

Last, two numerical metrics are bound to the Semantic Understandability and Lexical

Understandability attributes. The values of these metrics will count the number of semantic and
lexical discrepancies of a particular COTS with respect to the reference models.

Non-technical description

No rules are required in this case since non-technical characteristics are already described in the
ISO/IEC 9126 format.

Chapter 6: Activity 2 -COTS Domain Analysis

101

Interoperability

For each agent A appearing the i* SD model, except the agent S that represents the COTS
segment we are modeling, a subcharacteristic A belonging to Interoperability is created.

For each dependency G among S and A, an attribute G is created. For each obtained quality
attribute, we create an ordinal metric whose values depend on the type of the corresponding
dependency: if goal, values are Attained and Not Attained; if resource, Provided and Not
Provided; if task, Executed or Failed; if softgoal, Satisfactory, Acceptable and Poor.

Other Considerations

For each available documentation provided by the COTS supplier in the Information Quality
Model (introduced in Chapter 5), four minimum attributes belonging to Available

Documentation/Provider Documentation are created to describe the extent of the COTS related
information available: Documentation and User Manuals; FAQ and Tips; Help Files; Online

Help Documentation. The same happen with the Available Documentation/External

Documentation subcharacteristic, that is also described by Documentation and User Manuals;
FAQ and Tips; Help Files; Online Help Documentation attributes.

For each one of these attributes, we create a nominal metric which can take 4 values:
NotProvided; Basic; Medium; Advanced. These values express the extent of the information
provided by the supplier and non-suppliers of the COTS respectively.

In addition, with respect to the other ISO/IEC 9126-1 characteristics and subcharacteristics,
we use the approach of Carvallo et al [Car05T], [Car-Fra06], [Car+07a], [Car+07b] for
completing the ISO/IEC 9126-1 hierarchy.

6.5 Domain Analysis-Based COTS Selection

This domain analysis strategy has been integrated into the GOThIC method by considering that
the obtained domain model introduced in Fig. 6.1 is in fact the Domain Model that appears in
Fig. 4.2 in Chapter 4 and Fig. 6.2.

Fig. 6.2 sketches the conceptual model of the COTS domain analysis activity. The
Information Source class refers to the same class introduced in Fig. 4.2 and Fig. 5.1 that
encloses the concept of information quality and its management, detailed in Chapter 5 and from
which the domain analysis activity is based on.

As stated in Chapter 4, a GOThIC reuse infrastructure is used to locate the taxonomy node
that fulfils the needs of the user in charge of the selection process. Once located the taxonomy
node, its domain model may be used to guide the rest of the selection process by refining this
model with more specific requirements. The factors stated in the domain model help to elicit
and negotiate the requirements, making easier the identification of mismatches among
components characteristics and the requirements.

Moreover, those factors corresponding to the stated requirements are used to evaluate the
capabilities of the candidate components in a uniform way, using the metrics defined in the
model. For reaching the COTS domain analysis process, we can proceed manually, or use tool
support. These tools range from the IQ Tool (Introduced in Chapter 9) for dealing with the
information sources from which domain analysis is based on; and to a simple spreadsheet or a
more sophisticated tool, e.g. the DesCOTS system [Gra+04] (described in Chapter 9) for
processing, editing and maintaining the produced Domain Model.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

102

Fig. 6.2 A conceptual model excerpt of our ISO/IEC 9126-1-based analysis model for COTS domains

Reusability of the Domain Model (i.e., quality model) downwards categories and market
segments of the domain hierarchies is a way to support resuse.

We have observed throughout our experiences that some quality features appear over and
over, and this repetition is directly connected to the characteristics embedded in the
characterization attributes (i.e. the attributes that allow the partitioning of the nodes, explained
in Chapter 7). The recognition of COTS market segments and categories improves reusability:
once a new COTS market segment has been identified, its quality model can be constructed by
inheriting the features of the Domain Model for those COTS categories in the hierarchy which it
belongs to. During the process, new categories may be identified, abstracting commonalities of
this new domain with others. As a result, a Domain Model bound to a category of the taxonomy
collects all the quality features common to all its sub-categories and market segments. Since
then, any quality model for a particular selection process may reuse the Domain Model of the
corresponding COTS domain.

6.6 Case Study Example

For illustrating this activity, we present some excerpts of how we proceed to obtain the Domain

model for the Real-Time Synchronous Communication (RTSC) case study.

As mentioned in Chapter 3, the RTSC case study embraces the various tools and
technologies used to enable communication and collaboration among people in synchronous
mode. Examples include instant messaging (IM), chat, audio/video conferencing, white-
boarding, and application/desktop sharing. Synchronous means “same time – different place”
mode. Thus, RTSC tools require to be connected at the same time, for example during Internet
video or audio conferencing; and support a variety of media types, ranging from plain text to
full multimedia.

It is worth to remark that the resulting artifacts related in this case study are thoroughly
performed by other activities of the GOThIC method. Therefore, most of the examples related in
this section refer to or are complemented in other chapters.

Chapter 6: Activity 2 -COTS Domain Analysis

103

Fundamental concepts

Part of the UML class diagram is presented in Fig. 6.3a. Several key concepts are stated as
classes. These concepts are of different nature, e.g. human roles (e.g. Sender and Receiver),
artefacts of any kind (either physical or informational, e.g. Message), software and hardware
domain-specific components (e.g. Software Client, Software Server and Proxy), etc. Inside these
classes, we identify attributes but just those that play a crucial part in the domain, e.g. Message
that can be of different types. Domain relationships are also of different kinds. Thus, we can see
a high-level relationship among the human roles Sender and Receiver which are generalized into
a User class. On the other hand, associations may be of very different nature. For instance, we
have permanent or at least very stable relationships (e.g., among User and Software Client)
while others are highly dynamic (real-time connections that are created and destroyed
dynamically). OCL restrictions may be used to decorate the model appropriately.

a. Excerpt of the UML Class Diagram

b. Excerpt of the UML Use Case Diagram

c. Excerpt of an Individual Use Case Specification

User

Connect to the
Network

Send/Receive
Message

Sender Receiver

Use Case: Send/Receive Message

Precondition Sender and Receiver are connected with each other.

Description
The Sender composes a message of any kind and
delivers it to the Receiver. The Receiver is notified and
then reads the message

Fig. 6.3 Excerpt of some domain models constructed for the RTSC case

Functionality

The use case model for functionality focuses on the most characteristic services offered by
packages in this domain. Fig. 6.3b shows some for the RTSC domain, namely Connect to the

Network and Send/Receive Message. Others such as Send Video Message or Connecting

Multiuser Session are not included either because they are not considered general enough but
specific of a few COTS, or because they are considered as secondary. In addition, we can also
check that the individual use case specification of Send/Receive Message presented in Fig 6.3c
follows the given recommendation of being very abridged. Further examples of the use case and
scenario artifacts are found in Chapter 7, Section 7.2.

Interoperability

As it is the usual case in COTS domains that offer a lot of functionality, we may identify several
relationships with other types of COTS. In Fig. 6.4 we introduce as example two COTS market
segments related with RTSC, AntiVirus Tools (AVT) and Compression/Decompression Tools
(CO/DE), all of them modelled as i* actors. Among their relationships, we find: a RTSC
component relies on an AVT component for detecting viruses (goal dependency, since the AVT
decides the best way to do it) and requires this detection to be robust (softgoal dependency,
because the concept of “robust” detection is matter of negotiation); a RTSC component depends
on a CO/DE one to compress/decompress messages automatically (task dependency, because

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

104

the RTSC states when and how these automatic activities are done); a RTSC component may
improve its performance using a CO/DE component (softgoal dependency, because the concept
of “good” performance is matter of negotiation); and both related components need the message
to work with from a RTSC component (resource dependency, because it is an informational
entity).

RTSC

Fig. 6.4 Some dependencies among RTSC Tools and other types of tools

Activity 4 of GOThIC greatly deals with the construction of this model. So a detailed
explanation of such construction is related in Chapter 7, Section 7.3.

Quality of service

In Table 6.3 we decompose a bit the Understandability subcharacteristic with the Adherence to

Best Practices and Supported Interface Languages attributes.

Table 6.3 Excerpt of the quality model for the RTSC case

Quality factor Metric Description

3 Usability ISO/IEC 9126-1 Characteristic

 1 Understandability ISO/IEC 9126-1 Subcharacteristic

 3
Interface
Understandability

Effort to recognizing the logical concepts and its
applicability by means of interfaces.

 1
Adherence to Best
Practices

ADP: 4valueOrder[Ordinal]
4valueOrder = (Optimal, Good, Fair, Poor)

How well events and elements of the interface comply with
user interface best practices.

 2
Supported Inter-
face Languages

SIL: Languages = Set(Labels[Nominal]) Labels
= (Spanish, Catalan, English, …)

Languages supported by the interface.

We include specific metrics that help to evaluate and compare user requirements. The first
metric illustrate the subjective case, whilst the second one illustrates a metric that is both
objective and structured (set of values). The description included in the table is in fact part of
the glossary but appears for legibility purposes.

Non-technical description

Table 6.4 shows an excerpt of the refinement of a non-technical factor of a product, its history.

Table 6.4 Excerpt of a non-technical factor decomposition for the RTSC case

Non-technical factor Metric Description

3 Product
Non-technical characteristics of a COTS product that may
influence COTS selection

 1 History
Evolution of the COTS since it has been offered to the
clients

 1 Product in Market Time: Years; Years: Integer Number of years the product has been in the marketplace

 2 Versions of the Product

List Of Version; Version: Tuple
(NumberVersion, Time);
NumberVersion: String;
Time: Years, Years: Integer

Versions currently available in the market-place

 3 Patches per Version

List Of VersionPatches;
VersionPatches: Tuple(NumberVersion,
Number); NumberVersion: String;
Number: Integer

Number of patches of each version

Note the similarity compared to quality of service description, which facilitates further
integration. It should be mentioned that non-technical factors are very similar among different
COTS segments.

Chapter 6: Activity 2 -COTS Domain Analysis

105

Table 6.5 shows the integration of the presented excerpts in the unifying model using the
mapping rules introduced in the Sections 6.4.1 and 6.4.2.

Table 6.5 Excerpt of the unifying model for the RTSC case2

Quality factor Metric Description

1 Functionality See ISO/IEC 9126-1

 1 Suitability See ISO/IEC 9126-1

 1 Suitability of Services See Section 6.4.1 and 6.4.2

 1 Connect to Network
CN: 3ValueOrder[Ordinal];
3ValueOrder = (Satisfactory, Acceptable, Poor)

See Fig.6.3b

 2 Send/Receive Message SRMsg: 3ValueOrder[Ordinal] See Fig. 6.3b

 …

 2 Suitability of Data See Section 6.4.1 and 6.4.2

 1 Message Msg: 3ValueOrder[Ordinal] See Fig. 6.3a

 2 Connected with Cw: 3ValueOrder[Ordinal] See Fig. 6.3a

 …

 2 Interoperability See ISO/IEC 9126-1

 1 Anti-Virus Tools See Fig. 6.4

 1 Robust Virus Detection RVD: 3ValueOrder[Ordinal] See Fig. 6.4

 2 Message Scanned for Virus
MSV: GoalValue[Ordinal];
GoalValue = (Attained, Not Attained)

See Fig. 6.4

 3 Message
Msg: ResourceValue[Ordinal];
ResourceValue = (Provided, NotProvided)

See Fig. 6.4

 2 CO/DE Tools See Fig. 6.4

 1 God Performance GP: 3ValueOrder[Ordinal] See Fig. 6.4

 2
Compress/Decompress
Messages

CDMsg:TaskValue[Ordinal];
TaskValue = (Executed, Failed)

See Fig. 6.4

 3 Message Msg: ResourceValue[Ordinal] See Fig. 6.4

 3 …

2 Reliability See ISO/IEC 9126-1

 …

3 Usability See ISO/IEC 9126-1

 1 Understandability See ISO/IEC 9126-1

 1 Semantic Understandability SU: Number[Unit]; Number=Integer See Section 6.4.1 and 6.4.2

 2 Lexical Understandability LU: Number[Unit] See Section 6.4.1

 3 Interface Understandability See Table 6.3

 1 Adherence to Best Practices
ADP: 4valueOrder[Ordinal];
4valueOrder = (Optimal, Good, Fair, Poor)

See Table 6.3

 2
Supported Interface
Languages

SIL: Languages = Set(Labels[Nominal])
Labels = (Spanish, Catalan, English, …)

See Table 6.3

 2 Learnability

 1 Available Documentation
Extract information from IQ

Model introduced in Chapter 5

 1 Provider Documentation See Section 6.4.1 and 6.4.2

 1
Documentation and
User Manuals

Content: Nominal;
Content=(NotProvided, Basic, Medium, Advanced) See Section 6.4.1 and 6.4.2

 2 …

 2 External Documenration See Section 6.4.1 and 6.4.2

 1
Documentation and
User Manuals

Content: Nominal;
Content=(NotProvided, Basic, Medium, Advanced) See Section 6.4.1 and 6.4.2

 2 …

4 …other ISO/IEC characteristics See ISO/IEC 9126

Non-technical factor Metric Description

1 Supplier See [Car+07a] and [Car+07b]

2 Business See [Car+07a] and [Car+07b]

3 Product See [Car+07a] and [Car+07b]

 1 History

 1 Product in Market Time: Years; Years: Integer See Table 6.4

 2 Versions of the Product
List Of Version; Version: Tuple (NumberVersion, Time);
NumberVersion: String;
Time: Years, Years: Integer

See Table 6.4

 3 Patches per Version

List Of VersionPatches;
VersionPatches: Tuple(NumberVersion, Number);
NumberVersion: String;
Number: Integer

See Table 6.4

 2 …

2 The complete model is presented in Annex 3

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

106

Our approach was complemented by using (when applicable) several subcharacteristics
appearing in several COTS domains, as reported in [Car+07a] and [Car+07b]. The complete
obtained model is presented in Annex 3.

6.7 Summary and Discussion

We have detailed the domain analysis approach for building a reuse infrastructure for
supporting COTS selection processes enclosed in our GOThIC method.

This approach is based on the application of domain analysis principles for recording and
representing all the required information for evaluating COTS. Our proposal relies on several
industrial experiences that have been undertaken under action-research premises, complemented
with literature survey and grounded theory.

Concerning domain analysis, we have concluded that existing approaches were not oriented
to support reuse in the COTS framework, consequently the need of mechanisms to analyze and
create a reuse infrastructure for COTS domains gave the origin to the stated strategy.

With respect to COTS selection:

• We have put the emphasis on reuse, making a concrete proposal based on the domain analysis
technique which allows transferring knowledge from one experience to another.

• We have explicitly identified the informational dimensions required for the effective and
efficient selection of COTS.

• We have offered guidance for representing these informational dimensions using appropriate
types of models.

• Using some mapping rules, we have integrated all these models into a single one, based on a
well-known standard called ISO/IEC 9126, which is highly oriented to support the evaluation
of the candidate components. This model was complemented by using (when applicable)
several subcharacteristics appearing in several COTS domains, as reported in [Car05T].

• Given this representation, we may use some existing tool-support to conduct the evaluation of
candidates in the framework of the ISO/IEC 9126-1 standard.

• Domain analysis not only impacts positively on reuse, but also ameliorates some well-known
obstacles for COTS selections success (as those mentioned in section 1.1). Remarkably, using
domain analysis principles we avoid those semantic and syntactic discrepancies that are
common in the COTS marketplace.

Finally, for understandability of the domain analysis strategy used in this activity, an
example on applying this strategy to the RTSC case study was illustrated. Annex 3 presents the
whole model obtained by the application of our approach which has been complemented by the
framework proposed in [Car07a] and [Car+07b].

107

Chapter

7
Activity 3, 4, 5:

Goal-Oriented Core of
GOThIC

he goal-oriented core of the GOThIC method is defined as an iterative and incremental
process of harmonized activities: Identification, Refinement and Statement of Goals (Activity
3); Establishment of Goal Dependencies (Activity 4); and Goal Taxonomy Structuring (Activity
5). Although they are described as different activities, the techniques and models used in each of
them are really complemented or improved as the knowledge of the domain increases.

“A goal is an objective that should be achieved and may be formulated at different levels of

abstraction, ranging from high-level strategic to low-level technical concerns” [Lam01].

Goal characteristics (e.g., expressiveness, stability and evolvability) as used in the context
of requirements engineering (see Chapter 2) make suitable the use of goal-oriented approaches
for representing and managing COTS marketplace structuring efforts (a further explanation of
this fact is provided in Section 2.4.1 in Chapter 2). In this chapter, a detailed explanation of the
goal-oriented strategy followed is presented.

The chapter is organized as follows:

Section 7.1 provides a brief background of previous research in the COTS classification and
goal-oriented areas (further introduced in Chapter 2). Section 7.1, 7.2 and 7.3 detail the
Identification, Refinement and Statement of Goals activity; Establishment of Dependencies
activity; and Goal Taxonomy Structuring activity respectively. Examples are given to illustrate
them. Finally, Section 7.4 concludes with a brief summary and discussion.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

108

7.1 Background

Systematically sorting software into classes that specify their allowable uses is a complex and
central task to achieve efficient software reuse. Altough the classification of reusable
components have been an active area since several years ago, the COTS classification specific
area has recently emerged (see Chapter 2).

Several COTS classification mechanisms have been proposed; but they share various
drawbacks that make their use for characterizing COTS difficult (see section 2.2.3 in Chapter 2
for a detailed explanation). In summary, while existing approaches paid more attention to the
structure of the classification, they do not deal with the methodological aspects required to
support its construction, neither with mechanisms to support its imminent evolution as a
consequence of marketplace progress.

The three GOThIC activities forming part of the goal-oriented core seek to provide a
methodological foundation for constructing an efficient and evolvable domain classification
schema. These activities were built upon existing approaches as goal-oriented approaches (e.g.,
[Ant97], [Yu95], [Reg05]) and decision trees [Qui86], but applied in different ways and with
different objectives than traditionally. The use and appropriateness of these approaches is
discussed in Chapter 2, Section 2.4.

Goal-oriented mechanisms are defined in order to extract and organize COTS domain goals
from the Exploration of Information Sources activity (Chapter 5). Domain goals semantically
represent related groups of functionalities instead of services that COTS belonging to such
domain offer. Also goal dependencies are explicitly represented by using i* models.
Subsequently, decision trees properties are used to organize such goal information as
taxonomies (i.e. classification schemas). As a result, such taxonomy and their associated
information and mechanisms make our proposal more handy and robust with respect to COTS
marketplace evolution and representational needs.

Next subsections describe the resulting goal-oriented strategy by its three related GOThIC
activities, the used techniques and produced artifacts.

7.2 Activity 3: Identification, Refinement and Statement of Goals

Inspired by the iterative process of goal identification, refinement and statement used in
GBRAM method (see Fig. 2.4) we envisaged a process for the identification, refinement and
statement of goals from suited sources previously obtained in Activity 1.

GBRAM offers a wide range of useful heuristics and procedural guidance for identifying and
refining goals. Our goal-oriented strategy makes use of some of these GBRAM heuristics and
definition mechanisms. Table 7.1 summarizes the kind of heuristics used; some of them have
been modified and adapted to fit to the GOThIC objective.

Table 7.1 Glossary of GBRAM heuristics used in GOThIC’s Activity 3

Code Definition

HIG Heuristic for Identifying Goals

HIS Heuristic for Identifying Stakeholders

HIA Heuristic for Identifying Agents

HIC Heuristic for Identifying Constraints

HRR Heuristic for Refining Redundancies

HRS Heuristic for Refining Synonymous

HEO Heuristic for Elaborating Obstacles

HES Heuristic for Elaborating Scenarios

Chapter 7: Activity 3, 4, 5 – Goal-Oriented Core of GOThIC

109

Moreover, these heuristics were complemented with others derived form our experiences and
observations from the case studies related in Chapter 3. The detailed set of heuristics obtained to
date is presented in Annex 1.

The use of heuristics includes some abstraction mechanisms based on the Inquiry Cycle
model [Pot+94]. It consists of a series of questions and answers designed to pinpoint where and
when the information needs to arise. Some of them are straightforward and generic but others
make sense only in conjunction with specific questions about the domain. For instance, an
abstraction mechanism that may be employed to extract goals is analyzing the statement by
asking: “what goal(s) does this statement/fragment exemplify?” and usually some goals become
evident from the description [Ant97].

Next paragraphs describe all elements of Activity 3. To illustrate the concurrent processes of
goal identification, refinement, and statement we provide as example the RTSC case study.

7.2.1 Goal Identification and Refinement

The identification and refinement of COTS domain goals assemble an iterative process aimed at
extracting and refining goals from the domain related information identified in Activity 1 (see
Chapter 5). It is done by applying heuristics (see Annex 1) and diverse goal-acquisition
techniques –as those summarized in [Reg05]-, among which the Inquiry Cycle, scenario
construction and consideration of obstacles for refining goals play a crucial role.

Some of the mechanisms used throughout this process are:

7.2.1.1 Supporting Mechanisms, Techniques and Models

A mechanisms that resulted helpful throughout the goal-oriented core of GOThIC for the
elicitation, representation and organization of domain goals and their assignment to COTS
functionalities at various levels, was the identification of different types of domain actors, as
proposed by [Car05T]. Table 7.2 summarizes the different types of actors involved in COTS
domains.

An additional resource to consider, regarding to the actors, is their relationship with
stakeholders. In [Ant97], a stakeholder is anyone that claims an interest in the system and may
be associated to system goals. Their identification is supported by heuristics (see Annex 1) and
it is a vehicle for considering multiple viewpoints and potentially affected parties for various
goals within the domain. Multiple stakeholders may be associated with a goal. Anton also
defines the concept of agent as the responsible for ensuring the completion of a goal at any
given time; this concept is the one we use to define our actors. Thus, it is important to stand out
that regarding to terminology; the concept of agent used in [Ant97] is the same as the actor
concept used in our approach.

The initial stating of high level goals of the domain is a difficult task endorsed by the amount
and diversity of information sources related to the domain.

From our former case studies we learnt that it should be considered as a good practice to
base the identification process on the most solid and confident of the sources (as prioritized in
Activity 1, see Chapter 5) for extracting the main high level goals in order to assure the
consistency of the set of goals, and then extracting and refining goals from the remaining
sources.

As a matter of fact, the goal identification usually started by intuitively selecting a set of
environmental actors and their root goals, whose decomposition usually leads to the discovery
of new actors, stakeholders, and goals.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

110

Table 7.2 Different types of actors related to COTS domains

 Types of Actors Definition

Human Actors
They represent different types of users involved in the
COTS domain that is being analyzed; e.g. system
administrators and end-users.

Organization Actors

They represent external organizations with their own
goals and/or providing some services to the systems of
the domain, e.g. certification authorities required to
provide/validate electronic keys.

Hardware Resource Actors
They represent mechanical devices governed by the
systems of the domain or providing data to the domain
systems, e.g., scanners, bar-code readers, firewalls, etc.

E
n

v
ir

o
n

m
e

n
ta

l
A

c
to

rs

Software Actors

They represent software systems, which provide system
functionalities to the domain; e.g. the mail clients or web
browsers in the case of mailing systems. They could be
of two different types: Core system actors and
supporting system actors.

Core System Actors

This kind of actors provides the core functionality of the
domain. Most of the committed and critical
dependencies of environmental actors are usually linked
to them. Some examples of core system domain actors
are the Mail Server in e-Mail domain, and the Document
Management tool in the case of Enterprise Content
Management Systems.

S
y
s
te

m
 A

c
to

rs

Supporting System Actors

They do not provide the core functionality of the domain.
Instead they offer services required by the core actors,
in order to fulfill some of their dependencies with
environmental actors. All supporting actors have
dependencies with core actors, but not necessarily
among them. They may also have dependencies with
environmental actors, but usually not in relation to the
core functionality of the domain.

As stated in [Car05T], there is not a clear and unique method to support the identification
and refinement process, however in this thesis we mainly used the approaches followed by
[Ant97] and [Yu95] which techniques (refinement mechanisms; and actor reasoning
respectively) are widely used in the community –although any other goal identification
technique can be used-. The use of both techniques resulted greatly complemented because the
construction of i* models was essential not only for recording dependencies among COTS (as it
is detailed in Activity 4 explained below); but also to illustrate the identified goals and clarify
the understanding the domain. For avoiding syntactic and semantic discrepancies common in
the widespread and unstructured COTS marketplace information, we found useful the use of the
Language Extended Lexicon (LEL) [Lei-Fra93] for capturing a glossary of the domain which
homogenizes terms of different information sources and helps to detect synonymous or
duplicated goals (as introduced in Chapter 6).

Table 7.3 An excerpt of actors and goal identification

Domain: Real Time Synchronous Communication (RTSC).
Definition: It includes the various tools and technologies that can be used to communicate people in
real-time, it means “same time but different place”
Goal: Provide RTSC

High Level actors identification

Actor Abbreviation Type High-level Goal

RTSC-Server RTSC-S Software/Core Provide RTSC infrastructure

RTSC-Client RTSC-C Software/Core Enable RTSC among RTSC-S and
RTSC-User

RTSC-User RTSC-U Human Send and Receive messages

RTSC-Administrator RTSC-A Human Put RTSC-S to work accurately
and efficiently

Firewall Fwll Hardware Protect from unauthorized access
(Filter incoming requests)

Chapter 7: Activity 3, 4, 5 – Goal-Oriented Core of GOThIC

111

Table 7.3 illustrates a list of environmental actors that interact directly with high level goals
in the RTSC case study. We identify their type and also give a short description of the actor’s
main goal. As it can be noted, the main goal for which the RTSC domain is required has been
initially refined into 5 high-level goals in relation to the main services for which the
environmental actors depend on the domain. These high-level goals have been further refined to
several sub-goals and so on.

The refinement of goals may be addressed by considering several techniques as the scenarios
construction, identification of pre- and post-condition of goals, goal obstacles, mechanisms to
discover synonymous or duplicated goals and i* SD models. Please see [Ant97] and [Yu95] for
a detailed explanation of these goal-identification techniques and the way they may be used. In
[Fra+07] we also provide a methodological approach for supporting the discovery of goals and
the construction of i* models; the most relevant heuristics of the approach have been
summarized in Annex 1.

The level of detail in identifying goals will vary greatly depending on the context of use and
final application for which the reuse infrastructure aimed by GOThIC is intended.Table 7.4 and
7.5 are examples of some of the mechanisms that are used for refining goals in the RTSC case.

Table 7.4 A scenario excerpt of the RTSC case study

Action Initiator Goal
Consumed
 Resources

Produced
Resources

Action Addressed

RTSC-User
(Sender)

 Message Sent Message Message,
Receiver address

Requesting to
Software Client

RTSC-Client Sent Request to the
Server

Message, Receiver
address

Sender address Requesting to
Software Server

RTSC-Server Messages Routed Message, Sender and
Receiver address

Routed Receiver
address

Sending to Software
Client (Receiver)

RTSC-Client Message
Delivered

Message, Sender
address

Message Deliver to a Human
User (Receiver)

RTSC-User
(Receiver)

Message
Received

Message,
Sender address

Message Answering

Table 7.5 Example of the identification and refinement process

Goals Goal Obstacles Name of the related Use Cases

Provide RTSC infrastructure
-There is no infrastructure available
-Users Not Connected at the same time
-Firewall not configured adequately

-Users Communicated in Real Time
-Session Established
…

 Message Sent/Received

-There is no compatibility with RTSC-C
-Message is coded
-Message is infected by virus
-It is not a desired message

-Session Established
-No Compatibility among Transfer Protocols
-Coded Messages
-Undesirable messages
..

 …

As the construction of scenarios and application of heuristics provide us an understanding of
the domain, the i* SD environmental model is iteratively refined. It provides a graphical idea of
the domain that is helpful to the application of some requirements engineering techniques as
interviews, clarifying and unifying concepts from stakeholders, and a better understanding of
what environmental actors expect from the domain.

For understandability purposes, all the i* SD models characteristics and usage are tackled in
Section 7.3.

7.2.2 Statement of Goals

Statement of goals consists on summarizing the goal information by stating it in a systematic
way called goal schema. We use a pre/post style for specifying these goals, i.e. stating which
conditions are met when others hold, as showed in Table 7.6.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

112

To manage the amount of goal information that is produced during the process, we have used
the Taxonomy Tool module of the DesCOTS System (see Chapter 9). It offers a hierarchical
structure that allows defining goals, subgoals and recording the goal schema information. Other
tools that could be suitable for performing this task is the sophisticated GBRAT tool [Ant+96],
and even simple spreadsheets tools.

Table 7.6 An example of a goal-schema

Goal: Multiuser RTSC Established

Description Provide RTSC in a Multi-user Environment

Actor/Agent RTSC-Client

Stakeholder(s) RTSC-Client, RTSC-Server, RTSC-U

Precondition(s)
1) Provide RTSC infrastructure;
2) Enable interaction among RTSC-S and RTSC-User
3) Number of users >2

Postcondition(s) Multiuser RTSC Established

Subgoal(s)
1) Multi-user Textual Communication Established;
2) Multi-user Videoconferencing Communication Established
…

7.3 Activity 4: Establishment of Dependencies

For COTS reuse being effective, in Chapter 6 we argued that dependencies among COTS shall
be identified and recorded explicitly for their repeated use during different selection processes.
These dependencies help organizations involved in a selection process to find out that some
goals that they want to achieve with a COTS will not be satisfied if they do not have or procure
other COTS.

Therefore, we envisaged that the goal-domain classification we pursued also provided a great
opportunity for including these dependency relationships as an additional element for
structuring the COTS marketplace. We found that analyzing the goal information, relationships
among COTS categories and market segments can be gradually identified and declared as
dependencies using i* SD models [Yu95].

7.3.1 Use of i* SD models

One of the strongest points of i* is its graphic utility and the freedom it provides for defining
and using its elements. However, we found that when working over a specific problem or
domain, some difficulties arise: there is an overload of variants of the i* language, a lack of
guidelines for producing the models, and tool support is essential. In order to address those
aspects, in [Aya+05b] we presented a reference meta-model to analyse the different variants of
the i* language and, in [Fra+07] we proposed a methodology for guiding the i*SD models
construction.

Thus, we state that i* dependencies may be of four different types:

� Goal dependencies {G}, when an actor depend on another to attain a goal;

� Task dependencies {T}, when an actor requires another to perform an activity in a given
way;

� Resource dependencies {R}, when an actor depends on another for the availability of some
data; and

� Soft goal dependency {S}, when an actor depends on another to achieve a certain level of
quality of service.

Chapter 7: Activity 3, 4, 5 – Goal-Oriented Core of GOThIC

113

In fact, task dependencies are rarely used in our approach because they represent “how” to
do something, while we want to represent “why” it has to be done. It means that we do not want
to represent an excessive level of detail but the general services that are expected to be provided
for COTS.

To state the domain goals in an adequated way using i* SD models, we follow the
lineaments proposed in [Car05T].

7.3.2 Identifying COTS dependencies

Fig. 7.1 provides an excerpt of the initial i* SD model that help to summarize, refine and
understand much of the goal information obtained by other techniques (as those shown in
Tables 7.2, 7.3, 7.4 and 7.5). i* models are iteratively refined as the domain knowledge
increases and by the identification of COTS dependencies.

D

Fig. 7.1 i* SD model progressively constructed to assess and understand the RTSC domain

The semantic of the model presented in Fig. 7.1 is as follows:

• The RTSC-C depends on the RTSC-S for the messages to be sent/received, messages to be
routed and the storage of information of the RTSC-U. Because the RTSC-C acts as a
mediator among the RTSC-S and the RTSC-U, it needs to provide an image of the resources
in the RTSC-S which are available to the RTSC-U (e.g. user information, available list of
contacts, incoming request communications, etc). They are modeled as resource
dependencies from the RTSC-C to the RTSC-S.

• Due to the nature of the RTSC domain, RTSC systems are platforms which endorse
groupware cooperation. This fact is reflected by the Interaction with other RTSC-U for
which RTSC-U depend on RTSC-S.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

114

• Soft-goals have been identified following the ISO/IEC 9126-1 characteristics and
subcharacteristics. It provides us insights of the kind of goals that should be taken into
account for describing the functionality expected of the domain. For instance, there exist
soft-goals concerning security, efficiency and usability. Some examples are: The RTSC-S
depends on the Fwll to protect from unauthorized access; the RTSC-U depends on the
RTSC-S to protect from unwanted communication (communication denegated) and for its
private information to be kept secure; and it also depends on the RTSC-S for the efficient
RTSC handling.

• The RTSC-S behavior depends on the environmental actors, as reflected by the two
dependencies stemming from RTSC-S to RTSC-A. The RTSC-A depends on the RTSC-S
to allow an easy administration (e.g. provide administrative tools, configuration manuals,
online help, etc). The RTSC-S on the other hand depends on the RTSC-A for being “fine
tuned” to maintain a good performance. These two dependencies have been modeled as
soft-goals. And finally the RTSC-S depends on the RTSC-A to perform the recovery from
the scratch in case of a system failure.

The refinement of the high-level dependencies appearing in Fig. 7.1 can be observed in Fig.
7.2.

D

D DD

D

D

Fig. 7.2 An example of the refinement and establishment of dependencies among COTS

The identification of system actors is the basis for the COTS dependencies identification and
assessment. By analyzing some of the available COTS functionalities in the marketplace, we
can identify system actors covering domain goals because one of their main characteristics is
that they may represent COTS available functionalities. The importance of this process is
twofold: On the one hand, domain goals may be further refined, as the case of the goal
Messages Sent/Received that can be refined into two sub-goals One to one Messages

Chapter 7: Activity 3, 4, 5 – Goal-Oriented Core of GOThIC

115

Sent/Received, and Multi-user Message Sent/Received, given by the fact that these two
functionalities are relevant to the available tools covering this goal. On the other hand, goals
reveal services that are expected to be covered by new system actors.

This process is supported by reviewing COTS related information (see Chapter 5) that
provides an overview of the current COTS available in the market and the functionalities they
provide. The assessment of available taxonomies (as those cited in section 2.3.2) that although
not well-structured and presenting some problems, may be used to identify system actors
covering domain goals.

Fig, 7.3 provides an excerpt of the progressively identification of environmental and system
actors. System actors are not supposed to be mapped directly onto individual COTS, because
there are many cases that could not fit with this assumption given the actual offering of the
COTS marketplace and its constant evolution. Therefore it is better to decouple the domain
goals to the functionalities that current COTS provide in order to maintain our proposal flexible.
Some representative examples of this are the next cases: an actor may be covered by one COTS;
a COTS covering the services of more than one actor; an actor covered by two COTS at the
same time for survivability reasons; or even some services that can not be covered by any
COTS (requiring some bespoke software to be developed).

 Fig. 7.3 Overview of idenfitication of environmental and system actors and their dependencies

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

116

In the RTSC case study, the RTSC-Server (RTSC-S) has been identified as the core actor of
the system. RTSC-S provides the main functionality required to make the RTSC infrastructure
available –from the point of view of the user-. They enable the exchange of messages (of many
kinds: textual, files, video, voice and other formats) as well as their adequate treatment, storage
and access. RTSC-S also provides management facilities which allow for their configuration,
monitoring, recovering from failures and tuning for an optimal performance. The configuration
activities include the management of typical system resources such as user and group profiles,
and access control lists, but also other more specific of the domain such as collaborative work.
The configuration of such resources is required in order to make them available to the users and
also to perform actions such as the authentication of users of the system.

Table 7.7 summarizes some of the goals that the identified system actors may cover.

Table 7.7 Excerpt of the identification of system actors and their coupling to some domain goals and available
functionalities

 System Actor Abbreviation Goals Available Functionalities

� Provide RTSC infrastructure
� Intra-organizational RTSC

infrastructure
� Internet based infrastructure
� WAN infrastructure

� Intra-organizational RTSC infrastructure
� Internet based infrastructure
� WAN infrastructure

RTSC-Server RTSC-S

� Messages Sent/Received
� Messages Sent/Received to a

User
� Messages Sent/Receive to more

than one user
� Messages Stored
� Messages Accessed
� RTSC Resources provided
� RTSC Services Managed

� …

� One to one communication
� Multi-user communication
� Text, Audio, Video, data messages
� Collaborative production of resources

(e.g., shared applications in real time)
� Sharing resources C

o
re

 S
y

s
te

m
 A

c
to

rs

RTSC-Client RTSC-C

� Enable interaction among RTSC-S and
RTSC-User
� Compatibility with RTSC-S

� Messages Sent/Received
� …

� Intra-organizational RTSC infrastructure
� Internet based infrastructure
� WAN infrastructure
� Text, Audio, Video, data messages
…

Routing Tools RT � Messages Routed � Routing messages

Directory Services DS

� Resources Stored (e.g. RTSC-U
information)

� Resources Accessed
� Resources Assigned
� Resources Structured
� Permissions Validated

� Management of messages

Codec/Decoded
Tools

CO/DEC � Messages Coded/Decoded � Coding/Decoding messages

Data Compression
Tools

DCT � Messages Compressed/Decompressed � Compress/Decompressing messages

Anti-Spam Tools AST � Messages Filtered (Protect from spam) � Filtering messages from spam

Anti-virus Tools AVT
� Messages Virus Scanned (protect from

virus infections)
� Anti-virus protection

Data Encryption
Tools

DET � Messages Encrypted/Decrypted � Encrypt/Decrypt messages

Backup and
Recovery Tools

BRT
� System Data and Messages Backed-

up/Restored
� Backup and Recovering systems

Billing Tools BT � Resources Usage Tracking � Track of resources

Message Tracking
Tools

MTT � Messages Tracking � Track of messages

Configuration and
Administration
Tools

CAT
� Management Assisted (assist. on Services

Configured, Performance Tuning, Services
Recovered)

� Management supported by software

S
u

p
p

o
rt

in
g

 S
y
s

te
m

 A
c

to
rs

Overall
Administration
Tools

OAT
� Centralized and complete control of the

RTSC resources
� Overall management of RTSC systems

supported by software

Chapter 7: Activity 3, 4, 5 – Goal-Oriented Core of GOThIC

117

 Supporting actors are related to the goals of the domain not covered by the RTSC-S. Data
Compression Tools (DCT) are required by the RTSC domain, as well as by other systems
performing heavy data transmission across local networks and/or through the internet, to
optimize the performance and resource consumption the RTSC domain on the other hand relies
on Routing Tools (RT) in order to messages be routed to their destination.

RTSC security can be defined with regard to several aspects. On the one hand RTSC-U aim
to be free from unwanted messages and that his/her information is kept secure from
unauthorized access. The first one is achieved by the RTSC-S which requires at least an
authorization for contact, in the other case; this is partially achieved by the RTSC-S which
requires at least, user’s login and password authentication.

Additional support actors are required to support other security related sub goals, namely
Antivirus Tools whose goal is to scan messages and protect systems from accidental or
electronic virus infections, and Data Encryption Tools which provide authentication, data
integrity and non-repudiation. RTSC rely on Configuration and Administration Tools to assist
on their management. They provide feature reach and friendly interfaces that helps on the
installation, configuration, tuning and recovery activities that MS may require.

Fig. 7.4 Example of discovering other environmental actors

For instance, we found that DS services provide integrated management of network
resources, allowing global access to distributed resources such as system user´s information,

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

118

addresses list, distributed folders, etc. DS store information about objects on the network and
make this information easy for administrators and users to find and use. This is also the case of
the Message Tracking tools (MTT) and the Billing Tools (BT) system actors, which were
identified after reviewing information of administrative aids for RTSC-S components.

Message Tracking Tools (MTT) are used to track and report the status of messages being
sent and received by the RTSC-U, whilst Billing Tools (BT) are used to provide an account of
how system resources are being used. A similar fact is regarding to the discovery of the Backup
and Recovery Tools (BRT) system actor, which is required to safeguard and recover system and
user data in case of system failure (supporting the recoverability of the system).

Although domain goals and system actors covering them should not be restrictedly coupled,
a great interrelationship exist among them, because system actors provide a guide for
identifying which kind of COTS are required by the domain and should be analyzed in the
procurement processes; whilst domain goals help to identify what kind of functionalities can be
grouped in a single actor. Fig. 7.4 depicts these findings.

As a result of the analysis for identifying COTS covering the domain goals, new soft-goals,
goals, and environmental dependencies may be identified. For instance, the RT system actor
depends on DNS (Domain Name Server) actor to gather destination IP addresses where
messages have to be delivered. Regarding security, RTSC-S depends on certification authorities
in order to get public keys certified by means of digital certificates, which are required for their
authentication. Also, in relation with system security, the RTSC-S depends on anti-virus
organizations to maintain worldwide updated virus list, and to continuously provide plug-ins in
the form of new virus list required by the system to be protected from them. In addition, this
“refinement” process also requires to review the goal dependencies assignments in order to re-
link the corresponding dependencies to the new identified actors.

The i* SD model presented in Fig. 7.5 illustrates an overall overview of the dependencies we
found in the RTSC case study:

• RTSC-A dependencies. The RTSC-S depends on the RTSC-A to perform the recover from
scratch {T}, and also to fine-tune it to achieve a good performance {S}. However, in order
to provide these services, the RTSC-A depends on several system actors: the BT to track the
resource consumption {S} by the users, the MTT to track messages {S} sent/received by the
RTSC-U, and the CAT which provides to the RTSC-A an interface for an easy
administration {S} of the RTSC-S. At its turn, the CAT depends on the RTSC-A to input
the parameter values {R} required for the good performance {S} of the RTSC-S.

• RTSC-U dependencies. The RTSC-U may depend on the RTSC-S for cooperation with
other RTSC-U {G}. This is due to the fact that the RTSC-S provides the core functionality
of the RTSC-SYSTEM required for the exchange of messages. The RTSC-U also depends
on the AST to Protect From Unwanted Messages {S} and from the DS for RTSC Resources
{R} to be assigned and accessed.

• RTSC-C dependencies. RTSC-C dependencies are mapped to the RTSC-S, and the DS
system actors. The RTSC-S provides the core system functionality required by the RTSC-C,
thus, it is responsible for the Messages Sent/Received {G} and the Accurate Support of
RTSC-C Functionalities {S}. Because RTSC-Cs act as mediators among the system and
RTSC-U, they need to provide an image of the system resources. This image is obtained by
means of resource dependencies on the DS, namely the Information of Changes in RTSC
Resources {R} and Addresses {R}. The responsibility for Storage of MSU Information {G}
is assigned to both the RTSC-S and the DS system actors, the former is responsible for the
storage of the messages and the latest for the storage of the remaining related resources. As
RTSC-Cs are external to the system, and in general not controllable by RTSC-A, its

Chapter 7: Activity 3, 4, 5 – Goal-Oriented Core of GOThIC

119

selection and configuration is usually relied to RTSC-U. Therefore, the services that they
provide not only depend on the services offered by the system, but on the capabilities of the
selected client.

• Fwll dependencies. The system depends on the Fwll environmental actor to Protect it From
Unauthorised Access {S} of external users. Once decomposed into system actors it was
clear that several of them, namely, RT, RTSC-S and DS depend on it for this security soft-
goal to be achieved.

 Fig. 7.5 Overview of the i* SD model obtained1

• CA dependencies. The dependencies among the system and the CA environmental actor
have been mapped to the DET system actor. DET systems actors depend on CA
environmental actors in order to get Public Key Certified {G}, by means of Digital
Certificates {R}.

• AVO dependencies. AVO environmental actors are required by AVT system actors to
maintain Worldwide Updated Virus Lists {G}, and to periodically get New Virus Lists {R}.
Therefore dependency links among the RTSC-System and the AVO environmental actor are
mapped to the AVT system actor.

1 the Tools Adm. environmental actor is not included to simplify the view.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

120

• DNS dependencies. Dependencies among the system and DNS are mapped to the RT
system actor. RT depends on the DNS environmental actor to gather Destination IP
Addresses {R}, and the Updated Routing Status {R}, but also for the Up-to-Date
Management of Routing Tables {S}.

• Overall Tools Adm. dependencies. (They are not included in the model of Fig. 7.2 to
simplify the view). There are several supporting system actors which depend on Tools
Adm., to be configured and continuously fine-tuned for a Good Performance {S} and also
for their Recover from Scratch {T} in case of their failure. Additionally, the BRT depends
on it to define a contingency plan {R}, the AVT for the Timely Update of Virus Lists {S},
the AST to keep Updated Filters and Rules {G} and the DS for an Efficient Resource
Organization {S}. Also the Tools Adm. depend on all of them for an Easy Administration
{S} and on the DS for a Centralized & Complete Control of Resources {S}.

The i* SD models constructed provide not only an explicit representation of COTS
dependencies but also a graphical schema that is helpful to the application of some requirements
engineering techniques as interviews, clarifying and unifying concepts from stakeholders and a
better understanding of what domain actors expect. Thus, such models may be used as a basis
for the domain documentation, discussion, and refinement.

7.4 Activity 5: Goal Taxonomy Structuring

From the technical perspective of enabling the COTS location and retrieval mechanisms, the
process of finding classes that help COTS re-users to find them is a crucial task to make the
classification schema understandable.

Putting forward an effective classification schema is a two-step process [Han-Kam01]. In the
first step, a classification model is built and tuned describing a predetermined set of data classes
or concepts; each object is assumed to belong to a predefined class, as determined by one of the
attributes, called the class label attribute. In the second step, the model is used for classification
of other objects. Typically, the produced classification schema is placed in the form of
classification rules, decision trees, or mathematical formulae.

Classical classification approaches related in Chapter 2 resulted greatly static for addressing
the organization of the evolvable objects in the marketplace; therefore, they are not adequated to
provide a dynamic mechanism to organize in a flexible way our goal-schema aiming to classify
COTS related to the domain. As a result, we made use of a hybrid approach involving more
dynamic attribute-value assignment and decision trees properties.

In an attribute-value classification, objects are described by a set of attributes and their
values. A decision tree is a flow-chart-like tree structure, where each internal node denotes a test
on an attribute, each branch represents an outcome of the test, and leaf nodes represent classes
or class distribution. Using both approaches provides a natural and evolvable schema to manage
the classification of COTS domain goals based on several of their goal attributes whilst it is
possible to manipulate the taxonomy in a formal way in order to be highly reusable. It is,
focusing on goals, instead of specific functionalities, allows a more fluent communication with
any type of re-users using the taxonomy (i.e., domain experts, non-experts, etc.), and it can be
adapted to the required perspective of the intended users as well as to grow and evolve for
classifying future COTS.

Although, there are many algorithms for decision tree induction, among we can mention
ID3 [Qui86], C4.5 [Qui93] and CART [Bre+84], the hybrid mechanism we used to classify
COTS domain goals can be described as:

Chapter 7: Activity 3, 4, 5 – Goal-Oriented Core of GOThIC

121

• To construct the goal-oriented taxonomy, the main goal of the domain that is being analyzed
is designed as the root node. It represents the whole population of the COTS domain that is
being classified.

• Analyzing the goal information of core system actors and its related functionalities, a set X =
{xk}n of independent variables that characterize the intended taxonomy is obtained. Among all
these values, we select the ones that make the “best” partitioning into more homogeneous and
usable partitions. They are called “classifiers”, thus goals would be expressed as a
combination of values of these classifiers.

The reason why we only consider core system actors goals is because they represent the
high-level goals of the domain whilst supporting system actors imply goals that are considered
as desirable but secondary or originally intended as parts of other domains. Moreover,
information about dependencies is already stated in the artifacts attained to the intended
taxonomy.

• Goal satisfaction is defined by means of assignment to the variables, therefore for each
assignment ass = (x1←v1, …, xn←vn), the expression satass(G) yields true if the goal G
evaluates to true for this assignment, otherwise false.

• Taxonomy nodes are stated following the goal information (e.g., pre- and post-conditions,
dependencies, etc.), variables and values assignment. We repeat such process until classifiers
can not be split into more nodes covering a significant set of functionalities in the
marketplace.

Table 7.8 shows an excerpt of the variables assignment to goals for the RTSC case as well as
its variables assignment.

Table 7.8 Excerpt of the identification of system actors coupling them with domain goals

Actor Goals Available Functionalities Classifier Values

NetInfrastructure
←Intra-organizational
←Internet based
←WAN infrastructure

� Intra-organizational RTSC
infrastructure

� Internet based infrastructure
� WAN infrastructure

ApplicationType
←RTSC-S
←RTSC-C

Infrastructure
←Intra-organizational
←Internet based
←WAN infrastructure

ConnectedUsersSupported
←Only Two (one to one)
←More than two (multi-user)

Purpose
←Collaborative production of resources
←Sharing Resources

ResourcesSuported ←Text, Audio, Video, Data, Multipart.

RTSC-S
Provide RTSC
infrastructure

� One to one communication
� Multi-user communication
� Text, Audio, Video, data

messages
� Collaborative production of

resources
� Sharing Resources

…

Net-Infrastructure
←Intra-organizational
←Internet based
←WAN infrastructure

ClientArchitecture
←Web-Based
←Install-Based

ConnectedUsersSupported
←Only Two (one to one)
←More than two (multi-user)

Purpose
←Collaborative production of resources
←Sharing Resources

ResourcesSupported ←Text, Audio, Video, Data, Multipart.

RTSC-C
Enable interaction
among RTSC-S and
RTSC-User

� Intra-organizational RTSC
infrastructure

� Internet based infrastructure
� WAN infrastructure
� Text, Audio, Video, data

messages
� …

…

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

122

Table 7.9 is an example of a taxonomy for the RTSC case study and the variables
assignment, considering that all the assignments are inherited downwards the hierarchy.

Table 7.9 Excerpt of a possible goal-oriented taxonomy for the RTSC case

Category Node Name Abbrev. Classifier Satisfaction Values

ROOT RTSC RTSC ApplicationType ←RTSC-S; ←RTSC-C

1.1 RTSC-Server RTSC-S Purpose
←Collaborative Production of
 Resources;
←Sharing Resources

1.1.1
Collaborative Communication and Development
of Groupware Application Server

CDGS
ConnectedUsers

Supported
←OnlyTwo; ←MoreThan2

1.1.1.1 Multi-User Collaborative Communication Server MCCS NetInfrastructure
←Intra-Organizational;
←Internet;
←WAN;

1.1.1.2 One-to-One Collaborative Communication Server OCCS NetInfrastructure
←Intra-Organizational;
←Internet;
←WAN

1.1.1.1.1
Intra-organizational Multi-User Collaborative
Communication Server

IOMCCS ResourcesSupported
← Text; ← Audio; ← Video; ← Data;
← Multipart

 …

1.1.1.1.2
WAN Multi-User Collaborative Communication
Server

WANMCCS ResourcesSupported
← Text; ← Audio; ← Video; ← Data;
← Multipart

 …

1.1.1.1.3
Internet Multi-User Collaborative Communication
Server

IMCCS ResourcesSupported
← Text; ← Audio; ← Video; ← Data;
← Multipart

1.1.1.1.3.1
Internet Multi-User Collaborative Communication
Server supporting Text

IMSTx

1.1.1.1.3.2
Internet Multi-User Collaborative Communication
Server supporting Audio

IMSAu

1.1.1.1.3.3
Internet Multi-User Collaborative Communication
Server supporting Video

IMSVi

1.1.1.1.3.4
Internet Multi-User Collaborative Communication
Server supporting Data

IMSDa

1.1.1.1.3.5
Internet Multi-User Collaborative Communication
Server supporting Multipart messages

IMSMu

1.1.2 Sharing Communication Application Server SCAS ConnectedUsersSupported ←OnlyTwo; ←MoreThan2

1.1.2.1 One-toOne Sharing Communication Server OSCS NetInfrastructure
←Intra-Organizational;
←Internet;
←WAN;

 …

1.2 RTSC-Client RTSC-C Purpose
←Collaborative Production of
 Resources;
←Sharing Resources

1.2.1 Sharing Communication Application Client SCAC ConnectedUsersSupported ←OnlyTwo; ←MoreThan2

 …

1.2.2
Collaborative Communication and Development
Application Client

CCDC ConnectedUsersSupported ←OnlyTwo; ←MoreThan2

1.2.2.1 Multi-User Collaborative Communication Client MCCC NetInfrastructure
←Intra-Organizational;
←Internet;
←WAN;

1.2.2.2 One-to-One Collaborative Communication Client OCCC NetInfrastructure
←Intra-Organizational;
←Internet;
←WAN

 …

1.2.2..1.1
Intra-organizational Multi-User Collaborative
Communication Client

IOMCCC ResourcesSupported
← Text; ← Audio; ← Video; ← Data;
← Multipart

 …

1.2.2.1.2
WAN Multi-User Collaborative Communication
Client

WANMCCC ResourcesSupported
← Text; ← Audio; ← Video; ← Data;
← Multipart

 …

1.2.2.1.3
Internet Multi-User Collaborative Communication
Client

IMCCC ResourcesSupported
← Text; ← Audio; ← Video; ← Data;
← Multipart

1.2.2.1.3.1 Text IMCTx

1.2.2.1.3.2 Audio IMCAu

1.2.2.1.3.3 Video IMCVi

1.2.2.1.3.4 Data IMCDa

1.2.2.1.3.5 Multipart IMCMu

It is important to stand out that it is not our purpose to construct the “best” taxonomy (if any
exist) but to guide the taxonomy designer to build one. The level of detail depends on the

Chapter 7: Activity 3, 4, 5 – Goal-Oriented Core of GOThIC

123

particular taste of the taxonomy designer and of course on the information needs of the
taxonomy users.

In addition, questions and answers are attained to the hierarchy to guide the users through the
taxonomy browsing process. We identified subsequently other characterization attributes, their
corresponding values, questions, and answers (see Table 7.10).

Table 7.10 Example questions and answers attained to taxonomy nodes

Classifier Question (s) Answer(s)

NetInfrastructure
Which is the infrastructure you will use for
enabling real time synchronous
communication?

► Intranet I(Intra-organizational) infrastructure
► Internet Infrastructure
► WAN Infrastructure

ApplicationType
Are you requiring Client or Server
Technology?

► Server
► Client

ConnectedUsersSupported
How many users do you want to connect at
the same time?

► One to One
► More than 2 users

Purpose
What is the purpose of your system, to
collaborate for developing resources or only
sharing resources?

► Collaborative communication for developing
applications

► Sharing Resources

Resources Supported
What Kind of resources you need to share or
collaborate on?

► Text
► Audio
► Video
► Data
► Multipart

…

The questions are applied at different levels in the taxonomy, and some of them are applied
in more than one branch.

Fig. 7.6 shows a partial and graphical view of such goal taxonomy structuring and the
questions/answers attained.

Collaborative Production
of Resources Sharing Resources

ApplicationType

RTSC-Server RTSC-Client

Purpose

Domain Model

See Annex 3 RTSC

Purpose

CDCCSCAS

Intra-
Organizational

NetInfrastucture

WANMCCS

MoreThanTwo OnlyTwo

IMCCS OCCS

ConnectedUsers
Supported

CDGS

WAN Internet

IOMCCS

IMSTx IMSAu IMSVi IMSDa IMSMu

IMCCS

ResourcesSuported

Collaborative Production
of ResourcesSharing Resources

SCAC

Intra-
Organizational

NetInfrastucture

WANMCCC

MoreThanTwo OnlyTwo

MCCC OCCC

ConnectedUsers
Supported

WAN
Internet

IOMCCC

IMCTx IMTCAu IMCVi IMCDa IMCMu

IMCCC

ResourcesSuported

…

…
…

What is the Purpose
of your System?

How many users dou
you want to connect?

Whic net infrastructure
will be used?

RTSC-S
DependencyDependency RecordedRecorded

RTSC-CRTSC-C

Fig. 7.6 Partial View of the elements of the goal-oriented hierarchy for the RTSC case

From the semantic point of view, we distinguish among two types of nodes: categories and
market segments. Market segments are the leafs of the taxonomy whilst categories serve to
group related market segments and/or subcategories. In order to classify new COTS, their
attribute values are tested against the decision tree. A path is traced from the root to a leaf node
that holds the class prediction for that component or its related information.

To make the taxonomy easily reusable trustworthy and flexible, based on decision trees
properties we defined some rules that help to ensure some taxonomy’s trustworthiness as well

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

124

as to manipulate the taxonomy nodes as a result of marketplace evolution of other required
views of the information in the repository. This is detailed in Chapter 8.

As it can be observed, the Domain Model introduced in Chapter 6, is attached to the
taxonomy. Reusability of such Domain Model downwards categories and market segments of
the hierarchies is a way to support this objective. We have observed throughout our experiences
that some quality features appear over and over, and this repetition is directly connected to the
characteristics embedded in the characterization attributes (i.e. classifiers). The recognition of
COTS market segments and categories improves reusability: once a new COTS market segment
has been identified, its Domain Model can be constructed by inheriting the features of the
models for those COTS categories in the hierarchy which it belongs to. During the process, new
categories may be identified, abstracting commonalities of this new domain with others. As a
result, a quality model bound to a category of the taxonomy collects all the quality features
common to all its sub-categories and market segments. Since then, any quality model for a
particular selection process may reuse the Domain Model of the corresponding COTS domain.

7.5 Summary and Discussion

To conclude, it is worth to mention that as the whole goal-oriented core process of GOThIC is
an iterative and incremental process harmonized with all the other method activities. The
produced artifacts are in fact most of the artifacts or information used to accomplish the artifacts
proposed in Activity 2 (Domain Analysis). For instance, the scenario models used to identify
and refine goals are in fact the artifacts suggested for recording COTS domain functionality.
The use of i* models for understanding the domain are also useful to record COTS
dependencies. Also the glossary of terms (that is suggested to be refined throughout the method)
is improved by the addition of concepts of the domain coming from the identification of goals
and the definition of synonymous.

The most relevant characteristics of our goal-oriented strategy designed for dealing with
COTS marketplace evolvability and interoperability are:

• It is based on the application of well known techniques for supporting the COTS search and
reuse.

• We have put the emphasis on providing a prescriptive approach for building flexible,
abstract, well-founded and stable taxonomies based on goal-oriented approaches.

• We proposed the use of COTS dependency models by adapting the i* approach to our
objectives. Therefore, the semantic of the models obtained provides the rationale for the
decisions taken and allows transferring knowledge from one experience to another.

• The use of goal-oriented approaches not only impact positively on dealing with COTS
marketplace evolvability and interoperability, but also improves the understanding and
manipulation of the taxonomies since goals permit communication among people using a
language based on concepts with which they are both comfortable and familiar.

125

Chapter

8
Activity 6:

Goal Taxonomy Validation
and Management

he aim of this activity is to ensure the trustworthiness of the goal-hierarchy obtained in the
previous activity (Activity 5), as well as the management of the hierarchy to deal with the
marketplace evolution and different representation needs of the information (i.e., different views
of the repository by different users). It is done by performing a four-step process of rules
application over the goal-hierarchy nodes. To introduce such process, the Chapter has been
structured as follows: Section 8.1 introduces the predicates and functions defined to drive the
process. Section 8.2 details the definition of the transformation rules and the four-step process
used to apply them to goal-hierarchies. Section 8.3 makes clear the goal-oriented GOThIC
approach. Section 8.4 illustrates the approach by means of two examples. Summary and
discussions are presented in Section 8.5.

8.1 Predicates and Functions

Our definition of the transformation rules is based on the goal satisfaction described in the
previous chapter and stated below:

Given G a boolean predicate defined over variables x1, …, xn, G(x1, …, xn), and
given ass an assignment of variables defined as ass = (x1←v1, …, xn←vn),
the expression satass(G) is defined as the evaluation of G over ass, G(v1, …, vn).

Please see Chapter 7 for details of this definition

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

126

Whilst this variable assignment is used to provide semantics to the hierarchy nodes, the
transformation rules introduced in this chapter are applied over the nodes to ensure a clear and
understandable rationale for the classification, as well as the correctness and completeness of
the obtained taxonomies.

To introduce the transformation rules we declare that a goal-oriented taxonomy T is a tree
over the domain of goals defined over variables x1, …, xn. As such, we need predicates and
functions as shown in table 8.1

Table 8.1 Predicates and functions over taxonomies
Belongs(T, A): the element A belongs to T
Root(T, A): A is the root of T
Leaf(T, A): A is a leaf in T
Parent(T, A): returns the parent of A in T
Children(T, A): returns the set of children of A in T
Siblings(T, B, C): B and C are siblings in T
Successors(T, A): returns the set of successors of A in T
Ancestors(T, A): returns the set of ancestors of A in T
Goal(A): returns the goal of element A

Throughout the rest of this chapter we use the following predicates on goals with the
following meaning and abbreviations:

Table 8.2 Predicates, semantics and abbreviations used over goals

Predicate or function Semantics Abbrev

impliesGoal(G, H): the goal G implies the goal H ∀ass: satass(G) ⇒ satass(H) G ⇒ H

not-impliesGoal(G, H): the goal G does not imply the goal H ∃ass: ¬(satass(G) ⇒ satass(H)) G ¬⇒ H

soft-impliesGoal(G, H): the goal G implies the goal H for some
assignment whilst the reverse is not true

∃ass: satass(G) ⇒ satass(H) ∧
¬∃ass: satass(H) ⇒ satass(G)

G ±⇒ H

disjointGoals(G, H): goals G and H are mutually exclusive ∀ass: ¬ (satass(G) ∧ satass(H)) ¬ (G∧H)

equivGoals(G, H): goals G and H are equivalent ∀ass: satass(G) = satass(H) G ≡ H

emptyGoal(G): goal G is never satisfied ∀ass: ¬ satass(G) G = ∅

F = diffGoals(G, H): obtain the difference of goals G and H
∀ass: satass(G) ∧ ¬ satass(H)
 ⇔ satass(F)

F = G−H

F = unionGoals(G, H): obtain the union of goals G and H
∀ass: satass(G) ∨ satass(H)
 ⇔ satass(F)

F = G∪H

F = intersectGoals(G, H): obtain the intersection of goals G and H
∀ass: satass(G) ∧ satass(H)
 ⇔ satass(F)

F = G∩H

UnionGoalsExt({Gk}n), intersectGoalsExt({Gk}n) are extensions to a set of goals (used quantified)

8.1.1 Conditions Over Taxonomies

A goal-oriented taxonomy T is said to be correct and complete if it satisfies the following
conditions:

C1. Parent-child correctness. The goal of each node is implied by its parent goal:
 ∀X: Belongs (T, X): [∀Y: Y∈ Children(T, X): Goal(X) ⇒ Goal(Y)]

C2. Siblings correctness. The goals of siblings are disjoint:
 ∀X, Y: ∀X, Y: Belongs (T, X) ∧ Belongs(T, Y) ∧ Siblings(T, X, Y): Goal(X) ∩ Goal(Y) = Ø

C3. Completeness. The goals of siblings cover altogether the goal of their parent:
 ∀X: Belongs (T, X) ∧ ¬ Leaf(T, X): [Goal(X) ≡ ∪Y: Y∈Children(T, X): Goal(Y))]

Chapter 8: Activity 6 -Goal Taxonomy Validation and Management

127

C1 ensures that decomposition of software package types is well-formed, which means that
satisfaction of the goal of a node is implied by the satisfaction of its parent goal. C2 that the
taxonomy provides a unique way for classifying software packages, which means that there is
no variable assignment which makes two siblings satisfy their goals simultaneously. C3 that
software packages can always be classified using the taxonomy, i.e. that the taxonomy covers
all the possible assignment of variables.

Given these correctness and completeness notions, we can define a top-down process for
rearranging a goal-oriented taxonomy: first we remove conflicts among parents and children to
ensure C1, next we detect and solve conflicts among siblings to ensure C2 and afterwards we
complete the taxonomy identifying new nodes that fulfil the parent goal to ensure C3. We add a
fourth step, to tailor the result to the particular (and subjective) taste of the designer with respect
to level of detail required and organizational concerns. Transformation rules are used in each
step to progress towards the result.

8.2 Four-Step Process for Transformation Rules Application

We have designed 11 basic transformation rules (and some variations of them) that are applied
into the 4 identified steps. Throughout this process, taxonomy nodes are manipulated in a
formal way not only to obtain a correct and complete taxonomy but also to leveraging its nodes
to get similar levels of abstraction and/or get ad-hoc representations.

Some of the rules may take slightly different forms, and we have therefore some different
variations of the basic idea which are given different names. In addition, some rules may offer
intermediate solutions that although could not solve the inconsistency, enables the application of
other rule for solving it; this is the concept of combined rule. Combined rules are explicitly
outlined from the contract of basic rules, allowing a wide range of action for solving
inconsistencies and manipulating taxonomy nodes.

Application of transformation rules is stated by pre- and post-conditions using the predicates
and functions on taxonomies and goals introduced in Section 8.1. In postconditions, the
expression x@pre stands for the value of x before applying the rule. In each step we assume as
invariants the conditions Ci (see Section 8.1.1) that have been ensured in the previous step of
the process. In the rules, satisfaction of the invariant Ci on all the nodes of the tree T is denoted
by Ci(T). Our style in writing the rules (preconditions, postconditions, and invariants) makes
easier the assumption of applicability of the rules and how they preserve the conditions that
apply. Last, we get rid of renamings, we assume that every rule has the right to change the name
of the involved nodes for legibility.

For reaching the termination process at each step, metrics are defined. Those metrics depend
on the step to be applied and are called m1, m2 and m3 respectively (step 4 does not have a
defined termination process). These metrics are related with the number of inconsistencies that
violate their corresponding intended state Ci. The stop condition of each step is achieved when
the value of its metric remains 0, it means that there are not inconsistencies violating its
intended state. Regarding combined rules, it is easy to infer the effect that they have on their
associated metric since they are composed of basic rules. Particular metrics are further discussed
in next sections.

Transformation rules application at each step is approached in a top-down way. More than
one rule could be applied in some conditions. In cases when more than one rule is relating
exactly the same precondition, the use of one or another depends on the postcondition desired.
Possible combinations of rules are explicitly defined in terms of pre- and post-conditions that

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

128

allow the combination. All transformation rules may be intertwined and iterated as required for
reaching their corresponding Ci state and their invariants.

At each step, heuristics has been defined to drive the decision-making process of
transformation rules application. In general, heuristics at each step are organized to support the
analysis of possible solutions for solving taxonomy’s inconsistencies violating their
corresponding Ci condition by means of transformation rules application. Problem-solving
decisions depend on the particular (and subjective) rationale and experience of the designer with
respect to the focus of the intended taxonomy and the level of detail required (i.e., the post-
condition desired). Heuristics provide insights about the effect of the decisions taken over the
structure of the taxonomy being analyzed (i.e., whether the application of a specific rule affects
the actual structure of the hierarchy or not) and the kind of rules that may be applied in any case
(i.e., basic or combined). The set of basic and derived transformation rules and their rationale
are described in next sections.

Fig. 8.1 provides a graphical summary of the consequences that rule application has on the
taxonomy.

8.2.1 Transformation Rules in Step 1

For Step 1, the intended state is C1:

C1. Parent-child correctness. The goal of each node is implied by its parent goal:

∀X: Belongs (T, X): [∀Y: Y∈ Children(T, X): Goal(X) ⇒ Goal(Y)]

C1 ensures that decomposition of software package types is well-formed, which means that
satisfaction of the goal of a node is implied by the satisfaction of its parent goal.

A node B is violating the C1 condition when its goal is not implied by its parent’s goal:

∃B: B∈children (T, A): Goal(A) ¬⇒ Goal(B)

To solve these inconsistencies, some basic and also derived transformation rules may be
applied. Two basic possibilities exist with respect to the current structure of the classification
schema:

� To change the structure of the current taxonomy by deleting the node B. The Removal rule
was designed with this aim.

R1. Removal (T, A, B) Removes the node B (and its successors) from the taxonomy T.

► Postcondition: ¬Belongs(T, B) ∧ ∀Y: Y∈Successors(T, B@pre): ¬Belongs(T, Y)

In this step we consider a special case of the general Removal rule, called Hard Removal (for
distinguishing it from another type of removal introduced later) that is applied when the node
is not related neither to its parent goal.

R1.1 Hard Removal (T, A, B) Removes the node B (and its successors) from the taxonomy T because its
goal is not implied by its current parent goal A.

► Precondition: Belongs(T, A) ∧ Belongs(T, B) ∧ A = Parent(T, B) ∧ Goal(A) ¬⇒ Goal(B)

► Postcondition: ¬Belongs(T, B) ∧ ∀Y: Y∈Successors(T, B@pre): ¬Belongs(T, Y)

� To preserve the current structure of the taxonomy and only rearrange conflicting nodes to
avoid violation of C1. So, two different possibilities exist:

1. To enlarge A’s goal to capture the part of B’s goal that is not implied by A’s. This
enlargement must be propagated to all A’s ancestors. This enlargement does not

Chapter 8: Activity 6 -Goal Taxonomy Validation and Management

129

cause any conflict violating C1 in higher levels of the tree. The Enlarge Parent rule
was envisaged with this aim.

A

T

B

A

T

Before After

R1. Removal

A

T

B

A

T

Before After

B

…

R.2 Enlarge Parent

A

T

B

A

T

Before After

B

R3. Narrow Child

Before After

A

B

T

D

A

T

B C C

R4. Split

A

B C

T

A

D

Before After

{C1..Cn}

R5. Merge

Before After

T

A

T

B C

A

B C

R6. Subsume

A C
T

A

C

T

Before After

R7. Identification

Before AfterBefore After

A

T

C

A

T

C

R8. Enlarge Child

A

E1

T

A

E1 … Ek

T

E2…

EK

Before After

A

E1

T

A

E1 … Ek

T

E2…

EK

Before After

R9. Division

A

C1 .. Ck

T

A

B

C1 .. Ck

Before After

R10. Abstraction

T

A

T

A

Before After

R11. Pruning

Fig. 8.1 Set of Transformation Rules

R2. Enlarge Parent (T, A, E, B) Enlarges A’s goal with the predicate E to capture some part (maybe all)
of B’s goal that is not implied by A.

► Precondition: Belongs(T, A) ∧ Belongs(T, B) ∧ A = Parent(T, B) ∧ Goal(A) ¬⇒ Goal(B) ∧
 Goal(A) ¬⇒ E ∧ (E – Goal(A)) ±⇒ Goal(B)

► Postcondition: Goal(A) = Goal(A@pre) ∪ E ∧
 ∀Y: Y∈Ancestors(T@pre, A): Goal(Y) = Goal(Y@pre) ∪ E

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

130

2. If B’s goal is partially implied by A’s goal, to narrow B’s goal to discard some part
(maybe all) of its goal that is not implied by A’s goal. This narrowing must be
propagated to all B’s successors.

R3. Narrow Child (T, A, N, B) Narrows B’s goal to discard some part N (maybe all) of the goal that is
not implied by A’s goal.

► Precondition: Belongs(T, A) ∧ Belongs(T, B) ∧ A = Parent(T, B) ∧ Goal(A) ±⇒ Goal(B) ∧
 Goal(B) ⇒ N ∧ (Goal(A) ∩ N) = Ø

► Postcondition: Goal(B) = Goal(B@pre) – N ∧
 ∀Y: Y∈Successors(T@pre, B): Goal(Y) = Goal(Y@pre) – N

Heuristics, Combined Rules and Stop Condition for Step 1

Fig. 8.2 summarizes the heuristics driving the application of transformation rules in Step 1.
Application of basic and combined rules is explicitly stated. Decisions about their application of
depend on the rationale and needs of the taxonomy designer.

Step 1
Conflicts to solve:

∃B:B ∈ children (T,A): (Goal(A) ¬⇒ Goal(B))

Apply
Hard-Removal Rule (R1.1)

Apply

Enlarge Parent
Rule (R2)

Narrow Child
Rule (R3)

Type of Rules?

Modify Structure
of current Taxonomy?

No
Yes

Combined
Rules

Basic

Basic
Rules

R2 + R3 R3 + R2

Combined

Precondition
allowed

Enlarge ParentNarrow Child
Precondition

allowed

Fig. 8.2 Heuristics driving transformation rules application in Step 1

Please note that using R1.1 rule always implies to solve the intended inconsistency (since the
node B that is causing the inconsistency is deleted), whilst R2 and R3 may allow total or partial
solutions depending on the values of the Enlargement (E) and Narrowing (N) respectively. In
cases when partial solutions are applied, although the application of one rule may not solve the
inconsistency, other rule(s) may be applied as allowed by their pre-conditions to completely
solve the inconsistency as stated in Table 8.3. For terminating the Step 1 process, the metric m1
counts the number of parent-child pairs that violate the goal implication rule C1. Table 8.3 also
denotes the potential results obtained after the application of each basic rule and their effect on
m1.

Table 8.3 Effect of transformation rules on the stop condition for Step 1

Rules Applied in
Step 1

Completely
solves the

inconsistency

Effect on the stop
condition metric

m1

Rule(s) that may be
applied to solve the

remaining
inconsistency

Combination of
rules allowed

R1.1 Hard- Removal Yes -1 -

Yes -1 -
R2. Enlarge Parent

No, partially None R3 R2 + R3

Yes -1 -
R3. Narrow Child

No, partially None R2 R3 + R2

It can be observed that depending on wheter the basic rules R2 or R3 completely solve the
inconsistency; they decrement by 1 the value of m1. In cases when basic rules do not completely

Chapter 8: Activity 6 -Goal Taxonomy Validation and Management

131

solve the inconsistency but partial solutions are choosen, the value of m1 is not modified. Thus,
the stop condition for terminating the Step 1 process is achieved when all stored values of m1
remain 0, it means that no inconsistencies exist violating C1. It is important to remark then that
the metric m1 is a non-increasing function.

8.2.2 Transformation Rules in Step 2

Step 2 is intended to reach the C2 condition.

C2. Siblings correctness. The goals of siblings are disjoint:
 ∀X, Y: Belongs (T, X) ∧ Belongs(T, Y) ∧ Siblings(T, X, Y): Goal(X) ∩ Goal(Y) = Ø

C2 aims at providing a unique way for classifying software packages, which means that
there will not be any variable assignment making two siblings satisfy their goals
simultaneously.

C2 is violated when some children B, C of the same parent (i.e., siblings) are not disjoint:

∃B, C: Belongs (T, B) ∧ Belongs(T, C) ∧ Siblings(T, B, C): Goal(B) ∩ Goal(C) ≠ Ø

In all the cases, since we are in Step 2 and inconsistencies among parents and children have
been removed in the previous step, we assume C1(T) as invariant.

To solve C2 inconsistencies, four basic possibilities exist:

� Extracting the common part of the conflicting nodes and making a new node with it. This
solution implies a slightly difficult contract, because we must make sure that C1(T) reached
in the previous step is not violated after applying the rule. This could happen if for some child
of any of the involved nodes, its goal is not totally implied neither by its current parent after
the operation, nor by the new node. In other words, the goal of the child could be partially
covered by the old and new nodes.

To reach this contract, the Split rule was formulated:

R4. Split (T, B, C) Extracts the common part of the siblings B and C and creates a new node D with it,
which in turn is sibling of B and C. It requires to reallocate B’s and C’s children to ensure keeping
C1(T). To achieve this last, the function reallocateNodes is used.

► Let: A = Parent(T, B); GD = Goal(B) ∩ Goal(C)

► Precondition: Belongs(T, B) ∧ Belongs(T, C) ∧ B ≠ C ∧ Siblings(T, B, C) ∧
 Goal(B) ∩ Goal(C) ≠ Ø ∧

 (Goal(A) ⇒ Goal(B)) ∧ (Goal(A) ⇒ Goal(C))

► Postcondition: Belongs(T, D) ∧ Siblings(T, B, D) ∧ Goal(D) = GD ∧
 Goal(B) = Goal(B@pre) − GD ∧ Goal(C) = Goal(C@pre) − GD ∧
 ∀Z: Z∈Children(T, B@pre): reallocateNodes(T, B@pre, Z, D) ∧
 ∀Z: Z∈Children(T, C@pre): reallocateNodes(T, C@pre, Z, D)

The function reallocateNodes(T, X, Z, D) reallocate the node Z as a child of X or D depending on its
goal satisfaction properties in order to ensure keeping C1(T). It is a recursive function that in turns
reallocate the children of Z (if they exist) and successively.

The function is defined to perform 3 different actions in the tree different situations that may appear:

► X implies Z:

 [Goal(X) ⇒ Goal(Z@pre)]: Parent(T, Z) = X ∧ Goal(Z) = Goal(Z@pre)

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

132

► D implies Z:

 [Goal(D) ⇒ Goal(Z@pre)]: Parent(T, Z) = D ∧ Goal(Z) = Goal(Z@pre)

► Otherwise:

 ¬Belongs(T, Z) ∧ Belongs(T, ZX) ∧ Belongs(T, ZD) ∧
Parent(T, ZX) = X ∧ Parent(T, ZD) = D ∧

 Goal(ZX) = Goal(Z@pre) ∩ Goal(X) ∧ Goal(ZD) = Goal(Z@pre) ∩ Goal(D) ∧
 ∀H: H∈Children(T, Z@pre): reallocateNodes(T, ZX, H, ZD)

� To remove one of the nodes that is causing the conflict (and its successors). In this case, we
apply the Soft-Removal rule that is a particular case of the general Removal rule introduced in
the previous step with a different precondition to be applied.

R1.2 Soft-Removal (T, B, C) Removes the node B (and its successors) from the taxonomy T.

► Let: A = Parent(T, B)

► Precondition: Belongs(T, B) ∧ Belongs(T, C) ∧ Siblings(T, B, C) ∧ Goal(B) ∩ Goal(C) ≠ Ø ∧
 (Goal(A) ⇒ Goal(B)) ∧ (Goal(A) ⇒ Goal(C))

► Postcondition: ¬Belongs(T, B) ∧ ∀Y: Y∈Successors(T@pre, B): ¬Belongs(T, Y)

� To merge the conflicting nodes into a new one, which goal will be the union of their goals,
applying a particular case of the Merge rule, called Inclusive Merge. Moreover, the children
of the merged nodes become children of the new one.

The Merge rule performs this solution.

R5. Merge (T, B, C) Merges siblings nodes B and C into a new one called D. The new node’s goal is the
union of the merged siblings’. The children of the merged nodes B and C become children of the new
node.

► Precondition: Belongs(T, B) ∧ Belongs(T, C) ∧ Siblings(T, B, C)

► Postcondition: ¬Belongs(T, B) ∧ ¬Belongs(T, C) ∧

 Belongs(T, D) ∧ Parent(T, D) = Parent(T, B@pre) ∧
 Goal(D) = Goal(B@pre) ∪ Goal(C@pre) ∧
 ∀Y: Y∈(Children(T@pre, B) ∪ Children(T@pre, C)): Parent(T, Y) = D

R5.1 Inclusive-Merge (T, B, C) The merged nodes had overlapping goals. It is important to stand out
that the children of the merged nodes become siblings and so new conflicts may arise, to be dealt with
later in Step 2 due to the top-down analysis of the hierarchy.

► Let: A = Parent(T, B)

► Precondition: Belongs(T, B) ∧ Belongs(T, C) ∧ Siblings(T, B, C) ∧ Goal(B) ∩ Goal(C) ≠ Ø
 (Goal(A) ⇒ Goal(B)) ∧ (Goal(A) ⇒ Goal(C))

► Postcondition: ¬Belongs(T, B) ∧ ¬Belongs(T, C) ∧

 Belongs(T, D) ∧ Parent(T, D) = Parent(T, B@pre) ∧
 Goal(D) = Goal(B@pre) ∪ Goal(C@pre) ∧
 ∀Y: Y∈(Children(T@pre, B) ∪ Children(T@pre, C)): Parent(T, Y) = D

� To subsume the joint part of the nodes into one of them. This solution also implies to make
sure that C1(T) is not violated after applying the rule. This could happen if for any child of
the narrowed node, its goal is not implied by its parent after the subsume procedure. Thus, the
children nodes of the narrowed node that are not implied by the new narrowed goal should be
moved totally or partially as children of the enlarged node. If moved just partially, the node is
in fact split into two. We may use again the reallocateNodes function defined above with this

Chapter 8: Activity 6 -Goal Taxonomy Validation and Management

133

aim. Subsequently, since these reallocated nodes become siblings of the enlarged node’s
children (if any exist), new conflicts may arise. However, they are also dealt later in the top-
down process of Step 2.

The rule driving this solution is called Subsume.

R6. Subsume (T, B, C) Subsumes the joint part of B and C into B.

► Let: A = Parent(T, B); GBC = Goal(B) ∩ Goal(C)

► Precondition: Belongs(T, B) ∧ Belongs(T, C) ∧ Siblings(T, B, C) ∧ Goal(B) ∩ Goal(C) ≠ Ø
 (Goal(A) ⇒ Goal(B)) ∧ (Goal(A) ⇒ Goal(C))

► Postcondition: Goal(B) = Goal(B@pre) ∪ GBC ∧ Goal(C) = Goal(C@pre) − GBC ∧
 ∀Z: Z∈Children(T, C@pre): reallocateNodes(T, C@pre, Z, B)

Heuristics, Combined Rules and Stop Condition for Step 2

Heuristics driving the application of transformation rules in Step2 are summarized in Fig. 8.3.
To solve each C2 violation, two main options exist the first one implies to preserve the structure
of the taxonomy being evaluated by applying the Subsume rule; the second one modifies the
actual taxonomy structure whilst solving the problem by applying basic or combined rules. The
taxonomy designer is in charge of the decision of which rule to apply.

Step 2
Conflicts to solve:

∃X, Y: Belongs(T,X) ∧ Belongs(T,Y) ∧ Siblings(T,X,Y): Goal(X) ∩ Goal(Y) ≠ ∅

C1(T) as invariant precondition

No

Apply
Subsume Rule (R6)

Apply

Modify Structure
of current Taxonomy?

Yes

Split
Rule (R4)

InclusiveMerge
Rule (R5.1)

Soft-Removal
Rule (R1.2)

Type of Rules?

Combined
Rules

Basic

Basic
Rules

Combined

R4 + R1.2
R4 + R5.1
R4 + R6

R6 + R4
R6+ R1.2

Fig. 8.3 Heuristics driving transformation rules in Step 2

As stated in the rules definition above, sometimes, as a result of their application, more
conflicts among children than the one that was being solved may appear. Hence, to reach a stop
condition of the step (i.e., C2 is completely satisfied by all taxonomy nodes) we need a more
elaborated stop condition metric in which not just the number of inconsistencies but also the
posicion at the tree (more precisely, the level) are taken into account.

Thus, to define the metric m2, let N be the arity of the tree defined as the maximum number
of siblings that exist in any part of the hierarchy:

N = max X: Belongs(T, X): sizeOf(Children(T, X))

height(T) the height of the tree, and level(T,X) a function that gives the level that occupies
the node X in the tree T.

Then, we define m2 as:
 ∑X, Y: Belongs(T, X) ∧ Belongs(T, Y) ∧ Siblings(T, X, Y):
 C2_inconsistency(X, Y) × N2(height(T)-level(T,X))

being C2_inconsistency a function evaluating to 1 if X and Y’s goals are not disjoint, 0 else:

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

134

 1, Goal(B) ∩ Goal(C) ≠ Ø
 C2-inconsistency(X, Y) =
 0, Goal(B) ∩ Goal(C) = Ø

Table 8.4 shows the possibilities that each rule has to solve the inconsistency, as well as the
potential combination of rules. The stop condition in this Step is achieved when m2 remain 0.

Table 8.4 Effect of transformation rules application in Step 2 on the stop condition

Rules Applied in Step 2
Completely Solves
the Inconsistency

Rule(s) that may be
applied to solve the

remaining inconsistency

Combination of
Rules allowed

Yes - -

R4. Split
No

R1.2

R5.1

R6

R4 + R1.2
R4 + R5.1
R4 + R6

R1.2. Soft-Removal Yes - -

R5.1. Inclusive Merge Yes - -

Yes - -

R6. Subsume
No

R4

R1.2
R6 + R4

R6 + R1.2

8.2.3 Transformation Rules in Step 3

Step 3 is addressed to reach the condition C3.

C3. Completeness. The goals of siblings cover altogether the goal of their parent:
 ∀X: Belongs (T, X) ∧ ¬ Leaf(T, X): [Goal(X) ≡ ∪Y: Y∈Children(T, X): Goal(Y))]

C3 aims at ensuring the completeness of taxonomies, it means that software packages (i.e.,
COTS) can always be classified using the taxonomy, i.e. that the taxonomy covers all the
possible assignment of variables. Therefore, C3 is violated when the decomposition of a node is
such that its children do not cover altogether its goal:

∃A: belongs (T, A) ∧ ¬ Leaf (T, A): [Goal(A) ≠ ∪B: B∈Children(T, A): Goal(B)]

To solve this kind of inconsistency, 3 possibilities exist:

� To create new node(s) covering the part of goal left. The new node’s goal must not violate the
states C1 and C2 that have been ensured in the two previous steps.

R7. Identification (T, A, E) Inserts a new node C satisfying goal E as child of an existing one A whose
goal is not fully covered by its children’s goals. The new node’s goal must not violate neither C1 nor
C2.

► Precondition: Belongs(T, A) ∧ ¬Leaf(T, A) ∧ [Goal(A) ≠ ∪B: B∈Children(T, A): Goal(B)] ∧
 Goal(A) ⇒ E ∧ [∀B: B∈Children(T, A): Goal(B) ∩ E = Ø] ∧
 [∀B: B∈Children(T, A): Goal(A) ⇒ Goal(B)] ∧

 [∀B1, B2: B1∈Children(T, A) ∧ B2∈Children(T, A) ∧ B1 ≠ B2:
 Goal(B1) ∩ Goal(B2) = Ø]

► Postcondition: Belongs(T, C) ∧ Parent(T, C) = A ∧ Goal(C) = Goal(A) ∪ E

� To enlarge the goal of a child in order to cover the goal of its parent. Therefore new
completeness problems may arise in lower levels of the tree, but they are solved later during
Step 3.

R8. Enlarge Child (T, A, C, E) Enlarges C’s goal to cover its parent A’s goal when it is not fully
covered by its children’s goals. The enlargement is denoted by E and it does not violate neither C1(T)
nor C2(T).

Chapter 8: Activity 6 -Goal Taxonomy Validation and Management

135

► Precondition: Belongs(T, A) ∧ ¬Leaf(T, A) ∧ Parent(T, C) = A ∧
 [Goal(A) ≠ ∪B: B∈Children(T, A): Goal(B)] ∧
 Goal(A) ⇒ E ∧ [∀B: B∈Children(T, A) ∧ B ≠ C: Goal(B) ∩ E = Ø] ∧
 [∀B: B∈Children(T, A): Goal(A) ⇒ Goal(B)] ∧

 [∀B1, B2: B1∈Children(T, A) ∧ B2∈Children(T, A) ∧ B1 ≠ B2:
 Goal(B1) ∩ Goal(B2) = Ø]

► Postcondition: Goal(C) = Goal(C@pre) ∪ E

� To narrow the goal of the parent in order to discard the part of the goal that is not implied by
its children. This case was not considered as a rule, because it implies several violations to C1
that are impractical to be managed in Step 3.

Heuristics, Combined Rules and Stop Condition for Step 3

Heuristics driving the application of transformation rules in Step 3 are summarized in Fig. 8.4.

Step 3
Conflicts to solve:

∃A: belongs (T, A) ∧ ¬ leaf (T, A): [Goal(A) ≠ ∪B: B∈Children(T,A): Goal(B)]
C1(T) and C2(T) as invariant preconditions

No

Identification Rule (R7)

Modify Structure
of current Taxonomy? Yes

Apply Enlarge
Child Rule (R8)

Type of Rules?

Combined
Rules

BasicCombined

R8 + R7 R7 + R8

Apply

Fig. 8.4 Heuristics driving transformation rules application in Step 3

The metric m3 is defined as the number of nodes such that their goal is not entirely cover by
their children. To reach the C3 satisfaction state pursued in Step 3, all conflicts violating C3
must be solved, whilst C1 and C2 are ensured as invariants. The stop condition is attained when
m3 remain 0.

Table 8.5 shows the potential postconditions of the rules and their effect on m3, possible
combinations of rules and their applicability condition are also shown. It is obvious that
transformation rules at this step can be applied and iterated more than once to solve an
inconsistency.

Table 8.5 Effect of transformation rules application in Step 3 on the stop condition

Rules Applied in
Step 3

Completely
Solves the

Inconsistency

Effect on the
stop condition

metric m3

Rule(s) that may be
applied to solve the

remaining inconsistency

Combination of
Rules allowed

Yes -1 - -
R7. Identification

No None R8 R7 + R8

Yes -1 - -
R8. Enlarge Child

No None R7 R8 + R7

8.2.4 Transformation Rules in Step 4

Step 4 has not a state to be ensured, we only consider as invariants the conditions of previous
phases C1(T), C2(T), and C3(T) that must be preserved after any manipulation. In other words,
Step 4 just restructures the taxonomy once it has been proven correct and complete with the aim
of leveraging the incoming taxonomy.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

136

The rules in this step are oriented to tailor the result to the particular (and subjective) taste of
the designer with respect to level of detail desired. Such that it is easy to infer that the
application of any rule on this step only rearranges the hierarchy respecting the previous steps’
conditions.

The rationale for changing the form of a correct and complete taxonomy is:

� A leaf A is too abstract (i.e., its attained goal is too coarse-grained, mixing different concepts)
and should be decomposed into n nodes satisfying goals E1, …, En, to add detail. Thus, the
Division rule should be applied.

R9. Division (T, A, {Ek}n). Breaks a node A into several descendants. Relationships among the new
nodes’ goals and the divided node’s goal shall ensure that C1, C2 and C3 are preserved.

► Precondition: Belongs(T, A) ∧ Leaf(T, A) ∧ ∀k: 1 ≤ k ≤ n: Goal(A) ⇒ Ek ∧
 C1(T) ∧ C2(T) ∧ C3(T)

► Postcondition: ∀k: 1 ≤ k ≤ n: [Belongs(T, Ek) ∧ Parent(T, Ek) = A ∧ Goal(Ek) = Ek]

� The conceptual gap among a node A and some of its children is too wide, resulting in a too
flat hierarchy, and an intermediate node with a new goal must be introduced using
Abstraction rule.

R10. Abstraction (T, A, {Ck}n, B). Creates a new node B as parent of a set of existing ones {Ck}n that
are children of A. The new node B becomes child of A. The new node’s goal is the union of the goals
of the nodes in the set. The children of the merged nodes become children of the new goal.

► Precondition: Belongs(T, A) ∧ ∀k: 1 ≤ k ≤ n: [Belongs(T, Ck) ∧ Parent(T, Ck) = A] ∧
 C1(T) ∧ C2(T) ∧ C3(T)

► Postcondition: Belongs(T, B) ∧ Parent(T, B) = A ∧ Children(T, B) = {Ck}n ∧
 Goal(B) ≡ ∪k: 1 ≤ k ≤ n: Goal(Ck)

� The children of a node A do not really add value to the taxonomy, therefore, two choices are
valid:

1. To remove all children of A and their successors applying the Pruning rule

R11. Pruning (T, A) Eliminates the children (and all its successors) of an intermediate node A.

► Precondition: Belongs(T, A) ∧
 C1(T) ∧ C2(T) ∧ C3(T)

► Postcondition: ¬Belongs(T, A) ∧∀Y: Y∈Successors(T, A@pre): ¬Belongs(T, Y)

2. To merge children into a coarse-grained one. The Merge rule variant used in this Step is
called Non-Inclusive Merge, a weaker version of the merge of Step 2).

R5.2 Non-Inclusive Merge (T, A, {Ck}n) Merges several children of an intermediate node A into a new
one called D that represents a coarse-grained node.

► Precondition: Belongs(T, A) ∧ ¬Leaf (T, A) ∧
 ∀k: 1 ≤ k ≤ n: [Belongs(T, Ck) ∧ Parent(T, Ck) = A ∧

 C1(T) ∧ C2(T) ∧ C3(T)

► Postcondition: Belongs(T, D) ∧ Parent(T, D) = A ∧ Goal(D) ≡ ∪k: 1 ≤ k ≤ n: Goal(Ck@pre) ∧
 ∀k: 1 ≤ k ≤ n: ¬Belongs(T, Ck)

Step 4 has not an explicit condition to be achieved. The C1(T), C2(T), and C3(T) invariant
conditions are ensured by the own rules preconditions. Therefore, Step 4 does not need any
termination condition, the step may finish at any moment.

Chapter 8: Activity 6 -Goal Taxonomy Validation and Management

137

All the rules designed for Step 4 may be used as required according to the applicable
preconditions. Heuristics driving the applications of these rules are shown in Fig, 8.5.

To leafs

Hiding Detail

Hide Detail

Adding Detail

Non- leafs

Apply
Division Rule (R9)

Apply
Abstraction Rule (R10)

Remove Not Remove

Apply
Pruning Rule (R11)

Apply
Non-Inclusive

Merge Rule (R5.2)

Add Detail

Hide or add detail?

Step 4
C1(T), C2(T) and C3(T) as invariant preconditions

ensured by the rules definition

Fig. 8.5 Heuristics driving transformation rules application in Step 4

Table 8.6 presents the transformation rules and their variants according to the step in which
they can be used.

Table 8.6 Summary of transformation rules and their applicability to the 4 steps process

 Step 1 Step 2 Step3 Step 4

R1. Removal R1.1 R1.2

R2. Enlarge Parent ����

R3. Narrow Child ����

R4. Split ����

R5. Merge R5.1 R5.2

R6. Subsume ����

R7. Identification ����

R8. Enlarge Child ����

R9. Division ����

R10. Abstraction ����

R11. Pruning ����

8.3 Goal-Oriented Taxonomies Formulation, Evaluation and

Management

In the last two chapters we have presented a proposal for building goal-oriented taxonomies that
arrange the existing myriad of COTS into categories and market segments. The process for
building goal-oriented taxonomies (presented in Chapter 7) is characterized to be goal-oriented,
and domain-independent.

In this Chapter, we have precisely defined rules and their associated processes for validating
the obtained taxonomies and ensure their manipulation. It endorses the different required views
of the information and/or the taxonomy evolution as a result of COTS marketplace change and
management.

The goal-oriented approach detailed in Chapter 7 and the four-step process of transformation
rules application detailed in this Chapter are complementary. They have been integrated into the
GOThIC method as the main core for validating and manipulating the rationale of classification
schemas (i.e., taxonomies) in which the reuse-infrastructure is based on. The GOThIC
metamodel regarding this issue is depicted in Fig. 8.6.

As it is further described in Chapter 7, the Goal Satisfaction assignment is defined as the
process for giving Values to a set of Variables that characterize specific Goals. Goals at their
turn characterize Taxonomy Nodes. Also dependencies among goals are recorded by using i*

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

138

constructors (i.e., Goal, Softgoal, Task, Resource). Transformation rules introduced in this
Chapter may be defined and applied in the described four-step process in terms of these class
elements. The conceptual model depicted in Fig. 8.6 is a further refinement of the GOThIC
conceptual model introduced in Fig. 4.2 in Chapter 4.

Fig. 8.6 Conceptual model of the goal-oriented core of GOThIC

8.4 Applying the Goal-Oriented Taxonomy Validation and

Management Process

Our proposed goal taxonomy validation and management approach resulted useful to validate
and manage a goal-oriented taxonomy fully obtained by applying our GOThIC approach.
However, since reuse is one of the main motivations for this work, we also consider the extreme
case of applying it for restructuring any existing ‘ad-hoc’classification hierarchy (as those
related in Section 2.3.2.).

To demonstrate both facts we present the applicability of the rules to two different examples:

− The first one is related to the goal-oriented hierarchy obtained for the RTSC case that has
been developed in the previous chapters.

− The second one refers to an existing ‘ad-hoc’ hierarchy proposed by Gartner [Gar] in the
Business Application (BA) domain.

In both cases, we only expose the process of rearranging the taxonomy based on the
transformation rules, assuming that the processes of identification, refinement and statement of
goals, as well as establishment of dependencies and goal-taxonomy structuring have been
previously performed.

8.4.1 Validating and Manipulating the Goal-Oriented Taxonomy Obtained

for the RTSC Case Study

In this section, the process of validating and manipulating the RTSC taxonomy obtained in the
previous chapters is illustrated.

The RTSC taxonomy introduced in Table 7.9 shows a goal classification schema obtained by
following the GOThIC method activities. However, to ensure its trustworthiness and appropriate
evolution with respect to the marketplace changes and different representation needs of the
information (i.e., different views of the repository by different users), the four step process
described above are applied.

We focus on the branch related to Collaborative Communication and Development of

Groupware Applications (CDGS).

The steps followed and their related results are:

Chapter 8: Activity 6 -Goal Taxonomy Validation and Management

139

► Step 1. Any inconsistency was found. Given the intensive top-dow process of goal
identification and refinement followed throughout the activities 3, 4 and 5 of
GOThIC, this kind of inconsistencies are not very common.

► Step 2. As the same case of the previous step, no inconsistencies were found.

► Step 3. Some inconsistencies were found, and were solved by the application of
fitting transformation rules to complete the parent goal. Domain knowledge is
required to drive this process. In this case the incompleteness was given by the fact
that a node that covers all existing functionalities was missed.

► Step 4. Some changes were done to the goal hierarchy in order to tailor the result to
our particular purposes.

Fig. 8.7 shows the related branch of the taxonomy after each of the 4 steps.

CDGSCDGS

IMCC OCCS

IMCCS IOMCCSWANMCCS

IMSViIMSTx IMSDaIMSAu IMSMu

CDGSCDGS

IMCC OCCS

IMCCS IOMCCSWANMCCS

IMSViIMSTx IMSDaIMSAu IMSMu

Step 1

CDGSCDGS

IMCC OCCS

IMCCS IOMCCSWANMCCS

IMSViIMSTx IMSDaIMSAu IMSMu

CDGSCDGS

IMCC OCCS

IMCCS IOMCCSWANMCCS

IMSViIMSTx IMSDaIMSAu IMSMu

Step 2

CDGSCDGS

IMCC OCCS

IMCCS IOMCCSWANMCCS

IMSViIMSTx IMSDaIMSAu IMSMu IMSAll

CDGSCDGS

IMCC OCCS

IMCCS IOMCCSWANMCCS

IMSViIMSTx IMSDaIMSAu IMSMu IMSAll

Step 3

CDGSCDGS

IMCC OCCS

IMCCS

IMSViIMSTx IMSDaIMSAu IMSMu IMSAll

NIBI

WANMCCSIOMCCS

CDGSCDGS

IMCC OCCS

IMCCS

IMSViIMSTx IMSDaIMSAu IMSMu IMSAll

NIBI

WANMCCSIOMCCS

Step4

Fig. 8.7 The Four-Step goal-taxonomy validation process applied to an excerpt of the RTSC case

Table 8.7 summarizes the goal-based reasoning and transformation rules application in each
step of our example. The relationships among goals that violate some condition are stated in the
second column. The other two columns state the rule that is applied at every moment.

Table 8.7 Validating the RTSC goal-classificataion schema

Steps Goal Reasoning Rule Applied

Step 1 No inconsistencies None

Step 2 No inconsistencies None

Step 3

¬ (G(IMCCS) ≡ (G(IMSTx) ∪ G(IMSAu) ∪
 G(IMSVi) ∪ G(IMSDa) ∪
 G(IMSMu))
Left Goal= Support of All Resources G(IMSAll)

R7

Identification(RTSC, IMCC, IMAll)

Step 4 Not-Interned Based Infrastructure (NIBI) R10
Abstraction (RTSC, MCC, {(IOMCCS),
(WANMCCS)}, (NIBI))

Results obtained confirm our supposition that given the top-dow process of identification
and refinement of goals followed in previous activities of the GOThIC method, the application
of transformation rules in the first steps was not really extensive (in this case, no rules were
applied in steps 1 and 2). However, the existence of all these steps helps to ensure the
trustworthiness and completeness of the hierarchy (e.g. the existence of a new goal that was not
discovered before was identified), whilst step 4 ensure its suitable manipulation.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

140

8.4.2 Validating and Manipulating an Existing COTS Classification Schema

All the aspects of the daily operations of small, medium and large organizations, either private
companies or public administrations, heavily depend on the existence of adequate software
products to undertake crucial tasks, such as accounting, human resources management,
document administration, team work, people communication, business processes monitoring,
etc. Therefore, having specific means for discovering which BAs satisfy the needs of an
organization is utterly convenient in order to select the most suitable. Given the relevance and
popular use of the BA tools belonging to this market segment, we decided to use it as example.

To choose a BA ‘ad-hoc’ hierarchy, we investigated the way that professional software
consultant companies organize the BAs’ services that they offer to their customers. We selected
the classification proposed by the Gartner Consulting [Gar]. It is application-oriented and well-
suited for our purposes, compared to others whose classification is based on business areas or
that include not only software but other assets.

As it is obvious, since such hierarchy it is not goal-oriented, we have to perform a process of
discovering goals in the departing classification hierarchy to subsequently apply the described
four-step process of for validating and manipulating goal-oriented taxonomies. Such process is
summarized in Table 8.8.

Table 8.8 Discovering goals process for an existing ‘ad-hoc’ classification hierarchy

Discovering Goals in the Departing Classification Hierarchy

Input The existing classification hierarchy

Output The existing classification hierarchy with goals attached to its nodes (i.e a goal-
oriented hierarchy)

Process
− Goal elicitation methods (as those described in the Activity 3 and 4 in

Chapter 5) are applied to dicover the goals behind each node of the existing
taxonomy.

− Subsequently, identified goals would be expressed as a combination of the
values of their intended classifiers, as described in Activity 5 in Chapter 5).

A first observation of this process is that in most cases we noticed that although some node
of the original taxonomy was partitioned into some categories, we couldn’t find an attribute that
could be used to support it. It means such taxonomy do not really provide a structured for
classifying assets.

To simplifly the explanation of our existing taxonomy restructuring approach, we will only
focus on a particular part of the original Gartner BA classification, the subtree bound to Supply
Chain Management as depicted in Fig. 8.8.

SupplySupply ChainChain ManagementManagement (SCM)(SCM)

Supply Chain
Execution

(SCE)

Supply Chain
Planning (SCP)

Transportation
Management

(TM)

Buy-Side e-
Procurement

(BSeP)

Warehouse
Management

(WM)

Supplier Relationship
Management (SRM)

Buy-side Internet
Commerce (BSIC)

International
Trade

System
(ITS)

e-Sourcing
(eS)

e-Marketplace
(eM)

e-Commerce
Content

Management
(eCCM)

Fig. 8.8 An excerpt of the BA Gartner classification

Furthermore, in this example, we leave one of its nodes (Supply Chain Planning) out of our
description.

Table 8.9 shows the elicited goals of the nodes that we are going to manage in the process.

Chapter 8: Activity 6 -Goal Taxonomy Validation and Management

141

Table 8.9 Goals bound to some nodes of the BA taxonomy

Node Names Goal Attained

Supply Chain Management (SCM)
To encompass the process of creating and fulfilling demands of the
market for goods and services, mainly in 2 categories: execution and
planning

Supply Chain Execution (SCE)
To manage relationships with the supplier (sourcing and procurement),
and manufacture and logistics aspects

Transportation Management (TM) To manage all freight deliver activities across the enterprise

International Trade Systems (ITS) To automate the import/export business process

Warehouse Management (WM) To manage the operation of a warehouse or distribution center

Supplier Relationship Management (SRM)
To manage enterprise interactions with the organizations that supply
goods and services that are used.

Buy-Side Internet Commerce (BSIC) To manage the internet by-side commerce

eCommerce Content Management (eCCM)
To address how to take unstructured product content and create and
manage structured data on internet

Taking into account the form of the tree and the attached goals, Table 8.10 summarizes the
goal-based reasoning and transformation rules applied in each step of our example.

The relationships among goals that violate some condition are stated in the second column.
The other two columns state the rule that is applied at every moment.

Table 8.10 Transforming the original Gartner classification into a goal-based taxonomy

Steps Goal Reasoning Rule Applied

¬G(SCM) ⇒ G(BSIC) R1.1 Hard Removal(BA, SCM, BSIC) Step
1

¬G(SCE) ⇒ G(ITS) R1.1 Hard Removal(BA, SCE, ITS)

Step
2 G(SCE) ∩ G(SRM) ≠ ∅ R5.1 Inclusive Merge(BA, SCE, SRM)

Step
3

¬ (G(SCE) ≡ G(WM)∪G(TM))
Left goals:
 e-Procurement (eP)
 eSourcing (eS)
 Manufacturing Management (MM),
 Not-eProcurement(NeP)
 Not-eSource (NeS)

R7
R7
R7
R7
R7

Identification(BA, SCE, eP)
Identification(BA, SCE, eS)
Identification(BA, SCE, MM)
Identification(BA, SCE, NeP)
Identification(BA, SCE, NeS)

Step
4

Logistics Management (LM)
Sourcing (S)
Procurement (P)
Supplier Interactions(SI)

R10
R10
R10
R10

Abstraction (BA, SCE, {WM, DM}, LM)
Abstraction(BA, SCE, {eS, NeS}, S)
Abstraction(BA, SCE, {eP, NeP}, P)
Abstraction(BA, SCE, {S, P},SI)

Fig. 8.9 shows the taxonomy after each of the 4 steps.

► Step 1. We found several inconsistencies at highest levels given by the fact that the
taxonomy does not have a clear rationale behind. As mentioned above, in several
cases it was difficult to find an attribute that can be used for partitioning the nodes. As
a result, an appropriate one was defined and the inconsistencies were calculated. Of
course, to discern about the relationships among goals, knowledge on the domain was
required. Thus, for instance we discover that the goal of SCE is not oriented to
automate business processes, such that we can infer that G(SCE) does not imply
G(ITS).

► Step 2. Some intersections among goal values were solved.

► Step 3. Several goals were missing (or were belonging to other nodes that were not
the adequated ones, so they were removed from them in previous steps). Thus, several
missing goals were identified to complete the node´s goals.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

142

► Step 4. To tailor the resulting taxonomy to most of the purposes we elicited from
experts in the field, we introduced several intermediate categories.

SCMSCM

SCE SCPSRM

TM WM

SCMSCM

SCE SCPSRM

TM WM

Step 1

SCMSCM

SCE SCP

TM WM

SCMSCM

SCE SCP

TM WM

Step 2

SCMSCM

SCE SCP

WMNePeS TMePNeS MM

SCMSCM

SCE SCP

WMNePeS TMePNeS MM
Step 3

SCMSCM

SCE SCP

WM
ePeS

TM
NePNeS

SI MM LM

PS

SCMSCM

SCE SCP

WM
ePeS

TM
NePNeS

SI MM LM

PS

Step4

Fig. 8.9 The 4-step goal-taxonomy construction process applied to an excerpt of the BA case

Finally, we also identified questions to elucidate the attribute values of the resulting goal-
oriented taxonomy.

As a result of this process we rearranged the whole Gartner BA taxonomy. It originally had
96 nodes, 78 were leafs (i.e., types of software packages) and just 18 intermediate nodes. The
longest path from the root to a leaf was of length 6 (just one, and two of length 5), whilst the
maximum width was 10 siblings (average width 4,33).

Our process resulted in a taxonomy of 188 nodes, 120 of them leafs. The tree changed its
form, with a longest path of length 8 (in fact, 16 paths of this length and 21 of length 7) and 7
siblings at most (average width 3,18).

A group of some COTS selectors related with selecting BA components were asked about
the usability of both taxonomies (i.e. the original Gartner BA taxonomy and the goal-oriented
obtained). From these results, we may say that not only the rationale of the original taxonomy
was greatly improved, but also it resulted well-suited for most of the purposes of the
interviewees, with better defined ways to reach a leaf (i.e., a type of COTS) from the root
having fewer alternatives to consider at each step.

8.5 Summary and Discussion

We have identified 11 basic transformation rules specified by contracts that are used and
combined along a 4-step process to validate and manipulate goal-oriented taxonomies.

 As a result, by the application of the rules:

• We obtain a high-quality taxonomy in which the rationale for the classification is very
clear and correctness and completeness are ensured by construction. As far as we know,
this rationale distinguishes our approach of other taxonomy proposals as the ones
mentioned in Chapter 2.

• Goal-oriented taxonomies may be tailored to the particular (and subjective) taste of the
designer and/or their intended use with respect to the level of detail.

Case studies of different size demonstrate the feasibility of the approach. Moreover, it was
also demonstrated how the process of goal-oriented COTS taxonomies construction and the
associated rules is helpful not only for constructing high-quality COTS domain goal-oriented

Chapter 8: Activity 6 -Goal Taxonomy Validation and Management

143

taxonomies from the scratch but also for transforming existing taxonomies or hierarchies into
goal-oriented taxonomies. This last has demonstrated how to profit the knowledge of an existing
classification to adapt it to another particular target with a high-quality and high probability of
success avoiding efforts.

Some problems observed in most of the existing COTS taxonomies (as those mentioned in
Chapter 2) has been addressed. For instance: Categories whose reason-to-be was not clear;
categories that were not defined precisely (as a consequence, their granularity was not always
adequate); categories that overlapped; the criteria for decomposing categories was never
declared and often it was not evident, making hard the use of the hierarchy; levels of abstraction
were different at different parts of the hierarchy; and so on.

Finally, it is worth to remark that:

• The proposed transformation rules have been successfully used in our experiences, without
needing any additional rule to be defined.

• The goal-oriented taxonomies obtained by GOThIC are not claimed to be the best (if any
exist) but only one solution obtained by the application of transformation rules for tailoring
the classification schema to ad-hoc needs and/or COTS marketplace evolution.

• Instead of having a static taxonomy, the proposed process may help to make them
dynamic. It means that at any moment, any sound attribute (i.e., set of answers) could be
applied to discard some categories and select others. Selection of a category after giving a
value to an attribute restricts the set of sound attributes during the browsing process.

• Taxonomies constructed with GOThIC help to drive a COTS selection process. The
selection process will be based on the next three main activities, in addition to other usual
ones:

► Browsing the taxonomy for locating the COTS market segment of interest.

► Analyzing the recorded dependencies for understanding the implications of the
selection.

► Refining the domain model attained, in order to be used in the evaluation of
components.

145

Chapter

9

Activity 7:
Knowledge Base

Management

 n the previous chapters, the GOThIC method has been presented as a method composed of
several activities and their deliverables intended to drive the construction of flexible COTS
domain taxonomies as a base of a reuse infrastructures from the scratch. This was intentionally
done to simplify both the explanation and the understanding of the approach. However, the
method has been envisaged following the Experience Factory (EF) paradigm introduced by
Basili et al [Ba+94] in order to enable the Learning Software Organization (LSO) approach
proposed by Ruhe [Ruh01] in the context of CBSD.

The method aims at improving the return on investment of the taxonomy construction
process by building and maintaining a repository of the knowledge obtained during the
taxonomy construction process itself as well as the reuse of the experiences and knowledge
gained in each selection process where the taxonomy is applied. All the artifacts produced by
the method’s activities are packaged to support knowledge reuse and evolution, as explained in
the Chapter 6 devoted to the Domain Analysis activity.

As a result, the flexible COTS domain reuse infrastructure obtained by the method learns
from its own development and improves its content later in its usage cycle by reusing the
experiences and knowledge gained in each selection process it is applied.

In this chapter, we discuss the GOThIC method’s knowledge base as resembling the Basili’s
Experience Factory approach and envisaging the Learning Software Organization appliance.
Sectiom 9.1 introduces the EF and LSO paradigms. Section 9.2 relates how the GOThIC
method was conceived to resemble them. Section 9.3 details some contexts of use of the
GOThIC’s knowledge base. In Section 9.4 a strategy for populating and maintaining the
GOThIC’s knowledge base is discussed. On the other hand, in Section 9.5 the use of software

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

146

tool support for manaing some GOThIC activities and their deliverables is presented, some of
them were developed as a direct consequence of this thesis work. Finally, in Section 9.6 the
Chapter concludes with summary and conclusions.

9.1 The Experience Factory (EF) and Learning Software Organization

(LSO) Paradigms

The area of software development is characterized by a particularly rapid technological change.
While software is of paramount importance for market success in all high-tech and service
domains, software engineering practice does not yet live up to the challenge of effectively
reusing software artifacts neither the knowledge gained during their development. Thus, the
need for further development of software engineering reuse practices within companies adds to
the demand for systematic knowledge management.

According to [Birk+98], software development has several characteristics that distinguish it
from “classical” production disciplines:

• Software is developed, not manufactured or produced. Most development techniques
cannot be automated. They are human-based, and thus rely on the individual’s expert
knowledge and skill.

• Each software process and product is different in the terms of goals and contexts.
Therefore, the software discipline is inherently experimental. This means that we
constantly gain experience from development projects, and strive to provide it for reuse in
future, yet different projects. Currently, there is a lack of explicit models and processes,
products and other relevant aspects of software projects that can be effectively and
efficiently reused.

• Packaging knowledge and experience so as to enhance its reuse potential requires
additional resources outside the normal project budget and environments.

In the Software Engineering domain, the idea of reusing software artifacts whilst sharing
experiences was initiated about 20 years ago with a more scope and strong emphasis on explicit
knowledge. It has gained widespread attention as the so-called Experience Factory paradigm
[Bas+94b]

The Experience Factory paradigm was introduced by Basili et al [Bas+94b]. According to
them, improving the software process and product requires the continual accumulation of

evaluated experiences (learning) in a form that can be effectively understood and modified

(experience models) into a repository of integrated experience models (experience base) that

can be accessed and modified to meet the needs of the current project (reuse)”. The experience
base is a logical and/or physical infrastructure aimed at the storage and reuse of all sorts of
knowledge (experience and products) resulting from the activities performed in software
lifecycle.

The simple Experience Factory paradigm concept is that software development projects can
improve their performance (in terms of cost, quality, and schedule) by leveraging experience
from previous projects.

The concept also takes into account the reality that managing this experience is not trivial
and cannot be left to individual projects [Bas-Sea02]. With deadlines, high expectations for
quality and productivity, and challenging technical issues, most development projects cannot
devote the necessary resources to making their experience available for reuse.

Chapter 9: Activity 7 –Knowledge Base Management

147

The introduction of the Experience Factory Organization (EFO) solves these problems by
separating these responsibilities into two different organizations: the Experience Factory (EF)
and the Project Organization (PO). The PO uses packaged experiences and information to
deliver software products by calling on the EF’s resources for the information, help, and
guidance for choosing appropriate processes for the project. On the other hand, the EF extracts
information that the PO provides, and installs it into a long-lived experience base. The EF uses
this experience base to pass information back from previous projects to the PO and saves the
new information for future projects. Thus, the EFO is an organizational unit that supports
several software projects. Fig. 9.1 depicts the EF paradigm.

Fig. 9.1: The Experience Factory paradigm

Despite there is a substantial number of Experience Factory implementations, in the form of
knowledge repositories, in recent years, the current business needs have made evident the
importance of knowledge management into them.

Nowadays, knowledge is recognized as the crucial resource in all complex, human-based
(creative) and fast changing business areas. It is the mandatory requisite for gaining and
maintaining a competitive advantage and therefore requires continuous, proactive and goal-
oriented management. With continuous technological change, globalization, business
reorganizations, e-migration, strategic and operational decisions concerning products, processes,
technologies or tools and other resources; there is a continuous shortage of the right knowledge
at the right place at the right time [Moh+04].

This has made necessary to enhance the knowledge management approach introduced by the
Experience Factory paradigm. Therefore, in the last years the Learning Software Organization
(LSO) paradigm extends the knowledge management approach of the Experience Factory to
further deal with knowledge management issues into organizations. The LSO as described by
Ruhe [Ruh01] is a continuous endeavour of actively identifying (discovering), evaluating,
securing (documenting), disseminating, and systematically deploying knowledge throughout the
software development organization. In order to becoming and remain competitive in software
development, there is no alternative to become a LSO. Software companies are more and more
striving to implement LSO according to the Experience Factory paradigm. In the context of
businesses changing ever faster, the challenges are:

• To accelerate the learning processes supported by the LSO

• To extend the scope of knowledge management to all directly and non-directly relevant
processes, products, methods and techniques, tools and behaviors in the context of
software development, and

• To extend the knowledge management approach of the Experience Factory paradigm to
also handle the tacit knowledge within an organization.

Experience Factory Organization (EFO)

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

148

9.2 The GOThIC´s Knowledge Base as an EF + LSO

In several works, the crucial need of having a repository for COTS with enough information
about them has been recurrently claimed (from the seminal paper of Kontio [Kon96] to more
modern proposals as [Mor+00], [Cla+04], [Moh+04], [Wan-Hom06]).

In addition, the need of reusing COTS information within companies demands systematic
knowledge and skill management in combination with active usage of this knowledge to support
decision-making at all stages of the CBSD lifecycle [Ruh02], [Moh+04].

As a result, the GOThIC method was envisaged following the EF paradigm and aimed to
promote the LSO approach in order to foster the reuse of components information and
knowledge through organizations involved in CBSD.

The existence of the repository obtained from the GOThIC method and the way in which it
interacts with the activities of the method itself, largely resembles the Experience Factory
paradigm whilst its structure and artifacts are aimed to promote knowledge management at
various levels as pursued by the LSO paradigm as depicted in Fig. 9.2.

Fig. 9.2 The GOThIC activities supported by an experience base and its knowledge reuse artifacts

The reuse infrastructure obtained from the GOThIC method represents the “Experience

Base” (EB). This EB base makes the knowledge gathered in past experiences available for the
support of new CBSD projects. Each CBSD project needs are supported by existing packaged
experiences and information available in the Experience Base. Thus, appropriate plans of action
and decisions are taken and executed. Experiences and new information obtained from this
executed plans are at they turn analyzed and introduced into the Experience Base.

The Experience Base is composed by the set of deliverables produced by each one of the
GOThIC method’s activities. These activities produce the artifacts and feedback mechanisms
required to communicate and support the Experience Base evolution and maintenance
(performed by the EF), as well as the systematic learning and packaging of reusable experiences
from diverse CBSD projects (performed by the PO). Similarly to the EF and LSO paradigms,
we do not think about a static and complete Experience Base, but in artifacts that continuously
grow to include new reusable elements.

 In GOThIC’s cyclic approach the activities of the method interact with the Experience Base
at different levels, either to gather the specific knowledge relevant for them, or to update or
extend the knowledge stored with new deliverables or updating the existing ones. The way in

Chapter 9: Activity 7 –Knowledge Base Management

149

which information is packaged (detailed in Chapter 6) enables the potential mechanisms to
foster LSO issues in the context of CBSD organizations.

It is important to stand out that the diverse mechanisms required for implementing the LSO
paradigm in CDSB organizations are out of the scope of this thesis. It only focuses on
encouraging the packaging of knowledge/information required to achieve it.

9.3 The Context of Use of the GOThIC’s Knowledge Base

The use of GOThIC is mainly addressed to organizations that usually carry out COTS selection
processes and find valuable to accumulate experiences from past selection processes in order to
improve their practice. This will make future COTS procurement processes for a specific
domain much easier, confident, faster, and cheaper.

These companies may range from industrial companies with their own IT department, IT
consultant companies offering assessment for business automation to commercial web-based
companies or portals selling COTS or offering COTS selection support services.

In general, these organizations may use the method to structure, record, manage, and reuse
better their COTS related knowledge. In this context, we can say that the knowledge base
obtained by the GOThIC method can be used at different levels; the next items represent some
of them:

• Intra-organizational level: It can be constructed and maintained as a centralized database by
a certain software organization that intensively performs CBSD in specific domains. This
enables the effective communication and reuse of the COTS selection knowledge inside the
company (even if they have diverse software development teams around the world).
Companies involved in the development of critical software applications may find this schema
greatly useful to improve their confidence on their own selection processes.

• Extra-organizational level: It can be constructed and used as a centralized database between
different organizations involved in the development of software in the same domain having an
agreement to submit trustworthy COTS related information to the knowledge base.

• Marketable level: It can be constructed and maintained by an independent organization
which sells CBSD support through a website. This organization should be responsible for
testing and ensuring the accuracy of any information regarding products.

From the intended formative evaluation of GOThIC, we further studied and assessed the
intended contexts of use of GOThIC repositories in industrial environments (detailed results are
described in Chapter 10).

The main concerns found were regarding the heavy upstart cost and difficulty to maintain
complete and up-to-date COTS information. All interviewed organizations considered important
that knowledge management and reuse initiatives for supporting CBSD in software
organizations should be lightweight (i.e. without putting considerable additional burden on
developers and end users), and should allow for an incremental adoption (i.e., not requiring
large up-front investment before any return on investment is at least visible). This is because
companies are rarely willing to invest resources in any kind of experience repository that is in
danger of becoming an "experience cementery".

Furthermore, our results show that large-size organizations are more able to afford the
creation of centralized organizational units for organizational learning. However, small and
medium sized enterprises are not able, in the general case to adopt the use of repositories in
intra-organizational levels due to its implementation costs.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

150

In this context, since small and medium enterprises represent a great deal of the European
industry, we argue that they must be supported by more lightweight means of creating these
knowledge bases with minimal overhead, especially in trendy domains where new technologies
constantly emerge. To overcome these industrial issues we envisaged a strategy that is currently
being implemented. Next section further details it.

9.4 GOThIC’s Knowledge Base Population and Maintenance

To overcome the issues found for populating and maintaining the GOThIC knowledge base, we
designed a population and maintenance strategy that makes use of the creative and productive
potential of “open-source collaboration” [Aya+07]. In this way, the COTS consumers or
(re)users (i.e., individuals, organizations, academic researchers, industrials) can be harnessed to
work as a community dedicated to incrementally build and maintain an open reuse infrastructure
(i.e., knowledge base) built with GOThIC. This enables all kind of COTS re-users (i.e, COTS
consumers) to store, share, get and re-use COTS related information whilst ensuring smooth
start-up and maintenance cost, as well as highly reliable information.

To put forward this strategy we exploit the potential offered by a Wiki-based portal. A Wiki
(from the Hawaiian Wikiwiki meaning “fast”) is a collaboratively created and iteratively
improved set of web pages [Wag04]. It is considered a powerful knowledge management tool
that enables the creation of an incrementally growing system containing the shared knowledge
of multiple sources in a centralized infrastructure/repository (i.e. a database server, an
application server that runs the Wiki software, and a web server that serves the pages and
facilitates the web-based interaction). Thus, exploiting some particular Wiki characteristics
(based on the principles described by Wagner [Wag04]) we have designed a proof-of-concept
prototype called OTS-Wiki portal [Aas-Lar07]. It is jointly performed with the Norwegian
University Of Science and Technology (NTNU).

An important issue to mention is that as we are using the open source collaboration
paradigm, we also include Open Source Software (OSS) information into the portal1. Of course
some changes to the domain model produced by GOThIC –described in Chapter 6- are being
tackled in order to embrace all OSS informational dimensions or characteristics into it.
However, as it is not part of the main objective of this thesis, these issues will not be described
here, we will only focus on the COTS knowledge base issues.

Therefore, regarding COTS, the intended main goals are:

Fostering a COTS Community and Incremental Population of Content. The OTS-Wiki
provides the web-based infrastructure for enabling COTS technology (re)users to collaborate as
a community in an open-source-like environment, see Fig. 9.3. Thus, COTS Community users
are able, and even encouraged, to share knowledge (e.g., experiences, components information,
and vendor comments). Therefore, the incremental population of content in the portal based on
the COTS Community participation is expected. We have designed proper templates and
guidelines for editing and use in order to share the information in a structured way (as
demonstrated in the Wikipedia, an on-line encyclopedia implemented as a Wiki).

Federating Actual Efforts for Locating and Selecting COTS. In this collaborative
environment, COTS Community users are encouraged to add (as hyperlinks) and comment the
helpfulness of existing web-resources for locating COTS (as those cited in Table 2.9, called
COTS Web-Resources in Fig. 9.3). This is a way of having an up-to date federated list of actual

1 This is the reason why the OTS-Wiki prototype focuses on Off-The-Shelf software components (OTS), that is a
term that includes COTS and OSS.

Chapter 9: Activity 7 –Knowledge Base Management

151

web-resources that the COTS Community users can exploit (artifacts from Activity 1 of the
GOThIC method are improved).

OTS-Wiki Portal

DesCOTS System

OTS-Community

OTS Knowledge

OTS Resources
Hyperlinks

OTS-Wiki

Repository

S
u
b
m

is
s
io

n
T

e
m

p
la

te
s

…
Portal 1 Portal 2 Portal 3 Portal n

…
Portal 1 Portal 2 Portal 3 Portal n

Structured
Information

Federated Resources

List (Hyperlinks)

OTS Web-Resources

Fig. 9.3 OTS-Wiki Portal Main Interactions

Besides the obvious advantage of using hyperlinks for allowing users to make connections
and to drill down into detailed knowledge, hyperlinks are also a potential quality assurance
mechanism and relevance indicator. Pages with many links to them indicate a highly useful
page. This factor fosters the OTS-Wiki portal to act as a meta-portal for promoting the
progressive homogenization of the information contained in different COTS web resources.
This is because such resources have an interest of being perceived as highly useful by the COTS
Community users.

Enabling Systematic Support for Selecting and Evaluating COTS. Having structured COTS
information as claimed by GOThiC enables systematic support for evaluating and choosing
components. We are integrating the DesCOTS system (introduced below) into the OTS-Wiki, as
stated in Fig. 9.3. It includes a set of tools that interoperate to support the whole COTS selection
process. Nevertheless, some other existing or new tools can be developed or designed for using
the structured COTS component information from the OTS-Wiki portal.

In this scenario, any COTS Community user can use the OTS-Wiki portal as a meta-portal
for providing support to:

f) Searching COTS and information about them supported by a well-defined and
dynamic taxonomy.

g) Recording component information in a structured way supported by the information
reuse strategy detailed in Chapter 5 and a common metadata (i.e. domain model
from the domain analysis strategy)

h) Maintaining and reusing such information by the use of suitable and evolvable
models capturing all the COTS informational dimensions.

i) Getting tool support for performing selection processes (e.g., DesCOTS).

Fig. 9.4 provides a i* SD model that graphically summarizes the main relationships expected
by putting forward the strategy.

In [Aya+07] this strategy is detailed and expected usage scenarios are provided in [Aas-
Lar07]; some of them are also explained in Section 9.5.2.1.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

152

It is worth to mention that the further exploration of this approach is considered as future
work and is intended to be a multidisciplinary European project involving several academy and
industrial partners as the Norwegian University of Science and Technology, Politecnico di
Torino, Centre de Recherche Public Henri Tudor and Hewlett Packard among others.

Fig. 9.4 i* SD model summarizing the GOThIC population strategy

Our aim is to augment the GOThIC metamodel with web-intelligence technologies to
improve its functionalities. Web intelligence will be applied to analyze user logs of web-search
queries, query responses, component choices, and all kinds of solicited comments and reviews –
and from these build up, up-date and maintain revised and pragmatic taxonomies (ontologies) in
an incremental way among other functionalities.

9.5 Software Tools Supporting Some GOThIC’s Activities and their

Deliverables

To perform and manage some of the GOThIC method activities and their deliverables (i.e., the
knowledge base) it seems required providing software tool-support.

Although it is not part of the deliverables of this thesis, next sections briefly describe some
tools used to support some GOThIC method activities.

Section 9.5.1 introduces some tools that were previously developed in the context of our
GESSI group and were greatly used in throughout our research work since they largely fit into
our goals. Section 9.5.2 relates some tools whose construction was partially guided or bespoke
to enclose the concepts presented in this thesis.

9.5.1 Existing Software Tools Supporting GOThIC’s Activities

9.5.1.1 DesCOTS System

Our GESSI research group has previously developed a system called DesCOTS (Description,
evaluation and selection of COTS components) [Gra+04]. It was conceived as a set of tools
interacting to provide support in the different activities of the process of selecting COTS. This
includes both functional and non-functional aspects of the system.

 As the research of the GESSI group in the context of COTS selection is progressing, more
tools and functionalities have been added to the system. All functionalities are the result of the
different needs of our research. In general all our COTS selection related research lines follow a
core principle and made use of several of these tools.

Chapter 9: Activity 7 –Knowledge Base Management

153

The selection process followed builds upon the principle of comparing user requirements
with evaluations of COTS, with a focus on quality requirements. Quality Models are then
constructed of several quality factors. These factors may differ significantly between the
different COTS domains, and therefore it is important to find the quality factors that best suit for
the specific description task. Currently, DesCOTS is composed by the following subsystems:

► The Quality Model Tool (QM Tool)

The Quality Model Tool [Car04a] provides functionality to define software quality
factors to reuse these in different models, to state relationship among the quality factors,
to assign metrics for their future evaluations, and to define Requirement Patterns to ease
the final stage of the selection process. The Quality Model is not build from scratch, but
is provided by the standard ISO/IEC 9126-1.

► The COTS Evaluation Tool

The Evaluation Tool uses the Quality Model from the suited domain to evaluate the
candidate COTS.

► The COTS Selection Tool

The Selection Tool provides support for two different processes. It first supports the
process of defining the selection requirements. Then it analyses these requirements and
the evaluations of the COTS to assist the selection of a component. The selection
requirements are stated according to the Quality Model for the specific COTS domain,
either from the defined Requirement Patters or as new ones. When the requirements list
is ready, the selection process tool provides a result of possible components matching
these criteria.

► The Taxonomy Tool (Taxonomy Wizard):

Many quality factors may be used in many different COTS domains. The Taxonomy
Tool is integrated in the Quality Model Tool to provide support for reuse of Quality
Models. When introducing a new COTS domain to the tool, it is first placed at the right
place in the taxonomy. Then, the tool starts to create the Quality Model by adopting all
quality factors belonging to the category. The user may add additional quality factors
belonging to that specific domain.

Fig. 9.5 depicts an overview of the DesCOTS subsystems. Some of these already developed
modules were useful to perform some of the GOThIC method activities (some of the modules
beard some customization) as the Taxonomy Tool and QM Tool.

ON GOING
QUALITY MODELS

TAXONOMY
WIZARD

REQUIREMENTS

QM TOOL

ON GOING
COTS

EVALUATIONS

COTS
 EVALUATION

TOOL

COTS
SELECTION TOOL

REQUIREMENTS
ELICITATION

TOOL

COTS
SELECTION

VALIDATED
QUALITY MODELS

VALIDATED
COTS

EVALUATIONS

COTS
SELECTION

Fig. 9.5 Overview of the DesCOTS System

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

154

Use of the Taxonomy Tool in GOThIC’s Activities

The Taxonomy Tool offered support for recording, managing and graphically showing the
taxonomy nodes we previously defined with goals by means of the GOThIC method.

Although the Taxonomy Tool did not provide support for the procedural goal-oriented
taxonomies construction, the graphical representation and recording of taxonomy nodes (as
goals) was useful for recording and managing goal-taxonomy representations, which then
were linked to its specific Domain Model, as explained below. Fig. 9.6 shows a snapshot of
the Taxonomy Tool for the BA case study.

Use of QM Tool in GOThIC’s Activities

The use of the QM Tools was helpful to support the construction the Domain Model
(introduced in Chapter 6) and the IQ quality model (introduced in Chapter 5), since both are
based on the quality standard ISO/IEC 9126-1.

Such support was vital because the construction and managing of quality models (i.e. the
Domain Model or the IQ quality model) is often a time demanding time. However, by using
this tool, such process was not performed from the scratch and allowed to reuse several
subcharacteristics, attributes and metrics; establish relationships among them; and define
new software metrics for their future evaluation.

We saved the quality models in a repository which linked them to their corresponding
taxonomy (created by the Taxonomy Tool), in such a way that the users may browse the
taxonomy and adopt the quality factors and information that its attained quality models
contain.

 Fig. 9.6 Snapshot of the business applications taxonomy with Taxonomy Tool

Example of a
taxonomy for
Business

Applications, its
hierarchical form is
presented as a tree of
categories and
domains.

Attributes and
questions for
determining the
classification of
the elements in the

taxonomy.

When selecting a category or
a domain, its information is

shown.

Chapter 9: Activity 7 –Knowledge Base Management

155

In addition, exploiting the functionality that allows defining procedural methods for
constructing specific quality models, we defined two methods to describe step by step the
process used to build correct models (i.e. the Domain Model and the IQ quality model).

Fig. 9.7 QM snapshot: defining a method

Fig. 9.7 shows how we stated one of the strategies (methods) by defining its steps. In
addition, QM also supported the glossary construction process related in Chapter 6, by
allowing defining the terms used during the quality models construction.

 To complement our case studies, we used the COTS Selection and Evaluation Tool for
performing specific evaluations of multiple products belonging to a market segment by
using the quality models defined previously.

9.5.1.2 REDEPEND-REACT Tool

REDEPEND-REACT is a tool developed by the GESSI group and the City University London
for supporting i* modeling and the analysis of the resulting models [Gra+05b]. In our approach,
it was used to support the construction of i* models.

The activities supported by REDEPEND-REACT involve building the i* SD model,
defining the properties and evaluating the architectures. Also some extra features, such as the
construction of a properties catalogue, an actors catalogue and a components catalogue, are
provided in order to promote reusability, supporting return on investment.

Basically, the functionality we used was related to the definition of i* SD and SR models by
dragging-and-dropping i* shapes from the SD and SR Visio stencils provided into the drawing
page. More detailed functionality could be consulted at [RED].

A snapshot of the tool is presented in Fig. 9.8

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

156

Fig. 9.8 REDEPEND-REACT snapshot: constructing an i* SD model

9.5.2 New Software Tools Developed for Supporting GOThIC’s Activities

9.5.2.1 OTS-Wiki Prototype

The aim of the OTS-Wiki preliminary prototype is to implement the knowledge base population
strategy related in Section 9.4.

The system is currently in a prototype stage and has been developed as a Master Thesis
project of two students at NTNU. Detailed documentation is available in [Aas-Lar07].

Fig. 9.9 associates the main scenarios to reach the OTS-Wiki portal high-level goals.

From scenario 9.9a) we realize that the OTS-Wiki portal has been designed as open and
freely accessible in order to enable the OTS Community in an open source-like environment.
Scenarios 9.9b), 9.9c) and 9.9d) show the refinement of the high-level goals explained in
Section 9.4 into other specific sub-goals or functionalities.

The current OTS-Wiki prototype consists on a web-based portal that uses the open wiki
principle with accessible and editable data relevant for the OTS community. The most important
parts of the OTS-Wiki is how easy it is for the users to find the desired information. Thus,
structuring of the information by means of GOThIC mechanisms plays an essential role in the
navigation efficiency.

Implementing the entire vision of the strategy presented in Section 9.4 exceeds the scope of
such Master Thesis, but the ideas and plans were prototyped in order to guide further
development. Future work, detailed in Chapter 11 is envisaged to pursue a multidisciplinary
project to put forward such strategy.

Chapter 9: Activity 7 –Knowledge Base Management

157

The OTS-Wiki prototype has been designed as compatible with DesCOTS in order to be
provided with the DesCOTS functionality in future.

Goal: Fostering OTS Community

Description

OTS Technology users are encouraged to work as a high performance team for reusing
and sharing OTS Components Information in an Open and Freely accessible OTS-Wiki
Portal.

Related goal(s)

1.-Incremental Population of Content
2.-Federation of OTS Resources
3.-Enabled Systematic Support for OTS Selection
…

PostCondition(s) Progressive Foundation of OTS Community

a)

Goal: Incremental Population of Content

Description
Users are encouraged to publish and share content they considered helpful to the OTS
Community.

Related goal(s)

1.-Submit OTS Component Information
2.-Enabled Active Communication
3.-New Functionality Requested to the Community
4.-Enabled a Glossary Construction
5.-User Profiles to Personalize the Information
…

PostCondition(s) Incremental growth of the OTS-Wiki portal content

b)

Goal: Federation of OTS Resources in OTS-Wiki

Description
Users are encouraged to publish content that they consider may be helpful to the
Community.

1. - User Introduces a new OTS-Web Resource Hyperlink to the Federated
 OTS Resources List by means of a template.
1.1. - System Records the hyperlink in the OTS-Wiki Repository.

2. – User Introduces a File
2.1. – Resource is uploaded to the OTS-Wiki Respository.

Related goal(s)

3. - User Provides a non-web reference
3.1. - Reference is Recorded in the OTS-Wiki Repository

PostCondition(s) Incremental growth of the federated resources.

c)

Goal: Enabled Systematic Support for Selection Process

Description
Tools are provided to support the OTS selection activities automatically, using the
standardized data from the repository. It is actually based on the DesCOTS functionality.

Related goal(s)

1.- User Requests automatic support for stating requirements
2.- User Requests automatic support for matching requirements with
 components.
…

PostCondition(s)

User is Supported to perform and document his or her selection process. System Learns
from each selection case (i.e. non-chosen components are recorded for being shown –by
analogy- to later searches)

d)

Fig. 9.9 Goal-based Scenarios designed to reach the OTS-Wiki High-Level goals

Fig. 9.10 shows some of the specific scenarios sub-goals:

• Fig. 9.10a). Enabled Active Communication: diverse mechanisms (e.g. discussion boards,
chat, distribution list, etc.) are provided to enable active communication among community
users.

• Fig 9.10b). Enabled Assisted Search: searching in the OTS-Wiki portal may be performed
by keyword or by taxonomy navigation. The taxonomy navigation we propose (already
implemented in the DesCOTS system [Gra+04]) helps users to analyze their OTS selection
problem and finding their suitable market segment by navigating through a hierarchical
search tree, ruling out irrelevant nodes through a question-and-answer dialog. If the
information requested does not already exist in the OTS-Wiki repository, the system shows

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

158

the Federated OTS Resources List providing hyperlinks to different resources where the
information could be found; and generates a Functionality Request (Scenario 9.9 c).

• Fig. 9.10c). New Functionality Requested to the Community: users are able to request and
discuss component functionality not found in the OTS-Wiki portal, or with no actual
implementation (those for which information was found neither in the OTS-Wiki nor in any
other portal). This could result in a competition among OSS communities and COTS
providers to make such components, or even encouraging the creation of new OSS
communities for supporting such functionality.

Goal: Enabled Active Communication

Description Users are encouraged to maintain an active and fruitful communication among them.

Related goal(s)

1-User Creates a Discussion Board
2-User Participates in an existing Discussion Board
3-User Creates a chatting discussion
4-User Participates in an existing Chat
…

PostCondition(s) Incremental growth of information from the active communication.

5a)

Goal: Enabled Assisted Search

Description Users are provided with searching facilities to locate OTS components information.

1. - Searching similar terms in the OTS-Wiki Repository.
1.1. - Searching by Keywords
1.2. - Searching by Browsing Related goal(s)

2.- Showing Federated OTS Resources List were to find OTS component
 information

PostCondition(s)

The system shows all the related information found (e.g. actual users of the component,
lessons learned, FAQs, forums, related experiences, integration cost, vendor helpfulness).
Let non-found components serve as requirements for future/non-registered components.

5b)

Goal: New Functionality Requested to the Community

Description

Users are provided with a Requesting Board area for requesting information of
components functionality that do not already exist in the OTS-Wiki portal (but maybe in
other portals) or new component functionalities to the Community.

Related goal(s)

1. - User Makes a Functionality Request
2. - User Answers a Functionality Request
3. - System generates a Request (from scenario 5b)

PostCondition(s) The system manages the status of the requests.

5c)

Goal: Enabled A Glossary Construction

Description Users are encouraged to detail the meaning of unknown or confusing terms.

Related goal(s)
1. - User Adds a term to the Glossary
2. - User Associates terms related

PostCondition(s) Incremental growth of the Glossary.

5d)

Fig. 9.10 Scenario excerpts for enabling OTS-Wiki high-level goals

• Fig. 9.10d). Enabled Glossary Construction: detailing the meaning of unknown or
confusing terms is important because it is common in the OTS context that the same
concept may be denoted by different names in different products or even worse, the same
term may denote different concepts in different products. Therefore, main concepts should
be clarified via explanation pages that comprise a Glossary. This glossary also serves to
provide semantic relationships among concepts via hyperlinks.

Finally, in Fig. 9.11 we provide a snapshot of the actual OTS-Wiki prototype.

Chapter 9: Activity 7 –Knowledge Base Management

159

Some others functionalities are further described in [Aas-Lar07], for instance: to provide
user profiles to personalize the information to the different roles needs, and case-base reasoning
support for improving the searching processes and selection of multiple components.

Fig. 9.11 A snapshot of the OTS-Wiki prototype

9.5.2.2 Information Quality (IQ) Tool

The huge amount and diversity of information resources related with COTS make
cumbersome and difficult the tasks that software engineers have to face each time they have
to perform a COTS selection process.

In Chapter 5 we define a prescriptive strategy to support software engineers not only to
collect and evaluate COTS related information resources, but also to reuse and manage
them by reconciling the information characteristics to those of the specific projects. Based
on our findings and the conceptual model cited in such chapter, we developed a software
tool called IQ Tool as part of an undergraduate student project. Detailed documentation and
analysis can be found in [Mes07].

The IQ Tool provides a systematic framework for supporting COTS selectors to reuse,
gather, and decide information sources to use according to their specific quality project needs.
Its main functionalities are enclosed in the conceptual model presented in Fig. 5.1 in Chapter
5.Among its high-level functionalities we found:

► To create and maintain a repository of Information Sources categorized by information
kinds (e.g., hierarchy, standard,…).

► The use of the different kinds of information is supported by heuristics to decide its
suitability to the user’s purposes.

► Correlate Information Sources to Taxonomy Nodes in order to enable the browsing of
Information Sources related.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

160

► To create and maintain a catalogue of users (i.e. Participants) that provides comments
and judgment marks about the Information Sources reliability and usability.

► To create and maintain a catalogue of information providers and their related judgment
marks.

► Ranking of Information Sources according to several attributes.

The main elements of the system are:

• Participants: Allows the users to maintain a database of people or organizations (i.e.,
Participants) that are authors of some Information Source and/or perform some evaluation
(judgment marks) about other Information Sources or other Participants.

• Information Sources: Allows the users to add, edit, consult and delete the information about
the Information Sources in the database. It also allows the users to see the evaluations
(judgment marks) that the Information Sources have received.

• Taxonomy Nodes: It refers to Taxonomy Nodes existing in the DesCOTS database.
Information Sources are related to them in order to browse the taxonomy and find the
related sources.

• Options: Several resources are provided as listing tools for manipulating and screening any
element of the database (Information Source and Participants), or ranking tools for prioritize
the Information Sources according to specific attributes.

Research in progress is looking to improve the tool functionality by adding other attributes
that are being empirically elicited from COTS selectors.

Fig. 9.12 shows a snapshot of the IQ Tool. It is envisaged to be integrated into DesCOTS.

Fig. 9.12 A snapshot of the Information Quality Tool

Chapter 9: Activity 7 –Knowledge Base Management

161

9.6 Summary and Discussion

Having a knowledge base to strore, retrieve and manage information during different COTS
selection processes involves a lot of advantages. Mainly, it reduces the overall required
evalution time an effort [Moh+04].

To select the right COTS requires a robust decision support model. All the information
stored in the GOThIC knowledge base and its related management and updating mechanisms
aim at provide support for such decision support model. It includes stakeholders’ experiences
and up-to-date relevant knowledge of the domain.

The information in the knowledge base has been structured following the goal-oriented
principles which make it very flexible. It does not only impacts on dealing with evolution, but
also for supporting the consideration of several scenarios and trade-offs in the requirements
engineering process in any COTS selection project.

The strategy presented in this Chapter for populating and maintaining the GOThIC reuse
infrastructure is a feasible and incremental way of dealing with the problems reported with the
use of traditional repositories and some drawbacks in COTS selection processes. It is done by
combining the GOThIC method approach and the “open-source collaboration” approach in a
social computing environment:

• It represents smooth start up and maintenance cost for putting forward the GOThIC reuse
infrastructure. It may benefit mainly to small and medium companies that are not able to
invest enough money and time to manage a repository themselves.

• Some tools could be used to support the GOThIC reuse infrastructure build up and
maintenance process, as the DesCOTS sysyem and REDEPEND-REACT tool that were
previously developed by our research group and were greatly used in our approach; and the
IQ Tool and the OTS-Wiki prototype that were developed as a result of this thesis work.

• The OTS-Wiki prototype intends to use the combination of ease and speed of publishing
contents, together with the ability of engaging the potential of the community of COTS
consumers into the structured knowledge creation process. Although several future work is
required to make it operational, it is expected that:

• It may become a quality platform for very large and up-to-date COTS (and other third
party components) knowledge repositories that acts as a Meta-portal for structuring the
COTS unstructured information contained in other portals (this is best illustrated by the
Wikipedia).

• It will take advantage of the set of tools developed to support COTS selection (e.g.,
DesCOTS and IQ Tool)

• It will foster the (re)use of COTS and promotes communities to address requirements
with no actual implementation.

163

Chapter

10

Method Evaluation

valuation is required to assess the usefulness of the method. Software methods, such as
GOThIC, need early validation while under development. The initial case studies discussed in
Chapter 3 and presented throughout Chapters 5-9 accomplished this validation and are best
characterized as the formative case studies due to their central role in shaping the method. In
contrast, the evaluation discussed in this chapter is best characterized as summative, since its
primary role in this thesis is the preliminary evaluation of the method developed during the
formative case studies.

As we discussed in Sections 1.3 and 1.4 (Research Goal and Methodological Approach
respectively), our main research goal was decomposed into several research questions that were
iteratively identified and tackled as we conduct our action-research process. All these research
questions helped to face our main research goal.

From the action-research process, additional ideas and objectives that were not originally
part of our initial research objectives arose and were also considered as useful results (as stated
in Section 1.3.1) leading to the conception of the GOThIC method as a greatly extended
approach. Thus, from the research perspective, we can say that the GOThIC development
evolved from the practical needs and results detected in the COTS searching area, which were
addressed by the formative case studies discussed in Chapter 3.

In the software engineering area, it is very hard to industrially validate methods such as this.
It is because its further summative evaluation necessarily required the implementation and use
of large scale repositories and analysis of COTS that are not feasible to be obtained in a short
period of time. Therefore, it would not be reasonable to argue a full industrial validation of the
ideas presented in this thesis within the terms of the PhD studies. Therefore, in this thesis
dissertation, for summative evaluation we provide some feasibility and effectiveness insights by
means of arguments that extrapolate from academic cases and post-mortem summaries of
industrial cases in order to preliminary answer research questions.

This chapter summarizes and discusses the main summative evaluation approaches taken at
that time. They provide qualitative empirical data supporting the main research questions of this

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

164

research, whilst the whole evaluation of the GOThIC method (including an extended qualitative
and quantitative approach) is also discussed as an ongoing and long term project involving
several academic and industrial partners (please see Chapter 11).

Section 10.1 justifies the approach taken to preliminary evaluate the GOThIC method.
Section 10.1.1 and 10.1.2 introduce the empirical short/medium term actions performed and
qualitative results obtained respectively. Section 10.2 summarizes the main method limitations
found. Section 10.3 provides another kind of qualitative evaluation by comparing the GOThIC
method activities with existing alternatives. While theoretically different in research approach
taken, the efforts related in each section, seek to evaluate the method.

10.1 Preliminary Industrial Evaluation of GOThIC

To perform the GOThIC’s method evaluation, a research stay at the Norwegian University of
Science and Technology (NTNU), IDI department (Department of Computer and Information
Science) was performed; specifically in the Software Engineering group (SU) leaded by
Professor Reidar Conradi. They have a recognized worldwide expertise in empirical research
and industrial evaluation issues. Their support has been crucial in the development of this phase
of the thesis and envisaging several collaborative research lines from the ideas generated by this
research.

The main goal of such stay was the preliminary summative evaluation of the GOThIC
method in industrial settings. To reach this goal, several empirical validation approaches were
studied and analyzed.

From our analysis, we concluded that although the correct and complete summative
evaluation of the GOThIC method may imply several perspectives and alternatives (many of
them coming from different fields as knowledge-based systems and economic models for
software reuse) they generally might imply the usage of the repository over the time and/or the
availability of an industrial software team to implement it.

In [Nic+01], the theoretically correct value of an experience-based repository as the one
constructed by GOThIC was defined as the value of all query results minus the cost of all
queries, as well as build-up and maintenance activities. The value of a query result is the value
of the retrieved cases in terms of money or effort saved, and includes any future use of the
retrieved cases that happen without querying the repository.

Thus, we found that to obtain the theoretically correct value for evaluating the entire
GOThIC reuse infrastructure would imply to collect empirical data along several life cycle
stages of the repository, from its construction to its evolution and maintenance. The different
stages could be defined as:

(1) The process of build up the reuse infrastructure with GOThIC
(2) The process of populating the component repository
(3) The process of using and maintaining this repository
(4) The process of collecting empirical data of the previous stages.

It is obvious that it implies a costing and long-term analysis that is out of the time expected
to report this thesis as discussed above (but not out of our objectives, as explained in Chapter
11). Being aware that software engineering research must be empirical, i.e., methods, proposals
and theories must be validated by observations, experiments, surveys, data collection, etc., we
have made an effort to formally validate in industry as much as possible some GOThIC method
related issues in a short/medium term period.

Chapter 10: Method Evaluation

165

10.1.1 Short/Medium Term Empirical Evaluation

We realized that evaluating the method in industrial environments must imply at least a proof-
of-concept prototype for supporting the people understanding of the method’s scope, its utility
and likely cost-effectiveness issues in the respective industrial contexts.

Practical approaches as those discussed in [Jed-Nic03] and [Coo97] take into account the
common restrictions related to cost and time for evaluating repository approaches and propose
the use of an straightforward monitoring of indicators as the “personal utility” of the delivered
information to the user (i.e., utility as perceived by stakeholders) and usability to identify
significant trends regarding the value of the repository.

Based on these studies, we addressed the medium/short term evaluation considering several
evaluation lines and more important, future research lines were envisaged.

With respect to the short-term evaluation reported in this thesis, different studies were
tackled in order to gather valuable qualitative information supporting our aim in industrial
settings and well as to understand improvement issues. They were mainly performed in the
context of the European ITEA project, Norwegian COSI (Co-development using inner & Open
Source in Software Intensive products) [COS] which aims to enable the Norwegian IT sector to
fully exploit the benefits and advantages of COTS and Open Source Software (OSS)
components.

At that time, these studies can be summarized as:

• An academic seminar to introduce the method to NTNU researchers and getting feedback
about the method and the correct way to put forward and evaluate the approach in
industrial settings. This seminar resulted in several ideas driving the subsequent studies.

• An industrial explorative survey to further inquiry several important facts of how
components are selected in industry and gain a better understanding of how the GOThIC
method can be better harmonized into the industrial practice.

• An industrial seminar to analyze the perceived easy of use and cost/effectiveness of the
method.

• A proof-of-concept prototype (introduced in Chapter 9) was also envisaged to mainly
evaluate the usefulness of the resulting product of the method (i.e. the flexible reuse
infrastructure and its deliverables). Despite this approach involves a long-term project out
of this thesis report, in this Chapter we will discuss its primary goals, which are further
explained as future work in Chapter 11.

All these short/medium term studies pursue the GOThIC evaluation process initiated by this
Thesis. In general, they are qualitative and subjective approaches to gain understanding of how
well the method supports the research questions. Our main aim in performing them is: on the
one hand to gain feedback about the cost-effectiveness and easy of use of the method perceived
by COTS selectors; on the other hand to initiate a long-term project to qualitatively and
quantitatively evaluate the usefulness of the reuse infrastructure and deliverables obtained by
the method among other important issues discussed below.

10.1.1.1 Academic Seminar

A seminar addressed to NTNU researchers was held at NTNU in May 2006. 11 researchers
from the IDI department attended. Participants are actively involved in component selection
research and industrial practice, and share a strong common core curriculum in empirical
research methods [SU].

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

166

We first introduced the GOThIC method and reported our results in several COTS selection
processes. Secondly, our aim was to inquiry discussions about the possible advantages and
disadvantages of the method in academic and industrial settings, as well as getting feedback
about the perception of the utility and usability of GOThIC from academics and industrial
research experts. We therefore had time for discussion and feedbacks. During our talk,
participants were able to interrupt and ask questions.

Participatory observation technique was used to gather data and annotations, as well as to
process the data obtained from the seminar and subsequent discussions. Table 10.1 summarizes
most of the comments obtained from participants and observations recorded.

Table 10.1 Summary of issues regarding the use of GOThIC as perceived by researchers

Topic Participant’s Comments Observation

Suitability of
produced models

Most of the participants never had heard about i*
models.

After a brief explanation of the use of the i*
methodology and their advantages for recording
COTS dependencies, most of the participants
realized its utility in the GOThIC context.

However, the issue of models exploitation was
still a concern

Perceived
Advantages of the
method

Some participantes said: “Our and most others'
concrete industrial experience with reuse
repositories and related classification systems
(taxonomies/ ontologies) has been disappointing –
they are costly to develop and maintain, annotation
costly and almost never done, and hard to use
(e.g. troublesome dependencies are often not dealt
with)”.

It was explained that the GOThIC approach aims
at dealing with some problems related with most
classical respositories approaches.

Several examples were explained and several
ideas to put forward the GOThIC repository were
commented.
The need of having a repository like this in the
context of CBSD was recognized as crucial

The OSS schema could be a case study that may
be benefit from this repository approach.

Some adoption schemas may be studied. Mainly
in the context of OSS, because people
participation is greatly expected.

Perceived
Disadvantages of the
method

Hardly industrial validation and adoption.
Industrial evaluation requires a long term project.
A lightweight population schema must be
designed.

Discussions and feedbacks were significantly useful to realize and improve several technical
approaches forming part of the method. They were also crucial for planning subsequent
strategies to reach the short-term and long-term method evaluation as reported below.

10.1.1.2 Explorative Survey

From the previous seminar, we realized the needs of further analyze and get empirical evidence
to support the method taking into account industrial needs. Two of the main concerns were: how
COTS selection processes are dealt in industry in order to better synchronize the GOThIC
method activities; and to understand the existing industrial practices for improving the GOThIC
method processes.

Thus, taking advantage of the availability of students taking the course TDT4735 Software
engineering at NTNU we asked two of them to perform the study under our guidance. In the
design stage of the study, we realized the need to focus not only on COTS, but also to include
OSS (i.e., to focus our study on OTS components). It was because; there exist a lot of evidence
that a huge percentage of software development industrial processes are actively using both
paradigms [Sim-Dil06].

The goal of the study was to discover the actual processes used in industry when it comes to
selection and evaluation of OTS components, mainly: Where and how OTS components are
found? How are they evaluated? How are they learnt? How industries take care of knowledge
about the chosen components?

Chapter 10: Method Evaluation

167

A pre-study was performed and several semi-structured interviews were applied to software
engineers in some companies as Keymind Computing, SINTEF ICT, FAST ASA, Statoil ASA,
eZ Systems, SUN, and Linpro. It was reported in [Ger06]. Such pre-study was the basis for
perfoming an improving a qualitative descriptive study reported in [Ger07]. It includes
enhanced semi-structured interviews to software engineers in the following Norwegian
companies: Visma, Sirius IT, TietoEnator, WebOn, Abeo, DKDigital, Commitment, Grieg
Multimedia, and Riventy. Main results from these studies are summarized in Table 10.2

Table 10.2 Excerpt of results obtained in the explorative survey applied to some Norwegian companies

Issues Descriptive Findings

When in the development
process are OTS
components selected?

Large components are usually selected at an early stage during the development process, while
small components can be selected anytime during the development process.

Motivations to use OTS
components

Higher quality, shorter time to market, and cost are the principal motivations to integrate OTS
components into a system or application.

Selection Process Most of the companies do not use any formal process for the selection of OTS components.

Searching Candidate OTS
components

Companies usually find OTS components by searching repositories containing components
used before, by Web search (Google), specialized web sites, and OSS communities.

An assessment of the problems reported by the use of these resources is made on Chapter 2

Evaluating Candidate
OTS components

Matching functionality and standards compliance are the most important technical issues when
evaluating an OTS component for integrating it into a system or application.

Deciding OTS
components

The final decision is mostly taken by the person who initiates and performs the work related to
components harvesting or a leader of the project. A significant difference was observed
between company sizes. As indicated by a respondent from a large company: “the project team
makes a recommendation and is the Chief Executive Manager who has the final word”. In small
and medium companies “it is mostly the software developer who takes the final decision. Such
decision is largely influenced by components they have already used, written in programming
languages they know, or have been recommended by colleagues.

Documenting the
Decision

Large companies document (but usually not adequately) the rationale behind the choice of the
selected component. Small and medium companies generally do not document their rationale.

Large companies usually have a person as responsible of the OTS components knowledge in
order to reuse this information later in subsequent projects, even if this person does not always
have a formal role as “knowledge keeper”.

Reported problems by using this kind of “knowledge keeper” are reported in Chapter 2, Section
2.3.

10.1.1.3 Industrial Seminar

The industrial seminar was held in the context of a COSI project meeting at NTNU in October
2006. 12 industrial participants from the COSI project attended.

The session was structured in the next way:

• To introduce the GOThIC method. Its artifacts and deliverables were emphasized (i.e., the
reuse infrastructure and its related artifacts).

• To inquiry the perceived usefulness of the method deliverables, the perceived effort to
produce them and use the different models recommended by the method (UML models, i*
SD models, quality models, etc.).

• To discuss the perceived possible advantages and disadvantages of the method in industrial
settings.

• To explain the idea of our proof-of-concept-prototype [Aas-Lar07] involving open source
collaboration for putting forward the reuse infrastructure aimed by the GOThIC method.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

168

During our talk, participants were able to interrupt and ask questions. We had time for
discussion and feedbacks. After the seminar, some individual meetings with some interested
participants were held. They were able to provide us some of their own COTS selection projects
information to perform further post-mortem studies.

Participatory observation technique was used to gather data and annotations, as well as to
process the data obtained from the seminar and subsequent discussions.

Table 10.3 summarizes the main observations and feedbacks from the participants with
respect to the use of GOThIC for building a reuse infrastructure into their organizations from a
technical perspective. It is important to remark that it is not argued that the method can be
applied into industrial organizations, because this implies many other issues (i.e.,
organizational, strategic, budget, etc.) but that the skills and expertise of software teams may be
able to perform the method activities.

Table 10.3 Summary of issues regarding the use of GOThIC to build a reuse infrastructure in industrial organizations

Topic Participant’s Comments Observation

UML class diagrams and use cases are mostly
used in their processes

Software teams are familiarized in producing
these models

Quality models are rarely used but seem suitable to
foster reuse.
Most participants are familiarized with quality
models.

It seems that to produce quality models is not a
problem from a technical perspective since
most industrial teams are familiarized with
them.

i* models are never used, only one of the
participants had heard about them.

Studies must be done to provide statistics of
the time that industrial users require to learn
and produce this kind of models.

Goal-oriented taxonomies are understandable and
easy to use.

Search and retrieval mechanisms seem
feasible to be implemented.

Suitability of

produced models

Glossaries are frequently used but not formally. It
could be useful to systematize the capture of
crucial concepts as proposed in the GOThIC
method.

It seems that to produce glossaries is not a
problem from a technical perspective.

It seems an approach that synergically integrates
useful strategies to deal with COTS selection
processes.

All method activities are proved to be useful in
specific case studies, but return on investment
analysis must be performed in industry to
provide data to evaluate the industrial use of
the method.

Perceived

Advantages of the

method

Tool support seems a great advantage in
performing the method

Some tools are proposed to support the
method activities.

It seems a cumbersome approach that requires a
large investment.

The extra effort needed for applying GOThIC
could be more helpful and less risky than
acting reactively, as we intend to corroborate
as one of the main hypothesis of our long-term
study.

Perceived

Disadvantages of the

method

Small and medium companies are not able to
invest in the construction and maintenance of this
kind of repositories.

The use of the approach in large companies
and the marketing contexts (See 9.2) seem the
most feasible ones.

After the discussion summarized in Table 10.3, we described the idea to put forward a proof-
of-concept prototype implying a globally available OTS-Wiki portal (introduced in Chapter 9).
Most of the participants were interested on the idea and help to define several scenarios defining
the main expected functionality of the portal:

► Support for locating OTS and information about them.

► Recording component information in a structured way.

Chapter 10: Method Evaluation

169

► Maintaining and reusing such information.

► Getting tool support for performing components selection processes.

These high-level scenarios are related in Chapter 9 and further explained in [Aas-Lar07].

The industrial background of the participants helped us to mature our industrial conception
of the method usability.

10.1.2 Short/Medium Term Qualitative Results

The experiences reported in this thesis dissertation and its short/medium term empirical
evaluation demonstrate some facts related to the stated research questions that are summarized
in Table 10.4.

Table 10.4 Research Questions Revisited with respect to short/medium term qualitative results

Research Question Short/Medium Term Qualitative Results

RQ1: What are the actual challenges of COTS
selection process?

RQ1.1: What are the actual challenges of COTS
searching processes?

Our studies confirm that the detected problems addressed in
this thesis are really sound in the industrial context [Ger06],
[Ger07]. All participants in the seminars agreed.

RQ2: How can we support COTS searching
challenges?

To answer this question, the sub-questions related below were
qualitatively evaluated.

RQ2.1: Can goal-oriented approaches be used to
produce useful results for dealing with COTS
searching challenges?

Our formative results showed that the introduction of goal-
oriented approaches for structuring COTS taxonomies resulted
in an increased understanding and management of the
taxonomy content; it was perceived as a more reliable COTS
selection processes by the practitioners and experts asked.

In the seminars, examples of goal-oriented taxonomies and
existing taxonomies were provided. A better understanding was
obtained by the use of goal-oriented taxonomies.

RQ2.2-How can we characterize COTS in the
marketplace?

The informational dimensions we used to characterize COTS
were considered sound and complete by industrial users.

Industrial users highlighted the need to further investigate the
required OSS informational dimensions in order to address
them in the GOThIC method metamodel.

RQ2.3-How can relevant information related to
COTS be gathered, evaluated and synthesized?

The Information Quality management strategy presented was
considered sound, but more empirical evaluation should be
done in order to better support the practice. Therefore, a further
empirical evaluation is being performed, some details may be
found in [Aya-Fra08].

RQ2.4-How can such information be maintained for
its reuse in different COTS selection processes?

The proof-of-concept repository prototype, called OTS-Wiki has
been presented and well accepted by the community. It was
presented at the 3rd International Conference on Open Source
Systems (see [Aya+07]) and the general feedback from the
conference attendees was positive and they evidenced to be
interested in using the portal and following its progress.

Furthermore, so far we have gathered qualitative information that helps to drive on-going
and future studies, as well as further GOThIC method improvements based on industrial needs.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

170

10.2 Limitations of the GOThIC Method

So far, the main limitations of the GOThIC method in industrial environments can be
summarized as:

� Further studies are needed to provide the industry with effective data to perform a decision
making process for adopting the method.

� The method provides informal, as opposed to formal, semantics for identifying and stating
goals and thus it does not support formal and systematic reasoning. The domain expertise
of the people involved in performing the method plays a crucial role.

� While this dissertation presents some useful heuristics which were validated from GBRAM
into the GOThIC context, as well as several lessons learned in formative case studies, the
method does not offer a complete and systematic catalogue of heuristics, many of them
greatly depend on the analyst rationale.

� Evolution and manipulation of taxonomies is not a systematic process. It requires
knowledge of the domain to discern the decision to take. The use of web-intelligence
techniques for improving this process are envisaged as future work.

� While well suited for COTS, the method has not been adequately proven and tested for
other kind of components (e.g. OSS), therefore further studies should be addressed to
include this kind of components into the GOThIC metamodel.

� As with all repository approaches, the method requires a considerable initial investment.
More empirical evidence is required to argue that although the GOThIC reuse infrastructure
requires an extra effort, it could be more helpful and less risky than acting reactively.

� The issue of how to put forward the reuse infrastructure in organizations to reach the LSO
paradigm is out of the scope of this thesis.

10.3 The comparative of GOThIC with similar approaches

Another kind of qualitative evaluation is the comparison of GOThIC with other existing
alternatives. Due to the application scope and the set of activities that the GOThIC method deals
with, it is difficult to identify a single approach against which the GOThIC method can be
compared as a whole. However, several aspects or parts of the method, as well as the models
resulting from the process, can be compared with some existing approaches. To make the
comparison easier, we have addressed each of the activities of GOThIC separately. The next
paragraphs summarize some of the facts resulting from this analysis.

Activity 1: Information Sources Exploration

Although this activity makes use of preexisting Information Quality (IQ) assessment techniques
to deal with the vast amounts of widespread, heterogeneous, and unstructured information
describing COTS (as related in Chapter 5); the objectives for which they are used in our
approach are very dissimilar to their traditional applications. To the best of our knowledge it is
the only attempt to systematically manage and reuse COTS information in a quality assurance
setting.

As far as we know, several works have recognized the criticism of the COTS information
characteristics, as related in the introduction of Chapter 5. Some search engines have attempted
to use information retrieval-based mechanisms supported by intelligent agents, ranking
algorithms and cluster analysis to support the finding of COTS information; and many useful

Chapter 10: Method Evaluation

171

studies of different nature have been performed to discover how much of the required
information to perform an informed selection is actually available [Ber+03], [Berg06].
However, none of them provide a prescriptive and systematic approach for searching,
managing, and reusing COTS information in a quality assurance framework.

Activity 2: COTS Domain Analysis

We adapted and complemented domain analysis techniques to fully deal with the COTS
technology characteristics. Table 6.1 summarizes our COTS domain analysis proposal and
makes clear the gap for recording non-technical descriptions and interoperability with respect to
other domain analysis approaches. Furthermore, using some mapping rules, we integrated all
required models to represent COTS informational dimensions into a single one, based on the
well-known standard ISO/IEC 9126-1, which is highly oriented to support the evaluation of the
candidate components. Therefore, it serves as COTS information metadata. This makes our
domain analysis approach unique.

Activities 3, 4 and 5: Goal-Oriented Core of GOThIC

Although there is a wide range on goal-oriented research: goal modelling, goal specification,
and goal-based reasoning for multiple purposes, such as requirements elaboration, verification
or conflict management, and under multiple forms, from informal qualitative to formal; in our
approach we have used many of these research works, but with objectives very dissimilar to
those they had been attempted before. A clear example is the customization of GBRAM and the
i* framework to identify, record and refine COTS related goals and their interdependencies.

In the COTS selection context, some approaches are also making use of goal-oriented
approaches [Chu-Coo04], [Alv03] to guide requirements and support decision making
processes. However, our approach is not comparable with these approaches mainly because of
their different objectives. We can say that our approach may complement these approaches to
find the COTS that best fit the stated requirements.

Activity 6: Taxonomy Manipulation and Management

As far as we know, there are not other proposals in the literature addressing the manipulation
and validation of goal-oriented COTS taxonomies. In the same way, we are not aware of any
other proposals defining the set of properties that taxonomies must comply to be considered
complete and correct. Because of this, activity 6 can not be directly compared to other
approaches. Advantages of using this approach are related in Chapter 8.

Activity 7: Knowledge Base Management

Traditional approaches for building, maintaining, and browsing software reuse repositories have
suffered from lack of domain-specific components and a heavy “fill-up” investment upfront as
well as the incomplete, unreliable, and too static characterization of components as surveyed in
[Par-Con07] and already detected in early proposals as [Pou95] and [Mor+02b].

On the other hand, strategies for incremental population and maintenance of repository
content and community building have also been weak, ignoring important social factors such as
trustful re-user participation to record and edit all kinds of experience information. This
situation also arises for other types of repositories, e.g. company-internal experience bases for
software improvement [Din-Con02]. Trying to deal with all these issues altogether, our
approach may be considered unique.

173

Chapter

11

Conclusions & Future Work

his document summarizes a PhD thesis in the area of COTS selection, more precisely in
relation to the construction COTS marketplace taxonomies as backbone of a reuse infrastructure
for supporting some COTS searching open issues.

This chapter reviews the main contributions of our research as well as some future lines of
investigation which have emerged along our research work. Section 11.1 summarizes the main
contributions of the approach whilst section 11.2 relates the envisaged future work.

11.1 Contributions of the Approach

This thesis intends to contribute in several aspects to the field of COTS searching. Some general
departing aspects which make our approach unique with respect to previous proposals are:

GOThIC provides COTS information recording and searching support

The resulting COTS reuse infrastructure constructed with the GOThIC method proposed in this
thesis, is mainly oriented to support the searching and reuse of COTS related information.

Existing COTS selection methods do not deal with COTS searching in the marketplace.
Furthermore, existing COTS taxonomies have not been constructed with a well defined method
to endorse them, they lack of rationale, mechanisms to deal with reuse and COTS marketplace
characteristics.

In this context the GOThIC method provides methodological guidance for assessing COTS
marketplace domains and building a reuse infrastructure based on goal-oriented COTS
taxonomies that help to structuring all COTS related information in a reusable and standardized
framework.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

174

GOThIC deals with COTS Marketplace Characteristics and Improves COTS information
Reuse

The GOThIC method proposes a set of interrelated activities using several techniques aimed to
deal with the COTS marketplace characteristics. Specifically, some of the problems related in
Section 1.1 are dealt in next way:

► Uncontrolled COTS marketplace: Goal-oriented taxonomies offer a natural way of
managing such mess by improving flexibility, understanding and managing to the
current COTS marketplace representations.

► Growing size of the COTS marketplace. By using goal-oriented COTS taxonomies,
appearance of a new market segment is easier to handle than in other approaches, since
it requires to locate its place in the taxonomy using the defined classifiers, and once
there even some useful artifacts are inherited (e.g., quality models and glossaries).
Proliferation of COTS information is taken into account by prioritizing information
sources in the basis of specific criteria (e.g., time, money, reliability, …).

► Rapid changes in the COTS marketplace. This fact points out the need to separate
conceptually the COTS from the services that they cover. Thus, goal-oriented taxonomy
nodes do not stand for types of COTS available but for related groups of functionalities,
it makes the taxonomy more robust with respect to the segment barriers movement
effect mentioned in Section 1.1.

The existence of such goal-oriented taxonomies and their associated knowledge base
obtained with GOThIC would be a basis for the current methodologies for searching
components “to be evaluated” into the right segment of COTS marketplace with a high
probability of success. It means a significant reduction on time required in the evaluation
process and the implicit reuse of the knowledge.

Besides these contributions, several other contributions to the field exist, mainly in relation
to the aspects of reliability and effectiveness of resulting taxonomies and artifacts for dealing
with COTS marketplace characteristics; and the reusability of the knowledge gained in each
experience.

Next subsections present the main contribution of this work regarding these issues.

11.1.1 Reliability and Effectiveness related Contributions

GOThIC improves COTS taxonomies usability and therefore their effectiveness by adopting
and/or adapting several well-known techniques into a method, with well-defined activities and
steps, each with its own objectives and rationale. Therefore, it provides a solid rationale which
endorses the resulting taxonomies, which are not obtained by common sense, but also by
reliable frameworks built from a formal and unambiguous base, applying a well defined
rationale.

The main contributions in relation to this issue are:

• GOThIC incorporates goal-oriented approaches to define a formal basis to support the
evolvability and interoperability in the marketplace and gives a natural and
understandable rationale to the COTS marketplace structuring, making easier to the
users comprehend the COTS available in the marketplace.

• A taxonomy validation and management process has been defined to ensure the
correctness and completeness of the taxonomies, whilst it allows the tailoring of the
taxonomies to the particular needs of the users.

Chapter 11: Conclusions and Future Work

175

11.1.2 Reusability related Contributions

Another important contribution of the GOThIC method is the definition of a suitable
infrastructure to uphold knowledge reuse and evolution of the marketplace. The main
contributions of the proposal regarding reusability are:

• Identification and guidance for constructing artefacts to uphold reuse. The informational
dimensions required for the effective and efficient selection of COTS components have
been identified and represented using appropriate types of artefacts. Moreover, most
software engineers are familiar with the type of artefacts proposed.

• Guidance to build an integrated framework of COTS information reuse: Using some
mapping rules, we have integrated all the produced artefacts into a single one, based on
the well-known ISO/IEC 9126-1 standard (Domain Model), highly oriented to support
the reusable evaluation of the candidate components. Given this representation, we may
use some existing tool-support to conduct the evaluation of candidates in a uniform
way.

• Inheriting produced artefacts downwards the taxonomy. Taxonomy nodes are bound to
a domain model enclosing COTS related information. New market segments can be
integrated to the taxonomy and their domain model can be constructed by inheriting
from and/or tailoring their ancestor’s domain models or parts of them.

• Our population and maintenance of the Knowledge Base (repository) strategy impacts
positively on ameliorating some well-known obstacles for successful repositories whilst
overcome the problems addressed by the GOThIC activities.

Intending to highlight the GOThIC benefits to the actual roles involved in COTS selection
(introduced in Table 2.3 in Chapter 2), in Table 11.1 we briefly summarize some high-level
intended benefits of this approach to them.

Table 11.1 Intended benefits to the different roles involved in COTS Selection Processes

Activity Intended benefits of GOThIC to the COTS Selection roles

Market Watcher
(MW)

Marketplace exploration is easier and understandable since MW only has to screen the
market segment(s) that matches the established requirements.

Quality Engineer
(QE)

Quality issues are easier to reach and record by using the heuristics and resources provided
by GOThIC.

Selector (S)
To take the final decision based on the evaluation of the candidates is more reliable since all
the information required is in the same umbrella and therefore their comparison is better
handled and less risky.

Knowledge
Keeper (KK)

Storing and documenting the decision is naturally performed by the produced artifacts for their
future use in forthcoming selection processes. And with the performed strategy for open
collaboration for populating and maintaining the repository allows small and medium
enterprises to reuse their knowledge and other´s knowledge to improve their selection
processes.

Section 10.3 in Chapter 10 compares GOThIC activities with existing proposals, and also
relates the contributions of each activity with respect to the existing work.

11.1.3 Contributions in collaboration with other members of the GESSI

group

There is a great deal of ongoing work within the GESSI research group which is closely bound
to the work presented in this thesis. Thus, some contributions have resulted from the combined

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

176

effort with several members of the group. Most of these contributions resulted from the fact that
a better understanding of the i* framework, used in several of our works was required.

Similarly to other approaches in software and knowledge engineering areas, the GOThIC
method also uses the i* approach to represent goals, as goals present several characteristics that
make them attractive (e.g., expressiveness, stability and evolvability) as discussed in this thesis.
However in our work we have further endorsed this approach by performing some actions to
adapt and clarify the i* semantics to our intended objectives and make it more understandable
and usable. The main characteristics of our work are:

• To extend the i* approach for recording COTS interoperability, and in general for
supporting COTS selection processes.

• A reference model of the i* approach that provides a precise meaning of the concepts
therein.

Some contributions resulting from the combined efforts with other members of the GESSI
group are:

− The RiSD methodology, aimed at prescribing the construction of Reduced i* SD models
for modeling organizational goals and software systems [Gra+05].

− A systematic approach for constructing i* SD models for socio-technical systems
[Fra+07].

Moreover, we are currently working on the extension of the DesCOTS tool [Gra+04]
(already implemented by some members of the GESSI group) with some tools resulted from
this thesis as the IQ Tool system [Mes07] and the OTS-Wiki collaborative portal [Aas-Lar07]
introduced in Chapter 9.

11.2 Future Work

The work presented in this thesis addresses some of the fundamental problems with COTS
searching and reuse; however, much work remains to be done and several research lines remain
open for future investigation to improve and extend the research results obtained from this
thesis.

Major future research lines are described in Section 11.2.1, whilst Section 11.2.2 relates an
intended financed project to put forward these research lines.

11.2.1 Major Future Research Lines

Some of the envisaged as future research lines may be described as:

To extend the GOThIC metamodel to include other kind of reusable components

From the industrial evaluation of GOThIC we realized the need of industrial users to select not
only COTS but also OSS. Therefore, we have recognized the need to focus our ongoing and
future research not only on COTS, but also OSS (i.e., OTS).

Additionally, over the past 2-3 year, emerging technologies have radically changed the
manner in which consumer and business applications can be accessed over the Internet, leading
to the rise of dynamic and rapidly growing new segments in the provision of services, named
Internet Web Services industry, which currently is also suffering of procurement-related
problems.

Chapter 11: Conclusions and Future Work

177

Consequently, based on the research performed in this thesis, some further studies are
envisaged in order to carefully analyze and adapt the GOThIC metamodel firstly to embrace
OSS component issues into the integrated Domain Model obtained with GOThIC, and secondly
to analyze the incorporation of Web services as they are demanded by the industry.

Supporting this claim we found that roughly half of all European software projects make use
of OSS, and this amount is increasing rapidly [Li+05]. Evans Data Corporation [Eva05] states
that 56% of developers use open source products in 2005, while only 38% used it in 2003. On
the other hand, market growth estimations for Web Services are notable. The analyst firm
Radicati Group expects that worldwide sales of web services will reach USD $6.2 billions by
2008 [Rad]. By 2009 the figure could reach USD $15 billions according to IDC [IDC].
Estimations for the IT professional services market reach up to USD $261 billions by 2008,
according to a study by Gartner Group [Gar].

To collect empirical industrial data to evaluate and improve the GOThIC approach

We realize the critical need to reinforce our GOThIC approach with empirical research to drive
the intended improvements in an optimal way. Although gathering industrial data is commonly
a very difficult task, we envisage relying on the strong empirical background and collaboration
of some research groups and industrial contacts.

• Empirical studies in industry are planned in order to gather evidence of the usefulness and

effectiveness of GOThIC in different context and schemas of use.

Several empirical studies are envisaged in a long term, they range from further investigate
the success and usability of the repository obtained with GOThIC (i.e. the diverse artifacts
produced by the method), as well as diverse aspects that range from the success of the open-
source-like collaboration concept for dealing with OTS selection challenges, and the
problems reported with the use of repositories. Some intended metrics are the ability of the
portal to enable a community of re-users around specific components, ability to promote
homogenization, promotion of OSS communities, information reuse, etc. They will be
preliminary assessed by the support perceived by the users of the portal, effort saved by
using the portal for supporting COTS selection processes. (i.e., how much time is invested
in performing the COTS searching activities with and without it); and the reuse percentage
in diverse COTS selection processes among similar projects.

• To improve each GOThIC activity based on empirically obtained feedback. For instance, to
continue with the research described in [Aya-Fra08] for assessing the quality of the
information that is really used in the practice of components selection processes.

With respect to the Information Quality strategy presented in Chapter 5, we want to enhance
our approach with more empirical data to make it more efficient. This could be done by
automating the evaluation of information source objective properties, i.e., extracting
properties such as authors’ names and organizations, references, etc., and populating
automatically the database with these properties. We envisage the application of
technologies such as intelligent agents, ranking algorithms, cluster analysis, web
mining/data mining, personalization, recommendation, and collaborative filtering techniques
to improve the construction of knowledge over these raw data [Gils+04].

To explore the use of other tecniques to support the evolution and management of the
classification schemas

We consider that the exploration of novel techniques to support the evolution and management
of classification schemas in a collaborative way as the so-called folksonomies, as well as the
application of artificial intelligence techniques could be interesting for designing suitable

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

178

mechanisms to evolve the proposed GOThIC taxonomies and associated artifacts. It may be
done by extracting and assessing actionable meaning from both structured and unstructured data
existing in the GOThIC repository.

11.2.2 A Multidisciplinary Intended Project to Put Forward Major Future

Research Lines

An intended result from this thesis is a multidisciplinary long term project involving academy
and industrial partners to further explore and improve several of the concepts originated here.
Mainly, to exploit several of the major research lines envisaged in the previous section, and
others interesting lines with greatly industrial and social effects.

Some of the intended partners of the project consortium are MicroArt S.L., Norwegian
University of Science and Technology (NTNU), Consejo Superior the Investigaciones-Artificial
Intelligence Research Institute (CSIC-IIIA), Politecnico di Torino (Polito), Centre de Recherche
Public Henri Tudor (CRPHT), Beijing University of Technology (BJUT), Hewlett Packard
(HP), Actimage, and Computas.

Project Goals

Taking advante of the expertise of the partners, this project aims at a structured and incremental
way to federate and reuse the existing efforts for managing components. The idea is to further
exploit, extend and improve our proof-of-concept OTS-Wiki prototype [Aas-Lar07] which is
based on “open source collaboration idea” with semantic wiki and web intelligence
technologies.

The main goals of the project are:

G1. Build a high quality meta-data OTS repository in order to:

► Support software customers (here integrators) with efficient means for software
development and maintenance by reusing available OSS/COTS.

► Support software providers of OSS/COTS with means to “market” their products.

G2. Encourage the European Society to add value to the software applications developed and
used, so that it benefits from more reliable software as well as a faster and cheaper software
development process.

► Incrementally build a cooperative component community around the shared
components.

► Incrementally build up pragmatic classification system for component annotation.

► Provide web intelligence inference services to learn from the repository.

► Provide mechanisms to rank the quality of the information stored.

Such a knowledge infrastructure to support distributed and cooperative software processes is
expected to trigger new types of participative “social computing” – with proposed new roles and
tasks. Technology transfer is also envisaged. This will foster cross-company feedback and
exchanges between members of communities. An initial set of roles with related tasks and
scenarios will be defined to help using and evolving the portal. We plan to populate the portal
with leading components from existing repositories. The portal will offer a web protocol to
allow inter-working with other tools such as automatic reasoning engines and classifiers. The
project will not only support advanced OTS component selection, but also it will contribute to
overcome reported problems in existing component repositories, as claimed by GOThIC.

Chapter 11: Conclusions and Future Work

179

On the other hand, by the expected massive use of the OTS-Wiki portal for annotating
components and sharing experiences about them, we may obtain a semantically-rich meta-
information repository that can be used to facilitate performing: 1) data mining; 2)
classification; c) Experimentation and research projects about OTS components and CBSE.

Web-intelligence techniques will be used to evolve classification schemas and its artifacts
proposed by analyzing and extracting actionable meaning from both structured and unstructured
data (mostly textual), e.g., from user-provided dialogs, comments and ratings, experience and
test reports, queries and query responses, actual component choices etc. This must be combined
with a usage-based growth of available components, together with respective metadata
annotations and recorded experience, linked to related user communities. This leads us to recent
web technologies, like Wiki for facilitating cooperative web-communities, web portals, and
web-intelligence technologies to synthesize and evolve component annotations.

A technology such that may be viewed as a kind of digital library in the sense that it is an
online collection of information made accessible to a community of users. As a result, we can
incrementally establish:

A1. A federation of existing, domain-specific web repositories where the components and
their descriptions primarily are stored in such repositories,

A2. Support for additional component annotations (common metadata) and searching
according to some “standard” classification system (free text search initially), and

A3. Experience sharing among a dynamic community of component customers and
providers (called users).

A4. Advance of web intelligence techniques for information extraction and information
reputation (or quality ranking) techniques.

Additional details:

• User profile: two main types of user: (1) companies of any kind that select their IT
infrastructure and associated subsystems; (2) software consultant companies which
provide assessment on the assembly and deployment of IT solutions.

• Applications: integration and deployment of IT solutions based on existing software
(OTS components) allowing thus effective return on investment.

• Data sets: the final repository may have dozens of hundreds of elements. Any current
source for OTS software description (tool descriptions, benchmarks, standards, reports,
etc.) can be used to extract information.

Consortium Roles

To reach the project goals by the consortium, we have envisaged the following roles (not
necessarily disjoint):

• Classification schema definition. Role(s) for defining the classification mechanisms that
will arrange the contents of the intended digital library.

• Authoring. Role(s) for creating new content or capturing existing contents, following
the classification mechanisms and metadata definition.

• Workflow. Role(s) for defining processes for maintaining the OTS-wiki digital library,
and for exploiting it adequately.

• Semantic knowledge acquisition (web intelligence). Role(s) for synthesising useful
information from the daily use of the OTS-wiki digital library facilitating automation of

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

180

activities and customization to user profiles, as well as quality-based information
ranking mechanisms.

• Validation. Role(s) for defining experiments to validate the adequacy of the models,
techniques, and methods proposed around the OTS-wiki digital library.

• Explotation. Role(s) for making an industrial use of the OTS-wiki digital library and
providing feedback to improve its structure and/or contents.

Moreover, since our project aims at providing an open and collaborative web community, we
are aware that embracing coherent ethical guidelines is essential for building inclusive
knowledge societies and raising awareness about the ethical aspects and principles in order to
upholding the fundamental values of freedom, equality, solidarity, tolerance and shared
responsibility.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

181

List of Abbreviations

BA Business Applications Case Study
CeBASE Center for Empirically Based Software Engineering
CBS COTS-Based Systems
CBSD COTS-Based Systems Development
CBSE Component-Based Software Engineering
COSI Co-development using inner & Open Source in Software Intensive products.

Research project.
COTS Commercial-Off-The-Shelf software components
DALI Methodologies and tools for the Development, Acquisition, evaLuation and

Integration of software components. Research Project
DesCOTS Description, evaluation and selection of COTS components System
EF Experience Factory
GESSI Software Engineering for Information System Research Group
GBTCM Goal-Based Taxonomy Construction Method (previous to GOThIC)
GOThIC Goal-Oriented Taxonomy and Reuse Infrastructure Construction Method
GBRAM Goa-Based Requirements Analysis Method
GQM Goal-Question-Metric approach
IQ Information Quality
LEL Language Extended Lexicon
LSO Learning Software Organization
NTNU Norwegian University of Science and Technology
OSS Open Source Software
OTS Off-The-Shelf Software
QM Quality Model
RE Requirements Engineering
REST Requirements Engineering Support Tools. Case Study
RTSC Real-Time-Synchronous Communication
RiSD Reduced i* SD models. Methodology
SAD Software Application Development. Case Study
SEI Software Engineering Institute at the Carnegie Mellon University
UPC Technical University of Catalunya
UPIC towards a Unified approach to the Procurement and Implementation of

information system. Research Project
WWW World Wide Web

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

183

Glossary

� Component-Based Development refers to the processes that lead to the development of a
COTS-based software system

� Component-Based Software Engineering refers to a software system that is built mainly as
the composition of COTS components, or as the customization of one single OTS
component.

� Commercial-Off-The-Shelf components refer to third party components that acquired from
the marketplace by a fee.

� COTS Marketplace: The COTS marketplace is characterized by a vast array of OTS
components and products claims, extreme quality and capability differences between
components, and many components incompatibilities, even when they purport to adhere to
the same standards.

� COTS Domain: It refers to a field that defines a set of common requirements, terminology,
and functionality for any COTS constructed to solve a problem in that field.

� COTS Selection: Refers to the processes of searching COTS candidates to fulfill the system
requirements from the marketplace, evaluating them with respect to the system
requirements for taking the final decision.

� COTS Searching: Exploring the marketplace to find COTS candidates and their related
information.

� Goal: Goals are targets for achievement. They are high level objectives of the business,
organizations or software components. They express the rationale for intended systems and
guide decision at various levels.

� Goal-Oriented: Diverse methods and techniques are actually based on the notion of goals to
reach several objectives.

� Open Source Software refers to components freely provided by Open Source Communities
with some licensing obligations.

� Off-The-Shelf Software refers to a software product that is publicly available at some cost
or with some licensing obligations and other software projects can reuse and integrate it
into their own products. The term includes COTS and OSS components.

� COTS consumers: The term refers to all subjects that use COTS to develop software
systems. They range from single developers to IT organizations of any size.

� COTS market segments: In the COTS taxonomies constructed by GOThIC, they refer to
basic types of COTS available in the marketplace. Market segments can be considered as
atomic entities covering a significant group of functionality.

� COTS categories: They serve to group too fine-grained functionalities of market
segments.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

185

References

[Aas-Lar07] Aaslund, K., Larsen S.: “OTS-Wiki: A Web Community for Fostering Evaluation and
Selection of Off-The-Shelf Software Components” Master Thesis. Department of
Computer and Information Science, Norwegian University of Science and Technology
(NTNU). Spring 2007. http://www.idi.ntnu.no/grupper/su/su-diploma-2007/dipl07-
larsen-aaslund.pdf

[Ack+02] Ackerman, J., Brinkop, F., Conrad, S., Fettke, P., Frick, A., Glistau E., Jaekel H.,
Kolar O., Loos, P., Merc., H., Orther, E., Raape, Overhage, S., Sahm, S.,
Schmietendorf, A., Teschke, T., and Turowski, K.: “Standardized Specification of
Business Components”. Memoradum of the GI working group 5.10.3, 2002.

[Ader03] Ader. M.: Workflow Comprative Study. 2003 Edition, available from www.waria.com

[Agu05] Aguirre, J.: “IPSComp – Intelligent Portal for Searching Components”. Master Thesis.
Vrije Universiteit Brussel-Belgium in collaboration with Ecole des Mines de Nantes-
France. 2005.

[Alm+06] Almeida, E.S., Cordeiro , J.C., Carvahlo, A.P., Alvaro, A., Cardoso Garcia, V.,
Romero de Lemos Meira, S., Lucrédio, D.: “The Domain Analysis Concept Revisited:
A Practical Approach”. International Conference on Software Reuse, ICSR 2006: 43-
57.

[Alv03] Alves, C.: “COTS-Based Requirements Engineering” A. Cechich et al. (Eds.):
Component-Based Software Quality, LNCS 2693, pp. 21–39, 2003. Springer-Verlag
Berlin Heidelberg 2003

[Alv-Cas01] Alves, C., Castro, J. “CRE: A Systematic Method for COTS Selection” Proceedings
XV Brazilian Simposium on Software Engineering, 2001.

[And04] Anderson, W.B.: “COTS Selection and Adoption in a Small Business Environment:
How Do You Downsize the Process?” International Conference on COTS-Based
Software Systems (ICCBSS 2004), p 216.

[Ant97] Antón, A. I.: “Goal Identification and Refinement in the Specification of Software-
Based Information Systems”. Ph.D. thesis, Georgia Institute of Technology, June
1997.

[Ant+96] Anton, A.I. Liang, E. Rodenstein, R.A.: “A Web-based requirements analysis tool”
In Proceedings of the 5th Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 1996.

[Ank+03] Ankolekar, A., Herbsleb, J., Sycara, K. “Addressing Challenges to Open Source
Collaboration with Semantic Web”. In proceedings of 3rd Workshop on Open Source
Software Engineering, the 25th International Conference on Software Engineering
(ICSE). 2003. Portland, Oregon, USA, pp 9-14.

[Aoy+98] Aoyama, M., Yamashita, T., Kobori, S.: “An Architecture of Software Commerce
Broker Over The Internet”. In Proceedings of Worldwide Computing and Its
Applications (WWCA'98). Springer Verlang, Volume 1368/1998, pp 97-107, 1998.

[Ast+06] Astudillo, H., Pereira, J., López, C.: “Evaluating Alternative COTS Assemblies from
Imperfect Component Information”. QoSA 2006: 27-42

[Ast+06b] Astudillo, H., Pereira, J., López, C.: “Identifying Interesting Component Assemblies for
NFRs Using Imperfect Information”. EWSA 2006: 204-211

[Avi+99] Avison, D., Lau, F., Myers, M., Nielse, P.A.: “Action Research”. CACM 42(1), 1999.

[Aya-Fra08] Ayala, C., Franch, X.: “Assessing What Information Quality Means in OTS Selection

References

186

Processes”. International Conference on Composite-Based Software Systems
(ICCBSS 2008). To appear. IEEE Society Press

[Aya+07] Ayala, C., Sørensen, C.F., Conradi, R., Franch, X., Li, J.: "Open Source Collaboration
for Fostering Off-The-Shelf Components Selection". In IFIP International Federation
for Information Processing, Volume 234, Open Source Development, Adoption and
Innovation. (OSS 2007). June 2007, pp. 17-30.

[Aya-Fra07] Ayala, C., Franch X.:”A Systematic Aproach to Manage Information Quality for
Supporting Software Package Selection” Research Report. LSI-07-28-R. Universitat
Politècnica de Catalunya, Departamento de Lenguajes y Sistemas Informáticos.

[Aya06] Ayala, C.: "Systematic Construction of Goal-Oriented COTS Taxonomies" In
Proceedings of the 3rd Doctoral Consortium at the 18th Conference on Advanced
Information Systems Engineering (CAISE 2006).5-9 June 2006, Luxembourg.

[Aya-Fra06a] Ayala, C., Franch, X.: “A Goal-Oriented Strategy for Supporting Commercial Off-The-
Shelf Components Selection” In Proceedings of the 9th International Conference on
Software Reuse (ICSR). Torino, Italy. Lecture Notes in Computer Science. Volumen:
4039-2006. pp. 1-15. June 2006.

[Aya-Fra06b] Ayala, C., Franch, X.: "Overcoming COTS Marketplace Evolvability and
Interoperability". In Proceedings of CAISE Forum at 18th Conference on Advanced
Information Systems Engineering (CAISE 2006) June 2006, Luxembourg.

[Aya-Fra06c] Ayala, C.; Franch, X.: "Domain Analysis for Supporting Commercial Off-The-Shelf
Components Selection". In Proceedings of the 25th International Conference on
Conceptual Modelling (ER 2006). Tucson, Arizona, USA. Lecture Notes in Computes
Science. Volumen: 4215/2006. Pages: 354-370.

[Aya-Fra06TR-a] Ayala, C., Franch, X.: "Domain Analysis for Supporting Commercial Off-The-Shelf
Components Selection" (Extended Version) Research Report LSI-06-16-R.
Universitat Politècnica de Catalunya, Departamento de Lenguajes y Sistemas
Informáticos. http://www.lsi.upc.edu/dept/techreps/llistat_detallat.php?id=916

[Aya-Fra06tr] Ayala, C., Franch, X.: "A Process for Building Goal-Oriented COTS Taxonomies"
Research Report LSI-06-7-R.Universitat Politècnica de Catalunya, Departamento de
Lenguajes y Sistemas Informáticos.
http://www.lsi.upc.edu/dept/techreps/llistat_detallat.php?id=907

[Aya05PT] Ayala, C. “Systematic Construction of Goal-Oriented COTS Taxonomies”. Thesis
Project presented to fullfil the requirements of”Diploma de Estudios Avanzados” and
PhD Thesis Evaluation. July 2005. Available at:
http://www.lsi.upc.edu/~cayala/Papers/AyalaThesisProject05.pdf

[Aya-Fra05] Ayala, C.; Franch, X.“Transforming Software Package Classification Hierarchies into
Goal-Based Taxonomies” In Proceedings of the16th International Conference on
Database and Expert Systems Applications (DEXA 2005). Copenhagen, Denmark.
22-26 August 2005. Lecture Notes in Computer Science. Volumen: 3588/2005. pp.
665- 675.

[Aya+05a] Ayala, C.P., Botella, P., Franch, X.: “On Goal-Oriented COTS Taxonomies
Construction” In Proceedings of the 4th International Conference on COTS-Based
Software Systems (ICCBSS 2005). Bilbao, Spain. Lecture Notes in Computer
Science. Volumen: 3412/2005. pp. 90-100.

[Aya+05b] Ayala, C.; Cares, C.; Carvallo, J.P.; Grau, G.; Haya, M.; Salazar, G.; Franch, X.;
Mayol, E.; Quer, C.: “A Comparative Análisis of i* -Based Goal-Oriented Modelling
Languajes” In Proceedings of the International Workshop on Agent-Oriented Software
Development Methodology (AOSDM 2005), at the SEKE Conference. July 2005.
Taipei, Taiwán; China. pp.43-50.

[Aya+05c] Ayala, C., Botella, P., Franch, X.: “Construction of a Taxonomy for Requirements
Engineering Comercial-Off-The-Shelf Components” Journal of Computer Science and

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

187

Technology, Special Issue on Software Requirements Engineering Vol. 5, No. 2,
August 2005.

[Aya+05TR] Ayala, C.P., Botella, P., Franch, X. "Goal-Based Reasoning in the Construction of
Taxonomies for COTS Components" Technical Report LSI-05-58-R. Universitat
Politècnica de Catalunya, Departamento de Lenguajes y Sistemas Informáticos.

[Aya+04a] Ayala, C.; Botella, P.; Franch, X. “Goal-Based Reasoned Construction of Taxonomies
for the Selection of COTS Products” In Proceedings of the 8th World Multiconference
on Systemics, Cybernetics and Informatics (SCI 2004). July 18-21, Orlando, Florida,
USA.

[Aya+04b] Ayala, C.; Cares, C.; Carvallo, J.P.; Grau, G.; Haya, M.; Salazar, G.; Franch, X.;
Mayol, E.; Quer, C.: “Análisis Comparativo de Lenguajes de Modelado Orientados a
Objetivos basados en i*” In Proceedings of the Jornadas Iberoamericanas de
Ingeniería del Software e Ingeniería del Conocimiento (JIISIC'04). Madrid, Spain.
2004. Pages: 527-540.

[Aya+04c] Ayala, C.; Botella, P.; Franch, X.: “Construccion de una Taxonomía de Componentes
COTS Orientados a la Gestión de Requisitos” In Proceedings of the VII Workshop on
Requirements Engineering. Tandil, Argentina. December 2004. ISBN 950-658-147-9.
pp. 214-225.

[Aya+04TR] Ayala, C. P., Botella, P., Franch, X.:"Towards the Definition of a Taxonomy for the
COTS Product´s Market" Technical Report LSI-04-3-R. Universitat Politècnica de
Catalunya, Departamento de Lenguajes y Sistemas Informáticos. 2004.

[Bai94] Bailey, K-D.: “Typologies and Taxonomies: An Introduction to Classification
Techniques”. Sage, Thousand Oaks, CA (1994).

[Ban06] Bandor, M.S.: “Quantitative Methods for Software Selection and Evaluation“
CMU/SEI-2006-TN-026. September 2006.

[Ban-Da02] Bansiya, J., Davis, G.: A Hierarchical Model for Object-Oriented Design Quality
Assessment. IEEE Transactions on Software Engineering. 28(1): 4-17 (2002).

[Bar+05] Bartholet, R. G., D. C. Brogan, P. F. Reynolds, Jr.: ” The Computational Complexity of
Component Selection in Simulation Reuse”. Proceedings of the 37th conference on
Winter simulation 2005. pages 2472 - 2481 .

[Bas+04] Basili, V.R., Boehm, B., Davis, A., Humphrey, W.S., Leveson, N., Mead, N.R., Musa,
J.D., Parnas, D.L., Pfleger, S.L., Weyuker, E. : “New Year’s Resolution for Software
Quality”, Quality Time, J. Hayes Eds. IEEE Software 21, 1 (January/February 2004)
pp. 12-13.

[Bas+00] Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R., and
Wallnau, C. Volume I - Market assessment of Component-Based Software
Engineering. Technical report, CMU/SEI - Carnegie Mellon University/Software
Engineering Institute, 2000.

[Bas92] Basili; V.R.: “Software Modeling and Measurement. The Goal-Question-Metric
Paradigm”. Computer Science Tecnhical Report Series NR: UMIACS-TR92-96, 1992.

[Bas+94] Basili, V., Caldiera, G., Rombach, D. Goal/question/metric paradigm. In Encyclopedia
of Software Engineering. Vol. 1, 1994. J. C. Marciniak, Ed. John Wiley and Sons, New
York.

[Bas+94b] V. R. Basili, G. Caldiera, and H. D. Rombach. Experience Factory. In J. J. Marciniak
(ed.), Encyclopedia of Software Engineering, Volume 1, John Wiley & Sons, 1994.

[Bas-Boe01] Basili, V.R., Boehm, B.: "COTS-Based Systems Top 10 List", IEEE Computer, Vol.
34, No. 5, May 2001.

[Berg06] Berg, M.A. “Attitudes to formal Quality Management Systems An Empirical Study in

References

188

Norwegian Software Industry” Master Thesis. Norwegian University of Science and
Technology (NTNU). 2006.

[Beu-Bøegh03] Beus-Dukic, L., Bøegh, J.: COTS Software Quality Evaluation. In Proceedings of the
International Conference on COTS-Based Software Systems ICCBSS 2003, LNCS
Volume 2580/2003 pp. 72-80

[Ber+03] Bertoa, M.F., Troya, J.M., Vallecillo, A. “A Survey on the Quality Information Provided
by Software Component Vendors”. In Proceedings of the 7th ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engineering (QAOOSE), 2003,
25-30.

[Ber+06] Bertoa M., Troya, J.M, Vallecillo, A.: Measuring the Usability of Software
Components. The Journal of Systems and Software 79 (2006) 427–439.

[Bhu+07] Bhuta, J., Mattmann, C., Medvidovic, N., Boehm, B.: "A Framework for the
Assessment and Selection of Software Components and Connectors in COTS-Based
Architectures," p. 6. Sixth Working IEEE/IFIP Conference on Software Architecture
(WICSA'07), 2007.

[Bhu-Boe07] Bhuta, J., Boehm, B.: “Attribute-Based COTS Product Interoperability Assessment”
International Conference on COTS-Based Software Systems (ICCBSS) 2007,
Alberta, Canada, February/March 2007.

[Bhu-Boe05] Bhuta, J., Boehm, B.: “A Method for Compatible COTS Selection”. Proceedings of the
International Conference on COTS-Based Systems ICCBSS 2005. pp. 132-143.

[Bia+03] Bianchi, A., Caivano, D., Conradi, R., Jaccheri, M.L., Torchiano, M., Visaggio, G.:
“COTS Products Characterization: Proposal and Empirical Assessment”. ESERNET
2003: 233-255.

[Birk+98] Birk, A., Kempkens, R., Rombach, D., Ruhe, G.:”Systematic Improvement of Software
Engineering Processes”. In Proceedings of WI’98, Hamburg, Germany 1998.

[Bla-Mar85] Blair, D.C., Maron, M.E.: “An Evaluation of Retrieval Effectiveness for a Full-Text
Document Retrieval System” Communications of the ACM, 28 (4), pp.289-299. 1985.

[Bob+03] Bobrovsky, M., Marré, M., Yankelevich: “A Software Engineering View of Data
Quality”, 2003

[Boe-Abt99] Boehm, B., Abts, C. “COTS Integration: Plug and Pray?” IEEE Computer, Vol. 32, No.
1; January 1999 pp. 135-138.

[Boe+03a] Boehm, B., Port, D., Yang, Y., Bhuta, J., Abts, C.: "Composable Process Elements for
Developing COTS-Based Applications", In Proceedings of the International
Symposium on Empirical Software Engineering (ISESE 2003). IEEE Computer
Society Press.

[Boe+03b] Boehm, B., Port, D., Yang, Y.: "WinWin Spiral Approach to Developing COTS-Based
Applications” EDSET-5, Oregon 2003.

[Boe+78] Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., McLeod, G.J., Merrit, M.J.:
“Characteristics of Software Quality”, North Holland Publishing Company, 1978.

[Bøe+99] Bøegh, J., Depanfilis, S., Kitchemham, B., Pasquini, A.: A Method for Software
Quality Planning, Control and Evaluation. IEEE Software, Vol. 23. March 1999.

[BOO93] BOOTSTRAP team: BOOTSTRAP: Europe’s Assessment Method. IEEE Software.
May 1993.

[Boo-Smi00] Boop, R.E., Smith, L.: “Reference and Information Services: An Introduction”.
Libraries Unlimited, 2000.

[Bra+91] Brachman, R.J., McGuinness, D.L., Patel-Schneider, P.F., Resnik, L.A., Borgida, A.:

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

189

“Living with CLASSIC: When and How to Use a KL-ONE-Like Language” In Principles
of Semantic Networks: Exploration in the Representation of Knowledge, J.F. Sowa,
Ed. Morgan Kaufmann, San Mateo, CA, 401-456.

[Bre+84] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., Classification and Regression
Trees. Belmont, CA: Wadsworth International Group, 1984.

[Bro+00] Brownsword, L., Oberndorf, T., Sledge C.A.: “Developing New Processes for COTS-
Based Systems” IEEE Software, Vol. 17, No. 4; July-August 2000. pp. 48-55.

[Bro+98] Brownsword, L., Carney, D., Oberndorf, T.: “The Opportunities and Complexities of
Applying Commercial-Off-the-Shelf Components” CrossTalk SEI series. April 1998.
Available at http://www.sei.cmu.edu/news-at-sei/features/1998/ jun/background.pdf

[Bug-Abr99] Buglione, L., Abran, A.: “A Quality Factor for Software”. Qualta-Congress: quality and
reliability. Paris, France. March 25-26, 199.

[Bur+07] Burgess, M.S.E., Gray, W.A., Fiddian, N.J.: Using Quality Criteria to Assist in
Information Searching. International Journal in Information Quality. Vol 1, No. 1, 2007.

[Bur+04] Burgess, M.S.E., Gray, W.A., Fiddian, N.J.: “Quality Measures and the Information
Consumer” Proceedings of the 9th International Conference on Information Quality
(ICIQ-04)

[Bur+02] Burgués, X., Estay, C., Franch, X., Pastor, J.A., Quer, C.: “Combined Selection of
COTS Components”. In Proceedings of the 1st International Conference on COTS-
Based Software Systems (ICCBSS 2002). Orlando, Florida. LNCS 2255, 2002.

[Car-Lon00] Carney D., Long F.: What Do You Mean by COTS? Finally a Useful Answer. IEEE
Software, 17 (2), March/April 2000.

[Carn+03] Carney, D., Place, P.R.H., Oberndorf, P.: “A Basis for an Assembly Process for
COTS-Based Systems (APCS)”. SEI Technical Report. CMU/SEI-2003-TR-010.

[Car+03] Carvallo, J.P., Franch, X., Quer, C.: Defining a Quality Model for Mail Servers. In
Proceedings of the 2nd International Conference on COTS-Based Software Systems
ICCBSS 2003. pp. 51-61.

[Car+04] Carvallo, J.P., Franch, X., Quer, C., Torchiano, M. “Characterization of a Taxonomy
for Business Applications and the Relationships Among Them” In Proceedings of the
3rd International Conference on COTS-Based Software Systems (ICCBSS), LNCS
2959, 2004.

[Car+04a] Carvallo, J.P., Franch, X., Grau, G., Quer, C.: "QM: A Tool for Building Software
Quality Models". In Proceedings of the 12th IEEE Requirements Engineering
International Conference RE 2004. Kyoto, Japan. IEEE Computer Society. 2004. pp.
358-359.

[Car+04b] Carvallo, J.P., Franch, X, Quer, C., Rodríguez, N. “A Framework for Selecting
Workflow Tools in the Context of Composite Information Systems” In Proceedings of
the 15th Database and Expert Systems Applications Conference (DEXA), LNCS
3180, 2004.

[Car+04c] Carvallo, J.P., Franch, X., Grau, G., Quer, C.: "COSTUME: A Method for Building
Quality Models for Composite COTS-Based Software Systems” In Proceedings of the
4th International Conference on Quality Software (QSIC 2004). Braunschweig,
Germany. IEEE Computer Society. September 2004.

[Car05T] Carvallo, J.P.: "Systematic Construction of Quality Models for COTS-Based Systems”.
PhD Thesis. Technical University of Catalunya (UPC). GESSI Group. 2005

[Car+05] Carvallo, J.P., Franch, X., Quer, C. “A Quality Model for Requirements Management
Tools”. Book chapter in Requirements Engineering for Sociotechnical Systems, Idea
Group, 2005.

References

190

[Car06] Carvallo, J.P. “Supporting Organizational Induction and Goals Alignment for COTS
Components Selection by means of i*”. In Proceedings of the 5th International
Conference on COTS-Based Systems (ICCBSS), IEEE Computer Society, 2006.

[Car-Fra06] Carvallo, J.P., Franch, X. “Extending the ISO/IEC 9126-1 Quality Model with Non-
Technical Factors for COTS Components Selection”. In Proceedings of the 4th ICSE
Workshop of Software Quality (WoSQ), ACM Digital Libray, 2006.

[Car+07a] Carvallo, J.P., Franch, X., Quer, C.: “Towards a Unified Catalogue of Non-Technical
Quality Attributes to Support COTS-Based Systems Lifecycle Activities"
Sixth International Conference on Commercial-off-the-Shelf (COTS)-Based Software
Systems, 2007. IEEE Computer Society. 2007.

[Car+07b] Carvallo, J.P., Franch, X., Quer, C.: Determining Criteria for Selecting Software
Components: Lessons Learned. IEEE Software. March/April 2007.

[Cec+06] Cechich, A., Réquilé-Romanczuk, A., et al. “Trends on COTS Component
Identification and Retrieval” In Proceedings of the International Conference on COTS-
Based Software Systems (ICCBSS 2006). IEEE Computer Society, 2006.

[Cha02] CHAOS Virtual BEACON. “The Cost of ERP”. Standish Group, 2002.

[Che76] Chen, P.: The Entity-Relationship Model –Towards a Unified View of Data. ACM
Transactions on Database Systems, 1(1), March 1976.

[Chu-Coo04] Chung, L., Cooper, K.: Defining Goals in a COTS-Aware Requirements Engineering
Approach. System Engineering, Vol. 7, No.1, 2004

[Chu+00] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kuwler Academic Publishers, 2000

[ClaSoc] Classification Society of North America http://www.classification-
society.org/csna/csna.html

[Cla+04] Clark, J., Clarke, C., De Panfilis, S., Granatella, G., Predonzani, P., Sillitti, A., Succi,
G., Vernazza, T.: “Selecting Components in Large COTS Repositories” The Journal of
Systems and Software 73 (2004) 323–331.

[CMM93] Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V. The Capability Maturity Model for
Software. Technical Report CMU/SEI-93-TR-024. Software Engineering Institute,
Carnegie Mellon University. February 1993.

[Coc01] Cockburn, A. Writing Effective Use Cases. Addison-Wesley, 2001.

[Coh-Nor98] Cohen, S., Northrop, L. “Object-Oriented Technology and Domain Analysis”. In
Proceedings of the 5th International Conference on Software Reuse (ICSR), 1998.

[Coo+05] Cooper, K., Cangussu, J.W., Lin, R., Sankaranarayanan, G., Soundararadjane, R.,
Wong, E.: “An Empirical Study on the Specification and Selection of Components
Using Fuzzy Logic” G.T. Heineman et al. (Eds.): CBSE 2005, LNCS 3489, pp. 155-
170, 2005.

[Coo97] Cooper, W.S.: On selecting a measure of retrieval effectiveness. In K. Jones and P.
Willet (eds.), Readings in Information Retrieval, pages 191–204. Morgan Kaufmann
Publishers, 1997.

[Cor+02] Comella-Dorda, S., Dean, J.C., Morris, E., and Oberndorf, P. “A process for COTS
Software Product Evaluation”, Proceedings of ICCBSS, February 2002, Orlando,
Florida USA, pp 86-92.

[Corn96] Cornwell, P.C.: HP Domain Analysis: Producing Useful Models for Reusable
Software. Hewlett-Packard Journal, August 1996.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

191

[Crn+06] Crnkovic, I., Chaudron, M.R.V., Larsson, S.: Component-Based Development
Process and Component Lifecycle. International Conference on Software Engineering
Advances (ICSEA'06), pp. 44. 2006

[COS] COSI: Co-development using inner & Open Source in Software Intensive products.
European ITEA project.

[Cur89] Curtis, B. “Cognitive Issues in Reusing Software Artifacts” Software Reusability:
Volume II: Applications and Experience, T.J. Biggerstaff and A.J. Perlis, Eds.,
Addison-Wesley, Reading, M. 269-287.

[DAL] DALI: Methodologies and tools for the Development, Acquisition, evaLuation and
Integration of software components Research Project. CICYT Program (MEC), project
TIC2001-2165. GESSI Group http://www.lsi.upc.es/~webgessi/index.html

[Dev+91] Devanbu, P., Brachman, R.J., Selfridge, P.G., Ballard, B.W.: “LaSSIE: A Knowledge-
Based Software Information System” Communications of the ACM, 34(5), pp. 34-49.

[Din-Con02] Dingsøyr, T. and Conradi, R.: "A Survey of Case Studies of the Use of Knowledge
Management in Software Engineering", Journal of Software and Knowledge
Engineering, 12(4):391-414, 2002.

[Dub-Fra04] Dubois, E., Franch, X.: “Models and Processes for the Evaluation of COTS
Components”. 26th International Conference on Software Engineering (ICSE) 2004:
759-760.

[Don+05] Donzelli, P., Zelkowitz, M., Basili, V., Allar, D., Meyer, K.N.: Evaluating COTS
Components Dependability in Context. IEEE Software July/August 2005.

[Dro96] Dromey, R.G.: Cornering the Chimera. IEEE Software, Vol. 20, January 1996.

[Dro95] Dromey, R.G.: A Model for Software Product Quality. IEEE Transactions on Software
Engineering, 21:146-162, 1995.

[El+98] El Emam, K., Drouin, J.N., Melo, W. (Eds.): “Spice: The Theory and Practice of
Software Process Improvement and Capability Determination”. IEEE Computer
Society, 1998.

[Ero-Fer03] Erol, I., Ferrell-Jr., W.G.: A Methodology for Selection Problems with Multiple,
Conflicting Objectives and Both Qualitative and Quantitative Criteria. International
Journal of Production Economics vol. 86 (3), Dec 2003. pp. 187-199

[Ero-Gia06] Erofeev, S., DiGiacomo, P. “Usage of Dynamic Decision Models as an Agile
Approach to COTS Taxonomies Construction”. In Proceedings of the ICCBSS 2006.
IEEE Society Press 2006.

[Eva05] Evans Data Corporation, "Open Source/Linux Development Survey", Spring 2005.

[Fen-Pfl97] Fenton, N.E., Pfleeger, S.L. Software Metrics: A Rigorous and Practical Approach.
2nd Edition, 1997.

[Fer-Veg99] Ferré, X., Vegas, S. “An Evaluation of Domain Analysis Methods”. In Proceedings 4th
CAiSE Workshop on Exploring Modelling Methods for Systems Analysis and Design
(EMMSAD), 1999.

[Fin+96] Finkelstein, A., Spanoudakis, G., Ryan, M. “Software Package Requirements &
Procurement” Proc. Internationall Workshop on Software Specification and Design
(IWSSD), IEEE Computer Society Press, 1996, pp. 141-145

[Fir03] Firesmith, D.G.: Using Quality Models to Engineer Quality requirements. Journal of
Object Technology (JOT). Vol. 2, No. 5 (September/October 2003).

[FOD] SEI http://www.sei.cmu.edu/domain-engineering/FODA.html

References

192

[Fra+07] Franch, X.; Grau, G.; Mayol, E.; Quer, C.; Ayala, C.; Cares, C.; Navarrete, F.; Haya,
M.; Botella, P.: “Systematic Construction of i* Strategic Dependency Models for
Socio-Technical Systems” International Journal of Software Engineering and
Knowledge Engineering (IJSEKE). Volume 17, No. 1, February 2007.

[Fra05] Franch, X.: “On the Lightweight Use of Goal-Oriented Models for Software Package
Selection” In Proceedings of the 17th Conference on Advanced Information Systems
Engineering (CAISE 2005). Lecture Notes in Computer Science. Volume 3520/2005
pp. 551-566

[Fra-Tor05] Franch, X., Torchiano, M.: ”Towards a Reference Framework for COTS-Based
Development: A Proposal”. Proceedings of MPEC´05. St. Louis Missouri, USA. ACM.

[Fra-Car03] Franch, X., Carvallo, J.P. “Using Quality Models in Software Package Selection”.
IEEE Software, 20(1), 2003.

[Fra-Mai03] Franch, X., Maiden, N.: “Modelling Component Dependencies to Inform their
Selection”. In Proceedings of the 2nd International Conference on COTS-Based
Software Systems (ICCBSS 2003). Lecture Notes in Computer Science. Volume
2580/2003 pp. 81-91. February 2003.

[Frak05] Frakes, W.B.: “A case study of a reusable component collection in the information
retrieval domain”. Journal of Systems and Software Vol. 72, Issue 2, July 2004,
Pages 265-270.

[Fra-Gan90] Frakes, W., Gandel, P.: Representing Reusable Software. Information Software
Technology vol. 32, pp. 47-54, 1990.

[Fra-Kan05] Frakes, W.B., Kang, K.: Software Reuse Research: Status and Future. IEEE
Transactions on Software Engineering. July 2005 Vol. 31, No. 5. pp. 529-536.

[Frak+98] Frakes, W., Prieto-Díaz, R., Fox, C. “DARE: Domain Analysis and Reuse
Environment”. Annals of Software Engineering, 5, pp. 125-141, 1998.

[Fra-Fox95] Frakes, W.B., Fox, C.J: Sixteen Questions About Software Reuse. Communications
of the ACM. Volume 38, Number 6 pp 75-87, 1995.

[Fra-Pol94] Frakes, W.B., Pole, T.P.: An Empirical Study of Representation Methods for Reusable
Software Components. IEEE Transactions on Software Engineering, Vol. 20, No. 8,
pp. 617-630. August 1994.

[Gar] Garner Group http://www3.gartner.com

[Ger06] Gerea, M.: "Selection and Evaluation of Open Source Components",15th Dec. 2006,
81 p. part of curse TDT4735 Depth Project in Software Engineering, Department of
Computer and Information Science, Norwegian University of Science and Technology
(NTNU).
http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt-2006/gereafordyp06.pdf

[Ger07] Gerea, M.: "Selection of Open Source Components: A Qualitative Survey in
Norwegian IT Industry". Master Thesis. Department of Computer and Information
Science, Norwegian University of Science and Technology (NTNU). Spring 2007.
http://www.idi.ntnu.no/grupper/su/su-diploma-2007/dipl07-gerea.pdf

[Gils+04] Gils, B. v., Proper, H., Bommel, P. v.: A Conceptual Model of Information Supply.
Journal of Data Knowledge Engineering, Vol 51, Issue 2, 2004. pp 189-222

[Gil97] Gillies, A.C.: Software Quality, Theory and Management. International Thompson
Computer Press, 1997.

[Gil88] Gilb, T.: Principles of Software Engineering Management. Addison Wesley, reading
MA, 1998.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

193

[Gla-Ves95] Glass, R.L., Vessey, I. “Contemporary Application-Domain Taxonomies” IEEE
Software. July 1995.

[Gla94] Glass, R.L.: The Software Research Crisis. IEEE Software, November 1994, pp. 42-
47.

[Gom05] Gomaa, H. Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison-Wesley, 2005.

[Gra+04] Grau, G., Carvallo, J.P., Franch, X., Quer, C. "DesCOTS: A Software System for
Selecting COTS Components". In Proceedings of the 30th EUROMICRO Conference,
IEEE Computer Society, 2004. The current version of the tool is available at
http://www.lsi.upc.es/~gessi/QMTool/QMTool.html

[Gra+05] Grau, G.; Franch, X.; Mayol, E.; Ayala, C.; Cares, C.; Carvallo, J.P.; Haya, M.;
Navarrete, F.; Botella, P.; Quer, C.: “RiSD: A Methodology for Building i* Strategic
Dependency Models” In Proceedings of the 17th International Conference on
Software Engineering and Knowledge Engineering (SEKE'05). 14-16 July, 2005.
Taipei, Taiwan, Republic of China. pp. 259-266.

[Gra+05b] Grau, G., Franch, X., Maiden, N.A.M.: “REDEPEND-REACT: an Architecture Analysis
Tool”. In Proceedings of the 13th IEEE Requirements Engineering International
Conference, RE 2005. Pages: 455 - 456.

[Gre+02] Gregor, S., Hutson, J., Oresky, C.: “Storyboard Process to Assist in Requirements
Verification and Adaptation to Capabilities Inherent in COTS”. In Proceedings of the
International Conference on COTS-Based Software Systems 2002. LNCS Volume
2255/2002.

[Gree94] Green, S. “Goal-Driven Approaches to Requirements Engineering” Technical Report
DoC TR-93-42 1994, Imperial College of Science, Technology and Medicine,
Department of Computing Technical Report, London, UK, 1994.

[Gri02] Grid, M.: The ROI on COTS. Journal of the Global Grid Community. Vol. 1, No.12,
September 2, 2002.

[Grub93] Gruber, T.R. “Toward Principles for the Design of Ontologies Used for Knowledge
Sharing”, KSL-93-04, Knowledge Systems Laboratory, Standford University.

[Han-Kam01] Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Academic Press,
Morgan Kaufmann Publishers, 2001.

[Hau02] d’Haultfoeuille, M.:“Projet ERP quelle structure choisir”. JDNet Solutions (Benchmark
Group), 2002.

[Hen+05] Henderson-Sellers, B., González-Pérez, C., Serour, K., Firesmith, D.G.: “Method
Engineering ans COTS Evaluation”. In Proceedings of the ACM SIGSOFT 2005.

[Hen97] Henninger, S.: “An Evolutionary Approach to Constructing Effective Software Reuse
Repositories”. ACM Transactions on Software Engineering and Methodology
(TOSEM) Volume 6 , Issue 2 (April 1997) pp.111 – 140. 1997

[How-Lig06] Howcroft, D., Light, B.: Reflections on Issues of Power in Packaged Software
Selection. Information Systems Journal 16 (3), 215–235.

[Hya-Ros96] Hyatt, L.E., Rosenberg, L.H.:”A Software Quality Model and Metrics for Software
Quality Assurance”, from Project Control for Software Quality. Kusters, R., Cowderoy,
A., Heemstra, F., van Veenendaal, E. (Eds.). Shaker Publishing, 1999.

[IDC] IDC. Available at http://www.idc.com/

[IEEE1661-98] IEEE Standard for Software Quality Metrics Methodology, 1998.

References

194

[INC] INCOSE “International Council of Systems Engineering”, Available at
http://www.incose.org/rwg/

[ISO12207] ISO/IEC International Standard 12207, Information Technology - Software Lifecycle
Processes. (1995).

[ISO9126] ISO/IEC International Standard 9126-1. Software Engineering-Product Quality-Part 1:
Quality Model, 2001.

[Jac-Tor02] Jaccheri, L., Torchiano, M. “Classifying COTS Products” Proceedings 7th European
Conference of Software Quality (ECSQ), Helsinki, Finland, 2002, pp. 246-255

[Jed-Nic03] Jedlitschka, A., Nick, M.:”Software Engineering Knowledge Repositories” Experiences
from ESERNET 2003. LNCS Volume 2765/2003 pp. 55-80.

[Jen03] Jensen, R.W.: Lessons Learned From Another Failed Software Contract. CrossTalk,
The Journal of Defense Software Engineering, September 2003.

[Jin+05] Jinfang, S., Songqiao, C., Bin, W.: COTS Evaluation and Selection Based on
Requirements Decomposition. Chinese Journal of Electronics, pp 62-67, 2005.

[Jør-Mol06] Jørgensen, M., Moløkken-Østvold, K.: How Large Are Software Cost Overruns? A
review of the 1994 CHAOS report. Information and Software Technology, 48(4):297-
301, April 2006.

[Kau05] Kaur, N.: “Retrieving Best Components From Reusable Repository”. Master Thesis.
Computer Science and Engineering Department. Thapar Institute of Engineering ans
Technology (Deemed University). June 2005.

[Kav-Lou05] Kavakli, E., Loucopoulos, P.: “Goal Modeling in Requirements Engineering: Analysis
and Critique of Current Methods”. Information Modeling Methods and Methodologies
2005: 102-124

[Kei-Tiw05] Keil, M., Tiwana, A.: Beyond Cost: The Drivers of COTS Application Value. IEEE
Software, May/June 2005 pp. 64-69.

[Kel95] Kelly, G.A. “The Psychology of Personal Constructs” New York, W.W. Norton.

[Kel+90] Keller, S., Kahn, L., Panara, R.: “Specifying Software Quality Requirements with
Metrics”. Systemas and Software Requirements Engineering – IEEE Computer
Society Press –Tutorial (1990), pp. 145-163.

[Kelk+07] Kelkar, M., Perry, P., Gamble, R., Walkevar, A. “The Impact of Certification Criteria on
Integrated COTS-Based Systems”. International Conference on COTS-Based
Software Systems (ICCBSS) 2007.

[Kes07] Kesseler, E.: “Assessing COTS Software in a Certifiable Safety Critical Domain”.
Informarion Systems Journal (in press).

[Kit-Pfl96] Kitchenham, B., Pfleeger, S.L.: Software Quality: The Elusive Target. IEEE Software,
Vol. 13, No. 1. January 1996, pp 12-21.

[Kit89] Kitchenham, B.: Software Metrics. In Software Reliability Handbook, Elsevier, 1989.

[Kle-Kaz99] Klein, M., Kazman, R.: “Attribute-Based Architectural Styles”. Software Engineering
Institute. Carnegie Mellon University. CMU/SEI-99-TR-022, October 1999.

[Kaz-Kle00] Kazman, R., Klein, M., et al. “ATAM: Method for Architecture Evaluation”. Pittsburg
(USA). Software Engineering Institute. Carnegie Mellon University, 2000.

[Kon-Hut07] Kotonya, G., Hutchinson, J.: “A Service-Oriented Approach for Specifying Component
-Based Systems” In Proceedings of the 6th International Conference on COTS-Based
Software Systems (ICCBSS) 2007. pp. 150-162.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

195

[Kon96] Kontio, J. “A Case Study in Applying a Systematic Method for COTS Selection”.
Proceedings 18th International Conference on Software Engineering, IEEE Computer
Society Press.

[Kon+96] Kontio, J., Caldiera, G., Basili, V.R.: “Defining factors, goals and criteria for reusable
component evaluation” In CASCON´96. Toronto, Ontario, Canada: IBM Press, 1996.

[Kon95] Kontio, J. “OTSO: A Systematic Process for Reusable Software Component
Selection”, University of Maryland, Maryland CS-TR-3478, December 1995.

[Kun03] Kunda, D.: “STACE: Social Technical Approach to COTS Software Evaluation” ”. In
Proceedings of Component-Based Software Quality - Methods and Techniques LNCS
Volume 2693/2003 pp. 64-84

[Kun-Bro99] Kunda, D., Brooks, L.: “Applying Socio-Technical Approach for COTS Selection” In
Proceedings of 4th UKAIS Conference, University of York, April 1999. Mc Graw Hill.
pp. 552-565.

[Lam01] Lamsweerde, A.V. “Goal-oriented requirements engineering: A Guided Tour”
Proceedings International Symp. On Requirements Engineering (RE´01). Toronto,
Canada, 2001, pp. 249-263.

[Lau-Ped05] Lausen, S., Vium, J.P.: Communication Gaps in a Tender Process. Requirements
Engineering Journal. September 2005, pp. 247-261.

[Lee+01] Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y. “AIMQ: A Methodology for
Information Quality Assessment” Elsevier, Information and Management. 2001.

[Lei-Fra93] Leite, J.C.S.P., Franco, A.P.M.: “A Strategy for Conceptual Model Acquisition”
Proceedings of the First IEEE International Symposium on Requirements
Engineering. San Diego Ca., IEEE Computer Society Press, 1993, pp. 243-246.

[Lei89] Leite, J.C.S.P. “Application Languages: A Product of Requirements Analysis”.
Informatics Department PUC-/RJ (1989).

[Leu-Leu03] Leung, H. K. N. and Leung, K. R. P. H.: “Domain-Based COTS-Product Selection
Method”. In Proceedings of Component-Based-Software Quality, LNCS 2693, pp 40-
63, 2003

[Li06] Li, J.: “Process Improvement and Risk Management in Off-the-Shelf Component-
based Development”. PhD Thesis Sept. 2006. Norwegian University of Science and
Technology (NTNU), ISBN 82-471-7920-2, 289 pages,
http://www.idi.ntnu.no/grupper/su/ publ/phd/liphdthesis-22jun06.pdf

[Li+06] Li, J., Conradi, R., Slyngstad, O.P.N., Bunse, C., Torchiano, M., Morisio, M: "An
Empirical Study on the Decision Making Process in Off-The-Shelf Component Based
Development", In Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa (Eds.):
Proc. Emerging Results track at the 28th International Conference on Software
Engineering (ICSE 2006), 20-28 May 2006, Shanghai, P.R. China, pp. 897-900.

[Li+05] Li, J., Conradi, R., Slyngstad, O.P.N., Torchiano, M., Morisio, M., and Bunse C.: "An
Empirical Study on Off-the-Shelf Component Usage in Industrial Projects"
In Proceedings of the 6th International Conference on Product Focused Software
Process Improvement, Oulu, Finland, June 13-15, 2005. Springer Verlag LNCS, Vol.
3547, Jun 2005, pp. 54 – 68.

[Li+05a] Li, J., Conradi, R., Slyngstad, O.P.N., Bunse, C., Khan, U., Torchiano, M., Morisio, M.:
“Validation of New Theses on Off-The-Shelf Component Based Development” In
Proceedings of the 11th IEEE International Software Metrics Symposium
(METRICS2005), 19-22 September, 2005, Como, Italy.

[Li+04] Li, J., Bjørnson, F.O., Conradi, R.: "Empirical Study on COTS Component
Classification", Proc. International Workshop on COTS Terminology and Concepts,

References

196

Co-located with International Conference on Component-Based Software Systems
(ICCBSS'04).

[Li+04a] Li, J., Bjørnson, F.O., Conradi, R., and Kampenes B.V.: "An Empirical Study of COTS
Component Selection Processes in Norwegian IT companies" In Proceedings of the
Int'l Workshop on Models and Processes for the Evaluation of COTS Components
(MPEC'04 Arranged in co-location with ICSE'04), May 25, 2004. , Edinburgh,
Scotland. IEEEPress, ISBN 0-86341-422-2, pp. 27-30

[Lin+07] Lin, H., Lai, A., Ullrich, R., Kuca, M., McClelland, K., Shaffer-Gant, J., Pacheco, S.,
Dalton, K.: “COTS Software Selection Process”. 6th International Conference on
COTS-Based Software Systems (ICCBSS) 2007. pp. 114-120.

[Lin+97] Lichota, R.W., Vesprini, R.L., Swanson, B.: "PRISM: Product Examination Process
for Component Based Development," SAST '97, 1997, pp. 61-69.

[Lop+06] López, C., Astudillo, H.: “Multidimensional Catalogs for Systematic Exploration of
Component-Based Design Spaces”. IFIP Workshop on Advanced Software
Engineering 2006: 32-46

[Los+03] Losavio, F., Chirinos, L., Levy, N., Ramdane-Cherif, A.: Quality Characteristics for
Software Architecture. Journal of Object Technology 2(2): 2003, pp. 133-150.

[Lou-Kav95] Loucopoulos, P., Kavakli, E.: Enterprise Modelling and the Teleological Approach to
Requirements Engineering. International Journal on Cooperative Information
Systems. 4(1): 45-79 (1995)

[Luc+07] Lucrédio, D.; Brito, K. S.; Alvaro, A.; Garcia, V. C.; Almeida, E.S.; Fortes, R. P. M.;
Meira, S. R. L. Software Reuse: The Brazilian Industry Scenario. Journal of Systems
and Software (JSS), Elsevier, 2008.

[Luc+04] Lucredio, D., do Prado, A.F., Santana de Almeida, E. “A Survey on Software
Components Search and Retrieval”. In Proceedings of 30th EUROMICRO
Conference. IEEE Computer Society, 2004.

[Lun+99] Lundberg, L., Bosch, J., Häggander, D., Bengtsson, P.O.: “Quality Attributes in
Software Architecture Design” In Proceedings of the 3th International Conference on
Software Engineering and Applications (IASTED) 1999, pp. 353-362.

[Mai+02] Maiden, N., Kim, H., Ncube, C. “Rethinking process guidance for Software
Component Selection”. LNCS 2255, J.C. Dean and A. Gravel (Editors), Springer-
Verlang, New York, 2002, pp. 151-164.

[Mai-Ncu98] Maiden, Ncube, C. “Acquiring Requirements for COTS Selection”. IEEE Software Vol.
15, No. 2, March/April 1998.

[Man-And05] Mancebo, E., Andrews, A.: “A Strategy for Selecting Multiple Components” ACM
Symposium of Applied Computing 2005, pp. 1505-1510.

[Man+07] Mansoor, A., Seema, A., Al-Zobaidie: A Study of the Contracting and Procurement
Process for Cots Software Projects. Journal of Computer Science 3(3), 2007. pp. 180-
185.

[McC89] McClure, C.: CASE IS Software Automation. Prentice Hall, Englewood Cliffs, ISBN 0-
13-119330-9

[McC+77] MacCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality. RADC TR-
77-369, Vols, I, II, III, US Rome Air Development Center Reports NTIS AD/A-049 014,
015, 055, 1977.

[McM-Pal84] McMenamin, S.M., Palmer, J.F. Essential Systems Analysis. Yourdon Press, 1984.

[Mer06] Merola, L.: “The COTS Software Obsolescence Threat”. In Proceedings of the 5th
International Conference on COTS-Based Software Systems (ICCBSS) 2006, pp.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

197

127-133.

[Mes07] Messegue, F. “Eina de suport per al anàlisi de dominis”.
http://www.lsi.upc.edu/~cayala/Papers/IQToolDocumentation.pdf In catalan. Jan
2007.

[Mey-Obe02] Meyers, B.C., Oberndorf, P.: “Managing Software Acquisition”. SEI Series in Software
Engineering, 2002

[Mic+05] Michel, R., Roose, P., Barbier, F.: “Information System for Evaluation of COTS”. In
Proceedings of ACIS, pp. 64-69.

[Min04] Minkiewicz, A.F.: “Are COTS Solutions an Affordable Alternative”. In Proceedings of
the Aerospace Conference, 2004, pp. 4073-4082.

[Moh+07] Mohamed, A., Ruhe, G., Eberlein, A.: “COTS Selection: Past, Present and Future”
Proceedings of the 14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS´07). 2007.

[Moh+07b] Mohamed, A., Ruhe, G., Eberlein, A.: “Decision Support for Handling Mistmatches
between COTS Products and System Requirements. In Proceedings of the
International Conference on COTS-Based Software Systems (ICCBSS 2007), Banff,
Canada, 2007.

[Moh+04] Mohamed, A., Wanyama, T., Ruhe, G., Eberlein, A., Far, B.: "COTS Evaluation
Supported by Knowledge Bases," Lecture Notes in Computer Science, vol. 3096
2004/09 2004. pp. 43-54.

[Mora+07] Moraes R., Durães, J., Martins, E., Madeira, H.: “Component-Based Software
Certification Based on Experimental Risk Assessment”. A. Bondavalli, F. Brasileiro,
and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 179–197.

[Mor06] Morisio M.: “Reuse of Off-The-Shelf Components”. Proceedings of the 9th
International Conference on Software Reuse, ICSR2006, Turin, Italy, June 2006. 442
pp. Lecture Note in Computer Science 4039.

[Mor+02] Morisio, M., Seaman, C.B, Basili, V.R., Parra, A.T., Kraft, S.E., Condon, S.E.: “COTS-
based Software Development: Processes and Open Issues”. Journal of Systems and
Software 61(3): 189-199 (2002).

[Mor+02b] Morisio, M., Ezran, M., Tully, C.: Success and Failure Factors in Software Reuse.
IEEE Trans. Software Eng., Vol. 28, No. 4, 2002. pp. 340-357.

[Mor-Tor02] Morisio, M., Torchiano, M. “Definition and Classification of COTS: A Proposal”. In
Proceedings of the 1st Conference on COTS-Based Software Systems (ICCBSS),
Orlando, Florida; 2002.

[Mor+00] Morisio, M., Seaman, C.B, Parra, A.T., Basili, V.R., Kraft, S.E., Condon, S.E.:
“Investigating and Improving a COTS-Based Software Development Process”. In
Proceedings of the International Conference on Software Engineering (ICSE´00).
Limerick, Ireland 2000.

[Morr00] Morris, A.T.: “COTS Score: An Acceptance Methodology for COTS Software”. In
proceedings of the 19th Digital Avionics Systems Conferences (DASC) 2000. Volume
1, Issue 2000.

[Mus+95] Muse, M.A., Gennari, J.H., Eriksson, H., Tu, S.W., Puerta, A.R.: “PROTÉGÉ-II
Computer Support for Development of Intelligent System from Libraries of
Components”. In Proceedings of the 8th World Congress on Medical Informatics, pp.
766-770. Vancouver, 1995.
The current version of the tool is available at http://protege.standford.edu

[Nei80] Neighbors, J. Software Construction Using Components. PhD. Thesis, University of
California, Irvine, 1980.

References

198

[Neu-Stu07] Neubauer, T., Stummer, C.: “Interactive Decision Support for Multi-Objective COTS
Selection”. In Proceedings of the 40th Hawaii International Conference on System
Sciences (HICSS) 2007, p. 283b.

[Nic+01] Nick, M., Althoff, K.D., Tautz, C.: “Systematic Maintenance of Corporate Experience
Repositories” Computational Intelligence 17(2): 364-386 (2001)

[NPL] National Product Line Asset Center (NPLACE). “Component Test Criteria”, available
at http://www.nplace.net/nplacenew/criteri.html

[Nvi] Nvivo. NUD*IST Vivo For Qualitative Research. Distributes by Scolari, QSR
(Qualitative Solutions & Research)

[Obe-Bro97] Oberndorf, P., Brownsword, L.: “Are You Ready for COTS?” Software Institute
Engineering. August 1997.

[Och+01] Ochs, M.A., Pfahl, D., Chrobok-Diening, G., Nothhelfer-Kolb, B. “A Method for
Efficient Measurement-based COTS Assessment and Selection- Method Description
and Evaluation Results” Proceedings IEEE 7th International Software Metrics
Symposium, London, England, 2001, pp. 285-296.

[Ols99] Olisna, L.: “Website Quality Evaluation Method- A Case Study on Museums”. In
proceedings of the ICSE 99- 2nd Workshop on Software Engineering over the Internet.

[Par-Con07a] Mohagheghi, P. and Conradi, R.: "Quality, Productivity and Economic Benefits of
Software Reuse: A Review of Industrial Studies", Journal of Empirical Software
Engineering, 55 p.

[Pat+84] Patel-Schneider, P.F., Branchman, R.J., Levesque, H.J.: “ARGON: Knowledge
Representation Meets Information Retrieval” Proceedings of the 1st Conference on
Artificial Intelligence Applications (CAIA´84), pp. 280-286.

[Phi-Pol02] Phillips, B.C., Polen, S.M.: "Add Decision Analysis to Your COTS Selection Process",
Software Technology Support Center Crosstalk, April 2002.

[Poh+05] Pohl, K., Böckle, G., van der Linden, F.J. Software Product Line Engineering.
Springer-Verlag, 2005

[Poh+01] Pohl, K., Brandenburg, M., Glich, A. “Scenario-Based Change Integration in Product
Family Development”. In Proceedings of the 2nd Workshop on Software Product
Lines, 2001.

[Pou95] Poulin, J.S.: “Populating Software Repositories: Incentives and Domain-Specific
Software", Journal of Systems and Software, Vol. 30 (1995), pp 187-199.

[Pou-Ygl93] Poulin, J.S., Yglesias, K.P. : “Experiences with a Faceted Classification Scheme in a
Large Reusable Software Library (RSL)”. In Proceedings of the 17th International
Conference on Computer Software and Applications (COMPSAC 1993), pp. 90-99.
IEEE, 1993.

[Por-Che04] Port, D.,Chen, S.: “Assessing COTS Assessment: How Much Is Enough?” In
Proceedings of the 3rd International Conference on COTS-Based Software Systems,
ICCBSS 2004, Redondo Beach, CA, USA Lecture Notes in Computer Science
Volume 2959/2004 pp.183-198.

[Pot+94] Potts, C., Takanashi, K., Antón, A. “Inquiry-Based Requirements Analysis”, IEEE
Software, 11 (2), March 1994.

[Pri91] Prieto-Díaz, R, Implementing Faceted Classification for Software Reuse,
Communications of the ACM, 34(5), 89-97, May 1991

[Pri-Ara91] Prieto-Díaz, R., Arango, G. Domain Analysis and Software Systems Modelling. IEEE
Computer Society Press, 1991.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

199

[Pri87] Prieto-Díaz, R.: “Faceted Classification and Reuse Across Domains”. Proceedings of
the Workshop on Software Reuse, Rocky Mountain Institute of Software Engineering,
L.Williams- Editor(Boulder, CO), 14 Oct 1987.

[Pri-Fre87] Prieto-Díaz, R., Freeman, P.: Classifying Software for Reusability. IEEE Software.
January 1987 pp. 6-16.

[Pri85] Prieto-Díaz R. “A Software Classification Schema” PhD Dissertation. Department of
Information and Computer Science. University of California, Irvine 1985.

[PRI] PRISMA: Academic Record Management System. Technological Transfer project.
GESSI group. Universitat Politècnica de Catalunya. Further details at
http://www.lsi.upc.es/~webgessi/index.html.

[Qui86] Quinlan J.R.: Induction of Decision Trees. Kuwler Academic Publishers ISSN 0885-
6125, March 1986.

[Quin93] Quinlan, J.R. “C4.5: Programs for Machine Learning” Morgan Kauffman, 1993.

[Rad] Web Services Market 2004-2008. September 2004, available at
http://www.radicati.com

[Rav-Rot03] Ravichandran, T. and Rothenberger, M.A.: Software Reuse Strategies and
Component markets. Communications of the ACM, 46(8):109–114, 2003.

[Raw-Mat06] Rawashdeh, A., Matalkah, B.: A New Software Quality Model for Evaluating COTS
Components. Journal of Computer Science, 2(4), 2006, pp. 373-381.

[RED] REDEPEND-REACT web page: http://www.lsi.upc.edu/~ggrau/REDEPEND-REACT/
index.html

[Reg05] Regev, G. “Where do Goals Come from: the Underlying Principles of Goal-
Oriented Requirements Engineering”. 13th IEEE Requirements Engineering
Conference 2005.

[Rei+03] Reifer, D.J., Basili, B.R., Boehm, B.W., Clark, B.: Eight Lessons Learned during
COTS-Based Systems Maintenance. IEEE Software, September-October 2003,
pp. 94-96.

[Req+05] Réquilé-Romanczuk, A., Cechich, A., Dourgnon-Hanoune, A., Mielnik, J.C.:
“Towards a Knowledge-based Framework for COTS components Identification”
ICSE-MPEC05, ACM Press, 2005; pp 1-4.

[Rob02] Robson, C.: Real World Research. Blackwell (2nd Edition) 2002.

[Rom-Ken07] Romsaiyud, W., Keneto, S.: “Challenges in Selecting COTS Components
Guidelines” In Proceedings of the 31st Annual International Computer Software
and Applications Conference (COMPSAC 2007), pp. 661-663.

[Ruh03] Ruhe, G.: “Intelligent Support for Selection of COTS Products”. Lecture Notes in
Computer Science, Springer, Vol. 2593, pp. 34-45. 2003.

[Ruh02] Ruhe, G.: “Software Engineering Decision Support – A New Paradigm for
Learning Software Organizations”. S. Henninger and F. Maurer (Eds.): LSO 2002,
LNCS 2640, pp. 104–113, 2003.

[Ruh01] Ruhe, G.: “Learning Software Organizations”. In Handbook of Software
Engineering and Knowledge Engineering (S.K. Chang Eds.) Vol. 1. World
Scientific Publishing (2001) 663-678.

[RUP] Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development
Process. Addison Wesley Longman, Reading, MA, 1999.

[Saa90] Saaty, T.L.: Multicriteria Decision Making: The Analytic Hierarchy Process. RWS

References

200

Publications, Pittsburgh, PA. 1990.

[Sai+04] Sai, V., Franch, X., Maiden, N.: “Driving Component Selection Through Actor-
Oriented Models and Use Cases” In Proceedings of the 3rd International
Conference on COTS-Based Software Systems (ICCBSS) 2004, pp. 63-73.

[Sal-McG83] Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw
Hill, New York, 1983.

[Sas+06] Sassi, S.B., Jilani, L.L., Ghezala, H.H.B.: “Towards a COTS-Based Development
Environment” In Proceedings of the 5th International Conference on COTS-Based
Software Systems (ICCBSS) 2006, p 10.

[Sas+03] Sassi, S.B., Jilani, L.L., and Ghezala, B.H.: “COTS Characterization Model in a
COTS-Based Development Environment”, 10th Asia Pacific Software Engineering
Conference Apsec’03, Chiang Mai, Thailand, December 2003. pp 352-361.

[SDA] Software Engineering Institute (SEI). http://www.sei.cmu.edu/domain-
engineering/, 2002.

[Sea99] Seacord, R.C., Nwosu, K.C.: "Component-Based Software Engineering
Processes," In Proceedings of the 30th International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS) 1999. p. 532

[Sea+98] Seacord, C., Hissam, A., Wallnau, K.: “Agora: A Search Engine for Software
Components” Internet Computing, Vol. 2 No. 6, December 1998, pp. 62-70

[Sed+03] Sedigh-Ali, S., Ghafoor, A., Paul, R.A.: “A Metrics-Guided Framework for Cost
and Quality Management of Component-Based Software” A. Cechich et al. (Eds.):
Component-Based Software Quality, LNCS 2693, 2003, pp. 374–402.

[SEI] Software Engineering Institute. Carnegie Mellon University. Available at:

http://www.sei.cmu.edu/

[Sha03] Shaw, M.: “Writing Good Software Engineering Research Paper” In Proceedings
of the the 25th International Conference on Software Engineering (ICSE) 2003.
IEEE Computer Society, pp. 726-736.

[Sha01] Shaw, M. The coming-of-age of software architecture research. In Proceedings of
the 23rd International Conference on Software Engineering (ICSE 2001), pp.657–
664, May12–19 2001.

[Shan+03] Shankaranarayan, G., Ziad, M., Wang, R.Y.: Managing Data Quality in Dynamic
Decision Environments. Journal of Database Management, 14(4), 14-32, Oct-Dec
2003.

[Shy-Shi06] Shyur, H.J., Shih, H.S.: A Hybrid MCDM Model for Strategic Vendor Selection.
Journal of Mathematical and Computer Modelling, Elsevier. Vol. 44, Issues 7-8,
October 2006, pp. 749-761.

[Sim-Bel03] Simäo, R.P.S., Belchior, A.D.: “Quality Characteristics for Software Components:
Hyerarchy and Quality Guides” Component-Based Software Quality: Methods and
Techniques. A Cechich, Piattini, M. Vallecillo, A. (Eds.). Springer-verlag. LNCS
2693, 2003.

[Sim-Dil06] Simmons, G.L., Dillon, T.S.: “Towards an Ontology for Open Source Software
Development”. In IFIP International Federation for Information Processing,
Volume 203, Open Source Systems, eds. Damiani, E., Fitzgeralg, B., Scacchi,
W., Scotto, M., Succi, G., (Boston:Springer), pp 65-75.

[Sja-Beu06] Sjachyn, M., Beus-Dukic, L.: “Semantic Component Selection–SemaCS”.
International Conference on COTS-Based Software Systems, IEEE Society 2006.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

201

[Somm06] Sommerseth, M.: “Component based system development in the Norwegian
software industry”, masters thesis, IDI, NTNU, June 2006, 141 p., available at:
http://www.idi.ntnu.no/grupper/su/index php3?file=publ/INT-PUBL.php3

[Sta-Lub06] Staaden, v.P., Lubbe, S.: A Case Study on the Selection and Evaluation of
Software for an Internet Organisation. The Electronic Journal of Business
Research Methods, Vol. 4 Issue 1, pp 57-66, available online at www.ejbrm.com

[Sur-Abr03] Suryn, W.; Abran A.: "ISO/IEC SQuaRE: The Second Generation of Standards for
Software Product Quality," 7th IASTED International Conference on Software
Engineering and Applications, California, USA. 2003.

[SQU] ISO/IEC FCD 25000, Software Engineering – Software Product Quality
Requirements and Evaluation (SQuaRE) - Guide to SQuaRE, Geneva:
International Organization for Standardization, 2004.

[SU] Software Engineering Group of the Norwegian University of Science and
Technology (NTNU), available at: http://www.idi.ntnu.no/grupper/su/

[Tau+04] Taulavuori, A., Niemela, E., Kallio, P.: Component Documentation- A Key Issue in
Software Product Lines. Journal on Information and Software Technology.
Elsevier, 46 (2004) 535–546.

[TEC] Technology Evaluation.com, The ERP Evaluation Center. “ERP Decision
Hierarchy”, available at http://www.erpevaluation.com/

[Tor-Mor04] Torchiano, M., Morisio, M. Overlooked Aspects of COTS-Based Development.
IEEE Software, March/April 2004, pp 88-93.

[Tor+02] Torchiano, M., Jaccheri, L., Sørensen, C.F., Wang, A.I.: ”COTS Products
Characterization” In Proceedings of the 14th international conference on Software
Engineering and Knowledge Engineering. . SEKE 2002 pp.335-338

[Tra-Liu97] Tran, V., Liu, D., Hummel, B: “Component-based Systems Development: Challenges
and Lessons Learned”. In Proc. of 8th International workshop on Software
Technology and Engineering Practice, July 1997, pp. 452-462.

[Tren-Pon03] Trendowicz, A., Punter, T.: “Quality Modeling for Sofwtare Product Lines” In
Proceedings of the 7th ECOOP Workshop on Qualittative Approaches in Object-
Oriented Software Engineering. Germany, July 2003.

[Ulk-Sep04] Ulkuniemi, P., Seppänen, V. COTS Component Acquisition in an Emerging Market.
IEEE Software. November/December 2004. pp 76-82

[Ulk03] Ulkuniemi, P.: “Purchasing Software Components at the Dawn of Market” Thesis
Dissertation. Department of Marketing. University of Oulu, Finland. 2003.

[UML] UML Specifications. http://www.uml.org/

[UPI] UPIC: towards a Unified approach to the Procurement and Implementation of
information system Components. Research Project. Financed by the Spanish
Ministerio de Educación y Ciencia. GESSI Group

[Vaf+06] Vafaie, H., Brown, N.F., Truong, L.: "Methodology for the Selection of Intelligence
Analysis Tools," Proceedings of the 18th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI'06), 2006, pp. 55-62.

[Vand+94] VanderVet, P.E., Speel, P.H., Mars, N.J.I. “The Plinius Ontology of Ceramic
Materials” Proceedings 11th European Conference on Artificial Intelligence (ECAI 94),
Workshop on Comparison and Implemented Ontologies, Amsterdam, The
Netherlands, 1994.

[Vig01] Vigder, M.: Maintaining Component-Based Systems. Component-Based Software
Engineering: Putting the Pieces Together. Heineman, G., Councill, B. (Editors).

References

202

Addison-Wesley. 2001. NRC 44208.

[Vig-Dea97] Vidger, M., Dean, J.: “An Architectural Approach to Building Systems from COTS
Software Components” Proceedings of the 1997 Center for Advanced Studies
Conference (CASCON´97), Toronto, Ontario, Canada 10-13 November 1997.
Available at: http://seg.iit.nrc.ca/English/abstracts/NRC40221labs.html

[Vit+03a] Vitharana, P., Zahedi, F., Jain, H.: “Knowledge-Based Repository Scheme for
Storing and Retrieving Business Components: A Theoretical Design and
Empirical Analysis”. IEEE Transactions on Software Engineering. Vol. 29(7),
2003, pp 649-664.

[Vit+03b] Vitharana, P., et al. “Design, Retrieval, and Assembly in Component-Based
Software Development”. Communications of ACM. November 2003/Vol.46, No.
11.

[Voa04] Voas, J.: Software’s Secrets Sauce: The “-ilities [Software Quality]”. IEEE
Software 21(6):14, 2004.

[Voa98] Voas, J.: The Software Quality Certification Triangle. CrossTalk, Nov. 1998, pp.
12-14.

[Voa98b] Voas, J.M.: The Challenges of Using COTS Software in Component-Based
Development. IEEE Computer, Vol. 31, Issue 6. June 1998, pp. 44-45.

[Wag04] Wagner, C.: “Wiki: A Technology for Conversational Knowledge Management and
Group Collaboration”. Communications of the Association for Information
Systems, Vol. 13, article 19, pp. 256-289.

[Wang+03] Wang, R., Allen, T., Harris, W., Madnick, S. “An Information Product Approach for
Total Information Awareness” IEEE, 2003.

[Wan-Hom06] Wanyama, T., Far, B.H.: “Repositories fort COTS Selection” In Proceedings of the
Canadian Conference on Electrical and Computer Engineering (CCECE '06),
2006, pp. 2416-2419.

[Wan-Hom05] Wanyama, T., Far, B.H.:”Towards Providing Decision Support for COTS
Selection” In Proceedings of the Canadian Conference on Electrical and
Computer Engineering (CCECE '05.), 2005, pp. 908-911.

[Wan-Str96] Wang, R.Y., Strong, D.M.: Beyond Accuracy: What Data Quality Means to Data
Consumers. Journal of Management of Information Systems. Vol. 12, No.4, pp5-
34. 1996.

[War-Far05] Wanyama, T., Far, B.H.: “A Multi-Agent Framework for Conflict Analysis and
Negotiation: Case of COTS Selection” Transactions of the Institute of Electronics,
Information and Communication Engineers: Special Issue on Software Agent and
its Applications – Vol. E88-D, No.9, September, 2005, pp. 2047-2058.

[Win+87] Winston, M.E., Chaffin, R., Hermann, D.J. “A Taxonomy of Part-Whole Relations”
Cognitive Science 11:417-444.

[Woh+00] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, and A. Wesslen:
Experimentation in Software Engineering - An Introduction. Kluwer Academic
Publishers, 2000.

[Yac+00] Yacoub, S., Mili, A., Kaveri, C., Dehlin, M.: “A Model for Certifying COTS Components
for Product Lines” In Proceedings of the Workshop on Continuing Collaborations for
Successful COTS Development, in conjunction with the 22nd International Conference
on Software Engineering (ICSE) 2000. Limerick, June 2000.

[Yan+06] Yanes, N., Sassi, S.B., Jilani, L.: “MoReCOTS: a Specialized Search Engine for
COTS Components on the Web”. International Conference on COTS-Based
Software Systems, IEEE Society 2006.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

203

[Yan+05] Yang, Y., Bhuta, J., Boehm, B., Port, D.N.: Value-Based Processes for COTS-
Based Applications. IEEE Software, Vol. 22, Issue 4, July-Aug. 2005, pp.54-62.

[Ye-Kel04] Ye, F., Kelly, T.: “COTS Products Selection for Safety-Critical Systems”. In
Proceedings of the International Conference on COTS-Based Software Systems
(ICCBSS) 2004, pp. 53-62.

[Yeo-Mil04] Yeo, H.C., Miller, J.: “COTS Acquisition Process: Incorporating Business Factors
in COTS Vendor Evaluation Taxonomy” In Proceedings of the 10th International
Symposium on Software Metrics 2004, pp. 84-95.

[Ye-Lo01] Ye, H., Lo, B.W.N.: “Towards a Self-Structuring Software Library” IEE Proc.-
Softw., vol. 148 No. 2, pp. 45-55, April 2001.

[Yin03] Yin, R.K.: Case Study Research. Design and Methods. (3rd Edition) London
(Sage) 2003.

[Yu95] Yu, E. “Modelling Strategic Relationships for Process Reengineering” PhD
Thesis, University of Toronto, 1995.

[Zhe+06] Zheng, J., Robinson, B., Williams, L., Smiley, K.: “A Lightweigth Process for
Change Identification and Regression Test Selection In Using COTS” In
Proceedings of the 5th International Conference on COTS-Based Software
Systems (ICCBSS) 2006, p. 7.

[Zus97] Zuse, H.: A Framework of Software Measurement. Walter de Gruyter & Co. ,
1997.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

205

Annex 1. Heuristics Supporting GOThIC Activities

Heuristics are rules used to provide prescriptive guidance for performing some GOThIC
activities achieving a high probability of success while avoiding wasted efforts. Their use in
GOThIC was inspired by GBRAM. Many of the heuristics proposed in GBRAM were mapped
directly or with some adjustment to GOThIC (mostly those related to identification, refinement,
and management of goals), whilst many other heuristics emerge as lessons learned in the
different case studies performed and were designed to guide the specific GOThIC activities.

The design and even the application of some heuristics follow the Inquiry Cycle approach
[Pot+94] instantiated for goal-based analysis as originally proposed in GBRAM (see [Ant97],
page 137).

The objective of this annex is to describe typical heuristics applied when using the GOThIC
method. As discussed in Chapter 3, the lessons learned in the initial case studies served as the
origin of the ideas which formulated the GOThIC method. The heuristics in this annex were
derived from these experiences and observations. The utilization of heuristics depends upon the
particular GOThIC activity; thus, we have classified the heuristics in diverse sets applying to
specific activities. Tabla A1.1 shows a summary of the heuristics available, and Table A1.2
describes the existing heuristics.

Table A1.1 Glossary of heuristics and their codes in GOThIC

GOThIC Activity Code Definition Observation

HGIS Heuristics for gathering Information Sources Exploration of
Information

Sources
HIIS Heuristics for identifying Information Sources

Assist to the GOThIC user in gathering
and identifying suitable information
sources to analyze COTS informational
dimensions.

Domain Analysis HPIS Heuristics for Prioritizing Information Sources
Provide useful insights to prioritize
information sources according to their
potential trustworthiness.

HIG Heuristics for Identifying Goals

HIS Heuristics for Identifying Stakeholders

HIA Heuristics for Identifying Agents

HIC Heuristics for Identifying Constraints

Assist in identifying goals, stakeholders,
agents, and constraints from multiple
sources

HRR Heuristics for Refining Redundancies

HRS Heuristics for Refining Synonymous

HEO Heuristics for Elaborating Obstacles

Identification,
refinement &

statement of goals

HES Heuristics for Elaborating Scenarios

Refinement heuristics employ a series of
question and techniques to reduce the size
of the goal set

Establishment of
dependencies

HDD Heuristics for Determination of dependencies Assist in determining the type of
relationships to be modeled with i*

Goal Taxonomy
Structuring HSGT Heuristics for Structuring goal-taxonomies

Based on the trustworthiness of the
information source where goals are
identified and applying the IC these
heuristics help to decide the structure of
the intended taxonomy

Taxonomy
Validation

- Not apply Not apply

Knowledge Base
Management HKBM

Heuristics for Managing the Knowledge Base
Repository

It refers to heuristics and guidelines to
assist in managing and re(using) the
repository.

Annex 1

206

Table A1.2 Heuristics that Support GOThIC Activities

Code Heuristic

HGIS

Diverse types of information sources exists, they can be grouped into: Hierarchy, Standard,
Vendor Information, Independent Reports (of scientific, divulgation and/or technical nature), Oral
Information, Test Of Tools Reports, Experiences, Other”,… (Descriptions and examples are
provided in Chapter 5).

HIIS
Information sources available can provide insights into a diverse range of software packages
and/or vendor characteristics, but no requirements identified from these sources should be used
without careful consideration of their confidence

HIIS
Information from experts is good at quickly identifying general principles, offering explanations,
validating analyses, and providing pointers that could be cross-validating with Independent
Reports.

HPIS Information from standards related to the field, are the best for identifying COTS domain high-
level goals.

HIG Identification of diverse types of actors (See Chapter 7) helps to discover high-level goals and
their subsequent decomposition and refinement.

HIG*
Abstraction mechanism may be employed to extract goals from available documentation by
asking: What goal(s) does this statement exemplify?, What goal(s) does this statement block or
obstruct?

HIG* Action words that point to some state that is or can be achieved once the action is completed
are candidates for goals. They are identified by considering each statement in the available
information by asking: Does this behavior or action denote a state that has been achieved, or a
desired state to be achieved? If the answer is yes, then express the answer to these questions
as goals which represent a state that is desired or achieved.

HIG* An effective way to uncover hidden goals is to consider each action word and every description
of behavior and persistently ask “Why?” until all the goals have been `treated´ and you are
confident that the rationale for each action is understood and expressed as a goal.

HIG* Key action words such as: track, monitor, provide, supply, find out, know, avoid, ensure, keep,
satisfy, complete, allocate, increase, speedup, improve, make, and achieve are useful for
pointing to candidate goals

HIG* If a statement seems to guide design decisions at various levels, express it as a goal.

HIG* Goals may be uncovered by examining the information available to identify avoidance goals.
Avoidance goals are found by identifying bad states that should be avoided within the system.

HIG* Goals can be uncovered or discovered by considering the goal dependencies for the previously
specified goals by asking: What are the preconditions of this goal? And What are the
postconditions of this goal? Since preconditions and postconditions are expressed as goals, it is
possible to identify new goals that had not been previously considered or identified by
considering each goal’s dependencies.

HIG* Stakeholders tend to express their requirements in terms of operations and actions rather than
goals. Thus, when given an interview transcript, it is beneficial to apply the action word strategy
to extract goals from stakeholders´ descriptions.

HIG* One should first seek to understand the application domain and goals.

HIG* Goals are also identified by considering the possible goal obstacles for previously specified
goals.

HIG* Goals may be identified by considering possible scenarios. Given each goal obstacle, one
should be determine whether or not the occurrence of the goal obstacle would initiate system
failures, these obstacles are key candidates for scenario construction and analysis.

HIG* Goals may be identified by considering constraints.

HIG* Goals may be identified from process diagrams or standards in the area by searching action
words and behaviors, as well as by consistently applying the Inquiry Cycle to clarify the goals
and requirements.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

207

Code Heuristic

HIS*

Any representative affected by the completion or prevention of a goal is a stakeholder.
Stakeholders are thus identified by asking: Who or what claims a stake in this goal? Who or
what stands to gain or lose by the completion or prevention of this goal? Who will use the
system or component?

HIS*
Multiple stakeholders may be associated with one goal. If different stakeholders are associated
with a goal, but their associations occur at different times, we should comment these variances
to ensure that the role of stakeholders throughout the lifetime of a goal is well understood.

HIA* Responsible agents may be identified by considering each goal and asking: Who or what agent
is, could be, or should be responsible for this goal?

HIA*

At least one agent must be responsible for the completion of each goal. If we are unable to
allocate responsibility for a goal to any agent, then we can assume that the goal lies outside the
scope of the domain being analyzed. If we believe there is a responsible agent, but doesn’t
know who or what, then the Inquiry Cycle should be applied.

HIA* Different agents can be responsible for the completion of the same goal at different times.

HIA* Agents may be either systems, components, organizations or human agents.

HIC*
Constraints can be identified by considering each statement and asking: Does this fragment
impose some constraint on the goal(s)? Does this fragment specify some requirement that must
be met?

HIC*
Constraints can be identified by searching by temporal connectives (i.e., during, before, after,
etc.). Restate statements that describe when some condition is true or when a goal can be
completed as a constraint.

HIC* Constraints can be identified by searching statements which place limits on the completion of a
goal.

HIC* Since constraints may place a condition on the achievement of a goal, they should be restated
as goal obstacles to allow for subsequent elaboration of the obstacle using scenarios.

HRR* If the same goal appears more than once AND the same agent is responsible for the goal on
each occurrence, then all but one of the goals may be eliminated.

HRR* If the same goal appears more than once BUT two or more different agents are responsible for
the same goal at different times, then the goal is left as it is.

HRS* If two goals are synonymous, reconcile the duplication by eliminating the goal which can be
semantically subsumed by the other.

HRS* Consolidate and refine goals by merging synonymous goals.

HRS* Ordering goals according to their precedence relations facilitates the identification of
synonymous goals.

HEO*

Obstacles can be identified by asking “What other goal or condition does this goal depend on?”,
“Can the agent responsible for a goal fail to achieve the goal?”, “If this goal is blocked, what are
the consequences?”, “Can the failure of another goal to be completed cause this goal to be
blocked?”

HEO*
There is at least one goal obstacle for every goal. This is informally referred to as the trivial
obstacle and formally referred to as the normal first case goal obstacles. These obstacles are
worded by negating the verb in the goal name.

HEO*
A prerequisite failure obstacle occurs when a goal having a precedence relation is obstructed
because the precedence goal fails. Prerequisite failures are identified by considering each goal
and asking: What other goal(s) does this goal depend on?

HEO*
An agent failure obstacle occurs when a goal fails because the responsible agent fails to
achieve the goal. Agent failures are identified by considering each goal and asking: Can the
failure of an agent to fulfill their responsibilities cause this goal to fail?

HES*
An effective way to identify candidate scenarios for construction is to consider each goal and
goal obstacles previously identified to determine the reasons why and the circumstances under
which a goal may be completed or can fail. By asking “Why?” and “What happens if this goal

Annex 1

208

Code Heuristic

isn’t achieved?”

HES* Scenarios construction leads to the identification of new goals of the domain.

HDD

For identifying dependencies, we first identify diverse types of actors (see Section 7.2.1 in
Chapter 7). The actors are required to have a clear strategic value for the modeled system; it is
useful to use a metaphor to think about the system. In most cases we use a client-server
metaphor: an actor (e.g., the client) provides and consumes a resource (e.g., the information)
that is under the control of an organization (e.g., the server). This and other metaphors could be
organized in the form of a catalogue of i* organizational patterns

HDD

Identifying dependencies among actors serves as a good goal-refinement mechanism. We
provide some heuristics based on the use of i* models. Thereafter, the HDD heuristics provided
are accomplishing such assumpition:

By default, we depict and classify dependencies among actors as goal dependencies, which are
the most common type due to their strategic value.

The crucial point of this activity is to identify just those dependencies that are really needed. This
criteria is obviously fuzzy and therefore the number of dependencies that will arise in this step is
inevitably subjective, which in fact is a characteristic of goal-oriented modelling. However, when
using a catalogue of i* organizational patterns, the dependencies already proposed in the
patterns can be adapted to the system we are modeling.

HDD

To name and classify dependencies into a valid type of i* we propose a set of questions to be
answered following a predefined ordering as shown in the following graph:

In nodes 1 to 4 a question must be answered; in nodes 5 to 8 a specific type of dependency has
been identified; in nodes 9 to 11 some additional softgoal dependencies may be added to the
model. In the graph, each type of dependum is identified by a capital letter: Resource, Task,
Goal and SoftGoal. Starting at node 1, questions to answer at each node to classify the
dependency D, from A to B are:

1. Does the depender depend on the dependee to achieve an entity or to attain a certain state?

If entity, go to 3; else, go to 2.

2. Is the depender interested in attaining the state following a particular process? If so, classify

D as task dependency and go to 5; else, go to 4.

3. Is the depender interested in obtaining the entity following a particular process? If so,

classify D as task dependency and go to 5; else, classify D as resource dependency and go

to 6.

4. Is there a clear cut criteria to determine the achievement of the state? If so, confirm the

dependency D as goal dependency and go to 7; else, classify D as softgoal dependency.

5. Is there some additional restrictions on how to execute the task? If so, for each restriction,

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

209

Code Heuristic

establish a new softgoal dependency from A to B.

6. Is there some additional properties that the resource must met to be acceptable? If so, for

each property, establish a new softgoal dependency from A to B.

7. Is there some extra conditions that the achievement of the goal must satisfy? If so, for each

condition, establish a new softgoal dependency from A to B.

(Please see [Gra+05] and Fra+07] for details of the process)

HDD

To improve the understandability of the i* dependencies, the names assigned to their
dependums shall be kept short and precise and be consistent throughout the model.

The next table summarizes the conventions we suggest to use (parenthesis stand for
optionality).

Dependum Syntax Example

Task Verb + (Object) +(Complement) Answer doubts by e-mail

Resource (Adjective) + Object Virus List

Goal Object +Passive_Verb Information kept preserved

Softgoal
− Goal syntax + Complement
− (Object) + Complement
([Dependum])

− Information checked in a
transparent manner

− Timely[Virus List]

Longer descriptions can be added to the documentation, especially if using tool support such as
REDEPEND (See Chapter 9). We remark the case of softgoal dependencies, in which we
distinguish among dependencies that stand alone (node 8 in the graph of the figure above),
whose pattern is Goal-Syntax + Complement; and dependencies that qualify another dependum
of the model (nodes 9, 10 and 11), in which the qualifier is a Complement and (optionally) the
dependum between brackets. Note that using these syntactical patterns we will use short names
that are specific to the semantics of the dependum, increasing in this way the comprehension of
the model.

HSGT Applying the Inquiry Cycle [Pot+94], questions, and answers can be attained to each goal
statement.

HKBM
As new market segments arise, they can be included to the taxonomy by identifying its goal and
locate its place in the taxonomy using the defined classifiers, and once there even some useful
artifacts are inherited to be refined to explicitly cover the new market segment.

HKBM Transformation Rules could be applied to validate and manage the GOThIC Knowledge Base.
See Chapter 8 for rules definition and explicit heuristics of their application.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

211

Annex 2. IQ COTS Reference Model

The model presented here, is currently being iteratively refined and improved as more empirical
data from COTS selectors is gathered.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

213

Table A2.1 COTS IQ Reference Model

Characteristic/Subcharacteristics/
Attributes

Metric Description

1
Intrinsic
Characteristic

 Own properties of the information source denoting its quality characteristics.

 1 Believability

 1 Author-Based Believability Aspects that describe the believability of the product based on its authors.

 1 Author(s) Name
AName = Set (String)
AName ≠∅
The names are directly obtained

Describes the name of the author(s) of the product.

 2 Author(s) Believability
Derived Attribute
OveAuthorsBel= Mean(AuthorsBel) Describes the overall authors believability by the average of the believability of all authors.

 1 Individual Author Believability

AuthorsBel= Function(String→ TScore)
TScore: {Very High, High, Low, Very Low)
Dom(AuthorsBel) = AName
∀ x ∈ AName: AuthorsBel (x) = Mean (AuthorBelMarks)

Describes the individual believability of the authors by the average of all marks that he/she has
received

 1 Opinion Marks about the Author
AuthorBelMarks = Function(String→ TScore)
TScore: {Very High, High, Low, Very Low)
These marks are directly obtained

Describes the marks that markers have done about the author

 2 Provider Based Believability Aspects that describe the believability of the product based on the organization that provides it

 1 Provider Name OrgName=String
OrgName ≠ ∅ Describes the name of the product provider

 2 Organization Type OrgType= Function(String→ TOrg)
TOrg:{ Academy, Standards, Commercial} Describes the type of the organization provider

 3 Organization Believability
OrgBel= Function(String → TScore)
Dom (OrgBel) = OrgName
∀ p ∈ OrgName: OrgBel (s) = Mean (ProvBelMarks)

Describes the believability of the organization provider

 1 Opinion Marks about the Organization ProvBelMarks = Function(String→ TScore)
These marks are directly obtained

Describes the marks that markers have done about the organization

 3 Marker Based Believability Aspects that describe the believability of the product based on its related marks

 1 Marker(s) Name MName = Set (String)
MName ≠ ∅

Describes the name of the markers that have made any mark for the product

 2 Marker(s) Believability OveMarkersBel=Mean(MarkerBel) Describes the overall markers believability by the average of the believability of all the markers
that have provided some mark for the product.

 1 Individual Marker Believability MarkerBel= Function(String→ TScore)
TScore: {Very High, High, Low, Very Low)

Describes the individual believability of the markers by the average of all marks that he/she
has received

Annex 2

214

Characteristic/Subcharacteristics/
Attributes

Metric Description

Dom(MarkerBel) = MName
∀ x ∈ MName: MarkerBel (x) = Mean (MarkerBelMarks)

 1 Opinion Marks about the markers
MarkerBelMarks = Function(String→ TScore)
TScore: {Very High, High, Low, Very Low)
These marks are directly obtained

Describes the marks that markers have received

 2 Accuracy Aspects that describe the accuracy of the information source.

 1 Verifiableness Provision of the resources to allow the tracking and verification of the content of the product

 1 History and Versioning Capability of the product to provide a history of its changes and versions

 1 History Files Information Information provided by the history files

 1 Fields Fields= Set(Labels: Nominal); Labels=(Date, Time,
ChangePerformed, …)

List of fields recorded in the history fields

 2 Events Events= Set (Labels: Nominal); Labels=(Save, Replace, Delete,
…)

List of the events which record information on the history files

 3 Objectivity Aspects that describes to which extent the information source offers an impartial point of view

 1 Source Type Describes the kind of source the product is

 1 Type TypeOfSource= Set (Labels: Nominal); Labels=(Hierarchy,
Standard, VendorInfo, …) Describes the type of the product

 2 SubType SubType= Set (Labels: Nominal);
Labels=(Scientific, Divulgation, Technical)

Describes the subtype of the product

 2 Sponsored Product Sponsored: Nominal; Sponsored=(True, False) Describes if the product is supported by some organization

 1 Sponsor organization SponOrganization= Set(String) Describes the sponsor organizations of the product

 4 Reputation Recognition of the reputation and relevance of the information source

 1 Product Based Reputation Aspects that describe the reputation of the product

 1 Product Name
PName = Set (String)
PName ≠∅
The names are directly obtained

Describes the name or title of the product

 2 Product Reputation Derived Attribute
OveProductRep (x) = Mean (ProductRepMarks)

Describes the overall product reputation by the average of all reputation marks received.

 1 Opinion Marks about reputation

ProductRepMarks= Function(String→ TScore)
TScore: {Very High, High, Low, Very Low)
Dom(ProductRepMarks) = PName
These marks are directly obtained

Describes the reputation marks that the product has received

2
Representational
 Characteristics

 IQ properties related to the information source rendering

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

215

Characteristic/Subcharacteristics/
Attributes

Metric Description

 1 Concise Representation Recognition of the information source structure and format

 1 Use of models 3ValueOrder[Ordinal];
3ValueOrder = (Satisfactory, Acceptable, Poor)

Describes to which extend models are used to summarize and group information

 2 Kind of Models used KModel=Set(Labels:Nominal); Labels=(ER, UC, NL, …) List of kind of models used in the product

 3 Storing Format Format=Set(Labels:Nominal); Labels=(doc, pdf, html, …) Describes the format(s) the product is available

 4 Size of the product Size: Set(Float, Label); Label=(pages, mgbyte, kbyte, Gbyte, …) Describes the size of the product (storing formats available)

 2 Representational Consistency Aspects that describe the degree of uniformity among the represented elements in the
information source.

 1 Models Congruency 3ValueOrder[Ordinal];
3ValueOrder = (Satisfactory, Acceptable, Poor) Describes to which extend the models used provide an homogeneous view of the information

 2 Adhered to Standards for Representing
Information AdStd: Nominal; AdStd=(True, False) Describes if the product is adhered to standard(s) for representing the information

 1 Own Standards OwnStd: Nominal; OwnStd=(True, False) Describes if the product is adhered to some own standard for structuring the information

 1 Own Standard Name OwnStdNamel=Set(Labels:Nominal); Labels=(OwnStd1,
OwnStd2,…) List of names of own standards used

 2 Public standards Describes if the product is adhered to some recognized standard for structuring the information
(e.g., IEEE Std15501, etc.)

 1 Standard Name List of names of own standards used List of names of standards used

 3 Understandability The capability of the product to enable the user to understand whether it is suitable, and how it
can be used for particular tasks and conditions of use.

 1 Interface Understandability Effort for recognizing the logical concepts introduced by the product by means of its interface

 1 Supported Interface Languages Language=Set(Labels: Nominal); Labels= (Spanish, English,
Catalan, …)

Languages supported by the interface

 2 Global Structure Effort for recognizing the logical concepts introduced by the product by means of its global
structure

 1 Logical structure 3ValueOrder[Ordinal];
3ValueOrder = (Satisfactory, Acceptable, Poor) How recognizable and differentiable are the concepts introduced by the product.

 4 Interpretability The capability of the product to enable the user to correctly interpret the information

 1 Required Background Describes the required background to understand the product

 1 Expert Background ExpBack: Nominal; ExpBack=(Expert, Non-Expert) Describes if expert backgrounf is required

 1 Level of Expertise LevExp: Ordinal; LevExp=(High, Medium, Low) Describes the level of expertise required

Annex 2

216

Characteristic/Subcharacteristics/
Attributes

Metric Description

3
Accesibility
Characteristics

 Describes the extent to which the product is available or obtainable.

 1 Availability Describes aspects that affect availability

 1 Required Fee Fee: Nominal; Fee=(True, False) Describes if the product availability implies a fee

 1 Price Price: Float (dollars) Describes the price to paid for getting the product

 1 Availability Schema Schema= Set (Labels: Nominal); Labels=
(AnnualSubscription,Puntualpayment, …)

Describes the availability schema

 2 Easy of Operation Describes to which extent it is easy to retrieve and manipulate the information.

 1 Retrievability Aspects that describe retrievability

 1 Location Loc= Set(String) Describes the physical location(s) of the product

 2 Retrieval Effort RetEff: Ordinal; RetEff=(High, Medium, Low) Describes the effort required to retrieve the product

 3 Retrieval Type RetType=Set(Labels: Nominal); Labels= (directDownload,
SubscriptionBased, …)

Describes the process required to get the product

4
Contextual
 Characteristics

 Describes the extent to which the information source is applicable (pertinent) to the specific
COTS selection project and its associated resources

 1 Relevancy Aspects that describe if the product is applicable to the project

 1 Appropriateness
3ValueOrder[Ordinal];
3ValueOrder = (Satisfactory, Acceptable, Poor)

Aspects that describe the appropriateness of the product to the COTS selection project

 2 Timeliness Aspects that describe if the timeliness is adequate for the COTS selection project

 1 Required timeliness
3ValueOrder[Ordinal];
3ValueOrder = (Satisfactory, Acceptable, Poor)

Aspects that describe how the information covers the required timeliness of the COTS
selection project

 3 Completeness Aspects that describe to which extent the information source covers the informational needs

 1 Suitability of the Scope
3ValueOrder[Ordinal];
3ValueOrder = (Satisfactory, Acceptable, Poor)

Aspects that describe the suitability of the scope of the product to the COTS selection project

 4 Appropriate Amount of Data Aspects that describe if the size of the information source is adequate

 1 Adequacy to the Processing capacity
3ValueOrder[Ordinal];
3ValueOrder = (Satisfactory, Acceptable, Poor) Aspects that describes the processing capacity of the COTS selection

 5 Value-Added Describes if the information source Add value to the COTS selection project operations

 1 Value gained Describes the value-added that provides the product to the COTS selection project

5
IQ Selection Project
 Characteristics

 Describes the main IQ needs of the COTS selection project. (Such characteristics are currently
being empirically obtained. Therefore this part of the model will be refined.

 1 IQ Project Needs Describes the IQ needs of the project

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

217

Characteristic/Subcharacteristics/
Attributes

Metric Description

 1 Criticallity of the Domain Effort to recognize the criticality of the domain the COTS selection project belongs to

 2 Project Changes Predictability Effort to recognize the expected volatility of the domain

 2 Allocated Resources Aspects related to the set of resources allocated to the project for performing the COTS
searching process

 1 Human Resources Describes the aspects related to human resources allocated to the project

 1 Technical Skills Describes the technical skills of the conformed team

 2 Person/Month Describes the person/month assignment to the project

 2 Non-Human Resources Describes aspects related to Not-Human resources as subscription agreements, software
resources, etc.

 3 Deadline Aspects that describe associated deadlines of the project

 4 Monetary Budget Aspects that describe the monetary budget associated to the project.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

219

Annex 3. Domain Model for the RTSC Case Study

This Annex includes the complete Domain Model constructed for the RTSC Case Study.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

221

Quality factor Metric Description

1 Functionality ISO/IEC 9126-1

 1 Suitability ISO/IEC 9126 -1

 1 Suitability of Services Effort to recognize how a particular COTS covers the main services
expected from the domain

 1 Connect to Network Suitability Describes how well the COTS covers the Connect to the Network
service by an specific Transfer Protocol

 1 Connect to an intra-organizational network 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the Connect to the Network
service in an intra-organizational network

 2 Connect to internet-based network 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the Connect to the Network
service in an internet-based network

 3 Connect to a WAN network 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the Connect to the Network
service in a WAN

 2 Infrastructure Suitability Description of RTSC infrastructure elements

 1 Software Server Suitability 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the Software Server Service to
provide the basic infrastructure to establish RTSC

 2 Software Client Suitability 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the Software Client Service to
provide the basic infrastructure to establish RTSC

 3 Sessions Suitability Description of users supported by the application

 1 User to User Session 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the User to User Session
Service to connect a user with another user in RTSC

 2 Multi-user Session 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the Multi-User Session service
to connect multiple users in RTSC

 4 Applications Suitability
 Description of the kind of applications performed by the RTSC

infrastructure

 1 Collaborative content creation 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Capability of the system to create collaborative content

 2 Sharing resources 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Capability of the system to share resources

 5 Messaging Suitability Attributes related to the messaging suitability

 1 Message Types Support to the management of messages

 1 Text 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to send/deliver text messages

 2 Audio 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to send/deliver audio messages

 3 Video 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to send/deliver video messages

 4 Data 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to send/deliver data messages

 5 Multipart 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to send/deliver mixed (multipart) messages

 2 Message Handling actions Supported actions that can be performed over messages

 1 Send/Receive Message 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor)
Describes how well the COTS covers the Send/Receive Message
service by means of a Software Client to enable RTSC among a
RTSC-Server and human users.

 2 Reply to messages 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS replies to message sender directly
from received messages

Annex 3

222

Quality factor Metric Description

 3 Send messages to contact lists 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS supports mechanisms to store contact
lists for sending them messages

 4 Send and receive authenticated
messages 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS supports mechanisms to authenticate

messages originators

 5 Send and receive encrypted
messages

3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS supports encryption algorithms to
ensure message confidentiality

 6 Coding/Decoding messages 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS supports coding and decoding
mechanisms for sending and receiving messages

 7 Send and receive free-virus
messages

3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS supports anti-virus mechanisms for
sending and receiving messages

 8 Rules and Filters for incoming
messages 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor)

Possibility to apply rules and filters to incoming messages; e.g.:
-To store incoming messages in specific folders depending on the
sender
-To avoid messages with specific addresses or content
-To deny exchange of messages larger than a predefined size, etc.

 9 Message Tracking 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS supports mechanisms for tracking
messages

 6 Administration Services Describes how well the COTS covers the Administrator Service to
establish and manage accurately and efficiently the RTSC resources.

 1 Contact List Management Attributes related to the management of contact lists

 1 Local Personal Contact list
management

3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to manage local personal address lists

 2 Local Common contact list
management 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to manage local shared address lists

 3 Remote Personal Contact list
management 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to manage remote personal address lists

 4 Remote Common contact list
management

3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to manage remote shared address lists

 5 List Categories management 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to assign and manage categories to the contacts

 6 Sorting Contact lists 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to sort contacts by the categories they belong to

 2 Configuration Services Attributes related to the configuration services

 1 Assisted Configuration of Software
Server

3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to be assisted to configure RTSC- server

 2 Assisted Configuration of Software
Client

3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to be assisted to configure RTSC- client

 3 Overall Configuration Management 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Possibility to be assisted in the overall configuration of the RTSC
system

 2 Suitability of Data
Effort to recognize how a particular COTS provides the data
represented by the general class model describing the domain. See
Fig. 6.3a for a an excerpt view of the conceptual model of the domain

 1 Message 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the concept and its definition.

 2 Connected with 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the concept and its definition.

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

223

Quality factor Metric Description

 3 User 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the concept and its definition.

 4 User to User Session 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the concept and its definition.

 5 Multi-user Session 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the concept and its definition.

 6 Transfer Protocol 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the concept and its definition.

 7 Logging mechanisms 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS covers the concept and its definition.

 8 One way communication 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor)

Describes how well the COTS covers the concept and its definition:
Also called treamed applications are essentially one way flows of
information. Typical examples would include information services
such as stock prices, or traffic information, and broadcast or on-
demand video and audio services.

 9 Interactive Communication 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor)

Describes how well the COTS covers the concept and its definition:
Also called conversational applications are primarily interactive and
will usually have humans present at each end. Typical applications
include Internet telephony, audio or video or data conferencing,
application sharing, text-based chat, networked games, shared
virtual worlds or distributed simulations.

 10 Room or channel 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor)
Describes how well the COTS covers the concept and its definition :
A virtual venue where a number of people can meet to talk

 11 …

 2 Accuracy

 1 Verifiableness Provision of resources to allow the tracking and verification of the
right or agreed results or effects

 1 History and Versioning 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS provides a history of the changes on
the data managed

 2 Logging Capabilities 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS provides logging mechanisms

 2 Effectiveness

 1 Self-test results 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS provides mechanisms to perform
direct tests of the right or agreed results or effects over the system

 2 Published tests results 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how third party reports state the effects of the system in
similar environments

 3 Interoperability ISO/IEC 9126-1 Capability of the software product to interact with
one or more specified systems

 1 Direct Interoperability Capability of the system to directly interact with specified systems

 1 By means of Protocols Capability to directly interact with other systems by means of
supported protocols

 1 Real time transfer protocols Protocols:Set(Label:Nominal); Label=(H323, SIP, IRC, …) Supported protocols to send and relay RTSC messages

 2 Real time access protocols Protocols:Set(Label:Nominal); Label=(RFC2810, …) Supported protocols used by RTSC-clients to access messages in
the server

 3 Network protocols Protocols:Set(Label:Nominal); Label=(HTTP, …) Supported Network applications protocols

Annex 3

224

Quality factor Metric Description

 4 Wireless protocols Protocols:Set(Label:Nominal); Label=(WAP, …) Supported wireless protocols

 2 By means of APIs (connectors) Capability to directly interact with other systems

 1 To Anti-Virus Tools Describes the RTSC-System interoperability with Anti-virus tools

 1 Robust Virus Detection 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how the COTS accomplish the Robust Virus Detection
softgoal.

 2 Message Scanned for Virus GoalValue[Ordinal], GoalValue = (Attained, Not Attained) Describes if the COTS accomplish the Message Scanned for Virus
goal

 3 Message ResourceValue[Ordinal], ResourceValue = (Provided, NotProvided) Describes if the COTS provides the Message resource (i.e., if they
are compatible)

 2 Configuration and Administration Tools Describes the RTSC-System interoperability with Configuration and
Administration tools

 1 Easy Administration 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how the COTS accomplish the Easy Administration
softgoal

 2 Parameter Values ResourceValue[Ordinal]; ResourceValue = (Provided, NotProvided) Describes if the COTS provides the Parameter Values resource

 3 Management Assisted GoalValue[Ordinal]; GoalValue = (Attained, Not Attained) Describes if the COTS accomplish the Management Assisted goal

 3 Backup and Recovery tools Describes the RTSC-System interoperability with Backup and
Recovery tools

 1 Data Backup & Restore GoalValue[Ordinal]; GoalValue = (Attained, Not Attained) Describes if the COTS accomplish the Data Backup & Restore goal

 2 System Backup & Restore GoalValue[Ordinal]; GoalValue = (Attained, Not Attained) Describes if the COTS accomplish the System Backup & Restore
goal

 4 Billing Tools (BT) Describes the RTSC-System interoperability with Billing Tools

 1 Resource Usage Tracked GoalValue[Ordinal]; GoalValue = (Attained, Not Attained) Describes if the COTS accomplish the Resource Usage Tracked
goal

 2 Track resources consumptions 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how the COTS satisfies the Track Resources cosumptions

 5 Message Tracking Tools (MTT) Describes the RTSC-System interoperability with Message Tracking
Tools

 1 Messages Tracked GoalValue[Ordinal]; GoalValue = (Attained, Not Attained) Describes if the COTS accomplish the Messages Tracked goal

 2 Track Messages 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how the COTS satisfies the Tracking of Messages

 6
Configuration and Administration Tools
(CAT)

 Describes the RTSC-System interoperability with Configuration and
Administration Tools

 1 Management Assisted GoalValue[Ordinal]; GoalValue = (Attained, Not Attained) Describes if CAT tools assists on goals as services configured,
performance tuning, services recovered, etc.

 2 Good Performance 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how CAT Tools satisfy the Good Performance
requirement.

 7 Codec/Decoded Tools Describes the RTSC-System interoperability with Coded and
Decoded Tools

 1 Good Performance 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how Codec and Decoded Tools satisfy the Good
Performance requirement.

 2 Compress/Decompress Messages TaskValue[Ordinal]; TaskValue = (Executed, Failed) Describes if the Coded/Decoded Tool accomplish the
compress/decompress message task

 3 Message ResourceValue[Ordinal]; ResourceValue = (Provided, NotProvided) Describes if the COTS provides the Message resource (i.e. if they

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

225

Quality factor Metric Description

are compatible)

 8 Directory Services Tools Describes the RTSC-System interoperability with Configuration and
Administration tools

 1 Network Resources Managed 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how Directory Services Tools satisfy the Network
Resource Management requirements

 2 Resources Accessed 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how Directory Services Tools satisfy the Access to
resources requirements

 3 Resources Stored 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how Directory Services Tools satisfy the storing of
resources requirements

 4 Resources Assigned 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how Directory Services Tools satisfy the Assigment of
resources requirements

 5 Permissions Assigned 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how Directory Services Tools satisfy the Assignment of
permisions requirements

 9 Data Encryption Tools (DET) Describes the RTSC-System interoperability with Data Encryption
Tools

 1 Messages Encrypted/Decrypted GoalValue[Ordinal]; GoalValue = (Attained, Not Attained) Describes if the Data Encryption Tools accomplish the Messages
Encrypted/Decrypted goal

 2 Good Performance 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how the Data Encryption Tools satisfy the Good
performance requirement

 10 Routing Tools (RT) Describes the RTSC-System interoperability with Routing Tools

 1 Messages Routed GoalValue[Ordinal]; GoalValue = (Attained, Not Attained) Describes if the Routing Tools accomplish the Messages Routed
goal

 2 Good Performance 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how the Routing Tools satisfy the Good performance
requirement

 11 Data Compression Tools (DCT) Describes the RTSC-System interoperability with Data Compression
Tools

 1 Messages
Compressed/Decompressed

GoalValue[Ordinal]; GoalValue = (Attained, Not Attained) Describes if Data Compression Tools accomplish the Messages
compressed/decompressed goal

 2 Good Performance 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how the Data Compression tools satisfy the Good
performance requirement

 12 Anti-Spam Tools (AST) Describes the RTSC-System interoperability with Anti-Spam Tools

 1 Messages Filtered of Spam GoalValue[Ordinal]; GoalValue = (Attained, Not Attained) Describes if Anti-Spam Tools accomplish the Messages filtered from
spam goal

 2 Good Performance 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how the Anti-Spam tools satisfy the Good performance
requirement

 3 Protect From Unauthorized
communication

3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how the Anti-Spam tools satisfy the Protect from
Unauthorized communication requirements

 2 Indirect Interoperability Capability to interact with other systems by means if indirect
mechanisms

 1 Anti-virus Organizations Describes the COTS indirect interoperability with Anti-Virus
organizations

Annex 3

226

Quality factor Metric Description

 1 Worldwide Updated Virus List GoalValue[Ordinal], GoalValue = (Attained, Not Attained) Describes if the COTS accomplish the Worldwide update virus list
goal

 2 New Virus List ResourceValue[Ordinal], ResourceValue = (Provided, NotProvided) Describes if the COTS provides New virus list automatically

 2 Certification Authorities Describes the COTS indirect interoperability with Certification
Authorities

 1 Public Key Certificated GoalValue[Ordinal], GoalValue = (Attained, Not Attained) Describes if the COTS accomplish the Public Key certificated goal

 2 Digital Certificated ResourceValue[Ordinal], ResourceValue = (Provided, NotProvided) Describes if the COTS provides digital certification

 3 Domain Name Server Describes the COTS indirect interoperability with Domain Name
Servers

 1 Up-to date Management of Routing tables 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how the COTS satisfy the up-dating management of
routing tables requirements

 2 Destination IP address ResourceValue[Ordinal]; ResourceValue = (Provided, NotProvided) Describes if the COTS provides destination IP Address

 3 Routing status ResourceValue[Ordinal], ResourceValue = (Provided, NotProvided) Describes if the COTS provides status of the routing

 4 Firewall
Describes the COTS indirect interoperability with Domain Name
Servers

 1 Protect from Unauthorized access 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how the COTS satisfy the protect from unauthorized
access requirements

 4 Security ISO/IEC 9126-1

 1 Application Security Mechanisms to prevent the accidental or deliberated unauthorized
access system functionality

 1 Provided by the Application Mechanisms provided by the system itself

 1 Login and Password GoalValue[Ordinal], GoalValue = (Attained, Not Attained) Describes if the COTS provides mechanisms of login control with
user names and password authentication

 2 Execution Control Lists (ECL) GoalValue[Ordinal], GoalValue = (Attained, Not Attained)
Describes if the COTS provides mechanisms of listing executable
files allowed to run on server, specially useful to protect against virus
executables

 3 Access Control Lists GoalValue[Ordinal], GoalValue = (Attained, Not Attained)
Describes if the COTS provides mechanisms of listing of access
privileges to files. They can be defined at local user, group or rest of
the world levels

 4 Trust Relationships GoalValue[Ordinal], GoalValue = (Attained, Not Attained)
Describes if the COTS provides mechanisms of inter-domain level
privileges, for interconnection and sharing of resources between
different domain users

 2 Provided by Third Parties Mechanisms provided by the system with the aid of third party
organization

 1 Certification System GoalValue[Ordinal], GoalValue = (Attained, Not Attained) Describes if the COTS provides supported certification mechanisms

 2 Data Security
Mechanisms to prevent the accidental or deliberated
unauthorized access to the data managed by the system

 1 Stored Data Mechanisms to prevent the unauthorized access to the data stored
by the system

 1 Login and Password GoalValue[Ordinal]; GoalValue = (Attained, Not Attained) Describes if the COTS provides mechanisms of login control with
user names and password authentication

 2 Execution Control Lists (ECL) GoalValue[Ordinal]; GoalValue = (Attained, Not Attained) Describes if the COTS provides mechanisms of listing executable

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

227

Quality factor Metric Description

files allowed to run on server, specially useful to protect against virus
executables

 3 Access Control Lists (ACL) GoalValue[Ordinal]; GoalValue = (Attained, Not Attained)
Describes if the COTS provides mechanisms of listing of access
privileges to files. They can be defined at local user, group or rest of
the world levels

 2 Transmitted Data Mechanisms to prevent the unauthorized access to the data
transmitted by the system

 1 Secure transfer protocols Protocols:Set(Labels:Nominal); Labels=(SSL, …) Describes the secure transfer Protocols supported by the COTS

 2 Secure Web transfer protocols Protocols:Set(Labels:Nominal); Labels=(S-HTML, …) Describes the secure web transfer Protocols supported by the COTS

 3 Secure MIME support Supported:Set(Labels:Nominal); Labels=(True,False) Describes if the COTS support the MIME standard protocoll

 5 Functionality Compliance ISO/IEC 9126-1

 1 Supported RFC’s Attributes describing the satisfaction of standards RFC

 1 RFC3261 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS adheres to the RFC3261

 2 RFC2810 3ValueOrder[Ordinal]; 3ValueOrder = (Satisfactory, Acceptable, Poor) Describes how well the COTS adheres to the RFC2810

 3 …

2 Reliability ISO/IEC 9126-1

 1 Maturity The capability of the software product to avoid failure as a result of
faults in the software.

 1 Product History Historic data of the system which leading to the provision of more
mature versions over the time

 1 Time of Product on Market Period: Ratio; Period = Float[Year] Time that the product has on the market

 2 Product Versions Versions: Set(<Label: Ordinal, TimeOnMarket: Ratio>); Label=(unknown),
TimeOnMarket = Float(Year)

List of versions available on the market

 2 Robustness Mechanisms to maintain a history if system faults affecting system
operation

 1 Preoperational Robustness Mechanisms to maintain a history of system faults affecting system
operation before the system is made available to the users

 1 Mean Time Between Failure Period: Ratio; Period = Float[Hours] Average time between a failure on the system is detected

 2 Published Test Results Test:Set(<Author:Nominal, Date:Absolute>); Author=(unknown),
Date=[mm/dd/aaaa]

Third party published benchmarks and test

 2 Operation Robustness

 1 Mean Time Between Failure Period: Ratio; Period = Float[Hours] Average time between a failure on the system is detected

 2 Mean Time to Repair Period: Ratio; Period = Float[Hours] Average time required to restore the system operation

 2 Fault Tolerance ISO/IEC 9126-1

 1 Transparency Capacity of the system to keep up its operation without making users
aware of its faults

 1 Automatic Delivery Retries Supported: Nominal; Supported=(True, False) Support for the automatic relaying of messages in case of delivery
failure

 3 Recoverability ISO/IEC 9126-1

Annex 3

228

Quality factor Metric Description

 1 System Recoverability

 1 Automatic Recover from the scratch Supported: Nominal; Supported=(True, False) Possibility to automatically recover operation in case of system
failures

 4 Reliability Compliance ISO/IEC 9126-1

3 Usability ISO/IEC 9126 -1

 1 Understandability ISO/IEC 9126 -1

 1 Semantic Understandability Number[Unit]; Number=Integer Describes the number of semantic discrepancies of the particular
component with respect to the reference domain models

 2 Lexical Understandability Number[Unit];]; Number=Integer Describes the number of lexical discrepancies of the particular
component with respect to the reference domain models

 3 Interface Understandability Effort to recognize the logical concepts and its applicability by means
of interfaces

 1 Adherence to Best Practices ADP: 4valueOrder[Ordinal]; 4valueOrder = (Optimal, Good, Fair, Poor) Describes how well events and elements of the interface comply with
best practices recognized for user interfaces

 2 Supported Interface Languages SIL: Languages = Set(Labels[Nominal]); Labels = (Spanish, Catalan,
English, …)

Languages supported by the interface

 2 Learnability

 1 Training Training mechanisms provided to learn the software application

 1 Vendors Provided Training Training:Ordinal; Training=(Not Provided, Basic, Medium, Advanced) Training provided by the supplier of the component

 2 Third Party Provided training
Training: Set (Source: Nominal, Level: Ordinal);
Source(Unknown), Level(Basic, Medium, Advanced)
Note: Source refers to the individual/organization providing the training

Training provided by organizations or individual other than the
vendor of the component

 3 Tutorials Tutorials:Nominal; Tutorials=(Available, Partially Available, Not Available) Are there multimedia courses provided with software package or
available online

 2 Documentation Documentation than can be used to learn the software application

 1 Provided Documentation

 1 Documentation and User Manuals Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced) Are user and installation manuals as well as other documentation
provided with the component?

 2 FAQs and Tips Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced) Are frequently asked questions and user tips documents provided?

 3 Help Files Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced) Are help files provided?

 4 Online help Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced) Is there and internet online help available?

 2 External Documentation Documentation available from sources external to the software
application or its provider

 1 Vendors Customers support Support: (Provided: Nominal, Quality: Ordinal); Provided=(Not Provided,
Partial, Provided); Quality : (Poor, Fare, good, Excellent)

Does the provider company of the component or its representatives
have a customer support department? If they do, how well prepared
in the use of the application are the technicians? Do they provide
support for the installation/configuration?

 2 Online help Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced Is there an external internet online help available?

 3 Published Documentation Docum: Nominal; Docum =(Available, Partially Available, Not Available). Are there Information sources e.g. books, white papers, etc (other
than the provided by the supplier) available for its review?

 3 Operability ISO/IEC 9126-1

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

229

Quality factor Metric Description

 1 System Tailorability Mechanisms of the system to be configured to operate in certain way

 1 Global System Tailorability Mechanisms of the system to be configured to operate in certain way
by its administrator

 1 Accounts Administration Attributes related to the management of users and users accounts

 1 Individual Users Management Configurable: Nominal; Configurable=(True, False) Support to the definition/management of individual users of the
component

 2 Users Groups Management Configurable: Nominal; Configurable=(True, False) Support to the definition/management of users groups

 3 Private and Public Accounts Configurable: Nominal; Configurable=(True, False) Support to the definition/management of public and private accounts

 4 Users Profiles Configurable: Nominal; Configurable=(True, False) Can standards profiles be defined and assigned to individual users or
groups?

 2 Resources Administration Attributes related to the management of system resources

 1 Web Based Administration Supported: Nominal; Supported=(True, False)
Authorized administrators can perform tasks such as users and
groups management and messages monitoring, from anywhere
using a web browser?

 2 Administrative Tools and Wizards Tool: Set(Labels: Nominal); Labels=(Message tracking, Billing Services,
…)

Set of utilities designed to automate configuration and some
commonly performed tasks

 4 Attractiveness ISO-IEC 9126-1

 5 Usability Compliance ISO-IEC 9126-1

4 Efficiency ISO-IEC 9126-1

 1 Time Behaviour ISO-IEC 9126-1

 1 Message Throughput Function: (Platform: Nominal) x (NumberOfUsersConected: Absolute) x
(MessageSize:Absolute)

Amount of time required to send a message

 2 Multiprocess Support Supported: Nominal; Supported=(True, False) Possibility to support administrative tasks such as message store,
defragmentation and space recovery, without stopping services

 2 Resource Utilization ISO-IEC 9126-1

 1 Deployment Resources required by the system during its deployment

 1 Hardware Resources Required Resources: Set(<Name:Nominal, Requirement:Nominal>); Name=(RAM,
Processor, HD, …), Requirement=Label[ResourceUnit] Hardware resources required to deploy the component

 2 Software Resources Required Resources: Set(Labels: Nominal); Labels=(OS, …) Software resources required to deploy the component

 3 Efficiency Compliance ISO-IEC 9126-1

5 Maintainability ISO-IEC 9126-1

 1 Analyzability ISO-IEC 9126-1

 1 Analyzable Data Available data to perform analysis of the system

 1 History and Versioning Capability of the system to provide a history of the changes on the
data managed

 1 History Files Information Information provided by the history files

 1 Fields Fields:Set(Labels: Nominal); Labels=(Date, Time, ChangePerformed, …) List of fields recorded in the history files

 2 Events Events:Set(Labels: Nominal); Labels=(Save, Replace, Delete, …) List of the events which record information on the history files

Annex 3

230

Quality factor Metric Description

 2 Build in Testing Capabilities Built in testing capabilities implemented into the system

 1 Message Delivery Notifications Supported: Nominal; Supported=(True, False) Information automatically provided by the server if delivery problems
are found

 2 Message Reception Notifications Supported: Nominal; Supported=(True, False) Information automatically provided by the server when new
messages arise

 3 Message Tracking and Monitoring Supported: Nominal; Supported=(True, False) Tracking of messages across network domains. Users can check the
status of their sent messages.

 2 Build In Analysis Capabilities Mechanisms provided by the system to generate/store versions of
the system data

 1 Message Tracking and Monitoring BuildIn: Nominal; BuildIn=(True, False) Tracking of messages across network domains. Users can check the
status of their sent messages.

 2 Automated RTSC Server Usage reporting Supported: Nominal; Supported=(True, False)
Manage the messaging environment via direct statistical analysis of
servers’ performance and connectivity. For example: track the
number of web client users versus non-web based clients to a server

 3 Expert Analysis Tools Tools:Set(Labels: Nominal); Labels=(unknown)
Analyze server functions over time for performance tuning, capacity
planning and trend prediction. Set and track service level
agreements, correlate performance statistics and more

 4 Billing Services BuildIn: Nominal; BuildIn=(True, False) Track, report and analyze system usage for billing, charge-back and
capacity planning purposes

 2 Changeability

 1 Development Documentation

 1 Documentation and User Manuals Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced) Are user and installation manuals as well as other documentation
provided with the component?

 2 FAQs and Tips Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced) Are frequently asked questions and user tips documents provided?

 3 Help Files Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced) Are help files provided?

 4 Online help Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced) Is there and internet online help available?

 5 Vendors Customers support Support: (Provided: Nominal, Quality: Ordinal); Provided=(Not Provided,
Partial, Provided); Quality : (Poor, Fare, good, Excellent)

Does the provider company of the component or its representatives
have a customer support department? If they do, how well prepared
in the use of the application are the technicians? Do they provide
support for the installation/configuration?

 6 External Online help Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced Is there an external internet online help available?

 7 Published Documentation Docum: Nominal; Docum =(Available, Partially Available, Not Available). Are there Information sources e.g. books, white papers, etc (other
than the provided by the supplier) available for its review?

 3 Stability ISO/IEC 9126-1

 1 Operational Stability Capability to avoid unexpected effects from modifications in normal
operation of the system

 1 Updates Frequency Rate UpdRate: ratio; UpdRate=Integer[Times/Year] Average time among updates (patches) of the component

 4 Testability ISO/IEC 9126-1

 1 Message Delivery Notifications Supported: Nominal; Supported=(True, False) Information automatically provided by the server if delivery problems
are found

 2 Message Reception Notifications Supported: Nominal; Supported=(True, False) Information automatically provided by the server when new
messages arise

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

231

Quality factor Metric Description

 3 Message Tracking and Monitoring Supported: Nominal; Supported=(True, False) Tracking of messages across network domains. Users can check the
status of their sent messages.

 4 Expert Analysis Tools Tools:Set(Labels: Nominal); Labels=(unknown)
Analyze server functions over time for performance tuning, capacity
planning and trend prediction. Set and track service level
agreements, correlate performance statistics and more

 5 Maintainability Compliance ISO/IEC 9126-1

6 Portability ISO/IEC 9126-1

 1 Adaptability ISO/IEC 9126-1

 1 Supported Operating Systems OS:Set(Labels: Nominal); Labels=(Windows, Unix, Linux, …) Choice of operating systems over which RTSC servers may be
installed and run

 2 Supported Hardware Platforms and Architectures Platform: Set(Labels: Nominal); Labels=(Intel X-86, IBM AS/400,
SunSparc, DEC Alpha, …)

Choice of hardware architectures over which RTSC servers may be
installed and run

 3 Choice of RTSC-Clients Different kinds of clients supported by the RTSC server

 1 RTSC program Clients Client: Set(Labels: Nominal); Labels=(IM clients, …) Users that connect to the RTSC server using non-web based
application clients

 2 Web-Based Clients Client: Set(Labels: Nominal); Labels=(IM clients, …) Users that connect to the RTSC server using web based client
applications

 3 Mobile Devices Clients Client: Set(Labels: Nominal); Labels=(PDA, Celphones, …) Users that connect to the RTSC server using mostly proprietary
pieces of software.

 2 Installability ISO/IEC 9126-1

 1 Built In Installation Facilities Built in capabilities to assist on system installation

 1 Administrative Tools and Wizards Tools: Nominal; Tools=(Installation wizards, configuration tools, …) Set of utilities designed to automate configuration and some
commonly performed tasks

 2 Installability Support

 1 Documentation and User Manuals Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced) Are user and installation manuals as well as other documentation
provided with the component?

 2 FAQs and Tips Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced) Are frequently asked questions and user tips documents provided?

 3 Help Files Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced) Are help files provided?

 4 Online help Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced) Is there and internet online help available?

 5 Vendors Customers support Support: (Provided: Nominal, Quality: Ordinal); Provided=(Not Provided,
Partial, Provided); Quality : (Poor, Fare, good, Excellent)

Does the provider company of the component or its representatives
have a customer support department? If they do, how well prepared
in the use of the application are the technicians? Do they provide
support for the installation/configuration?

 6 External Online help Content: Nominal; Content=(Not Provided, Basic, Medium, Advanced Is there an external internet online help available?

 7 Published Documentation Docum: Nominal; Docum =(Available, Partially Available, Not Available). Are there Information sources e.g. books, white papers, etc (other
than the provided by the supplier) available for its review?

 3 Platform Compatibility Capability of the system to be installed in a specific platform

 1 Supported Operating Systems OS:Set(Labels: Nominal); Labels=(Windows, Unix, Linux, …) Choice of operating systems over which RTSC servers may be
installed and run

 2 Supported Hardware Platforms and Platform: Set(Labels: Nominal); Labels=(Intel X-86, IBM AS/400, Choice of hardware architectures over which RTSC servers may be

Annex 3

232

Quality factor Metric Description

Architectures SunSparc, DEC Alpha, …) installed and run

 3 Coexistence ISO/IEC 9126-1

 1 By means of Protocols Capability to directly interact with other systems by means of
supported protocols

 1 Real time transfer protocols Protocols:Set(Label:Nominal); Label=(H323, SIP, IRC, …) Supported protocols to send and relay RTSC messages

 2 Real time access protocols Protocols:Set(Label:Nominal); Label=(RFC2810, …) Supported protocols used by RTSC-clients to access messages in
the server

 3 Network protocols Protocols:Set(Label:Nominal); Label=(HTTP, …) Supported Network applications protocols

 4 Wireless protocols Protocols:Set(Label:Nominal); Label=(WAP, …) Supported wireless protocols

 2 By means of APIs (connectors) Capability to directly interact with other systems

 …

 4 Replaceability ISO/IEC 9126-1

 1 Build In Migration Tools Migration tools built into the system

 1 To/From Other RTSC Servers Tools: Set(Labels: Nominal); Labels= (unknown) Tools to migrate systems and user data to/from other RTSC servers

 2 To/From Other OS Tools: Set(Labels: Nominal); Labels= (unknown) Tools to migrate system and user data to/from other RTSC server of
the same brand in a different operating system

 5 Portability Compliance ISO/IEC 9126-1

Non-technical Factor Metric Description

1 Supplier Characteristics of the supplier that can influence the quality of the
software product. See [Car+07b]

 1 Organizational Structure Description of the organizational structure of the supplier of the
component

 2 Positioning and Strength Description of the position and orientation of the supplier company in
the market

 3 Reputation Recognition of the capability of the supplier to perform similar
projects based on past experiences and certifications

 1 Supplier Company Existence NumberOfYears: Integer Years of the supplier company in the market from its foundation

 2 Quality Process Certification Certifications of the quality of the process followed by the supplier
company given by recognized certification authorities

 1 CMM Level CMM Level: Integer (1..5) Capability Maturity Model Level granted to the supplier company

 2 ISO 9000 ISO9000: Boolean ISO 9000 certificate granted to the supplier company

 3 Other Certificates List Of (Certificate, Level); Certificate: (Spice, SixSigma, …); Level: String Other quality process certificates

 3 Client Recommendations List of (Client, Comments); Client:String; Comments:List of String References and recommendations of the supplier company that
other clients have given

 4 Services Offered Description of the services offered by the supplier

 1 Organizational Analysis and Process Reengineering Tuple(ServiceOffered, Description); ServiceOffered: Boolean;
Description: String

The supplier company offers services to analyze the current
business process of the client and services to restructure these
processes in order to align them with the offered system

 2 Organizational Change Management Tuple(ServiceOffered, Description); ServiceOffered: Boolean; The supplier company offers services to manage the change from

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

233

Quality factor Metric Description

Description: String the new system, foreseen the possible risks and providing
attenuating measures

 3 Parameterization and Adaptation of the Offered
Systems

Tuple(ServiceOffered, Description); ServiceOffered: Boolean;
Description: String

The supplier company offers services to adapt and parameterized
the offered systems on the production framework of the client

 4 Installation of the Offered Systems Tuple(ServiceOffered, Description); ServiceOffered: Boolean;
Description: String

The supplier company offers services of installation of the offered
systems in the production framework of the client

 5 Integration of the Offered Systems Tuple(ServiceOffered, Description); ServiceOffered: Boolean;
Description: String

The supplier company offers services of integration of the offered
systems in the production framework of the client

 6 Training and Teaching the Offered Systems Tuple(ServiceOffered, Description); ServiceOffered: Boolean;
Description: String

The supplier company offers services of introduction to the new
systems that are sold to the client

 7 Other Services Offered List of OtherService; OtherService: Tuple(ServiceOffered, Description) List of other services offered and possible comments about them

 5 Support Description of the support mechanisms offered by the supplier
company

 1 Support Channels Support channels among the supplier company and its clients

 1 Direct Support Tuple(ChannelOffered, Description); ChannelOffered: Boolean;
Description: String

The supplier company is who gives support to its clients

 2 Indirect Support Tuple(ChannelOffered, Companies, Description);
ChannelOffered: Boolean; Companies: List of String; Description: String

Third party companies are who give support to the clients

 3 Mixed Support Tuple(ChannelOffered, Companies, Description);
ChannelOffered: Boolean; Companies: List of String; Description: String

A combination of the supplier company and third party companies
are who give support to the clients

 4 Other Supports List Of Channels; Channels: Tuple(ChannelName, Description);
ChannelName: String; Description: String Other support channels are provided

 2 Support Types Description of the support methods offered by the supplier company

 1 Help desk Tuple (ServiceOffered, Description); ServiceOffered: Boolean;
Description: String

The supplier company provides on-demand remote support to the
clients

 2 Presence Support Tuple (ServiceOffered, Description); ServiceOffered: Boolean;
Description: String

The supplier company provides direct support in presence to the
clients

 3 Incidence Repository Tuple (ServiceOffered, Description); ServiceOffered: Boolean;
Description: String

The supplier company provides a repository of problem lists and how
to solve them to help the clients

 4 Other Support Types List Of SupportType; SupportType: Tuple (ServiceOffered, Description);
ServiceOffered: Boolean; Description: String Other support types are provided

 3 Territory Covered Describes the territory covered by the support channel

2 Business See [Car+07b]

 1 Licensing Schema Description of the COTS components licensing options

 1 Licensing Types List of LicensingTypes; LicensingTypes: (PerUserGroups, PerServer,
PerClients, …) List of common licensing options provided

 2 Other Types
List of OtherLicensingTypes;
OtherLicensingTypes: Tuple(LicensingType, Description);
LicensingType: String; Description: String

Other licensing options offered

 2 Ownership Description of the aspects in relation to the intellectual property rights

Annex 3

234

Quality factor Metric Description

 1 Own Made Product Manufacturer: Boolean The supplier company has developed the product

 2 Third Party Product
Tuple (Manufacturer, Relationship, ProductReference);
Manufacturer: String; Relationship:(Distributor, Partner, …);
ProductReference: String

The supplier company has not developed the product

 3 Ownership Rights Ownership of the product once installed into the production
framework of the client

 1 Copyright Maintained: Boolean The supplier company maintains the ownership once the product is
installed into the production framework of the client

 2 Copyleft WithChangesAllowed: Boolean The supplier company maintains the ownership, but the client can
make changes in its copy of the product

 3 Ownership Transferred ClientOwnership: Boolean The supplier company gives the ownership to the client

 4 Open Versions Open: Boolean There is not an owner of the product

 5 Source Code SourceCode: Boolean The supplier company gives the source code to the client

 3 Guarantees Detail of guarantees provided over the product

 1 Guarantees of Fulfillment of the Installation dates List Of Guarantee; Guarantee: Tuple(Name, Description);
Name: String; Description: String

Description of the guarantees that gives the supplier/consultant
company of fulfillment of the dates of implementation

 2 Guarantees of Non-Stop Running of the Product List Of Guarantee; Guarantee: Tuple(Name, Description);
Name: String; Description: String

Description of the guarantees that gives the supplier company that
the product will be running in a non-stop way

 3 Guarantees about Error Correction List Of Guarantee; Guarantee: Tuple(Name, Description);
Name: String; Description: String

Description of the guarantees that gives the supplier company that
they will correct the errors found in the product

 4 Guarantees of Future Support List Of Guarantee; Guarantee: Tuple(Name, Description);
Name: String; Description: String

Description of the guarantees that gives the supplier company that
they will give support to the client in the future with respect to the
product

 4 Licensing Costs Description of the COTS components and total cost of ownership for
the different licensing options available

 1 Per User Group List Of Interval; Interval: Record(Rang, Cost);
Rang: String; Cost: Float(dollars)

Estimate price for each group of users that have access to the
product

 2 Per Server List Of Interval; Interval: Record(Rang, Cost);
Rang: String; Cost: Float(dollars)

Estimate price for each server in which the product is installed

 3 Per Client Cost: Float (dollars) Estimate cost for a client company

 4 Other Licensing Costs
List Of CostLicensingOptions;
CostLicensingOptions: Tuple(LicensingType, Rang, Cost);
LicensignType: String; Rang: Description; Cost: Float(dollars)

Estimate prices for other licensing options provided by the supplier
company

 5 Platform Costs Estimation of the cost for the required production platform

 1 Hardware Platforms Estimates the cost of the required hardware platform

 1 Server Characteristics List Of ServerChar; ServerChar: Tuple(Characteristic, Value);
Characteristic: String; Value: String List of characteristics of the required servers

 2 Server Costs Cost: Float(dollars) Estimated cost of the required servers

 3 Maintenance Server Costs Tuple (CostPerServer, NumberOfMonths);
CostPerServer: Float (dollars); NumberOfMonths: Integer

Estimated recurrent cost for the maintenance of the required servers

 4 Other Hardware Required Characteristics List Of OtherHardware; OtherHardware: Tuple(Description, Hard);
Description: String; Hard:List Of HardChar;

List of other hardware required and its characteristics

Systematic Construction of Goal-Oriented Taxonomies for Searching and Reusing COTS

235

Quality factor Metric Description

HardChar: Tuple(Characteristic, Value); Characteristic: String;
Value: String

 5 Other Hardware Costs
List Of OtherHardwareCost;
OtherHardwareCost: Tuple(Description, Cost); Description: String;
Cost: Float(dollars)

Estimated cost for each other hardware required

 2 Software Platforms Estimated cost of the required software platform

 1 Operative System OperativeSystem: String Operative system required

 2 Operative System Cost CostPerOperativeSystem: Float(dollars) Estimated cost of the operative system required

 3 Other Software Required List Of OtherSoftware; OtherSoftware: String List of other software products required

 4 Other Software Cost
List Of OtherSoftwareCost;
OtherSoftwareCost: Tuple(Other Software, Cost); OtherSoftware: String;
Cost: Float(dollars)

Estimated cost for each other software required

 6 Implementation Costs Estimation of the implementation cost based on similar past
experiences

 7 Network Costs Estimation of additional cost for network operation

3 Product Characteristics of the commercial aspects of the software product
that can influence its quality

 1 History Evolution of the COTS since it has been offered to the clients

 1 Product in Market Time: Years; Years: Integer Time Of product in the market

 2 Versions of the Product List Of Version; Version: Tuple(NumberVersion, Time);
NumberVersion: String; Time: Years; Years: Integer

Versions of the product currently in the market

 3 Patches per Version List Of VersionPatches; VersionPatches: Tuple(NumberVersion, Number)
NumberVersion: String; Number: Integer

Number of patches for each version

 4 Errors per version List Of VersionErrors; VersionErrors: Tuple(NumberVersion, Number)
NumberVersion: String; Number: Integer

Approximate number of errors identified in each version

 5 Compatibility Among Versions Scheme: (Tools for the migration, …) Compatibility schema among versions

 6 Compatibility Guarantees
List Of CompatibilityGuarantees;
CompatibilityGuarantees: Tuple(Type, Description)
Type: String; Description: String

List of guarantees that assure the compatibility among versions

 2 Deliverables Detail of the out-of-the-box and expected post-implementation
deliverables

 1 Initial Deliverable List Of Deliverable; Deliverable: (SourceCode, UserManuals, Installation
Manuals, RunningCode, …)

Contents of the first deliverable that the supplier company gives to
the client

 2 After Installation Deliverable
List Of DocumentationDeliverable;
DocumentationDeliverable: (UMLdiagrams, ParameterizationManual,
SourceCode, UserManuals, InstallationManual, RunningCode, …)

Contents of the deliverable that the supplier company give to the
client after the installation of the product

 3 Parameterization/Customization Description of the initial effort required for the product to operate

 1 Working Team

List Of PossibleComposition;
PossibleComposition: (ExternalConsultants,
ExternalConsultantsWithExternalSupport, MixedTeam,
 InternalTeamWithExternalSupport, …)

Structure of the working team that participates in the
parameterization and customization of the product

Annex 3

236

