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Abstract

Today, advanced analytics is considered to be an important driving force
for evolving businesses and societies. Two fields constitute the foundations of
advanced analytics, namely databases and predictive analytics using machine
learning (ML). Vast streams of structured and unstructured data have been
incorporated in databases, and analytical processes are applied to discover
patterns, correlations, trends and other useful relationships that help to
take part in a broad range of decision-making processes. The amount of
generated data has grown very large over the years, and conventional database
processing methods from previous generations have not been sufficient to
provide satisfactory results regarding analytics performance and prediction
accuracy metrics. Thus, new methods are needed in a wide array of fields
from computer architectures, storage systems, network design to statistics
and physics.

The aforementioned phenomenon has had an epochal influence on the re-
search of predictive analytics using machine learning. Deep learning based ma-
chine learning methods have started to surpass rule-based predictive methods
by extracting patterns from vast and diverse amounts of data. Unfortunately,
there is no such thing as free lunch, deep learning methods require immense
amounts of training and learning. Currently, the computational demands of
deep learning methods have been one of the most studied methods in all areas
of computing sciences from hardware to all the way up to algorithm design.

This thesis proposes two methods to address the current challenges and
meet the future demands of advanced analytics. First, we present AxleDB,
a Field Programmable Gate Array (FPGA)-based query processing system
which constitutes the frontend of an advanced analytics system. AxleDB
melds highly-efficient accelerators with memory, storage and provides a unified
programmable environment. AxleDB is capable of offloading complex Struc-
tured Query Language (SQL) queries from host CPU. AxleDB is designed
to be programmable with a set of special instructions, which enable data
movement through memory and storage units and can be programmed from
the host CPU. The experiments have shown that running a set of TPC-H
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queries, AxleDB can perform full queries between 1.8x and 34.2x faster and
2.8x to 62.1x more energy efficient compared to the state-of-the-art Database
Management Systems (DBMSs) such as MonetDB, and PostgreSQL on a
single workstation node.

Second, we introduce TauRieL, a novel deep reinforcement learning (DRL)
based method for combinatorial problems. The design idea behind combining
DRL and combinatorial problems is to apply the prediction capabilities of
deep reinforcement learning and to use the universality of combinatorial
optimization problems to explore general purpose predictive methods. Most
of the engineering, data analysis, and business decision problems can be
formulated as combinatorial problems where the optimization process can be
described as extracting various model parameters from data or distributions
and minimizing errors based on an objective. Thus, TauRieL constitutes the
backend of an advanced analytics system.

TauRieL utilizes an actor-critic inspired DRL architecture that adopts
ordinary feedforward nets to generate a policy update vector v. Then, the
update vector improves the state transition matrix that generates the search
policy. Furthermore, TauRieL performs online training which unifies training
and searches whereas the current state-of-the-art requires substantial training
duration and datasets that precedes the search step. The experiments show
that TauRieL can generate solutions two orders of magnitude faster and
performs within 3% of accuracy compared to the state-of-the-art DRL on
the traveling salesman problem (TSP) while searching for the shortest tour.
Also, we present that TauRieL can be adapted to the Knapsack combinatorial
problem. With a very minimal problem specific modification, TauRieL can
outperform a Knapsack specific greedy heuristics.
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Chapter 1

Introduction

Advanced analytics is considered to be the most important driving force for
evolving businesses and societies. Vast streams of structured and unstructured
data have been incorporated, and analytical processes are applied to discover
patterns, correlations, trends and other useful relationships that help to
partially or fully take part in a wide range of decision-making processes [82].
The data being generated has grown at a rapid pace over the years, and
conventional database processing methods from previous generations have
not been sufficient to provide satisfactory results regarding performance and
prediction accuracy [77, 58].

Consequently, the big data explosion has yielded deep learning based
machine learning methods to excel. The large-scale training and approx-
imation from the vast amount of data have surpassed rule-based learning
systems [60]. However, the successful solutions require long training times
and significant computational demands [53]. This thesis addresses some of
the current challenges in the scope above and proposes two methods that aim
to meet demanding requirements of predictive data analytics. The objectives,
contributions and the details of the proposed solutions are presented, and the
insights are shared alongside the experimental results and the conclusions.
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1.1 Two components of advanced analytics sys-

tems

There are two fields that constitute the foundations of advanced analytics,
namely databases and predictive analytics using Machine Learning (ML).
The databases have been evolving in order to support a vast amount of high
variety data. Furthermore, emerging applications such as autonomous driving
and large-scale scientific experiments have created data at an ever increasing
rate [82, 39]. The data is extracted and formatted by database queries and
queries are processed by query processing units which present the requested
data [119]. This ever-increasing rate of raw data creation and the need for
intelligent and timely analysis of this data is a challenge. In this endeavor,
databases are considered as the frontend entities of the data analytics tasks
that are responsible for storing, preparing and preprocessing the data in a
structured way.

Simultaneously, predictive analytics apply ML methods and handle the
heavy-duty work of generating insights through inference by rigorously pro-
cessing the available data. Thus they are classified as the backend entities
of the analytics systems [103]. Both the frontend and the backend data ana-
lytics domains are heterogeneous and complex structures that are composed
of different sub-fields. Thus, in the following two sections, we present the
challenges facing the front and backend domains and the approaches towards
addressing some of the challenges.

1.1.1 The frontend: Query processing

Databases - query processing systems - are capable of storing and querying
large amounts of data in various settings from data-centers to autonomous
cars [75]. Although there have been alternative general purpose frameworks
to databases that do not require explicit data definitions and that hide
functions such as data cloning for scalability from the developer [135, 147],
these frameworks have not been as successful as replacing databases. The
main reason for system architects to prefer databases is due to their ACID
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(Atomicity, Consistency, Isolation, Durability) guarantees.

About three exabytes of structured and unstructured data is created and
stored in databases each day, and this number is doubling approximately
every forty months [81]. Querying enormous amount of data has been a
challenge, and new methods have been actively researched and developed for
maximizing query processing throughput [5]. Until recently, the majority of
query processing research has been targeting software stack on general purpose
computing platforms [48] which have also been supported by the Moore’s
Law that provided performance improvements without major modifications
in software [37]. However, the straightforward increase in clock frequencies
that led to performance gains has already diminished. Furthermore, powerful
uniprocessor general purpose processing platforms have been replaced with
multiprocessing architectures. Therefore, homogeneous multiprocessing plat-
forms have been the main choice of computing in database systems in the
last decade [37, 56].

Recent advances in specialized hardware accelerators and heterogeneous
processing such as Graphics Processing Units (GPUs) [143], Application
Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays
(FPGAs) have provided significant improvements in computational power [97].
Also, the massive increase in data sizes, stringent design requirements and the
mentioned paradigm shift in the computing domain towards specialized and
heterogeneous processing are causing query processing systems to reinvent
themselves by adopting a unified domain-specific hardware/software approach
[25].

Classical control-flow-based query processing engines deliver lower compu-
tational throughput compared to what can be achieved by application-specific
hardware. From one side, to alleviate the overheads of data movement, one
promising solution is to bring the computation closer to where the data
resides, so that more operations can be completed avoiding non-essential
data movement [124]. In this method, the gains are two-fold: easing the
load on the host CPU for performing database operations, and reducing
the negative impact on the performance of high-latency I/O operations. As
a result, significant throughput improvements, as well as reduction of I/O
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overheads can be achieved [108]. On the other hand, streaming data through
highly specialized hardware accelerators in a deeply pipelined fashion can
significantly improve the computational throughput of the query processing
engine.

FPGAs provide a unique opportunity to build an efficient query pro-
cessing platform, by constructing a high-throughput execution engine with
the additional aim of minimizing overheads of data movement. It is mainly
the consequence of; (i) the inherent characteristics of massively parallel and
configurable architecture of FPGAs, suitable for data streaming in deep
pipelined-style execution (ii) the rise of High-Level Synthesis (HLS) tech-
nology, which makes FPGA applications relatively more straightforward to
develop compared to low-level languages such as VHDL or Verilog, and (iii)
the availability of soft cores that allow rapid generation of interface protocols
such as PCIe 3.0 (Peripheral Component Interconnect Express) or SATA-3
(Serial AT Attachment) on FPGAs.

In a nutshell and within the context of the frontend, the objectives of this
thesis can be listed as:

• To design a set of energy efficient and high-performance query processing
hardware accelerators for FPGAs using high-level synthesis methods
for rapid prototyping

• To provide an infrastructure in FPGA that sits between a host CPU
and SSD storage, thus bringing computation closer to data and enabling
query processing hardware accelerators for efficient, high-performance
query processing in a single compute node

Based on the objectives, we present the thesis contributions in Section
1.2.

4



1.1.2 The backend: a predictive method by combining

deep reinforcement learning and combinatorial op-

timization

The second field that constitutes the foundations of analytics is the predictive
analytics using deep learning methods. The predictive analytics enable to
extract patterns from datasets and aim to provide the best assessment of the
likelihood of events whether it be predicting a pedestrian in shortest path
in map, grouping photos in folders, or forecasting financial markets. Deep
learning architectures are composed of neural networks, densely connected
processing elements that are loosely named after the primary information-
carrying cells of the brain, the neuron [71].

Deep learning is separated from the rule-based ML systems such that
patterns in the data are not extracted based on a set of features [21]. Moreover,
deep learning architectures do not necessitate handcrafted feature extraction
that in most cases require domain knowledge. Instead, an end-to-end training
process which is called supervised learning which exploits the vast amount of
labeled input-output data. Using supervised learning deep learning models
can extract features and apply transformations to map inputs to outputs
[42]. Thus, deep learning frameworks are built from sampling the inputs
and probabilistic distributions with expected outputs. However, the end-to-
end training procedure requires large amounts of input data for successful
outcomes [42].

The trade-off of not requiring handcrafted features while requiring more
input data has turned out to be favorable for deep learning architectures
[71, 86, 129]. Deep learning algorithms have been shown to outperform
heuristics in various application domains. However, the vital necessity for
high volumes of data for successful predictions also hinders broad adoption
of deep learning in various domains [122, 19, 116]. There does not always
exist an adequate amount of data for successful training or high costs, noisy
processes and computational limitations hinder the generation of datasets
[28, 105].
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A critical domain that is affected by the mentioned phenomenon is the
combinatorial optimization problems [7]. These problems are computationally
challenging either to search for the optimal solutions due to their exponential
exploration space or to generate a single feasible solution. Also, the accuracy
of predicting combinatorial optimization problems are also affected when
available datasets possess a large amount of sub-optimal instances. In this case,
although the training is performed successfully, the prediction performance
may be unsatisfactory. Nonetheless, there exists a branch in the machine
learning field that does not rely on supervised learning methods, namely
reinforcement learning (RL).

Deep Reinforcement Learning (DRL) combines deep learning with RL [11].
In essence, RL is a technique that consists of an agent, which is a software
program that learns from its environment by taking actions (decisions), col-
lecting rewards and adjusting its behavior based on the rewards. RL utilizes
dynamic programming and Markov Decision Process (MDP) methods which
allow the agent to explore the environment through taking various actions (ex-
ploration), and take advantage of recorded experiences by replaying previous
actions (exploitation), by and large stochastically and in a sequential manner
[121, 91]. DRL architectures have incorporated complex pattern recognition
and approximation capabilities of deep learning for representing agent policies
and predicting value functions [86]. The significant difference of RL from
supervised learning based deep learning is that RL systems learn from expe-
rience by sampling from the state space whereas supervised learning occurs
through approximations over labeled datasets [63]. Hence, by representing
agents’ possible actions as deep neural networks, the whole reinforcement
learning can be trained end-to-end that allows DRL architectures to bene-
fit from exploring the available state space and collect experiences whereas
the success of deep learning architectures only relies on the given datasets.
Furthermore, sequentially exploring the state space yields DRL architectures
to target problems that advance sequentially in order to reach a solution,
such as planning problems [123]. Henceforth, combinatorial optimization and
natural language processing problems can be listed among these types of
problems [22, 24]. Although, deep reinforcement learning architectures can
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modify internal states and consider output feedbacks, the overall training
times of deep reinforcement learning architectures have been as high as deep
learning architectures [112].

The main of the advantages of DRL in the scope of this thesis that they are
capable of tackling combinatorial optimization problems, which form the basis
of the most prediction problems in engineering, data analysis, and business
[94]. A solution can be deduced by combining sample space exploration and
available nonoptimal datasets. The rewards collected during explorations
are then used to extract the parameters by minimizing predetermined error
measures concerning an objective function [110, 36]. Hence, the universality
of combinatorial optimization problems combined with the strengths of deep
reinforcement learning is a promising combination and constitutes our design
idea towards designing the predictive analytics backend. Thus in this thesis,
the objective towards building a general backend for predictive analytics can
be itemized as:

• To develop a deep reinforcement learning method and tackle combina-
torial optimization problems

• To apply the proposed method to two different combinatorial optimiza-
tion problems for displaying generality of the solution

• To eliminate the main weaknesses of deep learning which are the long
training durations and the sheer necessity of labeled datasets

Next section presents the contributions of the thesis based on the objectives
that we have described in Sections 1.1.1 and 1.1.2.
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1.2 Thesis Contributions

The previous chapter introduced the emergence of advanced analytics and their
effects on the computing and machine learning landscape. In this thesis, we
aim to address the challenges mentioned above and present our contributions.
For the analytics frontend, we present the design and the implementation of
AxleDB, a novel architecture for managing data movement through hardware
accelerators and storage. AxleDB is an FPGA-based query processing system
that melds highly-efficient accelerators with memory, storage and provides a
unified programmable environment. AxleDB is designed to execute complex
Structured Query Language (SQL) queries in full by performing various
time-consuming query operations using FPGA based hardware accelerators,
while the data movement between storage and compute units are handled
with custom move instructions. Designing AxleDB presents the following
contributions:

• FPGA based query processing accelerators are presented for filtering,
arithmetic and aggregation operations which are designed to speed up
database analytics for in-memory databases. Unlike traditional FPGA
design methods, our hardware accelerators are composed using High-
Level Synthesis (HLS), which enables high-level descriptions of query
processing functions to be targeted directly into Register Transfer Level
(RTL).

• A unified AxleDB platform is presented that includes query processing-
specific accelerators and the efficient data management mechanism to
control the flow of data, which effectively enables rapid query processing
in the hardware.

The performance and energy efficiency of the AxleDB is tested under
various conditions, by running five decision-support TPC-H queries. We
compare AxleDB to state-of-the-art software-based DBMS, PostgreSQL, and
MonetDB, in the single-threaded and multi-threaded modes in a single com-
pute node. Scaling data for multiple compute nodes has not been investigated
in this thesis.
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Moreover, for the analytics backend, we propose TauRieL 1, a DRL
based method for solving combinatorial optimization problems, and our
contributions can be listed as the following:

• TauRieL searches for optimal solutions given a combinatorial opti-
mization problem by training ordinary deep neural networks in a re-
inforcement learning setting and can generate solutions two orders of
magnitude faster than the state-of-the-art while maintaining similar
prediction accuracy.

• TauRieL introduces an explicit state transition matrix that complements
the learning process by generating samples solutions from the transition
probabilities.

• A clustering and merging scheme is developed in order to divide the
given problem into subproblems for coping with the large design space.

The contributions of TauRieL is shown by solving two innately different
combinatorial problems, namely the traveling salesman problem (TSP) and
the Knapsack problem [94]. We compare the prediction accuracy, training
and inference times when the problems start from scratch.

1A wood-elf character from Hobbit the Movie who possesses superior senses and
pathfinding skills compared to humans
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1.3 Organization of the thesis

In this chapter, we have discussed the emergence of advanced analytics and
the future challenges in the domain. Then, we have introduced the two
entities, namely databases and predictive analytics using deep learning. Also,
we classify and identify their roles as the front and backend of advanced
analytics. Before explaining the objectives of the front and backend, we have
introduced the motivations and the challenges.

After listing the objectives for each part, we have presented the contri-
butions in Section 1.2. In the next chapter, we scrutinize and present the
background works. Chapters 3 presents the details and the experimental
results of AxleDB. Chapter 4 starts by reiterating the problem at hand and
introduces TauRieL. The background, the search algorithm, and the prelimi-
nary results are shown on TSP. The future work which we discuss in Chapter
5 will enlarge Chapter 4 by introducing the Knapsack problem. Chapter 6
finalizes the thesis by presenting conclusions.
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Chapter 2

Background

In this Chapter, we discuss the relevant state-of-the-art of data analytics
front end (Query Processing, Section 2.1) and backend (Predictive Analytics,
Section 2.2). We also comment on the thesis advances beyond this state-of-
the-art, wherever appropriate.

2.1 Query processing systems

2.1.1 Query processing hardware design

There have been two main efforts to implement query processing on hardware,
namely ASIC-based and FPGA-based solutions [141, 62]. The work in [141]
presents an ASIC-based method with heterogeneous compute tiles which
manipulate rows and handle query processing operations in a coarse grain
way. In order to manipulate streams of data according to the given query,
the authors present spatial and temporal planning which enables/disables
compute units along a predefined data path.

The most significant difference between full custom ASIC design compared
to HLS-based FPGA designs is the flexibility. HLS is the process of generating
low-level cycle accurate RTL specifications from high-level structures which
are generally in C/C++. Different sizes of memory or compute structures
from database columns can be optimized by extending or shrinking data
sizes in the high-level source code. Next, these structures are programmed

11



onto the logic and memory blocks of the FPGAs [30]. Consequently, HLS-
based FPGA designs are a more flexible and productive solution for rapid
design. However, ASIC-based solutions excel in performance compared to
FPGA-based solutions because FPGA hardware provides programmable logic
and memory blocks, and these blocks must be programmed efficiently for
the required functionality. On the other hand, ASICs can be designed from
scratch, maximally tailored for the application at hand [115].

While the HLS methods propose hardware generation from high-level
programming languages such as C/C++, Glacier [88] compiles VHDL code
from algebraic expressions which adds additional steps in the system design
because algebraic expressions must be created from SQL expressions or they
are taken directly from a query planner. Our proposed method in this thesis
binds accelerators to SQL operators semantically. Then, the query plan is
made accordingly.

Accelerator affinity with its host is one of the essential components in
the hardware accelerator domain. Loosely coupled accelerators can execute
independently from their host processors, and this loose coupling allows
them to service to different processors. On the other hand, highly coupled
accelerators are attached to a particular system and cannot be used by
any other service. The authors of [95] discuss efficient methodologies for
decoupling query processing hardware from a general purpose host computer
this in contrast to in-memory database acceleration where the memory of the
accelerators is controlled by a host system as in AxleDB developed in this
thesis [111].

Runtime reconfiguration capabilities of FPGAs have allowed runtime query
processing customization. Authors of [34] have built a database operations
library which at runtime forms the data path based on the given SQL query.
They have focused on data filtering operations. The main advantage of runtime
reconfiguration is to eliminate the synthesis of queries if the available runtime
operator library can execute the given query. The flexibility that HLS provides
is at compile time rather than runtime. Hence, there is a possibility to combine
runtime reconfiguration with HLS technology such as the newest Xilinx
SDAccel system design tool [2]. Although FPGA based processing systems
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could be enhanced by the use of dynamic reconfiguration, the reconfiguration
requires additional glue logic on FPGA and a predetermined selection of the
functionality that will be modified during the runtime. AxleDB does not
employ runtime reconfiguration. Instead, it is designed to be programmable
via a set of instructions for handling different database queries.

2.1.2 Designing query processing engines

Previous studies have looked into designing efficient query processing engines,
employing vector architectures [49], ASICs [142], GPUs [104] or CPUGPU-
FPGA [50, 9] proposals. On the other hand, other approaches either used
FPGAs statically [27, 96], or leveraged dynamic reconfiguration to better fit
the requirements of each query [16, 66, 149]. We differ from these works by
following a static but programmable approach in query processing and data
management, as we can support as many operations as we need, without
requiring runtime reconfiguration. The industry has also invested in a few
products, IBM Netezza [59] and XStream Data dbX [113], which offer full
DBMS solutions.

We compared AxleDB with a set of state-of-the-art FPGA/ASIC-oriented
query processing platforms: Ibex [139], Q100 [142], BlueDBM [61] Sukhwani
et al. [119] and Jaeyoung et al. [35]. Ibex [139] is a database storage engine
that is equipped with a limited set of query processing operations, working
directly with data inside SSD. Q100 [142] proposes domain-specific database
processors, but without supporting data management from off-chip storage.
BlueDBM [61] proposes a system architecture with flash-based storage and
in-store processing capabilities, but it is not specialized for query processing.
Sukhwani et al. [119] present an FPGA-based query processing engine that is
attached to a DBMS via PCIe-3 with a data compression capability. Jaeyoung
et al. [35] present a smart SSD that incorporates it with memory and low
power embedded processing units inside the SSD controller. Although the
computation is closer to the storage, the compute blocks are not specialized
for query processing and necessitate a more constrained programming style
for the processors such as for prevention of register spilling. The work in
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Table 2.1: Comparing AxleDB with state of the art platforms, in terms of
accelerators

AxleDB Ibex Q100 BlueDBM Sukhwani
et al.

Jaeyoung
et al.

Ziener
et al.

filter X X X × X X X
aggregation X X X × X X X
hash join X X × X X × X
merge join × × X × × × X
order by X × X × X × X
DB indexing X × × × × × ×
compression × × × × X × ×

[119] presents a query processing system that efficiently uses partial dynamic
reconfiguration capabilities for on-the-fly query processing.

Table 2.1 lists the embedded accelerators for each of the studied platforms.
AxleDB currently covers most of the necessary modules to run complex
queries, although operations such as pattern matching or compression are not
supported yet. On the other hand, as illustrated in Section 4, we proposed
a novel and efficient accelerators for many important SQL query primitives
using modern HLS tools. Although the hash join, sorting and indexing engines
that are used in AxleDB are out of the scope of the thesis, we present and
compare all the features with state of the art in 2.1. The detailed explanation
of the blocks above can be found in [111].

Ibex: AxleDB differs from Ibex in two ways. First, Ibex does not pro-
vide any programmable data movement support. Also, the set of hardware
accelerators are limited. AxleDB both provides data move instructions and
also provides aggregation and sorting. In complex queries, ibex fallbacks
to the host CPU. Thus, there may be scenarios where the fallbacks can be
separated in query execution and creating a lot of data movement between
the accelerators and the CPU. AxleDB supports software fallbacks when as
the last step in the query schedule. Hence, if given SQL query provides it,
AxleDB sends operands to the host CPU which results in the final product
after the last operation is executed in the host CPU.

Q100: AxleDB differs from Q100 in micro-architecture and ISA design.
Instructions of AxleDB are centered around data movement and initiating
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the accelerators, whereas Q100 has SQL-style instructions. The authors
based their micro-architecture design on the sensitivity analysis of TPC-H
queries. However, the off-chip bandwidth experiments have shown that query
execution speeds are affected to a greater extent. In contrast, our platform
is designed to maximize the available off-chip bandwidth by explicit data
movement instructions. Thus, this allows finer grain data movements for
execution. Also, as Q100 is tailored as a composition of a particular purpose
(ASIC) blocks, thus, extending the blocks can be an expensive process.

BlueDBM: Its single node consists of flash storage, accelerator hardware
in FPGA, flash controller and network interface. Data requests are sent from
the host with minimum kernel overhead. Specialized accelerators process the
data retrieved directly from flash storage, bypassing DRAM. AxleDB also
supports different types of data movement, allows data streaming among the
host, SSD, DDR-3, and accelerators. AxleDB is specialized for database query
processing using an efficient set of query processing accelerators, whereas
BlueDBM does not support the performing of such complex SQL queries.
BlueDBM has a distributed structure that allows them to scale up more
processing nodes, providing a larger address space. This capability is not
yet supported in AxleDB, through multiple nodes of AxleDB platform can
be enabled, this procedure requires additional modifications such as data
partitioning and query scheduling [44].

Sukhwani et al.: [119] present an FPGA-based query processing engine.
The engine is attached to a DBMS via PCIe-3. The supported functionality of
the accelerator is filtering, join and sorting. To improve the throughput, the
data is compressed by the host. Therefore, the decompression is the first step
in the query processing pipeline on FPGA and processed queries are sent back
in decompressed form. The authors do not provide any indexing mechanisms,
and all queries that are sent to the accelerator require a full table scan. Also,
the join and sorting units are not streaming based. Thus they use onboard
DRAM for storing intermediate results. In the query pipeline, the filtering
units always come before the join/sort units. Necessary data is read from
the DRAM of the host. Thus, this requires additional data movement from
external storage to DRAM by either the host or the accelerator. In AxleDB,
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the data movement and acceleration instructions allow processing blocks to
execute in any order. Hence, it is possible to utilize a join/sort unit before
filtering. AxleDB is designed to interface external memory directly and stores
intermediate data in FPGA’s memory.

Jaeyoung et al.: [35] present a smart SSD that incorporates SSD storage
with memory and computing resources inside the SSD controller. This design
allows internal aggregate I/O bandwidth to be 5X higher than fastest SAS
and SATA architectures. The Smart SSD architecture presented consists of
embedded processors that are on the SSD host interface controller. They
are coupled with DRAM and SRAM memories for intermediate data storage.
NAND memory arrays inside SSDs allow parallel access. Contrary to Smart
SSD, AxleDB is designed to work on an FPGA, and it is connected to an
SSD via SATA port. This allows the design of specialized accelerators on the
FPGA rather than general purpose embedded processors. In two cases, smart
SSDs can fail to exploit the advantages of its architecture, because these
scenarios might not require extensive communication between the embedded
processors and the SSD units. The first case is when the embedded processors
require data communication between the host, and the utilization of the SSDs
are very low. Next, the general purpose local memories of the embedded
processors do not satisfy the memory requirements for the problem at hand
and it causes register spilling and decrease the performance. In these two
cases, specialized accelerators can provide better results compared to general
purpose embedded processors of the smart SSD.

Ziener et al.: [16] present a query processing platform that leverages the
partial dynamic reconfiguration capability of FPGAs to fit the requirements
of each query better on-the-fly. Query primitives such as filtering, aggregation,
hash join, and sorter are gathered in a library while supporting both column-
and row-oriented data storage formats. However, this work does not follow a
direct-SSD-coupled approach that diminishes the overall throughput, which
can suffer from data offloading and partial reconfiguration overheads.
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2.2 Predictive analytics

In this section, we aim to present the relevant information about predictive
analytics and correspondingly allow readers to get acquainted with the foun-
dations which can be categorized into three. First, in the next section, we
first describe deep neural networks and reinforcement learning which enable
prediction through exploration of the state space and learning from available
datasets. Second, Section 2.2.2 presents the combinatorial optimization prob-
lems which lie in the heart of many engineering and scientific settings. Thus,
we scrutinize previous works that aspired to produce optimal results tailored
for particular combinatorial optimization problems. Finally, we target TSP
which is a well known combinatorial optimization problem, and it has been
discussed to be a hard problem for classical and quantum computing [134].
Hence, in Section 2.2.3 we introduce previously published that target TSP.
Under those circumstances, a successful TSP solver could provide a step closer
to a general predictive analytics system by transforming the given problem
to TSP or a variant of it. However, the transforming process is not in the
scope of the thesis, the problem reduction techniques have been well studied
[70]. Therefore, in Section 2.2.4, we explain the existing deep learning based
efforts that target TSP and compare and contrast with our proposed method
in this thesis.

2.2.1 Background in deep neural networks

Deep learning allows to extract complex patterns and function approximations
and to map an input to output without any pre-processing, namely the
enigmatic feature extraction processes [57]. The training process is called
supervised learning, and the backpropagation is the underlying method.
Backpropagation algorithm in an optimization setting minimizes generic loss
metrics (e.g., squared loss, cross entropy) by modifying the gradients [72].
Convolutional Neural Networks and Recurrent Neural Networks are one of
the most successful architectures that have provided breakthrough results
in image processing, natural language processing, etc. through supervised
learning [148, 76]. Furthermore, the design process of these architectures
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concentrates on amending neural networks as opposed to tailoring heuristics
for application specific purposes. Also, previous works have shown that a well
tuned neural network can be reused liberally as high-level feature extractors
[52].

Recently, Differentiable Neural Computer (DNC), a deep learning archi-
tecture which differs from previous networks has been proposed [45]. The
main characteristic of this model [45] is that the authors provide an exter-
nal memory matrix complementing the Long Short Term Memory (LSTM)
cell state [55]. Thus, the external memory matrix is trained to support the
existing recurrent neural network. The authors show that the hybrid model
can be trained as a regular neural network including the external memory
matrix. The examples demonstrate solutions to problems such as finding
the shortest path and solving moving blocks puzzle. Although the proposed
architecture possesses a built-in memory structure that resembles a random
access memory, the proposed solution can still be classified as a supervised
learning architecture.

Unlike a general purpose computer, the most suitable environment for
DNC [45] to excel is when the amount of data to predict, classify or infer an
algorithm is high. Also, the DNC solution suffers from high training duration
and performs poorly when the final algorithm to reach unclear, or the result
requires interactions with the environment [121]. For situations that do not
favor the DNC, DRL architectures that combine reinforcement learning and
neural networks, are shown to perform well [85, 86, 129].

Reinforcement learning (RL) is a method that consists of an agent, which
is a software program that learns from its environment by taking actions
(decisions) and adjusting its behavior based on rewards. RL representations
have utilized dynamic programming and Markov Decision Processes (MDP)
which model the agent and its interactions with the environment through
describing actions and states. In almost all cases, there is an agent that takes
different actions (exploration), and take advantage of recorded experiences
by replaying previous actions (exploitation). Furthermore, the actions by
large are stochastic, partially observable and happen in a sequential manner
[121, 91].
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DRL architectures have incorporated complex pattern recognition and
approximation capabilities for the agents and the rewards from the environ-
ment by employing neural networks [86]. Hence, agents make decisions either
through maximizing future rewards from experience or by extracting policy
mechanisms based on state action patterns [85, 90]. Thus, the significant
difference of RL from supervised learning is that RL systems learn from
experience whereas supervised learning occurs through approximations over
labeled datasets [63, 71].

2.2.2 Previous work for solving combinatorial optimiza-

tion problems

Combinatorial optimization is a branch of mathematical optimization, and it
has been a cornerstone research field with various application domains from
biotech, finance to manufacturing. Many problems are arising in this field
that does not yield optimal solutions with polynomial-time algorithms, and
this constitutes the main reason for continuing interests and contributions.
A set of reducible problems described by Karp et al. [64] laid the founda-
tions of combinatorial problems, and subsequent research on dealing with
computationally intractable algorithms through approximation methods with
empirical performance estimates [40].

Designing approximate methods for combinatorial optimization problems
can be classified into three. These are exact solutions, approximations of
exact solutions and the design of heuristics. The exact solutions have been
proposed through designing mathematical programming methods such as
Simplex Method [12]. Generally, exact solution methods have scaled poorly
due to computational costs. Thus, approximations of exact solutions have
been proposed [12]; Lagrangian relaxation and approximations on the upper
bound and the optimality gap are among the best-known methods [20].

Third and the most popular method has been designing heuristics which are
designed to generate useful solutions without any guarantees for the optimum.
Traditional heuristic design can be divided into three subclasses. The first
class of methods is called the constructive method where the heuristics are
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constructed from null and finalize when a feasible solution is found, such as
the nearest neighbor heuristic [32, 107]. The second method is called the
improvement heuristics where the heuristic tries to develop better results by
improving current solution based on rules. N-opt heuristic for TSP problem
can be given as an example [51, 15]. The third method is called a hybrid
which unites the previous two methods. Heuristics tend to exploit local
improvements with constructive searches [14, 109].

Though heuristic approaches have been shown to work well, each approach
requires domain knowledge and application specific tailoring. Specifically,
each heuristic requires tailored configurations which are in essence the problem
representation and the playout operations that result in the next step of the
heuristic. These configurations vary widely from choosing suitable abstract
data types and containers to computational costs of next-state playout.

Throughout the years, metaheuristics have emerged as a class where they
allowed a mixture of stochasticity and exact solution proposals that can be
applied directly to sample space. Furthermore, more generic algorithmic
recipes allowed metaheuristics to span a range of optimization problems.
Evolutionary computation, simulated annealing, and tabu search are known
examples in this area [41].

Hybrid metaheuristics have also been researched for compensating for
weaknesses of the constructive improvement heuristics. Authors in [74]
propose hybrid simulated annealing and tabu search metaheuristics for solving
TSP. They explored local neighboorhood search for sub tours with tabu
search whereas global search has been complemented using temperature-based
simulated annealing. Towards providing more generality, four parameters
are defined that are proposed as the only parameters for customization for
different problems. Thus, application heuristics parameters such as epoch
length, candidate solutions and cool time are defined regarding global variables
such as the number of cities, standard deviation.

Another hybrid method [118] combines construction heuristics such as
nearest neighbor search and tour improvement such as Lin–Kernighan [ref]
local search with evolutionary computing for TSP [133]. Crossover operations
which are the essential operations in evolutionary computation use an edge
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based crossover operation where similar tour paths are promoted to be explored
in the gene pool [92]. The authors have shown suboptimal results for the
larger input sets of the TSPLIB library.

2.2.3 The impacts of the traveling salesman problem, a

well known combinatorial optimization problem

Solving combinatorial optimization problems has an immense impact in all
fields. For example, TSP which is a well known combinatorial optimization
problem has been developed for solving a wide array of practical and theoreti-
cal problems. Examples include the use of TSP in music for conjunct melody
generation in computer-aided composition, as well as for forming automatic
playlists and track/artist suggestions - now used by Spotify and Tidal [102].
TSP heuristics have also been used for diffractometer guidance in X-ray
crystallography [22]; and for Telescope scheduling in exoplanet discovery [67]
as well as in galaxy imaging [26]. It can also be applied to bioinformatics as a
genome ordering problem by posing the ordering as a path traveling through
each gene marker [4] or as a clustering problem to solve gene expression clus-
tering [31]. Last but not least, it can be leveraged for its original application
of finding the shortest tour in a classic map, for example as a Traveling Good
Samaritan Problem for the Meals for Wheels charity program in Atlanta [15].

2.2.4 Targeting TSP using neural networks

Previously, TSP algorithms have employed neural networks in order to com-
plement local search heuristics [114, 132]. Authors in [114] use Kohonen
networks and devise a TSP solver. Self-organizing nature of Kohonen net-
works iteratively executes and tries to map neurons which are dispersed onto
the 2-D Euclidean plane to the cities. At each iteration, neurons attempt to
decrease the distance between the cities in the neighborhood region which is
a parametric set that consists of the nearby cities. The learning rate and the
neighborhood function are the hyperparameters. Because the number of neu-
rons is higher than the cities, the algorithm presents an ordering mechanism
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for selecting the best fit neurons that represent the cities.

The requirements of the vast amount of customization in optimization
problems and recent advancements in neural network architectures have
caught the attention of machine learning community. Vinyals et al. have
proposed pointer networks which are attention based sequence-to-sequence
learning architectures and presented results on TSP [131]. Without significant
hyperparameter explorations, proposed architecture has managed to generate
competitive results for other problems such as delaunay triangulation. How-
ever, the problem sizes have not been as large as state-of-the-art [8] which
have employed TSP specific local search moves [118] and provided optimal
solutions up to thousands of cities.

Bello et al. [17] recently proposed a TSP solver RL framework based on
neural networks. Pointer-networks have been employed for policy gradient
and expected tour length prediction. The sequential nature of the framework
resembles tour construction algorithms. Stochastic sampling and the actor-
critic architecture updates the expected tour length with the current policy
(on-policy), and the gradient updates are worked out using reinforce algorithm
[137]. Also, a separate neural network for tour exploration incorporates an
expected reward based value iteration approximation. All neural networks
are constructed using pointer networks [131]. Both pre-training and random
initialization of the weights are realized as the initial starting state. The
framework presents improved tour lengths and execution times compared to
Christofides and supervised learning methods [29, 131].

The authors of [65] present a deep Q-learning [85] and a graph embed-
ding based solution to target combinatorial optimization problems. Given
a problem as the graph, they first perform function mappings such as belief
propagation that learns feature vectors from latent variable models. Then,
the learned embeddings allow learning a construction graph building heuristic.
The Q-learning allows constructing the solution based on the reward which is
defined as the change in the cost function among the candidates. A helper
function is also employed that helps to satisfy the constraints of the combi-
natorial optimization from the partial solution throughout the construction
process.
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Table 2.2: Comparing TauRieL with previous deep learning based solutions

TauRieL Vinyals [131] Bello [17] Khalil [65] Kool [69]
Feed Forward Nets X × × × X
Recurrent Nets × X X X ×
Supervised Learning × X X X X
Reinforcement Learning X × X X X
Policy Based RL X × X × X
Value Based RL × × × X ×
Input Encoder × X X X X
Output Decoder × X X X X

Kool [69] proposes a TSP solver framework based on the attention model
[130]. The attention mechanism consists of the input encoder and output
decoder. The input encoder uses multiple attention mechanisms to compute
the embeddings of the input nodes. Given an input set, the output decoder
calculates a probability distribution over the input nodes using attention.
The decoder includes a context embedding mechanism which includes all
the node embeddings in addition to the graph embedding is defined as the
mean of all the node embeddings that are generated at each hidden attention
layer. In order to calculate the output probabilities of the next city in the
permutation, the decoder requires the embeddings of the start city as well as
the graph embeddings which displays that proposed solution is permutation
variant similar to recurrent neural network based solutions. Although the
results for 50 and 100 cities have improved compared to Bello et al. around
2% and 1% respectively, the reported training times have been higher than
Bello et al. [17].

We compare TauRieL and the aforementioned deep learning based methods
in Table 2.2. The row in the table present the features that are specific to
each proposed method. For each feature, the differences and similarities of
each method can be explained below:

Feed Forward, and Recurrent Nets: Although Kool [69] and TauRieL are
the two architectures with feedforward layers, Kool [69] also employs attention
networks that are more complicated than the conventional feedforward neural
nets. Thus the attention networks are dominant blocks in the presented
architecture. However, TauRieL only uses conventional feedforward neural
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networks, and its architectural complexity is the lowest among all the proposed
methods. The rest of the proposed solutions are based on recurrent neural nets.
Vinyals [131] and Bello [17] employ almost identical architectures and Khalil
[65] suggests an architecture that resembles unrolled recurrent neural nets.
Regarding architecture complexity, the recurrent nets surpass feedforward
nets.

Supervised and Reinforcement Learning: Vinyals [131] proposes to train its
network with supervised learning on various sizes of TSP problems, and Bello
[17] extends this network by first training the network with supervised learning
and applying REINFORCE [121] training in a reinforcement learning setting.
Khalil [65] employs supervised training for generating graph embedding and
then uses reinforcement learning to training the deep Q network. Similar to
Bello [17], Kool [69] and TauRieL uses REINFORCE [121] algorithm to train
the neural networks.

Policy and Value-Based RLs: All the works that we list in Table 2.2 except
Khalil rely on policy based methods where the neural networks represent
the policy. Khalil [65] employs neural networks in order to represent and
approximate the Q-score [121] for constructing the graph sequentially from
the embeddings for the problem at hand such as TSP.

Input and Output Decoders: All the works except TauRieL and Khalil
[131] employ input-output decoder neural networks. The works proposed by
Vinyals [131], Bello [17] and Kool [69] are inspired by language attention nets
and seq-to-seq models [130, 120] which employ recurrent neural networks for
encoding the input words sequentially and decoding for inference. Khalil
[65] presents an embedding algorithm that is inspired by word2vec [84]
architecture and aims to generate a vector space from graphs. TauRieL
proposes to represent the latent exploration space by storing state transition
probabilities explicitly in a state transition matrix. Thus, it does not make
use of input encoders or output decoders.
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Chapter 3

AxleDB: A novel programmable
query processing platform on
FPGA

In this chapter, AxleDB which is one of the main contributions of this thesis is
presented. AxleDB is a FPGA query processing platform which encapsulates
database-specific hardware accelerators with memory and storage in a unified
programmable environment. In the next section, we introduce the overall
architecture of the AxleDB. The overall architecture also includes describing
AxleDB’s major components. In the following section, an example query is
presented to show how its components are utilized to process the example
query. Section 3 introduces the FPGA based filtering, arithmetic, logic and
aggretgation hardware accelerators. Those accelerator units, which are the
most important components of AxleDB, are presented in depth. The rest
of the accelerators are introduced and briefly described as they are not in
the scope of the thesis. The experiments are presented in Section 4. This
section begins with evaluating the performance of the query accelarators in
scope. The rest of the experimental results include system-level comparisons
of AxleDB to the state-of-the-art.
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Figure 3.1: Overall architecture of AxleDB with its major components. Ê

software extensions for DBMS in the host, Ë Data storage units and device
controllers, Ì a set of efficient query processing accelerators, which altogether
form AxleDB Accelerators Unit (AAU), Í Programmable Interconnection
Unit (PIU) to manage the accesses to the off-chip data storage units, in a
fully flexible fashion, Î Data and Process Controller (DPC) to orchestrate
the involved modules of AxleDB to process SQL queries.

3.1 Architecture of AxleDB

The main principle of the proposed database query processing platform,
AxleDB, is to essentially move database computations closer to where the
data resides, to obtain high performance in a flexible and programmable
environment. Figure 3.1 shows the overall architecture of AxleDB. AxleDB
resides between the host machine that runs the DBMS, and the database
storage in an SSD. In the host, we primarily targeted to use PostgreSQL
[98], one of the most popular open source relational DBMS. However, the
infrastructure of AxleDB was designed to be software-agnostic and could be
ported to other DBMS, e.g., MonetDB [87].

The host communicates with AxleDB through an Application Program
Interface (API), to transfer data and instructions using the PCIe-3 interface.
When the host initiates the query execution, the query plan needs to be
converted into AxleDB instructions. Inside AxleDB, these instructions are
managed and executed by the Data and Process Controller (DPC) Î, which
orchestrates the movement of data blocks between SSD, DDR-3, host, and
Accelerators. The query is effectively executed by streaming blocks of data,
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from the storage, through the accelerators, and back. Finally, the result of
the query is returned to the host. The architecture of AxleDB is composed of
five major components which are explained thorougly in the coming sections.

1. Software Extensions for DBMS in the host Ê, including the
Data Address Table (DAT) and the CStore Foreign Data Wrapper
(FDW) extension of PostgreSQL, to manage the transfer of instructions
and data, respectively.

2. Data Storage Units Ë , i.e., SSD and DDR-3 are used as the primary
or secondary database storage units and device controller cores, i.e.,
SATA-3, DDR-3, and PCIe-3 to manage the data transfer to/from
storage units.

3. AxleDB Accelerators Unit (AAU) Ì, which is a set of efficient
DBMS query accelerators, i.e., filter, arithmetic, aggregation, group
by, hash build, hash probe, and sort. To transfer data, accelerators
are organized inside a ring bus, the RingBus of AxleDB accelerators
(RBAA), and a direct bus, the DirectBus of AxleDB Accelerators
(DBAA).

4. Programmable Interconnection Unit (PIU) Í, to set up a path
to transmit the data in a fully flexible fashion. The PIU is composed of
i) a 4-port bidirectional programmable data connection switch (PDCS)
to exchange the data among SSD, DDR-3, host, and RBAA, ii) an
arbiter to control the bandwidth sharing of DDR-3 by serializing its
concurrent requests, and iii) a set of synchronizing First In First Out
(FIFO) buffers for each individual port, separately for read and write
directions, to cross the different clock domains.

5. Data and Process Controller (DPC) Î ,that is composed of an
Instruction Cache (IC) to locate the DBMS specific instructions and
an Finite State Machine (FSM) i) to manage the accesses to the off-
chip data sources and ii) to control the accelerators to execute the
corresponding query, by issuing the appropriate control signals to the
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PIU and to the AAU, respectively. These signals are generated by
translating instructions of AxleDB.

3.1.1 Major Components of AxleDB

In this section, we elaborate the architecture of AxleDB and describe the role
of each constituting component, individually.

DBMS Software Extensions for AxleDB

The host communicates with AxleDB for two purposes: i) to access the
database tables that reside in the SSD, and ii) to program AxleDB using
query-specific instructions in order to execute the SQL queries. In AxleDB,
to process complex SQL queries, these queries first need to be translated
to our specific instructions.1 However, the certain currently unsupported
operations, such as floating point division (DIV), can utilize a fallback-to-host
scheme. Currently, AxleDB supports this if the unsupported operation can
be scheduled as the last operation which does not require significant effort to
reschedule the query. However, data management and query scheduling gets
complicated for more complex software fallback scenarios when AxleDB and
host CPU need to send and receive data during the fallback operations.

We use the CStore FDW extension of PostgreSQL to access the database
tables [33], which we refer to as ’CStore’ for short. CStore manages data in a
column-oriented format [117] that cause discarding unnecessary loads during
the query processing and provides better I/O utilization. To transfer these
instructions, we use a shared memory region between the host and FPGA,
called Data Address Table (DAT). DAT resides in the host memory and holds
the list of instructions of AxleDB and addresses of database tables. It is
updated when the data tables are modified, or when a new query needs to be
processed by AxleDB.

1The translation of SQL queries to AxleDB instructions is currently a manual process.
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Data Storage Units and Device Controllers

AxleDB is connected to different sources of data, i.e., SSD, DDR-3, and
host. i) As explained, the software extension of AxleDB is located on the
host to initialize the configuration of the query execution, by issuing the
query-specific AxleDB instructions. Its physical connection is through PCIe-3
interface, with a maximum throughput of 8 GB/s. For this aim, we use
Intellectual Property (IP) cores of Xilinx as the PCI-3 device controller. ii)
SSD is connected through SATA-3 interface, with a maximum throughput
of 500 MB/s and is used as a primary storage and shelters the database
tables. Furthermore, we use a modified version of Groundhog [138] as the
SATA-3 device controller. iii) DDR-3 is used as the secondary storage, with
a maximum throughput of 15 GB/s. It is used to locate the input/output
data tables and the temporary tables, e.g., hash tables, during the query
processing. Also, we use the Memory Interface Generator (MIG) IP core of
Xilinx as the DDR-3 device controller.

The column addresses of the database tables in SSD are generated in the
following. First, the CStore is setup as all tables would exist in the host.
Then, the data layout, namely, all the starting block addresses, block lengths
and address offsets between columns of the schemas are extracted. Next, the
columns are copied to SSD storage with respect to the data layout. Although,
the starting addresses in the SSD may be different than the host CPU, the
data layout is kept the same. Apart from the described mechanism, the SSD
does not have a filesystem.

AxleDB Accelerators Unit (AAU)

In this section, we explain the overall organization and interconnection of
AxleDB accelerators before presenting the AxleDB’s execution model. In
Section 3.3, we presents the details of each accelerator.

AxleDB is equipped with a set of hardware accelerators to carry out the
query processing primitives, i.e., filter, arithmetic, aggregation, groupby, hash
build, hash probe, and sort units. Structurally, each accelerator has i) an
input data port to stream in input data (din), ii) an output data port to
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stream out the result data (dout), iii) an input signal to determine the state
of the unit (state), which is elaborated later in this section, and iv) a set of
inputs to define the functionality of the given accelerator, e.g., to define the
filtering qualifiers in the filtering unit. Also, some of them have additional
ports to access the temporary data during the processing, i.e., hash tables in
the groupby, hash build, and hash probe units, and partially sorted data set
in the sort unit. For this aim, i) the groupby unit has input/output ports (tin,
tout) to read/write the hash table, ii) the hash build unit has an output port
(tout) to write into the hash table, iii) the hash probe unit has an input port
(tin) to read the hash table, and iv) the sort unit has input/output ports (tin,
tout) to access the partially sorted data set. Other accelerators, i.e., filter,
arithmetic, and aggregation units are inherently on-the-fly operations and do
not need any access to the temporary data during the query processing.

To interface AAU with data storage units to transfer the input/output and
temporary data set, the accelerators are connected through two distinct data
buses, with respect to their sequential and random data access types. More
specifically, i) the input/output data are usually accessed sequentially. Thus,
the potential long latencies can be covered by streaming data in a pipelined
schema. Accordingly, to access the input/output data, we made the design
decision to provide a flexible schema. In contrast, ii)to access the temporary
data, we set a shortcut path to DDR-3 memory with a minimum latency.
Since the temporary data, i.e., hash table and partially sorted data, are
accessed randomly, thus, a low-latency path would be efficient. We elaborate
the interconnections, as below:

1. RingBus of AxleDB Accelerators (RBAA): In order to build a
flexible AxleDB substrate, we connect the accelerators with a unidirec-
tional ring interconnect that is RBAA. We use the RBAA to only stream
in/out the input/output data tables, and not temporary data, from/to
the data storage units, i.e., SSD, DDR-3, and host, in a flexible schema.
As it can be seen in Figure 1, the accelerators are chained to each other
with a specific order, as follows: filter, arithmetic, aggregation, groupby,
hash build, hash probe, and sort units. The order follows a typical
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DBMS engine processing pipeline order [75]. To set up the chain, we
connect the dout port of the earlier unit to the din port of the latter
unit, consecutively. Also, the din port of the filter unit and the dout
port of the sort unit are used to externally interface the RBAA. Also,
currently, we design RBAA as a single-channel bus, which leads to a
single stream of data in the ring, at a time. Accordingly, to process
an SQL query, we need to break it into a set of data streaming paths.
Processing of the corresponding SQL query can be accomplished by
streaming data through the data paths in a sequential order through
the single channel RBAA bus. The elaboration and example query will
be presented in Sections 3.2.

2. DirectBus of AxleDB Accelerators (DBAA): As mentioned ear-
lier, groupby, hash build, hash probe, and sort units needs to be con-
nected to an off-chip storage to access their temporary data set. For
this aim, we use a dedicated data bus that we term DBAA. As it can be
seen in Figure 1, the tin and/or tout ports of accelerators are connected
to this data bus. It is worth noting that accessing random data set, e.g.,
hash tables and partially sorted data set, under a long latency would
cause a significant throughput degradation. Although, some techniques
such as multithreading [46] can alleviate this issue, in the current version
of AxleDB, our sort and hash-based accelerators are single-threaded.
Alternatively, in AxleDB, we make some design decisions to decrease
the latency of accessing the temporary data, by dedicating a direct data
bus, as:

• We believe that DDR-3 is the only promising accommodation
among the available data storage units, i.e., SSD, DDR-3, and
host, to cope with the temporary data. DDR-3 has the shortest
latency, which justifies it for random data accesses such as hash
tables and partially sorted data set.

• Accessing DDR-3 through the ring bus incurs an additional latency
(at max 7 cycles for each data access), which as explained, may
cause performance degradation. Thus, to access the temporary
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data, we dedicate the direct bus, so-called DBAA without any
additional latency. Similar to the RBAA, the DBAA is also a
single-channel bus, which corresponds to transfer a single set of
data, at a time.

In summary, we equip AxleDB with i) RBAA to provide flexibility to
access the input and output data tables from various data storage units, and
ii) DBAA to quick access to the DDR-3 for some of the costly query operations,
i.e., group by, hash build, hash probe, and sort units. The inherent advantage
of having two distinct data buses is maximizing the overall throughput when
various storage units are exploited for each data bus. For instance, by using
SSD for the RBAA and DDR-3 for the DBAA, the bandwidth of both SSD
and DDR-3, can be utilized, at a time. On the other hand, assuming that the
RBAA is also connected to the DDR-3, the bandwidth of the memory needs
to be shared among RBAA and DBAA. To share the bandwidth of DDR-3,
we would need an arbiter that serializes the concurrent DDR-3 requests. The
arbiter is a part of Programmable Interconnection Unit (PIU), which we give
more details on Section 3.1.3.

Nevertheless, according to the specific accelerated SQL query, a subset
of the hardware accelerators are usually utilized at a time and not all of
them. To meet this requirement in the hardwired chain structure of the
RBAA, we design the accelerators to work in two distinct states: active or
silent, which can be set by using an input signal. In the active state, the
accelerators normally work, as expected to carry out the expected function
of the query primitive, e.g., filtering, aggregating. In contrast, in the silent
state, the accelerators work as bypass buffers and only pass the incoming data
to the next unit in the ring (with a single-cycle latency), without applying
any function. As a consequence of this structure, depending on the SQL
queries, we can utilize only the required subset of the accelerators, by setting
them to the active state and by setting other accelerators to the silent state.
Considering the architecture, to access data, the chain incurs a latency of
maximum 7 cycles. However, as mentioned earlier, we use it only for streaming
input and output data tables and not for temporary data, which does not
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cause any throughput degradation, since the additional latency is covered by
streaming the sequential data access.

Note that the structure of the AAU may constrain supporting the SQL
queries or achieving a fully optimal query plan of a given query. Below, we
discuss the possible constrains of AxleDB:

1. RBAA as a Hardwired Chain of the Accelerators: Although,
the accelerators are chained inside a hardwired ring, the current order
is viable enough to make an efficient query plan. Performing a filtering
operation at the beginning can significantly reduce the size of the data
for the next costly operations, i.e., group by, hash build, hash probe,
and sort units, as they need frequent accesses to the off-chip DDR-3. In
summary, by following this design point, the off-chip data accesses can
be decreased, which in turn, corresponds to a significant throughput
increase. We show more detail on this design point in Section 3.2.

2. DBAA as a Single-channel Data Bus: In the DBBA, only a single
stream of data can use the bus, at a time. In other words, at a time,
one of the corresponding accelerators, i.e., group by, hash build, hash
probe, and sort, can be active. Consequently, in an AxleDB-specific
query plan for a given SQL query, we need to be ensured that each
sub-query exploits only one of the aforementioned hardware units to
access random temporary data in DDR-3. We elaborate the query
planning of AxleDB for an example query in Section 3.2.

Programmable Interconnection Unit (PIU)

PIU is designed to make AxleDB flexible enough to exchange the data among
SSD, DDR-3, host, and RBAA. Also, it synchronizes the data movement
among different clock domains and manages the bandwidth sharing. The PIU
is composed of the following components:

• A 4-port Programmable Data Connection Switch (PDCS) to exchange
the data blocks among SSD, DDR-3, host, and RBAA. To support all
the possible data movement cases among the data sources, its ports are
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Table 3.1: AxleDB instructions for query execution

Query Execution Instructions (QEI)
Instruction Description
filter# a generic filtering
arith# an arithmetic op.
aggreagate# an aggregate op.
groupby# hash-based groupby
hash_build# building the hash table
hash_probe# probing the hash table
sort# sorting data
minmax_index# index checking

designed to be bidirectional, whereas each direction of each port can be
utilized independently.

• The buffering and synchronizing FIFO modules to manage the data
movement among the various ports of the PDCS. For the data transfer,
buffering and synchronization is a crucial mechanism because, first,
various data sources have different latencies, and second, they work
with different clock frequencies. For each read and write direction,
separate FIFOs are dedicated.

• An arbiter to manage the DDR-3 read/write requests, as DDR-3 has
two distinct access modes, first, a direct connection from some of the
accelerators in the DBAA to access their temporary data and second,
an indirect connection through the PDCS to access the input/out data
tables. In the arbiter, among the aforementioned concurrent DDR-3
requests, we set the higher priority to the requests from direct connection
DBAA to quickly serve the requests for the temporary data.

In summary, PIU is designed to efficiently share the bandwidth of the data
storage units, while it can provide a fully flexible data movement schema.

Data and Process Controller (DPC) and AxleDB Instruction Set

DPC orchestrates the involved modules of AxleDB to process the complex
SQL queries in a fast, efficient, and flexible schema. More specifically, it
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Table 3.2: AxleDB instructions for data movement

Data Movement Instructions (DMI)
Instruction Description
HOST-SSD# stream data between host and SSD
HOST-DDR# stream data between host and DDR
SSD-DDR# stream data between SSD and DDR
HOST-DPC# send instructions from host to DPC

manages the movement of data and the activation of hardware accelerators
to execute an SQL query, by issuing the control signals to the PIU and the
AAU, respectively. Accordingly, the control signals from DPC, i) to the
PIU determine the source and the destination of the data movement, and
ii) to the AAU activate those accelerators that need to be utilized in the
RBAA for any certain SQL query. Also, the parameters of each accelerator
are determined by DPC, e.g., the filtering qualifiers for the filter unit.

The control signals are used by DPC to manage the query processing. They
are generated based on instructions of AxleDB. The query-specific AxleDB
instructions are translated from the SQL queries in the host. Translation
of the SQL queries to the instruction set of AxleDB is currently a manual
process. We introduce instructions of AxleDB later in this section. As it can
be seen in Figure 1, instructions are located in a shared location in the host
memory that is called DAT. Then, they are sent to the IC that resides inside
the DPC. The DPC fetches them from the IC, decodes, and executes by the
execution FSM. Consequently, the control signals are issued and sent to the
PIU and the AAU. Accordingly, the query execution is completed, when all
the instructions inside the IC are consumed. In the end, the results of the
query can be either stored back in the SSD or sent to the host. The DPC
can now synchronize with the host and wait for more instructions to process
a new query.

Tables 3.1 and 3.2 summarize the instruction set of AxleDB for performing
the tasks of data movement and query execution. Data Movement Instructions
(DMI) set up the PDCS to exchange data blocks among the different sources of
AxleDB, i.e., SSD, DDR-3, and host, bidirectionally. Furthermore, depending

35



on the query plan, Query Execution Instructions (QEI) configure AxleDB
to activate the corresponding accelerators in the RBAA to start streaming
the input data. QEI consists of filtering, arithmetic, aggregation, group
by, hash probe, hash build, and sort instructions, as well as MinMax index
creation/deletion instructions. Consequently, the available instructions can
cover a large subset of the SQL queries by executing them on hardware.
However, the unsupported operations can be fallback to the host if they can
be scheduled as the last step in the query scheduling stage. DMI and QEI
include parameters, e.g., source, destination, key columns, carried column
(payload), as well as accelerator-specific parameters, e.g., filtering operations
(<,>,<>) and its qualifiers for the filtering unit.

3.1.2 The Execution Model of AxleDB

To alleviate the common restrictions of classical processor-based systems, the
execution model of AxleDB relies on the streaming of the data through the
processing units. For this aim, FPGAs provide a unique opportunity, since
their programmable logic blocks that are called LookUp Tables (LUT) can be
chained together to construct deep pipelines. In this model, each processing
node in the pipeline can be enabled, whenever the inputs are available.

To process an individual SQL query, we use AxleDB instructions to
establish the required data streaming paths. In other words, in AxleDB,
each SQL query is defined by a set of the data streaming paths. Source
and destination of data, e.g., SSD, DDR-3, host, together with the required
processing units in the AAU constitute a data streaming path. Accordingly,
to process an SQL query, we need to make a query plan by breaking the SQL
query to a set of sub-queries which are suitable for the AxleDB’s components
that we have presented in the previous section. The generated sub-queries are
one-by-one mapped to data streaming paths that can be run in AxleDB. Later
on, we generate the required instructions and configure AxleDB to establish
the corresponding data paths, sequentially. And finally, by streaming the
data through the established data paths, the processing of the query can be
accomplished. In the current version of AxleDB, at a time, we can establish
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a single data streaming path. This property leads to a sequential, in order
and one by one, execution model for the data streaming paths, which lead to
having single stream of data in components of AxleDB, at a time. As it can
be seen, first, the DPC is initialized by a set of AxleDB instructions that are
copied from DAT in the host to the IC in the FPGA (A). Depending on the
type of each valid instruction (B):

• DMI control to exchange data among SSD, DDR-3, and host. Thus,
after appropriately configuring the PDCS to set up the required source,
destination, and direction, (C) the data are streamed in (F).

• QEI controls the hardware accelerators, then stream the payload for
AAU access. In the AAU, the corresponding accelerators are activated,
and others are configured only to pass the data (E). Furthermore, for
those QEI that need to transmit data to/from SSD, DDR-3, or host,
which is determined by the parameters of the instructions, configuring
the PDCS is also needed (D). Finally, data streaming is started through
the established data path. As mentioned, at a time, we have a single
stream of data in components of AxleDB. Thus, before reading new
instruction, the current stream needs to terminate executing (F). Later
on, we proceed to read the next instruction from IC (B) to start making
the next data streaming path.

This process continues until consuming all the instructions of the IC while
updating DAT with new instructions can restart the execution process of
AxleDB.

3.2 Illustrating the Execution Model of AxleDB

by an Example Query

In this section, to demonstrate how AxleDB works, we illustrate the query
processing procedure for an example query. The example query is Q03
from TPC-H benchmark [127] which is typically used to test data analytics
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Figure 3.2: The flowchart of the execution model in AxleDB. (In this figure:
H= Host, S= SSD, and D= DDR-3.)

performance. AxleDB runs this query without any required modifications
or code rewriting, where most of the accelerators presented in this work
are utilized. Since AxleDB is designed to be programmable, we can follow
many different query plans to execute the queries. However, in this example,
to show a comprehensive execution model of AxleDB, where input data is
located in the SSD, we built a customized query plan. Accordingly, we first
load the input data from SSD to the DDR-3, and then, start query execution
by retrieving data from DDR-3. In the rest of this section, we start by
introducing an example query. Later on, show how AxleDB processes this
example query by describing an optimal query plan, by introducing the list
of the required AxleDB instructions to run the query plan, and by explaining
how these instructions program the components of AxleDB to utilize the
required modules.

3.2.1 Elaborating the Example Query

The example query is shown in the Figure 3.3 (a). In a typical SQL query,
several language elements such as SELECT FROM, WHERE, GROUP
BY, and ORDER BY can exist. These operations can be semantically
mapped to specialized hardware accelerators. In this example, the SELECT
statement fetches the desired data columns (l_orderkey, revenue, o_orderdate
and o_shippriority) FROM the given tables (customer, orders and lineitem).
The WHERE statement is used to restrict the data in the tables and
includes operations such as logical comparisons and arithmetic operations
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that filter the data relevant to the user (e.g. o_orderdate < date ’1995-03-
17’, l_shipdate > date ’1995-03-17’ and c_mktsegment = ’FURNITURE’ ).
AxleDB’s filtering units can be exploited to handle the WHERE clauses
of SQL queries. When multiple tables are involved, the JOIN statement
(c_custkey = o_custkey and l_orderkey = o_orderkey) is used to combine
the data in these tables, based on a common field (custkey and orderkey). This
operation can be efficiently mapped to AxleDB’s hash join accelerator. The
GROUP BY statement aggregates data into groups based on a given field
(i.e. l_orderkey, o_orderdate, o_shippriority), which is mapped to AxleDB’s
hash-based groupby accelerator. The ORDER BY statement sorts the data
in ascending or descending order based on a given key (i.e. o_orderdate,
revenue), which can be performed using AxleDB’s sorter accelerator. The
LIMIT statement causes to fetch a limited number of records.

3.2.2 How does AxleDB Process the Example Query?

To process an SQL query in AxleDB; first, the host generates a set of DMI and
QEI. Currently, this is a manual process, but it can be automated by following
a similar approach with Glacier [89]. Figure 3.3 (b) shows a simplified diagram
for one possible query plan for processing the query Q03 on AxleDB, where
the mapping from the key operations of the query to AxleDB’s accelerators
is indicated by letters (from A to F). To have a simpler figure, we did not
show many details of AxleDB, i.e., RBAA, PDCS, instruction parameters, etc.
Also, as it can be seen, the execution is accomplished in nine distinct steps.
Each step is distinguished by using a set of arrows with its unique numbers
and colors in the figure. The label of each arrow shows the key columns that
are used in the corresponding part of the processing. Within each step, data
can be streamed in a pipelined fashion, and between steps, it is sequential (in
order and one by one), due to data dependencies.

Due to column-oriented data store format of AxleDB, only the 10 required
columns out of a total of 33 columns (of three input data tables) are loaded
from SSD to AxleDB. Moreover, while loading data from SSD to DDR-3
memory, the columns of data are converted into batches that are appropriate
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Figure 3.3: (a) Example SQL query: Q03, (b) An example query plan of
AxleDB to process Q03. To have a simpler figure, i) we partition the tables
of the DDR-3 memory into two boxes at above and below of the FPGA,
although, AxleDB is currently attached to a single channel of DDR-3, and
ii) we only show essential fields of the labels of arrows, excluding the input
parameters of accelerators, payloads, etc.
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for the processing units. Also, during the processing, different types of data can
be stored in the DDR-3 memory, i.e., input data tables (custT, ordersT, lineT),
intermediate data tables (IMT1, IMT2, IMT3), and temporary data tables,
e.g., hash tables (HT1, HT2, and HT3). To access to the aforementioned
data tables from the DDR-3, the memory bandwidth is shared. Previously
explained, we manage bandwidth sharing by using an arbiter to serialize the
concurrent memory requests. We elaborate it in Section 3.3 for a sample data
path, step #7 as below, of the example query. In a nutshell, we perform the
following steps to run Q03 on AxleDB (The presented numbers are for the
1GB scale of the dataset. However, more information about our benchmark
environment is presented in the following section):

1. Query processing starts by loading only the necessary columns of cus-
tomer table to DDR-3, using ’DMI: SSD-DDR#’. c_mktsegment and
c_custkey columns are loaded to DDR-3 and others are skipped.

2. For customer table, first performing a filter on c_mktsegment, using
’QEI: filter#’ reduces size of data from ≈ 150K to ≈ 30K records. Later
on, for the filtered data, a hash table (HT1) is built into the DDR-3
based on c_custkey field, using ’QEI: hash_build#’.

3. Query processing resumes by loading only the necessary columns of or-
ders table to DDR-3, using ’DMI: SSD-DDR#’. o_custkey, o_orderkey,
o_orderdate and o_shippriority columns are loaded to DDR-3, and the
others are skipped

4. For orders table, first performing a filter on o_orderdate, using ’QEI: fil-
ter#’, reduces the size of dataset from ≈ 1.5M to ≈ 725K records. Later
on, HT1 is looked up based on c_custkey, using ’QEI: hash_probe#’.
The resulting joint table is stored into the DDR-3 (IMT1) with ≈ 145K
records of data.

5. Applying a nested hash join process, IMT1 is used as the input ta-
ble to build the second hash table based on o_orderkey, using ’QEI:
hash_build#’. The hash table is stored into HT2.
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6. Query processing continues by loading the necessary columns of lineitem
table, using ’DMI: SSD-DDR#’. l_orderkey, l_extendedprice, l_doscount
and l_shipdate columns are loaded to DDR-3, and others are skipped.

7. For lineitem table, first performing a filter on l_shipdate, using ’QEI:
filter#’, reduces the size of the input dataset from ≈ 6M to ≈ 3.2M
records. Later on, in a pipelined fashion the arithmetic unit is exploited
to compute revenue, using ’QEI: arith#’. Probing the second hash table
(HT2) based on l_orderkey, using “QEI: hash_probe#”, it generates
the resulting joint table into IMT2, with about 30K records of data.

8. In this step, data records of IMT2 are grouped into the new table (HT3),
based on a merged key (o_orderkey, o_orderdate, o_shippriority). In
addition, an aggregation on revenue field is performed, using ’QEI:
groupby#’. A total number of groups (records) is ≈ 11K in HT3.

9. The query processing is finalized by sorting all groups of HT3 based on a
merged key (revenue, o_orderdate), using ’QEI: sort#’, and transferring
top 10 records to PostgreSQL, using ’DMI: DDR-HOST#’. (The host
is not shown in the diagram, for a clearer figure.) The final result in
IMT3 can also be written into the SSD, using ’DMI:SSD-DDR#’.

Due to explained query plan of Q03, the required instruction set of AxleDB
to process the given query is summarized in Table 3.3. They are composed of
many parameters, e.g., the operation (that defines the appropriate operation),
the source (to determine the source of the data and corresponding address), the
destination (to determine the destination of the data and the corresponding
address), the key columns (the columns that are used as key during the query
execution) and the payload (the columns that are only carried along). In
summary, these instructions are used to establish the required data streaming
paths in AxleDB to process the example query Q03, by following the query
plan in Figure 3.3. Accordingly, through a sample example, it is illustrated
how these instructions are used to establish one of the sample data streaming
paths, #7, by following the process in Figure 3.2.
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Table 3.3: AxleDB instructions to process the example query, according to
the query plan in Figure 3.3 (some of the fields such accelerator-specific
parameters are omitted in this table.) The size column shows the size of the
data stream for each data path, in terms of the number of rows, in 1 GB scale
dataset.

#path #instr Instruction Fields

operation src dest key_cols payload size
(1GB)

1 1 SSD-DDR customer
(SSD)

custT
(DDR)

c_mksegment,
c_custkey —- 150K

2 2 filter custT
(DDR) — c_mksegment c_custkey

3 hash_build — HT1
(DDR) c_custkey —- 30K

3 4 SSD-DDR orders
(SSD)

orderT
(DDR)

o_custkey,
o_orderkey,
o_orderdate,
o_shippriority

—- 1.5M

4 5 filter orderT
(DDR) — o_orderdate

o_custkey,
o_orderkey,

o_shippriority

6 hash_probe — IMT1
(DDR) o_custkey

o_orderkey,
o_orderdate,
o_shippriority

0.72M

5 7 hash_build IMT1
(DDR)

HT2
(DDR) o_orderkey o_orderdate,

o_shippriority 0.14M

6 8 SSD-DDR lineitem
(SSD)

lineT
(DDR)

l_orderkey,
l_discount,
l_shipdate,

l_extendedproce

—- 6M

7
9 filter lineT

(DDR) — l_shipdate
l_orderkey,
l_discount,

l_extendedproce

10 arith — — l_extendedprice,
l_discount l_orderkey 30K

11 hash_probe — IMT2
(DDR) l_orderkey

Revenue,
o_orderdate,
o_shippriority

8 12 groupby IMT2
(DDR)

HT3
(DDR)

l_orderkey,
o_orderdata,
o_shippriority

Revenue 11K

9 13 sort HT3
(DDR)

IMT3
(DDR)

revenue,
o_orderdate

l_orderkey,
o_shippriority 11K
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3.2.3 Establishing a Data Streaming Path: Elaboration

for a Sample Data Path

In this section, we explain how components of AxleDB are leveraged to process
the example query. As it can be seen in Table 3.3, the processing of Q03 can
be accomplished by 13 AxleDB instructions that lead to creating 9 distinct
data streaming paths. Among them, and as an example, we explain the
required steps to create the sample data streaming path #7, which is depicted
in Figure 3.4. As it can be seen, to establish the given data path #7, 3 QEI
are used (#9, #10, and #11). Each QEI determines a specific part of the
data path #7 and finally, by the last instruction the path is established. Due
to each instruction, the DPC generates the necessary control signals to the
PIU, to set up the data movement path, and to the AAU, to activate and
configure the required hardware accelerators. Accordingly, to establish the
given data path, steps as below are proceeded:

1. Instruction #9: As it can be seen in Figure 3.4(a), instruction #9
defines a filtering operation for the data in the DDR-3. Thus, the
required actions are i) configuring the PDCS to stream in the data
from the DDR-3, in this case lineT, to the AAU-RBAA. For this aim,
the appropriate ports of the PDCS are utilized. And, ii) activating the
corresponding hardware accelerator, in this case filter unit, by setting it
to work in the active state (state=1). Also, the query-specific filtering
parameters are defined by DPC, "l_shipdate > 1995-03-10".

2. Instruction #10: As it can be seen in Figure 3.4(b), instruction #10
defines an arithmetic operation for the filtered data. Thus, the only
required action is to activate the arithmetic accelerator by setting it to
work in the active state (state=1). Also, the convenient parameters of
the arithmetic unit need to be set. For this aim, the DPC generates
the required control signals to carry out the corresponding arithmetic
operation, "l_extendedprice*(1-l_discount)". It is worth noting that
for this instruction, as it does not have any valid source or destination
parameters, we do not need to modify the PDCS configuration.
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3. Instruction #11: As it can be seen in Figure 3.4(c), instruction #11
completes the establishing of the data path #7, as it needs to write
data into one of the data sources, DDR-3. Thus, data streaming will be
started after this final step. Instruction #11 requires utilizing the hash
probe accelerator by setting its state to active (state=1). Consequently,
the other accelerators in the AAU including aggregation, group by, hash
build, and sort units are configured to work in the silent state to only
pass the incoming stream of data to the next unit in the RBAA. Also,
the hash probe key, in this case l_orderkey, is determined by the DPC.
The hash probe unit needs another DDR-3 memory access to read the
hash table, in this case HT2. For this aim, the corresponding port of
the DBAA is activated to access the hash table from DDR-3.

In summary, the data streaming path #7 leads to i) read the lineT table
from DDR-3, ii) filter the incoming data stream based on l_shipdate item,
iii) apply an arithmetic function for the filtered data, iv) probe the stream
of the data based on the l_orderkey in the HT2 hash table., and finally, v)
write the probed data into the DDR-3 in the index IMT2. In total, there are
3 distinct DDR-3 data access paths in this data path, i.e., i) to stream in the
input data (as explained above in the part of instruction #9) through RBAA,
ii) to access the hash table in the hash probe unit (as explained above in
the part of instruction #11) through a direct DBAA bus, and finally, iii) to
stream out the result data (as explained above in the part of instruction #11)
through RBAA. To manage the concurrent DDR-3 requests and optimally
share its bandwidth, the arbiter in the PIU is exploited, which allows the
priority to the DBAA requests to quickly serve the hash table accesses.

3.3 Query Processing Accelerators

In this section, we go through the architecture of the proposed accelerators
that are implemented to perform efficient query processing in AxleDB. We
proposed query execution units including filtering, arithmetic, aggregation,
sorting, hash join, and groupby, as well as the MinMax indexing mechanism
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Figure 3.4: Establishing the data streaming path #7 by composing together
different AxleDB instructions #9, #10, and #11. The detailed connections
between DPC, AAU, and PIU are shown. Among them, the highlighted
components/connections represent the corresponding parts that are utilized
by each AxleDB instruction to set up the given data streaming path. The
control signals for the PIU and the AAU are generated by DPC.

for I/O optimization. In the rest of the chapter, we assumed input data table
as a set of tuples, pairs of key and value. key refers to the column(s) of data,
used for performing the main query operation, e.g., sorting key in a sorter
unit. Value refers to the other columns that need to be carried to make the
final resulting data.

For developing, leveraging HLS tools, we have designed the filtering and
aggregation accelerators in Vivado HLS [145], where we have been able to
exploit the data parallelism via Vivado’s compiler directives. For task-parallel
and control-oriented accelerators, such as the hash join and sort engines,
Bluespec SystemVerilog [23] is used. Verilog RTL code is employed for the
integration of interface controllers. We select to employ these HLS tools as a
result of our previous empirical analysis of a representative set of HLS tools
for database acceleration [10].
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3.3.1 Filtering Operations, Arithmetic, and Logic Unit

Database filtering is relational operations that test the numerical or logical
relations between columns, in the form of numerical and/or Boolean values.
Arithmetic unit handles addition, subtraction, multiplication and division
operations. Logic unit is designed to handle logical AND, OR and NOT
operations.

The key importance of filtering operations in an SQL query is to reduce
the amount of data for further processing [78], [79]. For this purpose, we
designed a compile-time parameterizable, variable width, n-way compute
engine that takes in rows of data as inputs, applies a filtering operation to
the desired fields and produces an output bitmap. This bitmap determines
the resulting rows for further processing. Similarly, we designed arithmetic,
and logical compute engines. The arithmetic engine supports the integer Add,
Sub, and Mult operations. We omit the floating point division operator for its
large FPGA area requirements. In our experiments, we needed the division
operator in a single query (Q14). However, in general, in similar scenarios,
the division operation can be handled at the host. Logical operations of NOT,
AND, OR, NOR and NAND are also supported. Also, keywords such as IN,
SOME, and EXISTS can also be mapped to multiple logical operations. The
design behind the filtering, arithmetic and logical blocks encapsulates three
major decisions:

– Width of key : In this thesis, we explored 32-bit and 64-bit data
widths for filtering, arithmetic, and logical operations. There are no limita-
tions regarding custom data width selection; since Vivado HLS supports it.
Nevertheless, using larger data widths means utilizing more LUT resources.
This becomes specifically critical for low-cost FPGAs because they include
LUTs with fewer inputs. Overprovisioning data widths can result in area
utilization problems and decreased computational power by failing to meet
the timing constraints.

– Number of parallel units: The number of units determine how much
data-parallelism can be supported. For this purpose, the approach we followed
is to determine the data widths according to the width of DDR-3 RAM line.
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Thus multiple blocks can process a memory line that is composed of multiple
elements of data. In this work, one line of DDR-3 RAM is 512-bits and data
widths could be either 32 or 64-bits. Thus, 512/32 =16 or 512/64 = 8 units
are instantiated in parallel. It is worth noting that in the TPC-H benchmarks
that we looked into, we haven’t hit to the cases where the required data width
is more than 512 bits. Since the 512-bit data width is a property of the DDR-3
interface itself, for more data width, the requirements would be to either
(i) use a newer/different technology (High Bandwidth Memory(HBM), 3D
stacking, hybrid memory cube, etc.) that supports a wider memory interface,
or to (ii) lay the data out in parallel DDR-3 channels. In either case, the
AxleDB architecture does not have any inherent limitations regarding the
bandwidth to memory.

– Pipelining: We designed all supported filtering, arithmetic and logical
operations of AxleDB to be fully pipelined, with an initiation interval of 1
cycle. Thus, all query plans that allow pipelining can be fully supported by
our filtering, arithmetic logical and aggregation blocks.

For a given filtering, arithmetic or logical operation, each input data can
either be compared with another input data from another table, or it can be
compared with a constant. For this purpose, scratchpad registers (SPR) are
utilized. These registers hold values and allow the aforementioned operators
to be applied to the input data and the SPRs. Our filter unit is capable of
performing numerous logical operations, including the BETWEEN operator.
As an example, in Figure 3.5(a), the input data array holds the column values
that require filtering. SPR_0 and SPR_1 hold the filtering qualifiers, the
values that input data must be compared against. Thus, input data and SPRs
are forwarded to the filters and output are generated. For instance, to perform
date ’1996-01-11’ < l_shipdate < date ’1995-01-11’ BETWEEN operation,
SPR_0 holds date ’1995-01-10’ and SPR_1 holds date ’1996-01-12’ in 32-bit
POSIX time format. For other operations, SPRs work the same way.
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Figure 3.5: (a) Filtering blocks that apply the BETWEEN operation to input
data using scratch-pad registers (b) SUM aggregation using binary fan-in
technique.

3.3.2 Aggregation Unit

Aggregation operations groups elements and reduce to a single value based
on a certain criteria with a more significant meaning, for example mean value
of array of elements can be calculated by using sum reduction operator in
order to find the total sum. In AxleDB, we provide an n-way aggregator
engine that supports MAX, MIN, COUNT and SUM. Aggregation units are
designed with the same three design decisions in mind, which were explained
previously. They are also fully pipelined with an initiation interval of 1 clock
cycle. Similar to the filtering unit, aggregation units are designed to take
columns as inputs and to finally combine the results to calculate the final
aggregate value. All aggregation operations are implemented in Vivado HLS
using the binary fan-in technique. Based on the input array, the size n binary
fan-in depth is log2n, and n-1 operators are necessary to form the operator
tree. An example is presented in Figure 3.5(b), where for 8 input elements, 7
sum operators are instantiated to generate a single pipelined result.

Multiple filtering/aggregation blocks can be exploited in two ways: pipelin-
ing or time-multiplexing. In a pipelined design, streaming data through
multiple instances of the accelerators achieve multiple operations in a single
pass. However, for area efficient designs, a single accelerator can be used in
a time-multiplexed way. For the studied benchmarks, instantiating multiple
filter/aggregation blocks in a pipeline provides the maximum throughput, as
we further detail with experiments.
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3.3.3 Hash-Based Units: Table Join and GroupBy

For table joins and groupby operations, AxleDB uses an efficient hash-based
engine. The join operation combines elements of two or more database tables
based on a common element. The groupby operation groups elements of rows
based on a common feature.

As a first step for table joins, a hash table is constructed using a hash
function over the key (Build phase). Later on, once constructed, the entries of
the second table are probed against this hash table to generate the resulting
joint table (Probe phase). For the groupby operation, building a hash table
over the key can already result in the desired output data. More details of
the hash-join based engine can be found in [111].

3.3.4 Sorting and Merging Unit

To efficiently sort large datasets, Axle DB uses a sorter which is an extension
of the spatial sorter [96] and allows to effectively support the LIMIT operation.
Furthermore, AxleDB employs a merge-sort tree to merge partially sorted sets
to be able to sort large input sets. Spatial sorter hardware of AxleDB is not
part of the contributions of the thesis and the details of the implementation
can be obtained from [111].

3.3.5 Block-Level MinMax DataBase Indexing Unit

Database indexing is a technique that improves the speed of retrieving the
database tables and is widely used in software DBMS [93], [83], [100]. AxleDB
uses an indexing technique called MinMax indexing for quicker access and
localization a subset of data with the expense of space and memory read/write
operations. A detailed analysis of the MinMax indexing can be accessed at
[111], it is not in the scope of this thesis.
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3.4 Evaluation Methodology

3.4.1 Configuration of the AxleDB

AxleDB is developed on a VC709 FPGA development board with an XC7VX690T
FPGA and 4GB of DDR-3 RAM. It accesses a Crucial M4-256GB SSD through
a customized version of a SATA-3 controller, based on Groundhog [138]. We
used a relatively large block size (512 KB), which can help minimize the
SSD overheads and, thus lead to significant improvements in data transfer
throughput. AxleDB is directly attached to the host through a high-speed
PCIe-3 interface for data/instruction transmission. Our accelerators and
DDR-3 RAM controllers run at 200 MHz, PCIe-3 controller at 250 MHz, and
SATA-3 at 150 MHz, therefore we used various synchronizing FIFOs for clock
domain crossing.

In order to thoroughly evaluate the efficiency of the various components of
AxleDB, we ran the benchmarks in two modes: (i) cold run, where the input
datasets are originally located inside the SSD, and (ii) warm run, without
considering the I/O time of SSD, and assuming that the datasets are already
loaded in the DDR-3 memory of the platform. Thus, in the warm mode, the
total processing time of the queries does not include the time of loading input
data tables from SSD to the DDR-3. To better analyze the cold and warm
runs, we partitioned the total execution time of the query into three parts:
(i) the I/O time of SSD, i.e. the required time of transferring input datasets
from the SSD to DDR-3 memory of AxleDB, (ii) execution time, i.e. the
query execution time of the processing units (accelerators) of AxleDB, and
(iii) the time spent on the other parts, including query planning time2, the
time for PCIe-3 data transfers, and finally the overhead of device controllers.
The last portion is negligible for large scales of data.

2As the query planning of AxleDB is currently a manual process, thus to have a fair
comparison with software DBMS, we extracted the average time of the query planner of
MonetDB (8ms for cold and 2ms for warm runs), and used it in this part [80].
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3.4.2 Configuration of Comparison Cases: MonetDB,

PostgreSQL and CStore

AxleDB is evaluated against the query processing engines of several state-of-
the-art software DBMS: (i) MonetDB 11.21 [87] as a popular column-oriented
database system, (ii) PostgreSQL 9.5 (PGSQL) as a popular object-relational
row-oriented database system [98], and (iii) CStore as the PostgreSQL’s
column-oriented data store extension [33]. More specifically, it is worth noting
that:

• MonetDB has several unique features to optimize the I/O and com-
putation, simultaneously: (i) it is built on a column representation
of database relations, (ii) it has an innovative storage model based
on vertical fragmentation, (iii) it has a CPU-tuned query process-
ing architecture, (iv) it exclusively tries to use the main memory for
the processing, and (v) it has the capability of running queries in a
multi-threaded fashion.

• PostgreSQL is intrinsically a row-oriented database system. It is
equipped with a wide set of database indexing methods, such as BRIN,
B-Tree, etc., that can be used as an appropriate comparison case with the
proposed FPGA-based MinMax indexing technique in AxleDB. Also, to
get better performance, PostgreSQL is extended with an extra patch to
support fixed-decimal data type [99]. Fixed decimal is a fixed precision
decimal type which provides a subset of the features of PostgreSQL’s
built-in NUMERIC type, but with increased performance.

• CStore is an extension that enables column-oriented data storage in
PostgreSQL. It uses the Optimized Row Columnar (ORC) format, which
brings some benefits such as; compression, column-projection, and skips
indexes (similar to MinMax/BRIN).

We run MonetDB, PostgreSQL, and CStore on a server, equipped with two
E2630 Intel Xeon processors, with a total of 12 cores and 24 threads, running at
a maximum frequency of 2.3 GHz. The server is attached to a Crucial M4 SSD
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disk (as in the AxleDB) to store database tables. The operating system (OS)
is Ubuntu 64-bit 12.04, with kernel version 3.13. To have a fair comparison,
we equip the server with the same memory size as AxleDB, 4GB DDR-3.
However, we have observed system crashes during PostgreSQL/CStore runs
for the 10GB scale benchmarks, which is the consequence of the insufficient
system memory. Thus, for this special case, the server is equipped with a
larger capacity of memory. We observed that at least 16 GB is enough to
accomplish the query processing without system crashing. Consequently,
in summary, the host is equipped with 4GB and 16GB for MonetDB and
PostgreSQL/CStore experiments, respectively. Furthermore, similar to the
AxleDB, software DBMS experiments were also ran in two modes, i) cold
mode, where input data tables are located in the SSD, and ii) warm mode,
where input data tables are already loaded into the DDR-3 memory from the
original database storage, SSD. To obtain their execution times, we ran each
query twice, consecutively. The first run is in the cold mode. In contrast,
the second run is executed using internal buffers, where the data is already
located inside the main memory of the server. The second run is in the warm
mode.

3.4.3 Introducing the Benchmarks Methodology

AxleDB is evaluated with five decision-support TPC-H queries, under various
conditions [127]. The studied queries are Q01, Q03, Q04, Q06, and Q14, which
heavily utilize and stress the various hardware accelerators. For instance, Q01
requires several aggregation accelerators, Q03 employs nested hash join and
sorter operations, and Q06 heavily utilizes the filtering accelerator. Further-
more, the selected queries represent process-intensive (Q01), I/O-intensive
(Q06, Q14) and I/O-process-balanced (Q03, Q04) workloads, which allows
us to exhaustively analyze the cold and warm runs of the platforms. This
classification is based on running the TPC-H queries in default PostgreSQL,
equipped with B-Tree indexing, and on a host machine with large enough
memory to prevent memory thrashing.

The TPC-H database generator allows generating the input dataset in
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various scales. Using this capability, we analyzed the AxleDB in 1GB and
10GB scales, to evaluate it while dealing with small and large datasets.
Regarding the maximum size of the data that can be handled in AxleDB,
there are two constraints:

• The size of the input data tables: The maximum size of the input
data tables that AxleDB can handle is constrained by the size of the
data storage (DDR-3 for in-memory- warm runs- case and SSD in other
cases- cold runs).

• The size of the hash table: Other constraint is the size of the hash
table that needs to be fitted the DDR-3 size. This is because our hash
join/group-by module uses DDR-3 as the hash table and it does not
support yet the extremely large hash tables that their size exceeds the
DDR-3 size.

It is worth noting that for the studied queries in the experimental results,
the aforementioned limitations were never observed. However, through at-
taching larger DDR-3 RAM to AxleDB, it can cope with larger scales. In
addition, other promising solutions include (i) supporting multiple disks
through the use of daughter-cards on the FPGA board [125], (ii) applying
range partitioning on the database tables [140], or (iii) having a distributed
framework [61].
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3.4.4 Introducing the Evaluation Metrics

For each given query, we compare AxleDB against the software baselines in
terms of speedup, throughput, and energy dissipation metrics. The speedup
shows the relative query processing time of the query, throughput in an
absolute metric and shows the amount of the processed data in one second,
and the energy is used to compare the relative energy dissipation (power *
time) of each query. These metrics are defined in equations 1, 2, 3, and 4:

speedup =
query_processing_time_of_sw_platforms(sec)

query_processing_time_of_AxleDB(sec)
(3.1)

power_efficiency =
power_consumption_of_sw_platforms(watts)

power_consumption_of_AxleDB(watts)
(3.2)

energy_efficiency = speedup ∗ power_efficiency (3.3)

throughput(absolute) =
total_amount_of_processed_data(MB)

query_processing_time(sec)
(3.4)

3.5 Experimental Results

In this section, first, we individually evaluated the components of AxleDB.
Later on, we presented the experimental results of the queries under test and
discussed on their performance, including comparisons with multi-threaded
DBMS. Finally, we reported and discussed on the power and energy con-
sumption of AxleDB. Later on, the utilization rate of hardware resources is
discussed.

3.5.1 Evaluating Query Accelerators of AxleDB

We individually evaluated the query accelerators of AxleDB, including filtering,
aggregation, hash join/groupby, sort, and MinMax indexing. In this thesis,
filtering and aggregation methods are presented. However, we present the
execution time breakdown of queries for each accelerator in Figure 3.7. It
is worth noting that, only the query execution time is included in this
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Figure 3.6: The total execution time of the queries, partitioned into per-
accelerator

figure, without considering the I/O time of SSD, PCIe-3, or the overhead of
controllers.

Evaluating Filtering and Aggregation Accelerators

In the previous section, we presented the design idea behind the filtering,
arithmetic, logical, and aggregation units. Before using these units in the
AxleDB, we first verified the functionality and also the I/O interfaces, in
Vivado HLS [78], [79]. To enable full pipelining, all arrays are completely
partitioned using Vivado HLS. To improve performance, the execution latency
of all operations take one clock cycle, except for multiplication which takes six
clock cycles. For the queries under test, the filtering of char arrays is handled
by the filter blocks treating the strings as aggregate 8-bit char arrays. However,
for regular expression types of filtering operations, more advanced hardware
would be required, which could be incorporated in AxleDB if desired. As it
can be seen in Figure 3.6, among the studied queries, the filtering operation
is dominant in Q06 and has a significant contribution in Q14, as well. In
contrast, for the other queries, as the filtering operation passes a large portion
of data to the further expensive operations, its contribution in total execution
time is relatively reduced.
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3.5.2 Overall Performance Analysis

In this section, the query processing time of AxleDB is compared against
MonetDB, CStore, and PostgreSQL under various conditions. In addition, all
the aferomentioned accelerators and methods including the join, sorting and
indexing operations are incorporated during the experiments. For the overall
performance analysis, we ran the platforms in default mode: (i) MonetDB
without any indexing, (ii) CStore that is equipped with an embedded MinMax
indexing (called skip indexing), (iii) PostgreSQL, which is equipped with
B-Tree indexing, as well as an index-free version, and (iv) AxleDB with the
MinMax indexing method. The experimental results of cold and warm runs
of the platforms, on 1GB and 10GB scales, are shown in Figures 3.7 and 3.8,
respectively.

Evaluation of Cold Runs

Figure 3.7 presents the total processing time, broken down into the afore-
mentioned partitions. On average, AxleDB can process queries more than
an order of magnitude faster than CStore and PostgreSQL (15x in 1GB and
13.6x in 10GB scales), as well as showing speedup against MonetDB (3x in
1GB and 4.7x in 10GB scales). More specifically, among the set of studied
queries, we observed that for:

• process-intensive queries (Q01), as it can be seen in Figure 3.7(a),
for 1GB scale, the I/O time of SSD is negligible, the indexing method is
not utilized well, and the compute time is dominating. In the process-
intensive workloads, the performance gain of the AxleDB is mainly
the consequence of exploiting highly efficient query accelerators, in
a deeply pipelined fashion. For this particular query, the speedup is
6.3x compared to MonetDB, and 7.1x against the different versions of
PostgreSQL, including CStore, PostgreSQL-indexed, and PostgreSQL-
non-indexed. Although for 10GB scale, as shown in Figure 3.7(b),
AxleDB, CStore and PostgreSQL expose similar behaviors, we observed
that MonetDB is not optimized very well, as it frequently accesses the
SSD to retrieve data. This is the result of insufficient memory to store
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(a)

(b)

Figure 3.7: Total query processing time of the studied benchmarks in cold
mode, comparing AxleDB vs. MonetDB, CStore, and PostgreSQL. (a)1GB
scale, (b) 10GB scale. Lower is better.
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temporary data for this particular memory-dependant process-intensive
query.

• I/O-processing-balanced queries (Q03, Q04), the improvement of
AxleDB is the consequence of both I/O efficiency and faster execution.
For instance, AxleDB reduces SSD I/O time by 17.9x and execution
time by 31.5x for Q04 in 1GB scale, comparing to the index-enabled
PostgreSQL, which leads to a total of 23.4x speedup for this particular
case. For these queries, on average, the speedup is 1.8x for 1GB and
2.5x for 10GB scale, against MonetDB, and 12.2x for 1GB and 12x for
10GB scale, against different versions of PostgreSQL.

• I/O-intensive benchmarks (Q06, Q14), SSD I/O time is dominating.
Comparing PostgreSQL with index-enabled vs. non-index versions,
we unexpectedly observed a significant overhead of B-Tree indexes,
which causes substantial performance degradation. In contrast, AxleDB,
CStore, and MonetDB, thanks to their column-oriented data storage,
significantly reduce SSD I/O transfers. The results demonstrate that
AxleDB can process these queries, on average 2.4x and 2.3x faster than
MonetDB, and 21.6x and 18.7x faster than the average of different
versions of PostgreSQL, for 1GB and 10GB scales, respectively.

In summary, the results clearly demonstrate that AxleDB achieves the
acceleration of query processing, thanks to the pipeline-optimized query
accelerators, and simultaneously optimizes the SSD I/O performance, thanks
to the data movement techniques that were used, such as direct attached,
column-oriented data storage and database indexing.

Evaluation of Warm Runs

For the warm run mode, the speedup of the AxleDB compared to the soft-
ware platforms is the consequence of the pipelined execution of the query
accelerators in the AxleDB. Furthermore, as it can be seen in Figure 3.8(b),
in 10GB scale and for some of the queries, the lack of memory in the host
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(a)

(b)

Figure 3.8: Total query processing time of the studied benchmarks in warm
mode, comparing AxleDB vs. MonetDB, CStore, and PostgreSQL. (a)1GB
scale, (b) 10GB scale. Lower is better.
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causes memory thrashing that leads to a performance degradation of software
platforms. More specifically, for different scales of datasets:

• In 1GB scale, as it can be seen in Figure 3.8(a), we observed that the
attached memory of the platforms is large enough to already store the
small-sized data. Thus, the SSD I/O is totally skipped. Consequently,
the speedup of AxleDB against software platforms is the sole result of a
faster query execution in AxleDB. The speedup of AxleDB is from 1.6x
to 5.3x against MonetDB (on average 2.9x), and from 9.8x to 34.2x (on
average 19x) against the different variants of PostgreSQL.

• In 10GB scale, as it can be seen in Figure 3.8(b), we observed several
exceptions, where the memory capacity of the platforms is not sufficient
to store entire datasets. (i) For MonetDB, the SSD I/O time contributes
to 71%, 52% and 64% of the total query processing time for the queries
Q01, Q03, and Q04, respectively. This I/O overhead is the result of the
extra data (parts of the input dataset or temporary data that is needed
during the processing) retrieved from SSD. (ii) On the other hand,
for PostgreSQL, we observed memory thrashing for the index-enabled
version of Q06. This overhead is the result of a large amount of memory
used for the indexes. For this particular case, the I/O contributes to 82%
of the total query processing time, which, in turn, executes significantly
slower than AxleDB (304x). Eventually, the speedup of AxleDB ranges
from 1.3x to 19.4x against MonetDB (on average 7.1x), and from 7.9x
to 131x (on average 38.1x) against the different variants of PostgreSQL.

In this section, to evaluate the cold and warm runs, we used a single-
threaded version of software platforms and observed a significant improvement
using AxleDB. For further investigations, next we analyze their multi-threaded
version.
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3.5.3 A Discussion on the Optimized points of AxleDB

in terms of Data Management and Computational

Acceleration

In this section, we analyze the speedups of the warm against cold runs of
AxleDB against the comparison cases for the studied queries. In general, the
significant speedup of AxleDB against software-based comparison cases is
the consequence of two optimization points: i) offloading the query process-
ing onto the FPGA and following the streamline dataflow execution model
and ii) Optimized accesses to the SSD (tightly coupled to the processing
units -accelerators- in the FPGA). Accordingly, we analyze their impact in
the speedup of AxleDB for each query individually. Toward this goal, by
comparing the experimental results in Figure 3.7(a) (cold runs) and Figure
3.8(a) (warm runs) in 1GB scale, we observe that for:

• Offloading the query processing onto the FPGA: To evaluate
the impact of this optimization point, we use the experimental results in
Figure 3.8(a) for the warm runs. We observe on average 2.9x and 18.9x
speedup of AxleDB against MonetDB and PostgreSQL, respectively,
in 1GB scale. Since there is no memory thrashing in the 1GB scale
of warm runs, we can conclude that these speedups are purely the
consequence of the FPGA offloading in AxleDB. Moreover, as it can be
seen, MonetDB is more optimized than PostgreSQL especially in Q06
and Q14, which can be the consequence of better memory management
(and higher bandwidth utilization) in MonetDB.

• Performing optimized access to the SSD: To evaluate the impact
of this optimization point, we use the experimental results in Figure
3.7(a) for the cold runs. As it can be seen in this figure, the total query
processing time is partitioned into the SSD I/O and the execution time
in the processing units. Comparing only the SSD I/O time (blue part),
we observe that AxleDB is on average 3.1x and 10.8x more optimized
than MonetDB and PostgreSQL, respectively, in 1GB scale. This can be
the consequence of the better SSD I/O management in AxleDB thanks
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(a) (b)

(c) (d)

Figure 3.9: Comparing the speedup of AxleDB vs. multi-threaded MonetDB.
(a) cold runs in 1GB scale. (b) warm runs in 1GB scale. (c) cold runs in
10GB scale. (d) warm runs in 10GB scale. y-axis represents the speedup of
AxleDB against the multi-threaded MonetDB- the relative query processing
time, as formulated in the Equation 1. Higher is better.

to the tight coupling of SSD to the hardware accelerators. This lets
AxleDB skip the loading of the unnecessary parts of the data tables,
and provides a higher utilization rate of the SSD bandwidth by using
the large block sizes (up to 1MB). Moreover, as it can be seen, the SSD
I/O management in MonetDB and CStore version of PostgreSQL is
more optimized than the default version of PostgreSQL, as they follow
a column-store data format.
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3.5.4 Evaluating the Performance of AxleDB against

Multi-threaded MonetDB

To analyze the effects of the multi-threading, we compared AxleDB against
the multi-threaded version of MonetDB. Unfortunately, as of now, PostgreSQL
and its variants do not support multi-threading. Figure 3.9 shows the exper-
imental results for cold and warm runs of 1GB and 10GB scales, in terms
of the normalized speedup of AxleDB vs. MonetDB, exploiting a varying
number of CPU threads. We did not observe any significant changes in the
behavior of MonetDB utilizing more than eight threads. Thus the diagram
includes the experimental results up to eight threads. We observed that:

• For cold runs, as it can be seen in Figure 3.9(a) and (c), utilizing
additional threads does not lead to improving the performance of Mon-
etDB, except for Q01, which is a process-intensive query. Consequently,
for Q03, Q04, Q06 and Q14, a constant speedup is achieved, almost
independently from the number of threads utilized. In contrast, in Q01,
utilizing more threads accomplishes the query execution in a parallel
and thus in a rapid fashion, which causes to reduce the speedup of
AxleDB vs. MonetDB from 6.3x to 1.2x in 1GB, and from 14.1x to 8.8x
in 10GB scales. Furthermore, for 10GB scale as a result of memory
thrashing issue, in Q01 the speedup of AxleDB is about an order of
magnitude, while for the other queries, it is between 1x and 3x.

• For warm runs, as it can be seen in Figure 3.9(b) and (d), as there is no
SSD I/O transferring time (except those queries where memory thrashing
was observed), utilizing more threads leads to better performance of
MonetDB. Accordingly, for 10GB scale, the speedup of AxleDB varies
between 5.3x and 1.6x, and between 2.8x and 0.98x, against single-
threaded and eight-threaded MonetDB, respectively.

In summary, we observed that multi-threading in MonetDB leads to high
performance, especially in process-intensive queries. However, as AxleDB
simultaneously employs a set of highly-efficient accelerators, as well as opti-
mizing the I/O, it can accomplish the processing of the studied queries faster
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Figure 3.10: Comparing the energy efficiency of AxleDB vs. multi-threaded
MonetDB. (a) cold runs in 1GB scale. (b) warm runs in 1GB scale. (c) cold
runs in 10GB scale. (d) warm runs in 10GB scale. y-axis represents the
relative energy efficiency of the AxleDB against the multi-threaded MonetDB-
the relative energy efficiency as formulated in the Equation 3. Higher is
better.

than multi-threaded MonetDB in most cases.

3.5.5 Evaluating the Energy-Efficiency of AxleDB against

Multi-threaded MonetDB

Table 3.4 shows the power consumption of AxleDB, estimated using Vivado
Power Estimator after the Place & Route stage. A considerable amount
of power is dissipated while interfacing hardware and accelerators. Also,
multiple clock domains draw additional power in the data connection switch.
On the other hand, to measure the power dissipation of the processor, we
used Intel’s Running Average Power Limit (RAPL) energy meter. RAPL
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Table 3.4: Power Consumption of AxleDB components

Component Power(W)
clocks 1.1
logic 0.77
interfaces 3.6
signals 1.1
I/O 1.01
Acc/PDCS/RBAA

DPC/FIFOs 5.05

leakage 0.07
Total 12.7
Total
excluding
interfaces

9.1

exposes energy usage estimates to software via model-specific registers, using
hardware performance counters and I/O models [106].

For the comparison against state-of-the-art DBMS, we considered the total
power consumption of AxleDB and software platforms, excluding the power
dissipation of data storage devices, i.e. SSD and DDR-3 RAM. We reported
the energy efficiency of AxleDB against multi-threaded MonetDB in Figure
3.10. It is worth noting that the energy consumption (in Joules) is obtained
by measuring the power dissipation using RAPL for software platforms and
using Vivado tools for AxleDB (in Watts), and multiplying it with the total
query processing time (in seconds). Regarding the experimental results, we
observed that:

• As it can be seen in Figure 3.10(a) and (c), for cold runs of MonetDB
in 1GB scale, AxleDB is 3.5–14.8x (on average 6.7x), and 2.4–5.3x
(on average 3.9x), more energy efficient than the single-threaded and
eight-threaded MonetDB, respectively. The improvement for 10GB is
more significant, as it varies from 5x to 32.9x (on average 10.8x), and
from 4.9x to 23.4x (on average 9.1x). In some cases such as Q01, this is
the result of memory thrashing. Furthermore, in cold runs, as the SSD
I/O has a significant contribution, the measured power dissipation of
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Table 3.5: Hardware Resource Utilization of AxleDB

Component LUT FF BRAM DSP
filter/aggr/arith 10396 2436 - 256
hash Join engine 13758 10623 724 -
sorter 128-node 148937 131730 - -
merger (16-to-1) 33061 33840 33 -
index checker 2870 689 45 -
PDCS/RBAA
DPC/FIFOs 2401 3884 26 -

SATA-3 ctrl 2018 2607 122 -
DDR-3 ctrl 12226 8329 1 -
PCI-3 ctrl 60671 62993 59 -
Total 283532 256490 1010 256
Virtex-7 usage (%) 65.7 30 68.6 7.1

computing cores does not considerably vary.

• As it can be seen in Figure 3.10(b) and (d), for warm runs of MonetDB
in 1GB scale, the energy optimization of AxleDB varies from 5.5x to
13.1x (on average 8.1x), and from 2.8x to 10.3x (on average 6.3x),
compared against the single-threaded and eight-threaded MonetDB,
respectively. Scaling up to 10GB scale, similar to cold runs, we observed
better optimization. Exploiting more threads in warm runs of MonetDB
leads to additional power consumption, as more processor cores are
active.

Furthermore, compared to the different variants of PostgreSQL, including
indexed, non-indexed and CStore, we observed that AxleDB is at least an
order of magnitude more energy efficient, on average 25.7x for cold runs and
62.1x for warm runs.

Results show that AxleDB is inherently faster than software DBMS, thanks
to its deeply-pipelined architecture, and is also more power-efficient, thanks
to a lower operating frequency than software platforms (on average 200 MHz
vs. 2.3 GHz), thus as we reported in Figure 3.10, it is more energy efficient,
as well.
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3.5.6 Hardware Resource Utilization

The flexible design of AxleDB’s components allows for various compile time
parameterization. For example, the sorter module can be configured for
different depths, widths or ascending/descending orderings. Table 3.5 shows
the area reports, obtained by setting 16 Bytes for the key, and 48 Bytes for
the value field for the components. This compile time configuration covers
all the requirements of the studied queries.

As it can be seen in Table 3.5, we observed that the data-parallel filtering
and aggregation accelerators require a significant number of LUTs. The
task-based join/groupby modules require an extensive usage of hard memory
blocks, because of a high amount of meta-data and the caching circuitry that
is generated for providing higher performance. Also, to be able to support all
the studied queries, the sorter is configured to be wide enough for running
Q01, resulting in a large circuit that occupies around one-third of the FPGA.
A 256-node sorter would occupy double this area and would cease to fit our
FPGA along with all the other supported modules in AxleDB.
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Chapter 4

TauRieL: A Fast Deep
Reinforcement Learning Based
TSP Solver Using Ordinary
Neural Networks

In this chapter, we introduce TauRieL 1; Deep Reinforcement Learning (DRL)
based predictive method. TauRieL complements AxleDB and together, they
form the frontend and the backend of the advanced analytics architecture
that we have envisioned and defined in Chapter 1.

We present and detail TauRieL’s architecture and capabilities by targeting
the Traveling Salesman Problem (TSP). Figure 4.1a presents the flow of
TauRieL. There exists an agent that is responsible for making decisions by
sequentially taking actions. In this setting, taking actions lead to creating
traveling salesman tours. There exists a transition matrix which represents
the agent’s view of the environment by keeping the transition probabilities
between different cities. Thus, the agent acts according to the transition
matrix, and it determines the agent’s policy which is defined as the mapping
that indicates which city to travel to next, given a city. When the salesman

1A wood-elf character from Hobbit the Movie who possesses superior senses and
pathfinding
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(a) (b)

Figure 4.1: High level schemas of TauRieL (a) and state-of-the-art Actor-Critic
based TSP solver using RNN [17](b)

completes a valid tour, it is called an episode.

The purpose of the agent is to find the best policy that provides the
shortest tour length. At each step, the agent gets a view of the environment,
partial or full which is called a state. In order to change states, the agent has
to take actions that are fully known by the agent. Thus, the best policy is
the optimal mapping from states to actions. Based on the problem or the
design decisions, the policy can be either deterministic or stochastic. In the
deterministic case, the agent’s final policy is a fixed mapping from states to
actions whereas in the stochastic scenario, the final policy is the probability
distributions all the states and the actions.

TauRieL’s agent iteratively updates its view of the environment by gen-
erating an update vector v through two neural networks that are inspired
by actor-critic reinforcement learning [121]. In deep reinforcement learning
context, the actor and the critic are represented by two different neural net-
works. Moreover, the actor network is the neural net that is responsible for
representing the best policy that yields the shortest tour lengths. Furthermore,
the critic network is the neural net that represents the state action value
which measures how well an agent is doing throughout the episodes. In most
cases, it is equal to the expected total reward of an agent starting from an
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initial state and continuing all possible permutations [121].

In TauRieL, the actor network is responsible for generating the update
vector v that updates the transition matrix, and the final policy is obtained
from the transition matrix by choosing the paths with the highest likelihoods.
The critic network is responsible for estimating the Euclidean tour length from
a given tour, and its primary duty is to improve the training process because
the agent’s estimation and the rewards obtained from the environment are
used together in training.

Moreover, rather than having a fixed update rule, the agent learns to
update the transition matrix from v which we call as the meta-learning update
step in Figure 4.1a. For large problem sizes, we divide the given input set
into a set of clusters and solve the TSP for subsets of points, i.e., sub tours
from the given set. Then, the sub tours are merged for forming the global
tour using the proposed merging algorithm.

Among available DRL based TSP solvers, TauRieL and NCO [17] may be
considered similar in the following sense. Both methods optimize the objective
which is to minimize the expected tour length to search for the optimal tour for
actor net and estimate the tour length from a given permutation to compare
it with the previous searches for critic net. Furthermore, by sampling and
exploring the state space, both seek to find the optimal tour. Finally, the
neural networks are trained using the REINFORCE algorithm which has been
used widely in the reinforcement learning domain in general [121].

TauRieL employs feedforward neural nets as opposed to NCO which [17]
employs Ptr-Nets architecture [131] in the reinforcement learning setting as
shown in Figure 4.1b. In Figure 4.2 Ptr-Net architecture is introduced. The
architecture consists of three major units namely the encoder, the decoder,
and the attention. The encoder network is composed of multiple RNN blocks
that receive a city per time step in a sequence and generates latent vectors.
Each city is a d-dimensional vector that is generated by an embedding network
through the linear transformation of inputs. The decoder network is also
composed of RNN blocks and also maintains its latent memory states. At
each step, uses the attention to produce a distribution over the next city to
visit in the tour. Attention network resembles as weighted sum block which
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aims to minimize overall objective. After the maximum likely city is selected,
the next stage receives the selected city as its input. Thus, the final policy is
obtained by inferencing the Ptr-Net by giving a start city and obtaining the
output from the decoder stage.

Apart from replacing RNNs with feedforward nets, TauRieL complements
the neural nets with the transition matrix. Hence, TauRieL’s actor net gener-
ates a vector v as opposed to estimating the policy directly by NCO. Then,
we use v to improve the state transition matrix from which we obtain the
policy. Also, TauRieL performs online training which unifies the training
and the search of the shortest tour whereas the state-of-the-art by default
requires substantial training duration and dataset that precede the search
step. Omitting this step introduces longer training times and poorer perfor-
mance. Finally, our neural nets take raw inputs, and the design idea behind
this decision is to keep neural net sizes relatively small as opposed to the
architectures with embeddings such as [131, 17, 65].

The differences above have made TauRieL a more sample efficient architec-
ture. For example in NCO, a single city is represented by two coordinates with
each point defined in 128-dimensional embedding space as shown in Figure 4.2
whereas in TauRieL each point is represented with raw 2-D coordinates. Also,
the actor RNN in [17] is composed of 128 hidden layers whereas TauRieL’s
actor DNN has only eight layers. Furthermore, with the addition of the state
transition matrix, we can represent the state space much more efficiently
compared to [17] and TauRieL can generate results that are two orders of
magnitude faster while searching for the shortest tour and perform within 3%
of accuracy compared to the state-of-the-art.

Rest of the chapter is organized as follows, Section 4.1 introduces our
RL notations and the states the TSP problem. The rest of the Section 4.1.1
explains the building blocks of TauRieL, shown in Figure 4.1a. Section 4.1.2
explains TauRieL’s Actor-Critic intrinsics, Section 4.1.3 discusses how episodes
are generated from the transition matrix and Section 4.1.4 presents the
procedure to update the transition matrix using the update vector v. Section
4.2 introduces the search algorithm and Section 4.3 presents the clustering
and the merging algorithm that is responsible for creating subproblems into
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Figure 4.2: Ptr-Nets recurrent architecture [131] with attention that is em-
ployed by NCO [17]
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clusters and the merging step to create the final solution. The DNN and
clustering configurations are discussed in Section 4.4 and Section 4.5 finalizes
the chapter by presenting the experimental results.

4.1 Reinforcement Learning Method for TSP

4.1.1 Problem Definition and Notations

We propose a reinforcement learning based method that targets the 2-D
symmetric traveling salesman problem. Given a graph G that consists of
cities G = {x}ni such that xi ∈ R2, the objective is to find the permutation
that yields a tour by visiting each city [73]. We represent the environment as
a Markov Decision Process (MDP), which is a tuple 〈S,A, P,R, γ〉. S defines
a state space where each state s consists of a city x ∈ R2 ∧ x ⊆ G.

P is a state transition probability matrix and Pi ,j = P(St+1 = sj | St = si).
R is defined as the expected reward such Rs = E[Rt+1 | St = s] and γ

is defined as a discount factor γ ∈ [0, 1]. We define the reward ri,j as
the negative distance between two cities xi and xj. A is defined as a set
of actions {a1, a2 . . . }. An example of a set actions can be the different
directions of controller movements in a video game [85]. We describe policy
as π : S × A 7→ S. For TSP, we assume that the cardinality of the action set
is one and this action moves the agent between states which we visualize in
Figure 4.3. Therefore for TSP, we assume that each state is synonymous with
the action. For example, from state s0 taking action a0 will transition to a
new state with si with probability distribution in P0 ,i . The policy π(a0 | ss)
transitions to a new state st+1 according to the dynamics P (st+1|st, a0) and
receives a reward r(st+1 | st, a0).

A permutation φ i.e. a tour from given the graph G and policy π represents
city traversals. Thus, in this work, we interchangeably use permutation and
episode to allude to a feasible TSP tour. The environment observes the
episode and returns the total reward as the length L of the tour. Thus, given
a graph L is defined as:
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Figure 4.3: In TSP, there exists only a single set of action to move from one
state to another (left). There are scenarios where at each state there can be
more than one action such as directions of controller movements in a video
game (right)

L(φ | G) = ‖xφ(n) − xφ(1)‖2 +
n−1∑
i=1

‖xφ(i) − xφ(i+1)‖2 (4.1)

The probability of a tour p(φ | G) describes that the permutations obtained
from G have higher probabilities for shorter tours. The probability of a tour
can then be shown as the chain rule:

p(φ | G) = p(φ1)p(φ2|φ1) . . . p(φn−1 |φn−2).
Whenever a problem can be formulated with a chain rule such as TSP

or natural language processing [24], it is an apt candidate to adapt to for
recurrent models [120] and more recently sequence-to-sequence models with
attention [131, 71]. The advantage of these approaches is that the model
output can refer to one of the input elements rather than to a fixed set of
reference input such as a language model [144]. Next section introduces our
machine learning approach for TSP and presents the formulations.

4.1.2 Using Actor-Critic Reinforcement Learning to Gen-

erate the Update Vector

In this section, we present the internals of the Actor-Critic building block
of Figure 4.1a which we mentioned in the previous section. The goal is to
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optimize the parameters θact of the neural net that yields the best policy
update vector v given permutations φ that are generated from the policy π.
The parameters of the neural net are optimized with respect to the objective
which is the expected tour length:

J(θact|G) = Eφ∼p(.|s)L(φ | G) (4.2)

This neural net is called the actor because the gradients with respect
to parameters are updated in the direction of improving the update vector
v. The gradient ∇θact of the expected tour length is calculated using the
REINFORCE algorithm [137] shown below:

∇θactJ(θact|G) = Eφ∼p(.|s) [(L(φ | G)− b(G))∇θact log p(φ | G)] (4.3)

Using a stochastic batch gradient method, the gradient can be estimated
from batches that are sampled from the transition matrix:

∇θactJ(θact|G) =
1

B

B∑
i=1

[(L(φ | G)− b(G))∇θactlog p(φ | G)] (4.4)

The baseline b(G) is introduced to REINFORCE for reducing the variance
of predictions, and using a parametric baseline to estimate the expected tour
length were presented to improve learning [121, 17]. However, recent work
[128] has shown that specific baselines have been unable to reduce variance
for some specialized corner cases. However, this is not the scope of this work.

Therefore, we adopt a neural net that approximates the expected tour
length from a given path similar to [17]. Namely the critic, evaluates the
current policy by estimating the expected tour length and aims to prescribe
towards improved tours [121]. Parameters θcri of the critic is trained using
stochastic gradient descent on a mean squared error objective H between its
predictions and the actual tour length from the most recent episode:

H(θcri|G) =
1

B

B∑
i=1

(b(G)− (L(φ | G))2 (4.5)
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Although baseline b(G) is independent of the final policy L(φ | G), the
training of the critic network and the actor network occurs concurrently.
Both the actor and the critic receive raw input vectors of episodes; the actor
outputs the update vector v and the critic outputs a tour length estimation
which is represented as the baseline. We detail the meta-learning scheme that
updates the transition matrix in the next section.

4.1.3 Sampling from the transition matrix

In this section, we explain how to sample episodes from the transition matrix
shown in Figure 4.1a. The sampling of episodes from the transition matrix
occurs at each step. Thus the policy π(a0|St = si) transitions to a new state
sj with probability Pi,j in the state transition matrix.

Each row of the state transition matrix Pi,: i ∈ i, . . . n represents a
probability distribution. Thus, creating a permutation φ from P can be
generalized by defining a function which receives a distribution such as P
and returns a permutation. In this case for each state, we choose the most
likely state from the transition matrix f(s) = {arg maxp Pi,:} and form the
episode.

The valid episodes that are fed into the actor-critic and the episodes that
are generated from the state transition matrix as shown in the Figure 4.1a.

4.1.4 Learning to update the transition matrix

The actor net in the actor-critic architecture in Figure 4.1a is responsible for
producing the update vector v and after each K episode the transition matrix
is updated with v. Thus, in this section we explain the transition matrix
update procedure which corresponds to the Meta-Learning Update building
block in Figure 4.1a.

We treat this step as updating the parameters of a neural net towards the
final parameters learned on a task through a gradient descent optimization
algorithm [18]. We present the update in Equation 4.6:

Pi,j = Pi,j + ε (vi − Pi,j) ∀i [i ∈ 1, . . . , n] and ∃j [j ∈ 1, . . . , n] (4.6)
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Algorithm 1 Pseudo algorithm of TauRieL
1: Input: input graph G, number of search steps steps, batch size B, episode

samples T , learning rate ε, update steps K
2: Output: the shortest tour length Lmin, the policy that yields the shortest

length π, state transition matrix P
3: Initialize actor and critic neural net parameters θact and θcri
4: Initialize the transition matrix P
5: φ← RandomEpisode(G)
6: Lπ ← L(φ | G)
7: for t=1,...,steps do
8: φi ← SampleEpisodes(P (. | S = si)) for i ∈ {1, . . . , B} (Sample from

Transition Matrix given start state)
9: j ← argmin(L(φ1), . . . , L(φB)) (Shortest tour)

10: if Lj < Lπ then
11: Lπ ← Lj
12: π ← πθj
13: end if
14: ∇θactJ(θact|G) = 1

B

∑B
i=1 [(L(φ | G)− b(G))∇θactlog p(φ | G)] (Actor

gradient approx. Eqn. 4)
15: H(θcri|G) = 1

B

∑B
i=1(b(G)− (L(φ | G))2 (Eqn. 5)

16: θ ← RMSProp(θact,∇θactJ(θact|G))
17: θlen ← RMSProp(θcri,∇θcriH(θcri|G))
18: v ← p(φ | G)
19: if K steps then
20: Pi,j = Pi,j + ε (vi − Pi,j) (Transition matrix update Eqn. 6)
21: end if
22: end for

The update vector v contains n elements, representing each city in the
permutation φ. If each element of the permutation is generated from the
transition matrix, then each transition Pi,j∀i ∈ 1, . . . , n is sampled via f(P ) as
previously defined. The main design idea of varying the K is to allow sampling
from P more than just one step, and it allows more exploration at the current
version of the state transition matrix before an update. Additionally, this
provides the algorithm to gradually increase K towards the later stages for
allowing early exploration. The learning parameter ε is a hyperparameter,
and we perform a grid search to optimize it [42].
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4.2 Unified Training and Searching for the Short-

est Tour

The pseudocode for finding the shortest tour is presented in Algorithm 1.
The algorithm presents our approach to unified training and searching. Line
3-4 initializes the actor and critic nets and the transition matrix. The
transition matrix can either be initialized randomly or from a predetermined
initialization that exerts explicit rules. For example, it is possible to prevent
certain transitions between states by assigning corresponding probabilities to
zero (Line 4). (Line 5) generates a random episode and stores the tour length
(Line 6).

The search step starts with sampling episodes from the transition matrix
(Line 8). Then the shortest tour is obtained among the samples (Line 9). If
the obtained tour is the shortest so far, it is assigned as the current min, and
the policy π is updated based on the current minimum tour (Line 10-12).
Next, the Actor gradient approximation and the Critic loss are calculated
(Line 14-15), and the Actor and Critic nets are forward propagated in this
process that is shown with b(G) and p(φ | G). After the backward passes of
the actor-critic net (Line 16-17) the transition matrix update occurs after
K steps (Line 19-21) using the update vector v (Line 18). The algorithm
returns the minimum tour length, the policy that generates the tour lengths
and the transition matrix P when the algorithm exists.

4.3 Creating subtours from large graphs

4.3.1 Unsupervised clustering for subtours

Unsupervised clustering analysis is a method for identifying similar points
and in the context of TSP where the distance metrix is Euclidian, there has
been succesful clustering algorithms [146]. Hence, we have employed K-means
clustering [47] for identifying clusters of locations. The objective function
we use in the K-means algorithm is to find the best clustering that has the
minimum distance between the centroids and the elements. The objective D
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is defined as:

D =
N∑
i=1

C∑
j=1

dij|xi − µ|2 (4.7)

where xi represents the nth input point, dij represents a binary variable
to determine which C clusters ith point is located and µ is a vector holding
the centroid locations of the C clusters.

We use clustering for two different purposes. The first purpose is to use it
as part of the raw input vector for the actor-critic neural RL network. Second,
clustering allows to cluster input set into clusters where multiple instances
can be executed. Then, the calculated sub tours of each cluster are merged
to form the total tour.

4.3.2 Merging sub tours for the total tour

When sub tours are generated by Algorithm 1, we want to merge the sub
tours as efficiently as possible, so we developed Algorithm 2. Inspired by the
sort-merge join [79], the objective of the merging is to minimize the global
tour length. Thus, given the sub tours, the algorithm populates the global
tour sglob starting from a predetermined location xi. The closest element
in the sub tours is selected by calculating the distance between the current
element in sglob and all sub tour arrays at their current indices, ssub (Line 6).
Then, the closest element from a designated sub tour is copied to the global
array (Line 7). The selected sub tour array and the global array advance
their indices (Line 8). This process iteratively continues until all sub tour
arrays are traversed.

4.4 Neural net architecture, clustering configu-

ration, and the input structure

The actor-critic nets consist of two separate multi-layer feed forward neural
nets. Each DNN reads identical permutations of cities that are composed of
raw inputs. The actor net outputs a vector of v of size n, and the critic net
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Algorithm 2 Merge
1: Input: subtours ssub, starting location x1
2: Output: global tour array sglob, global policy Πglob

3: Initialize global array to starting location sglob[0]← x1
4: Initialize all indices to first elements
5: repeat
6: sglob[i] with all ssub[j] (Calculate the distance between)
7: sglob[i]← ssub[j] (Assign the subtour with shortest distance)
8: i← i+ 1 , j ← j + 1 (Advance the global array and selected subtour

array)
9: until all subtours are traversed

outputs a floating point scalar estimating the tour length given a permutation.

For all the layers, we use Relu activation functions. The output logits of
the actor net are created using sigmoid activations. During training, both
nets are trained using RMSprop [126]. Euclidean distance is used as the
distance metric between cities.

All the clustering parameters except the cluster size are predetermined and
do not change with the problem at hand. Euclidean distance is used as the
distance metric. The maximum number of iterations for the convergence of
K-means clustering is selected as 2000 and the starting centroids are selected
randomly. For each city i.e. 2-D location xi ∈ R2, it is represented with the
input vector I as:

I[i] =

[
xi

Cli

]
(4.8)

Apart from the raw input locations xi we concatenate Cl ∈ N which represent
the cluster location. For example, if there are four predetermined clusters Cli
can take a value between one and four.

4.5 Experimental results

We present our results in this section, and all the experiments are generated
by applying the methods that we explained in the previous sections. We
used Tensorflow [3] framework for all the software implementations, and a
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Table 4.1: Comparison of average tour lengths using the datasets provided by
Ptr-Net [131] and A3 algorithm [1] obtained from [131]

n Optimal A3 Ptr-Net TauRieL

5 2.12 2.12 2.12 2.12
10 2.87 3.07 2.88 2.88
20 3.83 4.24 3.88 3.91
50 N/A 6.46 6.09 6.37

workstation with the following specs are used throughout the experiments:
Intel Xeon E5–2630@2.4 GHz, Nvidia K80 and 64GB DDR4@2133MHz RAM.
We have experimented with 20 and 50-city instances of TSP and used the
dataset from [131] as well as uniformly generated random points [0, 1] ∈ R2.

In all the experiments, actor and critic neural nets take mini-batches of 4
instances. For the actor net, we use a 6-layer feed net with:

[64, 32, 32, 16, 16, number_of_cities] neurons. For the critic neural net,
we use 5-layer feedforward net with [64, 32, 16, 8, 8, 1] neurons. For both nets,
ReLu activations are used, and RMSProp training configurations are the
following: The learning rates are set to 3e−4 and 2e−4 for actor and critic,
decay is set to 0.96 and epsilon as 1e−6. For all cases, state transition matrix
is randomly initialized from a uniform distribution U(0, 1).

The Algorithm 1 requires four hyperparameters; these are the number of
iterations steps, learning rate ε, update steps K for state transition matrix
update and sample steps T . In all the presented results, the number of
iterations steps and the sampling T are set to 250. The learning rate ε is set
to 0.01. The number of clusters Cl is also predetermined before starting any
execution and is determined by the user. In this work, for 20-city instances,
the cluster sizes are set to 2 and 5 for respectively, for 20-city and 50-city
instances.

We compare our results with a heuristic A3 [1] as well as Ptr-Net [131]
and [17] which both use Ptr-Net. Table presents 4.1 average tour lengths for
5 to 50-city instances. For 5-city instances, TauRieL solves optimally and is
within 0.05% of the optimal tour for the 10-city. TauRieL outperforms A3
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Table 4.2: Execution times in seconds of single episode and sample step for
TSP20 and TSP50 instances

N = 20 N = 50

Graph Gen. 0.014 0.023
Training 0.0034 0.0035
Sampling 0.00123 0.0018
Inference 0.00102 0.0012
Transition Matrix Up. 0.0003 0.0004
Cl Merge 0.007 0.006
Other 0.0005 0.0005

for both 20 and 50 city instances and obtains tour lengths within 0.007 %
and 2% of Ptr-Net for 20 and 50-city instances. Apart from 50-city instances,
Ptr-Net is trained with optimal results [131]. The 50-city instance is trained
with the results obtained from A3 [1]. However, TauRieL started all instances
from scratch.

The breakdown of the execution time of TauRieL is crucial, because
training, sampling, and inference occur in the main loop. Thus, Table 4.2
presents the execution times of several steps of the algorithm for 20 and
50-city instances. The table allows observing the change of execution times of
the steps concerning problem size. Increasing from 20-city to 50-city instances
do not affect the training and inferences times significantly as well as the
transition matrix update step. In addition, the results show that Sampling
and Inference steps have similar execution time costs. Nevertheless, the
sampling step starts to dominate with increasing input.

Similarly, the execution of Input Gen. step which is responsible for
resizing and appending samples and batches of tensors before starting the
search algorithm, increases with increasing data size. The Sampling and CL
Merge costs start to increase when the sample size increases, because at each
step of the main loop, the sampling step executes multiple times, and merge
step has more sub tours to merge for the global tour. Others represents
initialization of vectors, the comparison and the update the current best
policy and tour length.
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Table 4.3: Comparison of execution times and tour length gap from optimal
between our implementation and NCO [17]

Exec. Time (sec)
% from Opt.

(Train, Inference)

n = 20
19860, 0.04 1.4% NCO
170 2.6% TauRieL

n = 50
36021, 0.04 3.5% NCO
580 6.1% TauRieL

Training time is not the dominant factor in TauRieL which is presented
in Table 4.3. Also, starting from scratch requires training steps during the
lifetime of an algorithm which is the reinforce update shown in Equation 4.
We compare TauRieL with Ptr-Net based [17] which applies a similar RL
update [137]. We measured the training and inference times of the methods
from a reference implementation of [17] a uniformly generated random points
[0, 1] ∈ R2.

The training times for 20-city and 50-city instances measured from the
reference implementation have been 19860 and 36021 seconds respectively.
Once the training is finished, the inference is made from the trained model.
On the other hand, without needing any data sets, TauRieL runs in 170
seconds for 20-city and 580 seconds for 50-city instances when sample and
episodes are both set to 250. Also, for both cases, we obtain 2.4% and 6.1%
from the optimal compared to 1.4% and 3.5% which are reported by [17] for
20-city and 50-city instances respectively. Finally, TauRieL does not need
any data sets.

In Figure 4.4 and 4.5, we introduce the improvements in tour lengths with
respect to the training. For 20-city TSP, the NCO necessitates more than two
hours of training in order to perform better than TauRieL which can solve a
20-city instance in less than three minutes. Similarly, for 50-city, NCO needs
to train at least eight hours to reach TauRieL’s performance whereas TauRieL
can obtain a solution in less than ten minutes. Hence, on average training
NCO below the specified durations yields poorer results than TauRieL.
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Figure 4.4: The average tour length vs training duration for 20-city instances

Figure 4.5: The average tour length vs training duration for 50-city instances
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Table 4.4: The % gap from 50-city Ptr-Net [131] with respect to sample size
and the number of training steps

Samples Training Steps
50 150 300

10 18.60 17.40 15.20
50 15.40 10.90 8.40
200 10.10 8.00 7.30
400 8.10 7.90 2.98

The sample size and the number of episodes are the most critical pa-
rameters for Algorithm 1. Thus, Table 4.4 displays the change of the tour
length gap for the sample size and the number of episodes concerning Ptr-Net
[131]. Keeping a low sample size implies fewer explorations in the design
space. After 50 episodes, we observe the benefits of increasing the sampling
size. Nevertheless, sampling from the transition also has computational costs.
Besides, the number of episodes above 150 always have provided the best
results. Thus, in order to reach the best results, our strategy has been to
increase the sample size and the number of episodes together.

In Figures 4.6 to 4.9, we compare the tour lengths obtained from TauRieL
and validation datasets that are used by Ptr-Net and NCO [131, 17]. Figures
4.6 and 4.8 are the examples that TauRieL outperforms the given route, and
in Figures 4.7 and 4.9 are the examples that TauRieL underperforms. For
both methods, there happen long jumps from nearby dense regions to distant
points. Because after touring nearby dense regions the algorithm has had to
stochastically continue to another candidate city while still maintaining the
nearby dense routes. On the other hand, there also exist counterexamples. In
Figure 4.6b, TauRieL has a longer jump between two cities; however overall
tour length is shorter because of better routing at the dense regions.

86



(a)

(b)

Figure 4.6: Two example 20-city tour-length results (a) and (b) which perform
better than the validation set
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(a)

(b)

Figure 4.7: Two example 20-city tour-length results (a) and (b) which perform
worse than the validation set
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(a)

(b)

Figure 4.8: Two example 50-city tour-length results (a) and (b) which perform
better than the validation set
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(a)

(b)

Figure 4.9: Two example 50-city tour-length results (a) and (b) which perform
worse than the validation set
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Chapter 5

Adapting TauRieL for Knapsack
problem

5.1 Modeling the Knapsack Problem and mod-

ifying TauRieL

In this chapter, we present that TauRieL can be adapted for a different
combinatorial problem, namely the Knapsack Problem [94]. Given a set of
items G, each item κi has weight wi ∈ N and values υi ∈ N and a knapsack
with a maximum allowed weight limit Wtot, the problem aims to find the
best combination of items with the highest values that do not exceed the
knapsack’s limit Wtot.

maximize
n∑
i=1

υiκi

subject to
n∑
i=1

wiκi ≤ Wtot

Wtot, υ, w ∈ R and κ ∈ {0, 1} (i = 1, . . . , i)

(5.1)

The Knapsack problem is also a well known NP-Hard problem as the
Traveling Salesman Problem (TSP) [101]. Alternative versions of the problem
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have been used in different fields such as satellite management, resource
allocation in production management, capital budgeting and cryptography
[136]. Numerous exact and heuristic algorithms have been proposed; the
earlier proposals have suggested exact solutions using dynamic programming
[6] and branch and bound [68] methods. Then, subsequent works have
presented relaxation and state reduction techniques [6] for larger problem
instances. For enormous problem sizes, approximation heuristics have been
proposed. Tabu search [38], particle swarm optimization [13] and evolutionary
algorithms [54] are examples of publications of approximation heuristics.

In the Markov Decision Process (MDP) environment 〈S,A, P,R, γ〉 which
we have presented in the previous chapter, each state s in the state space S
consists of an item b. The transition matrix P is defined similarly as TSP,
the transition probabilities of choosing the next state st+1 given a current
state s: P (st+1 | st).

The reward R is defined as the value υ obtained by reaching any state
si. Specifically, the reward ri is the value υi of item κi if it is selected for the
sack. A is defined as a set of actions {a1, a2 . . . } and it is the action to pick
up an item κj which is represented as sj in the MDP.

We describe the policy as π : S × A 7→ S. For example, from state
s0 taking action a0 will be equal to selecting a random item κ0 we choose
another ball κi = si following the probability distribution in P0 ,i . Hence, we
are interested in finding the the policy π(a0 | ss) that transitions to a new
state st+1 according to the dynamics P (st+1|st, a0) and generates the highest
cumulative reward.

Given a set of items G, an item κi = {wi, υi} possesses the weight and the
value of an item. The objective is to find a subset of items S ′ ⊆ S with the
maximum number of values that is less than the total weight Wtop in which
Equation 5.1 presents.

The design idea for adopting the TauRieL for Knapsack is the following.
The start state can be selected as either the item with the maximum allowed
weight-to-value ratio or a random state among top-k highest weight-to-value
states. Then, start searching and picking items one-by-one until they fill the
maximum allowed capacity is received (W ). Overall, among all the possible
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selections choose the maximum. The total reward obtained given item set G
can be shown as:

L(φ | G) =
n∑
i=1

υi n ≤ N (5.2)

L possesses accumulated values of the subset of the items n ≤ N that
are selected to let in the knapsack. With this modification, the rest of the
RL mechanics that are introduced for TSP in Chapter 4 remains unmodified.
The objective which is described in Equation 4.2 is altered into expected item
value from the expected tour length by only redefining the total reward in
Equation 5.1 in Equation 4.1. The gradient of the objective which is described
in Equations 4.3 and 4.4 are used without modifications. Coupled with the
new reward function in Equation 5.2, the critic network which evaluates the
current policy is estimates the item values given items as opposed to the
expected tour length for the TSP. Similarly, the baseline function b(φ | G)

that REINFORCE algorithm [121] uses for reducing the variance is defined
to be the item value given items.

5.2 Experimental Results

We present the results of Knapsack experiments in this section. Similar to
the experiments with TSP, we employ Tensorflow [3] framework for all the
software implementations and the same workstation with the following specs:
Intel Xeon E5–2630@2.4 GHz, Nvidia K80 and 64GB DDR4@2133MHz RAM.
We have experimented with 20, 50 and 100 item instances of Knapsack and
used the Knapsack dataset from [131].

In Knapsack experiments, we sweep the number of steps from 50 to 10000,
and at each step, we keep the sampling T fixed at 250. We report the best
solution obtained during the steps. The learning rate ε is set to 0.01. We do
not apply and use any clustering with Knapsack. We continue to employ two
neural nets for actor and critic net. For the actor net, we use a 6-layer feed
net with [64, 32, 32, 16, 16, number_of_items] neurons.

For the critic neural net, we use 5-layer feed forward net with [64, 32, 16, 8, 8, 1]
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Table 5.1: Comparison of TauRieL’s gap from the optimal versus value-to-
weight greedy (vwg) for different problem sizes

(Items, Weight) Optimal Tauriel vwg

(20, 5) 7.82 0.2% 2.95%
(50, 12.5) 20.20 7.28% 14.85%
(100, 25) 40.52 18.8% 24.72%

neurons. For both nets ReLu activations are used and RMSProp training
configurations are the following: The learning rates are set to 3e−4 and 2e−4

for actor and critic, decay is set to 0.96 and epsilon as 1e−6. For all cases,
state transition matrix is randomly initialized from a uniform distribution
U(0, 1).

We compare our results with the optimal results that we have obtained
from Google OR Tools Library [43]. Table presents 4.1 average values for
20 to 100 item instances for optimal, TauRieL and value-to-weight greedy
(vwg) heuristic. TauRieL solves 20 item instances within 0.2% of the optimal.
TauRieL beats vwg for all the instances. Both TauRieL and vwg deteriorate
as the design space enlarges by increasing the number of items.

Table 5.2: The execution times in seconds of running TauRieL from scratch
with different item and sample sizes

Items Sample Steps
50 500 5000 10000

20 0.25 2.76 28.3 49.8
50 0.4 4.3 41.2 90.5
100 1.1 8.1 80.0 141.6
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We present the overall execution times of 20, 50 and 100-item instances
with different step sizes. The exponential state space complexity necessitates
more exploration through sampling from the state space [121] as the problem
sizes grow. However, the execution times also increases from seconds range
to minutes range with increasing state space and samples steps.

The breakdown of the execution time of TauRieL is similar to TSP which
we have displayed in Table 4.2. This outcome is expected because the most
dominating element in the algorithm are Training and Sampling steps and
these steps have remained identical.
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Chapter 6

Conclusions and Future Work

In this thesis, we present the contributions to the front and back-end of
advanced analytics, namely databases and predictive analytics using machine
learning. The ever-increasing data generation and data-oriented predictive
methods require efficient and high-performance hardware as well as reductions
in data processing time while training machine learning based models.

Hence for the frontend, we present AxleDB, a single node programmable
query processing platform that couples efficient query-specific accelerators with
memory for providing better performance and energy efficiency compared to
state-of-the-art software DBMS. We propose a diverse set of query accelerators
for aggregation, filtering, sorting, join and groupby operations to accelerate
complex SQL queries. AxleDB is designed to be programmable which enables
data movement through memory and storage units and it is programmable
from the host CPU by sending instructions through PCI-E. Our experimental
results on running a set of queries from TPC-H benchmark suit shows that
AxleDB is 1.8x and 34.2x faster and 2.8x to 62.1x more energy efficient
compared to the state-of-the-art DBMS, MonetDB, and PostgreSQL that run
on a recent server computer.

The results have displayed that AxleDB shows promising results regarding
performance and energy efficiency in a single compute node. Based on the
results for future work, we imply that scaling the platform into multiple nodes
is the reasonable direction. We foresee that extending AxleDB into multiple
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nodes will require more effort concerning database operability and networking
such as data sharding and bandwidth limitations.

The second contribution in this thesis is TauRieL, a deep reinforcement
learning based method that targets combinatorial problems as the backend.
TauRieL employs an actor-critic inspired architecture with ordinary DNNs
and a state transition matrix. Using TauRieL, we show that we solve 50-city
TSP instances in minutes whereas current methods require lengthy training
times before inference. Thus, starting from scratch, we can provide results
two orders of magnitude faster and within 3% accuracy of the state-of-the-art.
With TauRieL, the execution time of DRL based TSP solvers are thus much
closer to heuristics based TSP solvers.

Lastly, we have shown how TauRieL handles another combinatorial prob-
lem by introducing the Knapsack problem. We first presented how Knapsack
can be modeled and solved using TauRieL with minimal changes. Then, we
presented the experimental results which compared Knapsack’s gap from the
optimal while changing the state space and the algorithm’s step size. We also
compared TauRieL with a highly employed value-to-weight greedy heuristic.
Besides, we emphasized how execution times differ with increasing state space
and step sizes. We display that up to 100-item problem size, TauRieL could
generate results that are closer to the optimal compared to the heuristic.

Currently, heuristics based solutions are still preferable regarding accuracy
for larger problem sizes. However, heuristics require a substantial amount
of customization for the problem at hand. For future work, we are looking
forward to improving TauRieL for tackling larger problem sizes and classes
with increased accuracy compared to specialized heuristics.
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