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Abstract 
 

Point-of-care (POC) devices are compact, mobile and fast detection platforms expected to 

advance early diagnosis, treatment monitoring and personalized healthcare, and revolutionize 

today’s healthcare system, especially in remote areas. The need for POC devices strongly drives 

the development of novel biosensor technology. Building a small, fast, simple, and sensitive 

platform for biomolecule detection is a challenge that relies on the integration of multiple fields 

of expertise and engineering.  

Optical nanoresonators have shown great promise as label-free biosensors because of direct 

light coupling and sub-wavelength sensing modes. Metallic nanoresonators with localized 

surface plasmon resonances (LSPR) are already well studied and were proven a solid alternative 

to the commercialized surface plasmon resonance (SPR) sensors. More recently, dielectric 

nanoresonators have also gained traction due to the reduced losses and the ability to 

manipulate both the electric and magnetic components of the incident light.  

In this thesis, we advance the field of biosensing and use optical nanoresonators as operative 

platforms relevant for disease diagnosis and treatment monitoring. By combining different 

optimized optical nanoresonators, both metallic and dielectric, with state-of-the-art 

microfluidics and surface chemistry, we have developed and tested several detection platforms.  

We first focused on developing a microfluidic lab-on-chip device for multiplexed biosensing 

utilizing the LSPR of gold nanoresonator arrays. By simultaneously tracking the extinction of 32 

sensor arrays, we demonstrated multiplexed quantitative detection of four breast cancer 

markers in human serum. We showed that with well-optimized immunoassays, a low limit of 

detection (LOD) can be reached, paving the way towards clinically-relevant POC devices.  

Additionally, we implemented silicon nanoresonators supporting Mie resonances into functional 

and clinically-relevant applications. By integrating several arrays of Si nanoresonators with state-

of-the-art microfluidics, we demonstrated their ability to detect cancer markers in human serum 

with high sensitivity and high specificity.  

Furthermore, we showed that the fabrication of Si nanoresonator array using low cost and 

scalable projection lithography leads to sufficiently low limits of detection, while enabling 

cheaper and faster sensor production for future POC applications. We also investigated the 

respective role of electric and magnetic dipole resonances and showed that they are associated 

with two different transduction mechanisms: resonance redshift and extinction decrease. 

Our work advances the development of future point-of-care sensing platforms for fast and low 

cost health monitoring at the molecular scale.  
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INTRODUCTION 
 

Early diagnosis, personalized treatments and treatment monitoring are essential in the 

fight against devastating disorders. Biosensing is a key element in all of them. Today’s 

healthcare system highly depends on sample diagnostics by large laboratories 

outside of the doctor’s office. A single doctor visit is generally not enough to reach 

a diagnosis and define a treatment. Usually patients will see the  doctor, have 

samples extracted, wait for the sample to be analyzed in an external laboratory 

facility before returning to the doctor to be informed of their condition. The 

impracticality of these time consuming and costly processes is significantly 

amplified in remote areas and/or underdeveloped countries. The additional 

challenges from the travel distances as well as the scarcity of resources lead to 

even longer waiting times before a diagnoses can be made, which have serious 

consequences for patients, especially those requiring urgent care. This pushed 

many scientists and researchers to develop point-of-care (POC) diagnostic devices 

and systems. Their goal is to bring the steps of sample collection, analytical testing 

and the result interpretation together, all within the immediate vicinity of the 

patient. 

According to World Health Organization (WHO), a POC device needs to be 

Affordable, Sensitive, Specific, User-friendly, Rapid and Equipment-Delivered 

(ASSURED). One specific ASSURED method was already used by Persians in the 11th 

century in the form of urinalysis. This technique relied on collecting urine samples 

from a patient and checking its odour and colour to make a diagnosis. It was 

affordable, sensitive and specific for its time, user-friendly (easy to perform), very 

rapid (no need for any equipment or preparation), and equipment-delivered (easy 

diagnosis taking place in vicinity of the patient).  

Today, the goal of scientists and engineers in this field is to develop ASSURED POC 

diagnostic devices for various kinds of patient samples, which are not only boasting 

improved specificity and sensitivity but also, remain highly-affordable, easy to use 

and fast. This is an extremely complex task as biological processes are highly 

complex, even at the single-cell level. Hundreds of molecules collaborate to 

perform a single vital function in a cell. For multicellular organisms as complex as 

humans, it is extremely challenging, if not impossible, to build a universal device 

for diagnostics. Simultaneous and sensitive detection of multiple biomarkers is 

already required to diagnose or track individual conditions. Tackling this very 



INTRODUCTION 

 

2 
 

complex problem requires researchers to combine multiple disciplines and 

technologies. Especially, keeping in mind the necessity of performing diagnostics 

fast and in the vicinity of the patients in critical cases, lots of effort needs to be put 

into this research with the goal of moving towards specified POC devices for 

certain types of samples and diseases.  Lab-on-chip (LOC) technology is one of the 

key elements that reduces the cost, size and reagent volume of POC devices. It 

enables the automation of the multiple analytical steps of a diagnostic assay and 

offers user-friendly and mobile devices. It is a strong enabling tool, developed over 

the last few decades, both in research and for the industry. It has already achieved 

successful commercialization for certain applications such as ELISA with integrated 

sample processing and glucose monitoring. Some microfluidic chips that can 

perform sample preparation, cell lysis, purification and many other laborious 

analytical steps already exist, proving that an entire laboratory can fit into of a few 

square centimetres. The development of such industrial chips, which can perform 

tens of different functions, relies on the development of small modules with 

separate single functions that are then combined to form a larger more complex 

system. This has the significant advantage of allowing researchers to develop and 

test a single function at a time. Working on simpler modules allows faster design 

iteration, with chips tested continuously in a chip-in-a-lab manner, i.e. placing 

them in bulky custom-made control and read-out set-ups for quick, customized 

and specific testing. Then, these separately-tested individual modules are 

integrated to form the complex and ultimately multifunctional industrial chips for 

direct use in POC devices. Therefore, even though current academic efforts in the 

direction of POC LOC system developments look more like chip-in-a-lab then lab-

on-a-chip, these steps are crucial in the development of this technology for real life 

applications.  Another key element of POC devices is the biosensing mechanism, 

which is responsible for the detection of the specifically targeted biomarkers of the 

POC device, and ultimately determines the device sensitivity. It essentially 

transduces the biochemical information into a detectable signal. For clinical 

diagnostics, the gold standard biosensing technique is enzyme linked 

immunosorbent assay (ELISA). This method, used both in research and by large 

analytical laboratories, requires using bulky well-plates and large amounts 

(microliters to millilitres) of samples and reagents as well as cumbersome plate 

readers. It is clearly not a method suitable for POC diagnostics.  

The chemistry used for ELISA relies on multiple incubation steps of  labelled or 

conjugated antibodies and substrate solutions. The available biosensing 

transduction methods that can be combined with LOC technologies are based on 

fluorescence microscopy or impedance measurements. Optical detection schemes 
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hold great advantages, such as the possibility of label-free measurements, ease of 

performance, and scalability.  

Surface Plasmon Resonance (SPR) is an optical phenomenon that is highly sensitive 

to events on the surface of the metals, making it an interesting tool for biosensing. 

SPR sensing is based on exciting surface plasmon resonances at the interface of the 

metal and its surrounding environment, and therefore requires a specific optical 

configuration. This requirement is not optimal with the portability and small size 

expected from POC devices. A simpler method involves using a localised surface 

plasmon resonance (LSPR). This resonance is excited by incident light interacting 

with subwavelength scale metallic nanostructures, as opposed to thin films used 

for SPR-based sensors. LSPR is very sensitive to changes in its environment, 

allowing a simpler sensing setup. It is therefore not surprising that LSPR 

phenomenon has already been extensively studied and has already been used for 

biosensing applications. Its integration with microfluidic chips however, was 

relatively immature at the beginning of this work since most studies lacked 

clinically-relevant results and/or fully functional, practical and an automatable chip 

design for multiple analyte detection.  

More recently, dielectric nanostructures with a high refractive index have 

attracted attention due to their ability to manipulate the electric and magnetic 

components of the incident light. They are proposed as an alternative to metallic 

nanostructures for SPR sensing because they do not suffer from ohmic losses and 

provide better quality factor resonances with unique optical properties allowing 

the engineering of meta-properties. All-dielectric nanophotonics is a rapidly 

growing field for a number of different applications. However, there are only a few 

studies, so far, in the biosensing field. They all lack realistic and clinically-relevant 

experiments, leaving a wide gap in the literature, with a significant potential 

impact. 

The goal of this thesis work is to develop on-chip biosensing platforms that 

integrate microfluidics, optical nanoresonators, and relevant surface chemistry 

achieving robust, sensitive, specific, rapid, and real-time detection of clinically-

relevant biomarkers. The first objective of the project is to develop an LSPR based 

microfluidic platform for the multiplexed detection of cancer markers in human 

serum. The second objective is to explore and develop sensing with dielectric 

nanoresonators, as opposed to the classically-used metal nanostructures for on-

chip biosensing applications.  

The multidisciplinary nature of this work integrates different disciplines of science 

and technology. In Chapter 1, the different concepts involved in this research are 
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explained. These include optical nanoresonators, microfluidics, and the surface 

chemistry used in chip fabrication and for biosensing.  

Chapter 2 presents the experimental techniques that are used to manufacture and 

operate the lab-on-chip platforms, integrate the sensors, and interpret the 

experimental results. 

Chapter 3 focuses on the development of the LOC platform with LSPR based 

sensors for multiplexed and fully-automated biosensing. The detection of four 

breast cancer markers in human serum is demonstrated. In addition, the chip 

design and system optimization are shown, as well as a comparison with the gold 

standard ELISA technique.  

Chapter 4 presents the results of on-chip sensing experiments with periodic silicon 

nanoresonator arrays fabricated by electron beam lithography. The electric dipole 

resonances of the nanoresonators and the diffractive modes of the periodic 

nanoresonator arrays are demonstrated to be effective for sensing. Results from 

cancer marker detection experiments are also presented and compared with the 

results obtained for the same bioassays using LSPR sensors.  

Chapter 5 focuses on semi-random silicon nanoresonator arrays to explore the 

different transduction mechanisms of the nanoresonators. These resonators are 

no longer periodic and do no longer need to be fabricated by long and costly 

electron beam lithography. The different transduction mechanisms are associated 

with different resonance modes through simulations and their sensing 

performance is then demonstrated for cancer biomarker detection. 

 

 

  



 

 

5 
 

 

1 CONCEPTS AND BACKGROUND 
 

The sensing platforms developed during this PhD work are highly multidisciplinary, 

integrating fields from nanophotonics and microfluidics to surface and 

biochemistry. The plasmonic nanostructures are used for optical sensing. 

Microfluidics is used to deliver samples and target molecules to the sensors, as 

well as sensor preparation steps in a controlled environment. Surface chemistry is 

used to prepare the sensors to capture the target molecules and run the 

immunoassays. 

 In this chapter, I introduce the basic concepts that are involved in this dissertation, 

starting with presenting the basics of resonant light scattering nanostructures in 

both metallic and dielectric nanoparticles. Next, I focus on microfluidics, followed 

by the surface chemistry that was used in our experimental scheme.  

 

1.1 Light-nanoparticle interaction  
 

Light scattering by small particles is a well-known and studied phenomenon, 

historically originating from the work of Lord Rayleigh in 1871.1 When light is 

incident on a small particle, the electric charges in the particle are displaced by the 

electric field of the incident light, setting them into oscillatory motion. These 

accelerating charges radiate electromagnetic energy, which is known as scattering. 

In addition to scattering, some of the incident energy is transformed into heat, 

resulting in absorption. Therefore, the incident light is extinct due to both 

scattering from and absorption by the particle. Both of these contributions depend 

significantly on the properties of the particle material and the surrounding media, 

as will be discussed in this chapter. 

Mie theory, developed by Gustav Mie in 1908, describes the electromagnetic field 

scattered and absorbed by a homogeneous and isotropic sphere of an arbitrary 

radius a, due to an incident plane wave of wavelength λ. Mie theory involves 

expanding  electromagnetic fields into spherical harmonics and determining their 

expansion coefficients using boundary conditions. According to Mie theory2 , the 
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scattering, extinction and absorption cross-sections of the particle can be 

expressed as follows: 

 

 

𝐶𝑠𝑐
𝑀𝑖𝑒 =

𝜆2

2𝜋
∑(2𝑛 + 1){|𝑎𝑛|2 + |𝑏𝑛|2}

∞

𝑛=1

, 

 
 

𝐶𝑒𝑥𝑡
𝑀𝑖𝑒 =

𝜆2

2𝜋
∑(2𝑛 + 1)𝑅𝑒{𝑎𝑛 + 𝑏𝑛},

∞

𝑛=1

 

 
 

𝐶𝑎𝑏𝑠
𝑀𝑖𝑒 = 𝐶𝑒𝑥𝑡 − 𝐶𝑠𝑐, 

 

(1) 

where the expansion coefficients a and b are2:  

 
𝑎𝑛 =

𝑚𝜓𝑛(𝑚𝑥)𝜓𝑛
′ (𝑥) − 𝜓𝑛𝜓𝑛

′ (𝑚𝑥)

𝑚𝜓𝑛(𝑚𝑥)𝜉𝑛
′ (𝑥) − 𝜉𝑛(𝑥)𝜓𝑛

′ (𝑚𝑥)
 

 

𝑏𝑛 =
𝜓𝑛(𝑚𝑥)𝜓𝑛

′ (𝑥) − 𝑚𝜓𝑛𝜓𝑛
′ (𝑚𝑥)

𝜓𝑛(𝑚𝑥)𝜉𝑛
′ (𝑥) − 𝑚𝜉𝑛(𝑥)𝜓𝑛

′ (𝑚𝑥)
  

 

(2) 

𝜓 and 𝜉 are related to Bessel functions of the first kind. 𝑚 is the relative refractive 

index 𝑚 =
𝑛𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑛𝑚𝑒𝑑𝑖𝑢𝑚
, and 𝑥 is the size factor 𝑥 = 𝑘𝑎, where k is the wave vector in 

the medium. These cross sections are valid for particles of all materials and sizes. 

Let’s consider the example where a homogeneous subwavelength sphere with 

dielectric function 𝜖(𝜔)  and radius 𝑎 (𝑎 ≪ 𝜆) is placed into a homogeneous 

medium with dielecric constant εm. As𝜖𝑚. As the particle size is much smaller than 

the wavelength of the incident light, the phase of the harmonically oscillating 

electromagnetic field can be considered constant across the particle volume (𝐸 =

𝐸0𝑧). This reduces the problem into one with a particle in an electrostatic field 

(Figure 1-1). 
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Figure 1-1 Sketch of a spherical nanoparticle placed into an electrostatic field (modified from 
S.A.Maier3). 

Solving the Laplace equation and applying the boundary conditions, the electric 

field inside and outside the particle is found to be: 

 

𝐸𝑖𝑛 =
3𝜖𝑚

𝜖 + 2𝜖𝑚
𝐸0, 

 

𝐸𝑜𝑢𝑡 = 𝐸0 +
3𝑛(𝑛 . 𝑝) − 𝑝

4𝜋𝜖0𝜖𝑚
(

1

𝑟3
), 

(3) 

 

where 𝑛 is the normal unit vector pointing the location where the field is 

calculated, 𝑝 =  𝜖0 𝜖𝑚𝛼𝐸0 is the dipole moment of the particle and 𝑟 is the 

distance from the center of the sphere to the point where the field is calculated. 

The polarizability of the particle is then3: 

 𝛼 = 4𝜋𝑎3
𝜖 − 𝜖𝑚

𝜖 + 2𝜖𝑚
, (4) 

 

From this equation one can see that when |𝜀 + 2 𝜀𝑚| reaches a minimum, the 

polarizability experiences a resonant enhancement. The scattering and absorption 

cross sections of the particle are given by3:  

 

𝐶𝑠𝑐 =
𝑘4

6𝜋
|𝛼|2 =

8𝜋

3
𝑘4𝑎6 |

𝜖 − 𝜖𝑚

𝜖 + 2𝜖𝑚
|

2

, 

 

𝐶𝑎𝑏𝑠 = 𝑘𝐼𝑚[𝛼] = 4𝜋𝑘 𝑎3𝐼𝑚 [
𝜖 − 𝜖𝑚

𝜖 + 2𝜖𝑚
]. 

 

(5) 

Note that the same results in Eq. 5 can be derived from the general Mie theory 

cross sections by retaining only the first term (by coefficients 𝑎1 and 𝑏1), which 

represents the dipole mode and neglecting the other terms.  

𝜖𝑚
𝑎

𝜖

𝐸0 𝑧

𝑟
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It is also interesting to note that for small particles absorption is the dominating 

mechanism, with its cross-section, scaling with 𝛼3, as opposed to 𝑎6 for scattering.  

As the size of the particle increases, the dipole resonance redshifts due to the 

weakening of the restoring force caused by polarized charges in the particle. The 

bigger the particle, the more separated the charges at the opposite ends of the 

particle are. This results in a decrease of their interaction, shifting the resonance to 

longer wavelengths.  

The resonance behavior of a spherical particle is very well known and used as an 

example for its simplicity. The shape of the particle however also heavily influences 

this resonant behavior. The more complex the shape of the nanostructure, the 

more complex its optical response will be. These responses are then usually 

simulated numerically, using models and different software, because there is no 

analytical solution to Maxwell’s equations for them.   

It can be seen from Eq. 5 that the extinction (𝐶𝑒𝑥𝑡 = 𝐶𝑠𝑐 + 𝐶𝑎𝑏𝑠) experiences a 

resonance also when the polarizability is resonant, thus, it also depends on the 

dielectric function of the medium. This is the reason why these nanostructures 

make good sensors and the key takeaway message of this section: any changes in a 

nanostructures’ dielectric environment can be directly correlated to changes in its’ 

optical behavior.  

So far, the equations in this section are valid for nanoresonators of any material. 

From now on, we will focus on metallic and dielectric nanoresonators only, as 

these are the materials used in the sensors developed in this thesis. The difference 

between the dielectric and metallic nanostructures stems from their different 

dielectric functions and the existence of the free electrons in metals as opposed to 

dielectric materials. 

1.1.1 Resonances of metallic nanoresonators 
 

The free electrons in the metals oscillate around the fixed positively charged 

background due to the electric field of the incident light, resulting in 

electromagnetic excitations confined on the surface of the metal called surface 

plasmons. For propagating plasmons, matching the momentum of the incident 

field to the one of the surface plasmons requires special geometries4–6 which can 

be complex, whereas in subwavelength nanoparticles direct illumination is able to 

excite resonances once the resonance condition, shown above, is satisfied. These 

resonances of the metallic nanostructures are called localized surface plasmon 

resonances (LSPR). Metallic nanoresonators such as gold and silver can exhibit 



CONCEPTS AND BACKGROUND 

 

9 
 

their resonances in the visible light spectrum, making them attractive and practical 

candidates for many applications in biomedicine and sensing.7–10 Besides this, 

these nanoparticles highly localize and enhance the electromagnetic fields around 

them in the spatial ranges that match the sizes of biomolecules such as proteins 

and antibodies (mode-analyte overlap). This is why these particles are very 

sensitive to molecules in their vicinity. 

Drude model approximates the dielectric function of a metal: 

 𝜖𝐷𝑟𝑢𝑑𝑒(𝜔) = 1 −
𝜔𝑝

2

𝜔2 + 𝑖𝛾𝜔
, (6) 

 

where 𝜔𝑝 = √𝑛𝑒𝑒2/(𝑚𝑒𝜖0)  is the plasma frequency, 𝑛𝑒 is the electron density of 

the metal and 𝑒 and 𝑚𝑒 are the charge and mass of an electron. 𝛾 is the damping 

term and 𝜔 is the frequency of the incident light. The wavelength dependence of 

the dielectric function of gold is shown in Figure 1-2. One can see that the 

imaginary part of the dielectric function is non-zero, which is a damping factor of 

the oscillations, indicating losses. These result in a widening of the resonance 

peaks, increasing the full width at half maximum (𝑤 = 𝐹𝑊𝐻𝑀) which corresponds 

to a lowering of the quality factor (= 𝜆𝑟𝑒𝑠/𝑤).  

 

Figure 1-2 Dielectric function of gold calculated by Drude model. The values for gold taken from 
[Johnson and Christy, 1972].11 

LSPR is a very well-studied phenomenon which is already being used in some 

applications in the fields of biosensing, cancer treatment, SERS and imaging.7–10,12 

The following sections and chapters of this thesis focus on the biosensing 

applications of LSPR phenomena. 
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1.1.2 Resonances of dielectric nanoresonators 
 

Even though it has been so many years since the Mie theory completely described 

the multipolar resonances of dielectric particles, interest in this field has recently 

been renewed with the emergence of all-dielectric nanophotonics field, which 

allow increasing control over sensor design, fabrication and characterization 

techniques.13,14 Due to the ability of dielectric nanoparticles to support electric 

displacement currents inside them, they can exhibit magnetic dipole resonances as 

opposed to their metallic counterparts. This ability to manipulate both the electric 

and magnetic components of the electromagnetic waves incident upon them 

combined with their low-loss resonances paves the way to applications such as 

cloaking12, superlensing15, negative refraction16 and suggest them as an alternative 

to their metallic counterparts. The high quality factor resonance peaks of dielectric 

nanostructures, along with their easily engineered resonance modes are what has 

attracted the attention of the sensing community recently.17–20 

The magnetic modes are characterized by the displacement current inside the 

particle inducing a magnetic dipole moment in the orthogonal direction. Focusing 

on Si nanocylinders (Si NCs), as they are used in this thesis for sensing applications, 

Figure 1-3 shows the magnetic and electric dipole (MD and ED) resonances of the 

Si NCs. As shown in Figure 1-3a, the circular electric displacement current requires 

sufficient electric field retardation at the bottom and top of the particle, therefore 

magnetic dipole modes can only be excited in the Si NCs that have the height large 

enough. This height corresponds to larger than 50-100 nm for silicon.21 

The electric dipole resonance is due to the polarization of the charges inside the 

particle due to the electric field of the incoming light. The oscillation of the electric 

charges induces a magnetic current loop. This mode can be supported in shallow 

particles, since the magnetic permittivity of cylinder and the surrounding material 

is 1, and supports the magnetic current loop. 
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Figure 1-3 (a) magnetic dipole (MD) and (b) electric dipole (ED) modes shown for dielectric 
nanocylinders. The circulating displacement currents are indicated inside the particle, inducing 
magnetic and electric dipole moments. (c) The scattering cross sections for the 100nm tall Si NC with 
diameter of 150 nm, exhibiting MD and ED and magnetic quadruploe (MQ) modes. Reprinted from 
Polman et. al.22 

The higher order terms in the Mie extinction cross section define the higher order 

multipole modes of the resonances. In high dielectric constant nanostructures, 

depending on their size and geometry, electric and magnetic dipoles, quadrupoles 

and higher order modes are present. A clever engineering of the structures 

geometry can make some of these modes to appear in the visible range, which is 

particularly interesting because it significantly simplifies the optics needed for 

detection.  

 

Figure 1-4 Resonances of Si NCs of different radii and heights with fixed interparticle separation 𝑠 =
200 nm in the array. 
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Figure 1-5 Resonances of Si NC arrays of fixed radius (r=140 nm) and height (h=50 nm) with varying 
interparticle separations. 

Since we focus on the arrays of Si nanocylinders (Si NC) in next chapters, where 

their height and radius are the critical geometrical parameters (Figure 1-4), 

ensemble geometry properties such as periodicity or interparticle distances are 

also important (Figure 1-5). It is worth noting that the shallow particles only exhibit 

electric dipole modes whereas as the height increases, the structures start 

supporting electric displacement currents resulting in additional magnetic modes 

in Figure 1-4. There are many valuable reviews and detailed analysis for further 

information on the optical resonances of dielectric nanodisks and cylinders.13,21,23,24 

1.2 Sensing with optical nanoresonators 
 

The dependence of the resonances of these optical nanoresonators on the 

dielectric constant of their surrounding media, enables them to be used as very 

sensitive sensing tools. They can be used, for example, to sense the refractive 

index changes in their surrounding media in bulk (bulk refractive index sensitivity, 

BRIS) or molecule adsorptions onto their surfaces. 

The BRIS of a nanostructure is a measure of how much its resonance wavelength 

will change when the refractive index of its surrounding medium, 𝑛, changes25: 

 
𝐵𝑅𝐼𝑆 =

𝜕𝜆𝑟𝑒𝑠

𝜕𝑛
= −

4𝑛

(
𝜕𝜖

𝜕𝜆𝑟𝑒𝑠
)

  (7) 

 

500 600 700 800 900

0.0

0.2

0.4

0.6

 

 

50nm 

280nm 

s (nm)



CONCEPTS AND BACKGROUND 

 

13 
 

This can be derived by taking the derivative of the resonance condition 𝜖(𝜆𝑟𝑒𝑠) =

−2𝜖𝑚. 

Having a good BRIS, being a good indicator of the sensing ability of the sensors, 

does not always necessarily imply good biosensing performance for a sensor. The 

high BRIS might also result from non-localized electromagnetic field, which would 

lower the particles ability to detect molecules because it would be highly sensitive 

to background noises. 

The sensitivity of nanoresonators to molecules adsorbing onto their surface  is 

what is crucial for them to be able to be used to gain biologically meaningful 

information. The molecules adsorbed onto the surface of the nanoresonators can 

be treated as a uniform coating layer with refractive index 𝑛𝑙. Following the 

extinction cross section of a coated sphere14, the molecular sensitivity, 𝑆 follows 

as25: 

 
𝑆 = 𝑅𝑒 {

𝜕𝜆𝑟𝑒𝑠

𝜕𝑛𝑙
} = −

4𝑛𝑙

(
𝜕𝜖′

𝜕𝜆𝑟𝑒𝑠
)

Δ 
(8) 

 

where Δ is the volume fraction of the adsorbed layer occupying the mode volume 

of the particle. For a layer of zero thickness Δ = 0 and for a layer that covers the 

whole mode volume Δ = 1. 𝜖′ is the real part of the dielectric function 𝜖 = 𝜖′ +

𝑖𝜖′′ of the particle. Thus, a good overlap between adsorbates and the modes are 

crucial for efficient utilization of BRIS for biosensing applications. 

The way we utilize the sensitivity of the resonances to the environmental changes 

is through observing the resonance peak response to these changes. By a home-

made transmission spectroscopy set-up collecting the light transmitted from the 

nanoresonator arrays, we track the extinction peaks of them. We track up-to 32 

sensor array positions by scanning the fabricated chip with a galvo.  

Tracking the shift of the resonance peak position of these nanostructures is the 

conventional way of tracking the changes in their surroundings. A Red-shifted peak 

position corresponds to an increase in the refractive index (RI) of the surrounding 

medium or to the adsorption of a molecule onto the sensor surface while a blue-

shift indicates the opposite, a lowering RI or the desorption of molecules from the 

sensor surface.  

Centroid tracking is a method which has been proposed to improve the 

performance of these sensors26 because more pixels from the CCD camera are 
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involved in this tracking method, compared to the peak tracking which only uses 

data from a few pixels. The centroid of the resonance is calculated as26 

  

𝜆𝑐 =
∫ 𝜆

𝜆𝑠+𝑠

𝜆𝑠
[𝐸(𝜆) − 𝐸𝑏𝑎𝑠𝑒]𝑑𝜆

 ∫ [𝐸(𝜆) − 𝐸𝑏𝑎𝑠𝑒]𝑑𝜆
𝜆𝑠+𝑠

𝜆𝑠

, (9) 

 

where the 𝑠 is the span of the wavelength range [𝜆𝑠, 𝜆𝑠 + 𝑠] to be considered for 

the centroid calculation, 𝐸𝑏𝑎𝑠𝑒 is the value of the extinction at 𝜆𝑠 and 𝜆𝑠 + 𝑠. 

Figure 1-6a shows these parameters and the centroid position on the extinction 

spectrum of the gold nanorod arrays that are used for sensing in Chapter 3. In 

Figure 1-6b a comparison of peak and centroid tracking for LSPR sensors (gold 

nanorod arrays) is presented for an antibody binding to the sensor surface. The 

sensor preparation, a baseline measurement with buffer solution, the antibody 

binding steps, followed by washing and blocking steps can all be observed as the 

peak and centroid shift. It becomes clear however that the the signal to noise ratio 

of the centroid shift is higher than thatthe one of the peak shift, proving the 

superiority of the centroid tracking method for this application. This is why this is 

the method used for the sensing experiments in this thesis unless otherwise 

specified.  

 

Figure 1-6 Peak vs centroid tracking.  (a) Parameters for centroid tracking method shown on an 
extinction spectrum of a gold nanorod array. (b) Comparison of the centroid and peak shifts 
calculated for an antibody binding event on the same LSPR sensor array as in (a) 

1.2.1 Sensing with metallic nanoresonators (LSPR) 
 

650 700 750 800 850 900 950

0.0

0.1

0.2

0.3

0.4

0.5

0.6

s+s

E
x
ti
n
c
ti
o
n

Wavelength (nm)

 data

 fit

peak

centroid

s
sEbase

0 40 80 120 160
-1

0

1

2

3

4

5

6

S
h

if
t 

(n
m

)

Time (s)

 centroid

 peak

(a) (b)

sensor 
preparation 
step

baseline signal 
measurement

antibody binding 
on sensors 



CONCEPTS AND BACKGROUND 

 

15 
 

Surface plasmon resonances (SPRs) of thin films are commonly used for sensing RI 

changes and detecting biomolecules. It is a well explored and commercialized 

concept.27 With the advancement of controlled fabrication and manipulation of 

the metallic nanostructures, LSPR sensing applications have attracted attention 

since 2000s.28–30 The metallic nanoparticles, especially gold and silver are 

extensively used to sense both bulk RI and molecular binding events. Nanoparticles 

in solution or on substrate are used for detection of biomolecules with very low 

limits of detection.31–37 Very high sensitivities can be reached by engineering the 

shape, size and organization of the nanoresonators to tune the field confinement 

around the nanoresonators for optimum mode-analyte overlap. The ability to 

directly couple to LSPRs as opposed to complex excitation setups for SPR, is highly 

beneficial in building devices that can be simpler and more compact. In Chapter 3, 

we discuss in detail about lab-on-chip integrated LSPR based sensors, and present 

our multiplexed LSPR based microfluidic platform.  

1.2.2 Sensing with dielectric nanoresonators 
 

Advancing fabrication and simulation methods paved the way to new 

developments in the field of all-dielectric nanophotonics, leading scientists and 

engineers to explore different applications of the resonances of high refractive 

index dielectric nanoresonators. Among the applications, biosensing is one that 

has not yet been explored as much as its LSPR counterparts. There are very recent 

theoretical and experimental demonstrations of the refractive index sensing with 

Mie resonance modes of dielectric nanoparticles, exploring different behaviors of 

electric and magnetic multipole modes under changing surrounding 

medium.17,18,20,38–40 

By the time this thesis project started, there was a gap in the literature on using 

the resonances of dielectric nanostructures for clinically relevant biosensing 

applications. At the time of writing this thesis dissertation, there are few 

publications that focus on biomolecule detection with these resonance modes. A 

part of our work here focuses on filling this gap, bridging the field of all-dielectric 

nanophotonics with on-chip biosensing applications that are clinically relevant and 

explore the compatibility of those fields for meaningful POC product development. 

Chapters 4 and 5 focus on the works completed with that goal in mind also 

presenting a brief comparison between LSPR sensing and dielectric nanoresonators 

based sensing.  
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1.3 Microfluidics for Lab-on-chip biosensing platforms 
 

In order to perform controlled sensing measurements with high throughput and in 

a multiplexed manner, we integrate optical nanoresonators with microfluidic 

channel networks. Microfluidic platforms allow for easy delivery of different 

samples (biomolecules) to different sensors and run parallel measurements. The 

micrometers scale of channel sizes for sample delivery, meet the need for 

measuring with nanostructure arrays of the similar dimensions. 

Microfluidics refers to the control and manipulation of fluid flows inside channels 

with diameter dimensions in the micrometer-scale.  At such a small scale, the 

observed flow is laminar, in contrast to the turbulent flows existing at the macro-

scale where fluids move more chaotically. In the laminar flow regime, the fluid 

flows in parallel layers with no perpendicular cross-currents or swirls (Figure 1-7). 

The Reynolds number (Re) is the dimensionless parameter that indicates whether 

the fluid flow inside a channel is laminar or turbulent41:  

 
𝑅𝑒 =

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
=

𝑣2𝑑ℎ𝑝

𝜇𝑣
=

𝜌𝑣𝑑ℎ

𝜇
  (10) 

where 𝜌 is the density, 𝑣 is the velocity and 𝜇 is the viscosity of the fluid, and 𝐷ℎ is 

the hydraulic diameter of the channel (𝑑ℎ = 4𝐴/𝑃𝑤 , where A is the cross sectional 

area of the channel and 𝑃𝑤 is the wetted perimeter). 𝑅𝑒 values below 2000 define 

the laminar regime. For channel diameters around 100 𝜇m or smaller, and a low 

rate of fluid flow 1 cm/s, laminarity is ensured.42  

In the laminar flow regime, the flow velocity in the middle of the channel is very 

high, compared to very low flow velocities (ideally zero) at the walls of the 

channel. For sensing applications, the sensors are placed on one wall of the 

channel, meaning the transport of target molecules in the sample to the sensors is 

dominated by diffusion since there is no advection towards the channel walls.   
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Figure 1-7 The flow speed profile in a pipe for laminar and turbulent flow conditions. (reprinted from 
O. Reynolds43). 

 The fluid flow rate in microfluidic channels is analogous to that of the electric 

circuits. A channel’s width and length determines its hydraulic resistance, just like 

the electric resistance in electric circuits. The pressure applied is analogous to 

voltage and the flow rate is to current. This analogy helps in designing the 

necessary microfluidic channel network for a specific application. 

For our sensing platforms, we employ microfluidics to deliver fluids to different 

sensing sites simultaneously, in a highly controlled manner with no cross 

contamination. To have full control over the multiple reagents and analytes 

needed for these sensing applications, we make use of microfluidic chips made of 

two-layer PDMS (poly-dimethilsiloxane) channel networks. PDMS is a polymer that 

is commonly used to develop lab-on-a-chip applications due to its optical 

transparency, biocompatibility, elasticity and easy fabricability. Although not the 

ideal material for mass fabrication, it is quite attractive for laboratory tests, 

because it is suited to cheap and easy design iterations. More importantly, its 

elasticity enable the development of microfluidic chips with micro-valves that can 

be fabricated by multi-layer soft lithography.  

In these two-layer PDMS microfluidic chip designs, the control layer channel 

network overlaps with the flow layer channel network at specific points. Only a 

thin PDMS layer separates the control and flow layers creating a micromechanical 

valve in this position. When the control layer channel that is filled with air or water 

is pressurized, the actuated elastic membrane collapses into the flow layer, 

blocking the flow of the liquid inside the channel.44 Flow and control layers can be 

arranged in two ways, allowing for push-up or push-down type of valves as shown 

in Figure 1-8. In the state-of-the-art microfluidic platforms, the challenges such as 

mixing, sorting, generating gradients and molecular transport are tackled by 
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researchers in numerous creative ways and it continues to be an interesting field 

for engineers and biologists.44–49 

 

Figure 1-8 Micro-mechanical valves in two-layer PDMS chips. (a) Push-down and (b) push-up valve 
architecture (reprinted from Melin et. al.44). (c) Picture of a valve in a closed state (reprinted from 
Stanford Microfluidics Foundry webpage50). 

In our sensing platforms we rely on the push-down design, in order to integrate 

the optical sensor arrays with the flow layer of the chip (see Chapter 2 for further 

details). We aim for simultaneous and parallel detection of different biomolecules 

or samples on a single microfluidic chip with multiple nanosensor arrays located in 

different channels of the chip. For target molecule detection, we utilize 

immunoassays (see next section). Therefore, it is important to design channel 

networks that can introduce common reagents into multiple experimental 

channels simultaneously, as well as enabling individual access to these channels for 

measuring different samples in parallel. This is satisfied with a special design of 

channels, inlets and outlets of these channels, and control valves that regulate the 

flow on those channels to perform the steps of immunoassays and sensor 

preparation.  

(a)

(b)

(c)
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Figure 1-9 Microfluidic flow (blue) and control (red) channel architecture for (a) common treatment of 
all experimental channels and (b) individual treatment of each experiment channels. 

Figure 1-9a shows the architecture that allows common reagents to be introduced 

into all experimental channels simultaneously with the same flow rate. To allow 

this, the channels need to have the ‘’tree’’ structure, equally dividing the laminar 

flow of the reagent/sample from the common inlets into the experiment channels. 

By opening and closing the valves, which are the red areas intersecting the blue 

flow channels, the flow from different inlets can be directed to the channels. 

Similarly Figure 1-9b shows the architecture for individual channel treatment, 

where the inlets and outlets are separately connected to each channel. Those 

individual outlets are used when the channels are treated with common inlets in 

our architecture. 

The full layouts of the microfluidic channel networks used in experiments will be 

explained in Chapters 3 and 4, as for different experiments, slightly different 

designs are utilized.  

1.4 Surface Chemistry 
 

Surface chemistry deals with the chemical changes at the interface of two 

materials/environments. We need to employ surface chemistry for multiple 

reasons in our platforms. One is to bind the PDMS chips onto the sensor substrates 

for performing sensing assays, and the other is to functionalize the sensor surface 

so that the target molecules can be attached to the surface of the sensors for 

detection. 

1.4.1 Chip binding 
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Binding the sensor substrates to the PDMS chips requires modifications of both 

material surfaces. Prior to this, the PDMS chip layers (control and flow) need to be 

bound covalently so that the chip can endure the pressures that will applied during 

the measurements.  

Two PDMS layers form a bond when the surface methyl groups are oxidized with 

oxygen or UV ozone plasma. When both oxidized layers are brought into contact, 

covalent bonding occurs in several minutes.  

Binding the glass substrates with PDMS chips relies on the same method. Glass and 

PDMS are oxidized by the oxygen plasma and brought into contact for covalent 

binding. Some applications that require forming organic self-assembled 

monolayers (SAM) on the sensor surface prior to chip assembly pose a crucial 

problem, as the plasma activation of the substrate would lead to destruction of the 

SAM. Therefore, in those cases, for the chip assembly, only the PDMS surface is 

oxidized and brought to pressure contact with the substrate at lower temperature. 

This results in slightly weaker but sufficiently strong binding for the sensing 

experiments. 

 

1.4.2 Sensor functionalization 
 

To detect biomolecules, we run sandwich immunoassays on the optical 

nanoresonators. The key step is to immobilize antibodies on the sensors, without 

non-specific binding. In some cases, the passive adsorption of molecules onto the 

sensor surface is not strong enough or even possible, therefore, the 

functionalization of the sensor surface is necessary for running a robust 

immunoassay. The SAM of mercaptoundecanoic acid (MUA) is used on gold 

sensors to act as a link between sensors and the antibodies. The activation of 

carboxylic acid groups of MUA with EDC (carbodiimide) – NHS (N-

hydrocarboxysuccinimide) reaction is used for immobilizing antibodies onto the 

MUA (Figure 1-10a). Once the antibodies are immobilized, before the target 

molecule is introduced into the environment, the active MUA sites that are 

uncovered by antibodies are blocked by ethanolamine (Figure 1-10b). This method 

is commonly used in plasmonic sensing applications, therefore the protocols are 

well established in the literature51–55, and only need to be adapted to our sensors.  
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Figure 1-10 Surface fucntionalization. (a) EDC-NHS chemistry on MUA for antibody immobilization on 
gold. (b) Ethanolamine blocking of the active MUA sites after antibody immobilization. (reprinted 
from Bhadra et. al.52)  

After antibody immobilization and ethanolamine blocking steps, the sandwich 

immunoassay can be performed on the sensors, described in detail in Chapter 2.  
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2 METHODS FOR ON-CHIP BIOSENSING WITH 

OPTICAL-NANORESONATORS 
 

The experimental methods used in the measurements consists of combination of 

multiple fields and technologies. 

The work flow of a regular on-chip sensing experiment consists of (i) fabricating 

the desired type and design of NRs on a glass substrate, (ii) fabricating the 

microfluidic chip with desired channel networks, (iii) preparing the NR sensor 

surface for sensing experiments, (iv) assembling the sensors with the microfluidic 

chip and (v) further chemical preparation of the sensors and (vi) finally the 

biomolecular sensing steps followed by (vii) data processing. Multiple 

manufacturing steps are usually prone to failing, due to incompatibilities between 

materials, fabrication steps and the complexity of the procedures. Many steps of 

fabrication and preparation procedures have to be followed and combined 

carefully in order to achieve a successful sensing measurement. The average time 

of fabrication of a biosensing platform we focused on in the scope of this thesis is 

between 2 days to 4 days.  

The most crucial aspect for developing a reliable point-of-care diagnostic device 

development is reproducibility. For a platform that consists of multiple fabrication 

steps and materials, it is very important to follow proper fabrication and 

preparation steps in order to perform successful experiments and obtain reliable 

results.  

In this chapter, the methods used throughout the thesis will be described in detail. 

The fabrication of both gold and silicon nanoresonators (NR), preparation of the 

NRs for biosensing experiments, fabrication of microfluidic chips and the 

integration of the chips with sensors will be explained. In the last section, the 

details of the sensing procedure on-chip will be given.  

 

2.1 Fabrication of Nanoresonators for Biosensing 
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Nanoresonators (NRs) are the structures that have at least one dimension that 

ranges between 1-100 nm. To fabricate the structures in highly controlled and 

reproducible ways, highly controlled environments such as cleanrooms are 

needed, equipped with machines for fabrication and characterization of those 

structures. The nanostructures can be fabricated by top-down or bottom-up 

techniques, where the former constitutes of the fabrication of the nanostructures 

from a larger block of material and the latter is based on fabrication of 

nanostructures using atoms or molecules as the building blocks and bringing them 

together to form the desired structure.56 The top-down methods are used for the 

NRs employed in the projects followed in next chapters. 

Au and Si NR based sensing platforms are in the scope of this thesis. For the LSPR 

sensing platform that is developed and presented in chapter 3, gold nanorod 

arrays are employed, whereas for the Si NR based platforms that are presented in 

chapter 4, Si nanocylinder (Si-NC) arrays are used. Two types of Si-NC arrays are 

fabricated: periodic and semi-random. The different fabrication procedures are 

described in following sections. 

E-beam lithography is a highly controllable method, enabling the fabrication of 

highly reproducible samples with high resolution in feature size and high accuracy 

in positioning and aligning.57 It also provides the ability to design and fabricate 

different nanostructures in parallel with desired optical and mechanical properties. 

Therefore, we used e-beam lithography for fabricating sensors consisting of 

periodic and highly ordered structures. 

Despite its advantages, e-beam lithography is not a cost-effective method and it 

also suffers from high exposure times for patterning a small area of the sample. 

Colloidal lithography techniques are implemented to fabricate simpler arrays in a 

large-scale and cheap manner.58 When periodicity is not crucial colloidal 

lithography is a more suited fabrication method because it is significantly more 

efficient. Therefore, we used a colloidal lithography method customized in our lab, 

in order to fabricate randomly distributed Si-NC arrays for the part of the results 

presented in Chapter 5. 

 

2.1.1 Fabrication of gold NRs 
 

The fabrication procedure of gold nanorod arrays is based on electron beam (e-

beam) lithography with negative resist, followed by a reactive ion etching (RIE) 
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process. Figure 2-1 shows the fabrication procedure for gold nanorod arrays. The 

steps are as follows: 

Cleaning: The glass substrate (PGO MEMPAX) of 25x25 mm with thickness of 0.4 

mm is cleaned with soap and water, followed by aceton and IPA rinsing. 

Metallization: The cleaned substrate is coated with 2 nm of Ti layer for adhesion, 

followed by 50 nm of Au layer in the Lesker Lab18 evaporator with the coating rate 

of 1 A/s. 

Resist coating: The metallized sample is then spin coated with negative e-beam 

resist ARN-7500-08 at 8000 rpm and baked at 85 C for 1 min. 

E-beam writing: In the negative resist e-beam lithography, the unexposed regions 

of the resist are removed by developer.  

The e-beam exposure of the desired pattern is realized by CRESTEC CABL writer. 

The pattern design is prepared in the custom software of the CRESTEC CABL. The 

optimization of parameters of exposure such as exposure time (dose), the current, 

etc. are crucial for obtaining high quality structures and it is important to test and 

fix those parameters by running test samples. The exposure time for one sample is 

around 4 hours regarding the number and the size of arrays needed to perform the 

experiments that will be described in Chapter 3. 

Developing: The exposed sample is developed in 1:4 AR-300-47 developer for 3 

minutes and rinsed with water and dried with N2. 

The sample is baked at 85 C for 1 min to obtain resist contrast for RIE step.  

RIE: The gold layer is etched using directional argon plasma at the rate of 15 

nm/sec using the ARN resist as etch mask.  

Cleaning: The mask is then cleaned by either O2 plasma or dipping the substrate 

into 1:3 piranha solution (Hydrogen peroxide: Sulfuric acid) for 10 seconds. The 

latter worked better for cleaning the sensor surface, eventhough requires careful 

handling of the acid and longer than 10 sec washing causes the Ti layer to be 

etched away, therefore the dissociation of the gold nanorodos from the substrate 

surface.  
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Figure 2-1 Fabrication procedure of gold nanostructures with negative e-beam resist.  

Following the cleaning of the substrate, the gold sensor surface is functionalized as 

will be described later in this chapter. 

 

2.1.2 Fabrication of silicon sensors 
 

periodic Si nanodisk arrays 
 

Periodic Si nanodisk arrays were fabricated using standard e-beam lithography 

(EBL) followed by a reactive ion etching (RIE) step very similar to the gold nanorod 

fabrication described in previous section. We used the silicon-coated quartz 

substrates (Siegert Wafers) of 25x25 mm. The resist coating, e-beam writing, 

developing steps are kept the same as in Au NR fabrication. After that, the 

nanodisk patterns were transferred to the silicon layer by RIE using SF6 and C4F8 

gases for etching. After the RIE, the substrate cleaning is done in the same way as 

described for Au NRs. 

semi-randomly distributed Si nanocylinder (Si-NC) arrays 
 

For the fabrication of the semi-randomly distributed Si-NCs with no long-range 

order but with a typical interparticle distance the fabrication procedure is as 

follows:  

glass
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Figure 2-2: Fabrication steps of randomly distributed silicon nanocylinder (Si-NC) arrays. (a) 
Fabrication steps of Si-NC arrays. (b) Dark field microscopy image of the sulfate latex beads 
dropcasted on the gold layer. (c) The SEM image of the substrate after the tape stripping step 
showing the stripped regions with gold nanodisks (above the dashed line) and unstripped regions with 
the beads on top of gold nanodisks (below the dashed line). (d) The SEM image of the substrate after 
etching the Silicon layer by RIE, using the gold disks as etching mask. The gold mask is seen on the Si-
NCs.   

 

Cleaning: The Si-coated quartz substrates of 25x25 mm that are purchased from 

Siegert Wafer, GmbH were cleaned by aceton and IPA rinsing.  

Metallization: After cleaning the substrates, 2nm of Ti layer is coated as an 

adhesion layer on silicon and then 50 nm of Au layer is evaporated on the thin Ti 

layer.  

Bead dropcasting: Then the sample is treated with O2 plasma for 5 seconds at 100 

Watts (200 ml/min flow). After the plasma, the sample is incubated for 1 minute in 

0.2% Poly-diallyl dimethylammonium chloride (PDDA) solution for surface 

activation and the surface becomes positively charged, and then washed with 

water and dried with N2. After the surface activation step, the sample becomes 

ready for the dropcasting the Sulfate Latex beads (Thermofisher, S37491, 0.2 µm) 

2 µm

Si layer
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which are stabilized by sulfate charges (negatively charged). 0.2% w/v solution of 

beads is drocasted on the substrate, covering the whole surface, and after 1 

minute, the surface was quickly rinsed with water and dried with N2. For our 

sensing application, we removed the beads around the edges of the sample, using 

a scotch tape, leaving the beads only in the center of the substrate, where we will 

then scan for sensing. The whole sample surface with beads can be patterned in 

different ways mentioned in the main text. Figure 2-2b shows the dark field 

microscopy image of the beads dropcasted on the gold layer.  

Gold mask etching by RIE: The Au layer on the sample, masked by the beads, is 

then etched by Ar gas (40 sccm) for 3 min 20 s.  

Tape stripping: The beads are then removed by tape stripping from over the Au 

nanodisks. Figure 2-2c shows the SEM image of the tape stripped substrate after 

gold mask etching.  

Si etching by RIE: Au nanodisks are used as a mask for etching Si layer in RIE with 

C4F8 (70sccm) and SF6 (45sccm) gases at a rate of 0.27 nm/s. Figure 2-2d shows the 

SEM image of the sample after 130 nm Si etching step, where the gold mask layer 

on the Si-NCs are visible.  

Removal of gold mask and cleaning: Finally, the sample is washed inside piranha 

solution, which lifts off the Au layer by etching the Ti layer below and cleans the 

silicon nanodisk surface.  

 

The final radius and the density of the silicon nanodisks are 140 nm and 2.1 

disks/1µm2. 

 

With this EBL-free method, the whole sample area can be patterned with 

nanostructures simultaneously without altering the fabrication time or the cost. 

The areas on the substrate to be patterned can be selected by tape stripping the 

beads away before using them as an etch mask. More precise bead stripping 

method is described by Acimovic et. al for patterning the sample surface with 

precision of few micrometers by using a homemade PDMS stripping tape.33 For our 

sensing device, we tape stripped the edges of the sample, leaving the beads at the 

center of the substrate. 

2.1.3 Sensor preparation and surface chemistry 
 

In the scope of this thesis, the on-chip sensing experiments are all based on 

sandwich immunoassay format. For selective and reliable biomolecule detection, 

the surface of the sensors need to be coated by capture antibodies that will 

recognize the target biomolecule. In order to selectively immobilize the capture 

antibodies on the sensor surface, sensors are functionalized as described below. 
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Gold sensors 
 

The surface of the gold sensors are coated with self-assembled monolayer (SAM) 

of mercaptoundecanoic acid (MUA), in order to have carboxyl groups on gold 

surface to immobilize the capture antibodies with their amine groups.54 The 

fabricated gold nanorod arrays are incubated in 2.5 mM MUA in ethanol solution 

at room temperature for 18 hours (overnight). Then rinsed by ethanol and dried 

with N2.  

Silicon sensors 
 

In this thesis, we have not focused on developing a specific surface treatment for 

Si sensors. All the experiments rely on the passive adsorption of the biomolecules 

onto the Si surface. According to the preliminary tests and results that we 

obtained, the passive adsorption of the antibodies on Si sensor surface provides a 

strong attachment to the surface and eliminates the additional surface activation 

steps. The specificity and the sensing performance of the sensors are discussed in 

Chapter 4. 

 

2.2 Microfluidic chip fabrication 
 

The PDMS microfluidic chips consisting of two layers are fabricated by UV 

photolithography followed by multilayer soft lithography46 based on molding the 

uncured PDMS by a photoresist-on-silicon wafer mold fabricated by a UV 

lithography. The fabrication workflow therefore briefly consists of (i) designing the 

channel networks for control and flow layers of the chip, (ii) printing the designs 

onto a transparency mask, (iii) transferring the designs onto silicon wafers by UV 

lithography, (iv) using the fabricated control and flow molds for PDMS casting, (v) 

curing the PDMS, (vi) stripping the control layer and punching the holes to access 

the control channels, (vii) aligning and bonding the control and flow layers, (viii) 

punching the holes to access the flow layer. After that, the PDMS chip is ready to 

be assembled with the substrate with sensors.  

 

2.2.1 UV photolithography for mold fabrication 
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The master molds for flow and control layer are fabricated through standard UV 

photolithography in the cleanroom using AZ9260 negative photoresist and Quintel 

Q4000 mask aligner. The clean Si wafers are spin coated with AZ9260 at 2000 rpm. 

Flow mold is coated with single layer while the control mold is coated double layer 

of AZ9260 for obtaining higher channels. The transparency mask with respective 

flow and control layer designs are used for UV lithography and the wafers are 

developed in MIF860 developer. The flow layer mold is post-baked at 120 C oven 

for 30 minutes. The post-bake makes the channel profile round, which is crucial for 

push-down valves, in order to obtain full closure of the valves. The control layer is 

left unbaked as the rectangular channel profile is desired. The final thicknesses of 

the flow and control layer resist are around 10 µm and 24 µm respectively. 

 

Figure 2-3 Fabrication of the molds for microfluidics photolithography 

Once the master molds are fabricated for a set design, they can be reused for 

fabrication PDMS chip batches.  

For the platforms developed in this thesis, 4 inch silicon wafers are prepared as 

master molds, containing 4 copies of the same chip design. Therefore each batch 

fabrication lead to 4 PDMS chips, saving time and effort.  

2.2.2 Multilayer Soft Lithography for PDMS microfluidics 
 

Multilayer soft lithography is used for the fabrication of the PDMS chips. Uncured 

PDMS is casted on the master molds in order to transfer the channel design onto 

the polymer.  
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Figure 2-4 PDMS chip fabrication by multilayer soft lithography. 

PDMS polymer mixture with its curing agent is prepared for control and flow layer 

fabrication with the ratio of 1:10 and 1:5. The reason for high curing agent ratio for 

flow layer is that the stiffness of the layer helps providing more robust valves. The 

Si wafer molds are treated with TMCS (trimethylchlorosilane) vapor prior to each 

use to prevent from adhesion of PDMS on the mold. PDMS is poured onto the 

control layer mold in a petri dish up to a thickness of 0.5 mm whereas it is spin 

coated onto the flow layer mold with 2200 rpm for thickness of around 20 µm. 

Then the molds with PDMS is baked at 80C for 1h for curing and the cured PDMS 

on control layer is peeled and holes are punched for accessing the control 

channels. The flow layer is left on the mold and both PDMS parts are treated with 

UV ozone plasma for activation for 3 mins. They are then aligned and bound using 

a stereo microscope and baked for 10 h at 80C for complete binding and curing. 

Then the multilayer PDMS chip is peeled off from the flow layer mold and the 

inlets to the flow channels are punched. At this stage the PDMS chip can be stored 

until integration with the sensors which is described in the next section. 

2.3 LOC Assembly 
 

The LOC assembly is the step that integrates substrates with the fabricated and 

prepared sensors with the PDMS chips. The bond between substrate and the 

PDMS chip needs to be very strong in order to operate the chip with required high 

pressures for valve control. This can be a non-trivial challenge as the conventional 

methods for covalently binding PDMS to glass involves O2 plasma activation of 

both materials. The organic molecules such as SAM of MUA on the sensors are 

very sensitive to this treatment. Another challenge is the high temperatures used 

for baking the assembled chip for covalent bonding.  
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For the chips presented in this thesis, the PDMS is treated with UV Ozone plasma 

for 3 minutes and quickly aligned and pressed on the substrate with sensors 

prepared as described in section 2.1.3. The assembled chip is baked at 50 C  for 10 

hours. No significant effect of baking at 50C on the MUA was observed in the 

sensing experiments.  

 

2.4 Opto-fluidic setup 
 

We have used an opto-fluidic setup for measuring and tracking the resonances of 

the sensor arrays and controlling the sample and reagent flow on the LOC devices 

by manipulating the micromechanical valves on them. This setup consists of the 

optical part and the fluidic part that will be explained in this section. 

The optical setup was built in our group, before I started my PhD studies. It is a 

home-made optical microscope in bright-field transmission that consists of a VIS-

NIR light source (Olympus) to excite the resonances of the sensor arrays, a galvo to 

scan different arrays for parallel measurements, and an ANDOR spectrometer to 

detect the resonances in the transmitted light (Figure 2-5a). A broad-band linear 

polarizer, a set of irises and condenser lens is used to focus the incident light on 

the nanorod arrays. The transmitted light is directed toward the galvo mirror, and 

focused onto the fiber, that guides it to the spectrometer. One camera with low 

magnification is incorporated to image the full layout of the microfluidic device 

and another camera with high magnification was used to image the area with 

sensing regions on the device. A home-developed Labview interface is used to 

control the spectrometer and the galvo scanning system (Figure 2-5b). The setup 

measures the extinction peak and centroid positions at the sampling rate of 10 Hz. 

The sampling rate is limited by the spectrometer’s read-out time. The software 

tracks up to 32 sensor arrays on the chip in real time and plots the corresponding 

resonance shifts of simultaneously tracked sensor arrays in parallel. The software 

also stores the data offline and more precise data processing (see Section 2.7). 
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Figure 2-5 Optical setup and control software.  (a) the optical setup with the microfluidic device in the 
close-up.(Modified from Acimovic et. al.34) (b) the screenshot from the extinction tracking software. 
The real time resonance shift plots for 8 different sensor arrays on the chip.  

The automated fluidic control setup was built in the scope of my PhD thesis. The 

fluid control on the chip is regulated by a set of electronic pneumatic valves 

(Pneumadyne) that are pushing water into the control channels when switched on. 

The pressurized control channel collapses on the flow channel blocking the fluid 

flow, as described in the previous chapter.  

The micromechanical valves connected to electronic valves are controlled by a 

home-made Matlab GUI (Figure 2-6) in order to run an automated sandwich assay. 

Figure 2-6a shows the control setup consisting of solenoid valves from 

Pneumadyne, controlled by a controller box (home-made). The electronic valves 

are connected to the chip through tygon tubings that are filled with water, pushing 

the water into the control channels on chip when pressurized. The closing pressure 

of a micromechanical valves are 15-30 psi. The electronic valves are controlled by 

the matlab GUI shown in Figure 2-6b, which allows the switching the valves on and 

off by clicking on the chip layout map, or running automated and timed scripts for 

the steps of the sandwich assay measurement. This enables the full automation of 

measurements, with the flexibility to interfere and manipulate the measurement if 

needed.  

(a) (b)
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Figure 2-6 The valve control setup and software. (a) electronic solenoid valves (Pneumadyne) are 
connected to the chip through tygon tubing filled with water. The pressure regulator is used to control 
the pressure inside the control channels. (b) The custom home-made software (Matlab) to control the 
electronic valves. The buttons on the chip map can be clicked to turn the valves on and off. There are 
also embedded script functions to run a part or the whole of the sandwich assay on the chip. 

The samples are connected to the flow layer with tygon tubings that are connected 

to a nitrogen flow at a constant pressure of 3 psi. This allows for the sample to 

flow into the channels when the control valves are opened.  

2.5 Immunoassays for on-chip biosensing 
 

As described in the first chapter, the sensing applications in this thesis mainly use 

sandwich assay type of immunoassays. All the measurements, except for 

specifically stated ELISA measurements in Chapter 3, take place on chip. The 

microfluidic channels are used to control the flow of reagents on specific sensing 

sites. The details of the full microfluidic chip designs and experiments will be 

discussed in next chapters, while in this section the focus will be on the sandwich 

immunoassay specifics. 

In the sandwich assay, the capture antibody, immobilized on the sensor surface, 

specifically captures the target marker. The resonance response for the small 

target molecule is typically small and the resolution between different 

concentrations of the marker is not high enough to obtain a reliable sensing signal. 

Therefore, an amplification antibody that also recognizes and binds to the target 

biomolecule is used for signal amplification. In this section, the details of the 

immunochemistry used for the sensing with both LSPR and silicon nanoresonator 

sensors are described. 

 

(a) (b)
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2.5.1 Cancer marker detection with Au NR sensors 
 

In order to immobilize the capture antibodies on the sensor surface coated with 

MUA, EDC/NHS chemistry is used to prepare amine-reactive esters of carboxylate 

groups. EDC/NHS reaction takes place in 45 minutes in MES buffer. Right after 

EDC/NHS reaction, the capture antibodies in 10 mM phosphate buffer (PB) are 

introduced into the channels for binding on the sensor surface. Once the sensor 

surface is coated with capture antibodies, the LSPR centroid shift signal saturates. 

Depending on the concentration of the antibody solution in PB, the saturation time 

changes slightly between 10 and 30 minutes. For most of the measurements 

presented in this thesis, the capture antibodies are flown in the channels for 60 

minutes unless otherwise is specified. 

Following the immobilization of the capture antibodies on the specific detection 

sites on the sensors by the help of microfluidics, to prevent non-specific binding 

and for the blocking of unreacted NHS-ester groups on the sensors are blocked 

with ethanolamine solution in PB for 10 minutes. Next, the cocktail of markers 

prepared in PBS-BSA buffer or 100% unfiltered human serum (Sigma Aldrich) are 

introduced to the detection sites for an hour, each having different concentrations, 

in order to obtain calibration curves. In the case of multiplexed detection of 

multiple markers, each marker is captured by their specific antibody, giving LSPR 

shifts on the corresponding detection sites. Finally, the amplification antibodies in 

PBS with 1% BSA with PH of 7.4 to match the human serum PH are introduced 

through the channels, in order to amplify the LSPR shift.  

 

Figure 2-7 Sandwich assay protocol on gold sensor surface. 

 

2.5.2 Cancer marker detection with Si NR sensors 
 

For the specific detection of the target protein (prostate specific antigen, PSA) we 

formed a layer of capture antibody on the sensor surface. The sensors were first 

flushed with 10 mM phosphate buffer (PB) in order to have a base for tracking the 
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shifts. The monoclonal antibody (mAb) (BiosPacific, A45160) for PSA was 

introduced to the channels in 10 mM PB through a common inlet so that the 

solution flowed through all the channels simultaneously and all the sensors were 

coated with the capture antibody. Once the capture antibody layer was formed, 

the resonance shift signal saturated and the channels were then washed with PB 

shortly to remove the excess unbound antibodies. The signal saturated after only 

15 mins after 150 μg/ml mAb solution was introduced to the sensors. The binding 

kinetics and the saturation time depend on the mAb concentration used. 

For the proof of concept experiments we have measured the PSA calibration curve 

in phosphate buffer saline (PBS) with 1% bovine serum albumin (BSA). The BSA was 

added to the PBS as a blocking agent to prevent the unspecific binding and also to 

mimic the human serum proteins in this preliminary measurement. The 7 PSA 

calibration concentrations were prepared and introduced to different sensors 

through individual inlets of each channel. An extra channel was used as a control 

channel with no PSA added in the buffer.  

For the PSA calibration curve measurements in human serum, the calibration 

concentrations were similarly prepared in 50% diluted human serum instead of 

PBS with BSA. For the experiment presented in the Fig. 6, the capture antibody 

concentration used was 300 μg/ml.  

For the target proteins that are small in size compared to antibodies, the shift due 

to different concentrations of these proteins is not easy to detect directly. For the 

signal amplification, we used an amplification antibody that recognizes the target 

protein. For our measurements with PSA, polyclonal antibody (pAb) (BiosPacific, 

D63010) for PSA was used as a detection antibody. 100 μg/ml pAb in PBS with 1% 

BSA was introduced in the channels through common inlets after a short washing 

step with buffer. After the pAb binding signal was saturated, the channels were 

again washed with buffer to remove unbound antibodies and to eliminate the bulk 

refractive index effect due to free pAb solution in the channels. This way the 

absolute effect of pAb binding on the sensor area was measured. The centroid 

shifts due to the absolute pAb binding step were extracted to plot the calibration 

curves presented in this work. 

 

2.6 ELISA protocol 
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Enzyme linked immunosorbent assay, ELISA, is a gold standard method for 

detection of markers in clinical diagnostics. We have performed a few ELISA 

measurements to compare it with our platform performance.  

We followed a standard ELISA protocol starting with a non-coated 96 well ELISA 

plate. To immobilize the capture antibodies, we prepared antibody dilutions in 50 

mM carbonate buffer (CB) incubated them in the wells for 18 hours at 4⁰C. Then, 

the wells were washed 3 times with 10mM PBS-Tween and the markers are 

introduced into the wells, diluted in PBS-BSA (1%). After an hour of incubation at 

37⁰C the wells are again washed 3 times with PBS-Tween and the amplification 

antibody used on-chip experiments is introduced to the wells to form the 

sandwich. Similarly to the previous steps, after 1 hour of incubation, the wells 

were washed and secondary antibody - horseradish peroxidase (HRP) conjugate is 

added to the wells. It is important to note that the Goat anti-Mouse (GAM) or Goat 

anti-Rabbit (GAR) antibodies are used depending on the source of the 

amplification antibody in the previous step. After the incubation of the conjugate, 

the wells are again washed and the colorimetric substrate, OPD (o-

phenylenediamine dihydrochloride) is added to the wells. Once the color of the 

solution in the wells turn yellow (takes around 30 mins) the stop solution (2.5 M 

H2SO4) is added on the OPD and absorption in the wells are read by the plate-

reader.  

 

2.7 Data processing and Analytics 
 

One of the key advantages of the integration of optical sensing with the 

microfluidic chip technology is to be able to get an instant readout of the sample 

concentration during the assay steps. In order to achieve that, our transmission 

microscopy set-up and a dedicated labview program collect the real-time 

transmission spectra of the sensing sites on the chips. The 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 signal from 

an area on the chip with no sensors for each sensing site and the 

𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 signal (dark signal) are recorded in the beginning of the 

measurement and the rest of the readout is ran automatically, scanning the 

sensing chip with a galvo mirror. The extinction is calculated by the following 

formula: 

 𝐸 = log(1 − 𝑇) = log (
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
) (11) 
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where 𝑇 is transmission through the sample and 𝑠𝑖𝑔𝑛𝑎𝑙 is the experimental signal 

readout of the sensors. The extinction centroid is calculated as described in 

Chapter 1 in real-time and displayed during the measurement, enabling immediate 

access to the results and quick troubleshooting in case of any problem with the 

assay or the chip. Figure 2-8 shows the real-time centroid shifts for CA15-3 

detection measurement on an LSPR chip. All the surface chemistry and assay steps 

can be tracked during the experiment, allowing for gathering the maximum 

information.  

 

Figure 2-8 The real-time LSPR centroid shifts due to 8 different CA 15-3 concentration solutions at the 
8 separate detection sites on a chip. 

After the measurements, offline data processing is performed to get more 

information out of the collected data. The centroid shifts for detection antibody 

binding over the time is calculated for each sensing site and plotted against 

corresponding concentrations (See Figure 2-9). This plot is called concentration-

response curve or calibration curve in analytical chemistry and has a trend of an S-

curve. The data is fitted by four parameter logistic function: 

 𝑦 = 𝑚𝑎𝑥 +
𝑚𝑖𝑛 − 𝑚𝑎𝑥

1 + (
𝑥
𝐶)

𝑠  (12) 

  

where; 

𝑚𝑎𝑥  = the maximum value that can be obtained (at infinite concentration) 
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𝑚𝑖𝑛  = the minimum value that can be obtained (at zero concentration) 

𝐶  = deflection point of the S-curve, EC50 value (the point halfway  between                    

𝑚𝑎𝑥 and 𝑚𝑖𝑛, 50% Effect Concentration) 

𝑠  = Hill’s slope of the curve (steepness of the curve at EC50 value) 

From the fitted data, the dynamic range and limit of detection (LOD) and limit of 

quantification (LOQ) of the calibration curve are calculated.  

Dynamic range is the interval between upper and lower limits of quantitation, 

which is the range that the curve is linear and therefore the measurement is 

expected to be precise and accurate, also called as the working range of the 

sensors. This range is taken to be the range between EC20 and EC80 values of the 

calibration curve. 

LOD of the sensor is the smallest analyte concentration that can be detected but 

not necessarily quantified exactly. Commonly it is defined as the 3 times the 

standard deviation on the blank measurement (measurement of the noise level in 

the assay when no analyte is present). For our measurements we took the EC10 

value of the fitted curve as the LOD, as a convention.  

LOQ is the lowest concentration that can be quantified exactly. It is defined as 

10xLOD. 

The sensitivity is defined as the assay response per unit analyte concentration. 

However this parameter is often defined differently by researchers and sometimes 

in conflicting senses. Some researchers define sensitivity as the LOD or LOQ or the 

resolution (smallest concentration difference that can be determined with 

confidence). Therefore, proper assessment of dynamic range and LOD is what we 

focus on in our measurements. For sensitivity we present the EC50 value of our 

sensors in the following chapters.  
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Figure 2-9 Obtaining calibration curves. (a) the LSPR shifts for the amplification antibody step from 
Figure 2-8. (b) the calibration curve obtained. The line is the 4-parameter logistic curve fit and the 
dashed region is the dynamic range of the sensor. LOD of 0.11 ng/ml is marked with a star. 
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3 ON-CHIP MULTIPLEXED LSPR SENSING  
 

The results presented in this chapter as well as part of text and figures are 

published in ACS Sensors during the course of my PhD studies.59 

Yavas, O.; Acimovic, S. S.; Garcia-Guirado, J.; Berthelot, J.; Dobosz, P.; Sanz, V.; 

Quidant, R. Self-Calibrating on-a-Chip LSPR Sensing for Quantitative and 

Multiplexed Detection of Cancer Markers in Human Serum. ACS Sensors 2018, 3 

(7), 1376–1384. 

 

Abstract - The need for point-of-care (POC) devices capable of early detecting 

diseases and monitoring their status, out of a lab environment, has stimulated the 

development of compact biosensing configurations. While Localized Surface 

Plasmon Resonance (LSPR) sensing integrated into a state-of-the-art microfluidic 

chip stands as a promising approach to meet this demand, its implementation into 

an operating sensing platform capable to detect quantitatively a set of molecular 

biomarkers in an unknown biological sample is only at its infancy. In this chapter, 

we present an on-chip LSPR chip capable to perform automatic, quantitative and 

multiplexed, screening of biomarkers. We demonstrate its versatility by 

programming it to detect and quantify in human serum four relevant human serum 

protein markers associated with breast-cancer. 

 

Early diagnosis and accurate monitoring of disease progression is required to 

determine an optimum treatment and increase the recovery rate of patients. The 

complex nature of biological processes and pathways leads to significant changes 

in the levels of multiple molecular markers in patient’s blood over the course of a 

disease.60–62 Therefore, it is highly relevant to be able to track simultaneously the 

levels of a set of these markers, in order to spot the actual disease status. Enzyme-

linked immunosorbent assay, ELISA is one of the most commonly used detection 

technique in clinics and research laboratories.63 Its reliability, low limit of detection 

and commercial availability are the biggest advantages. However, the bulky well-

plates and readers, long assay times and the large reagent volumes are not 

compatible with on-site, quick and multiplexed measurements. The ultimate goal 
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of developing point-of-care (POC) devices that allow for on-site, multiplexed 

measurement of analytes in a fast and cost-effective manner has motivated the 

development of a variety of biosensors based on different transduction 

mechanisms.64–67 Among them, optical sensors are particularly attractive owing to 

their fast response and compatibility with miniaturization and parallel 

sensing.34,68,69 Surface Plasmon Resonance (SPR) sensing is one of the well-

developed and commercially available optical sensing schemes. 

A competitive approach to optical sensing relies on Localized Surface Plasmon 

Resonance (LSPR) supported by noble metal nanoparticles. Unlike SPR-sensing 

based on flat metal films, LSPR-sensing enables engineering the sensing volume 

down to the subwavelength (molecular) scale and benefits from direct coupling 

with propagating light. LSPR-based biosensing has shown to be a powerful 

approach to compact and simple platforms, especially attractive for POC 

applications.34,69–75 Yet, despite its great potential, its implementation into 

operating sensing devices capable to quantitatively assess the analyte 

concentration from unknown biological samples, remains little advanced.29,76 This 

is in part due to the complexity of implementing a working platform, where several 

disciplines like physics, surface chemistry, fluidics and electronics have to be 

optimally combined.  Furthermore, while most efforts have so far focused on the 

detection of single analytes, reliable detection and monitoring of diseases 

generally requires multiplexed detection of several biomarkers. To this end, earlier 

works proposed employing colloidal metallic nanoparticles with different LSPR 

frequencies, each functionalized with a different receptor.77 While promising, this 

solution-based approach currently faces several drawbacks including aggregation 

of nanoparticles and optical signal fluctuations due to multiple washing steps. 

Another related configuration for multiplexing consists in immobilizing on a 

substrate antibody-functionalized gold nanorods of different aspect ratios78 that 

exhibit different optical properties allowing the selection of multiple working 

wavelengths. Chen et al. developed a multiplex serum cytokine immunoassay 

using nanoplasmonic biosensor microarrays. In this configuration, the solution 

based gold nanorods were immobilized on a substrate using a microfluidic channel 

network which was then removed and replaced by another microfluidic network 

used for the sensing assay.69 To date, none of the proposed LSPR-based schemes 

has enabled multiplexed and quantitative detection of several analytes in a 

biological sample.  

As a first step towards this goal, we recently presented a strategy34 that combines 

top-down engineered gold nanoparticle arrays with state-of-the-art 

microfluidics19–23 comprising micromechanical valves.46 This unique combination, 

which provides a controlled environment to the sensors, accurate delivery of 
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reagents and sample as well as automated assay operation, was successfully used 

to detect protein cancer markers in human serum with high sensitivity and 

specificity. As a proof of principle, detection of prostate specific antigen (PSA) and 

alpha-fetoprotein (AFP) in a clinically relevant level range were successively 

obtained.34 

Here, by leveraging on the developed toolbox, we report on the first 

implementation of   quantitative and multiplexed LSPR sensing on-a-chip. Our LSPR 

chip enables us to perform simultaneously self-calibrating, automated and 

multiplexed real-time detection of four breast cancer protein markers in human 

serum. These sensing performances combined with the long shelf-life of the chips, 

brings the LSPR based sensing one step closer to real-life operating POC devices. 

In the next sections, we discuss the clinical motivation, the platform design, and 

the results related to the sensing applications.  

 

3.1 Clinical Motivation 
 

Clinical studies show that accurate detection of serum protein markers for breast 

cancer are pivotal to treatment monitoring towards a better prognosis.84–92 The 

most common markers are CA (cancer antigen) 15-3 and CEA (carcinoembryonic 

antigen).86,87,92 Also high serum ErbB2 (HER-2/Neu) concentrations are shown to be 

of use to monitor the response to specific treatment types.85,91 In addition to these 

antigens, the CA 125, which is a serum marker for ovarian cancer and some other 

diseases, is also shown to be a predictive marker of metastasis in breast cancer 

patients.84 More serum protein markers are relevant to breast cancer; extensive 

reviews can be found in the literature.88,92,93 Since tracking the level of a single 

marker alone may not be sufficiently conclusive in most cases, one needs to be 

able to monitor multiple markers in parallel. In our multiplexed measurements, we 

have focused on the four aforementioned molecules to demonstrate that our 

platform enables us to reliably quantify the concentrations of four relevant 

molecules with high specificity and reduced cross-reactivity. 

To assess our sensing performance, we also list the clinical cut-off concentrations 

of the selected markers with our results later in Table 2. The clinical cut-off 

concentration of a marker is the maximum concentration that a sample can 

contain to be considered healthy.  
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3.2 Multiplexed detection chip 
 

To meet all requirements for quantitative multiplexed sensing, our chip design 

makes use of orthogonally crossing channels compartmented by micro-mechanical 

valves. The eight microfluidic channels intersect with four orthogonal channels and 

each intersection area contains an array of gold nanorods sensors (Figure 3-1). 

Eventually, the density of sensing sites is 32/mm2, enabling time-shared parallel 

detection over different positions by using a galvanometric mirror in a 

transmission measurement setup34.  

 

Figure 3-1 Description of the microfluidic LSPR sensing chip.  Design of the microfluidic chip where the 
blue lines represent the flow network and the orange lines represent the valve control network of the 
multilayer PDMS chip. The yellow lines inside the blue channels locate the gold nanorod array.   

The dimensions and the periodicity of the gold nanorods in this work are similar to 

some previous works34,94 Gold nanorods are 160 nm x 80 nm with thickness of 50 

nm and arranged in a square lattice of 400 nm pitch. This design was selected to 

minimize near and far field coupling effects and to lead to a strong resonance in 

the extinction signal. Figure 3-2 shows the SEM image of the gold nanorod arrays 

and their extinction spectrum in water. 

 

Flow network
1 µm

Control network
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Figure 3-2 The gold nanorod sensor arrays. (a) The SEM image of the fabricated arrays. 4 lines of gold 
nanorod arrays are fabricated for easy aligning with the detection sites on the microfluidic channel 
network. (b) The extinction spectra of the gold nanorod array in (a), measured in aqueous 
environment. 

Figure 3-1 displays the chip outline where blue lines depict the flow network and 

red lines the valve-actuation architecture for flow control46. As detailed in Chapter 

2, e-beam lithography with negative resists combined with reactive ion etching 

were used to fabricate gold nanorod arrays on a glass substrate (Figure 3-2). 

Subsequently, the surface of the nanorods was coated with a self-assembled 

monolayer (SAM) of MUA (mercaptoundecanoic acid) for further modification 

aimed at specific analyte binding. Finally, we aligned and assembled the sensor 

substrate with microfluidic channels, fabricated by multilayer soft lithography46, in 

such a way the nanorod arrays sit at the intersection points of orthogonal channels 

(Figure 3-1). By regulating the pressure inside the control lines, the flow on the 

chip can be actuated to address specific detection sites. The details of the opto-

fluidic setup and the automated valve control system is described in Chapter 2. 

For the biomarker detection on chip, the sandwich assay format was used, where a 

capture antibody is first immobilized on the sensor in order to specifically capture 

the protein of interest and, when needed, the LSPR shift is subsequently amplified 

with an amplification antibody (Figure 3-3a). The LSPR centroid red-shift at the 

detection sites due to bioanalyte binding is tracked in real-time with a home-made 

transmission spectroscopy setup controlled by a Labview interface. Figure 3-3b 

shows the real-time measurement of the successive assay steps for obtaining 

CA15-3 calibration curve, involving only 25% of the total sensing sites available on 

the chip. The EDC/NHS activation of the carboxyl groups of the SAM is followed by 

the capture antibody immobilization on 8 sensors, onto which 8 different 

concentrations of the marker are introduced. The final step (zoomed in inset) 

shows the amplification antibody binding at the 8 different detection sites, 
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resolving the different concentrations of the marker. The washing steps in 

between can be seen in the real-time data.  

 

Figure 3-3 Sandwich assay on LSPR sensors. (a) The sketch of the sandwich assay steps and the LSPR 
signal response. (b) Real-time monitoring of the LSPR centroid shift for different concentrations of 
CA15-3 (on-a-chip calibration curve).   

The inlets and outlets of the chip are designed such that the antigen cocktail 

samples and the capture and amplification antibody solutions are connected to the 

chip through tygon tubing and they can be flowed whenever needed without any 

further manual manipulation by the help of electronic valves and the control 

software. Controlled flow of different solutions in specific directions and without 

cross contamination is shown in Figure 3-4a, where the main three flow modes of 

the microfluidic operation are captured using food colorant. This way, every 

detection site can be treated simultaneously with the same reagent/solution 

through a common inlet (Figure 3-4a, mode i). Additionally, different solutions can 

be delivered to the detection sites through the orthogonal channels in different 

directions as shown in Figure 3-4a, mode ii and Figure 3-4a, mode iii. These 

different flow modes, together with the low dead volumes and absence of cross-

talk between channels, are crucial for reliable multiplexed measurements. 
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In the specific multiplexed sensing assay, the common treatment of all sensor sites 

(mode i) is used to activate the gold sensor surface with EDC/NHS chemistry8,38 and 

for common blocking and washing steps. Mode iii is employed to immobilize the 4 

different capture antibodies on the four sensor arrays (Figure 3-4b and c, Step 1). 

Six of the eight parallel channels are used, utilizing mode ii, to deliver to the 

sensors the cocktail of proteins with different concentrations and obtain the 

calibration curves of the four proteins. The last two channels are simultaneously 

used for the unknown sample replicas to be quantified (Figure 3-4b and c, Step 2). 

Finally, whenever necessary, the amplification antibodies are flowed through to 

amplify resonance shift (Figure 3-4b and c, Step 3). More details on the surface 

chemistry and marker detection protocol can be found in Chapter 2.  The 

contribution of the flow control by the micromechanical valves to both the sensor 

functionalization and the sensing measurements, is illustrated by the cross-section 

view of the chip in Figure 3-4c. 

 

Figure 3-4 Description of the chip operation protocol for the multiplexed detection of four protein 
cancer markers. (a) Pictures of the microfluidic channels flow layer at different instants of the sensing 
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protocol.  For sake of clarity, food dyes were used. The 8 channels can be either fed by a common inlet 
(mode i) or addressed individually (mode ii). In mode iii, the 4 orthogonal channels are addressed 
separately and flow can be adjusted to be in two opposite directions. (b) Steps of the multiplexed 
sensing assay in which the capture antibodies of different markers are first immobilized on the surface 
(Step 1), then the marker cocktails with different concentrations [M]i are flown through individual 
channels (Step 2) and finally the amplification antibody of respective markers are flown through the 
orthogonal channels (Step 3). (c) Cross section of the chip at the position marked by the black 
rectangle on (b) illustrating the flow directions and the valve operation. 

With this novel LSPR chip design, the high density of addressable sensing sites 

increases the throughput and a proper configuration of the assay via the flow step 

sequence enables the chip to perform self-calibrations.  Remarkably, the on-chip 

calibration for a given analyte can be simultaneously recorded while measuring the 

actual unknown biological sample, improving the reliability of the quantification. 

Equally important, the orthogonal channels allow the antibodies to be immobilized 

exclusively on the sensing areas, thus significantly reducing parasitic effects of 

analyte depletion (due to non-specific interactions)33, and allowing more freedom 

in passivation strategies. Finally, the whole biosensing assay can be fully 

programmed and automatized for a wider range of applications based on label-

free operation (for instance, affinity screening in pharmaceutical industry). All 

these advanced features of microfluidic platform combined with the real-time 

LSPR centroid shift tracking, enables a reliable, multipurpose platform. 

 

 

 

3.3 Multiplexed cancer marker detection in human 

serum  
  

3.3.1 Optimizations 
 

In order to have reliable and sensitive sensing protocol developed, many 

parameters such as assay time, antibody type and antibody concentrations have to 

be optimized. This requires multiple test runs before any meaningful multiplexing 

application can be implemented. The next subsections are going to focus on the 

steps followed for optimizing the performance of sensing. 
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Antibody selection 
The selection of available antibodies is especially a tricky step due to low quality of 

antibodies available only for research in the market. The protocol is to order 

multiple antibodies from different vendors and test them on our own platform. A 

pair of antibodies recognizing the same marker on different epitopes are needed 

to be selected. We have tested numerous antibody pairs in order to settle the 

pairs that worked well for our multiplexed detection measurements. CA15-3, CA 

125, CEA and ErbB2 capture antibody (Biospacific A46040, A46075, G-116-C and 

Abcam ab16901 respectively) and amplification antibody (Biospacific A46050, 

A46074, A26021489P respectively) are selected for the markers (Biospacific 

J66301170, J6620117, J62000452 and Abcam ab60866, respectively) by trial and 

error. For ErbB2, the amplification step is skipped since the marker detection 

directly resulted in a sensitive calibration curve.  

Antibody concentrations 
To ensure the quality of the on-chip sandwich assays, we have first optimized the 

capture and amplification antibody concentrations and determined the analytical 

performances of each of the 4 molecules, individually.  

In order to determine the optimum concentrations of each of the capture 

antibodies, we first immobilized 4 different concentrations of capture antibody for 

the marker of interest and then flowed 8 different marker concentrations, 

followed by the amplification antibody solution at constant concentration. From 

these collection of data, all obtained from a single chip, one can plot four different 

calibration curves, one for each of the capture antibody concentrations. The best 

capture antibody concentration was selected accounting for the high slope, low 

unspecific signal and high sensitivity. To compensate for the reduced dynamical 

range, one can use sample dilution. Alternatively, antibody concentration and 

assay conditions can be optimized to obtain larger dynamic ranges. Following a 

similar approach, on another chip, we optimized the amplification antibody 

concentrations, immobilizing the optimum solution of capture antibody on the 

sensors and running the calibration curve measurements with 4 varying 

amplification antibody concentrations this time. Figure 3-5 shows the obtained 

calibration curves for tested capture and amplification antibody concentrations. 

For ErbB2, since there is no amplification antibody, in (f) the further capture 

antibody optimization is presented. 

Following this protocol, we determined the optimum concentrations of all the 

antibody pairs used for further sensing applications (Table 1) . As a result, the 

individual calibration curves for the 4 protein markers to be detected, by optimized 

antibody concentrations are obtained (Figure 3-6). The dynamic ranges and the 
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limit of detections of these individual marker measurements can be found in Table 

2. For ErbB2 protein, the direct protein detection without amplification antibody 

signal was sufficient to obtain a sensitive enough calibration curve. This effect can 

be due to the possible higher affinity constant of the selected antibody for ErbB2 

compared to the other proteins or effects related to the 3D structure of the 

protein or steric hindrances when the antigen is immobilized on the sensor 

surface. 
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Figure 3-5 Antibody concentration optimization experiments for (a,b) CA 15-3, (c,d) CA125, (e,f) CEA 
and (g,h) ErbB2 markers. 
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Table 1 Optimum antibody concentrations determined from the optimization experiments. 

 

Figure 3-6 Individual calibration curves for the four biomarkers obtained for optimized antibody 
concentrations.  Error bars reflect the deviation between replicas on different chips for (c) and (e), and 
on the same chip for (d) and (f). 

In order to have a clear comparison between different measurements and 

different markers, the normalized calibration curve data is plotted in Figure 3-6. 

The error bars on the calibration curve data represent the variation between 

replicas from different chips for CA 15-3 and CA 125 and on the same chip for CEA 

and ErbB2. The relative standard deviation (standard deviation/mean signal) 
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between replicas in the dynamic range is ~14% for interchip measurements and 

~19% for intrachip measurements, suggesting that the reproducibility on different 

chips is as high as on the same chip. Owing to the self-calibration capacity of the 

platform, the sample quantification performance of the platform is independent of 

such small variations. 

The detection sensitivity extracted from the calibration curves for CA 15-3, Erb2 

and CEA are compatible with clinical cut-off values84,85,87,92. For CA 125, the not so 

good limit of detection is attributed to the low quality of available antibodies.  

Shelf-life of the device 
It is important to know the shelf-life of the fabricated platform for a step towards 

POC device development. We have tested and found that once assembled, the 

chip can be stored at room temperature, in dark, up to 3 months without any 

significant alteration of its performance. Figure 3-7, shows the antibody binding 

performance of 1-week old and 3-months old chips, as well as associated 

calibration curves obtained by sandwich assay for CA15-3 protein. 

 

Figure 3-7 Shelf life of the fabricated chips. (a) the real time LSPR shift signals of the capture antibody 
binding on the sensors tested by 1 week old and 12 week old chips.(b) the CA15-3 calibration curves 
obtained on the respective chips in (a). The slope of the curves are shown on the graph. Data in (b) is 
normalized for fair comparison of shifts on different chips. 

Assay time 
The assay time for the on-chip immunoassays is another parameter to optimize, in 

order to achieve an efficient and fast detection scheme. In our experiments, we 

have used 1 hour of antibody and sample flow time, to keep consistency between 

previous measurements34 and our experiments and keeping this parameter 

constant, we optimized for antibody concentrations. However, the capture 

antibody immobilization time can be optimized to achieve faster sensor 
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preparation. As can be seen from Figure 3-7a, the LSPR shift saturates quickly after 

the capture antibody is introduced into the channels. 10-15 minutes of minimum 

antibody flow time is sufficient for coating the sensor surface with capture 

antibodies. Similarly, the real time LSPR sensing data (see Figure 2-8) suggests that 

the calibration curves obtained during the detection antibody flow, can be 

shortened down to 15 minutes, as the LSPR shift signal saturates after 15 minutes. 

A careful conduction of assay time optimization experiments can provide the 

minimum assay time with maximum sensitivity and dynamic range.  

 

3.3.2 Cross reactivity 
 

Nonspecific antibody-protein cross-reaction results in inaccuracy and unreliable 

sensor response, interfering with the purpose of multiplexing95,96. In order to verify 

the specificity of the platform, we conducted a cross-reactivity control experiment 

(Figure 3-8a), where we immobilized the capture antibodies against CA 15-3, 

CA125, CEA and Erb2 on four sensor arrays (flow mode iii) and we flowed high 

concentrations of the four proteins individually (flow mode ii). Concentrations of 

proteins were selected to be the maximum ones of the dynamic ranges of their 

respective calibration curves. LSPR shifts obtained after sandwich formation for CA 

15-3, CA125 and CEA channels and during the sample flow for ErbB2 channels are 

presented in Figure 3-8b. No cross-reactivity was observed between different 

species despite the high concentrations of proteins used. 

Conventionally, the cross-reactivity between two molecules are analysed by 

comparing the calibration curves obtained alone and in presence of the two 

molecules and calculated as shown in ref 95. To test our platform and antibody-

marker pairs in a conventional way, in addition to the cross-reactivity experiment 

described above and in main text, we have selected the CA15-3 antibody and 

ErbB2 protein pair and performed a conventional cross-reactivity control 

experiment. Figure 3-9 show the calibration curve of CA 15-3, obtained alone and 

in presence of ErbB2 molecule. Black data points are corresponding to a 

measurement of CA15-3 and ErbB2 mixture at the linear range of CA15-3 

calibration curve obtained alone (yellow data points). The raw LSPR shifts for both 

experiments are shown with no normalization. The agreement between two sets 

of data show that there is no effect of the presence of ErbB2 molecule on the 

CA15-3 calibration curve obtained by sandwich assay.  
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Similarly, the data on multiplexed detection in PBS buffer presented in the next 

section, compared with the individually obtained calibration, show that there is no 

cross-reactivity between any of the antigen-antibody pairs (Figure 3-10). 

Our data show that the platform ensures limited cross-contamination between the 

channels and the antibody selections prevent any significant cross-reactivity.  

 

Figure 3-8 Cross-reactivity experiments. (a) Sketch of the experimental steps (For sake of clarity, the 
control layer of the chip is not shown). Capture antibodies are immobilized and the proteins are 
flowed separately in different channels. Four replicas of the controls with no proteins is flowed also to 
check for channel-to-channel variation of the signals. Every intersection of the orthogonal flow 
channels is a sensing region. The sensing regions corresponding to each matching antibody-protein 
pair is marked with a star. (b) Corresponding LSPR shifts on the sensors. Shifts for the control channels 
are merged and the error bar is associated to the standard deviation of four replicas for the control 
measurement with each antibody pair. The protein concentrations are 18U/ml, 9000kU/ml, 
3200ng/ml and 600ng/ml for CA 15-3, CA 125, CEA and ErbB2 respectively. 
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Figure 3-9 The cross-reactivity control experiment where the CA15-3 calibration points are obtained 
individually and in presence of ErbB2 marker. No cross-reactivity is observed. The calibration data 
obtained with solutions prepared in PBS with 1% BSA. 

 

3.3.3 Multiplexed detection 
 

As a proof of principle experiment of multiplexed detection of the 4 biomarkers, 

we performed calibration curve measurements in 10mM PBS buffer with 1% BSA 

(bovine serum albumin) as a blocking agent. Each of the four capture antibodies  

was immobilized on a different sensor array (utilizing mode iii and step 1 described 

in Figure 3-4) and 8 cocktails of proteins with varying concentrations were flowed 

into the chip (utilizing mode ii and step 2 described in Figure 3-4) before 

introducing the amplification antibodies (Figure 3-4b, step3). Normalized 

calibration curves obtained for each protein marker are presented in Figure 3-10.  

Multiplexed measurements exhibit similar response compared to individually 

obtained calibration curves (dashed lines in Figure 3-10), showing no cross-

reactivity between the four proteins. A detailed comparison of the sensitivity (half 

maximal effective concentration, EC50), limit of detection (LOD at EC10), and the 

dynamic ranges of the curves (EC20-EC80) is presented in Table 1.  
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Figure 3-10 Multiplexed detection of four molecules in PBS. Solid lines are the four-parameter logistic 
equation fit to the data. The dashed lines are the fit to the individually obtained calibration curves. 

 

3.3.4 Detection in human serum and sample quantification 
 

Following the multiplexed measurement in buffer, we demonstrate here 

multiplexed detection in 100% human serum. Figure 3-11a demonstrates the 

calibration curves obtained simultaneously from a single chip. Table 1 summarizes 

the LOD, sensitivity and dynamic range of the four markers measured in human 

serum. Due to the complex matrix, the curves are shifted towards higher 

concentrations compared to the measurements in PBS-BSA(1%) (dashed lines in 

Figure 3-11a) and therefore the LOD and EC50 values are slightly higher. 

Measurements were repeated 3 times to demonstrate their reproducibility. Data, 

presented in Figure 3-11b, exhibit very similar characteristics, suggesting high 

interchip reproducibility, especially in the sandwich assays for CA 15-3, CEA and 

CA125. The calibration curves for ErbB2 show larger dispersion, mostly because, 

for this molecule, no amplification antibody was used. Therefore for this 

application, the sandwich assay approach with detection antibodies provided more 

reproducible curves in complex media.   
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Figure 3-11 Multiplexed detection in human serum.  (a) Calibration curves simultaneously obtained in 
100% human serum (solid lines), and in PBS buffer from Figure 3-10 (dashed lines). (b) The calibration 
curves obtained on 3 different chips (solid, dashed and dotted lines). 

 

As a final step, towards real multiplexed sensing experiment on an unknown 

clinical sample, we demonstrate multiplexed sample recovery. To this end, we 

prepared six cocktails with varying biomarker concentrations for calibration curve. 

Then for recovering purpose, we spiked two samples with a mixture of targeted 

markers at different levels in human serum to mimic an unknown clinical sample. 

The spiked sample concentrations were interpolated from the calibration curves 

that were simultaneously acquired. Figure 6b shows an example recovery 

measurement in whole human serum for four molecules obtained for various 

replicas. The recovery rates (R) are listed in the table. Two of the sample 

concentrations, being CA15-3 and CA 125, were found to be significantly different 

but not incoherent (120% < R ≤ 130%). The recovery value for CEA was 

underestimated (R < 80%). ErbB2 concentration in the spiked sample is below the 

linear range of the calibration curve, in order to demonstrate the sensing 

performance below the LOD. The prepared and quantified ErbB2 concentrations 

were 15 ng/ml and 20±20.2 ng/ml respectively. The uncertainties on the recovery 

are mostly attributed to spiking errors during sample preparation. 
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Marker Cut-off 
concentratio
n 

Measurement LOD Sensitivity Dynamic Range 

CA 15-3  25-40 U/ml 92 

Individual 0.11 U/ml 2.0 U/ml 0.30-8.9 U/ml 

Multiplexed  

in PBS 

0.21 U/ml 3.88 U/ml 0.6 – 19.2 U/ml 

Multiplexed  

in HS 

1.85 U/ml 17.9 U/ml 4.2 – 75.4 U/ml 

CA 125 35 U/ml 84 

Individual 0.138 kU/ml 4.5 kU/ml 0.524 – 100 kU/ml 

Multiplexed  

in PBS 

0.139 kU/ml 3.9 kU/ml 0.580 – 30 kU/ml 

Multiplexed  

in HS 

1.021 kU/ml 12.522 kU/ml 2.575 – 6.089 kU/ml 

CEA 
2 ng/ml 87 

5 ng/ml 84 

Individual 14.7 ng/ml 192.0 ng/ml 35.2 – 645.7 ng/ml 

Multiplexed  

in PBS 

16.3 ng/ml 220.5 ng/ml 44.5 – 1191.3 ng/ml 

Multiplexed  

in HS 

76.19 ng/ml 635.4 ng/ml 166.7-2422.3 ng/ml 

ErbB2 15 ng/ml 85 

Individual 3.5 ng/ml 99.8 ng/ml 12.07 – 824.5 ng/ml 

Multiplexed  

in PBS 

3.9 ng/ml 145.0 ng/ml 11.75– 1742.6 
ng/ml 

Multiplexed  

in HS 

31.9 ng/ml 391.7 ng/ml 80.5 – 1904.8 ng/ml 

Table 2 The analytical parameters of the assays on chip summarized for individual marker detection 
(Figure 3-6), multiplexed detection in PBS buffer (Figure 3-10) and multiplexed detection in human 
serum (Figure 3-11a). 
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Figure 3-12 Sample recovery in 100% human serum. The concentrations of each marker is quantified 
by interpolating the measured LSPR shifts from the simultaneously acquired calibration curves. The 
table summarizes the recovery for each of the markers. 

While our results are satisfying, this remains as proof of principle and there is quite 

some room left for boosting the platform performances. At that stage, the LOD 

levels for CA125 and CEA are higher than clinical cut-off values. The significant LOD 

difference between the different markers is attributed to the uneven performance 

of the different commercially available antibody pairs as discussed by Volpetti et 

al.83 Sensitivity and recovery rates could be further improved by i) optimizing the 

assay buffer for human serum, ii) managing better antibody pairs that will result in 

better LOD and sensitivity, iii) changing the assay type97 (competitive assay, etc.) or 

iv) engineering nanoparticle geometry33,36,98,99. 

 

3.4 Comparison with ELISA 
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antibody for ErbB2. All the rest of the antibody pairs are used in the same way as 

in the on-chip measurements. Calibration curves obtained with ELISA are 

presented in Figure 3-13. 

 

Figure 3-13 The calibration curves obtained by ELISA. The table summarizes the analytical 
parameters. 

From this direct comparison, we show that the LOD for CA15-3, CA125 and ErbB2 

molecules are lower for on-chip measurements, outperforming the corresponding 

ELISA measurements. Another advantage our platform holds is its shorter total 

assay time, which in the commercialized kits, reported as 5 hours for ELISA, where 

the capture antibody is already immobilized inside the wells. After the capture 

antibody is immobilized on our sensors, our assay time is maximum 2.5 hours 

which can be seen in Figure 3-3b. The detection antibody step is now set at 1 hour 

but can be easily reduced to 15-20 minutes (as can be seen from the time traces) 

without altering the LOD levels significantly. Finally, the reagent volume used for 

the flowing and washing steps on-chip is 10 to 10000 folds smaller than the 

reagent volume used for ELISA measurements, for sensing and washing steps 

respectively. With the constant flow rate on-chip, the reagent consumption is less 

than 50 µl/hour. 
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Additionally, a summary of comparison between on-chip multiplexed LSPR, ELISA 

and SPR methods can be found in supporting information (Table S-1). 

 

3.5 Conclusions 
 

In this work, we demonstrated how LSPR sensing integrated with state-of-the-art 

microfluidics enables to achieve quantitative multiplexed detection of 4 breast 

cancer protein markers in human serum. This demonstration stands as an 

important milestone in the field of LSPR sensing and brings us closer to stand-

alone and compact automated point of care platforms with a suitable balance 

between compactness, reliability and sensitivity. In the presented work, 

miniaturization efforts have been exclusively focused on the sensing chip. Further 

integration on both the optical measurement and valve controlling set-ups would 

be required for point of care applications. Additionally, the sensor fabrication costs 

can be reduced by using mass fabrication methods such as nanoimprinting100, hole-

mask colloidal lithography (HCL) both compatible with microfluidic platforms.33 

The next steps for improvement should involve validation of the platform on 

clinical samples including direct comparison with gold standard techniques. In 

order to overcome the complex media effects of clinical samples, either sample 

dilution or standard addition technique can be implemented.101 While tested here 

in the context of medical diagnostics, the proposed scheme is compatible with a 

wide range of applications. For instance, in the context of drug discovery, it would 

potentially allow high throughput screening combining very low reagent 

consumption with access to real-time binding kinetics.102 
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4 PERIODIC SILICON NANORESONATOR 

ARRAYS FOR ON-CHIP BIOSENSING 
 

 

The results presented in this chapter as well as part of the text and figures are 

published in ACS Nano Letters during the course of the PhD program.103 

Yavas, O.; Svedendahl, M.; Dobosz, P.; Sanz, V.; Quidant, R. On-a-Chip Biosensing 

Based on All-Dielectric Nanoresonators. Nano Lett. 2017, 17 (7), 4421–4426. 

 

Abstract: Nanophotonics has become a key enabling technology in biomedicine 

with great promises in early diagnosis and less invasive therapies. In this context, 

the unique capability of plasmonic noble metal nanoparticles to concentrate light 

on the nanometer scale has widely contributed to biosensing and enhanced 

spectroscopy. Recently, high-refractive index dielectric nanostructures featuring 

low loss resonances have been proposed as a promising alternative to 

nanoplasmonics, potentially offering better sensing performances along with full 

compatibility with the microelectronics industry. In this work, we report the first 

demonstration of biosensing with silicon nanoresonators integrated in state-of-the-

art microfluidics. Our lab-on-a-chip platform enables detecting Prostate Specific 

Antigen (PSA) cancer marker in human serum with a sensitivity that meets clinical 

needs. These performances are directly compared with its plasmonic counterpart 

based on gold nanorods. Our work opens new opportunities in the development of 

future point-of-care devices towards a more personalized healthcare. 

 

The need for point-of-care devices in health and wellness monitoring is one of the 

principal motivations behind the current development in biosensing. Among the 

different available transduction schemes, optical biosensors hold the advantage of 

being highly sensitive, enabling label free and cost effective real time sensing104. 

Beyond silicon-based integrated optics68,105,106 that shows great promises for 

sensing, surface plasmon resonance (SPR)27,107–109 and fiber optics110,111 based 

sensors utilizing propagating evanescent waves have been extensively studied and 
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validated on a wide range of analytes. However, coupling incoming light to the 

surface modes usually requires sophisticated optics and such sensors are often 

limited to large bioanalytes, owing to a substantial spatial mismatch of the sensing 

mode with the tiniest molecules. 

These limitations can partially be overcome by using 3D nano-optical resonators. In 

particular, extensive efforts have been put on localized surface plasmon resonance 

(LSPR) sensors73,112,113 which exploit the unique properties of noble metal 

nanoantennas. The ability to excite LSPR with freely propagating incident light 

considerably simplifies the optical setup needed for such label free measurements. 

Highly confined modes also provide strong overlap between the electromagnetic 

field on the surface and the relevant biological analyte dimensions. Finally, the tiny 

size of each nanosensors enable their assembly in small foot print sensing areas 

compatible with parallel multi-detection platforms73,112,113. However, plasmonic 

nanoparticles suffer from dissipative losses in the metal that lead to broad 

resonances that eventually limit the sensitivity of the sensor read-out. Recently, 

high refractive index dielectric nanoparticles have been proposed as an attractive 

alternative to plasmonic nanoparticles in wide range of applications.13,19  

All-dielectric nanophotonics is a fast progressing field which enables manipulation 

of both electric and magnetic components of the incoming light. These unique 

properties open up new opportunities in the field of metamaterials including 

negative refractive index, cloaking, superlensing and many more.13,114–118 In 

practice, light coupling to dielectric subwavelength particles results in the 

excitation of both magnetic and electric multipole resonances which translates 

into multiple peaks in their extinction spectrum. Similar to metallic nanoparticles, 

the resonance frequencies depend on their geometry, constitutive material and 

the dielectric environment. Their sensitivity to the surrounding dielectric 

permittivity along with their strong mode localization suggests high index dielectric 

nanoparticles could perform well as biosensing transducers.19,18,40,119 Silicon 

nanoresonators, with resonances in visible-NIR spectral range, were first studied 

theoretically and more recently measured experimentally21,120–123. The use of 

silicon is motivated by its compatibility with the microelectronics industry, high 

material abundance and low cost. While it has recently been suggested that Si 

nanoresonators could benefit to the detection of biological molecules, so far, only 

bulk refractive index sensing measurements18,40,119 and biotin-streptavidin binding 

responses have been reported.20,39  

In this chapter, we demonstrate that Si nanoresonator arrays integrated with 

state-of-the-art microfluidics result in an efficient sensing platform for the 

detection of protein cancer markers in human serum, at clinically relevant 
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concentrations for cancer screening. We first study the optimal structural design of 

Si nanodisks for molecular sensing. Then, we demonstrate detection of PSA 

(prostate specific antigen) in buffer with a limit of detection (LOD) that is 

comparable to gold standard immunoassay techniques. Finally, to validate its 

operation in clinical conditions, the platform is tested in human serum. To the best 

of our knowledge, this is the first report combining silicon nanoresonators and 

microfluidics to perform clinically relevant immunoassays.   

 

4.1 Detection chip 
 

Our platform consists of silicon nanodisk arrays on a quartz substrate integrated 

with a PDMS microfluidic chip including micromechanical valves (Figure 4-1). We 

fabricate the silicon nanodisk arrays using standard negative resist e-beam 

lithography followed by a reactive ion etching step on commercial amorphous 

silicon coated quartz samples (see Chapter 2). The nanodisk arrays have a fixed 

height h=50 nm. We choose to tune the disk radius r and inter-particle distance s 

to assess the optimum nanosensor parameters. The extinction spectra of the 

nanodisk arrays are measured using our homemade transmission microscopy set-

up34. Our optical detection enables us to interrogate up to 32 regions in parallel 

throughout the chip for real-time resonance tracking of different sensor arrays as 

described in previous chapters. 

 

Figure 4-1 The sensing chip with 32 arrays. (a) Picture of an assembled chip with 8 sensing channels. 
(b) Close-up picture of the 8 sensing channels showing silicon nanodisk arrays with different 
parameters. (c) SEM micrograph of a small portion of a silicon nanodisk array with h=50nm, r=140 nm 
and s=200 nm. 
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The PDMS chip is fabricated by multilayer soft lithography (see Chapter 2) leading 

to 8 sensing channels that are all individually and simultaneously addressable.34 

The sample flow on the experiment channels is controlled by the micromechanical 

valves.46 The map of flow and control channel networks are shown in Figure 4-2 in 

blue and red, respectively. A common reagent can be flown in all sensing channels 

through a common inlet (labeled yellow), or individual samples can be flown 

through different sensing channels through the individual inlet (labeled green). 

This enables the sandwich assay formation steps for a full calibration curve with 8 

different concentrations. Unlabeled blue channels are the outlets of the chip. 

 

Figure 4-2 The microfluidic flow (blue) and control (red) channel network with 8 sensing channels. The 
fluids can be flown into all the 8 channels through a common inlet (yellow), or individually through 
individual inlets (green). Unlabelled blue channels are the waste outlets of the chip. 

The detection of the biomolecules is based on a standard sandwich assay scheme. 

The capture antibody is immobilized on the silicon sensors by passive adsorption 

similarly to ELISA and other immunoassay techniques.124 The details of the sensing 

protocol will be explained in the following sections. Figure 4-3 schematically 

summarizes the sensing steps with the corresponding real-time resonance shifts. 

Control layer
Flow layer

Individual inlet
Common inlet
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Figure 4-3 Schematics of the sensing protocol (left) and the evolution of the nanodisk resonance 
during the different steps of the sandwich assay (right). The sample (100 ng/ml PSA) and control (no 
PSA) experiments are in grey and purple, respectively. 

 

4.2 Optical characterization  
 

The extinction spectrum of individual h=50 nm Si nanodisks is mainly dominated by 

their electric dipole resonance (See Finite Element Method (FEM) simuations in 

Figure 4-4).21,125 Here, for sensing purposes, we aim at exploiting the strong 

collective resonance arising from coherent far field dipole coupling due to the 

periodicities of the arrays. These diffractive modes only arise when each individual 

particle support an electric dipole resonance.121 The array resonance is optimized 

by changing the disk radius (r) and separation (s). Figure 4-5 shows the measured 

extinction spectra of the different arrays along with the corresponding Finite 

Element Method (FEM) simulations. The resonances are tuned by changing the 

periodicity at fixed radius (Figure 4-5a), or conversely, changing the nanodisk 

radius at constant disk separation (Figure 4-5c). The corresponding FEM 

simulations on infinitely large arrays are in good agreement with the measured 

data (Figure 4-5 b and d). The amplitude and width of each of these resonances 

vary for different nanodisk arrays. While these properties are important for the 

detectability of spectral shifts, also the refractive index sensitivity is expected to 

vary with the array parameters. 
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Figure 4-4 FEM Simulations of infinite Si nanodisk arrays. Electric field enhancement (a) on the 
nanodisk and glass surface, plotted in a periodic manner to visualize the interparticle couplings, and 
(b) in a cross section of one unit cell, 25 nm from the glass surface. (c) The near field exponential 
decay by the distance from the nanodisk in the x-direction. The nanodisk array was placed on a 
glass/water interface with parameters r=140 nm and s=300 nm. (d) The extinction spectra of the 
nanodisk arrays with varying periodicity in x-direction with fixed nanodisk separation in y-direction 
(Sy=300 nm). (e) The extinction spectra of the nanodisk arrays with varying periodicity in y-direction 
with fixed nanodisk separation in x-direction (Sx=300 nm). (f) Single particle extinction, scattering and 
absorption spectra for r=140 nm and h=50 nm disk. 

 



PERIODIC SILICON NANORESONATOR ARRAYS FOR ON-CHIP BIOSENSING 

 

70 
 

 

Figure 4-5 Resonance tuning of Si-nanodisk arrays. Experimental extinction spectra of silicon nanodisk 
arrays in air: (a) Influence of the disk separations at fixed radius r=140 nm and (b) Influence of the disk 
radius at fixed disk separation of s=200 nm. (c, d) Corresponding FEM simulations. Inset in (a) shows 
the geometry of the disks and the incident light polarization. 

 

4.3 Bulk refractive index sensitivity characterization 
 

In order to identify the structural parameters (r and s) that provide the highest 

sensitivity to the surrounding media we performed bulk refractive index sensitivity 

(BRIS) experiments. In these experiments, we fabricated sensor arrays with 4 

different radii (r=120, 140, 160 and 180 nm) and with disk separations varying from 

100 nm to 450 nm with 50 nm increments. Once integrated to the microfluidics, 

the fabricated sensor arrays are exposed to increasing concentrations of glucose 

solutions in ultra-pure water (Figure 4-6a).   
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Figure 4-6 Bulk refractive index sensitivity (BRIS). (a) Schematics of the BRIS experiment in which the 8 
microfluidic channels are used to flow different water/glucose  mixtures on Si nanodisk arrays with 
different s and r. (b) Evolution of the extinction spectra of a nanodisk array (r=140 nm, s=300 nm) 
exposed to 6 different glucose-water mixtures. 

For illustration, Figure 4-6b shows the resulting redshift in the extinction spectra 

for r=140 nm and s=300 nm. Our automated parallel acquisition enables us to track 

in real time the spectrum of each of the different arrays on the chip and extract 

the corresponding shifts in the main peak centroid. Figure 4-7 shows the peak and 

centroid shifts of two sets of sensors where different glucose concentrations are 

flowed in the channels sequentially with a step of washing with water in between. 

We observe instantaneous shifts as the refractive index of the surrounding media 

changes. The redshifted signal returns back to the baseline value for the washing 

steps with water ensuring that there is no irreversible modification of the sensors 

and the shifts are indeed due to bulk refractive index changes. For asymmetric 

extinction peaks like the one considered here, peak centroid tracking was found to 

be more sensitive than standard peak tracking (Figure 4-7).26  
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Figure 4-7 Comparison of the shifts of the centroid and peak positions of the resonances. Real-time 
centroid and peak position shifts of the resonances due to changing bulk refractive index of the 
surrounding media (glucose percentage concentrations) for (a) r=140 nm and s=250 nm and (b) r=160 
nm and s=250 nm nanodisk arrays. The shifts of the peak positions (grey lines in both plots), are 
slightly lower than the shifts of the centroid positions.   

 

Figure 4-8 shows the evolution of the solution of the peak centroid with the 

refractive index for r=140 nm and s=300 nm nanodisk array. From the slope of the 

linear fit we extract the bulk refractive index sensitivity (BRIS) of the sensor. Figure 

4-9 shows the centroid shifts of all the different arrays fabricated on the same 

chip. The BRIS values for sensors with different disk separation and radius are 

gathered in Figure 4-10. The arrays with separations larger than 300 nm were not 

considered as they either exhibit very low extinction, due to a low particle density, 

or resonances that were out of the spectral range of our set-up. Within the 

considered parameter range, we found that the BRIS values increased with 

increasing nanodisk separations. The highest BRIS value, 227 nm/RIU, was 

measured for the array with r=140 nm and s=300 nm featuring a resonance 

centered at 844nm with a quality factor of 20. Despite the simplicity of our 

structure, this BRIS value is only slightly lower than the previously reported BRIS 

values of more complex silicon nanostructure arrangements.40,119  
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Figure 4-8 BRIS of the Si nanodisk array with r=140, s=300 nm. The centroid positions extracted from 
the extinction spectra in Figure 4-6b as a function of the refractive index of the glucose solutions. The 
inset is the real time centroid shifts during the sequential flow of varying glucose concentrations 
separated by rinsing step. 

 

Figure 4-9 The BRIS measurements for all the presented arrays with varying radius r, and nanodisk 
separation s.  
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Figure 4-10 Summary of the BRIS values  obtained for different arrays with different radii and disk 
separations from Figure 4-9. The error bars are smaller than the data points in the plot. 

  

4.4 Cancer marker detection 
 

4.4.1 Detection in PBS-BSA buffer 
 

For the target analyte sensing proof of concept experiments, we selected the two 

sensors exhibiting the highest BRIS values (with radii of 140 and 160 nm and disk 

separations of 300 and 250 nm, respectively). The experiment consists of flowing 

different concentrations of the target molecule in each of the individual channels 

in order to obtain an 8-point calibration curve. We here focused on the detection 

of Prostate Specific Antigen (PSA). PSA is a 34 kDa protein whose high 

concentration in blood (greater than 4-10 ng/ml) can be associated to prostate 

cancer or other prostate disorders.126,127 

For the detection of PSA, the capture antibody is first immobilized on the sensor 

surface by passive adsorption by flowing the antibody solution in phosphate buffer 

through all 8 channels. The sensors were first flushed with 10 mM phosphate 

buffer (PB) in order to have a base for tracking the shifts of the monoclonal 

antibody (mAb) (BiosPacific, A45160) for PSA which was introduced to the 

channels in 10 mM PB through a common inlet so that the solution flowed through 

all the channels simultaneously and all the sensors were coated with the capture 
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antibody. Once the capture antibody layer was formed, the resonance shift signal 

saturated and the channels were then washed with PB shortly to remove the 

excess unbound antibodies. The signal saturated after only 15 mins after 150 

μg/ml mAb solution was introduced to the sensors. The binding kinetics and the 

saturation time depend on the mAb concentration used. 

For the proof of concept experiments we have measured the PSA calibration curve 

in phosphate buffer saline (PBS) with 1% bovine serum albumin (BSA). The BSA was 

added to the PBS as a blocking agent to prevent the unspecific binding and also to 

mimic the human serum proteins in this preliminary measurement. The 7 PSA 

calibration concentrations were prepared and introduced to different sensors 

through individual inlets of each channel. The 8th channel was used as a control 

channel with no PSA added in the buffer.  

For the target proteins that are small in size compared to antibodies, the shift due 

to different concentrations of these proteins is not easy to detect directly. For the 

signal amplification, we used an amplification antibody that recognizes the target 

protein. For our measurements with PSA, polyclonal antibody (pAb) (BiosPacific, 

D63010) for PSA was used for this purpose. 100 μg/ml pAb in PBS with 1% BSA was 

introduced in the channels through common inlets after a short washing step with 

buffer. After the pAb binding signal was saturated, the channels were again 

washed with buffer to remove unbound antibodies and to eliminate the bulk 

refractive index effect due to free pAb solution in the channels. This way the 

absolute effect of pAb binding on the sensor area was measured. The centroid 

shifts due to the absolute pAb binding step were extracted to plot the calibration 

curves presented in this work.  

 

Figure 4-11 Cancer marker sensing in PBS. (a) Real time resonance shifts of the silicon NC arrays 
(r=140nm, s=300nm) due to the detection of different concentration of PSA. The inset shows the 
calculated near field distribution for one nanodisk from an infinite array. The white dashed line 
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indicates the substrate-NC interface. (b) Calibration curves for PSA in PBS buffer with 1% BSA obtained 
using two different sensor arrays on the same chip (inset is a diagram showing the sensor 
organization in the channels). The shaded areas on the calibration curves represent the dynamic 
ranges of the curves (purple: r=140 nm, s=300 nm array, orange: r=160 nm, s=250 nm array). The 
error bars indicate the standard deviation of the 2 parallel measurements on the same chip. 

Figure 4-11a shows the real time recorded shifts of the sensors with radius of 140 

nm and separation of 300 nm in the detection step. The channels are washed with 

PBS to remove unbound detection antibodies and reduce the bulk refractive index 

effect. This washing step is also seen in Figure 4-11a, as a drop of signal after the 

detection antibody binding curves have reached the plateau. The final shifts after 

the washing step are extracted to obtain the calibration curves for PSA (Figure 

4-11b). The standard curves were fitted using a four-parameter logistic equation. 

The analytical parameters of the sandwich assay are shown in Table 3.  

The dynamic ranges of the sensors are shown by the shaded areas on the 

calibration curves which cover the clinically relevant range for both of the sensors. 

The limit of detection (LOD, estimated as the conventional IC10 value of the four-

parameter logistic curve fit) for both sensors are beyond the cut-off concentration 

for patients. The LOD for r=140 nm and r=160 nm sensors are around 0.69 ng/ml 

and 0.74 ng/ml, respectively. The sensitivity of a sensor is conventionally defined 

as the IC50 value of the calibration curve which is found to be 2.45 ng/ml and 3.24 

ng/ml, respectively. We find that the sensors with higher BRIS (r=140 nm, s=300 

nm) led to calibration curves with slightly better sensitivity and lower LOD values 

with a higher slope of the dynamic range of the sensors (Table 3). The error bars 

are representing the signal variations between the replicas on the same chip and 

the relative standard deviation for intrachip reproducibility is found to be varying 

between 0.5% and 5.1% for the working range of the sensors. 

4.4.2 Detection in human serum 
 

To demonstrate the clinical relevance of our sensing platform, we performed the 

PSA calibration curve measurements in human serum (Fig. 4c). Serum was diluted  

at 50% in PBS in order to reduce the matrix effects. The LOD (IC10) is 1.6 ng/ml 

which is below the cut-off value of the PSA concentration in patients and the 

dynamic range is between 2.5 ng/ml and 16.0 ng/ml which covers the clinically 

relevant range for cancer screening. Further details about the analysis of the 

calibration curve can be found in Table 3. This result suggests that the sensor 

performance is within the clinically relevant range and the measurements are 

feasible even in a complex matrix such as human serum. Very low shifts of the 

control channel (0.005 ± 0.035 nm) indicates negligible unspecific signal.  
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Figure 4-12 PSA calibration curve obtained in 50% diluted human serum for sensor with r=140 nm and 
s=300 nm. The shaded area defines the dynamic range and the error bars are the standard deviations 
of the 4 different measurements on the same chip. 

 

4.4.3 Effect of molecular adsorption on the substrate 
 

Passive adsorption of the capture antibody layer on the sensors clearly enables 

faster experiments compared to the LSPR sensing where the sensor surface needs 

to be functionalized and activated (See Chapter 2 and 3). However, Si sensors on 

quartz substrates are prone to adsorption of molecules on the substrate as well as 

the sensors. Our preliminary tests with our substrates for passive adsorption of 

capture antibodies showed us that the antibodies bind to the substrate surface 

when they are dropcasted and incubated. This was a non-quantitative test where 

we immobilized an antibody with gold nanoparticle (1.4nm) attached to it on the 

substrate by dropcasting reagents by a pipette and finally used silver enhancement 

method128 to observe the color change on the surface. Figure 4-13 shows the 

photographs of the tested substrates. In Figure 4-13b and c untreated quartz and 

Si surfaces are tested with different buffers for antibody carrier solution. This off-

chip tests showed that the antibodies are absorbed both on silicon and quartz 

substrates. In Figure 4-13d and e we have quickly tested the epoxy coating 

protocol for antibody immobilization on Si surface as described in literature.83 At 

this stage, it was important to test if the epoxy coating will survive the baking step 

for chip assembly step, therefore we checked non-baked and baked (10h at 50C) Si 

surfaces separately. The antibodies were immobilized in both cases. Epoxy coating 

might have enhanced the antibody binding to the Si surface, however we have 

decided to work with passive adsorption method, as it is simpler, faster and still 
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yields good antibody coverage of the surface with PB based solutions which is the 

common buffer we use in all our experiments.  

 

Figure 4-13 Off-chip test for antibody immobilization on quartz and silicon. (a) tbe silver enhancement 
method schematically explained. Test for immobilization of antibodies in different buffer solutions as 
labelled (water, 10mM Phosphate Buffer (PB) with pH 7.5, 10mM PBS with pH 7.5, 50 mM Carbonate 
Buffer (CB) with pH 9.6) on (b) untreated quartz surface (passive adsorption) (c) untreated Si surface 
(passive adsorption), (d) non-baked epoxy coated Si surface and (d) baked epoxy coated Si surface. 
The blue rectangle marks the tests performed with PB. 

To understand the actual effect of molecular adsorption on the substrate, we did 

FEM simulations and compared the two cases where the molecules are adsorbed 

only on sensors, and on substrates along with the sensors. Figure 4-14 

demonstrates the effect of moleculer absorption on sensor and substrates. 

According to these results the shifts observed for the case where the substrate is 

coated along with sensors are higher than only the sensors. This matches also with 

the amount of shifts observed in our experiments for 5-10 nm of expected capture 

antibody coating during the immobilization step (Figure 4-3) suggesting that the 

capture antibody is also absorbed by the substrate in our experiments. 
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Figure 4-14 Simulated effect of molecule adsorption on the substrate. Extinction spectra from FEM 
simulations of a nanodisk array when a layer of thickness t and refractive index n=1.45 is placed (a) 
only on the nanodisk, and (b) on the nanodisk and on the glass. (c) The corresponding resonance 
positions as a function of layer thickness. The nanodisk arrays were placed on a glass/water interface 
with r=140 nm and s=300 nm. These results suggest that the primary antibodies might adsorb not 
only on the Si, but also on the glass surface.  

This observation brings up the discussion about the unspecific signal during 

biomolecule detection experiments. Unselective adsorption of molecules on the 

sensor and substrate surface might result in unreliable results due to unspecific 

binding signals. However, as stated in the previous section, the resonance shifts 

observed in the control channel is very low and suggests no unspecific signal. High 

surface coverage with capture abs or competition between adsorption and 

antibody antigen affinity. 

 

4.5 Comparison of Si nanodisk arrays with LSPR sensors 
 

In order to compare the sensing performance of our silicon nanoresonators with 

their plasmonic counterparts73,112,113, we repeated the on-chip PSA calibration 

curve experiment with the gold nanorod array studied in the previous chapter 

(Chapter 3) and in our previous work34,59. The only significant experimental 

difference comes from the use of EDC/NHS based surface chemistry prior to 

antibody immobilization on gold. Otherwise, both measurements were performed 

under the same conditions, such as antibody concentrations, buffers and similar 

flow times.  
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Figure 4-15 Comparison of the Si and Au platforms. PSA calibration curves for gold nanorod arrays 
(gold) and silicon nanodisk arrays (purple). Both curves were normalized for clearer comparison. The 
error bars represent the standard deviation of 2 parallel measurements on the same chip. The shaded 
areas are the respective dynamic ranges. The inset shows the experimental extinction spectra of gold 
nanorod arrays and silicon nanodisk arrays. 

The normalized PSA calibration curves for the gold nanorods (100 nm x 200 nm) 

and the silicon nanodisks (r=140 nm, s=300 nm) are compared in Figure 4-15. The 

analytical parameters of the sandwich assay on both sensors can be found in Table 

3. The LOD (IC10) of the gold sensors is found to be around 0.87 ng/ml which is 

slightly higher than the LOD of the silicon based sensors. Conversely, the dynamic 

range of the LSPR-based sensors is broader for higher concentrations, giving a 

lower slope, which leads to higher limit of quantification. Besides, the assay time 

was much shorter for silicon based sensors since the LSPR sensing protocol 

requires self-assembled monolayer preparation and activation as well as blocking 

steps using ethanolamine (Figure 4-16).  
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Figure 4-16 Comparison of LSPR and silicon nanoresonator based biosensing experiments. The real-
time measurement of PSA sensing experiment in PBS with 1% BSA for (a) gold nanorod based LSPR 
sensors (b) silicon nanodisk sensors. The shaded areas in both plots represent the corresponding assay 
steps. The non-shaded time intervals correspond to the washing steps with buffers as explained in the 
previous sections. 

 

 

 

Table 3 Analytical features for PSA sandwich assay on different sensors with different matrix. 

 

4.6 Conclusions 
 

We have studied the use of silicon nanoresonators integrated in a state-of-the-art 

microfluidic architecture for biosensing. We demonstrated that the resulting 
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platform is compatible with detection of small biomolecules in complex matrices 

for clinical applications. The reported sensing performance enables us to detect 

clinically relevant concentrations of PSA.  

We have also compared our platform with a well-developed LSPR-based sensing 

protocol and shown that the sensitivity, LOD and the dynamic ranges are 

comparable. (i) Besides the similar sensing performance, one of the advantages of 

the silicon based sensors is the significantly longer decay length of the surface field 

over LSPR modes in metal nanoantennas (Figure S1), which can be beneficial for 

multilayer assays involving detection of molecules relatively far from the surface. 

This suggests that in comparison with LSPR sensors, different assay types with 

multiple layers of antibodies can be efficiently monitored using the silicon 

nanoresonators which in practice enables more practical and faster detection of 

the target analyte. (ii) While the extinction resonance of the Si nanoresonators 

considered here is much weaker compared to gold nanoantennas (inset Figure 

4-15), its quality factor is substantially higher (20 versus 10). We foresee further 

engineering of the Si nanoresonators including arrangement in dimers and 

oligomers could improve the sensing performance. (iii) While the location of the 

adsorbed antibodies is not controlled in the present study, a Si-selective surface 

chemistry is foreseen to compare the sensor performance. (iv) It is also 

noteworthy mentioning that Si nanoresonators feature higher stability in solution 

compared to their gold counterparts. While gold requires stabilization with a 

passivation layer (e. g. using mercaptoundecanoic acid), we did not observe any 

significant degradation of bare Si cylinders, even after long time exposure to both 

water and buffer. (v) Finally, the quality of the sandwich assay, hence the LOD and 

sensitivity, can further be improved by additional optimizations of the capture and 

detection antibody concentrations. 
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5 SEMI-RANDOM SILICON NANORESONATOR 

ARRAYS FOR BIOSENSING 
 

 

The results presented in this chapter as well as part of the text and figures are 

published in ACS Nano during the writing of the PhD thesis.129 

Yavas, O.; Svedendahl, M.; Quidant, R. Unravelling the role of electric and magnetic 

dipoles in biosensing with Si nanoresonators. ACS Nano 2019, 13 (4), pp 4582–

4588. 

 

Abstract: High refractive index dielectric nanoresonators are attracting much 

attention due to their ability to control both electric and magnetic components of 

light. Combining confined modes with reduced absorption losses, they have 

recently been proposed as an alternative to nanoplasmonic biosensors. In this 

context, we study the use of semi-random silicon nanocylinder arrays, fabricated 

with simple and scalable colloidal lithography for the efficient and reliable 

detection of biomolecules in biological samples. Remarkably, electric and magnetic 

dipole resonances are associated to two different transduction mechanisms: 

resonance redshift and extinction decrease. By contrasting both observables, we 

identify clear advantages in tracking changes in the extinction magnitude. Our data 

suggest that, despite its simplicity, the proposed platform is able to detect prostate 

specific antigen (PSA) in human serum with limits of detection meeting clinical 

needs. 

In the previous chapter, for an on-chip biosensing platform, we have focused on 

periodic Si nanodisk arrays of 50 nm height, where the main resonance modes 

were the bragg diffraction modes and electric dipole excitations of the silicon 

nanodisks and performed real-time detection of cancer biomarkers in human 

serum.103 While at that stage, Si-based nano-optical sensors have already reached 

comparable performances to LSPR counterparts, further developments are 

required to fully exploit their potential. In particular, there is a need to further 

understand how the control over both electric and magnetic dipoles could benefit 
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the detection sensitivity. Furthermore, especially within the context of point-of-

care applications, one needs to identify cost effective strategies to fabricate high 

refractive index dielectric nanoresonators (HRDN) sensors over large areas.  

In this chapter, we present a novel platform which contributes to both objectives. 

A semi-random array of silicon nanocylinders (Si-NCs), fabricated by low-cost and 

scalable colloidal lithography, is integrated into a microfluidic environment to 

perform prostate specific antigen (PSA) detection through two different 

transduction mechanisms: resonance redshift and extinction reduction. 

Remarkably, we find these observables are associated to electric and magnetic 

dipole resonances, respectively. Through real-time tracking of both signals, we 

demonstrate that extinction reduction leads to better sensing performances. 

 

 

5.1 Semi-random Si-NC arrays 
 

Our sensing chip consists of a semi-random array of Si-NCs integrated into a 

microfluidic environment. Similar arrays have previously been used in various LSPR 

biosensing schemes.130–134 In order to achieve fast, cheap and large-scale 

fabrication, we used colloidal lithography and fabricated semi-randomly 

distributed Si-NC of height of 130 nm and radius of 140 nm with electric and 

magnetic dipole resonance at 900 nm in aqueous environment (Figure 5-1). We 

first coated the Si-on-quartz substrates with a 50 nm gold layer. Then, we drop-

casted the sulfate latex beads which are charged and therefore repel each other 

and form a semi-random array, that is, without any long-range order but with a 

typical nearest neighbour distance.135 We used them as a reactive ion etching mask 

for etching the gold layer in RIE chamber. Next, we removed them by an adhesive 

tape and used the patterned gold mask for etching the silicon layer with RIE. 

Finally, we cleaned the substrate by piranha solution, which removed the gold 

mask layer by etching away the Ti layer below (see Chapter 2 for the detailed 

fabrication protocol).  
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Figure 5-1 Semi-random Si NC arrays. (a) SEM image of the Si-NCs on quartz. (e) The measured 
extinction spectra of the silicon NCs in air (black) and in water (grey). 

The SEM image of the semi-randomly distributed Si-NCs are shown in Figure 5-1a. 

With this EBL-free method, the whole sample area can be patterned with 

nanostructures simultaneously without altering the fabrication time or cost. The 

areas on the substrate to be patterned can be selected by tape stripping the beads 

away before using them as an etch mask. More precise bead stripping method is 

described by Acimovic et. al for patterning the sample surface with precision of 

few micrometers by using a homemade PDMS stripping tape.33 For our sensing 

device, we tape stripped the edges of the sample, leaving the NCs only at the 

central region of 0.5 cm2 on the chip.  

The extinction spectra of the semi-random Si-NC array measured in air and in 

water are shown in Figure 5-1b. The resonance position in air and in water was 870 

and 900 nm, respectively, showing a clear redshift due to the large refractive index 

change of the local environment. Furthermore, the extinction amplitude is reduced 

in water compared to the spectrum in air, which is in-line with previous 

reports.17,20,120 

To test the sensing performance of the fabricated Si-NC arrays, we integrated it 

with a multilayer microfluidic network of PDMS,34 which enables the control of the 

sample flow on the sensing regions that are separated by microfluidic channels 

(Figure 5-2). The microfluidic chip design and the operation principles, as well as 

the fabrication procedure are described in the previous chapters. This 

configuration is crucial for rapid and practical execution of complex immunoassay 

steps in a highly controlled environment.  
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Figure 5-2 The integrated chip. The sensor area is visible as a darker area on the substrate under the 
PDMS microfluidic channels. 

 

5.2 Bulk refractive index sensitivity and transduction 

mechanisms 
  

Initially, we evaluated the bulk refractive index sensitivity (BRIS) of the Si-NCs by 

sequentially flowing different percentage glucose solutions through the channels 

and tracking the centroid position and the extinction amplitude. The centroid shift 

of the extinction peak with respect to the refractive index of the glucose solution is 

shown in Figure 5-3a-b. The semi-random Si-NC arrays exhibited a BRIS of 86 

nm/RIU by the conventional centroid tracking method. Previously, the BRIS of 

periodic silicon nanodisk arrays of 50 nm height was reported to be 227 nm/RIU, 

exhibiting much higher BRIS value, due to enhancement of sensitivity by the 

diffractive modes induced by the periodicity.103  
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Figure 5-3 Bulk refractive index sensing experiments with semi-random Si-NC arrays. The two different 
transduction mechanisms analysed. (a) The extinction spectra of the sensors in glucose solutions of 
varying concentrations. (b) The respective centroid shifts from (a). The slope of the linear response of 
centroid position to changing refractive index is the BRIS. (c) The real time traces of the extinction 
amplitude response to changing refractive index by sequential flow of different percentage glucose 
concentrations. The inset shows the wavelength positions the three measurements: the peak 
wavelength (black line), at 900 nm (red line) and at 890 nm (blue line). (d) The extinction reduction 
sensitivity as a function of wavelength. The extinction reduction (ER) is the negative change of 
extinction signal with respect to the refractive index. The highest sensitivity was reached at 890 nm 
(blue). The change in extinction with respect to the refractive index, n, of the surrounding medium is 
shown in the inset for 890 nm, 900 nm and at the peak position of the extinction. 

In addition to the centroid shift, we notice that the extinction is reduced while 

increasing the surrounding refractive index, as seen in Figure 5-3a. Based on this 

observation, we evaluate the sensing performance of our sensors by tracking the 

extinction reduction in Figure 5-3c-d. We define extinction reduction as the 

negative change in the extinction signal. In Figure 5-3c, the real-time response of 

the extinction amplitude to the sequential flow of the distinct glucose 

concentrations, with washing steps in between, is presented for three different 

cases. We have tracked the extinction amplitude change at the peak maxima, at 

900 nm and at 890 nm, which was found to exhibit the highest extinction 

reduction sensitivity.  The whole wavelength range scanned for the maximum 
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extinction reduction sensitivity is shown in Figure 5-3d. These results suggest that 

the optical platform could be rearranged to detect only the transmission amplitude 

instead of the full spectra, in order to perform biosensing in a cheaper and simpler 

way. 

To back up our experimental observations and to study the origin behind the two 

different transduction mechanisms, we performed extensive numerical simulations 

using COMSOL FEM solver (See Appendix A for the semianalytical calculations by 

island film theory136,137). First, we simulated and compared the single and 

ensemble of Si-NCs. Figure 5-4a and c show the resonances of an isolated Si-NC in 

aqueous solution while Figure 5-4b and d demonstrate a small part of a semi-

random array of Si-NCs under identical conditions. As seen in Figure 5-4a, the 

resonance position of an isolated Si-NC redshifts and the extinction amplitude 

decreases as the surrounding refractive index increases. However, this effect is 

enhanced as more Si-NCs are assembled in a semi-random array. As can be seen in 

Figure 5-4f, the resonance shift for the array is about twice larger than for an 

isolated Si-NC. Also, the extinction reduction is increased by a similar amount 

(Figure 5-4g). These results are likely due to increased shielding effects on the 

interparticle electromagnetic coupling induced by the increased refractive index of 

the surrounding medium. While plasmonic metal nanostructures in similar 

arrangements have shown negligible coupling,136 the mode extension for Si-NCs is 

significantly greater.103 Furthermore, due to limited computation power, we only 

modelled 10 nanostructures in the semi-random array assembly. We foresee the 

observed effects to increase further for a larger array and to reduce the mismatch 

with experimental observations.  

For the parameters of the fabricated Si-NCs, both magnetic and electric fields are 

enhanced at resonance. Interestingly, by separating the extinction cross section 

into electric and magnetic dipolar components (Figure 5-4e), the underlying 

mechanisms of the resonance shift and the extinction reduction can be unveiled. 

From Figure 5-4f and g, it appears that the magnetic resonance is responsible for 

the resonance redshift, while the extinction reduction is related to the electrical 

dipole. This observation explains the sources of the experimentally measured BRIS 

results. We can therefore associate the measured resonance centroid redshift and 

the extinction reduction with the respective Mie resonance modes. 
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Figure 5-4 FEM simulations of Si-NCs. The extinction cross section of (a) a single Si-NC and (b) the 
average response from a semi-random Si-NC array of 10 particles, surrounded by media with different 
refractive indices. The E-field and H-field enhancements of (c) the single Si-NC and (d) the semi-
random Si-NC array, around the resonance wavelength (940nm). (e) The electric and magnetic dipolar 
(e.d. and m.d.) components of the extinction cross section of the Si-NC array. (f) The extinction peak 
shifts due to changing refractive index of surrounding medium. The m.d. resonance of the Si-NC array 
(red circles) and the total extinction of the Si-NC array (blue squares) and total extinction of a single 
Si-NC (black triangles) are analysed and compared separately. (g) The wavelength dependence of the 
extinction cross section reduction (ERσ) due to changing refractive index. 

 

5.3 Cancer marker detection 
 

In order to demonstrate the biomolecule detection capability of our platform and 

compare both aforementioned transduction mechanisms, we focused on the 
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detection of prostate specific antigen, PSA. PSA is a protein cancer marker whose 

concentration in serum tends to overpass its normal level (4-10 ng/ml) for patients 

affected by prostate cancer.126,127 

We used a sandwich immunoassay scheme (Figure 5-5a) for detecting PSA on the 

chip. The binding events are observed in real-time as a redshift of the resonance 

centroid and a reduction of the extinction. First, a selective monoclonal capture 

antibody for PSA is immobilized on the sensor surface in all the eight channels by a 

common inlet, through passive adsorption, similarly to clinically used enzyme 

linked immunosorbent assay (ELISA). Then, through individual inlets, eight 

calibration samples in PBS-BSA (Phosphate Buffer Saline-Bovine Serum Albumin, 

1%) buffer with different PSA concentrations is flowed into the distinct channels 

and the PSA is captured by the antibody on the sensor surface, leading to 

additional adsorption signals. One of the eight channels was used as a control 

channel, with only PBS-BSA(1%) buffer flowing and no PSA. Following the PSA 

capture step, a polyclonal antibody is then introduced in all the channels as an 

amplification antibody, binding to PSA, resulting in larger and more detectable 

signals as well as a higher selectivity of the assay. Each step of the sandwich assay 

is adjusted to be 1 hour to have saturated signal shifts for each channel.  

 

Figure 5-5 PSA detection results with semi-random Si-NC arrays.. (a) The sketch of the sandwich assay 
steps for antigen detection. First the capture antibody is immobilized on the sensor surface by passive 
adsorption (i), then the antigen is captured by the capture antibody (ii) and finally the signal is 
amplified by an amplification antibody (iii). (b-c) The calibration curve by the (b) centroid shifts and (c) 
extinction reduction due to the amplification antibody step obtained from the eight channels of the 
chip. Error bars represents the replicas of the measurement on the same chip. 

The PSA calibration curves obtained by tracking the resonance centroid redshift 

and by tracking the extinction reduction at 890 nm are displayed in Figure 5-5b and 

c, respectively. The control channel shows no binding signal, suggesting a high 

specificity. The limit of detection (LOD), calculated conventionally as the EC10 

value of the four-parameter logistic curve fit, reached by centroid shift tracking 

was 1.55 ng/ml, which is below the clinical cut-off concentration of PSA for 
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prostate cancer detection (4-10 ng/ml). Interestingly, the LOD reached by 

extinction reduction analysis of the same data is 0.83 ng/ml, outperforming the 

centroid tracking method as well as the well-developed LSPR counterpart.34,103  

Beyond the LOD, another relevant parameter for diagnostics purposes is the 

dynamic range of the calibration curves (EC20-EC80 range), determining the 

working/operating ranges of the sensor and shown as the shaded regions in Figure 

4. The dynamic range for the centroid shift-based curve is 2.35 – 9.79 ng/ml, while 

the dynamic range for the extinction reduction-based curve extends over 1.87 – 

30.0 ng/ml. While both calibration curves are within the clinically relevant range, 

the extinction reduction-based sensing offers a higher dynamic range and a smaller 

LOD, which is beneficial for diagnostic applications. Error bars in Figure 5-5 

represent the replicas of the measurements on the same chip. The coefficient of 

variation (CV) for replicated measurements is between 1.1% and 16.3% for 

centroid shifts and 0.7% and 25.9% for extinction reduction. 

From our numerical simulations, we conclude that the electric dipolar mode, which 

dominates the extinction reduction mechanism, exhibits a better biomolecular 

sensing performance. This result is due to the higher exposure of the electrical 

mode to the surrounding medium. The magnetic dipolar modes are highly 

confined inside the Si-NCs, resulting in smaller response to the changes at the Si-

NC surface. 

Additionally, we have also calculated the total extinction reduction for the same 

measurement, by integrating the extinction peak over a wavelength range where 

the reduction is dominant, in order visualize the performance using a broadband 

illumination or detection scheme. Between 840 nm and 920 nm, the extinction 

reduction of the integrated signal lead to a very similar calibration curve for the 

PSA detection with LOD of 0.83 ng/ml (Figure 5-6), offering a possibility of even 

cheaper and simpler excitation and detection schemes. This result suggests that a 

LED light source and a simple CCD camera or photodiode can be employed for the 

excitation and readout, simplifying and reducing the cost of the set-up and paving 

the way for an efficient POC platform to be developed. 
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Figure 5-6 PSA calibration curve obtained by integrated extinction reduction. The inset shows the 
extinction wavelength range that is integrated (840-920nm). 

 

5.4 Conclusions 
 

The PSA detection results demonstrate that the on-chip sensing performance of 

partially randomized Si-NC arrays are competing with their periodic and LSPR 

based counterparts previously studied.103 With the low LODs reached within the 

clinically relevant dynamic ranges, an early cancer detection platform can be used 

for human serum sample measurements. The ease of fabrication at a large scale 

combined with the simplicity of the surface chemistry based on passive adsorption 

in comparison to the SPR and LSPR applications, suggest Si-NC arrays as a powerful 

sensing tool. The total label-free assay time of 3 hours outperforms the commonly 

used clinical diagnostic scheme, ELISA, which takes 5 hours following and overnight 

immobilization of initial antibodies. Possibilities for resonance mode tuning for 

obtaining higher sensitivities, leaves room for improvement of such sensors.  

In conclusion, we have demonstrated on-chip cancer marker detection using semi-

randomized Si-NC arrays, employing the electric and magnetic dipole resonances 

for sensing, with low LOD and clinically relevant working ranges. We associated our 

two transduction mechanisms with the distinct electrical and magnetic dipolar 

modes, demonstrating the electric dipole mode sensitivity through the extinction 

reduction and magnetic dipole sensitivity through the resonance redshift. Our PSA 

detection results prove that the electric dipole mode, which is more exposed to 

the surrounding media, is outperforming the magnetic mode. The performance 

observed by tracking the extinction reduction at a single wavelength or a 
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wavelength range could bring in new possibilities of using cheaper and simpler, 

spectroscopy-free, optical set-ups and read-out devices.  

The integrated LOC platform, as well as enabling parallel measurements, can also 

be used for multiplexing and more complicated immunoassay steps for more 

sophisticated measurements, in a highly controlled and automated environment. 

The silicon nanocylinders fabricated with colloidal lithography, exhibiting highly 

sensitive and specific sensing performance, is promising for on-chip POC diagnostic 

devices, due to faster, easier, cheaper and large-scale fabrication possibilities.  
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CONCLUSIONS AND OUTLOOK 
 

In this thesis, we developed on-chip biosensing platforms based on the integration 

of PDMS microfluidics with optical nanoresonators. First, we demonstrated 

multiplexed cancer biomarker detection in human serum employing LSPR sensors 

and a microfluidic chip design for automated, real-time, and spontaneous sensing 

in up-to 32 sensing sites, comparing the platform performance to a gold standard 

ELISA technique. Next, we evaluated dielectric nanoresonators for biosensing in 

microfluidic environments. We presented our cancer marker detection results 

using periodic and semi-randomized arrays of silicon nano-cylinders and 

interpreted different transduction mechanisms through simulations.  

The platforms and sensing results presented in this thesis brings the scientific 

community one step closer to understanding the capability of LSPR and dielectric 

nanoresonators (NR) for on-chip biosensing applications and demonstrates 

functional sensing modules to produce more complete POC devices in the future. 

The read-out platform can be engineered to fit in a small box or a handheld device. 

The future of diagnostics depends on the engineering of the sensitive resonance 

modes for optical NRs and on the efforts spent on real-life large-scale integration 

of the microfluidics technology. It is only a matter of re-designing the system to 

achieve more sensing sites and increase the multiplexing capabilities.  

The research I conducted also leads to valuable questions to be addressed in the 

future. As shown in Chapters 4 and 5, we demonstrated the biomarker detection 

of Si-NR sensors with no special surface functionalization steps for the selective 

binding of molecules but only on the sensor sites. One advantage of our 

experimental approach is that we show specific and sensitive measurements 

without the need for specific treatments of the sensor surface. Studying the 

specific surface chemistry for Si-NR sensor substrates would be one of the 

remaining points to address to complete the study and improve the sensor 

performance.  

Another important direction exposed by this thesis is the engineering of the Mie 

resonance modes for sharper and more sensitive extinction peaks. Here, very 

simple geometries of the Si-NR systems are used. The possibility to obtain sharper 

resonances with different geometries exhibiting fano-type resonances can be 

engineered and tested for sensing. Those sensors can then be integrated with 

microfluidics for highly-multiplexed and high-throughput sensing applications. 
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APPENDIX A 
 

The electric (𝑝̅) and magnetic (𝑚̅) dipole moments where calculated using:138  

 
𝑝̅ = ∫ 𝜀0(𝜀(𝑟̅) − 𝜀1)𝐸̅(𝑟̅)

𝑉

𝑑𝑟̅

𝑚̅ =
−𝑖𝜔

2
∫ 𝜀0(𝜀(𝑟̅) − 𝜀1)𝑟̅ × 𝐸̅(𝑟̅)

𝑉

𝑑𝑟̅

, 

 

 

 

(1) 

where 𝜔 is the radial frequency of light, 𝐸̅(𝑟̅) is the electric field at position (𝑟̅), 

and 𝜀 and 𝜀1 are the permittivities of the nanostructure and the ambient, 

respectively. 

The electric (𝛼𝑒) and magnetic (𝛼𝑚) dipole polarizabilities can be extracted from 

FEM simulations and (1) using 𝑝̅ = 𝛼̅𝑒𝐸̅0 and 𝑚̅ = 𝛼̅𝑚𝐻̅0, where 𝐸̅0 and 𝐻̅0 are the 

background electric and magnetic fields. In the case of the 10 nanocylinder 

assembly, we use the average polarizabilities. We can then calculate the reflection 

and transmission coefficients for an infinite semi-random array by using the so-

called island film theory.136,137,139 The transmission coefficient at normal incidence 

can be written as:    

 

𝑡 =
2𝑛1(1 +

𝑘0
2𝜌2𝛼𝑒𝛼𝑚

4𝜀0
)

(𝑛1 + 𝑛2) (1 −
𝑘0

2𝜌2𝛼𝑒𝛼𝑚

4𝜀0
) − 𝑖𝑘0𝜌(𝑛1𝑛2𝛼𝑚 + 𝛼𝑒/𝜀0)

, 

 

 

 

(2) 

where 𝑘0 is the wave vector of light in vacuum, 𝜀0 is the vacuum permittivity, 𝜌 is 

the surface density of nanostructures (here ~2.1 µm-1) and 𝑛1 and 𝑛2 are the 

ambient (~water) and substrate (glass) refractive index, respectively. The 

extinction in absorbance units, E, can then be calculated as 𝐸 = −𝑙𝑜𝑔 (|𝑡|2 𝑛2

𝑛1
).  

Figure A-0-1 show the results based on the polarizabilities based on the 

simulations shown in Figure 5-4. The amplitude of the extinction peak is very 

similar to the experimental values. As these results of a semi-infinite array are 

based on the simulations of a few nanocylinders, as described in the Chapter 5, 
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also the peak redshift (BRIS ~70 nm/RIU) is of the same order as in Figure 5.4. 

However, the semianalytical approach also gives us the possibility to compare the 

simulated extinction reduction amplitude with the experimental values. We find 

that the largest amplitude of extinction reduction was 0.8 RIU-1, based on the 10 

nanocylinder simulation, which is below the experimental sensitivity. However, we 

stress that there is a significant enhancement of the sensitivity to the local 

refractive index compared to the single particle case. Thus, we are confident that a 

simulation of additional nanostructures, in a similar array arrangement, would 

yield sensitivities even more comparable to the experimental values.  

 

Figure A-0-1 Semianalytical calculations of an infinite array of nanoresonators .  a) The extinction for 
a surface density of 2.1 µm-1. b) The extinction sensitivity to the local refractive index as a function of 
wavelength. c) The extinction peak wavelength shift as the local refractive index, n1, is changed from 
1.33 to 1.35. 
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