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Abstract 

 

Despite the investment of vast amounts of money over the 

last decades, drug discovery and development remains an 

inefficient process, which can be stopped at different steps, 

leading to the loss of all resources invested. For this reason, 

there is an urgent need to develop methods for relating 

chemical structural information and in vitro bioactivity to 

toxicity outcomes in early drug development stages. 

 

This thesis describes novel in silico prediction methods, using 

novel similarity metrics and prediction tools adapted to the 

Chemical Safety Assessment (CSA) of drugs. Their use is 

illustrated by their application to liver toxicity endpoints. The 

proposed approach involves five steps: (1) Data collection, (2) 

best similarity metrics identification, (3) read across similarity 

validation, (4) QSAR modelling, and (5) implementation.  
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Resumen 

 

A pesar de las inmensas cantidades de dinero invertidas en 

las últimas décadas, el descubrimiento y desarrollo de 

nuevos fármacos sigue siendo un proceso ineficiente, que 

puede detenerse en diferentes fases, implicando una pérdida 

importante de todos los recursos invertidos. Por esta razón, 

existe una necesidad muy urgente de desarrollar métodos 

que relacionen la información estructural química y la 

bioactividad in vitro con los resultados de toxicidad en las 

primeras etapas de desarrollo de fármacos. 

 

Esta tesis describe nuevos métodos de predicción in silico, 

utilizando nuevas métricas de semejanza y herramientas de 

predicción adaptadas a la Evaluación de Seguridad Química 

de medicamentos. Su uso se caracteriza por su aplicación en 

toxicidad hepática. El enfoque propuesto implica cinco pasos: 

(1) Recopilación de datos, (2) identificación de métricas de 

mejor semejanza, (3) validación de la semejanza usando 

Read across, (4) modelado QSAR e (5) implementación. 
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Preface 
 

The present work describes the development of new tools for 

predicting toxicity of drug candidates starting from pre-

existing information. Drug Induced Liver Injury (DILI) was 

used as an example through the manuscript to illustrate their 

application. These methods can be used to obtain i) similar 

compounds by similarity searching and ii) building better 

predictive models for in silico toxicology that could help the 

expert toxicologist identify DILI in early drug development 

phases. Our methods do not aim to replace but to reduce the 

use of animal models to prioritize candidates, to remove 

those which could lead to DILI. This work was developed in 

close collaboration with the European projects iPiE and 

eTRANSAFE, in which both academia and pharmaceutical 

companies are deeply involved. The methods developed 

could be used and applied in the future with a real impact in 

the pharmaceutical industry, contributing to the 3R principles 

(replacement, reduction and refinement), helping to reduce 

animal testing and costs as well as speeding up the safety 

assessment procedures. 
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1. INTRODUCTION 
 

1.1. Drug Development Process 
 

Where do drugs come from? The path leading to the creation 

of new drugs is long, risky, and complicated. It involves the 

analysis of available chemical and biological data suggesting 

new compounds likely to possess the required properties of 

safety and efficacy [1]. 

 

Fig. 1 | The Drug Development Timeline, extracted from [2] , indicates 

how many compounds are tested at different stages of the pipeline to 

yield on average a single approved drug.  
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In a biomedical research context, in silico computational 

models are often applied alongside experimental techniques 

to predict biological properties of chemical compounds [3]. 

Modern information technologies have made big data 

available in safety sciences, i.e., extremely large data sets 

that may be analyzed only computationally to reveal patterns, 

trends and associations [4]. Models obtained by such means 

can be used for predicting, rationalizing and estimating 

physico-chemical properties of molecules and their 

interactions with macromolecules, thereby allowing a more 

rational approach to drug development [5] as shown in 

Figures 1-2.  

 

Given the involvement of a particular macromolecule in a 

human disease, its action can be modulated with a small 

organic molecule so as to obtain a therapeutic effect. Once a 

macromolecular target related to a certain disease is 

identified, small molecule binders (hits) for that particular 

target are found and optimized (hit to lead) [6]. Promising 

molecules are subjected to additional assays in vitro and in 

vivo to collect efficacy, toxicity and pharmacokinetic data [3]. 

The next stage involves clinical trials in humans. Phase I is 

designed to test the molecule on healthy people to determine 

whether it is safe [7,8]. Phase II takes into account the 

efficacy and safety of a molecule [9]. Finally, Phase III is 

focused in evaluating efficacy, effectiveness and safety to 

determine if a molecule has a therapeutic effect [6]. 
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Ultimately, a molecule that clears all these hurdles had to be 

approved by regulatory agencies like the Food and Drug 

Administration (FDA) or European Medicinal Agency (EMA) 

before it can be commercialized [9]. Later on, there is a post-

marketing surveillance, a pharmacovigilance phase for 

monitoring overlooked adverse effects or long-term effects 

associated to the drug usage on the population [10]. 

  

 

Fig. 2 | The Drug Discovery pipeline. The Drug Discovery process 

involves steps A to C. Clinical trials involves steps E to G. After step H a 

drug is commercialized but can be removed from the market if unexpected 

side-effects are reported. Extracted and modified from [11] 
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1.2. Overview of Toxicology 
 

In the drug development process, safety assessment plays a 

central role. The therapeutic usefulness of new candidates 

depends on their safety as much as on efficacy. For this 

reason, toxicological evaluation is applied at different steps. 

It is important to define different aspects about toxicology. 

 

Toxicology is the study of the adverse effects of chemicals or 

physical agents on living organisms, in our case, on humans. 

A toxicologist is trained to examine and judge the nature of 

those effects on human health [12]. Then, a toxicological 

research plays an important role examining the behaviour of 

chemicals inside the human/animal body. For example, to 

look at cellular, biochemical and molecular mechanisms of 

action assess the probability of their occurrence [12].  More 

and more, our society is increasingly dependent on 

chemicals. Toxicologists are an important part of decision-

making processes for evaluating potential hazards. The main 

toxicologist’s duties are descriptive, mechanistic and 

regulatory, all vitally important for chemical risk assessment 

[12]. 

 

1.3. Safety Assessment 
 

Safety plays a critical role in the above-mentioned drug 

development process since the therapeutic usefulness of new 
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candidates depends on their safety as much as on efficacy. 

Safety testing is one of the main concerns in the drug 

development process, since safety liabilities can produce that 

a candidate fails at any stage, thus producing an enormous 

waste of time and money. 

 

For instance, the selectivity of a ligand for a target is an 

important early consideration. Promiscuous ligands are more 

frequently associated with adverse drug reactions and clinical 

trials failures and also the well-known “anti-targets” (e.g. 

hERG), where compounds that binds to a different target to 

the specific one. Some selectivity within a family of related 

proteins is often desirable although exquisite selectivity is 

rarely attained. Hence, safety is continuously evaluated at all 

stages of drug development. But a more dramatic scenario 

would be discovering a toxic effect during clinical and 

pharmacovigilance phases having a huge impact with severe 

adverse effects on patients, and huge amount of money 

losses. This was the case of Thalidomide, withdrawn for 

causing severe birth defects. This must be avoided as much 

as possible. Therefore, a huge effort of safety assessments 

closer to the initial drug development stages is taken 

seriously with the aim to fail early and cheap. 

  

Recently, there has been a change of paradigm in the field of 

toxicity from a focus on observations to the mechanistic 

understanding of the toxicity. One of the consequences of this 
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improved understanding is the possibility of predicting the 

toxicity of new compounds, from different chemical or 

biological properties of the compounds instead of merely 

observing them. These predictive models require a better 

understanding of the toxicity mechanism. Predicting 

mechanisms plus predicting potential targets can suggest 

ways to test in vitro, being a good way to guide the safety 

assessment testing strategy. This does not aim to replace 

completely the animal model but used to prioritize candidates, 

to remove those which could cause toxicity at early stages of 

development. In this work we provide new approaches to 

tackling predictive toxicology that could help toxicologist to 

answer questions to be able to prioritize candidates but also 

to capture better the mechanisms of toxicity.  

 

Animal testing has been used to evaluate the toxicity of the 

individual chemical ingredients such as acute toxicity, 

skin/eye irritancy, potential for skin sensitization, and so on 

[4,13–18].  

 

Safety assessment is important for consumer chemicals as 

well as substances used in cosmetics and food industry. The 

Registration, Evaluation, Authorization and Restriction of 

Chemicals Regulation (REACH) [4,13–18] regulation 

initiative, since March 2013 [19] does not allow 

commercialization of EU cosmetics using ingredients tested 

on animals. REACH has been dealing with finding alternative 
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methods to safety studies in experimental animals [20]. In this 

scenario, in silico methods must be considered a valuable 

tool for the application of the well-known 3R principles 

(replacement, reduction and refinement), helping reducing 

animal testing and costs as well as to speed up the safety 

assessment procedures. These in silico methods basically 

depends on the availability and quality of the data provided 

[20] and there is a need for improving and optimising in silico 

methods. 

 

1.4. Drug-Induced Liver Injury (DILI) in Safety 

Assessment 

 

Drug-induced Liver Injury (DILI) is the main cause of liver 

disfunction which may lead from mild non-specific symptoms 

to more severe signs like hepatitis, cholestasis, cirrhosis and 

jaundice [21]. Among the adverse drug reactions (ADRs) 

causing drug attrition in clinicals trials or drug withdrawal from 

the market, DILI plays a major role [22–24]. Early 

identification of DILI is beneficial for both public institutions 

and the pharma industry. However, the lack of translatability 

from in vitro and animal models on one side, and the poor 

performance of in silico models when applied in the real world 

on the other side, makes early DILI identification difficult to 

achieve [25,26]. Animal models cannot capture all aspects of 

human physiology represented by the different mechanisms 

of action causing DILI [27–29]. On the other hand, despite in 
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vitro models on human cells or tissues, pharmacodynamic 

and pharmacokinetic (PD/PK) aspects are not considered, 

relying on solutions such as 3D organs and PBPK 

(Physiologically based pharmacokinetic) modelling to 

approximate and predict their effects in drug metabolism 

[30,31].  

 

1.5. In Silico Modelling in DILI Safety 

Assessment 

 

In silico models are a cheap and fast tool to assess DILI in 

early stages of drug discovery, and can be applied to any 

compound, including virtual ones [32,33].  In general, in silico 

methods can be classified in statistical-based, knowledge-

based and structure-based approaches [32,34,35].  

 

Knowledge-based models look for structural alerts in 

molecules that were previously identified to produce an 

adverse outcome. Structure-based (often called ligand-

based) models use only the structure of small organic 

compounds or the 3D structure of macromolecules to predict 

for example binding affinities [36]. In contrast, statistical-

based models can predict the DILI outcome of an unknown 

compound by fitting a series of molecules with known activity 

to a molecular representation of the molecules, typically 

chemical descriptors or fingerprints. Reported models 

generally are built using QSAR. This method starts by training 
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a machine-learning (ML) algorithm (see section 1.7.3.) with 

positive and negative samples represented structurally by a 

set of descriptors or fingerprints. A few of these models 

extend their molecular representations by adding target 

activity information, which resulted in a slight improvement 

[37,38]. While knowledge-based models offer a clearer insight 

into the mechanism of action, they suffer from lower 

performance due to the lack of sensitivity (see section 3.6.3.) 

inherent to the fact that DILI assessment is limited to alerts 

defined by the toxicologist [39]. 

 

In general, the performance of statistical models is higher, but 

depends considerably on both the quantity and quality of the 

data [40]. 

 

1.6. Chemical and Biological Similarity 
 

Several safety assessment methods are applied in the drug 

development process playing an important role to label 

candidates as toxic/not toxic, and one of them is by chemical 

similarity. 

 

Similarity, or the state of being similar, is a concept that has 

been pursued in many fields, such as mathematics, 

computing, linguistics, music, psychology, chemistry, biology, 

etc. In our case, we are interested in chemical and biological 

similarity. Many sources suggested several types of structural 
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representations to measure the similarity between two 

molecules [41]. Similar compounds tend to have similar 

properties [42], this is the rational basis of the bioisosterism 

concept, which  justifies which type of similarity is relevant in 

a biomedical context. Bioisosteric compounds have similar 

biological properties and therefore, the similarity metrics 

which are relevant represent this bioisosterism. Bioisosters 

could be chemical substituents or groups with similar physical 

or chemical properties which produce similar biological 

properties to another chemical compound. There are classical 

and non-classical bioisosters (see Figure 3) [43]. In drug 

design, they are used to enhance the desired biological or 

physical properties of a compound. 

 

 

Fig. 3 | Classical versus non-classical bioisosters [44,45]. 

 

The evaluation of similarity requires identifying source 

chemicals for which data is available and that are similar to a 

target chemical for which no data are available. These 

predictions can be made to fill data gaps. As the Nobel Prize-

winning pharmacologist James Black advocated in 1988, “the 
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most fruitful basis for the discovery of a new drug is to start 

with an old drug” [46]. For instance, sildenafil (Viagra) and 

vardenafil (Levitra) both are PDE5 inhibitors with similar 

medical uses, i.e. drugs that are indicated against erectile 

disfunction [47]. However, if we perform a similarity 

substructure search by SMILES arbitrary target specification 

(SMARTS) [48], a language that allows you specifying 

substructures with rules that are straightforward extensions of 

SMILES [49], it would miss vardenafil on the 

pyrazolopyrimidine ring of sildenafil [47]. 

 

But how can a computer state if two molecules are similar? 

There are several methods for computing similarity that are 

relatively trivial and can be coded computationally nowadays 

[52]. Those are implemented in most of the existing 

toxicological databases, such as AIM, AMBIT, CBRA, CIIP, 

QSAR Toolbox, Toxmatch, Toxread, which are described in 

detail in [50].  

 

The most widely used similarity methods use molecular 

fingerprints [52]. They map a substructure onto a binary string 

[51]. This can be performed using a key-based approach. 

They can ask binary questions with yes/no answers about the 

contents of a molecule such as: Does it have polar or non-

polar groups? Is there an aromatic ring? Is there any 

hydrophobic/hydrophilic interaction? Depending on the 

answer a 1 (for yes) or a 0 (for no) at a specific position in the 
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fingerprint will be assigned. Useful key-based fingerprints are 

often several hundred bits long [52]. One of the drawbacks is 

that most molecules contain few of the substructures defined 

by the key, so most bits are set to 0 meaning most 

fingerprints will be inefficient sparse vectors containing many 

zeros [52].  

 

Alternatively, people use hash-based fingerprinting methods 

[52]. Briefly, they represent molecules with SMILES [49] of 

unique patterns (bonds, atoms, etc). Then a hash function is 

fed with every pattern returning integers between 1 to N. The 

hash value of a pattern is then used to set a bit in the 

fingerprint [52]. One of the benefits of hash-based fingerprints 

is that they contain a lot of structural information in a small 

key size, hence they are faster at comparing fingerprints 

leading to quicker computations in comparison with key-

based fingerprints [52].  

 

Fig. 4 | Binary fingerprints representation of a molecule. Extracted 

from [52]. 
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These fingerprints are said to be too ‘black’ because bit 

collisions are permitted, and they occur when two different 

patterns have the same hash value (see Figure 4). Excessive 

bit collisions decrease the information content [52].  

 

1.7. Statistical Models in Computational 

Toxicology 

 

Because of the advances in both data quality and machine-

learning techniques, statistical-based models have become of 

great interest recently. Many QSAR models for DILI prediction 

have been reported using different datasets and techniques 

[29,53–61]. In general, balanced models based on datasets 

with hundreds of compounds reach accuracies around 65%. 

Other models with better accuracies are either unbalanced in 

their sensitivity-specificity (see section 3.6.3.) or built with 

small datasets. This lack of predictability can be attributed to 

two principal factors; (1) the various mechanisms causing 

DILI [62], and (2) the fact that the classification of compounds 

as DILI positives and negatives fulfils different criteria 

depending on the dataset/study, and these criteria sometimes 

rely on statistical analysis of reports obtained from literature 

mining. In this regard, efforts to create high quality DILI 

datasets have been performed during the past years. 
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Remarkably, DILIrank [63] compiles 1036 compounds ranked 

by DILI risk in humans with confirmed causal evidence. 

Mulliner et al. [59] created a database compiling compounds 

from different sources including clinical, postmarked, and 

preclinical data. While DILI assignment is not as rigorous as 

in DILIrank, it comprises 3712 compounds that cover a huge 

chemical space. Also, as different species are considered, 

this dataset is appropriate to study/model translational 

aspects of DILI.  

 

As mentioned previously, one of the challenges in DILI 

modelling is the diversity of mechanisms leading to 

hepatotoxicity. To overcome this problem, Liu et al. [55] built 

hepatic adverse effects QSAR models using the SIDER 

database [64], which contains a compilation of adverse 

effects caused by commercial drugs. These models were 

validated against databases tagged with DILI activity, 

reaching ~65% of accuracy in external validation. Mulliner et 

al. classified hepatotoxic compounds into three hierarchical 

levels from general hepatotoxicity at the first level, to more 

detailed endpoints discriminating clinical chemistry and 

morphological findings at the second level, and hepatocellular 

and hepatobiliary findings at the third level. Subsequently, 

QSAR models were built for each endpoint obtaining 

reasonable performance for some of them (~65% of 

accuracy).  
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Another key element when applying QSAR models in the real 

world is the applicability domain (AD) [65]. In simple words, 

AD techniques call for the capability of a QSAR model to 

return a reliable prediction for a given instance. AD 

determination is not used in the majority of the models 

reported, and when used, it is based on the descriptor 

distribution not only limiting the chemical space, but also 

subject to ambiguous interpretation [65,66]. AD is important 

for assessing where models can be applied with confidence. 

 

1.7.1. Read Across 
 

In the read-across approach [50,67–74], endpoint information 

for one chemical (the source chemical) is used to infer the 

same endpoint for another chemical (the target chemical), 

which is considered to be "similar" in some way (see section 

1.5.). In principle, read across (RA) can be used to assess 

physicochemical properties, toxicity, environmental fate and 

ecotoxicity. For any of these endpoints, it may be performed 

in a qualitative or quantitative manner [43] as described in 

Figure 5. There are many RA databases [75–89]. 
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Fig. 5 | The Read-Across approach [43]. 

 

To compute chemical similarity computationally, there are 

various tools available. In Python, there is the well-known 

open source RDKit tool [90–92]. This tool can represent 

structures and measure the similarity between molecules 

using features such as Morgan or pharmacophore 

fingerprints, but also physiochemical properties among others 

[52]. This toolkit utilizes different metrics for quantifying 

similarity between two structural representations, e.g., 

Tanimoto coefficient, cosine coefficient, Tversky index, etc. 

[93] which can be useful for different types of models. 

 

The most widely used metric to evaluate similarity of two 

fingerprints, a and b is the Tanimoto coefficient called Jaccard 

elsewhere (see equation 1, and for more information see 

Table 3 in Methods).  

 

𝐽𝐴,𝐵 =  
𝑐

(𝑎 + 𝑏 − 𝑐)
 Eq. 1 
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The maximum value is 1 when all the bits set in a are set in b. 

When no bits are shared between a and b, 0 value is 

assigned. J values of 0.1-0.4 means there is no relationship 

between them. In general, it is considered that J values over 

0.7 for validated keys or hash functions are significantly 

similar [52].  

 

1.7.2. QSAR methodology 
 

Quantitative Structure-Activity Relationship (QSAR) models 

aim to infer knowledge analyzing the relationship between the 

structure of compounds and their biological properties. 

Descriptors are normally computed from the chemical 

structure (1D, 2D) or a conformation (3D). QSAR models 

[54,85] are an alternative to using chemical/biological 

similarity searches to find compounds having similar 

properties/descriptors to a real molecule such as a drug 

which is already in the market. QSAR models use machine 

learning methods as the ones described above [54,85]. As 

can be seen from Figure 6, correlation does not imply 

causation. Thus, correlated properties correlating well with a 

property of interest, fail to be linked. Besides, we need expert 

judgement to build reliable models.  
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Fig. 6 | The QSAR Fallacy. Figure extracted from [94]. 

 

When building QSAR models, the original dataset is often 

randomly split into a training set and a validation set. We use 

cross validation methods, typically Leave-One-Out, to make 

internal validation of the model and build our applicability 

domain. Finally, an external validation is performed with the 

validation set to test if the model performs well.  

 

1.7.3. Machine Learning 
 

In Machine Learning (ML), computer programs have the 

ability of automatically learning and improving from 

experience without the necessity of being explicitly 

programmed [95]. ML is present in artificial intelligence as 

well as data mining and is getting more and more extensively 

used. ML methods are categorized as supervised or 

unsupervised. On the one hand, supervised methods use 
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labelled information to make predictions. Usually, they work 

for both qualitative and quantitative using classifier and 

regressor estimators, respectively. On the other hand, the 

unsupervised ones use unclassified or unlabelled training 

data. The most widely used techniques in computational 

toxicology are:  

 

• Decision Trees: Unsupervised ML method using 

a tree approach where each branch represents 

the results of the test, and each leaf the class 

label, after computing all attributes [96].  

 

• K-nearest neighbours (KNN): unsupervised ML 

method which uses as an input the k closest 

source values near the labelled point of interest, 

and for classification the most frequent label is 

used among the k points [95].   

 

• Principal Component Analysis (PCA): 

Unsupervised ML method that converts a set of 

observations of possibly correlated variables 

into a set of values of linearly uncorrelated 

variables, the so-called principal components 

[97]. 

 

• Partial Least Squares (PLS): supervised ML 

method, PLS regression and PLS discriminant 
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analysis (PLS-DA) where the Y is quantitative or 

categorical, respectively. PLS is a statistical 

method that relates to principal components 

regression, and projects the predicted and the 

observable variables into a new space [98].  

 

• Random Forest (RF): supervised ML method, 

an ensemble learning method for classification, 

regression that builds a multitude of decision 

trees at training time. The output is for a 

classification or a mean prediction of the 

individual trees for qualitative and quantitative 

method respectively [99]. 

 

In this work we are going to use some of the statistical 

methods to predict DILI. PLS for supervised RA in a similarity 

context (see results sections 4.2. and 4.3), and RF and PLS 

in our AE QSAR models (see results section 4.4.) 

 

1.8. Reproducibility 
 

In computational toxicology, the concept of reproducibility is 

increasingly used. Because of we are dealing with virtual data, 

is “easier” to obtain reproducible results, e.g. running a model 

which gives the same result every time perform the analysis, 

in other words, it can be easier controlled than when you are 
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doing an experiment with animals which can vary the result for 

many external and internal factors.  

 

Reproducibility is the agreement among the replicate results 

carried out with the same methodology, for example in 

different locations by different people [100].  

 

 
Fig. 7 | Reproducibility. Boyle's air pump was, in terms of the 17th 

century, a complicated and expensive scientific apparatus, making 

reproducibility of results difficult. Extracted from [101]. 

 

If we go back to the 17th century in England, the reputed Irish 

scientific Robert Boyle, published the air pump design to 

generate and study the vacuum (see Figure 7). Boyle was the 
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first one to stress the importance of reproducibility by 

repeating the same experiment repeatedly so that 

reproducible data can be credible to the scientific community.  

 

Nowadays, irreproducible research is a challenge. In October 

2018, Nature’s International Journal of Science published 

[102]:  

 

“Science moves forward by corroboration when researchers 

verify others’ results. Science advances faster when people 

waste less time pursuing false leads. No research paper can 

ever be considered to be the final word, but there are too 

many that do not stand up to further study. 

There is growing alarm about results that cannot be 

reproduced. Explanations include increased levels of scrutiny, 

complexity of experiments and statistics, and pressures on 

researchers. Journals, scientists, institutions and funders all 

have a part in tackling reproducibility. Nature has taken 

substantive steps to improve the transparency and 

robustness in what we publish, and to promote awareness 

within the scientific community.”  

 

Indeed, reproducibility is important to be taken into account 

and as the Nature article above mentions, we need to move 

forward by corroboration, verifying other’s results. To do that, 

we need to publish successes and failures. To make 
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reproducible research example would be the laboratory 

notebooks, either paper or electronic ones, codes, data, and 

well-organized text files need to exist. 

 

This thesis tends to be as much reproducible as possible, and 

for this reason, we developed everything in Jupyter 

Notebooks with a specific Conda environment to be installed 

and run wherever, allowing the end-user obtaining 

reproducible results. 
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2. OBJECTIVES 

 

The general objective of the thesis is: 

 

• Develop novel similarity-based tools (RA and QSAR) 

adapted to the Chemical Safety Assessment (CSA) of 

drugs.  

 

The specific objectives are: 

 

• Collect datasets representing the chemical space 

typically covered in drug development annotated with a 

representative toxicity endpoint (DILI) 

• Identify the most suitable descriptors and metrics, 

benchmarking their performance in CSA related 

applications 

• Validate the best similarity metrics obtained, 

performing a systematic comparison with a collection 

of different similarity descriptors and using RA for 

predicting DILI 

• Develop new QSAR modelling strategies, combining 

chemical and existing knowledge to predict DILI. 

• Implement the RA and QSAR modelling in data-

processing software tools (Jupyter notebooks) suitable 

for applications in both academic and industrial 

environments for reproducibility purposes 
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3. METHODS 

 

3.1. Software 
 

To facilitate the work and data processing done in this thesis, 

a Conda [103] environment with all dependencies and extra 

packages (see a summary on Table 1) was created. Conda 

environment is a directory containing a collection of Conda 

packages installed. This environment can be downloaded and 

installed following the instructions written in [104].  We 

created this Conda environment because we want to work in 

a place where we can get reproducible results controlling the 

versions of the programs used. The operating system used 

was the Scientific Linux 64-bit (CentOS 7). A collection of 

jupyter notebooks for similarity searching and QSAR 

modelling were also created [104]. 

 

Table 1 | Python and external packages loaded within the 

Conda environment. 

Software Version Reference 

Python 3.6.7 [105] 

Pandas 0.24.2 [106] 

Scikit-learn 0.20.3 [107] 

RDKit 2018.09.2.0 [90] 

nonconformist 1.2.5 [108] 

scipy 1.0.0 [109] 

numpy 1.16.2 [110] 
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Software Version Reference 

Standardiser 2014 [111] 

molVS 0.1.1 [112] 

moka 3.0 [113,114] 

Flame 0.2 [115] 

 

3.2. Structure Retrieval and Curation Procedure 
 

As can be seen from Figure 8, compound structures are 

retrieved using an in-house workflow involving the following 

steps: 

A. Structure resolver [116]: from chemical identifiers (CAS 

RN, chemical name, DrugBank ID, etc) a structure is 

retrieved as InChI. 

B. Two-dimensional structures are computed using RDKit 

[90]. 

C. Structures are canonicalized using molVS [112] and 

then, neutralized and standardized using standardizer 

[111].  

D. Reasonable three-dimensional structures are obtained 

using RDKit [90] ETKDG. The ionization state of every 

compound is adjusted to pH 7.4 using MoKa [113,114]. 

E. For the resulting structures parent InChIs and InChI 

keys (standard and non-standard) plus parent SMILES 

are computed. Duplicates are checked and dropped by 

using the non-standard InChI key as identifier keeping 
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the information of dropped molecules where 

differences are found. 

F. Finally, molecules are saved in machine-readable 

(Python pickle of RDKit mols) [117], SDFile, and 

human readable SMILES Tables (tabular, TSV). 

 

 

Fig. 8 | Normalization protocol. 

 

3.3. Data Extraction and Normalization 
 

ATC dataset. The ATC dataset [118] contains marketed 

drugs (active substances) classified in a hierarchy with five 

different levels [119]: 1st) fourteen 

anatomical/pharmacological, 2nd) pharmacological or 
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therapeutic groups, 3rd and 4th) chemical, pharmacological 

or therapeutic subgroups and 5th) the chemical substance. 

Then, the 5th level was used to obtain 3D protonated 

structures.  

 

To do so, the general normalization protocol described in 

methods section 3.2. was applied to the ATC dataset. This 

dataset was used for different purposes: i) Merging structures 

from external datasets by ATC code or by other similarity 

method such as Jaccard or by another identifier (parent non-

standard InChI Key), and ii) clustering compounds by ATC 

Ontology.  

 

Table 2 | Effect of the normalization workflow on the size of 

the ATC dataset. 

Normalization 

Step 
Molecules 

Original 4580 

2D 2151 

standardised 2128 

3D 2126 

Protonated 7.4 2126 

Final 2126 

  

2126 out of 4580 structures with ATC code were obtained. In 

the whole process, mixtures we removed, for instance, 

N02AJ06 corresponding to paracetamol plus codeine. In 
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addition, macromolecules such as peptides, proteins (e.g. 

L03AC01 corresponding to the interleukin Aldesleukin) were 

also eliminated. We finally saved in machine-readable 

formats (Python pickle of RDKit mols), SDFile, and human 

readable SMILES tables (tabular, TSV), the ATC dataset 

(4580 molecules) containing 2126 molecules with structures 

and 2454 molecules without structures. 

 

SIDER dataset.  SIDER [120–122] is a database which 

contains information about adverse drug reactions of 

marketed drugs. SIDER connects 1430 drugs with 5868 

different reported adverse effect (AE) terms. Last version was 

downloaded (4.1, October 21, 2015). It was used to extract 

compounds with clinical annotations on hepatic adverse 

effects. MedDRA ontology [123,124] was applied to SIDER 

compounds with associated Preferred Terms (PT) and filtered 

by the primary Organ Class (SOC) level of Hepatobiliary 

disease.  568 compounds in total show at least one 

hepatotoxic related AE, while 369 of the remaining 

compounds were free of any hepatotoxic adverse effect. 

Finally, only AEs present in at least 40 compounds were 

considered to build QSAR models (see Figure 9).  

 

This threshold on the number of compounds was defined 

arbitrarily as the minimum number of compounds needed to 

obtain reliable QSAR models, resulting in a total of 19 AE 

QSAR models. Building QSAR models requires datasets 
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containing both active and inactive compounds, therefore, for 

a given AE, negatives were picked from other compounds 

showing any other hepatobiliary AE (to strength selectivity) 

and from other SIDER compounds not showing any 

hepatobiliary AE (to increase chemical diversity).  

 

These structures of SIDER compounds were generated from 

those on the ATC dataset, using the ATC code as the index. 

This dataset is accessible in machine-readable formats 

(Python pickle of RDKit mols), SDFile, and human readable 

SMILES Tables (tabular, TSV).  

 

 

Fig. 9 | Adverse Effects Distribution. AEs distribution in SIDER obtained 

by selecting those with a Hepatobiliary Disorders, as defined by the 

MedDRA ontology. A threshold of 40 compounds is arbitrary selected as 
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the minimum number of compounds to obtain reliable models, resulting in 

a total of 19 adverse effects QSAR models. y axis are the AEs. x axis is 

the total number of compounds where the AE appears. 

 

Mulliner dataset. Mulliner dataset was extracted from [59] 

containing 3712 compounds with preclinical and clinical DILI 

annotations. We filtered this dataset removing compounds 

without human clinical annotations. 2172 out of 3712 

compounds available in the dataset were labelled as human 

(H_HT endpoint) DILI positive.  

 

DILIrank dataset [63]. DILIrank is an open access project at 

the FDA’s National Centre for Toxicological Research to 

study DILI. It contains 1036 compounds labelled with different 

DILI concern levels: i) 192 vMost-DILI-concern, ii) 278 vLess-

DILI-concern, iii) 312 v-No-DILI-concern, and iv) 254 

Ambiguous-DILI-concern. Drugs with an ambiguous call label 

were removed. 

 

Pfizer dataset. The Pfizer dataset contains 626 compounds 

with different DILI annotations extracted from [125]. From the 

original Pfizer dataset, only those with evidence of human 

hepatotoxicity (HH label) (273 compounds), and those with no 

evidence of human hepatotoxicity (NE label) (152 

compounds) were considered in this work. 

 

Among these compounds, 16 compounds had same CASRN 

with a different name and 1 compound with both same 
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CASRN and name. Those molecules were manually checked. 

We fixed incorrect CASRN such as Naltrexone and 

Methotrexate which were clearly different molecules. We 

removed molecules with different hepatotoxicity label and 

duplicates. Finally, we obtained 407 out of 626 molecules 

from the original dataset. 

 

We used our ad-hoc tool made within the group to resolve the 

structure by CAS or chemical name. 406 structures were 

retrieved successfully. We eliminated Auranofin with CASRN 

34031-32-8 due to the fact that our tool could not retrieve the 

structure and it contained gold metal which is not treatable 

with our methods. 

 

Structures were canonicalized using molVS and then 

neutralized and standardized using standardizer. 35 entries 

did not pass the protocol because they contained more than 

one molecule. After a manual check, 6 molecules were 

eliminated, cyanocobalamine, ammonium chloride, sodium 

chloride, FeSO4, arsenic trioxide and cisplatin. Then, two-

dimensional structures (395) were computed using RDKit. 

Next, reasonable three-dimensional structures (395) were 

obtained using RDKit. The ionization state of every 

compound was adjusted to pH 7.4 using MoKa. Moreover, 

parent InChIs and InChI keys (standard and non-standard) 

plus parent smiles were computed. 
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Duplicates were checked and dropped in every step by using 

the non-standard InChI key as identifier keeping the 

information of dropped molecules where differences were 

found. 4 duplicates were identified in 2D computation step, 

such as streptomycin sulphate and streptomycin. Finally, 395 

molecules were saved in machine-readable (Python pickle of 

RDKit mols), SDFile, and human readable SMILES Tables 

(tabular, TSV). 

 

O’Brien dataset [126]. The 40-compound dataset was 

extracted from the tables provided by [55] in supporting 

information section. 

 

DrugBank database [45]. The latest release of DrugBank 

(version 5.1.3, released 2019-04-02) was downloaded. This 

database includes 2587 approved small molecule drugs, 

1287 approved biotech (protein/peptide) drugs, 130 

nutraceuticals and over 6305 experimental drugs among 

others. In this work, only the approved small molecule drugs 

set was considered. 

 

3.4. DILI Sets Toxicity Criteria 

 

Labelling a compound as DILI positive is not an easy task. In 

the datasets described above, expert toxicologists use 

different criteria to assign DILI as positive. 
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DILIrank. Includes verification of DILI causality provided by 

experts. 

 

Pfizer. DILI positive drugs include those withdrawn from the 

market mainly due to hepatotoxicity [125], those not marketed 

in the United States due to hepatotoxicity, those that received 

black box warnings from the Food and Drug Administration 

(FDA) due to hepatotoxicity, those that are marketed with 

hepatotoxicity warnings in their labels and others that had 

more than 10 well-known associations to liver injury.  

 

Obrien. The criteria taken by O´Brien et al. are the following: 

severe human hepatotoxicity was attributed to drugs 

producing more than 1% frequency of increased serum 

Alanine Aminotransferase (ALT) plus two of either (1) 

jaundice, (2) more than three reports of liver failure, or (3) a 

black box warning. Moderate human hepatotoxicity was 

ascribed to drugs producing 0.1–1% frequency of increased 

serum ALT plus either jaundice or a label of occurrence of 

adverse effect. Non-toxic or minimally toxic drugs were 

defined as those with less than 0.1% frequency of increased 

ALT and associated with no clinical symptoms. The fourth 

category consists of drugs that were not known to be 

hepatotoxic but were known to have other organ toxicities 

[126]. 
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Mulliner. A compound was classified as positive when a 

finding associated with a particular endpoint and dose was 

reported or at least one associated endpoint at a lower level 

was positive. Accordingly, a compound was classified as 

negative if no associated findings or all lower level endpoints 

were negative [59]. 

 

3.5. Dataset Structure Generation 
 

The structure retrieval and normalization procedure (see 

Figure 8 in section 3.2.) was applied to the ATC dataset to 

obtain the final structures. Then, ATC codes were used as a 

key identifier for merging with the other datasets described in 

section 3.3. that did not contain structures. If the ATC code 

was not available, the structure retrieval and normalization 

protocol was applied to obtain the associated structures. 

 

3.6. Similarity Analysis 
 

3.6.1. Similarity Metrics 
 

Table 3 lists the metrics used in results section 4.2. They 

required bit-vector biological or chemical fingerprints (e.g. 

Morgan, AEs, …) or continuous chemical or biological 

properties (e.g. lipophilicity, solubility, molecular weight, 

protein binding, …) to compare chemicals. This was used for 
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comparing DILI toxic / DILI no toxic properties of chemicals 

(e.g. biological assays with a positive or negative outcomes). 

 

Table 3 | Metrics to assess similarity between two molecules. 

Extracted from [93]. 

Metrics Equation for continues variables 

Equation for 

dichotomous 

variables 

Tanimoto 

or Jaccard 
𝐽𝐴,𝐵 =  

[∑ 𝑋𝑗𝐴
𝑛
𝑗=1 𝑋𝑗𝐵]

[∑ (𝑋𝑗𝐴)
2𝑛

𝑗=1 +  ∑ (𝑋𝑗𝐵)
2𝑛

𝑗=1 − ∑ 𝑋𝑗𝐴
𝑛
𝑗=1 𝑋𝑗𝐵]

 𝐽𝐴,𝐵 =  
𝑐

(𝑎 + 𝑏 − 𝑐)
 

Euclidean 𝐸𝐴,𝐵 =  [∑ (𝑋𝑗𝐴 − 𝑋𝑗𝐵)
2𝑛

𝑗=1
]

1
2⁄

 𝐸𝐴,𝐵 = √𝑎 + 𝑏 − 2𝑐
2

 

Manhattan 𝑀𝐴,𝐵 =  ∑ |𝑋𝑗𝐴 − 𝑋𝑗𝐵|
𝑛

𝑗=1
 𝑀𝐴,𝐵 =  𝑎 + 𝑏 − 2𝑐 

Cosine 𝐶𝐴,𝐵 = [∑ 𝑋𝑗𝐴

𝑛

𝑗=1
𝑋𝑗𝐵] [∑ (𝑋𝑗𝐴)

2
+

𝑛

𝑗=1
∑ (𝑋𝑗𝐵)

2𝑛

𝑗=1
]

1
2⁄

⁄  𝐶𝐴,𝐵 =  
𝑐

√𝑎 + 𝑏
2  

A and B for molecule A and B respectively. Xj means the j-th feature of a molecule A or B. a 

and b are the number of bits in molecule A and B respectively, while c is the number of bits 

that are in both molecules. 

 

Similarity is calculated using the metrics shown in Table 3 

using the following equation: 

 

𝑆𝑖𝑚 =  1 −
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑑𝑚𝑎𝑥(𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒95)
 Eq. 2 
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where distance is JA,B, EA,B, MA,B and CA,B (see Table 3), dmax 

is the maximum distance value calculated as the percentile 

95 using the reference dataset distances, in other words, the 

maximum distance indicating the value under which 95% of 

distances are observed in the reference dataset. Sim value 

will range between 0 and 1, where 1 corresponds to   

identical molecules whose distance is 0.  

 

3.6.2. Read Across Similarity Metrics 

Assessment 

 

The correlation matrix pandas function [106] was used to 

calculate the similarity scores using four different metrics 

(Jaccard, Cosine, Euclidean and City-Block) (available via 

scipy [127]) applying equation 2 described above for reading 

across. All these metrics can handle dichotomous and non-

dichotomous variables. Many times, we need to handle data 

plenty of noise hampering the toxicity evaluation [128]. For 

this reason, to check whether biased metrics generated by 

supervised classifiers describe the bioisosterism better than 

raw (non-supervised) similarity metrics, we followed two 

strategies, i) unbiased RA and ii) biased RA, which are 

pictured at the top and at the bottom Figure 10, respectively. 

As illustrated in Figure 10, the first part (A and B) is shared in 

both strategies: A dataset containing experimental toxicity 

information (DILI) was used. Morgan fingerprints (2048) were 

calculated for each molecule. In order to see how the 
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performance decreases, 5000 random binary numbers were 

added as noise, using numpy and a random seed of 1987 to 

be reproducible afterwards. The matrix was transposed to 

obtain compounds as columns instead of rows. Then, the 

corresponding correlation matrix for the similarity metrics 

mentioned above was calculated, with/out adding random 

noise, over [0,5000] in increments of 50 until 300, then adding 

400, 500, 1000 and 5000 obtaining 11 matrices of 

descriptors.  

 

 

Fig. 10 | Read Across similarity metrics assessment workflow. Both 

biased and unbiased RA share A, B and C steps. A) Morgan Fingerprints 

Calculation, B) adding random noise and C) calculating the stacked matrix 

allowing the identification of bioisosters, activity cliffs and grouping. 

Unbiased RA: Red path with 2 steps: 1) Transpose Matrix, 2) Correlation 

matrix calculation using four different distance metrics (see Table 4). Biased 

RA: Green path with four steps: 1) PLS coefficients calculation with two 

Latent Variables. 2) Multiply the transposed descriptors matrix by the PLS 

coefficients to obtain 3) the transposed weighted matrix incorporating DILI 
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biological information. 4) Correlation matrix calculation using 4 different 

distance metrics (see Table 4). 

 

3.6.2.1. Unbiased RA 

 

As can be seen from the top right (purple-red path) in Figure 

10, the previous correlation matrix was stacked, compounds 

with the same row and column by identifier were dropped 

(here: non-Standard InChI Key), to finally be merged with the 

original data set to obtain information on DILI toxicity and 

ATC category. 

 

Then, a grid search was performed by allowing the similarity 

cut-off to vary in the interval [0,1] by increments of 0.05 (e.g. 

0-1, 0.05-1, ...,0.9-1) to calculate the quality parameters 

described below.  

 

3.6.2.2. Biased RA 

 

As illustrated at the bottom left (purple-red path) of Figure 10, 

to avoid the random noise penalization, and to add biological 

information to the chemical descriptors, a PLS (explained 

below) with two Latent Variables was run with the 11 matrices 

of descriptors as X and DILI experimental value as Y. Then, 

PLS coefficients were retrieved to see the feature importance 

(Figure 10).  Note that, the PLS coefficients were multiplied 
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by the corresponding transposed matrix, obtaining a 

transposed weighted matrix, giving higher importance to the 

variables that better explain DILI. Then, the correlation matrix 

was stacked, and compounds with the same row and column 

by chemical identifier were dropped (here: non-Standard 

InChI Key) to finally be merged with the original data set to 

obtain information on DILI toxicity and ATC category. 

 

3.6.3. Quality Similarity Assessment 

 

For the quality assessment, a grid searching was performed 

by allowing the similarity cut-off to vary in [0,1] with 

increments of 0.05 (e.g. 0-1, 0.05-1, ...,0.9-1) to calculate the 

quality parameters summarized in Table 4.  

 

Table 4 | Qualitative assessment parameters equations. 

Quality 

Parameter 
Keyword Formula 

Sensitivity Sens 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity Spec 
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

Matthews 

Correlation 

Coefficient 

MCC 
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

Activity Cliffs ACff 
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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Quality 

Parameter 
Keyword Formula 

Bioisosters Biois 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

 

3.6.4. Similarity Majority Voting Approach 
 

For assessing the similarity between a query compound (so 

called “target”) and compounds in a dataset (“so called 

“source”) DILI consensus values were computed by assigning 

the value of (1) to positive and (0) to negative compounds 

calculating the mean of the top 10 similar compounds. If this 

mean value > 0.55 we assign positive (1), if mean value < 

0.45 we assign negative (0), else: out of domain (2).  

 

3.7. SIDER Overlapping for Validation Sets 

 

All DILI sets into 2 datasets were divided by checking the 

overlapping with SIDER dataset. Overlapping molecules were 

kept, with similarity distance greater or equal to 0.9 to any 

SIDER compound, calculating distances using Morgan 

fingerprints with radius 3 and Jaccard similarity.  
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Table 5 lists the number of overlapping and non-overlapping 

SIDER molecules in all DILIsets. Non-overlapping datasets 

were used as external validation sets for QSAR modelling 

and Most DILIrank dataset as benchmark dataset was used 

for similarity metrics analysis.  

 

Table 5 | Overlapping and non-overlapping SIDER datasets. 

Clinical datasets 

with experimental 

DILI value 

Biological datasets 
SIDER 

Overlap 

SIDER Non-

Overlap 

dataset mols AEs datasets mols pos neg Total pos neg Total 

SIDER 937 19 

Mulliner 2172 505 107 612 933 627 1560 

lessDILIrank 663 278 223 501 63 99 162 

mostDILIrank 528 128 223 351 78 99 177 

Pfizer 378 150 81 231 92 55 147 

Obrien 40 0 0 0 25 15 40 

 

Figure 11 display two PCA scores plots, showing a non-

SIDER and SIDER overlapping compounds between 

DILIsets. In Figure 11A, is clearly represented the chemical 

space covered by all DILI sets, where Mulliner, mostDILIrank 

and lessDILIrank are the ones covering a large part of the 

SIDER chemical space. Conversely, Pfizer and O’Brien 

datasets covered on a small part of the SIDER chemical 

space.  
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Fig. 11 | SIDER versus DILIsets overlapping PCA. A) Non-SIDER 

overlapping representation. B) SIDER overlapping analysis. Principal 

component analysis using Morgan Fingerprints (2048). Big grey dots 

representing SIDER dataset. Red and Orange dots for Less and Most 

DILIrank sets respectively.  Purple dots for Pfizer dataset. Finally, O’Brien 

dataset as green dots.   

 

 

Combination Dataset [45]. We built a combination dataset 

for validation with the aim of testing how predictions would 

work in the real world which contains either DILIrank, 

Mulliner, O’brien and Pfizer molecules without duplicates and 

non-overlapping DrugBank small molecule drugs (1405). 

First, we removed some molecules from DILIrank general 

dataset containing 20 'nan' and 218 Ambiguous DILI-concern 

values. Then, for the other labels, vLess-DILI-Concern and 

vMost-DILI-Concern, and vNo-DILI-concern, 1 and 0 values 

were assigned respectively. Second, we combined DILIrank, 

Mulliner, O’brien and Pfizer datasets. We found 609 
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duplicates out of 3281 molecules. We removed duplicates 

and we curated DILI activity value applying majority voting.  

We obtained 2672 molecules. Finally, we combined the 

previous dataset with non-overlapping DrugBank molecules 

(1405), which contains 4077 molecules. 

 

3.8. Modelling 

 

3.8.1. Descriptors 

 

For building models, we need to calculate properties of the 

molecules. We used the RDKit tool to generate the 200 

molecular descriptors used when building QSAR models.  

 

3.8.2. Partial Least Squares (PLS) 
 

The scikit-learn Partial Least Squares Regression (PLS-R) 

[129] using Nonlinear Iterative Partial Least Squares 

(NIPALS) algorithm was used. Coefficients were used to 

weight our descriptors in RA analysis and to rank AEs in the 

QSAR analysis, building a PLS model using the predictions 

from every model as descriptors (X) and the experimental 

DILI toxicity value (Y). 
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3.8.3. Conformal Random Forest (C-RF) 

 

A python customized version of the scikit-learn Random 

Forest Classifier (RF-C) using conformal predictions was 

used to build the models using Flame [115]. The number of 

trees (n_estimators), and maximum features (features) were 

optimised using a grid search algorithm to obtain optimum 

values according to Out Of Bag (OOB) criterion. Then, a 

comparable evaluation of the model predictive quality was 

performed by applying 5 Kfold cross-validation.  The 

applicability domain of the models was assessed by using the 

conformal approach [130]. The performance of the qualitative 

models has been assessed computing the sensitivity, 

specificity and Matthews Correlation Coefficient, as described 

in Table 4, but also the conformal coverage which is the 

sample percentage within the applicability domain of the 

conformal estimator at a significance given. In other words, 

lets assume that a data set contains 1000 compounds, if a 

conformal estimator is valid at 0.9 confidence level, then a 

maximum of 100 compounds are allowed to be miss-

predicted [130]. The conformal coverage would be the 

compounds predicted percentage within this applicability 

domain.  Finally, all models were validated by predicting the 

test series and computing the external sensitivity, specificity, 

MCC and Applicability domain parameters. 
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3.8.4. AE QSAR Models 
 

AE QSAR models were built using FLAME modelling 

framework [115]. Random forest under conformal prediction 

framework was selected as machine learning algorithm. 

Detailed information on the models is available in annex 

(Table S7). Finally, RDkit descriptors were used as molecule 

representation. For a given AE, negatives were taken from 

other SIDER compounds with different hepatobiliary AE and 

also from compounds not showing any hepatic AE from 

SIDER. Later, at model building, negative instances are 

subsampled to even positive instances. 

 

3.8.5. Expert Models 
 

The “expert models” are machine-learning models fitted using 

AE predictions as explanatory variables and DILI outcome as 

response variables. Expert models were built using the same 

modelling settings used in AE QSAR models. In this case we 

used predictions from AEs QSAR models as explanatory 

variables and DILI label as response variable. Compounds 

from DILI databases not being present in SIDER were 

considered to train the model. 
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3.8.6. Optimizing AEs Models by Progressively 

Combining Predictions 

 

Relevant AEs predictions were used for predicting clinical 

DILI toxicity. That was done to increase the quality of 

diagnosing hepatotoxicity predictions. Thus, SIDER dataset 

was used to build conformal Random Forest AEs models 

(Figure 12B) using RDKit chemical descriptors. Those models 

were filtered by keeping the ones with MCC greater or equal 

to 0.3 (Figure 12C). Dataset showing no SIDER overlapping 

was used as validation sets (Figure 12D).  

 

Then, we built a PLS model (Fig. 12E) using predictions from 

every AE model as descriptors (X) and the experimental 

clinical DILI toxicity value (Y) in order to get a ranking of 

biological descriptors using the PLS coefficients output.  A 

comparison among all sources is performed as could be seen 

from Figure 18 in results section. Finally, the biological 

relevant AEs predictions were used to increase the quality of 

hepatotoxicity assessment using a consensus approach 

described above (Figure 12F). 
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Fig. 12 | Detailed modelling workflow used to develop AEs QSARs 

models. A) retrieval of training dataset per AE from SIDER. B) Model 

building for every AE using RDKit chemical descriptors. C) Selection of 

high-quality models (MCC >= 0.3). D) AE predictions on validation sets. E) 

PLS analysis of predictions. We obtained PLS scores account for AE 

importance on DILI assessment. F) Combination of relevant AE predictions 

to increase the accuracy of hepatotoxicity assignment using a consensus 

approach (majority voting). 
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4. RESULTS 

 

Overview of Results 

 

The main aim of this thesis is to develop novel similarity-

based tools adapted to the Chemical Safety Assessment 

(CSA) of drugs. Liver toxicity will be used as an example of 

toxicity endpoint due to its particular relevance in the drug 

development pipeline. 

 

The proposed approach involves five steps: (1) Data 

collection, (2) identification of the best similarity metrics, (3)  

validation of the similarity metrics, applying them in RA (4) 

development of QSAR modelling strategies (5) Implement the 

RA and QSAR models in suitable software tools 

 

(1) To do so, we started collecting datasets (see Table 1) 

annotated with their DILI properties from diverse open 

access data sources. These datasets were curated 

and processed to obtain robust and reliable models.  

 

(2) We benchmarked the similarity metrics performance 

in RA to compare prediction based on similarity with 

experimental annotations. This made it possible for 

us to identify bioisosters molecules and activity cliffs. 

The strategy here extends the classic concept of 

structural similarity incorporating additional 



 

 72 

properties, like, for example, experimental data 

describing biological properties (related to 

hepatotoxicity) of the compounds.  

 

(3) We validated these best similarity metrics obtained, 

performing a systematic comparison with a collection 

of similarity descriptors (morgan fingerpints, 

pharmacophoric fingerprints, biofingerprints and 

RDKit molecular descriptors) and use RA to predict 

DILI.   

 

(4) We developed QSAR modelling strategies. We 

proposed two approaches to evaluate DILI: i) 

Optimizing biological models (AEs) by progressively 

combining predictions, finding the optimal 

combination using a consensus approach (majority 

voting) and ii) expert models using biological 

predictions as descriptors. 

 

(5) In order to guarantee reproducible results, we 

developed all this work in Jupyter Notebooks which 

works with the software packages described in Table 

1 from methods section. These notebooks facilitate 

the selection of the best similarity metrics and 

descriptors to obtain similar compounds from a 

reference dataset and can be used for balancing 

datasets or to create homologous categorized 
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datasets among many other things. But also, to build 

QSAR models to predict DILI. 

 

4.1. Data Collection 
 

We collected different datasets for supporting the selection of 

the best similarity metrics and for building the QSAR models. 

Our aim was to obtain data representative of the situations 

faced in clinical research, more specifically, clinical data 

containing information about liver toxicity.  

 

Table 6 lists benchmarking datasets collected. Information 

about the origin and normalization protocol can be found in 

methods section 2.2. All these datasets were extracted from 

open access sources (see Table 1). We included these 

datasets to represent part of the chemical universe, because 

they contain highly valuable information to be used for 

modelling Hepatotoxicity. 

 

Table 6 | Datasets collection covering part of the drug 

development universe. 

Drug 

development 

level 

Dataset Reference 

Chemical ATC [119] 

Clinical Mulliner [131] 

Clinical SIDER [120–122] 
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Drug 

development 

level 

Dataset Reference 

Clinical DILIrank [132,133] 

Clinical Pfizer [133] 

Clinical Obrien [133] 

 

4.2. Best Similarity Metrics Identification 
 

The metrics used in this work were listed on Table 3 (see 

methods section 3.6.1.). These metrics were selected 

because they are the most well-known used for similarity 

assessment and they can deal with binary and non-binary 

variables [93]. Frequently, we need to handle data with plenty 

of noise which difficult the toxicity evaluation.  

 

For this reason, to check whether biased metrics generated 

by supervised classifiers better describe the bioisosterism 

than raw (non-biased) similarity metrics, we test the potential 

advantages of biased metrics and the resilience of the metrics 

to the presence in the descriptors set of non-relevant 

information. We planned to choose the best similarity metrics 

by benchmarking the similarity metrics performance in RA to 

compare predicted with experimental annotations in order to 

identify the ability of the methods for identifying bioisosters 

molecules and activity cliffs. In the quality assessment (see 

section 3.6.2.) we performed a grid searching by allowing 
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similarity cut-off to vary over [0,1] in increments of 0.05 (e.g. 

0-1, 0.05-1, ...,0.9-1) to calculate the quality parameters 

summarized on Table 4 (see methods section 3.6.3.). The 

Matthews Correlation Coefficient (MCC) was the main quality 

parameter used to select the best similarity metric. The 

strategy here extends the classic concept of structural 

similarity incorporating additional properties, like, e.g., 

experimental data describing biological properties (related to 

hepatotoxicity) of the compounds. 

 

For this analysis, we used the overlapping molecules (for 

more information about overlapping analysis, see methods 

section 3.7.) between SIDER and DILIrank dataset containing 

100 vMost DILI-concern (as experimental DILI positives) and 

152 vNon DILI-concern (as experimental DILI negatives). 

From this dataset we obtained SIDER information (AEs, ATC 

category, …) plus DILI experimental toxicity. 

 

The simplistic concept of reading across to predict 

hepatotoxicity of compounds using inferences based on their 

biological and/or chemical similarity to other compounds was 

performed. In order to see how the performance decreases, 

we added 5000 random binary numbers as noise. Following 

the unbiased and biased protocol described in methods 

section 3.6.2 (see Figure 10), we followed both the unbiased 

and biased RA protocols described in above performing i) 

unbiased RA (see methods section 3.6.2.1.), ii) biased RA 
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(see methods section 3.6.2.2.)  using the most widely used 

descriptor (2048 Morgan Fingerprints with radius 3) as 

molecule representation and iii) the similarity metrics 

comparison between both unbiased and biased RA, 

identifying the best RA method to be applied in the Validation 

section. 

 

4.2.1. Unbiased RA 
 

Unbiased methods are a valuable tool when one does not 

have any toxicity experimental information. In this section we 

want to show the performance obtained by using a non-

biased RA method, to be compared afterwards with the 

biased one. We calculated the quality parameters as 

described in methods section 3.6.2.1. We consider MCC 

equal or greater than 0.3 to have acceptable quality. As can 

be seen in Figures 13A and 13B, as we add random noise 

the performance decreases in both MCC and the number of 

molecules present in the similarity range chosen for 

Euclidean and City-Block   but Jaccard and Cosine are not so 

sensitive to random noise. After adding 50 random numbers, 

the Matthews correlation coefficient (MCC) is clearly 

penalized by the noise.  

 

For example, in the 0.5-1 similarity cut-off range, where one 

can find quite similar molecules (20 to 200) (see Figure 13B), 

MCC ranges from 0.1 to 0.9 without adding random noise. On 
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the other hand, when adding 100 random numbers, only 

cosine metric still gets a good MCC, whilst the remaining 

obtaining 0 as MCC.  

 

 

Fig.13 | Performance of Unbiased RA. A) MCC in y axis and similarity 

cut-off from 0 to 1 in x axis.  B) n molecules in y axis and similarity cut-off 

from 0 to 1 x axis. A and B) Metrics comparison using different 

descriptors. Jaccard in red, Euclidean in orange, Cosine in blue and city-

block in black. 
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4.2.2. Biased RA 
 

Our hypothesis is that biased methods can mitigate the 

negative effect of non-relevant variables and contribute to a 

better performance by giving more importance to the 

variables which correlate with the biological outcome. In this 

exercise we simulated this effect with the addition of random 

variables. To test this hypothesis, we ran a PLS with 2 Latent 

Variables to the 11 matrixes of descriptors as X and DILI 

experimental value as Y.  

 

Next, we retrieved the PLS coefficients to see the feature 

importance as can be seen in Figure 14.  Note that, we 

multiplied the PLS coefficients by corresponding transposed 

matrix, obtaining a transposed weighted matrix, giving higher 

importance to the variables that explain better DILI. Then, we 

stacked the correlation matrix, dropped compounds with 

same source and target InChI Keys, to finally merge with the 

original dataset to obtain information about DILI toxicity plus 

ATC category information. 

 

We calculated the quality parameters as described in 

methods section 3.6.2.1. We consider MCC equal or greater 

than 0.3 to have acceptable quality. As can be seen in 

Figures 15A and 15B, as we add random noise the 

performance decreases in both MCC and the number of 

molecules present in the similarity range chosen for 
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Euclidean and City-Block but Jaccard and Cosine are not as 

sensitive to random noise. 

 

 

Fig. 14 | PLS coefficients performance in Biased RA. Random noise (in 

red) was added to the 2048 bit Morgan fingerprints (in blue) vector from 0 

to 5000. 

 

Analyzing the effect of a biased metric by comparing the 

results shown in section 4.2.1. obtained in the unbiased 

methods we could observe that only after adding 200 random 

numbers is the Matthews correlation coefficient (MCC) 

penalized by the noise, showing that the negative effect of 
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non-relevant variables was mitigated, contributing to a better 

performance.  

 

Figure 15 | Performance of Biased RA similarity. A) MCC in y axis and 

similarity cut-off from 0 to 1 in x axis.  B) n molecules in y axis and 

similarity cut-off from 0 to 1 x axis. A and B) Metrics comparison using 

different descriptors. Jaccard in red, Euclidean in orange, Cosine in blue 

and city-block in black. 

 

For example, in the 0.5-1 similarity cut-off range, where one 

can find quite similar molecules (40 to 250 molecules), MCC 

ranges from 0.3 to 0.9 without adding random noise. On the 
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other hand, when adding more than 200 random numbers, 

cosine and city-block metrics still gets an acceptable MCC, 

whilst the remaining ones obtains 0 as MCC.  

 

4.3. Similarity Validation 
 

4.3.1. Similarity Metrics Validation 

 

As we saw in the previous section, biased RA was performing 

better than the unbiased one. We used the biased RA 

method not only because it performed better but also 

because we wanted to reduce the negative effect of non-

relevant variables giving more importance to the variables 

which correlate with DILI endpoint using the PLS coefficients. 

We dealt with different binary and non-binary descriptors. 

Therefore, using the whole information learnt, we validated 

these similarity metrics, performing a systematic comparison 

with the most widely used descriptors (see descriptors Table 

7) alone but also combined (e.g. Morgan fingerprints plus 

RDkit descriptors plus bio fingerprints). This was done to see 

if we will get better information about similarity, for example: 

are Morgan fingerprints (2048 variables) giving you better 

similarity explanation than RDkit molecular descriptors (200 

variables)?  Will a combination give us better results as we 

will expect? Will biological information add something better 

to distinguish activity cliffs? 
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Table 7 | Chemical and Biological molecular descriptors. 

Descriptors type Description 

Morgan fingerprints chemical fingerprints 

Pharmacophores chemical fingerprints 

RDKit MD 
Physico-

chemical 

Molecular 

descriptors 

Adverse effects 

(AEs) 
In vivo Clinical Biofingerprints 

 

To do so, we calculated 4 different descriptors (see Table 7). 

We used the standard scaler to scale the matrix producing 

variables with average 0 and variance 1. Then, we ran PLS 

using different descriptors combination to see the feature 

importance as we performed above in biased RA.  

 

We finally discarded pharmacophoric descriptors and the 

combinations containing them because they are too sparse 

(nearly 30000 fingerprints) and they did not show an 

acceptable predictive ability of the model nor the quality of the 

biased metric, therefore they cannot explain better DILI 

endpoint than the other descriptors. Following the biased RA 

protocol, we calculated the quality parameters as described in 

methods section 3.6.2.2. We consider MCC equal or greater 

than 0.3 to have an acceptable quality. 
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Fig. 16 | Descriptors combination performance using Biased RA 

similarity. A and C) MCC in y axis and similarity cut-off from 0 to 1 in x 

axis.  B and D) n molecules in y axis and similarity cut-off from 0 to 1 x 

axis. A and B) Metrics comparison using different descriptors. Jaccard in 

red, Euclidean in orange, Cosine in blue and City-block in black. C and D) 

Descriptors comparison using different metrics. Morgan fingerprints 

(morganfp) in red, rdkit in orange, Biofingerprints (biofp) in blue, morganfp 

plus rdkit in purple, morganfp plus biofp in green, morganfp plus rdkit plus 

biofp in grey and rdkit plus biofp in black.  

 

Figures 16A and 16B show the 7 descriptors combination 

graphs using the 4 similarity metrics described in methods 

section 3.6.1, showing the MCC and number of molecules in 

a similarity range cut-off respectively.  In general, we can see 



 

 84 

a similar trend in the 7 descriptors combinations for both MCC 

and number of molecules. Surprisingly, the Jaccard similarity 

is the only one which gets slightly lower performance, 

showing that for non-binary descriptors does not perform as 

well as the other ones. Cosine similarity fluctuates in some 

cases such as when using only biofingerprints have MCC 

values around 0 in all similarity ranges. Additionally, we 

represented the same results in an alternative manner 

showing a descriptors comparison using the 4 similarity 

metrics mentioned before as illustrated in Figures 16C and 

16D, representing the MCC and the number of molecules in 

the similarity range given respectively. Here, it is clearly 

depicted that biofingerprints on their own shows different 

trend for all metrics used. Comparing both representations, 

we can conclude that Euclidean and City-block are the best 

similarity metrics because the obtain a MCC higher than 0.3 

maintaining the number of molecules tested in ranges from 

100 to 260 in similarity cut-off ranges from [0.4-1] to [0.7-1]. 

 

4.3.2. Similarity RA Consensus Examples 
  

We ran all these analysis with the aim of picking the best 

similarity metric which allows us to get a good similarity 

between a query compound (so called “target”) and 

compounds in a dataset (“so called “source”). To check the 

performance of the different metrics we run the similarity test 

using diverse example targets, and descriptors combinations. 
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As described in methods section 3.6.2, we filtered the 

similarity stacked matrix, sorting values by Jaccard similarity 

over the 7 descriptor combinations. Next, we obtained the 10 

first source most similar compounds to the target compound 

as illustrated through Figures 17 and 18. Figure 17 shows 

one example sorted by Jaccard similarity calculated with 

Morgan fingerprints and Figure 18 shows a chemical structure 

representation. To see more examples sorting by Jaccard 

using the rest of combinations see Figures S1-S6 in annex.  

 

We can also observe the behaviour of the remaining metrics 

for this particular target compound, in this case clarithromycin 

which is DILI positive.  Applying the consensus rules 

described in methods section 3.6.4, we obtain a DILI positive 

consensus value with a similarity cut-off higher than 0.6 and 

applicability domain 70% ±10%. Here, Nystatin  which is DILI 

negative obtained for some descriptors combination (such as 

RDKit) higher similarity values than 0.6 which can be 

considered as possible activity cliff but if we have a look at 

the biofingerprints similarity and it clearly obtains 0 similarity 

score in all of metrics used, then we can discard this 

compound. It seems that here the best combinations are i) 

morgan fingerprints plus biofingerprints and the one adding ii) 

morgan fingerprints, biofingerprints and RDKit molecular 

descriptors. 
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Fig. 17 | Radial plot Biased RA using combination of descriptors 

from Table 7. These compounds are ordered by Jaccard metric using 

morgan fingerprints. Legend) 0 and 1 mean DILI negative and positive, 

respectively. Clarithromycin is the reference compound and is DILI 

positive. 10 best clarithromycin similar compounds represented in radial 

plot format. Morgan fingerprints (morganfp) in red, rdkit in orange, 

Biofingerprints (biofp) in blue, morganfp plus rdkit in purple, morganfp plus 

biofp in green, morganfp plus rdkit plus biofp in grey and rdkit plus biofp in 

black. 
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Fig. 18 | Similarity chemical structures representation. Ten best 

similar structures to clarithromycin (reference one) representation being 

erythromycin the most similar and esmolol the less one. 

 

4.4. Adverse Effect QSAR Models 
 

Another way to obtain DILI predictions is taking advantage of 

QSAR models. So far, we generated many similarity biased 

read across models to obtain bioisosters of a target molecule, 

making the assumption that similar compounds have similar 

biological properties. In this work we used a similar approach 

employed by Liu. et al. [23] by building QSAR models to 

predict hepatic adverse effects with the final aim of using their 

predictions to build expert models to incriminate DILI. 



 

 88 

 

We used the SIDER dataset containing AEs (see section 3.3 

methods) to build 19 Random Forest AE QSAR models under 

the conformal prediction framework (see section 3.8.3.) 

following the protocol described in Figure 12 from methods 

using RDkit descriptors (200 descriptors) as a molecular 

representation. Conformal significance of the model was set 

to 0.20 (80% of confidence). Quality statistics for internal 5-

fold cross-validation for each model are summarized in Table 

8.  

 

Table 8 | Performance of AEs models in internal validation. 

Endpoint Sensitivity Specificity MCCa Coverage Accuracy 

Jaundice cholestatic 0.81 0.74 0.55 0.54 0.78 

Hyperbilirubinaemia 0.71 0.83 0.54 0.6 0.77 

Hepatic failure 0.78 0.75 0.53 0.63 0.77 

Cholelithiasis 0.74 0.77 0.51 0.41 0.75 

Cholestasis 0.74 0.71 0.45 0.55 0.73 

Hepatitis 0.74 0.7 0.44 0.55 0.72 

Jaundice 0.76 0.66 0.43 0.55 0.71 

Hepatobiliary disease 0.75 0.65 0.41 0.48 0.71 

Hepatomegaly 0.69 0.67 0.36 0.44 0.68 

Hepatotoxicity 0.66 0.68 0.34 0.61 0.67 
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Endpoint Sensitivity Specificity MCCa Coverage Accuracy 

Hepatic function 

abnormal 
0.68 0.63 0.31 0.46 0.66 

aMatthews correlation coefficient. 

 

Only models with a Matthews correlation coefficient (MCC) 

[134] equal or greater than 0.3 were considered. Model 

accuracies range between 66-78% while MCCs vary from 

0.32 to 0.58 supporting balanced sensitivities and 

specificities. Model coverage (samples within the AD, see 

methods section 3.8.3.) is between 0.41 and 0.57, being 

penalized by the small dataset, the diverse chemical space 

covered, and the strict 5-fold internal cross-validation method. 

The use of conformal prediction [108,130] was critical as 

model performance decreases critically when not 

used  (annex S1 Table). 

 

4.4.1. QSAR AEs Model Validation 
 

Once the AEs models were built as shown in the previous 

section, we need to validate them so as they can be used for 

predicting DILI. The AEs models were externally validated 

using databases where compounds are labelled by their DILI 

activity. DILIrank [63], Mulliner [59], Pfizer [125] and O’Brien 

[126] databases were considered in this study. We took 

advantage of the criteria used by Liu et al. [55] to normalize 

DILI positives and negatives across the different databases 
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(see methods section 3.3). Only compounds not being 

present in SIDER were considered for the external validation. 

Two different methods for combining the results to generate 

an aggregated prediction were used; (1) by considering DILI 

positive if any adverse effect is predicted, and (2) by using a 

consensus approach defined as follows: if the number of 

positive AE assignments is equal or greater than the number 

of negative ones, the compound is classified as DILI positive, 

otherwise it was considered DILI negative. In both validation 

rules, if all AE predictions fall out of the AD, then the 

compound is classified as out of the AD. In order to maximize 

the predictive power of both considered rules, AE models 

were selected by iteratively adding AE predictions from most 

to less predictive AE (see next section) and computing the 

consensus performance for each dataset. AE selection leads 

to a considerable improvement of performance power for both 

rules  (see Figures S7-S11) but, differences in the effect of 

AE addition among datasets are noticeable: DILIrank and 

Mulliner datasets show a slight improvement in prediction 

performance obtaining a reasonable compromise between 

predictive ability and coverage with 4 and 7 AEs respectively. 

In the case of Pfizer and O’Brien datasets, the predictive 

power is considerably higher when optimization is applied. 

Table 9 shows the comparison between optimized and non-

optimized rules for the different external sets considered in 

this work.  
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Consensus rules classify a compound as DILI positive if 

number of positive AEs assignments is equal or greater than 

the number of negative ones, otherwise the compound is 

considered DILI negative. On the other hand, “any positive” 

rule labels a compound as positive if any of the predicted AEs 

is predicted.  

 

Table 9 | Performance of consensus and “any positive” rules 

in DILI prediction 

 
Non optimized Optimized 

MCCa Sens Spec nAE MCCa Sens Spec nAE 

Consensus 

Rule 

Most 

DILIrank 
0.26 0.61 0.66 11 0.49 0.73 0.78 4 

Pfizer 0.02 0.65 0.37 11 0.36 0.81 0.55 2 

O'brien 0.17 0.75 0.43 11 0.37 0.82 0.53 4 

Mulliner 0.24 0.75 0.50 11 0.27 0.74 0.52 4 

DrugBank 

+ others 
0.17 0.53 0.63 11 0.23 0.56 0.67 3 

Any 

positive 

rule 

Most 

DILIrank 
0.26 0.57 0.70 11 0.49 0.7 0.79 4 

Pfizer 0.09 0.67 0.43 11 0.36 0.81 0.55 2 

O'brien 0.47 0.80 0.67 11 0.37 0.82 0.53 4 

Mulliner 0.18 0.67 0.52 11 0.23 0.7 0.53 4 

DrugBank 

+ others 
0.14 0.48 0.67 11 0.23 0.55 0.68 3 

aMatthews correlation coefficient 
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4.4.2. Adverse Effect Analysis 
 

Both DILI labelling rules give the same importance to all AEs. 

Not all models have the same predictive power and not all 

AEs are equally important to label a compound as DILI 

positive or negative. We performed partial least squares 

(PLS) as described in methods section 3.8.2 and correlation 

analyses on compounds shared by SIDER (real AEs) and 

other databases in order to gain insight into the AE 

importance to incriminate DILI for each dataset, as reflected 

by the PLS coefficient values. Also, a similar analysis was 

performed using AE predictions on compounds do not 

present in SIDER in order to evaluate the predictive power of 

AE models for each dataset. Figure 19 shows the relative 

importance of AEs for the different datasets (PLS coefficients) 

in the DILI classification.  

 

In general, there is an agreement of most important AEs 

between datasets indicating that our models are able to 

capture their relative importance when evaluating a 

compound on its DILI potential. Hepatitis and jaundice are on 

average the most relevant predicted AE when classifying a 

compound as DILI positive. This can be attributed to the 

frequency and importance of these AEs in study reports. 

Interestingly, Jaundice cholestatic, the best AE model in 

internal validation, appears overrepresented in both the PLS 

and correlation analysis pointing out the importance of model 
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quality besides the AE importance. Detailed information on 

PLS scores and correlation analysis can be found in annex 

S2, S3, and S4 Tables. 

 

 

Fig. 19 | AEs PLS coefficients importance. PLS score plot for each AE 

in the different datasets considered in this work. Higher scores imply more 

correlation between AEs and DILI labelling.  

 

4.4.3. Expert Models 
 

Even if the model aggregation rules described in the previous 

sections work relatively well for the DILI assignment, it is 
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burdened by the arbitrariness in the number of AE used and 

the simplicity of the rule approaches. To overcome this 

problem, we introduce the concept of “expert models”. These 

“expert models” are machine-learning models using  

AE predictions as explanatory variables and DILI outcome as 

response variables. Unlike the consensus rule approach, 

“expert models” can learn relationships between AEs related 

to DILI classification, and provide confidence in DILI 

classification thanks to the use of conformal prediction. 

“Expert models” were created for each dataset using AE 

predictions of compounds not being present in SIDER and 

externally validated using remaining datasets (compounds 

not being present in SIDER nor training set). Table 10 shows 

the performance of “expert models” for internal validation (5-

fold) and external-validation. Mulliner expert model shows the 

higher absolute values in performance external validation 

(MCC of 0.61 on average, not weighted by dataset size) with 

the highest coverage (0.42). Pfizer expert model shows a 

similar performance to Mulliner expert model, but the 

coverage decreases to 0.15. Finally, DILIrank expert model 

reaches a MCC of 0.49 with 0.30 of coverage.  
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Table 10 | Performance of expert models in internal and 

external validation. 

 Quality parameters DILIrank Pfizer Mulliner 

Internal validation 

MCC 0.67 0 0.37 

Sensitivity 0.82 0 0.59 

Specificity 0.85 1 0.78 

Coverage 0.35 0.07 0.31 

Accuracy 0.84 0.37 0.69 

Conformal yes yes yes 

Significance 0.1 0.1 0.1 

External sets 

DILIrank 

MCC - 0.48 0.63 

Sensitivity - 0.6 0.9 

Specificity - 0.86 0.77 

Coverage - 0.16 0.34 

Accuracy - 0.75 0.81 

Conformal - yes yes 

Significance - 0.1 0.1 

Pfizer 

MCC 0.32 - 0.38 

Sensitivity 0.73 - 0.65 

Specificity 0.59 - 0.73 

Coverage 0.25 - 0.4 

Accuracy 0.66 - 0.69 

Conformal yes - yes 
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 Quality parameters DILIrank Pfizer Mulliner 

Significance 0.1 - 0.1 

O’brien 

MCC 0.78 1 0.83 

Sensitivity 0.9 1 0.91 

Specificity 1 1 1 

Coverage 0.35 0.13 0.52 

Accuracy 0.91 1 0.93 

Conformal yes yes yes 

Significance 0.1 0.1 0.1 

Mulliner 

MCC 0.36 0.25 - 

Sensitivity 0.67 0.72 - 

Specificity 0.69 0.53 - 

Coverage 0.29 0.16  

Accuracy 0.68 0.65 - 

Conformal yes yes - 

Significance 0.1 0.1 - 

Average 

MCC 0.49 0.58 0.61 

Sensitivity 0.77 0.77 0.82 

Specificity 0.76 0.80 0.83 

Coverage 0.30 0.15 0.42 

Accuracy 0.75 0.80 0.81 

aMatthews correlation coefficient. 

bPer one of samples within the applicability domain. 
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Although expert models show high performance at DILI 

labelling, whether or not they offer advantages to regular 

QSAR models has to be assessed. QSAR models were built 

using the same datasets used for expert models but taking 

molecule descriptors instead of the predicted AEs. Results 

evince that despite a slightly lower performance in internal-

validation, statistics in external-validation of expert models 

are significantly better. Coverage for QSAR models is higher, 

probably due to the higher confidence given by the number of 

variables used to train the model (200 in QSAR versus 11 in 

expert models). However, increasing the confidence in the 

predictions (from 85% to 90%) did not result in a better 

performance although the lower coverage. Detailed 

information on QSAR models’ statistics is available in Annex 

(S5 Table). 

 

Despite expert models showing great performance and 

robustness, machine-learning models often suffer of lack of 

performance when applied out of the safe space of building 

environment. For this reason, we built a dataset containing 

DILIrank, Mulliner, O’brien and Pfizer molecules without 

duplicates and no overlapping DrugBank small molecule 

drugs (1405 extra negatives) and used expert models to 

predict DILI outcome (only compounds not used in training for 

each model considered). This test is intended to assess the 

performance in a not biased dataset (DrugBank) where DILI 

outcome is not balanced. Table 11 shows an equilibrated 
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sensitivity/specificity for all three expert models, 

demonstrating that our models are not over-predicting DILI. 

 

Table 11 | Performance of expert models real world validation 

set. 

 
 

Most DILIrank Pfizer Mulliner 

Drugbank 

set 

MCC a 0.31 0.23 0.33 

Sensitivity 0.55 0.66 0.69 

Specificity 0.75 0.58 0.66 

Coverage b 0.29 0.11 0.47 

Accuracy 0.68 0.61 0.67 

aMatthews correlation coefficient. 

bPer one of samples within the applicability domain. 

 

4.5. Implementation 
 

In order to guarantee reproducible results, we developed 

everything using Jupyter notebooks in a Conda environment 

which can be downloaded and installed with all with all the 

dependencies and extra packages used. Two Jupyter 

notebooks, one for unbiased RA and another for biased RA 

for the similarity assessment, facilitated the selection of the 

best similarity metrics and descriptors to obtain similar 

compounds from a reference dataset that can be used for 

balancing datasets or to create homologous categorized 

datasets among many other things. On the other hand, for 
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building QSAR models to predict DILI, we take advantage of 

the whole tools inside the Flame framework [115] and created 

two Jupyter notebooks, one using the optimizing AEs rule and 

another for building the Expert models.  

 

All datasets and AEs models are available on request. These 

are provided as tar files and can easily be imported in Flame 

ready to run predictions. 

 

4.5.1. Installation of the Jupyter Notebooks 
 

To install the Jupyter notebooks first install the Conda 

environment found in my github [104] and follow the 

instructions written in Flame github [115].  In the step of 

creating the conda environment with all the dependencies 

and extra packages (numpy, RDKit...), instead of using the 

flame environment.yml, replace it with the one we provided 

(thesis_environment.yml), which assures us to use all the 

versions of the programs used here. Nevertheless, if you 

want to use the last versions released of whole programs, just 

install flame as it is and then install the other ones. 
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5. DISCUSSION 
 

This thesis is focused on the prediction of the biological 

properties of compounds by applying the concept of the 

bioisosterism. Most computational methods used for the 

prediction of toxicity endpoints assume that similar 

compounds have similar biological properties. This principle is 

at the core of computational methods like read-across (RA) or 

quantitative structure–activity relationships (QSARs), there 

are many caveats like “activity cliffs” which have been pointed 

out. 

 

Early identification of DILI remains a major concern for the 

regulatory agencies and the pharma industry. The standard 

animal model is moving towards a more ethical and 

mechanistic based toxicological assessment [135]. Within 

non-animal testing methods, in silico method play a key role 

in the transition to a complete non-animal testing scenario 

[136], not only by providing assessment methods but also for 

processing, analyzing and filtering the increasing quantity of 

biological data generated by high-throughput screening 

assays [137] and OMICS techniques [138]. 

 

5.1. Similarity RA 
 

One of the central hypothesis of this thesis is that the source 

of the problems is the definition of what we mean by “similar” 
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and how we compute similarity. Our group has published 

diverse similarity metrics, relevant in the context of safety 

assessment [139]. Also, there is much interest in similarity 

metrics due to the large implication for developing structural 

alerts and read-across [13]. Although acceptance of read-

across by regulators remains difficult [13], read-across plays 

a pivotal role in hazard assessment of chemicals. Indeed, it is 

the only currently available non-animal alternative method for 

many regulatory environments and for many toxicological 

endpoints [4]. In other contexts similarity metrics are also of 

critical importance for the definition of the applicability domain 

of any in silico method and the quantification of the 

uncertainties associated to any prediction [17]. 

 

For benchmarking the similarity metrics performance, we 

used RA as a validation tool, in order to compare predicted 

with experimental annotations. This made possible to identify 

bioisosteric molecules and discard activity cliffs. The strategy 

here extends the classic concept of structural similarity 

incorporating additional properties, like, for example, 

experimental data describing biological properties (related to 

hepatotoxicity) of the compounds. We have performed two 

RA methods, one unbiased and another biased using the 

very well-known Morgan fingerprints with radius 3. In order to 

test the effect of using non-biologically relevant descriptors, 

we tested the effect of adding 5000 binary random numbers 

to see how sensible were both methods. The results shown 
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that biased RA methods perform better, producing acceptable 

results even after adding 200 noise variables in comparison 

with the unbiased method which were highly penalized since 

the beginning. 

 

After that we used PLS which was a supervised machine 

learning technique that allow us to add information about DILI 

experimental value, in other words, we are giving more 

importance to the variables that explain better DILI. Our 

analysis showed that Jaccard and Cosine produces almost 

always the same results and City-block and Euclidean as 

well. But we wanted to go further, and we validated our 

metrics with different highly used descriptors, i) Morgan 

fingerprints (2048), ii) pharmacophoric fingerprints (30000), iii) 

hepatotoxic AEs (11) from sider as biofingerprints, and iv) 

molecular descriptors from RDKit.(200). All of them contain 

dichotomous variables, except RDKit which contains non-

dichotomous variables. We applied the biased RA protocol 

and we concluded that the descriptors themselves give 

different information about structural similarity. For example, 

Morgan fingerprints give us better information about structure 

than RDkit which give us better information about ADME 

properties, or biofingerprints on hepatotoxicity.  

 

Strikingly, if we combined them all we can distinguish 

between bioisosters better and discard activity cliffs. Hence, it 

is possible to assign with more confidence a DILI toxicity 
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value. This was illustrated by the example shown in Figure 17 

in radial plot format.  City-Block and Euclidean were the best 

similarity metrics for all descriptors combination using biased 

RA obtaining a MCC higher than 0.3. They maintained the 

number of molecules tested in a coverage space of 100 to 

260 molecules within the similarity cut-off ranges from [0.4-1] 

to [0.7-1].  It is worth combining descriptors and fingerprints 

giving extra information such as the combination of morgan 

fingerprint plus RDKit plus biofingerprints, so that the 

interpretability of the results can be increased. 

 

The polar plot was a nice method for representing similar 

source compounds to the target one as can be seen from 

Figure 17. If we obtain only source compounds toxicity, we 

compute the target compound toxicity by applying the majority 

voting algorithm, taking into account compounds with 

similarity higher than 0.7. The same method can be used 

when one compound contains target toxicity and has similar 

source compounds. One can assign the toxicity of the target 

compound to most similar source compounds using a 

threshold of similarity greater than 0.7. 

 

5.2. QSAR Models 
 

Another way to obtain DILI predictions is taking advantage of 

QSAR models as we did with similarity biased read across 

method to get bioisosters of a target molecule, making the 
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assumption that similar compounds have similar biological 

properties.  

 

We have built QSAR models for reported hepatic AEs using 

SIDER database [120–122]. Only models with a MCC equal 

or greater than 0.3 were considered for their application. This 

selection resulted in 11 high performance models (Table 9). 

Due to the similar procedure, some of the endpoints are the 

same as in with Liu et al. DILIps [133]. Despite the lower 

performance of our models in internal validation, likely to be 

produced by the stricter 5-fold internal validation, there is 

better performance in external validation we obtained when 

applying the consensus rule (Table 8).   

 

Labelling a compound as DILI positive is not an easy task 

[140,141]. DILI can be caused by different mechanisms and 

these mechanisms are not always captured by in-vitro and in-

vivo models [62]. Additionally, the lack of clinical biomarkers 

allowing to causally connect DILI with molecular mechanisms, 

makes harder the classification of DILI drugs according to 

their mode of action. In this work, we rely on reported clinical 

AEs of drugs. These reports are not free of biasing and for 

example, the overrepresentation of hepatitis and jaundice 

might be related to the more frequent diagnostic they 

comprise in comparison to other AEs. We analysed the AE 

importance (both real and predicted AEs) in DILI assignment 

and found it to be correlated with the frequency of AEs. 
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Effectively, DILI classification in many studies depends on the 

number of AE annotations, no matter which AE is reported 

[59,125,126](see methods). It may be thought that the higher 

importance of hepatitis and jaundice in the AE models 

predictions might be related to a higher number of predictions 

inside of the AD. However, the distribution of predictions 

within the AD, are not significantly higher for hepatitis or 

jaundice in comparison to other AEs (see annex S12-S14 

Figures), suggesting that AE models presented herein 

successfully capture the AE importance. It is important to 

recall that AE prediction importance is also related to the 

model performance, as shown by the higher relative 

importance of predicted ‘Jaundice cholestatic’ in comparison 

to real assignments. Correlation between real AEs and DILI 

assignment vary among datasets. For example, the 

correlation between Hepatitis and DILI for DILIrank dataset 

(verified most DILI concern label) is 0.77 while for Mulliner 

dataset is 0.31 (see annex S3 Table). This reflects the 

differences in the assessment of DILI potential among 

datasets/studies. For example, Mulliner consider a compound 

to be DILI positive if any hepatic-related finding is found [59], 

while in DILIrank dataset, a more strict criteria is taken. This 

is reflected in the fact that all compounds present in both 

DILIrank and Mulliner datasets with inconsistent DILI label are 

always DILI positive in Mulliner dataset (see annex Table S6). 
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Bearing in mind that DILI labelling was assigned using 

different criteria in diverse datasets, we created the expert 

models to not only be able to predict DILI for a given 

compound, but also to do it in the way it would be done by the 

related expert (study, database). These experts models, able 

to assess DILI using predictions from QSAR AE predictions, 

show better performance than any reported DILI model. 

Kotsampasakou et al. [142] summarized  the performance of 

previously reported models in literature, even if  it is difficult to 

compare among different models because of the different 

ways to assess model performance (internal or external 

validation), the size of validation sets, and statistics 

considered. Expert models reported in this work perform as 

well as models considering only internal validation statistics or 

used small external validation data sets, and clearly 

outperforms models validated under similar conditions. It has 

to be emphasized that expert models were fitted using AE 

predictions of compounds not being present in SIDER, and 

were externally validated using compounds of other datasets, 

which can be seen as a two-step external validation.  

 

Moreover, we built QSAR models for each dataset and 

validated them by predicting DILI on the others. The lower 

performance of these models based on RDkit descriptors 

(200 variables) puts in value the predictive power of expert 

models which are trained on predictions from 11 AE models 

(11 variables). Additionally, we created an imbalanced 
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dataset containing all DILI datasets used in this work, 

enriched with DILI negative compounds taken from DrugBank 

database to assess the performance of expert models when 

query compounds belong to a wide chemical space and the 

number of positive and negative instances are not balanced. 

Expert models showed balanced sensitivities-specificities 

(Table 10), not falling into DILI over-prediction.  

 

The quality of these models is strongly linked to the use of 

conformal prediction as applicability domain technique. 

Conformal predictors not only assess for the reliability of a 

prediction but creates a framework to build models with 

clearly defined uncertainties that ultimately, are required in a 

risk assessment context. These uncertainties can be 

combined with other methodologies in a weight-of-evidence 

approach to provide a toxicologist with a balanced view on a 

chemical of interest.  
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6. CONCLUSION 

 

• Benchmarking the similarity metrics performance in RA 

allowed us to compare predicted with experimental 

annotations. This allowed to identify bioisosters 

molecules and discard activity cliffs. 

 

• Biased RA methods performed better than unbiased 

RA, obtaining good results even after adding 200 

random variables in comparison with the unbiased 

method whose performance suffered since the 

beginning (50 random noise). 

 

• Combining descriptors allowed us to better distinguish 

between bioisosters and discard activity cliffs. Hence, 

the increased confidence in the assignment of a DILI 

toxicity value. 

 

• City-Block and Euclidean were good similarity metrics 

for all combination descriptors in a biased RA. 

 

• We built QSAR models to predict hepatic adverse 

effects using an approach similar to the one employed 

by Liu. et al. [23]. These models were used to predict 

adverse effects of compounds from known DILI 

databases. The importance of hepatic adverse effects 

was analyzed in both real and predicted AEs in order 

https://paperpile.com/c/mp2weG/V0lk


 

 110 

to optimize a consensus rule to assess DILI from 

adverse effect predictions.  

 

• We used these predictions to build “expert models” 

able to assess DILI by finding associations among 

predicted adverse effects. These “expert models” can 

capture the subjective criteria taken in each study to 

discriminate between hepatotoxic and non-hepatotoxic 

compounds and were externally validated by predicting 

DILI on the other datasets.  
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ANNEX 
 

Annex Publications 

Generating modelling data from repeat-dose toxicity 

reports 

Oriol López-Massaguer, Kevin Pinto-Gil, Ferran Sanz, 

Alexander Amberg, Lennart Anger, Manuela Stolte, Carlo 

Ravagli, Philippe Marc and Manuel Pastor. Toxicol Sci. 2018 

Mar 1;162(1):287-300.  

doi: https://doi.org/10.1093/toxsci/kfx254 

 

Contributions: 

 
• Dataset structure normalization, Pre-Clinical liver 

toxicity predictive models were built: 1) Degeneration, 

2) Inflammation and 3) Non-neoplasic proliferative 

lesions. The statistical analysis. Manuscript revision. 

 
 
 
 
 
 
 
 
 

https://doi.org/10.1093/toxsci/kfx254
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Annex Figures 

 

 

Fig. S1 | Radial plot Biased RA using combination of descriptors 

from Table 7. These compounds are ordered by Jaccard metric using 

RDKit Descriptors. Morgan fingerprints (morganfp) in red, rdkit in orange, 

Biofingerprints (biofp) in blue, morganfp plus rdkit in purple, morganfp plus 

biofp in green, morganfp plus rdkit plus biofp in grey and rdkit plus biofp in 

black. 
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Fig. S2 | Radial plot Biased RA using combination of descriptors 

from Table 7. These compounds are ordered by Jaccard metric using 

Biofingerprints. Morgan fingerprints (morganfp) in red, rdkit in orange, 

Biofingerprints (biofp) in blue, morganfp plus rdkit in purple, morganfp plus 

biofp in green, morganfp plus rdkit plus biofp in grey and rdkit plus biofp in 

black. 
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Fig. S3 | Radial plot Biased RA using combination of descriptors 

from Table 7. These compounds are ordered by Jaccard metric using 

morgan fingerprints plus RDkit descriptors combination. Morgan 

fingerprints (morganfp) in red, rdkit in orange, Biofingerprints (biofp) in 

blue, morganfp plus rdkit in purple, morganfp plus biofp in green, 

morganfp plus rdkit plus biofp in grey and rdkit plus biofp in black. 
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Fig. S4 | Radial plot Biased RA using combination of descriptors 

from Table 7. These compounds are ordered by Jaccard metric using 

morgan fingerprints plus biofingerprints combination. Morgan fingerprints 

(morganfp) in red, rdkit in orange, Biofingerprints (biofp) in blue, morganfp 

plus rdkit in purple, morganfp plus biofp in green, morganfp plus rdkit plus 

biofp in grey and rdkit plus biofp in black. 
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Fig. S5 | Radial plot Biased RA using combination of descriptors 

from Table 7. These compounds are ordered by Jaccard metric using 

morgan fingerprints + RDkit descriptors + biofingerprints combination. 

Morgan fingerprints (morganfp) in red, rdkit in orange, Biofingerprints 

(biofp) in blue, morganfp plus rdkit in purple, morganfp plus biofp in green, 

morganfp plus rdkit plus biofp in grey and rdkit plus biofp in black. 
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Fig. S6 | Radial plot Biased RA using combination of descriptors 

from Table 7. These compounds are ordered by Jaccard metric using 

RDkit descriptors + biofingerprints combination. Morgan fingerprints 

(morganfp) in red, rdkit in orange, Biofingerprints (biofp) in blue, morganfp 

plus rdkit in purple, morganfp plus biofp in green, morganfp plus rdkit plus 

biofp in grey and rdkit plus biofp in black. 
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Fig. S7 | Optimization AE models Performance with Mulliner Dataset. 

A) General Rule. B) Majority Voting rule. MCC is shown in X axis and 

Adverse effects optimization models. Red line means the coverage 

molecules taken into accounts in the model building. 

 

 
Fig. S8 | Optimization AE models Performance with MostDILIrank 

Dataset. A) General Rule. B) Majority Voting rule. MCC is shown in X axis 

and Adverse effects optimization models. Red line means the coverage 

molecules taken into accounts in the model building. 
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Fig. S9 | Optimization AE models Performance with Pfizer Dataset. A) 

General Rule. B) Majority Voting rule. MCC is shown in X axis and 

Adverse effects optimization models. Red line means the coverage 

molecules taken into accounts in the model building. 

 

 

Fig. S10 | Optimization AE models Performance with O’Brien Dataset. 

A) General Rule. B) Majority Voting rule. MCC is shown in X axis and 

Adverse effects optimization models. Red line means the coverage 

molecules taken into accounts in the model building. 
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Fig. S11 | Optimization AE models Performance with DrugBank plus 

all DILI sets combination. A) General Rule. B) Majority Voting rule. MCC 

is shown in X axis and Adverse effects optimization models. Red line 

means the coverage molecules taken into accounts in the model building. 
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Fig. S12 | AEs predictions distribution in DILIrank. X axis Adverse 

effects expert models. Y axis number of compounds with DILI prediction. 

Blue colour means DILI negative, Red colour means DILI positive, and 

Grey colour means DILI could not be predicted because is out of the AD. 
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Fig. S13 | AEs predictions distribution in Pfizer. X axis Adverse effects 

expert models. Y axis number of compounds with DILI prediction. Blue 

colour means DILI negative, Red colour means DILI positive, and Grey 

colour means DILI could not be predicted because is out of the AD. 
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Fig. S14 | AEs predictions distribution in Mulliner. X axis Adverse 

effects expert models. Y axis number of compounds with DILI prediction. 

Blue colour means DILI negative, Red colour means DILI positive, and 

Grey colour means DILI could not be predicted because is out of the AD. 
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Annex Tables 

 
Some tables cannot be shown here because of the extension. In any case, an excel document containing 
all the excel Tables can be downloaded from [104]. 
 
S1 Table. Cross-validation statistics of AE models. Detailed cross-validation statistics including other 
AEs not satisfying quality requirements as well as models built under non-conformal framework. 
 

ML 
Method 

Cros
s-

Vali
dati
on 
met
hod 

mols Endpoint TP TN FP FN 
Sensiti

vity 
Specifi

city 
MCC 

Conformal
coverage 

Conformal 
accuracy 

Conformal 
significan

ce 

Random 
Forest 

Conformal 

5 
kfold 

937 

Jaundice 
cholestatic 

48 42 15 11 0.81 0.74 0.55 0.54 0.78 

0.2 

Hyperbilirubi
naemia 

50 49 10 20 0.71 0.83 0.54 0.6 0.77 

Hepatic 
failure 

94 83 27 27 0.78 0.75 0.53 0.63 0.77 

Cholelithiasis 20 20 6 7 0.74 0.77 0.51 0.41 0.75 

Cholestasis 40 34 14 14 0.74 0.71 0.45 0.55 0.73 
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ML 
Method 

Cros
s-

Vali
dati
on 
met
hod 

mols Endpoint TP TN FP FN 
Sensiti

vity 
Specifi

city 
MCC 

Conformal
coverage 

Conformal 
accuracy 

Conformal 
significan

ce 

Hepatitis 135 116 50 48 0.74 0.7 0.44 0.55 0.72 

Jaundice 116 102 52 36 0.76 0.66 0.43 0.55 0.71 

Hepatobiliary 
disease 

103 74 39 34 0.75 0.65 0.41 0.48 0.71 

Hepatomega
ly 

27 22 11 12 0.69 0.67 0.36 0.44 0.68 

Hepatotoxicit
y 

37 36 17 19 0.66 0.68 0.34 0.61 0.67 

Hepatic 
function 
abnormal 

54 41 24 26 0.68 0.63 0.31 0.46 0.66 

Ascites 20 16 10 11 0.65 0.62 0.26 0.65 0.63 

Liver injury 26 15 13 11 0.7 0.54 0.24 0.32 0.63 

Hepatic 
necrosis 

27 13 11 12 0.69 0.54 0.23 0.44 0.63 
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ML 
Method 

Cros
s-

Vali
dati
on 
met
hod 

mols Endpoint TP TN FP FN 
Sensiti

vity 
Specifi

city 
MCC 

Conformal
coverage 

Conformal 
accuracy 

Conformal 
significan

ce 

Hepatocellul
ar injury 

32 21 19 20 0.62 0.53 0.14 0.37 0.58 

Liver 
disorder 

11 8 9 10 0.52 0.47 -0.01 0.25 0.5 

Cholecystitis 8 15 8 16 0.33 0.65 -0.02 0.39 0.49 

Hepatitis 
cholestatic 

11 2 4 6 0.65 0.33 -0.02 0.24 0.57 

Foetor 
hepaticus 

7 5 12 9 0.44 0.29 -0.27 0.28 0.36 

Random 
Forest  

5 
kfold 

937 

Hepatic 
failure 

88 92 90 94 0.48 0.51 -0.01 
   

Hyperbilirubi
naemia 

50 51 56 57 0.47 0.48 -0.06 
   

Cholestasis 46 40 53 47 0.49 0.43 -0.08    

Jaundice 
cholestatic 

46 52 56 62 0.43 0.48 -0.09 
   

Hepatitis 131 148 168 185 0.41 0.47 -0.12    
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ML 
Method 

Cros
s-

Vali
dati
on 
met
hod 

mols Endpoint TP TN FP FN 
Sensiti

vity 
Specifi

city 
MCC 

Conformal
coverage 

Conformal 
accuracy 

Conformal 
significan

ce 

Ascites 16 22 22 28 0.36 0.5 -0.14    

Hepatic 
necrosis 

31 28 43 40 0.44 0.39 -0.17 
   

Jaundice 106 126 154 174 0.38 0.45 -0.17    

Cholelithiasis 27 25 40 38 0.42 0.38 -0.2    

Hepatotoxicit
y 

33 38 52 57 0.37 0.42 -0.21 
   

Hepatic 
function 
abnormal 

62 61 98 97 0.39 0.38 -0.23 

   

Hepatomega
ly 

33 29 52 48 0.41 0.36 -0.23 
   

Hepatobiliary 
disease 

90 101 158 169 0.35 0.39 -0.26 
   

Liver injury 43 26 77 60 0.42 0.25 -0.33    

Cholecystitis 17 21 40 44 0.28 0.34 -0.38    
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ML 
Method 

Cros
s-

Vali
dati
on 
met
hod 

mols Endpoint TP TN FP FN 
Sensiti

vity 
Specifi

city 
MCC 

Conformal
coverage 

Conformal 
accuracy 

Conformal 
significan

ce 

Hepatocellul
ar injury 

42 36 90 84 0.33 0.29 -0.38 
   

Hepatitis 
cholestatic 

8 14 33 39 0.17 0.3 -0.54 
   

Liver 
disorder 

14 19 56 61 0.19 0.25 -0.56 
   

Foetor 
hepaticus 

7 19 40 52 0.12 0.32 -0.57 
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S2 Table. PLS AE scores. Higher PLS scores correspond to AEs more related to DILI outcome. 
 
S3 Table. Real AEs and DILI correlation matrix. Correlation between adverse effects and DILI outcome. 
Compounds present in both SIDER and DILI labelled datasets. 
S4 Table. Predicted AEs and DILI correlation matrix. Correlation between predicted adverse effects 
and DILI outcome. Compounds do not present in SIDER. 
 
S5 Table. QSAR DILI models performance. Includes quality statistics for DILI QSAR models built using 
the DILI databases considered in this work. The external validation for a given model is calculated by the 
prediction of DILI in remaining datasets. 
 
S6 Table. Inconsistent DILI labelling. Includes compounds with different assigned DILI outcome in 
DILIrank and Mulliner datasets. 
 
S7 Table. Model documentation. Includes detailed information on the models built in this work. 
 


