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Abstract

This Thesis collects the computational works we have done in the field
of condensed matter physics, focused on the thermal transport prop-
erties of the Lead Titanate (PbTiOj3) and the Zinc Oxide (ZnO), both
representative materials of many other insulating functional oxides.
The first has been modeled using a second-principles potential, that
is, a potential parameterized from first-principles calculations, which
captures some quantum effects that can be relevant in the material.
We have modeled the second one using the Buckingham’s potential,
a simple analytical expression that seems to describe the behavior of
7Zn0 in a fairly approximate agreement with experiments.

In particular, we focus on how to modulate their thermal conduc-
tivity modifying their crystal lattice by means of an external electric
field or pressure. Our studies have been always performed within
the framework of Fourier’s law, from two different techniques: per-
forming Molecular Dynamics simulations, both at equilibrium and
out-of-equilibrium, and solving the Boltzmann Transport Equation
for phonons. Both techniques superbly combine, since while Boltz-
mann Transport Equation takes into account the quantum effects that
intervene in the microscopic description of the system, but only up
to the third order of the anharmonic scattering, Molecular Dynam-
ics trajectories are classical but capture all scattering events, i.e., all
orders of anharmonicity are included.

These studies also describe how phonons are affected when the
crystal lattice of both oxides is altered, explaining which changes of
their properties (frequency, velocity and mean free path) are rele-
vant for the changes in thermal conductivity. Additionally, this work
also present various applications in the field of phononics, laying the
groundwork for the design of thermal switches and transistors.
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Chapter 1

Introduction

The study of the thermal properties of materials is a very important
field of research since they have a strong impact in many technological
dispositives and in many devices of our daily life. In addition, they
have relevance in all size scales, from nanostructured materials and
microchips that can overheat, to objects such as the structure of a
building, which can expand due to an increase of temperature. In
this Thesis we work with bulk oxides, but due to the techniques we
use our results would be also applicable in devices of micro and nano
sizes.

The advances made in physics allow us to intervene at times in
the thermal behavior of some insulators, designing materials with
desired properties. Nonetheless, our current ability to control heat
transport in insulators is rather limited and mostly consists in mod-
ulating the amount of scattering experienced by the heat-carrying
phonons [1]. This approach is normally pursued by designing sys-
tems with tailor-made boundaries [2, 3], defect distributions [4, 5],
or periodic sequences of different materials or nanostructuring [6-8],
as in superlattices and phononic crystals. These strategies allow us
to target a given thermal conductivity. Nevertheless, alternative ap-
proaches enabling a dynamical modulation of the thermal conductiv-
ity are seldom tackled because of the subtleties related with phonon
manipulation.

The intrinsic difficulty in manipulating phonons is often ascribed
to the fact that they do not possess a net charge or a mass; thus, it is
difficult to control their propagation by means of external fields [9].
However, this is not always the case [10-13]. Insulators or semicon-
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4 Chapter 1. Introduction

ductors often feature polar phonons, i.e., phonons which typically in-
volve atoms with different charges and have a vibrating electric dipole
associated to them. These polar phonons can be acted upon by an
external electric field, to harden or soften them, which should result
in a modulation of the thermal conductivity. Further, the structural
dielectric response of an insulator, which is mediated by these very
polar modes, may have significant effects in the entire phonon spec-
trum, via anharmonic couplings, and further affect the conductivity.

In this Thesis we exploit this simple, yet almost unexplored, idea.
We show thermal conductivity can indeed be controlled by an ex-
ternal applied electric field, and that this effect leads to a genuine
thermal counterpart of the field effect in usual electronic transistors.
Indications that such an electrophononic effect can be obtained ex-
perimentally have been previously reported in SrTiOjz at very low
temperatures [14, 15].

Another goal of phononics [9, 16, 17] is the proper modulation of
the thermal flux to encode basic logic functions in devices that operate
with heat currents rather than with charge carriers or electromagnetic
waves. These operations rely on the existence of two well separated
high and low conductance states, which are used to encode the logical
values of 1 and 0. These two states should be as different as possible
and it has to be possible to commute back and forth between them.
Many materials are anisotropic and thus provide naturally access to
two distinct conductance states, but practical implementations are
nevertheless hindered. On the one hand, the anisotropy is often small,
like in wurtzite crystals [18-20] where k., /k,, may range from 0.96
(GaP) to 1.18 (ZnSe) at 300 K. In other materials, however, it can
be much larger and a convenient limiting case is graphite. In that
case, the in-plane thermal conductivity is orders of magnitude larger
than the out-of-plane one [21], along which phonon propagation is
mediated by weak van der Waals forces. On the other hand, and
more importantly, switching from one conductance state to the other
is normally not possible, because the device design determines the
element of the thermal conductivity tensor that is relevant for phonon
transport, i.e., heat flows along a given crystallographic direction and
the sample cannot be rotated.

All these mentioned studies have been developed in this Thesis
using PbTiO3, a representative oxide of the ferroelectric perovskite
oxides. These materials are anisotropic, and their anisotropy is de-



termined by the off-center displacement of the cations with respect to
the surrounding oxygen cages. This distortion of the lattice has an
associated polarization that can thus be reoriented or fully reversed
with an external electric field. Consequently, the access to a different
element of the thermal conductivity tensor is allowed within a given
device setup, thus implementing a thermal switch. In this same ma-
terial, different domains of polarization can be created, which would
affect the heat propagataion through the Domain Walls that separate
the domains. As the domains can be written by means of an external
electric field, we present another way to dynamically change from a
low to a high conductance state.

A continuous modulation of the thermal conductivity can be also
achieved in some materials by applying directly an external strain
instead of an electric field to modify the crystal lattice. Strain engi-
neering is an active field of research in condensed matter physics and
in nanoscience with several applications in the design and optimiza-
tion of electronic devices [22-24]. Tt consists in tuning the properties
of a material by a suitable compressive or tensile strain. Indeed,
the use of strained Si in conventional electronic devices represented
a significant technological breakthrough, dramatically boosting chip
speeds because of the increased electronic mobility [25, 26]. Com-
paratively less attention has been devoted to the effect of strain on
thermal conduction [27], so in this Thesis we dedicate one Chapter to
understand and quantify it, applying strain to a sample of ZnO.

To summarize, this Thesis presents several ways to modify the
crystal lattice of some materials, by applaying an instantaneous or
a long lasting electric field or by applying strain. With our research
we have managed to delve into various theoretical aspects that were
not established so far, and this has allowed us to control these ex-
ternal mechanisms to affect the lattice thermal conductivity of solids
and design different structures for phononic applications. We ex-
pect that our results can stimulate experiments to verify our pre-
dictions. The Chapters are organized as follows. In Chapter 2 we
introduce basic concepts of thermal transport, and the theoretical
background of the techniques that have been used in this Thesis. In
Chapter 3 the materials used in our simulations are described, and
also the theory requiered to model the behavior of these materials is
explained. In Chapter 4 we evaluate the thermal boundary resistance
of 180° domain walls in PbTiO3 within the numerical formalisms of
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non-equilibrium molecular dynamics. The obtained results prove the
viability of an electrically actuated phononic switch. In Chapter 5
we demonstrate a fully electric control of the heat flux, which can
be continuously modulated by an externally applied electric field, re-
vealing the mechanisms by which experimentally accessible fields can
be used to tune the thermal conductivity. In Chapter 6 we present a
theoretical proposal for the design of a thermal switch based on the
anisotropy of the thermal conductivity of PbTiO3 and of the possi-
bility to rotate the ferroelectric polarization with an external electric
field. The calculations are based on an iterative solution of the phonon
Boltzmann Transport Equation. In Chapter 7, using a combination
of equilibrium classical molecular dynamics (within the Green-Kubo
formalism) and the Boltzmann Transport Equation, we study the ef-
fect of strain on the ZnO thermal conductivity focusing in particular
on the the case of hydrostatic and uniaxial strain. Finally, in Chap-
ter 8 we expose our final comments about the developed work in this
Thesis and future goals that can be achieved related with the studies
presented here.



Chapter 2

Thermal transport

The main topic of this Thesis is to study how the thermal transport
properties of different materials change when tuning their structures
by different methods. The materials we have studied are isolating
systems, which means that heat conduction due to the electrons is
negligible. Therefore, when we talk about thermal conductivity we
are referring just to the property of the materials of conducting heat
due to the atomic vibrations of the lattice, that is, the lattice thermal
conductivity k.

Many computational techniques have been developed to calculate
the thermal conductivity of a solid. To name a few, an original one is
the phenomenological model presented by Callaway et al. [28], that
requires experimental data and works at low temperatures. There are
also other clever methods, like solving the Slack equation, that only
requires the acoustic Debye temperature and the Griineisen param-
eter of the material to calculate its thermal conductivity. This have
been done recently by some authors that have also complemented
the methodology using modern techniques [29, 30]. Although these
methods are less time-consuming and can provide accurate results for
some materials, people typically use more accurate methods to calcu-
late the thermal conductivity, such as a Molecular Dynamics simula-
tion or solving the Boltzmann Transport Equation for phonons. These
methods are the ones used in this Thesis and are going to be discussed
in this Chapter. However, before that we have to mention that these
methods assume the validity of the Fourier’s law, what means a linear

7



8 Chapter 2. Thermal transport

relation between the thermal flux J and the temperature gradient
J = —kVT. (2.1)

In most cases this assumption is reasonable, like in the cases we have
studied in this Thesis, where we have worked with bulk materials. In
bulk materials at typical conditions of temperature and volume we
can consider that the thermal transport is diffusive, because of the
huge number of scattering processes that phonons suffer. Because
of this, their movement can be considered as a Brownian motion,
so the Fourier’s law applies. Nevertheless for lenght scales smaller
than the mean free path of phonons, they go over their trajectory in
a straight line, because they do not suffer any scattering process in
such a short path, meaning that heat flow changes from diffusive to
ballistic, so the Fourier’s law does not apply. Some recent experiments
have found this deviation from Fourier heat transport [31, 32|, and
in consequence new methods have emerged to explain the behavior of
the heat in these cases.

One of these methods consist in solving an hydrodynamic heat
flux equation like that

J+ 88_{ T 4 B(VET 429V - ), (2.2)
a generalization of the Fourier’s law that can be obtained using the
Extended Irreversible Thermodynamics formalism [33]. The name hy-
drodynamic is due to its similarity with the Navier-Stokes equation.
In Eq. (2.2) 7 and [ are bulk (i.e. without considering any boundary
effect) total relaxation time and non-local length respectively. The
value of [ determines the non-local range in phonon transport and is
related to the viscosity of the phonons distribution. This equation is
an improvement over Fourier’s law becasuse of two reasons. On one
side, it includes memory effects by the time derivative term on the
left, which takes into account that the steady state is not reached im-
mediately (Fourier’s law is only valid in the stationary state). Besides
it includes a geometric factor by the term with the laplacian and the
gradient of the divergence, which take into account the shape of the
system. Eq. (2.2) can be solved by finite elements, and the thermal
conductivity that appears is usually calculated using the Kinetic Col-
lective Model (KCM) [34, 35]. This model is derived from the exact
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solution of the Boltzmann Transport Equation (BTE) obtained by
Guyer and Krumhansl [36], based on splitting the collision processes
in two: ones that conserve the total momentum of the system but re-
distribute momentum between different phonons (normal processes),
and others that give part of the momentum to the crystal lattice (re-
sistive processes). The KCM, in addition to obtaining a value for the
thermal conductivity of equivalent precision to one obtained by the
iterative method for solving the BTE, also allows to obtain the values
of the parameters that intervene in Eq. (2.2). As mentioned before,
in this Thesis, as our studies have been permormed only with bulk
materials, we have always assumed that Fourier’s law applies.

2.1 Boltzmann Transport Equation

We are going to start this section by briefly defining what phonons are.
As explained in all text books of solid state physics, the most generic
vibration of a solid is a superposition of its normal modes. A normal
mode is an oscillatory movement of the lattice in which all parts move
sinusoidally with the same frequency and with a fixed phase relation.
They are normal in the mathematical sense of orthogonality, because
they are calculated using only the harmonic part of the interaction
potential. Physically this means that they can vibrate independently,
that is, an excitation of one mode will never cause motion of a differ-
ent one. The normal modes of a crystal can be obtained by solving
the equations of motion of the atoms in the unit cell, and they will
be identified by the wave vector k (or sometimes, equivalently, by the
reciprocal lattice vector ¢) and its branch index s. They can also
be in different excited states n, that is, they can have different fre-
quencies of vibration w. Nowadays the studies of solid state physics
are performed in the framework of quantum theory, so a quantum
version of the normal modes theory has been developed. A corcus-
pular description is more useful than the undulatory one, specially
when one takes into account the anharmonic part of the potential,
allowing the exchange of energy between the modes. When working
with this description, instead of saying that the normal mode of the
branch s with reciprocal lattice vector ¢ is in its n'™ excited state,
one says that there are n phonons of type s with reciprocal lattice
vector ¢ present in the crystal. Therefore phonons are quasiparticles
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that in the quantum theory represent the normal modes, the quantum
of structural vibrations. The thermodynamic properties of a crystal
are related with the phonons that can populate it. For example, the
specific heat mainly depends of the high-frequency phonons, while
thermal conductivity is tipically more affected by the low-frequency
ones.

In this section we are going to develop a theory to calculate the
thermal conductivity of a system taking into account the properties
of all the phonons that populate it. Instead of identifying a phonon
by the reciprocal lattice vector ¢ and the phonon branch index s as
explained before, for simplicity we are going to define a unique index
that encompasses both, A = {¢,s}. The description will be semi-
classical, because on one side we assume that the positions and the
velocities of phonons are well determined, however, on the other hand,
we are going to apply quantum statistics to study their populations.

When the system is at equilibrium, phonons are spread between
the possible states as indicates the Bose-Einstein distribution

1

BE

N B 10 (2.3)
where [ is the inverse of the temperature multiplied by the Boltz-
mann constant § = 1/kgT, h is the reduced Planck’s constant and
wy is the angular frequency of the mode A. But if we assume just
local equilibrium at each point 7 of the space and also that there is
a small temperature gradient in the system, the population of the
states fy(7,t) will slightly deviate from its equilibrium distribution.
Because of that in the system will appear a thermal flux that will try
to equilibrate the temperature, and that can be expressed in function
of the phonon properties as

T =" hwatifi, (2.4)
A

where ¥y is the group velocity, and we have not written explicitly the
dependence of fy with respect 7 and ¢ to use a lighter notation [37].
To be able to calculate the thermal conductivity of the system using
the Fourier’s law (Eq. (2.1)) we need to obtain the value of all the
magnitudes that define J. The most difficult to obtain is fr, and to
achieve that we need the Boltzmann Transport Equation (BTE).
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Originally, the equation was developed to statistically describe
transport of classical particles of an idealized diluted gas. But nowa-
days the use of the BTE have been extended to the study of quantum
particles, like for studying the electronic transport in different mate-
rials [38, 39]. It can be also used to study the distribution function of
phonons [37, 40-42], that is in what we are interested. We are going
to use its differential form, and to write it we are going to consider
that under steady-state conditions, the distribution function should
be constant at any point, so the equation looks like

oh
ot

The phonons distribution may change because of the following
reasons:

= 0. (2.5)

e Asthere is a gradient in the system, and also phonons have their
own velocities, some phonons can enter in a region of the space
and others can leave it. So this term will be proportional to the
gradient and to the velocity of phonons, and is called diffusive
or entropic term

ot | ug or

e If there is an external force which is able to affect the particles
we are studying, we need to add a term that captures this effect,
for example, if we are studying the electrons of a system under
an external electric field. But as we are working with phonons
that have neither mass nor charge, we are going to neglect this
term. In Chapter 5 we study how an external electric field
affects the thermal conductivity of an oxide, but you will note
that it is a different situation. We are avoiding the external
force term because there is no external force that can directly
modify the distribution function f), the behavior of phonons,
but what we do in Chapter 5 is to modify the lattice by means of
a field, what results in different phonon bands for the material.

e Phonons may interact with each other and also with defects of
the lattice or its boundaries, so we are going to call this term
the scattering term. There will be processes that involve just
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one phonon, like scattering from isotopic disorder, that requires
two A index, the one that describes the state of the phonon be-
fore the scattering (A) and the one that describes the phonon
after it (\'). We will have also processes with three phonons,
for example the collision between two phonons A and X\ that
merge in a third one \”, or one phonon that is decomposed in
other two. As we consider elastic scattering between the states,
these terms are proportional to the occupation numbers of the
initial and final state, for example in the case of two phonons
that merge in a third one, the term would include f fo (1+ for).
The term would be also proportional to the intrinsic probabil-
ity of the transitions, that have to be determined using time-
dependent perturbation theory in the framework of quantum
mechanics. The way to do that is to add an extra term to the
harmonic Hamiltonian, that will be treated as a perturbation,
which makes possible transitions between some states to others
of the harmonic Hamiltonian [40]. Typically this is enough to
properly describe the thermal properties of a solid, so higher
order processes will not be taken into account in the derivation.

As we mentioned before, under steady-state conditions the distri-
bution function has to be constant at any point, so

dfx _ Of O

i A 27)

scatt

Eq. (2.7) is the Boltzmann Transport Equation for phonons.

The BTE is very difficult to solve, so in order to simplify it we
are going to linearize the equation. The diffusive term will vanish
if we just insert a distribution function f, independent of 7. But
our assumption of local equilibrium and the temperature gradient
implies that f, depends on position 7 through the temperature. So,
the diffusive term will take the form

dfx L Ofx L e 0fF
I g YA 5T
78 PPN R 7y

. (2.8)

For the scattering term we can not take just the approximation f, =

BE as in the diffusive term, because in equilibrium the collision term

must vanish. So we may expand f, around its equilibrium value fP¥
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until the first-order perturbation

0f"
orT ’

= —Fy-

(2.9)

where F is the generalized mean free path. We can insert Eq. (2.9)
in the expression for the heat current (Eq. (2.4)), and after some
calculations and inserting this in the Fourier’s law (Eq. (2.1)) we get
the expression for the thermal conductivity tensor

1 2 frBE/ rBE — =
K:m;<mx) X DR @ E (2.10)

Here N, Q and kg are, respectively, the number of ¢ points, the
volume of the unit cell of the material and the Boltzmann’s constant,
and ® is the symbol for the tensor product. Using also Eq. (2.9) in
Eq. (2.7) we get the linearized BTE, now for the variable function F \,
and we can write the equation as in reference [37]:

Fy = na(0h + A, (2.11)
where
(Z F)\/\/)\// + ZF)\)\/A// +ZF,\)\/> (212)
NN/ )\/)\// bV
and

1 + (NG Y
A)\:— I\ )\H—_FA/
N § : AN A Wy

A/)\//
(U)\// — WN —
E YOV (_F/\” + —Fx>

)\/A//

Wy =
N ZF/\)\/—)\F)\/ (213)

Lets explain these equations. 7, is the relaxation time of mode A. Its
physical interpretation can be better understood in the framework of
the Relaxation Time Approximation (RTA), also called single mode
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approximation. In this approximation the scattering term is written
as

O fx _h= NF

T - (2.14)

scatt

It can be proved that using this definition of the scattering term leads
to Eq. (2.11) with Ay = 0. Eq. (2.14) can be written as

Ofx | Ix "
e (2.15)

where can be better appreciated that we are dealing with a first-order
differential equation, whose solution if we were working with it as an
isolated term would be

Fr=IEA0) = By, (2.16)

We can see that this approximation simplifies a lot the resolution of
the problem because it treats phonons as a gas of quasiparticles that
randomly collide with each other with a characteristic time 7,. The
RTA assumes that the thermalization of each phonon population is
independent of the others, and that the thermal conductivity can be
written in terms of individual phonon properties, so in conclusion it is
assuming that the main heat carriers are single phonons. Physically,
this is equivalent to assume that an amount of heat current is perfectly
dissipated any time that a single phonon is scattered, which is not
true. There are processes that dissipate heat (Umklapp processes)
but also others that just distribute heat between groups of modes
(Normal processes). So the RTA is then not able to describe how
the heat flux is exchanged through the various modes, giving only an
approximate treatment of the heat transport theory. In spite of this,
many people still uses this approximation [43, 44] because in practice
the obtained results are not too far from the results obtained with
the full solution of the BTE. According to Eq. (2.16), the RTA would
be good when (f,(0) — f2¥) ~ 1, what means that the system starts
in a situation close to the equilibrium, and also 7, is independent of
the distribution function. In this Thesis we will also use it, but also
the full solution of the BTE, that requires the whole Eq. (2.11).
Now that we know the RTA, we can say that A, is the measure
of how much the population of a specific phonon mode deviates from
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the RTA prediction. A discretization of the Brillouin zone have been
introduced in Eq. (2.13), where N is the number of points used in the
grid, and the quantities Fi\/ \» are three-phonon scattering rates, and
can be expressed as

mh fOF — foF
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'Yy corresponds to absorption processes, which result in only one
phonon with the combined energy of two incident phonons (wy+wy =
wyr), whereas I'y,,,, describes emission processes in which the energy
of one incident phonon is split among two phonons (wy = wy + wyr).
Conservation of energy in the absorption and emission processes is
enforced by the Dirac delta distributions.

As we are only interested in solids, we can asume that atoms just
move around their equilibrium positions, what allow us to expand the
potential energy of the system as a Taylor series. The coefficients of
the expansion are the force constans of different orders, that is, the
derivatives of the energy with respect the position of the atoms, that
can be numerically calcaulated performing small displacements of the
atoms at constant volume. Different displacements can be equiva-
lents, so the required number of displacements will depend on the
symmetry of the crystal. These force constants of the system are nec-
essary because the scattering matrix elements V/\ix y can be obtained
from the anharmonic interatomic force constants, like the phonon fre-
quencies, group velocities and phonon populations are determined by
the harmonic interatomic force constants. Apart from three-phonon
processes, scattering from isotopic disorder is accounted for within
the model of Tamura [45].

Once we know all of these elements we can obtain the exact so-
lution of the BTE using an iterative process, pioneered by Omini
and Sparavigna [46]. The process consist in a conjugate gradient
method for the F' \S, that are reintroduced in the expression for the
Ays (that depends on the Fis) after each iteration, starting with
the RTA solution. To show the iterative process explicitly we could



16 Chapter 2. Thermal transport

rewrite Eq. (2.11) as
Fitt =7 (0 + AN(F)). (2.19)

We consider that the final solution has been reached when the differ-
ence between F} and F, ! is smaller than a certain value of tolerance.

2.2 Molecular Dynamics

We are going to use Molecular Dynamics (MD) to calculate the ther-
mal conductivity of different systems in this Thesis, so we are going
to introduce what is a MD simulation itself. Molecular Dynamics is a
simulation technique which consists of numerically solving the equa-
tions of motion for a collection of interacting particles [47]. In our
case, these particles will be ions in a periodic lattice as corresponds
when one works with crystals, and the equations will be the classical
equations of motion. This technique is more like an experiment, in
which a sample of material evolves in time, so talking about phonons
individually like in the BTE case does not make sense. In a MD
simulation all phonons can be present, and they may be affected by
scattering processes of all orders, not just the processes in which 3
phonons are involved.

To solve the equations of motion we need to know the interac-
tions between the particles, that means, the potential, that will allow
us to calculate the energy of the system for a given atomic config-
uration. There are many numerical methods to integrate Newton’s
equations of motion, like the well known leapfrog algorithm or the
Euler method, but in this Thesis we are going to use the Velocity
Verlet algorithm [48]. Using this algorithm, the positions {5} of the
atoms are updated at the time ¢ + At by the expression

Si(t+ At) = 8(8) + T AL + %Ji(t)(At)g, (2.20)

where #; and @; are the velocity and the acceleration of the i*" atom.
Obviously, the time is a discrete variable, that increases an amount
of At in each loop of the algorithm. For this new configuration, the
potential energy EP° is obtained from the Hamiltonian of the system,
and the forces {ﬁ } acting on each atom are calculated as

Fi(t + At) = —VE™'(t + At). (2.21)
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After that, we use the classical equations of motion to obtain the new
accelerations and velocities

—

G,(t + At) = Fy(t + At)/m (2.22)

Ui (t + At) = ;(t) + %(a‘i(t) + a;(t + At))At. (2.23)

Repeating this many times we obtain the trajectory of each atom,
simulating the real dynamics of the system in an approximate way.
We can use these trajectories to determine macroscopic thermody-
namic properties of the system, like for example the temperature,
that from the equipartition theorem we know that is

N
1
T = AGARS 2.24
gV 2l (2.24)

where kg is the Boltzmann constant and /N is the number of atoms.

Some datails of this kind of simulations should be discussed. First
of all, we have to choose a timestep At small enough to integrate the
equations of motion with sufficient accuracy so that the energy is con-
served, but as long as possible to simulate a longer time. Secondly we
have to choose a set of initial conditions, that have to be introduced
in Eq. (2.20) the first time we run the algorithm. The ground state of
the system is typically chosen as the initial configuration of the sys-
tem, and the initial velocities are usually random generated using the
Maxwell-Boltzmann distribution defined for the desired temperature
of the simulation. After that, the velocities are corrected to set at
zero the linear and the angular momentums of the whole system, and
also, as the initial conditions will not be consistent with the desired
temperature of the simulation, we will have to thermalize the system
before running our production simulation.

The thermalization process modifies somehow the particles veloc-
ities while they evolve in time, until they are compatible with the de-
sired values of the macroscopic variables. At the end of the process, if
we let the system evolve free, its not fixed variables (for example the
temperature and the pressure in the NVE simulation) will not change
either, they will only fluctuate around a fixed value. There are many
ways to do the equilibration, for example to use the Berendsen or the
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Langevin thermostats, but in this Thesis we use other two different
methods. The first one is known as the velocity scaling, and consists
in multiply every certain number of steps the velocity of all the parti-
cles by the factor \/Tyes/Tinst, Where Tyes is the desired temperature,
the temperature at which we want to thermalize the system, and T;,4
is the instantaneous temperature, the actual temperature of the sys-
tem. This thermostat suppresses fluctuations of the kinetic energy
of the system and therefore cannot produce trajectories consistent
with the canonical ensemble. This also causes problems even in the
later microcanonic simulation when one is interested in magnitudes
related with the fluctuations of the system, like for example the mi-
croscopic thermal flux. In the studies where we need to avoid these
problems, we use the Nosé-Hoover thermostat [49, 50] that instead
correctly generates trajectories consistent with a canonical ensem-
ble. This thermostat introduces an additional fictitious variable in
the Hamiltonian coupled to the atomic dynamics to represent a heat
bath. The equilibration must be run until the system has lost the
memory of its initial conditions and is thoroughly equilibrated at the
desired temperature.

In addition to the thermalization process and the rest of the de-
tails, we have to take into account that we work with periodic bound-
ary conditions, so our systems are always surrounded by a copy of
themselves, which is the typical procedure to study bulk materials.
However all this is not enough to obtain the thermal conductivity
from a MD simulation, and to achieve that we have to choose one of
these three options:

e To perform a MD simulation out of equilibrium and use Fourier’s
law

J=—kVT (2.25)

to calculate the thermal flux of the system J if the temperature
gradient VT has been imposed, or vice versa.

e To calculate the microscopic heat flux and its autocorrelation in
a standard MD simulation and use the Green-Kubo expression
that relates it with the thermal conductivity k.

e To distinguish two portions of the system and thermalize them
at two different temperatures, and then let the system evolve fit-
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ting the evolution of the temperature to the solution of the heat
equation. This method is known as Approach-to-Equilibrium
Molecular Dynamics (AEMD). It has been developed very re-
cently [51], but some authors have already applied it to calculate
the thermal conductivity of Si/Ge nanocomposites [52] and Si
nanowires [53], and also of GeTey by first-principles molecular
dynamics [54].

The following subsections will explain the first and the second meth-
ods, the ones used in this Thesis.

2.2.1 Non-Equilibrium Molecular Dynamics

To perform a Non-Equilibrium Molecular Dynamics simulation
(NEMD) we can proceed in two different ways: to fix a tempera-
ture gradient in the simulation cell and calculate the thermal flux
during the evolution of the system, or impose a thermal flux along
the system and obtain the temperature profile with the simulation.
In our work we use the second method.

To impose the thermal flux we define two different regions in our
simulation cell, the sink and the source (as sketched in Fig. 2.1), and
after each Verlet step we take an amount of energy from one of the
regions and put it in the other. We do that by rescaling the velocities
of the atoms located in them as

Unew(t) - Uold(t) \/ %, (226)

where F is the energy of the region and AFE is the energy exchanged
each time interval At. As we remove in one region the same amount
of energy that we add in the other the total energy of the system
is not altered by this procedure. This procedure will cause that the
region from which we are taking energy gets colder and the region
where we are adding it gets hotter. Then in the system the energy
will flow from the hot region to the cold region, showing up a thermal
flux.

By choosing the amount of energy that the sink and the source
exchange we are directly choosing the flux that we are imposing in
the system

AFE
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Figure 2.1: Schematic view of a NEMD simulation. The thick
arrow represents that an amount of energy is extracted from
the blue region and added to the red region after each step of
the algorithm. This cools down the blue region and warms up
the red, so in the natural evolution of the system there will
be a heat flux going from the hot region to the cold region,
represented in the image by the thin arrows.

where A is the surface that the flow passes through (the cross-section
of the sample). The 1/2 factor appears by assuming that the same
amount of energy flows to the left and to the right, but this is only
true if the two regions of the material between the sink and the source
are strictly equivalent.

If we let the system evolve under this condition, after some time
it will reach a stationary state, and then we can start the production
simulation, the one used to collect data. Defining the temperature of
an atom using the definition of its kinetic energy and the equipartition
theorem we get

2
Ein = %mv2 - ngT =T = % (2.28)
Averaging it in perpendicular slices to the thermal flux we obtain the
temperature profile of the system in the direction of the flux, and we
can calculate the temperature gradient VT from it. With this we
have all the ingredients to calculate the thermal conductivity by the
Fourier’s law (2.1) using NEMD.

Note that the thermal conductivity obtained in a NEMD sim-
ulation is k;, the diagonal component of the thermal conductivity
tensor in the direction of the thermal flux. Furthermore this value is
valid only for the particular length of the system. As in practice a
long enough system to obtain the converged value of k is impossible
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to simulate, the way to obtain the bulk thermal conductivity using
NEMD is to perform some different simulations with different system
lengths and extrapolate the value of the thermal conductivity for an
infinite system. This is achieved by plotting the inverse of the thermal
conductivity 1/k against the inverse of the lenght 1/L of the system in
each simulation, assuming a linear dependance, and taking the value
of the linear fit at 1/L = 0 [55]. The strictness of this procedure have
been recently questioned, because this would be accurate only if the
minimum system size used in the simulations is comparable to the
largest mean-free paths of the phonons that dominate the thermal
transport, what is not typically satisfied [56].

2.2.2 Green-Kubo relation

To obtain the Green-Kubo relation for the thermal conductivity we
are going to follow the method of Helfand [57] as presented in the
book of Massoud Kaviany [58], adding useful information to clarify
the derivation, like the explanation using the fluctuation-dissipation
theorem or the definition of the microscopic thermal flux. We also
present here the Einstein relation and an explanation about how to
run simulations using this technique.

The derivation begins with a system in the canonical ensemble.
It’s energy equation, taking into account that there is not a net flow
in the system and that Fourier’s law apply, would be

9p' (7, t)

L7V .-k-VO(F ). 2.2
Nt V.-k- V(1) (2.29)

Here n is the number of particles per unit volume, ¢, is the specific
heat per particle and  is the thermal conductivity tensor. The in-
dependent variable p/(7, ) is the deviation of the energy density from
its expectation value at position 7 at time t,

P t) = p(r.t) = (p(F,1)), (2.30)
where p(7,t) is the actual energy at that point and (p(7,t)) is its
ensemble average. B

Defining the Fourier transform of p/(7,t) as F(k,t), Eq. (2.29)
becomes

I 2
OF(kt) _ _FE b py. (2.31)

ot ne,
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with initial condition F’ (l;, 0). To solve this equation, we multiply it
by e®**t (with o = k/nc,), and after some calculations we get

— —

F(k,t) = F(k,0)e ¥, (2.32)

The fluctuation-dissipation theorem demonstrates that, for a sys-
tem that satisfies detailed balance, the response to a thermal fluc-
tuation in a physical variable (microscopic) is quantified by the ad-
mittance or impedance of the same physical variable (macroscopic),
and vice versa. This theorem is the basis of the Green-Kubo method,
which connects the previous expressions that include the thermal con-
ductivity (macroscopic) with the correlation function of the micro-
scopic thermal flux. So the next step in the derivation is to find a
microscopic expression that could be related with the previous ones.

The energy density of the system on a microscopic level can be
defined using a particle basis as

p(7.t) = (D)0 = 7(t)], (2.33)

where €;(t) and 7(t) are the energy and the position of particle j,
and the sum runs over the N particles in the system. We can define
the deviation with respect the equilibrium value as

AGOED OGSO (2.34)

~ N L N i
F(k,t) = / > e)oF— ()]t Tdr =) €)™ M. (2.35)
e

Multiplying both sides of Eq. (2.32) by F*(E, 0), the complex con-
jugate of the initial condition, using (2.35), and taking the ensemble
average at the end, gives

N
"3 €t ()OO

j=1 1=1
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N N
=) €(0)€(0)e OO ekt (2.36)

As we are assuming small perturbations, we can expand both sides
of Eq. (2.36) as Taylor series centered in k = 0. The calculations are
simplified by choosing k to be in the z direction, i.e., k = k, (1,0,0).
After some algebra we find that the zeroth order of both expansions
are the same, and also that the first order term is zero, so only the
second order term is required. From the second order term the next
expression for the thermal conductivity arises:

N 2

1 , ,
g = 2Vk:—BT2t< ;[ej@)xj(t) — €,(0)z;(0)]] ). (2.37)

We could stop the derivation here and work with this last equa-
tion for the thermal conductivity. Actually, many authors do that.
Eq. (2.37) is known as the Einstein relation for the thermal conduc-
tivity, although is typically written as

1 1

s dm 5 () - ROJ@ (R0 - Fo), (239)

KR =

showing explicitly the vector character of the equation and also that
the converged value for the thermal conductivity would be found in a
long enough time. By comparison of Eqs. (2.37) and (2.38) R should
be the fluctuation in the energy momentum, but the minus signs
allow the value of the energy momentum to be used directly, what is
typically done. So

= &)i(1), (2.39)

J=1

and we will see that this quantity is related with the thermal flux.
This expression for R have been obtained in the thermodynamic
limit, what means that we are assuming an infinite number of particles
in our system. But if one has to perform a simulation using the
Einstein relation, it will have a finite number of particles, and R
will have a bounded behavior, so the time in the denominator of
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Eq. (2.38) will cause the thermal conductivity to go to zero. To fix
this problem and be able to use the Einstein relation in simulations
with periodic boundary conditions, some authors proposed different
alternatives, like adding an extra term to the definition of the energy
momentum [59], or directly redefine it in a “cumulative way” that
makes it increase with time and compensate the 1/t [60]. In this last
reference, they show that this method is less noisy than the standard
Green-Kubo, that the energy momentum can be splitted in kinetic
and potential parts, and that the contribution of the potential part is
negligible when working with solids. So, their final expression for R
is independent of the potential, and the distribution of the potential
energy between atoms, something that have to be done in the Green-
Kubo formalism, can be avoided.

The method of the Einstein relation takes into account the con-
tribution of some images of the system when working with periodic
boundary conditions. For this reason, the range of interaction poten-
tial should be small enough so that one particle interacts at maximun
with only the real or one of the images of any of others [61]. As
in this Thesis we are going to work with charged atoms (ions), the
coulombic long-range interaction will be present, so we are forced to
use the traditional Green-Kubo relation instead of the Einstein rela-
tion. We have no other option but to continue with the derivation of
the Green-Kubo formula.

To continue we have to note that the sum of Eq. (2.37) can be
written as

N

S 0ay(t) = 0,00 = [ 53 was(elan,  (240)

j=1
and taking into account the definition of the atomistic heat current

explained in Appendix A, we have in the x direction

N

50 = T3 00 = & S (e 0) + 0,0, (241

=1 j=1
and since

de; (1))
dt

=0 (2.42)
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we can write
Jo(t) = di Z ¢, (t)z;(t). (2.43)

J=1

~+

Using the equations (2.40) and (2.43) in the expression for the
thermal conductivity (2.37), after some calculations we get the well
known relation of Green-Kubo for the thermal conductivity

o (£) = VI;TZ /0 (T (7)1.(0))dr- (2.44)

This equation can also be generalized to obtain any component of the
thermal conductivity tensor

() = @ /0 (J(7)T5(0)) dr. (2.45)

Many things related to this equation have to be mentioned yet.
First of all, it is useful to have a better understanding of the heat cur-
rent .J that appears in our whole derivation, and of the Heat Current
Auto Correlation Function (HCACF) (J;(¢)J;(0)). J is a vector that
contains the information of the amount and the direction of energy
transfer in the system at a certain time. Moreover, autocorrelation is
a measure of how a signature of a dynamic system matches a time-
shifted version of itself. So the HCACF says how fast changes the
microscopic energy transfer in a system, what is also related with
the thermal coductivity. A durable correlation means that fluctua-
tions from equilibrium will dissipate slowly, what indicates that the
material have a high thermal conductivity. If the correlation lives
for a short time, the material we are studying have a low thermal
conductivity.

Another important thing is that all the theoretical derivation to
obtain the equation has been performed in the canonical ensemble,
where we have a fixed temperature and fluctuations in the energy.
Nevertheless, when one performs a EMD simulation to obtain the
thermal conductivity using Green-Kubo, it is more rigorous to run a
NVE simulation (in the microcanonical ensemble) instead of a NVT
simulation (in the canonical ensemble). The reason is that the sim-
ulation has to satisfy ergodicity to be able to replace the ensemble
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average of Eq. (2.45) by a time average. The NVE simulation sat-
isfies it, but ergodicity of the Nosé-Hoover thermostat has not been
proved. In fact, some authors report that ergodicity is violated in
some cases, like in case of small thermostat response times [62]. So a
thermostat like the Nosé-Hoover one is only proved to provide correct
equilibrium properties, but not dynamical properties such as time
correlation functions.

So taking into account all this information, the EMD simulations
in this Thesis have been first equilibrated at some temperature using
the Nosé-Hoover thermostat, and after that we have run an NVE
simulation to produce the heat current data. Very long simulations
are required, because to have a truly ergodic system, during the NVE
simulation the system have to explore the whole phase space, and
explore each point of the phase space many times as the probability
density indicates. That is what allows us to replace the ensemble
average of Eq. (2.45) by a time average. The longer the simulation
time is, the more likely it is that the system have explored the phase
space properly, and therefore the more similar will be the time average
to the theoretical ensemble average.

As we work with a discrete set of times, it is better to rewrite
Eq. (2.45) as

kij(t) = Al i ! Nzin](m+n)(]-(n) (2.46)
K _VkBTQmZIN—mnzlz A '

In this last formula, At is the timestep of the simulation, IV is the total
number of timesteps in the simulation, M is the number of timesteps
we want to include in the time window, i.e., t = MAt, and J;(m +n)
is the i*" component of the heat current at MD timestep (m + n).
We have replaced the ensemble average for a time average. This time
average is performed by displacing the origin of time running the n
index. The sum over m replaces the integral, and takes into account
all the time-separations of the Js. As long is the separation in time
of the Js less points we have to average, that is the reason of the
N —m denominator, and the explanation of the increase in the error
of k with time. N has to be bigger than M to have enough statistic
even in the last point of the time window m = M.

A common thought is to think that running a extremely long sim-
ulation provides you a lot of long HCACFs to average, wich would
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result in a good amount of statistic to have a good enough result
for the thermal conductivity. With this assumption we just require
one long simulation to get the value of the thermal conductivity.
However this assumption does not seem to be correct. The Fermi-
Pasta-Ulam-Tsingou problem showed that many complicated enough
physical systems exhibited almost exactly periodic behavior instead
of the expected ergodic behavior. One of the resolutions of this para-
dox may be that ergodic behavior may depend on the initial energy
of the system. If it were the case, running just one long simulation
could make us to average some situations that are not uncorrelated.
To avoid this problem in this Thesis we have run some different and
independent simulations (changing the initial velocities changing the
seed of the generator) and we have averaged the values obtained from
Eq. (2.46) for the thermal conductivity in all of them. With this kind
of simulations one can obtain the whole thermal conductivity tensor,
and for a converged size of the system the value obtained is the bulk
thermal conductivity of the material.






Chapter 3

Modeling oxides

The studies that have been performed during this Thesis are quite
general and can be extrapolated to a wide family of materials, mainly
to other functional oxides, but all the simulations presented here have
been performed using two materials, Lead Titanate (PbTiOs3, abbre-
viated as PTO) and Zinc Oxide (ZnO). As we have said in Chapter 2,
we can avoid dealing with electrons in our simulations because in in-
sulating oxides like these ones the thermal transport is dominated by
the dynamics of the lattice. Most of the methods that have been de-
veloped to capture the lattice dynamical behavior of materials model
the interaction between atoms with an analytic expression, that is
typically based in a physical interpretation. For example, we have
the well known Lennard-Jones potential [63], that takes into account
Pauli repulsion at short ranges due to overlapping electron orbitals
with its 77'2 term, and the van der Waals force with its =% term.
Other common ones are the Tersoff potential [64], the Buckingham
potential [65], that can be improved modeling atoms as a core-shell
couple [66, 67], and the reactive force fields [68]. These potentials
are still used in many works because of its simplicity and because
of the possibility to be parametrized for different materials, but are
not always able to properly describe the behavior of the materials we
want to study, besides they are not always extendible to improve their
precision and have a limited predictive power.

On the other hand, we have the most sophisticated methods avail-
able to study solid systems, namely first-principles methods. However
these methods, even density-functional theory (DFT) [69] that is the
most efficient one, are sometimes impractical to use because of the

29



30 Chapter 3. Modeling oxides

high associated computational load.

Keeping this in mind, Wojdel et al. have developed an interme-
diate method [70]. It consists in a second-principles Hamiltonian,
what allows to perform classical simulations with many atoms, but
parametrized by first-principles calculations, so that it retains the pre-
cision and have a predictive power close to the first principles ones.

In this chapter we are going to give information about the PTO
and the ZnO and also explain how to model them. ZnO is a simple
material, so it can be properly described by the Buckingham poten-
tial, an analytical expression that despite its simplicity have been
proved to properly describe thermal properties, the piezoelectric con-
stant, and even surface properties of this material [71-74]. PTO is a
more sophisticated material, which is reflected in the complexity of
the second-principles models we are going to use to describe it. The
second-principles Hamiltonian has a demonstrated predictive power
for the key structural, vibrational, and response properties of ferro-
electric perovskite oxides [75-78], including the PTO.

3.1 PbTiO;

Lead titanate is an inorganic oxide with a perovskite structure. This
material is usually represented with the Pb?* cations placed at the
corners, the Ti** cations in the center of the cube, and the 0% an-
ions situated in the center of the faces of the cube, forming an octahe-
dron. At ambient pressure and higher temperatures than the critical
temperature T = 760 K, PTO adopts a cubic structure, but at Ty
the material undergoes a phase transition to a tetragonal perovskite
structure (see Fig. 3.1).

From a lattice dynamics point of view, the phase transition hap-
pens because of the softening of a soft mode [79], a mode whose
frequency decreases anomalously when the system goes close to the
transition point, where the eigenvalue of the dynamical matrix, i. e.,
the matrix of the second-derivatives of the energy in the reciprocal
space, for this mode have an imaginary frequency. This happens when
the anharmonic terms that contributes to the w? of the soft mode
(positive) are not able to counter the effects of the harmonic terms
that contributes to the w? (negative) sufficiently. In other words, the
phase transition results from a delicate balance between long-range
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Figure 3.1: Schematic view of the perovskite structure of the
PbTiOs in it’s two solid phases. In blue the Ph?T cations, in
green the Ti** cations, and in red the O®>~ anions.

electrostatic forces which favour the tetragonal phase and short-range
repulsions which favour the cubic phase [80].

The structural distortion that appears at low temperatures has
a polar character, and it essentially involves a displacement of the
Ti**t and Pb?T cation sublattices against the O?~ anions. This dis-
tortion can be reversed by an external electric field, so at ambient
temperature and pressure PTO is a ferroelectric material.

Pb is more deformable and polarizable than other elements that
tipically takes the A place in the ABOj perovskite structure [81].
Moreover, as emphasized by Megaw [82] the directional character of
the Pb-O bond, possessing a covalent component, could be also re-
sponsible for the high Curie point and the large axial ratio, i.e., large
¢/a, where ¢ and a are the crystallographic axes of the polarized di-
rection and the others respectively.

A PTO crystal in the ferroelectric phase is an ensemble of do-
mains of polarization with different orientations, but these domains
can be reoriented applying an strong enough external electric field. In
our studies we will choose some different configurations of domains,
all of them justified by this property, because they can be obtained
experimentally by the application of an external electric field in the
region we want to reorient. Between two domains we have an inter-
fase called Domain Wall (DW). This DWs, under some circunstances
(angle between the polarization of the domains, temperature,...), can
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show a spontaneous polarization, that can also be switched by an ex-
ternal electric field, so this interphase behaves like a 2D ferroelectric
material [76].

This material and in general ferroelectric materials and per-
ovskites have many different technological applications. For example,
many researchers have prepared ferroelectric random access memory
(FeRAM) like flexible devices and multi-state memories [83-85], even
using organic compounds [86]. PTO is also typically used in the de-
sign of these devices [87]. Other option is nanostructure the PTO
as thin films for designing infrared sensors based on the pyroelectric
effect, as presented in these references [88-90].

We think this family of materials also have promising applications
in phononics even though for the moment its role in this field is al-
most unexplored. In Chapter 4 we study how affects the presence of
DWs to a heat flux that goes trough them. The possibility of writing
and erasing DWs by means of an strong and instantaneous external
electric field makes possible the design of a thermal switch. In the
same direction go the studies we have done in Chapter 6, where we
use directly the anisotropy of the material to achieve a similar effect.
In chapter 5, on the contrary, applying a weaker electric field but
constant in time we study how the thermal conductivity of the PTO
is affected and how this makes possible to use this material to design
a thermal transistor.

3.2 Second Principles Lattice Dynamics

The first step in constructing the model of Wojdet et al. [70] is choos-
ing a reference structure (RS), usually a minimum or a saddle point
of the energy. As the model has to reproduce the structural phase
transition of the PTO, a good option is to take the cubic phase as
the reference structure, more symmetric than the tetragonal struc-
ture of the ground state. To obtain the RS a relaxation imposing the
symmetry of the cubic structure using first-principles calculations at
T = 0 K has to be performed.

The atomic displacements will be studied as relatively small dis-
tortions of the RS. So, the position of the atoms are described like
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this

Tlha = 2(50‘5 + naﬁ)(Rlﬁ + Tkﬁ) + Ujka, (3.1)
B

where 0 is the Kronecker delta, 1 is the homogeneous strain, ]%l is a
lattice vector and [ labels cells, 7 is the position of an atom inside a
cell and k labels each atom, and # is an individual atomic displace-
ment. « and 3 denote Cartesian directions.

The energy E is expressed as the energy of the RS Egrg plus the
energy changes with respect the RS AFE

E = Eps + AE. (3.2)

The energy changes around the RS can be expressed as a function of
the variables that affect the positions of the atoms as

AE({ui},m) = Ep({ui}) + Es(n) + Ep({di}, ). (3.3)

Here, E,({u;}) is the energy change due to the phonons and can be
split into the harmonic Ey,({;}) and the anharmonic E.n,({u;})
contributions, Fs(n) is the change in the energy when we strain the
RS, and E,({#;},n) is the energy variation occurring when homoge-
neous strains and atomic distortions appear simultaneously.

The next step is to write these three terms as Taylor expansions.
The phononic term becomes

Ey({t:}) = Enar({U}) + Eann({4i})
1 9 1 3
~ 9 Z Kz'(a;ﬁ“iaujﬁ 5 Z Kz‘(a;,@kyuiaujﬁukv toe
g8 g Bky

(3.4)

where K™ is a tensor whose components are the n'" derivatives of
the energy with respect the displacements

o"E
K(”)

e VY (3.5)

RS

K™ = 0 because the cubic structure of the PTO is a minimum of the
potential energy. It is needed also take into account that the elements
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of the tensor are not independent and have to accomplish the acoustic
sum rules

ZK}ZJ/B,W Vi k..., B,7,... (3.6)

to maintain the translational invariance of the system. For the second

order we can choose the szﬁ as

2
aif3 == Z Ki(a;ﬁ’ (37>

and simultaneously impose the symmetric character of the force-
constant matrix

K _ @

iwajf — TrjBiac

(3.8)

As for higher orders imposing the acoustic sum rule is more diffi-
cult, a clever idea is to write the anharmonic part as a product of
displacement differences

Bun({0}) = & Y Kiidinpres (tia — ) (ks — wng) (ttry — )
ijakhBrty

+eee (3.9)

which guarantees the translation symmetry and simplify the task of
fitting the coeficients by first-principles.
The elastic energy is written as

E.(n) Z Céb)nanb + — Z Cabcnanbnc + - (3.10)

abe
where NN is the number of cells and

b N@n oy
WO - - - | pg

ao...

(3.11)

The elements C’fj) are the elastic constants.
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Finally, the strain—phonon interaction energy can be written like

sp {ul} Tl Z Z Ama NaUWi
t3 Z > AL natiatss

a iajp
1 2
5 DD A bttia
ab i
L (3.12)

A®Y is the force-response internal strain tensor, and describes the
forces that the homogeneous strains causes on the atoms. The A(™™)
tensors have to satisfy similar acoustic sum rules to the ones that
have to fulfill the K™ tensors, so again a similar procedure can be
performed for writing the Eg,({u;},n) as function of displacement
differences

sp {Uz} 77 ZZACLZB”@ uwz uja)

a ija
+ = Z Z azgakhﬂna Uia — uja)(ukﬁ - Uhg)
a ijakhB
1 (21
ts SN ARG nam(tia — ja)
ab ja
4. (3.13)

All the interactions mentioned until now have in principle an arbi-
trary spatial range, but in practice we will use a cutoff for the spatial
extent of such interactions.

The model can be improved considering the symmetries of the
system to simplify the Hamiltonian. For example, the displacements
of atoms that are equivalent can be grouped in the same coefficient
of the Taylor expansion. The authors refer to this symmetry-related
products as a symmetry-adapted term (SAT). It also happens that
a SAT cancels out, what simplifies even more the potential and the
subsequent calculations that will be performed using this model. In
our case that we are working with an ABOj perovskite, they prove
that the symmetry of the RS makes zero all the bilinear strain-phonon
couplings, i.e., AN = ALY = .
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Another thing that must be taken into account in insulating and
semiconductor systems is the electrostatic interaction between ions.
As previously said, the interactions of the Taylor expansions described
above will be truncated at certain distance, but using a cutoff for
the long-range Coulomb interaction introduce significant errors and
artificial behavior in a simulation [91]. This is because despite the
fact the electrostatic energy appears to be well approximated using
a short-ranged approximation, derivatives of the energy do possess
distinctively long-range effects. The direct summation method does
not take the long-range nature of the derivatives into account [92].

The change in the energy of the RS due to its distortions caused
by the electrostatic interaction of the ions must be also taken into
account. This effect can be approximated as dipoles that appear
when ions are not exactly in their RS positions. Within a linear
approximation, the dipoles can be written as

dia = Z Z:Bauw, (314)
B

where Z7 is the Born effective-charge tensor for atom <. These Born
charges, as are calculated by first principles, quantifies not only the
displacement of the ions but also the rearrangement of the electrons,
what in the case of PTO results in charges with a value that is almost
twice the value of the charge in the rigid-ion limit.

The lowest order dipole-dipole interactions are captured by the
harmonic couplings K. In the multipole expansion of the elec-
trostatic energy also exist other harmonic couplings involving other
terms. This model neglect their contribution to the long-range part of
the energy, and effectively capture their possible effects in the short-
range part. The long-range coupling is then written as explained
by Gonze and Lee [93], what includes nonanalytical behavior of the
phonon bands for homogeneous distortions. In simulations using this
model, that typically uses a supercell, the infinite-range interactions
can be computed using an Ewald summation.

The procedure we have seen has many advantages:

e [t is a general procedure, so the second-principles Hamiltonian
can be obtained for any material, not just for the PTO.

e The parameters that appear have a physical interpretation.
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e The precision of the potential can be improved in three different
ways: taking a higher order in the Taylor expansions, using a
longer cutoff for the range of the interactions, and increasing
the number of atoms involved in the coupling terms.

The parametrization of this second-principles Hamiltonian can be
performed in different ways. The authors distinguish between:

e Parameters computed directly from first principles, like K,
C® and AV that quantify the response of the RS of the
PTO to small atomic distortions or strains. These parameters
can be calculated from density-functional perturbation theory.
The Born effective charges are also calculated in this way. To
compute the parameters from first principles it is better to use
Eq. (3.12) for describing Eq,({@;}, n).

e Parameters fitted to first-principles results, like the higher-order
couplings. They implemented an algorithm that adjust the pa-
rameters to reproduce first-principles results of the low-energy
structures that are more stable than the RS, energy differences
and equilibrium atomic configurations. To reproduce specific
first-principles results they use Eq. (3.13).

e The parameters that control the dipole-dipole interactions are
obtained considering the response of the material to electric
fields.

The obtaining and the precision of the second-principles Hamil-
tonians for different materials have been recently improved by
Escorihuela-Sayalero et al. [94], although in this Thesis we work with
the old models developed by Wojdet et al. [70]. In the limit of 0 K, the
model for PTO reproduce a spontaneous polarization of 0.99 C m~2
and a ratio ¢/a = 1.07, very close to the values obtained by extrapo-
lating to low temperatures the experimental results in [95], which are
a polarization of 0.85 C m~2 and ¢/a ~ 1.07. The model also repro-
duce, although at a lower temperature than the experimental one, the
phase transition of the material, as can be seen in Fig. 3.2 and also
detailed in [70]. In fact, it even describes the 2D polarization of the
DW between two domains, highlighting its behavior as a ferroelectric
in two dimensions, as can be seen in Fig. 3.3 and also detailed in [76].
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Figure 3.2: Temperature-dependent polarization of PTO cal-
culated by means of a Monte Carlo simulation for each value
of the temperature using 10 x 10 x 10 supercells. The transi-
tion between the paraelectric and the ferroelectric phases can
be appreciated at approximately 510 K.
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Figure 3.3: Polarization profile corresponding to the ground
state of a multidomain configuration of PTO. The profile has
been obtained from a Monte Carlo simulation of a 12 x 12 x 20
supercell. It can be appreciated the jump in the polarization
when changing from one domain to another of the system (P,
blue), and the spontaneous polarization of the DW (P, red).
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A program called SCALE-UP (Second-principles Computational
Approach for Lattice and Electrons) have been developed to use these
models [96]. This code is being continuously improved, but for the
moment it can perform Monte Carlo and Molecular Dynamics calcu-
lations, tools that are required in this Thesis.

3.3 ZnO

Zinc Oxide is another inorganic material that can be found in three
different phases. At normal conditions of temperature and pressure
Zn0 crystallize in an hexagonal wurtzite structure. Each zinc cation
is surrounded by four oxygen anions at the corner of a tetrahedron,
and vice versa. In the direction perpendicular to the hexagon, atoms
are stacked in an ABAB pattern, as sketched in Fig. 3.4.

Figure 3.4: (Left) Wurtzite structure of the ZnO. Zn** cations
are represented in yellow and O*~ anions in red. (Right) Here
we show an schematic representation of the ABAB stacking
in the c¢ direction of the material. The grey grid identifies the
same region in each representation.

This phase transforms to the cubic rock-salt at ~ 9 GPa. The
third solid phase of the material is zinc-blende. This phase is
metastable and can be stabilized only growing it above cubic sub-
strates [71]. We are interested in the wurtzite phase because is the
most common one and the most used for applications. In this phase,
by symmetry, the thermal conductivity in the a and b directions of the
material will be the same, but different of the thermal conductivity
in the ¢ direction.
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Zn0O was widely used as white pigment for paint and in photocopy
paper as a photoconductive ingredient. Nowadays it have been dis-
placed by other materials in these applications, although it can still
be found. The rubber industry is now the one that uses the highest
amount of ZnO, as a vulcanizing activator [97]. More related with
our study are the facts that the ZnO have a high heat capacity, low
thermal expansion and high melting temperature, what makes ZnO
a nice compound for ceramics [98]. ZnO can be also used in modern
and technological applications because many different nanostructures
can be synthesized using this material, like nanowires, nanobelts,
nanoparticles, etc [99]. For example, Wei et al. developed a glu-
cose sensor based on ZnO nanorods [100], and Solanki et al. have
reported a cholesterol biosensor nanostructuring ZnO as films [101].

Also, lattice symmetries of this structure makes ZnO to show a
strong piezoelectricity, and also pyroelectricity. Because of that ZnO
have a lot of applications. One of the most important ones is the
design of devices for use in telecommunications, like resonators and
filters. The use of bulk acoustic wave (BAW) and surface acoustic
wave (SAW) devices is very extended [102-104]. These devices use
the piezoelectric property of ZnO to convert an electrical signal into
a mechanical wave in the launching transducer, and conversely, to
convert the mechanical wave into an electrical signal at the receiving
transducer [105].

We have choosen ZnO to study how thermal conductivity is af-
fected by strain. In this case we are more interested in the funda-
mental physic relying under the effects than in specific applications.
Nevertheless it does not mean the study lacks of interest. In fact,
Zn0O can be found under strain in many technological applications,
like when it is growth as nanowires [106]. Our results can be found
in Chapter 7.

3.4 Buckingham potential

To model ZnO we are going to use the Buckingham potential for
the short-range interactions, a simple potential with this analytical
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expression

U(ri;) = Aexp (—;> - % (3.15)

where A, p and C' are parameters and r;; is the distance between two
interacting ions. We are going to take into account also the long-
ranged Coulombic interactions between ions

1 qig,
U(ry) = Treg 1y (3.16)
where ¢ is the vacuum permittivity and ¢ is the charge of each atom.

The first and second terms on the right-hand side of Eq. (3.15)
represent the short-range repulsion and attraction, respectively [72].
To give a physical interpretation to the parameters involved in the
potential, we could say that A is related to the “hardness” and p to
the “size” of the ions, whilst the C' term is used to represent the van
der Waals interactions [107].

To parametrize the potential, the parameters A, p and C are
changed iteratively such that they give the best least-squares fit to the
experimental lattice parameters, elastic constants and dielectric con-
stant [107]. We have found in the literature two different parametriza-
tions, one made by Binks et al. [108], and other made by Nyberg et
al. [73] based upon the original potential of Lewis and Catlow [109].
Both parametrizations seem to provide very close results [72].

In this Thesis we are going to use the Nyberg parametrization.
The values of the parameters are written in Table 3.1. We use in our
simulations the ionic charges of the Zn and O ions, i.e., +2 and —2
times the absolute value of the electron charge.

A V) | p(A) | C (eV-AY)
Zn-7Zn 0.0 1.0 0.0
Zn-O | 499.6 | 0.3595 0.0
0-O | 22764.0 | 0.1490 27.88

Table 3.1: Nyberg parametrization of the Buckingham poten-
tial in the Rigid Ion model.

The lattice constants @ = b = 3.25 A and ¢ = 5.15 A of the
Zn0O wurtzite crystal structure calculated according to the Nyberg
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parametrization are in fairly good agreement with the experimental
values [110] (errors are within 1.5% for both a and ¢).

For a better understanding of the Buckingham potential we plot
in Fig. 3.5 the oxygen-oxygen interaction using for the parameters the
values of the Nyberg parametrization.

E (eV)

10 15 20 25 30 35 40

Figure 3.5: Interaction between two oxygen ions modeled
by the Buckingham potential with the parametrization per-
formed by Nyberg et al. [73].

With this we would have everything we need to model the ZnO
with the Buckingham potential. In next paragraphs of the Thesis,
as we are treating ions as point particles, we will refer to this model
as the Rigid Ion model (RI). But this model can be complemented
by distinguishing in the atoms two different parts: the core and the
shell [67]. The characteristics of the Core-Shell model (CS) are:

e We assign a charge to the core and the shell of each atom, so
that the sum of the two is the charge of the ion. This allows
the polarizability of the atom.

e BFach core will be linked to its shell by a spring, i.e., by an
harmonic term. This will be the only interaction between a core
and its own shell, all the other interactions will be excluded.

e Short range interactions are only present in shells. This may
seem weird, but as the shell represents the electron cloud it
is usual to have all the short-range van der Waals interactions
attributed to the shells rather than the cores [111].
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e There are also two different versions of the CS model:

— The first and oldest one includes massless shells that are
relaxed after each displacement of the cores [66].

— The second one uses shells with small mass and their mo-
tion integrated in the same way as that of the cores [67].
In this case the frequency of the spring linking the core
and the shell should be much higher than the lattice vi-
brational frequencies. It is always possible to satisfy this
condition by making an appropriate choice of the amount
of mass we are going to assign to shells, as we can see in
the next equation

T,=1/f, =27/x(1 — x)M/k,

where T and f are the period and the frequency of vibra-
tion, x is the proportion of the ion mass on the shell and
(1 — x) on the core, M is the total mass of the ion and k
is the elastic constant of the spring. Providing that this
condition is satisfied, the behavior of the model should be
independent of x.

The Nyberg parametrization for the short-range interactions in
the CS model is the same that in the case of the RI (see Table 3.1),
but in this case the interactions are between the shells [73]. We have
to include also the harmonic interaction between the cores and its
shells as V' (r;;) = (1/ 2)]{:7“2-2]-, where for the Ogre-Ognen pair we have k =
15.52 ¢V A2, and for the Znggpe-Znghen pair we have k = 8.77 eV A2,
Finally, we have to mention that in this model the charges of the ions
does not need to be the formal charges. Although the bonding in
ZnOQ is largely ionic, we can choose partial values to represent bounds
that are partially covalent. In our case the charges we are going to
use are written in Table 3.2. The electrostatic energy of the system is
calculated, as in the case of PTO, by means of an Ewald summation.

Charges | Zn core | Zn shell | O core | O shell
g (le”]) | -0.05 2.05 0.00 -2.00

Table 3.2: Charges of the ions in the CS model.
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The Buckingham potential have been used in many MD simula-
tions for many different materials. For example, in reference [109]
authors studied oxides with a CS model and predicted the activation
energies for dopant diffusion in NiO, and they also modeled the surface
of the MgO and found the rumpled surface previously predicted by
Rieder [112] using the exact-exchange Hartree-Fock approach. More-
over they calculated the elastic constant of ternary oxides, in partic-
ular those with the spinel and perovskite structures. Their results
were generally satisfactory. In reference [113] authors use RI and CS
models, and the Green-Kubo technique to study the thermal conduc-
tivity of KCI and RbCl-doped KCI, and compare their results with
experimental values, obtaining a good agreement between them. To
calculate the microscopic thermal flux, they take into account the
cores and the shells, as we have done in our simulations of Chapter 7.
Focusing attention on the ZnO, which is the material we will study,
we have found a study which obtain the piezolectric coefficient for
different ZnO nanobelts [74]. It also demonstrated that nanobelts
with lateral dimensions smaller than ~ 1 nm undergo significant sur-
face reconstruction relative to their bulk structure, which is consistent
with previous reports using a combination of first principles calcula-
tions and analytical formulation [114]. In reference [71] authors study
the zinc-blende phase of the ZnO in a very special way, modeling the
zinc as rigid ions and distinguishing a nucleus and a shell in oxygens.
They obtained structural parameters in good agreement with the ex-
perimental data, like the lattice constant, and also investigate the
P —V — T relationship and many thermal properties as the isother-
mal bulk modulus and the thermal expansivity. Finally, in this last
reference [92] authors use the BTE to compute the thermal conduc-
tivity of UO2, MgO and SrTiOs using the RI model. The RTA was
found to be a very good approximation, only slightly underpredicting
the k compared with the iterative solution.

In this section we have all the theoretical background we need to
study the thermal properties of the ZnO, using a potential that has
proved its validity in many previous works.



Chapter 4

A phononic switch based on
ferroelectric domain walls

Our goal in this Chapter is to design a structure whose thermal con-
ductivity could be dynamically tuned. In particular, a system able
to reversibly commute between a low and a high conductivity states,
what allows digital signal processing with phonons. To fulfill this pur-
pose, as we have said in Chapter 3, we are going to use the property
of the PTO of writing and erasing DWs with an external electric field.
This idea has been experimentally observed in different ferroelectrics
and DW configurations. First Mante et al. [115] and later Weilert
et al. [116, 117] demonstrated that the thermal conductivity of bulk
BaTiO3 and KHyPO, can be dynamically tuned by electric field alter-
ation of the density of DWs in the material. However, the effect was
demonstrated only at low temperatures, i.e., when phonon-phonon in-
teractions do not become the dominant scattering mechanism. This
drawback has been recently overcome with the advent of nanostruc-
tured ferroelectrics. IThlefeld et al. have been able to decrease the DW
spacing in ferroelectric thin films made of Pb(Zr3Tio7)O3 below the
average phonon mean free path [118, 119], which has made it possible
to expand the electrically actuated thermal switch operation over a
broad temperature range, including room temperature, thus boosting
its potential technological impact.

In spite of the above experimental evidence, a quantitative eval-
uation of the DWs’ resistance to the thermal flux is missing. Al-
ternatively, this relevant magnitude can be estimated by means of
atomistic computational simulations of phonon transport. Neverthe-

45
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less, for the case of ferroelectric DWs, reports of such simulations are
scarce [120, 121]. This can be attributed to the fact that large super-
cells are required in these types of calculations, which hampers the
use of accurate ab initio methods, such as density-functional theory
(DFT); a second problem relates to the relatively poor transferability
and accuracy of the interatomic potential models available nowadays
for perovskite oxides. Royo et al. have recently reported a study
of phonon transport through ferroelectric DWs with atomistic pre-
cision [121]. To this end, they obtained the atomic force constants
from second-principles model potentials [70] and performed harmonic
(ballistic) phonon transport simulations within the non-equilibrium
Green’s function formalism. The calculations revealed an unprece-
dented polarization-dependent phonon scattering mechanism occur-
ring at PTO 180° DWs capable of longitudinally polarizing a thermal
flux when piercing several DWs. Yet, the harmonic description em-
ployed in that study limits, in principle, the validity of the results ob-
tained at the low-temperature and short-channel situations in which
phonon-phonon scattering events can be neglected.

In this Chapter we go beyond this limitation by performing molec-
ular dynamics simulations, where all orders of anharmonicity are in-
cluded in the description of the lattice dynamics, devoted to investi-
gating phonon transport across ferroelectric DWs in the technologi-
cally relevant diffusive regime.

4.1 Details of the simulations

To know how much the presence of DWs affects the heat flux through
a sample of PTO we compare the two easiest configurations that we
can imagine. The first one is the monodomain case, a supercell in the
ferroelectric ground state with all the ferroelectric distortions point-
ing along the x direction and, thereby, a continuous polarization P,
developed throughout the simulation box. The second one is the con-
figuration with two domains, separated by 180° DWs, which are sharp
interfaces that have the same material at both sides but with polar-
izations in the opposite direction. Both configurations are sketched
in Fig. 4.1.

To study these systems we use the second principles Hamiltonian
for the PTO described in Chapter 3. We use a 6 x 6 x 180 super-
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Figure 4.1: Schematic view of the systems that we simulate.
The polarization of the domains are oriented in the x direc-
tion, the polarization of the domain walls are oriented in the
y direction, and the thermal flux will be imposed in the z
direction.

cell of the 5-atom PbTiOsz unit cell, which corresponds to a total
number of atoms of 32400, to a cross-section of 6 nm? and a length
of 72 nm. The supercell is repeated in all directions using periodic
boundary conditions. We perform non-equilibrium molecular dynam-
ics (NEMD) simulations with these two configurations at an average
temperature of 200 K. We use this value because a huge temperature
gradiend is created in the system using this technique, and it will also
suffer many fluctuations in temperature. The spontaneous polariza-
tion of the DW is destroyed at temperatures higher than 320 K [76], so
we can not guarantee its survival thermalizing the system at ambient
temperature, which is what we would have liked to do. As schemat-
ically shown in Fig. 4.2, we generate a steady state heat flux along
the z axis by injecting a certain amount of kinetic energy in a heat
source placed at z = 0, which is then removed through a heat sink at
z = L,/2, where L, is the size of the simulation supercell along the
transport direction [55]. The resulting heat flux is calculated as we
mentioned in Section 2.2, using Eq. (2.27). To have exactly the same
at both sides of the sink and the source we place the DWs of the two
domains configuration at z = L,/4 and z = 3L, /4 as Fig. 4.2 shows.
Notice that, to satisfy periodic boundary conditions, an even number
of DWs must be present in the computational cell.

We use a time step of 0.1 fs. Initially, we thermalize the system at
200 K by rescaling the velocities of the atoms for 1 ps. When the sys-
tem is equilibrated, we start the NEMD run by injecting/extracting
a certain amount of kinetic energy in the heat source/sink aplying
the velocity rescaling just in these regions, whose size amounts to 5
unit cells along z. The amount of energy injected in one region is the
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Figure 4.2: Schematic view of the supercell for a simulation
in which thermal transport through two independent DWs is
evaluated. The red and blue rectangles illustrate the position
of the thermal source and sink, respectively, and the transport
directions are indicated with horizontal arrows.

same than the extracted in the other, so the total energy of the sys-
tem is conserved. Outside the heat source and sink the system evolves
microcanonically. We run 100 ps to reach a non-equilibrium steady
state, with J, = 6.3 x 10! W m~2, and then average the temperature
over the next 200 ps. The global or macroscopic strain, previously de-
termined with a standard equilibrium Monte Carlo calculation at an
effective temperature of 200 K, is kept fixed in the NEMD simulation.

4.2 Results and discussion

The simulation of the monodomain case allows us to know the thermal
conductivity k of a piece of PTO of the size that we are simulating.
Far enough from the heat source and sink, the averaged temperature
profile is linear, as predicted by Fourier’s law, with a fitted slope of
4.1 K nm~! as can be seen in red in Fig. 4.3. This estimate, together
with the imposed heat flux, allows us to compute the thermal conduc-
tivity from (2.1). In this way, we obtain k = 16 W m~* K~1, in good
agreement with the self-consistent solution of the Boltzmann trans-
port equation [122], using second- and third-order interatomic force
constants calculated within the same second-principles model as in-
puts. Tachibana et al. [123] experimentally reported a lower value of
around 6 W m~! K~!. However, they report the existence of complex
domain structures in their PTO samples, thus the true thermal con-
ductivity of the monodomain should be larger. On the other hand,
finite size effects, which in general bedevil NEMD simulations [55, 56,
have a negligible effect in our study because we will focus in the ther-
mal boundary resistance (TBR) of the DWs, which is a local property.
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Figure 4.3: Temperature (top) and polarization (bottom) pro-
files along the transport direction z for the case of a 72 nm
piece of monodomain PTO. Heat flows from the heat source at
z = 0 to the heat sink at z = 35 nm. Data in red are used to
fit the thermal gradient. The uniform ferroelectric distortion
is sketched in the inset of the bottom panel.

The TBR will determine the ratio between the thermal resistance of
the high and low conduction states, and has thus a pivotal role in the
operation of a potential thermal switch. We extract its value from the
simulation of two domains. As previously discussed, an even number
of DWs is required to satisfy periodic boundary conditions, so each
calculation will provide two values of the TBR, assessing the error
bar of our estimate.

The temperature profile, shown in Fig. 4.4, features a jump at
each DW, the characteristic signature of TBR. A ferroelectric DW is
the paradigm of a structurally sharp interface. In reference [76] au-
thors proved that the DW have a width of 1 cell in the limit of 0 K,
although in our simulation can be expected to be broader. Notwith-
standing, we will treat it in a different way, because even if the width
is 1 cell, the presence of the DW affects its surrounding, so we can
distinguish in our simulation system between regions that we consider
bulk material and the regions that we call interfaces. The polarization
and the temperature change rather abruptly, indeed, but they do so
within a finite number of layers of material, as shown in the zoomed
view of the inset of Fig. 4.4. For this reason, we calculate the TBR
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Figure 4.4: Temperature (top) and polarization (bottom) pro-
files along the transport direction z for the two domains con-
figuration. Heat source and sink are placed as in Fig. 4.3 and
the DWs are at ~ 17 and ~ 52 nm. The inset of the top panel
shows a zoomed view of the temperature profile at one of the
DWs. The relevant temperatures used to calculate the TBR
are indicated.

within a generalized form of the more common Kapitza resistance
formalism (see the Appendix B). We proceed as follows. First, we
estimate the interface thickness Azpw by tracking the spontaneous
polarization appearing at the DW [76] and perpendicular to the direc-
tion of the ferroelectric distortion P,. The spontaneous polarization
P, that defines the ferroelectric state might appear to be a sounder
choice. However, it varies more abruptly than P,, thus we believe the
latter better captures the nonbulk nature of a layer of material. So, a
change in P, of more than two standard deviations from the reference
values (far from the DW and the heat source and sink) identify the in-
terface. We obtain an effective thickness of 5 unit cells (2 nm). Next,
we evaluate the DW temperature T and the temperatures at the DW
boundaries, T} and 7T, (see the inset of Fig. 4.4), and put all of this
information in the expression obtained for the TBR in Appendix B,

RTBR _ AT TS2

. 4.1

We obtain a value for Rpw of 2.9 x 1071 K m? W1,
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We have also calculated the Kapitza length associated to this
resistance. Defining it as the ammount of material that have the
same thermal resistance as the interface, we get Lkapitza = Rpwk =
4.64 nm, which is approximately the size of 12 cells of PTO.

The presence of a DW amplifies the resistance of the region of
material that it occupies, yielding a larger total thermal resistance of
the system. Therefore, a DW results in a low conductive state and
can be used as the “0” of a phononic binary code. Erasing the DW
switches the phononic bit to “1” because the high conductance state is
recovered. The ratio between the high and the low conductive states
is obtained by dividing the resistance of a segment of material L with
and without the TBR. In the setup of Fig. 4.3, L can be as large
as L./4 — Az, but we take the lower value of L = 15.2 nm to avoid
entering the temperature nonlinear region next to the heat source and
sink (see Fig.4.4). For the monodomain case, the resistance of this
part of the material would be

L

RPTO

Rmono — Rlow —

~ 951 x 107 K m? W1, (4.2)

and centering the DW in the simulation with two domains, we have

) L L
RZdom — Rhlgh — A + RDW + B
RPTO RPTO

~112x 107 Km? W,
(4.3)

where Ly + Lpw + Ly = L. With this choice, we obtain a ratio
RMeh /Rlow ~ 1.18. That means that we can increase the thermal
resistance of a piece of PTO of 15.2 nm by 18% simply by creating a
DW.

M. Royo, one of our colaborators, have also studied the TBR of
the DW using the non-equilibrium Green’s function (NEGF) method,
and at 200 K he have obtained Rpw ~ 2.8 x 107 K m? W™, as
shows Fig. 4.5 and as presented in our publication [124]. The ex-
cellent agreement between the length-independent estimate of NEGF
(harmonic) and the NEMD (anharmonic) simulations implies that:

e The TBR is a local property of the DW.

e Anharmonic effects play a negligible role in the DW TBR.



52 Chapter 4. A phononic switch based on...

N
o

=
(o)}

=
N

I

DW TBR (10—° K m2 W-1)
(o]

o

10 100 400

Figure 4.5: TBR as a function of temperature computed
within the harmonic NEGF approach.

4.3 Increasing the number of interfaces

The possibility of introducing more DWs is very appealing because it
would allow increasing the ratio R™8%/ RV, Therefore, it is interest-
ing to assess to what extent subsequent DWs behave as independent
scattering centers with resistances that sum up, a sound assumption
in a purely diffusive transport regime [125]. For this reason, we next
study the thermal conduction in systems with two DWs. In partic-
ular, we consider two cases of DW pairs: In one case, the spacing
between them is 1.5 nm, and in the other, 4 nm. We have repeated
the procedure described above to define the interface thickness and
to calculate the TBR; the final steady state temperature profiles are
shown in Fig. 4.6. In the case of the smaller separation, the DWs coa-
lesce, making it difficult to distinguish two separate interface regions;
they are thus treated as one single interface complex. Proceeding in
this way, we obtain a TBR of 4.7 x 1071 K m? W~!. When the
spacing between the DWs is larger, we can treat them individually
and we obtain a TBR of 2.3 x 107! K m? W~! for each one. In
both cases we did not appreciate any difference between parallel or
antiparallel orientation of the spontaneous polarization P, occurring
at the DW [76].

While, roughly speaking, the thermal resistances of consecutive
DWs add up, the obtained TBR per DW is smaller than the value
of the individual DW previously calculated. In the low-temperature,
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Figure 4.6: Temperature and polarization profiles along the
transport direction z for the cases with two DWs separated
by ~ 1.5 nm (left) and ~ 4 nm (right), with the spontaneous
polarization P, of both DWs pointing in the same direction
(up) and in the opposite (down).

ballistic transport regime, these DWs have been shown to behave as
phonon filters [121] and the presently observed behavior suggests that
this effect might partially persist at 200 K and for the specific DW sep-
aration considered here. Actually, the total TBR for the system with
two separated DWs via NEMD simulations (4.6 x 107! K m? W)
is larger than the one obtained from the NEGF harmonic calculations
(3.7x 107 K m? W), These trends in the additivity of the TBRs
indicate that the temperatures and dimensions assumed in our NEMD
simulations do not entail a completely diffusive transport, although
we can appreciate deviations from the harmonic transport regime.
We have calculated the RMeh/ RV for the configuration with two
DWs taking the same value for L; the contribution from the TBR is
now twice 2.3 x 107! K m? W', while for xpro, as in the above
discussion for a single DW, we have taken the value obtained in the
monodomain configuration. With these assumptions, we obtain a
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value of 1.26. Therefore, by adding more DWs, the RMsh /R ratio
can indeed become larger, but the increase in the case considered
here is moderate. The gain R"8"/R°" depends on a delicate balance
between design parameters of the system: Well spaced DWs entail
a large total Rpw (approximately n times the TBR of an individual
DW, n being the number of DWs), but also a large L; conversely, in a
series of nearby DWs, L can be small, but the TBR per DW could also
decrease because of a constructive interference and filtering effect.

4.4 Conclusions

To summarize, in this Chapter we have numerically tested the extent
to which the simplest types of ferroelectric DWs occurring in PTO,
namely, 180° DWs, behave as barriers for lattice thermal conduction.
Our molecular dynamics simulations carried out at relevant temper-
atures for device operation have shown that the thermal resistance
increases by a factor of around 20% due to the presence of a single
DW, at the system sizes considered here. This factor can be fur-
ther increased by incorporating more DWs in the system, though the
gain is lower than expected due to the partially nondiffusive nature
of thermal transport in the regions between the DWs. We have also
demonstrated the local and harmonic character of the DW scattering,
as evidenced by the excellent agreement observed among the TBRs
from anharmonic NEMD and harmonic NEGF calculations. Our nu-
merical results support the use of ferroelectric DWs as active mobile
elements in electrically actuated thermal switches.



Chapter 5

Electric control of the heat
Aux through
electrophononic effects

In the last Chapter we performed non-equilibrium molecular dynam-
ics simulations in PTO, for which we imposed a thermal flux that
crossed the Domain Walls of the system. We decided, as typically in
thermal transport studies, to assign the z axis to the direction of the
thermal flux, and we arbitrarily decided to place the polarization of
the different domains in the x axis. In this Chapter we work again
with PTO, but as we are not considering any thermal flux, the po-
larized direction will be the z, that is, P = P,(0,0,1), as typically
in ferroelectric studies. Also, the functioning of the thermal switch
explained in Chapter 4 was based in instantly turning on and off an ex-
ternal electric field, as an impulse. This allow experimentals to write
and erase DWs. In this study the applied field is maintained in time,
because is what will cause the distortion of the structure that will
modify the thermal conductivity of the material. Having a durable
electric field is in principle negative in terms of energy consumption,
but it allows us to sweep a continuum of thermal conductivity val-
ues, instead of having access to a discrete number of states. Here
we consider values of the electric field lower than the coercive field
(E < Ece), exploiting the fact that, like most ferroelectric materials,
PTO displays a rather large structural (dielectric) response to even
moderate applied fields.

25
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5.1 Computational methods

To model the PTO we use again the second-principles Hamiltonian
developed by Wojdet et al. [70] as implemented in the SCALE-UP
code [96], as explained in Chapter 3.

For the calculation of the thermal conductivity tensor, we proceed
as follows. For each applied field, we first relax the structure by means
of a Monte Carlo simulated annealing, automatically accounting for
all dielectric and piezoelectric effects that may impact the thermal
conductivity [126]. Then, we calculate the second-order interatomic
force constants (IFCs) by finite differences in an 8 x 8 x 8 super-
cell [127]. We use the same supercell to compute third-order IFCs [37],
considering interactions up to fourth (twelfth) nearest neighbors for
parallel (perpendicular) fields. We then use the IFCs to calculate
the anharmonic scattering rates and solve numerically the Boltzmann
transport equation (BTE), employing the iterative method imple-
mented in the SHENGBTE code [37] on an 8 x 8 X 8 g-point grid.
The choice of the size of the supercell, the number of neighbors in
the calculation of the third-order IFCs and the mesh of the recipro-
cal space are justified in the Appendix C, where we show that these
numbers provide good convergence. Scattering from isotopic disorder
is accounted for within the model of Tamura [45].

5.2 Expressions for k

We calculate the thermal conductivity solving the BTE as explained
in Chapter 2, using Eq. (2.10), that we write here for each component
of the thermal conductivity tensor

Z Kijx = CZ 1) (hvy)?v;, AEj (5.1)

where C~! = kgT?*QN.
Our calculations thus yield k;; as a function of applied field and
temperature, and we fit our results to

kis (T, E) = &3(T) + Z%k VEe+ Y Y Bun(T)EE,  (5.2)
k l

where we introduce the thermal-response tensors o« and 3, ° being
the thermal conductivity at zero field. Note that, because of the high
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tetragonal symmetry of PTO’s FE phase (P/mm space group), the
number of independent tensor components in Eq. (5.2) is small. For
example, we have ry; = dyy; and k9, = k) # k2,. Here we focus on
the behavior of kyy, Ky, and k. as a function of fields parallel (along
z) and perpendicular (along x) to P,. We thus calculate oy, . = ay, .
and a., ,, noting that oy, = a;;,, = 0 by symmetry; and we also
calculate Bzx,:m:a Byy,xz; and ﬁzz,:ca:a as well as ﬂ:m:,zz = Byy,zz and ﬁzz,zz'

To explore the linear and nonlinear responses, we consider field
values in a range up to 90% of the theoretical E.... Working with
an idealized monodomain PTO state with P, > 0, our predicted co-
ercive fields are Fepe. ~ —1.5 x 10% V/m (to reverse P, to —P,)
and Egpe, ~ 8.2 X 10" V/m (to rotate from P, to P,, a symmetry-
equivalent x-polarized FE phase). These fields are relatively large
when compared with experimental values, an issue that is typical of
first-principles works on FE switching [128] and which is probably
related, for example, to the absence of nucleation centers for the po-
larization reversal (defects, interfaces) in the simulations. This matter
is not important here. Incidentally, note that it is customary to ap-
ply fields as large as these to FE thin films, using voltages of a few
hundred meV.

5.3 Results with the (anti)parallel field

Let us discuss first the response to fields E = E, (0,0,1), which can be
parallel (E, > 0) or antiparallel (E, < 0) to the electric polarization
P, > 0. The parallel field stretch the z direction while shrinks the
others, whilst the antiparallel field does the opposite.

Obviously, the change in the structure will affect the phonon bands
of the material and in consecuence its thermal conduction properties.
Fig. 5.1 shows the phonon dispersion of PTO under no external field
and under an electric field of |E,| = 0.9 X Eiye . (both parallel and
antiparallel to the spontaneous polarization). A parallel (antiparallel)
electric field induces a hardening (softening) of all the phonon modes.
Thus, the phonon frequencies show a monotonic behavior with the
applied electric field. The effect is more patent in the first optical
modes, which can vary up to ~ 1 THz before reaching the coercive
field value. The acoustic modes account for non-polar vibrational
modes of the crystal and are therefore not directly affected by the
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Figure 5.1: Phonon band structure of PTO along the I' — X
direction. The red (blue) curve displays the phonon dispersion
for |E,| = 0.9% E¢oe, » parallel (antiparallel) to the spontaneous
polarization of the material. The black line corresponds to
PTO under no external field. A monotonic behavior of all the
phonon frequencies with the electric field is found.

electric field, but rather by the structural deformation induced by it.

Fig. 5.2 shows the thermal conductivity components k., and
k.., as a function of temperature, for different values of E,. Let
us first note that the zero-field conductivities feature a consider-
able anisotropy, with, for example, 2, = 26.9 W m~! K~! and
k), =114 W m™! K~! at room temperature (Toom). This is a di-
rect consequence of the FE distortion along z, and it suggests that,
if the electric field is able to affect the polarization considerably, it
will also have a significant effect on the conductivity. This is indeed
what we find. As shown in Fig. 5.2, parallel fields yield an increase of
both k., and k.., while antiparallel fields cause a decrease. To better
appreciate this effect, we plot the relative variation of the thermal
conductivities kg, /k0, and r,./k2, in the inset. The most extreme
values, i.e., the ones corresponding to the fields of 0.9 in units of the
coercive field, are k., /K0, = 1.12 and k.,/k2, = 1.16 in the parallel
case, and K, /K2, = 0.91 and k., /K%, = 0.81 in the antiparallel case.

Further insight can be gathered from Fig. 5.3(a), which shows the
variation of both x components as a function of E, at T,,om. The
obtained smooth behavior can be easily fitted using the quadratic
expression in Eq. (5.2). Fig. 5.3(b) shows the T dependence of the
corresponding « and [ coefficients.
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Figure 5.2: Thermal conductivity as a function of temperature
for different values of the parallel (E, > 0) and antiparallel
(E, < 0) electric field. The inset shows the relative change
of the thermal conductivity as the ratio of its value with and
without an external field, k. /K0, (left) and k.,/k2, (right).
Fields are given in units of the parallel coercive field, Ecoe,. -
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Figure 5.3: (a) Dependence on the electric field, E,, of the
room-temperature thermal conductivity. (b) Coefficients «
and [ of Eq. (5.2) as a function of temperature for fields ap-
plied parallel to the P vector.
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The linear response clearly dominates, with values of a,,, =
147 x 1078 W V7! K™ and a,,, = 211 x 1078 W V-1 K~!
at room temperature. As regards the magnitude of the effect, for
E. = 0.5 X Eee. at Troom we obtain changes of about 7% and 9%
in Kk, and k.., respectively. These large effects are ultimately a con-
sequence of PTQO’s considerable structural response to the applied
fields, as evidenced by the variation of P, shown in Fig. 5.4. The
corresponding lattice contribution to the dielectric susceptibility is
about 31.

1.05 - . . .

0.95
-0.02 -0.01 0 0.01 0.02
E, (V/A)

Figure 5.4: Polarization as a function of a parallel/antiparallel
electric field E,.

As we have seen, when an electric field is applied antiparallel to
the polarization, the latter is first smoothly reduced until a certain
critical value of the electric field (coercive field, E..) is reached. At
that value the system reverses its polarization, and thus becomes
aligned with the applied field. Since the lattice thermal conductivity
of PTO shows a monotonic response to the external electric field, it
will show a hysteretic behavior with the latter, as shown in Fig. 5.5.
This allows us to devise another application which will be explained
in detail in chapter 6.

We have modified the code that we are using to solve the BTE
(SHENGBTE) to make it print all the values of all the components
of the contribution to the thermal conductivity of each mode. With
this phonon-resolved thermal conductivity we can go deeper in the
understanding of the problem, and we have found that:
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Figure 5.5: Hysteretic behavior of the lattice thermal con-
ductivity with parallel (and antiparallel) electric fields. The
black line with arrows shows the hysteresis loop schematically,
while red squares indicate the computed values of k., for dif-
ferent values of the external electric field. Blue and red arrows
indicate the relative orientations of the applied electric field
and the polarization. Note that for E = E.., and the elec-
tric field being antiparallel to the spontaneous polarization of
the ferroelectric material, the latter reverses its polarization
and the electric field becomes parallel to the polarization. On
the contrary, for parallel electric fields there is no polarization
switching and the lattice thermal conductivity can be further
increased (at least up to the breakdown electric field).

All the frequencies v, increase with the parallel field, and all
of them decrease with the antiparallel field. That also implies
that:

— As the acoustic modes have vy, = 0 at ¢ = (0,0,0), the
velocity of propagation o, of the acoustic modes increase
with the parallel field and decrease with the antiparallel
field.

— As the Bose-Einstein distribution is only a function of v,
if we fix the temperature at 300 K, the product fy(fy+ 1)
of each mode decrease with the parallel field and increase
with the antiparallel field.
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e We can group all the terms that are explicitly dependent on
the phonon frequencies by introducing 6y = f\(fx + 1)v3. This
quantity, that is the frequency-dependent contribution of the
specific heat, decrease with the parallel field and increase with
the antiparallel field, as we can see in Fig. 5.6.

0 5 10 15 20 25 30
v (THz)

Figure 5.6: Behavior of the frequency-dependent contribution
of the specific heat 0y = fA(fr + 1)v3.

e In average the modes have to increase the product v; F; » with
the parallel field, and decrease it with the antiparallel field, be-
cause we know that the whole thermal conductivity tensor in-
creases with the parallel field and decrease with the antiparallel
field. However this is not satisfied individually by each mode.

We summarize all the information contained in these points in the
table 5.1.

E parallel to P|E antiparallel to P
2 T 4
L +1) | T
O I T
VinFin ~1 ~

Table 5.1: Summary of the behavior of all the elements that
contribute to the thermal conductivity when PTO is affected
by an external electric field.
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We can also calculate the so-called participation ratios, i.e., the
contribution to the thermal conductivity of each mode, x;; », so that:

Rij = Z Rij - (53)
A

In Fig. 5.7 we plot kg, and k., » as a function of the frequency v in
the case of a longitudinal field |E,| = 0.5 X E¢e . and compare them
with £ = 0 in the histogram on the right-hand side. As it can be
seen, the modes that contribute the most to x behave as described
before, and k) increases (decreases) for parallel (antiparallel) fields.
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Figure 5.7: (Left) Contribution of each mode to the thermal
conductivity for |E,| = 0.5 X E¢se, and E = 0. (Right) Bar
charts of the variation of k;, » and k., \ in presence of a par-
allel field |E,| = 0.5 X Ecoe,».

To gain even further insight into these results, we find it convenient
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to analyze Eq. (5.1) writing the field-induced change of &;; as
Aliij = Iiij — KJ% = Z Aliij’)\
A

=C Z[AeAngFng + egAUL)\Fﬁ/\ + QRUQAAF]",\ -+ Rij,,\], (54)
A

where the superscript “0” indicates as previously zero-field quanti-
ties, with Ag = g — ¢° for any magnitude g. This expression (whose
mathematical explanation can be found in Appendix D) allows us to
readily identify changes that are dominated by only one of the factors
(0x,vi ,F}j \) entering the mode conductivity, while R;; \ captures any
lingering changes. In the limit of small applied fields, R;;» — 0. Fur-
ther, we can group the changes in the mode conductivities in energy
intervals, using the zero-field frequencies to assign specific modes to
specific intervals, and thus plot Fig. 5.8 to analyze the E.-induced
changes in k., and kK,,.
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Figure 5.8: The different terms of Eq. (5.4) in the case of a
parallel field, E, = 0.5 X Ecoe. (upper row) and of an an-
tiparallel field, E, = —0.5 X E¢oe, (bottom row). The dots
indicate the variation of the total contribution to the ther-

mal conductivity, i.e., Ar;; in Eq. (5.4), in a given frequency
interval.
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Two important observations can be drawn from this figure. On
the one hand, the change of k,, and k,, does not depend on a partic-
ular group of phonons. Rather, the complete spectrum contributes to
it, in a way that is rather homogeneous. Thus, for example, we have
Ak., > 0 for E, > 0, where the total positive change is the result
of a majority of phonons having positive Ak, > 0 contributions.
Also, note the approximate symmetry of the results for + £, and —F.,
which is consistent with the dominant linear response. We also ob-
serve that, for most of the phonon spectrum, it is the change in mean
free displacements that dominates the variation of the conductivity.

We can better understand the changes in Fj 5 as follows. First, we
can simplify our discussion by noting that Fj y = m\(v; 1A ) = T\V;»,
as we observe that the correction to the RTA is small, typically below
a 10%. Then, we find that the changes in phonon lifetimes dominate
over the variations of the group velocities, which is consistent with
the relatively modest impact of the Av;, term shown in Fig. 5.8.
Further, as can be deduced by Eq. (2.12) and Eq. (2.13), ;' ~
v X (vavyvar) ™t where X and A’ label modes that interact with \
via a three-phonon scattering process. Hence, for example, if most
phonons were to harden under application of a field E, > 0, the
phonon frequencies {v, } would generally increase and the populations
{f,} decrease, which would yield an increase of the lifetimes {7\}. As
shown before, this is precisely what we have in our calculations, as
the average phonon frequency changes from #° = 9.96 THz to v =
10.05 THz for E, = 0.5 X Ege -, resulting in generally longer lifetimes
and larger thermal conductivity. In contrast, for £, = —0.5 X E¢ge .
we obtain 7 = 9.87 THz, with shorter lifetimes and greater thermal
resistance. Indeed, we find that this is the dominant effect explaining
our results for k,, and k,, under fields that are (anti)parallel to the
polarization P,.

The fact that most of PTO’s phonon bands become harder for
E, > 0 (softer for E, < 0) may seem surprising at first; yet, we
believe it can be rationalized as follows. According to our simula-
tions, the application of a parallel field has two main effects. On
the one hand, the cell volume grows moderately. For example, we
get Q/Q0 = 1.0018 for E, = 0.5 X Eee ., which is a consequence of
a dominant piezoelectric effect. The increased volume alone should
result in a general softening (reduction) of the phonon frequencies,
which is the usual behavior corresponding to a positive Griineisen
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parameter. On the other hand, P, grows for £, > 0, and the stronger
polar distortion can also be expected to have an impact on the phonon
frequencies. More precisely, in the field of phase transitions in per-
ovskites, it is generally observed that different distortions of the cubic
perovskite structure tend to compete with each other, implying that
the condensation of one (for example, the polar distortion) tends to
harden the others, thus increasing the associated phonon frequencies
(see Refs. [70, 129]). Our results suggest that this effect is dominant
in PTO.

Since we attribute the changes in thermal conductivity under F,
field to a general hardening/softening of the phonon spectrum, it
may seem strange to note in Fig. 5.8 that the changes associated
with the Af) term [Eq. (5.4)] are negligible (in fact, they are barely
visible in the figure). However, note that, in this term, the variations
of frequencies and populations tend to cancel each other, yielding a
relatively small net effect.

5.4 Results with the perpendicular field

Let us now move to the case in which we apply a field E = E.(1,0,0),
perpendicular to the polarization, P,. We consider £, > 0, noting
that this situation is equivalent by symmetry to the application of
E, < 0 or fields along y. Fig. 5.9 summarizes our results, which
feature a very large decrease of all the tensor components.

i = xx ii=vyy ii=zz
\

1.0 T T

Figure 5.9: Ratio of the thermal conductivity with and with-
out a perpendicular external field, k. /K, (left), Kyy/Kgy
(center), and k. /k?, (right), as a function of temperature.
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Thus, for example, for E;, = 0.25 X Eeeyp at Troom, wWe get
Ko /Koy = 041, Ky, /k), = 0.70 and k../k), = 0.66. This dra-
matic enhancement of the thermal resistance translates into very
large values of the quadratic response [, as we obtain B, =
—139x 1072 Wm V2K, By =-226x10"° Wm V2 K!
and ., 4 = —6.51 x 107 W m V2 K™t at Toom.

In the case of a perpendicular field, the analysis of the contribu-
tion to the thermal conductivity of the individual modes reveals the
frequency regions where the reduction of x occurs. In particular, as
we can see in Fig. 5.10, while the decrease of x,, and x,, mostly orig-
inate from a reduction of the contribution of modes with v, ~ 5 THz,
k.., features also a significant decrease of the contribution of modes
at higher frequencies, vy ~ 20 THz.

04 0 < 0.0 W
<031 e T Eos  [ofF207 l
F02r 1+ 17,40 ¢ :

01} &° . T 1 ¥§ -6.0 | 1

0.0 il | - ;

. ) , ) < 00 Eg N
03¢ T 702; -0.4 PR 1
z; 0.2 - g T, 1% -0.8 | ¥ 1

otp g . . . 1 xgler 1

0.0 i T < 46t } } ]

' v < 0.0 A
<04} 1 7o¥H 02} S \ ,
zﬁ 02+t <-04r W N i

' I | N-067¢ L

00 | i e 0 | e B e = _08 L L

0 10 20 0 10 20 30 0 10 20 30

v, (THz) v, (THz) v, (THz)

Figure 5.10: (Left) Contribution of each mode to kg, Kyy, and
Kz (top to bottom) for a perpendicular field |E;| = 0.5X Ecoe g
and E = 0. (Right) Bar charts of the variation of Ky »,
Kyyx and k., y in presence of a perpendicular field |E,| =
0.5 X Eeoez-

Fig. 5.11 shows the analysis based on Eq. (5.4), applied to the
change in kg, at Tioom for a field £, = 0.5 X Eoe 5, Which is a repre-
sentative case. As above, we find that the total Ak, is the result of
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Figure 5.11: The different terms of Eq. (5.4) in the case of a
perpendicular field, E; = 0.5 X Ecpey. The dots indicate the
variation of the total contribution to the thermal conductivity
in a given frequency interval, i.e., Ak, in Eq. (5.4).

contributions spanning the whole phonon spectrum, and dominated
by the changes in mean free paths. Also as above, we find that it
is the change in the phonon lifetimes that controls AFj,; yet, at
variance with the case of the FE, fields, the present effect cannot be
attributed to a general shift of frequencies. Indeed, we find that the
E, field tends to harden the phonon spectrum (for example, we obtain
v =10.02 THz for E, = 0.5 X E¢e ). According to our above argu-
ment to explain the response to F, fields, the larger frequencies should
result in longer lifetimes and an increased conductivity; yet, the effect
of the perpendicular fields is just the opposite, with increased resistiv-
ity. Interestingly, a further analysis of our results reveals that, in this
case, the field dependence of the lifetimes is dominated by the three-
phonon scattering matrix V/\i/\, y+» Which controls the phonon decay as
ot~ VS [? (see Egs. (2.12), (2.17) and (2.18)). More specifically,
we find that the F, field activates a large number of new scattering
processes due to the symmetry breaking that it causes, i.e., it broad-
ens the phase space for anharmonic scattering. As an E, field does not
change the symmetry of PTO’s P.-polarized phase, the proliferation
of scattering events does not occur in that case (see Fig. 5.12). This ef-
fect affects the whole phonon spectrum, and its magnitude naturally
scales with the structural symmetry breaking caused by FE,, which
is rather considerable given the large dielectric response of PTO to
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Figure 5.12: Distribution in frequencies of the square of the
three-phonon scattering matrix of the absortion processes
|Vi5,w|? in the cases without (left), with a parallel (center)
and with a perpendicular (right) electric field.

such a perturbation (for the corresponding susceptibility, we obtain
Xozz ~ 304; see Fig. 5.13). Such a strong response to a transversal
field is related to the “easy polarization rotation” that is well known
in FE perovskite oxides [130, 131].
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Figure 5.13: Polarization as a function of a perpendicular field
E,. We display both P, and P,, whose increase/decrease
allows us to appreciate the rotation of P.

Interestingly, we also observe a field-induced coupling of the x and
z directions (those along which the initial P and the applied E, field
are oriented) in the thermal conductivity tensor. We obtain values
of k;, and k., that are not negligible, of the same order of those in
porous [132, 133] or amorphous [134] materials. Their temperature
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dependence for applied fields is shown in Fig. 5.14.

0.0

| I I | I
100 200 300 400

Figure 5.14: k. as a function of temperature for different
values of perpendicular electric fields. Fields are given in units
of the perpendicular coercive field, Fcoe ;-

These nonzero components imply that, for example, a thermal
gradient along x results in a heat flux, not only along = but also
along z, and viceversa.

5.5 Conclusions

In conclusion, we have reported evidence of the coupling between an
electric field and thermal conductivity in a ferroelectric perovskite.
We have shown that an electric field perpendicular to the sponta-
neous polarization greatly increases the thermal resistivity, the un-
derlying physical mechanism being the breaking of the symmetry of
the lattice, which activates new scattering processes with a concomi-
tant reduction of the lifetimes of phonons throughout the vibrational
spectrum. On the other hand, for parallel fields that do not activate
new scattering processes, we observe a linear variation of the thermal
conductivity, which can grow or decrease depending on the sign of the
applied field. This linear effect is controlled by the overall harden-
ing/softening of the phonon modes. The predicted behaviors open the
way to a fully electric control of phonon transport. As the underlying
physical principle is the manipulation of polar modes, these results
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can potentially be extended to a broader class of materials, possi-
bly with even larger responses. Finally, we note that the symmetry
breaking that leads to the largest changes in the thermal conductivity
can also be achieved in other ways, such as mechanical strains, that
do not involve electric fields.

Implementations of these concepts in a realistic device will have
to take into account that substrates and additional layers will provide
alternative heat transport channels and that the thermal contact re-
sistance [135, 136] may complicate our taking advantage of the con-
trollable transport properties of the ferroelectric layer. In Chapter 7
we present a study related with this issue, in which the thermal con-
ductivity of bulk ZnO is tuned by means of the application of external
strain.






Chapter 6

Anisotropy-driven thermal
conductivity switching and
thermal hysteresis in a
ferroelectric

In Chapter 4, by means of writting and erasing Domain Walls using
an instantaneous impulse of an external electric field, we found that
is possible to implement a phonon-based Boolean algebra. In that
case the monodomain of PTO acts as the high conductance state and
the multidomain as the low conductance state. In this Chapter we
discuss an even simpler effect, namely, how an electric field can be
used to rotate the polarization in a monodomain and, consequently,
gain access to a different element of the thermal conductivity tensor
within a given device setup, thus implementing a thermal switch.
As we discuss below this approach does not require the design of
complex multidomains and only relies on the anisotropy of the thermal
conductivity in the monodomain state.

Our study is based again on PTO, modeled with the second-
principles Hamiltonian developed by Wojdet et al. [70] as implemented
in the SCALE-UP code [96], as we explained in Chapter 3. We also
use the BTE to obtain the thermal conductivity of the system pro-
ceeding exactly in the same way of Chapter 5.
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6.1 Hysteresis cycle of the

As we have seen in previous Chapters, the thermal conductivity ten-
sor of PbTiOj3 in the ferroelectric ground state has two independent
components and has the form

+ 0
0], (6.1)

K 0
k=0 &t
0 0 =~
where k1 and !l are the thermal conductivities that account for heat
transport when phonons flow perpendicular or parallel to the polar-
ization P. We have decided to use this notation in this Chapter
because we are going to describe the hysteresis cycle of the thermal
conductivity, which implies external electric fields acting in different
directions, sometimes parallel and at other times perpendicular to the
polarization of the system. In addition, the relevant component of the
thermal conductivity tensor will change from one stage to another, so
working with Cartesian axes is more confusing.
The computed values of the thermal conductivity are plotted in
Fig. 6.1, where it is easy to see that x* is larger than sl throughout
all the temperature range investigated.

I I I I I I
050 100 150 200 250 300 350 400
T(K)

Figure 6.1: Thermal conductivity as a function of tempera-
ture of PTO in the ferroelectric ground state along the c-axis
and parallel to the polarization, sl and in the ab-plane and
perpendicular to the polarization, k. The ratio k+ / kll, which
quantifies the thermal anisotropy of PTO, is shown in the in-
set.
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The anisotropy, x*/kll, is larger at low temperatures (with a peak
value of ~ 4 at 100 K), as shown in the inset of Fig. 6.1, but at
room temperature it is still larger than 2. This anisotropy can be
used to implement a thermal switch, as schematically illustrated in
Fig. 6.2: phonons that propagate along the x-axis will experience a
large thermal conductivity £+ when P is oriented along y or z, while
the conductivity will be lower and equal to ! when P is parallel
to the heat transport direction, z. Commutation between the two
conductance states is achieved with a rotation of the polarization
(which is equivalent to a rotation of the lattice/sample) by means of
an electric filed that acts as the gate control signal.
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Figure 6.2: Sketch of the thermal switch. In the high conduc-
tance state phonons flow along a direction perpendicular to P
and the thermal conductivity is k. In the low conductance
state phonon flow parallel to P and the thermal conductiv-
ity is kll. An electric field along the x- or y-axis rotates P
and triggers the commutation from high-to-low conductivity,
while an electric field along the z-axis triggers the low-to-high
conductivity transition.
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We now take a closer look at the way the thermal conductivity
switches between the low and the high state. We have calculated
the thermal conductivity of intermediate situations applying different
values of the external electric field. The values we propose would be
valid assuming the process is adiabatic, i.e., in the limit of very slow
variations of E we can assume to be always in equilibrium and thus
we can define and calculate the thermal conductivity. In practice,
obviously the process will not be adiabatic, and these values will be
more realistic the slower the variation of the field.

The whole process of switching can be described as follows. We
take as initial state the one with the polarization parallel to the
phonon flow, that is, the low conductivity state. Then we start to
apply a perpendicular electric field of increasing strength: P starts
precessing and the conductivity is reduced (curve la in Fig. 6.3);
this is a result of the field-induced lowering of the lattice symmetry,
which increases the phase-space for three-phonon scattering events,
discussed in Chapter 5. When the coercive field E.. is reached, the
polarization switches (curve 1b in Fig. 6.3) and becomes parallel to
the electric field. If now the electric field is reduced until it vanishes
(curve 2 in Fig. 6.3) a ground state equivalent to the starting config-
uration is reached. Now, however, Pis perpendicular to the direction
of phonon propagation and the system is in the high conductivity
state. To rotate back the polarization we start applying an electric
field along x, the direction of the heat flow: like before, x decreases
until P switches (curves 3a and 3b in Fig. 6.3). Finally, upon removal
of the electric field (curve 4 in Fig. 6.3) we recover the starting con-
figuration. As it can be seen, the value of x in the direction of the
phonon propagation follows a hysteresis cycle, and it can take differ-
ent values at a given electric field, depending on how the field changed
in the past. This is a direct consequence of the fact that given a value
of E one cannot univocally know P which ultimately determines the
thermal conductivity along a given direction.

The hysteresis cycle described in Fig. 6.3 can be compared with the
one represented in Fig. 5.5. The more complex cycle described in this
Chapter is created by applying the electric field in two different di-
rections, while the hysteresis of Fig. 5.5 appears just for (anti)parallel
fields to the polarization. This new version allow us to change be-
tween the different components of the thermal conductivity tensor,
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Figure 6.3: Hysteresis cycle followed by the thermal conduc-
tivity in the direction of the phonon propagation when the
polarization is rotated back and forth at 300 K. The sketches
in the upper part of the figure depict the direction of the elec-
tric field (polarization), throughout (at the beginning of) the

corresponding branch of the k(FE) curve; long (short) arrows
indicate increasing (decreasing) values of E.

making more extreme values accessible.

The relation between E, ]3, and k is more clearly illustrated in
Figure 6.4 where one full hysteresis cycle is displayed as a function of
time, which is assumed to vary conveniently slow to allow us to con-
sider the transition adiabatic and the system in instantaneous equi-
librium. Like in Fig. 6.3 Pis initially taken to lie along the z-axis, so
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Figure 6.4: Thermal conductivity as a function of time k(t) at
T = 100 and 300 K in response to the variation of the electric
field, whose component F, and E, are plotted in the upper
panel in unit of the coercive field F ... The angle 6 formed
by the polarization vector and the direction of the heat flux
is also shown.

that the system is in the low conductance state and an electric field
E, must be applied to rotate the polarization and switch to the high
conductance state. This plot highlights the role of temperature in de-
termining the difference between the two conductance states, which
is much larger at lower temperature, as already shown in the inset of
Fig. 6.1.

6.2 Relaxation time of the commutation

In the discussion above the electric field was varied with slow ramps,
so that the transition could be considered adiabatic, the system was
always in equilibrium and & could be computed all along the hysteresis
cycle. Of course one would like to commute between 1 and 0, i.e.,
high- and low-conductance, as quick as possible and thus would rather
use short electric field pulses to rotate the polarization. Although
cannot be calculated in these (strongly) out-of-equilibrium conditions,
we can infer on the overall relaxation time of the low-to-high and high-
to-low commutation, which is an important information to estimate
maximum operation frequency of the thermal switch. In general, if
at a given time all the modes propagate along, say, x under a certain
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lattice potential, and then something happens (change of potential,
removal of temperature gradient), such a propagation will continue
for a time that will depend on the phonon lifetimes. More precisely,
we introduce an effective relaxation time as

1 1,
il = . ZT)\/{/\ | (6.2)
By

where the relaxation time of each mode A is weighted with its contri-
bution to the thermal conductivity. In this way we estimate an upper
bound of the time needed for the conductance to change from low
to high and viceversa when the polarization is rotated, giving more
weight to the modes that carry more heat. In Fig. 6.5 we plot the re-
laxation times 7, as a function of the frequency and the weighting fac-
tors k-ll(v) /k 1, where we grouped the mode-by-mode contributions
to k in frequency intervals of 1 THz. We have obtained 7+ = 7 ps
and 7l = 5.8 ps. These values are quite smaller than typical switch-
ing times of the polarization and thus their effect of the switching
dynamics is negligible. Therefore, taking the ultrafast polarization
switching time of 220 ps in thin-film ferroelectrics reported by Li and
coworkers [137] we can estimate a maximum operation frequency of

4.5 GHz.

(@) |

Figure 6.5: (a) Relaxation time Ty as a function of frequency
vx. (b) Frequency resolved thermal conductivities k(v) and

kll(v).
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6.3 Conclusions

In this Chapter we present a proposal of a thermal switch that
takes advantage of the anisotropy of the thermal conductivity in
PTO and, thus, of the availability of built-in low and high conduc-
tivity states. At variance with common anisotropic materials, the
electrically-triggered rotation of the ferroelectric polarization can be
used to switch between the two conductivity states. We also present
a detailed study of the hysteresis cycle in the response of the thermal
conductivity, showing that its value depends on how the electric field
changed in the past. Finally, from the computed phonon relaxation
times and contributions to the thermal conductivity, we argue that
the response of such a ferroelectric thermal switch will be quite fast
and only limited by speed of the ferroelectric switch itself; hence,
our proposed device should be able to operate in the high-frequency
regime.



Chapter 7

Strain engineering of ZnO
thermal conductivity

As previously mentioned in this Thesis, strain engineering consists
in modifying the properties of a material by applying strain, both
compressive and tensile. In this Chapter we develop a study using
ZnO that goes in this path, to find out how its thermal conductivity
is affected by strain. An overview of the available experiments on
the thermal conductivity of solids and liquids under pressure can be
found in the paper by Ross et al. [138]. The data for covalent semicon-
ducting and insulating materials are relatively scarce and are limited
to some polymorphs of SiOq [139-141], Si [142], Ge [142], InSb [143],
PbTe [144] and a few other compounds. The general trend outlined by
these experiments seem to be that k increases with pressure. However,
the fact that the pressure range often differs from one experiment to
the other, or that sometimes only data referring to uniaxial stresses
are available, have prevented the formulation of a unifying picture on
the strain effects on thermal conduction.

The advent of nanowires [145, 146], filamentary crystals with di-
ameters in the range of few to several tens of nanometers, marked an
increased interest in the design of materials with tailor made proper-
ties via strain engineering. Indeed, values of tensile strain much larger
than those achievable in bulk materials have been obtained by a few
groups [147-149]. ZnO can be synthesized under several different
nanostructured forms and its great potential in several applications,
ranging from nanogenerators [150], self-powered devices [151], and
strain sensors [152] has been reported. Nevertheless, also in the case
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of ZnO the effect of strain on the vibrational and thermal properties
has seldom been addressed.

The effect of strain on thermal conduction [27] is a key feature for
thermoelectric applications, i.e., the conversion of heat into electric-
ity via the the Seebeck effect [153]. The physics of thermoelectricity
is summarized by the dimensionless figure of merit ZT = (S%0/k)T,
where S is the Seebeck coefficient, T is the temperature, while o
and k are the electrical and thermal conductivity, respectively. High
Z'T values can be therefore obtained by reducing the thermal con-
ductivity while preserving good charge transport characteristics or
alternatively, by optimizing charge transport without simultaneously
increasing the thermal conductivity. These ideas have been success-
fully applied to many different materials [154-157]. Our study clarifies
if this can be achieved by applying strain to ZnO, a promising mate-
rial for thermoelectric conversions [158] due to its low cost, stability at
high temperature, and mainly because of its excellent charge carrier
transport properties [159, 160].

7.1 Computational techniques and
model

Motivated by the above considerations, we carry out equilibrium
molecular dynamics (EMD) calculations within the Green-Kubo for-
malism (see Chapter 2) to assess the thermal conductivity of ZnO
under strain. Specifically, we study the case of hydrostatic pressure,
i.e. homogenous strain, as well as uniaxial strain.

The ZnO wurtzite phase has been described by the sum of a
Coulomb and a Buckingham-type two-body potential, whose expres-
sion is

i ij ¢
= as () S

47T607"ij

which is fully detailed in Chapter 3. Our simulations have been per-
formed using the code LAMMPS [161]. We have used a simulation
cell with dimensions of 3.859 x 3.899 x 4.123 nm? containing 5376
atoms to estimate the thermal conductivity along the a and ¢ crystal-
lographic directions (see Fig. 7.1). As previously shown for different
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Figure 7.1: Stick and ball representation of ZnO wurtzite crys-
tal structure.

systems including metal oxides [162-164], such cell dimensions guar-
antee the lack of any size artefacts that might affect thermal conduc-
tivity calculations within the Green-Kubo approach. The sample was
preliminarly equilibrated for 500 ps in the isothermal-isobaric (NPT)
ensemble, with a timestep of 1 fs, using the Nosé-Hoover thermostat
and barostat at temperature and pressures of 300 K and 1 atm re-
spectively. The autocorrelation function was then sampled for 2 ns in
a microcanonical simulation. The maximum value chosen for the cor-
relation time was 80 ps. The present choice of the simulation time as
well as the maximum correlation time were motivated by the require-
ment to mitigate as much as possible the statistical error occurring
in the estimation of the heat current autocorrelation function, while
preserving a reasonable computational cost.

We also carry out lattice dynamics calculations solving the Boltz-
mann Transport Equation (BTE) within the Relaxation Time Ap-
proximation (RTA) (also explained in Chapter 2) to rationalize the
results of the EMD calculations. We have chosen not to work with
the iterative process in this case because, despite its classical na-
ture, the potential we use features long-range interactions. This fact
results in the need of considerably large supercells, because anhar-
monic force constants need to be computed among very far-away
neighbours. However, we remark that our tests provide clear evi-
dence that Normal-processes, i.e., normal scattering events, are not
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expected to be important in ZnO. Accordingly, we preferred to adopt
the RTA solution which allows for using fully converged cell sizes and
for properly treating far-away interactions. We use the SHENGBTE
code [37] for that. Phonon frequencies vy were obtained by finite
differences, using the PHONOPY simulation package [127]. We use a
~ 5.5 A cutoff for the generation of displacements in the 3" order
force constants matrix.

In order to estimate the effect of uniaxial strains on the ZnO See-
beck coefficient, our colaborators at the Universita di Cagliari (Italy)
combine first-principles calculations with the Boltzmann transport
theory within the constant scattering time approximation. The de-
tails of these calculations can be found in our publication [165].

7.2 Results of unstrained ZnO

The simulations that appear in this Section have been performed both
with the Rigid Ion (RI) model and with the Core-Shell (CS), both
explained in Chapter 3. The first thing we did was calculate the
phonon bands of ZnO using PHONOPY and the two models. In Fig. 7.2
we can see that acoustic branches are well reproduced by both models,
but the optical ones are in a far better agreement with those obtained
from first principles [166] in the CS model, that reproduce even the
gap between the six lower and the six higher bands. Nevertheless as
we are interested in thermal properties that are typically dominated
by the acoustic modes, we expected to obtain similar results with the
two models.

Fig. 7.3 shows the room temperature normalized heat current au-
tocorrelation function (up) and the corresponding thermal conductiv-
ity (down) using the RI (left) and the CS (right) models as a func-
tion of the correlation time for a single trajectory collected for an
unstrained bulk ZnO sample. For both models we observe an oscil-
latory behaviour of the heat current autocorrelation function (larger
for the CS model) which has been recently also reported for complex
silica structures [167, 168] and attributed to the relative motion of
bonded atoms with different masses [163] or to the presence of op-
tical phonons [169]. Due to the presence of such large oscillations
in the autocorrelation function, the direct estimate of the thermal
conductivity with the Green-Kubo integral is clearly not trivial since
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Figure 7.2: Phonon bands of ZnO using the Buckingham po-
tential with the Rigid Ion (left) and the Core-Shell (right)
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Figure 7.3: Room temperature heat current autocorrelation
function (up) and the corresponding thermal conductivity K.
(down) as a function of the correlation time obtained for one
single trajectory. We show the results using the Rigid Ion
(left) and the Core-Shell (right) models for the ZnO.
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the large amount of noise prevents the identification of a convergence
region. A possible strategy recently proposed to directly address the
thermal conductivity [167] in this case consists in performing a run-
ning average of the integral in overlapping blocks of few thousands
steps. In the RI simulations, when the convergence region is eventu-
ally identified, a time lapse of at least 50000 time steps is set, over
which the integral shows a constant value. However, the thermal con-

ductivity does not seem to properly converge when modeling ZnO
with the CS model.

In this kind of simulations, a configurational average over some
independent trajectories has to be performed in order to obtain an
acceptable result for the thermal conductivity. In our case, we have
performed for each model the average over five independent trajecto-
ries differentiated by random initial velocities.

As can be appreciated in Fig. 7.4, it takes more time for the ther-
mal conductivity to converge in the CS model simulations. In fact,
the growing trend that show some of the independent simulations in
this case makes us suspect that the thermal conductivity is not re-
ally converged even at 80 ps. This fact added to the larger noisy
behaviour of the CS model, to its higher computational cost, to the
unnecesary complexity of the model to describe the ZnO, and to the
results obtained for both models, made us decide tu use the RI model
in the following sections of the chapter.
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Figure 7.4: Room temperature thermal conductivity k.. as a
function of the correlation time for five independent simula-
tions (gray curves) together with the corresponding average
(black curve), using the RI (left) and CS (right) model.
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The estimated value of the thermal conductivity using the RI
model calculated along the ¢ direction is ke = 42 £7 W m=t K !
while in the case of the a direction we obtain k,, = 38+6 W m—+ K.
The error in the average thermal conductivity has been estimated as
the corresponding standard deviation. These two values are in re-
markably good agreement with the experimental values, which range
between 37 and 47 W m~t K~ [170]. We attribute this satisfac-
tory result to the good description of the acoustic phonon branches
provided by the Buckingham-type force field.

7.3 Thermal conductivity of ZnO under
hydrostatic strain

We investigated the effect of strain on ZnO thermal conductivity by
considering first the case of hydrostatic strain € defined with respect
to the equilibrium volume Vj as:

_ v
W

€

(7.2)

where V' is the volume of the strained simulation cell. We applied
strains in the interval £4% by considering steps of 2%. In detail,
starting from the unstrained zero pressure cell volume Vj, strain is
applied to the atomistic simulation cell by rescaling the size of the
periodic box to V' = €V. Furthermore, the positions of all atoms in
the box were also rescaled accordingly. The system was then equili-
brated at T' = 300 K by performing an isothermal simulation as long
as 0.5 ns in order to fully relax the atomic positions. The thermal
conductivity was then estimated over five different trajectories using
the same procedure as described above.

It has been demonstrated [171] that the effect of hydrostatic strain
on the thermal conductivity of a crystalline system can be cast in the
following power law:

Kee ) (7.3)

where ~ is a material dependent parameter. Such a power-law has
been interpreted as mainly due to the effect of both phonon relaxation
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time 7 and group velocities v, which show, in turn, the same power-
law dependence on the applied hydrostatic strain:

T~ e (2at20) (7.4)
and

vy~ e (7.5)
where y=4a+2/ and both o and 3 are material dependent parame-
ters.

Fig. 7.5 shows the thermal conductivities k.. (blue) and g, (red)
as a function of strain that we obtained from the Green-Kubo simu-
lations. We observe a very good agreement between the model of Eq.
(7.3) and our data that can be closely fitted as k.. = 41.65 x ¢ >

(blue curve in Fig. 7.5) and k4, = 40.70 x ¢ 2¢ (red curve in Fig. 7.5).
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Figure 7.5: Room temperature thermal conductivities Kcc
(blue) and kg, (red) as a function of the applied homogeneous
strain. The blue and red curves represent the fitting function
of Eq. (7.3) for k.. and K4, respectively.

The present results stands for the reliability of our simulation pro-
tocol to describe the thermal conductivity dependence of crystalline
systems under hydrostatic strain. We observe that by applying hy-
drostatic strains up to +4% (-4%) we are able to decrease (increase)
the ZnO thermal conductivity by almost a factor 2 and, therefore,
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to largely affect its figure of merit. We observe that recent DFT
results [172] give a less pronounced dependence of the thermal con-
ductivity with the hydrostatic strain, fact most likely due to the limi-
tations of the interatomic potential here employed. Nevertheless, the
trend is similar to what found in the present work.

We take profit of the mode analysis offered by the RTA-BTE
method to investigate how strain differently affect phonon group ve-
locities and relaxation times. We focus on the two extreme cases of
+4% and -4% strain where any possible effect is expected to be the
largest, and we restrict these calculations to the ¢ direction. We pre-
liminary remark that RTA-BTE calculations underestimate x both
for the unstrained case (for which we get k. = 30.7 W m~! K~1) and
for the +4% (ke = 9.5 W m™ K1) and -4% (ke = 60.3 Wm— K1)
cases. However, the overall thermal conductivity variations with re-
spect to the unstrained case are very similar. Here we rather address
relative variations than absolute values.

Fig. 7.6 shows the spectral contribution to thermal conductivity
in the case of the unstrained system. We observe that the main
contribution to thermal conductivity is due to phonons at relatively
low frequency below 15 THz. A similar behaviour has been previously
predicted for ZnO in Ref. [166] where it was demonstrated that the
thermal conductivity was mainly governed by the six lower phonon
branches. This result allows neglecting the contribution of higher
frequency modes.
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Figure 7.6: Spectral contribution to thermal conductivity in
the case of the unstrained system at T=300 K.
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To better understand the effect of the strain we use again the
technique introduced in Chapter 5. In detail, we group all the terms
that are explicitly dependent on the phonon frequencies of the thermal
conductivity by introducing the quantity 6y = fi(fx + 1)v3, i.e. the
frequency-dependent contribution of the specific heat. This allows us
to derive the strain-induced variation of x as

A/@:/{—KO:ZA/@,\
A

h? 1 1
— Al = 90 0V2,.0 — A 02,0
NQT? EA: { (V) NGV A A(v3)°Ty
1

+V0

1
RO + )T + RA} | (7.6)
0

where we have applied the mathematical reasoning appearing in Ap-
pendix D. Like in Chapter 5, where the superscript “0” indicated
zero-field quantities, here it indicates zero-strain quantities, while the
magnitudes without superscript are for the strained cases. We also
define Ag = g — ¢° for any magnitude g. This technique allows us to
detect the change of which magnitude is more relevant for the global
change of the thermal conductivity when we apply strain to the sys-
tem. Also in this case we only take into account the ¢ component
of all the vector quantities in Eq. (7.6). This expression allows us
to readily identify changes in x that are dominated by the change
of just one of the four factors (V, 6, vy, 7\) involved in the mode
conductivity, while R, captures any lingering changes, i.e., changes
in k where the change of two or more factors are implicated.

Fig. 7.7 shows the variations with respect to the unstrained con-
dition of the different contributions to thermal conductivity (see Eq.
7.6) in the case of -4% (top) and (+4%) strains. The largest variation
observed in both cases is found for the phonon relaxation times 7y
(blue dashes), which is predominant with respect to all the other con-
tributions including the group velocities vy. Notice that the term R
adds to the global trend for negative strains, while for positive strains
it has an opposite behaviour. This explains why when compressing
the material the thermal conductivity increases more than what the
thermal conductivity is reduced when expanding it.
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Figure 7.7: Differences with respect to the unstrained condi-
tion of the different contributions to thermal conductivity (see
Eq. (7.6)) in the case of -4% (left) and +4% (right) hydrostatic
strains. The points represent the whole thermal conductiv-
ity difference while the colored stripes represents the different
contributions.

7.4 Thermal conductivity of ZnO under
uniaxial strain

We further analyze the effect of strain on the ZnO thermal conductiv-
ity by taking into account the uniaxial tensile strain n = (L — Lg)/ Lo,
where L is the simulation cell length upon the application of the strain
and Lg is the one corresponding to 0% strain. In detail, the tensile
strain was applied along the ¢ direction (see Fig. 7.1) in the interval £
4% by considering steps of 2%. We focus on the ¢ axis since this is the
most common growth orientation of ZnO nanowires and, therefore, it
is the crystallographic axis along which high strain can be more eas-
ily applied. In this case, upon the elongation of the simulation cell,
we perform an NPT (500 ps) simulation by fixing the simulation cell
length along the ¢ direction and allowing a full relaxation in the other
two directions. The results are shown in Fig. 7.8. Differently from
the previous case, we observe comparatively smaller variations upon
the application of the uniaxial strain. In particular, the estimated x4,
values for the 0% and the -4% strain are almost identical, indicating
a negligible dependence of the thermal conductivity on compressive
strains.

In order to further validate this result, we estimated the ther-
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Figure 7.8: Room temperature thermal conductivities k.
(blue) and ko, (red) as a function of the applied uniaxial
strain.

mal conductivity solving the RTA-BTE for the case of +4% and -4%
uniaxial strains. Also in this case, we observe that the thermal con-
ductivities corresponding to the 0% and -4% strain are very similar
(30.7 and 30.0 W m~ K~! respectively), while the x value corre-
sponding to the 4% strain show a larger variation being equal to
18.2 W m~! K~!. This agreement between EMD and BTE is particu-
larly remarkable and vouch for the reliability of the results obtained.
On the one hand, the BTE results indicate that the EMD runs do not
suffer from possible shortcomings of this kind of simulations, such as
not long enough simulation and correlation times or too small com-
putational cells; on the other hand, the EMD results, which account
for anharmonicity at all orders, validate the results obtained from the
solution of the BTE where these effects are considered only up to the
third order.

We argue that the present result is relevant for thermoelectric
applications since it has been reported [173] that the ZnO thin film
electrical resistivity can be reduced by more than a factor 4 by im-
posing a uniaxial (compressive) strain as small as -0.4%. Fig. 7.9
presents the results of the first-principles calculations of the Seebeck
coefficient as a function of temperature performed by our colabora-
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Figure 7.9: Temperature dependence of the Seebeck coefficient
in the case of 0% (black squares), —4% (red circles) and +4%
(blue diamonds) uniaxial strain.

tors in Cagliari. These calculations have been performed at a fixed
electron carrier concentration of 6 x 10?° cm™3 corresponding to the
maximum electron concentration achievable in ZnO via doping [158].
It clearly shows that the Seebeck coefficient is nearly unaffected by
strain over a wide range of temperatures. This allows us to combine
three separate results, namely:

e Our calculation indicates that the thermal conductivity is only
marginally affected by compressive tensile strain up to 4%.

e Experimental evidence shows instead that electrical conductiv-
ity can be dramatically increased by imposing uniaxial compres-
sive strains.

e Present first-principles calculations show that the Seebeck coef-
ficient is nearly unaffected by tensile strain.

This implies the power factor (S?c) as a whole should increase upon
uniaxial strain, leading to a corresponding ZT" increase.

Similarly to the previous case, we show in Fig. 7.10 the variations
with respect to the unstrained condition of the different contributions
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Figure 7.10: Differences with respect to the unstrained condi-
tion of the different contributions to thermal conductivity (see
Eq. 7.6) in the case of -4% (left) and +4% (right) uniaxial
strains. The points represent the whole thermal conductiv-
ity difference while the colored stripes represents the different
contributions.

to thermal conductivity in the case of -4% (top) and (+4%) uniaxial
strains. We observe large differences with respect to the case of hydro-
static strain. In the case of the -4% strain the detrimental contribu-
tion due to the phonon relaxation times at frequencies below ~ 3 THz
is balanced by the increase of the group velocities (green dashes) at
higher frequencies, leading to an overall thermal conductivity equal
to the one at 0% strain. On the other side, in the case of 4% strain,
the contribution of both phonon relaxation times and group veloci-
ties is detrimental, leading to a thermal conductivity reduction with
respect to the 0% strain case. A similar competitive mechanism has
been recently identified for different telluride systems [174]. Differ-
ently from the case of hydrostatic strain, the contribution of the term
R, (black dashes) is negligible. In order to verify wether the effect of
the group velocities is compensated by the effect of the phonon den-
sity of states (PDOS), we compare in Fig. 7.11 the PDOS in the case
of uniaxial compressive and tensile strains with the 0% strain case. In
both cases we did not observe any significant PDOS variation, both in
the acoustic as well as optical region, with respect to the unstrained
sample. For this reason, we cannot claim any compensation effect
on the group velocities by corresponding PDOS variation upon the
application of tensile strains.
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Figure 7.11: Phonon density of states of ZnO for the un-
strained case (black) and for the compressive (red) and tensile
(blue) uniaxial strains of 4%.

7.5 Conclusions

We have investigated the effect of strain (hydrostatic and uniaxial)
on bulk ZnO thermal conductivity using EMD simulations within the
Green-Kubo formalism and the numerical solution of the BTE equa-
tion within the RTA approximation. In the case of hydrostatic strain
up to £4% we estimate a corresponding thermal conductivity varia-
tion of more than a factor 2. On the other side, for uniaxial strains,
the estimated thermal conductivity variations are comparatively very
limited. In particular, for uniaxial compressive strain up to -4%, we
estimate a negligible thermal conductivity variation. This result is
potentially important for thermoelectric applications since the ZnO
electrical resistivity is dramatically affected by a uniaxial compressive
strain. This would arguably lead to a ZT increase due to the fact that
the thermal conductivity would be unaffected. The spectral analysis
of the solution of the BTE shows that, for hydrostatic strains, the
thermal conductivity variations mainly originate from the variation
of the phonon relaxations times. For uniaxial compressive strains in-
stead the contribution of the phonon relaxations time is balanced by
the increase of the group velocities.






Chapter 8

Conclusions

If we have to highlight a contribution of this Thesis to the field of
condensed matter physics, we would say that it has been the opening
of a line of research that has hardly been addressed in the literature,
modulating the thermal conductivity of materials by modifying their
crystal lattice. This was our original idea to overcome the difficulty
of modifying the behavior of phonons, since they are particles that
have neither mass nor charge and can not be directly affected by the
typical force fields. Our studies have not only shown that this cou-
pling between the thermal conductivity of a crystalline solid and an
external field that distorts the crystal lattice is a perfectly observable
effect, but that these effects have been quantified in different materi-
als, reaching values of considerable magnitude. The studied materials
have been chosen because they are representative compounds of many
other oxides, besides being very relevant materials in today’s techno-
logical applications. However, this effect analyzed throughout the
chapters of the Thesis is a generic effect, i.e., it is not restricted just
simply to the family of oxides, and in principle it should be possi-
ble to be observed in any material. In fact, a line of research that
remains open with this Thesis is to find another materials in which
this effect may be higher or have greater relevance in applications.
In this line we have carried out a similar study using SrTiO3 [175], a
material in which we expected a greater coupling between the thermal
conductivity and the electric field, due to its higher electric suscep-
tibility. As in the case of PbTiOg, the reduction of the symmetry of
the lattice because of the external field activates another scattering
mechanisms that decrease the thermal conductivity. However, we ob-
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tained that due to the global band softening caused by the electric
field in PbTiOg, the reduction of the thermal conductivity is higher
in this material.

Solving the Boltzmann Transport Equation has allowed us, in ad-
dition to obtaining the values of the thermal conductivity at many
different temperatures, going into detail in the microscopic descrip-
tion, providing information of the phonon properties. Working with
this information we have been able to develop the method presented
in Appendix D, another important contribution of our research. This
method allow us to appropriately compare two different situations,
one in which the crystal lattice is altered and the one in which it is
not, and check the change of which properties of phonons affect more
to the thermal conductivity. In both PbTiO3 and ZnO, we have found
that changes in frequencies, and hence, in specific heat, are almost
negligible, and that changes in velocities never play the main role,
leaving it to the mean free paths or the relaxation times of phonons.
Remember that these last two magnitudes are related by the expres-
sion F' N = a0y + A A), we just simply work with the relaxation times
when using the Relaxation Time Approximation because the veloci-
ties are not modified and it is easier to use the product vi7y, and we
work with the mean free paths when using the iterative process for
solving the BTE because is the magnitude affected by the iterations,
so we use the product v - F&.

In a more applicative sense, the studies presented in this Thesis
describe also the background of two possible designs for a thermal
switch. One would be based in the inherent anisotropy of PTO, and its
operation would consist of changing the direction of polarization of the
system, making phonons to propagate in a different crystallographic
direction. The second one would be based in that the domains can
be experimentally written and erased also by means of an external
electric field. We have also presented the possibility of designing a
thermal transistor, due to the possibility of continuous sweeping in
thermal conductivities by applying an electric field maintained in time
that distorts the structure of the material.

This Thesis leaves many open topics, which will be future research
lines of the group. For example, it would be interesting to find out un-
der what conditions thermal transport occurs in PTO at temperatures
close to the transition temperature from paraelectric to ferroelectric.
This could lay the foundation for designing a device able to operate
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combining both phases, that in addition would have the advantage
to work exclusively by means of thermal mechanisms, since the phase
transitions would be controlled by the application of heat instead of
applying an electric field or strain. This is currently being investi-
gated by means of non-equilibrium molecular dynamics, although it
would be better to study it by equilibrium molecular dynamics, since
by this method a temperature gradient does not arise in the system
and the transition temperature can be targeted more accurately. Our
limitation to do so is that the SCALE-UP program does not yet
have a parallel implementation of the distribution of energy between
the different atoms of the system, which is necessary to properly cal-
culate the microscopic thermal flux that appears in the Green-Kubo
equation. Another interesting aspect that worth to be studied is if a
domain wall can be moved along the system by a large enough heat
flow. If phonons that interact with the domain wall are capable of
transfer enough momentum to the atoms that do not contribute to
the polarization of any of the domains, these atoms could displace,
thus becoming part of one of the domains of the system, forcing the
atoms placed in the next parallel plane to the domain wall to be relo-
cated, forming a new domain wall displaced with respect to the first
one. This problem perfectly suits in the non-equilibrium molecular
dynamics framework.

In summary, we can conclude that the field of research that we
have started, thermal transport in oxides, still has many open lines
and interesting problems to be solved.






Appendix A

Microscopic thermal flux

It is not easy to find in the literature the derivation of an expression
for the atomistic heat current (or microscopic thermal flux). The only
place we have been able to check it is in the Supplemental Material
of reference [176]. Here we follow their procedure but in more detail.

In an isolated system where there are neither sinks or sources of en-
ergy, the continuity equation of the energy relates the time-derivative
of energy density p(7,t) with the divergence of the heat flux density

-

J(7t)

W +V (7t = 0. (A1)

The most general expression for the energy density of an atomistic
system would be

N

p(Ft) = &(t)s(F —7i(1)), (A2)

=1

where €;(t) is the energy of atom i, located at 7;(t). 6(7"—r;(t)) is the
Dirac delta function in three dimensions

(7 —713) = 6(x — 3)0(y — y3)6(2 — ). (A.3)

We can define an atomic heat flux density vector in a similar way
N
i=1
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where J;(¢) is the heat current of atom 4.
Taking the time derivative of p(7,t) we get

d de;
d_i Z { yr —0(F —7;) — €U - V5(T — Tz)} (A.5)

where 7 is the velocity of the i atom. The divergence of J| (7, t) gives

N
=D i V(i = 7). (A.6)
=1

We insert equations (A.5) and (A.6) in equation (A.1)

de;
Z{dt(s( i) — €0 - Vér—'r’l} ZJZ Vér—n (A7)

i=1
Multiplying by = and integrating over all space using the fact that

/_ T @) oy - / h dxé(x)d];(;), (A3)

dx oo

the right part of the equation becomes
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and the left part

/ i Z {@m R ) — eaFs - VO (P — n)} (A1)

where the first term is

N

=

dEi > . o oy dEi
Z dt /_Oo drwd(r —1i) = 2 g i (A.11)
=1 i—1
and the second term is
N o
- 261/ drxv; - Vo(r' — ;)
i=1 —00
N oo
=S [V s -7
i=1 —0o0
N (o)
- ei/ dr [(Vx) ’@—l—xv-ﬁi] 5(7 — 7)
i=1 —00
N o0
= ZG/ dr [ty - U; + 0] 0(F — 77)
i=1 —00

N

i=1

Replacing these calculations in Eq. (A.7) we get that the heat
current of the total system in the x direction is

J, = ij = Z %xz + €Viz, (A.13)

what can be generalized to obtain the heat current vector of the total
system

N N de:
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The first term of this equation is related to the diffusive flow of heat
while the second term is convective. We can rejoin the derivative and
write it as

Q.l&

J = 2 Z: (A.15)

what makes easy to realize about the relation between the heat current
and the energy momentum defined in Eq. (2.39), that is

- dR
Al
J = o (A.16)

Before finishing the explanation about the atomistic heat current
it is necessary to mention that ¢; is the total energy of the i** atom,
so it can be split in its different components, typically the kinetic
and the potential part, i.e., ¢, = €& + ¢. The kinetic energy of
an atom is well defined, but the potential energy is not. Previously
to perform a simulation using the definition of the microscopic heat
current it is required to choose how to distribute the potential energy
of the system between the atoms, and there is not an objective way
to do that. Some works have proved that the choice almost does not
affect the results [55], but when you are working with a pair potential,
the most intuitive choice is to assign equitably to the atoms that are
interacting in one term of the potential the fraction of the total energy
that this term creates. Furthermore, if we work with a pair potential
interaction, the derivative in Eq. (A.14) can be solved analytically,
leading to the next expressions

de;  d(ef +¢€F)

A Al
dt dt ’ (A.17)

d K d 1 ]_ d 3 _»’L 1 il
“ _ 2 <_miv'2) - §miM = 5mi2d; - T = Fi -0 (A18)

Z 0 dt _Z — fiv;, (A.19)

that are the ones used in this Thesis.



Appendix B

Thermal Boundary
Resistance from
Non-Equilibrium
Thermodynamics

This Appendix combines the procedures that appear in refer-
ences [177] and [178] to obtain a mathematical expression for the
thermal boundary resistance (TBR). This resistance is a local prop-
erty of the material, which appears because of the distortions in the
positions of the ions, which affect the phonons. The derivation pre-
sented here is valid for any interface, either between two materials,
or as in this Thesis, between two ferroelectric domains of the same
material.

To study a system with the formalism of the non-equilibrium ther-
modynamics, we have to identify its independent variables A; [177].
For these variables, we define its conjugate fluxes and forces as

dA; oS
Ji = I Xi= A, (B.1)

where ¢ is the time and S is the entropy of the system. We assume
local equilibrium for the system, so the second law of thermodynamics
is reformulated in terms of the local entropy production in the system
o, which is function of the conjugate fluxes and forces

105



106 Appendix B. Thermal Boundary Resistance from...

Each flux J; can be expressed as a linear combination of all the gen-
eralized forces X;, and vice versa, the generalized forces are linear
functions of the fluxes, related by the Onsager resistivity coefficients
ri;. As in this Thesis we work just with the lattice contribution to the
heat transport (in absence of any mass transport), our linear combi-
nation is reduced just to the thermal flux J, and its generalized force
X

q

X =Y rgidi = rog)y. (B.3)

As our heat transport occurs just in one dimension we also avoid to
work with vectors in this appendix.

We can write an entropy continuity equation, where the change
of the entropy in a volume element is given by the flow of entropy in
and out of that volume element and by the entropy production inside
the volume element

0s 0J,
— = . B.A4
o ox (B-4)
In this equation s is the entropy density and J, the entropy flux.
According to the first law of thermodynamics, we can also write

this energy balance equation
ou  9J,
o 0z’
that relates the change in internal energy density u per unit of time
with the thermal flux.

These two time derivatives of the equations (B.4) and (B.5) are
related by the thermodynamic identity dU = T'dS, by

(B.5)

Os 10u
= B.
ot T ot (B6)
so replacing (B.5) in (B.6) and doing the following calculations
ds 10u  190J, 0 (J, 0 (1
o Ta T To: o (?) iy (T) (B.7)

we obtain an expression comparable with (B.4). From this compara-
tion we can identify

Jo=Jy/T (B.8)
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that relates the entropic and the thermal fluxes, and

oo (1), ©9

that gives an expression for the entropy production. Just checking
the equation (B.2) after obtaining (B.9), we realise that

0 (1
X,==— | = B.1
and developing this expression we get
0 (1 o (1\ 0T 1 0T
02 (T) oT (T) 0z 12 0z ( )
Using now (B.3) we get
10T
—TTQE = quJq. (B12)
The Fourier’s law can be written as
oT
5. = By, (B.13)

so equating the two temperature derivatives of the two last expressions
we find

Ry = T?ryq. (B.14)

If we are working with interfaces, equation (B.4) is rewritten in
the form

asint

ot

where the superscript “int” indicates an interface quantity, while Jg;
and J, are the entropy density fluxes through the left and right
borders of the interface, respectively [178]. Performing again the same

calculations and taking into account that our system is in a stationary
state we obtain the entropy density production term for the interface

int
: 1 1 1 1
int __ - -
o™ =J, (Ts Tl>—|—Jq <Tr Ts>. (B.16)

= —(Joy — Jor) + 0™ (B.15)

7

g
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where T} is the average temperature of the region of the material that
we have defined as the interfase. As we can see from this equation,
the study of the interfase requires the generalized forces of the left
and right sides

1 1
q,l = 7—_' — Tl == quJJq (Bl?)
1 1
qu = T — T = TQQJ“’]q? (B18)

and obviously two Onsager resistivity coefficients. Therefore, the total
thermal boundary resistance RTBR is in fact a series of two Onsager
resistances

TBR 2 T? (1 1
qu =T¢ (g1 + Tgqr) = Tq i - 7_3 . (B.19)

We can write this equation in a different way

RTBR _ AT T52
qq Jq 7,7,

(B.20)

that allows us to see that the diference between our definition of the
TBR and the fenomenological TBR of Kapitza

AT

— B.21
T (B.21)

RKapitza =

is just the factor T2/(T;T,). When the interface has a non-vanishing
width, this factor may be significantly different from unity, but even
if we are working with a very sharp interfase, the factor is not unity
when AT is an appreciable fraction of the average temperature of the
interface Ty, as shown in reference [178].

In this Appendix we have shown a very rigurous formulation, just
based on thermodynamical arguments, to obtain an expression for
the thermal boundary resistance. This derivation does not assume
anything about the interactions between the atoms of the system, and
neither anything about the phonons of the system and the thermal
energy exchange at the interface.



Appendix C

Convergence studies to solve
the Boltzmann Transport

Equation for the PbTiO3

In order to assess the validity of our calculations we performed several
convergence tests. We checked convergence against the size of the su-
percell used to calculate the second and third order interatomic force
constants (IFCs), against the ¢-point grid employed in the Brillouin
zone, and against the cutoff radius for interatomic interactions when
computing the third order IFCs.

In Fig. C.1 we show lattice thermal conductivity curves versus
temperature for PbTiO3 under no external field calculated with dif-
ferent supercell sizes Ny x Ny x N,. All the calculations were performed
using an 8 x 8 x 8 I'-centered ¢-point grid. We see that for Ny = 8
all the diagonal components of the thermal conductivity tensor differ
by less than 3% with respect to those obtained with Ny = 7 in the
whole range of temperatures studied. Therefore, the calculations are
reasonably converged for N, = 8.

In Fig. C.2 we display the lattice thermal conductivity of PTO ob-
tained from Ny = 8 supercell calculations and different g-point grids
of the N, x N, x N, type. While at low temperatures the differences
between the lattice thermal conductivities obtained with N, = 8 and
N, =16 can add up to 15%, at T' = 300 K these differences go down
to 7% for kg, and 3% for k... Thus, the lattice thermal conductivity
calculations of PTO are reasonably converged for an 8 x 8 x 8 super-
cell and an 8 x 8 x 8 ¢-point grid, and the convergence is better for
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Figure C.1: Convergence of the lattice thermal conductivity
with the size of the supercell employed to obtain the second
and third order IFCs for PTO under no external field. Su-
percells of the type Ny X Ny x Ny were employed in all cases.
The BTE was solved employing an 8 x 8 X 8 g-point grid in all
cases. At any given temperature, the results for Ny = 7 and
N, = 8 differ at most by 6%. The inset shows the value of k
at T = 300 K for different supercell sizes.
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Figure C.2: Convergence of the lattice thermal conductivity of
PTO with the ¢-point grid employed in the iterative solution
of the BTE. I'-centered grids of the type Nq X Nq x N, were
employed in all cases. The BTE was solved employing an
8 x 8 x 8 supercell in all cases. At any given temperature,
the results obtained for Ny = 8 and Ny = 16 differ by ~ 10%
close to the peak (at low temperatures) and by less than 5%
at T = 300 K. The inset shows the value of k at T' = 300 K
for different §-point grid sizes.
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temperatures higher than 100 K. Note that increasing the value of N,
and/or N, drastically increases the computational resources.

When computing the third order IFCs, a cutoff radius for inter-
atomic interactions is employed in order to reduce the computational
burden. We have checked that for PTO under parallel or antiparallel
electric fields, as well as for PTO under no external field, our lat-
tice thermal conductivity calculations including four or eight nearest
neighbor interactions differ by less than 0.01% in the whole temper-
ature range studied. In Fig. C.3 we display the calculated thermal
conductivity curves for PTO under a perpendicular electric field em-
ploying different cutoffs in the calculations of the anharmonic IFCs.
Perpendicular electric fields induce more severe deviations of the crys-
tal cell geometry and reduce the symmetry of the system. In this
case we found that convergence is achieved by accounting interac-
tions among atoms up to twelfth nearest neighbors. This calculation
shows deviations of at most 1 (6)% with respect to an equivalent
calculation including fourteenth (eighth) nearest neighbors.

80
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Figure C.3: Convergence of the lattice thermal conductivity
of PTO under a perpendicular electric field with respect to
the number of nearest neighbors included in the calculation
of the third order IFCs (N,,). The BTE was solved employing
an 8 x 8 x 8 supercell and an 8 x 8 x 8 ¢-point grid in all cases.
The inset shows the value of k at T = 300 K for different N,
values.






Appendix D

Decomposition of the
difference of a product

It is easy to prove that the difference of a product of three magnitudes
(hereafter referred to as A, B, and C) in two different situations is
given by

ABC — A°B°C° = (A — A°)B°C? + A°(B — B)C"°
+ A'BY(C — C% + R, (D.1)

where R would include all the terms that contain the deviation of two
or three magnitudes with respect the reference situation labelled by
the superscript “07, like

R=(A-A"B-BC"+---+(A-A°)(B - B"(C-C".
(D.2)

In this Thesis, the superscript “0” will indicate zero-field quantities
in Chapter 5 and zero-strain quantities in Chapter 7, while the mag-
nitudes without superscript are for the cases with an electric field in
Chapter 5 and for the strained cases in Chapter 7.
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