
 
 

 

Application of observability 
techniques to structural 

system identification 
including shear 

effects  
 

Seyyedbehrad Emadi  
 

 
ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons       
(http://upcommons.upc.edu/tesis)  i el repositori  cooperatiu TDX   ( h t t p : / / w w w . t d x . c a t / ) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats  
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX. 
No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons 
(framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus 
continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. 
  
 
ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons 
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale- 
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual 
únicamente para usos privados enmarcados en actividades de investigación y docencia. No  
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde  
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una 
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al 
resumen de presentación de la tesis como a sus  contenidos. En la utilización o cita de partes     
de la tesis  es obligado  indicar  el nombre de la persona autora.  
 
 
WARNING On having consulted this thesis you’re accepting the following use conditions: 
Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis) 
and the cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized 
by the titular of the intellectual property rights only for private uses placed in investigation and 
teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor 
availability from a site foreign to the UPCommons service. Introducing its content in a window or 
frame foreign to the UPCommons service is not authorized (framing). These rights affect to the 
presentation summary of the thesis as well as to its contents. In the using or citation of parts of the 
thesis it’s obliged to indicate the name of the author. 
 

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en


Application of observability techniques to 
structural system identification including shear 
effects 
 
 
 
 
 
Doctoral thesis performed by: 
Seyyedbehrad Emadi 
 
 
 
Directors: 
Prof. Dr. José Turmo Coderque 
Prof. Dr. Jose Antonio Lozano Galant 
 
 
Doctoral program: 
Construction Engineering 
 
 
Barcelona, Spain September 2020 
 

 

Do
ct

or
al

Th
es

is
 

 
   

   
   

   
  

 
 

 
 

 
 

   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

PhD program in Construction Engineering  
 

Application of observability techniques to 
structural system identification including shear 

effects 

 

 

 

Doctoral thesis by: 

Seyyedbehrad Emadi 

 

 

 

Thesis advisor: 

José Turmo, Jose Antonio Lozano 

 

 

 

Department of Construction Engineering 

Barcelona, 2020 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The higher you build your barriers 

The taller I become 

The further you take my rights away 

The faster I will run 

No matter, 'cause there’s 

Something inside so strong 

Labi Siffre (1945- present) 

 

 

 

 

 



 

 

 

 



Acknowledgments | Seyyedbehrad Emadi 
IX 

 

Acknowledgments 
First of all, I would like to express my most gratitude and respect to my supervisors, Prof. Jose 
Antonio Lozano and Prof. Jose Turmo, for their advice and encouragement during my Ph.D. study. 
It was a privilege for me to work under their supervision. Without their help and supervision, I 
would have not been able to complete this thesis. They have been role models for me not only in 
the research field but also in my daily life. They have spent a significant amount of time revising 
and improving my work and training me to be a better person. Also, it was a pleasant experience 
for me to work with all the professors and members in the construction engineering group of 
Universitat Politècnica de Catalunya. I must express my very profound gratitude to my beloved 
family for their unconditionally love and unreserved support during all these years. This 
accomplishment would not have been possible without them. Thanks to my colleagues at UPC, 
Tian Peng, Jun Lei, Seyedmilad Komarizadehasl, Behnam Mobaraki and Ahmed Elkherbawy. In 
addition, I should thank my friends in our office in B0 second floor, those who have always helped, 
supported and tolerated me Ali Emadi, Nirvan Makoond, Irene Josa, David Requejo Castro, Marco 
Antonio Cruz Sandoval and Sara Dimovska. Also, I want to thank some of my friends at UPC who 
helped me during my residency in Barcelona my friends, Amir Bozorgzadeh farmanfarma and 
Keyvan Amirbagheri. This work was funded by the Spanish Ministry of Economy and 
Competitiveness for the funding provided through the research project BIA2013-47290-R, 
BIA2017-86811-C2-1-R directed by José Turmo and BIA2017-86811-C2-2-R. All these projects 
are funded with FEDER funds. The author is also indebted to the Secretaria d’ Universitats i 
Recerca de la Generalitat de Catalunya for the funding provided through Agaur (2017 SGR 1481) 

 
 
 
 
 
 
 
 
 



Acknowledgments | Seyyedbehrad Emadi 
X 

 
 



Abstract | Seyyedbehrad Emadi 
XI 

 
Abstract 
According to Timoshenko’s beam theory, nodal rotations in beam-like structures are produced by 
bending and shear effects. On the one hand, bending rotations can be easily calculated by the Euler-
Bernoulli stiffness matrix method. On the other hand, shear rotations are traditionally neglected as 
their effects are practically negligible in most structures. In addition, calculating the shear rotation 
effects by the stiffness matrix method is not straight forward tasks and it presents practical 
limitations. Nevertheless, this assumption might lead to significant errors in the simulation of the 
structural response of some structures (such as deep beams and composite structures).  
 
The shear effects are also neglected in the inverse analysis of structures (Structural System 
Identification) used to calibrate the mechanical properties of the structural elements from the 
monitoring on-site.  Recently, one of the first methods for the inverse analysis of structures 
including the shear effects (the Observability Method, OM) was presented. This method 
introduced Timoshenko’s beam theory into the Stiffness Matrix Method (SMM). In this way, the 
vertical deflections produced by shear effects were included into the simulation while the shear 
rotations were neglected. In this method, the mechanical properties of the structures could be 
obtained from the nodal deflections measured on static tests on site. One of the main controversial 
features of this procedure is the fact that the measurement set must include rotations. This 
characteristic might be especially problematic in those structures where rotations due to shear are 
not negligible. In fact, in this case, neglecting the shear rotations might lead to significant errors. 
This simplification might be especially problematic in those structures where only rotations can 
be measured. In addition to the OM, some other inverse analysis methods including shear 
deformation effects have been recently presented in the literature. Nevertheless, all these methods 
also fail to deal with the shear rotation effects, as they only take into account in the system of 
equations the vertical deflections produced by shear. Therefore, when actual rotations on site are 
used estimations with significant errors can be obtained.  
 
To fill these gaps, this Ph.D. Thesis deals with the analysis of the effects of the shear deformations 
in beam-like structures from a direct and inverse approach. First of all, the SMM is updated to 
enable the calculation of the shear rotations from a direct analysis. This method is used to evaluate 
the effects of the shear rotations in beam-like structures with different slenderness ratios. In 
addition, for the first time in the literature, the slenderness ratios where the shear rotation effects 
can be neglected from a direct analysis are identified. Secondly, the OM is updated to enable the 
inverse analysis of structures with shear effects from measurement sets with only vertical 
deflections. This modification is based on the introduction of a numerical optimization method. 
With this aim, the inverse analysis of several examples of growing complexity are presented to 
illustrate the validity and potential of the updated method. Finally, the OM is modified to enable 
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the inverse analysis from shear rotations.  This modification is based on the introduction of a new 
iterative process to estimate successively the values of the shear rotations. To illustrate the 
applicability and potential of the proposed method, the inverse analysis of several examples of 
growing complexity is presented. A set of calculation recommendations and future researches are 
also proposed.  
 
Keywords: Shear, Stiffness matrix, Structural system identification. Observability method. 
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Resumen 
De acuerdo con la teoría de vigas de Timoshenko, las rotaciones nodales en estructuras tipo viga 
se producen por efectos de flexión y cortante. Si bien las rotaciones por flexión pueden ser 
fácilmente calculadas por el método de la matriz de rigidez de Euler-Bernoulli, las rotaciones por 
cortante no se han tomado en cuenta tradicionalmente ya que sus efectos son prácticamente 
insignificantes en la mayoría de las estructuras. Así mismo, el cálculo de los efectos de la rotación 
por cortante mediante el método de la matriz de rigidez no es una tarea sencilla y presenta 
limitaciones prácticas. Sin embargo, esta omisión podría conducir a errores significativos en la 
simulación de la respuesta estructural de algunas estructuras (como las vigas de gran canto). 
De igual forma, los efectos por cortante no han sido tomados en cuenta en el análisis inverso de 
las estructuras (Identificación del Sistema Estructural) que es utilizado para calibrar las 
propiedades mecánicas de los elementos estructurales a partir de la monitorización in situ. 
Recientemente, se presentó uno de los primeros métodos para el análisis inverso de las estructuras, 
incluidos los efectos por cortante (el método de observación, OM, por sus siglas en inglés). Este 
método introdujo la teoría de vigas de Timoshenko en el Método de la Matriz de Rigidez (SMM, 
por sus siglas en inglés). De esta manera, las flechas verticales producidas por los efectos por 
cortante se incluyeron en la simulación, mientras que las rotaciones por cortante se ignoraron. En 
este método, las propiedades mecánicas de las estructuras pudieron obtenerse a partir de las flechas 
nodales medidas en pruebas estáticas in situ. Una de las principales características controvertidas 
de este procedimiento es el hecho de que en el conjunto de mediciones se deben incluir las 
rotaciones. Esta característica podría ser especialmente problemática en aquellas estructuras en las 
que las rotaciones debidas al cortante no son despreciables. De hecho, en este caso, despreciar las 
rotaciones por cortante podría dar lugar a errores significativos.  
Además del OM, recientemente se han presentado en la literatura otros métodos de análisis inverso 
que incluyen los efectos de deformación por cortante. Sin embargo, tampoco ninguno de estos 
métodos abordan los efectos de rotación por cortante, ya que solo tienen en cuenta en el sistema 
de ecuaciones las deformaciones verticales producidas por cortante. Por lo tanto, cuando se utilizan 
las rotaciones reales in situ se pueden obtener estimaciones con errores significativos. 
Para llenar estos vacíos, esta Tesis Doctoral aborda el análisis de los efectos de las deformaciones 
por cortante en estructuras tipo viga desde un enfoque directo e inverso. En primer lugar, se 
actualiza el SMM para permitir el cálculo de las rotaciones por cortante a partir de un análisis 
directo. Este método se utiliza para evaluar los efectos de las rotaciones por cortante en estructuras 
tipo viga con diferentes ratios de esbeltez. Además, por primera vez en la literatura, se identifican 
los ratios de esbeltez en los que los efectos de la rotación por cortante pueden ser despreciados a 
partir de un análisis directo. En segundo lugar, el OM se ha actualizado para permitir el análisis 
inverso de estructuras con efectos de cortante a partir de un conjunto de mediciones con solo 
flechas verticales. Esta modificación se basa en la introducción de un método de optimización 
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numérica. Con este objetivo, se presenta el análisis inverso de varios ejemplos de creciente 
complejidad para ilustrar la validez y el potencial del método actualizado. Por último, se modifica 
el OM para permitir el análisis inverso a partir de las rotaciones por cortante.  Esta modificación 
se basa en la introducción de un nuevo proceso iterativo para estimar sucesivamente los valores de 
las rotaciones por cortante. Para ilustrar la aplicabilidad y el potencial del método propuesto, se 
presenta el análisis inverso de varios ejemplos de complejidad creciente. Así mismo, se propone 
un conjunto de recomendaciones de cálculo e investigaciones futuras. 
 

Palabras clave: Cortante, Matriz de rigidez, Identificación del sistema estructural. Método de 
observabilidad. 

 
 
 
 
 
 
 
 
 
 
 
 
 



TABLE OF CONTENTS  | Seyyedbehrad Emadi 
XV 

TABLE OF CONTENTS  
Chapter 1: Objectives                    1 

1.1 Introduction           1 

1.2 Objectives           2 

1.3 Thesis organization         2 

1.4 Activities           3 

Chapter 2: State of the art          5 
2.1 Structural modeling and beam theories       5 

2.2 Stiffness matrix method          6 

2.3 Effects of the shear deformations in the Structural System Identification             9 

2.4 Observability Method                  11 

Chapter 3:  Introducing shear rotations into the SMM                 13 
3.1 Introduction                    13 

3.2 Detected gap 1: Analysis of shear rotations with the SMM           14 

3.2.1 Example 3.1: Simply supported beam                 14 

3.3 New simulation method for the analysis of shear rotations in beams          16 

3.3.1 Example 3.2: Simply supported beam with a concentrated load             18 

       3.3.2 Example 3.3: Simply supported beam with a distributed load            19 

       3.3.3 Example 3.4: Cantilever Beam                19 

3.4. Example of application                 20 

3.5. Conclusions                  23 

Chapter 4: Observability Method including shear effects without rotations   25 
4.1. Introduction                   25 

4.2: Detected gap: Rotations are required for inverse analysis of the OM including 
shear effects                    27 

4.2.1 Example 4.1: Simply supported beam with vertical deflections            27 

4.3: New method for the inverse analysis from vertical deflections           30 

4.3.1 Example 4.2 revisited: simply supported beam with vertical deflections (COM)     32 



TABLE OF CONTENTS  | Seyyedbehrad Emadi 
XVI 

4.4 Application to a composite bridge                34 

4.5. Conclusions                   39 

Chapter 5: Observability Method with shear rotations            41 
5.1. Introduction                    41 

5.2 Detected gap: Any SSI method includes the shear rotations             42 

5.2.1 Academic examples                    43 

5.3. Proposed methodology                  44 

       5.3.1. Example 5.1: simply supported beam with 2 iteration process              46 

5.3.2. Example 2: Cantilever beam                   48 

5.4. Application to a composite bridge                49 

5.5 Conclusions                    51 

Chapter 6: Conclusions and future research                     53 
6.1. Conclusions                   53 
6.2. Related works and publication                                                 54 

6.3. Future research                    54 

Bibliography                  57 

Appendix 1                   67 

Appendix 2                   85 

Appendix 3                      113 

 
 
 
 



LIST OF TABLES | Seyyedbehrad Emadi 
XVII 

LIST OF TABLES  
Table 2.1                 11 

Table 3.1                 15 

Table 3.2                 16 

Table 3.3                 21 

Table 3.4                 22 

Table 4.1                 28 

Table 4.2                 35 

Table 4.3                 37 

Table 4.4                  37 

Table 5.1                 46 

Table 5.2                 47 

Table 5.3                 49 

Table 5.4                 51 

 
 
 
 
 
 
 
 
 



LIST OF TABLES | Seyyedbehrad Emadi 
XVIII 

 



LIST OF FIGURES | Seyyedbehrad Emadi 
XIX 

LIST OF FIGURES 
Figure 2.1           6 

Figure 3.1          13 

Figure 3.2          15 

Figure 3.3          17 

Figure 3.4          18 

Figure 3.5          19 

Figure 3.6          20 

Figure 3.7          21 

Figure 3.8          21 

Figure 3.9          22 

Figure 4.1          27 

Figure 4.2          32 

Figure 4.3          34 

Figure 4.4          35 

Figure 4.5          36 

Figure 4.6          37 

Figure 5.1          43 

Figure 5.2          45 

Figure 5.3          46 

Figure 5.4          48 

Figure 5.5          50 



LIST OF FIGURES | Seyyedbehrad Emadi 
XX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Objectives | Seyyedbehrad Emadi 
1 

Chapter 1: Objectives  
 

1.1. Introduction 

The gaps detected in the literature are as follows:  
 

1- Shear rotations are always neglected in the direct analysis of structures: Most 
structural simulation software are based on the Stiffness Matrix Method (SMM) to 
calculate the nodal deflections from the applied loads with known mechanical properties 
(direct analysis). Although in this method shear effects can be introduced into the vertical 
deflections they are always neglected in rotations. In fact, the obtained rotations are the 
same independently if the shear effects are or are not considered. This simplification might 
be acceptable in some structures with reduced shear effects, might it also might lead to 
significant errors in other structures (such as deep beams) where shear rotations play an 
important role.   
 

2- Inverse analysis of structures with shear deformation effects requires the 
measurement of rotations: The Observability Method, OM, was proposed to obtain the 
mechanical properties of the structures from the monitoring information on site (inverse 
analysis). This method was modified to deal with the shear effects in the vertical deflections 
by measurement sets including both vertical deflections and rotations on site. However, 
many infrastructure control only relies on deflection measurements (e.g. surveying through 
topography), being rotation measurement, and the use of clinometers much more scarce. 
In addition, vertical displacement measurements might be more reliable than rotations. The 
majority of SSI methods are based on the Euler-Bernoulli beam theory.  
 

3- Real rotations on site cannot be used for the inverse analysis of structures: Real 
rotations on-site include both bending and shear effects. Nevertheless, all methods for the 
inverse analysis of structures only consider rotations due to bending. This simplification 
might be especially problematic in those structures where rotations due to shear are not 
negligible, and in those structures where only rotations can be measured. In fact, in this 
case, neglecting the shear rotations might lead to significant errors in the identification of 
the structural parameters.  

 
To fill these gaps, new computational methods are developed and the shear effects of different 
structures of growing complexity are evaluated in this work. From these analyses, a set of 
recommendations for the analysis of the shear effects are provided.  
 
This Ph.D. Thesis is framed into two research projects: “BIA2013-47290-R: Sistema de apoyo a 
la toma de decisiones durante el ciclo de vida de las infraestructuras: Smart-Infrastructures” and 
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“BIA2017-86811-C2-1-R: Modelos Estructurales para la gestion eficiente de infraestructuras: 
Smart BIM Models”.  
 
1.2. Objectives 

The global objective of this work is to study the shear deformation effects in beam-like structures 
from both direct and inverse approaches. With this aim, the following partial objectives are 
defined:  

1- Introducing shear rotation into the direct analysis of the traditional Stiffness Matrix Method 
(SSM).  

2- Update the Observability Method (OM) to deal with the inverse analysis of structures from 
measurement sets with only vertical deflections. 

3- Identify in which cases (beam slenderness ratio and loading cases) the shear effects cannot 
be neglected. 

4- Develop a new OM for the inverse analysis of structures with significant shear 
deformations from the rotations measured on-site.   
 

1.3. Thesis organization 

The thesis is organized into six chapters. The main text of each chapter is intentionally kept as 
short as possible (introducing only the fundamental concepts and the new ideas) to ease its reading. 
In Chapter 2 the state of the art is presented. Firstly, the assumptions of the structural modeling 
and the main beam theories are reviewed. Then, the Structural System Identification Methods (SSI) 
developed by the research group where this thesis is framed are detailed. Finally, the assumptions 
of the other SSI methods in the literature to deal with the shear deformation effects are analyzed.    
In Chapter 3, the equations of the Stiffness Matrix Method (SMM) in beams with and without 
shear effects are reviewed. Then, an example is presented to illustrate the inability of this method 
to calculate the value of shear rotations from a direct analysis. After that, a new method for 
calculating the shear rotation in beams is presented. In addition, a parametric analysis of different 
structures is presented to illustrate the important role that shear rotations might play in some 
geometries.  

Chapter 4 reviews the SSI by the different Observability algorithms presented in the literature. A 
simply supported beam is analyzed to illustrate the inability of the method presented in Tomas. et 
al. (2018) to identify mechanical properties by measuring just vertical deflections. Later, the 
constrained observability method (COM) is enhanced to enable structural identification by 
measuring only vertical deflections. To illustrate the application of this algorithm, a step by step 
example of a simply supported beam is presented. In addition, another numerical example of an 
intermediate construction stage of a cantilever bridge is analyzed.  

Chapter 5 discusses the importance of shear rotations in some structures. To illustrate this, the 
effects of neglecting these rotations in the inverse analysis of some structural cases with different 
slenderness ratios are analyzed. In addition, a new iterative method for analyzing the effects of the 
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shear rotations in COM is presented. Different structures are analyzed to illustrate the important 
role that shear rotations might play in some geometries. Moreover, the applicability and accuracy 
of the new method in different structural models are studied.  

Finally, in Chapter 6, a summary of the thesis is provided and a pathway for future possible works 
is described. In addition, related works and publications derivated from the thesis are presented.  
 
1.4. Activities 

To develop this work, the following activities have been carried out:  
 

1- Literature review (in the first year  ) . 
2- Patch test of the OM with and without shear effects (in the first year  ) . 
3- Patch test of the commercial structural software with shear effects (in the first year). 
4- Method to include shear rotations into structural simulations (in the first and the second 

years). 
5- Updating OM to enable SSI with only vertical deflections (in the second and the third 

years). 
6- Updating OM to work with real rotations (in the third and fourth years). 
7- Conclusions (in the fourth year). 
8- International stay (in the fourth year). 
9- Writing conference and SCI papers (in the third and fourth years). 
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Chapter 2: State of the art  
2.1 Structural modeling and beam theories 

Structural modeling is related to the simulation of the behavior of structures. It is achieved based 
on processes in which physical problems based on a set of simplifying assumptions are expressed 
mathematically. There are many studies related to modeling the structural behavior of beam-like 
structures (e.g. Zarga, D. et al 2019, López-Colina, C. et al. 2019, Chao, S. et al. 2019). Most of 
these studies are based on either the Euler-Bernoulli (Kawano, A. and Zine, A. 2019) or the 
Timoshenko’s beam theory (Arefi, M. et al2019) According to many scholars (see e.g. Lu, Y. and 
Panagiotou, M. 2014, Ozdagli, A. I. et al. 2018) shear deformations are traditionally neglected in 
Euler-Bernoulli’s beam theory approach as this theory assumes the plane section deformation. This 
assumption states that plane sections remain plane and perpendicular to the neutral axis during 
bending deformation (Dahake, A. et al 2014), and accordingly, no shear strains appear or its value 
is negligible. 

The Euler-Bernouilli’s theory fails for most loading cases, as the only loading case resulting in 
zero shear force is a constant bending moment alongside the beam. Hence, this theory only holds 
for this particular case. This assumption is traditionally used in slender beams, where shear 
deformations are usually smaller than flexural ones, and therefore, their effects can be neglected. 
In these cases, the absence of shear strains and deformations can be considered as a modeling error 
(Tomas, D. et al 2018). Nevertheless, in structures lacking a unidimensional geometry (such as 
deep beams) shear deformation might play an important role and its effects should be introduced 
into the structural formulation (Dym, C.L. and Williams, H.E. 2007). Eurocode EN 1992-1-1 
characterizes deep beams as those which span is three times smaller than the overall section depth. 
ACI committee 318 describes these beams as beams whose spans are equal to or less than four 
times the depth of the beam. Shear deformation effects can also play an important role in the other 
two dimensional structures, such as sandwich beams and deep beams (Chen, D. et al 2016).  

Timoshenko (Timoshenko, S. P. 1921, Timoshenko, S. P. 1922) was the first one dealing with the 
study of shear deformations in beams. In fact, he included the effects of both shear vertical 
deflections and shear rotations into this theory. In this approach (known as Timoshenko’s beam 
theory or first-order shear deformation theory) two different rotations are considered: (1) Rotations 
due to the bending, wb, and (2) Rotations due to the shear, wr. The difference assumptions of Euler-
Bernouilly and Timoshenko methods are illustrated in the simply supported beam presented in 
Figure 1. This figure includes the assumed rotations in a support in both theories.  
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Figure 2.1: Beam theory at a beam support. (a) A simply supported beam with a zoomed support. (b) Rotations of the Euler-
Bernoulli’s beam theory. (c) Rotations of the Timoshenko's beam theory. 
 
Timoshenko’s theory was later improved by Mindlin (1951), who simplified the transverse shear 
strain as a constant distribution through the beam thickness. In this approach, a shear coefficient 
was used to appropriately represent the strain deformation energy in real structures. This shear 
coefficient can be used to include the effects of the non-constant shear stresses and strains in the 
members’ cross-sections.  
 

2.2 Stiffness matrix method  

The Finite Element Method (FEM) is a numerical problem-solving method (Meier, C. et al 2019, 
Zeng, W. et al 2018, Dixit, P. and Liu, G.R, 2017) commonly used to calculate the structural 
response of all kind of structures. In this method, large equations are divided into smaller and 
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simpler ones. The concept of the FEM was first developed by Clough (1960) for solving problems 
in solid-state mechanics (specifically in plate-bending). Turner et al. (1956) described the 
application of finite elements for the analysis of aircraft structures and is pointed to as one of the 
main contributions to the growth of the FEM. The FEM approach allows the continuum to be 
discretized into a finite number of elements and ensures that the characteristics of the continuous 
domain can be determined by combining the properties of the different elements in the nodes. 
Hutton (2004) refers to FEM as the most powerful and common technique for computer-based 
analysis in engineering. In addition, this procedure can be used for both simple and complex 
structures (Bathe, K.J. 2016, CSI, 2016, Rapp E. 2017). Consequently, the FEM has been 
thoroughly implemented to solve a broad range of problems in different fields of science and 
engineering and it has grown rapidly over the years (Rao, S.  2018, Dixit, P. and Liu, G.R, 2017) 
which makes FEM a numerically universal tool for solving differential equations. Indeed, the fast-
growing recognition of finite element methodologies is associated with the computer's growth. 
This led to the rapid development of the process, which now offers the key for rational structural 
design and the analysis of aeronautical fluid dynamics and electric magnetism required for physics 
through various commercial and research codes (Zienkiewicz, O. C. 1996). All of the information 
concerning these finite elements methods were presented, along with numerous correspondents at 
a meeting held in Swansea in January 1964 and 1965 formally published (Zienkiewicz, O. C. 
(1965)) and several other seminars such as Fraeijs de Veubeke (1965).  

A common FEM model for the analysis of beam-like structures is the stiffness method. In this 
method, the nodal equilibrium equations of a structure loaded in its plane are correlated with the 
nodal forces (Zienkiewicz, O. 2004). This method was initially proposed by Louis Navier (1826) 
then, Alfred Clebsch (1862) developed the method and studied more details. Clebsch (1862) 
presented a succinct technique for the linear analysis to evaluate a moment-free 3D truss. Barr´e 
de Saint Venant (1883) studied the same problem (a French translation of Clebsch (1862) with 
more detailed discussions).  

Before the advent of computers, only a small number of unknown variables could be calculated 
by the stiffness method. Therefore, to deal with this problem Southwell, RV (1935), developed the 
use of relaxation methods. Although this method was not practical to solve a complex problem 
manually, the iterative process of elimination proposed in his further studies (Southwell, RV. 1946, 
Southwell RV. 1956), increased the applicability of the method, enabling to solve very complex 
problems. In addition, Turner, MJ. (1962), contributed to developing the stiffness method and 
formulated it in more detail. The main inconvenience for the more complex structures is that hand 
methods of analysis become excessively inapplicable.  

Standard engineering methods can be employed in other areas of engineering. For example, 
electrical components can be assembled to form a circuit the same as the structure assembling bars. 
This concept was already proven in Kirchhoff GR. (1847). In the analysis of designing aircraft 
which is described by Levy, S. (1937), it is believed that all normal stresses are taken up by the 
spars and ribs and all shear stresses by the panels. The analogous approach was employed by 
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Falkenheiner, H. (1950), Lang, AL. and Bisplinghoff, RL. (1951), as well. Hrenikoff, A. (1941) 
proposed a system for solving problems of linear elasticity. A rectangular arrangement of the 
trusses model is presented by McHenry, D. (1943). Related equations of SMM arised in electrical 
networks, and these follow similar formulations to structural engineering problems (Megson, 
T.H.G. 2019). Similar to Kirchhoff and Maxwell, Gabriel Kron (1944) explained a close 
comparison between electrical and mechanical networks for the solution of 3D frames in a 
complete matrix algorithm. He was the first one who considered these stiffness matrices along the 
diagonal of a large-scale matrix. Argyris made considerable progress in the use of matrices in 
structural engineering (Argyris JH. 1955) applying the methods proposed by Kron. Clearly, the 
particular computational advantage of the SMM refers to the local definition of the shape function 
(known as stiffness matrix). The local assembly of the structure in terms of matrix equations was 
firstly presented in Walter, R. (1909). The purpose of this approach relies on the formation of a 
relationship between forces imposed at nodes of an element of a structure, and the displacement 
related to the force. 

The SSM is traditionally used to calculate nodal deflections from applied loads assuming the terms 
in the stiffness matrix as known. This approach is known as the direct analysis and it is particularly 
suitable for the computer-automated analysis of complex structures (Rocas, M. et al. 2020). In fact, 
there is a wide range of software packages (such as SAP2000 (CSI, 2016), Midas/ Civil. 2015) 
that enable the calculation of structures with this structural approach. In these software the stiffness 
matrix [K] is traditionally based in the Euler–Bernoulli’s beam theory and the shear effects are 
neglected (Sayyad, A.S. 2011). The [K] matrix of a 2D beam element is presented in Figure 1.1a. 
This matrix is independent for each beam element and it contains its length L, Young’s Modulus, 
E, Inertia, I, Area, A. 

The [K] matrix obtained by the Euler-Bernouilli’s beam theory can be successfully applied to 
slender beams. Nevertheless, this is not the case in other structures (such as deep beams), where 
shear deformations might play an important role and these effects cannot be ignored (see e.g. 
Tomas, D. et al. 2018). Shear deformation in beams can be analyzed by the sum of two 
components: (1) Vertical and axial deflections, and (2) Rotations. Some authors proposed 
innovative stiffness matrices to include the shear effects into the SMM formulations (Lu, Y. and 
Panagiotou, M. 2014, Heyliger, P.R.and Reddy, J.N. 1988, Nickel, R.E. and Secor, G.A. 1972, 
Prathap, G. and Bhashyam, G.R. 1982, Tessler, A. and Dong, S. B. 1981).  In order to include the 
effects of the shear rotation into the SMM, some authors developed their own mathematical model 
(Davis, R. et al. 1972, Archer, J.S. 1965, Kapur, K. K. 1966, Severn, R. T. 1970, Carnegie, W. et 
al. 1969, Ali, R. et al. 1971, Ali, R. et al. 1971). In these models, SMM formulations were too 
simple to consider shear rotation effects and they were only based on the analysis of vertical and 
axial deflections. To deal with the shear effects, specific boundary conditions were considered to 
remove unnecessary equations from the beam equilibrium system. But these methods have limited 
applicability as they can only be used in simple cases and their equations are different for each 
case. The first FEM for Timoshenko beam theory was proposed by McCalley (1963), who 
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developed a two-node, four-degree of freedom element (transverse displacement and cross-section 
rotation at every node). This FEM was extended to a tapered beam by Archer, J.S. (1965). The 
values of the shear coefficient for different cross-sections were proposed by Cowper G.R. (1966). 
At the time Kapur, K. K. (1966) found that in a clamped-end element (such as the fixed end of a 
cantilever beam), Archer’s formulation could not represent the exact boundary conditions (as the 
rotation due to shear is constrained to be zero). To deal with this problem, Kapur developed a new 
element based on a cubic displacement function for both the bending and the shear displacements. 
In this formulation both effects (shear rotation and bending rotation) were analyzed separately, 
resulting in an eight degree of freedom beam element. The FEM presented by Kapur works 
properly when there are four unknowns per node (such as in simply-supported beams and 
cantilevers). However, in complex structures, where adjacent elements are not collinear, Kapur’s 
element does not work properly. Other authors used slightly different approaches for their FEM’s 
and achieved almost the same results as Kapur. Various types of FEMs for Timoshenko’s beam 
elements are proposed in the literature. These methods are based on similar assumptions with small 
differences (Augarde, C.E. 1997, Astley, R.J. 1992, Pickhaver, J.A. 2006). Thomas et al. (1973) 
described many of the early models presented in the literature to deal with shear. He categorized 
the elements of these models into two classes: simple and complex. On the one hand, a simple 
element is considered with only two degrees of freedom at each of its two nodes. On the other 
hand, a complex element has more than four degrees of freedom (having nodes with more than 
two degrees of freedom or more than two nodes per element).  

According to the literature, a number of different SMM approaches can be found to include shear 
rotations into the simulation of simple and complex elements. But complex structural cases which 
have discontinuities in cross-sections or non-collinear elements can only be analyzed by the FEM’s 
whose nodal variables are bending rotation and transverse displacement (Thomas et al. 1973). It 
is important to notice that the effect of shear rotation is neglected in this SMM formulation. A 
detailed formulation of this type of common Timoshenko’s beam theory SMM can be found in 
many works, such as, for example, in Przemieniecki, J.S. (1968). On the other hand, where, there 
are continuous cross-section or beam-column, several SMM based on Timoshenko's beam theory 
are proposed by different authors (Sapountzakis, E. J. and Kampitsis, A. E., 2010, Sapountzakis, 
E. 2011, Sapountzakis, E. J. & Kampitsis, A.E., 2011, Dikaros, I. & Sapountzakis, E. 2014). 

 

2.3 Deformations in the Structural System Identification  

System Identification (SI) is a process of modeling an unknown system that has been employed in 
a number of engineering fields (Sirca et al. 2012, Altunişik et al. 2017) .The discipline of SI aims 
to create mathematical models that characterize properly the system behavior. One of the pioneers 
in this approach was Friedrich Gauss who developed the Gauss-Newton method to find the values 
of parameters in a model of the trajectory to calculate the dwarf planet trajectories. SI began in the 
area of electronic engineering and, after a while, it has been extended to other fields of engineering 
(Gevers 2006, and Pisano 1999). Structural system identification (SSI) is a part of the SI dealing 
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with the construction of mathematical models to identify the structural parameters (such as flexural 
stiffnesses, axial stiffnesses, or damping parameters) from the structural response (Pajonk 2009).  

The SSI analysis enables the calibration of parameters in the stiffness matrix [K] from the 
structural response, this simulation is also known as an inverse analysis. A number of methods are 
proposed for SSI in the literature (Liao, 2012, Lozano-Galant 2013, Yan, 2005). The SSI methods 
can be classified according to the excitation test type as dynamic (Breuer, et al.  2015, Dowling et 
al, 2012, Li et al. 2017, Górski et al. 2018) or static (Thirumalaiselvi et al. 2016, Walsh et al. 2009, 
Lee et al. 2010). SSI methods might be also classified as a parametric (Lozano-Galant et al. 2013, 
Gracia-Palencia et al. 2015) or non-parametric methods (Karabelivo et al. 2015, Mei et al. 2016). 
Parametric methods rely on the physical-based models, while in non-parametric ones, parameters 
do not have any physical meaning. In fact, in non-parametric methods, parameters are identified 
directly with optimization procedures that minimize the difference between the predicted structural 
response and the measured ones. For parametric SSI methods, a mathematical representation of 
the structural behavior is required. The most common way to do this modeling is based on the 
SSM (Hou et al. 2015, Kahya et al. 2018, Li et al. 2017, Khayat et al. 2017, Khayat, et al. 2017, 
Li et al. 2014, Araki et al.2005). The details of some of the main SSI methods proposed in the 
literature are presented in (American Society of Civil Engineers, Reston, VA 2013).   

Despite the importance of shear deformation in some structures, this phenomenon is usually 
overlooked by most of SSI methods as shear deformations are traditionally smaller than the 
bending ones. In these cases, shear effects are considered as modeling errors in the mathematical 
models (such as any property in the model assumed with a wrong value). Nevertheless, in some 
structures (such as deep beams, shear walls, short span beams, or thin-web bridges) shear effects 
might play an important role. In this case, they should not be neglected and should be introduced 
into the formulation.  

Most traditional SSI methods are not able to observe correctly the parameters of a structure (such 
as bending stiffness) when shear deformation is not negligible. SSI methods based on SMM 
normally use elementary beam theory, underestimating deflections, and overestimating the natural 
frequencies since the shear deformation effect is disregarded (Sayyad 2011). SSI models are 
mostly based on Euler–Bernoulli beam theory which includes axial and flexural deformations and 
neglects shear effects are. Some authors studied the effect of shear deformation in their SMM 
models of composite structures (Kumar et al. 2018, Nguyen et al.2018, Singh et al. 2017). 
Moreover, Soto et al. (2017) proposed a new SMM’s formulation including shear effects for the 
modeling fixed–end moments of I-sections. The effects of shear deformations in the recursive 
matrix method for the sandwich plate were also studied by (Huoet al. 2017).  The impact of shear 
effects in steel-concrete composite structures was also studied by (Yang et al. 2018) and (Wang et 
al. 2018).  
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2.4 Observability Method   

Mechanical properties (such as bending, EI, or axial, EA, stiffness) of actual structures on site 
might differ from theoretical values due to damage (e.g. by carbonation, corrosion, accidental 
actions, fires, impacts or material degradation) or other uncertainties (e.g. lack of knowledge of 
the material or its variation over time). The Structural System Identification (SSI) enables the 
estimation of these unknown parameters from the structural response on tests. To do so, the system 
of equations in the Stiffness Matrix Method (SMM) must be analyzed from an inverse approach. 
Parametric analysis of this system is not a straight forward task as it leads to a polynomial system 
of equations where the unknown variables are coupled to the deformations in the non-measured 
degrees of freedom. As stated in Castillo et al. (2015) the Observability Method (OM) is the first 
method that enables efficient analysis of this kind of system of equations. This method is based on 
the observability techniques already validated in many engineering fields (such as Lozano-Galant 
et al. 2013).  

In the structural engineering field, the OM has proved its efficiency in different structural 
typologies (such as trusses, beams, frame structures and cable-stayed bridges) (see e.g. Lozano-
Galant et al. 2014, Nogal et al. 2015, Castillo et al. 2007, Castillo et al. 2016, Lozano-Galant et al. 
2015, Lei et al. 2016, Lei et al.2017, Lei et al. 2019). The different works dealing with the 
application of observability techniques to SSI in the literature are reviewed in Table 1.1. This table 
includes information of the following characteristics: (1) Test: Type of test used for monitoring 
the structural response on-site, Static: S, or Dynamic: D, (2) Analysis: Type of analysis used to 
deal with the system of equations Parametric: P, or Numerical, N, (3) Optimization: If a numerical 
optimization tool was used to define the value of the parameters, and (4) Shear: If the effects of 
shear deformations are included into the system of equations or not.    

Table 2.1: Characteristics of the observability methods presented in the literature: S: Static, D: Dynamic, P: Parametric, and N: 
Numerical. 

 Test Analysis Optimization Shear 
Lozano-Galant et al. (2013) S P   
Lozano-Galant et al. (2014) S P   
Castillo et al. (2015) S P   
Castillo et al. (2016) S P   
Nogal et al. (2016) S N   
Lei et al. (2017) S N   
Lei et al. (2018) S P+N   
Tomás et al. (2018) S P+N   
Emadi et al. (2019) S N   
Lei et al. (2019) S N   
Peng et al. (2020)  D N   

 

The analysis of Table 1.1 shows that up to now, all studies in the literature but one (Peng et al. 
2020) are based on the monitored response on static tests. This table also evidences an evolution 
in the analysis methods. In fact, to enable the application of the OM to real structures the 
parametric simulation introduced into the first applications has been successively changed to a 
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numerical one. To deal with the numerical errors in the system of equations, most of the latter 
studies use the optimization tool named Constrained Observality Method, COM introduced by Lei 
et al. (2018). A more detailed explanation of this method is presented in Chapter 4. Finally, two 
works studied the shear deformation effects. The first of these studies (Tomás et al. 2018) 
introduced the Timoshenko theory into the stiffness matrix of the system of equations to include 
the shear effects on vertical deflections. Nevertheless, as indicated this method fails to deal with 
shear rotation effects. To fill this gap the second paper (Emadi et al. 2019) was published in the 
frame of this thesis. A detailed review of this work is presented in Chapter 4.  
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a) b) 

Chapter 3:  Introducing shear rotations into the SMM 
3.1 Introduction  

According to the Stiffness Matrix Method (SMM), the nodal equilibrium equations might be 
written in the matrix form as: 

[𝐾𝐾] · {𝛿𝛿} = {𝑓𝑓}     (1) 

where the displacements vector {δ} contains the horizontal, ui, vertical deflections, vi, and 
rotations, wi, the external force vector {f} contains the horizontal forces, Hi, vertical forces, Vi, 
and moments, Mi and the global stiffness matrix [K] contains the stiffness of all the beam elements 
in the structure.  

The traditional application of the SSM enables the calculation of nodal deflections from the loads 
applied to the structure assuming all the parameters in [K] as known. This simulation is also known 
as the direct analysis of the SSM.  

The [K] matrix of a 2D beam element from the Euler-Bernouilli is presented in Figure 3.1a. This 
matrix is defined in terms of the length Lj, Young’s Modulus, Ej, Inertia, Ij, and Area, Aj of each 
jth element. An alternative stiffness matrix is presented in the literature (Tomas, et al. 2018) to deal 
with the shear deformation effects. This matrix is presented in Figure 3.1b and it is based on the 
Timoshenko theory. Stiffness matrices of both theories (Figures 3.1a and 3.1b) have the same axial 
stiffness coefficients. This is because the shear and flexural stiffnesses are uncoupled from the 
axial stiffness. However, for the rest of the non-null elements of the matrix, shear and flexural 
stiffnesses are coupled. In this case, the shear effects are defined by the shear parameter Ø. This 
coefficient was introduced by Przemieniecki, J.S. (1968) and it can be expressed as: 

∅ =
12𝐸𝐸𝐸𝐸
𝐺𝐺𝐴𝐴𝑣𝑣𝐿𝐿2

 ,   (2) 

where 𝐴𝐴𝑣𝑣 is the shear area and 𝐺𝐺 is the shear modulus that can be calculated in terms of the poisons 
ratio, ν, as: 

𝐺𝐺 =
𝐸𝐸

2(1 + 𝑣𝑣)   (3) 
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Figure 3.1: Stiffness Matrix of a beam element: (a) Euler-Bernouilli’s theory, (b) Timoshenko theory. 
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The latter formulation (Figure 3.1b) is traditionally used by most computer software to deal with 
shear effects in beam-like structures. To enable a direct simulation in this approach the shear 
rotations are neglected and the shear effects are only included into the horizontal and vertical 
deflections. Nevertheless, real structures do not behave that way. In fact, according to 
Timoshenko’s beam theory, nodal rotations are produced by both bending and shear effects. On 
the one hand, bending rotations can be easily calculated by the Euler-Bernoulli SMM. On the other 
hand, shear rotations are traditionally neglected as their effects are practically negligible in most 
structures. This simplification assumption might lead to significant errors in the simulation of the 
structural response of actual structures. This chapter aims to illustrate the importance of shear 
rotations in some structures (such as deep beams). In addition, a new method is presented to 
calculate shear rotations. In this method, the shear rotations are calculated separately and added to 
the bending rotations computed from the SMM. In order to illustrate the structures where shear 
rotations cannot be neglected, a set of guidelines is proposed for different structures. 

 

3.2 Detected gap 1: Analysis of shear rotations with the SMM 

The analysis of the system of equations in the SMM shows that the shear rotations are 
systematically neglected in all kinds of beam-like structures. Many authors tried to develop 
methods to add the effects of these rotations to their stiffness matrices, but none of these methods 
can be applied in complex structural cases.  

Nowadays, even commercial simulation programs based on the SMM (such as SAP 2000 (CSI, 
2016) or Midas/ Civil. 2015) also neglect shear rotations. In these software total rotations are equal 
to the bending rotations and shear effects are only considered in the horizontal and vertical 
deflections. To show the inability of these methods to calculate the total value of the rotations, an 
illustrative example is presented in the following section. 

      3.2.1 Example 3.1: Simply supported beam  

Consider the 10 m long and 0.2 m wide simply supported beam modeled with 3 nodes and 2 beam 
elements depicted in Figure 3.2.a. This structure can be considered as a deep beam, where shear 
effects are not negligible. This beam has a constant cross-section and the value of its young 
modulus, shear area, cross-sectional area, and inertia along the beam are 30 GPa, 0.833 m2, 1 m2, 
and 2.083 m4, respectively. Dimensions of the beam cross-section are presented in Figure 3.2.b 
and its mechanical properties are listed in Table 3.1. The boundary conditions of the structure are 
horizontal and vertical displacements restricted in node 1 and vertical displacement restricted in 
node 3 (this is to say, u1=v1=v3= 0). The beam is subjected to a concentrated vertical force in node 
2 of 100kN (V2=-100kN).  
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Figure 3.2: Example 3.1: Simply supported beam:) a) FEM and (b) Cross-section. 

 

Table 3.1. Properties of the FEM of the simply supported beam. 

Properties (unit) Values 

Area [m2] 1.000 

Shear Area [m2]  0.833 

Inertia [m4] 2.083 

Concrete Young’s Modulus [GPa] 30.000 

Poisson’s Ratio γ 0.250 

 

To calculate the bending and shear response of the structure in this simple example, formulations 
based on Timoshenko beam theory can be used. The value of bending vertical deflections for the 
loading case presented in Figure 3.2.a, 𝑣𝑣𝑏𝑏 at mid-span might be expressed by Equation (4). From 
Timoshenko [15], the value of vertical deflection due to shear, 𝑣𝑣𝑠𝑠 at mid-span of this structure is 
calculated as in Equation (5). Also, the value of bending rotation 𝑤𝑤𝑏𝑏 at node 1 is presented in 
Equation (6). Where V1 is the shear force at node number 1. Shear rotation 𝑤𝑤𝑠𝑠 at the node number 
1 can be calculated from Timoshenko’s assumptions as it is presented in Equation (7). 

 𝑣𝑣𝑏𝑏 =
𝑉𝑉2 · 𝐿𝐿3

3 · 𝐸𝐸 · 𝐼𝐼
 

(4) 

𝑣𝑣𝑠𝑠 =
𝑉𝑉2

2 ∗ 𝐴𝐴𝑣𝑣 ∗ 𝐺𝐺
· 𝐿𝐿  (5) 

𝑤𝑤𝑏𝑏 =
𝑉𝑉1 · 𝐿𝐿2

4 · 𝐸𝐸 · 𝐼𝐼
 

 (6) 
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𝑤𝑤𝑠𝑠 =
𝑉𝑉1

𝐴𝐴𝑣𝑣 · 𝐺𝐺
 (7) 

To show the inability of different structural analysis methods to calculate the shear rotations, the 
vertical deflections and total rotations (sum of rotation due to shear and bending) of Example 3.1 
obtained from the commercial software SAP2000, common Timoshenko SMM (Przemieniecki, 
J.S. 1968) and formulations based on Timoshenko beam theory are compared in Table 3.2. 

Table 3.2: Properties of the FEM of the simply supported beam. 

Methods Total rotation in node 
1 (rad) 

Bending rotation in 
node 1(rad) 

Total vertical 
deflection in node 2 

(m) 
SAP2000 0.010 0.010 -0.058 

Common Timoshenko 
SMM 0.010 0.010 -0.058 

Formulation based on 
Timoshenko beam 0.015 0.010 -0.058 

 

As can be seen in Table 3.2, the value of total rotation and bending rotation obtained by SAP2000 
are equal to each other. This means that the effects of the shear rotations are neglected by this 
software. This table also shows that the effects of shear rotations are disregarded in common 
Timoshenko SMM. In this particular case, the results of hand calculation for total rotations (0.015 
rad) are 50 % higher than those obtained by the other analyzed methods. These results illustrate 
the important role that shear rotations might play and the fact that they are systematically neglected 
(independently of the beam geometry) in all structural analysis methods based on the SMM.  

In the case of the vertical deflections, Table 3.2 shows that all methods include properly the shear 
effects as the same results are obtained by all the analyzed procedures. Obviously, the magnitude 
of the shear rotations depends greatly on the beam geometry. To show in which cases shear rotation 
can be considered negligible and when it should be introduced into the simulation, a new 
simulation method is proposed in the following section and a parametric analysis is performed. 

 

3.3 New simulation method for the analysis of shear rotations in beams 

To introduce the effects of shear rotation into the common Timoshenko’s SMM, a new procedure 
is developed in this section. In this procedure, firstly, the bending rotation of each node can be 
computed by the SMM. Then, the shear rotation of each element is calculated by the formulations 
based on the Timoshenko beam method presented in Equation (7). According to this equation, the 
shear rotation for each element can be calculated only by shear forces, shear areas, and shear 
modulus. The latter two terms (shear area and shear modulus) can be directly obtained from the 
mechanical properties of the structure, while the shear forces are obtained from the results of the 
SMM analysis. By summing up the value of shear and bending rotation the total rotation of each 
node can be obtained. The new method is presented in Figure 3.3 and summarized by the following 
steps: 
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- Step 1: Compute the bending rotation of each node by the SMM.  

- Step 2: Calculate the shear rotations of each element with the shear forces obtained in (1). 

- Step 3: Obtain the total rotation at the beam edges by summing up the value of the shear 
and the bending rotations obtained in Steps (1) and (2). It is to highlight that shear rotations 
are proportional to the shear diagram. Hence, discontinuities in the shear diagram 
introduced by point loads or reactions imply discontinuities in the shear rotations. Elements 
converging to the same node can have different rotations at these points. 

 
Figure 3.3: Flow chart of the procedure of adding shear rotation into the common SMM. 

The optimization algorithm used for the COM is the “fmincon” function of MATLAB (2018). 
This function is a minimum finder of a constrained nonlinear multivariable function in MATLAB 
program. MATLAB (2018) is a multi-paradigm numerical computing environment and 
MathWorks developed proprietary programming language. This program helps to manipulate 
matrixes, to map functions and results, to apply algorithms, to construct user interfaces, and to 
communicate with programs written in other languages. 

In the following sections, a set of parametric analyses using the new method is performed on beams 
with different geometry, to evaluate when the effect of the shear rotation is significant. This study 
is included into the paper presented in Appendix 1 recently submitted for publication.  
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       3.3.1 Example 3.2: Simply supported beam with a concentrated load 

Consider the cross-section of the simply supported beam presented in Figure 3.2.b. Material 
properties of the simply supported beam can be found in Table 3.1. The boundary conditions of 
the structure are horizontal and vertical displacements due to bending restricted in node 1 and 
vertical displacement restricted in node 3 (this is to say, u1=v1=v3= 0), and the only external force 
applied in this numerical loading test is a concentrated vertical force of 100kN at node 2 (V2=-
100kN). To evaluate the effect of the shear rotations at node number 1, a parametric analysis is 
carried out. In this analysis, the length of the beam (L) varies from 1 to 15 meters while the height 
(h) remains constant.  

As expected, Figure 3.4 illustrates how the slenderer the beam, the lower the effect of the shear 
deformation is. As presented in Figure 3.4a, the shape of the shear rotation variation is linear which 
means that this parameter is independent of the length of the beam. In fact, the value of shear 
rotation for different L/h ratios is always equal to 0.005 radians. The values of the bending rotations 
vary from 0.0025 to 0.5625 rad where the L/G ratios range between 1 and 15. The percentage of 
error when shear rotations are neglected for different L/h ratios is shown in Figure 3.4.b. For 
illustrative purposes, the limits of 2 % and 5% are also indicated in this figure. The ratio limits for 
deep beams proposed by the Eurocode EN and by the ACI Committee 318 are also highlighted.  

 

 
Figure 3.4: Example 3.2: (a) Rotation due to bending and shear at node 1. (b) Percentage of error in the rotation in node 1 when 

the shear rotations are neglected. 
 

In Figure 3.4b, a 5 % error is gained when L/h ratio is equal to 6.197. In the same way, a 2 % error 
corresponds to a beam L/h ratio of 9.914. In addition, the measurement error in node 1 is 18.185 
percent where the ratio of L/h is 3 (deep beam limitation by Eurocode EN) and it is 11.113 percent 
when the L/h ratio is 4 (ACI Committee 318 proposed limitation). 
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       3.3.2 Example 3.3: Simply supported beam with a distributed load 

Consider a beam with the same material properties and boundary conditions of the simply 
supported beam presented in Example 3.1. The external force in this numerical loading test is a 
distributed vertical force of 100/L kN applied alongside the beam, in such a way that the total load 
in the beam equals 100 kN. A parametric analysis is carried out to illustrate the role of the shear 
rotations in a beam with different geometries. The length (L) of this beam is varied from 1 to 15 
meters and its height (h) is considered constant. As presented in Figure 3.5a, the value of shear 
rotation in terms of the L/h ratio is constant with an equal to 0.005 rad. The values of bending 
rotations vary from 0.001 to 0.409 rad when the L/h ratios range between 1 and 15. The percentage 
of error when shear rotation is neglected for different L/h ratio is shown in Figure 3.5b. The ratio 
limits for deep beams proposed by the Eurocode EN and by the ACI Committee 318 are also 
highlighted together with the 2 % and 5% error limits. 

 
Figure 3.5: Example 3.3: (a) Rotation due to bending and shear at node 1. (b) Percentage of error in measurement in node 1 

when shear rotations are neglected. 
 

As expected, Figure 3.5a shows in deep beam effects of shear rotations are higher than in slender 
ones. In Figure 3.5b, errors in rotations in different lengths of elements for node 1 are presented. 
A 5 % error is gained when the L/h ratio is equal to 7.265. In the same way, a 2 % error corresponds 
to a L/h ratio of 11.639. In addition, the measurement error in node 1 is 23.409 % when the ratio 
of L/h is 3 (deep beam limitation by Eurocode EN) and 14.670 % when the L/h ratio is 4 (ACI 
Committee 318 proposed limitation). 

 

       3.3.3 Example 3.4: Cantilever Beam 

Consider a cantilever beam with the same cross-section and same properties as in Example 3.1 
modeled with a single beam element and two nodes. The boundary conditions of the structure are 
horizontal and vertical displacements and rotation due to bending restricted in node 1 (this is to 
say, u1=v1=wb1= 0). The only external force applied in this numerical loading test is a concentrated 
vertical force at node 2 of 100kN (V2= -100kN). A parametric analysis is carried out to evaluate 
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the role of the shear rotations on node 2. In this analysis, the length of the beam (L) is varied from 
1 to 15 meters and its height (h) is considered constant.  

As presented in Figure 3.6a, the shape of the shear rotation variation is constant and the value of 
shear rotation in different L/h is equal to 0.010 rad. But the values of bending rotations vary from 
0.020 to 4.501 rad when the L/h ratios change between 1 and 15. As expected, Figure 3.6.a shows 
how in deep cantilever beams the effects of shear rotations are greater than those obtained in 
slender ones. The percentage of error when shear rotation is neglected for different L/h ratio is 
shown in Figure 3.6.b. As in previous figures, the ratio limits for deep beams proposed by the 
Eurocode EN and by the ACI Committee 318 are highlighted together with the 2% and 5% limits.  

 
Figure 3.6: Example 3.4: (a) Rotation deflection due to bending and shear at node 2. (b) Percentage of error in measurement in 

node 2 when shear rotations are neglected. 
 

In Figure 3.6b, a 5 % error is expected when L/h ratio is equal to 3.118. In the same way, a 2 % 
error corresponds to a L/h ratio of 4.964. Also, the measurement error in node 2 is 5.264 % when 
the ratio of L/h is 3 (deep beam limitation by Eurocode EN) and 3.031 % when the L/h ratio is 4 
(ACI Committee 318 proposed limitation). 

 

3.4. Example of application 

To show the applicability of the new method in complex structures, the problem of bridge 
construction by the balanced cantilever method is analyzed in this section. In this kind of erection 
technique, the deflections of different segments have to be forecasted, to build the new segments 
with the proper precamber. Precamber is updated for each step of construction after a thorough 
topographical survey. This data can be used by inverse analysis for model updating to increase the 
accuracy of the precamber calculations. Although shear deflections may not be very important for 
a fully developed cantilever, the modeling error due to the neglecting of shear effects for the first 
segments may lead to inaccurate estimations of bending stiffnesses (Valerio, P. et al. 2011).  
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The structure chosen for this example is a simplified model of an intermediate construction stage 
of the Yunbao Bridge over the Yellow River in China (see Figure 3.7a). The bridge includes a 
series of spans of 48m+9×90m+48m. This structure is a rigid frame-continuous composite bridge 
906 meters long. The height of the box girder beam ranges 5.5m to 2.7m from the supported end 
to the mid-span with a parabola curve of 1.8 power (Dong, X. et al. 2017). The analyzed 
construction stage of the balanced cantilever method is 29.5 m long and contains 3 segments on 
each side of the stage (2.5 m). The formwork traveler at the end of each span is presented in Figure 
3.7b.  

 
Figure 3.7: Example of application: (a) Yunbao Bridge under construction in China (Dong, X. et al. 2017) (b) Sketch of the 

analyzed construction stage. 
 

The connection between the concrete and the steel is assumed as rigid (total connection), and the 
relative slip between both materials is neglected. A typical cross-section of the composite deck is 
presented in Figure 3.8a. The FEM of the analyzed structure is composed of 8 nodes and 7 beam 
elements as presented in Figure 3.8b. The mechanical and material properties of this structure (EA, 
GAv and EI) are listed in Table 3.3.  

 
Figure 3.8: Numerical analysis: (a) Cross-section of Yunbao Bridge in China. (b) FEM of the bridge. 

 

Table 3.3: Properties of the Finite Element Model of the Bridge. 

Parameters Elements 1 and 5 Elements 2 and 6 Elements 3 and 7 
EA [m2] 4.33E+11 4.38E+11 4.43E+11 
GAv [m2] 1.10E+10 1.25E+10 1.43E+10 
EI [m4] 1.34E+12 1.69E+12 2.13E+12 

 

The analyzed loading case is presented in Figure 3.9, where the weight F of the formwork traveler 
(1041 kN) (presented in Figure 3.7b) is assumed as 60% of the maximum weight of the bridge 
segment. The effect of each form traveler in the deck is assumed as a pair of vertical forces of 
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values 0.25F and 1.25F (226 kN, upwards and 1267 kN, downwards) as presented in Figure 3.9a 
the analyzed loading case results from the combination of the loads applied by form traveler and 
the weight of the bridge segments. The segment's loads are considered distributed loads alongside 
segments. The resultant loading case introduced in the simulation is shown in Figure 3.9b. 

 
Figure 3.9. Loading case: (a) Loads applied by formwork traveler. (b) Loading case used for the analysis. 

 

The rotations in the nodes of the structure were calculated by the proposed method. The results 
obtained from the new method and the ratio between the shear rotation and bending rotation are 
presented in Table 3.4. 

Table 3.4: Rotation in nodes calculated by the new method. 

Node number Shear rotation 
ws (rad) 

Bending rotation 
wb (rad) 

Percentage of error 
in the model (ws/wt) 

1 -1.23E-04 -1.29E-04 48.93% 
2 -1.68E-04 -1.16E-04 59.08% 
3 -2.17E-04 -7.90E-05 73.28% 

 

In this example, the maximum error in the calculations of shear rotations is obtained at nodes 3 
and 6. This will lead to an error in the calculation of the total nodal rotation of 73.420%. In 
comparison with results from other Timoshenko’s beam methods, obtained results prove the 
potential power of the proposed method. In addition, they show the applicability of the new method 
where cross-sections are discontinued, elements are non-collinear and there are external loads 
applied in the different elements. It is important to highlight that no other Timoshenko beam theory 
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FEM in literature is able to calculate total rotation (including both shear and bending effects) in 
structural schemes with such features. 

 

3.5. Conclusions 

Stiffness Matrix Methods (SMM) are the most common analysis tool in beam-like structures. In 
fact, most commercial computer software is based on this procedure. The literature review showed 
that the SMM only introduces shear effects in axial and vertical deflections. Nevertheless, these 
methods usually neglect the shear rotations as the magnitude of this deformation is usually less 
significant than the bending one. Despite the important role that this rotation might play in 
structural members with a low span-to-depth ratio, no detailed study of the shear rotations is 
presented in the literature. To fill this gap, this chapter proposes a new general method for the 
direct calculation of shear rotations in beams.  It is important to highlight that no other Timoshenko 
beam theory method in literature is able to calculate total rotation (including both shear and 
bending effects) in a structural model including the same features. 

To illustrate the important role of shear rotations in some structures, different beams (a simply 
supported beam with a concentrated load, a simply supported beam with a distributed load, and a 
cantilever with a concentrated load) with different length to height ratios are studied. In fact, these 
examples illustrate that the difference between Timoshenko’s theory and Euler-Bernoulli’s theory 
in terms of rotation is higher for deep beams with low length-to-height ratio. In addition, the 
geometries (length-to-height ratio) where the shear rotations can be neglected are identified.  
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Chapter 4: Observability Method including shear effects without 
rotations 
4.1. Introduction 

In the inverse analysis of structures with the Observability Method (OM), the stiffness matrix [K] 
is partially unknown and its parameters are obtained from the deflections and rotations measured 
on-site. To determine the unknown stiffnesses (EAj and EIj) of this matrix, Equation (1) might be 
reordered into the following system of equations: 

[K*]·{δ*} = {f }, (8) 
in which the products of unknowns are located in the modified vector of displacements {δ*} and 
the modified stiffness matrix [K*] is a matrix of known coefficients with different dimensions than 
the initial stiffness matrix [K]. The new system leads to a non-linear problem due to the fact that 
unknown parameters, such as axial stiffness EAj and flexural stiffness EIj of the cross-sections are 
multiplied by the unknown horizontal displacements (ui), vertical displacements (vi), and rotations 
at the ith node (wi) of vector {δ*}. This fact implies that non-linear products of variables 
(polynomial terms), such as EAjui, EAjvi, EIjui, EIjvi, and EIjwi might appear. Depending on the 
known information, the unknown variables of vector {δ*} may be the non-linear products 
presented above, as well as other factors of single variables, such as EIj, EAj, or nodal deflections 
and rotations.  

Once the boundary conditions and the applied forces in the nodes have been defined, an inverse 
analysis can be performed to identify the unknown parameters. To do so, some deflections and 
rotations are measured in a known static test. This known information is clustered in a subset δ1

* 
of {δ*} and a subset f1 of {f}, respectively. In this way, the remaining subset δ0

* of {δ*} and f0 of 
{f} are unknown. Hence, Equation (8) might be written as follows:  

[𝐾𝐾∗] · {δ∗} = �𝐾𝐾00
∗ 𝐾𝐾01∗

𝐾𝐾10∗ 𝐾𝐾11∗
� · �δ0

∗

δ1∗
� = �𝑓𝑓0𝑓𝑓1

� = {𝑓𝑓} , (9) 

In order to join the unknown variable in the left-hand side and the known variable in the right-
hand side, the Equation (9) is rearranged as:  

[𝐵𝐵] · {𝑧𝑧} = �𝐾𝐾10
∗ 0

𝐾𝐾00∗ −𝐼𝐼� · �δ0
∗

𝑓𝑓0
� = �𝑓𝑓1 − 𝐾𝐾11∗ δ1∗

−𝐾𝐾01∗ δ1∗
� = {𝐷𝐷}, (10) 

where 0 and 𝐼𝐼 are the null and the identity matrices, respectively. In this system, the vector of 
unknowns, {z}, appears on the left-hand side and the vector of observations, {D}, on the right-
hand side. Both vectors are related by a matrix of known coefficients [B]. 

To evaluate if the system has a solution,  the null space [𝑉𝑉] of matrix [𝐵𝐵]  should be calculated 
and check that [𝑉𝑉]𝑇𝑇{𝐷𝐷} =  0. If the equation holds, the system is compatible; otherwise, it has no 
solution. The general solution (the set of all solutions) of the system (10) has the structure (Castillo, 
E. et al.2000, Castillo, E. et al.2002): 
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{𝑍𝑍} = �𝑍𝑍p� + [𝑉𝑉] · {𝜌𝜌} , (11) 

where �𝑍𝑍p� is a particular solution of the system (11). This term can be obtained in MATLAB by 
two alternative routines: (1) Backslash function (/) and (2) Moore-Penrose pseudoinverse (pinv). 
[𝑉𝑉]. {𝜌𝜌} is the set of all solutions of the associated homogeneous system of equations (a linear 
space of solutions, where the columns of [𝑉𝑉] are a basis of this linear space and the elements of 
the vector {𝜌𝜌} are arbitrary real values that describe the coefficients of all possible linear 
combinations). It should be noted that a variable has a unique solution not only when matrix [𝑉𝑉] 
has zero dimension (it does not exist), but when the associated row in the matrix [𝑉𝑉] is null. Thus, 
the examination of the matrix [𝑉𝑉] and identification of its null rows leads to the identification of 
the subset of variables with a unique solution in vector {Z}. It is interesting to note that if all 
parameters of vector {Z} are not observed from the null space, any deflection, force, or parameter 
observed after the initial OM analysis will be used to observe new parameters by using a recursive 
process. For more information about this process, the reader is addressed to Lozano-Galant JA. et 
al. (2013). 

 As showed in Table 1.1, the shear deformation effects were first introduced into the OM by Tomás 
et al. (2018). This formulation is based on Timoshenko's beam theory and it uses the stiffness 
matrix [K] presented in Figure 3.1.b. Analysis of this stiffness matrix shows that shear parameter 
Ø appears in the denominator of most terms. To solve this problem, Tomas et al. (2017) proposed 
the following change of variable Q: 

𝑄𝑄 =
∅

1 + ∅  (12) 

After replacing the shear parameter Ø by OM shear parameter 𝑄𝑄, the stiffness matrix [K] in Figure 
3.1.b can be written as:  

[𝐾𝐾] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐸𝐸𝐸𝐸
𝐿𝐿 0 0 −

𝐸𝐸𝐸𝐸
𝐿𝐿 0 0

0
12𝐸𝐸𝐸𝐸
𝐿𝐿3

−
12𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿3

6𝐸𝐸𝐸𝐸
𝐿𝐿2

−
6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2 0 −

12𝐸𝐸𝐸𝐸
𝐿𝐿3 +

12𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿3

6𝐸𝐸𝐸𝐸
𝐿𝐿2

−
6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2

0
6𝐸𝐸𝐸𝐸
𝐿𝐿2 −

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2

4𝐸𝐸𝐸𝐸
𝐿𝐿

−
3𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿 0 −

6𝐸𝐸𝐸𝐸
𝐿𝐿2 +

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2

2𝐸𝐸𝐸𝐸
𝐿𝐿

−
3𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿

−
𝐸𝐸𝐸𝐸
𝐿𝐿 0 0

𝐸𝐸𝐸𝐸
𝐿𝐿 0 0

0 −
12𝐸𝐸𝐸𝐸
𝐿𝐿3

+
12𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿3 −

6𝐸𝐸𝐸𝐸
𝐿𝐿2 +

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2 0

12𝐸𝐸𝐸𝐸
𝐿𝐿3 −

12𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿3 −

6𝐸𝐸𝐸𝐸
𝐿𝐿2 +

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2

0
6𝐸𝐸𝐸𝐸
𝐿𝐿2 −

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2

2𝐸𝐸𝐸𝐸
𝐿𝐿

−
3𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿 0 −

6𝐸𝐸𝐸𝐸
𝐿𝐿2 +

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2

4𝐸𝐸𝐸𝐸
𝐿𝐿

−
3𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (13) 

 

When this new stiffness matrix is introduced into the OM a new variable has to be calculated in 
addition to the axial (EA) and flexural (EI) stiffness. This new variable is named shear stiffness 
(EIQ) and it is related to the shear deflections and the shear parameter Ø.  
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4.2: Detected gap: Rotations are required for inverse analysis of the OM including 
shear effects 

According to the literature, more reliable information can be produced from measuring vertical 
displacement than rotation and most of international standards deal with vertical deformation 
(Vicente, M.A. et al. 2018, AASTHO.2017, European Committee for Standardization 2005). So it 
is useful to provide a method that allows SSI from measured vertical deflections. Unfortunately, 
the OM proposed by Tomas et al. 2018 fails to identify structural parameters with measurement 
sets including only vertical deflections. In fact, the measurement of both deflections and rotations 
is always required to observe any parameter. This limitation comes from a basic feature of the OM: 
the linearization of the unknown variables (for example the product of the variables E, I and Q is 
defined as a new linear variable named EIQ). This assumption might result in a significant loss of 
information that leads to wrong estimation values. The limitation of the OM to enable the 
identification of structural parameters with only vertical deflections is illustrated in the following 
academic example.  

 

4.2.1 Example 4.1: Simply supported beam with vertical deflections 

Consider the 0.6 m long simply supported beam modeled with 7 nodes and 6 Timoshenko beam 
elements in the FEM of Figure 4.2a, where, vj, with j (1 to 7) represents the vertical deflection for 
each node. The beam has a constant cross-section and the value of Young modulus, E, Poisson’s 
ratio, ν, shear area, Av, cross-sectional area, A, and inertia, I, of all elements along the beam are 
constant. Properties of this simply supported beam are listed in Table 4.1. The boundary conditions 
of the structure are horizontal and vertical displacements restricted in node 1 and vertical 
displacement restricted in node 7 (this is to say, u1=v1=v7= 0), and the only external force applied 
in this numerical loading test is a concentrated vertical force in node 3 of 100kN (V3= 100kN). 
The vertical deflections obtained from the software Midas/Civil of this structure are presented in 
Figure 4.2b.  

Figure 4.1: Example 4.1: (a) FEM for a simply supported beam with vertical deflections. (b) Vertical nodal deflections 
including flexural and shear deformation. 
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Table 4.1: Properties of the FEM of the simply supported beam. 
Property Value 
Area [m2] 0.1 

Shear Area [m2] 0.0833 
Inertia [m4] 0.0083 

Young’s Modulus [GPa] 27 
Poisson’s Ratio γ 0.25 

 
For this inverse analysis of the structure, V3, the length, L, Poisson’s ratio, ν and Young modulus, 
E, of all elements are assumed as known, while the inertia I and the shear area 𝐴𝐴𝑣𝑣 are assumed as 
unknown. Since no horizontal forces are applied to the structure, the axial resistant mechanisms 
are not activated. So the terms associated with axial behavior are removed from the general SMM 
system of equations.  

Since the only two unknown parameters assumed in Example 4.1 are 𝐴𝐴𝑣𝑣 and I, the measurement 
of at least two deformations is required to identify their values. Nevertheless, no set of vertical 
deflections enables the proper identification of the unknown parameters. To illustrate this inability 
of the method, the results of the SSI obtained with the measurement set consisting of all 5 possible 
vertical deflections (this is v2 to v6 from Figure 4.2b) are presented. In this example, after the 
change of variable, the vector of unknowns {Z}, as it is presented in Eq. (11), include the unknown 
targeted parameters I and Q and some coupled unknown variables as Iwj and Qw, as well as the 
boundary reactions (H1, V1, V7). The general solution can be written as follows: 
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According to the definitions of the observability techniques, when the associated row in the matrix 
[𝑉𝑉] (the null space matrix) is null, the variable has a unique solution. In this example, the three 
rows of the null space (the ones corresponding with reactions H1, H7 and V7) are null. The general 
solution of these variables corresponds with the particular one and therefore, their solution is 
unique. In the next recursive step, the observed parameters are incorporated into the input of SSI 
by OM. Although these new inputs will update Equation (14), the updated system of equations 
cannot observe any new variable. Hence, the recursive steps end, and no additional information is 
observed. It is to remark that the only observed parameters correspond with the reactions of an 
isostatic structure which can be identified by equilibrium equations. This is not the case of the 
Inertia and the OM shear parameter, I and Q, as they appear strongly coupled with the rotations. 
These parameters cannot be observed as their null space is not null. This example illustrates the 
inability of OM to identify parameters when rotations are not included into the measurement set 
(even if as in this case the number of measurements exceeds the number of unknowns). As 
variables are strongly coupled, those equations dealing with including the effect of rotation cannot 
be used to solve the system, unless some rotations are included in the measurement set. In order to 
uncouple the variables in the system of equations properly, vertical deflection and rotation should 
be measured together. Otherwise, the system cannot be solved by OM. A mathematical explanation 
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of this fact is that the null space rows associated with the inertia will not be zero, meaning that the 
parameters have not a unique solution. In order to enable the observability to identify structures 
without measuring rotations, a new procedure is presented in the following section. 

 

4.3: New method for the inverse analysis from vertical deflections 

Lei et al. (2017) found that in OM, the nonlinear constraints among product variables are lacking. 
According to this work, the reduced observability produced by these characteristics is due to the 
following reasons: (a) the immature end of the recursive steps and (b) the ineffective measurements 
because of redundancy in the measurement sets (the same problem appearing in Example  4. 1). 
The Constraint Observability Method (COM) finds a solution to the OM adding some nonlinear 
constraints: the value of the solution of the coupled unknowns (e.g. EIwj or EQvj) has to be equal 
to the product of the single parameters (such as E·I·wj or E·Q·vj, respectively). Hence, the system 
of equations is solved numerically by minimizing numerical errors after including the nonlinear 
constrains.  

In comparison with the original OM, this new approach does not provide any symbolic solution 
and initial numerical values of the unknown parameters are required. Any number can be used as 
initial values, but in order to ease the convergence in the optimization process, a ratio with the 
theoretical values (e.g. between 0.5 to 1.5) is traditionally used. 

In the COM variables are classified in one of the following three categories: (1) Coupled variables 
Vc (such as Iwj or Qwj) ; (2) Single variables Vs1 (such as I or Q), which already exist in the unknown 
{Z} vector; (3) Single variables Vs2 (such as wj), which did not exist in the unknown vector {Z} 
from OM. All these variables are introduced into a new vector {Z} named {Z*} that is a 
combination of the original {Z} and the new single variables Vs2.  

In order to create an objective function for a numerical optimization process and take into account, 
the new unknowns Vs2, Equation (10) can be rewritten as:  

{∈} = [𝐵𝐵∗] · {𝑍𝑍∗}− {𝐷𝐷}, (15) 

where ∈ is the residuals of the equations which is a vector with the same number of rows of the 
original matrix B and  𝐵𝐵∗ = [𝐵𝐵𝑁𝑁𝑒𝑒𝑒𝑒×𝑁𝑁𝑧𝑧|Ω𝑁𝑁𝑒𝑒𝑒𝑒×𝑁𝑁𝑠𝑠2] is obtained by adding a null matrix Ω to the matrix 
B calculated from the last recursive step of SSI by OM. The size of this null matrix Ω is 𝑁𝑁𝑒𝑒𝑒𝑒 ×
𝑁𝑁𝑠𝑠2. 𝑁𝑁𝑒𝑒𝑒𝑒 and 𝑁𝑁𝑧𝑧, explain the number of equations and the number of unknowns in {Z} respectively. 
𝑁𝑁𝑠𝑠2 explains the number of new single unknowns in Vs2.  

The objective function of the minimization problem is determined by minimizing the square sum 
of the residuals in Equation (15). In order to reach a certain level of efficiency in the COM 
optimization process, the variables in this equation should be normalized.  
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Originally, COM method is not able to consider the effect of shear in measurements. To include 
this phenomenon, in this work, equations are updated to the procedure proposed by Tomás et al. 
(2018). With this new updated method, the problem of linearization in OM variables is solved and 
equations related to shear stiffnesses are taken into account. This new procedure enables to identify 
structural parameters in structures with shear deformation by only measuring vertical deflections. 
The results of this work were published in Emadi et al. (2019). This work is included in Appendix 
2.  

The proposed application of the COM is as follows: 

- Step 1: Apply the OM to check whether any unknown is observed (the parameters can be 
identified with a unique solution). If so, update the input and reinitiate OM until no new 
unknowns are observable. If full observability (all the pursued parameters are observed) is 
achieved, there is no need to go to the COM process, otherwise, go to step 2. 

- Step 2: Obtain Equation (16) from the last step of OM recursive process then generate the 
new unknown vector of Z* included Coupled variables Vc; as well as single variables Vs1 

and Vs2. 

- Step 3: Add a null matrix [Ω] to the matrix [B] to generate [𝐵𝐵∗], in order to contain Vs2 in 
Z* guaranteeing that the system of equations is satisfied. 

- Step 4: Obtain the normalized unknown parameters. 

- Step 5: Guess the initial values of unknowns parameters of Z* vector, set the bound for the 
solution and solve the optimization process to find the minimized value for the residual 
vector, ∈.  

A summary of the procedure is shown in the flow chart in Figure 4.2. For more information about 
the COM, the reader is addressed to (Lei. et al. 2017). In the proposed optimization, the optimal 
solution of the objective function was obtained by the optimization toolbox of Matlab (MATLAB 
and Optimization Toolbox Release 2018). In order to limit the computational expense and the time 
of the optimization process, the stopping criterion has been defined based on the value of the norm 
of the residual vector, ∈ (Equation (15)). When this is smaller than 1e-8 the iterations stop. 
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Figure 4.2: Flow chart of structural system identification by COM. 

 

In order to illustrate the applicability of the method, the same structure in Example 4.1 is analyzed 
below with the new method. 

 
4.3.1 Example 4.2 revisited: simply supported beam with vertical deflections (COM) 

The beam of Example 4.1 is recalculated by the COM with the same parameters. The unknown 
inertia and shear parameter can be obtained not only with all possible vertical deflections (5 
degrees of freedom) but also just with 2 deflections (e.g. v2 and v3). The {Z} vector including just 
measuring v2 and v3 is presented in Equation (16) but in order to apply COM, {Z∗} should be 
calculated. The vector {Z*} with a measured vertical deflection in nodes 2 and 3 is presented in 
Equation (17).  
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(17) 

 

As highlighted in the previous section, in the COM, terms of {Z*} vector (Equation (17)) should 
satisfy certain nonlinear constrains, e.g. 𝑄𝑄1𝑤𝑤1 = 𝑄𝑄1.𝑤𝑤1, these constraints are neglected in OM due 
to the linearity of equations which lead to a failure of the identification of the mechanical 
properties. 

Numerical information from Table 4.1 is multiplied by different random coefficients ranging from 
0.5 to 1.5 to generate initial values for COM process. According to the results, the optimization 
converges to the exact values of inertia and OM shear parameter after few iterations. In the 
following comparison, the evolution of shear area and inertia ratio throughout the iterative process 
for different initial values (0.5 for shear area and 1.5 for inertia) are presented in Figures 4.3a. and 
4.3b, respectively. 
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Figure 4.3: Evaluation of shear area and inertia ratio throughout the iterative process, where x� is the estimated and x� is the exact 

value of the shear area Av and the Inertia I. (a) Evolution of shear area parameter ratio throughout the iterative process. (b) 
Evolution of inertia ratio throughout the iterative process. 

 

The analysis of Figure 4.3 shows how the exact values of both the shear area and the inertias are 
obtained at the end of the iterative process (5 iterations).  In the following section, a more complex 
example is presented to illustrate the potential of the developed tool. 

 
4.4 Application to a composite bridge 

To illustrate the possible application of the COM to an actual structure, the problem of the 
construction of a bridge by the balanced cantilever presented in Section 3.4 is studied. In such a 
construction method, deflections have to be anticipated in advance to calculate the precamber with 
which the different segments of the structure have to be built. In order to update this precamber 
for every step during construction, thorough topographic surveying is usually performed. This 
information can be used for model updating via an inverse analysis. Even though shear deflections 
might not play a very important role for a full developed cantilever, modeling error of not taking 
into account shear effects for the first segments might lead to an inaccurate estimation of the 
bending stiffness. To illustrate this and the possible application of this method, a simplified model 
of the Yunbao Bridge over the Yellow River in China (see Figure 3.7a) is studied in this section. 
The structure span is 90m long. This model includes the construction of two symmetric cantilevers. 
The length of the standard deck segments is 4.5m and the length of the segment over the pile, 
2.5m. The total length of the studied construction stage is 29.5 m. The mechanical and material 
properties defined by the method of the transformed section (Chen et al. 1980) are listed in Table 
4.2.  
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Table 4.2:  Properties of the Finite Element Model of the Bridge 

Property  Value 
Area [m2] 12.52 
Shear Area [m2] 9.83 
Inertia [m4] 35.62 
Steel Young’s Modulus [GPa] 210 
Concrete Young’s Modulus [GPa] 35 
Poisson’s Ratio γ 0.3 

 
Actual site data is not considered in this structure and the structural response is simulated 
numerically. The effects of creep and shrinkage in concrete are overlooked. The load test used 
simulates the movement of the formwork traveler (Fig. 4.4). The weight F of the formwork traveler 
(weight of formwork included) is considered as the 60 % of the weight of the segment (1041 kN). 
The effect of each form traveler in the deck is considered as two vertical forces. The values of 
these two forces are 0.25F and 1.25F (226 kN, upwards and 1267 kN, downwards). The load case 
of the bridge model is calculated by reducing the effects of the stage i (Figure 4.4.a), from stage 
i+1 (Figure 4.4.c), wherein the formwork traveler is moved forward to the next segment. Load 
cases of the stages i and i+1 are expressed in Figures 4.4.b and 4.4.d, respectively. The consequent 
load case introduced in the simulation is shown in Figure 4.4.e. It is to highlight that the vertical 
resultant of such forces in each side of the cantilever is zero. 

 

 
Figure 4.4: Definition of the load case: (a, b) Stage i. (c, d) Stage i+1. (e) Load case used for the inverse analysis 

 
This structure is simulated by the simplified FEM presented in Figure 4.5.a. This FEM includes 7 
elements and 6 point loads. Software Midas/Civil is used in order to calculate the vertical 
deflections in the nodes of the structure presented in Figure 4.5.b. For brevity, in the inverse 
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analysis, young modulus of all elements are considered as known parameters. Due to the fact that 
axial stiffness is not activated in this example, only flexural behavior is analyzed. For this reason, 
the terms related to the axial behavior are removed from equations (as axial stiffness are not 
activated with vertical forces). Because of loading case, shear area in elements numbers 3, 4 and 
5 are not activated, so shear area in these elements cannot be observed in the inverse analysis. The 
shear area and inertia of all other beam elements (that is to say I1, I2, I3, I4, I5, I6, I7, 𝐴𝐴𝑣𝑣1, 𝐴𝐴𝑣𝑣2, 𝐴𝐴𝑣𝑣6, 
and 𝐴𝐴𝑣𝑣7) are assumed as unknowns.  

 

 
Figure 4.5: Example 4.2: (a) FEM of the bridge with load case used for inverse analysis. (b) Variation of vertical deflections in 
this loading case with shear deformation. (c) FEM with 13 nodes and 12 elements used for inverse analysis (dimensions in m). 

 
To identify the 11 unknown mechanical properties at least, 11 measurements are required. As it 
was showed before, OM is not able to identify mechanical properties only with vertical deflections. 
However, it is examined and it is confirmed that no results were obtained with the measurement 
set of all possible vertical deflections (it is to say v1, v2, v3, v4, v5, v6, v9, v10, v11, v12, v13, v14, v15, 
v16) proposed for FEM presented in Figure 4.5c when the traditional OM is applied. To observe 
parameters with OM, the variation of deflection and rotation should be taken into account. In order 
to observe parameters just by vertical deflection in the bridge example, COM is applied. Table 4.3 
presents the initial value coefficient of different unknown inertia and shear area which is randomly 
chosen between 0.5 and 1.5 for the optimization process.  
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Table 4.3: Initial random value of the bridge unknown properties 

Parameter Initial Random Value 
I1 0.791 
I2 0.688 
I3 1.078 
I4 1.486 
I5 0.963 
I6 0.941 
I7 1.230 
Q1 1.312 
Q2 1.255 
Q6 0.944 
Q7 0.618 

 
COM managed to observe the unknown shear area and inertia in 14 iterations, the evolution of 
shear area and inertia ratio throughout the iterative process, are presented in Figure 4.6a and Figure 
4.6b, respectively. 

  
(a) Evolution of shear area parameters ratio throughout the 

iterative process (b) Evolution of inertia ratio throughout the iterative process 

 
Figure 4.6: Evolution of shear area and inertia ratio throughout the iterative process. 

 
To prove the consistency of the new method, 200 analyses with random initial value 

coefficients between 0.5 and 1.5 are conducted for the bridge. In 62 of these simulations, the 
optimization process was not convergent to the solution and no result was acquired, the results of 
the other 37 simulations of the optimization process were removed, due to the lack of physical 
meaning (e.g. negative values of the inertias). The normalized average, standard deviation and 
coefficient of variation of the remaining results as well as the mode is presented in Table 4.4. 
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Table. 4.4: Obtained results from random initial values 
Inertia Average CoV Standard deviation 

I1 1.000 0.001 0.000 
I2 1.000 0.002 0.001 
I3 0.975 2.279 0.791 
I4 0.993 12.229 4.324 
I5 0.969 2.888 0.996 
I6 0.999 0.004 0.002 
I7 1.000 0.001 0.001 

 
Tomas et al. (2018) compared the differences between the estimated flexural stiffnesses (𝐸𝐸𝐸𝐸 ̂) and 
the actual values (EI) in the seven elements of the bridge example without including the shear 
effects into the stiffness matrix of OM. According to this work when shear deformations are 
included into the measurements (error-free measurements), significant errors (e.g. -65,5% in 
segments 1 and 7 or +26,7% in segments 2 and 6) appear in the observed flexural stiffnesses in 
OM.  As it can be seen for Table 4.4, these differences are greatly reduced with COM. Inertia in 
elements 1, 2, 6 and 7 can be observed with less than 0.005 CoV and the average normalized 
observed values of 1 with 0.000, 0.001, 0.999 and 0.001 standard deviations, respectively. For I3, 
CoV, average and standard deviation are 2.29, 0.975 and 0.791, respectively. Since the shear area 
is not activated in the element associated with I4 (less accurate result), there is no shear area, the 
average observed value is 0969, CoV of 12.229 and 4.324 for standard derivation. The observed 
average, CoV and standard deviation for the I5 are 2.888, 0.969 and 0.996, respectively. However, 
the shear area of some elements is not activated due to the loading case, making impossible the 
observation of shear areas of elements 5, 6, 7 and 8.  

This example proves the efficiency of the proposed COM to estimate inertia when shear effects 
are taken into account.  

 
4.5. Conclusions 

Most Structural System Identification (SSI) methods neglect shear deformation as this 
phenomenon is usually negligible in comparison with flexural deformation. However, it can play 
a significant role in some structures, as deep beams. According to the literature, the only detailed 
study which addressed the particular effects of this deformation in static SSI tests is the 
observability method (OM). However, this failed to observe parameters just using vertical 
deflections measured from controlled static tests due to the complexity of equations. OM always 
required measurement sets that combined rotations and deflections to take into account shear 
deformations. However, many infrastructure control usually relies on deflection measurement (e.g. 
surveying through topography), being rotation measurement and the use of clinometers much more 
scarce. So it might be practical to have a method that only requires vertical deflections. To fill this 
gap, this chapter introduces the effects of shear deflections on the constrained observability method 
(COM). This method adds some nonlinear constraints to OM and, hence, the complex system of 
analytical equations is solved numerically after including the nonlinear constrains. 
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In the Chapter, a simply supported beam is studied in order to show the inability of the OM to 
observe any parameter just by vertical deflections when shear effects are considered. In addition, 
to illustrate the applicability of the COM on a thin-web structure, a simplified model of an 
intermediate construction stage of a cantilever composite bridge in China is studied. The results of 
this study show how the value of material properties can be observed by COM when the shear 
effects are taken into account in the equations and the measurement sets only include vertical 
deflections. The robustness of the numerical method is also validated.  
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Chapter 5: Observability Method with shear rotations  
5.1. Introduction 

Finite Element Method (FEM) is a numerical problem-solving method based on a concept in which 
large equations are divided into smaller and simpler equations. This technique is a common method 
for computer-based analysis in engineering (CSI, 2016). The Stiffness Matrix Method (SMM) is 
one of the major methods of the FEM approach for analyzing the structural Response of beam-like 
structures (Pisano, A.A (1999), Enokida, R. (2019), Zhang, F. et al (2019), Fu, Y. et al (2019)). 
The literature review showed that a number of SMM approaches included shear rotation into their 
SMM’s formulations. However, most of these methods fail to simulate structural cases with 
discontinuities in the cross-sections, with non-collinear elements or with non-uniform loads. The 
only SMM that is able to analyze these models is the FEM’s in which nodal variables are bending 
rotation and transverse displacement (the effects of shear rotation are neglected in this SMM 
formulation). Many works, for instance, in Przemieniecki (1968), contain a detailed formulation 
of the common Timoshenko beam theory SMM.  The stiffness matrix presented in this approach 
overlooks the effect of shear rotation. In Chapter 3 it is illustrated how the shear rotation effects 
are neglected in some of the most common commercial simulation software based on the stiffness 
matrix (such as SAP 2000, CSI, 2016), and Midas Civil, 2015). In fact, these programs only include 
the shear effects into the vertical deflections.  

System Identification (SI) represents a modeling process for unknown variables in a certain system 
of equations used in numerous engineering fields (Sirca Jr, G.F., & Adeli, H. (2012), Altunisik, A. 
C., et al. (2017)). The SI goal is to be able to characterize adequately the parameters of a certain 
system. Since its introduction, SI has been extended to most of the engineering fields (Gevers, M. 
(2006), Pisano, A.A (1999)). Structural System Identification (SSI) can be framed in the context 
of the SI that deals with the design of mathematical models for identifying structural parameters 
(such as the flexural or the axial stiffnesses) (Hoang, T. 2018).  

In the literature, many methods for SSI are proposed (e.g. Zhang, F. et al (2019), Fu, Y. et al 
(2019), Enokida, R. (2019)). Most of them are based on the SMM (see e.g. Boumechra, N. (2017), 
Casciati, S., & Elia, L. (2017), Chatzieleftheriou, S., & Lagaros, N. D. (2017), Shafieezadeh, A., 
& Ryan, K. L. (2011)). The details of the main SSI methods are shown in the literature and 
addressed in (Catbas, N. (2013)). Most of SSI methods are not able to quantify correctly the 
structural parameters when shear effects are not negligible. This can be explained by the fact that 
most SSI methods based on SMM normally use Euler-Bernoulli’s beam theory (see e.g. Dincal, 
S., & Stubbs, N. (2014), Caddemi, S. et al. (2018)), this assumption underestimates deflections 
and overestimating the natural frequencies since the shear effects are disregarded (Sayyad, A.S. 
(2011). The effects of shear deformations in their SMM models are studied by some authors 
(Leblouda, M., et al. (2017), Liu, S. et al (2018)). As illustrated in Chapter 3, the effects of shear 
rotations are neglected in the SMM’s; therefore, these effects are neglected in SSI methods based 
on SMM. Although the assumption of neglecting shear rotations may lead to wrong estimations 
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for mechanical properties in SSI methods, normally these effects are overlooked. Nevertheless, in 
some structures (such as deep beams) shear effects might play an important role. In these cases, 
shear effects should be introduced into the formulation in order to reduce the errors of SSI methods, 
and the inability of considering these effects should be considered modeling error (error in the 
modeling of structures). The observability method (OM) is an SSI method based on the system of 
equations of the SMM. In this procedure, the mechanical properties (e.g. Flexural stiffness EI) can 
be quantified from the deformations measured in static tests. In Chapter 4, the effects of shear 
deformations are into the Constrained Observability Method (COM). Unfortunately, this 
application (like other SSI methods based on SMM in the literature) is not able to take into account 
the shear rotations as shear effects are only considered in the vertical deflections. Because of the 
inability of this method to consider shear rotations in SMM, COM is not able to observe the value 
of mechanical properties correctly when actual rotations are included into the measurement sets. 
For this reason, this procedure is not suitable for actual structures as wrong results are obtained 
even when noise-free measurements are considered. In this Chapter the effects of considering shear 
rotations in SSI methods based on SMM are studied. To do so, the theoretical rotations (sum of 
shear rotation and bending rotations) were calculated in beams with different length to height ratios 
in different boundary conditions (simply supported beams and cantilever beams) and different 
loading cases (distributed and concentrated vertical forces).  

This chapter aims to fill this gap by presenting a new method based on OM to observe the structural 
properties from actual rotations measured on-site for any kind of structure (even in those where 
shear rotations are not negligible). To do so, the use of an iterative process is proposed. In this 
process, estimated shear rotations are subsequently subtracted from the actual rotations on site. 
Then the normal COM can be performed in terms of bending rotations and bending and shear 
vertical deflections. Also, throughout iterative steps, the structural properties are successively 
updated from the inverse observations. 

 

5.2 Detected gap: No SSI method includes shear rotations 

A major concern in Structural System Identification (SSI) methods in actual structures is related 
to the errors in measurements. As SSI methods based on Stiffness Matrix Method (SMM) 
systematically neglect shear rotation effects. For example, this is the case of the Observability 
Method (OM) proposed by Tomás et al. (2018). The numerical optimization approach 
(Constrained Observability Method (COM)) proposed in Jun et al. (2017) does not consider this 
effect either. This simplification can lead to modeling errors (Sanayi et al. (2001) as rotation 
measured on-site will not correspond with the one considered by the model. Depending on the 
structure, these modeling errors can surpass measurement errors. These errors will appear even in 
noise-free measurements and they will affect the estimation of structural properties in SSI 
methods. 
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In the following section, three academic examples are presented to illustrate the important role that 
shear rotations play in some beam geometries.   

 

5.2.1 Academic examples  

To illustrate the role of the shear rotations in the inverse analysis of structures a sensitivity analysis 
is developed in this section for the simple structures presented in Examples 3.2 (simply supported 
beam with a concentrated load at mid-span), 3.3 (simply supported beam with a uniform load) and 
3.4 (cantilever beam with a concentrated load at its edge). In these analyses, the total rotation (sum 
of shear rotation and bending rotation) in different length (L) to height (h) ratio (1 to 15) are 
evaluated. Effects of these errors in estimating the inertia are presented in Figure 5.1. The ratio 
limits for deep beams proposed by the Eurocode EN and by the ACI Committee 318 are also 
indicated in this figure.  

 
Figure 5.1: Percentage of error in inertia estimation based on depth to the length ratio, when shear rotation is not formulated in 

SMM. (structure as a legend) 
The results of these analyses illustrate the cases where the calculation of shear rotation in SSI 
methods is important. When the L/h ratio is 3 (deep beam limitation by Eurocode EN), the error 
in inertia estimation in Examples 3.2, 3.3 and 3.4 are 18.179%, 23.401% and 5.262%, respectively. 
When the L/h ratio is 4 (ACI Committee 318 proposed limitation) the errors in these structures are 
reduced to 11.101%, 14.665% and 3.030%, respectively. The results from Figure 5.1 shows the 
fact that the effects of shear rotation on inverse analysis are even more important than in the direct 
one and they should not be neglected. 
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5.3. Proposed methodology 

In this section, a new procedure is developed to take into account the effects of shear rotations in 
the SSI of 2-dimensional structures modeled with beam elements.  

Providing that a static load test is performed in a structure and measurements are taken from some 
nodal displacements (total deflections and rotations including bending and shear displacements 
and rotations), the first step will be trying to separate the bending and shear rotations. Then, firstly, 
direct analysis is performed assuming those beam elements have their theoretical mechanical 
properties. Then, the shear rotation of each element is calculated based on the assumed mechanical 
properties. Equation (18) can be used to calculate shear rotation, 𝑣𝑣𝑠𝑠 in each element based on 
Timoshenko's beam theory (Timoshenko, S. P. 1921, Timoshenko, S. P. 1922). 

𝑤𝑤𝑠𝑠 =
𝑄𝑄

𝐴𝐴𝑣𝑣 ∗ 𝐺𝐺
, 

 
(18) 

where 𝐴𝐴𝑣𝑣 is the shear area, 𝑄𝑄  is the shear force and the shear modulus 𝐺𝐺 might be written as: 

𝐺𝐺 = 𝐸𝐸
2(1+𝑣𝑣) , (19) 

where the coefficient 𝑣𝑣  refers to the Poisson’s ratio. According to Equation (18), the shear rotation 
for each element only depends on shear forces, shear area and shear modulus. On the other hand, 
shear area and shear modulus are directly obtained from the assumed mechanical properties of the 
structure, while the shear forces can be obtained from the results of the direct SMM analysis. By 
subtracting the value of shear rotation from the measured rotation of each node the bending rotation 
can be obtained (it is important to highlight that the measured rotation can be expressed as the sum 
of shear and bending rotations). Therefore, the COM process can be used as it is based on 
neglecting shear rotation effects. Once COM provides an estimate of the mechanical properties of 
the structure, these can be used to calculate new shear rotations. In this way, an iterative process 
should be performed until the adequate structural response of all the elements is satisfied. In order 
to limit the computational cost of the optimization process, the stopping criteria are defined: 1) 
when the iterative process is performed more than 200 times without getting improvement of the 
solution, and 2) when the difference between values of the observed structural properties in 2 
subsequent iterative steps are less than 1e-3.  

The main steps of this procedure are described as follows:  

- Step 1: Assumption of the initial values of structural properties, as the theoretical ones  

- Step 2: Calculate the shear rotation of each element from the assumed structural properties 
and static loads. It is important to highlight that the stiffness properties can be obtained 
through either theoretical values (for the first time) or observed structural properties 
provided by the COM optimization (in the iterative process). 
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- Step 3: Obtain the bending rotation from the calculated shear rotation in step 2 and perform 
COM analysis. It is to say that the value of bending rotation for the measured nodes is 
calculated by subtracting the actual value (measured on-site) from theoretical shear rotation 
calculated in step 2. 

- Step 4: Check the stopping criteria. If one of them is satisfied, the process stops, otherwise 
go to step 2.  

 

A summary of the procedure is shown in the flow chart in Figure 5.2. In the following sections, a 
set of structures are analyzed to illustrate the applicability and potential of the proposed method. 
This will be called 2COM as COM is applied in two steps. 

 
 

Figure 5.2. Flow chart of 2COM 

To show the applicability of the new method, several academic examples are analyzed in this 
section. It is important to highlight that in these simulations no horizontal forces are considered 
and therefore, the axial resistant mechanisms are not studied as they are not excited. In addition, 
measurement errors are neglected in the simulations.  
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      5.3.1. Example 5.1: simply supported beam with 2 iteration processes 

Consider the 4 m long and 0.2 m wide simply supported beam modeled with 3 nodes and 2 beam 
elements depicted in Figure 5.3.a. This beam has a constant cross-section and its mechanical 
properties are listed in Table 5.1. The boundary conditions of the structure are horizontal and 
vertical displacements restricted in node 1 and vertical displacement restricted in node 3 (this is to 
say, u1=v1=v3= 0). The beam is subjected to a concentrated vertical force in node 2 of 100kN (V2= 
100kN).  

 
Figure 5.3: Example 1. (a) FEM for a simply supported beam. (b) Deformed shape with the value of bending vertical 

deformation and with bending and shear vertical deformation at Node 2. (c)  Deformed shape with bending rotation and with 
bending and shear rotation at Node 1. 

Table 5.1: Properties of the FEM of the simply supported beam. 

Axial stiffness [GPa·m2] 440.65 

Shear stiffness for node 1 [GPa·m2] 344.05 

Shear stiffness for node 2 [GPa·m2] 385 

Flexural stiffness for node 1 [GPa·m4] 1,246.7 

Flexural stiffness for node 2 [GPa·m4] 1,120 
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For the inverse analysis of the structure, the load V2, the length of the elements, Poisson’s ratio 
and Young modulus E are assumed as known, while the inertia, I and the shear area 𝐴𝐴𝑣𝑣 for both 
elements are assumed as unknown. To identify the two unknown parameters (Av and I) a 
measurement set of at least four rotations is required to identify the values of unknowns. 
Nevertheless, the analysis of the traditional OM of this model proves that no set of four rotations 
in OM enables the proper identification of the unknown parameters. Therefore, a set of a vertical 
deflection and a rotation should be measured together (it is to say w1, w2, w3 and v2). The values 
of the measurement set are obtained from Timoshenko’s beam theory simulation can be seen in 
Figure 5.3.b and Figure 5.3.c.  

To check the robustness of the method, a set of random values is chosen for Inertia and Shear area 
to be used to calculate the hypothetical site measurements. 50 different random sets of the initial 
value coefficients for the inertia and the shear area were randomly chosen between 0.8 and 1.2 of 
the theoretical values. These initial parameters are successively updated throughout the iterative 
process. From 50 analyses, in 3 analyses the optimization process was not convergent to the 
solution and no result was acquired. The normalized average, standard deviation and coefficient 
of variation of the remaining results as well as the mode is presented in Table 5.2. 

Table. 5.2: Obtained results from random initial values 

Parameter Average CoV Standard 
deviation 

EI1 1.000 8.791e-7 8.791e-7 
EI2 1.000 9.114e-7 9.114e-7 

GAv1 1.000 0.000 0.000 
GAv2 0.910 0.128 0.116 

These results prove the adequate convergence of the proposed methodology in simply supported 
beams for random initial values of the Inertia. The reason for the flaw in the observed value of 
GAv2 is that the measuring on node 2 cannot provide sufficient information for covering the shear 
area of beam number 2. Therefore, the value of the shear area cannot be observed properly. It 
should be said that even in this situation the new method is able to observe Inertia properly.  the 
shear area in For the same measurement set, the results of traditional COM (without the ability to 
consider shear rotations) in this example lack physical meaning. These values illustrate the 
inability of traditional COM to identify the correct value of parameters as it is not able to identify 
shear rotations. 
       

5.3.2. Example 2: Cantilever beam  

Consider a cantilever beam with the same cross-section and same properties as in Example 5.1 
modeled with one beam element and 2 nodes as it is presented in Figure 5.4. The boundary 
conditions of the structure are total horizontal and vertical displacements and rotation due to 
bending restricted in node 1 (this is to say, u1=v1=wb1= 0). The only external force applied is 
assumed as a concentrated vertical force in Node 3 of 100kN (V3= 100kN). As in the previous 
example, the length of the elements, L, the Poisson’s ratio and the Young modulus E are assumed 
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as known in the inverse analysis, while the inertia I and the shear area 𝐴𝐴𝑣𝑣 for elements 1 and 2 are 
assumed as unknown. To obtain these four unknown parameters the measurement set should 
include at least four rotations. Nevertheless, the analysis of the traditional OM proves that no set 
of two rotations in COM enables the proper identification of the unknown parameters. Therefore, 
a set of vertical deflection and rotation should be measured together in this example. To perform 
the COM2, a measurement set that consists of two rotations and two vertical deflections (w2, w3 
and v2, v3) is employed. The rotations and the vertical deformations including shear effects of this 
structure are presented in Figure 5.4.  
 

 
Figure 5.4: Example 2. (a) FEM for a cantilever beam. (b) Deformed shape with the value of bending vertical deformation and 
with bending and shear vertical deformation at Node 2. (c)  Deformed shape with bending rotation and with bending and shear 

rotation at Node 2. 

To check the robustness of the method, a set of random values is chosen for Inertia and Shear area 
to be used to calculate the hypothetical site measurements. 50 different random sets of the initial 
value coefficients for the inertia and the shear area were randomly chosen between 0.8 and 1.2 of 
the theoretical values. Also, no matter what set of the initial value is chosen, in all circumstances, 
the obtained values of 2 iterative process have proper convergence to real values of mechanical 
properties. The normalized average, standard deviation and coefficient of variation of the 
remaining results as well as the mode is presented in Table 5.3. 
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Table. 5.3: Obtained results from random initial values 

Parameter Average CoV Standard deviation 
EI1 1.000 8.783e-7 8.783e-7 
EI2 1.000 9.118e-7 9.117e-7 

GAv1 1.000 0.000 0.000 
GAv2 1.000 0.000 0.000 

These results prove the adequate convergence of the proposed methodology in cantilever beams 
for random initial values of the unknown parameters. These results show the applicability of the 
proposed methodology in cantilever structures. It is important to highlight that obtained results of 
the original COM process for this example lack physical meaning as ratios of 0.562 and 3.000 
were obtained for the Inertia in I1 and I2, respectively. 

 
5.4. Application to a composite bridge 

To show the application of the proposed methodology to a real structure, the problem of the 
construction of a bridge by the balanced cantilever method is studied in section 4.4.  

The simplified FEM of this structure is presented in Figure 5.5. This FEM includes 7 elements and 
6 concentrated loads Since there is no axial load, the axial stiffness is not activated in this example; 
therefore, only flexural and shear behavior is analyzed. As shear stiffness and bending stiffness 
from elements 2, 3, 4, 5 and 6 are supposed to be observed from the previous construction steps, 
such properties are considered as knowns. Hence, shear and bending stiffness of the new built 
elements are the targets of the analysis (this is to say I1, I7 and 𝐴𝐴𝑣𝑣1, 𝐴𝐴𝑣𝑣7) and are assumed as 
unknowns.  
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Figure 5.5: Example 3. FEM of the bridge with load case used for inverse analysis. (b) Deformed shape with the value of 

bending vertical deformation and with bending and shear vertical deformation at Node 1. (c)  Deformed shape with bending 
rotation and with bending and shear rotation at Node 1. 

 

In this example, there are 4 unknowns (it is to say EI1, 𝐺𝐺𝐺𝐺𝑣𝑣1 and EI7, G𝐴𝐴𝑣𝑣7). In order to identify 
the 4 unknown mechanical properties, a set of at least 4 measurements are required. The analysis 
of the OM proves that the COM is not able to observe any structural properties by only measuring 
rotations in this example. To observe the structural parameters with the proposed methodology, 
the variation of deflection and rotation should be taken into account (it is to say, w1, v2 and w7, 
v6). The value of theoretical rotation and vertical deflection of node 1 are presented in Figure 5.5.b 
and c. Timoshenko's beam theory is used to calculate the values of measured variables in the node 
number 1 (the value at node number 7 is the same).  

The initial value coefficients of unknown inertia and shear area (I1, I7 and 𝐴𝐴𝑣𝑣1, 𝐴𝐴𝑣𝑣7) were randomly 
chosen between a ratio of 0.8 and 1.2 of the theoretical values. The 50 analyzed random initial 
values are performed.  

To check the robustness of the method, a set of random values is chosen for Inertia and Shear area 
to be used to calculate the hypothetical site measurements. 50 different random sets of the initial 
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value coefficients for the inertia and the shear area were randomly chosen between 0.8 and 1.2 of 
the theoretical values. Also, no matter what set of the initial value is chosen, in all circumstances, 
the obtained values of 2 iterative process have proper convergence to real values of Inertia. The 
normalized average, standard deviation and coefficient of variation of the remaining results as well 
as the mode is presented in Table 5.3. 

Table. 5.3: Obtained results from random initial values 

Parameter Average CoV Standard deviation 
EI1 1.000 8.237e-7 8.237e-7 
EI2 1.000 8.903e-7 8.903e-7 

GAv1 0.617 0.740 0.456 
GAv2 0.256 0.305 0.078 

These results prove the adequate convergence of the proposed methodology in a bridge structure 
for random initial values of the unknown parameters. These results prove the efficiency of the 
proposed COM to estimate the inertia when the effects of shear rotations are considered, in case 
that the shear area cannot be observed by the proposed method. In addition, it is important to 
highlight that, as far as the authors know, no other SSI method based on SMM in literature is able 
to include the effects of these rotations in the inverse simulation.  

 
5.5 Conclusions 

All Structural System Identification (SSI) methods in the literature neglect shear rotations. This 
limitation might lead to significant errors when the structural parameters of some structures (such 
as deep beams) are obtained from actual rotations on site. To fill this gap, the formulation of the 
Constrained observability method (COM) is updated to include the effects of the shear rotations. 
This application leads to an iterative process where the initial values of the estimates are 
successively updated. The applicability of the proposed methodology is illustrated by several 
academic examples. In addition, to illustrate the applicability of the proposed method on actual 
structures, a simplified model of an intermediate construction stage of a cantilever composite 
bridge in China is studied. The results of this study show how the value of structural properties 
can be observed by COM when the actual rotations are included into the measurement set.  
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Chapter 6: Conclusions and future research 
6.1. Conclusions  

Stiffness matrix methods are used normally to analyze complex structures neglecting shear 
rotations. Based on the literature review, which thoroughly studied different SMM, these are not 
able to calculate shear rotations in models no collinear, discontinued and with external loads. Also, 
all Structural System Identification (SSI) methods reviewed in the literature neglect rotation due 
to shear in their formulation as this phenomenon is usually less significant than the bending 
rotation. Despite the important role that this rotation might play especially in members with a low 
span-to-depth ratio, no detailed study addressing the particular effects of this rotation in inverse 
analysis can be found in the literature.  

To show how important the role of shear rotation might be, several different structures (a simply 
supported beam with a concentrated load, a simply supported beam with a distributed load, and a 
cantilever with a concentrated load) with different length to height ratios are studied in section 3. 
In fact, these examples illustrate that the difference between Timoshenko’s theory and Euler-
Bernoulli’s theory in terms of rotation is higher for members with low length-to-height ratio. For 
deep beams ratio between the shear rotation and bending rotation can be significant. Also, a model 
of a bridge built in cantilever is analyzed to show the applicability of the proposed method. It 
should be mentioned that no other Timoshenko beam theory FEM in literature is able to calculate 
total rotation (including both shear and bending effects) in a structural model. 

OM always required measurement sets that combined rotations and deflections to take into account 
shear deformations. However, many infrastructure control usually relies on deflection 
measurement (e.g. surveying through topography), being rotation measurement and the use of 
clinometers much more scarce. So it might be practical to have a method that only requires vertical 
deflections. To fill this gap, in section 5 the effects of shear deflections on the constrained 
observability method (COM) are introduced. This method adds some nonlinear constraints to OM 
and, hence, the complex system of analytical equations is solved numerically after including the 
nonlinear constrains. 

According to the literature, the only detailed study which addressed the particular effects of shear 
deformation in static SSI tests is the observability method (OM). However, this failed to observe 
parameters just using vertical deflections measured from controlled static tests due to the 
complexity of equations. In section 4, a simply supported beam is studied in order to show the 
inability of OM to observe any parameter just by vertical deflections when shear effects are 
considered. To solve this problem, the formulation of constrained observability method (COM) is 
updated to include shear deformation. The COM performance in a simply supported beam shows 
the power of the new method to observe the value of the structural parameters just by vertical 
deflections. To show the applicability of the COM on a thin web structure, a simplified model of 
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an intermediate construction stage of a cantilever composite bridge in China is studied. The results 
of this study show how the value of material properties can be observed by COM when the shear 
effects are taken into account in the equations and the measurement sets only include vertical 
deflections. The robustness of the numerical method is also evaluated.  

As it is explained, shear rotation is not included into the SSI methods based on SMM, to fill this 
gap, the formulation of the Constrained observability method (COM) is updated to include the 
effects of shear rotations in section 5. This leads to an iterative process where the initial values of 
the estimates are successively updated. The applicability of the proposed methodology is presented 
in several academic examples. To illustrate the applicability of the proposed method on actual 
structures, a simplified model of an intermediate construction stage of a cantilever composite 
bridge in China is studied. The results of this study show how the value of structural properties 
can be observed by 2COM when the actual rotations are included into the measurement set. It is 
important to highlight that the result of the original COM method in all analyzed cases lacks 
physical meaning. Also, for the first time in literature, the sensitivity of the SSI methods to this 
modeling error is performed in section 5. The study of this sensitivity analysis might provide some 
insight into which structures rotation due to shear should be taken into account and in which cases 
these effects can be neglected.  

 
6.2. Related works and publication  

This thesis has led to the following SCI papers: 

• Appendix 1: Emadi, S., Lozano-Galant, J. A., Xia, Y., Ramos, G., & Turmo, J. (2019). Structural system 
identification including shear deformation of composite bridges from vertical deflections. Steel and 
Composite Structures, 32(6), 731-741. doi:10.12989/scs.2019.32.6.731  

• Appendix 2:  Emadi, S., Lozano-Galant, J. A., Xia, Y., Ramos, G., & Turmo, J. (2020). Shear rotation 
analysis in stiffness matrix methods: A state of the art and application in the direct and inverse analyses. 
Computers and Composite Structures, (under review) 

• Appendix 3: Emadi, S., Lozano-Galant, J. A., Xia, Y., & Turmo, J (2021). Observing material properties in 
beams from actual rotations. To be submitted 

 
6.3. Future research  

The following works can be addressed in the future: 

1. New optimization method: Although the MATLAB’s “Fmincon” function which has been used for 
solving the non-linear problem of COM works well in most cases, there is room for improvement. 
Other optimization tools such as heuristic optimization methods or genetic algorithms can be taken 
into account to have faster convergence in results in more complicated cases. 
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2. Study of modeling errors: The effect of modeling errors (such as changes in the supports’ stiffness, 
or the assumption or wrong parameters) should be studied to validate the robustness of the 
procedure in real structures. 
 

3. Application with actual measurement sets: The application of the methods in this thesis is based on 
error-free measurement sets so it is advised the application to actual monitoring data obtained on-
site.  
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Abstract.  Shear deformation effects are neglected in most structural system identification methods. This assumption 
might lead to important errors in some structures like built up steel or composite deep beams. Recently, the observability 
techniques were presented as one of the first methods for the inverse analysis of structures including the shear effects. In 
this way, the mechanical properties of the structures could be obtained from the nodal movements measured on static 
tests. One of the main controversial features of this procedure is the fact that the measurement set must include rotations. 
This characteristic might be especially problematic in those structures where rotations cannot be measured. To solve this 
problem and to increase its applicability, this paper proposes an update of the observability method to enable the structural 
identification including shear effects by measuring only vertical deflections. This modification is based on the 
introduction of a numerical optimization method. With this aim, the inverse analysis of several examples of growing 
complexity is presented to illustrate the validity and potential of the updated method.   
 

Keywords: Structural system identification; Observability; Shear deformation; Vertical deflection; Composite 
structures 
 
1. Introduction 
 

System Identification (SI) is a process of modeling an unknown system that has been employed in a 
number of engineering fields (Sirca, G.F et al. 2012, Altunişik, A.C et al. 2017) .The discipline of SI aims 
to create mathematical models that characterize properly the system behavior. One of the pioneers in this 
approach was Friedrich Gauss who developed the Gauss-Newton method to find the values of parameters 
in a model of the trajectory to calculate the dwarf planet trajectories. SI began in the area of electronic 
engineering and, after a while, it has been extended to other fields of engineering (Gevers, M. 2006, Pisano, 
A.A. 1999). Structural system identification (SSI) is a part of the SI dealing with the construction of 
mathematical models to identify the structural parameters (such as flexural stiffnesses, axial stiffnesses or 
damping parameters) from the structural response (Pajonk, O. 2009).  
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A number of methods are proposed for SSI in the literature (Liao, J. 2012, Lozano-Galant JA. 2013, Yan, 
A., 2005). These methods can be classified according to the excitation test type as dynamic (Breuer, P. et 
al.  2015, Dowling, J. et al, 2012, Li, Z. et al.2017, Górski, P. et al. 2018) or static (Thirumalaiselvi, A. et 
al.2016, Walsh, B. J. et al.2009, Lee, J.W. et al.2010). SSI methods might be also classified as a parametric 
(Lozano-Galant JA. et al.2013, Gracia-Palencia, A.J. et al.2015) or non-parametric methods (Karabelivo, 
K. et al. 2015, Mei, L. et al. 2016). Parametric methods rely on the physical based modes, while in non-
parametric ones, parameters do not have any physical meaning. In non-parametric methods, parameters are 
identified directly with optimization procedures that minimize the difference between the predicted 
structural response and the measured ones. For parametric SSI methods, a mathematical representation of 
the structural behavior is required. The most common way to do this modeling is based on the Stiffness 
Matrix Method (SMM) (Hou, Z. et al. 2015, Kahya, V. et al.2018, Li, J. et al.,2017, Khayat, M. et al. 2017, 
Khayat, M. et al. 2017, Li, J. et al.2014, Araki, Y. et al.2005). The details of the main SSI methods proposed 
in the literature is presented in (American Society of Civil Engineers, Reston, VA 2013).  

Despite the importance of shear deformation in some structures, it is overlooked by most of SSI 
methods. For most structures, deflection due to the shear is much smaller than the deflection due to the 
bending, thus this phenomenon can be ignored. In these cases, shear effects are considered as modeling 
errors in the mathematical models (such as any property in the model assumed with a wrong value). 
Nevertheless, in some structures (such as deep beams, shear walls, short span beams, or thin-web bridges) 
shear effects might play an important role. In this case, they should not be neglected and should be 
introduced into the formulation.  

Most traditional SSI methods are not able to observe correctly the parameters of a structure (such as 
bending stiffness) when shear deformation is not negligible. SSI methods based on SMM normally use 
elementary beam theory, underestimating deflections and overestimating the natural frequencies since the 
shear deformation effect is disregarded (Sayyad, A.S .2011). Timoshenko (1921) was the first one who 
included shear effects into the beam theory. This approach is known as Timoshenko beam theory. Due to 
the complexity of this theory, SSI models are mostly based on Euler–Bernoulli beam theory which only 
includes axial and flexural deformation and shear effects are neglected in the analysis. Some authors studied 
the effect of shear deformation in their SMM models of composite structures (Kumar, P. et al. 2018, 
Nguyen, D.K. et al.2018, Singh, S.K. et al.2017). Moreover, Soto et al. (2017) proposed a new SMM’s 
formulation including shear effects for the modeling fixed–end moments of I-sections. The effects of shear 
deformations in recursive matrix method for sandwich plate were also studied by (Huo, R. et al.2017)).  
The impact of shear effects in steel-concrete composite structures is studied by (Yang, Y. et al.2018) and 
(Wang, J. et al. 2018). Tomas et al. (2018) included the effects of shear deformations in Observability 
Method (OM). This method introduced the shear formulation into the SMM. Among the advantages of the 
method, it is to highlight the fact that it provided for the first time in the literature parametric equations of 
the shear estimates by the OM. The main inconvenience of this methods is that the measurement set requires 
both rotations and vertical deflections to identify mechanical properties. OM is a parametric SSI method 
based on the system of equations of the SMM. In this procedure, the axial and flexural stiffnesses are 
obtained from the static deformations measured in a static test. OM has proved its efficiency in different 
structural typologies (such as trusses, beams, frame structures and cable-stayed bridges) ( Lozano-Galant, 
J.A. et al.2014, Nogal, M. et al.2015,  Castillo, E. et al. 2007, Castillo, E. et al. 2016, Lozano-Galant, J.A. 
et al. 2015, Lei, J. et al.2016, Lei, J. et al.2017).  

Among the many parameters that can be monitored in structures, vertical displacement is one of the 
parameters that is more valuable than others. This is due to the fact that material degradation processes, 
corrosion, and changes of the mechanical properties of the steel structure because of aging (e.g. fatigue in 
steel bridges) have a direct effect on the static vertical deflections (Vicente, M.A. et al. 2018). Moreover, 
for the bridge service loads, all international standards specifically use the maximum allowable vertical 
deflections to authenticate its performance (AASTHO.2017, European Committee for Standardization. 
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2005). The aim of this paper is to avoid the need for including rotations in the measurement sets used for 
structural identification of parameters when shear behavior is taken into account. This application is not as 
straightforward as it might look because the equations are strongly coupled. To solve this problem, 
constrained observability method (COM) (Lei, j. et al.2017) is applied. This new method is a numerical 
optimization approach, where the coupled linearized variables are numerically decoupled. 

This article is organized as follows: In Section 2, the SSI including shear deformations with OM is 
briefly presented. A simply supported beam is analyzed to illustrate the inability of the method presented 
in (Tomas, D. et al.2018) to identify mechanical properties by measuring just vertical deflections. Section 
3 introduces COM to enable the structural identification by measuring only vertical deflections. To illustrate 
the application of this algorithm, a step by step example of a simply supported beam is presented. In 
addition, another numerical example of an intermediate construction stage of a cantilever bridge is 
analyzed. Finally, the conclusions are drawn in Section 4. 

 
 

2. Observability Method including shear effects 
 

From 2D beam element direct SMM of a structure loaded in its plane, the nodal equilibrium equations 
might be written as: 

[𝐾𝐾] · {𝛿𝛿} = {𝑓𝑓}     (1) 
where the displacements vector {δ} contains the horizontal, vertical, and rotational displacements, the 
external force vector {f} contains the horizontal forces, vertical forces, and moments and the global stiffness 
matrix [K] contains the stiffness of the beam elements. According to the literature, in 1968, Przemieniecki  
added shear deformation to the stiffness matrix for the very first time. Stiffness matrix including shear 
stiffness is as follows: 

[𝐾𝐾] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐸𝐸𝐸𝐸
𝐿𝐿 0 0 −

𝐸𝐸𝐸𝐸
𝐿𝐿 0 0

0
12𝐸𝐸𝐸𝐸

𝐿𝐿3(1 + ∅)
6𝐸𝐸𝐸𝐸

𝐿𝐿2(1 + ∅) 0 −
12𝐸𝐸𝐸𝐸

𝐿𝐿3(1 + ∅)
6𝐸𝐸𝐸𝐸

𝐿𝐿2(1 + ∅)

0
6𝐸𝐸𝐸𝐸

𝐿𝐿2(1 + ∅)
𝐸𝐸𝐸𝐸(4 + ∅)
𝐿𝐿(1 + ∅) 0 −

6𝐸𝐸𝐸𝐸
𝐿𝐿2(1 + ∅)

𝐸𝐸𝐸𝐸(2−∅)
𝐿𝐿(1 + ∅)

−
𝐸𝐸𝐸𝐸
𝐿𝐿 0 0

𝐸𝐸𝐸𝐸
𝐿𝐿 0 0

0 −
12𝐸𝐸𝐸𝐸

𝐿𝐿3(1 + ∅) −
6𝐸𝐸𝐸𝐸

𝐿𝐿2(1 + ∅) 0
12𝐸𝐸𝐸𝐸

𝐿𝐿3(1 + ∅) −
6𝐸𝐸𝐸𝐸

𝐿𝐿2(1 + ∅)

0
6𝐸𝐸𝐸𝐸

𝐿𝐿2(1 + ∅)
𝐸𝐸𝐸𝐸(2−∅)
𝐿𝐿(1 + ∅) 0 −

6𝐸𝐸𝐸𝐸
𝐿𝐿2(1 + ∅)

𝐸𝐸𝐸𝐸(4 + ∅)
𝐿𝐿(1 + ∅) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

    (2) 

 
The stiffness matrix [K] contains the information of flexural stiffness EI, axial stiffness EA and length 

L, where E, I and A are Young modulus, inertia and area, respectively. Unlike traditional stiffness matrix, 
a coefficient Ø known as the shear parameter appears in some elements of Equation (2). This parameter is 
as follows: 

∅ =
12𝐸𝐸𝐸𝐸
𝐺𝐺𝐴𝐴𝑣𝑣𝐿𝐿2

   ,   (3) 

where 𝐴𝐴𝑣𝑣 is the shear area and  𝐺𝐺 is the shear modulus, which can be expressed as: 
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𝐺𝐺 =
𝐸𝐸

2(1 + 𝑣𝑣)    (4) 

where the coefficient 𝑣𝑣  is Poisson’s ratio. Analysis of Equation (2) shows that shear parameter Ø appears 
in the denominator of most terms. In order to solve this problem, Tomas et al. proposed the following 
change of variable implying a shear parameter Q. This parameter is described as follows: 

𝑄𝑄 =
∅

1 + ∅
 (5) 

After replacing the shear parameter Ø by OM shear parameter 𝑄𝑄,  the stiffness matrix presented in 
Equation (2) can be updated as:  

[𝐾𝐾] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐸𝐸𝐸𝐸
𝐿𝐿 0 0 −

𝐸𝐸𝐸𝐸
𝐿𝐿 0 0

0
12𝐸𝐸𝐸𝐸
𝐿𝐿3 −

12𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿3

6𝐸𝐸𝐸𝐸
𝐿𝐿2 −

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2 0 −

12𝐸𝐸𝐸𝐸
𝐿𝐿3 +

12𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿3

6𝐸𝐸𝐸𝐸
𝐿𝐿2 −

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2

0
6𝐸𝐸𝐸𝐸
𝐿𝐿2 −

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2

4𝐸𝐸𝐸𝐸
𝐿𝐿 −

3𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿 0 −

6𝐸𝐸𝐸𝐸
𝐿𝐿2 +

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2

2𝐸𝐸𝐸𝐸
𝐿𝐿 −

3𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿

−
𝐸𝐸𝐸𝐸
𝐿𝐿 0 0

𝐸𝐸𝐸𝐸
𝐿𝐿 0 0

0 −
12𝐸𝐸𝐸𝐸
𝐿𝐿3 +

12𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿3 −

6𝐸𝐸𝐸𝐸
𝐿𝐿2 +

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2 0

12𝐸𝐸𝐸𝐸
𝐿𝐿3 −

12𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿3 −

6𝐸𝐸𝐸𝐸
𝐿𝐿2 +

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2

0
6𝐸𝐸𝐸𝐸
𝐿𝐿2 −

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2

2𝐸𝐸𝐸𝐸
𝐿𝐿 −

3𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿 0 −

6𝐸𝐸𝐸𝐸
𝐿𝐿2 +

6𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿2

4𝐸𝐸𝐸𝐸
𝐿𝐿 −

3𝐸𝐸𝐸𝐸𝐸𝐸
𝐿𝐿 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (6) 

Once the geometry, the boundary conditions and the applied nodal forces in a certain static load test are 
defined, some displacements can be measured to identify the unknown mechanical properties in the SMM. 
To do so, an inverse analysis is performed. The known information is clustered in a subset δ1and 𝑓𝑓1 of {δ} 
and {𝑓𝑓} , respectively and the subset δ0 of {δ} and a subset 𝑓𝑓0  of {𝑓𝑓} are assumed as unknown information. 
The equation (1) can be rewritten as follows: 

[𝐾𝐾∗] · {δ∗} = �𝐾𝐾00
∗ 𝐾𝐾01∗

𝐾𝐾10∗ 𝐾𝐾11∗
� · �

δ0∗

δ1∗
� = �𝑓𝑓0𝑓𝑓1

� = {𝑓𝑓} ,   (7) 

In order to join the unknown variable in the left-hand side and the known variable in the right-hand 
side, the Equation (7) is rearranged as:  

[𝐵𝐵] · {𝑧𝑧} = �𝐾𝐾10
∗ 0

𝐾𝐾00∗ −𝐼𝐼� · �δ0
∗

𝑓𝑓0
� = �𝑓𝑓1 − 𝐾𝐾11∗ δ1∗

−𝐾𝐾01∗ δ1∗
� = {𝐷𝐷},    (8) 

where 0 and 𝐼𝐼 are the null and the identity matrices, respectively. To evaluate if the system has a solution,  
the null space [𝑉𝑉] of matrix [𝐵𝐵]  should be calculated and check that [𝑉𝑉]𝑇𝑇{𝐷𝐷} =  0. If the equation holds, 
the system is compatible; otherwise, it has no solution. The general solution (the set of all solutions) of the 
system (8) has the structure (Castillo, E. et al.2000, Castillo, E. et al.2002): 

{𝑍𝑍} = �𝑍𝑍p� + [𝑉𝑉] · {𝜌𝜌} ,    (9) 

where �𝑍𝑍p� is a particular solution of the system (9). [𝑉𝑉]. {𝜌𝜌} is the set of all solutions of the associated 
homogeneous system of equations (a linear space of solutions, where the columns of [𝑉𝑉] are a basis of this 
linear space and the elements of the vector {𝜌𝜌} are arbitrary real values that describe the coefficients of all 
possible linear combinations). It should be noted that a variable has a unique solution not only when matrix 
[𝑉𝑉] has zero dimension (it does not exist), but when the associated row in matrix [𝑉𝑉] is null. Thus, the 
examination of matrix [𝑉𝑉] and identification of its null rows leads to the identification of the subset of 
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variables with a unique solution in vector {Z}. It is interesting to note that if all parameters of vector {Z} 
are not observed from the null space, any deflection, force or parameter observed after the initial OM 
analysis will be used to observe new parameters by using a recursive process. For more information about 
this process, the reader is addressed to (Lozano-Galant JA. et al..2013, Timoshenko, S. P .1921). 

According to the literature, more reliable information can be produced from measuring vertical 
displacement than rotation and most of international standards deal with vertical deformation (Vicente, 
M.A. et al. 2018, AASTHO.2017, European Committee for Standardization.2005). So it is useful to provide 
a method that allows SSI from measured vertical deflections. Traditional OM including shear deformation 
presented in (Tomas, D. et al.2018) fails identifying shear parameters with measurement sets including only 
vertical deflections. In fact, the measurement of rotations is required to observe any parameter by OM. To 
show the inability of OM to identify material properties with only measured vertical deflection an 
illustrative example is analyzed in the following section. 

 
2.1  Example 1: Simply supported beam with vertical deflections 

Consider the 0.6 m long simply supported beam modelled with 7 nodes and 6 Timoshenko beam 
elements in figure 1.a, where, vj, with j (1 to 7) represents the vertical deflection for each node. Beam has 
a constant cross section and the value of young modulus, Poisson ratio, shear area, cross sectional area and 
inertia of all elements along the beam are constant. Properties of this simply supported beam are listed on 
Table 1. The boundary conditions of the structure are horizontal and vertical displacements restricted in 
node 1 and vertical displacement restricted in node 7 (this is to say, u1=v1=v7= 0) and the only external 
force applied in this numerical loading test is a concentrated vertical force in node 3 of 100kN (V3= 100kN). 
The vertical deflections obtained from the software Midas/Civil of this structure are presented in Fig. 1 b 
Measurement errors in this paper are neglected. 

 
 

(a) FEM for a simply supported beam with vertical 
deflections 

(b) Vertical nodal deflections including flexural and 
shear deformation. 

Fig.1 Example 1 
 
 

Table 1 Properties of the FEM of the simply supported beam 
Area [m2] 0.1 

Shear Area [m2] 0.0833 
Inertia [m4] 0.0083 

Young’s Modulus [GPa] 27 
Poisson’s Ratio γ 0.25 

 
For this inverse analysis of the structure, V3, the length of the elements, Poisson’s ratio and young 

modulus are assumed as known, while the inertia I and the shear area 𝐴𝐴𝑣𝑣 are assumed as unknown. Since 
no horizontal force is applied in this example, the axial resistant mechanisms are not activated. So the terms 
associated with axial behavior are removed from general SMM system of equations. Since the only two 
unknown parameters assumed in example 1 are 𝐴𝐴𝑣𝑣 and I, the measurement of at least two deformations is 
required to identify their values. Nevertheless, no set of vertical deflections enables the proper identification 
of the unknown parameters. To illustrate this inability of the method, the results of the SSI obtained with 
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the measurement set consisting of all 5 possible vertical deflections (this is v2 to v6 from figure 1.b) are 
presented. In this example, after the change of variable, the vector of unknowns {Z}, as it is presented in 
Eq. (9), include the unknown targeted parameters I and Q and some coupled unknown variables as Iwj and 
Qw, as well as the boundary reactions (H1, V1, V7). The general solution can be written as follows: 

As it expressed in the previous section (Eq. 9) when the associated row in matrix [𝑉𝑉] (the null space 
matrix) is null, the variable has a unique solution. In this example, the three rows of the null space (the ones 
corresponding with reactions H1, H7 and V7) are null. The general solution of these variables corresponds 
with the particular one and therefore, their solution is unique. In the next recursive step, the observed 
parameters are incorporated into the input of SSI by OM. Although these new inputs will update Eq. (10), 
the updated system of equations cannot observe any new variable. Hence, the recursive steps end and no 
additional information is observed. It is to remark that the only observed parameters correspond with the 
reactions of an isostatic structure which can be identified by equilibrium equations. This is not the case of 
the Inertia and the OM shear parameter, I and Q, as they appear strongly coupled with the rotations. These 
parameters cannot be observed as their null space is not null. This example illustrates the inability of OM 
to identify parameters when rotations are not included into the measurement set (even if as in this case the 
number of measurements exceeds the number of unknowns). As variables are strongly coupled, those 
equations dealing with including the effect of rotation cannot be used to solve the system, unless some 
rotations are included in the measurement set. In order to uncouple the variables in the system of equations 
properly, vertical deflection and rotation should be measured together. Otherwise, the system cannot be 
solved by OM. A mathematical explanation of this fact is that the null space rows associated with the inertia 
will not be zero, meaning that the parameters have not a unique solution. In order to enable the observability 
to identify structures without measuring rotations, a new procedure is presented in the following section. 
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3. SSI by COM 
 

One of the main characteristics of the OM is the linearization of the unknowns as products of unknowns 
are considered as new linear unknowns. For example, variable in Example 1, Iw1 corresponds in reality to 
the product of the inertia I and the rotation w1. Nevertheless, in the linearization it is considered as a unique 
Iw1, losing therefore any relation among the two multiplied terms (I and w1). This assumption, required to 
enable the application of OM in a linear system, might involve a significant loss of information. In order to 
uncouple the linearized products of unknown in traditional observability method, measurement sets have 
to mix rotations and deflections. Otherwise, the system cannot be solved. 

Lei et al. (2017) found that in OM, the nonlinear constraints among product variables are lacking. 
According to this work, the reduced observability produced by these characteristics is due to the following 
reasons: (a) the immature end of the recursive steps and (b) the ineffective measurements because of 
redundancy in the measurement sets (the same problem appearing in example 1). The Constraint 
Observability Method (COM) finds a solution to the OM adding some nonlinear constraints: the value of 
the solution of the coupled unknowns has to be equal to the product of the single unknowns. Hence, the 
system of equations is solved numerically after including the nonlinear constrains. In comparison with OM, 
COM does not provide any symbolic solution. In order to obtain results from COM, initial numerical values 
should be assigned to the unknowns. Any number can be used as initial value, but in order to ease the 
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convergence in the optimization process, a ratio with the theoretical values (e.g. between 0.5 to 1.5) is 
advised. 

In the COM (Lei.et al. 2017), variables are classified in one of the following three categories: (1) 
Coupled variables Vc ( Iwj and Qwj from example 1) ; (2) Single variables Vs1 ( I and Q from example 1), 
which already exist in the unknown {Z} vector; (3) Single variables Vs2 ( wj from example 1), which did 
not exist in the unknown vector {Z} from OM. The new vector {Z} is named {Z*} and it is a combination 
of vector {Z} and the new single variables Vs2. In order to create an objective function for a numerical 
optimization process and take into the account the new unknowns Vs2, Eq. (8) can be rewritten as:  

{∈} = �𝐵𝐵∗� · �𝑍𝑍∗� − {𝐷𝐷},   (11) 

where ∈ is the residuals of the equations which is a vector with the same number of rows of the original 
matrix B and  𝐵𝐵∗ = [𝐵𝐵𝑁𝑁𝑒𝑒𝑒𝑒×𝑁𝑁𝑧𝑧|Ω𝑁𝑁𝑒𝑒𝑒𝑒×𝑁𝑁𝑠𝑠2 ] is obtained by adding a null matrix Ω to the matrix B calculated 
from the last recursive step of SSI by OM. The size of this null matrix Ω is 𝑁𝑁𝑒𝑒𝑒𝑒 × 𝑁𝑁𝑠𝑠2. 𝑁𝑁𝑒𝑒𝑒𝑒 and 𝑁𝑁𝑧𝑧, explain 
the number of equations and the number of unknowns in {Z} respectively. 𝑁𝑁𝑠𝑠2 explains the number of new 
single unknowns in Vs2.  
 

 
Fig. 2 Flow chart of structural system identification by COM 

 
The objective function of the minimization problem is determined by minimizing the square sum of the 

residuals in Eq. (11). The optimization toolbox of Matlab (MATLAB and Optimization Toolbox Release 
2017b) has been used to obtain the optimal solution of the objective function. In order to limit the 
computational expenses and the time of the optimization process, the stopping criterion has to be defined. 
In order to reach a certain level of efficiency in the COM optimization process, variables of Eq. (11) can be 
normalized. 
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The algorithm for SSI by COM is summarized as follows: 
- Step 1: Apply SSI by OM to check whether any unknown is observed. If so, update the input and 

reinitiate OM until no new unknowns are observable. If full observability is achieved, there is no 
need to go to the COM process, otherwise go to the step 2. 

- Step 2: Obtain the equation (8) from the last step of OM recursive process then generate the new 
unknown vector of Z* included Coupled variables Vc; as well as single variables Vs1 and Vs2. 

- Step 3: Add a null matrix [Ω] to the matrix [B] to generate [𝐵𝐵∗], in order to contain Vs2 in Z* 
without violating system. 

- Step 4: Obtain the normalized unknown parameters. 
- Step 5: Guess the initial values of unknowns parameters of Z* vector, set the bound for the solution 

and solve the optimization process to find the minimized value for the residual vector, ∈.  
A summary of the procedure is shown in the flow chart in Figure 2. For more information about the 

COM, reader is addressed to (Lei.et al. 2017). 
The majority of SSI methods, is based on the Euler-Bernoulli beam theory. Originally, COM method is 

not able to consider the effect of shear in measurements. To include this phenomenon, in this work, 
equations are updated to the procedure proposed by Tomás et al. (2018). With this new updated method, 
the problem of linearization in OM variables is solved and equations related to shear stiffnesses are taken 
into account. In order to illustrate the applicability of the method the same structure from Example 1 is 
analyzed below. 

 
3.1  Example 1 revisited: simply supported beam with vertical deflections (COM) 
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The beam of example 1 is recalculated by the COM with the same parameters. The unknown inertia 
and shear parameter can be obtained not only with all possible vertical deflections (5 degrees of freedom) 
but also just with 2 deflections (e.g. v2 and v3). The {Z} vector of example 1 with just measuring v2 and 
v3 is presented in Eq. (12), but in order to apply COM, {Z∗} should be calculated. The vector {Z*} of 
example 1 with a measured vertical deflection in nodes number 2 and 3 is presented in Eq. (13). As 
highlighted in the previous section, in the COM, terms of {Z*} vector should satisfy certain nonlinear 
constraints, e.g. {𝑄𝑄1𝑤𝑤1 = 𝑄𝑄1.𝑤𝑤1}, these constraints are neglected in OM due to the linearity of equations 
which lead to a failure of the identification of the mechanical properties. 

Numerical information from Table 1 is multiplied by different random coefficients ranging from 0.5 to 
1.5 to generate initial values for COM process.  According to the results, the optimization converges to the 
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exact values of inertia and OM shear parameter after few iterations. In the following comparison, the 
evolution of shear area and inertia ratio throughout the iterative process for different initial values (0.5 for 
shear area and 1.5 for inertia) are presented in figures 3.a. and 3.b., respectively. 

  

  
(a) Evolution of shear area parameter ratio throughout 

the iterative process 
(b) Evolution of inertia ratio throughout the iterative 

process 
Fig. 3 Evaluation of shear area and inertia ratio throughout the iterative process 

 
 
This example far from proving the strength of COM, in the following section a more complex example 

is presented to illustrate the potential of the developed tool. 
 
3.2 Application to a composite bridge 

To illustrate the possible application of the COM to an actual structure, the problem of the construction 
of a bridge by the balanced cantilever method is presented here. In such a construction method, deflections 
have to be anticipated in advance to calculate the precamber with which the different segments of the 
structure have to be built. In order to update this precamber for every step during construction, a thorough 
topographic surveying is usually performed. This information can be used for model updating via an inverse 
analysis. Even though shear deflections might not play a very important role for a full developed cantilever, 
modelling error of not taking into account shear effects for the first segments, might lead to an inaccurate 
estimation of the bending stiffness. To illustrate this and the possible application of this method, a simplified 
model of the Yunbao Bridge over the Yellow River in China (see Fig. 4) is studied in this section. The 
structure span is 90m long. An intermediate construction stage is considered in this example. This model 
includes the construction of two symmetric cantilevers. The length of the standard deck segments is 4.5m 
and the length of the segment over the pile, 2.5m. The total length of the studied construction stage is 29.5 
m. The mechanical and material properties defined by the method of the transformed section (Chen, Y.S. 
et al. 1980) are listed in Table 2.   
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Fig. 4 Composite bridge on site (China) [53] 

 

 
Fig. 5 Definition of the load case: (a, b) Stage i. (c, d) Stage i+1. (e) Load case used for the inverse analysis 
 
 
Actual site data is not considered in this structure and the structural response is simulated numerically. 

Effects of creep and shrinkage in concrete are overlooked. The load test used simulates the movement of 
the formwork traveler (Fig. 5). The weight F of the formwork traveler (weight of formwork included) is 
considered as the 60 % of the weight of the segment (1041 kN). The effect of each form traveler in the deck 
is considered as two vertical forces. The values of these two forces are 0.25F and 1.25F (226 kN, upwards 
and 1267 kN, downwards). Load case of the bridge model is calculated by reducing the effects of the stage 
i (Fig. 5.a), from stage i+1 (Fig. 5.c), wherein the formwork traveler is moved forward to the next segment. 
Load cases of the stages i and i+1 are expressed in Figures 5.b and 5.d, respectively. The consequent load 
case introduced in the simulation is shown in Fig. 5.e. It is to highlight that the vertical resultant of such 
forces in each side of the cantilever is zero. 

This structure is simulated by the simplified FEM presented in Fig. 6.a. This FEM includes 7 elements 
and 6 point loads. Software Midas/Civil is used in order to calculate the vertical deflections in the nodes of 
the structure presented in Fig 6.b. For brevity, in the inverse analysis, young modulus of all elements are 
considered as known parameters. Due to the fact that axial stiffness is not activated in this example, only 
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flexural behavior is analyzed. For this reason, the terms related to the axial behavior are removed from 
equations (as axial stiffness are not activated with vertical forces). Because of loading case, shear area in 
elements number 3,4 and 5 are not activated, so shear area in these elements cannot be observed in the 
inverse analysis. The shear area and inertia of all other beam elements (that is to say I1, I2, I3, I4, I5, I6, I7 
and 𝐴𝐴𝑣𝑣1, 𝐴𝐴𝑣𝑣2, 𝐴𝐴𝑣𝑣6, 𝐴𝐴𝑣𝑣7) are assumed as unknowns.  

 
Fig. 6 Example 2. (a) FEM of the bridge with load case used for inverse analysis. (b) Variation of vertical 

deflections in this loading case with shear deformation. (c) New FEM with 13 nodes and 12 elements used for 
inverse analysis 

 
 

Table 2 Properties of the Finite Element Model of the Bridge 
Area [m2] 12.52 

Shear Area [m2] 9.83 
Inertia [m4] 35.62 

Steel Young’s Modulus [GPa] 210 
Concrete Young’s Modulus [GPa] 35 

Poisson’s Ratio γ 0.3 
 

In order to identify the 11 unknown mechanical properties at least, 11 measurements are required. As it 
was showed before, OM is not able to identify mechanical properties only with vertical deflections. 
However, it is examined and it is confirmed that no results were obtained with the measurement set of all 
possible vertical deflections (it is to say v1, v2, v3, v4, v5, v6, v9, v10, v11, v12, v13, v14, v15, v16) 
proposed for FEM presented in figure 6.c when traditional OM is applied. To observe parameters with OM, 
the variation of deflection and rotation should be taken into account. In order to observe parameters just by 
vertical deflection in bridge example, COM is applied. Table 3 presents the initial value coefficient of 
different unknown inertia and shear area which is randomly chosen between 0.5 and 1.5 for the optimization 
process.  

 
 

Table 3 Initial value coefficient of the Bridge Unknown Properties 
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I1 0.791 
I2 0.688 
I3 1.078 
I4 1.486 
I5 0.963 
I6 0.941 
I7 1.230 
Q1 1.312 
Q2 1.255 
Q6 0.944 
Q7 0.618 

COM managed to observe unknown shear area and inertia in 14 iterations, the evolution of shear area 
and inertia ratio throughout the iterative process are presented in Fig.7 a and b, respectively. 

 

  
(a) Evolution of shear area parameters ratio throughout 

the iterative process 
(b) Evolution of inertia ratio throughout the iterative 

process 
Fig. 7 Evolution of shear area and inertia ratio throughout the iterative process 

 
To prove the consistency of the new method, 200 analyses with random initial value coefficients 

between 0.5 and 1.5 are conducted for the bridge. From 200 analyses, in 62 analyses the optimization 
process was not convergent to the solution and no result was acquired, 37 results of optimization process 
were removed, due to the fact that the result did not have any physical sense (nonsense values e.g. negative 
values). The normalized average, standard deviation and coefficient of variation of the remaining results as 
well as the mode is presented in Table 4. 

 
Table. 4 obtained results from random initial values 
 Average CoV Standard deviation 

I1 1.000 0.001 0.000 
I2 1.000 0.002 0.001 
I3 0.975 2.279 0.791 
I4 0.993 12.229 4.324 
I5 0.969 2.888 0.996 
I6 0.999 0.004 0.002 
I7 1.000 0.001 0.001 
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Tomas et al. (2018) compared differences between the estimated flexural stiffnesses (𝐸𝐸𝐸̂𝐸) and the actual 
values (EI) in the seven elements of the bridge example without including the shear effects into the stiffness 
matrix of OM. According to this work when shear deformations are included into the measurements (error 
free measurements), significant errors (e.g. -65,5 % in segments 1 and 7 or +26,7% in segments 2 and 6) 
appear in the observed flexural stiffnesses in OM.  As it can be seen for table 4, these differences are greatly 
reduced with COM. 

However, the shear area of some elements is not activated due to the loading case, making impossible 
the observation of shear areas of elements 5, 6, 7 and 8. This example proves the efficiency of the proposed 
COM to estimate inertia when shear effects are taken into account.  

 
4. Conclusions 
 

Most Structural System Identification (SSI) methods neglect shear deformation as this phenomenon is 
usually negligible in comparison with flexural deformation. However, it can play a significant role in some 
structures. According to the literature, the only detailed study which addressed the particular effects of this 
deformation in static SSI tests is the observability method (OM). But due to the complexity and linearity of 
equations, observability method fails to observe parameters just by vertical deflection. To fill this gap, this 
paper introduces the effects of shear deflections on the constrained observability method (COM). This 
method adds some nonlinear constrains to OM. Hence, the complex system of equations is solved 
numerically after including the nonlinear constrains. 

A simply supported beam is studied, in order to show the inability of OM included shear effects to 
observe any parameter just by vertical deflections. To solve this problem, the formulation of constrained 
observability method (COM) is updated to include shear deformation. The COM performance in a simply 
supported beam shows the power of new method to observe value of parameters just by vertical deflection. 
Applicability of the COM on an actual thin web structure is studied an intermediate construction stage of a 
cantilever composite bridge in China. The results of this study shows that how the value of material 
properties can be observed by COM when the effects of shear are included in equations. Eventually, the 
results of COM are compared with the result of traditional OM when the effects of shear deformation are 
included into measurement sets, in order to illustrate the potential power of updated COM process. 
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Shear rotation analysis in stiffness matrix methods: A state 

of the art and application in the direct and inverse analyses. 
 

Seyyedbehrad. Emadi4a, Jose A. Lozano-Galant2b, Ye Xia*3, Jose Turmo1c 

1Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC) 
BarcelonaTECH, Barcelona, Spain. 

2 Department of Civil Engineering, University of Castilla-La Mancha, Ciudad Real, Spain. 
3Department of Bridge Engineering, Tongji University, Shanghai, China 

 
Abstract: According to Timoshenko’s beam theory, nodal rotations are produced by bending and shear 

effects. Bending rotations can be easily calculated by Euler-Bernoulli stiffness matrix method. On the other 

hand, shear rotations are traditionally neglected as their effects are practically negligible in most structures. 

In addition, calculating the effects of shear rotation in structures by stiffness matrix method have some 

limitations. Nevertheless, neglecting the shear effects might lead to significant errors in the simulation of 

some structural cases both in the direct and the inverse analysis. Although some inverse analysis methods 

including shear deformations have been recently presented in the literature. Nevertheless, all they failed to 

add shear rotations as they only focus on the analysis of the vertical deflections produced by shear. 

Therefore, when actual rotations on site are used to estimate the mechanical properties of the built elements 

by an inverse simulation, neglecting shear rotation effects might result in significant errors in the properties 

observed. To fill these gaps, after a thorough literature review, a set of parametric analyses is carried out to 

evaluate the role that shear rotation plays in the structural behavior of structures with different slenderness 

ratios. In addition, this paper studies, for the first time in the literature, the effect of shear rotations in the 

inverse analysis in order to show the importance of shear rotation in different structures. With this aim, the 
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analysis of the slenderness ratios enables to define in which structural systems shear rotation effects can be 

neglected in both direct and inverse analysis. 

Keywords: Structural system identification; Observability method; Shear rotation; Stiffness matrix method 

state of the art. 

1. Introduction 

Structural modeling is related to the simulation of the behavior of structures. It is achieved based on 

processes in which physical problems based on a set of simplifying assumptions are explicated into 

mathematical ones. There are many studies related to modeling the structural behavior of beams (e.g. [1-

3]). Most of these studies are based on either the Euler-Bernoulli [4] or the Timoshenko’s beam theory [5]. 

According to many scholars (see e.g. [6,7]) shear deformations are traditionally neglected in Euler-

Bernoulli’s beam theory approach as this theory assumes the plain section deformation. This assumption 

states that plane sections remain plane and perpendicular to the neutral axis during bending deformation [8] 

and accordingly, no shear strains appear. 

This theory fails for most loading cases, as the only loading case resulting in zero shear force is a constant 

bending moment alongside the beam. Hence, Euler-Bernoulli’s beam theory only holds for this particular 

case. This assumption traditionally used in slender beams, where shear deformations are usually smaller 

than the flexural ones, and therefore, their effect can be neglected. In these cases, the absence of shear 

strains and deformations can be considered as a modeling error [9].  Nevertheless, in structures lacking a 

unidimensional geometry (such as deep beams) shear deformation might play an important role and its 

effects should be introduced into the formulation [10].  Eurocode EN 1992-1-1 [11] characterizes deep 

beams as those which span is three times smaller than the overall section depth. ACI committee 318 [12] 

describes these beams as beams whose spans are equal to or less than four times the depth of the beam. 

Shear deformation effects can also play an important role in the other two dimensional structures, such as 

sandwich beams [13].  

Timoshenko [14,15] was the first one dealing with the shear effects in beams. In fact, he included the effects 

of both shear vertical deflections and shear rotations into this theory. In this approach (known as 

Timoshenko’s beam theory or first-order shear deformation theory) two different rotations are considered: 

rotation due to the bending, wb, and rotation due to the shear, wr. The difference between the two methods 

in a simply supported beam is presented in Figure 1. Also, this figure includes Euler-Bernoulli’s beam 

theory Figure 1.b and Timoshenko’s beam theory Figure 1.c. Shear rotation can be described as a difference 

between the derivative of deflection and the final cross-section rotation. 
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Fig.1 Beam theory on the beam support. (a) A simply supported beam with a zoomed support. (b) Euler-Bernoulli’s beam 

theory on the beam support. (c) Timoshenko's beam theory on the beam support. 

 
Timoshenko’s theory was improved by Mindlin [16], who simplified the transverse shear strain distribution 

as a constant distribution through the beam thickness. In this approach, a shear coefficient was used to 

appropriately represent the strain deformation energy in real structures. This shear coefficient can be used 

to include the effects of the non-constant shear stresses and strains in the members’ cross-section. To 

capture the variation of shear stress avoiding the use of shear coefficients, higher orders of shear 

deformation theories can be also considered (see e.g. [17,18]). This is the case of the Finite Element Method 

(FEM), which is a numerical problem-solving method [19-21]. To do so, large equations are divided into 

smaller and simpler ones. The concept of the FEM was first developed by Clough [22] for solving problems 

in solid-state mechanics (plate-bending problems to be more specific). Turner et al. [23] described the 

application of finite elements for the analysis of aircraft structures and is pointed to as one of the main 

contributions to the growth of the FEM. The FEM approach allows the continuum to be discreted into a 

finite number of elements and ensures that the characteristics of the continuous domain can be determined 

by combining the similar properties of discrete elements per node. Hutton [24] refers to FEM as the most 

powerful and common technique for computer-based analysis in engineering. In addition, this procedure 
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can be used for both simple and complex structures [25-27]. Consequently, the FEM has been thoroughly 

implemented to solve a broad range of problems in different fields of science and engineering and it has 

grown rapidly over the years [28,21] which makes FEM a numerically universal tool for solving differential 

equations. Indeed, the fast-growing recognition of Finite Elements methodology is associated with the 

computer's growth. This led to the rapid development of the process, which now offers the key for rational 

structural design and the analysis of aeronautical fluid dynamics and electric magnetism required for 

physics through various commercial and research codes [29]. All of the information concerning these finite 

elements methods were presented, along with numerous correspondents at a meeting held in Swansea in 

January 1964 and 1965 formally published [30] and several other seminars such as Fraeijs de Veubeke 

(1965). The most common FEM model in the analysis of the structures is the stiffness matrix method, where 

the solution that is currently used for complex structures is the method described as stiffness method, in 

which the displacements given to the ends (nodes) of an element are correlated with the forces at acting at 

these ends [31]. This method was initially proposed by Louis Navier [32] then, Alfred Clebsch [33] 

developed the method and studied more details of the Stiffness method. Clebsch, A. presented a succinct 

technique for the linear analysis to evaluate a moment-free 3D truss. In 1883 Barr´e de Saint Venant [34] 

studied the same problem (a French translation of [33] with more detailed discussions).  

Before the advent of computers, only a small number of unknown variables could be calculated by the 

stiffness method. Therefore, to deal with this problem Southwell [35], developed his relaxation methods. 

Although it is not practical for hand calculation to solve a complex problem with this method, the iterative 

process of elimination in his further studies (Southwell [36,37]), enables solving very complex problems. 

In addition, Turner 1962 [38], contributed to developing the stiffness method and formulated it in more 

detail. The main inconvenience for the more complex structures is that hand methods of analysis become 

excessively inapplicable. In the 1930s, a matrix form procedure was initiated to illustrate the whole process 

of linear equations in the stiffness method systematically. Now, this procedure is known as stiffness 

matrices method (SMM) [39–47]. SMM is one of the major common methods of the FEM approach for 

analyzing the structural behavior of beam-like structures [48-51], especially this method is suited for 

computer-analysis of complex structures [52] due to a large number of linear modules could well be 

constructed by matrices. In 1938 Fraser, et al. [53] published the first paper with the expression and 

terminology of the matrix system. This condition led to the development of matrix methods of analysis in 

the late 1940s and early 1950s (such as [54, 55]).  

Standard engineering methods can be employed in other areas of engineering. For example, electrical 

components can be assembled to form a circuit the same as the structure assembling bars. This concept was 
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already proven in [56]. In the analysis of designing aircraft which is described by Levy in 1937 [57], it is 

believed that all normal stresses are taken up by the spars and ribs and all shear stresses by the panels. the 

analogous approach was employed by Falkenheiner [58], Lang and Bisplinghoff [59], as well. Hrenikoff 

proposed a system for solving problems of linear elasticity [60]. a rectangular arrangement of the trusses 

model is presented by [61]. Related equations of SMM arised in electrical networks, and these follow 

similar formulations to structural engineering problems [62]. Similar to Kirchhoff and Maxwell, Gabriel 

Kron [63] explained a close comparison between electrical and mechanical networks for the solution of 3D 

frames in a complete matrix algorithm. He was the first one who considered these stiffness matrices along 

the diagonal of a large-scale matrix. Argyris made considerable progress in the use of matrices in structural 

engineering [64] applying the methods proposed by Kron. Clearly, the particular computational advantage 

of the SMM is about using a local definition of the shape function (known as stiffness matrix). It is a local 

assembly of the structure of matrix equations firstly presented by [65]. The purpose of their approach relies 

on the formation of a relationship between forces imposed at nodes of an element of a structure, and the 

displacement related to the force. Nowadays, There is a wide range of software packages available that 

address static and dynamic problems. 

Traditionally, the stiffness matrices method, also known as the direct stiffness method, is particularly 

suitable as one of the structural analysis methods for the computer-automated analysis of complex structures 

including the statically indeterminate type [42]. The SMM is mostly based on Euler–Bernoulli’s beam 

theory and the shear effects are neglected [66]. But in some structures (such as deep beams), shear 

deformations might play an important role and these effects cannot be ignored (see e.g. [9] ). Some authors 

proposed innovative stiffness matrices to include the shear effects into the SMM formulations [6, 67-70]. 

In beams, shear deformation can be analyzed by the sum of two components: (1) vertical and axial 

deflections, and (2) rotations. In order to include the effects of the shear rotation in SMM, some authors 

developed their mathematical models [71-77]. In these models, SMM formulations were too simple to 

consider shear rotation effects. In fact, specific boundary conditions were considered to remove unnecessary 

equations from the beam equilibrium system. But these methods have limited applicability as they can only 

be used in simple cases and their equations are different for each case. The first FEM for Timoshenko beam 

theory was proposed by McCalley [78], who developed a two-node, four-degree of freedom element 

(transverse displacement and cross-section rotation at every node). 

This FEM was extended to a tapered beam by Archer [72]. The values of the shear coefficient for different 

cross-sections were proposed by Cowper [79]. At the time Kapur [73] found that in a clamped-end element 

(such as the fixed end of a cantilever beam), Archer’s formulation could not represent the exact boundary 
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conditions (as the rotation due to shear is constrained to be zero). To deal with this problem, Kapur 

developed a new element based on a cubic displacement function for both the bending and the shear 

displacements. In this formulation both effects (shear rotation and bending rotation) were analyzed 

separately, resulting in an eight degree of freedom beam element. The FEM presented by Kapur works 

properly when there are four unknowns per node (such as in simply-supported beams and cantilevers). 

However, in complex structures, where adjacent elements are not collinear, Kapur’s element does not work 

properly. Different authors used slightly different approaches for their FEM’s and achieved almost the same 

results as Kapur. Various types of FEMs for Timoshenko’s beam elements are proposed in the literature. 

These methods are based on similar assumptions with small differences [80-82]. Thomas et al. [83] 

described many of the early models presented in the literature to deal with shear. He categorized the 

elements of these models into two classes: simple and complex. On the one hand, a simple element is 

considered with only two degrees of freedom at each of its two nodes. On the other hand, a complex element 

has more than four degrees of freedom (having nodes with more than two degrees of freedom or more than 

two nodes per element).  

According to the literature, a number of different SMM approaches can be found to include shear rotations 

into the simulation of simple and complex elements. But complex structural cases which have 

discontinuities in cross-sections or non-collinear elements can only be analyzed by the FEM’s whose nodal 

variables are bending rotation and transverse displacement [83]. It is important to notice that the effect of 

shear rotation is neglected in this SMM formulation. A detailed formulation of this type of common 

Timoshenko’s beam theory SMM can be found in many works, such as, for example, in Przemieniecki 

[84]. On the other hand, where, there are continuous cross-section or beam-column, several SMM based on 

Timoshenko's beam theory are proposed by different authors [85-88]. 

System Identification (SI) is a process to calibrate unknown parameters of a system that is employed in a 

number of different engineering fields [89]. One of the pioneers in this approach was Friedrich Gauss who 

developed the Gauss-Newton method of finding parameter values in a trajectory model for measuring the 

trajectories of the dwarf planet. SI has emerged in the area of electronic engineering and, after a while, has 

been applied to other engineering fields [90, 91]. Among its applications, it is to highlight the structural 

system identification (SSI). This approach uses the structural response to nondestructive tests to identify 

unknown structural parameters (such as axial or flexural stiffnesses) [92]. This approach is also known as 

the inverse analysis. A number of methods are presented for SSI in the literature (e.g. [93, 94]). Since SMM 

is a suitable technique for computer-based analysis in engineering, it is one of the major ways of doing this 

modeling [95-97]. The details of the main SSI methods presented in the literature can be found in ASCE 
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[98]. Among these procedures, it is to highlight the observability method (OM). This technique is based on 

the SMM and it has proved its efficiency in different structural cases such as frame structures, beams, 

trusses and cable-stayed bridges [99-106]. One of the main features of the OM is the linearization of the 

unknown variables. This assumption implies that a significant loss of information is possible. Constrained 

observability method (COM) proposed by Lei et al. [107] solved the linearization problem of OM by 

summing up some nonlinear constraints to the system of equations. Unlike OM, which is a mathematical 

approach, the COM approach solves the system numerically by minimizing numerical errors. The effects 

of shear deformations were included into the SSI Observability Method (OM) by Tomas et al. [9]. The main 

difficulty of this work is that it is based on the common Timoshenko SMM, and therefore, the method is 

not able to consider the effects of the shear rotations. There are more SSI methods based on SMM 

considering the effect of shear on their formulation (e.g. [80-82]), but effects of shear rotation are neglected 

in all of them since these effects are neglected in the formulation of the common Timoshenko SMM models. 

Therefore, it can be concluded that all SSI methods based on SMM are not able to consider the effects of 

shear rotation. As a result of this flaw, a new SMM method is required to consider the shear rotation in both 

simulation and SSI approach. 

The aim of this paper is to illustrate the importance of shear rotations, which are traditionally neglected in 

structural simulations due to the complexity of the equations and the reduced effects in most structures. 

These effects, however, might play an important role in some structures (such as deep beams) and 

neglecting them may lead to important errors in both the direct and the inverse analysis. In addition, a new 

method is presented to calculate shear rotations based on the SMM. In this method, the shear rotation is 

calculated separately and added to the bending rotation computed from SMM. In order to illustrate the cases 

where shear rotations cannot be neglected, a set of guidelines is proposed for different structures. 

This article is organized as follows: In Section 2, the SMM including shear vertical deformations is briefly 

presented. An example is analyzed to illustrate the inability of both the commercial software (based on 

SMM) and the common SMM to calculate the value of shear rotation. This inability to simulate shear 

rotations leads to wrong simulations of some structures (e.g. deep beams). In Section 3 a new method for 

analyzing the shear rotation in structures is presented. In addition, a parametric analysis of different 

structures is presented to illustrate the important role that shear rotations might play in some geometries. 

Moreover, the effects of neglecting shear rotation in the formulation of the SSI method for some structural 

cases with different slenderness ratios are analyzed. Also, in section 4, a more complicated structure is 

analyzed to show the ability of the new method to simulate a more complicated structure and effects of the 

neglecting shear rotation in the inverse analysis. Finally, the conclusions obtained are drawn in Section 5. 
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2.Shear deformation analysis on the stiffness matrix method 

This nodal equilibrium equation commonly used in Timoshenko’s SMM [108-110] can be presented as: 

[𝐾𝐾] · {𝛿𝛿} = {𝑓𝑓},      (1) 

where [K] is the stiffness matrix; {δ} is the displacements vector, which includes the horizontal, vertical 

and rotational displacements; and {f} is the external force vector, which includes the horizontal forces, 

vertical forces, and moments. Some methods are developed in the literature to include the shear effects into 

the SMM [80-82]. However, the complexity in the system of equations might produce the following 

problems: (1) failing to include the effect of the shear rotations. Those methods are considered as common 

Timoshenko’s beam theory SMM which are not able to consider shear rotation in their formulations (e.g. 

[84]), (2) methods based on assumptions that make impossible their application in general complex 

structures [83].  

In the 2D analysis, for a six degrees of freedom beam element (one horizontal deflection, u, a vertical 

deflection, v and a rotation w at the initial and final nodes) of length L and constant cross-section, the 

common Timoshenko’s stiffness matrix is showed in Equation 2: 
 

[𝐾𝐾] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐸𝐸𝐸𝐸
𝐿𝐿

0 0 −
𝐸𝐸𝐸𝐸
𝐿𝐿 0 0

0
12𝐸𝐸𝐸𝐸

𝐿𝐿3(1 + ∅)
6𝐸𝐸𝐸𝐸

𝐿𝐿2(1 + ∅) 0 −
12𝐸𝐸𝐸𝐸

𝐿𝐿3(1 + ∅)
6𝐸𝐸𝐸𝐸

𝐿𝐿2(1 + ∅)

0
6𝐸𝐸𝐸𝐸

𝐿𝐿2(1 + ∅)
𝐸𝐸𝐸𝐸(4 + ∅)
𝐿𝐿(1 + ∅) 0 −

6𝐸𝐸𝐸𝐸
𝐿𝐿2(1 + ∅)

𝐸𝐸𝐸𝐸(2 −∅)
𝐿𝐿(1 + ∅)

−
𝐸𝐸𝐸𝐸
𝐿𝐿 0 0

𝐸𝐸𝐸𝐸
𝐿𝐿 0 0

0 −
12𝐸𝐸𝐸𝐸

𝐿𝐿3(1 + ∅) −
6𝐸𝐸𝐸𝐸

𝐿𝐿2(1 + ∅) 0
12𝐸𝐸𝐸𝐸

𝐿𝐿3(1 + ∅) −
6𝐸𝐸𝐸𝐸

𝐿𝐿2(1 + ∅)

0
6𝐸𝐸𝐸𝐸

𝐿𝐿2(1 + ∅)
𝐸𝐸𝐸𝐸(2 −∅)
𝐿𝐿(1 + ∅) 0 −

6𝐸𝐸𝐸𝐸
𝐿𝐿2(1 + ∅)

𝐸𝐸𝐸𝐸(4 + ∅)
𝐿𝐿(1 + ∅) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

    (2) 

The stiffness matrix [K] includes the information of axial stiffness EA, flexural stiffness EI and the length 

of the element L, where E, I and A are Young modulus, inertia and area, respectively. A coefficient Ø 

(shear parameter) is present in some elements of Equation (2). This parameter is as follows: 

∅ =
12𝐸𝐸𝐸𝐸
𝐺𝐺𝐴𝐴𝑣𝑣𝐿𝐿2

 (3) 

where 𝐺𝐺 is the shear modulus and 𝐴𝐴𝑣𝑣 is the shear area, shear modulus might be written as: 
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𝐺𝐺 =
𝐸𝐸

2(1 + 𝑣𝑣) (4) 

zhere the coefficient 𝑣𝑣  is Poisson’s ratio. The effect of shear rotation is neglected in this stiffness matrix. 

As it explained in the literature, many authors tried to develop methods to add shear rotations to their 

stiffness matrices, but none of these methods can be applied in complex structural cases. In fact, even 

commercial simulation programs based on the stiffness matrix (such as SAP 2000 [26] and Midas [111] 

neglect shear rotations, too). In these software total rotations are equal to the bending rotations and shear 

effects are only considered in vertical deflections. To show the inability of these methods to calculate the 

total value of the rotations, an illustrative example is presented in the following section. 
 

2.1 Example 1: Simply supported beam  

Consider the 10 m long and 0.2 m wide simply supported beam modeled with 3 nodes and 2 beam elements 

depicted in Figure 2.a. This structure can be considered as a deep beam, where shear effects are not 

negligible. This beam has a constant cross-section and the value of its young modulus, shear area, cross-

sectional area and inertia along the beam are 30 GPa, 0.833 m2, 1 m2 and 2.083 m4, respectively. 

Dimensions of the beam cross-section are presented in Figure 2.b and its mechanical properties are listed 

in Table 1. The boundary conditions of the structure are horizontal and vertical displacements restricted in 

node 1 and vertical displacement restricted in node 3 (this is to say, u1=v1=v3= 0). The beam is subjected to 

a concentrated vertical force in node 2 of 100kN (V2= -100kN).  

 

Figure 2. Example 1: (a) FEM for a simply supported beam. (b)Dimensions of beam cross-section. 
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Table 1. Properties of the FEM of the simply supported beam. 

Properties (unit) Values 

Area [m2] 1.000 

Shear Area [m2] 0.833 

Inertia [m4] 2.083 

Concrete Young’s Modulus [GPa] 30.000 

Poisson’s Ratio γ 0.250 

 
To calculate the bending and shear response of the structure in this simple example, formulations based on 

Timoshenko beam theory can be used. The value of bending vertical deflections for the loading case 

presented in Figure 2.a, 𝑣𝑣𝑏𝑏 at mid-span be written in Eq. (5). From Timoshenko [15], the value of vertical 

deflection due to shear, 𝑣𝑣𝑠𝑠 at mid-span of this structure is calculated as in Eq. (6). Also, the value of bending 

rotation 𝑤𝑤𝑏𝑏  at node 1 is presented in Eq. (7). Where V1 is the shear force at note number 1. Shear rotation 

𝑤𝑤𝑠𝑠 at the node number 1 can be calculated from Timoshenko’s [15] assumptions as it is presented in Eq. 

(8). 

 𝒗𝒗𝒃𝒃 =
𝑽𝑽𝟐𝟐 ∗ 𝑳𝑳𝟑𝟑

𝟑𝟑 ∗ 𝑬𝑬 ∗ 𝑰𝑰
 

(𝟓𝟓) 

𝒗𝒗𝒔𝒔 = 𝑽𝑽𝟐𝟐
𝟐𝟐∗𝑨𝑨𝒗𝒗∗𝑮𝑮

∗ 𝑳𝑳                                                               (6) 

𝒘𝒘𝒃𝒃 = 𝑽𝑽𝟏𝟏∗𝑳𝑳𝟐𝟐

𝟒𝟒∗𝑬𝑬∗𝑰𝑰
                                                                   (7) 

𝒘𝒘𝒔𝒔 = 𝑽𝑽𝟏𝟏
𝑨𝑨𝒗𝒗∗𝑮𝑮

                                                                     (8) 

To show the inability of different structural analysis methods to calculate shear rotations, the vertical 

deflections and total rotations (sum of rotation due to shear and bending) of Example 1 obtained from 

Sap2000 [26], common Timoshenko SMM [84] and formulations based on Timoshenko beam theory are 

compared in Table 2. 

Table 2. Properties of the FEM of the simply supported beam. 

Methods Total rotation in node 
1 (rad) 

Bending rotation in 
node 1(rad) 

Total vertical 
deflection in node 2 

(m) 
SAP 2000 0.01 0.01 -0.058 

Common Timoshenko 
SMM 0.01 0.01 -0.058 

formulations based on 
Timoshenko beam 0.015 0.01 -0.058 
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As it can be seen in Table 2, the value of total rotation and bending rotation obtained by SAP2000 [26] are 

equal to each other which means the effects of shear rotations are neglected in this software. Also, the 

effects of shear rotations are disregarded in common Timoshenko SMM. In this particular case, the results 

of hand calculation for total rotations (0.015 rad) is 50 % higher than those obtained by the other analyzed 

methods. These results illustrate the important role that shear rotations might play and the fact that they are 

systematically neglected in most structural analysis methods (independently of the beam geometry). In the 

case of the vertical deflections, table 2 shows that all methods include properly the shear effects as the same 

results are obtained by all the analyzed procedures. Obviously, the magnitude of the shear rotations depends 

greatly on the beam geometry. To show in which cases shear rotation can be considered negligible and 

when it should be introduced into the simulation, a new simulation method is proposed in the following 

section and a parametric analysis performed. 

3.A simulation method for the shear rotations in beams 

To introduce the effects of shear rotation into the common Timoshenko’s SMM, a new procedure is 

developed in this section, as shown in figure 3. Firstly, the bending rotation of each node can be computed 

by the SMM. Then the shear rotation of each element is calculated by the formulations based on 

Timoshenko beam method presented in Eq. (8). According to this equation, the shear rotation for each 

element can be calculated only by shear forces, shear area and shear modulus. Shear area and shear modulus 

can be directly obtained from the mechanical properties of the structure, while the shear forces are obtained 

from the results of the SMM analysis. By summing up the value of shear and bending rotation the total 

rotation of each node can be obtained. The new method is summarized in the following three steps: 

- Step 1: Compute the bending rotation of each node by SMM.  

- Step 2: Calculate the shear rotation of each element with the shear forces obtained in Step 1.  

- Step 3: Obtain the total rotation at the end of each beam by summing up the value of the shear 

and the bending rotations obtained in Steps 1 and 2. It is to highlight that shear rotations are 

proportional to the shear diagram. Hence, discontinuities in the shear effort diagram introduced 

by point loads or reactions imply discontinuities in the shear rotations. Elements converging to 

the same node can have different rotations at this node.  

 

A summary of the procedure is shown in the flow chart in Figure 3. In the following sections, a set of 

parametric analyses using the new method is performed on beams with different geometry, to evaluate when 
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the effect of the shear rotation is significant. Also, an inverse analysis for a simply supported beam is 

performed to evaluate the sensitivity of the OM to the errors of the shear rotation measurements.  

 

Figure 3. Flow chart of the procedure of adding shear rotation to common SMM 

 

3.1 Example 1: Simply supported beam with a concentrated load 

Consider the cross-section of the simply supported beam presented in Figure 2.b. Material properties of the 

simply supported beam can be found in table 1. The boundary conditions of the structure are horizontal and 

vertical displacements due to bending restricted in node 1 and vertical displacement restricted in node 3 

(this is to say, u1=v1=v3= 0) and the only external force applied in this numerical loading test is a 

concentrated vertical force of 100kN (V= 100kN). To evaluate the effect of the shear rotations at node 

number 1, a parametric analysis is carried out. In this analysis, the length of the beam (L) varies from 1 to 

15 meters while the height (h) remains constant. As expected, Fig. 4 illustrates how the slenderer beam, the 

lower the effect of the shear deformation is. As presented in Fig 4.a, the shape of the shear rotation variation 

is linear which means the shear rotation variation is independent of the length of the beam and the value of 

shear rotation in different L/h is equal to 0.005 radians. But the values of bending rotations vary from 0.0025 
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to 0.5625 radians where the length to height ratios are between 1 to 15. The percentage of error when shear 

rotation is neglected for different L/h ratio is shown in Figure 4.b. For illustrative purposes, the limits of 2 

% and 5% are also indicated in this figure. The ratio limits for deep beams proposed by the Eurocode EN 

[11] and by the ACI Committee 318 [12] are highlighted.  

 

Figure 4. Example 1: (a) Rotation due to bending and shear at the node number 1. (b) Percentage of error in measurement in node number 1, 

when bending rotation is just considered. 

 

In Fig. 4.b, 5 % error is gained when L/h ratio is equal to 6.197. In the same way, a 2 % error corresponds 

to a beam length-to-height ratio of 9.914. Also, the measurement error in node 1 is 18.185 percent where 

the ratio of L/h is 3 (deep beam limitation by Eurocode EN) and it is 11.113 percent when the L/h ratio is 

4 (ACI Committee 318 proposed limitation). 

3.2 Example 2: Simply supported beam with a distributed load 

Consider a beam with the same material properties and boundary conditions of the simply supported beam 

presented in Example 1. The external force in this numerical loading test is a distributed vertical force of 

100/L kN applied alongside the beam, in such a way that the total load in the beam equals 100 kN. A 

parametric analysis is carried out to illustrate the role of the shear rotations.  The length of this beam is 

varied from 1 to 15 meters and the height of the beam is considered constant. As presented in Fig 5.a, the 

value of shear rotation in terms of the L/h ratio is equal to 0.005 radians and it is linear. The values of 

bending rotations are varied from 0.001 to 0.409 radians where the length to height ratios are between 1 to 

15. The percentage of error when shear rotation is neglected for different L/h ratio is shown in Figure 5.b.  
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The ratio limits for deep beams proposed by the Eurocode EN [11] and by the ACI Committee 318 [12] are 

highlighted. Moreover, the limits of 2 % and 5% error are also indicated in Figure 5. 

 

Figure 5. Illustration of example 1: (a) Rotation due to bending and shear at the node number 1. (b) Percentage of error in 

measurement in node number 1, when bending rotation is just considered.  

 

As it is expected, Fig. 5.a shows in deep beam effects of shear rotations are more than slender ones. In Fig. 

5.b, errors in rotations in different lengths of elements for node number 1 are presented, 5 % error is gained 

when L/h ratio is equal to 7.265. In the same way, a 2 % error corresponds to a beam length-to-height ratio 

is 11.639. Also, the measurement error in node number 1 is 23.409 percent where the ratio of L/h is 3 (deep 

beam limitation by Eurocode EN [11]) and 14.670 percent when the L/h ratio is 4 (ACI Committee 318 

[12] proposed limitation). 

3.3 Example 3: Cantilever Beam 

Consider a cantilever beam with the same cross-section and same properties as in Example 1 modeled with 

a single beam element and two nodes. The boundary conditions of the structure are total horizontal and 

vertical displacements and rotation due to bending restricted in node 1 (this is to say, u1=v1=wb1= 0). The 

only external force applied in this numerical loading test is a concentrated vertical force in node 2 of 100kN 

(V2= 100kN). A parametric analysis is carried out to evaluate the role of the shear rotations on node number 

2. In this analysis, the length of the beam is varied from 1 to 15 meters and the height of the beam is 

considered constant. As presented in Fig. 6.a, the shape of the shear rotation variation is linear and the value 

of shear rotation in different L/h is equal to 0.010 radians. But the values of bending rotations are varied 

from 0.020 to 4.501 radians where the length to height ratios are between 1 to 15. As it is expected, Fig. 6.a 

shows how in deep cantilever beams the effects of shear rotations are greater than those obtained in slender 
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ones. The percentage of error when shear rotation is neglected for different L/h ratio is shown in Figure 6.b.  

The ratio limits for deep beams proposed by the Eurocode EN [11] and by the ACI Committee 318 [12] are 

highlighted. Moreover, the limits of 2% and 5% are also indicated in Figure 6. 

 

Figure 6. Illustration of example 2: (a) Rotation deflection due to bending and shear at node number. (b) Percentage of error in 

measurement in node number 2, when bending rotation is just considered. 

 

In Fig. 6.b, 5 % error is expected when L/h ratio is equal to 3.118. In the same way, a 2 % error 

corresponds to a beam length-to-height ratio of 4.964. Also, the measurement error in node 2 is 5.264 

percent where the ratio of L/h is 3 (deep beam limitation by Eurocode EN [11]) and 3.031 percent when 

the L/h ratio is 4 (ACI Committee 318 [12] proposed limitation). 

3.4 Inverse analysis 

A major concern in SSI methods in actual structures is related to the errors in measurements. As SSI 

methods based on SMM are not able to consider the effects of shear rotation in complex structures, this 

phenomenon can lead to modeling errors. This is due to the fact that the rotation measured on-site will not 

correspond with the one considered by the model (shear rotations are neglected in the equations). 

Depending on the structure, these modeling errors can surpass measurement errors. These errors will appear 

even in noise-free measurements and they will affect the estimation of structural properties in SSI methods. 

To establish a guideline for different structural cases, a sensitivity analysis is developed in this section for 

the three previous structures (Example 1,2 and 3). In this analysis, the total rotation (sum of shear rotation 

and bending rotation) in different length to height ratio (1 to 15) is tested.  Effects of these errors in 

estimating the inertia in different structural cases (simply supported beam with a concentrated load of 
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example 1, simply supported beam with a distributed load of example 2 and cantilever beam of example 3) 

can be seen in Fig. 7. The ratio limits for deep beams proposed by the Eurocode EN [11] and by the ACI 

Committee 318 [12] are also indicated. The results of these analyses illustrate the cases where the 

calculation of shear rotation in SSI methods is important.  

 

Figure 7. Percentage of error in inertia estimation based on the length to depth ratio when shear rotation is not formulated in 

SMM. 

 

Where the ratio of L/h is 3 (deep beam limitation by Eurocode EN), the error in inertia estimation for a 

simply supported beam with a concentrated load, a simply supported beam with a distributed load and the 

cantilever beams are 18.179 %, 23.401 % and 5.262 %, respectively. in addition, when the L/h ratio is 4 

(ACI Committee 318 proposed limitation) the error in the estimation of inertia for a simply supported beam 

with a concentrated load, a simply supported beam with a distributed load and the cantilever beams are 

11.101 %, 14.665 % and 3.030 %, respectively. The results from Fig. 7 shows the fact that the effects of 

shear rotation on inverse analysis are even more important than in the direct one and the effects of shear 

rotations in the inverse analysis should not be neglected. 
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4.Example of application 

To show the applicability of the new method in complex structures, the problem of bridge construction by 

the balanced cantilever method is presented here. In this kind of construction method, the deflections of 

different segments have to be forecast, to build the new segments with the proper precamber. Precamber is 

updated for each step of construction after a thorough topographical survey. This data can be used by inverse 

analysis for model updating to increase the accuracy of the precamber calculations. Although shear 

deflections may not be very important for a fully developed cantilever, the modeling error due to the 

neglecting of shear effects for the first segments may lead to inaccurate estimations of bending stiffnesses 

[112]. The structure chosen for this example is a simplified model of an intermediate construction stage of 

the Yunbao Bridge over the Yellow River in China (see Fig. 8.a). The bridge includes a span of 

48m+9×90m+48m. It is a rigid frame-continuous composite bridge of 906 meters long. The height of the 

box girder beam ranges 5.5m to 2.7m from the supported end to the mid-span with a parabola curve of 1.8 

power [113]. The bridge is built on cantilever. The analyzed construction stage is 29.5 m long and contains 

3 segments of each side of the per segment (2.5 m) and a formwork traveler at the end of each span as it is 

presented in Fig 8.b.  
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Figure 8. Example of application: (a) Yunbao Bridge under construction in China. [113] (b) Sketch of the analyzed construction 

stage. 

The simplified geometry of the real bridge is analyzed. The connection between the concrete and the steel 

is assumed as rigid (total connection), and the relative slip between both materials is neglected. A typical 

cross-section of the composite deck is presented in Fig. 9.a. The FEM of the structure considered in this 

paper has 8 nodes and 7 elements and it is presented in Fig 9.b. The mechanical and material properties are 

listed in Table 3.  

 

 

Figure 9. Numerical analysis: (a) Cross-section of Yunbao Bridge in China. (b) FEM of the bridge 

Table 3. Properties of the Finite Element Model of the Bridge. 

Parameters Elements number 1 

and 5 

Elements number 2 

and 6 

Elements number 3 

and 7 

EA [m2] 4.33E+11 4.38E+11 4.43E+11 

GAv [m2] 1.10E+10 1.25E+10 1.43E+10 

EI [m4] 1.34E+12 1.69E+12 2.13E+12 

 

The load case used is derived from Fig. 10, where the weight F (1041 kN) of the formwork traveler (Fig. 

8.b) is assumed as 60 % of the maximum weight of the bridge segment. The effect of each form traveler in 

the deck is assumed as a pair of vertical forces of values 0.25F and 1.25F (226 kN, upwards and 1267 kN, 

downwards) as presented in Fig 10.a. the analyzed load case results from the combination of the loads 

applied by form traveler and the weight of the bridge segments. The segments loads are considered 
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distributed loads alongside segments. The resultant load case introduced in the simulation is shown in Fig 

10.b. 

  

 

Figure 10. Definition of the load case: (a) load case applied by formwork traveler. (b) Load case used for the analysis. 

 

The rotations in these 3 points are calculated by the proposed method. The results obtained from the new 

method and the ratio between the shear rotation and bending rotation can be seen in Table 4. 

Table 4. Rotation in nodes calculated by the new method. 

Node number 
Shear rotation 

ws (m) 

Bending rotation 

Wb (m) 

Percentage of error in 

the model (ws/wt) 

Node number 1 -1.23E-04 -1.29E-04 48.93% 

Node number 2 -1.68E-04 -1.16E-04 59.08% 

Node number 3 -2.17E-04 -7.90E-05 73.28% 

 

In this example, the maximum error in the calculations of shear rotations will be on node number 3. This 

will lead to an error in the calculation of the bending stiffness of element 3 of 73.420%. In comparison with 
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results from other Timoshenko’s beam methods, obtained results prove the potential power of the proposed 

method. Also, they show the applicability of the new method where cross-sections are discontinued, 

elements are non-collinear and there are external loads applied in the different elements. It is important to 

highlight that no other Timoshenko beam theory FEM in literature is able to calculate total rotation 

(including both shear and bending effects) in structural schemes with such features. 

 

5.Conclusions 

Matrix form procedure of stiffness method was initiated to illustrate the whole process of linear equations 

in the method systematically. Especially this method is suited for computer-analysis of complex structures 

due to a large number of linear modules that could well be constructed by matrices. Stiffness matrix methods 

are used normally to analyze complex structures neglecting shear rotations. The literature review also shows 

a lack of stiffness matrix methods able to calculate shear rotations in models no collinear, discontinued and 

with external loads. Also, all Structural System Identification (SSI) methods reviewed in literature neglect 

rotation due to shear in their formulation as this phenomenon is usually less significant than the bending 

rotation. Despite the important role that this rotation might play especially in members with a low span-to-

depth ratio, no detailed study addressing the particular effects of this rotation in inverse analysis can be 

found in the literature. To fill this gap, this paper presents the first study focused on shear rotation effects.  

To show how important the role of shear rotation might be, several different structures (a simply supported 

beam with a concentrated load, a simply supported beam with a distributed load and a cantilever with a 

concentrated load) with different length to height ratios are studied. In fact, these examples illustrate that 

the difference between Timoshenko’s theory and Euler-Bernoulli’s theory in terms of rotation is higher for 

members with low length-to-height ratio. In fact, for deep beams ratio between the shear rotation and 

bending rotation can be significant. Also, a model of a bridge built in cantilever is analyzed to show the 

applicability of the method. It should be mentioned that no other Timoshenko beam theory FEM in literature 

is able to calculate total rotation (including both shear and bending effects) in a structural model including 

the same features. 

For the first time in literature, the sensitivity of the SSI methods to this modeling error is performed. The 

study of this sensitivity analysis might provide some insight into which structures rotation due to shear 

should be taken into account and in which cases these effects can be neglected.  
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ABSTRACT: 
 
Shear deflection effects are Traditionally neglected in most structural system identification methods.  
Unfortunately, in some structures, like deep beams, this assumption might lead to significant errors. 
Although some inverse analysis methods based on the stiffness matrix method including shear deformation 
effects have been presented in the literature, none of these methods is able to deal with actual rotations on 
their formulations. Recently, the observability techniques, one of the first methods for the inverse analysis 
of structures included the shear effects. In this approach, Timoshenko’s beam theory was Introduced into 
the stiffness matrix method. The effects of shear rotation are neglected in the common Timoshenko’s beam 
theory stiffness matrix methods. When actual rotations on site are used to estimate the mechanical 
properties in the inverse analysis, it can result in serious errors in the observed properties. This characteristic 
might be especially problematic in structures such as deep beams where only rotations can be measured. 
To solve this problem and to increase the applicability of the observability techniques this paper proposes 
a new approach to include shear rotations into the inverse analysis by observability techniques. This 
modification is based on the introduction of a new iterative process. To illustrate the applicability and 
potential of the proposed method, the inverse analysis of several examples of growing complexity is 
presented.   

Keywords: Structural system identification; Observability method; Shear rotation; Stiffness matrix 
method. 

1.Introduction:  
Structural modeling is associated with the simulation of structural response. This goal is traditionally 
achieved by transforming physical problems into mathematical ones based on a number of assumptions and 
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hypotheses. Many studies are performed to the model of the beam structural response [e.g. 1 2 34] and most 
of them are based on either Euler-Bernoulli’s beam theory [5] or Timoshenko’s beam theory (known as 
first-order shear deformation theory) [6]. Due to the plain section deformation assumption, shear 
deformations are neglected by Euler-Bernoulli’s beam theory (see e.g. [7,8]). This theory states that plane 
sections remain perpendicular to the neutral axis during and after bending deformation [9], and accordingly 
that shear forces and stresses are zero. Euler-Bernoulli’s beam theory only holds for cases wherein constant 
bending moments are applied alongside the structures. Therefore, Euler-Bernoulli’s beam theory is usually 
applying for slender beams With negligible shear deformations and in this approach, shear effects are 
considered modeling errors [10]. Nevertheless, in some structures (such as deep beams), the shear 
deformation cannot be neglected and it must be included into the formulation [11]. The definition of these 
deep beams might differ slightly from one code to the other. For example, on the one hand, Eurocode EN 
1992-1-1:2004 [12] characterizes deep beams as beams with slenderness wherein the beam span is three 
times less than the overall section depth. On the other hand, ACI committee 318 [13] describes these beams 
as beams wherein beams spans equal to or less than four times of the depth of the beam. 

Timoshenko [14,15] was the first one who introduced the shear effects into beams with the so-called first-
order shear deformation theory. In fact, the shear effects are included in his theory in both the vertical 
deflections and the rotations. In Timoshenko’s beam theory rotation due to the bending, wb, and rotation 
due to the shear, wr are considered separately and analyzed independently. In this theory rotation between 
the cross section and the bending line is allowed. The differences between methods in a simply supported 
beam with concentrated load, V at mid span are presented in Figure 1. Where Euler-Bernoulli’s beam theory 
(Fig. 1.b) and Timoshenko’s beam theory (Fig. 1.c) at the zoomed support of Fig 1.a can be seen. 
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Figure 1. (a) A simply supported beam with a zoomed support. (b) Euler-Bernoulli’s beam theory on the beam support.  (c) 

Timoshenko's beam theory on the beam support. 

 
Finite Element Method (FEM) is a numerical problem-solving method based on a concept in which large 
equations are divided into smaller and simpler equations. FEM is a common technique for computer-based 
analysis in engineering [16]. The Stiffness Matrix Method (SMM) is one of the major methods of FEM 
approach for analyzing the structural Response of beam-like structures [20-24], especially suited for 
computer-analysis of complex structures [17]. Recently, Emadi et al. (2020)  reviewed the different models 
which are based on Timoshenko’s beam theory. According to this work, a number of SMM approaches 
included shear rotation into their SMM’s formulations. However, most of these methods fail to simulate 
structural cases with discontinuities in the cross sections, meeting non-collinear elements or imposed loads 
in the different elements. The only SMM can analyze these cases are the FEM’s that nodal variables are 
bending rotation and transverse displacement (the effects of shear rotation are neglected in this SMM 
formulation). It should be mentioned that none of these methods take into account the shear rotation effects. 
Many works, for instance, in Przemieniecki [18], contain a detailed formulation of the common 
Timoshenko beam theory SMM.  This stiffness matrix overlooks the effect of shear rotation. Indeed the 
effects of shear rotation are neglected even in commercial simulation software based on the stiffness matrix 
(such as SAP 2000 [19]). In these programs simulated rotations are equal to the bending rotations, the shear 
effects only are considered in the vertical deflections.  

System Identification (SI) represents a modeling process for unknown variables in a certain system of 
equations used in various engineering fields [20 21]. The SI goal is to be able to characterize adequately 
the parameters of a certain system. since its introduction, it has been extended to most engineering fields 
[22  23]. Structural system identification (SSI) can be framed in the context of the SI that deals with the 
design of mathematical models. These mathematical models are used for the structural response for 
identifying the structural parameters (like flexural stiffnesses or axial stiffnesses) [5].  
In the literature, several methods for SSI are proposed (e.g. [24 25 26]). Most of them are based on the 
SMM (see e.g. [27 28 29 30]). The details of the main SSI methods are shown in the literature are addressed 
in [36F31]. Most of SSI methods are not able to quantify correctly the parameters of structures when shear 
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effects are not negligible. This can be explained by the fact that most SSI methods based on SMM normally 
use Euler-Bernoulli’s beam theory (see e.g. [32 33]), this assumption underestimates deflections and 
overestimating the natural frequencies since the shear effects are disregarded [34]. The effects of shear 
deformations in their SMM models are studied by some authors [35 36]. As Emadi et al. (2020) showed, 
the effects of shear rotations are neglected in the SMM; therefore, these effects are neglected in SSI methods 
based on SMM. Although the neglecting of shear rotation can produce error in the result of SSI methods, 
normally these errors can be overlooked. Nevertheless, in some structures (such as deep beams) shear 
effects might play an important role. In these cases, shear effects should be introduced into the formulation 
in order to reduce the errors of SSI methods.  
 
Obviously, shear rotations are practically negligible in beam like structures. Nevertheless, in some cases 
these effects are considerable and the inability of considering these effects should be considered modeling 
error (error in modeling the structure). The observability method (OM) is an SSI method based on the 
system of equations of the SMM. In this procedure, the mechanical properties (e.g. Flexural stiffness EI) 
can be quantified from the deformations measured in static tests. OM has proved its efficiency in different 
structural typologies (such as trusses, beams, frame structures, and cable-stayed bridges) [37 38 39 40 41 
42 43]. The analysis of these structures is based on a polynomial systems of equations, and it is not as 
simple as it may look due to the coupled equations. To solve this problem, a numerical optimization 
approach (constrained observability method (COM)) [44] can be used to decouple the coupled linearized 
variables. Recently, Emadi et al. (2020) included the effects of shear deformations into the Constrained 
Observability Method (COM). Unfortunately, this application (like other SSI methods based on SMM in 
the literature) is not able to take into account the actual rotations as shear rotation effects are not included 
into the formulation.  

The aim of this paper is to fill this gap by presenting a new method based on OM to observe the material 
properties from actual rotations measured on-site for any kind of structure (even in those where the shear 
rotations are not negligible). To do so, an iterative process is proposed. In this process, estimated shear 
rotations are subsequently subtracted from the actual rotations on site. Then the normal COM can be 
performed in terms of bending rotations and bending and shear vertical deflections. Also, in iterative steps, 
the properties of the assumed material are successively updated from the inverse observations. 

This article is organized as follows: In Section 2, a brief explanation of both the OM and the COM are 
presented and the importance of shear rotation is discussed. In Section 3 a new method for analyzing the 
effects of the shear rotation in COM is presented. In Section 4, different structures are analyzed to show the 
important role that shear rotations might play in some geometries.  Moreover, the applicability and accuracy 
of the new method in different structures are presented. Finally, the conclusions obtained are drawn in 
Section 5. 
 

2.Explanation of the observability method and assumptions  
For the SMM, the equations of nodal equilibrium might be written as: 

[K] · {δ} = {f},    (1) 
where the horizontal, u, vertical, v and rotational displacements, w are parts of {δ}, the stiffness matrix [K] 
covers information about axial stiffness EA, flexural stiffness EI and the length of the element L. The 
horizontal forces, vertical forces, and moments are included in the external force vector {f}.  
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The main disadvantages of this method are the complexity in the system of equations might lead to the 
following problems: (1) they are not able to include the effect of shear rotation into the SMM methods, 
these methods are considered as common Timoshenko’s beam theory SMM (e.g. Przemieniecki [15]), (2) 
methods which consider the effects of shear rotation due to some assumptions, they are not applicable in 
general complex structures Emadi et al. (2020). In the OM, as in any inverse tool, some parameters of the 
nodal displacements {δ} are measured on-site to identify the unknown mechanical properties in the SMM 
when the geometry, the boundary conditions, and the load case in a certain static load test are determined. 
To do so, equation 1 can be rewritten as presented in Eq. (2), where all the known quantities are collected 
into the coefficient matrix [𝐵𝐵] and the vector {𝐷𝐷} . Therefore, [𝐵𝐵]  and {𝐷𝐷} are known, while all the 
unknowns are placed into the vector {Z}.  Eq. (2) can be solved to observe unknown equations with the 
help of algebraic operations. for more information, readers are recommended to review [50F45 35]. 

[𝐵𝐵] · {𝑧𝑧} = {𝐷𝐷},    (2) 

In the OM the linearity of the system is assumed and coupled product of variables (and products of variables 
such as Young Modulus E and Inertia I are considered as a unique variable EI). Where NA is the unknown 
axial stiffnesses and NF is the unknown flexural stiffnesses. Theoretically, the number of measurements 
should be at least equal to the number of unknowns; therefore, NA + NF measurements are expected to be 
enough to observe all unknown parameters. Lei et al. [47] found that due to lack of nonlinear constraints 
among product variables in OM, in most cases, it is not able to observe material properties with minimum 
required measurements. Lei et al. [47] proposed COM which solves the system of equations numerically 
after including the nonlinear constraints. This is to say that COM does not provide any symbolic solution. 
As they are only based on the numerical solution of the system. For this reason, in order to produce results 
with COM, initial numerical values should be assigned to the unknown parameters. The procedure of COM 
can be initiated with any number as the initial value, but in order to speed up the convergence in the 
optimization process, a random ratio between 0.5 to 1.5 of the theoretical values is normally proposed. In 
order to apply the optimization process, the objective function of COM can be defined as follow: 

{∈} = �𝐵𝐵 � · �𝑍𝑍 � − {𝐷𝐷},   (3) 

Where {∈} is the residuals of the equations which is a vector with the same number of rows as the original 
vector {Z}. The objective function of the optimization process is to minimize the square sum of the 
residuals, ∈ in Eq. (3). The optimization toolbox of Matlab [46] has been used to obtain the optimal solution 
of the objective function. Before starting the optimization process the objective function should be 
normalized. The algorithm for SSI by COM is summarized as follows: 

- Step 1: Apply SSI by OM to check whether any variable is observed. If all unknown parameters 
are observed, there is no need to go to the COM process, otherwise, go to step 2. 

- Step 2: Obtain the equation (2) from the OM and generate the objective function. 
- Step 3: Obtain the normalized unknown parameters. 
- Step 4: Guess the unknowns parameters' initial values, apply bounds for the solution and solve the 

optimization process, in order to find the least acceptable value for vector {∈}.  
For more information about the COM, the reader is addressed to [47]. 

 



Appendix 3 | Seyyedbehrad Emadi 
118 
 

 

  
Figure 2. Flow chart of structural system identification by COM.  

Since the COM method was based on Euler-Bernoulli’s SMM, it was not able to consider the effects of 
shear deflections. This problem was solved by Emadi et al. (2019) who introduced the effects of shear 
deformation into the COM process. Due to lack of considering shear rotation in SMM, COM is not able to 
observe the value of material properties, correctly when rotations are included into the measurement sets. 
This method is not suitable for measuring rotations as wrong results are obtained even in noise-free 
measurements when this type of deformations is considered. Emadi et al. (2020) studied the effects of this 
impotence in considering shear rotations in SSI methods based on SMM. In this work, the theoretical 
rotations (sum of shear rotation and bending rotation) were tested in beams with different geometries (1 to 
15 length to height ratio).  Effects of these errors in estimating the inertia in different structural cases of a 
simply supported beam with a concentrated vertical force; simply supported beam with a distributed vertical 
force and a cantilever with a concentrated vertical force were tested. As Emadi et al. (2020) showed, the 
effects of neglecting shear rotation in inverse analysis were not negligible, even in the cases that beams 
cannot be considered a deep beam(based on Eurocode EN [12] and by the ACI Committee 318 [13]).  

3. Proposed methodology 

A new procedure is developed in this section in order to introduce the effects of shear rotation into the SSI. 
In this procedure, firstly, material properties are assumed randomly (between 0.5 to 1.5 of theoretical 
values). Then the shear rotation of each element is calculated based on assumed material properties. The 
Eq. (4) can be used for calculation of shear rotation, 𝑣𝑣𝑠𝑠 in each element based on Timoshenko's beam theory 
[13,14]. 
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𝑣𝑣𝑠𝑠 =
𝑉𝑉

2 ∗ 𝐴𝐴𝑣𝑣 ∗ 𝐺𝐺
∗ 𝐿𝐿 

 
(4) 

where 𝐴𝐴𝑣𝑣 is the shear area, 𝑉𝑉  is the shear force and shear modulus 𝐺𝐺 might be written as: 

𝐺𝐺 = 𝐸𝐸
2(1+𝑣𝑣) , (5) 

where the coefficient 𝑣𝑣  is Poisson’s ratio. According to Eq. (4), the shear rotation for each element only 
depends on shear forces, shear area and shear modulus. On the other hand, shear area and shear modulus 
are directly obtained from the assumed mechanical properties of the structure, while the shear forces can 
be obtained from the results of the direct SMM analysis. By subtracting the value of shear rotation from the 
theoretical rotation of each node bending rotation can be obtained (theoretical rotation is the sum-up of 
shear and bending rotation).  Therefore, The COM process is able to be used due to the fact that the SMM 
is defined on the assumption of neglecting the effects of shear rotation. In order to reach a certain level of 
efficiency in this procedure, the observed value of COM process can be used for calculating new shear 
rotations and iterative process can be performed several times. In order to limit the computational cost and 
the optimization time, the stopping criterion was defined with the following stopping criteria: 1) when the 
iterative process is performed more than 200 times and 2) when the difference between normalized values 
of observed material properties in 2 subsequent iterative processes are less than 1e-3. The new method is 
summarized in the following 4 steps: 

- Step 1: Assume material properties, randomly (real value multiply by a coefficient between 0.5 to 
1.5)  

- Step 2: Calculate the shear rotation of each element from the assumed material properties. It is to 
highlight that the material properties can be obtained through either estimated values (for the first 
time) or observed material properties in COM procedure (in the iterative process). 

- Step 3: Obtain the bending rotation from the calculated shear rotation in step 2 and perform COM 
procedure.  

- Step 4: Check the stopping criteria if one of them is satisfied, the process stops, otherwise go to 
step 2.  

 

A summary of the procedure is shown in the flow chart in Figure 3. In the following sections, a set of 
examples with growing complexity are analyzed in order to show the applicability and potential of the 
proposed method.  
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Figure 3. Flow chart of COM by 2 iteration process.  

 

4. Applications 
In order to show the applicability of the new method, several examples with different levels of complexity are 
analyzed in this section. It is to say that due to the fact that there is no horizontal force in these examples, the 
axial resistant mechanisms are neglected in this example. Also, measurement errors in this paper are neglected. 
The effects of these unavoidable errors will be considered in the next study by the authors.  
 
4.1 Example 1: simply supported beam with 2 iteration process  
Consider the 4 m long and 0.2 m wide simply supported beam modeled with 3 nodes and 2 beam elements depicted 
in Figure 4. This beam has a constant cross-section and the value of its Young modulus, shear area, cross-sectional 
area and inertia along the beam are 30 GPa, 0.800 m2, 1 m2 and 2.083 m4, respectively. Its mechanical properties are 
listed in Table 1. The boundary conditions of the structure are horizontal and vertical displacements restricted in node 
1 and vertical displacement restricted in node 3 (this is to say, u1=v1=v3= 0). The beam is subjected to a concentrated 
vertical force in node 2 of 100kN (V2= 100kN).  
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Figure 4. Example 1. FEM for a simply supported beam with the value of rotation on Node 1 and vertical deformation at Node 2. 

 
Table 1. Properties of the FEM of the simply supported beam. 

Area [m2] 1.000 

Shear Area [m2] 0.800 

Inertia [m4] 2.083 

Concrete Young’s Modulus [GPa] 30.000 

Poisson’s Ratio γ 0.250 

For the inverse analysis of the structure, V2, the length of the elements, Poisson’s ratio and Young modulus are 
assumed as known, while the inertia, I and the shear area 𝐴𝐴𝑣𝑣 are assumed as unknown. To define the two unknown 
parameters assumed in example 1 are 𝐴𝐴𝑣𝑣 and I, a measurement set of at least two rotations is required to identify the 
values of unknowns. Nevertheless, no set of two rotations in COM enables the proper identification of the unknown 
parameters. Therefore, a set of a vertical deflection and a rotation should be measured together (it is to say w1 and v2). 
The values of measurement set are obtained from Timoshenko’s beam theory simulation can be seen in Fig 4. Table 
2 presents 10 different sets of the initial value coefficients for inertia and shear area which is randomly chosen between 
0.5 and 1.5 for the optimization process.  

Table 2 Initial value coefficient of the Bridge Unknown Properties 

I Q 
1.25   0.94 
  0.66 0.95 
1.29 0.58 
 0.81 0.73 
 1.03 1.41 
0.67 0.65 
1.10 1.33 
0.76 1.04 
1.15 1.50 
1.19 0.58 

In the following comparison, the evolution of the normalized values of the shear area and inertia ratio throughout the 
iterative steps for different initial values are presented in figures 5.a. and 5.b, respectively.  
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Figure 5. (a) Normalized values of inertia in different iterative steps. Where Î is the estimated value of inertia area and It is the 
exact value of inertia. (b) Normalized values of shear area in different recursive steps. Where Av�    is the estimated value of shear 

area and Avt is the exact value of shear area.     
 
In Fig. 5.a, the criterion is satisfied after 10 iterative steps for the initial value of 1.024 and the normalized value 
of inertia is gained equal to 1.003. In the same way, after 6 iterative steps, the criterion is satisfied for the shear 
area when the initial value is 0.58. Also, the final normalized value of observed shear area is 0.999. It is to say 
that if traditional COM (with lack of ability to consider shear rotation) is applied in this example, the observed 
normalized value of inertia and shear area will be 0.277 and 1.600, respectively. This example illustrates the 
inability of traditional COM to identify the correct value of parameters when theoretical rotations are considered 
in the measurement set. 
 
3.2 Example 2: Cantilever beam with 2 iteration process 
Consider a cantilever beam with the same cross section and same properties as in Example 1 modeled with one beam 
element and 2 nodes as it is presented in Fig 6. The boundary conditions of the structure are total horizontal and 
vertical displacements and rotation due to bending restricted in node 1 (this is to say, u1=v1=wb1= 0). The only external 
force applied is a concentrated vertical force in Node 2 of 100kN (V2= 100kN). V2, the length of the elements, 
Poisson’s ratio and Young modulus are assumed as known in the inverse analysis, while the inertia I and the shear 
area 𝐴𝐴𝑣𝑣 are assumed as unknown. Since the only two unknown parameters assumed in example 2 are 𝐴𝐴𝑣𝑣 and I, a 
measurement set of at least two rotations is required to identify their values of unknowns. Nevertheless, no set of two 
rotations in COM enables the proper identification of the unknown parameters. Therefore, a set of vertical deflection 
and rotation should be measured together in this example. To perform the COM, a measurement set that consists of 
one rotation and one vertical deflection (w2 and v2) is employed. The theoretical rotation and vertical deformation are 
presented in Fig. 6. it is to say that the measured values are obtained from Timoshenko’s beam theory. 
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Figure 6. Example 2. FEM for a cantilever beam with the value of vertical deformation and rotation at Node 2. 

In the following comparison, the evolution of the normalized values of the shear area and inertia ratio 
throughout the iterative process with 10 different initial values which are randomly selected between 0.5 
and 1.5 are presented in figures 7.a. and 7.b, respectively. The initial value coefficients are presented in 
Table 3.  

Table 3 Initial value coefficient of the Bridge Unknown Properties 

I Q 
0.61     0.93 
1.46     1.41 
0.50    0.68 
1.27     0.76 
1.32     0.65 
1.37     0.64 
0.58     1.37 
0.90     1.08 
0.76     1.05 
1.30     0.65 

 

 
 
Figure 7. (a) Normalized values of inertia in different iterative steps. (b) The normalized values of shear area in different iterative 

steps.  
 

In Fig. 7.a, the iterative steps for observing inertia stops after 11 steps for the initial value equal to 0.85 and 
the normalized value of Inertia is equal to 0.999. In the same way, the final result of shear area which is 
obtained after 11 iterative steps is 1.006 with the initial value of 1.13. Also, the observed normalized values 
of the traditional COM process for this example are 0.562 and 3.000 for Inertia and shear area, respectively. 

 

3.3 Example 3: Application to a composite bridge 
To show the possible application of the two iteration process, the problem of the construction of a bridge 
by the balanced cantilever method is presented here. In these structures, deflections should be anticipated 
in advance in order to calculate how to build the precamber structures in the different segments. to update 
this precamber structure for every step during construction, complete topographic surveying is usually 
performed. Therefore, an inverse analysis can be employed for providing information for this model 
updating process. However, shear effects might not play a very important role for a full developed 



Appendix 3 | Seyyedbehrad Emadi 
124 
 

 

cantilever, neglecting the effects of shear rotation in the first segment will lead to the unreliable estimation 
of the bending stiffness. A simplified model of the Yunbao Bridge over the Yellow River in China (see Fig. 
8) is studied in this section to show the Applicability of the new method to solve this problem. The structure 
span is 90m long, but only an intermediate construction stage is considered in this example. The studied 
construction stage includes the construction of two symmetric cantilevers. The length of each deck segment 
is 4.5m and the length of the segment over the pile is 2.5m. The total length of the model is 29.5 m. The 
mechanical and material properties are defined by the method of the transformed section [47] are listed in 
Table 4.  
 

Table 4. Properties of the Finite Element Model of the Bridge. 

Area [m2] 12.52 

Shear Area [m2] 9.83 

Inertia [m4] 35.62 

Steel Young’s Modulus [GPa] 210 

Concrete Young’s Modulus [GPa] 35 

Poisson’s Ratio γ 0.3 

 
 

 
Fig. 8 Composite bridge on-site (China) [48] 

 
Actual site data is not considered in this structure and the structural response is simulated numerically. 
Effects of creep and shrinkage in concrete are neglected. The load test used simulates the movement of the 
formwork traveler (Fig. 9). The weight F of the formwork traveler (weight of formwork included) is 
considered as the 60 % of the weight of the segment (1041 kN). The effect of each form traveler in the deck 
is considered as two vertical forces. The values of these two forces are 0.25F and 1.25F (226 kN, upwards 
and 1267 kN, downwards). Load case of the bridge model is calculated by reducing the effects of stage i 
(Fig. 9.a), from stage i+1 (Fig. 9.c), wherein the formwork traveler is moved forward to the next segment. 
Load cases of the stages i and i+1 are expressed in Figures 9.b and 9.d, respectively. The consequent load 
case introduced in the simulation is shown in Fig. 9.e. It is to highlight that the vertical resultant of such 
forces in each side of the cantilever is zero. 
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Fig. 9 Definition of the load case: (a, b) Stage i. (c, d) Stage i+1. (e) Load case used for the inverse analysis 

 
The simplified FEM of this structure is presented in Fig. 10. This FEM includes 7 elements and 6 point 
loads. In the inverse analysis, Young modulus and area of all elements are considered known parameters. 
Since there is no axial load, the axial stiffness is not activated in this example; therefore, only flexural 
behavior is analyzed. In this example, the construction of the first and last elements are considered. So, 
shear area and Inertia in elements numbers 2, 3, 4, 5 and 6 are considered known properties. The shear area 
and inertia of all other beam elements (that is to say I1, I7 and 𝐴𝐴𝑣𝑣1, 𝐴𝐴𝑣𝑣7) are assumed as unknowns.  

 
Fig. 10. Example 3. FEM of the bridge with load case used for inverse analysis. 

 
In this example, there are 4 unknowns, but since the model is symmetric, 2 unknowns can be considered 
instead of 4 unknown (I1 and 𝐴𝐴𝑣𝑣1 instead of I1, I7 and 𝐴𝐴𝑣𝑣1, 𝐴𝐴𝑣𝑣7). In order to identify the 2 unknown 
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mechanical properties at least, 2 measurements are required. COM is not able to observe any properties 
only with rotations in this example. To observe parameters with the method, the variation of deflection and 
rotation should be taken into account (it is to say, w1 and v1). The value of theoretical rotation and vertical 
deflection of node 1 are 2.280e-05  (rad) and 7.414e-05 (m), respectively. Timoshenko's beam theory is 
used to calculate the values of measured variables in the node number 1 in example 3. The initial value 
coefficients of unknown inertia and shear area (I1 and 𝐴𝐴𝑣𝑣1) randomly chosen between 0.5 and 1.05 are 
showed in Table 5. In the following comparison, the evolution of the normalized values of the shear area 
and inertia ratio throughout the iterative process with 10 different initial values which are randomly selected 
between 0.5 and 1.5 are presented in figures 11.a. and 11.b, respectively.  

Table 5: Initial value coefficient of the Bridge Unknown Properties 

I Q 
0.85  0.58 
1.33     0.55 

1.086     1.03 
1.05     1.28 
1.42     1.43 
0.79     0.63 
1.26     1.07 
1.25     0.97 
0.88    0.51 
1.07     0.84 

 

 
 

Figure 11. (a) Normalized values of inertia in different iterative steps with random initial value coefficients. (b) Normalized 
values of shear area in different iterative steps with random initial value coefficients.  

 

The new method manages to observe the unknown shear area in 14 recursive steps and Inertia in 14 
recursive steps, the evolution of shear area and inertia ratio throughout the iterative process, are presented 
in Fig.11.a and b, respectively. It is important to highlight that traditional COM is not able to identify the 
accurate value of mechanical properties when theoretical rotations are measured. However, it is examined 
and the normalized values of observed material properties are 0.528 and 3.000 for inertia and shear area. 
This example proves the efficiency of the proposed COM to estimate inertia and shear area when shear 
rotations are taken into account. Also, it is important to highlight that no other SSI method based on SMM 
in literature is able to include the value of shear rotation into account. 
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5.Conclusions 
 
Most Structural System Identification (SSI) methods neglect shear effects as this phenomenon is usually 
negligible in comparison with flexural deformation. In fact, stiffness matrix methods are used normally to 
analyze complex structures neglecting shear rotations. However, it can play a significant role in some 
structures, as deep beams. According to the literature, even those studies which address the particular effects 
of this deformation in static SSI tests, neglect the effects of shear rotation. However, this failed to consider 
the effects of shear rotation can lead to significant errors in observing material properties in the inverse 
analysis.  
 To fill this gap, the formulation of Constrained observability method (COM) is updated to include shear 
rotation. The COM performance in several examples is tested to show the power of the new method to 
observe the value of the structural parameters when the actual rotations are included into the measurement 
sets. To show the applicability of the COM on complex structures, a simplified model of an intermediate 
construction stage of a cantilever composite bridge in China is studied. The results of this study show how 
the value of material properties can be observed by COM when the actual rotations are included into the 
measurement set. It is to say that the result of COM method without considering shear rotation when actual 
rotations are included into the measurement set is studied, in order to show the sensitivity of the SSI 
methods to this modeling error. The study of this sensitivity analysis might provide some insight into which 
structures rotation due to shear should be taken into account and in which cases these effects can be 
neglected.  
This research presents the application of the method for error-free measurement sets. Possible modeling 
errors have been also neglected. The effect of the measurement errors will be studied in the future. The 
application of the method to the actual measuring sets from real structures will also be envisaged. 
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